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N
uclear physics is not a new science. However, after almost onecentury of research, the
atomic nucleus is still not fully understood and new unexpected properties are emerging

frequently. Trying to understand the structure and the evolution of the nucleus depending on
its constituents is one of the fundamental goals of nuclear physics. Nevertheless, describing
the interaction between nucleons is extremely hard to achieve, even for light nuclei where the
number of nucleons is small.

Historically, fundamental properties of the nucleus have been investigated by reducing the
N-body problem to independent nucleons located in a mean �eldbuilt in an auto-coherent
way. This approach allowed to explain several phenomena observed experimentally such as the
magic numbers associated to certain con�gurations of nucleons particularly stable, and lead to
the shell model of the nucleus.

However, even if the stable nuclei are the most abundant on earth, their diversity (nearly
300) represents only a small fraction of the existing nuclei(see Fig.1.1). Today, nearly 3000
nuclei have been observed experimentally and it is expectedthat the same amount still remains
to be observed. Those nuclei have a limited lifetime after which they decay mainly via� decay.
For a given Z number, the more (or the less) neutrons we count away from theequilibrium
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value, and the less stable the nucleus becomes, until reaching a threshold where even in its
ground state the nucleus is not bound anymore and decays in a very short time by emitting
nucleons. This limit is called neutron dripline (or proton dripline, respectively) and the nuclei
around this region usually exhibit very di�erent behavior compared to the stable nuclei.

Figure 1.1: Chart of the nuclides representing with black squares stable nuclei, lightyellow neutron-
rich or neutron-de�cient nuclei already produced in terrestrial laboratories, and in light blue nuclei not
studied yet. The limits of proton and neutron particle stability (or driplines), predicted by theoretical
models, are shown with red and blue lines, respectively.

One of the major research goals of modern nuclear physics is to explore those regions
where the neutron to proton imbalance is reaching extreme values in order to determine the
exact position of the dripline. Studying the properties of the nuclei in those regions gives us
information on the evolution of their structure while approaching (sometimes even crossing)
the limits of existence. The results obtained can then be compared to existing theoretical
models and if needed, used to correct or justify the development of new models. A single look
at Fig.1.1 shows the huge work that still needs to be done, in particulararound the neutron
dripline. Indeed, the neutron dripline has been reached experimentally only for nuclei with a
proton number Z lower than ten.

In this document, we will be investigating the nucleon-nucleon interaction toward the
neutron dripline. In practice, the dripline can be reached by changing the proton to neutron
ratio but also by increasing the excitation energy of a nucleus beyond the nucleon(s) emission
thresholds. This work can be divided in two studies: then-n interaction in the core+xn
systems and the evolution of thep-n interaction in the Fluorine isotopic chain. Indeed, we
will start by exploring the n-n interaction in nuclei for very high energy unbound states of18C
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and 20O (that can be seen as14C+4n and 16O+4n, respectively). And we will then study the
evolution of the p-n interaction in the Fluorine isotopic chain by comparing results from 26F
and 28F, the latter being an unbound system. All the nuclei, be there bound or unbound, are
studied using knockout reactions, meaning that a nucleon isremoved from a nucleus in order
to populate the system of interest.

This document is divided in �ve chapters. In the �rst one, we will present the particularities
of the study of nuclei at the neutron dripline as well as the motivations of such studies. We will
then describe the di�erent techniques and observables usedin order to explore unbound states.
In a third chapter, we are presenting the experimental principle and setups used during this
work in order to populate the nuclei of interest as well as thesimulations used to understand
and interpret the data. In the fourth chapter, we are presenting our results and interpretation
on the n-n pairing in unbound states of18C and 20O. And �nally, in the last chapter, we are
presenting our results and interpretation on the evolutionof the p-n interaction in the Fluorine
isotopic chain between26F and 28F.

1.1 Toward the neutron dripline

1.1.1 General properties of nuclei

In this section, we are focusing on the description of the lightest nuclei Z � 10. Since we will
be investigating those nuclei, we start by describing the characteristics of stable nuclei before
comparing them to those of neutron-rich ones.

Despite a limited number of isotopes for each chemical element, light nuclei can be very
di�erent from each other. Stable nuclei have the following characteristics:

ˆ The N=Z ratio between their number of neutrons and protons varies slightly varying
around 1.

ˆ The binding energy between the nucleons is similar for all the nuclei and is around
8 MeV/nucleon. The separation energies for one proton (Sp) or one neutron (Sn ) are
also very similar.

ˆ Their radius can be described by the empirical formulaR = r0A1=3 [10], where r0 is
the e�ective radius of a nucleon (r0 � 1.2 fm) and A is the total number of nucleons.
Such description assumes an homogeneous distribution of the nucleons in the nucleus
(independently of their nature).

ˆ The presence of several bound excited states. Those states,whose excitation energies
vary from one isotope to the other, usually decay by the emission of 
 -rays.

While moving away from stability those properties change rapidly and nuclei become
unstable, with shorter and shorter lifetimes. If the lifetime of the nuclei close to stability is
varying from a few years to a few seconds, the lifetime of the neutron rich nuclei is dropping
rapidly under the second and they survive only a few milliseconds approaching the dripline.
The N=Z ratio for nuclei outside the valley of stability can vary from 0.6 to 4 and their
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separation energies Sn;p vary from 40 to 0 MeV [11].

When the ratio reaches extreme values, the radial distributions of protons and neutrons can
decouple massively and give raise to exotic phenomena such as the neutron halo: in those nuclei,
the radial distribution of neutrons shows a tail that spreads much further than the proton one.
Those nuclei can therefore be represented as a light core around which one or several neutrons
are orbiting. A similar phenomenon can be observed for proton halos in the case whereN=Z
is very low. However, in that case this manifestation is less obvious due to the Coulomb bar-
rier that does not allow protons to have a spatial wave function as spread as the one of neutrons.

In our study, we are interested by the light neutron-rich nuclei and in particular nuclei that
have such a large excess of neutrons that are unbound (28F). For a stable nucleus, the proton
and neutron potentials have similar characteristics, except for the Coulomb contribution, that
makes the proton potential less deep. If the number of neutrons increases, the proton potential
becomes deeper due to the attractiven-p interaction [11]. Therefore the separation energy for
the protons becomes larger while the one for the neutrons becomes smaller, its value reaching
zero close to the dripline.

Moreover, bound excited states become more and more rare while moving toward the
neutron dripline. The last bound isotopes of an element usually do not have any bound excited
state. This is why the study of neutron-rich nuclei usually requires to do spectroscopy of
unbound states.

1.1.2 Structure in nuclear physics

Nuclei, like all the subatomic particles, follow the rules ofquantum mechanics. In particular,
their evolution is governed by the Shr•odinger equation. Considering the simple case of a particle
with mass m in a potential depending only on its position, the Shr•odinger equation can be
written as follows [12]:

�
~2

2m
�  (~r; t) + V(~r) (~r; t) = i~

@ (~r; t)
@t

(1.1)

whereV(~r) is the potential in which the particle is and (~r; t) its wave function. In the case
of a problem with several particles interacting with each other, the problem is more complex
since the potential felt by each particle is a function of thestate of all the others. This
interdependence is known as the N-body problem and is encountered in numerous �elds of
physics. The complexity of this problem increases with the number of particles. It is possible
to solve it analytically for very small number of particles but it remains unsolvable exactly
in its general case. We therefore solve it numerically usingdi�erent methods that have been
developed. We can give as example for light nuclei the techniques calledab initio : NSCM (No
Core Shell Model), GFMC (Green Function Monte Carlo), Coupled Cluster... However, those
di�erent techniques encounter sometimes di�erent problems that can be conceptual or due to
numerical convergence.

Another di�culty, proper to nuclear physics, adds itself to the problem: there is no analytic
form for the interaction potential between two nucleons inside a same nucleus fundamentally
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speaking. Quantum chromodynamics [13] is the theory that studies, in a fundamental level,
the strong interaction that con�nes the quarks inside the nucleus. This theory allowed to
treat problems up to four nucleons but shows some numerical limitations when the systems
become more complex. Moreover all the models used in nuclearphysics are based on e�ective
interaction potentials.

Historically, the model that encountered a big success and allowed us to better understand
nuclei is the model of independent particles. In this model,particles are considered entirely
independent one from another and are sitting in a mean potential (also called mean �eld).
In this context, we can express the wave function of the system such as the sum of the wave
functions of each independent particle that composes the system. The Hamiltonian of the
system can be expressed as follows:

Ĥ =
NX

i =1

T̂i +
NX

i =1

NX

j>i

V̂ij �
NX

i =1

T̂i + Ûi (1.2)

where Ĥ is the Hamiltonian of the system,T̂i is the kinetic part associated to the particlei ,
V̂ij the interaction potential between particlesi and j , and Ûi the e�ective potential felt by
particle i .

Considering that the potential has spherical symmetry and by adding the spin-orbit term,
it is possible to show [12] that the energy levels of the system can be obtained as the sum
of the energiesenlj of the independent particles. Those energiesenlj are obtained using the
diagram presented in Fig.1.2. Each combination of quantum numbersn, l and j characterizes
what is called an orbital. The latter can contain at most 2j +1 nucleons with the same energy,
depending on the orbital. The total energy is obtained by �lling the orbitals with the nucleons
of the system. In this model, neutrons and protons are decoupled and are �lling a similar
diagram independently. To build those diagrams, we order the orbitals from the lower to the
higher energy, so that an independent particle located on a higher orbital has systematically
more energy than any other particle located in a lower orbital. The nucleons of the last
occupied orbital are called valence nucleons, the others being sometimes called core nucleons.

In this model, the ground state of a nucleus is obtained by minimizing the total energy,
i.e. by following the order of the orbitals while �lling them with the nucleons of the nucleus of
interest. In order to obtain the di�erent excited states of anucleus, one needs to modify the
ground-state con�guration by promoting one or several valence nucleons into higher orbitals.
To distinguish the di�erent con�gurations, we are using in this entire document the following
notation:

� (nlj )Np 
 � (nlj )Nn ;

where � (nlj ) and � (nlj ) depict the valence protons and the valence neutrons, respectively
and Np and Nn how many of them are located in those orbitals. All the lower orbitals be-
low the valence ones are supposed to be fully �lled, which allows the use of a condensed notation.

There are pairing e�ects between nucleons of a same orbital that tend to lower their
individual energy when they are paired. This e�ect is directly visible by looking at the nuclear
chart (Fig. 1.3), and is the origin of the pattern that can be observed while following the
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Figure 1.2: Energy levels of a model with independent particles. Each level (also calledorbital) is
characterized by the quantum numbersnlj . The orbitals are classi�ed from bottom to top by increasing
energy. The numbers between orbitals correspond to the number of nucleons used if all the lower energy
orbitals are �lled.

neutron dripline: some isotopes with an even number of neutrons are bound while isotopes
with one neutron less are unbound.

The historical model that has been used to reproduce the nuclei from the valley of stability
using the assumption of independent particles is the shell model [14]. It allows to derive in
particular the so called magic numbers. Nuclei with a magic number of nucleons (2, 8, 20, 28,
50, 82, 126) show singular properties that have been observed experimentally. For example,
Fig. 1.4 shows the evolution of the neutron separation energy (Sn ) for nuclei with an even
number of neutrons as a function of their neutron number. We observe sharp drops at each
magic number (in particular for 50, 82 and 126), meaning thatit is much harder to remove a
neutron when the neutron number corresponds to a magic number.

In the diagram presented in Fig.1.2, the magic numbers correspond to the number of
nucleons necessary to �ll entirely certain orbitals: 1s1=2, 1p1=2, 1p3=2... Those orbitals are
characterized by an important separation energy compared to the orbital above, meaning that
transferring a nucleon to the next orbital would cost a lot ofenergy.

However, this simple model shows its limits while moving awayfrom stability. The sepa-
ration energy between two orbitals and even their order can change while moving toward the
neutron dripline. If we take as an example the Oxygen isotopic chain, several experimental
studies [15{ 17] show that the numbersN = 14 and N = 16 behave like magic numbers while
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Figure 1.3: Nuclear chart for light nuclei.

