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uclear physics is not a new science. However, after almost atentury of research, the
N atomic nucleus is still not fully understood and new unexpeetl properties are emerging
frequently. Trying to understand the structure and the evaltion of the nucleus depending on
its constituents is one of the fundamental goals of nucleamypsics. Nevertheless, describing
the interaction between nucleons is extremely hard to achie, even for light nuclei where the
number of nucleons is small.

Historically, fundamental properties of the nucleus have le@ investigated by reducing the
N-body problem to independent nucleons located in a mean ellduilt in an auto-coherent
way. This approach allowed to explain several phenomena elpged experimentally such as the
magic numbers associated to certain con gurations of nudaes particularly stable, and lead to
the shell model of the nucleus.

However, even if the stable nuclei are the most abundant on d#ar their diversity (nearly
300) represents only a small fraction of the existing nuclésee Fig.1.1). Today, nearly 3000
nuclei have been observed experimentally and it is expectdtht the same amount still remains
to be observed. Those nuclei have a limited lifetime after wdh they decay mainly via decay.
For a given Z number, the more (or the less) neutrons we count away from thequilibrium
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value, and the less stable the nucleus becomes, until reaxhia threshold where even in its
ground state the nucleus is not bound anymore and decays in ary short time by emitting
nucleons. This limit is called neutron dripline (or proton dipline, respectively) and the nuclei
around this region usually exhibit very di erent behavior @mpared to the stable nuclei.

Figure 1.1: Chart of the nuclides representing with black squares stable nuclei, ligihellow neutron-
rich or neutron-de cient nuclei already produced in terrestrial laboratories, and in light blue nuclei not
studied yet. The limits of proton and neutron particle stability (or driplines), predicted by theoretical
models, are shown with red and blue lines, respectively.

One of the major research goals of modern nuclear physics & éxplore those regions
where the neutron to proton imbalance is reaching extreme vads in order to determine the
exact position of the dripline. Studying the properties of ie nuclei in those regions gives us
information on the evolution of their structure while appr@ching (sometimes even crossing)
the limits of existence. The results obtained can then be cqared to existing theoretical
models and if needed, used to correct or justify the develogmt of new models. A single look
at Fig.1.1 shows the huge work that still needs to be done, in particulaaround the neutron
dripline. Indeed, the neutron dripline has been reached egpmentally only for nuclei with a
proton number Z lower than ten.

In this document, we will be investigating the nucleon-nuelon interaction toward the
neutron dripline. In practice, the dripline can be reachedybchanging the proton to neutron
ratio but also by increasing the excitation energy of a nuals beyond the nucleon(s) emission
thresholds. This work can be divided in two studies: then-n interaction in the core+xn
systems and the evolution of the-n interaction in the Fluorine isotopic chain. Indeed, we
will start by exploring the n-n interaction in nuclei for very high energy unbound states dfC
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and 2°0 (that can be seen as*C+4n and **O+4n, respectively). And we will then study the
evolution of the p-n interaction in the Fluorine isotopic chain by comparing resits from 2°F
and 28F, the latter being an unbound system. All the nuclei, be there ¢und or unbound, are
studied using knockout reactions, meaning that a nucleon removed from a nucleus in order
to populate the system of interest.

This document is divided in ve chapters. In the rst one, we Wil present the particularities
of the study of nuclei at the neutron dripline as well as the ntivations of such studies. We will
then describe the di erent techniques and observables usadorder to explore unbound states.
In a third chapter, we are presenting the experimental prinple and setups used during this
work in order to populate the nuclei of interest as well as theimulations used to understand
and interpret the data. In the fourth chapter, we are preserihg our results and interpretation
on the n-n pairing in unbound states of'8C and 2°0. And nally, in the last chapter, we are
presenting our results and interpretation on the evolutiorof the p-n interaction in the Fluorine
isotopic chain betweerf®F and 28F.

1.1 Toward the neutron dripline

1.1.1 General properties of nuclei

In this section, we are focusing on the description of the hgest nucleiZz  10. Since we will
be investigating those nuclei, we start by describing the enacteristics of stable nuclei before
comparing them to those of neutron-rich ones.

Despite a limited number of isotopes for each chemical elemelight nuclei can be very
di erent from each other. Stable nuclei have the followinglaaracteristics:

A

The N=Z ratio between their number of neutrons and protons variesightly varying
around 1.

The binding energy between the nucleons is similar for all ¢hnuclei and is around
8 MeV/nucleon. The separation energies for one proton {Sor one neutron (S) are
also very similar.

Their radius can be described by the empirical formul® = r A [10], whererg is
the e ective radius of a nucleon ; 1.2 fm) and A is the total number of nucleons.
Such description assumes an homogeneous distribution okthucleons in the nucleus
(independently of their nature).

The presence of several bound excited states. Those state$iose excitation energies
vary from one isotope to the other, usually decay by the emiss of -rays.

While moving away from stability those properties change ragly and nuclei become
unstable, with shorter and shorter lifetimes. If the lifetme of the nuclei close to stability is
varying from a few years to a few seconds, the lifetime of the uteon rich nuclei is dropping
rapidly under the second and they survive only a few milliseads approaching the dripline.
The N=Z ratio for nuclei outside the valley of stability can vary fran 0.6 to 4 and their
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separation energies 3 vary from 40 to 0 MeV [L1].

When the ratio reaches extreme values, the radial distribuins of protons and neutrons can
decouple massively and give raise to exotic phenomena sushhae neutron halo: in those nuclei,
the radial distribution of neutrons shows a tail that spread much further than the proton one.
Those nuclei can therefore be represented as a light coreward which one or several neutrons
are orbiting. A similar phenomenon can be observed for proichalos in the case wher&l=Z
is very low. However, in that case this manifestation is les$wious due to the Coulomb bar-
rier that does not allow protons to have a spatial wave funatin as spread as the one of neutrons.

In our study, we are interested by the light neutron-rich nulei and in particular nuclei that
have such a large excess of neutrons that are unbourf@F). For a stable nucleus, the proton
and neutron potentials have similar characteristics, expefor the Coulomb contribution, that
makes the proton potential less deep. If the number of neutns increases, the proton potential
becomes deeper due to the attractive-p interaction [11]. Therefore the separation energy for
the protons becomes larger while the one for the neutrons loeces smaller, its value reaching
zero close to the dripline.

Moreover, bound excited states become more and more rare l@hmoving toward the
neutron dripline. The last bound isotopes of an element usliiado not have any bound excited
state. This is why the study of neutron-rich nuclei usually equires to do spectroscopy of
unbound states.

1.1.2 Structure in nuclear physics

Nuclei, like all the subatomic particles, follow the rules ofjuantum mechanics. In particular,
their evolution is governed by the Shredinger equation. Gwidering the simple case of a particle
with mass m in a potential depending only on its position, the Shmdingr equation can be
written as follows [L7]:

~ @ (1)

om  (BOFV(E) (RY =i~ at

whereV () is the potential in which the particle is and (*;t) its wave function. In the case
of a problem with several particles interacting with each dter, the problem is more complex
since the potential felt by each particle is a function of thestate of all the others. This
interdependence is known as the N-body problem and is encoeirgd in numerous elds of
physics. The complexity of this problem increases with theumber of particles. It is possible
to solve it analytically for very small number of particles it it remains unsolvable exactly
in its general case. We therefore solve it numerically usirdj erent methods that have been
developed. We can give as example for light nuclei the technies calledab initio: NSCM (No

Core Shell Model), GFMC (Green Function Monte Carlo), Couple Cluster... However, those
di erent techniques encounter sometimes di erent problem that can be conceptual or due to
numerical convergence.

(1.1)

Another di culty, proper to nuclear physics, adds itself to the problem: there is no analytic
form for the interaction potential between two nucleons iride a same nucleus fundamentally
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speaking. Quantum chromodynamicsl{] is the theory that studies, in a fundamental level,
the strong interaction that con nes the quarks inside the naleus. This theory allowed to
treat problems up to four nucleons but shows some numericamitations when the systems
become more complex. Moreover all the models used in nuclgalysics are based on e ective
interaction potentials.

Historically, the model that encountered a big success and@ked us to better understand
nuclei is the model of independent particles. In this modeparticles are considered entirely
independent one from another and are sitting in a mean potdat (also called mean eld).
In this context, we can express the wave function of the systesuch as the sum of the wave
functions of each independent particle that composes the ssgm. The Hamiltonian of the
system can be expressed as follows:

X XX X
H=" T+ Y fi+ 0, (1.2)

i=1 i=1 j>i i=1

whereH is the Hamiltonian of the system,T; is the kinetic part associated to the particlei,
(7"- the interaction potential between particlesi and j, and U; the e ective potential felt by
particle i.

Considering that the potential has spherical symmetry andybadding the spin-orbit term,
it is possible to show [7] that the energy levels of the system can be obtained as thensu
of the energiese,; of the independent particles. Those energies; are obtained using the
diagram presented in Fig.1l.2 Each combination of quantum numbers, | andj characterizes
what is called an orbital. The latter can contain at most 2+1 nucleons with the same energy,
depending on the orbital. The total energy is obtained by ling the orbitals with the nucleons
of the system. In this model, neutrons and protons are decdep and are lling a similar
diagram independently. To build those diagrams, we order &orbitals from the lower to the
higher energy, so that an independent particle located on aghmer orbital has systematically
more energy than any other particle located in a lower orbita The nucleons of the last
occupied orbital are called valence nucleons, the othersitigge sometimes called core nucleons.

In this model, the ground state of a nucleus is obtained by mimizing the total energy,
l.e. by following the order of the orbitals while Iling them with the nucleons of the nucleus of
interest. In order to obtain the di erent excited states of anucleus, one needs to modify the
ground-state con guration by promoting one or several vateee nucleons into higher orbitals.
To distinguish the di erent con gurations, we are using in tis entire document the following
notation:

(i) (nlj )N
where (nlj) and (nlj) depict the valence protons and the valence neutrons, regpieely

and N, and N, how many of them are located in those orbitals. All the lower bitals be-
low the valence ones are supposed to be fully lled, which als the use of a condensed notation.

There are pairing e ects between nucleons of a same orbitahdt tend to lower their
individual energy when they are paired. This e ect is diredy visible by looking at the nuclear
chart (Fig. 1.3, and is the origin of the pattern that can be observed whileoflowing the
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Figure 1.2: Energy levels of a model with independent particles. Each level (also calledbital) is
characterized by the quantum numberslj . The orbitals are classi ed from bottom to top by increasing
energy. The numbers between orbitals correspond to the number of nuatsoused if all the lower energy
orbitals are lled.

neutron dripline: some isotopes with an even number of newotns are bound while isotopes
with one neutron less are unbound.

The historical model that has been used to reproduce the necfrom the valley of stability
using the assumption of independent particles is the shelladel [L4]. It allows to derive in
particular the so called magic numbers. Nuclei with a magic mber of nucleons (2, 8, 20, 28,
50, 82, 126) show singular properties that have been obsehexperimentally. For example,
Fig. 1.4 shows the evolution of the neutron separation energy {Bfor nuclei with an even
number of neutrons as a function of their neutron number. Webserve sharp drops at each
magic number (in particular for 50, 82 and 126), meaning that is much harder to remove a
neutron when the neutron number corresponds to a magic numbe

In the diagram presented in Fig.1.2, the magic numbers correspond to the number of
nucleons necessary to |l entirely certain orbitals: 4;-,, 1pi=», 1ps=... Those orbitals are
characterized by an important separation energy compare the orbital above, meaning that
transferring a nucleon to the next orbital would cost a lot oenergy.

However, this simple model shows its limits while moving awayom stability. The sepa-
ration energy between two orbitals and even their order carhange while moving toward the
neutron dripline. If we take as an example the Oxygen isotapichain, several experimental
studies [L5{ 17] show that the numbersN = 14 and N = 16 behave like magic humbers while
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Figure 1.3: Nuclear chart for light nuclei.

