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N
uclear physics is not a new science. However, after almost one century of research, the
atomic nucleus is still not fully understood and new unexpected properties are emerging

frequently. Trying to understand the structure and the evolution of the nucleus depending on
its constituents is one of the fundamental goals of nuclear physics. Nevertheless, describing
the interaction between nucleons is extremely hard to achieve, even for light nuclei where the
number of nucleons is small.

Historically, fundamental properties of the nucleus have been investigated by reducing the
N-body problem to independent nucleons located in a mean field built in an auto-coherent
way. This approach allowed to explain several phenomena observed experimentally such as the
magic numbers associated to certain configurations of nucleons particularly stable, and lead to
the shell model of the nucleus.

However, even if the stable nuclei are the most abundant on earth, their diversity (nearly
300) represents only a small fraction of the existing nuclei (see Fig. 1.1). Today, nearly 3000
nuclei have been observed experimentally and it is expected that the same amount still remains
to be observed. Those nuclei have a limited lifetime after which they decay mainly via β decay.
For a given Z number, the more (or the less) neutrons we count away from the equilibrium
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value, and the less stable the nucleus becomes, until reaching a threshold where even in its
ground state the nucleus is not bound anymore and decays in a very short time by emitting
nucleons. This limit is called neutron dripline (or proton dripline, respectively) and the nuclei
around this region usually exhibit very different behavior compared to the stable nuclei.

Figure 1.1: Chart of the nuclides representing with black squares stable nuclei, light yellow neutron-
rich or neutron-deficient nuclei already produced in terrestrial laboratories, and in light blue nuclei not
studied yet. The limits of proton and neutron particle stability (or driplines), predicted by theoretical
models, are shown with red and blue lines, respectively.

One of the major research goals of modern nuclear physics is to explore those regions
where the neutron to proton imbalance is reaching extreme values in order to determine the
exact position of the dripline. Studying the properties of the nuclei in those regions gives us
information on the evolution of their structure while approaching (sometimes even crossing)
the limits of existence. The results obtained can then be compared to existing theoretical
models and if needed, used to correct or justify the development of new models. A single look
at Fig.1.1 shows the huge work that still needs to be done, in particular around the neutron
dripline. Indeed, the neutron dripline has been reached experimentally only for nuclei with a
proton number Z lower than ten.

In this document, we will be investigating the nucleon-nucleon interaction toward the
neutron dripline. In practice, the dripline can be reached by changing the proton to neutron
ratio but also by increasing the excitation energy of a nucleus beyond the nucleon(s) emission
thresholds. This work can be divided in two studies: the n-n interaction in the core+xn
systems and the evolution of the p-n interaction in the Fluorine isotopic chain. Indeed, we
will start by exploring the n-n interaction in nuclei for very high energy unbound states of 18C
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and 20O (that can be seen as 14C+4n and 16O+4n, respectively). And we will then study the
evolution of the p-n interaction in the Fluorine isotopic chain by comparing results from 26F
and 28F, the latter being an unbound system. All the nuclei, be there bound or unbound, are
studied using knockout reactions, meaning that a nucleon is removed from a nucleus in order
to populate the system of interest.

This document is divided in five chapters. In the first one, we will present the particularities
of the study of nuclei at the neutron dripline as well as the motivations of such studies. We will
then describe the different techniques and observables used in order to explore unbound states.
In a third chapter, we are presenting the experimental principle and setups used during this
work in order to populate the nuclei of interest as well as the simulations used to understand
and interpret the data. In the fourth chapter, we are presenting our results and interpretation
on the n-n pairing in unbound states of 18C and 20O. And finally, in the last chapter, we are
presenting our results and interpretation on the evolution of the p-n interaction in the Fluorine
isotopic chain between 26F and 28F.

1.1 Toward the neutron dripline

1.1.1 General properties of nuclei

In this section, we are focusing on the description of the lightest nuclei Z ≤ 10. Since we will
be investigating those nuclei, we start by describing the characteristics of stable nuclei before
comparing them to those of neutron-rich ones.

Despite a limited number of isotopes for each chemical element, light nuclei can be very
different from each other. Stable nuclei have the following characteristics:

• The N/Z ratio between their number of neutrons and protons varies slightly varying
around 1.

• The binding energy between the nucleons is similar for all the nuclei and is around
8 MeV/nucleon. The separation energies for one proton (Sp) or one neutron (Sn) are
also very similar.

• Their radius can be described by the empirical formula R = r0A
1/3 [10], where r0 is

the effective radius of a nucleon (r0 ≈1.2 fm) and A is the total number of nucleons.
Such description assumes an homogeneous distribution of the nucleons in the nucleus
(independently of their nature).

• The presence of several bound excited states. Those states, whose excitation energies
vary from one isotope to the other, usually decay by the emission of γ-rays.

While moving away from stability those properties change rapidly and nuclei become
unstable, with shorter and shorter lifetimes. If the lifetime of the nuclei close to stability is
varying from a few years to a few seconds, the lifetime of the neutron rich nuclei is dropping
rapidly under the second and they survive only a few milliseconds approaching the dripline.
The N/Z ratio for nuclei outside the valley of stability can vary from 0.6 to 4 and their
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separation energies Sn,p vary from 40 to 0 MeV [11].

When the ratio reaches extreme values, the radial distributions of protons and neutrons can
decouple massively and give raise to exotic phenomena such as the neutron halo: in those nuclei,
the radial distribution of neutrons shows a tail that spreads much further than the proton one.
Those nuclei can therefore be represented as a light core around which one or several neutrons
are orbiting. A similar phenomenon can be observed for proton halos in the case where N/Z
is very low. However, in that case this manifestation is less obvious due to the Coulomb bar-
rier that does not allow protons to have a spatial wave function as spread as the one of neutrons.

In our study, we are interested by the light neutron-rich nuclei and in particular nuclei that
have such a large excess of neutrons that are unbound (28F). For a stable nucleus, the proton
and neutron potentials have similar characteristics, except for the Coulomb contribution, that
makes the proton potential less deep. If the number of neutrons increases, the proton potential
becomes deeper due to the attractive n-p interaction [11]. Therefore the separation energy for
the protons becomes larger while the one for the neutrons becomes smaller, its value reaching
zero close to the dripline.

Moreover, bound excited states become more and more rare while moving toward the
neutron dripline. The last bound isotopes of an element usually do not have any bound excited
state. This is why the study of neutron-rich nuclei usually requires to do spectroscopy of
unbound states.

1.1.2 Structure in nuclear physics

Nuclei, like all the subatomic particles, follow the rules of quantum mechanics. In particular,
their evolution is governed by the Shrödinger equation. Considering the simple case of a particle
with mass m in a potential depending only on its position, the Shrödinger equation can be
written as follows [12]:

− ~
2

2m
∆ψ(~r, t) + V (~r)ψ(~r, t) = i~

∂ψ(~r, t)

∂t
(1.1)

where V (~r) is the potential in which the particle is and ψ(~r, t) its wave function. In the case
of a problem with several particles interacting with each other, the problem is more complex
since the potential felt by each particle is a function of the state of all the others. This
interdependence is known as the N-body problem and is encountered in numerous fields of
physics. The complexity of this problem increases with the number of particles. It is possible
to solve it analytically for very small number of particles but it remains unsolvable exactly
in its general case. We therefore solve it numerically using different methods that have been
developed. We can give as example for light nuclei the techniques called ab initio: NSCM (No
Core Shell Model), GFMC (Green Function Monte Carlo), Coupled Cluster... However, those
different techniques encounter sometimes different problems that can be conceptual or due to
numerical convergence.

Another difficulty, proper to nuclear physics, adds itself to the problem: there is no analytic
form for the interaction potential between two nucleons inside a same nucleus fundamentally
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speaking. Quantum chromodynamics [13] is the theory that studies, in a fundamental level,
the strong interaction that confines the quarks inside the nucleus. This theory allowed to
treat problems up to four nucleons but shows some numerical limitations when the systems
become more complex. Moreover all the models used in nuclear physics are based on effective
interaction potentials.

Historically, the model that encountered a big success and allowed us to better understand
nuclei is the model of independent particles. In this model, particles are considered entirely
independent one from another and are sitting in a mean potential (also called mean field).
In this context, we can express the wave function of the system such as the sum of the wave
functions of each independent particle that composes the system. The Hamiltonian of the
system can be expressed as follows:

Ĥ =
N∑

i=1

T̂i +
N∑

i=1

N∑

j>i

V̂ij ≈
N∑

i=1

T̂i + Ûi (1.2)

where Ĥ is the Hamiltonian of the system, T̂i is the kinetic part associated to the particle i,
V̂ij the interaction potential between particles i and j, and Ûi the effective potential felt by
particle i.

Considering that the potential has spherical symmetry and by adding the spin-orbit term,
it is possible to show [12] that the energy levels of the system can be obtained as the sum
of the energies enlj of the independent particles. Those energies enlj are obtained using the
diagram presented in Fig. 1.2. Each combination of quantum numbers n, l and j characterizes
what is called an orbital. The latter can contain at most 2j+1 nucleons with the same energy,
depending on the orbital. The total energy is obtained by filling the orbitals with the nucleons
of the system. In this model, neutrons and protons are decoupled and are filling a similar
diagram independently. To build those diagrams, we order the orbitals from the lower to the
higher energy, so that an independent particle located on a higher orbital has systematically
more energy than any other particle located in a lower orbital. The nucleons of the last
occupied orbital are called valence nucleons, the others being sometimes called core nucleons.

In this model, the ground state of a nucleus is obtained by minimizing the total energy,
i.e. by following the order of the orbitals while filling them with the nucleons of the nucleus of
interest. In order to obtain the different excited states of a nucleus, one needs to modify the
ground-state configuration by promoting one or several valence nucleons into higher orbitals.
To distinguish the different configurations, we are using in this entire document the following
notation:

π(nlj)Np ⊗ ν(nlj)Nn ,

where π(nlj) and ν(nlj) depict the valence protons and the valence neutrons, respectively
and Np and Nn how many of them are located in those orbitals. All the lower orbitals be-
low the valence ones are supposed to be fully filled, which allows the use of a condensed notation.

There are pairing effects between nucleons of a same orbital that tend to lower their
individual energy when they are paired. This effect is directly visible by looking at the nuclear
chart (Fig. 1.3), and is the origin of the pattern that can be observed while following the
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Figure 1.2: Energy levels of a model with independent particles. Each level (also called orbital) is
characterized by the quantum numbers nlj. The orbitals are classified from bottom to top by increasing
energy. The numbers between orbitals correspond to the number of nucleons used if all the lower energy
orbitals are filled.

neutron dripline: some isotopes with an even number of neutrons are bound while isotopes
with one neutron less are unbound.

The historical model that has been used to reproduce the nuclei from the valley of stability
using the assumption of independent particles is the shell model [14]. It allows to derive in
particular the so called magic numbers. Nuclei with a magic number of nucleons (2, 8, 20, 28,
50, 82, 126) show singular properties that have been observed experimentally. For example,
Fig. 1.4 shows the evolution of the neutron separation energy (Sn) for nuclei with an even
number of neutrons as a function of their neutron number. We observe sharp drops at each
magic number (in particular for 50, 82 and 126), meaning that it is much harder to remove a
neutron when the neutron number corresponds to a magic number.

In the diagram presented in Fig. 1.2, the magic numbers correspond to the number of
nucleons necessary to fill entirely certain orbitals: 1s1/2, 1p1/2, 1p3/2... Those orbitals are
characterized by an important separation energy compared to the orbital above, meaning that
transferring a nucleon to the next orbital would cost a lot of energy.

However, this simple model shows its limits while moving away from stability. The sepa-
ration energy between two orbitals and even their order can change while moving toward the
neutron dripline. If we take as an example the Oxygen isotopic chain, several experimental
studies [15–17] show that the numbers N = 14 and N = 16 behave like magic numbers while
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Figure 1.3: Nuclear chart for light nuclei.

Figure 1.4: Evolution of the neutron separation energy for nuclei with an even number of neutrons
as a function of their neutron number. The arrows located below the horizontal axis correspond to the
magic numbers (figure taken from [1]).

the magic number N = 20 disappears [18]. Different theoretical calculations [19, 20] explain
this phenomenon from the evolution of the energies of the independent particle orbitals.
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1.1.3 Unbound nuclei and resonant states

Nuclei close to the dripline are weakly bound and most of the time do not have any bound
excited state. It is the case for example for nuclei such as 6He or 11Li, that do not have any
bound excited states below the two neutron emission threshold (S2n). In this conditions, excited
states can manifest themselves as resonances. Past the dripline, nuclei become unstable with
respect to the emission of particles even in their ground state. However, in the case of unbound
nuclei located close from the emission thresholds, it is possible to observe resonant states, their
lifetime τ being generally associated to the width of the resonance Γ due to the Heisenberg
uncertainty principle:

Γ× τ ∼ ~ (1.3)

For an unstable system with respect to the emission of one neutron, the relative energy
spectra of the fragment-neutron system can reveal the presence of resonant states. A well
known example is the one of the unbound Helium isotopes. For example 7He, which ground
state has been observed as a resonance since the sixties [21]. The difficulty to observe
those states is that they have very short lifetimes (of the order of 10−21 s). As a conse-
quence, the measurement of the energy of those states can only be done in an indirect way,
using reactions, by observing the decay products and/or other particles involved in the reaction.

If we consider only the fragment-neutron relative movement during the decay, the apparition
of a resonant state depends entirely on the shape of the potential felt by the neutron. For a
neutron with an angular orbital ℓ, the effective potential is given by [22]:

Veff (r) = VN(r) + Vℓ(r) = VN(r) +
~
2ℓ(ℓ+ 1)

2µr2
(1.4)

where r is the fragment-neutron distance, µ the reduced mass, VN the attractive nuclear
potential created by the fragment and Vℓ the repulsive centrifugal potential, that depends
quadratically on the angular momentum. The larger is the angular momentum ℓ, the higher
is the centrifugal barrier, which implies the confinement of the neutron in the potential for
a longer time since the penetrability of the barrier is inversely proportional to its height
[23]. As a consequence, for ℓ > 0, we obtain resonant states which lifetime τ increases
(and width decreases) with a larger ℓ. But for neutrons with angular momentum equal
to zero, the contribution from the Vℓ term disappears and there is no more centrifugal
barrier (see Fig. 1.5). It is therefore impossible to observe resonant states in that case. How-
ever, if an increase of the cross-section is observed toward 0 energy, we talk of virtual states [24].

In fact, such a description is too simple, since only the relative fragment-neutron movement
is taken into account and that no assumption is made on the internal structure of the fragment.
Indeed, models that take into account the coupling between the different configuration of the
fragment predict the existence of an ℓ = 0 resonance [1]. However this simple vision allows us
to obtain information on the structure of unbound states.

In this description, resonant and virtual states are treated like the diffusion of a neutron on
the fragment. The differential cross-section in relative energy (Erel) for a partial wave with an
angular momentum ℓ can be expressed as follows:

dσℓ
dErel

=
4π

k2rel
(2ℓ+ 1) sin2 δℓ(Erel) (1.5)
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Figure 1.5: On the left, effective potential felt by a neutron with an ℓ > 0 angular momentum. We
notice that it shows a centrifugal barrier (in dashed blue line) that can confine the neutron and induce
the formation of resonant states that can be observed. On the right, case where ℓ = 0, no centrifugal
barrier is felt by the neutron. The insets on the top right of each figure represent the kind of differential
cross-section in relative energy that we obtain in each case.

where krel is the wave number linked to the fragment-neutron relative momentum and δℓ is
the phase of the wave ℓ induced by the potential on the neutron wave function. In the case
of a resonance with ℓ > 0, the phase will be negligible for all the partial waves except for
the resonant ℓ component. The cross-section will display a maximum at an energy Er with a
width Γ. In that case, the shape of the phase in Eq. 1.5 leads to a Breit-Wigner distribution
and the two parameters Er and Γ allow to entirely characterize the unbound state.

For virtual states, at low energy, it is possible to link the phase with the scattering length as.
This parameter gives us a measurement of the attractive potential ability to bind the system:
it is positive for bound states and negative for unbound states. At very low energy (krel → 0),
we can do the following approximation:

δ0 ≈ −askrel (1.6)

In such conditions, the cross-section displays a maximum very close from the neutron emis-
sion threshold, with a tail that spreads to higher energies (see Fig. 1.5). We can link qualitatively
the scattering length to the corresponding resonance energy using the following approximation
[25]:

Er ≈
~
2

2µa2s
(1.7)

We obtain therefore for example that a scattering length as =-20 fm corresponds to a
resonance energy of about Er =50 keV for A∼9. However this formula can be used only
in the limit case krel → 0, and is used here only to give a comparison with the resonance energy.
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1.2 The nucleon-nucleon interaction inside the nucleus

1.2.1 General properties of the nucleon-nucleon interaction

We present here the general properties of the nucleon-nucleon interaction in a qualitative way.
The intensity of the interaction between two nucleons depends on several parameters:

• The strongest intensity for the interaction is obtained when the wave functions of the two
nucleons show the larger spatial overlap. This is happening when two nucleons have the
same number of nodes (characterized by the quantum number n) and the same angular
orbital momentum ℓ.

• The nuclear interaction depends on the spins of the nucleons. The proton-neutron inter-
action, in particular, is the largest for a proton and a neutron with anti-aligned spins for
ℓ 6= 0, i.e. for s1 = 1/2 and s2 = −1/2. For example, the proton-neutron πd5/2 ⊗ νd3/2
interaction will be stronger than the πd5/2 ⊗ νd5/2 interaction.

• Empirically, it has been shown that the intensity of the nuclear force inside a nucleus is
inversely dependent on the size of the nucleus. This dependence is a function of A−1/3 or
A−2/3 depending whether the nucleons are located at the surface or at the center of the
nucleus. We can understand it qualitatively from the fact that when the size increases,
nucleons ‘meet’ less often, decreasing therefore their interaction which has a short range.
An important consequence from this decreasing of the nuclear interaction when the size
of the nucleus increases is that the modification of the nuclear structure will occur much
faster in light nuclei compared to heavier ones.

• Since the nucleus is made of neutrons and protons, there are two isospin values: T=0 and
T=1. However, the T=0 value can be obtained only for a proton-neutron system while
the T=1 value can be obtained for proton-proton, proton-neutron or neutron-neutron
system. The effective interaction will therefore be stronger for a proton-neutron system
than for a system with two identical nucleons.

1.2.2 Empirical determination of the proton-neutron interaction

The proton-neutron interaction, for given orbitals, can be obtained experimentally from
the structure of odd-odd nuclei (odd number of protons and odd number of neutrons). We
also need to assume that the chosen nucleus can be seen as an inert core to which only
one neutron and one proton are added. This method can therefore only be applied to
nuclei with a core possessing a strong shell closure. Indeed in that case, the core excita-
tions are at very high energy and their influence on the valence proton and neutron is negligible.

We can take as an example the 38Cl nucleus. It can be seen as a 36S doubly-magic core
on top of which a proton is added in πd3/2 and a neutron in νf7/2. The coupling of those two
nucleons gives four negative parity states with spin Jπ = 2−, 3−, 4−, 5−. We will now determine
their binding energy (BE) resulting from adding independently one proton and one neutron
to the 36S core. Adding one proton in πd3/2 gives us 37Cl which binding energy is known.
Therefore we can determine the gain in binding energy resulting from adding a proton in πd3/2
to the 36S core:

BE(37Cl)− BE(36S) = Sp(
37Cl) (1.8)
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In a similar way, adding one neutron in νf7/2 gives us 37S and the resulting binding energy
gain can be expressed as follows:

BE(37S)− BE(36S) = Sn(
37S) (1.9)

Figure 1.6: Determination of the interaction energy πd3/2⊗νf7/2 from the structure of 38Cl extracted
from [2]. Int(J) are the interaction energies defined as the difference between the reference value
BE(38Cl) and the real binding energy of the J spin state. The weighted average of those interaction
energies Vpn(d3/2f7/2) is an approximation of the monopole energy.

Finally, adding those two terms to the 36S nucleus binding energy, we obtain the 38Cl nucleus
binding energy assuming that the neutron in νf7/2 and the proton in πd3/2 do not interact with
each other. This can be written such as:

BE(38Clfree) = BE(36S) + Sn(
37S) + Sp(

37Cl) (1.10)

Comparing now this value to the binding energies of the four states obtained experimentally
for 38Cl, we obtain the interaction energy between the proton in πd3/2 and the neutron in νf7/2
coupled to a given spin (assuming that the gain in energy is only due to the proton and the
neutron that have been added). We note those interaction energies Int(J). The results for
38Cl, extracted from [2], as well as an illustration of the method are presented in Fig. 1.6. We
then define the weighted average Vpn of the interaction energies, called monopole energy. It
can be expressed in the following way:

V pn ≈
∑

j(2J + 1)× Int(J)
∑

j(2J + 1)
(1.11)
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In the case discussed here, we have been able to determine the Vpn(d3/2f7/2) value that
is of about −1 MeV, which is close from the value predicted by shell-model calculations
(-1.19 MeV). The monopole interaction is characterizing the average change of the binding
energies due to the nucleon-nucleon interaction inside the nucleus, an essential element in
order to understand the evolution of the shell closures. However it is often complicated to
determine it using the technique that we just presented due to several constraints. Indeed, not
only the core used (A,Z) needs to have a strong shell closure, but also the nuclei (A + 1,Z),
(A,Z + 1) and (A + 1,Z + 1), needed in the calculation, cannot be deformed. Otherwise we
would not be dealing with single particle states and the calculation presented here would have
no sense since the states for which the interaction energies are calculated would show too many
correlations. And finally, the last condition is obviously knowing experimentally all the states
from the multiplet involved which often requires the use of different experimental techniques.

We can also notice the parabolic shape of the interaction energy curve as a function of the
spin J . This is due to the quadrupole interaction that will be discussed in the following.

1.2.3 Effective single particle energies

We determined in the previous section the intensity of the monopole interaction Vpn(d3/2f7/2)
equal to −1 MeV. Assuming that the inert core approximation is valid, adding protons
in πd3/2 to a 36S core will bind the neutrons in νf7/2 by −1 MeV by proton added. This
can be observed by looking at the effective “single particle” energies (ESPE). Those ESPE
depict the mean effect of the other nucleons on a nucleon in a given orbital, meaning the
variations of the binding energies induced by the monopole interaction alone. The ESPE
of an occupied orbital is defined such as the energy needed to remove one of its nucleons,
while the ESPE of an empty orbital corresponds to the binding energy gained while filling
it with nucleons. For nuclei close to a shell closure, the ESPE will be similar to the exper-
imental binding energies. However this is not true for nuclei that are strongly correlated
or deformed. In the case discussed here, we are close from the doubly magic 36S and the
equivalence between ESPE and binding energy can be considered valid in a first approximation.

When adding four protons in πd3/2, we expect that ESPE(νf7/2) will shift by the quantity
4Vpn(d3/2f7/2), meaning −4 MeV. This value can be compared to the one obtained from the
experimental binding energies of neutrons in νf7/2:

• for Z=16 (0 in πd3/2) and N=21 (1 in νf7/2), i.e. Sn(
37S)=4.303 MeV

• for Z=20 (4 in πd3/2) and N=21 (1 in νf7/2), i.e. Sn(
41Ca)=8.363 MeV

Therefore:

Sn(
41Ca)− Sn(

37S) ≈ 4 MeV (1.12)

We obtain then a gain of binding energy of nearly 4 MeV when adding four protons in
πd3/2. The two methods to determine the monopole interaction are in good agreement if the
conditions described earlier are fulfilled.
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1.2.4 Quadrupole interaction and nucleus deformation

On top of the monopole interaction, nuclei can gain binding energy through deformation. This
gain of energy comes from the quadrupole interaction. Indeed, while filling a new orbital,
the experimental binding energy is often found stronger than the ESPE deduced from the
monopole interaction alone. Taking back the example of the νf7/2 orbital, experimentally,
the protons in πd3/2 have been found more bound than predicted by the ESPE(πd3/2). This
quadrupolar gain of energy reaches its maximum in the middle of the orbital. We confirm,
as mentioned before, that in case of shell closure (here νf7/2 completely empty or full)
experimental proton binding energies are equal to ESPE(πd3/2).

For those nuclei with closed shell, nucleons occupy all the possible magnetic sub-states and
therefore adopt a spherical shape. When those shell closures disappear, nucleons can move in
an extended valence space and adopt more configurations, implying more than one orbital, with
some that are more favorable than the one of the inert core. Nucleons from different orbitals
mix and maximize their quadrupole energy, leading to deformed structures. We understand
that in those cases where strong correlations exist, the determination method of the monopole
interaction described earlier is not valid anymore.

1.3 The n-n interaction in core+xn nuclei

In the previous section, we have been mainly interested in the p-n interaction. However,
pairing interactions between identical particles play a major role in nuclear physics. Therefore,
we propose to discuss the n-n and p-p interactions in this section.

Pairing interactions play crucial roles in atomic nuclei and quantum many-body physics in
general [26]. In finite nuclei, two-neutron and/or two-proton pairing are responsible for the
odd-even staggering observed in the binding energy of atomic masses and for the fact that all
even nuclei have a J = 0+ ground state. Pairing correlations also imply a smoothing of the
level occupancy around the Fermi energy surface, an enhancement of pair transfer probabilities
(see e.g. Refs. [27, 28]), as well as a superfluid behavior in nuclear rotation [29] and vibration
[30]. When moving from the interior to the surface of the neutron-rich nuclei 11Li [31], 6He
and 18C [32], a transition from BCS (Bardeen Cooper-Schrieffer) [33] to BEC (Bose-Einstein
Condensation) [34] pairing has been predicted to possibly occur. On a larger nuclear-matter
scale, pairing plays a major role in the modeling of the rotation, magnetization and cooling of
neutron stars [35].

Recently, the formation of tetra-neutron resonances, either from an ensemble of four
interacting neutrons [36] or from the coupling of four neutrons inside atomic nuclei [37] were
proposed on the basis of experimental results. If confirmed, tetra-neutron excitations would
require a higher range of (four-body) nucleon interactions [38], with expected important
consequences in the description of finite nuclei, of nuclear matter [39] and in the determination
of neutron captures in the Big Bang [40] and in neutron-star mergers. Despite of its tremendous
importance, the real observation of the decay of paired or tetra nucleons is still lacking or very
scarce as difficult to evidence. By generalizing the Ikeda conjecture [41], initially proposed
to account for the presence of α cluster states close to α emission thresholds, such two- or
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four-nucleon resonances would similarly appear at energies close to the corresponding emission
thresholds [42]. The sudden promotion of nucleons beyond those thresholds, using a suitable
reaction mechanism, would allow the study of such few-nucleon correlations.

Tremendous efforts have been made during the last decades to extract information on
proton correlations from the decay of two-proton emitters [43–46]. In such nuclei, the Coulomb
barrier traps the unbound protons during a time that is long enough to allow the detection
of protons distinctly to the formation of the emitter. This emission was first described as a
possible di-proton decay in the form of a 2He [47], in analogy with α decay. However, after
having unfolded the strong final-state interaction (FSI) component, the observed proton-proton
angular distributions in 45Fe [48] and 54Zn [49] rather point to a three-body decay [44], in
which the two protons are emitted (not necessarily paired) from a mixed filling of pf shells.
These relatively weak proton correlations may be inferred from the fact that the studied nuclei
were far from closed shells and that protons may lose their initial correlation when traversing
the high Coulomb barrier while escaping the nucleus.

Other approaches were carried out by observing the decays of the unbound 6Be [50], 12O
[51], 15Ne[52], 16Ne and 19Mg [53]. A progressive transition from correlated to sequential
two-proton decay was clearly observed in Ref. [50] as a function of the excitation energy of
6Be. Sequential decay was also observed in 12O. In all cases, however, the decay patterns are
subject to strong Coulomb FSI between the two protons and the core, especially blurring the
observation of nuclear correlations at low relative energies.