Figure 1.4: Evolution of the neutron separation energy for nuclei with an even number of neutrons
as a function of their neutron number. The arrows located below thehorizontal axis correspond to the
magic numbers (�gure taken from [1]).

the magic numberN = 20 disappears [18]. Di�erent theoretical calculations [19, 20] explain
this phenomenon from the evolution of the energies of the independent particle orbitals.
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1.1.3 Unbound nuclei and resonant states

Nuclei close to the dripline are weakly bound and most of the time do not have any bound
excited state. It is the case for example for nuclei such as6He or 11Li, that do not have any
bound excited states below the two neutron emission threshold (S2n ). In this conditions, excited
states can manifest themselves as resonances. Past the dripline, nuclei become unstable with
respect to the emission of particles even in their ground state. However, in the case of unbound
nuclei located close from the emission thresholds, it is possible to observe resonant states, their
lifetime � being generally associated to the width of the resonance � due to the Heisenberg
uncertainty principle:

� � � � ~ (1.3)

For an unstable system with respect to the emission of one neutron, the relative energy
spectra of the fragment-neutron system can reveal the presence of resonant states. A well
known example is the one of the unbound Helium isotopes. For example 7He, which ground
state has been observed as a resonance since the sixties [21]. The di�culty to observe
those states is that they have very short lifetimes (of the order of 10� 21 s). As a conse-
quence, the measurement of the energy of those states can only be done in an indirect way,
using reactions, by observing the decay products and/or other particles involved in the reaction.

If we consider only the fragment-neutron relative movementduring the decay, the apparition
of a resonant state depends entirely on the shape of the potential felt by the neutron. For a
neutron with an angular orbital `, the e�ective potential is given by [22]:

Vef f (r ) = VN (r ) + V` (r ) = VN (r ) +
~2`(` + 1)

2�r 2
(1.4)

where r is the fragment-neutron distance,� the reduced mass,VN the attractive nuclear
potential created by the fragment andV` the repulsive centrifugal potential, that depends
quadratically on the angular momentum. The larger is the angular momentum `, the higher
is the centrifugal barrier, which implies the con�nement ofthe neutron in the potential for
a longer time since the penetrability of the barrier is inversely proportional to its height
[23]. As a consequence, for̀ > 0, we obtain resonant states which lifetime� increases
(and width decreases) with a larger̀ . But for neutrons with angular momentum equal
to zero, the contribution from the V` term disappears and there is no more centrifugal
barrier (see Fig.1.5). It is therefore impossible to observe resonant states in that case. How-
ever, if an increase of the cross-section is observed toward0 energy, we talk of virtual states [24].

In fact, such a description is too simple, since only the relative fragment-neutron movement
is taken into account and that no assumption is made on the internal structure of the fragment.
Indeed, models that take into account the coupling between the di�erent con�guration of the
fragment predict the existence of aǹ = 0 resonance [1]. However this simple vision allows us
to obtain information on the structure of unbound states.

In this description, resonant and virtual states are treated like the di�usion of a neutron on
the fragment. The di�erential cross-section in relative energy (Erel ) for a partial wave with an
angular momentum` can be expressed as follows:

d� `

dErel
=

4�
k2

rel

(2` + 1) sin2 � ` (Erel ) (1.5)
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Figure 1.5: On the left, e�ective potential felt by a neutron with an ` > 0 angular momentum. We
notice that it shows a centrifugal barrier (in dashed blue line) that can con�ne the neutron and induce
the formation of resonant states that can be observed. On the right,case wherè = 0 , no centrifugal
barrier is felt by the neutron. The insets on the top right of each �gurerepresent the kind of di�erential
cross-section in relative energy that we obtain in each case.

where krel is the wave number linked to the fragment-neutron relative momentum and � ` is
the phase of the wavè induced by the potential on the neutron wave function. In thecase
of a resonance with̀ > 0, the phase will be negligible for all the partial waves except for
the resonant` component. The cross-section will display a maximum at an energy Er with a
width �. In that case, the shape of the phase in Eq.1.5 leads to a Breit-Wigner distribution
and the two parametersEr and � allow to entirely characterize the unbound state.

For virtual states, at low energy, it is possible to link the phase with the scattering lengthas.
This parameter gives us a measurement of the attractive potential ability to bind the system:
it is positive for bound states and negative for unbound states. At very low energy (krel ! 0),
we can do the following approximation:

� 0 � � askrel (1.6)

In such conditions, the cross-section displays a maximum very close from the neutron emis-
sion threshold, with a tail that spreads to higher energies (see Fig.1.5). We can link qualitatively
the scattering length to the corresponding resonance energy using the following approximation
[25]:

Er �
~2

2�a 2
s

(1.7)

We obtain therefore for example that a scattering lengthas =-20 fm corresponds to a
resonance energy of aboutEr =50 keV for A� 9. However this formula can be used only
in the limit casekrel ! 0, and is used here only to give a comparison with the resonance energy.
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1.2 The nucleon-nucleon interaction inside the nucleus

1.2.1 General properties of the nucleon-nucleon interaction

We present here the general properties of the nucleon-nucleon interaction in a qualitative way.
The intensity of the interaction between two nucleons depends on several parameters:

ˆ The strongest intensity for the interaction is obtained when the wave functions of the two
nucleons show the larger spatial overlap. This is happeningwhen two nucleons have the
same number of nodes (characterized by the quantum numbern) and the same angular
orbital momentum `.

ˆ The nuclear interaction depends on the spins of the nucleons. The proton-neutron inter-
action, in particular, is the largest for a proton and a neutron with anti-aligned spins for
` 6= 0, i.e. for s1 = 1=2 and s2 = � 1=2. For example, the proton-neutron�d 5=2 
 �d 3=2

interaction will be stronger than the �d 5=2 
 �d 5=2 interaction.

ˆ Empirically, it has been shown that the intensity of the nuclear force inside a nucleus is
inversely dependent on the size of the nucleus. This dependence is a function ofA � 1=3 or
A � 2=3 depending whether the nucleons are located at the surface orat the center of the
nucleus. We can understand it qualitatively from the fact that when the size increases,
nucleons `meet' less often, decreasing therefore their interaction which has a short range.
An important consequence from this decreasing of the nuclearinteraction when the size
of the nucleus increases is that the modi�cation of the nuclear structure will occur much
faster in light nuclei compared to heavier ones.

ˆ Since the nucleus is made of neutrons and protons, there are two isospin values: T=0 and
T=1. However, the T=0 value can be obtained only for a proton-neutron system while
the T=1 value can be obtained for proton-proton, proton-neutron or neutron-neutron
system. The e�ective interaction will therefore be stronger for a proton-neutron system
than for a system with two identical nucleons.

1.2.2 Empirical determination of the proton-neutron interaction

The proton-neutron interaction, for given orbitals, can beobtained experimentally from
the structure of odd-odd nuclei (odd number of protons and odd number of neutrons). We
also need to assume that the chosen nucleus can be seen as an inert core to which only
one neutron and one proton are added. This method can therefore only be applied to
nuclei with a core possessing a strong shell closure. Indeedin that case, the core excita-
tions are at very high energy and their in
uence on the valence proton and neutron is negligible.

We can take as an example the38Cl nucleus. It can be seen as a36S doubly-magic core
on top of which a proton is added in�d 3=2 and a neutron in �f 7=2. The coupling of those two
nucleons gives four negative parity states with spinJ � = 2 � ; 3� ; 4� ; 5� . We will now determine
their binding energy (BE) resulting from adding independently one proton and one neutron
to the 36S core. Adding one proton in�d 3=2 gives us37Cl which binding energy is known.
Therefore we can determine the gain in binding energy resulting from adding a proton in�d 3=2

to the 36S core:
BE (37Cl) � BE (36S) = Sp(37Cl) (1.8)
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In a similar way, adding one neutron in�f 7=2 gives us37S and the resulting binding energy
gain can be expressed as follows:

BE (37S) � BE (36S) = Sn (37S) (1.9)

Figure 1.6: Determination of the interaction energy �d 3=2
 �f 7=2 from the structure of 38Cl extracted
from [2]. Int(J) are the interaction energies de�ned as the di�erence between thereference value
BE( 38Cl) and the real binding energy of theJ spin state. The weighted average of those interaction
energies Vpn(d3=2f 7=2) is an approximation of the monopole energy.

Finally, adding those two terms to the36S nucleus binding energy, we obtain the38Cl nucleus
binding energy assuming that the neutron in�f 7=2 and the proton in �d 3=2 do not interact with
each other. This can be written such as:

BE (38Clf ree ) = BE (36S) + Sn (37S) + Sp(37Cl) (1.10)

Comparing now this value to the binding energies of the four states obtained experimentally
for 38Cl, we obtain the interaction energy between the proton in�d 3=2 and the neutron in �f 7=2

coupled to a given spin (assuming that the gain in energy is only due to the proton and the
neutron that have been added). We note those interaction energies Int (J ). The results for
38Cl, extracted from [2], as well as an illustration of the method are presented in Fig. 1.6. We
then de�ne the weighted average Vpn of the interaction energies, called monopole energy. It
can be expressed in the following way:

V pn �

P
j (2J + 1) � Int (J )

P
j (2J + 1)

(1.11)
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In the case discussed here, we have been able to determine theVpn(d3=2f 7=2) value that
is of about � 1 MeV, which is close from the value predicted by shell-model calculations
(-1.19 MeV). The monopole interaction is characterizing theaverage change of the binding
energies due to the nucleon-nucleon interaction inside thenucleus, an essential element in
order to understand the evolution of the shell closures. However it is often complicated to
determine it using the technique that we just presented due to several constraints. Indeed, not
only the core used (A,Z ) needs to have a strong shell closure, but also the nuclei (A + 1,Z ),
(A,Z + 1) and (A + 1,Z + 1), needed in the calculation, cannot be deformed. Otherwise we
would not be dealing with single particle states and the calculation presented here would have
no sense since the states for which the interaction energiesare calculated would show too many
correlations. And �nally, the last condition is obviously knowing experimentally all the states
from the multiplet involved which often requires the use of di�erent experimental techniques.

We can also notice the parabolic shape of the interaction energy curve as a function of the
spin J . This is due to the quadrupole interaction that will be discussed in the following.

1.2.3 E�ective single particle energies

We determined in the previous section the intensity of the monopole interaction Vpn(d3=2f 7=2)
equal to � 1 MeV. Assuming that the inert core approximation is valid, adding protons
in �d 3=2 to a 36S core will bind the neutrons in�f 7=2 by � 1 MeV by proton added. This
can be observed by looking at the e�ective \single particle"energies (ESPE). Those ESPE
depict the mean e�ect of the other nucleons on a nucleon in a given orbital, meaning the
variations of the binding energies induced by the monopole interaction alone. The ESPE
of an occupied orbital is de�ned such as the energy needed to remove one of its nucleons,
while the ESPE of an empty orbital corresponds to the bindingenergy gained while �lling
it with nucleons. For nuclei close to a shell closure, the ESPE will be similar to the exper-
imental binding energies. However this is not true for nucleithat are strongly correlated
or deformed. In the case discussed here, we are close from thedoubly magic 36S and the
equivalence between ESPE and binding energy can be considered valid in a �rst approximation.

When adding four protons in�d 3=2, we expect that ESPE(�f 7=2) will shift by the quantity
4Vpn(d3=2f 7=2), meaning � 4 MeV. This value can be compared to the one obtained from the
experimental binding energies of neutrons in�f 7=2:

ˆ for Z=16 (0 in �d 3=2) and N=21 (1 in �f 7=2), i.e. Sn (37S)=4.303 MeV

ˆ for Z=20 (4 in �d 3=2) and N=21 (1 in �f 7=2), i.e. Sn (41Ca)=8.363 MeV

Therefore:

Sn (41Ca) � Sn (37S) � 4 MeV (1.12)

We obtain then a gain of binding energy of nearly 4 MeV when adding four protons in
�d 3=2. The two methods to determine the monopole interaction are in good agreement if the
conditions described earlier are ful�lled.
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1.2.4 Quadrupole interaction and nucleus deformation

On top of the monopole interaction, nuclei can gain binding energy through deformation. This
gain of energy comes from the quadrupole interaction. Indeed, while �lling a new orbital,
the experimental binding energy is often found stronger than the ESPE deduced from the
monopole interaction alone. Taking back the example of the�f 7=2 orbital, experimentally,
the protons in �d 3=2 have been found more bound than predicted by the ESPE(�d 3=2). This
quadrupolar gain of energy reaches its maximum in the middleof the orbital. We con�rm,
as mentioned before, that in case of shell closure (here�f 7=2 completely empty or full)
experimental proton binding energies are equal to ESPE(�d 3=2).