Figure 1.4: Evolution of the neutron separation energy for nuclei with an even numberfoneutrons
as a function of their neutron number. The arrows located below thé&orizontal axis correspond to the
magic numbers ( gure taken from [1]).

the magic numberN = 20 disappears [&]. Dierent theoretical calculations [19, 2(] explain
this phenomenon from the evolution of the energies of the iagendent particle orbitals.
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1.1.3 Unbound nuclei and resonant states

Nuclei close to the dripline are weakly bound and most of thentie do not have any bound
excited state. It is the case for example for nuclei such &bsle or *'Li, that do not have any
bound excited states below the two neutron emission thredddS,,). In this conditions, excited
states can manifest themselves as resonances. Past the ldrg nuclei become unstable with
respect to the emission of particles even in their ground $& However, in the case of unbound
nuclei located close from the emission thresholds, it is [silsle to observe resonant states, their
lifetime being generally associated to the width of the resonance @uto the Heisenberg
uncertainty principle:
~ (1.3)

For an unstable system with respect to the emission of one rean, the relative energy
spectra of the fragment-neutron system can reveal the preme of resonant states. A well
known example is the one of the unbound Helium isotopes. Forample ‘He, which ground
state has been observed as a resonance since the sixti#§. [ The diculty to observe
those states is that they have very short lifetimes (of the der of 102! s). As a conse-
guence, the measurement of the energy of those states canydmé done in an indirect way,
using reactions, by observing the decay products and/or othparticles involved in the reaction.

If we consider only the fragment-neutron relative movemermturing the decay, the apparition
of a resonant state depends entirely on the shape of the patiahfelt by the neutron. For a
neutron with an angular orbital *, the e ective potential is given by [27):
' (+1)

2r 2
where r is the fragment-neutron distance, the reduced mass,\Vy the attractive nuclear
potential created by the fragment andV- the repulsive centrifugal potential, that depends
guadratically on the angular momentum. The larger is the andar momentum °, the higher
is the centrifugal barrier, which implies the con nement ofthe neutron in the potential for
a longer time since the penetrability of the barrier is invesely proportional to its height
[29. As a consequence, for > 0, we obtain resonant states which lifetime increases
(and width decreases) with a larger. But for neutrons with angular momentum equal
to zero, the contribution from the V- term disappears and there is no more centrifugal
barrier (see Fig.1.5). It is therefore impossible to observe resonant states imat case. How-
ever, if an increase of the cross-section is observed tow@renergy, we talk of virtual states 4].

Verr (1) = Wn(r)+ Vo(r)= W(r) + (1.4)

In fact, such a description is too simple, since only the rdlae fragment-neutron movement
Is taken into account and that no assumption is made on the iatnal structure of the fragment.
Indeed, models that take into account the coupling betweerhé di erent con guration of the
fragment predict the existence of an = 0 resonance []. However this simple vision allows us
to obtain information on the structure of unbound states.

In this description, resonant and virtual states are treate like the di usion of a neutron on
the fragment. The di erential cross-section in relative eargy (E. ) for a partial wave with an
angular momentum™ can be expressed as follows:

d- 4 .
dEo - le(Z +1)sin? (Eer) (1.5)
re
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Figure 1.5: On the left, e ective potential felt by a neutron with an * > 0 angular momentum. We
notice that it shows a centrifugal barrier (in dashed blue line) tlat can con ne the neutron and induce
the formation of resonant states that can be observed. On the rightase where® = 0, no centrifugal
barrier is felt by the neutron. The insets on the top right of each gurerepresent the kind of di erential
cross-section in relative energy that we obtain in each case.

where k¢ is the wave number linked to the fragment-neutron relative wmentum and - is
the phase of the wave induced by the potential on the neutron wave function. In thecase
of a resonance with > 0, the phase will be negligible for all the partial waves expe for
the resonant” component. The cross-section will display a maximum at an ergy E, with a
width . In that case, the shape of the phase in Eq.l.5 leads to a Breit-Wigner distribution
and the two parametersg, and allow to entirely characterize the unbound state.

For virtual states, at low energy, it is possible to link the pase with the scattering lengthas.
This parameter gives us a measurement of the attractive poteal ability to bind the system:
it is positive for bound states and negative for unbound stas. At very low energy ki ! 0),
we can do the following approximation:

0 asKrel (1.6)

In such conditions, the cross-section displays a maximumryeclose from the neutron emis-
sion threshold, with a tail that spreads to higher energieség Fig.1.5). We can link qualitatively
the scattering length to the corresponding resonance engrgsing the following approximation

[29]:

(1.7)

We obtain therefore for example that a scattering lengthes =-20 fm corresponds to a
resonance energy of abouE, =50 keV for A 9. However this formula can be used only
in the limit casek,; ! 0, and is used here only to give a comparison with the resonanenergy.
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1.2 The nucleon-nucleon interaction inside the nucleus

1.2.1 General properties of the nucleon-nucleon interaction

We present here the general properties of the nucleon-nuateinteraction in a qualitative way.
The intensity of the interaction between two nucleons depels on several parameters:

" The strongest intensity for the interaction is obtained whe the wave functions of the two
nucleons show the larger spatial overlap. This is happeninghen two nucleons have the
same number of nodes (characterized by the quantum numbe) and the same angular
orbital momentum ".

The nuclear interaction depends on the spins of the nucleonghe proton-neutron inter-
action, in particular, is the largest for a proton and a neuton with anti-aligned spins for
"60,ie. fors; =1=2 ands, = 1=2. For example, the proton-neutrond s-, d3z=
interaction will be stronger than the ds-,  ds-, interaction.

Empirically, it has been shown that the intensity of the nuatar force inside a nucleus is
inversely dependent on the size of the nucleus. This depende is a function ofA = or
A 2= depending whether the nucleons are located at the surfaceairthe center of the
nucleus. We can understand it qualitatively from the fact tlat when the size increases,
nucleons ‘meet' less often, decreasing therefore theirdraction which has a short range.
An important consequence from this decreasing of the nucleiateraction when the size
of the nucleus increases is that the modi cation of the nucée structure will occur much
faster in light nuclei compared to heavier ones.

Since the nucleus is made of neutrons and protons, there aveotisospin values: T=0 and
T=1. However, the T=0 value can be obtained only for a proton-autron system while
the T=1 value can be obtained for proton-proton, proton-netron or neutron-neutron
system. The e ective interaction will therefore be strongefor a proton-neutron system
than for a system with two identical nucleons.

1.2.2 Empirical determination of the proton-neutron interaction

The proton-neutron interaction, for given orbitals, can beobtained experimentally from
the structure of odd-odd nuclei (odd number of protons and adnumber of neutrons). We
also need to assume that the chosen nucleus can be seen as art icore to which only
one neutron and one proton are added. This method can theredoonly be applied to
nuclei with a core possessing a strong shell closure. Inddadthat case, the core excita-
tions are at very high energy and their in uence on the valercproton and neutron is negligible.

We can take as an example thé&Cl nucleus. It can be seen as #S doubly-magic core
on top of which a proton is added ind ;-, and a neutron in f ;-,. The coupling of those two
nucleons gives four negative parity states with spid =2 ;3 ;4 ;5 . We will now determine
their binding energy (BE) resulting from adding independetfy one proton and one neutron
to the 3¢S core. Adding one proton ind 3-, gives us® Cl which binding energy is known.
Therefore we can determine the gain in binding energy resulty from adding a proton in d 3-;
to the 3¢S core:

BE(®Cl) BE(*S) = S,(*Cl) (1.8)
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In a similar way, adding one neutron inf ;-, gives us®*’S and the resulting binding energy
gain can be expressed as follows:

BE(®*'S) BE(®*®*S) = S,(*'S) (1.9)

Figure 1.6: Determination of the interaction energy d s, f ;- from the structure of 38Cl extracted
from [2]. Int(J) are the interaction energies de ned as the dierence between thereference value
BE(38CI) and the real binding energy of theJ spin state. The weighted average of those interaction
energies \W"(ds-,f ;=) is an approximation of the monopole energy.

Finally, adding those two terms to the®*S nucleus binding energy, we obtain th&Cl nucleus
binding energy assuming that the neutron inf ;-, and the proton in d 3=, do not interact with
each other. This can be written such as:

BE (*Cliree ) = BE (*°S) + Sy (*’S) + Sp(°'Cl) (1.10)

Comparing now this value to the binding energies of the foutates obtained experimentally
for 3Cl, we obtain the interaction energy between the proton ind 5-, and the neutron in f ;-
coupled to a given spin (assuming that the gain in energy is lgndue to the proton and the
neutron that have been added). We note those interaction ergges Int (J). The results for
38Cl, extracted from [], as well as an illustration of the method are presented in Fid..6. We
then de ne the weighted average ¥' of the interaction energies, called monopole energy. It
can be expressed in the following way:

P
(23 +1)  Int(d)

Vi :
NEAEEN

(1.11)
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In the case discussed here, we have been able to determine W#®(d;-,f ;-;) value that
is of about 1 MeV, which is close from the value predicted by shell-modehlculations
(-1.19 MeV). The monopole interaction is characterizing theverage change of the binding
energies due to the nucleon-nucleon interaction inside thmucleus, an essential element in
order to understand the evolution of the shell closures. Hower it is often complicated to
determine it using the technique that we just presented dueotseveral constraints. Indeed, not
only the core used A,Z) needs to have a strong shell closure, but also the nucl& ¢ 1,Z),
(A,Z +1) and (A +1,Z +1), needed in the calculation, cannot be deformed. Otherge we
would not be dealing with single particle states and the caltation presented here would have
no sense since the states for which the interaction energéee calculated would show too many
correlations. And nally, the last condition is obviously krowing experimentally all the states
from the multiplet involved which often requires the use of ickerent experimental techniques.

We can also notice the parabolic shape of the interaction exyg curve as a function of the
spinJ. This is due to the quadrupole interaction that will be discssed in the following.

1.2.3 E ective single particle energies

We determined in the previous section the intensity of the mmopole interaction W"(ds-,f 7-,)
equal to 1 MeV. Assuming that the inert core approximation is valid, addhg protons
in ds to a 3¢S core will bind the neutrons in f -, by 1 MeV by proton added. This
can be observed by looking at the e ective \single particle'energies (ESPE). Those ESPE
depict the mean e ect of the other nucleons on a nucleon in awvgin orbital, meaning the
variations of the binding energies induced by the monopol@&teraction alone. The ESPE
of an occupied orbital is de ned such as the energy needed temove one of its nucleons,
while the ESPE of an empty orbital corresponds to the bindingnergy gained while lling
it with nucleons. For nuclei close to a shell closure, the E&Pwill be similar to the exper-
imental binding energies. However this is not true for nuclethat are strongly correlated
or deformed. In the case discussed here, we are close from dio&bly magic %S and the
equivalence between ESPE and binding energy can be consédkvalid in a rst approximation.

When adding four protons in d -, we expect that ESPE(f ;,-,) will shift by the quantity
4\V/P" (d3=»f 7=p), meaning 4 MeV. This value can be compared to the one obtained from the
experimental binding energies of neutrons irf ;-,:

"~ for Z=16 (0 in dsz) and N=21 (1in f ;2), i.e. $,(3"S)=4.303 MeV
"~ for Z=20 (4 in d3) and N=21 (1 in f ;2), i.e. S,(*Ca)=8.363 MeV

Therefore:
S.(**Ca) S.(}S) 4 MeV (1.12)
We obtain then a gain of binding energy of nearly 4 MeV when addy four protons in

d 3. The two methods to determine the monopole interaction arenigood agreement if the
conditions described earlier are ful lled.
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1.2.4 Quadrupole interaction and nucleus deformation

On top of the monopole interaction, nuclei can gain bindingreergy through deformation. This
gain of energy comes from the quadrupole interaction. Ind&ewhile lling a new orbital,
the experimental binding energy is often found stronger tmathe ESPE deduced from the
monopole interaction alone. Taking back the example of thd ;—, orbital, experimentally,
the protons in d 3, have been found more bound than predicted by the ESPHE(3-,). This
guadrupolar gain of energy reaches its maximum in the middief the orbital. We con rm,
as mentioned before, that in case of shell closure (herke,-, completely empty or full)
experimental proton binding energies are equal to ESPH(3-,).