To circumvent the problems caused by the Coulomb interaction, the study of two-neutron
emission was carried out in neutron-rich core+n+n systems that are unbound either in their
ground state (10He [54], 13Li [54, 55], 16Be [56] and 26O [17, 57, 58]) or in excited states beyond
the two-neutron threshold (8He [59], 14Be [7, 60] and 24O [61, 62]). The decay of excited
states of 8He [59], 14Be [7, 60] and 24O [62], as well as the ground-state decay of 10He [54], all
show very convincing signatures of sequential decay through intermediate core-n resonances.
First observations of a di-neutron decay from the ground states of 13Li [55] and 16Be [56] were
claimed on the basis of the observed small n-n energies and angles, as compared to a three-body
phase-space decay, with no interaction between the emitted neutrons. However, the need to go
beyond the di-neutron simplification and to use realistic n-n FSI, in direct and/or sequential
decays, has been pointed out in Ref. [63]. Indeed, the attractive nature of the n-n interac-
tion can give rise to small relative n-n energies and angles, hereby mimicking a di-neutron decay.

An additional motivation for studying 2p or 2n decay emissions, is to find whether the
Ikeda conjecture, introduced above, can hold for two-nucleon systems as well, as proposed in
Ref. [42]. Such 2p and 2n narrow resonances have been very recently found in 15F [64] and
26O[17], respectively. However, their 2p or 2n decay pattern could not be studied because of
the too weak 2p branch for 15F and the too low relative energy of the two neutrons for 26O.
We will show that a narrow resonance is found in our work for 28F, for which the 2n decay
pattern could be characterized.
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1.4 From 26F to 28F: evolution of the p-n interaction

As mentioned previously, nucleon-nucleon interactions are responsible for the major changes
in nuclear structure observed while moving toward the dripline. The N = 20 shell closure
disappears for Z ≤ 14 and a new gap at N = 16 is emerging for nuclei with Z ∼ 8, explaining
the position of the dripline at A = 24 for the Oxygen isotopes. However, adding only one
proton in order to form a Fluorine isotope allows us to bind six additional neutrons since 31F
is the last bound Fluorine isotope (note that 28F and 30F are unbound due to pairing effects).
It is therefore important to have a good understanding of the nucleon-nucleon interaction in
this region in order to be able to predict properly the structure of those nuclei close to the
dripline. We are interested in this section in 26F and 28F.

We start with 26F, which offers the opportunity to study different aspects, as discussed earlier
in this chapter, of the nucleon-nucleon interaction far from stability. Indeed, this nucleus has
all the conditions required so that the approximations nedeed for such a study are valid. 26F
can be seen as a doubly magic 24O core to which we added one deeply bound proton (Sp(

25F) =
−15.1(3) MeV [65]) in πd5/2 and one unbound neutron (Sn(

25O) = 770(20) keV [66]) in νd3/2.
The fact that the first excited state of 24O is located at an excitation energy of 4.47 MeV [67] and
that the sub-shells πd5/2 and νd3/2 are well separated in energy compared to the others allow us
to use the single-particle approach necessary to the determination of the πd5/2⊗νd3/2 interaction
such as presented in section 1.2. From the πd5/2 ⊗ νd3/2 coupling, results a Jπ = 1+, 2+, 3+, 4+

multiplet, whose energies must be determined in order to study the influence of the proximity
of the continuum on the corresponding p-n interaction. Indeed, once those states identified and
characterized, we will be able using the method described in section 1.2.2 for 38Cl to determine
the intensity of the πd5/2 ⊗ νd3/2 interaction. Finally, adding one proton in πd5/2 to 24O gives
25F which binding energy is known to be BE(25F) = −183.38(8) MeV. In a same way, adding
one neutron in νd3/2 to 24O gives 25O which is unbound with a neutron emission threshold of
Sn(

25O) = 0.77(2) MeV. Then we obtain the binding energy of 26Ffree (see section 1.2.2):

BE(26Ffree) = BE(24O) + Sp(
25F) + Sn(

25O) = BE(25F) + Sn(
25O) (1.13)

We need now to determine the energies of the four states (Jπ = 1+, 2+, 3+, 4+) resulting
from the πd5/2 ⊗ νd3/2 coupling. Energies for the bound Jπ = 1+, 2+ and 4+ states were
measured using different techniques [68–70]. In particular, the spin assigments of the ground
state (1+) [68, 71] and of the weakly bound isomeric state (4+ at 643 keV) [68] were proposed
from their decay pattern to low- and high-energy spin values, respectively, in the daughter
nucleus 26Ne. Also an unbound state was recently proposed to be the missing Jπ = 3+

state [3]. In this work, 26F was populated from 27Ne via proton knockout at GSI. In such
reaction, we expect the proton to be knocked-out mainly from the πd5/2 orbital, while the
neutron remains in νd3/2, and therefore populating the states of the Jπ = 1+, 2+, 3+, 4+ multi-
plet. Among those states, only the 3+ has been found to be unbound, and decaying into 25F+n.

Since the Jπ = 1+, 2+, 3+, 4+ multiplet has been observed experimentally , we can turn to
experimental interaction energies Int(J), that correspond to the interaction between a πd5/2
proton and νd3/2 neutron above the 24O core coupled to different spin orientations J . We can
define this quantity such as:

Int(J) = BE(26F)J − BE(26Ffree) (1.14)

35



J Int(J) [MeV]
exp IM-SRG USDA

1 -1.85(13) -2.24(07) -2.47
2 -1.19(14) -1.86(05) -1.51
3 -0.45(19) -0.53(04) -0.69
4 -1.21(13) -1.56(04) -1.54
V pn -1.06(8) -1.41(02) -1.40

Table 1.1: Experimental and calculated interaction energies, Int(J), between a πd5/2 proton and a
νd3/2 neutron in 26F. Calculated results are obtained from USDA and IM-SRG shell-model calculations
(adapted from [3]).

where BE(26F)J is the energy of a given Jπ state in 26F. Values of Int(1, 2, 4) obtained in [68]
and Int(3) obtained in [3] are listed in Table 1.1 and shown in Fig. 1.7. The corresponding
effective experimental monopole interaction (see section 1.2.2) amounts to V pn

exp ≈ −1 MeV.

Figure 1.7: Experimental interaction energies corresponding to the πd5/2 ⊗ νd3/2 coupling in 26F.
Int(J) (green cicles), are plotted as a function of J(J + 1) and compared to calculations using the
IM-SRG procedure (left) and the USDA interaction (right). Fitted parabolas are drawn to guide the
eye (taken from [3]).

The results from the USDA and IM-SRG calculations for the monopole interaction (V pn)
amount to about −1.4 MeV. This is larger than the experimental value of −1.06 MeV, pointing
to a smaller monopole interaction as compared to calculations. As seen in Table 1.1 and
Fig. 1.7, the amplitude of the multiplet parabola of USDA is also larger than in experiment,
while the energy of J = 3 is in good agreement. This suggests that the residual energy that
lifts the degeneracy between the J components of the multiplet is smaller than calculated.
Both effects of smaller monopole and residual interactions, as compared to calculations, could
be interpreted (with a word of caution concerning the Sn value of 26F and its consequence
on a possible shift in excitation energy of the resonance) as an effect of the proximity of the
continuum on the effective proton-neutron interaction.
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We are aiming now to perform the same kind of study for 28F. Then by comparing the
results for 28F and 26F, we will get information on the evolution of the πd5/2⊗νd3/2 interaction
while moving further toward the dripline. Indeed while moving from 26F to 28F, we expect
to be filling the νd3/2 by adding two additional neutrons as shown in Fig. 1.8. In the case of
28F, we are therefore left with a proton in πd5/2 and a hole in νd3/2. This coupling results in a
Jπ = 1+, 2+, 3+, 4+ multiplet whose energies must be determined.
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Figure 1.8: Expected ground state configurations for 26F and 28F.

However, performing such study on 28F reveals itself to be even more challenging than in
the case of 26F. Indeed, while in 26F only the Jπ = 3+ state was unbound, in 28F all the states
are unbound as the nucleus is unbound itself. 28F can be seen as a 28O core to which we added
one deeply bound proton in πd5/2 and remove one unbound neutron in νd3/2. The interaction
energies Int(J) for 28F can be expressed following Eq. 1.14:

Int(J) = BE(28F)J − BE(28Ffree) (1.15)

where BE(28Ffree) is given by:

BE(28Ffree) = BE(28O) + Sp(
29F)− Sn(

27O) = BE(29F)− Sn(
27O) (1.16)

However, the Sn(
27O) value is unknown. This is a problem that should not stop us in our study

since 27O is also currently being studied, in the data from the same SAMURAI21 experiment
that will be presented in chapter 5, giving hope for a value in the near future that could allow
us to determine the interaction energies (Int(J)).

Another difficulty might be added to the one already mentioned. Indeed, it is known that
the large shell gap at N = 20 is disappearing for neutron-rich nuclei [72–74]. The change in
shell structure around N = 20 is known to be a result of the tensor force, which is strongly
attractive for the πd5/2 ⊗ νd3/2 coupling and strongly repulsive for the πd5/2 ⊗ νf7/2 coupling
[75–77]. For nuclei in the region of N ∼ 20 and Z ≤ 13, the reduced N = 20 gap allows
pf intruder configurations to compete with standart sd-only configurations if the gain in
correlation energy is of the same order as the size of the shell gap [78–80]. This has led to
the establishment of the “island of inversion”, a region of nuclei near N = 20 for which the
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intruder configuration is dominant in the ground state.

The island of inversion was originally thought to be including nuclei with 10 ≤ Z ≤ 12
and 20 ≤ N ≤ 22 [18]. In more recent years, it has become clear that the island extends
further, and a lot of experimental effort has been put forth to determine its boundaries [81].
On the low-N and high-Z sides of the island, it is generally agreed that ground-state intruder
components fade away for Z ≥ 13 and N ≤ 18. Until now, the low-Z shore of the island
of inversion has been almost completely unexplored. A measurement of bound states in 27F,
which lies on the island’s western border at N = 18, has hinted a pf -shell contribution to
its excited state structure [82], but mass measurements [70] indicate that 27F ground state
is primarily sd shell. For the heavier (N ≥ 19) Fluorine isotopes, lying within the island’s
southern shore, only one study is available, on 28F populated from 29Ne(−1p) [4].

S
2n

Figure 1.9: Relative (or decay) energy spectrum for 27F+n coincidences (extracted from [4]). The
filled squares with error bars are the measured data, and the dashed red and dotted blue curves represent
the 220 keV and 810 keV simulation results, respectively. The solid black curve is the sum of the two
resonances, with the ratio of 220 keV resonance to the total area being 28%. The filled orange curve is
a simulation of a single resonance at 590 keV, and the gray dot-dashed curve is the best fit of a single
s-wave (as=-0.05 fm). The two neutron emission threshold (S2n) has also been added.

We will now describe in more detail the results obtained previously on 28F [4]. In this
study, 28F has been populated via the knockout of a proton in 29Ne at NSCL (National
Superconducting Cyclotron Laboratory). The relative energy spectrum obtained is presented
in Fig. 1.9. Assuming the presence of only two resonances, the fit of the data leads to two
resonance energies, at 220(50) keV and 810 keV, even if the possibilty of more resonances is
not ruled out. Also no γ-ray transitions were observed in coincidence, so the states observed
were assumed to feed the ground state of 27F. However, the data suffer from very low statistics
and large error bars. Indeed, the two-resonance hypothesis is only based on one data point at
around 500 keV, with large error bars, that looks like a local minimum but could equally be
a statistical fluctuation. Moreover, as discussed in Ref. [4], by comparing the relative energy
spectrum to the response of the experimental setup in Fig. 1.10, it is clear that the data
are strongly distorted by the resolution and the acceptance. In particular, the width of the
observed data is almost entirely due to the experimental resolution and the shape of the data
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above ∼0.8 MeV is dominated by the limited acceptance at higher relative energies.

Figure 1.10: Simulated resolution and acceptance of the experimental setup (figure taken from [4]).
Each colored histogram was generated by simulating a 28F breakup at the indicated energy and then
folding in detector resolution and acceptance cuts. The shaded curve was generated by simulating a
28F breakup with the relative energy uniformly distributed from 0-3 MeV and folding in acceptance and
resolution. The colored histograms are all normalized to a total area of unity, and the shaded curve
was arbitrarily scaled to fit within the same panel.

The binding energy of 28F, deduced from the experimental results assuming that the ground
state was the structure at about 220 keV, was then compared and found in good agreement
with USDA and USDB calculations. However as mentioned in Ref. [4], for a given nucleus,
good agreement between experiment and USDA/USDB theory indicates a ground-state
configuration that is primarily sd shell. In contrast, a nucleus with significant ground-state
intruder components would be poorly described by the USDA/USDB shell model, leading to
the conclusion that pf -shell intruder components play only a small role in the ground-state
structure of 28F, leaving it therefore out of the island of inversion.

The information extracted from this first attempt to study the structure of 28F did not
lead to clear answers. And there is no doubt that improvements on the resolution, statistics
and acceptance would allow us to get a clearer picture of the structure of 28F. However, this
result gives us an idea of the complexity of such study.

We will present in chapter 5 our results on 28F not only using this same reaction 29Ne(−1p),
but also populating it from 29F(−1n), where both the resolution and the statistics have been
largely improved compared to previous studies of unbound nuclei in general.
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Chapter 2

Analysis techniques of fragment+xn
systems
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I
n this chapter we will discuss the experimental principle, requiring the detection of the incident
beam and outgoing fragment and neutron(s), and the observables that will be constructed

in order to extract the physical quantities. Indeed, these are the kind of coincidence events
that are characteristics of the decay of an unbound state. We will introduce first the principle
of neutron(s) detection, which is a key point in such kind of analysis. Then we will present the
different observables used for the study of two-body and three-body unbound states.

2.1 The principle of neutron(s) detection

The detection of neutron(s) is a key step for the study of neutron-rich unbound states. It is
therefore crucial to understand fully the principle of neutron(s) detection that will be used in
our analysis. Indeed, we are investigating in this document unbound states that are decaying by
emitting neutron(s) (see Fig. 2.1). The fact that the neutron is neutral makes it hard to detect.
Their detection is possible only through the strong interaction, with cross-sections much lower
than the corresponding atomic processes involved in charged-particle detection. Their detec-
tion is therefore not direct but induced by the recoil signal of a particle due to a nuclear reaction.

In our experiments, neutrons were detected after a collision with a nucleus from the
detector material (plastic scintillators in our case). However, since in most reactions the
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Beam Proton
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Neutron
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Knocked-out

proton

Figure 2.1: Principle of the reaction of interest where a nucleus of the beam is undergoing a knock-
out reaction in order to populate unbound states that will decay via the emission of neutron(s). We
take here the example of a proton knockout with a proton target.

neutron survives in the exit channel, a same neutron can be detected several times in the
neutron detector by interacting successively in different locations. And even when the
neutron interacts only once, outgoing charged particles from that interaction can propagate to
neighboring detector modules. This phenomenon, the generation of signals in several detectors
due to the passage of one single neutron, is known as cross-talk. The low neutron detection
efficiencies and the occurrence of cross-talk makes extremely difficult the study of unbound
resonances that decay through the emission of more than one neutron.

In this work, we are interested mainly in two types of decay mechanisms, the 1n and the
2n decay. The 1n decay remains relatively simple since only one neutron needs to be detected
and therefore in that case only the first interaction occurring can be considered (all the hits
due to cross-talk arriving later). However, for the 2n decay channel, since two neutrons have
to be detected in order to have access to the full kinematics of the reaction, it is crucial to
distinguish the true hits from the case where several hits originate from the same neutron. A
list of the different possible cases when several hits are registered in the neutron detector are
presented in Fig. 2.2.

In order to identify such kind of events, we applied algorithms in order to suppress as
much cross-talk events as possible while optimizing the selection of real 2n events, sometimes
a difficult compromise.
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3 neutrons such as:

t1 <  t2  <  t3

7 possibce scenarios:

Hits 2 and 3 from same neutron Hits 1 and 3 from same neutron

Hits 1 and 2 from same neutron
Hits 1 and 2 from a same recoic proton

triggering 2 bars

Hits 1, 2 and 3 from same neutron
Hits 1 and 2 from a same recoic proton

touching 2 bars.
Hit 3 from the diffusion of the 

same neutron

3 different neutrons

Figure 2.2: The cross-talk principle: sketch of all the possible scenarios for the detection of 3 hits
in the neutron detectors (adapted from [5]).

2.2 Two-body unbound systems

In this section, we are focusing on the treatment of the coincidence between a nucleus of the
beam, a fragment and a neutron. We will present the properties of the fragment-neutron non-
resonant contribution before developing the different observables that characterize an unbound
system.

2.2.1 Non-resonant contributions

Definition

Let us consider two particles that are part of the exit channel of a given reaction, with
four-momenta p1 and p2. In an ideal case in which they do not ‘see’ each other, their
momentum distributions should be independent, dσ/dp1 and dσ/dp2, and these distributions
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would lead to a non-resonant component in the two-particle observables, the one we would
like to estimate. If we can select exit channels in which only one of them is emitted, we could
measure them. However, when they are mostly emitted together, as is the case of two neutrons
in the breakup of borromean two-neutron haloes, or the unbound resonance we have described,
we have only access to the two-particle cross-section, which we can write as:

d2σ

dp1dp2
=

dσ

dp1

dσ

dp2
× C(p1, p2) (2.1)

The factor C(p1, p2) is often called the “correlation function”, but it should simply be seen
as the effect of the mutual presence of both particles in the final state. The main mechanisms
that may modify the momenta p1 and p2 of the particles we measure can be classified in three
categories:

QSS FSI resonances

ւx xց
p1 p2

ւ⇔ց
p1 p2

−M
ր p1

ց
p2

(a) (b) (c)

(2.2)

the quantum statistical symmetries for identical particles (a), the final-state interaction for
interacting particles (b), and the formation of resonances decaying into those particles (c). In
the case of two neutrons we have (a,b) because they are identical fermions and subject to the
strong interaction, in the case of fragment+proton we have (b) through the Coulomb interaction,
and in the case of fragment+n we may have (c) if the unbound system has resonances.

Event mixing

Independently of the mechanism modifying the momenta, if we want to extract its effect
C(p1, p2) from the experimental coincidences d2σ/dp1dp2, we need to estimate the ‘independent
distributions’ of Eq. (2.1), i.e. how the two-particle observable would look like without the
correlation/interaction. If we mix particles from different events we should expect to wash out
any correlation, since a particle 1 has not ‘seen’ a particle 2 from a different event, they did
not coexist. The added bonus of these ‘virtual pairs’ is that they are built from particles that
have been detected, so our independent distributions will include the experimental acceptances.

This technique has been extensively used in a wide range of energies in both nuclear
and particle physics, and has effectively extracted the correlation signals from two-particle
coincidences (leading usually to the source size for QSS and FSI, and for resonances to
their mass and width). However, when the correlation is very strong, just mixing the
events is not enough. In order to understand why, let us ‘mix’ Eq. (2.1). Mixing particle 1
with all other particles 2 corresponds to integrating the two-particle distribution over particle 2:
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dσ⊗
dp1

=

∫
d2σ

dp1 dp2
dp2

=
dσ

dp1

∫

C(p1, p2)
dσ

dp2
dp2

=
dσ

dp1
〈C〉(p1) (2.3)

We have used the definition of C(p1, p2) in Eq. (2.1) and then used the fact that the in-
dependent distributions are independent of each other. By mixing events we obtain dσ⊗/dp1,
which is the independent distribution we are looking for times 〈C〉(p1). The same stands for
particle 2, so in general we obtain:

dσ⊗
dp

=
dσ

dp
× 〈C〉(p) (2.4)

The unexpected factor represents the average correlation, with all the other ‘virtual’
partners, of a particle with four-momentum p. When the correlation function is small, or when
it acts on a very small portion of the data set, this average correlation will be 〈C〉 ≈ 1, and
therefore the standard mixing technique will succeed:

C(p1, p2) ≈ d2σ/dp1dp2
(dσ⊗/dp1) (dσ⊗/dp2)

(2.5)

This is the case in most of the applications of the technique, in which particles are weakly
correlated, or very few of them are strongly correlated.

Residual correlations

The correlation factor in Eq. (2.4) represents the residual correlations that ‘survive’ the event
mixing. If we know it is going to be significantly larger than 1, or if we do not know but do
not want to make a priori assumptions, it is better to take it into account. In general, mixing
the events will lead us to underestimate, more or less, the correlation function:

d2σ/dp1dp2
(dσ⊗/dp1) (dσ⊗/dp2)

≤ C(p1, p2) (2.6)

However, if we are able to calculate the residual correlation factor, then we can use it as a
weight of the events we mix and remove the residual correlations completely:

d2σ/dp1dp2
(dσ⊗/dp1) (dσ⊗/dp2)
︸ ︷︷ ︸

× 1
〈C〉(p1)

1
〈C〉(p2)

= C(p1, p2) (2.7)

The problem, of course, is that in order to construct the correlation function we have to
use the correlation function! We need an iterative algorithm, that will construct successive
correlation functions using the weights calculated with the preceding one. And, to make
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things a bit more complex, there is a subtle detail in the calculation of the weights that can
be deduced from Eq. (2.3):

〈C〉(p1) =

∫

C(p1, p2)
dσ

dp2
dp2

=

∫

C(p1, p2)
dσ⊗/dp2
〈C〉(p2)

dp2 (2.8)

In order to calculate the weights of particle 1 we would use the correlation function plus the
‘independent’ distribution of particle 2, but experimentally we cannot measure it. So we will
have to add a second loop in the iteration algorithm, since in order to calculate the average
correlation of one particle for a given step we have to use the average correlation of all the other
particles...

The iterative technique

The previous integral equations help to understand the principle, but in practice we are
measuring a given number N of two-particle coincidences:

1 2
1 ◦ •
2 ◦ •
3 ◦ •
...

...
...

N ◦ •
pi

How do we proceed? First we project the 8-dimensional space into 1 dimension:

(pi, pj) → xij (2.9)

which is the relative observable we are going to study, and that should contain the correlation
we want to extract. For n-n pairs it may be the relative momentum, for fragment-n pairs their
relative energy, for example. Eq. (2.7) becomes:

σ(x12)

[σ⊗(x12)]w12

= C(x12) (2.10)

The numerator is the measured two-particle distribution, and the denominator the distri-
bution obtained through event mixing, with N(N−1) virtual pairs, weighted by:

w12 = w1w2 =
1

〈C〉(p1)
1

〈C〉(p2)
(2.11)

Each particle must have an associated weight, therefore we have to build an array of 2N
weights with the correlation function:
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1 2
1 ◦ •
2 ◦ •
3 ◦ •
...

...
...

N ◦ •
pi

C
=⇒

1 2
1 ◦ •
2 ◦ •
3 ◦ •
...

...
...

N ◦ •
wi

that will allow us to build the correlation function. We initialize the first weights to 1, build
the first ‘mixed’ distribution, divide the data by that distribution to obtain the first correlation
function, that is used to calculate the second weights... and after a big enough number of steps
we should obtain the correlation function:

w(1)=1 → [σ⊗]w(1) → σ

[σ⊗]w(1)

= C(1)

→ w(2) → [σ⊗]w(2) → σ

[σ⊗]w(2)

= C(2)

→ w(3) → · · · → σ

[σ⊗]w(n)

= C(n) (2.12)

For the calculation of the array of weights, Eq. (2.8) becomes:

〈C〉(n)(pi) =
1

N−1

N∑

j=1 6=i

C(n−1)(xij)

〈C〉(n)(pj)
(2.13)

This is the second loop of iterations, since we calculate this array at every step (beyond the
first) of the general iteration, and for the calculation of each weight 1/〈C〉(n)(pi) we need the
weights 1/〈C〉(n)(pj) of all possible partners, that at the same time will need the former.

Application

In order to illustrate this technique, we use in this paragraph the example of the construction
of the distribution of the non-resonant events in a relative energy spectra for the (29F,27F+n)
reaction. In practice, the two loops described by the equations (2.12,2.13) have to be iterated
a sufficient number of times in order to reach a convergence criteria determined by the user (an
example of the effect of the different iterations is presented in Fig. 2.3). The result obtained
gives us the shape of the non-resonant distribution with very high statistics compared to the
data (of the order of N2 virtual pairs). The statistical error of this distribution is therefore
negligible, but its amplitude has to be determined from the comparison with the experimental
one.

In the case of a relative energy spectrum, we assume that the non-resonant distribution
needs to remain lower than the data in the limit of the error bars for the whole energy range
(positive correlations). This fact allows us to establish an upper limit to the contribution of
the uncorrelated events in the relative energy spectrum. However, the resonances observed
in the correlated spectrum can sometimes have long tails at high energy, therefore creating
events over the whole energy range. The real proportion of the non-resonant contribution is
therefore usually smaller than the one obtained with such a normalization. Fig. 2.3 shows the
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Figure 2.3: On the left, relative energy spectrum and non-resonant distribution for the (29F,27F+n)
reaction. The non-correlated distribution has been maximized in order to reach the data points in
some areas of the spectrum without going above it. On the right, the superposition of the non-resonant
distributions obtained for different iterations of the algorithm are presented.

relative energy spectrum as well as the maximized non-resonant contribution (C ≥1) for the
(29F,27F+n) reaction.

In fact, the exact proportion of non-resonant events is determined by making a fit taking
into account this background as well as the different resonances observed, but this technique
will be described in more detail later. However, the maximization of the non-resonant
distribution allows us to obtain indications on the presence or not of resonances in the spectra.
Indeed, the shape of the non-resonant contribution being non trivial, and the resolution of
the experimental setup degrading with the relative energy, it can be sometimes difficult to
spot wide or high-energy resonances. This is even more true in the case of reaction channels
involving the knockout of several nucleons where the signal over non-resonant contribution
ratio can become very low. In that case, we can plot the difference or the ratio of the data over
the non-resonant contribution in order to enhance some structure in the spectrum. Fig. 2.4
shows an example of those two approaches for the (29F,27F+n) reaction.

2.2.2 Invariant-mass method

We are investigating unbound states that immediately decay after being populated, making
impossible the direct measurement of their “mass”. Therefore, we use the invariant-mass
method in which the measurement of the complete kinematics of the reaction is necessary.
Indeed, we need for this method to detect all the decay products of the reaction and measure
their momenta.

The relativistic relation linking the mass m, the momentum ~p and the energy E of a system
is as follows:

E =
√

p2c2 +m2c4 (2.14)

In the following, we will assume c = 1. This formula can be used to express the mass of a
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Figure 2.4: On the left, results from the subtraction of the maximized non-resonant contribution
from the relative energy spectra for the (29F,27F+n) reaction. On the right, correlation function, (i.e.
ratio between the relative energy spectrum and the maximized non-resonant distribution for the same
reaction).

system from a four-vector (E, ~p):

m2 = (E, ~p)2 = E2 − p2 (2.15)

And we can derive from this formula the invariant mass Minv for a N-body unbound system
such as:

Minv =

√
√
√
√

(
N∑

i=1

Ei

)2

−
(

N∑

i=1

~pi

)2

(2.16)

where Ei is the energy of particle i and ~pi its momentum.

Minv being the mass of the system, we can derive the expression of the relative energy Erel

between the particles by subtracting from it the mass of each particle in its rest frame mi:

Erel =Minv −
N∑

i=1

mi (2.17)

If the unbound state is decaying by emitting only one neutron, Eq. 2.17 for a two-body
fragment+n system becomes:

Erel =
√

m2
A +m2

n + 2 (EAEn − | ~pA|| ~pn|cosθ)−mA −mn (2.18)

where mA and mn are the rest masses of the fragment of atomic mass number A and the
neutron, EA and En are their total energies, | ~pA| and | ~pn| are their momenta norm and θ is
their relative angle.

If the fragment is populated in its ground state, we have then Eexc = Sn + Erel where Eexc

is the excitation energy of the A+1 nucleus and Sn is its neutron emission threshold. However,
the reaction can also lead to the production of the fragment in one of its excited states that
subsequently decays to the ground state by the emission of a γ-ray of energy Eγ. In the latter
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case, a coincidence between the neutron and the de-exciting γ-ray is observed. We can therefore
propose the following expression for the excitation energy:

Eexc = Sn + Erel(+Eγ) (2.19)

2.3 Three-body unbound systems

In this part, the three-body correlations in the decay of high-energy unbound states are ex-
plored. In particular, a method for analyzing triple coincidence events (fragment+n+n) from
kinematically complete experiments is described. The method incorporates the techniques of
intensity interferometry [83] and Dalitz plots [84] and allows the estimation of the n-n distance
and time delay between the emission of the two neutrons. As will be seen, the latter is related
to the presence of fragment-n final-state interactions (FSI) in the exit channel. In principle,
the present approach is also sensitive to the energies and lifetimes of these resonances.