For those nuclei with closed shell, nucleons occupy all the possible magnetic sub-states and
therefore adopt a spherical shape. When those shell closuresdisappear, nucleons can move in
an extended valence space and adopt more con�gurations, implying more than one orbital, with
some that are more favorable than the one of the inert core. Nucleons from di�erent orbitals
mix and maximize their quadrupole energy, leading to deformed structures. We understand
that in those cases where strong correlations exist, the determination method of the monopole
interaction described earlier is not valid anymore.

1.3 The n -n interaction in core+x n nuclei

In the previous section, we have been mainly interested in the p-n interaction. However,
pairing interactions between identical particles play a major role in nuclear physics. Therefore,
we propose to discuss then-n and p-p interactions in this section.

Pairing interactions play crucial roles in atomic nuclei and quantum many-body physics in
general [26]. In �nite nuclei, two-neutron and/or two-proton pairing a re responsible for the
odd-even staggering observed in the binding energy of atomic masses and for the fact that all
even nuclei have aJ = 0+ ground state. Pairing correlations also imply a smoothing of the
level occupancy around the Fermi energy surface, an enhancement of pair transfer probabilities
(see e.g. Refs. [27, 28]), as well as a super
uid behavior in nuclear rotation [29] and vibration
[30]. When moving from the interior to the surface of the neutron-rich nuclei 11Li [31], 6He
and 18C [32], a transition from BCS (Bardeen Cooper-Schrie�er) [33] to BEC (Bose-Einstein
Condensation) [34] pairing has been predicted to possibly occur. On a larger nuclear-matter
scale, pairing plays a major role in the modeling of the rotation, magnetization and cooling of
neutron stars [35].

Recently, the formation of tetra-neutron resonances, either from an ensemble of four
interacting neutrons [36] or from the coupling of four neutrons inside atomic nuclei [37] were
proposed on the basis of experimental results. If con�rmed,tetra-neutron excitations would
require a higher range of (four-body) nucleon interactions[38], with expected important
consequences in the description of �nite nuclei, of nuclearmatter [39] and in the determination
of neutron captures in the Big Bang [40] and in neutron-star mergers. Despite of its tremendous
importance, the real observation of the decay of paired or tetra nucleons is still lacking or very
scarce as di�cult to evidence. By generalizing the Ikeda conjecture [41], initially proposed
to account for the presence of� cluster states close to� emission thresholds, such two- or
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four-nucleon resonances would similarly appear at energies close to the corresponding emission
thresholds [42]. The sudden promotion of nucleons beyond those thresholds, using a suitable
reaction mechanism, would allow the study of such few-nucleon correlations.

Tremendous e�orts have been made during the last decades to extract information on
proton correlations from the decay of two-proton emitters [43{ 46]. In such nuclei, the Coulomb
barrier traps the unbound protons during a time that is long enough to allow the detection
of protons distinctly to the formation of the emitter. This emission was �rst described as a
possible di-proton decay in the form of a2He [47], in analogy with � decay. However, after
having unfolded the strong �nal-state interaction (FSI) component, the observed proton-proton
angular distributions in 45Fe [48] and 54Zn [49] rather point to a three-body decay [44], in
which the two protons are emitted (not necessarily paired) from a mixed �lling of pf shells.
These relatively weak proton correlations may be inferred from the fact that the studied nuclei
were far from closed shells and that protons may lose their initial correlation when traversing
the high Coulomb barrier while escaping the nucleus.

Other approaches were carried out by observing the decays ofthe unbound 6Be [50], 12O
[51], 15Ne[52], 16Ne and 19Mg [53]. A progressive transition from correlated to sequential
two-proton decay was clearly observed in Ref. [50] as a function of the excitation energy of
6Be. Sequential decay was also observed in12O. In all cases, however, the decay patterns are
subject to strong Coulomb FSI between the two protons and the core, especially blurring the
observation of nuclear correlations at low relative energies.

To circumvent the problems caused by the Coulomb interaction, the study of two-neutron
emission was carried out in neutron-rich core+n+ n systems that are unbound either in their
ground state (10He [54], 13Li [54, 55], 16Be [56] and 26O [17, 57, 58]) or in excited states beyond
the two-neutron threshold (8He [59], 14Be [7, 60] and 24O [61, 62]). The decay of excited
states of8He [59], 14Be [7, 60] and 24O [62], as well as the ground-state decay of10He [54], all
show very convincing signatures of sequential decay through intermediate core-n resonances.
First observations of a di-neutron decay from the ground states of13Li [55] and 16Be [56] were
claimed on the basis of the observed smalln-n energies and angles, as compared to a three-body
phase-space decay, with no interaction between the emittedneutrons. However, the need to go
beyond the di-neutron simpli�cation and to use realisticn-n FSI, in direct and/or sequential
decays, has been pointed out in Ref. [63]. Indeed, the attractive nature of then-n interac-
tion can give rise to small relativen-n energies and angles, hereby mimicking a di-neutron decay.

An additional motivation for studying 2p or 2n decay emissions, is to �nd whether the
Ikeda conjecture, introduced above, can hold for two-nucleon systems as well, as proposed in
Ref. [42]. Such 2p and 2n narrow resonances have been very recently found in15F [64] and
26O[17], respectively. However, their 2p or 2n decay pattern could not be studied because of
the too weak 2p branch for 15F and the too low relative energy of the two neutrons for26O.
We will show that a narrow resonance is found in our work for28F, for which the 2n decay
pattern could be characterized.
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1.4 From 26F to 28F: evolution of the p-n interaction

As mentioned previously, nucleon-nucleon interactions areresponsible for the major changes
in nuclear structure observed while moving toward the dripline. The N = 20 shell closure
disappears forZ � 14 and a new gap atN = 16 is emerging for nuclei withZ � 8, explaining
the position of the dripline at A = 24 for the Oxygen isotopes. However, adding only one
proton in order to form a Fluorine isotope allows us to bind sixadditional neutrons since31F
is the last bound Fluorine isotope (note that28F and 30F are unbound due to pairing e�ects).
It is therefore important to have a good understanding of thenucleon-nucleon interaction in
this region in order to be able to predict properly the structure of those nuclei close to the
dripline. We are interested in this section in26F and 28F.

We start with 26F, which o�ers the opportunity to study di�erent aspects, as discussed earlier
in this chapter, of the nucleon-nucleon interaction far from stability. Indeed, this nucleus has
all the conditions required so that the approximations nedeed for such a study are valid.26F
can be seen as a doubly magic24O core to which we added one deeply bound proton (Sp(25F) =
� 15:1(3) MeV [65]) in �d 5=2 and one unbound neutron (Sn (25O) = 770(20) keV [66]) in �d 3=2.
The fact that the �rst excited state of 24O is located at an excitation energy of 4.47 MeV [67] and
that the sub-shells�d 5=2 and �d 3=2 are well separated in energy compared to the others allow us
to use the single-particle approach necessary to the determination of the �d 5=2
 �d 3=2 interaction
such as presented in section1.2. From the �d 5=2 
 �d 3=2 coupling, results aJ � = 1+ ; 2+ ; 3+ ; 4+

multiplet, whose energies must be determined in order to study the in
uence of the proximity
of the continuum on the correspondingp-n interaction. Indeed, once those states identi�ed and
characterized, we will be able using the method described insection1.2.2for 38Cl to determine
the intensity of the �d 5=2 
 �d 3=2 interaction. Finally, adding one proton in �d 5=2 to 24O gives
25F which binding energy is known to beBE (25F) = � 183:38(8) MeV. In a same way, adding
one neutron in �d 3=2 to 24O gives25O which is unbound with a neutron emission threshold of
Sn (25O) = 0 :77(2) MeV. Then we obtain the binding energy of26Ff ree (see section1.2.2):

BE (26Ff ree ) = BE (24O) + Sp(25F) + Sn (25O) = BE (25F) + Sn (25O) (1.13)

We need now to determine the energies of the four states (J � = 1+ ; 2+ ; 3+ ; 4+ ) resulting
from the �d 5=2 
 �d 3=2 coupling. Energies for the boundJ � = 1+ ; 2+ and 4+ states were
measured using di�erent techniques [68{ 70]. In particular, the spin assigments of the ground
state (1+ ) [68, 71] and of the weakly bound isomeric state (4+ at 643 keV) [68] were proposed
from their decay pattern to low- and high-energy spin values, respectively, in the daughter
nucleus 26Ne. Also an unbound state was recently proposed to be the missing J � = 3+

state [3]. In this work, 26F was populated from27Ne via proton knockout at GSI. In such
reaction, we expect the proton to be knocked-out mainly fromthe �d 5=2 orbital, while the
neutron remains in�d 3=2, and therefore populating the states of theJ � = 1+ ; 2+ ; 3+ ; 4+ multi-
plet. Among those states, only the 3+ has been found to be unbound, and decaying into25F+ n.

Since theJ � = 1+ ; 2+ ; 3+ ; 4+ multiplet has been observed experimentally , we can turn to
experimental interaction energiesInt (J ), that correspond to the interaction between a�d 5=2

proton and �d 3=2 neutron above the24O core coupled to di�erent spin orientationsJ . We can
de�ne this quantity such as:

Int (J ) = BE (26F)J � BE (26Ff ree ) (1.14)
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J Int (J ) [MeV]
exp IM-SRG USDA

1 -1.85(13) -2.24(07) -2.47
2 -1.19(14) -1.86(05) -1.51
3 -0.45(19) -0.53(04) -0.69
4 -1.21(13) -1.56(04) -1.54

V pn -1.06(8) -1.41(02) -1.40

Table 1.1: Experimental and calculated interaction energies,Int (J ), between a�d 5=2 proton and a
�d 3=2 neutron in 26F. Calculated results are obtained from USDA and IM-SRG shell-model calculations
(adapted from [3]).

whereBE (26F)J is the energy of a givenJ � state in 26F. Values ofInt (1; 2; 4) obtained in [68]
and Int (3) obtained in [3] are listed in Table 1.1 and shown in Fig.1.7. The corresponding
e�ective experimental monopole interaction (see section1.2.2) amounts to V pn

exp � � 1 MeV.

Figure 1.7: Experimental interaction energies corresponding to the�d 5=2 
 �d 3=2 coupling in 26F.
Int (J ) (green cicles), are plotted as a function ofJ (J + 1) and compared to calculations using the
IM-SRG procedure (left) and the USDA interaction (right). Fitte d parabolas are drawn to guide the
eye (taken from [3]).

The results from the USDA and IM-SRG calculations for the monopole interaction (V pn)
amount to about � 1.4 MeV. This is larger than the experimental value of� 1.06 MeV, pointing
to a smaller monopole interaction as compared to calculations. As seen in Table1.1 and
Fig. 1.7, the amplitude of the multiplet parabola of USDA is also larger than in experiment,
while the energy ofJ = 3 is in good agreement. This suggests that the residual energy that
lifts the degeneracy between theJ components of the multiplet is smaller than calculated.
Both e�ects of smaller monopole and residual interactions,as compared to calculations, could
be interpreted (with a word of caution concerning the Sn value of 26F and its consequence
on a possible shift in excitation energy of the resonance) asan e�ect of the proximity of the
continuum on the e�ective proton-neutron interaction.
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We are aiming now to perform the same kind of study for28F. Then by comparing the
results for 28F and 26F, we will get information on the evolution of the�d 5=2 
 �d 3=2 interaction
while moving further toward the dripline. Indeed while moving from 26F to 28F, we expect
to be �lling the �d 3=2 by adding two additional neutrons as shown in Fig.1.8. In the case of
28F, we are therefore left with a proton in�d 5=2 and a hole in�d 3=2. This coupling results in a
J � = 1+ ; 2+ ; 3+ ; 4+ multiplet whose energies must be determined.
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Figure 1.8: Expected ground state con�gurations for26F and 28F.