For those nuclei with closed shell, nucleons occupy all th@gsible magnetic sub-states and
therefore adopt a spherical shape. When those shell closudesappear, nucleons can move in
an extended valence space and adopt more con gurations, itmimg more than one orbital, with
some that are more favorable than the one of the inert core. Neons from di erent orbitals
mix and maximize their quadrupole energy, leading to deforad structures. We understand
that in those cases where strong correlations exist, the @emination method of the monopole
interaction described earlier is not valid anymore.

1.3 The n-n interaction in core+x n nuclei

In the previous section, we have been mainly interested in é¢hp-n interaction. However,
pairing interactions between identical particles play a mar role in nuclear physics. Therefore,
we propose to discuss tha-n and p-p interactions in this section.

Pairing interactions play crucial roles in atomic nuclei ad quantum many-body physics in
general P6]. In nite nuclei, two-neutron and/or two-proton pairing are responsible for the
odd-even staggering observed in the binding energy of atamhasses and for the fact that all
even nuclei have a] = 0* ground state. Pairing correlations also imply a smoothingfdhe
level occupancy around the Fermi energy surface, an enhamant of pair transfer probabilities
(see e.g. Refs.Z7, 2€)), as well as a super uid behavior in nuclear rotation4 and vibration
[30]. When moving from the interior to the surface of the neutromich nuclei Li [31], ®He
and 8C [37], a transition from BCS (Bardeen Cooper-Schrie er) J3] to BEC (Bose-Einstein
Condensation) B4] pairing has been predicted to possibly occur. On a larger clear-matter
scale, pairing plays a major role in the modeling of the rotain, magnetization and cooling of
neutron stars 9.

Recently, the formation of tetra-neutron resonances, eidn from an ensemble of four
interacting neutrons [36] or from the coupling of four neutrons inside atomic nuclei3[] were
proposed on the basis of experimental results. If con rmedetra-neutron excitations would
require a higher range of (four-body) nucleon interaction§3€d], with expected important
consequences in the description of nite nuclei, of nucleanatter [39] and in the determination
of neutron captures in the Big Bang4(] and in neutron-star mergers. Despite of its tremendous
importance, the real observation of the decay of paired ortta nucleons is still lacking or very
scarce as dicult to evidence. By generalizing the Ikeda cqeacture [41], initially proposed
to account for the presence of cluster states close to emission thresholds, such two- or
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four-nucleon resonances would similarly appear at energielose to the corresponding emission
thresholds [}7]. The sudden promotion of nucleons beyond those threshaldssing a suitable
reaction mechanism, would allow the study of such few-nudie correlations.

Tremendous e orts have been made during the last decades totmct information on
proton correlations from the decay of two-proton emitters/[ 46]. In such nuclei, the Coulomb
barrier traps the unbound protons during a time that is long rough to allow the detection
of protons distinctly to the formation of the emitter. This emission was rst described as a
possible di-proton decay in the form of &He [#7], in analogy with decay. However, after
having unfolded the strong nal-state interaction (FSI) conponent, the observed proton-proton
angular distributions in **Fe 1§ and %4Zn [49) rather point to a three-body decay {4, in
which the two protons are emitted (not necessarily paired)ydm a mixed lling of pf shells.
These relatively weak proton correlations may be inferreddm the fact that the studied nuclei
were far from closed shells and that protons may lose theirifial correlation when traversing
the high Coulomb barrier while escaping the nucleus.

Other approaches were carried out by observing the decaystbé unbound ®Be [5(], 20
[51], *Ne[57], ®Ne and **Mg [53. A progressive transition from correlated to sequential
two-proton decay was clearly observed in Ref5(] as a function of the excitation energy of
®Be. Sequential decay was also observed 0. In all cases, however, the decay patterns are
subject to strong Coulomb FSI between the two protons and theoce, especially blurring the
observation of nuclear correlations at low relative energs.

To circumvent the problems caused by the Coulomb interactip the study of two-neutron
emission was carried out in neutron-rich corer+n systems that are unbound either in their
ground state (°He [54], 3Li [54, 55, °Be [56] and 2°0 [17, 57, 54) or in excited states beyond
the two-neutron threshold €He [59, “Be [7, 60 and ?*O [61, 67]). The decay of excited
states of8He [59, *Be [7, 6(] and ?*0O [67], as well as the ground-state decay dPHe [>4], all
show very convincing signatures of sequential decay thrdugntermediate coren resonances.
First observations of a di-neutron decay from the ground stas of'3Li [55] and ®Be [56] were
claimed on the basis of the observed smalin energies and angles, as compared to a three-body
phase-space decay, with no interaction between the emitte@utrons. However, the need to go
beyond the di-neutron simpli cation and to use realisticn-n FSI, in direct and/or sequential
decays, has been pointed out in Ref6f]. Indeed, the attractive nature of then-n interac-
tion can give rise to small relativen-n energies and angles, hereby mimicking a di-neutron decay.

An additional motivation for studying 2p or 2n decay emissions, is to nd whether the
Ikeda conjecture, introduced above, can hold for two-nude systems as well, as proposed in
Ref. [47. Such 2 and 2n narrow resonances have been very recently found itF [64] and
26Q[17], respectively. However, their @ or 2n decay pattern could not be studied because of
the too weak D branch for °F and the too low relative energy of the two neutrons fof®O.
We will show that a narrow resonance is found in our work fofF, for which the 2n decay
pattern could be characterized.
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1.4 From °°F to °8F: evolution of the p-n interaction

As mentioned previously, nucleon-nucleon interactions aresponsible for the major changes
in nuclear structure observed while moving toward the drighe. The N = 20 shell closure
disappears forZ 14 and a new gap aflN = 16 is emerging for nuclei withZ 8, explaining
the position of the dripline at A = 24 for the Oxygen isotopes. However, adding only one
proton in order to form a Fluorine isotope allows us to bind siadditional neutrons since®'F

is the last bound Fluorine isotope (note that®F and 3°F are unbound due to pairing e ects).
It is therefore important to have a good understanding of theucleon-nucleon interaction in
this region in order to be able to predict properly the struaire of those nuclei close to the
dripline. We are interested in this section ir’F and 28F.

We start with 28F, which o ers the opportunity to study di erent aspects, as dscussed earlier
in this chapter, of the nucleon-nucleon interaction far fnm stability. Indeed, this nucleus has
all the conditions required so that the approximations ned®l for such a study are valid.?°F
can be seen as a doubly magitO core to which we added one deeply bound proton&°F) =

15.1(3) MeV [65) in d 5=, and one unbound neutron ($(?°0) = 770(20) keV [66]) in d 3.
The fact that the rst excited state of 2*O is located at an excitation energy of 4.47 Me\5[] and
that the sub-shells d 5=, and d 3, are well separated in energy compared to the others allow us
to use the single-particle approach necessary to the detenation of the ds-, d 3-, interaction
such as presented in sectioh.2 From the ds-, das- coupling, resultsal =17;2";3";4"
multiplet, whose energies must be determined in order to sly the in uence of the proximity
of the continuum on the corresponding-n interaction. Indeed, once those states identi ed and
characterized, we will be able using the method describedsaction1.2.2for 38Cl to determine
the intensity of the ds-,  ds interaction. Finally, adding one proton in d s-, to 2O gives
25F which binding energy is known to beBE (?°F) = 18338(8) MeV. In a same way, adding
one neutron in ds- to ?*O gives?°0O which is unbound with a neutron emission threshold of
Sh(?°0) = 0:77(2) MeV. Then we obtain the binding energy ofF;.. (see sectionl.2.?:

BE (®Firee) = BE (¥0)+ Sy(®F) + $,(®0) = BE(®F)+ $,(*0)  (L13)

We need now to determine the energies of the four state3 (= 1*%;2";3";4") resulting
from the ds-— ds-, coupling. Energies for the bound] = 17;2" and 4" states were
measured using di erent techniquesd 7(]. In particular, the spin assigments of the ground
state (17) [68, 71] and of the weakly bound isomeric state (4 at 643 keV) [5&] were proposed
from their decay pattern to low- and high-energy spin valuesespectively, in the daughter
nucleus ®Ne. Also an unbound state was recently proposed to be the misgid = 3*
state [3]. In this work, ?°F was populated from?’Ne via proton knockout at GSI. In such
reaction, we expect the proton to be knocked-out mainly fronthe ds-, orbital, while the
neutron remains in d s, and therefore populating the states of thd =1%;2";3";4" multi-
plet. Among those states, only the 3 has been found to be unbound, and decaying inféF+ n.

Since thed =1%;2";3";4" multiplet has been observed experimentally , we can turn to
experimental interaction energiesnt (J), that correspond to the interaction between ad s,
proton and d -, neutron above the?*O core coupled to di erent spin orientationsJ. We can
de ne this quantity such as:

Int (J) = BE(*°F); BE (**Firee) (1.14)
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(&

Int (J) [MeV]
exp IM-SRG USDA
1 -1.85(13) -2.24(07) -2.47
2 -1.19(14) -1.86(05) -1.51
3 -0.45(19) -0.53(04) -0.69
4 -1.21(13) -1.56(04) -1.54
v -1.06(8) -1.41(02) -1.40
Table 1.1: Experimental and calculated interaction energies,Int (J), between a d s, proton and a

d 3, neutron in 2°F. Calculated results are obtained from USDA and IM-SRG shell-mdel calculations
(adapted from [3]).

where BE (%°F); is the energy of a giverd state in 2°F. Values ofint (1;2; 4) obtained in [6]
and Int (3) obtained in [3] are listed in Table 1.1 and shown in Fig.1.7. The corresponding

e ective experimental monopole interaction (see sectioh.2.2 amounts to V{y 1 MeV.

Figure 1.7: Experimental interaction energies corresponding to thed s,  d3-, coupling in 26F.
Int (J) (green cicles), are plotted as a function ofJ(J + 1) and compared to calculations using the
IM-SRG procedure (left) and the USDA interaction (right). Fitte d parabolas are drawn to guide the
eye (taken from [3]).

The results from the USDA and IM-SRG calculations for the mormmole interaction (VP")
amount to about 1.4 MeV. This is larger than the experimental value of 1.06 MeV, pointing
to a smaller monopole interaction as compared to calculatis. As seen in Tablel.1 and
Fig. 1.7, the amplitude of the multiplet parabola of USDA is also largethan in experiment,
while the energy ofJ = 3 is in good agreement. This suggests that the residual eiggrthat
lifts the degeneracy between thel components of the multiplet is smaller than calculated.
Both e ects of smaller monopole and residual interactiongs compared to calculations, could
be interpreted (with a word of caution concerning the $value of 2°F and its consequence
on a possible shift in excitation energy of the resonance) as e ect of the proximity of the
continuum on the e ective proton-neutron interaction.
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We are aiming now to perform the same kind of study fof®F. Then by comparing the
results for?8F and 2°F, we will get information on the evolution of the ds-,  d 5-, interaction
while moving further toward the dripline. Indeed while movig from 2°F to 28F, we expect
to be lling the dj3-, by adding two additional neutrons as shown in Figl.8. In the case of
28F, we are therefore left with a proton in d 5, and a hole in d 3-,. This coupling results in a
J =17;2";3";4" multiplet whose energies must be determined.