2.3.1 Phase space

In order to identify the correlations emerging from the interaction between particles, we need
to seperate them from the basic correlations imposed by energy and momentum conservation,
that are independent of the nature of the particles. The latter are given by the N-body
phase space, on top of which we will add what we call “physical correlations”, or simply
“correlations”. Our model is an interacting three-body phase-space model that has been
developed for the analysis of triple correlations. In brief, the experimental relative energy
distribution is used as input to generate events ~pf,n,n(Erel) following three-body phase-space
[85]. The final momenta of the three particles generated are then filtered to include all
experimental effects (like energy resolution, angular acceptance, or cross-talk rejection). In
order to illustrate the method used, we are using the result of the simulation for the reaction
21O(p,pn)20O∗ where unbound states above the 2n emission threshold are populated. As
mentioned earlier, the experimental relative energy distribution is used as input to generate
our events. Therefore, we can first look at the experimental relative energy distribution for our
reaction when the 20O∗ is decaying with the emission of two neutrons (18O+n+n), see Fig 2.5.

In our simulation, the available energy for the decay is selected according to this experi-
mental distribution. Before implementing correlations in our model to make it more realistic,
we are describing in the following sections the different observables that we use in our analysis
in order to investigate three-body correlations.

2.3.2 Observables

In order to investigate three-body correlations, we need to define the observables that are used
in our analysis.

Invariant masses and Dalitz plots

Correlations in three-particle decays have been extensively studied in particle physics by means
of Dalitz plots of the particle energies (Ei, Ej) or the squared invariant masses of particle
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Figure 2.5: Experimental relative energy spectrum of the decay 18O+n+n.

pairs (M2
ij,M

2
jk), with M

2
ij = (Pi+Pj)

2. In these representations, FSI/resonances lead to a non
uniform population of the surface within the kinematic boundary defined by energy-momentum
conservation and relative energy [84]. The classic example of such an analysis is the three-body
decay of an unstable particle [86]. In the present case, the fragment+n+n system exhibits a
distribution of relative energies. Consequently, the value of Erel associated with each event will
lead to a different boundary for the Dalitz plot, and the resulting plot containing all events
cannot be easily interpreted. We thus introduce a normalized invariant mass:

m2
ij =

M2
ij − (mi +mj)

2

(mi +mj + Erel)2 − (mi +mj)2
(2.20)

which ranges from 0 to 1 (Eij from 0 to Erel) for all events and exhibits a single kinematic
boundary.

We can now, using Eq. 2.20, compute the fragment-n and n-n invariant masses. The Dalitz
plot can be obtained by simply representing m2

fn as a function of m2
nn. Since we have two

neutrons involved in the decay, we fill two times the Dalitz plot for each event, one time for
each neutron. In the absence of any correlations above the phase-space kinematics, the plot
exhibits a uniform population as can be seen in Fig. 2.6 (a). The projections over the normalized
invariant masses, Fig. 2.6 (b,c), both show a regular bell shape from 0 to 1 with a maximum
at around 0.5. We can also notice that the distribution of those two variables is minimum and
equal to 0 at m2

ij equal to 0 and 1.

Angular coordinates

In order to study the decay mechanism, one can also look at the angular correlations between
the three particles involved in the decay. We define two angles θnn and θf/nn such as presented in
Fig. 2.7, θnn being the angle between the two neutron momenta ~pn1 and ~pn2 and θf/nn being the
angle between the fragment momentum and the relative momentum of the two neutrons. Their
cosines can be expressed as a function of the momenta of the particles involved in the decay ~pf ,
~pn1 and ~pn2 for the fragment, the first neutron n1 and the second neutron n2, respectively (see
Eq. 2.21 and Eq. 2.22). Since there are two different ways (noted here “a” and “b”) to label
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Figure 2.6: Dalitz plot (a) of the 18O+n+n events from the simulation of a phase-space decay for
Erel =0-12 MeV. The projections over the normalized invariant masses are presented in (b) and (c)
for m2

fn and m2
nn, respectively. We observe that the projections are not identical because of the mass

asymmetry of the three particles (mA, mn, mn).

the neutrons involved in the decay, we compute θf/nn with both and add them in the same
histogram.

θ
nn

θ
f/nn

p⃗n
1

p⃗n
2

p⃗ f

Figure 2.7: Definition of the two angles used in order to investigate three-body correlations as a
function of the momenta of the three particles involved, ~pf , ~pn1 and ~pn2 for the fragment, the first
neutron and the second neutron, respectively.

cos(θnn) =
~pn1 · ~pn2

| ~pn1 | | ~pn2 |
(2.21)

cos(θf/nn)a/b =
( ~pn1/2

− ~pn2/1
) · ~pf

∣
∣
∣ ~pn1/2

− ~pn2/1

∣
∣
∣ | ~pf |

(2.22)

In the absence of correlations above the phase-space kinematics, plotting cos(θnn) as a
function of cos(θf/nn) results in a rather uniform population of the plot like shown in Fig. 2.8(a).
However, we can observe structures at the boundaries (cos(θf/nn) = ±1 and cos(θnn) = ±1)
due to kinematic conditions. The projection on the cos(θf/nn) variable (Fig. 2.8(b)) shows a
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slight bell shape with a maximum at 0, whereas the projection on cos(θnn) (Fig. 2.8(c)) presents
a slowly decreasing slope from −1 to 1 with a drop at around 1.
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Figure 2.8: Two dimensional plot of cos(θnn) as a function of cos(θf/nn) (a) for the
18O+n+n events

from the simulation of a phase-space decay for Erel =0-12 MeV. The projections over cos(θf/nn) and
cos(θnn) are presented in (b) and (c), respectively.

Jacobi coordinates

Another system of coordinates that is often used in order to study three-body correlations
are the Jacobi coordinates [55, 87], where the energy and the angular correlations between

the reaction products are described by the hyperspherical Jacobi vectors ~X and ~Y and their
conjugate momenta ~kx and ~ky. The Jacobi coordinates can be defined in two independent
ways, the “T” and the “Y” systems that are presented in Fig. 2.9.

In the “Y” system, the fragment is represented by the particle 2 and in the “T” system by
the particle 3. The Jacobi coordinates are expressed as follows:

~X = ~r1 − ~r2 (2.23)

~Y =
m1~r1 +m2~r2
m1 +m2

− ~r3 (2.24)

~kx =
m2~p1 −m1~p2
m1 +m2

(2.25)

~ky =
m3(~p1 + ~p2)− (m1 +m2)~p3

m1 +m2 +m3

(2.26)
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Figure 2.9: “T” (left) and “Y” (right) Jacobi systems for the fragment+n+n three-body system in
coordinate and momentum spaces.

where mi is the mass of each particle in its rest frame, ri its position vector and pi its
momentum vector.

As shown in [87], the complete correlation information can be described by two observables
that are Ex/Erel and θk such as:

Ex =
(m1 +m2)k

2
x

2m1m2

(2.27)

θk =
~kx · ~ky
|~kx||~ky|

(2.28)

In the case of a two-neutron decay, for each event there are two ways (noted as “a” and “b”
in the following) to label the neutrons leading to two different values for the [Ex/Erel, cos(θk)]
coordinates. Therefore, we compute both and add them in the same histogram. This produces
a symmetry over cos(θk) for the “T” system.

We propose now to present the expression of the [Ex/Erel, cos(θk)] coordinates for the two
different systems “T” and “Y” explicitly in the case of a 2n decay. We obtain for the “T”
system:

~kTxa/b
=
~pn1/2

− ~pn2/1

2
(2.29)

~kTya/b =
mf (~pn1/2

+ ~pn2/1
)− 2mn~pf

2mn +mf

(2.30)

noting that ~kTya = ~kTyb . From which we can derive:

ET
xa/b

=
(kTxa/b

)2

mn

(2.31)
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θTka/b =
~kTxa/b

· ~kTya/b
|~kTxa/b

||~kTya/b |
(2.32)

We can also compute the [Ex/Erel, cos(θk)] coordinates for the “Y” system in the same way:

~kYxa/b
=
mf~pn1/2

−mn~pf

mn +mf

(2.33)

~kYya/b =
mn(~pn1/2

+ ~pf )− (mn +mf )~pn2/1

2mn +mf

(2.34)

From which we can derive:

EY
xa/b

=
(mn +mf )(k

Y
xa/b

)2

2mnmf

(2.35)

θYka/b =
~kYxa/b

· ~kYya/b
|~kYxa/b

||~kYya/b |
(2.36)

We present in Fig. 2.10, the results of the 2n phase-space decay of 20O into 18O for the
“Y” system (right) and the “T” system (left). By comparing those results to the two sets of
variables developed in the previous sections (Fig. 2.6 and Fig. 2.8), we notice that the Ex/Erel

variables for the “T” and the “Y” systems are equivalent to the normalized invariant masses
m2

nn and m2
fn, respectively. And that the cos(θk) variables for the “T” and the “Y” systems

are similar to the cos(θf/nn) and cos(θnn) variables, respectively. However, in the case of the
cos(θk) variable for the “T” system, the relation with cos(θnn) is not direct since the cos(θk)
distribution is flat and, instead of showing a dip toward 1 (like cos(θnn)), it shows it toward
−1.

Relative momentum and correlation function

In the n-n part of the three-body decay, we can also be interested by their relative momenta,
that offer a way to probe the n-n correlations by using intensity interferometry. This technique is
based on the principle that the wave function of relative motion of light identical particles, when
emitted independently in close proximity in space-time, is modified by the final-state interaction
(FSI) and quantum statistical symmetries (QSS). Following on from previous application to
stellar interferometry [88], the two-particle correlation function was introduced to describe the
influence of FSI and QSS on the emission probability of two particles with momenta ~p1 and
~p2 [89]. Since both effects are governed by the space-time characteristics of the source, the
correlation function C, defined as the ratio between the measured two-particle distribution and
the product of the independent single-particle distributions, provides a snapshot of the particle
emission region. C can be expressed by rearranging Eq. 2.1 as follows:

C(~p1, ~p2) =
d2n/dp1dp2

(dn/dp1)(dn/dp2)
(2.37)

The projection onto the relative three-momentum q12 = |~p1 − ~p2| is commonly used, where
the experimental distribution of pairs is divided by a reconstructed distribution of uncorrelated
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Figure 2.10: “T” (left) and “Y” (right) Jacobi coordinates of the 18O+n+n events from the simu-
lation of a phase-space decay for Erel =0-12 MeV. The “T” system [Ex/Erel, cos(θk)] coordinates are
presented in (a) and (c), respectively and the “Y” system [Ex/Erel, cos(θk)] coordinates in (b) and (d),
respectively.
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Figure 2.11: (a) Two-neutron correlation function for Erel=3.7-12 MeV of 20O∗ 2n decays. The
solid line is traced to guide the eye. (b) Numerator (measured relative momentum distribution, blue
points) and denominator (phase space, yellow) of Cnn for the 20O∗ case.

pairs normalized so that C goes to 1 at high q, where effects of FSI and QSS should vanish.
The deviation of C from 1 thus reflects the structure of the source. Other effects, arising from
the form of the single-particle distributions or the experimental acceptances, are eliminated by
the denominator of Eq. 2.37.

In our case, we are looking at n-n correlations. We can therefore write the n-n correlation

56



function Cnn such as:

Cnn =
σexp(qnn)

σPS(qnn)
(2.38)

The numerator σexp(qnn) corresponds to the experimental distribution and contains all the
interaction effects. The denominator σps(qnn) can be obtained by the simulation of a phase-
space decay and contains all the other effects such as kinematic constraints and experimental
filter. The correlation function for the 20O decay into 18O by the emission of two neutrons
is presented in Fig. 2.11(a). In Fig. 2.11(b), the two distributions σexp(qnn) and σPS(qnn) are
shown, where the attractive effect of the n-n FSI at qnn values below 100 MeV/c becomes clear.

2.3.3 Decay mechanisms and event generators

In the previous section, we presented a set of different observables used in order to study
three-body correlations. Those observables have been used to illustrate the result of a three-
body phase-space decay from a simulation. And by comparing it to the experimental data
(Fig. 2.11 (b)), it is obvious that correlations beyond the phase space need to be implemented
in the simulation in order to be able to reproduce what we observed in the experiment. In
this section, we are therefore describing two decay mechanisms, and the model used in order
to implement them into the simulation. Indeed, when a two-neutron decay occurs, mainly two
modes are possible: the direct decay, in which the two neutrons are emitted at the same time,
and the sequential decay, in which one neutron is emitted first, populating then a resonance
in the intermediate nucleus that is decaying later (depending on the lifetime of the state) by
emitting the second neutron. The model used does not include the microscopic structure of
the initial state, and treats the effects of FSI and resonances on the fragment+2n phase-space
decay phenomenologically. A description of the model can be found in [7, 59, 90]. We are
summarizing and illustrating it in the following sections.

Direct decay

We start by the direct decay in which the two neutrons n1 and n2 are emitted at the same time.
As mentioned before, the n-n FSI effects have to be added to the three-body phase-space decay
simulation previously discussed (see section 2.3.1). To do so, we used the formalism from [91]
which takes explicitly into account the influence of the two-nucleon proximity on the effects of
their interaction. A simplified form of the two-particle cross-section can be expressed using a
modified version (projection) of Eq. 2.1 such as:

σ(qnn) ≈ σ0(qnn)Cnn(qnn) (2.39)

where σ0 corresponds to the two-particle cross-section that the particles would exhibit if there
were no influence between them and Cnn is the correlation function that can be expressed as
follows:

Cnn(qnn) ≈
∫

W (rnn)F (rnn, qnn) drnn (2.40)

where W is the spatial distribution of the source depending on the distance rnn between the
neutrons, here taken as a Gaussian, and F is the correlation factor that contains the effect of
the s-wave n-n FSI as well as the effects of the Fermi statistics for identical particles (even if
it is negligible in the case of nucleon pairs [91]). The correlation function can be thus seen as
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a probability distribution P (qnn) to accept the event following the form of the n-n correlation
function Cnn, that depends on the space-time parameters (rrms

nn , τ) of a Gaussian two-neutron
source1. However, since in the case of a direct decay the two neutrons are emitted at the same
time, we have τ = 0 and therefore Cnn only depends on the relative distance between the
neutrons rrms

nn . And as discussed in [91], the correlation function of a Gaussian source becomes
analytical. The validity of this assumption is discussed in [59] where it is shown that very
different source distributions such as Gaussian, Yukawa-like, or spherical all lead roughly to
similar Gaussian-like distributions for W (rnn). Moreover, in our model, internal momentum
correlations in the source (W (rnn, qnn)) are assumed to be small or to have minor impact on
Cnn after averaging over the whole source and are therefore neglected. The fact that this
formalism has been used successfully in order to describe in an accurate way the low energy
peaks observed in the n-n FSI of previous works [7, 56, 90, 92, 93] confirms the validity of the
approximations made in our model.
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Figure 2.12: (a), (b), (c) Dalitz plots for the 18O+n+n direct decay for Erel =0-12 MeV from the
simulation with a source size of rrms

nn =3.7, 6.1 and 8.6 fm, respectively. The projections onto the
normalized invariant masses m2

fn (d) and m2
nn (e) are displayed for the three different rrms

nn values.

We can now observe how the n-n FSI is affecting the three-body phase-space decay where
the only free parameter in our simulation is the average size of the source rrms

nn . We take as an
example the 2n decay of 20O into 18O. The results for different rrms

nn are presented in the follow-
ing for all the observables described in the previous section: the normalized invariant masses

1If the neutron volume w(rn) is taken as a Gaussian of width σ, and the neutrons move independently, the
relative distance distribution W (rnn) is also Gaussian with sigma

√
2σ and rrms

nn
=

√
6σ.
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(Fig. 2.12), the angular coordinates (Fig. 2.13), the Jacobi coordinates (Fig. 2.14) and the corre-
lation function (Fig. 2.15). We are now describing the effects of the n-n FSI on each observable.

Dalitz plots - As we can observe in Fig. 2.12(a, b, c, e), the n-n FSI appears as a
concentration of events at low m2

nn (< 0.25), corresponding to small relative momenta. We
also notice that a smaller source size shows a signal with higher amplitude. On the contrary,
the m2

fn variable (Fig. 2.12(d)) does not seem to be affected significantly.
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Figure 2.13: (a), (b), (c) Two dimensional plots of cos(θnn) as a function of cos(θf/nn) for the
18O+n+n direct decay for Erel =0-12 MeV from the simulation with a source size rrms

nn =3.7, 6.1 and
8.6 fm, respectively. The projections onto the cos(θf/nn) (d) and cos(θnn) (e) are displayed for three
different rrms

nn values.

Angular coordinates - We can observe in Fig. 2.13(a, b, c, e) that the n-n FSI appears at
small θnn angles and that the smaller the source size, the bigger the signal observed. On the
contrary, as for m2

fn, the θf/nn (d) variable seems to be unaffected by the n-n FSI.

Jacobi coordinates - As mentioned in the previous section, the Jacobi coordinates are
directly comparable to the normalized invariant masses and to the angle coordinates. We
observe in Fig. 2.14(b,c) that the Ex/Erel observable in the “Y” system and the cos(θk)
observable in the “T” system are not affected by the n-n FSI. However, the Ex/Erel observable
in the “T” system (a) is affected by the n-n FSI in the same way as the m2

nn variable with
a concentration of events at Ex/Erel < 0.25. The θk variable in the “Y” system shows a
concentration of events at large angles (cos(θk) < −0.5). In both cases, the smaller the source
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Figure 2.14: “T” (left) and “Y” (right) Jacobi coordinates of the 18O+n+n events from the simula-
tion of a two-neutron direct decay for Erel =0-12 MeV. The “T” system [Ex/Erel, cos(θk)] coordinates
are presented in (a) and (c), respectively and the “Y” system [Ex/Erel, cos(θk)] coordinates in (b) and
(d), respectively. The results of three different source sizes rrms

nn are presented.

size, the bigger the signal observed.
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Figure 2.15: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn) and phase space (denominator of Cnn in yellow) for the 18O+n+n direct decay for
Erel =0-12 MeV from the simulation for three different source sizes rrms

nn . Lines has been added in (a)
with the only purpose to guide the eye.

Correlation function - As we can see in Fig.s 2.11(a) and 2.15(a), the n-n FSI is characterized
by an accumulation of events at low qnn, creating a strong deviation from the phase space
distribution presented in Figs. 2.11(b) and 2.15(b). We also observe that the smaller the size
of the source, the stronger the signal. It also seems that the shape of Cnn is directly linked to
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the size of the emitting source in the case of a direct decay. With this method, it is hoped to
directly deduce information on the size of the emitted pair, provided that the decay is direct.

Sequential decay

The other decay mechanism considered is the n + n sequential decay, in which one neutron
is emitted before the other. In order to simulate such a mechanism, the events are generated
following twice the two-body phase space through a fragment-n resonance of energy Er and
width Γ (Breit-Wigner as presented previously in this chapter), followed by the interaction
between the two emmited neutrons once the resonant state has decayed. In that case, the
emission of the neutrons cannot be considered simultaneous (τ 6= 0) and therefore a space-time
analysis is needed, meaning that n-n FSI depends on the space-time parameters (rrms

nn , τ). As
discussed in [91], this leads to the fact that Cnn is not analytical anymore.
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Figure 2.16: (a), (b), (c) Dalitz plots of the 18O+n+n sequential decay for Erel =5.3-7.2 MeV
from the simulation for Er =0.5 MeV, Er =1.5 MeV and Er =2.5 MeV, respectively (rrms

nn =6.1 fm
and Γr =0.5 MeV being fixed). The projections onto the normalized invariant masses m2

fn (d) and

m2
nn (e) are displayed for three different Er values.

We are then left with four parameters: rrms
nn , τ , Er and Γ. The number of parameters can be

reduced, as it has been shown in [59] for the well-known 7He resonance, to three by equating the
delay induced in the neutron emission with the lifetime of the fragment-n resonance, leading
to:

τ =
~c

Γ
(2.41)
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Figure 2.17: (a), (b), (c) Dalitz plots of the 18O+n+n sequential decay for Erel =5.3-7.2 MeV
from the simulation for Γr =0.5 MeV, Γr =1.5 MeV and Γr =3.5 MeV, respectively (rrms

nn =3.9 fm
and Er =1.5 MeV being fixed). The projections onto the normalized invariant masses m2

fn (d) and

m2
nn (e) are displayed for three different Γr values (the black curve here corresponds to the red curve

in Fig. 2.16).

In this case, the only free parameters of the sequential decay are (rrms
nn , Er, Γ).

The results of the sequential 2n-decay simulation of 20O into 18O for 5.3< Erel <7.2 MeV
are presented in the following for all the observables mentioned before: the normalized
invariant masses (Fig. 2.16, Fig. 2.17), the angular coordinates (Fig. 2.18, Fig. 2.19), the
Jacobi coordinates (Fig. 2.20, Fig. 2.21) and the correlation function (Fig. 2.22). We are now
discussing the effects observed for different resonance energies and widths on each observable.

Dalitz plots - We can observe on Fig. 2.16(a, b, c, d) that the sequential decay is character-
ized by ridges on the Dalitz plot and by double humped structures (except when the centroid
of the resonance is in the middle of the decay energy range) in the projection over m2

fn. Since
we fill up two times the m2

fn histogram, one time for each neutron n1 and n2, we observe two
symmetrical wings in (d) as m2

fn1
≈ 1 − m2

fn2
. The position of the bands/wings is directly

related to their energies compared to the maximum energy (Erel) available in the system.
Looking at Fig. 2.16(e), we see that the energy of the resonance Er also has an influence on
m2

nn. Indeed, the smaller the resonance energy is, the narrower the m2
nn distribution is, due to

the kinematic boundaries of the three-body decay.

Looking now at the influence of the resonance width Γ on the m2
fn variable (Fig. 2.17(a, b,
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Figure 2.18: (a), (b), (c) Two dimensional plots of cos(θnn) as a function of cos(θf/nn) for
the 18O+n+n sequential decay for Erel =5.3-7.2 MeV from the simulation with Er =0.5 MeV,
Er =1.5 MeV and Er =2.5 MeV, respectively (rrms

nn =6.1 fm and Γr =0.5 MeV being fixed). The
projections onto the cos(θf/nn) (d) and cos(θnn) (e) are displayed for three different Er values.

c, d)), we observe that the wider the resonance is, the wider the wings are. Since Γ ∝ 1/τ ,
wider resonance also means shorter lifetime and therefore that the two neutrons, even if
emitted sequentially, remain close from each other when the second neutron is emitted, as we
can observe in Fig. 2.17(a, b, c, e) where a signal appears at low m2

nn due to the n-n FSI. The
wider the resonance is, the bigger this signal is.

We can conclude by saying that n-n FSI are revealed by the m2
nn observable and that the

m2
fn variable is sensitive to the sequential decay mechanism. Therefore, using a two-dimensional

analysis we can have access to information on the decay mechanism involved in the reaction.

Angular coordinates - Looking now at the angular correlations in Fig. 2.18, we see that
the sequential decay is characterized by bands on the two dimensional plot (a), (b), (c) and
by wings on the projection over cos(θf/nn) (d). The position of the bands/wings observed is
depending on the resonance energy and on the maximum energy Erel available in the system.
However, the cos(θnn) observable (e) does not seem to be affected at all by the sequential
decay mechanism.

We are investigating in Fig. 2.19 the influence of the resonance width on the angular
coordinates. We observe that similarly to the case of the normalized invariant masses m2

fn,
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Figure 2.19: (a), (b), (c) Two dimensional plots of cos(θnn) as a function of cos(θf/nn) for
the 18O+n+n sequential decay for Erel =5.3-7.2 MeV from the simulation with Γr =0.5 MeV,
Γr =1.5 MeV and Γr =3.5 MeV, respectively (rrms

nn =3.9 fm and Er =1.5 MeV being fixed). The
projections onto the cos(θf/nn) (d) and cos(θnn) (e) are displayed for three different Γ values.

wider resonances lead to wider structures in the cos(θf/nn) (d) variable. Also a wide resonance
(short lifetime) allows n-n FSI to survive as we can observe in the projection over cos(θnn) (e)
where a signal arises at low angles.

Jacobi coordinates - As discussed in the previous section, the Jacobi coordinates are analog
to the normalized invariant masses and to the angular coordinates as can be seen in Fig. 2.20
and Fig. 2.21. Indeed we observe the same effects of the resonance energy and width as observed
previously using the two other sets of coordinates. The Ex/Erel (a) and cos(θk) (d) in the “T”
and “Y” system, respectively, are sensitive to the n-n FSI whereas Ex/Erel (b) and cos(θk) (c) in
the “Y” and “T” system, respectively, are sensitive to the characteristics of the sequential decay.

Correlation function - Looking at Fig. 2.22 (b), we observe that the qnn distribution is
influenced by the resonance energy Er. Indeed, we see that the higher Er is, the narrower the
qnn distribution is which is due to the kinematic boundaries of the three-body decay. This
effect is also revealed in the n-n correlation function (a) where a signal appears at low qnn
when Er increases.

Fig. 2.23 shows that a small resonance width Γ induces the rising of signal at low qnn. As
we discussed earlier, such a signal is characteristic of n-n FSI. This observation is agreeing with
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Figure 2.20: “T” (left) and “Y” (right) Jacobi coordinates of the 18O+n+n events from the simu-
lation of a two-neutron sequential decay for Erel =5.3-7.2 MeV with rrms

nn =6.1 fm and Γr =0.5 MeV.
The “T” system [Ex/Erel, cos(θk)] coordinates are presented in (a) and (c), respectively and the “Y”
system [Ex/Erel, cos(θk)] coordinates in (b) and (d), respectively. The results of three different reso-
nance energies Er are shown.
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Figure 2.21: “T” (left) and “Y” (right) Jacobi coordinates of the 18O+n+n events from the simu-
lation of a two-neutron sequential decay for Erel =5.3-7.2 MeV with rrms

nn =3.9 fm and Er =1.5 MeV.
The “T” system [Ex/Erel, cos(θk)] coordinates are presented in (a) and (c), respectively and the “Y”
system [Ex/Erel, cos(θk)] coordinates in (b) and (d), respectively. The results of three different reso-
nance widths Γ are shown.

what we observed already in the other observables. We also observe that the amplitude of the
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signal observed for the sequential decay is smaller than the one observed for the direct decay
(Fig. 2.15) for the same distance rrms

nn .
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Figure 2.22: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn) for the 18O+n+n sequential decay for Erel =5.3-7.2 MeV from the simulation with
rrms
nn =6.1 fm, Γr =0.5 MeV and three different resonance energy values Er.
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Figure 2.23: (a) Two-neutron correlation functions and (b) relative momentum distribution (nu-
merator of Cnn) for the 18O+n+n sequential decay for Erel =5.3-7.2 MeV from the simulation with
rrms
nn =3.9 fm, Er =1.5 MeV and three different resonance width Γ values.

66



Chapter 3

Experimental method and setup

Contents
3.1 Population of unbound states . . . . . . . . . . . . . . . . . . . . . . 68

3.2 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 GSI and R3B-LAND experimental setup . . . . . . . . . . . . . . . 72

3.3.1 Beam production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Beam identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Detection of the reaction products . . . . . . . . . . . . . . . . . . . . 75

3.4 RIKEN and SAMURAI experimental setup . . . . . . . . . . . . . 77

3.4.1 Beam production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Beam identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.3 Detection of the reaction products . . . . . . . . . . . . . . . . . . . . 80

3.5 Monte-Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.1 Trajectories of the charged fragment . . . . . . . . . . . . . . . . . . . 86

3.5.2 Simulation of the γ detection . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.3 Fragment-neutron(s) decay . . . . . . . . . . . . . . . . . . . . . . . . 87

A
s we discussed in the previous chapter, this thesis is focused on the study of neutron
unbound states of neutron-rich nuclei. In order to conduct such a study, we introduced in

the previous chapter the invariant-mass method [94] which is a key element in the investigation
of neutron unbound states. Indeed, the invariant mass Minv corresponds to the mass of
the unbound state before the decay. Then by subtracting the masses of the different decay
products, we obtain the relative energy Erel of the system which is the energy available for the
decay, sometimes also referred to as the decay energy Ed.