However, performing such study on28F reveals itself to be even more challenging than in
the case of26F. Indeed, while in 26F only the J � = 3+ state was unbound, in28F all the states
are unbound as the nucleus is unbound itself.28F can be seen as a28O core to which we added
one deeply bound proton in�d 5=2 and remove one unbound neutron in�d 3=2. The interaction
energiesInt (J ) for 28F can be expressed following Eq.1.14:

Int (J ) = BE (28F)J � BE (28Ff ree ) (1.15)

whereBE (28Ff ree ) is given by:

BE (28Ff ree ) = BE (28O) + Sp(29F) � Sn (27O) = BE (29F) � Sn (27O) (1.16)

However, theSn (27O) value is unknown. This is a problem that should not stop us in our study
since27O is also currently being studied, in the data from the same SAMURAI21 experiment
that will be presented in chapter5, giving hope for a value in the near future that could allow
us to determine the interaction energies (Int (J )).

Another di�culty might be added to the one already mentioned. Indeed, it is known that
the large shell gap atN = 20 is disappearing for neutron-rich nuclei [72{ 74]. The change in
shell structure aroundN = 20 is known to be a result of the tensor force, which is strongly
attractive for the �d 5=2 
 �d 3=2 coupling and strongly repulsive for the�d 5=2 
 �f 7=2 coupling
[75{ 77]. For nuclei in the region ofN � 20 and Z � 13, the reducedN = 20 gap allows
pf intruder con�gurations to compete with standart sd-only con�gurations if the gain in
correlation energy is of the same order as the size of the shell gap [78{ 80]. This has led to
the establishment of the \island of inversion", a region of nuclei near N = 20 for which the
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intruder con�guration is dominant in the ground state.

The island of inversion was originally thought to be including nuclei with 10 � Z � 12
and 20 � N � 22 [18]. In more recent years, it has become clear that the island extends
further, and a lot of experimental e�ort has been put forth todetermine its boundaries [81].
On the low-N and high-Z sides of the island, it is generally agreed that ground-state intruder
components fade away forZ � 13 and N � 18. Until now, the low-Z shore of the island
of inversion has been almost completely unexplored. A measurement of bound states in27F,
which lies on the island's western border atN = 18, has hinted a pf -shell contribution to
its excited state structure [82], but mass measurements [70] indicate that 27F ground state
is primarily sd shell. For the heavier (N � 19) Fluorine isotopes, lying within the island's
southern shore, only one study is available, on28F populated from 29Ne(� 1p) [4].

� ��

Figure 1.9: Relative (or decay) energy spectrum for27F+ n coincidences (extracted from [4]). The
�lled squares with error bars are the measured data, and the dashed red and dotted blue curves represent
the 220 keV and 810 keV simulation results, respectively. The solid blackcurve is the sum of the two
resonances, with the ratio of 220 keV resonance to the total area being 28%. The �lled orange curve is
a simulation of a single resonance at 590 keV, and the gray dot-dashed curve is the best �t of a single
s-wave (as=-0.05 fm). The two neutron emission threshold (S2n ) has also been added.

We will now describe in more detail the results obtained previously on 28F [4]. In this
study, 28F has been populated via the knockout of a proton in29Ne at NSCL (National
Superconducting Cyclotron Laboratory). The relative energy spectrum obtained is presented
in Fig. 1.9. Assuming the presence of only two resonances, the �t of the data leads to two
resonance energies, at 220(50) keV and 810 keV, even if the possibilty of more resonances is
not ruled out. Also no 
 -ray transitions were observed in coincidence, so the states observed
were assumed to feed the ground state of27F. However, the data su�er from very low statistics
and large error bars. Indeed, the two-resonance hypothesisis only based on one data point at
around 500 keV, with large error bars, that looks like a local minimum but could equally be
a statistical 
uctuation. Moreover, as discussed in Ref. [4], by comparing the relative energy
spectrum to the response of the experimental setup in Fig.1.10, it is clear that the data
are strongly distorted by the resolution and the acceptance. In particular, the width of the
observed data is almost entirely due to the experimental resolution and the shape of the data
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above� 0.8 MeV is dominated by the limited acceptance at higher relative energies.

Figure 1.10: Simulated resolution and acceptance of the experimental setup (�gure taken from [4]).
Each colored histogram was generated by simulating a28F breakup at the indicated energy and then
folding in detector resolution and acceptance cuts. The shaded curve was generated by simulating a
28F breakup with the relative energy uniformly distributed from 0-3 MeV and folding in acceptance and
resolution. The colored histograms are all normalized to a total area of unity, and the shaded curve
was arbitrarily scaled to �t within the same panel.

The binding energy of28F, deduced from the experimental results assuming that the ground
state was the structure at about 220 keV, was then compared andfound in good agreement
with USDA and USDB calculations. However as mentioned in Ref. [4], for a given nucleus,
good agreement between experiment and USDA/USDB theory indicates a ground-state
con�guration that is primarily sd shell. In contrast, a nucleus with signi�cant ground-state
intruder components would be poorly described by the USDA/USDBshell model, leading to
the conclusion that pf -shell intruder components play only a small role in the ground-state
structure of 28F, leaving it therefore out of the island of inversion.

The information extracted from this �rst attempt to study th e structure of 28F did not
lead to clear answers. And there is no doubt that improvementson the resolution, statistics
and acceptance would allow us to get a clearer picture of the structure of 28F. However, this
result gives us an idea of the complexity of such study.

We will present in chapter5 our results on28F not only using this same reaction29Ne(� 1p),
but also populating it from 29F(� 1n), where both the resolution and the statistics have been
largely improved compared to previous studies of unbound nuclei in general.
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Chapter 2

Analysis techniques of fragment+x n
systems
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I
n this chapter we will discuss the experimental principle, requiring the detection of the incident
beam and outgoing fragment and neutron(s), and the observables that will be constructed

in order to extract the physical quantities. Indeed, these are the kind of coincidence events
that are characteristics of the decay of an unbound state. Wewill introduce �rst the principle
of neutron(s) detection, which is a key point in such kind of analysis. Then we will present the
di�erent observables used for the study of two-body and three-body unbound states.

2.1 The principle of neutron(s) detection

The detection of neutron(s) is a key step for the study of neutron-rich unbound states. It is
therefore crucial to understand fully the principle of neutron(s) detection that will be used in
our analysis. Indeed, we are investigating in this documentunbound states that are decaying by
emitting neutron(s) (see Fig.2.1). The fact that the neutron is neutral makes it hard to detect.
Their detection is possible only through the strong interaction, with cross-sections much lower
than the corresponding atomic processes involved in charged-particle detection. Their detec-
tion is therefore not direct but induced by the recoil signalof a particle due to a nuclear reaction.

In our experiments, neutrons were detected after a collision with a nucleus from the
detector material (plastic scintillators in our case). However, since in most reactions the
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Figure 2.1: Principle of the reaction of interest where a nucleus of the beam is undergoing a knock-
out reaction in order to populate unbound states that will decayvia the emission of neutron(s). We
take here the example of a proton knockout with a proton target.

neutron survives in the exit channel, a same neutron can be detected several times in the
neutron detector by interacting successively in di�erent locations. And even when the
neutron interacts only once, outgoing charged particles from that interaction can propagate to
neighboring detector modules. This phenomenon, the generation of signals in several detectors
due to the passage of one single neutron, is known as cross-talk. The low neutron detection
e�ciencies and the occurrence of cross-talk makes extremely di�cult the study of unbound
resonances that decay through the emission of more than one neutron.

In this work, we are interested mainly in two types of decay mechanisms, the 1n and the
2n decay. The 1n decay remains relatively simple since only one neutron needs to be detected
and therefore in that case only the �rst interaction occurring can be considered (all the hits
due to cross-talk arriving later). However, for the 2n decay channel, since two neutrons have
to be detected in order to have access to the full kinematics of the reaction, it is crucial to
distinguish the true hits from the case where several hits originate from the sameneutron. A
list of the di�erent possible cases when several hits are registered in the neutron detector are
presented in Fig.2.2.

In order to identify such kind of events, we applied algorithms in order to suppress as
much cross-talk events as possible while optimizing the selection of real 2n events, sometimes
a di�cult compromise.
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Figure 2.2: The cross-talk principle: sketch of all the possible scenarios for the detection of 3 hits
in the neutron detectors (adapted from [5]).

2.2 Two-body unbound systems

In this section, we are focusing on the treatment of the coincidence between a nucleus of the
beam, a fragment and a neutron. We will present the properties of the fragment-neutron non-
resonant contribution before developing the di�erent observables that characterize an unbound
system.

2.2.1 Non-resonant contributions

De�nition

Let us consider two particles that are part of the exit channel of a given reaction, with
four-momenta p1 and p2. In an ideal case in which they do not `see' each other, their
momentum distributions should be independent,d�=dp1 and d�=dp2, and these distributions
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would lead to a non-resonant component in the two-particle observables, the one we would
like to estimate. If we can select exit channels in which onlyone of them is emitted, we could
measure them. However, when they are mostly emitted together, as is the case of two neutrons
in the breakup of borromean two-neutron haloes, or the unbound resonance we have described,
we have only access to the two-particle cross-section, which we can write as:

d2�
dp1dp2

=
d�
dp1

d�
dp2

� C(p1; p2) (2.1)

The factor C(p1; p2) is often called the \correlation function", but it should simply be seen
as the e�ect of the mutual presence of both particles in the �nal state. The main mechanisms
that may modify the momentap1 and p2 of the particles we measure can be classi�ed in three
categories:

QSS FSI resonances

.
x x

&
p1 p2

.,&
p1 p2

� M %
p1

&
p2

(a) (b) (c)

(2.2)

the quantum statistical symmetries for identical particles (a), the �nal-state interaction for
interacting particles (b), and the formation of resonancesdecaying into those particles (c). In
the case of two neutrons we have (a,b) because they are identical fermions and subject to the
strong interaction, in the case of fragment+proton we have (b) through the Coulomb interaction,
and in the case of fragment+n we may have (c) if the unbound system has resonances.

Event mixing

Independently of the mechanism modifying the momenta, if wewant to extract its e�ect
C(p1; p2) from the experimental coincidencesd2�=dp1dp2, we need to estimate the `independent
distributions' of Eq. (2.1), i.e. how the two-particle observable would look like without the
correlation/interaction. If we mix particles from di�erent events we should expect to wash out
any correlation, since a particle 1 has not `seen' a particle2 from a di�erent event, they did
not coexist. The added bonus of these `virtual pairs' is thatthey are built from particles that
have been detected, so our independent distributions will include the experimental acceptances.

This technique has been extensively used in a wide range of energies in both nuclear
and particle physics, and has e�ectively extracted the correlation signals from two-particle
coincidences (leading usually to the source size for QSS andFSI, and for resonances to
their mass and width). However, when the correlation is very strong, just mixing the
events is not enough. In order to understand why, let us `mix'Eq. (2.1). Mixing particle 1
with all other particles 2 corresponds to integrating the two-particle distribution over particle 2:
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dp1
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d2�

dp1 dp2
dp2

=
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dp1

Z
C(p1; p2)

d�
dp2

dp2

=
d�
dp1

hCi (p1) (2.3)

We have used the de�nition ofC(p1; p2) in Eq. (2.1) and then used the fact that the in-
dependent distributions are independent of each other. By mixing events we obtaind� 
 =dp1,
which is the independent distribution we are looking for timeshCi (p1). The same stands for
particle 2, so in general we obtain:

d� 


dp
=

d�
dp

� h Ci (p) (2.4)

The unexpected factor represents the average correlation,with all the other `virtual'
partners, of a particle with four-momentump. When the correlation function is small, or when
it acts on a very small portion of the data set, this average correlation will be hCi � 1, and
therefore the standard mixing technique will succeed:

C(p1; p2) �
d2�=dp1dp2

(d� 
 =dp1) (d� 
 =dp2)
(2.5)

This is the case in most of the applications of the technique,in which particles are weakly
correlated, or very few of them are strongly correlated.