P n P n
O-0-0-0-
P ~ /N

Figure 1.8: Expected ground state con gurations for2°F and 28F.

However, performing such study orf®F reveals itself to be even more challenging than in
the case of®F. Indeed, while in?F only the J = 3* state was unbound, in’®F all the states
are unbound as the nucleus is unbound itselféF can be seen as #£0 core to which we added
one deeply bound proton ind s-, and remove one unbound neutron ind 3-,. The interaction
energiesint (J) for 2F can be expressed following Ed..14

Int (J) = BE(®F); BE (®®Firee) (1.15)
where BE (%®Fyee ) is given by:
BE (**Fiee) = BE(*®0) + Sy(*F)  Si(*'0) = BE(*°F) S,(*'0) (1.16)

However, theS, (>’0) value is unknown. This is a problem that should not stop usiiour study
since?’0 is also currently being studied, in the data from the same SAWRAI21 experiment
that will be presented in chapter5, giving hope for a value in the near future that could allow
us to determine the interaction energiesliqt (J)).

Another di culty might be added to the one already mentioned. Indeed, it is known that
the large shell gap atN = 20 is disappearing for neutron-rich nuclei {4 74]. The change in
shell structure aroundN = 20 is known to be a result of the tensor force, which is strohg
attractive for the ds-,  ds-, coupling and strongly repulsive for theds-, f 7=, coupling
[7X77]. For nuclei in the region ofN 20 and Z 13, the reducedN = 20 gap allows
pf intruder con gurations to compete with standart sd-only con gurations if the gain in
correlation energy is of the same order as the size of the stgdp [/ 8(]. This has led to
the establishment of the \island of inversion”, a region of uclei nearN = 20 for which the
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intruder con guration is dominant in the ground state.

The island of inversion was originally thought to be includig nuclei with 10 zZ 12
and 20 N 22 [L€]. In more recent years, it has become clear that the island texds
further, and a lot of experimental e ort has been put forth todetermine its boundaries §1].
On the low-N and highZ sides of the island, it is generally agreed that ground-sttintruder
components fade away foZ 13 and N 18. Until now, the low-Z shore of the island
of inversion has been almost completely unexplored. A measment of bound states in?’F,
which lies on the island's western border aN = 18, has hinted a pf -shell contribution to
its excited state structure B7], but mass measurements/[] indicate that ?’F ground state
is primarily sd shell. For the heavier N 19) Fluorine isotopes, lying within the island's
southern shore, only one study is available, offF populated from2*Ne( 1p) [4].

Figure 1.9: Relative (or decay) energy spectrum for’’F+ n coincidences (extracted from {]). The
lled squares with error bars are the measured data, and the dastd red and dotted blue curves represent
the 220 keV and 810 keV simulation results, respectively. The solid bladurve is the sum of the two
resonances, with the ratio of 220 keV resonance to the total area ey 28%. The lled orange curve is
a simulation of a single resonance at 590 keV, and the gray dot-dasth curve is the best t of a single
s-wave (a=-0.05 fm). The two neutron emission threshold ($,) has also been added.

We will now describe in more detail the results obtained présusly on 28F [4]. In this
study, ?®F has been populated via the knockout of a proton if°Ne at NSCL (National
Superconducting Cyclotron Laboratory). The relative engyy spectrum obtained is presented
in Fig. 1.9 Assuming the presence of only two resonances, the t of the tdaleads to two
resonance energies, at 220(50) keV and 810 keV, even if thegimfty of more resonances is
not ruled out. Also no -ray transitions were observed in coincidence, so the statebserved
were assumed to feed the ground state &fF. However, the data su er from very low statistics
and large error bars. Indeed, the two-resonance hypothegsonly based on one data point at
around 500 keV, with large error bars, that looks like a local mimum but could equally be
a statistical uctuation. Moreover, as discussed in Ref.4], by comparing the relative energy
spectrum to the response of the experimental setup in Fidg..1Q it is clear that the data
are strongly distorted by the resolution and the acceptanceln particular, the width of the
observed data is almost entirely due to the experimental relsition and the shape of the data
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above 0.8 MeV is dominated by the limited acceptance at higher reli@e energies.

Figure 1.10: Simulated resolution and acceptance of the experimental setup ( ga taken from [4]).
Each colored histogram was generated by simulating #F breakup at the indicated energy and then
folding in detector resolution and acceptance cuts. The shaded cue was generated by simulating a
28F breakup with the relative energy uniformly distributed from 0-3 MeV ad folding in acceptance and
resolution. The colored histograms are all normalized to a tal area of unity, and the shaded curve
was arbitrarily scaled to t within the same panel.

The binding energy of?®F, deduced from the experimental results assuming that the gund
state was the structure at about 220 keV, was then compared aridund in good agreement
with USDA and USDB calculations. However as mentioned in Refd][ for a given nucleus,
good agreement between experiment and USDA/USDB theory indies a ground-state
con guration that is primarily sd shell. In contrast, a nucleus with signi cant ground-state
intruder components would be poorly described by the USDA/USDBhell model, leading to
the conclusion that pf -shell intruder components play only a small role in the growd-state
structure of 2F, leaving it therefore out of the island of inversion.

The information extracted from this rst attempt to study th e structure of 2F did not
lead to clear answers. And there is no doubt that improvementsn the resolution, statistics
and acceptance would allow us to get a clearer picture of thescture of 2F. However, this
result gives us an idea of the complexity of such study.

We will present in chapter5 our results on?8F not only using this same reactiorf®Ne( 1p),

but also populating it from 2°F(  1n), where both the resolution and the statistics have been
largely improved compared to previous studies of unbound clei in general.
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Chapter 2

Analysis techniques of fragment+x n
systems
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n this chapter we will discuss the experimental principle, rpiiring the detection of the incident
I beam and outgoing fragment and neutron(s), and the obsenials that will be constructed
in order to extract the physical quantities. Indeed, thesera the kind of coincidence events
that are characteristics of the decay of an unbound state. Waill introduce rst the principle
of neutron(s) detection, which is a key point in such kind ofrmalysis. Then we will present the
di erent observables used for the study of two-body and thexbody unbound states.

2.1 The principle of neutron(s) detection

The detection of neutron(s) is a key step for the study of netn-rich unbound states. It is
therefore crucial to understand fully the principle of neubn(s) detection that will be used in
our analysis. Indeed, we are investigating in this documenhbound states that are decaying by
emitting neutron(s) (see Fig.2.1). The fact that the neutron is neutral makes it hard to detect
Their detection is possible only through the strong interaon, with cross-sections much lower
than the corresponding atomic processes involved in chadgparticle detection. Their detec-
tion is therefore not direct but induced by the recoil signabf a particle due to a nuclear reaction.

In our experiments, neutrons were detected after a collisiowith a nucleus from the
detector material (plastic scintillators in our case). Howeer, since in most reactions the
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Figure 2.1: Principle of the reaction of interest where a nucleus of the beam is wtergoing a knock-
out reaction in order to populate unbound states that will decayia the emission of neutron(s). We
take here the example of a proton knockout with a proton target.

neutron survives in the exit channel, a same neutron can betdeted several times in the
neutron detector by interacting successively in dierent dcations. And even when the
neutron interacts only once, outgoing charged particlesdm that interaction can propagate to
neighboring detector modules. This phenomenon, the gentoa of signals in several detectors
due to the passage of one single neutron, is known as crodk:tarhe low neutron detection
e ciencies and the occurrence of cross-talk makes extrergetli cult the study of unbound
resonances that decay through the emission of more than oneutron.

In this work, we are interested mainly in two types of decay nohanisms, the h and the
2n decay. The h decay remains relatively simple since only one neutron neetb be detected
and therefore in that case only the rst interaction occurmg can be considered (all the hits
due to cross-talk arriving later). However, for the & decay channel, since two neutrons have
to be detected in order to have access to the full kinematicg the reaction, it is crucial to
distinguish the true hits from the case where several hits originate from the sameutron. A
list of the di erent possible cases when several hits are nietered in the neutron detector are
presented in Fig.2.2

In order to identify such kind of events, we applied algoritins in order to suppress as

much cross-talk events as possible while optimizing the setion of real 21 events, sometimes
a di cult compromise.
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Figure 2.2: The cross-talk principle: sketch of all the possible scenarios fohé detection of 3 hits
in the neutron detectors (adapted from f]).

2.2 Two-body unbound systems

In this section, we are focusing on the treatment of the coirdence between a nucleus of the
beam, a fragment and a neutron. We will present the properseof the fragment-neutron non-

resonant contribution before developing the di erent obggables that characterize an unbound

system.

2.2.1 Non-resonant contributions
De nition

Let us consider two particles that are part of the exit chanrleof a given reaction, with
four-momenta p; and p,. In an ideal case in which they do not ‘see' each other, their
momentum distributions should be independentd =dp; and d =dp,, and these distributions
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would lead to a non-resonant component in the two-particlebservables, the one we would
like to estimate. If we can select exit channels in which onlgne of them is emitted, we could
measure them. However, when they are mostly emitted togethexs is the case of two neutrons
in the breakup of borromean two-neutron haloes, or the unbad resonance we have described,
we have only access to the two-particle cross-section, whiwe can write as:

d? . d d _
dpsdp, = ﬁ@ C(p1; p2) (2.1)

The factor C(py; po) is often called the \correlation function”, but it should smply be seen
as the e ect of the mutual presence of both particles in the al state. The main mechanisms
that may modify the momentap,; and p, of the particles we measure can be classi ed in three
categories:

QSS FSI resonances
X X P1
T 2.2
pl p2 pl p2 p2 ( )
(a) (b) (©)

the quantum statistical symmetries for identical particls (a), the nal-state interaction for
interacting particles (b), and the formation of resonancedecaying into those patrticles (c). In
the case of two neutrons we have (a,b) because they are ideatifermions and subject to the
strong interaction, in the case of fragment+proton we havey) through the Coulomb interaction,
and in the case of fragment+n we may have (c) if the unbound sigsn has resonances.

Event mixing

Independently of the mechanism modifying the momenta, if wavant to extract its e ect
C(p.; p2) from the experimental coincidenced? =dp1dp,, we need to estimate the “independent
distributions’ of Eq. (2.1), i.e. how the two-particle observable would look like witbut the
correlation/interaction. If we mix particles from di erent events we should expect to wash out
any correlation, since a particle 1 has not ‘seen' a partickfrom a di erent event, they did
not coexist. The added bonus of these “virtual pairs' is thahey are built from particles that
have been detected, so our independent distributions witiclude the experimental acceptances.

This technique has been extensively used in a wide range ofesgies in both nuclear
and particle physics, and has e ectively extracted the coelation signals from two-particle
coincidences (leading usually to the source size for QSS aR8l, and for resonances to
their mass and width). However, when the correlation is veryt®ng, just mixing the
events is not enough. In order to understand why, let us 'mbEqg. (2.1). Mixing particle 1
with all other particles 2 corresponds to integrating the tw-particle distribution over particle 2:
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I
dpr dp; dp, P2
A C(p1; )d_d
- dp]_ plapz dp2 pZ
d .
= gp CiP) (2.3)

We have used the de nition ofC(ps; p2) in EQ. (2.1) and then used the fact that the in-
dependent distributions are independent of each other. Byiring events we obtaind =dp,
which is the independent distribution we are looking for tireshCi(p,;). The same stands for
particle 2, so in general we obtain:

d d
= Z_ hC(Ci 2.4
i = g NS (2.4)

The unexpected factor represents the average correlatiomwith all the other “virtual
partners, of a particle with four-momentump. When the correlation function is small, or when
it acts on a very small portion of the data set, this average oelation will be hCi 1, and
therefore the standard mixing technique will succeed:

d? =dp.dp,
(d =dp)(d =dp)
This is the case in most of the applications of the techniqu@) which particles are weakly
correlated, or very few of them are strongly correlated.