However, we need first to populate the unbound states. This is done in inverse kinematics
at beam velocity using knockout reactions, where one or several nucleons are suddenly removed
after interaction with the target. Because we are working in inverse kinematics, the decay
products are also emitted at approximately the beam velocity.
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In order to compute the invariant mass, we need to have access to the four-momenta of all
the decay products involved in the reaction. This is achieved by using a complex set of detectors
to track and select the beam, and detect the charged fragment, neutron(s) and eventually γ-
rays in coincidence. Two different setups, that will be described in the following sections, have
been used during this thesis in order to conduct such kind of experiments: R3B-LAND at GSI
and SAMURAI at RIKEN.

3.1 Population of unbound states

The reaction mechanism is crucial since it has an influence on the production rate as well
as the properties of the populated states. There are several techniques that can lead to the
production of unbound states such as inelastic scattering, transfer reactions, fusion-evaporation
reactions, and also knockout reactions, that have been used during our experiments and will
be presented in more detail in this section. In order to populate exotic or unbound nuclei close
to the dripline and study the properties of the populated states, it is necessary to work in two
steps, that we are describing below.

We start by producing a high-energy radioactive beam of neutron-rich nuclei (secondary
beam) close to the dripline. The best way in order to obtain such a beam with a sufficient
intensity is by fragmentation of a high-energy stable beam (primary beam). The character-
istics of the radioactive beam produced (energy, intensity, purity and spatial spread) are key
parameters that are conditioning the success of an experiment. Indeed, those characteristics
are influencing the number of events Nevt measured during the experiment. We can express
Nevt such as:

Nevt = Ninc ρ x σ ǫ (3.1)

where Ninc is the number of incoming ions (that depends on the duration of the experiment
and on the beam intensity), ρx is the thickness of the reaction target taking into account its
density, σ is the reaction cross-section (probability that an incoming ion interacts with an ion
of the target, that is energy dependent) and ǫ is the experimental setup detection efficiency.
In order to successfully perform an experiment, one should try to maximize Nevt, to have a
good resolution and ensure a good selection of the events of interest.

We saw in the previous section that in order to use the invariant-mass method, we need to
be able to detect and characterize all the products of the reaction. However the detection of
gammas and neutrons for example is far from being 100% efficient. It appears then that some
factors of Eq. 3.1 are highly constrained by the experimental setup. We therefore need to try
to maximize the other parameters.

We chose in our experiments to use direct reactions in inverse kinematics from a high-
energy radioactive beam. Being at high energy (typically around 430 MeV/nucleon at
GSI and around 230 MeV/nucleon at RIKEN) allows the use of thicker targets in order
to maximize the interaction probability of the beam. And working in inverse kinematics
facilitates the detection of all the reaction products as they are focused in the forward direction.

In order to populate unbound states, we chose to use knockout reactions of one or several
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nucleons. At high energies, the cross-section for such reactions is rather high (10-100 mb).
High-energy knockout reactions also have the advantage of being sudden, meaning that it is a
one-step process where the final state is influenced by the initial state, and nucleons that are
not involved in the knockout reaction are spectators and therefore unaffected. Since the initial
state directly influences the final state, populating the same system from different knockout
reactions (hence different incoming ions) allows us to do a selection on the final state.

The secondary beams used in our experiments as well as the nuclei studied using knock-
out reactions are presented in Fig. 3.1. We sum up here the different reactions studied:
29Ne(p,2p)28F(∗), 29F(p,pn)28F(∗), 27F(p,pn)26F(∗), 19N(p,2p)18C(∗) and 21O(p,pn)20O(∗). As
we can see already, we have the chance to populate 28F via two different knockout reactions,
which could help us to have a complete picture of its structure.
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Figure 3.1: Nuclei studied during this thesis at RIKEN (blue square) and GSI (red square). The
secondary beams used to populate them are also presented in green and black squares for RIKEN and
GSI, respectively.

As mentioned earlier, the data presented in this document have been taken in two different
laboratories (GSI and RIKEN). This choice to use two different facilities and setups has been
made due to the capabilities of each accelerator to produce the desired beams and also due to
the available setups.

3.2 General principle

One of the key observables to investigate and characterize unbound states is the relative
energy introduced in section 2.2.2. And in order to access it, we need to be able to identify
and measure the momenta of all the products involved in the decay of an unbound system.
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We present in Fig. 3.2 the typical setup used during our experiments.
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Figure 3.2: Sketch of the general principle used during our experiments.

The first step is to accelerate a stable beam to high energy and send it onto the fragmentation
target in order to produce a big variety of radioactive isotopes. However we are not interested
by all the radioactive isotopes produced. A Bρ selection is then applied using a succession of
dipole magnets. By doing such a selection, the ions are separated according to their mass to
charge ratio (A/Z). Indeed, while traveling through a dipole magnet, the Lorentz force equals
the centripetal force which keeps the particle of charge number Z and mass number A on a
circular orbit with radius ρ, leading to the following conditions:

Bρ = C
A

Z
βγ (3.2)

where B is the strength of the magnetic field, β is the velocity of the ion and γ is the
associated Lorentz factor. The constant C is given by:

C =
uc

e
= 3.1 Tm (3.3)

This formula is only valid for high-energy beams for which the ions are fully stripped.
Otherwise the charge number Z of the ion has to be replaced by the charge q. The radius ρ
is fixed and corresponds to the one defined by the beam line. This formula means that, by
tuning the magnetic field B applied, we can chose which ions with a specific A/Z ratio follow
the central trajectory of the beam line, and which ones are blocked in thick slits placed at the
intermediate dispersive focal plane.

After this stage, we have a high-energy cocktail beam of radioactive isotopes containing
the isotope of interest as well as some contaminants with similar A/Z ratio. The beam then
impinges on the reaction target into which knockout reactions occur, producing different states
of the nuclei of interest. Those states decay then by γ-ray or particle emission (unless bound
states are populated) and we identify and characterize the products of the reaction using a
complex detection system that we describe below in Fig. (3.3).
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Figure 3.3: Sketch of the typical detection setup used during our experiments, with the beam traveling
from left to right. It is first going through beam trackers in order to reconstruct its trajectory before
reaching the reaction target, which is surrounded by a γ-ray detector to detect eventual in flight γ rays.
After the reaction, the emitted neutron(s) go straight into a neutron detector where their trajectory
and time of flight are measured, while the charged fragment, deflected by a magnet, is detected and
identified using a set of detectors allowing us to reconstruct its trajectory and energy loss.

We are interested in unbound states that decay by emitting one or several neutrons. And
in order to investigate them, we need to compute the relative energy (see section 2.17). To do
so, we need to identify event by event the incoming nuclei and determine the energy and the
momentum of each reaction product. The different quantities needed to investigate unbound
states are presented below:

1. Beam velocity βb

2. Beam charge number Zb

3. Beam trajectory

4. Fragment velocity βf

5. Fragment charge number Zf

6. Fragment mass number Af

7. Fragment trajectory

8. Neutron(s) trajectory

9. Neutron(s) velocity βn

How these quantities are derived using the R3B-LAND or the SAMURAI s021 setups is ex-
plained in the following sections.
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3.3 GSI and R3B-LAND experimental setup

We are first presenting the experiment performed at GSI. In this experiment, we used the
R3B-LAND experimental setup. The description of the apparatus used can be divided in two
different parts. We present first the production and selection of the radioactive ion beam and
then the experimental setup used for the detection of the reaction products.

3.3.1 Beam production

The s393-experimental campaign has been performed at GSI, where the radioactive ion beam
(RIB) is produced via an in-flight technique, meaning the radioactive ions are produced and
separated in flight. This beam production is briefly explained in the following paragraph.
Moreover, a schematic view of the GSI accelerator is presented in Fig. 3.4. The production
mechanism of the RIB starts with a stable primary beam. At GSI the ions of choice are injected
into the “UNIversal Linear ACcelerator” (UNILAC) from an ion source. In the experiment
described here, 40Ar ions have been used as primary beam. From the UNILAC the 40Ar11+

beam is injected into the “Schwer Ionen Synchrotron-18” (SIS-18), having an energy of nearly
11.5 MeV/nucleon.

Figure 3.4: Schematic layout of the GSI accelerator complex used during the experiment.

Leaving the SIS-18, the 40Ar ions have been accelerated to an energy of 490 MeV/nucleon
and the primary beam is guided onto the production target at the entrance of the FRagment
Separator (FRS) presented in Fig. 3.5. A 4 g/cm2 thick Be production target was used to
induce fragmentation reactions. The primary beam had an intensity of 6 × 1010 ions/bunch.
The beam composition delivered to the experimental cave depends on the FRS settings only.
For a more detailed description of the FRS, see Ref. [95]. For the purpose of our experiment,
the magnetic rigidity Bρ of the FRS is set to 9.05 Tm in order to favor the transmission of
nuclei with A/Z ≈ 2.7. The reaction products of the nuclear fragmentation of the incoming
40Ar beam impinging on the Be target are forming the cocktail or secondary beams with an
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energy of nearly 430 MeV/nucleon. A large variety of elements with masses smaller than the
one of the primary beam is produced. The beam composition is then selected by means of the
Bρ method (3.2) which is applied in the FRS. These secondary beams are then transmitted to
the R3B-LAND experimental setup located in Cave C.

Figure 3.5: Sketch of the FRS. The Bρ-∆E-Bρ method is applied using dipoles to bend the beam
(Bρ) as well as a degrader to have a position and Z-dependent energy loss (∆E) (figure taken from
[6]).

The FRS beam line has been equipped with two 3 mm thick scintillator paddles. Those
detectors are needed to perform an incoming time of flight (ToF) measurement over a long
distance (FRS to Cave C) for each ion. One scintillator paddle was placed at the middle focus
(S2) and the second was situated behind the FRS (S8). Since the scintillator at the mid-plane
of the FRS (S2), about 136 m upstream of the reaction target, was overloaded with the intense
beam, the scintillator at the intermediate focal plane (S8) has been used, leaving us a nearly
55 m flight path to Cave C.

3.3.2 Beam identification

As mentioned in section 3.2, we need to be able to identify and characterize the incoming nuclei
event by event. Therefore, the velocity of the beam βb, its charge number Zb and its trajectory
have to be derived for each event. In order to identify incoming ions, the mass to charge ratio
Ab/Zb, as well as the charge number Zb needs to be known. Using 3.2, we can derive:

Ab

Zb

=
Bρ

C

1

βbγb
(3.4)

Therefore βb and Bρ are needed. The value of Bρ is known from the FRS setting, so we only
have to determine the velocity of the incoming ion βb. This is done using a time of flight (ToF)
method that needs two detectors (start and stop) in order to measure the time needed for a
particle to travel a certain distance. In our case, we use a plastic scintillator paddle at S8 as
start detector (see Fig. 3.5). This detector is read out with two photo-multiplier tubes (PMT),
one at the top and one at the bottom. A square-shaped (2.5 cm×2.5 cm) plastic scintillator
with thickness of 1 mm at the entrance of Cave C is used as a stop detector. The Cave C
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experimental setup is shown in Fig. 3.6. This detector is called POS, and is read out with four
PMTs, one for each side. Those two detectors allow us to measure the times tstart and tstop
from which we can deduce the velocity of the incoming ion βb using the ToF method below:

βb =
d

(tstop − tstart)c
(3.5)

where c is the speed of light and d is the distance between these two detectors which is about
55 m, resulting in a very good velocity resolution.

n

n
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Figure 3.6: Experimental setup in Cave C as used during the s393 campaign. The observables
measured by each detector are presented in parenthesis.

To complete the identification of the incoming ion, we also need to have access to its charge
number Zb. It is known that an ion passing through matter loses energy following the Bethe-
Block formula:

∆E ∝ Z2
b

β2
b

(3.6)

We can rearrange this formula such as:

Zb ∝ βb
√
∆E (3.7)

The charge number Zb can therefore be derived from ∆E measurement using a position sensitive
pin-diode (PSP) in front of the target. Now that we have access to Zb and Ab/Zb, we can select
the ions of interest using two-dimensional cuts. The identification of the incoming beam is
presented in Fig. 3.7.

The identification of the incoming ions is now completed but we still need the information on
their trajectories. We can access this information using two double sided silicon strip detectors
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Figure 3.7: Identification of the nuclei in the cocktail beam.

(DSSSD) as shown in Fig. 3.6. Each DSSSD has an active area of 72×41 mm2 and strips
300 µm thick (110 µm pitch). The coordinate system, used in the analysis presented here, is
labeled in the following convention: the z-axis points in beam direction, the x-axis points to
the left looking from the beam and the y-axis points to the top. Each in-beam DSSSD has two
sides, the first side delivering measurement in the x-direction and the second side delivering
measurement in the y-direction. Using these positions, we only need to know the distance
between the two DSSSDs in order to deduce the trajectories of the incoming ions. We can then
extrapolate the position of the interaction between the ion onto the reaction target, which is the
next material. Two different reaction targets were used during the experiment: a 922 mg/cm2

CH2 target and a 935 mg/cm2 C target. During the experiment, those two targets are mounted
on a remote-controlled target wheel so they could be changed in vacuum without beam breaks.

3.3.3 Detection of the reaction products

While going through the reaction target, the incoming ion has a probability to react with a
nucleus from the target. In our experiment, we are looking for knockout reactions from which
unbound states can be populated. Those unbound states are decaying with the emission of one
or several neutrons. We are therefore left with neutron(s), a charged fragment and possible
γ-rays if excited states of the fragment are populated. In order to characterize the unbound
states, we need to be able to identify and characterize all those reaction products. We specify
the technique used to detect them in the following.

The outgoing fragments are detected in two DSSSDs, identical to the one in front of the
target, directly behind the target (Fig. 3.6). Their charge is determined via a ∆E measurement
(see equation 3.7) and the outgoing angle θf is measured as well. The target is surrounded by
a 4π NaI sphere named crystal ball (CB). The CB is segmented into 159 crystals, each having
a length of 20 cm and covering a solid angle of nearly 77 msr. The CB allows the detection
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of photons (ǫγ ≈ 60% at 2 MeV) from excited fragments decaying in flight and recoil protons
at angles larger than ±7◦ in the laboratory frame. Each crystal is equipped with phototubes
having a gain adapted for the detection of photons. Moreover, the photo-multipliers of the
64 most forward crystals have a second lower-gain readout for the detection of recoil protons
originating from knockout reactions. This detector is used in our analysis to tag the recoiled
proton resulting from a knockout reaction via the CB-sum trigger.

After having passed the downstream pair of DSSSDs, the reaction products leave the vac-
uum and enter ALADIN which is filled with helium gas. The magnetic field of ALADIN bends
the charged fragments but leaves the neutrons unaffected on their straight trajectories. All
detectors behind ALADIN are operated in air. In the following, we first focus on the detection
of the fragments. The fragment detection branch is oriented such that the central position at
each detector is at 15◦ with respect to the incoming beam axis. It consists of 3 detectors, two
large fiber detectors (GFI-1 and GFI-2) and the time of flight wall (TFW), as shown in Fig. 3.6.

Each GFI is built of 480 vertical fibers covering in total an area of 50×50 cm2. A position
measurement in x-direction (horizontal) with a resolution of 1 mm [96] is done using this type
of detectors. Having these two position measurements behind the magnet and the ones done
by the DSSSDs in front of the magnetic field, the trajectory of the ions can be reconstructed.
Different isotopes are deflected to different angles in the magnetic field of ALADIN according
to their different mass-to-charge ratio (Eq. 3.2). Therefore, the Bρ of an ion is measured by
reconstruction of its track through the magnetic field. The Bρ value determines the mass
of the ion unambiguously if the charge is already known as we can see in Eq. 3.4. Detailed
information on the GFIs can be found in [97] and the calibration procedure is described in [96].

The last detector in the fragment branch is the TFW and is located 523 cm behind the
last GFI. This detector is built out of 14 horizontal scintillator paddles in the first plane
and a second plane having 18 vertical paddles. Each horizontal paddle has the dimension
(196.6×10.4×0.5) cm3, while the vertical paddles have a dimension of (154.6×10.4×0.5) cm3.
All 32 paddles are read out using a PMT on each side. The time, the energy loss ∆E, as well
as the position of each hit is measured. Having the ToF between target and the TFW and
knowing the length of the trajectory gives the velocity βf of the ion, while the deposited energy
determines its charge Zf . As an example, the identification in charge and mass of the frag-
ments observed after the interaction between the target and a 19N beam is presented in Fig. 3.8.

As mentionned before, when produced in an unbound state during a knockout reaction,
nuclei may emit neutrons that are detected in the forward direction using the “Large Area
Neutron Detector” (LAND) [98]. The detector covers an area of (2×2) m2 and is 1 m deep.
It consists of 10 planes and every plane contains 20 paddles, which have the dimensions of
(200×10×10) cm3. The detection of the neutrons is based on the use of inactive converter
materials in which the neutrons create charged particles via nuclear reactions. Those secondary
particles are then detected with plastic scintillators. In order not to stop too many of the created
secondary charged particles in the converter material itself, the design of the detector is based
on a sandwich structure using thin iron layers as converter material. One paddle has eleven iron
and ten scintillator sheets of 5 mm thickness each. Only the two outermost iron layers have a
thickness of 2.5 mm adding up again to 5 mm while stacking two paddles. A specific algorithm
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Figure 3.8: Identification of the fragments produced from the interaction of 19N nuclei from the beam
with the target. The charge identification is presented of the left panel and the mass identification for
the Carbon isotopes is presented on the right panel.

is used to reconstruct the hit profiles in LAND [99], and obtain from them the position of the
first neutron-LAND interaction (with a spatial resolution of 5 cm FWHM) and the neutron
ToF (with a resolution of 370 ps FWHM). The LAND detector was placed 12 m downstream
of the reaction target, covering forward angles of ±79 mrad. The 1n and 2n efficiencies are of
the order of 90% and 70% up to about 4 MeV and 8 MeV fragment-neutron relative energy,
respectively, and decrease smoothly beyond those values [58]. The 2n efficiency, that includes
causality conditions for the rejection of cross-talk events, drops below 200 keV as neutrons are
emitted within a very narrow cone and cannot be distinguished. The energy resolution of the
observed neutron resonances degrades slowly from 200 keV at 500 keV to 700 keV at 5 MeV
relative energy [58]. Using the information from LAND, the momentum of the neutron ~pn is
reconstructed.

3.4 RIKEN and SAMURAI experimental setup

We are presenting now the setup used during the SAMURAI 21 experiment performed at
RIKEN in November 2015. In this experiment, we used the typical SAMURAI setup to which
two multi-detectors have been added, the NeuLAND demonstrator and the MINOS active
target. We present first the production and selection of the radioactive ion beam and then the
experimental setup used for the detection of the reaction products.

3.4.1 Beam production

The SAMURAI 21 experiment has been performed at RIKEN where neutron-rich exotic beams
necessary to our experiment (29Ne, 30Ne, 29F...) are produced in several steps. The first step,
as discussed in section 3.2, is to produce a stable beam (48Ca here) from the ionization of a
material. The ions created are then extracted from the plasma using electric fields in order
to be sent to the acceleration devices (cyclotrons and linear accelerators). Like in GSI, the
radioactive ions are produced and separated in-flight. In the experiment described here, the
48Ca stable beam at nearly 345 MeV/nucleon impinged on the thin Beryllium target, inducing
fragmentation reactions in which a large variety of radioactive ions with lighter mass and
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smaller charge than the initial beam are produced. Those ions form the so-called cocktail or
secondary beam.

The in-flight fragmentation is well adapted to the study of nuclei with short lifetime.
Indeed, the ions produced with this technique have a velocity similar to the one of the stable
beam used (nearly 60% of the speed of light) which enables their transport to the experimental
area.

The primary beam at RIKEN is produced by the RIBF (Radioactive Ion Beam Factory)
presented in Fig. 3.9. Its oldest part (built in the 90s [100]), called RARF (RIKEN Accelerator
Research Facility), is made of two separated-sector cyclotrons (RRC) as well as two injectors:
a linear accelerator (RILAC) and a cyclotron (AVF). In order to extend the capabilities of the
facility to exotic nuclei, three separated-sector cyclotrons have been added (fRC, IRC and SRC).
The RILAC2, a linear accelerator has also been built in order to produce very high intensity
heavy-ion beams (U, Xe...). The entire facility allows the production of a large variety of stable
beams with intensities of about 1012 particles per second (pps) [101]. The maximum energy
that can be achieved goes from 350 to 440 MeV/nucleon depending on the isotope.

Figure 3.9: Sketch of the RIBF facility at RIKEN. During the SAMURAI 21 experiment, the
48Ca stable beam has been accelerated from the linear accelerator RILAC to the cyclotron SRC. After
fragmentation on the Be target, the radioactive beam was selected using the BigRIPS fragment separator
before being sent to the SAMURAI experimental area.

As mentioned previously, the stable beam produced by the RIBF facility is fragmented
in a cocktail beam containing a large diversity of nuclei with lower charges and lighter
masses with respect to the primary beam. However, we are interested only by a small
proportion of nuclei in the cocktail beam. The fragment separator BigRIPS, which is made
of different magnets, is therefore used to select nuclei of interest by means of the Bρ method
developed in section 3.2. This method allows us to select the A/Z ratio of our nuclei of interest.

The BigRIPS fragment separator in presented in Fig. 3.10. Its line is nearly 75 m long and
is made of seven dipoles (labeled from D1 to D7) placed between the primary target (F0) and
the focal plane F7. Quadrupoles (labeled form STQ1 to STQ25) are also used in order to focus
the beam and assure a good transportation of the beam in the beam line.
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Figure 3.10: Sketch of the BigRIPS fragment separator. The different dipoles are labeled from D1
to D7 and the quadrupoles allowing the focusing of the beam are labeled from STQ1 to STQ25.

3.4.2 Beam identification

As mentioned before in section 3.2, we need to be able to identify and characterize incoming
nuclei event by event. Therefore, the velocity of the beam βb, its atomic number Zb and its
trajectory has to be determined for each event.

In order to identify the incoming ion, the charge number Zb and the Ab/Zb ratio are needed.
The latter can be expressed as shown in Eq. 3.4, where only Bρ and the beam velocity βb
need to be determined. The value of Bρ being known from the BigRIPS setting, only the
beam velocity βb is needed. This is done using the time of flight (ToF) technique developed
in section 3.3.2. This technique allows to measure the velocity of nuclei event by event. It is
performed using four plastic scintillators placed along the beam line. The position of each of
those plastic scintillators is detailed in Table 3.1. Knowing the distances and the time of flight
between the detectors, we have access to the velocity βb of the incoming ion and can therefore
compute its Ab/Zb ratio.

To complete the identification of the incoming ion, we also need to determine its charge
number Zb. This is done using the Bethe-Block formula (see Eq. 3.6) that links Zb to the
energy loss (∆E) in a material. The quantity of light produced when a particle goes through
a plastic scintillator being proportional to the energy loss of the particle, the amplitude of the
signal measured gives us access to the charge number Zb.

The plastics used in BigRIPS are covered with light isolation and two photo-multipliers
(PM) are placed on each side (left and right). Applying coincidence conditions between the
two PMs allows to reduce the background sources. During the SAMURAI21 experiment, two
thin plastics called SBT (Secondary Beam Trigger) were placed 8 cm from each other along the
beam line. They are much thinner than the other plastics in order to minimize the probability
of reaction in the material. Their role is to trigger the data acquisition and to be the time
reference for the entire setup.

The identification of the incoming ions is now completed and the identification plots
obtained for the two different settings used during our experiment are presented in Fig. 3.11.
However, we still need the information on their trajectories. They are determined using
the drift chambers called BDC1 and BDC2 (Beam Drift Chamber) presented in Fig. 3.12.
Those two chambers are separated by nearly 1 m and placed after the SBT. They are both
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name relative position (mm) thickness (mm)
F3 -83600 3.0
F7 -36617 3.0

SBT1 -40 0.5
SBT2 40 0.5

Table 3.1: Properties of the different plastic scintillators placed on the beam line. The relative
distances are given with respect to the middle of the two SBT detectors.

29Ne

27F 29F

Figure 3.11: Identification of the cocktail beam for the two different settings used in the SAMURAI21
experiment.

identical with a square section of dimensions 320(H)×320(V)×120(T) mm3 with an active
volume of dimensions 94(H)×94(V)×90(T) mm3. The two chambers are filled with Isobutane
at a pressure of 100 Torr. They are made of 8 planes of 16 wires arranged vertically (Y)
and horizontally (X). Those planes, separated by 4.8 mm, are placed successively by pairs of
two with the same orientation in the following way: X1X

′

1Y1Y
′

1X2X
′

2Y2Y
′

2 . In a same plane,
wires are separated by 5 mm. For two successive planes with the same orientation, wires are
shifted from one plane to the other by 2.5 mm in order to maximize the spatial covering.
A 8 µm foil of aluminized Kapton is placed in between each wire plane and is used as a cathode.

During our experiment, we used MINOS (presented in Fig. 3.13) as reaction target. The
MINOS device is made of a 15 cm liquid hydrogen target and a Time Projection Chamber
(TPC) and is particularly adapted to proton-induced nucleon knockout experiments. It allows
the tracking of the protons involved in the knockout reaction and therefore to determine the
interaction point. This is of a great importance in order to achieve a good resolution as we
will see in the following chapters. More details about the MINOS target can be found in
Refs. [102, 103].

3.4.3 Detection of the reaction products

We described in the previous section how to identify and characterize the ions of the beam (Zb,
Ab/Zb and trajectories). However the main interest of our study is about the reaction products
from the interaction between the beam and the reaction target. More precisely, since we are
dealing with unbound systems, the products of the reaction are the decay products of our
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Figure 3.12: Sketch of a Beam Drift Chamber (BDC). The dimensions are displayed in mm.

Figure 3.13: Sketch of the MINOS device.

nuclei of interest (fragment+neutron(s)). As we discussed in section 2.2.2, the invariant-mass
method used in our study requires the detection of all the decay products in order to have
access to the full kinematics of the reaction. In order to detect the decay products, the
experimental setup is made of a γ-ray detector, two detector for neutrons and a set of dipole,
drift chambers, and plastic detectors for the charged fragments. We are describing in this
section each detector used in our experiment.

DALI2 - The fragment produced during the interaction between the beam and the target
can be populated in excited states that will decay by emitting γ-rays. This is why the γ-ray
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detector DALI2 has been placed around the reaction target. DALI2 is a 4π detector made of
140 independent Sodium Iodide crystals (NaI). They are placed in 13 rings perpendicular to
the beam axis in order to surround the reaction chamber. The identification of the γ-rays that
have deposited some energy in the crystals is done by looking at the amount of light measured.
Once calibrated, DALI2 allows to reconstruct the energy of a 137Cs γ−source with a resolution
of nearly 9% (FWHM) for the 662 keV photons.

SAMURAI - The charged fragment travels towards SAMURAI (Superconducting Analyzer
for Multi-particles from RAdio Isotopes beams) which is a supraconductor magnet that allows
to reconstruct the properties of charged particles emitted during the reaction. It has been
designed to be used during experiments that require the full kinematics of the reaction such
as in our case in order to compute the invariant mass of unbound states. The system has
been made to be adaptable in order to be used in different kinds of experiment (Coulomb
breakup of neutron-rich and proton-rich nuclei, study of pygmy and giant resonances, nucleon
knockout in order to study unbound states...). The magnet is made of two concentric poles
of 2 m diameter separated by 88 cm, within which is installed a 80 cm high vacuum cham-
ber. The entire setup is placed on a turning base that allows the magnet to turn from−5◦ to 95◦.

SAMURAI allows to create a relatively homogeneous vertical field up to 3.1 T between the
poles for a current of 563 A. Such a field can separate charged fragments (in mass and charge)
by nearly 5σ for an energy of 250 MeV/nucleon and a A/Z ≈ 3 ratio. The big size of the
vacuum chamber allows to cover a large angular acceptance for the reaction products: ± 10◦

horizontally and ± 5◦ vertically. The chamber has two exit windows, one for the neutrons and
one for the charged particles [104].

In the same way that for the beam, the identification of the charged fragment is done using
the ToF and Bρ techniques. In order to have access to the Bρ, two drift chambers are placed
before and after the magnet in order to reconstruct the trajectory of the charged fragment.
They are called FDC1 and FDC2, respectively.