Residual correlations

The correlation factor in Eq. (2.4) represents the residual correlations that `survive' the event
mixing. If we know it is going to be signi�cantly larger than 1, or if we do not know but do
not want to make a priori assumptions, it is better to take it into account. In general, mixing
the events will lead us to underestimate, more or less, the correlation function:

d2�=dp1dp2

(d� 
 =dp1) (d� 
 =dp2)
� C(p1; p2) (2.6)

However, if we are able to calculate the residual correlationfactor, then we can use it as a
weight of the events we mix and remove the residual correlations completely:

d2�=dp1dp2

(d� 
 =dp1) (d� 
 =dp2)
| {z }

� 1
hC i ( p1 )

1
hC i ( p2 )

= C(p1; p2) (2.7)

The problem, of course, is that in order to construct the correlation function we have to
use the correlation function! We need an iterative algorithm, that will construct successive
correlation functions using the weights calculated with the preceding one. And, to make
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things a bit more complex, there is a subtle detail in the calculation of the weights that can
be deduced from Eq. (2.3):

hCi (p1) =
Z

C(p1; p2)
d�
dp2

dp2

=
Z

C(p1; p2)
d� 
 =dp2

hCi (p2)
dp2 (2.8)

In order to calculate the weights of particle 1 we would use the correlation function plus the
`independent' distribution of particle 2, but experimentally we cannot measure it. So we will
have to add a second loop in the iteration algorithm, since inorder to calculate the average
correlation of one particle for a given step we have to use theaverage correlation of all the other
particles...

The iterative technique

The previous integral equations help to understand the principle, but in practice we are
measuring a given numberN of two-particle coincidences:

1 2
1 � �
2 � �
3 � �
...

...
...

N � �
p i

How do we proceed? First we project the 8-dimensional space into 1 dimension:

(pi ; pj ) ! x ij (2.9)

which is the relative observable we are going to study, and that should contain the correlation
we want to extract. For n-n pairs it may be the relative momentum, for fragment-n pairs their
relative energy, for example. Eq. (2.7) becomes:

� (x12)
[� 
 (x12)]w12

= C(x12) (2.10)

The numerator is the measured two-particle distribution, and the denominator the distri-
bution obtained through event mixing, with N (N � 1) virtual pairs, weighted by:

w12 = w1 w2 =
1

hCi (p1)
1

hCi (p2)
(2.11)

Each particle must have an associated weight, therefore we have to build an array of 2N
weights with the correlation function:
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1 2
1 � �
2 � �
3 � �
...

...
...

N � �
p i

C=)

1 2
1 � �
2 � �
3 � �
...

...
...

N � �
w i

that will allow us to build the correlation function. We initi alize the �rst weights to 1, build
the �rst `mixed' distribution, divide the data by that distr ibution to obtain the �rst correlation
function, that is used to calculate the second weights... and after a big enough number of steps
we should obtain the correlation function:

w(1) =1 ! [� 
 ]w(1) !
�

[� 
 ]w(1)
= C(1)

! w(2) ! [� 
 ]w(2) !
�

[� 
 ]w(2)
= C(2)

! w(3) ! � � � !
�

[� 
 ]w( n )
= C(n) (2.12)

For the calculation of the array of weights, Eq. (2.8) becomes:

hCi (n)(pi ) =
1

N � 1

NX

j =1 6= i

C(n� 1)(x ij )
hCi (n)(pj )

(2.13)

This is the second loop of iterations, since we calculate this array at every step (beyond the
�rst) of the general iteration, and for the calculation of each weight 1=hCi (n)(pi ) we need the
weights 1=hCi (n)(pj ) of all possible partners, that at the same time will need theformer.

Application

In order to illustrate this technique, we use in this paragraph the example of the construction
of the distribution of the non-resonant events in a relativeenergy spectra for the (29F,27F+ n)
reaction. In practice, the two loops described by the equations (2.12,2.13) have to be iterated
a su�cient number of times in order to reach a convergence criteria determined by the user (an
example of the e�ect of the di�erent iterations is presentedin Fig. 2.3). The result obtained
gives us the shape of the non-resonant distribution with very high statistics compared to the
data (of the order of N 2 virtual pairs). The statistical error of this distribution is therefore
negligible, but its amplitude has to be determined from the comparison with the experimental
one.

In the case of a relative energy spectrum, we assume that the non-resonant distribution
needs to remain lower than the data in the limit of the error bars for the whole energy range
(positive correlations). This fact allows us to establish an upper limit to the contribution of
the uncorrelated events in the relative energy spectrum. However, the resonances observed
in the correlated spectrum can sometimes have long tails at high energy, therefore creating
events over the whole energy range. The real proportion of the non-resonant contribution is
therefore usually smaller than the one obtained with such a normalization. Fig. 2.3 shows the
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Figure 2.3: On the left, relative energy spectrum and non-resonant distribution for the (29F,27F+ n)
reaction. The non-correlated distribution has been maximized in order to reach the data points in
some areas of the spectrum without going above it. On the right, the superposition of the non-resonant
distributions obtained for di�erent iterations of the algorithm a re presented.

relative energy spectrum as well as the maximized non-resonant contribution ( C � 1) for the
(29F,27F+ n) reaction.

In fact, the exact proportion of non-resonant events is determined by making a �t taking
into account this background as well as the di�erent resonances observed, but this technique
will be described in more detail later. However, the maximization of the non-resonant
distribution allows us to obtain indications on the presence or not of resonances in the spectra.
Indeed, the shape of the non-resonant contribution being non trivial, and the resolution of
the experimental setup degrading with the relative energy,it can be sometimes di�cult to
spot wide or high-energy resonances. This is even more true in the case of reaction channels
involving the knockout of several nucleons where the signalover non-resonant contribution
ratio can become very low. In that case, we can plot the di�erence or the ratio of the data over
the non-resonant contribution in order to enhance some structure in the spectrum. Fig. 2.4
shows an example of those two approaches for the (29F,27F+ n) reaction.

2.2.2 Invariant-mass method

We are investigating unbound states that immediately decayafter being populated, making
impossible the direct measurement of their \mass". Therefore, we use the invariant-mass
method in which the measurement of the complete kinematics of the reaction is necessary.
Indeed, we need for this method to detect all the decay products of the reaction and measure
their momenta.

The relativistic relation linking the massm, the momentum~pand the energyE of a system
is as follows:

E =
p

p2c2 + m2c4 (2.14)

In the following, we will assumec = 1. This formula can be used to express the mass of a
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Figure 2.4: On the left, results from the subtraction of the maximized non-resonant contribution
from the relative energy spectra for the (29F,27F+ n) reaction. On the right, correlation function, (i.e.
ratio between the relative energy spectrum and the maximized non-resonant distribution for the same
reaction).

system from a four-vector (E; ~p):

m2 = ( E; ~p)2 = E 2 � p2 (2.15)

And we can derive from this formula the invariant massM inv for a N-body unbound system
such as:

M inv =

vu
u
t

 
NX

i =1

E i

! 2

�

 
NX

i =1

~pi

! 2

(2.16)

whereE i is the energy of particlei and ~pi its momentum.

M inv being the mass of the system, we can derive the expression of the relative energyErel

between the particles by subtracting from it the mass of eachparticle in its rest frame mi :

Erel = M inv �
NX

i =1

mi (2.17)

If the unbound state is decaying by emitting only one neutron, Eq. 2.17 for a two-body
fragment+n system becomes:

Erel =
q

m2
A + m2

n + 2 ( EA En � j ~pA jj ~pn jcos�) � mA � mn (2.18)

where mA and mn are the rest masses of the fragment of atomic mass numberA and the
neutron, EA and En are their total energies,j ~pA j and j ~pn j are their momenta norm and� is
their relative angle.

If the fragment is populated in its ground state, we have thenEexc = Sn + Erel whereEexc

is the excitation energy of theA+1 nucleus andSn is its neutron emission threshold. However,
the reaction can also lead to the production of the fragment in one of its excited states that
subsequently decays to the ground state by the emission of a
 -ray of energyE 
 . In the latter
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case, a coincidence between the neutron and the de-exciting
 -ray is observed. We can therefore
propose the following expression for the excitation energy:

Eexc = Sn + Erel (+ E 
 ) (2.19)

2.3 Three-body unbound systems

In this part, the three-body correlations in the decay of high-energy unbound states are ex-
plored. In particular, a method for analyzing triple coincidence events (fragment+n+ n) from
kinematically complete experiments is described. The method incorporates the techniques of
intensity interferometry [83] and Dalitz plots [84] and allows the estimation of then-n distance
and time delay between the emission of the two neutrons. As will be seen, the latter is related
to the presence of fragment-n �nal-state interactions (FSI) in the exit channel. In principle,
the present approach is also sensitive to the energies and lifetimes of these resonances.

2.3.1 Phase space

In order to identify the correlations emerging from the interaction between particles, we need
to seperate them from the basic correlations imposed by energy and momentum conservation,
that are independent of the nature of the particles. The latter are given by the N-body
phase space, on top of which we will add what we call \physicalcorrelations", or simply
\correlations". Our model is an interacting three-body phase-space model that has been
developed for the analysis of triple correlations. In brief, the experimental relative energy
distribution is used as input to generate events~pf;n;n (Erel ) following three-body phase-space
[85]. The �nal momenta of the three particles generated are then�ltered to include all
experimental e�ects (like energy resolution, angular acceptance, or cross-talk rejection). In
order to illustrate the method used, we are using the result of the simulation for the reaction
21O(p,pn)20O� where unbound states above the 2n emission threshold are populated. As
mentioned earlier, the experimental relative energy distribution is used as input to generate
our events. Therefore, we can �rst look at the experimental relative energy distribution for our
reaction when the20O� is decaying with the emission of two neutrons (18O+ n+ n), see Fig2.5.

In our simulation, the available energy for the decay is selected according to this experi-
mental distribution. Before implementing correlations inour model to make it more realistic,
we are describing in the following sections the di�erent observables that we use in our analysis
in order to investigate three-body correlations.

2.3.2 Observables

In order to investigate three-body correlations, we need tode�ne the observables that are used
in our analysis.

Invariant masses and Dalitz plots

Correlations in three-particle decays have been extensively studied in particle physics by means
of Dalitz plots of the particle energies (E i ; E j ) or the squared invariant masses of particle
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Figure 2.5: Experimental relative energy spectrum of the decay18O+ n+ n.

pairs (M 2
ij ; M 2

jk ), with M 2
ij = ( Pi + Pj )2. In these representations, FSI/resonances lead to a non

uniform population of the surface within the kinematic boundary de�ned by energy-momentum
conservation and relative energy [84]. The classic example of such an analysis is the three-body
decay of an unstable particle [86]. In the present case, the fragment+n+ n system exhibits a
distribution of relative energies. Consequently, the value ofErel associated with each event will
lead to a di�erent boundary for the Dalitz plot, and the resulting plot containing all events
cannot be easily interpreted. We thus introduce a normalized invariant mass:

m2
ij =

M 2
ij � (mi + mj )2

(mi + mj + Erel )2 � (mi + mj )2
(2.20)

which ranges from 0 to 1 (E ij from 0 to Erel ) for all events and exhibits a single kinematic
boundary.

We can now, using Eq.2.20, compute the fragment-n and n-n invariant masses. The Dalitz
plot can be obtained by simply representingm2

fn as a function ofm2
nn . Since we have two

neutrons involved in the decay, we �ll two times the Dalitz plot for each event, one time for
each neutron. In the absence of any correlations above the phase-space kinematics, the plot
exhibits a uniform population as can be seen in Fig.2.6(a). The projections over the normalized
invariant masses, Fig.2.6 (b,c), both show a regular bell shape from 0 to 1 with a maximum
at around 0.5. We can also notice that the distribution of those two variables is minimum and
equal to 0 atm2

ij equal to 0 and 1.

Angular coordinates

In order to study the decay mechanism, one can also look at theangular correlations between
the three particles involved in the decay. We de�ne two angles � nn and � f=nn such as presented in
Fig. 2.7, � nn being the angle between the two neutron momenta~pn1 and ~pn2 and � f=nn being the
angle between the fragment momentum and the relative momentum of the two neutrons. Their
cosines can be expressed as a function of the momenta of the particles involved in the decay~pf ,
~pn1 and ~pn2 for the fragment, the �rst neutron n1 and the second neutronn2, respectively (see

Eq. 2.21 and Eq. 2.22). Since there are two di�erent ways (noted here \a" and \b") to label
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Figure 2.6: Dalitz plot (a) of the 18O+ n+ n events from the simulation of a phase-space decay for
Erel = 0-12 MeV. The projections over the normalized invariant masses arepresented in (b) and (c)
for m2

fn and m2
nn , respectively. We observe that the projections are not identical because of the mass

asymmetry of the three particles (mA , mn , mn ).

the neutrons involved in the decay, we compute� f=nn with both and add them in the same
histogram.