C(p1; p2) (2.5)

Residual correlations

The correlation factor in Eq. (2.4) represents the residual correlations that “survive' thevent
mixing. If we know it is going to be signi cantly larger than 1 or if we do not know but do
not want to make a priori assumptions, it is better to take it into account. In generalmixing
the events will lead us to underestimate, more or less, thereelation function:

d” =dp,dp, .
@ =dp)(d =dp) C(p1; p2) (2.6)

However, if we are able to calculate the residual correlatidactor, then we can use it as a
weight of the events we mix and remove the residual correlati®s completely:

d? =dp.dp,
(d_=dn)(d =dp)

1 1
hCi(p1) hCi(p2)

The problem, of course, is that in order to construct the coelation function we have to
use the correlation function! We need an iterative algoritm, that will construct successive
correlation functions using the weights calculated with te preceding one. And, to make

= C(pip2) (2.7)
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things a bit more complex, there is a subtle detail in the caldation of the weights that can
be deduced from Eq.%.3):

4

. d
hCi (py) C(p1;p2) @ dp.

Y4

C(p1; p2) % dp; (2.8)

In order to calculate the weights of particle 1 we would use éhcorrelation function plus the
‘independent’ distribution of particle 2, but experiment#ly we cannot measure it. So we will
have to add a second loop in the iteration algorithm, since inrder to calculate the average
correlation of one particle for a given step we have to use tlhgerage correlation of all the other

particles...

The iterative technique

The previous integral equations help to understand the praiple, but in practice we are
measuring a given numbeN of two-particle coincidences:

H

N

Pi
How do we proceed? First we project the 8-dimensional spacearit dimension:
(Pip) ' X (2.9)

which is the relative observable we are going to study, anddh should contain the correlation
we want to extract. For n-n pairs it may be the relative momentum, for fragment pairs their
relative energy, for example. Eq.4.7) becomes:

(X12)
—— == = C(x 2.10
EEC P (249
The numerator is the measured two-patrticle distribution, ad the denominator the distri-
bution obtained through event mixing, with N (N 1) virtual pairs, weighted by:
1 1
= = . - 2.11
Wiz T T () G (po) S
Each particle must have an associated weight, therefore wave to build an array of N
weights with the correlation function:
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1 1
2 2
3 5 3
N N
Pi Wi

that will allow us to build the correlation function. We initi alize the rst weights to 1, build
the rst ‘mixed’ distribution, divide the data by that distr ibution to obtain the rst correlation
function, that is used to calculate the second weights... drafter a big enough number of steps
we should obtain the correlation function:

W(l):l | [ ]W(l) I [ ] o = C(l)
w
! W(Z) ! [ ]W(z) ! [ ]() = C(Z)
w2
ow® ! = c (2.12)

[ Twm

For the calculation of the array of weights, Eq. 2.8) becomes:

1 X C(n 1)(Xij)
N 1, FCit(p)

j=16i

hCi™(p) = (2.13)
This is the second loop of iterations, since we calculate tharray at every step (beyond the

rst) of the general iteration, and for the calculation of eah weight 1=hCi(™(p;) we need the
weights =hCi(™(p;) of all possible partners, that at the same time will need théormer.

Application

In order to illustrate this technique, we use in this paragnah the example of the construction
of the distribution of the non-resonant events in a relativenergy spectra for the £°F,2’F+ n)

reaction. In practice, the two loops described by the equatns 2.122.13 have to be iterated
a su cient number of times in order to reach a convergence ddria determined by the user (an
example of the e ect of the di erent iterations is presentedn Fig. 2.3). The result obtained
gives us the shape of the non-resonant distribution with vgrhigh statistics compared to the
data (of the order of N2 virtual pairs). The statistical error of this distribution is therefore
negligible, but its amplitude has to be determined from theamparison with the experimental
one.

In the case of a relative energy spectrum, we assume that themresonant distribution
needs to remain lower than the data in the limit of the error bes for the whole energy range
(positive correlations). This fact allows us to establishraupper limit to the contribution of
the uncorrelated events in the relative energy spectrum. Hewer, the resonances observed
in the correlated spectrum can sometimes have long tails aighh energy, therefore creating
events over the whole energy range. The real proportion ofdlmon-resonant contribution is
therefore usually smaller than the one obtained with such aonmalization. Fig. 2.3 shows the
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Figure 2.3: On the left, relative energy spectrum and non-resonant distribution ér the (°°F,2F+ n)
reaction. The non-correlated distribution has been maximizedn order to reach the data points in
some areas of the spectrum without going above it. On the right, ¢hsuperposition of the non-resonant
distributions obtained for di erent iterations of the algorithm a re presented.

relative energy spectrum as well as the maximized non-resaom contribution (C 1) for the
(?°F,?’F+ n) reaction.

In fact, the exact proportion of non-resonant events is detmined by making a t taking
into account this background as well as the di erent resonames observed, but this technique
will be described in more detail later. However, the maximiz@n of the non-resonant
distribution allows us to obtain indications on the presene or not of resonances in the spectra.
Indeed, the shape of the non-resonant contribution being natrivial, and the resolution of
the experimental setup degrading with the relative energyit can be sometimes di cult to
spot wide or high-energy resonances. This is even more truethe case of reaction channels
involving the knockout of several nucleons where the signaller non-resonant contribution
ratio can become very low. In that case, we can plot the di erece or the ratio of the data over
the non-resonant contribution in order to enhance some sitture in the spectrum. Fig.2.4
shows an example of those two approaches for thé@H,2’F+ n) reaction.

2.2.2 Invariant-mass method

We are investigating unbound states that immediately decagfter being populated, making
impossible the direct measurement of their \mass". Therefe, we use the invariant-mass
method in which the measurement of the complete kinematicd the reaction is necessary.
Indeed, we need for this method to detect all the decay prodiscof the reaction and measure
their momenta.

The relativistic relation linking the massm, the momentump and the energyE of a system
is as follows:

E = g p2c? + m2c? (2.14)

In the following, we will assumec = 1. This formula can be used to express the mass of a
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Figure 2.4: On the left, results from the subtraction of the maximized non-resnant contribution
from the relative energy spectra for the £°F,2’F+ n) reaction. On the right, correlation function, (i.e.

ratio between the relative energy spectrum and the maximized non-resant distribution for the same
reaction).

system from a four-vector E; p):
m?*=(E;p®=E? p’ (2.15)

And we can derive from this formula the invariant mas#i,, for a N-body unbound system
such as: v i ,
F X\I -2 X\I -2
Miny = E; A (2.16)
i=1 i=1

whereE; is the energy of particlei and f its momentum.

Min being the mass of the system, we can derive the expressionlad telative energyk
between the particles by subtracting from it the mass of eagbarticle in its rest frame m;:

X
Ere| = Minv m| (2.17)

i=1
If the unbound state is decaying by emitting only one neutrgnEq. 2.17 for a two-body
fragment+n system becomes:

q
EreI = m,zA + m% + 2(EAEn J m” ﬁ]jCOS) Ma my (2-18)

where mp and m, are the rest masses of the fragment of atomic mass numb&rand the
neutron, E5 and E,, are their total energies,jp.j and jpj are their momenta norm and is
their relative angle.

If the fragment is populated in its ground state, we have thele,. = S, + Ee WhereEegy
is the excitation energy of theA+1 nucleus andS; is its neutron emission threshold. However,
the reaction can also lead to the production of the fragmenhione of its excited states that
subsequently decays to the ground state by the emission of aay of energyE . In the latter
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case, a coincidence between the neutron and the de-excitingay is observed. We can therefore
propose the following expression for the excitation energy

Eexc = Sn+ Erel(+E ) (2.19)

2.3 Three-body unbound systems

In this part, the three-body correlations in the decay of hilg-energy unbound states are ex-
plored. In particular, a method for analyzing triple coinailence events (fragmentfi+n) from
kinematically complete experiments is described. The maild incorporates the techniques of
intensity interferometry [8Z] and Dalitz plots [84] and allows the estimation of then-n distance
and time delay between the emission of the two neutrons. As Wile seen, the latter is related
to the presence of fragmenir nal-state interactions (FSI) in the exit channel. In principle,
the present approach is also sensitive to the energies anfétimes of these resonances.

2.3.1 Phase space

In order to identify the correlations emerging from the inteaction between particles, we need
to seperate them from the basic correlations imposed by eggrand momentum conservation,
that are independent of the nature of the particles. The lat#tr are given by the N-body
phase space, on top of which we will add what we call \physica&orrelations", or simply
\correlations”. Our model is an interacting three-body phae-space model that has been
developed for the analysis of triple correlations. In briefthe experimental relative energy
distribution is used as input to generate event$..., (Ee) following three-body phase-space
[85]. The nal momenta of the three particles generated are thenltered to include all
experimental e ects (like energy resolution, angular acpgance, or cross-talk rejection). In
order to illustrate the method used, we are using the resultf éhe simulation for the reaction
210(p,pn)?°0 where unbound states above ther2emission threshold are populated. As
mentioned earlier, the experimental relative energy digbution is used as input to generate
our events. Therefore, we can rst look at the experimentalelative energy distribution for our
reaction when the?°O is decaying with the emission of two neutrons'{O+ n+n), see Fig2.5.

In our simulation, the available energy for the decay is sefed according to this experi-
mental distribution. Before implementing correlations inour model to make it more realistic,
we are describing in the following sections the di erent olesvables that we use in our analysis
in order to investigate three-body correlations.

2.3.2 Observables

In order to investigate three-body correlations, we need e ne the observables that are used
in our analysis.

Invariant masses and Dalitz plots

Correlations in three-particle decays have been extendiyvetudied in particle physics by means
of Dalitz plots of the particle energies E;; E;) or the squared invariant masses of particle
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Figure 2.5: Experimental relative energy spectrum of the decay®O+n+n.

pairs (M7; M), with M = (P; + P;)?. In these representations, FSl/resonances lead to a non
uniform population of the surface within the kinematic boudary de ned by energy-momentum
conservation and relative energydf]. The classic example of such an analysis is the three-body
decay of an unstable particled. In the present case, the fragment#+n system exhibits a
distribution of relative energies. Consequently, the vakiofE,. associated with each event will
lead to a di erent boundary for the Dalitz plot, and the resuting plot containing all events

cannot be easily interpreted. We thus introduce a normaligeinvariant mass:
Mij2 (m; + m;)?
(Mi + mj + Ege)? (M + m;)2

mﬁ = (2.20)
which ranges from 0 to 1 E; from O to E.) for all events and exhibits a single kinematic
boundary.

We can now, using Eg2.20 compute the fragmenta and n-n invariant masses. The Dalitz
plot can be obtained by simply representingn? as a function ofm?,. Since we have two
neutrons involved in the decay, we Il two times the Dalitz pbt for each event, one time for
each neutron. In the absence of any correlations above thegsie-space kinematics, the plot
exhibits a uniform population as can be seen in Fig.6(a). The projections over the normalized
invariant masses, Fig.2.6 (b,c), both show a regular bell shape from 0 to 1 with a maximum
at around 0.5. We can also notice that the distribution of thee two variables is minimum and
equal to O atmﬁ equal to 0 and 1.

Angular coordinates

In order to study the decay mechanism, one can also look at tlaagular correlations between
the three particles involved in the decay. We de ne two angte ,, and =, such as presented in
Fig. 2.7, ., being the angle between the two neutron momentg,, and f3,, and =, being the
angle between the fragment momentum and the relative momeumh of the two neutrons. Their
cosines can be expressed as a function of the momenta of thdiples involved in the decayg,
ps, and ps, for the fragment, the rst neutron n; and the second neutrom,, respectively (see
Eq. 2.21and Eq. 2.22. Since there are two di erent ways (noted here \a" and \b") to label
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Figure 2.6: Dalitz plot (a) of the O+ n+n events from the simulation of a phase-space decay for
Erer =0-12 MeV. The projections over the normalized invariant masses ar@resented in (b) and (c)
for mfzn and m2,,, respectively. We observe that the projections are not identical beaae of the mass

asymmetry of the three particles (m, mp, mp).

the neutrons involved in the decay, we computes-,, with both and add them in the same
histogram.