FDC1 drift chamber - The FDC1 (see Fig. 3.14) is based on a similar principle than the
one of the BDC1 and BDC2. It is located in between DALI2 and the entrance window of
SAMURAI. It is a rectangular chamber of dimensions 1000(H)×696(V)×336(T) mm3 with a
cylindrical active volume of dimensions 310(D)×180(T) mm2. It is filled with Isobutane at a
pressure of 50 Torr. Its large entrance window, 620(H)×340(V) mm2, allows to minimize the
interaction of the neutrons in the chamber. 14 plans of 32 wires used as anodes are placed in
the detector. The planes are separated by 10 mm from each-other and the wires from a same
plane are separated by 5 mm.

On the contrary to the BDCs, the FDC1 does not have any horizontal plane (due to
mechanical constraints). Instead, so called U and V planes are used, in which the wires are
placed at an angle of −30◦ and 30◦, respectively, with respect to the vertical. The simulta-
neous use of both planes allows the reconstruction of the horizontal coordinate by interpolation.

Such as for the BDCs, the FDC1 is made of successive pairs of planes of the same type, the
positions of the wires of the second plane being shifted by 2.5 mm compared to the previous
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one in order to maximize the detection efficiency. The planes are therefore organized in such
a way: X1X

′

1U1U
′

1V1V
′

1X2X
′

2U2U
′

2V2V
′

2X3X
′

3. In order to ensure an electric field inside the
chamber, 15 planes of aluminized Kapton are inserted in between the anode planes. The
interpolation of the positions reconstructed on those 15 planes allows the FDC1 to determine
the position of the ions with a precision of 100 µm (RMS) and an efficiency of 100%.

Figure 3.14: Sketch of a FDC1 drift chamber. The dimensions are displayed in mm.

FDC2 drift chamber - The FDC2 (see Fig. 3.15) is located after the SAMURAI spec-
trometer, at nearly 1 m from the SAMURAI exit window. Its principle is similar to the one
described for the other drift chambers used in our experiment (BDCs and FDC1) but its size
is much larger. Indeed, its dimensions are as follows: 2616(H)×1156(V)×876(T) mm3, with
an active volume of dimensions 2296(H)×836(V)×653(T) mm3. The wires are organized in 14
planes in the configuration X, U and V. The planes are made of 112 wires and grouped by two
planes of the same orientation separated by 15 mm from each other. Moreover, the second
plane is shifted by 5 mm in order to maximize the spatial efficiency. In a same plane, the wires
are separated by 10 mm and the groups of planes by 100 mm. Each wire is surrounded by 6
other wires forming an hexagonal shape that plays the role of the cathode.

The succession of the planes in the FDC2 can be described such as:
X1X

′

1U1U
′

1V1V
′

1X2X
′

2U2U
′

2V2V
′

2X3X
′

3. The active area is filled with a mix of Hellium
and Isobutane at atmospheric pressure. The positions of the ions in the FDC2 is reconstructed
by interpolation with a precision of 120 µm (RMS) and an efficiency of 100%. Its large ac-
tive area also allows to cover most of the trajectories coming out of the SAMURAI exit window.

Hodoscope - It is a wall made of 24 plastic scintillator bars of dimensions
100(H)×1200(V)×10(T) mm3. The bars are placed vertically side by side on a frame in
order for their center to be at 2 m height from the floor. A photomultiplier is placed at each
extremity of each bar. The coincidence between the signals of those two PMs allows to select
physics events and to access the ToF of the charged fragments as well as the charge that they
deposited in the bar. Those two information allow to identify the fragments (see Fig. 3.16),
and by using the Bρ obtained from their trajectories in SAMURAI, we can compute their
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Figure 3.15: Sketch of a FDC2 drift chamber. The dimensions are displayed in mm.

energy-impulsion four-vector.

29Ne beam

27F

29F beam

27F

Figure 3.16: Identification of the charged fragments produced from a 29Ne (left) and 29F (right)
beam after its interaction with the MINOS target.

NEBULA - It is one of the neutron detectors used during the experiment. It is made of
120 plastic scintillator bars organized in two walls separated by 85 cm. Each wall is made
of two layers of 30 bars of dimensions 120(H)×1800(V)×120(T) mm3 placed vertically. A
photomultiplier is placed at the extremity of each bar. The position of the interaction of
the neutron in the detector is crucial in order to reconstruct precisely the energy-impulsion
four-vector of the neutron. The X and Z positions are taken as the middle of the bar where
the interaction took place (leading to a ±6 cm uncertainty) and the Y position is determined
from the time difference between the two PMs. The commissioning performed in March 2012
showed that the resolution on the impulsion reconstructed with such a method is σp/p = 0.57%
for a neutron with an energy of 200 MeV [105].

In order to distinguish charged particles from neutrons, so called vetos are placed in front
of each wall. Those vetos are plastic scintillators thinner enough to have a negligible efficiency
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to neutron detection but sufficient to allow the detection of charged particles. Therefore, any
event in NEBULA in coincidence with a hit in at least one of the vetos will be discarded from
the analysis.

Since the magnetic field of SAMURAI does not have any effect on the neutrons, they
follow their trajectory. It has been therefore chosen to place NEBULA at nearly 14 m
from the MINOS target along the beam axis. The neutrons are not sensitive to Coulomb
interactions, and interact only through the strong interaction. Therefore their detection is
not direct but induced by the signal of the recoil nuclei coming from a nuclear reaction.
This implies that the energy deposited in the detector is not proportional to the one of
the incident neutron. We therefore use a ToF technique between the target and NEBULA
in order to determine the energy of the neutron. A second consequence to that indirect
detection is the fact that a same neutron can be detected several times in NEBULA
by interacting successively in different bars. This phenomena, called cross-talk, makes
more difficult the study of reaction channels where more than one neutron are observed in
the final state. More details about the treatment of such reactions has been given in section 2.1.

NeuLAND - It is the second neutron detector that has been used for the first time during our
experiment. Its principle is identical to the one described for NEBULA. However, its geometry
and characteristics are different. NeuLAND is made of 400 plastic scintillator bars of dimensions
50(H)×2000(V)×50(T) mm3 organized in eight successive layers of 50 bars oriented vertically
(V) or horizontally (H) depending on the layer. The succession of layers can be described as
follows: H1V1H2V2H3V3H4V4. In the case of a horizontal (vertical) layer, the position Y (X)
and Z are taken as the middle of the bar and the X (Y) position is reconstructed from the time
difference between the two PMs located at the extremities of the bar. The higher granularity of
NeuLAND compared to NEBULA allows a better resolution on the position of the interaction
and therefore on the reconstruction of the neutron energy-impulsion four-vector. During the
experiment, NeuLAND was placed in front of NEBULA at nearly 11 m from the MINOS target.
In the same way as for NEBULA, vetos were placed in front of NeuLAND in order to discard
the charged particles during the analysis.

3.5 Monte-Carlo simulations

Due to the complexity of the experimental setups used in our experiments, the use of numerical
simulations is essential for a good understanding of the experimental response of the different
detectors involved. However, a simulation of the entire setup and all the processes involved
in the experiment could be extremely heavy and complex. Since the response of some of the
detectors is completely independent from others, we have decided to develop several simulations,
each one reproducing different parts of the setup. In this section, we are presenting each of
those simulations and the way they are used in the analysis. For clarity, in the following we will
present only the simulations used for the analysis of the RIKEN data, but similar ones have
been used in the analysis of the GSI data.
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3.5.1 Trajectories of the charged fragment

The determination of the magnetic rigidity of the charged fragment is one of the key parameters
in our analysis. Not only for the identification of the charged fragments but also for the
determination of their momenta. The dipoles used in our experiments (SAMURAI and
ALADIN) allow to separate the ions as a function of their Bρ, but unfortunately also introduce
non linear effects, making difficult the determination of the trajectories of the fragments. In
order to correct those effects, it has been chosen to use a simulation. For the analysis of the
RIKEN data, the simulation has been developed using the GEANT4 software.

In order to use the simulation, the user tunes the input parameters that correspond to the
properties of the ions at the exit of the target (rigidity or energy, position, incident angle...).
The program is randomly generating a large number of events following the conditions of
the user and propagates the particles in the experimental room until their detection or their
exit of the interest area. This simulation has two main goals: predicting the trajectories
before an experiment in order to determine the optimal position for the fragment detectors;
and determining the relation between the positions and angles measured, before and after the
dipole, and the magnetic rigidity. The simulation determines the trajectory of each particle
and in particular its horizontal and vertical positions as well as the incident angles in the drift
chambers. The results of the X, Y, θx and θy before the dipole (FDC1) as well as X and θx
after the dipole (FDC2) are used to generate a multidimensional polynomial adjustment with
the TMultiDimFit routine of ROOT. The generation of such a function can be long but once
created, it allows to have access instantly to the rigidity of each charged fragment during the
analysis.

3.5.2 Simulation of the γ detection

27F*

Figure 3.17: Test of the DALI2 simulation on the γ-ray transition from 27F∗. The data (black
points) are fitted using a distribution (black line) with two components: the result of the simulation
(red dashed line) and a exponential (blue dashed line).
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In order to analyze the γ-ray spectra produced by the DALI2 detector, a simulation repro-
ducing the response of the detector (interaction into the NaI crystals, Doppler effect...) has
been developed. This simulation has been built in the GEANT4 framework ([106–108]). Its
ability to correctly reproduce the efficiency and the resolution of DALI2 has been tested using
a γ-ray transition from 27F observed during the experiment (see Fig. 3.17).

3.5.3 Fragment-neutron(s) decay

Event generator

In order for the simulation to describe the reality, it needs to reproduce the properties of
the ion beam before the reaction. Experimentally, the beam is characterized by a velocity
distribution with a variable width and shape that can be quite complex. In the simula-
tion, the distribution is considered uniform and its mean value and width are tuned for each
reaction channel in order to reproduce as good as possible the experimental data (see Fig. 3.18).
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Figure 3.18: Superposition of the beam velocity distributions from the data (red) with the distribution
given as an input of the simulation (black) for the (29F,27F+n) reaction channel.

In the target, the ions of the beam lose energy. This energy loss being linked to a large
number of microscopic processes, it is not strictly identical for two particles with the same
energy. Therefore, we observe a broadening of the energy distribution while going through the
target called energy straggling. Moreover, the multiple diffusion of the ions in matter induce a
slight deviation of their trajectory in the target, called angular straggling. In order to take into
account those two effects, once the energy loss in the target calculated, shifts in energy and
angle are randomly picked following Gaussian distributions which width was defined by the
user. The values of the straggling, as well as the energy loss calculation, have been estimated
using the LISE++ software.

In the simulation, we consider the decay of an unbound state of an isotope via the emission
of one or several neutrons. Such decays are characterized by the energy accessible to the
system, the relative energy (Erel) between the fragment and the neutron.
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The differential cross-section of the relative energy follows a distribution characterized
by the state considered, that can be expressed using different functions presented in the
previous chapter. The simulation allows to randomly pick the relative energy of an event from
the probability distribution as a function of the parameters of the fragment+neutron resonance.

Once the relative energy of the event is determined, it is shared between the fragment and
the neutron(s) following the two(or more)-body phase space. In the case of a two-body phase
space, the momenta have, in the center of mass, same norms and same trajectories but opposite
directions. In the simulation, the momenta are supposed isotropic in the center of mass and
their norms are given by the following relations [85]:

PCM =

√

(E2
x − (mAc2 +mnc2)2)(E2

x − (mAc2 −mnc2)2)

2Ex

(3.8)

Ex = Erel +mAc
2 +mnc

2 (3.9)

where Erel is represents the relative energy of the system, Ex its excitation energy, mA the
mass of the fragment and mn the mass of the neutron.

In our experiments, however, the unbound resonance has been produced through a given
reaction, and during the process a momentum is communicated to the resonance. This
information is easily obtained from the data by reconstructing the momentum distribution of
the fragment+neutron(s) system, which shows a Gaussian shape with a characteristic width
in the longitudinal and transverse directions, of the order of 50–200 MeV. In practice, we
determine these widths experimentally for each reaction channel and introduce the values
obtained in the simulation, that will add for each event the momentum of the resonance being
generated following those distributions.

The depth of the reaction point in the target is also picked randomly following a uniform
distribution. Finally, all the observables calculated in the center of mass are converted into
the laboratory frame by using the speed of the incident ion corrected by the energy loss in
the target and affected by the straggling. The fragment then created is affected by the same
effects than the incident ion (energy loss and straggling) which are calculated for the target
thickness remaining to be traveled through. As the detection efficiency of the fragments is not
dependent on their momentum and is close to 100%, in order to optimize the computation time
of the simulation it is considered that 100% of the fragments are detected. We then affect the
measured momenta of the fragments by the resolution induced by the experimental system.
The latter has been determined experimentally and is described in detail in the next section.
Finally, the neutrons produced are transported to the neutron detectors where their detection
(or not) is treated.

Reproduction of the momenta and the experimental resolutions

The measurement of the fragment momentum is degraded by our experimental setup. Indeed,
the momenta are reconstructed from the positions in two drift chambers using a multidimen-
sional polynomial function which makes very complex the identification of the influence of all
the parameters of the measurements. Therefore it has been decided to measure this influence
directly using the data. The ideal conditions for each reaction channel would be an empty
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target run with the following characteristics: the fragment of interest is produced at an energy
slightly below the one of the reaction studied (in order to compensate for the absence of energy
loss in the target) and its momentum and angular spread are negligible. Unfortunately, such
conditions are not doable in reality. Therefore, in order to reproduce artificially a pencil beam,
we are selecting events in the data by applying conditions on their angle and momenta for
different ions produced during the empty target runs. Due to the strict selection on the events,
only the ions produced with a sufficient statistics can be studied using such a treatment. We
therefore selected some of the ions produced in order to deduce a general tendency from a few
examples.

The two observables affected by the experimental setup that we want to reproduce are the
emission angles of the fragments and their total momenta. In order to reproduce the angular
distributions, the following conditions were applied to the beam:

• Reaction centered on the target (15 mm sides square)

• |θx − 〈θx〉| <0.5 mrad

• |θy − 〈θy〉| <0.5 mrad

• No selection on the total momentum

The angular distributions obtained once the conditions applied to the beam are very similar
for the different isotopes considered. They can be well described by a single Gaussian with a
given width for the x and y directions (see Fig. 3.19).

(mrad) (mrad)

Figure 3.19: Superposition of the angular distributions obtained for different ions by selecting a
pencil beam on the empty target and the function used in the simulation to reproduce those distributions.

Concerning the total momentum, the conditions chosen for the beam were as follows:

• No selection on the target position

• No selection on the angles

• Dispersion of the fragment momentum around the average as follows:
|P − 〈P 〉|/〈P 〉 <0.2‰
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The momentum distributions obtained for the different fragments can be reproduced by a
Gaussian. We tried to reproduce the different fragment considered using only one Gaussian
width. The best results, presented in Fig. 3.20, have been obtained using a Gaussian of width
σ =33 MeV/c.
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Figure 3.20: Distributions of total momentum obtained for the 29F, 29Ne, 30Ne pencil beams. The
black curve represent the best compromise obtained to reproduce the three distributions using only one
Gaussian. In each case, the simulation is normalized to the data so that their integrals match.

Treatment of the neutrons in the simulation

Once the fragment detection taken into account by doing the convolution of the momentum
by the function described in the previous section, it is necessary to simulate the detection
of the neutrons. This can be decomposed as the product of a geometrical acceptance (that
characterizes the probability that the neutron is reaching the detector) by a detection efficiency
(that characterizes the probability that the neutron interacts with the detector).

Concerning the geometrical acceptance, the momentum of the neutron emitted by the
unbound system determines entirely its trajectory in the experimental area. The geometrical
acceptance for the detection of a neutron as a function of the relative energy available in the
unbound system is presented Fig. 3.21. The higher the relative energy, the higher will be
the energy transmitted to the neutron and therefore the more it may deviate from the beam
trajectory. We observe that the geometrical acceptance is maximum and constant between
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0-1 MeV. Past 1 MeV, the acceptance is decreasing as the energy transmitted to the neutron is
sufficient so that its trajectory is going out of the neutron detectors. The complex shape of the
acceptance is due to the use of two different detectors with different positions and dimensions.
Indeed, comparing the acceptance of each detector (Fig. 3.21) allows us to understand the full
acceptance of the neutron detection system. NeuLAND having a square entry face and being
closer from the target compared to NEBULA, its acceptance is maximum and constant until
about 3 MeV. Past that value the acceptance is smoothly decreasing as the energy transmitted
to the neutron is sufficient so that its trajectory is out of NeuLAND. NEBULA, being further
from the target and since it has a rectangular entry face, its acceptance is maximum and
constant up to 1 MeV. Then it is decreasing between 1-3 MeV as the trajectory of the neutron
is going out of the vertical acceptance of NEBULA. At 4 MeV, we observe that the acceptance
is going down faster as the neutron is going out of the horizontal acceptance of NEBULA.
Those phenomena explain the complexity of the acceptance observed for the full neutron
detection setup (NeuLAND and NEBULA).
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Figure 3.21: On the left, evolution of the geometrical acceptance for the neutron detection in the
SAMURAI21 experiment (NeuLAND and NEBULA) as a function of the relative energy of a frag-
ment+n resonance formed at 230 MeV/nucleon. On the right, evolution of the geometrical acceptance
for the neutron detection in NeuLAND (blue) and NEBULA (red).

We need now to add the probability for a neutron to interact with the Carbon or Hydrogen
nuclei from the plastic bars of NEBULA or NeuLAND. We used the MANGA (Multiparticle
Analysis in a Neutron Geometrical Array) simulation in our analysis. In this simulation, the
neutron interaction is treated in a purely effective way. We calculate the thickness of material
that the neutron is going through and assume a probability of interaction per cm. The
simulation is therefore depending on only one parameter that is tuned in order to reproduce
the efficiency of the neutron detectors at Erel = 0. The procedure used to determine this
value is described in more detail in Ref. [5]. Once the position of interaction determined, the
time needed for the light to reach the corresponding two PMs is reconstructed. Then this
time is convoluted by the time resolution of each PM (obtained experimentally). The posi-
tions and the time are then treated using the same analysis procedure as the experimental data.

The MANGA simulation does not simulate the energy deposit of the neutron in the
material of the detectors and does not take into consideration the possible multiple interactions
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of a neutron. More complex simulations taking into account those effects have therefore been
developed. However, as it is discussed in Ref. [5], the results obtained using MANGA or more
complex simulations show almost identical results in the case of one neutron decays. Most
importantly, taking into account the large number of simulations that will be needed for the
fit of all the reaction channels that we analyze, the calculation time is much smaller using the
MANGA simulation (about one order of magnitude).

The MANGA simulation allows us to determine the relative energy resolution of our
experimental setup (Fig. 3.22), that has been determined by simulating the decay of delta
resonances and by studying the width obtained after the convolution by the experimental
response. We can see that the resolution is slowly degrading while going to higher relative
energies. A phenomenological law reproducing the data is proposed following the equation:
FWHM = 0.18 × E0.63

rel . The resolution is a crucial parameter since it is constraining our
capacity to observe or not resonant states. We note here the large improvement on the
resolution compared to previous experiments performed at MSU (Fig. 1.10) and at RIKEN
during the DAYONE experiment where NeuLAND and MINOS where not part of the setup [5].
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Figure 3.22: Evolution of the experimental resolution in the SAMURAI21 as a function of the
fragment-neutron relative energy for a beam at 230 MeV/nucleon. The red line on the right charac-
terizes the evolution of the resolution.

With this geometrical simulation, we can also study the effect of our cross-talk filters on
the true n-n coincidences. The cross-talk phenomenon in a neutron detector such as the ones
used in our experiment has been described in section 2.1. The filter used in order to suppress
the cross-talk events is presented in Appendix A. The capacity to eliminate cross-talk events
can be verified experimentally, but in order to study the effect of the cross-talk filter on the
good events, the simulation is necessary.

A first information that is obtained from the simulation is the deformation of the neutron
detection efficiency induced by the filter. To determine it, we simulate a three-body decay
(fragment+n+n) using MANGA. Since the neutrons interact only once in this simulation, all
the double coincidences obtained correspond to true 2n events. We can therefore apply the
cross-talk rejection algorithm and compare the two spectra obtained. The result obtained is
presented in Fig. 3.23. We can observe that our filter reduces the efficiency to detect two
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neutrons but still lets us access true events at very low energies. This effect is due to the fact
that when a nucleus decays with a low relative energy, the angle between the two neutrons
emitted is small and the neutrons are therefore often detected in the same bar of the detector,
which makes impossible to distinguish them. The efficiency is then increasing rapidly with the
relative energy before reaching a maximum at around 1.5 MeV. Then the geometrical effects
discussed in the previous section make the efficiency decrease.

Figure 3.23: Effects of the cross-talk rejection procedure of the true 2n events using MANGA. We
show the superposition of the detection efficiency curves before (blue) and after (red) the cross-talk
rejection algorithm as a function of the relative energy.

Use of the simulated data in the analysis

In the past sections, we have been describing the different simulations used to model the entire
experimental setup. However, the goal of those simulations is to help us understand physical
processes. In particular, our goal is to use the results from the simulation to describe relative
energy spectra obtained experimentally.

In this section, we are showing how to use the simulations in order to study the structure
of nuclei taking the 29F(p,pn) reaction as an example (Fig. 3.24). Before using the simulation,
we following experimental data are available:

• The fragment+n relative energy spectrum that contains resonances from the unbound
system as well as a non-resonant contribution.

• The shape of the non-resonant contribution but not its amplitude.

• The fragment-n correlation function, corresponding to the ratio between the relative
energy and the maximized non-resonant contribution, that can help us to determine the
number of resonances and their location area.

The goal is now to describe the regions of the relative energy spectrum that are not repro-
duced by the non-resonant component using resonances. Those resonances have three main

93



29F(p,pn)28F→ 27F+n
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Figure 3.24: On the left, relative energy spectrum obtained for the 29F(p,pn)28F reaction in the
SAMURAI21 experiment to which the maximized non-resonant contribution has been added (red). On
the right, ratio of the relative energy by the maximized non-resonant contribution for the same reaction
channel.

characteristics: the resonance energy Er, their width Γr and the angular momentum ℓ of the
neutron relative to the fragment. We start by determining the number of resonances needed to
reproduce the relative energy spectrum and we perform simulations by varying the resonance
energy and its width in reasonable ranges. In our example, several structures are observed. In
particular, a low energy resonance is observed at around 200 keV and another one at around
1 MeV. The fit of the total relative energy spectra can be expressed as follows:

N(Ex) =
∑

i

wiRi(Ex) + (1−
∑

i

wi)U(Ex) (3.10)

where N is the number of events at a given energy, Ri the i
th resonance used, normalized to

the integral of the relative energy spectrum, wi the weight applied to this resonance, and U
the non-resonant component which is also normalized to the integral of the relative energy
spectrum. The weights wi must satisfy the condition

∑

iwi ≤ 1 so that the integral of the
spectrum and of the fitting function are equal. The best fit is determined using the χ2 method
associated to the energy (Er) and width (Γr) of the resonances.

The error bars for the energy and width of each resonance can be determined using χ2

surface as presented in Fig. 3.25, which minimum corresponds to the best fit of the relative
energy spectrum. Once the χ2

min determined, we can draw an area that will allow us to
calculate the error bars for Er and Γr. To do so, we look for points of the χ2 surface that
satisfy the following condition : χ2 ≤ χ2

min+∆χ2, where ∆χ2 depends on the level of confidence
that we want to achieve as well as the number of degrees of freedom in the fit [109]. In our
example, the degrees of freedom are the energy and the width of the resonance considered,
and the proportion of all the other components of the fit (resonances and non-resonant
background). Due to the large number of resonances observed in our relative energy spectra,
the χ2 surfaces for each resonance are computed by fixing the energies and widths of the other
resonances. For the 29F(p,pn)28F reaction, the fit of the relative energy spectrum is done with
seven resonances meaning that we have nine degrees of freedom. A good level of confidence is
achieved by taking an area with ∆χ2 = 10.
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Figure 3.25: On the left, χ2 surface obtained by adjusting the relative energy spectrum for the first
peak observed in the 29F(p,pn)28F reaction. Each area corresponds to five units of χ2. The energy is
varying from 0.15 to 0.25 MeV and the width from 0.01 to 0.3 MeV. On the right, result for the best
fit of the same spectrum.

The projection of this area on Er and Γr gives us our uncertainties (see Fig. 3.26). In this
case, we obtain ∆Er ∼10 keV and ∆Γr ∼40 keV.

Figure 3.26: Projections of the χ2 surface on the resonance energy (Er) and width (Γr). The red
line corresponds to the limit χ2 ≤ χ2

min + 10
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Chapter 4

n-n pairing in 14C+4n
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I
n this chapter, we are presenting the results from the s393 experiment that has been performed
using the R3B-LAND setup (see chapter 3.3) at GSI. During this experiment, a high-energy

(≈430 MeV/nucleon) cocktail beam (containing 19N and 21O among other nuclei, see Fig. 3.7)
is sent to a reaction target in which the knockout of nucleon(s) takes place. Different states
of nuclei produced from such a reaction can be produced depending on where the nucleon has
been knocked out. As we will see in the following sections, the ground state can be populated,
but also bound excited states that will decay via the emission of gamma rays and unbound
states that will decay by emitting neutron(s).

4.1 18C excited states populated from 19N(−1p)

Let us first have a look to the bound excited states of 18C populated via the 19N(p,2p)18C∗

reaction. Those states decay via the emission of γ rays and can therefore be observed during
the experiment using the Crystal-Ball detector that allows to detect in-flight γ-rays. The
γ-ray spectrum obtained for the 19N(p,2p)18C∗ reaction is presented in Fig. 4.1. A fit has
been performed using an exponential component as well as three Gaussian functions (one for
each transition observed). The three transitions are found to be at the following energies:
896(19) keV, 1528(16) keV and 2340(112) keV. Those observations are in good agreement with
previous studies [110] as shown in Table 4.1. In this previous study, they were able to look at
γ-γ coincidences and to observe that the 896 keV and 2340 keV transitions were in coincidence
with the 1528 keV transition that has been proposed as a 2+ state. Unfortunately, in our data,
such kind of study is rather difficult to perform due to the low statistics observed (especially
for the 896 keV and 2340 keV transitions).
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Figure 4.1: Gamma rays observed in coincidence with the reaction 19N(p,2p)18C∗. The data are
fitted with an exponential component as well as three Gaussian functions.

State This work Previous work [110]
E(keV) E(keV)

1 896(19) 919(10)
2 1528(16) 1585(10)
3 2340(112) 2415(30)

Table 4.1: Energies of the γ-ray transitions observed in our experiment for the reaction
19N(p,2p)18C∗. The results of a previous study are also presented as comparison.

4.2 18C unbound states populated from 19N(−1p)

Moving higher in excitation energy, we reach unbound states of 18C populated via the
19N(p,2p)18C∗ reaction. Indeed, as mentioned earlier, depending on the shell from which the
proton is removed during the knockout reaction, different states can be populated. The deeper
is the proton knockout occurring, the higher in energy will the states populated be. In is there-
fore possible to populate unbound states above the one neutron emission threshold (Sn) that
will decay by emitting one neutron resulting in the following reaction:

19N(p, 2p)18C∗ →17 C(+γ) + n (4.1)

Since the setup used during the experiment allows us to have access to the full kinematics
of the reaction (momenta of all the reaction products), we can compute the relative energy,
using the invariant-mass method, as shown in Fig. 4.2, where we can clearly observe at least
two structures. A fit of the data has been made using ℓ-dependent Breit-Wigner functions.
The results of the best fit obtained are summarized in Table 4.2. A first state is observed at
1096(24) keV and a second one at 5163(133) keV. However, it is important to know if those
states observed are decaying toward the ground state or toward an excited state of 17C. Indeed,
if a state is decaying toward an excited state of the outgoing nucleus, it is necessary to add the
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ℓ Energy (MeV) Width (MeV)
1 1.10(3) 1.0(2)
0 5.2(2) 5.5(7)

Table 4.2: Summary of the results obtained from the fitting of the experimental relative energy for
the 19N(p,2p)18C∗ →17C+n reaction.

energy of the gamma transition in coincidence to the energy obtained by fitting the relative
energy in order to obtain the excitation energy of the state as follows:

E(18C)
exc = Sn + Erel(+Eγ) (4.2)
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Figure 4.2: Relative energy obtained for the 19N(p,2p)18C∗ →17C+n reaction. The data are fitted
using two ℓ-dependent Breit-Wigner functions (green and blue dashed lines) where the response of the
experimental setup is taken into account. The total fit (red line) has been found to be the best with
ℓ=1 for the lower-energy resonance and ℓ=0 for the higher-energy one. The blue histogram represents
events in coincidence with known γ-rays in 17C taking into account the efficiency of the γ-ray detector.