� ��

� ����
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Figure 2.7: De�nition of the two angles used in order to investigate three-body correlations as a
function of the momenta of the three particles involved,~pf , ~pn1 and ~pn2 for the fragment, the �rst
neutron and the second neutron, respectively.

cos(� nn ) =
~pn1 � ~pn2

j ~pn1 j j ~pn2 j
(2.21)

cos(� f=nn )a=b =
( ~pn1=2

� ~pn2=1
) � ~pf�

�
� ~pn1=2

� ~pn2=1

�
�
� j ~pf j

(2.22)

In the absence of correlations above the phase-space kinematics, plotting cos(� nn ) as a
function of cos(� f=nn ) results in a rather uniform population of the plot like shownin Fig. 2.8(a).
However, we can observe structures at the boundaries (cos(� f=nn ) = � 1 and cos(� nn ) = � 1)
due to kinematic conditions. The projection on thecos(� f=nn ) variable (Fig. 2.8(b)) shows a
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slight bell shape with a maximum at 0, whereas the projectionon cos(� nn ) (Fig. 2.8(c)) presents
a slowly decreasing slope from� 1 to 1 with a drop at around 1.
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Figure 2.8: Two dimensional plot ofcos(� nn ) as a function of cos(� f=nn ) (a) for the 18O+ n+ n events
from the simulation of a phase-space decay for Erel = 0-12 MeV. The projections over cos(� f=nn ) and
cos(� nn ) are presented in (b) and (c), respectively.

Jacobi coordinates

Another system of coordinates that is often used in order to study three-body correlations
are the Jacobi coordinates [55, 87], where the energy and the angular correlations between
the reaction products are described by the hyperspherical Jacobi vectors ~X and ~Y and their
conjugate momenta~kx and ~ky. The Jacobi coordinates can be de�ned in two independent
ways, the \T" and the \Y" systems that are presented in Fig.2.9.

In the \Y" system, the fragment is represented by the particle2 and in the \T" system by
the particle 3. The Jacobi coordinates are expressed as follows:

~X = ~r1 � ~r2 (2.23)

~Y =
m1~r1 + m2~r2

m1 + m2
� ~r3 (2.24)

~kx =
m2~p1 � m1~p2

m1 + m2
(2.25)

~ky =
m3(~p1 + ~p2) � (m1 + m2)~p3

m1 + m2 + m3
(2.26)
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Figure 2.9: \T" (left) and \Y" (right) Jacobi systems for the fragment+ n+ n three-body system in
coordinate and momentum spaces.

where mi is the mass of each particle in its rest frame,r i its position vector and pi its
momentum vector.

As shown in [87], the complete correlation information can be described bytwo observables
that are Ex=Erel and � k such as:

Ex =
(m1 + m2)k2

x

2m1m2
(2.27)

� k =
~kx � ~ky

j~kx jj~ky j
(2.28)

In the case of a two-neutron decay, for each event there are two ways (noted as \a" and \b"
in the following) to label the neutrons leading to two di�erent values for the [Ex=Erel ; cos(� k)]
coordinates. Therefore, we compute both and add them in the same histogram. This produces
a symmetry overcos(� k) for the \T" system.

We propose now to present the expression of the [Ex=Erel ; cos(� k)] coordinates for the two
di�erent systems \T" and \Y" explicitly in the case of a 2 n decay. We obtain for the \T"
system:

~kT
xa=b

=
~pn1=2

� ~pn2=1

2
(2.29)

~kT
ya=b

=
mf (~pn1=2

+ ~pn2=1
) � 2mn~pf

2mn + mf
(2.30)

noting that ~kT
ya

= ~kT
yb

. From which we can derive:

E T
xa=b

=
(kT

xa=b
)2

mn
(2.31)
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� T
ka=b

=
~kT

xa=b
� ~kT

ya=b

j~kT
xa=b

jj~kT
ya=b

j
(2.32)

We can also compute the [Ex=Erel ; cos(� k)] coordinates for the \Y" system in the same way:

~kY
xa=b

=
mf ~pn1=2

� mn~pf

mn + mf
(2.33)

~kY
ya=b

=
mn (~pn1=2

+ ~pf ) � (mn + mf )~pn2=1

2mn + mf
(2.34)

From which we can derive:

E Y
xa=b

=
(mn + mf )(kY

xa=b
)2

2mnmf
(2.35)

� Y
ka=b

=
~kY

xa=b
� ~kY

ya=b

j~kY
xa=b

jj~kY
ya=b

j
(2.36)

We present in Fig. 2.10, the results of the 2n phase-space decay of20O into 18O for the
\Y" system (right) and the \T" system (left). By comparing tho se results to the two sets of
variables developed in the previous sections (Fig.2.6 and Fig. 2.8), we notice that the Ex=Erel

variables for the \T" and the \Y" systems are equivalent to the normalized invariant masses
m2

nn and m2
fn , respectively. And that the cos(� k) variables for the \T" and the \Y" systems

are similar to the cos(� f=nn ) and cos(� nn ) variables, respectively. However, in the case of the
cos(� k) variable for the \T" system, the relation with cos(� nn ) is not direct since thecos(� k)
distribution is 
at and, instead of showing a dip toward 1 (like cos(� nn )), it shows it toward
� 1.

Relative momentum and correlation function

In the n-n part of the three-body decay, we can also be interested by their relative momenta,
that o�er a way to probe the n-n correlations by using intensity interferometry. This technique is
based on the principle that the wave function of relative motion of light identical particles, when
emitted independently in close proximity in space-time, ismodi�ed by the �nal-state interaction
(FSI) and quantum statistical symmetries (QSS). Following on from previous application to
stellar interferometry [88], the two-particle correlation function was introduced todescribe the
in
uence of FSI and QSS on the emission probability of two particles with momenta~p1 and
~p2 [89]. Since both e�ects are governed by the space-time characteristics of the source, the
correlation function C, de�ned as the ratio between the measured two-particle distribution and
the product of the independent single-particle distributions, provides a snapshot of the particle
emission region.C can be expressed by rearranging Eq.2.1 as follows:

C(~p1; ~p2) =
d2n=dp1dp2

(dn=dp1)(dn=dp2)
(2.37)

The projection onto the relative three-momentumq12 = j~p1 � ~p2j is commonly used, where
the experimental distribution of pairs is divided by a reconstructed distribution of uncorrelated
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Figure 2.10: \T" (left) and \Y" (right) Jacobi coordinates of the 18O+ n+ n events from the simu-
lation of a phase-space decay for Erel = 0-12 MeV. The \T" system [Ex=Erel ; cos(� k )] coordinates are
presented in (a) and (c), respectively and the \Y" system[Ex=Erel ; cos(� k )] coordinates in (b) and (d),
respectively.
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Figure 2.11: (a) Two-neutron correlation function for E rel =3.7-12 MeV of 20O� 2n decays. The
solid line is traced to guide the eye. (b) Numerator (measured relative momentum distribution, blue
points) and denominator (phase space, yellow) ofCnn for the 20O� case.

pairs normalized so thatC goes to 1 at highq, where e�ects of FSI and QSS should vanish.
The deviation of C from 1 thus re
ects the structure of the source. Other e�ects, arising from
the form of the single-particle distributions or the experimental acceptances, are eliminated by
the denominator of Eq.2.37.

In our case, we are looking atn-n correlations. We can therefore write then-n correlation
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function Cnn such as:

Cnn =
� exp(qnn )
� P S(qnn )

(2.38)

The numerator � exp(qnn ) corresponds to the experimental distribution and contains all the
interaction e�ects. The denominator � ps(qnn ) can be obtained by the simulation of a phase-
space decay and contains all the other e�ects such as kinematic constraints and experimental
�lter. The correlation function for the 20O decay into 18O by the emission of two neutrons
is presented in Fig.2.11(a). In Fig. 2.11(b), the two distributions � exp(qnn ) and � P S(qnn ) are
shown, where the attractive e�ect of then-n FSI at qnn values below 100 MeV/c becomes clear.

2.3.3 Decay mechanisms and event generators

In the previous section, we presented a set of di�erent observables used in order to study
three-body correlations. Those observables have been usedto illustrate the result of a three-
body phase-space decay from a simulation. And by comparing itto the experimental data
(Fig. 2.11(b)), it is obvious that correlations beyond the phase spaceneed to be implemented
in the simulation in order to be able to reproduce what we observed in the experiment. In
this section, we are therefore describing two decay mechanisms, and the model used in order
to implement them into the simulation. Indeed, when a two-neutron decay occurs, mainly two
modes are possible: the direct decay, in which the two neutrons are emitted at the same time,
and the sequential decay, in which one neutron is emitted �rst, populating then a resonance
in the intermediate nucleus that is decaying later (depending on the lifetime of the state) by
emitting the second neutron. The model used does not includethe microscopic structure of
the initial state, and treats the e�ects of FSI and resonanceson the fragment+2n phase-space
decay phenomenologically. A description of the model can befound in [7, 59, 90]. We are
summarizing and illustrating it in the following sections.

Direct decay

We start by the direct decay in which the two neutronsn1 and n2 are emitted at the same time.
As mentioned before, then-n FSI e�ects have to be added to the three-body phase-space decay
simulation previously discussed (see section2.3.1). To do so, we used the formalism from [91]
which takes explicitly into account the in
uence of the two-nucleon proximity on the e�ects of
their interaction. A simpli�ed form of the two-particle cross-section can be expressed using a
modi�ed version (projection) of Eq. 2.1 such as:

� (qnn ) � � 0(qnn ) Cnn (qnn ) (2.39)

where� 0 corresponds to the two-particle cross-section that the particles would exhibit if there
were no in
uence between them andCnn is the correlation function that can be expressed as
follows:

Cnn (qnn ) �
Z

W(rnn ) F (rnn ; qnn ) drnn (2.40)

where W is the spatial distribution of the source depending on the distancernn between the
neutrons, here taken as a Gaussian, andF is the correlation factor that contains the e�ect of
the s-wave n-n FSI as well as the e�ects of the Fermi statistics for identicalparticles (even if
it is negligible in the case of nucleon pairs [91]). The correlation function can be thus seen as
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a probability distribution P(qnn ) to accept the event following the form of then-n correlation
function Cnn , that depends on the space-time parameters (r rms

nn ; � ) of a Gaussian two-neutron
source1. However, since in the case of a direct decay the two neutrons are emitted at the same
time, we have � = 0 and therefore Cnn only depends on the relative distance between the
neutronsr rms

nn . And as discussed in [91], the correlation function of a Gaussian source becomes
analytical. The validity of this assumption is discussed in [59] where it is shown that very
di�erent source distributions such as Gaussian, Yukawa-like, or spherical all lead roughly to
similar Gaussian-like distributions forW(rnn ). Moreover, in our model, internal momentum
correlations in the source (W(rnn ; qnn )) are assumed to be small or to have minor impact on
Cnn after averaging over the whole source and are therefore neglected. The fact that this
formalism has been used successfully in order to describe inan accurate way the low energy
peaks observed in then-n FSI of previous works [7, 56, 90, 92, 93] con�rms the validity of the
approximations made in our model.
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Figure 2.12: (a), (b), (c) Dalitz plots for the 18O+ n+ n direct decay for Erel = 0-12 MeV from the
simulation with a source size ofr rms

nn = 3.7, 6.1 and 8.6 fm, respectively. The projections onto the
normalized invariant massesm2

fn (d) and m2
nn (e) are displayed for the three di�erent r rms

nn values.