AN
N\

Figure 2.7: De nition of the two angles used in order to investigate three-body coelations as a
function of the momenta of the three particles involveds , fn, and g, for the fragment, the rst
neutron and the second neutron, respectively.

B, B
co = — 2.21
L on) ToNIE (2.21)
(P, b)) B
Coq f=nn )a:b = : : (2.22)
Pio, 5 JB)

In the absence of correlations above the phase-space kingosa plotting coy ,,) as a
function of coq ¢=n, ) results in a rather uniform population of the plot like shownin Fig. 2.8(a).
However, we can observe structures at the boundariesof ¢=,n) = 1 andcoq ,,) = 1)
due to kinematic conditions. The projection on thecoq ¢=,, ) variable (Fig. 2.8(b)) shows a
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slight bell shape with a maximum at O, whereas the projectioon coq »,) (Fig. 2.8(c)) presents
a slowly decreasing slope from 1 to 1 with a drop at around 1.

(b)

-1 - d.5 CI) 0.I5 1
COS( qf/nn)

-1 05 0 05 1
cos(dyn)

Figure 2.8: Two dimensional plot ofcoq nn) as a function of co§ ¢py ) (a) for the 20+ n+n events
from the simulation of a phase-space decay for f =0-12 MeV. The projections overcoy ¢-n, ) and
coq nn) are presented in (b) and (c), respectively.

Jacobi coordinates

Another system of coordinates that is often used in order to @ty three-body correlations
are the Jacobi coordinatess, 87], where the energy and the angular correlations between
the reaction products are described by the hyperspherical dabi vectorsX and Y and their
conjugate momentak, and K,. The Jacobi coordinates can be de ned in two independent
ways, the \T" and the \Y" systems that are presented in Fig.2.9.

In the \Y" system, the fragment is represented by the particle2 and in the \T" system by
the particle 3. The Jacobi coordinates are expressed as folto

X=%f B (223)
Y = w 3 (224)
mqi+ my
g, = MNP Mif (2.25)
mqi+ My

my(p+ ) (M+ My)ps
mp;+ mo+ Mg

R, = (2.26)
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Figure 2.9: \T" (left) and \Y" (right) Jacobi systems for the fragment+ n+n three-body system in
coordinate and momentum spaces.

where m; is the mass of each particle in its rest framer,; its position vector and p; its
momentum vector.

As shown in B7], the complete correlation information can be described kiywo observables
that are E,=E,¢ and  such as:
_ (my+ my)kE

Ex= Tyt (2.27)
- &K (2.28)
JRxjiRyj

In the case of a two-neutron decay, for each event there areaways (noted as \a" and \b"
in the following) to label the neutrons leading to two di erent values for the E4=E; coq «)]
coordinates. Therefore, we compute both and add them in thame histogram. This produces
a symmetry overcoq ) for the \T" system.

We propose now to present the expression of thE,=E, ; coq )] coordinates for the two
di erent systems \T" and \Y" explicitly in the case of a 2n decay. We obtain for the \T"
system:

T ﬁM:z pﬂz:l

Ko = =5 (2.29)
RT — mf (ﬁ11=2 + ﬂ12=1) 2mnﬁ (2 30)
Yazb 2m, + my '
noting that kj, = Kj . From which we can derive:
(ki)
oy = m: (2.31)
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4 4
_ Xa=b Ya=b
Kasb — mopr  sinr -
" IRE K L

(2.32)

We can also compute theH,=E,¢ ; coq )] coordinates for the \Y" system in the same way:

_ mf ﬂ11:2 mnﬂ

R)fa:b = - (2.33)
n f
Mp(fh, + 8) (My+ mp)py,.
Y _ n 1=2 2=1
Rya:b = S Te—— (2.34)
From which we can derive:
(mn + mg )(k;(( | 2
Y — a=b
EXa:b = Sy (2.35)
RY KY
Xa=b Ya=b (236)

Kah — mov  aow -
CRY IR

We present in Fig.2.1Q the results of the 21 phase-space decay PO into 80 for the
\Y" system (right) and the \T" system (left). By comparing tho se results to the two sets of
variables developed in the previous sections (Fig.6 and Fig. 2.8), we notice that the E,=E,
variables for the \T" and the \Y" systems are equivalent to the normalized invariant masses
m2, and m2 , respectively. And that the cog ) variables for the \T" and the \Y" systems
are similar to the coq ¢=nn ) and coq ,,) variables, respectively. However, in the case of the
coy k) variable for the \T" system, the relation with coq nn) is not direct since thecoqy )
distribution is at and, instead of showing a dip toward 1 (lke coq ,,)), it shows it toward

1.

Relative momentum and correlation function

In the n-n part of the three-body decay, we can also be interested by iheelative momenta,
that o er a way to probe the n-n correlations by using intensity interferometry. This techique is
based on the principle that the wave function of relative madn of light identical particles, when
emitted independently in close proximity in space-time, imnodi ed by the nal-state interaction
(FSI) and quantum statistical symmetries (QSS). Following o from previous application to
stellar interferometry [3€], the two-particle correlation function was introduced todescribe the
in uence of FSI and QSS on the emission probability of two paitles with momentaf, and
£ [89. Since both e ects are governed by the space-time charaggtics of the source, the
correlation function C, de ned as the ratio between the measured two-particle digbution and
the product of the independent single-particle distributins, provides a snapshot of the particle
emission region.C can be expressed by rearranging Eg.1 as follows:

d’n=dp.dp;
(dn=dp)(dn=dp)

Clpp)= (2.37)

The projection onto the relative three-momentuny, = jf1 ) is commonly used, where
the experimental distribution of pairs is divided by a recostructed distribution of uncorrelated
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Figure 2.10: \T" (left) and \Y" (right) Jacobi coordinates of the '80O+n+n events from the simu-
lation of a phase-space decay for g =0-12 MeV. The \T" system [Ex=E¢ ;coq )] coordinates are
presented in (a) and (c), respectively and the \Y" system[Ex=E,¢; cOq k)] coordinates in (b) and (d),
respectively.
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Figure 2.11: (a) Two-neutron correlation function for E ¢ =3.7-12 MeV of 2°0 2n decays. The
solid line is traced to guide the eye. (b) Numerator (measured relate momentum distribution, blue
points) and denominator (phase space, yellow) o€y, for the 2°0 case.

pairs normalized so thatC goes to 1 at highg, where e ects of FSI and QSS should vanish.
The deviation of C from 1 thus re ects the structure of the source. Other e ectsarising from
the form of the single-particle distributions or the expemental acceptances, are eliminated by
the denominator of Eq.2.37.

In our case, we are looking ah-n correlations. We can therefore write then-n correlation
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function C,,;, such as:

., = _o(tn) (2.38)

Ps(Cn)

The numerator «,(0hn) corresponds to the experimental distribution and contais all the
interaction e ects. The denominator ,s(0n) can be obtained by the simulation of a phase-
space decay and contains all the other e ects such as kinengatonstraints and experimental
lter. The correlation function for the 2°0 decay into 0 by the emission of two neutrons
is presented in Fig.2.11(a). In Fig. 2.11(b), the two distributions exp(Ghn) and ps(Ghn) are
shown, where the attractive e ect of then-n FSI at ¢,, values below 100 MeV¢ becomes clear.

2.3.3 Decay mechanisms and event generators

In the previous section, we presented a set of dierent obs@bles used in order to study
three-body correlations. Those observables have been usedllustrate the result of a three-
body phase-space decay from a simulation. And by comparingt the experimental data
(Fig. 2.11 (b)), it is obvious that correlations beyond the phase spaageed to be implemented
in the simulation in order to be able to reproduce what we obeeed in the experiment. In
this section, we are therefore describing two decay mechsmis, and the model used in order
to implement them into the simulation. Indeed, when a two-natron decay occurs, mainly two
modes are possible: the direct decay, in which the two neutre are emitted at the same time,
and the sequential decay, in which one neutron is emitted tspopulating then a resonance
in the intermediate nucleus that is decaying later (dependg on the lifetime of the state) by
emitting the second neutron. The model used does not includlee microscopic structure of
the initial state, and treats the e ects of FSI and resonancesn the fragment+2n phase-space
decay phenomenologically. A description of the model can beund in [/, 59, 9(0]. We are
summarizing and illustrating it in the following sections.

Direct decay

We start by the direct decay in which the two neutronsn; and n, are emitted at the same time.
As mentioned before, then-n FSI e ects have to be added to the three-body phase-space dgca
simulation previously discussed (see secti@3.]). To do so, we used the formalism fromo[l]
which takes explicitly into account the in uence of the twonucleon proximity on the e ects of
their interaction. A simpli ed form of the two-particle cross-section can be expressed using a
modi ed version (projection) of Eq. 2.1 such as:

(Qm) O(Qm) Con (Chn) (2.39)

where ¢ corresponds to the two-particle cross-section that the pieles would exhibit if there
were no in uence between them andC,,, is the correlation function that can be expressed as
follows: Z

Con (Ghn) W (rnn) F(ron; Gn) dran (2.40)

where W is the spatial distribution of the source depending on the diancer,, between the
neutrons, here taken as a Gaussian, arfd is the correlation factor that contains the e ect of
the s-wave n-n FSI as well as the e ects of the Fermi statistics for identicaparticles (even if
it is negligible in the case of nucleon pairs?[]). The correlation function can be thus seen as
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a probability distribution P (q,n) to accept the event following the form of then-n correlation
function C,,, that depends on the space-time parameters,{°; ) of a Gaussian two-neutron
sourceé. However, since in the case of a direct decay the two neutron® @mitted at the same
time, we have = 0 and therefore C,, only depends on the relative distance between the
neutronsr M. And as discussed in{1], the correlation function of a Gaussian source becomes
analytical. The validity of this assumption is discussed in5 where it is shown that very
di erent source distributions such as Gaussian, Yukawake, or spherical all lead roughly to
similar Gaussian-like distributions forW(r,,). Moreover, in our model, internal momentum
correlations in the source W (rn,; thn)) are assumed to be small or to have minor impact on
C.n after averaging over the whole source and are therefore rexjed. The fact that this
formalism has been used successfully in order to describeam accurate way the low energy
peaks observed in the-n FSI of previous works [, 56, 90, 92, 93] con rms the validity of the
approximations made in our model.
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Figure 2.12: (a), (b), (c) Dalitz plots for the 80+ n+n direct decay for E¢ =0-12 MeV from the
simulation with a source size ofr{i® =3.7, 6.1 and 8.6 fm, respectively. The projections onto the
normalized invariant massesmfn (d) and m2, (e) are displayed for the three di erent r/s values.

We can now observe how th@-n FSI is a ecting the three-body phase-space decay where
the only free parameter in our simulation is the average siz# the sourcer[°. We take as an
example the 21 decay of?°O into *80. The results for di erent r'™s are presented in the follow-
ing for all the observables described in the previous sectiothe normalized invariant masses

LIf the neutron volume w(r,) is taken as a Gaussian of width , and the neutroBs move independently, the

relative distance distribution W (rn, ) is also Gaussian with sigma 2 andr{7° =
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(Fig. 2.12), the angular coordinates (Fig2.13, the Jacobi coordinates (Fig2.14) and the corre-
lation function (Fig. 2.15. We are now describing the e ects of ther-n FSI on each observable.