The gamma rays observed in coincidence are presented in Fig. 4.3. It is known from
previous studies [110] that 17C has two bound states at 207(15) and 329(5) keV. However, we
observe only one transition at 314(4) keV. This could come from the fact that only one of the
two known transitions is populated in our reaction or that the resolution of our detector is not
sufficient to resolve the two peaks. In that case, what we observe would be a combination of
the two transitions seen as one.

As we mentioned earlier, we are interested to see if those γ-rays are in coincidence with
unbound states observed in the relative energy spectrum. The blue histogram presented in
Fig. 4.2 corresponds to such coincidences. However, the number of coincidences is very small,
which suggests that the unbound states observed are mainly decaying towards the ground state
of 17C.
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Figure 4.3: Gamma rays observed in coincidence with the 19N(p,2p)18C∗ →17C+n reaction. The
data are fitted with an exponential component as well as a Gaussian function.

4.3 n-n pairing in 18C and 20O

During the knockout reaction, excited states higher than the ones observed previously (above
S2n) can also be populated and looking at the three-body decay might allow us to observe such
states. As we mentioned earlier, one alternative way to reach the dripline is by populating
high excited states of a nucleus. This is achieved here by knocking out a deeply bound nucleon
from the beam. Such method, as we will see in the following, will allow us to investigate the
n-n pairing inside the nucleus.

We presented in the previous section the unbound states observed when looking at 18C
two-body decays (fragment+n). However, it is interesting that the two-neutron emission
threshold (S2n) of 18C is located only 735 keV above Sn. This means that all the states
observed in Fig. 4.2 are actually located above S2n and therefore could decay via the emission
of two neutrons even if they are observed in the 1n decay channel. It is then interesting to
look at the two-neutron decay channel to see if those same states also decay via the emission
of two neutrons.

At high beam energy, the deep proton knockout reaction 19N(−1p) is expected to occur
mainly through a quasi-free mechanism [111] and preserve the structure of the neutrons in
18C, that can be viewed as a core of 14C plus 4 neutrons in the sd shells (left panel of Fig. 4.4).
This reaction is therefore used here as a tool to suddenly promote neutrons to the continuum,
observe their decay, and trace back how they were correlated in 18C.

The states produced in the 19N(p,2p)18C proton knockout should be analog in spin and
energy to the J =1+, 2+ states produced with large spectroscopic factors at energies of 7.02,
8.32, 10.44 and 11.29 MeV in 14C using the 15N(d,3He)14C reaction, likely from the pick-up of
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a proton from the p3/2 orbit.

By contrast, the deep neutron knockout reaction 21O(−1n) leaves a broken 16O core and
two unpaired neutrons in the 20O residue (right panel). In this case, we expect to hinder the
role of pairing interactions, as will be discussed in view of our observations. High energy states
in 20O (up to 27 MeV) are produced using the 21O(p,pn)20O reaction from a deeply bound p3/2
neutron.

s
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21O(p,pn)20O*

Figure 4.4: Illustration of the shell-model configuration of the 12 neutrons in the 18C (left) and 20O
(right) isotones. In the (p, 2p) reaction the configuration of the neutrons is unchanged and all neutrons
are likely paired, while in the (p, pn) reaction two neutrons are left unpaired.

By detecting all the products of the reaction (fragment+n+n), we can study the n-n corre-
lations in the nucleus using the method described in chapter 2. We are presenting the results
obtained for the 18C and 20O systems using the following reactions:

19N(p, 2p)18C∗ → 16C(+γ) + n+ n (4.3)

21O(p, pn)20O∗ → 18O(+γ) + n+ n (4.4)

where 18C and 20O are populated via the knockout of a proton and a neutron, respectively.

4.3.1 Fragment+n+n relative energy

We first compute the relative energy Erel (Fig. 4.5) for the
18C and 20O systems reconstructed

from the momentum vectors of the fragment and neutrons using Eq. 2.17. This energy
corresponds to the excitation energy of the total system beyond the 2n threshold, since no
significant excitation of the fragment (blue histograms in Fig. 4.5) has been observed.

The 2n-emission spectra of both nuclei are peaked at about the same energy of 4–5 MeV,
and energies up to about 15 MeV were observed. Taking into account the S2n values, this
range of decay energies corresponds to Eexc(

18C)≈ 5–20 MeV and Eexc(
20O)≈ 12–27 MeV. To

reach such high excitation energies, deep nucleon knockout must have occurred.

We can notice in Fig. 4.5 that the Erel distributions for the 18C→16C+n+n and
20O→18O+n+n decay channel look similar even if the excitation energies (Eexc) explored were
very different in each case. This similarity can be explained first by the fact that the neutron
configurations are rather similar, as neutrons occupy the same sd shells in 18C and 20O.
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Figure 4.5: Experimental decay energy spectra of 16C+n+n and 18O+n+n measured respectively
in the proton/neutron knockout reactions from 19N/21O (blue histograms represent events in coinci-
dence with known γ rays in 16C/18O, corrected by εγ). The corresponding locations of the 2n and 4n
thresholds are noted.

Moreover, in the absence of narrow resonances, all decay-energy spectra have some common
features that would apply to any system: they start at zero and increase with energy due to
the opening of three-body phase space, and then at some point the experimental acceptance
decreases and the high transverse momentum of the neutrons will make them escape the
forward detector. And even with an infinite detector, the excitation energy provided by the
reaction will drop at some point since the amplitude of the “piston” (or deep-hole process)
is limited by the lowest available shell in the nuclei under study. Therefore, we must have a
central bump surrounded by a low-energy rise (that can be more or less steep depending on
the presence of low-energy states) and the high-energy fall down.

Within these global limitations, the two spectra of 18C and 20O are not strictly similar and
differ in the first 5 MeV as we can observe in Fig. 4.6. Beyond 6 MeV, the shape of the spectra
are dominated by the acceptance of the neutron detector. We note that the decay-energy
resolution at 6 MeV is already about 2 MeV FWHM [58]. The case of the 15B nucleus produced
from 16C knockout and decaying into 13B+2n is shown in blue for comparison. In this case,
low-energy structures were observed.

However, we are not able to observe any distinctive structure in the Erel distributions
presented in Fig. 4.5. It is therefore difficult just by looking at those distributions to distinguish
if we are looking at a broad unique resonance or at a series of overlapping resonances. Let us
first discuss the second scenario. If the system was populated through a series of narrow (or
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Figure 4.6: Comparison between the Erel of three different systems. The 21O(p,pn)20O→18O+2n
system in black and the 19N(p,2p)18C→16C+2n system in red from Fig. 4.5, and the
16C(p,2p)15B→13B+2n system in blue.

long-lived) overlapping resonances, all with similar strength, we might have not been able to
resolve them in the decay energy spectrum. However, if resonances of different characteristics
were populated, even if too broad to be distinguished on the decay energy spectrum, we
would have been able to see a signature of their presence through changes in the three-body
correlation patterns. The fact that the observed correlations do not change significantly (as
we will see in the following sections) in the two systems as a function of the excitation energy
is suggestive of the presence of a rather unique configuration that we interpret as the direct
promotion of neutron pairs in the continuum.

This raises also the question about what system we are probing, initial system or high-
energy resonances. From the argumentation of the previous paragraph, it was proposed that
a rather unique configuration is probed. At high energy, the deeply-bound proton knockout
reaction 19N(−1p)18C is expected to occur mainly through a quasi-free mechanism [111].
When deep-hole proton configurations (1p1h) are produced with this mechanism, they mix
with all states present in the same (high) energy range and acquire a very broad width through
this mixing, and as soon as formed these “resonances” vanish. Therefore this fast process
keeps no trace of the proton particle-hole configuration and acts as a sudden promotion to
the continuum of neutrons having a configuration with a strong overlap with their initial
structure. Conversely, when the knockout process occurs to not-so-deeply bound states,
narrower resonant states are produced and their decay is characteristic of the overlap between
their configuration and those of the final state available.

As shown in Fig. 4.5, the contribution of excited 16C events seems negligible. In order
to check that this is not the result of a γ detection problem, the γ-ray spectra obtained in
coincidence with the 18C→16C+2n channel are presented Fig. 4.7. It is known from a previous
study [112] that 16C has several excited states at 1.77 MeV, 3.03 MeV, 3.99 MeV, 4.09 MeV
and 4.14 MeV. It is also known that the three highest excited states are decaying in cascade
through the first excited state at 1.77 MeV resulting in γ-ray transitions at the following
energies: 2.22 MeV, 2.32 MeV and 2.37 MeV. Due to the resolution of the detector used during
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our experiment, it is impossible to distinguish those three transitions. However, it is possible
to clearly observe the cascade decay of at least one of the three highest excited states through
the first excited state. Indeed, looking at the Mγ=1 events (Fig. 4.7, left) allows to clearly
identify a transition at around 1.77 MeV, while looking at the Mγ=2 events (right) allows to
identify not only the transition at 1.77 MeV but also a transition at around 2.39 MeV that
could correspond to a transition from one of the three highest excited states to the first one.

M
γ
=1 M

γ
=2

Figure 4.7: γ-ray spectra observed in coincidence with the 18C→16C+2n channel for two different
gamma multiplicities (Mγ).

4.3.2 Normalized invariant masses, Dalitz plots and correlation
function

Dalitz plots - As discussed in section 2.3, correlations in a three-body decay are easily revealed
in Dalitz plots of the normalized squared invariant masses of particle pairs (m2

ij), where FSI
and resonances lead to a non-uniform population of those plots within the kinematic boundary
defined by energy-momentum conservation and the relative energy. A summary of the
simulation results obtained with the model developed in section 2.3 is shown in Fig. 4.8(a-c).
In addition, the results of a combination of both direct and sequential decays is presented in
(d), where a crescent-shaped pattern with a dip at the center appears. Prior to comparing
in detail with any model, we can already note that the experimental plot of panel (e) looks
almost exclusively like a direct decay, while that of panel (f) displays a mixture of direct and
sequential decays.

The projections of the experimental Dalitz plots are shown in Fig. 4.9 for the two systems
and four Erel bins: 0–3.7, 3.7–5.3, 5.3–7.2 and 7.2–12 MeV (chosen in order to contain
similar statistics). The phase-space uniform population of the Dalitz plot leads to bell-shaped
projections (yellow histograms) with a maximum at about 0.5. They have been normalized
to the data at m2

nn > 0.6, where no n-n correlations are observed. Clearly, the data deviate
significantly from phase space. In particular, an increase towards m2

nn =0 is noticeable in all
panels, as already observed in Fig. 4.8(e,f). It is however much stronger in the 2n decay of
18C, which suggests stronger pairing correlations in this system.

104



C+n+n16 →C* 18 O+n+n18 →O* 20

S
IM

U
LA

T
IO

N
E

X
P

E
R

IM
E

N
T

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts

50

100 (e)

 < 7.2 MeVd5.3 < E

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts

50

100
(f)

 < 12 MeVd7.2 < E

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts

50

100
(c)

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts

50

100
(d)

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts
0

50

100 (a)

2
nn

m

0
0.5

1 2
fnm0

0.5
1

C
o

u
n

ts

0

50

(b)

Figure 4.8: Dalitz plots of fragment+n+n decays (fragment-n vs n-n normalized squared invariant
masses). Left panels correspond to 16C+n+n, right panels to 18O+n+n. The four upper panels
represent simulations of (a) phase space, (b) sequential decay through a fragment-n resonance, (c)
direct decay with n-n FSI, and (d) a combination of the latter two. The lower panels (e,f) correspond
to the experimental data for the relative energies noted.

Concerning the fragment-n channel, which should reveal the degree of sequentiality in the
decay, the expected bands in the Dalitz plot of Fig. 4.8(b) correspond to ‘wings’ in the projec-
tion onto m2

fn. Those are clearly observed at 0.1–0.3 and 0.7–0.9 in the three higher-energy
bins of 20O (see Fig. 4.9). These wings and the increase of m2

nn towards 0 suggest, as was noted
above, that the sequential and direct decays are in competition. In order to determine the
extent of this competition, we have used the phenomenological model described in chapter 2.
However before moving into this, we propose to construct the correlation functions Cnn of the
two systems studied. Indeed, the correlation function is a model-independent observable and
will allow us to discuss some of the feature observed and compare our results to other studies.

Correlation functions - The experimental correlation functions Cnn of Fig. 4.10(a) have
been constructed for 18C (blue dots) and 20O (red dots) from the ratio of the measured
relative momentum distribution qnn, that contains the interaction effects, and the one
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Figure 4.9: Projection of the Dalitz plots defined in Fig. 4.8 onto either axes for the data of 18C∗

(left) and 20O∗ (right) decays. The rows correspond to the four Erel bins defined in the text, from
lower (top) to higher (bottom). The yellow histograms represent phase space, normalized to the data
at m2

nn>0.6. The red histograms are the projections of the best two-dimensional fit of the plots, with
their direct (green) and sequential (purple, with percentage noted) decay components.

obtained from phase space, that contains all other effects like kinematic constraints or the
experimental filter (see chapter 2). These two distributions are shown in Fig. 4.10(b) for
the 18C case, where the effect of the n-n FSI at qnn values below 100 MeV/c becomes
even clearer. In order to guide the eye, the experimental Cnn have been fitted with a double
Gaussian. The correlation signal in 18C, Cnn(0)∼25, is huge, actually the largest ever observed.

In order to interpret this correlation strength, the authors of Ref. [91] propose a formulation
that links Cnn(qnn) to the size and lifetime of a Gaussian source emitting independent neutrons.
When the source of particle pairs is large and/or the emission of the two particles proceeds
through a long decay time, correlations are expected to be very weak. Within this formalism,
the 18C data would suggest a small source and a very short decay time, or a very weak
contribution of the sequential decay, as was anticipated already in Fig. 4.8(e).
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Figure 4.10: (a) Two-neutron correlation functions from the three higher-energy bins of 18C∗ (blue)
and 20O∗ (red) 2n decays. The solid lines are traced to guide the eye, while the dashed lines correspond
to the fits of the experimental data from the breakup of 14Be (green) [7] and the neutron evaporation
from 44Ca (black) [8]. (b) Numerator (measured relative momentum distribution, blue points) and
denominator (phase space, yellow) of Cnn for the 18C∗ case.

For comparison, we have added in Fig. 4.10(a) the correlation functions obtained for two
significantly different systems. In one case (black dashed line), the source of neutron pairs was
the compound nucleus formed in the collision 18O+26Mg [8]. The best fit of the experimental
Cnn was obtained for a sphere of R = 4.4 ± 0.3 fm and a lifetime of τ = 1100 ± 100 fm/c.
For this moderately small source, the long decay time scale is responsible for shrinking the
correlation to Cnn(0)∼1.3, a signal about a factor 80 smaller than the one measured for 18C.

In the second case (green dashed line), the source was formed during the breakup of the
two-neutron halo nucleus 14Be [7]. Direct pair emission (τ =0) was invoked to account for the
strong correlation measured, Cnn(0)∼15, at that time the largest ever observed. However, the
relatively large size of the neutron pair in this halo nucleus, with a correlation signal described
by a Gaussian source of rrms

nn =5.6± 1.0 fm, accounts for a reduction of about 40% with respect
to 18C.

Decay model and results - As we mentioned earlier, we observe that sequential and direct
decays are in competition. In order to determine the extent of this competition, we have used
the phenomenological model described in chapter 2 that contains both components. We can
express the general fitting function FN for N intermediate fragment+n resonances of energy
Eri and width Γri :

FN =
N∑

i=1

αif
seq
i (rrms

nn , Eri ,Γri) + (1−
N∑

i=1

αi)f
dir(rrms

nn ) (4.5)

where αi corresponds to the fraction of each sequential decay. fdir and f seq represent the
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Figure 4.11: Comparison between the Dalitz plot for 18C obtained with the data (left) and the one
obtained from the simulation for the best fit (right). The comparison for different Erel ranges are
shown: Erel =0-3.7 MeV for (a) and (b), Erel =3.7-5.3 MeV for (c) and (d), Erel =5.3-7.2 MeV for
(e) and (f) and Erel =7.2-12 MeV for (g) and (h).

direct and sequential component, respectively. In an attempt to reduce the parameters of
the fit to a reasonable number, we consider that the sequential decay occurs through one
fragment-n resonance of energy 〈Er〉 and width 〈Γr〉, that can be seen as an average over
individual resonances. In fact, even the fits of the higher-energy bins only require one low-
energy resonance, of 〈Er〉∼1.5 MeV. We can therefore express the fitting function as:

F1 = αf seq(rrms
nn , 〈Er〉, 〈Γr〉) + (1− α)fdir(rrms

nn ) (4.6)

The final momenta of the three generated particles are filtered to include all experimental
effects (like energy resolution, angular acceptance, or cross-talk rejection). Then the different
observables are reconstructed and fitted, using Eq. 4.6, to the data in the two-dimensional
Dalitz surface (Fig. 4.8). An example of the goodness of the two-dimensional fit is given in the
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Ed (MeV) rrms
nn (fm) Seq. (%) 〈Er〉 (MeV) 〈Γr〉 (MeV)

0–3.7 4.0+0.6
−0.3 31± 14 1.5± 0.3 1.0+0.8

−0.3

3.7–5.3 4.5± 0.6 17± 9 2.0+1.3
−0.3 1.5± 0.3

5.3–7.2 4.2± 0.4 12± 7 1.5+0.8
−0.3 1.5+0.3

−0.8

7.2–12 3.7± 0.1 18± 4 1.5± 0.3 1.5± 0.3

Table 4.3: Table summarizing the parameters obtained from the fits of the four-decay energy bins of
18C shown in Fig. 4.11.

Ed (MeV) rrms
nn (fm) Seq. (%) 〈Er〉 (MeV) 〈Γr〉 (MeV)

0–3.7 4.6+1.1
−0.9 52± 9 1.5± 0.3 0.5± 0.3

3.7–5.3 4.4± 0.5 58± 10 1.5± 0.3 1.5± 0.3
5.3–7.2 4.6± 0.7 48± 7 1.5± 0.3 1.5± 0.3
7.2–12 3.7± 0.1 42± 5 1.5± 0.3 1.5± 0.3

Table 4.4: Table summarizing the parameters obtained from the fits of the four-decay energy bins of
20O shown in Fig. 4.12.

comparison between panels (d) and (f) of Fig. 4.8, where both the n-n FSI and the wings of
the sequential mode are accurately reproduced. Similar agreement is found for all the Dalitz
plots (see Fig. 4.11 and Fig. 4.12) as well as for their projections shown in Fig. 4.9, further
validating the different hypotheses used. The parameters obtained from the fits of the four
decay energy bins of 18C and 20O are summarized in Table 4.3 and Table 4.4.

Considering the average over the four-energy bins (Tabs. 4.3 and 4.4), the fits denote a
compact configuration in both systems, corresponding to a Gaussian source of rrms

nn =4.1±0.4 fm
for 18C and 4.3 ± 0.6 fm for 20O. Both values are in line with the one corresponding to two
nucleons independently distributed in a sphere of radius R (rrms

nn = 3
√
8

7
R). Assuming a liquid

drop of R = 1.2A1/3, the rrms
nn would read 3

√
8

7
1.2A1/3. This gives us for A = 20 a distance

rrms
nn =4 fm which is very similar to what we observed experimentally. According to the fits,
however, the stronger n-n signal in 18C is due to the neutron pair being emitted directly in
81±9% of the time, and a sequential branch is only slightly apparent in the wings of the highest-
energy bin. In contrast, 50±8% of the decays are sequential in 20O, with wings in m2

fn that
are visible in all bins, even in the lowest energy one in which they move towards m2

fn=0.5 to
create an enhanced central contribution there.
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Figure 4.12: Comparison between the Dalitz plot for 20O obtained with the data (left) and the one
obtained from the simulation for the best fit (right). The comparison for different Erel ranges are
shown: Erel =0-3.7 MeV for (a) and (b), Erel =3.7-5.3 MeV for (c) and (d), Erel =5.3-7.2 MeV for
(e) and (f) and Erel =7.2-12 MeV for (g) and (h).

4.4 Conclusion and perspective

We observed in this chapter that the decay of the core+4n isotones 18C and 20O displays
significantly different features. In the former, extremely strong correlations persist up to
12 MeV, which we propose to be caused by the large fraction (∼ 80%) of direct emission of
correlated pairs with a relatively compact configuration. The decay of 20O exhibits much
weaker correlations, with about 50% occurring through sequential processes. The clear
contrast between these isotones is likely due to the way they are populated: the knockout of
deeply-bound neutrons from 21O leaves two unpaired neutrons in 20O with a broken 16O core
(in this way increasing the probability of sequential decay), while the knockout of deeply-bound
protons from 19N leaves the neutron pairs and the 14C core unaffected.
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The present study shows that the high-energy proton knockout reaction is a tool of choice
for studying neutron correlations, be there of 2n or 4n origin, up to the neutron dripline.

Moreover, we noticed during our study that in the knockout from 19N the dominant
production channel leads to 14C, as observed in Fig. 3.8 where the 14C is the most populated
fragment. While we are not able at the time being to detect 4n and their correlations owing
to the insufficient granularity of the LAND detector, we think this feature is suggestive of a
core+4n structure of 18C.

In the future, we wish to study the evolution of 2n and 4n correlations from the valley of
stability to the dripline, and show the role of the reaction mechanism in revealing such corre-
lations. Results shown in this chapter have suggested that the deep proton-knockout reaction
provides a unique tool to suddenly promote neutrons into the continuum and study their cor-
relations from their detection. The major drawbacks of the present study were the modest
neutron energy resolution that leads to a large uncertainty on the single-particle structure of
the 1n resonance, as well as the 500 keV efficiency cut-off for the detection of two-neutrons
(due to cross-talk rejection conditions), that prevents the detection of low-energy neutrons from
states possibly located right above S2n. The limited granularity and efficiency of the neutron
array also prevents the study of 4n correlations, which are rather detected as 2n or 3n at the
present time. In future experiments, we wish to benefit from the increased granularity of the
NeuLAND detector, as well as from the increased beam intensities, to study the 18C→16C+2n
system using the 19N(−1p) reaction with a better resolution in order to:

• Characterize the resonance above S2n (width, one- or two-neutron decay branches) to see
if it is a good candidate for di-neutron decay.

• Populate and study states above S4n and study if they exhibit 2n-2n or tetra-neutron
correlations.

• Identify a narrow 4n resonance around the S4n threshold to see if the Ikeda conjecture is
a general feature of the continuum.

Added to this we would like to:

• Study the evolution of the pairing interaction and the extractedrrms
nn value as a function

of the excitation energy Eexc further from the stability using the 18C(p,2p)17B→15B+2n
reaction. Competition between gamma emission and 2n emission was tentatively found
in the 1600 keV state, which may be a sign of 2n clusterization here. Having a much
better energy resolution with the NeuLAND array will better constrain the energy and
width of the resonance, check if its decay occurs directly or sequentially, and find if its
energy matches that of the gamma-ray energy. In such a case, this would confirm this
extremely rare competition between gamma and 2n decay.

• Study 4n correlations using the 18C(p,2p)17B→13B+4n reaction channel by producing 17B
above the 4n emission threshold of 5.1 MeV.

• Identify if a candidate for 4n cluster (narrow resonance) exists around the corresponding
emission threshold in 17B, in view of a generalization of the Ikeda conjecture.
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Interestingly, 19C and 21N are expected to be transmitted in the same experimental beam
tuning. The former offers the opportunity to study the neutron correlations in 18C via
the one-neutron knockout reaction, and observe how they deviate when produced from the
19N(−1p) reaction that we presented in this chapter. Qualitatively, the neutron knockout
reaction is expected to break the 14C core, and may interestingly lead, as in the case of 20O
presented in this work, to much loose correlations and enhance sequential decays. On the other
hand, the latter offers the possibility to study 20O from the 21N(−1p) reaction to be compared
with results obtained from 21O(−1n).

In this kind of experiment, several nuclei are produced, offering the possibility to study dif-
ferent systems at the same time. This is of utmost importance to understand and characterize
the interplay between the reaction mechanism and the structure of the systems at the dripline.
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Chapter 5

p-n interaction in Fluorine: 26F and
28F
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I
n this chapter, we present the results obtained on 26F and 28F during the SAMURAI21 exper-
iment performed at RIKEN. We will start by 26F that has been populated from 27F(−1n),

and compare our results to the ones obtained in a previous study [3]. Then we will investigate
28F populated from 29Ne(−1p) and compare our results to a previous study [4] as discussed in
section 1.4. In order to have a more complete picture of the 28F structure, we populated it also
from the knockout of a neutron in 29F. Finally, we will explore the 2n decay (fragment+n+n)
of high-energy excited states of 28F populated from 29Ne(−1p).

5.1 26F: confirmation and new results

As mentioned in section 1.4, 26F has already been studied using the 27Ne(p,2p) reaction where
an unbound state at 323(33) keV has been proposed as the Jπ = 3+ state which is part of
the Jπ = 1+, 2+, 3+, 4+ multiplet resulting from the πd5/2 ⊗ νd3/2 coupling. In this same
study another state has been observed at 1790(290) keV for which no spin has been proposed.
Therefore in this section, we want to compare our results, obtained with a different reaction,
to those previous results. The same Jπ = 3+ state is expected to be populated using the
27F(p,pn) and 27Ne(p,2p) reaction. Our goal will be to confirm first that a state is observed
at about 323(33) keV, and from the determination of its ℓ value confirm that this is indeed a
candidate for the 3+ of the πd5/2 ⊗ νd3/2 multiplet. Secondly, we will look for new states that
have not been observed previously.
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DAYONE exp. (x0.4)
SAMURAI21 exp.

Figure 5.1: Relative energy spectrum obtained for the 27F(p,pn)26F reaction in the SAMURAI21
experiment (black). The relative energy spectrum obtained for the same reaction in the DAYONE
experiment (without the MINOS target and without the NeuLAND detector) is also shown (red).

The relative-energy spectrum obtained for the 27F(p,pn)26F→25F+n reaction is presented
in Fig. 5.1. The spectrum obtained for the same reaction in the DAYONE experiment, in which
the only differences compared to the SAMURAI21 experiment were the absence of the MINOS
target and the NeuLAND detector in the setup, is also shown in the same plot. The comparison
of those two results clearly shows the huge improvement on the resolution that has been made
between those two experiments. Indeed, in the DAYONE experiment, only a broad structure
between 0-2 MeV is observed while in the results from SAMURAI21, at least three structures
can be clearly identified in this same energy range. This improvement in resolution is mainly
due to two factors:

• the use of the MINOS target that allows a precise reconstruction of the position where
the knockout reaction took place in the target, and therefore a precise correction for the
energy loss of the fragment in the target.

• the use of the NeuLAND detector that has a higher granularity compared to the NEBULA
detector and therefore allows to reach a better resolution on the reconstruction of the
neutron momentum.

We start the analysis of the data by adding the maximized non-resonant contribution to
the relative energy spectra as presented in Fig. 5.2 (see section 2.2.1). Then looking at the
fragment-n correlation function allows us to observe four structures between 0-2.5 MeV and
another structure at about 5 MeV. Moreover, it seems that another contribution could also be
needed at about 3.5-4 MeV as the non-resonant component alone does not reproduce the data
in this region.

We are therefore performing a fit of the data using the non-resonant contribution as well as
six resonances. The results are presented in Fig. 5.3, where we can observe a good reproduction
of the data by the total fit. The parameters of the fit are presented in Table 5.1.
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27F(p,pn)26F→ 25F+n
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Figure 5.2: On the left, relative energy spectrum obtained for the 27F(p,pn)26F reaction in the
SAMURAI21 experiment to which the maximized non-resonant contribution as been added. On the
right, ratio of the relative energy by the maximized non-resonant contribution for the same reaction
channel.
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Figure 5.3: Best fit obtained for the relative energy spectrum of the 27F(p,pn)26F reaction. The
resonances are numbered as R1−6.