We can now observe how then-n FSI is a�ecting the three-body phase-space decay where
the only free parameter in our simulation is the average sizeof the sourcer rms

nn . We take as an
example the 2n decay of20O into 18O. The results for di�erent r rms

nn are presented in the follow-
ing for all the observables described in the previous section: the normalized invariant masses

1If the neutron volume w(r n ) is taken as a Gaussian of width� , and the neutrons move independently, the
relative distance distribution W (r nn ) is also Gaussian with sigma

p
2� and r rms

nn =
p

6� .
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(Fig. 2.12), the angular coordinates (Fig.2.13), the Jacobi coordinates (Fig.2.14) and the corre-
lation function (Fig. 2.15). We are now describing the e�ects of then-n FSI on each observable.

Dalitz plots - As we can observe in Fig.2.12(a, b, c, e), the n-n FSI appears as a
concentration of events at lowm2

nn (< 0:25), corresponding to small relative momenta. We
also notice that a smaller source size shows a signal with higher amplitude. On the contrary,
the m2

fn variable (Fig. 2.12(d)) does not seem to be a�ected signi�cantly.
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Figure 2.13: (a), (b), (c) Two dimensional plots of cos(� nn ) as a function of cos(� f=nn ) for the
18O+ n+ n direct decay for Erel = 0-12 MeV from the simulation with a source sizer rms

nn = 3.7, 6.1 and
8.6 fm, respectively. The projections onto thecos(� f=nn ) (d) and cos(� nn ) (e) are displayed for three
di�erent r rms

nn values.

Angular coordinates -We can observe in Fig.2.13(a, b, c, e) that the n-n FSI appears at
small � nn angles and that the smaller the source size, the bigger the signal observed. On the
contrary, as for m2

fn , the � f=nn (d) variable seems to be una�ected by then-n FSI.

Jacobi coordinates -As mentioned in the previous section, the Jacobi coordinates are
directly comparable to the normalized invariant masses andto the angle coordinates. We
observe in Fig. 2.14(b,c) that the Ex=Erel observable in the \Y" system and the cos(� k)
observable in the \T" system are not a�ected by then-n FSI. However, theEx=Erel observable
in the \T" system (a) is a�ected by the n-n FSI in the same way as them2

nn variable with
a concentration of events atEx=Erel < 0:25. The � k variable in the \Y" system shows a
concentration of events at large angles (cos(� k) < � 0:5). In both cases, the smaller the source
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Figure 2.14: \T" (left) and \Y" (right) Jacobi coordinates of the 18O+ n+ n events from the simula-
tion of a two-neutron direct decay for Erel = 0-12 MeV. The \T" system [Ex=Erel ; cos(� k )] coordinates
are presented in (a) and (c), respectively and the \Y" system[Ex=Erel ; cos(� k )] coordinates in (b) and
(d), respectively. The results of three di�erent source sizesr rms

nn are presented.

size, the bigger the signal observed.
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Figure 2.15: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn ) and phase space (denominator ofCnn in yellow) for the 18O+ n+ n direct decay for
Erel = 0-12 MeV from the simulation for three di�erent source sizesr rms

nn . Lines has been added in (a)
with the only purpose to guide the eye.

Correlation function - As we can see in Fig.s2.11(a) and 2.15(a), the n-n FSI is characterized
by an accumulation of events at lowqnn , creating a strong deviation from the phase space
distribution presented in Figs.2.11(b) and 2.15(b). We also observe that the smaller the size
of the source, the stronger the signal. It also seems that theshape ofCnn is directly linked to
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the size of the emitting source in the case of a direct decay. With this method, it is hoped to
directly deduce information on the size of the emitted pair,provided that the decay is direct.

Sequential decay

The other decay mechanism considered is then + n sequential decay, in which one neutron
is emitted before the other. In order to simulate such a mechanism, the events are generated
following twice the two-body phase space through a fragment-n resonance of energyEr and
width � (Breit-Wigner as presented previously in this chapter), followed by the interaction
between the two emmited neutrons once the resonant state hasdecayed. In that case, the
emission of the neutrons cannot be considered simultaneous(� 6= 0) and therefore a space-time
analysis is needed, meaning thatn-n FSI depends on the space-time parameters (r rms

nn ; � ). As
discussed in [91], this leads to the fact that Cnn is not analytical anymore.
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Figure 2.16: (a), (b), (c) Dalitz plots of the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV
from the simulation for Er = 0.5 MeV, Er = 1.5 MeV and Er = 2.5 MeV, respectively (r rms

nn = 6.1 fm
and � r = 0.5 MeV being �xed). The projections onto the normalized invariant massesm2

fn (d) and
m2

nn (e) are displayed for three di�erent Er values.

We are then left with four parameters:r rms
nn , � , Er and �. The number of parameters can be

reduced, as it has been shown in [59] for the well-known7He resonance, to three by equating the
delay induced in the neutron emission with the lifetime of the fragment-n resonance, leading
to:

� =
~c
�

(2.41)
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Figure 2.17: (a), (b), (c) Dalitz plots of the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV
from the simulation for � r = 0.5 MeV, � r = 1.5 MeV and � r = 3.5 MeV, respectively (r rms

nn = 3.9 fm
and Er = 1.5 MeV being �xed). The projections onto the normalized invariant massesm2

fn (d) and
m2

nn (e) are displayed for three di�erent � r values (the black curve here corresponds to the red curve
in Fig. 2.16).

In this case, the only free parameters of the sequential decay are (r rms
nn , Er , �).

The results of the sequential 2n-decay simulation of20O into 18O for 5.3< E rel < 7.2 MeV
are presented in the following for all the observables mentioned before: the normalized
invariant masses (Fig.2.16, Fig. 2.17), the angular coordinates (Fig.2.18, Fig. 2.19), the
Jacobi coordinates (Fig.2.20, Fig. 2.21) and the correlation function (Fig. 2.22). We are now
discussing the e�ects observed for di�erent resonance energies and widths on each observable.

Dalitz plots - We can observe on Fig.2.16(a, b, c, d) that the sequential decay is character-
ized by ridges on the Dalitz plot and by double humped structures (except when the centroid
of the resonance is in the middle of the decay energy range) inthe projection overm2

fn . Since
we �ll up two times the m2

fn histogram, one time for each neutronn1 and n2, we observe two
symmetrical wings in (d) asm2

fn 1
� 1 � m2

fn 2
. The position of the bands/wings is directly

related to their energies compared to the maximum energy (Erel ) available in the system.
Looking at Fig. 2.16(e), we see that the energy of the resonanceEr also has an in
uence on
m2

nn . Indeed, the smaller the resonance energy is, the narrower the m2
nn distribution is, due to

the kinematic boundaries of the three-body decay.

Looking now at the in
uence of the resonance width � on them2
fn variable (Fig. 2.17(a, b,
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Figure 2.18: (a), (b), (c) Two dimensional plots of cos(� nn ) as a function of cos(� f=nn ) for
the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV from the simulation with Er = 0.5 MeV,
Er = 1.5 MeV and Er = 2.5 MeV, respectively (r rms

nn = 6.1 fm and � r = 0.5 MeV being �xed). The
projections onto the cos(� f=nn ) (d) and cos(� nn ) (e) are displayed for three di�erent Er values.

c, d)), we observe that the wider the resonance is, the wider the wings are. Since �/ 1=� ,
wider resonance also means shorter lifetime and therefore that the two neutrons, even if
emitted sequentially, remain close from each other when thesecond neutron is emitted, as we
can observe in Fig.2.17(a, b, c, e) where a signal appears at lowm2

nn due to the n-n FSI. The
wider the resonance is, the bigger this signal is.

We can conclude by saying thatn-n FSI are revealed by them2
nn observable and that the

m2
fn variable is sensitive to the sequential decay mechanism. Therefore, using a two-dimensional

analysis we can have access to information on the decay mechanism involved in the reaction.

Angular coordinates - Looking now at the angular correlations in Fig.2.18, we see that
the sequential decay is characterized by bands on the two dimensional plot (a), (b), (c) and
by wings on the projection overcos(� f=nn ) (d). The position of the bands/wings observed is
depending on the resonance energy and on the maximum energyErel available in the system.
However, the cos(� nn ) observable (e) does not seem to be a�ected at all by the sequential
decay mechanism.

We are investigating in Fig. 2.19 the in
uence of the resonance width on the angular
coordinates. We observe that similarly to the case of the normalized invariant massesm2

fn ,
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Figure 2.19: (a), (b), (c) Two dimensional plots of cos(� nn ) as a function of cos(� f=nn ) for
the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV from the simulation with � r = 0.5 MeV,
� r = 1.5 MeV and � r = 3.5 MeV, respectively (r rms

nn = 3.9 fm and Er = 1.5 MeV being �xed). The
projections onto the cos(� f=nn ) (d) and cos(� nn ) (e) are displayed for three di�erent � values.

wider resonances lead to wider structures in thecos(� f=nn ) (d) variable. Also a wide resonance
(short lifetime) allows n-n FSI to survive as we can observe in the projection overcos(� nn ) (e)
where a signal arises at low angles.

Jacobi coordinates -As discussed in the previous section, the Jacobi coordinates are analog
to the normalized invariant masses and to the angular coordinates as can be seen in Fig.2.20
and Fig. 2.21. Indeed we observe the same e�ects of the resonance energy and width as observed
previously using the two other sets of coordinates. TheEx=Erel (a) and cos(� k) (d) in the \T"
and \Y" system, respectively, are sensitive to then-n FSI whereasEx=Erel (b) and cos(� k) (c) in
the \Y" and \T" system, respectively, are sensitive to the characteristics of the sequential decay.

Correlation function - Looking at Fig. 2.22 (b), we observe that theqnn distribution is
in
uenced by the resonance energyEr . Indeed, we see that the higherEr is, the narrower the
qnn distribution is which is due to the kinematic boundaries of the three-body decay. This
e�ect is also revealed in then-n correlation function (a) where a signal appears at lowqnn

when Er increases.

Fig. 2.23 shows that a small resonance width � induces the rising of signal at low qnn . As
we discussed earlier, such a signal is characteristic ofn-n FSI. This observation is agreeing with
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Figure 2.20: \T" (left) and \Y" (right) Jacobi coordinates of the 18O+ n+ n events from the simu-
lation of a two-neutron sequential decay for Erel = 5.3-7.2 MeV with r rms

nn = 6.1 fm and � r = 0.5 MeV.
The \T" system [Ex=Erel ; cos(� k )] coordinates are presented in (a) and (c), respectively and the \Y"
system[Ex=Erel ; cos(� k )] coordinates in (b) and (d), respectively. The results of three di�erent reso-
nance energiesEr are shown.
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Figure 2.21: \T" (left) and \Y" (right) Jacobi coordinates of the 18O+ n+ n events from the simu-
lation of a two-neutron sequential decay for Erel = 5.3-7.2 MeV with r rms

nn = 3.9 fm and Er = 1.5 MeV.
The \T" system [Ex=Erel ; cos(� k )] coordinates are presented in (a) and (c), respectively and the \Y"
system[Ex=Erel ; cos(� k )] coordinates in (b) and (d), respectively. The results of three di�erent reso-
nance widths� are shown.

what we observed already in the other observables. We also observe that the amplitude of the
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signal observed for the sequential decay is smaller than theone observed for the direct decay
(Fig. 2.15) for the same distancer rms

nn .
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Figure 2.22: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn ) for the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV from the simulation with
r rms

nn = 6.1 fm, � r = 0.5 MeV and three di�erent resonance energy valuesEr .
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Figure 2.23: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn ) for the 18O+ n+ n sequential decay for Erel = 5.3-7.2 MeV from the simulation with
r rms

nn = 3.9 fm, Er = 1.5 MeV and three di�erent resonance width � values.
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Chapter 3

Experimental method and setup
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A
s we discussed in the previous chapter, this thesis is focusedon the study of neutron
unbound states of neutron-rich nuclei. In order to conduct such a study, we introduced in

the previous chapter the invariant-mass method [94] which is a key element in the investigation
of neutron unbound states. Indeed, the invariant massM inv corresponds to the mass of
the unbound state before the decay. Then by subtracting the masses of the di�erent decay
products, we obtain the relative energyErel of the system which is the energy available for the
decay, sometimes also referred to as the decay energyEd.