Dalitz plots - As we can observe in Fig2.12a, b, c, e), the n-n FSI appears as a
concentration of events at lowm?, (< 0:25), corresponding to small relative momenta. We
also notice that a smaller source size shows a signal with gy amplitude. On the contrary,
the m2, variable (Fig. 2.12d)) does not seem to be a ected signi cantly.

- 10° (@) " 10° (b)

0
Qg
’ln) 1-1 C'OSK !

s = 3.7 fm
e =6.1fm
s = 8.6 fm
O....I....I....I.... 0-....I....I....I....
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
COS( qf/nn) COS( qnn)

Figure 2.13: (a), (b), (c) Two dimensional plots of coy nn) as a function of coy -, ) for the
180+ n+n direct decay for E =0-12 MeV from the simulation with a source sizer™ =3.7, 6.1 and
8.6 fm, respectively. The projections onto thecoq ¢-,,) (d) and coq nn) (e) are displayed for three
dierent r[S values.

Angular coordinates -We can observe in Fig2.13a, b, c, e) that the n-n FSI appears at
small ., angles and that the smaller the source size, the bigger thesal observed. On the
contrary, as form?, , the =, (d) variable seems to be una ected by ther-n FSI.

Jacobi coordinates -As mentioned in the previous section, the Jacobi coordinatesea
directly comparable to the normalized invariant masses antb the angle coordinates. We
observe in Fig.2.14b,c) that the Ey =E,, observable in the \Y" system and thecoq )
observable in the \T" system are not a ected by then-n FSI. However, theE,=E, observable
in the \T" system (a) is a ected by the n-n FSI in the same way as them? variable with
a concentration of events atE,=E,q < 0:25. The  variable in the \Y" system shows a
concentration of events at large anglex¢q ) < 0:5). In both cases, the smaller the source
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Figure 2.14: \T" (left) and \Y" (right) Jacobi coordinates of the 180+ n+n events from the simula-
tion of a two-neutron direct decay for E =0-12 MeV. The \T" system [Ex=E;¢ ; coq )] coordinates
are presented in (a) and (c), respectively and the \Y" system[Ex=E¢|; cOq )] coordinates in (b) and
(d), respectively. The results of three di erent source sizesJ* are presented.

size, the bigger the signal observed.

@
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Counts
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Figure 2.15: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cp,) and phase space (denominator oCp, in yellow) for the O+ n+n direct decay for
Erel =0-12 MeV from the simulation for three di erent source sizesr{"s. Lines has been added in (a)
with the only purpose to guide the eye.

Correlation function - As we can see in Fig.8.11(a) and 2.15a), the n-n FSl is characterized
by an accumulation of events at lowqg,,, creating a strong deviation from the phase space
distribution presented in Figs.2.11(b) and 2.15b). We also observe that the smaller the size
of the source, the stronger the signal. It also seems that tlshape ofC,, is directly linked to

60



the size of the emitting source in the case of a direct decay. Withis method, it is hoped to
directly deduce information on the size of the emitted pairprovided that the decay is direct.

Sequential decay

The other decay mechanism considered is the+ n sequential decay, in which one neutron
is emitted before the other. In order to simulate such a mechesm, the events are generated
following twice the two-body phase space through a fragmentresonance of energfe, and
width  (Breit-Wigner as presented previously in this chapte), followed by the interaction
between the two emmited neutrons once the resonant state hdecayed. In that case, the
emission of the neutrons cannot be considered simultanequss 0) and therefore a space-time
analysis is needed, meaning that-n FSI depends on the space-time parameters[[*; ). As
discussed in{1], this leads to the fact that C,, is not analytical anymore.

Counts
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110 500
ok @ 4005— ©
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E, = 1.5 MeV
E, = 2.5 MeV

0 0.2 0.4 0.6 0.8 1
2 2
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Figure 2.16: (a), (b), (c) Dalitz plots of the 80+n+n sequential decay for By =5.3-7.2 MeV
from the simulation for E, =0.5 MeV, E,; =1.5 MeV and E; =2.5 MeV, respectively {in® =6.1 fm
and  =0.5 MeV being xed). The projections onto the normalized invariant massesm?, (d) and

m2, (e) are displayed for three di erent E, values.

We are then left with four parameters:r["*, , E, and . The number of parameters can be
reduced, as it has been shown i for the well-known ’He resonance, to three by equating the
delay induced in the neutron emission with the lifetime of ta fragmentn resonance, leading
to:

== (2.41)
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Figure 2.17: (a), (b), (c) Dalitz plots of the 80+n+n sequential decay for Ry =5.3-7.2 MeV
from the simulation for  =0.5 MeV, [ =1.5 MeV and , =3.5 MeV, respectively ¢;/n° =3.9 fm
and E; =1.5 MeV being xed). The projections onto the normalized invariant massesmfzn (d) and
m2, (e) are displayed for three dierent . values (the black curve here corresponds to the red curve
in Fig. 2.16).

In this case, the only free parameters of the sequential dgcare (r7°, E,, ).

The results of the sequential @-decay simulation 0f?°O into 80 for 5.3< E ;¢ <7.2 MeV
are presented in the following for all the observables meatied before: the normalized
invariant masses (Fig.2.16 Fig. 2.17), the angular coordinates (Fig.2.18 Fig. 2.19, the
Jacobi coordinates (Fig.2.20 Fig. 2.21) and the correlation function (Fig. 2.22. We are now
discussing the e ects observed for di erent resonance eges and widths on each observable.

Dalitz plots - We can observe on Fig2.16a, b, c, d) that the sequential decay is character-
ized by ridges on the Dalitz plot and by double humped structes (except when the centroid
of the resonance is in the middle of the decay energy range)tire projection overm?, . Since
we Il up two times the m2, histogram, one time for each neutrom; and n,, we observe two
symmetrical wings in (d) asmfzn1 1 m?nz. The position of the bands/wings is directly
related to their energies compared to the maximum energyEf,) available in the system.
Looking at Fig. 2.16e), we see that the energy of the resonan&g also has an in uence on
m?2,. Indeed, the smaller the resonance energy is, the narrowéetm?, distribution is, due to
the kinematic boundaries of the three-body decay.

Looking now at the in uence of the resonance width on them? variable (Fig. 2.17a, b,
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Figure 2.18: (a), (b), (c) Two dimensional plots of coq nn) as a function of coy ¢-n, ) for
the 2O+ n+n sequential decay for By =5.3-7.2 MeV from the simulation with E, =0.5 MeV,
E; =1.5 MeV and E;, =2.5 MeV, respectively {7 =6.1 fm and , =0.5 MeV being xed). The
projections onto the coy ¢=, ) (d) and coq nn) (€) are displayed for three di erent E; values.

c, d)), we observe that the wider the resonance is, the widehe¢ wings are. Since / 1=,
wider resonance also means shorter lifetime and thereforeat the two neutrons, even if
emitted sequentially, remain close from each other when tlsecond neutron is emitted, as we
can observe in Fig2.17a, b, c, ) where a signal appears at lom?, due to the n-n FSI. The

wider the resonance is, the bigger this signal is.

We can conclude by saying than-n FSI are revealed by them?, observable and that the
mZ variable is sensitive to the sequential decay mechanism. iefore, using a two-dimensional
analysis we can have access to information on the decay matkm involved in the reaction.

Angular coordinates -Looking now at the angular correlations in Fig.2.18 we see that
the sequential decay is characterized by bands on the two de#msional plot (a), (b), (c) and
by wings on the projection overcoq ¢-n, ) (d). The position of the bands/wings observed is
depending on the resonance energy and on the maximum enekyy, available in the system.
However, thecoq ,,) observable (e) does not seem to be aected at all by the sequial
decay mechanism.

We are investigating in Fig. 2.19 the in uence of the resonance width on the angular
coordinates. We observe that similarly to the case of the noalized invariant massesn?, ,
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Figure 2.19: (a), (b), (c) Two dimensional plots of coq nn) as a function of coy ¢-n, ) for

the 80+ n+n sequential decay for Ry =5.3-7.2 MeV from the simulation with , =0.5 MeV,
r =1.5 MeV and ; =3.5 MeV, respectively frn® =3.9 fm and E; =1.5 MeV being xed). The

projections onto the coy =, ) (d) and coq nn) (€) are displayed for three di erent  values.

wider resonances lead to wider structures in theoq i=n, ) (d) variable. Also a wide resonance
(short lifetime) allows n-n FSI to survive as we can observe in the projection oveny ) (e)
where a signal arises at low angles.

Jacobi coordinates -As discussed in the previous section, the Jacobi coordinateg @analog
to the normalized invariant masses and to the angular coortites as can be seen in Fi@.20
and Fig. 2.21 Indeed we observe the same e ects of the resonance energy aidth as observed
previously using the two other sets of coordinates. The,=E,¢ (a) and coq ) (d) in the \T"
and \Y" system, respectively, are sensitive to th&-n FSI whereasE,=E,¢ (b) and coq k) (c) in
the \Y" and \T" system, respectively, are sensitive to the chaacteristics of the sequential decay.

Correlation function - Looking at Fig. 2.22 (b), we observe that theq,, distribution is
in uenced by the resonance energi,. Indeed, we see that the highek, is, the narrower the
G, distribution is which is due to the kinematic boundaries of e three-body decay. This
e ect is also revealed in then-n correlation function (a) where a signal appears at low,,
when E, increases.

Fig. 2.23 shows that a small resonance width induces the rising of gl at low ¢,,. As
we discussed earlier, such a signal is characteristiceh FSI. This observation is agreeing with
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Figure 2.20: \T" (left) and \Y" (right) Jacobi coordinates of the '80O+n+n events from the simu-
lation of a two-neutron sequential decay for k =5.3-7.2 MeV with rj7s =6.1 fm and , =0.5 MeV.
The \T" system [Ex=E,e;coq k)] coordinates are presented in (a) and (c), respectively and the \Y"
system[Ex=E¢ ; coq )] coordinates in (b) and (d), respectively. The results of three di erert reso-
nance energiesk; are shown.
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Figure 2.21: \T" (left) and \Y" (right) Jacobi coordinates of the '80O+n+n events from the simu-
lation of a two-neutron sequential decay for E =5.3-7.2 MeV with rji’® =3.9 fm and E; =1.5 MeV.
The \T" system [Ex=Ee;coq k)] coordinates are presented in (a) and (c), respectively and the \Y"
system[Ex=E¢ ; coq )] coordinates in (b) and (d), respectively. The results of three di erert reso-
nance widths are shown.

what we observed already in the other observables. We alsasebve that the amplitude of the
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signal observed for the sequential decay is smaller than tlbee observed for the direct decay
(Fig. 2.19 for the same distance [['°.
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Figure 2.22: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cp,) for the O+ n+n sequential decay for ky =5.3-7.2 MeV from the simulation with
rims =6.1 fm, , =0.5 MeV and three di erent resonance energy value€,.
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Figure 2.23: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cp,) for the O+ n+n sequential decay for Ey =5.3-7.2 MeV from the simulation with
rmm® =3.9 fm, E;, =1.5 MeV and three di erent resonance width values.
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Chapter 3

Experimental method and setup
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s we discussed in the previous chapter, this thesis is focused the study of neutron
unbound states of neutron-rich nuclei. In order to conductugeh a study, we introduced in
the previous chapter the invariant-mass metho®}] which is a key element in the investigation
of neutron unbound states. Indeed, the invariant mas#l;,, corresponds to the mass of
the unbound state before the decay. Then by subtracting the asses of the di erent decay
products, we obtain the relative energye,e of the system which is the energy available for the
decay, sometimes also referred to as the decay enekyy

However, we need rst to populate the unbound states. This isahe in inverse kinematics
at beam velocity using knockout reactions, where one or seaenucleons are suddenly removed
after interaction with the target. Because we are working irinverse kinematics, the decay
products are also emitted at approximately the beam velogit

67



In order to compute the invariant mass, we need to have accedssthe four-momenta of all
the decay products involved in the reaction. This is achiedeby using a complex set of detectors
to track and select the beam, and detect the charged fragmemteutron(s) and eventually -
rays in coincidence. Two di erent setups, that will be desdbed in the following sections, have
been used during this thesis in order to conduct such kind okgeriments: R3B-LAND at GSI
and SAMURAI at RIKEN.