We observe a resonance at 0.38 MeV, which could correspond to the Jπ = 3+ state proposed
in [3]. We also observe five resonances at higher energies that do not correspond to any known
resonances.

However, as discussed in section 2.2.2, it is important to know if the resonances observed
are decaying towards the ground state of 25F or towards one of its excited states. In the first
case, the excitation energy of the resonance is equal to the energy extracted from the fit to
which we need to add the Sn(

26F) value, while in the second case the energy of the excited
state observed in coincidence also needs to be added (see Eq. 2.19). The excited states of
25F have already been studied in [9], where a precise level scheme based on particle-γ and
particle-γ-γ coincidences has been established (see Fig. 5.4). Those results will be used as
a reference as we will investigate correlations between γ-rays and resonances observed in the
relative-energy spectrum.
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Ri Er (MeV) Γr (MeV)
1 0.38(6) 0.18(20)
2 0.90(7) 0.19(12)
3 1.65(8) 0.30(15)
4 2.02(9) 0.23(20)
5 3.81(78) 0.77(55)
6 4.98(37) 0.39(37)

Table 5.1: Parameters obtained for the best fit of the relative energy spectrum of the 27F(p,pn)26F
reaction.

Figure 5.4: On the left, decomposition of the γ-ray spectrum of 25F. The solid black line shows the
final fit which includes the response function from GEANT4 simulation (green solid curves) and the
additional exponential background plotted as dashed red line. On the right, proposed level scheme of 25F
compared to shell-model calculations performed using USD, USDA and USDB interactions. Energies
are given along the transitions as well as their relative intensities in italics. Both figures are taken
from [9].

The γ-rays observed in coincidence with 25F+n events (Fig. 5.3) are presented in Fig. 5.5.
Some structures that could correspond to known γ-ray transitions (Fig. 5.4) are observed in our
inclusive γ-ray spectrum but it remains difficult to identify them clearly. We decided therefore
to perform several cuts (corresponding approximately to the resonances found) in the relative
energy spectrum of 26F and to observe the corresponding coincidence events in the γ-ray spec-
trum (Fig. 5.6). The gates are chosen to avoid the regions where two resonances are overlapping.

We observe in Fig. 5.6 very different γ-ray spectra depending on which resonance is
selected. Indeed, no clear γ-ray transition are observed in coincidence with the resonances
R1, R4 and R6, meaning that they are connected to the ground state of 25F. A structure
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Figure 5.5: γ-ray spectrum obtained in coincidence with 25F+n events.

that could correspond to the 9/2+ state in 25F (Fig. 5.4) is observed in coincidence with
the resonance R5 but it is too narrow and low statistics to be consistent with the resolution
of our detector. We therefore deduce that R5 is also connected to the ground state of 25F.
However, structures are observed in the case of the R2 and R3 resonances. For the R2

resonance, we observe γ-rays in coincidence at around 3-4 MeV that could correspond to the
3/2+ or 9/2+ states presented in Fig. 5.4. However, it is impossible, due to the resolution
of our γ-ray detector and to the low statistics observed, to identify clearly which γ-ray
transitions are observed in coincidence. In the γ-ray spectrum obtained in coincidence with
R3, we observe a structure at around 1.7 MeV and another one at between 3-4.2 MeV. All
those transitions could be the signature of the decay through the 5/2+ excited state as we
can see in Fig. 5.4. To summarize, we observed that the resonances R2 and R3 are not
decaying to the ground state of 25F but to its bound excited states. Indeed, R2 seems to
decay to one or several of the states from 25F located between 3-4 MeV (3/2+ or 9/2+)
and the resonance R3 seems to decay towards the 5/2+ state of 25F. As mentioned earlier,
those pieces of information need to be taken into account while building the level scheme of 26F.

Now that we characterized all the resonances observed in the relative-energy spectrum
of 26F, we will try to assign their spin and parity (Jπ). In the case of a neutron-knockout
reaction, the momentum distribution allows to deduce the angular momentum of the knocked
out neutron. Indeed, by comparing experimental results (shape and width of the distribution)
to theoretical calculations, we are in principle able to extract the angular momentum of the
knocked out neutron and therefore to deduce from which orbital it has been removed. In the
following, we will compare our experimental results to eikonal-model theoretical calculations.
The method used to perform those calculations is discussed in more details in Appendix B.

Before treating the unbound states previously discussed, we will test our method by looking
at the 27F(p,pn)26F(∗) reaction where the ground state and/or the bound excited states of 26F
are populated. The angular momentum of the neutron knocked out in order to populate all the
Jπ = 1+, 2+, 4+ states is likely to be ℓ = 2 (νd3/2 orbital). We are therefore presenting in Fig. 5.7
the inclusive parallel momentum distribution of the outgoing fragment (26F). The comparison
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27F(p,pn)26F→ 25F+n
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Figure 5.6: Upper panel, relative energy gates for the 25F+n events corresponding to the R1−6

resonances. Lower panel, γ-ray spectra corresponding to each gate (matching colors) presented in the
upper panel.

to the theoretical calculation is in good agreement with a pure ℓ = 2 angular momentum
as expected. After this cross-check, we will apply the same method to the unbound states of 26F.

However, since some of the resonances are overlapping significantly, with each other and/or
the non-resonant component, we need to find a way to construct the momentum distribution
of a resonance without any contamination from the neighboring components. The method
that we are using is discussed in Ref. [113]. The idea of this method is to build the momentum
distribution of each resonance by making gates on the inclusive momentum distribution and
then fitting the relative energy corresponding to each gate. For each gate in momentum,
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Figure 5.7: Inclusive parallel-momentum distribution of the fragment (26F) in the beam rest frame
detected during the 27F(p,pn)26F(∗) reaction. Eikonal-model theoretical calculations are shown in dif-
ferent colors in order to compare them to the experimental distribution.

one point is obtained for each resonance, the amplitude of the point corresponding to the
integral of the resonance considered and its position corresponding to the center of the momen-
tum gate. Using this method the momentum distribution for each resonance can be determined.

The result for the R1 unbound state observed (at 0.38 keV) is shown in Fig. 5.8 and
compared to theoretical calculations. Although the statistical significance is lower than in
Fig. 5.7, due to the fact that the relative contribution of this resonance to the total spectrum
of Fig. 5.3 is small, the best fit of the distribution is obtained for ℓ = 2. This results confirms
that this state seems to be the same than the one observed using a different reaction channel
in Ref. [3] and that it is indeed a good candidate for Jπ = 3+ resulting from the πd5/2 ⊗ νd3/2
coupling discussed in section 1.4.

The momentum distributions for the R2, R3 and R4 unbound states are also presented in
Fig 5.8 and compared to theoretical calculations. For R2, the best fit of the distribution is
obtained for ℓ = 2. Due to the relatively high energy of the resonance and to the fact that all
the states from the πd5/2⊗νd3/2 coupling have been identified. This state is probably resulting
from the knockout of a neutron in the d5/2 orbital. Therefore R2 could be one of the states
expected from the πd5/2 ⊗ νd5/2 coupling (Jπ = 0+, 1+, 2+, 3+, 4+, 5+). For R3 and R4, the
momentum distributions are best reproduced for ℓ = 1, meaning that those two states have a
negative parity.

Unfortunately, we are not able to extract the momentum distributions for the R5 and R6

resonances due to the low statistics observed for each of those states. We also did not observe
any state corresponding to a ℓ = 0 angular momentum even if the s1/2 and the d3/2 orbitals
are expected to be very close. This is probably due to the fact that ℓ = 0 states are usually
very broad and therefore difficult to observed experimentally.

Following our results, we can propose a level scheme for the unbound states observed in 26F
using the 27F(−1n) reaction in Fig. 5.9. Since we are not able to distinguish which γ-ray tran-
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Figure 5.8: Parallel-momentum distribution for the R1−4 resonances of the (
25F+n) unbound system

in the beam rest frame. Eikonal-model theoretical calculations are shown in different colors in order
to compare them to the experimental distribution.

sitions are observed in coincidence with R2 and R3 we assumed an average transition of 3.5 MeV.
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Figure 5.9: Proposed level scheme of 26F deduced from our experimental results for the 27F(−1n)
reaction.

5.2 28F: spectroscopy from 29Ne(−1p)

We move now to the study of 28F populated from the knockout of a proton in 29Ne (same
reaction as in Ref. [4]). The relative energy spectrum is presented in Fig. 5.10 where the
maximized non-resonant contribution has been drawn. This and the correlation function al-
low us to clearly observe seven resonances when only two were assumed in the previous study [4].

29Ne(p,2p)28F→ 27F+,
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Figure 5.10: On the left, relative-energy spectrum obtained for the 29Ne(p,2p)28F reaction in the
SAMURAI21 experiment to which the maximized non-resonant contribution has been added (red).
On the right, ratio of the relative energy and the maximized non-resonant contribution for the same
reaction channel.
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Before moving to the fit of the relative energy spectrum, we will use this result as an
example to show the resolution difference between NEBULA and NeuLAND (Fig. 5.11). The
better resolution achieved using NeuLAND is explained by its enhanced granularity compared
to NEBULA. Indeed, the section of the bars for NeuLAND is 5×5 cm2 and 12×12 cm2 for
NEBULA. Even if NeuLAND is located closer to the reaction target compared to NEBULA,
the resolution obtained with NeuLAND is better.

 (MeV)relE
0 1 2 3 4 5 6 7

C
ou

nt
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

310×

Figure 5.11: Superposition of the relative-energy spectra for the 27F+n system obtained when the
neutron is detected in NeuLAND (black) or NEBULA (red).

We are now performing the fit of the relative energy spectrum for the 27F+n system. The
results of the fit assuming seven resonances are presented in Fig. 5.12 and Table 5.2. The
experimental data are remarkably well reproduced by the total fit, even when looking at the
spectrum in logarithmic scale.
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Figure 5.12: On the left, best fit obtained for the relative-energy spectrum for the 27F+n system.
On the right, same figure in logarithmic scale.

As mentioned in the previous section, it is crucial to know if the unbound states observed
are decaying to the ground state of 27F and/or to an excited state. The bound states of
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27F have been recently studied in [114] where only one excited state has been identified at
915(12) keV. This same transition is observed in the inclusive γ-ray spectrum (Fig. 5.13)
obtained in coincidence with the 27F+n events.

27F*

Figure 5.13: γ-ray spectrum obtained in coincidence with 27F+n events. The data (black points) are
fitted using a distribution (black line) with two components: the result of the simulation (red dashed
line) and an exponential (blue dashed line).

In order to determine which state(s) are decaying to the excited state of 27F, we can look
for γ-ray transitions in coincidence with resonances in the 27F+n system (Fig. 5.14). We
observe that R2 and R6 are found in coincidence with a γ-ray at around 930 keV. This means
that those two resonances decay to the excited state of 27F while all the other resonances decay
to its ground state.

As mentioned in section 2.2.2, the energy of a resonance decaying to an excited state
needs to be shifted by the corresponding γ-ray transition (here 915 keV). We can do the
calculation as an example for R2 that we observed at 0.36 keV. Adding the energy of the γ-ray
in coincidence, we find that this state is actually located at around 1.28 MeV above Sn, which
corresponds to the energy of R4. We can therefore propose that R2 and R4 are actually the
same state decaying either to the ground state (59%) of 27F or to its excited state (41%). We
observe in the same way that R6 and R7 could also be only one state decaying either to the
ground state of 27F or to its excited state.

Following our results, we can propose a level scheme for the unbound states observed in 28F
using the 29Ne(−1p) reaction in Fig. 5.15. The ground state of 28F is found to be at 0.20 MeV.
We have therefore determined for the first time the energy of the ground state (and from
there its mass) of 28F, 200 keV. Even if this value is close to the one quoted in the previous
work, the latter was the random result of the combination of the ground and second excited
states, the absence of γ-ray detection, the low resolution and statistics, and a subjective fitting
hypothesis. In addition, five excited states have been unambiguously determined, for the first
time too, with the clear signature of one of them decaying through two different paths.
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Figure 5.14: Upper panel, relative energy gates for the 27F+n events. Lower panel, γ-ray spectra
corresponding to each gate (matching colors).
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Figure 5.15: Proposed level scheme of 28F deduced from our experimental results for the 29Ne(−1p)
reaction.
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5.3 28F: spectroscopy from 29F(−1n)

We propose now to study 28F populated from the knockout of a neutron in 29F, a reaction
that has never been studied before and that may provide a new perspective on the structure
of 28F, and in particular on the spin and parity of the states observed. Like we did in the
previous sections, we start first by looking at the relative energy spectrum of the 27F+n system
to which we added the maximized non-resonant contribution as shown in Fig. 5.16, where
the correlation function is also presented. From those two plots, we can clearly identify three
resonances between 0-2.5 MeV and maybe two other resonances at around 3.4 and 4 MeV,
leading to a total of five contributions.

29F(p,pn)28F→ 27F+n
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Figure 5.16: On the left, relative energy spectrum obtained for the 29F(p,pn)28F reaction in the
SAMURAI21 experiment to which the maximized non-resonant contribution has been added (red). On
the right, ratio of the relative energy by the maximized non-resonant contribution for the same reaction
channel.
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Figure 5.17: γ-ray spectrum obtained in coincidence with 27F+n events.

Before moving to the fit of the relative energy, we check the presence of γ-rays from 27F
in coincidence. Indeed, we populate here the same 28F nucleus than in the previous section
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Figure 5.18: Upper panel, relative-energy gates for the 27F+n events. Lower panel, γ-ray spectra
corresponding to each gate (matching colors).

where seven resonances were observed. 28F being populated via two different reactions, it is
not surprising that the relative energy spectra are not identical. However, we note that the
first state observed here at around 200 keV seems to be the ground state of 28F identified in
the previous section. By comparing the two spectra (Fig. 5.16 and Fig. 5.10), we observe that
several structures seem to match while others seem to have disappeared, like for example the
two resonances observed via the 29Ne(−1p) at 0.36 and 1.28 MeV. We observed in the previous
section that the structure at 0.36 keV was in coincidence with γ-rays and we proposed that
the structures at 0.36 and 1.28 MeV were actually the same state decaying both to the ground
state and to the excited state of 27F. In order to know if those two states are populated in
the 29F(−1n) reaction, we propose to look for γ coincidences. The inclusive γ-ray spectrum
presented in Fig. 5.17 shows a very weak contribution from the 915 keV transition in 27F.
However, some events are still observed. We therefore look in Fig. 5.18, using the same method
as in previous sections, for γ-rays in coincidence with the 27F+n.
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We observe in Fig. 5.18 coincidences in the same regions than in the previous section where
28F was populated from 29Ne(−1p), which proves that the 1.28 MeV resonance found in the
previous section is also populated using this reaction. Therefore we should add two resonances
to the fit: one corresponding to the decay of that state to the ground state of 27F and the
second corresponding to its decay to the excited state at 915 keV. However, we observe that
this state is very weakly populated in this reaction channel compared to the one studied with
the (p,2p) reaction and described in the previous section. We note that the quality of our setup
has allowed us to signal unambiguously the presence of three structures that, without γ-ray
detector, were almost impossible to identify at first sight in the relative energy spectrum, even
with our very high resolution and acceptance.

It is clear now that we need to fit the relative-energy spectrum using seven resonances like
in the previous section. The results of the fit are presented in Fig.5.19 and Table 5.2 where the
data are well reproduced by the fit, even when looking at the spectrum in logarithmic scale. In
order to perform that fit the extremely weak contribution of R2 has been fixed by comparing
the γ-ray observed in coincidence in the 29F(p,pn)28F reaction and in the 29Ne(p,pn)28F
reaction discussed in the previous section.
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Figure 5.19: On the left, best fit obtained for the relative energy spectrum for the 27F+n system
populated from 29F(−1n). On the right, same figure in logarithmic scale.

The results obtained using the two different reactions in order to populate 28F can be
compared. By comparing the energy position of the resonances extracted from the fit, it
seems that the same states are populated using both reactions even if the population rates are
varying significantly from one reaction to the other. For example, both reactions populate the
ground state found at the same energy of 0.20 MeV. However, even if some states look like
the same populated from two different reactions, their extracted energies sometimes differ by
a few tens of keV, such as for example R3 which was found at 0.94 MeV when populated from
29Ne(−1p) and at 1.00 MeV when populated from 29F(−1n). This might suggest that we are
actually looking at two different states.

Following our results, we can propose a level scheme for the unbound states observed in
28F using the 29F(−1n) reaction in Fig. 5.20.
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Ri Er (MeV) Γr (MeV)
1 0.198(6) 0.18(4)
2 0.33(21) 0.20(10)
3 0.996(13) 0.19(5)
4 1.29(15) 0.15(5)
5 1.88(8) 0.01(22)
6 3.18(26) 0.32(67)
7 3.98(26) 0.7(6)

Ri Er (MeV) Γr (MeV)
1 0.204(16) 0.18(14)
2 0.363(17) 0.11(7)
3 0.94(2) 0.15(5)
4 1.28(3) 0.17(9)
5 1.84(3) 0.17(9)
6 2.81(36) 0.47(61)
7 3.66(10) 0.66(26)

Table 5.2: On the left, parameters obtained for the best fit of the relative energy spectrum of the
27F+n system populated from 29F(−1n). On the right, parameters obtained for the best fit of the rela-
tive energy spectrum of the 27F+n system populated from 29Ne(−1p) are recalled in order to facilitate
the comparison.
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Figure 5.20: Proposed level scheme of 28F deduced from our experimental results for the 29F(−1n)
reaction.

In the same way that in the case of 26F, since 28F is populated here from the knockout of a
neutron in 29F, looking at the momentum of the 27F+n system and comparing it to theoretical
calculations allows us to access the angular momentum of the knocked out neutron for each
resonance. This can be very helpful in order to assign the spin parity of the unbound states
observed.

We start by the ground state of 28F located at 0.20 MeV. The parallel momentum
distribution is presented in Fig. 5.21 and compared to theoretical calculations. We observe
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an asymmetry towards the negative momenta which is related to the effects of the reaction
mechanism, not considered in the calculations we use. However, the distribution above
-50 MeV/c seems unaffected by this phenomenon. Therefore it has been chosen to fit the
theoretical calculations to the data only in the p// ≥ −50 MeV/c region. The best agreement
is found for ℓ = 1, which suggests that the ground state of 28F has a negative parity and
therefore belongs to the island of inversion (see section 1.4). This is an important result, as it
contradicts the main conclusion of Ref. [4].

L=1
negative

parity

Fitting area

Figure 5.21: Parallel-momentum distribution for the R1 resonance (0.20 MeV) of the 27F+n un-
bound system populated from 29F(−1n) in the beam rest frame. Eikonal-model theoretical calculations
are shown in different colors in order to compare them to the experimental distribution. The area in
which theoretical and experimental distributions are compared is shown in red.

We can also perform the same study for the R3 resonance. The results are presented in
Fig. 5.22. In this case the best fit is found for ℓ = 2, which places this resonance as a good
candidate for one of the states of the Jπ = 1+ − 4+ multiplet resulting from the πd5/2 ⊗ νd3/2
coupling (see section 1.4).
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Figure 5.22: Parallel-momentum distribution for the R3 resonance (1.00 MeV) of the 27F+n un-
bound system populated from 29F(−1n) in the beam rest frame. Eikonal-model theoretical calculations
are shown in different colors in order to compare them to the experimental distribution. The area in
which theoretical and experimental distributions are compared is shown in red.

5.4 Determination of Sn(
27F)

The mass is an important parameter in nuclear physics and especially in our analysis as
theoretical calculations and also the mass-invariant formula depend on it. It is therefore crucial
to know with a good precision the mass of the nuclei that we are studying. Unfortunately, in
our case, since we are interested in nuclei far from stability, their masses usually have large
uncertainties. This is the case for example for the neutron emission threshold Sn of 27F, for
which the AME2016 evaluation gives the value of 1270(410) keV.

In our experiment, we have been studying the excited states of 28F. Among those states,
some have been found to be above S2n(

28F) which might suggest that some of those states also
decay by emitting two neutrons. Now if we could observe the 2n decay of at least two of those
states, we would be able to measure the value of S2n(

28F) which is also equal to Sn(
27F). Our

results would provide in this way a precise experimental measurement of Sn(
27F).

The first step is therefore to compare the relative energy spectrum for the one- and
two-neutron decay channels of 28F. They are presented in Fig. 5.23 using the value from
the AME2016 evaluation. Unfortunately we do not observe any coincidence between states.
However, if we slightly modify the value of Sn(

27F) to 1600 keV (see Fig. 5.23), we observe
that two of the states decaying by emitting one neutron are in perfect coincidence with two
states that decay by emitting two neutrons, suggesting that they are the same states for which
the one- and two-neutron decays are in competition. Once the value of 1600 keV has been
determined, using the error in the energies of those two states we obtain an error for Sn(

27F)
of 50 keV, one order of magnitude smaller than the one in the AME2016.

In order to confirm that the Sn(
27F) value is actually 1600(50) keV, several points still need

to be checked. We need to confirm that the states observed in the one- and two-neutron decay
channels are indeed the same states, in which both decays are in competition. If this is the
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26F+n+n

27F+n

26F+n+n

27F+n

Figure 5.23: Relative energy for one and two neutrons decay channels of 28F populated from 29Ne(-
1p). On the left, the Sn(

27F) value considered is the one from the AME2016 evaluation. On the right
the Sn(

27F) value is 1600 keV.

case, the widths of the resonances should be the same in both channels, and the 1n/2n-decay
branching ratios should also be the same in the 29F(-1n) reaction, in which these two states
have also been observed.

5.5 28F: n-n decay channels

We have been interested in the previous sections by the unbound states of 28F decaying by the
emission of one neutron. However, higher energy states (above S2n) are also populated during
knockout reactions, giving us a unique opportunity to study the n-n interaction beyond the
dripline (see section 1.3). We presented already, in chapters 2 and 4, techniques in order to
study n-n correlations. We propose here to conduct the same kind of study in the case of 28F
using the 29Ne(p,2p)28F→26F+2n reaction.

Reaction channels involving the emission of two neutrons are particularly difficult to
analyze due to the treatment of cross-talk events (see section 2.1). It is crucial to make sure
that the cross-talk events are well treated in our data. Since in the SAMURAI21 experiment,
we had two neutron detectors one behind the other separated by a few meters, cross-talk events
from one detector to the other are unlikely to be missed by our rejection filter. Therefore
a simple way to test the rejection procedure is to compare the three-body relative energy
obtained when the 2n are detected in the same detector to the case where each neutron
is detected in a different detector. If cross-talk events are completely rejected, the relative
energy spectra obtained in each case should be identical. The results for such study are shown
in Fig. 5.24 where no difference is observed depending on the scenario considered. We can
therefore validate our treatment of the cross-talk.

The total relative-energy distribution for the 26F+2n system is presented in Fig. 5.26.
Compared to the three-body energy spectra of 18C and 20O presented in chapter 4, we note that
the resolution of our experimental setup is allowing us to distinguish at least two structures
at around 250 keV and 2 MeV, which introduces a qualitative step forward in our study, the
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Figure 5.24: Superposition of the relative-energy spectra for the 26F+2n system populated from
29Ne(-1p) when the two neutrons are detected in NeuLAND (black), the two neutrons are detected in
NEBULA (red) and one neutron is detected in each detector (blue). The distributions are normalized
to the red curve to facilitate the comparison.

investigation of correlations within a given resonant state. In particular, the peak at 250 keV
above S2n seems to be extremely narrow. Even if only two peaks are clearly observable, the
fit with only two resonances (plus the non-resonant component) was unable to reproduce
the spectrum. The most straightforward hypothesis was that a third resonance was present
at about 1 MeV, and this was confirmed by having a look at the same spectrum but under
different conditions. For example, as shown in Fig. 5.25, events with 0.4 < m2

fn < 0.6 exhibit a
clear resonance-like structure at about 1 MeV. Therefore, the spectrum was fitted with three
resonances and the non-resonant continuum, leading to a very good description of the data
(Fig. 5.26).
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Figure 5.25: Relative-energy spectrum for the 26F+2n system populated from 29Ne(-1p) with a gate
such as 0.4 < m2

fn < 0.6.

We will attempt in the following to investigate the n-n correlations of the structures at
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Figure 5.26: Relative-energy spectrum for the 26F+2n system populated from 29Ne(-1p).

250 keV and 2 MeV. We therefore apply gates on the relative-energy spectrum corresponding
to those structures and observe the corresponding Dalitz plots in Fig.5.27. The Dalitz plot
for the lower energy structure is surprisingly different to previous n-n works, since weak
anti-correlations are observed (enhanced signal towards m2

nn = 1). Indeed, in all the studies
performed until now the signal observed is always towards m2

nn = 0. However, such kind of
anti-correlations have been predicted by some theoretical calculations [115], even though never
observed before. Moreover, the fact that the state is located at only 250 keV can be responsible
for the fact that only weak correlation signals are observed. Indeed, while moving to low
energy, the n-n correlation signal is expected to vanish. Such effect is also observed in the 2+

state of 14Be located at around 280 keV, where a direct decay towards 12Be+n+n without any
two-body correlations is observed [116]. For the structure observed at about 2 MeV, the Dalitz
plot reveals an almost pure sequential decay through an intermediate unbound state of 27F at
around 500 keV. We can therefore propose a level scheme for 28F populated from 29Ne(−1p)
as presented in Fig. 5.28.
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Figure 5.27: On the upper panel, the gates applied to construct the Dalitz plots are represented on
the relative-energy spectrum for the 26F+2n system populated from 29Ne(-1p). On the lower panel, the
Dalitz plots are presented for the red and the blue gates on the left and right, respectively.
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Figure 5.28: Proposed level scheme of 28F deduced from our experimental results for the 26F+2n
system.
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5.6 Conclusion and perspective

In this chapter, we studied 26F and 28F using different reaction channels. The study of 26F
allowed us to confirm the previous assignment of the Jπ = 3+ state and to observe new
unbound states at higher energies. We also used this reaction channel to test our method
before applying it to the unbound states of 28F.

We studied 28F populated from two different reactions: 29F(−1n) and 29Ne(−1p). The
ground state of 28F has been located at 200 keV and seems to be of negative parity. This result
is placing 28F in the island of inversion, contrary to a previous study [4]. A large number of
unbound states at higher energies have also been observed.

We were also able to propose a new value of the Sn(
27F) at 1600(50) keV by looking at

states in which the one- and two-neutron decay channels are in competition.

Looking at the three-body decay of 28F allowed us to discover a narrow resonance just above
S2n that could be a good candidate to verify if the Ikeda conjecture can hold for two-nucleon
systems. We have been able to construct the Dalitz plots for this state and observed what
seems to be anti-correlations. This result is not only unique due to the nature of the signal,
but also to the fact that it is the n-n signal observed from the lowest-energy 2n state, at only
250 keV. As such, it represents a key step towards the future investigation of “dineutron”
emission in the decay of 26O, at 18 keV.

Apart from the experimental results, we have been able to see the power of the setup used
during the SAMURAI21 experiment. We especially pointed out the large improvements of the
resolution achieved due the use of the MINOS target as well as of the NeuLAND detector.
Unfortunately, the NeuLAND detector is no longer available at RIKEN since it has been
shipped back to GSI in order to be used in future experiments. However, the ANR EXPAND
project, that will allow to increase the number of walls of NEBULA to form NEBULA-Plus,
will allow us to increase the neutron detection efficiency.
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Chapter 6

Conclusion and outlook

The general subject that regroups all the work presented in this document is the nucleon-
nucleon interaction towards the neutron dripline. In particular, we have studied the effect of
the n-n interaction in decays from the continuum of the core+4n isotones 18C and 20O and
from narrow states of 28F. The neutron-rich fluorine isotopes 26F and 28F were also used to
study the evolution of the p-n interaction while moving towards the dripline and to determine
if 28F was inside the island of inversion.

The systems of interest have all been populated using nucleon knockout reactions (proton
or neutron). In the case of unbound states, we used the invariant-mass method to reconstruct
the relative energy of the decaying system that required the detection in coincidence of the
fragment, the neutron(s) and also of eventual γ-rays emitted in flight and characterizing the
population of a bound excited state of the fragment. We also used Dalitz plots in order to
study the three-body decay (fragment+n+n) of systems such as 18C, 20O and 28F.