However, we need �rst to populate the unbound states. This is done in inverse kinematics
at beam velocity using knockout reactions, where one or several nucleons are suddenly removed
after interaction with the target. Because we are working ininverse kinematics, the decay
products are also emitted at approximately the beam velocity.
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In order to compute the invariant mass, we need to have accessto the four-momenta of all
the decay products involved in the reaction. This is achieved by using a complex set of detectors
to track and select the beam, and detect the charged fragment, neutron(s) and eventually
 -
rays in coincidence. Two di�erent setups, that will be described in the following sections, have
been used during this thesis in order to conduct such kind of experiments: R3B-LAND at GSI
and SAMURAI at RIKEN.

3.1 Population of unbound states

The reaction mechanism is crucial since it has an in
uence onthe production rate as well
as the properties of the populated states. There are severaltechniques that can lead to the
production of unbound states such as inelastic scattering,transfer reactions, fusion-evaporation
reactions, and also knockout reactions, that have been usedduring our experiments and will
be presented in more detail in this section. In order to populate exotic or unbound nuclei close
to the dripline and study the properties of the populated states, it is necessary to work in two
steps, that we are describing below.

We start by producing a high-energy radioactive beam of neutron-rich nuclei (secondary
beam) close to the dripline. The best way in order to obtain such a beam with a su�cient
intensity is by fragmentation of a high-energy stable beam (primary beam). The character-
istics of the radioactive beam produced (energy, intensity, purity and spatial spread) are key
parameters that are conditioning the success of an experiment. Indeed, those characteristics
are in
uencing the number of events Nevt measured during the experiment. We can express
Nevt such as:

Nevt = N inc � x � � (3.1)

where Ninc is the number of incoming ions (that depends on the duration of the experiment
and on the beam intensity),�x is the thickness of the reaction target taking into account its
density, � is the reaction cross-section (probability that an incoming ion interacts with an ion
of the target, that is energy dependent) and� is the experimental setup detection e�ciency.
In order to successfully perform an experiment, one should try to maximize Nevt, to have a
good resolution and ensure a good selection of the events of interest.

We saw in the previous section that in order to use the invariant-mass method, we need to
be able to detect and characterize all the products of the reaction. However the detection of
gammas and neutrons for example is far from being 100% e�cient. It appears then that some
factors of Eq.3.1 are highly constrained by the experimental setup. We therefore need to try
to maximize the other parameters.

We chose in our experiments to use direct reactions in inverse kinematics from a high-
energy radioactive beam. Being at high energy (typically around 430 MeV/nucleon at
GSI and around 230 MeV/nucleon at RIKEN) allows the use of thicker targets in order
to maximize the interaction probability of the beam. And working in inverse kinematics
facilitates the detection of all the reaction products as they are focused in the forward direction.

In order to populate unbound states, we chose to use knockoutreactions of one or several
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nucleons. At high energies, the cross-section for such reactions is rather high (10-100 mb).
High-energy knockout reactions also have the advantage of being sudden, meaning that it is a
one-step process where the �nal state is in
uenced by the initial state, and nucleons that are
not involved in the knockout reaction are spectators and therefore una�ected. Since the initial
state directly in
uences the �nal state, populating the same system from di�erent knockout
reactions (hence di�erent incoming ions) allows us to do a selection on the �nal state.

The secondary beams used in our experiments as well as the nuclei studied using knock-
out reactions are presented in Fig.3.1. We sum up here the di�erent reactions studied:
29Ne(p,2p)28F(� ) , 29F(p,pn)28F(� ) , 27F(p,pn)26F(� ) , 19N(p,2p)18C(� ) and 21O(p,pn)20O(� ) . As
we can see already, we have the chance to populate28F via two di�erent knockout reactions,
which could help us to have a complete picture of its structure.
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Figure 3.1: Nuclei studied during this thesis at RIKEN (blue square) and GSI (red square). The
secondary beams used to populate them are also presented in green and black squares for RIKEN and
GSI, respectively.

As mentioned earlier, the data presented in this document have been taken in two di�erent
laboratories (GSI and RIKEN). This choice to use two di�erentfacilities and setups has been
made due to the capabilities of each accelerator to produce the desired beams and also due to
the available setups.

3.2 General principle

One of the key observables to investigate and characterize unbound states is the relative
energy introduced in section2.2.2. And in order to access it, we need to be able to identify
and measure the momenta of all the products involved in the decay of an unbound system.
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We present in Fig.3.2 the typical setup used during our experiments.
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Figure 3.2: Sketch of the general principle used during our experiments.

The �rst step is to accelerate a stable beam to high energy andsend it onto the fragmentation
target in order to produce a big variety of radioactive isotopes. However we are not interested
by all the radioactive isotopes produced. AB� selection is then applied using a succession of
dipole magnets. By doing such a selection, the ions are separated according to their mass to
charge ratio (A=Z). Indeed, while traveling through a dipole magnet, the Lorentz force equals
the centripetal force which keeps the particle of charge number Z and mass numberA on a
circular orbit with radius � , leading to the following conditions:

B� = C
A
Z

�
 (3.2)

where B is the strength of the magnetic �eld, � is the velocity of the ion and 
 is the
associated Lorentz factor. The constantC is given by:

C =
uc
e

= 3:1 Tm (3.3)

This formula is only valid for high-energy beams for which the ions are fully stripped.
Otherwise the charge numberZ of the ion has to be replaced by the chargeq. The radius �
is �xed and corresponds to the one de�ned by the beam line. This formula means that, by
tuning the magnetic �eld B applied, we can chose which ions with a speci�cA=Z ratio follow
the central trajectory of the beam line, and which ones are blocked in thick slits placed at the
intermediate dispersive focal plane.

After this stage, we have a high-energy cocktail beam of radioactive isotopes containing
the isotope of interest as well as some contaminants with similar A=Z ratio. The beam then
impinges on the reaction target into which knockout reactions occur, producing di�erent states
of the nuclei of interest. Those states decay then by
 -ray or particle emission (unless bound
states are populated) and we identify and characterize the products of the reaction using a
complex detection system that we describe below in Fig. (3.3).
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Figure 3.3: Sketch of the typical detection setup used during our experiments, with the beam traveling
from left to right. It is �rst going through beam trackers in order to re construct its trajectory before
reaching the reaction target, which is surrounded by a
 -ray detector to detect eventual in 
ight 
 rays.
After the reaction, the emitted neutron(s) go straight into a neutron detector where their trajectory
and time of 
ight are measured, while the charged fragment, de
ectedby a magnet, is detected and
identi�ed using a set of detectors allowing us to reconstruct its trajectory and energy loss.

We are interested in unbound states that decay by emitting one or several neutrons. And
in order to investigate them, we need to compute the relativeenergy (see section2.17). To do
so, we need to identify event by event the incoming nuclei anddetermine the energy and the
momentum of each reaction product. The di�erent quantitiesneeded to investigate unbound
states are presented below:

1. Beam velocity� b

2. Beam charge numberZb

3. Beam trajectory

4. Fragment velocity � f

5. Fragment charge numberZ f

6. Fragment mass numberA f

7. Fragment trajectory

8. Neutron(s) trajectory

9. Neutron(s) velocity � n

How these quantities are derived using the R3B-LAND or the SAMURAI s021 setups is ex-
plained in the following sections.
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3.3 GSI and R 3B-LAND experimental setup

We are �rst presenting the experiment performed at GSI. In this experiment, we used the
R3B-LAND experimental setup. The description of the apparatus used can be divided in two
di�erent parts. We present �rst the production and selection of the radioactive ion beam and
then the experimental setup used for the detection of the reaction products.

3.3.1 Beam production

The s393-experimental campaign has been performed at GSI, where the radioactive ion beam
(RIB) is produced via an in-
ight technique, meaning the radioactive ions are produced and
separated in 
ight. This beam production is brie
y explained in the following paragraph.
Moreover, a schematic view of the GSI accelerator is presented in Fig. 3.4. The production
mechanism of the RIB starts with a stable primary beam. At GSIthe ions of choice are injected
into the \UNIversal Linear ACcelerator" (UNILAC) from an ion source. In the experiment
described here,40Ar ions have been used as primary beam. From the UNILAC the40Ar 11+

beam is injected into the \Schwer Ionen Synchrotron-18" (SIS-18), having an energy of nearly
11.5 MeV/nucleon.

Figure 3.4: Schematic layout of the GSI accelerator complex used during the experiment.

Leaving the SIS-18, the40Ar ions have been accelerated to an energy of 490 MeV/nucleon
and the primary beam is guided onto the production target at the entrance of the FRagment
Separator (FRS) presented in Fig.3.5. A 4 g=cm2 thick Be production target was used to
induce fragmentation reactions. The primary beam had an intensity of 6� 1010 ions=bunch.
The beam composition delivered to the experimental cave depends on the FRS settings only.
For a more detailed description of the FRS, see Ref. [95]. For the purpose of our experiment,
the magnetic rigidity B� of the FRS is set to 9.05 Tm in order to favor the transmission of
nuclei with A=Z � 2:7. The reaction products of the nuclear fragmentation of theincoming
40Ar beam impinging on the Be target are forming the cocktail or secondary beams with an
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energy of nearly 430 MeV/nucleon. A large variety of elements with masses smaller than the
one of the primary beam is produced. The beam composition is then selected by means of the
B� method (3.2) which is applied in the FRS. These secondary beams are then transmitted to
the R3B-LAND experimental setup located in Cave C.

Figure 3.5: Sketch of the FRS. TheB� -� E -B� method is applied using dipoles to bend the beam
(B� ) as well as a degrader to have a position andZ -dependent energy loss (� E ) (�gure taken from
[6]).

The FRS beam line has been equipped with two 3 mm thick scintillator paddles. Those
detectors are needed to perform an incoming time of 
ight (ToF) measurement over a long
distance (FRS to Cave C) for each ion. One scintillator paddlewas placed at the middle focus
(S2) and the second was situated behind the FRS (S8). Since thescintillator at the mid-plane
of the FRS (S2), about 136 m upstream of the reaction target, was overloaded with the intense
beam, the scintillator at the intermediate focal plane (S8)has been used, leaving us a nearly
55 m 
ight path to Cave C.

3.3.2 Beam identi�cation

As mentioned in section3.2, we need to be able to identify and characterize the incomingnuclei
event by event. Therefore, the velocity of the beam� b, its charge numberZb and its trajectory
have to be derived for each event. In order to identify incoming ions, the mass to charge ratio
Ab=Zb, as well as the charge numberZb needs to be known. Using3.2, we can derive:

Ab

Zb
=

B�
C

1
� b
 b

(3.4)

Therefore� b and B� are needed. The value ofB� is known from the FRS setting, so we only
have to determine the velocity of the incoming ion� b. This is done using a time of 
ight (ToF)
method that needs two detectors (start and stop) in order to measure the time needed for a
particle to travel a certain distance. In our case, we use a plastic scintillator paddle at S8 as
start detector (see Fig.3.5). This detector is read out with two photo-multiplier tubes(PMT),
one at the top and one at the bottom. A square-shaped (2.5 cm� 2.5 cm) plastic scintillator
with thickness of 1 mm at the entrance of Cave C is used as a stopdetector. The Cave C
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experimental setup is shown in Fig.3.6. This detector is called POS, and is read out with four
PMTs, one for each side. Those two detectors allow us to measure the times tstart and tstop

from which we can deduce the velocity of the incoming ion� b using the ToF method below:

� b =
d

(tstop � tstart )c
(3.5)

wherec is the speed of light andd is the distance between these two detectors which is about
55 m, resulting in a very good velocity resolution.

Figure 3.6: Experimental setup in Cave C as used during the s393 campaign. The observables
measured by each detector are presented in parenthesis.

To complete the identi�cation of the incoming ion, we also need to have access to its charge
number Zb. It is known that an ion passing through matter loses energy following the Bethe-
Block formula:

� E /
Z 2

b

� 2
b

(3.6)

We can rearrange this formula such as:

Zb / � b

p
� E (3.7)

The charge numberZb can therefore be derived from �E measurement using a position sensitive
pin-diode (PSP) in front of the target. Now that we have accessto Zb and Ab=Zb, we can select
the ions of interest using two-dimensional cuts. The identi�cation of the incoming beam is
presented in Fig.3.7.

The identi�cation of the incoming ions is now completed but we still need the information on
their trajectories. We can access this information using two double sided silicon strip detectors
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