3.1 Population of unbound states

The reaction mechanism is crucial since it has an in uence ae production rate as well

as the properties of the populated states. There are sevetachniques that can lead to the
production of unbound states such as inelastic scatteringgansfer reactions, fusion-evaporation
reactions, and also knockout reactions, that have been usddring our experiments and will

be presented in more detail in this section. In order to popate exotic or unbound nuclei close
to the dripline and study the properties of the populated sties, it is necessary to work in two
steps, that we are describing below.

We start by producing a high-energy radioactive beam of neutn-rich nuclei (secondary
beam) close to the dripline. The best way in order to obtain @l a beam with a su cient
intensity is by fragmentation of a high-energy stable beamp(imary beam). The character-
istics of the radioactive beam produced (energy, intensjtpurity and spatial spread) are key
parameters that are conditioning the success of an experinte Indeed, those characteristics
are in uencing the number of events N, measured during the experiment. We can express
Nevt Such as:

Nevt = Ninc X (3.1)

where N, is the number of incoming ions (that depends on the durationfdhe experiment
and on the beam intensity), x is the thickness of the reaction target taking into accountt$
density, is the reaction cross-section (probability that an incomig ion interacts with an ion
of the target, that is energy dependent) and is the experimental setup detection e ciency.
In order to successfully perform an experiment, one shouldytto maximize Ne, to have a
good resolution and ensure a good selection of the eventsriéiest.

We saw in the previous section that in order to use the invamd-mass method, we need to
be able to detect and characterize all the products of the reion. However the detection of
gammas and neutrons for example is far from being 100% e cient appears then that some
factors of Eq.3.1 are highly constrained by the experimental setup. We therefe need to try
to maximize the other parameters.

We chose in our experiments to use direct reactions in inverkinematics from a high-
energy radioactive beam. Being at high energy (typically aund 430 MeV/nucleon at
GSI and around 230 MeV/nucleon at RIKEN) allows the use of thiakr targets in order
to maximize the interaction probability of the beam. And workng in inverse kinematics
facilitates the detection of all the reaction products as thy are focused in the forward direction.

In order to populate unbound states, we chose to use knockaactions of one or several
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nucleons. At high energies, the cross-section for such reas is rather high (10-100 mb).
High-energy knockout reactions also have the advantage ofilg sudden, meaning that it is a
one-step process where the nal state is in uenced by the il state, and nucleons that are
not involved in the knockout reaction are spectators and thiefore una ected. Since the initial
state directly in uences the nal state, populating the sanme system from di erent knockout
reactions (hence di erent incoming ions) allows us to do a leetion on the nal state.

The secondary beams used in our experiments as well as thelaustudied using knock-
out reactions are presented in Fig3.L We sum up here the dierent reactions studied:
2Ne(p,2pPeF(), 2°F(p,pn)28F(), 27F(p,pn)26F(), °*N(p,2p)8C() and 2'O(p,pn)?°0C). As
we can see already, we have the chance to populdt& via two di erent knockout reactions,
which could help us to have a complete picture of its structer

unbound

Figure 3.1: Nuclei studied during this thesis at RIKEN (blue square) and GSI (ré square). The
secondary beams used to populate them are also presented in greenl dlack squares for RIKEN and

GSI, respectively.

As mentioned earlier, the data presented in this document haween taken in two di erent
laboratories (GSI and RIKEN). This choice to use two di erentfacilities and setups has been
made due to the capabilities of each accelerator to produdeet desired beams and also due to

the available setups.

3.2 General principle

One of the key observables to investigate and characterizeshound states is the relative
energy introduced in section2.2.2 And in order to access it, we need to be able to identify
and measure the momenta of all the products involved in the day of an unbound system.
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We present in Fig.3.2 the typical setup used during our experiments.

Figure 3.2: Sketch of the general principle used during our experiments.

The rst step is to accelerate a stable beam to high energy arsénd it onto the fragmentation
target in order to produce a big variety of radioactive isotpes. However we are not interested
by all the radioactive isotopes produced. B selection is then applied using a succession of
dipole magnets. By doing such a selection, the ions are seggad according to their mass to
charge ratio (A=Z). Indeed, while traveling through a dipole magnet, the Lomz force equals
the centripetal force which keeps the particle of charge ndrar Z and mass numberA on a
circular orbit with radius , leading to the following conditions:

A
B = CZ (3.2)
where B is the strength of the magnetic eld, is the velocity of the ion and is the
associated Lorentz factor. The constant is given by:

C= %C=3:1 Tm (3.3)

This formula is only valid for high-energy beams for which # ions are fully stripped.
Otherwise the charge numbeZ of the ion has to be replaced by the chargg The radius
is xed and corresponds to the one de ned by the beam line. Thiformula means that, by
tuning the magnetic eld B applied, we can chose which ions with a speci&=Z ratio follow
the central trajectory of the beam line, and which ones are &tked in thick slits placed at the
intermediate dispersive focal plane.

After this stage, we have a high-energy cocktail beam of radictive isotopes containing
the isotope of interest as well as some contaminants with slar A=Z ratio. The beam then
Impinges on the reaction target into which knockout reacties occur, producing di erent states
of the nuclei of interest. Those states decay then by-ray or particle emission (unless bound
states are populated) and we identify and characterize therg@ducts of the reaction using a
complex detection system that we describe below in Fig3.Q).
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Figure 3.3: Sketch of the typical detection setup used during our experiments, \ithe beam traveling
from left to right. It is rst going through beam trackers in order to re construct its trajectory before
reaching the reaction target, which is surrounded by a -ray detector to detect eventual in ight rays.
After the reaction, the emitted neutron(s) go straight into a neutron detector where their trajectory
and time of ight are measured, while the charged fragment, de ectedby a magnet, is detected and
identi ed using a set of detectors allowing us to reconstruct its tajectory and energy loss.

We are interested in unbound states that decay by emitting anor several neutrons. And
in order to investigate them, we need to compute the relativenergy (see sectio.17). To do
so, we need to identify event by event the incoming nuclei ardetermine the energy and the
momentum of each reaction product. The di erent quantitiesneeded to investigate unbound
states are presented below:

1. Beam velocity |
. Beam charge numbeg,
. Beam trajectory

. Fragment velocity ¢

2

3

4

5. Fragment charge numbeis
6. Fragment mass numbeA¢
7. Fragment trajectory

8. Neutron(s) trajectory

9. Neutron(s) velocity ,

How these quantities are derived using the ¥8-LAND or the SAMURAI s021 setups is ex-
plained in the following sections.
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3.3 GSI and R 3B-LAND experimental setup

We are rst presenting the experiment performed at GSI. In tis experiment, we used the
R3B-LAND experimental setup. The description of the apparatus sed can be divided in two
di erent parts. We present rst the production and selectian of the radioactive ion beam and
then the experimental setup used for the detection of the re@on products.

3.3.1 Beam production

The s393-experimental campaign has been performed at GShese the radioactive ion beam
(RIB) is produced via an in- ight technique, meaning the radoactive ions are produced and
separated in ight. This beam production is briey explainal in the following paragraph.
Moreover, a schematic view of the GSI accelerator is presedtin Fig. 3.4 The production
mechanism of the RIB starts with a stable primary beam. At GSthe ions of choice are injected
into the \UNIversal Linear ACcelerator" (UNILAC) from an ion source. In the experiment
described hereAr ions have been used as primary beam. From the UNILAC th&Art1*
beam is injected into the \Schwer lonen Synchrotron-18" (§-18), having an energy of nearly
11.5 MeV/nucleon.

Figure 3.4: Schematic layout of the GSI accelerator complex used during the esqment.

Leaving the SIS-18, the!®Ar ions have been accelerated to an energy of 490 MeV/nucleon
and the primary beam is guided onto the production target athe entrance of the FRagment
Separator (FRS) presented in Fig3.5. A 4 g=cn? thick Be production target was used to
induce fragmentation reactions. The primary beam had an iehsity of 6 10 ions=bunch.
The beam composition delivered to the experimental cave deqpds on the FRS settings only.
For a more detailed description of the FRS, see Ref5). For the purpose of our experiment,
the magnetic rigidity B of the FRS is set to 9.05 Tm in order to favor the transmission of
nuclei with A=Z  2:7. The reaction products of the nuclear fragmentation of thencoming
4°Ar beam impinging on the Be target are forming the cocktail orexcondary beams with an
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energy of nearly 430 MeV/nucleon. A large variety of elemesitwith masses smaller than the
one of the primary beam is produced. The beam composition isen selected by means of the
B method (3.2) which is applied in the FRS. These secondary beams are themamismitted to
the R®B-LAND experimental setup located in Cave C.

Figure 3.5: Sketch of the FRS. TheB - E-B method is applied using dipoles to bend the beam
(B ) as well as a degrader to have a position and -dependent energy loss (E) (gure taken from

[6D.

The FRS beam line has been equipped with two 3 mm thick scintlior paddles. Those
detectors are needed to perform an incoming time of ight (T6) measurement over a long
distance (FRS to Cave C) for each ion. One scintillator paddieas placed at the middle focus
(S2) and the second was situated behind the FRS (S8). Since thantillator at the mid-plane
of the FRS (S2), about 136 m upstream of the reaction target, waverloaded with the intense
beam, the scintillator at the intermediate focal plane (S8has been used, leaving us a nearly
55 m ight path to Cave C.

3.3.2 Beam identi cation

As mentioned in sectiorB.2, we need to be able to identify and characterize the incomingiclei
event by event. Therefore, the velocity of the beam,, its charge numberZ, and its trajectory
have to be derived for each event. In order to identify incomg ions, the mass to charge ratio
Ay=Z,, as well as the charge numbeZ, needs to be known. Usin@.2, we can derive:

Ao_ B - (3.4)

Therefore ,andB are needed. The value @& is known from the FRS setting, so we only
have to determine the velocity of the incoming ion. This is done using a time of ight (ToF)
method that needs two detectors (start and stop) in order to masure the time needed for a
particle to travel a certain distance. In our case, we use agdtic scintillator paddle at S8 as
start detector (see Fig.3.5). This detector is read out with two photo-multiplier tubes (PMT),
one at the top and one at the bottom. A square-shaped (2.5 cn2.5 cm) plastic scintillator
with thickness of 1 mm at the entrance of Cave C is used as a stdptector. The Cave C
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experimental setup is shown in Fig3.6. This detector is called POS, and is read out with four
PMTs, one for each side. Those two detectors allow us to measuhe times tg;: and tggp
from which we can deduce the velocity of the incoming ion, using the ToF method below:
3 d

(tstop  tstart)C

b (3.5)

wherec is the speed of light andd is the distance between these two detectors which is about
55 m, resulting in a very good velocity resolution.

Figure 3.6: Experimental setup in Cave C as used during the s393 campaign. Thébservables
measured by each detector are presented in parenthesis.

To complete the identi cation of the incoming ion, we also ned to have access to its charge
number Z,. It is known that an ion passing through matter loses energyfiowing the Bethe-

Block formula:
Z5

E/ = (3.6)
b

We can rearrange this formula such as:
Zyl , E (3.7)

The charge numbeiZ,, can therefore be derived from E measurement using a position sensitive
pin-diode (PSP) in front of the target. Now that we have acced® Z,, and A,=Z;,, we can select
the ions of interest using two-dimensional cuts. The idengation of the incoming beam is
presented in Fig.3.7.

The identi cation of the incoming ions is now completed but w still need the information on
their trajectories. We can access this information using wvdouble sided silicon strip detectors
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