The data presented in this document have been obtained using two very complex experi-
mental setups, similar in principle but with very different characteristics: the R3B-LAND setup
at GSI and the SAMURAI setup at RIKEN. It is noticeable that the experiment performed at
RIKEN was using a state-of-the-art set of detectors including the MINOS target and the Neu-
LAND detector. This particular combination of detection devices allowed us to improve largely
both the resolution and the statistics compared to previous studies of unbound nuclei in general.

The data have been analyzed using several simulations taking into account the experimental
response of the different detectors and interpreted within different theoretical frameworks.
An iterative event-mixing method has been used to determine the shape of the non-resonant
contribution in fragment+n relative energy spectra, avoiding the a priori subjective analytical
assumptions used in previous works.

We started first by studying the decay of the core+4n isotones 18C and 20O and observed
that they display significantly different features. In the former, extremely strong correlations
persist up to 12 MeV above S2n, which we propose to be caused by the large fraction (∼ 80%)
of direct emission of correlated pairs with a relatively compact configuration. The decay of 20O
exhibits much weaker correlations, with about 50% occurring through sequential processes.
The clear contrast between these isotones is likely due to the way they are populated: the
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knockout of deeply-bound neutrons from 21O leaves two unpaired neutrons in 20O with a
broken 16O core (in this way increasing the probability of sequential decay), while the knockout
of deeply-bound protons from 19N leaves the neutron pairs and the 14C core unaffected.

The present study shows that the high-energy proton knockout reaction is a tool of choice
for studying neutron correlations, be there of 2n or 4n origin, when reaching the corresponding
neutron emissions thresholds.

In the future, we wish to study the evolution of 2n and 4n correlations from the valley of sta-
bility to the dripline, and show the role of the reaction mechanism in revealing such correlations.
In future experiments, we wish to benefit from the increased granularity of the NeuLAND de-
tector at GSI, as well as from the increased beam intensities, to study the 18C→16C+2n system
using the 19N(-1p) reaction with a better resolution in order to:

• Characterize the resonance above S2n (width, one- or two-neutron decay branches) to see
if it is a good candidate for di-neutron decay.

• Populate states above S4n and study if they look like 2n-2n or tetra-neutron correlations.

• Identify a narrow 4n resonance around the S4n threshold to see if the Ikeda conjecture is
a general feature of the continuum.

In this kind of experiment several nuclei are produced, offering the possibility to study dif-
ferent systems at the same time. This is of utmost importance to understand and characterize
the interplay between the reaction mechanism and the structure of the systems at the dripline.

We then looked at the fragment+n relative energy spectra for 26F and 28F. The interpre-
tation, guided by theoretical calculations, allowed us to give the following conclusions on the
different systems studied:

• 26F:

This nucleus has been produced from the knockout of a neutron in 27F and six resonances
were observed in the relative energy spectrum:

– The study of the momentum distribution of the first state at 0.39 keV revealed a
ℓ = 2 angular momentum, which confirms the Jπ = 3+ assignment for this state as
proposed in a previous study.

– Several higher-energy states have been found to be in coincidence with known γ-
rays of 25F. The energy of those γ-rays being of about 3-4 MeV, this implies that the
resonances observed in coincidence are actually very high-energy states, probably
arising from the knockout of the νd5/2 orbital.

• 28F:

This nucleus has been produced from two different reactions, the knockout of a neutron
in 29F and the knockout of a proton in 29Ne. During this study, at least six resonances
were observed in the relative energy spectra:
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– The ground state of 28F has been identified at 200 keV and has a negative parity.
This implies that the ground state of 28F is an intruder state and that therefore this
nucleus is located in the island of inversion.

– The second state at 1.00 MeV is proposed as a member of the Jπ = 1+−4+ multiplet
resulting from the πd5/2 ⊗ νd3/2 coupling.

Its three-body decay has also been studied using the 29Ne(-1p) reaction, where at least
two resonances have been observed in the relative energy spectrum above S2n:

– A narrow low-energy resonance has been observed at about 250 keV, with a Dalitz
plot that reveals slight/small anti-correlations. This state is a good candidate to
verify if the Ikeda conjecture can hold for two-nucleon systems.

– A second resonance at around 2 MeV has been observed where the Dalitz plot reveals
a quasi-pure sequential decay through a 500 keV beyond Sn intermediate resonance
in 27F.

We were also able to propose a new value of the Sn(
27F) at 1600(50) keV by looking at

states in which the one- and two-neutron decay channels are in competition.
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Figure 6.1: On the left, level scheme summarizing the states observed in 28F. On the right, proposed
parabolas for the lower energy states observed in 28F.

A level scheme summarizing all the reaction channels studied is proposed in Fig. 6.1 as
well as proposed parabolas for the lower energy states observed.

Those results are very encouraging as many new states have been observed. This has been
possible due to the good resolution and efficiency/acceptance achieved with the setup of the
SAMURAI21 experiment. Unfortunately the NeuLAND detector is no longer available in
RIKEN as it has been shipped back to GSI for future experiments. However, a project (ANR
EXPAND) is ongoing in order to expand the NEBULA detector by increasing the number of
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walls to form NEBULA-Plus. This new configuration will allow us to increase the neutron
detection efficiency in order to continue to investigate decay channels involving the emission
of several neutrons at RIKEN.
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Appendix A

Data analysis from s021 experiment

A.1 The beam

A.1.1 Geometrical alignment of the drift chambers

One of the fundamental requirements of our analysis is to know the exact position of the
interaction in the target. This position along the Z-axis can be determined using the TPC
surrounding the MINOS target in the case of a (p,2p) reaction since two protons are detected
and therefore two tracks can be reconstructed in order to deduce the interaction point.
However, in the case of (p,pn) reactions, only one proton is emitted and therefore only one
track can be reconstructed, which does not allow us to deduce the position of interaction. In
this case, we deduce the position of interaction using also the beam trajectory deduced from
the drift chambers located before the target (BDCs). In order to insure an optimal precision
on the relative position of the BDCs with respect to the others, we use the following procedure.
During empty target runs, the position of the ions in BDC2 is interpolated from the one
measured in BDC1 and FDC1 (see Fig. A.1). The subtraction of the interpolated position
by the measured position in BDC2 must be perfectly centered at 0. If it is not the case, an
offset on the BDC2 position is applied in order to align the drift chambers. The result of this
procedure for an empty target run is shown in Fig. A.2.

Figure A.1: Sketch of the alignment procedure for the drift chambers (figure taken from [5]). The
position measured in BDC2 is compared to the one interpolated from BDC1 and FDC1.
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Figure A.2: Measurement of the relative alignment of the drift chambers. The graphs represent the
difference between the measured position in BDC2 and interpolated position from BDC1 and FDC1
for a 29Ne beam on empty target.

A.1.2 Time of flight and magnetic rigidity determination

The time of flight (ToF) of the beam is obtained from the time difference between the
plastic detector located in F7 and the average of the time of the SBT1 and SBT2 plastics
located in F13 (see Fig. 3.10). The times obtained from the plastic detectors are not
absolute times and depend for example on the length of the cable connecting them to the
acquisition. In order to access the physical ToF, an offset is applied to the ToF-F7F13 in order
to match in average the rigidity measured by the BigRIPS team on this section of the beam line.

A.1.3 Identification of the beam

The main goal of all the techniques described in this section is to identify event by event the
nature of each particle of the beam. The atomic number of the incoming ions is reconstructed
from the energy loss in the plactic detector in F7 using the Bethe-Bloch formula. The
determination of the A/Z ratio for the beam is done using the ToF-F7F13 and the Bρ from
BigRIPS. Knowing Z as well as the A/Z ratio allows us to access the identification matrices
such as presented in Fig. 3.11. We observe that the different isotopes are clearly separated
and therefore that the selection of the incoming ions is not causing any problem in our analysis.
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A.2 Interaction point determination in MINOS

A.2.1 Drift velocity

In the TPC, the only uncertainty is the drift velocity as impurities in the TPC change over
time. In order to take those changes into account, we determine the drift velocity for each run
by plotting the trigger time tpad measured by the TPC during a run (see Fig. A.3). Electrons
which have ionized at the level of the Micromegas plane have a drift equal to 0, while those
ionized at the very end of the TPC have a time corresponding to 300 mm of drift length (size
of the TPC). We therefore obtain a distribution of correlated trigger events which reflects the
length of the TPC.
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Figure A.3: Drift time inside the TPC during a physics run.

The minimum trigger time tmin does not depend on the drift velocity as it corresponds to
an electron ionization at the Micromegas mesh. We can therefore set this time for the entire
campaign. As for the end of the TPC with tmax, it directly reflects the drift velocity and has to
be measured continuously. For each run, we plot the trigger times in the TPC and determine
the mid-point in the downward slope which can be fitted with a Fermi function:

f(t) =
p0

1 + exp((t− p1)/p2)
+ p3 (A.1)

We can then determine the drift velocity as follows:

vdrift =
LTPC

tmax − tmin

(A.2)

where LTPC is the length of the TPC and equal to 300 mm. The evolution of the drift velocity
as a function of the run number in our experiment is presented in Fig. A.4.

A.2.2 Position calibration

After the drift velocity calibration, the TPC is calibrated and we can determine the reaction
vertex using the tracking algorithm define in Ref. [102]. However, the positions that are
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Figure A.4: Evolution of the drift velocity as a function of the run number during the SAMURAI21
experiment.

reconstructed need to be calibrated in order to be compatible with the other detectors used
in the experiment. In our analysis, we are particularly interested by the zvertex observable
that corresponds to the interaction position along the z-axis. In order to calibrate this
observable, we can represent the zvertex reconstructed by MINOS during an empty target run
(see Fig. A.5). We observe two peaks that corresponds to the entrance and exit window of the
target cell. A shift on zvertex has been applied so that the position of the entrance window cor-
responds to 0. We can notice that the size of the target cell (150 mm) is perfectly reconstructed.
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Figure A.5: zvertex distribution for an empty target run.

In our analysis the x and y positions of the interaction have been determined from a
linear interpolation from the BDCs at the zvertex. However those positions (xvertex and yvertex)
can also be reconstructed using MINOS. It is therefore necessary to determine the angle
between the MINOS referential and the BDCs referential in order to have positions in the
same referential. In our case a rotation of 36.4◦ has been applied to the MINOS referential.
The MINOS calibration is now fully done and we can use the zvertex position to determine the
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energy loss of the beam and the fragment event by event.

A.3 The γ-ray detection

A.3.1 The calibration of DALI2

The energy calibration of DALI2 consists in finding the relation between the energy of the
γ-ray and the charge deposited in each NaI crystal. This task is complicated by the different
possible interactions between the photons and the material. Indeed three processes are in
competition and their probability depends on several factors such as the energy of the γ-ray
or the atomic number of the detector material.

The photons can first interact by photo-electric effect, this process is dominating at
low energy (≤ 500 keV). It consists in a transfer of the full energy of the photon to an
electron of the detector. The electron therefore gains a kinetic energy equal to the total
energy of the photon that is lost afterward in the material by emitting light from the scin-
tillator. The charge obtained is then directly proportional to the energy of the incoming photon.

The Compton diffusion consists in the diffusion of the photon on one of the electrons of
the material. In this case, the photon only transfers part of its energy to the electron. The
rest of the process is identical to the one described for the photo-electric effect except that in
this case, the collected charge is not proportional to the energy of the incoming photon. The
diffused photon (less energetic) resulting from the Compton effect can eventually also interact
in the detector or get out of the sensitive volume.

Finally, if the photon has an energy higher than 1022 keV (twice the mass of the electron),
the materialization can occur. In this case, an electron-positron pair is produced and the
excess of energy is transferred as kinetic energy. The electron created can then deposit its
energy in the detector while the positron will be annihilated with an electron of the material
in order to form two γ-rays of 511 keV. Three cases can then appear. The two photons are
detected and the collected charge is proportional to the energy of the incoming photon. Only
one photon is detected, the charge will therefore be proportional to the energy of the incoming
photon minus 511 keV. The last case is that none of the photons are detected, the charge will
therefore be proportional to the energy of the incoming photon minus 1022 keV.

In order to calibrate DALI2 in energy, different sources were used (shown in Table A.1).

A.3.2 The Doppler correction

The goal of DALI2 is to detect the γ-rays resulting from the decay of bound excited states of
the fragments produced during the reaction in the target. The γ-rays are emitted in flight and
therefore affected by the Doppler effect [117]. The energy of the photon is then linked to the
incident angle, which is determined by the position of the crystal in which it is detected and by
the speed of the charged fragment that produced it. The formula linking all those observables
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Source type Theoretical energy (keV)
88Y 898.0

1836.1
137Cs 661.1
60Co 1173.2

1332.5

Table A.1: List of the γ-ray sources used for the calibration of DALI2.

is as follows:
Eγ = Elab(1 + βcosθ)γ (A.3)

where γ represents in this formula the Lorentz factor of the radioactive ion, β its speed normal-
ized to the speed of light and θ the angle between the trajectory of the ion and the direction
in which the photon has been emitted. Eγ is the energy of the photon in the source frame and
Elab the one measured in the laboratory.

A.4 The fragments

The charged fragments are a crucial point of our study since the invariant-mass method requires
not only their identification but also the reconstruction of their momentum. The measurement
of all the observables needed is done using a set of different detectors. The position and
angle measured in the drift chambers are essential to derive the trajectories of the charged
fragment. The four drift chambers (BDC1, BDC2, FDC1 and FDC2) are calibrated using the
same method described in the following section. The identification of the charged fragments
with the Hodoscope is done using their energy loss in the plastic but also using a time of flight
technique.

A.4.1 Drift chambers calibration

Drift distance calibration

The determination of the position in the drift chamber implies to measure plane by plane the
distance between the incident ion and the closest wire. This observable is called drift distance
and corresponds to the path taken by the electrons/ions towards the anode/cathode. If the
signal induced by the charge moving overcomes a certain threshold, a time measurement is
done using a TDC (Time to Digital Converter) between the SBTs and the drift chamber. The
relation between the drift distance and this time is given as follows:

D =

∫ tstop

tstart

v(t) dt (A.4)

where D is the drift distance, tstart and tstop are the trigger start and stop time, respectively,
and v(t) is the drift velocity of the electrons in the gas.

In order to use this equation, we need to determine the drift velocity. As a first approxi-
mation, we can suppose that we have a cylindrical symmetry around the wires, allowing us to
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write:

v(t) =
dr

dt
=

dr

dN

dN

dt
(A.5)

In this case, dr/dN represents the radial distribution of the events measured and dN/dt the
distribution of the drift times. Assuming that the radial distribution is not time dependent, we
can write:

D =

∫ tstop

tstart

v(t) dt =

∫ tstop

tstart

dr

dN

dN

dt
dt =

dr

dN

∫ tstop

tstart

dN

dt
dt (A.6)

The time distribution is measured experimentally, and therefore its integral can be calculated.
Moreover, the extreme values of the drift distance are known: the maximum being half of the
distance between two wires and the minimum being 0. Using those two values and the fact
that the time is proportional to the drift distance, we can derive the drift distance (see Fig. A.6).
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Figure A.6: TDC distribution of the first wire plane of BDC1.

Reconstruction of the position

In order to reconstruct the positions of the ions in the chamber, we need to determine the
most probable trajectory in the chamber using the information on the position on each wire
plane. Each direction (horizontal or vertical) is determined independently. We do a linear
regression over all the fired wires by considering only one wire per plane. If several wires fired
in the same plane, several fits are performed. For each wire fired, we know the drift distance
of the incident particle but not its position with respect to the wire. Therefore, in order to
improve the precision of the trajectory reconstruction, four positions are tested. The ion is
always considered to be at the drift distance from the wire but either in front, behind, on the
left or on the right. Once all those possibilities are tested, the fit for which the χ2 is minimum
is selected. We derive then, from the trajectory, the position at the center of the drift chamber.

Reconstruction of the angles

We saw in the previous section that the drift chambers give us access to the horizontal and
vertical trajectory of the ion. It is therefore possible to determine for each of those trajectories
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the angle of the ion. However, the precision on the angle inside the BDCs and the FDC1, which
are quite thin chambers, is not sufficient compare to the FDC2 which is much thicker. In order
to improve the precision on the angle of the ion, the information from different drift chambers
has been used. The beam trajectory as well as its position of the target is then derived using
the position on BDC1 and BDC2. This trajectory is characterized by the angles θx and θy as
follows:

θx = arctan

(
XBDC2 −XBDC1

ZBDC2 − ZBDC1

)

(A.7)

θy = arctan

(
YBDC2 − YBDC1

ZBDC2 − ZBDC1

)

(A.8)

where XBDC1, XBDC2, YBDC1 and YBDC2 are the positions measured in the drift chambers and
ZBDC1, ZBDC2 are the positions of the center of the drift chambers along the beam axis.

The trajectory of the charged fragment is derived using the FDC1 and the position (x,y)
extrapolated at the interaction point using BDC1 and BDC2. The θx and θy angles of the
charged fragments are determined as follows:

θx = arctan

(
XFDC1 −XTarget

ZFDC1 − ZTarget

)

(A.9)

θy = arctan

(
YFDC1 − YTarget

ZFDC1 − ZTarget

)

(A.10)

where ZTarget corresponds to the z coordinate at the interaction point determined using the
MINOS target while XTarget and YTarget correspond to the positions at the interaction point
extrapolated from the positions in the BDCs.

A.4.2 Hodoscope calibration

The Hodoscope is used to identify the charged fragments using their energy loss as well as a
time of flight method. The use of two photomultipliers (one on each extremity of the plastic
bars) allows to improve the resolution of those two observables.

Energy calibration

The measurement of the energy deposit in the bars of the Hodoscope is used to determine the
nature of the ions going through. The energy deposited by the ion is converted into light that
is emitted isotropically and is attenuated while traveling through the plastic. The attenuation
follows the Bert-Lambert equation, which is characterized by an attenuation constant λ corre-
sponding to the nature of the detector. The interaction being not always at the center of the
bar, the light collected at the top Au and the bottom Ad can be different and not proportional
to the incident energy. Using Au and Ad in order to compute their geometric mean allows to
fix this problem since we have:

Au ∼ A0 × e−λxu (A.11)

Ad ∼ A0 × e−λxd (A.12)

A ∼
√

Au × Ad ∼ A0 × e−λ(xu+xd)/2 ∼ A0 × e−λL/2 (A.13)
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where L in the length of the bar. Therefore the geometric mean corresponds to the light
emitted by the interaction of the ion, that depends on its energy and nature.

Time of flight

The calibration in time of the Hodoscope is needed in order to determine the time of flight
of the charged fragments. Like all the other plastic scintillators used in the experiment, the
time of each bar is derived using the arithmetic mean of the individual times obtained with the
photomultipliers located at each extremity such as:

T =
Tup + Tdown

2
(A.14)

The observable of interest is the time of flight between the target and the Hodoscope.
However, the acquisition is triggered by the beam traveling through the SBTs. It is therefore
needed to correct event by event the time of flight SBT-Target by using the beam velocity and
by taking into account the energy losses.

Moreover, the absolute time measured by the TDC is affected by a delay depending on the
length of the wires used. The Hodoscope is made of 16 plastic bars, each having its own delay.
It is therefore necessary to first align the bars between each other so that the time measured in
the different bars are consistent. To do so, we choose one bar of reference and we select events
with multiplicity two that also hit the neighboring bar. Those events are correlated in the two
bars that got hit, therefore we apply a delay to the second bar so that in average the difference
in time of the two bars is zero. The absolute ToF calibration for the entire detector is then
realized by reconstructing the ToF of the ions on empty target which velocity is known and
which flight path is determined by the simulation of the trajectories in SAMURAI.

Magnetic rigidity determination

The precise determination of the magnetic rigidity is essential in our analysis. Indeed, this
observable is used in the reconstruction of the total momentum of the charged fragments.
Since the charged fragment travels through the SAMURAI dipole, it is not possible to use the
same technique than in the case of the beam where the magnetic rigidity is deduced from the
positions in one plane using a linear relation. The drift chambers FDC1 and FDC2 allow us to
determine the position as well as the direction of the ions before and after they travel through
the dipole. The goal is therefore to determine the energy needed for a given particle to travel
from a point A to a point B.

The technique chosen allows us to reach a resolution of about δp/p ∼ 1/800 using only one
function for all the fragments. This function, a 6th order polynomial using data from FDC1
and FDC2, is calculated by adjusting a large number of trajectories produced by a simulation.
A more precise description of this technique can be found in Ref. [5].
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Identification of the outgoing nuclei

The identification of the charged fragments traveling in SAMURAI is done using their masses
and their charges in a similar way as for the ions of the incoming beam. The charge is
determined using the energy loss measured in the bars of the Hodoscope. In the case of
events for which the charged fragment has deposited its energy in several bars, only the charge
measured in the bar that detected the highest charge is considered. Once the energy loss
estimated, the charge is reconstructed using the Bethe-Block formula (Eq. 3.6).

The mass of the fragments is reconstructed from their ToF and magnetic rigidity. The ToF
measurement is performed using the Hodoscope while the Bρ is determined by estimating the
trajectory of the fragment in SAMURAI from the FDC1 and FDC2 data.

The identification of the fragments is then done by looking at the correlations between the
charge and the mass-over-charge ratio. An example of identification is presented in Fig. 3.16.
We observe that the separation in mass and charge is sufficient to identify clearly each charged
fragment.

A.5 The neutrons

Even if the detection of the neutrons is more difficult than the detection of the charged particles,
the determination of their momentum is more direct and is taken as a reference for the entire
analysis. A precise calibration of the neutron ToF as well as a precise determination of their
interaction point are therefore crucial in our work.

Determination of the positions

In our experiment, two neutron detector arrays were used: NeuLAND and NEBULA.
Those detectors are made of horizontal and vertical bars (only vertical for NEBULA).
In the case of a vertical (horizontal) bar, the x (y) position is directly deduced from the
position of the bar that has been hit. However, the other position is calculated by the
time difference between the two PMs located at each extremity of the bar. It is therefore
necessary to find the correlation between this time difference and the position of the interaction.

The simplest way is making a correlation by associating the two extreme values of the
time difference to the extremity of the bar and then assuming a linear relation between the
time difference and the position. In the case of NEBULA, in order to improve this calibration,
8 gaseous proportional counters called HPC are used, which are cylindrical with a radius of
24 mm and a length of 4 m (see Fig A.7). They are placed horizontally and their positions
are well known. During cosmic-rays runs, many muons are traveling through NEBULA and
interact with the detector. The coincidence with two HPC allows us to know with a good
precision the angle of the muon and therefore its position of interaction in a bar of NEBULA.
Using the different combinations with two HPC, we obtain several calibration points for each
bar, which allows us to achieve a good precision on the interaction position. For NeuLAND, a
similar method is applied in which vertical (horizontal) bars are used to calibrate the horizontal
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Figure A.7: Schematic view of the position of the HPC around NEBULA (figure taken from Ref. [5]).

(vertical) bars.

Time of flight calibration

Like all the other plastic detectors used in the experiment, the individual time for each bar
of NEBULA or NEULAND is determined using the arithmetic average of the times measured
at its extremity. Moreover, since the start of the ToF is given by the SBT, it is necessary to
subtract the time taken by the beam to cover the SBT-Target distance from the measured
time. The ToF calibration is based on a simple principle: the photons travel at the speed of
light. Indeed, when we look at a ToF spectrum of NEBULA or NEULAND (see Fig. A.8),
we observe two structures. A first one very narrow and a second one wider arriving a bit
later. The first structure corresponds to γ-rays produced when the beam interacts with the
target while the second structure corresponds to neutrons produced in the target that travel
at approximately the beam velocity and arrive therefore later at the detector.

In order to calibrate the ToF of the neutrons for each bar, the peak corresponding to the
γ-rays is fitted by a Gaussian. Then knowing the Target-bar distance and the speed of light,
a shift is applied to the measured times so that the peak becomes centered on the theoretical
value. The result of this calibration is presented in Fig. A.9. We can also check that the
trigger times are following each other in the right order, meaning that the time needed to
reach each wall is consistent with its distance from the target. The IDs for which no ToF
is shown in the figure corresponds to the horizontal bars located on the top and bottom
of NeuLAND, for which the trajectory of the neutrons are cut by the exit window of SAMURAI.
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Figure A.8: Distribution of the measured time in the bar number 315 of NeuLAND.
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Figure A.9: ToF of the measured particles in NeuLAND as a function of the bar ID.

Energy calibration

We saw in the previous section that the energy of the neutrons is deduced from the ToF
measurement. Indeed, the energy deposited in the detector is not proportional to the energy
of the incoming neutron. However it is necessary to calibrate the energy deposited in order to
discriminate neutrons from background γ-rays (arriving outside the prompt peak). Since the
energy deposited is not proportional to the incident energy, it has to be less than the incident
energy. However, the γ-rays produced from the decay of an excited state in exotic nuclei do
not exceed a few MeV while the neutrons can have an energy close from the one of the beam.
In order to get rid of the events from γ-rays, it has been chosen to take into account only
particles that deposited at least 6 MeV. This cut allows to remove 80% of the photons while
keeping 90% of the neutrons.
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The charge calibration of the neutron detector has been performed using two points
for which the energy deposited is known: the pedestal and the cosmic muons. Once these
measurements are done, we perform a linear fit. The pedestal corresponds to an energy equal
to 0 and the cosmic muons deposit around 29.9 MeV in each bar for NEBULA.

A.6 Fragment-n alignment

The relative energy is the central observable in our study. The determination of all the members
of the relative-energy equation has already been discussed. However, since those members
are reconstructed from different detectors, it is important to align the different parts of the
experimental setup and especially the neutron and fragment momenta. Since the determination
of the neutron momentum is performed without ambiguity, it is chosen as a reference. The
alignment process consists in modifying the velocity of the fragment within a very small range.
All the observables affected by this shift of velocity are then calculated again and in particular:

• the relative energy: Erel

• the velocity difference between the neutron and the fragment: βn − βf

• the parallel momentum of the neutron in the fragment rest frame: P f
z (n)

We then plot the evolution of the average of those three observables as a function of the
velocity shift ∆βf applied. The average of the relative energy evolution follows a second
order polynomial which minimum corresponds to the best alignment (see Fig. A.10), while
< βn − βf > and < P f

z (n) > have a linear evolution with ∆βf and are equal to 0 when
fragments and neutrons are aligned. The ∆βf value has been chosen in our analysis as the
average of the ones obtained using the three methods. This procedure is very important
because only a slight shift can have a strong effect on the measured relative energy.

155



<
E

re
l>

<
P

z
f (
n
)>

<
β n
-β

f>

Figure A.10: Fragment-n alignment procedure for the 29F→ 27F+n reaction channel. Each figure
represents the evolution of an observable as a function of the fragment velocity shift ∆βf .

A.7 Cross-talk rejection

In the case of a reaction channel that requires the detection of more than one neutron, we
discussed already the phenomenon of cross-talk where one neutron can be misidentified as
several ones. It is important to try to suppress the events due to that phenomenon as much as
we can. To do so, we apply several conditions on the events measured in the neutron detectors.

The procedure is made in several steps. In the first step, we determine a space-time area
around a hit in which it is most likely that another hit occurring in that area is originated
by the same neutron. This space-time area is tuned using a decay channel in which only one
neutron is emitted and therefore all multiple hits observed correspond to cross-talk events (see
Fig. A.11).

The next step is to compare the remaining hits and remove those in which the virtual
velocity needed for a neutron to reach them from an earlier hit is lower than the velocity of
that neutron determined from its ToF (also known as causality condition, see Ref. [118]).

Once those two steps have been performed, most of the cross-talk events are rejected
(Fig. 5.24).
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Figure A.11: Space-time distribution of the hits detected for the 29Ne→ 27F+n reaction channel.
The events in the red area are considered as pure cross-talk events.
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Appendix B

Eikonal-model calculations

B.1 Introduction

Direct reaction model calculations are described here for the fast neutron removal reactions
from 29F and 27F on a proton target at 221 and 204 MeV/nucleon, respectively, and for proton
removal from 29Ne at 210 MeV/nucleon. Calculations use the eikonal (forward scattering) and
sudden approximations to the collision dynamics [119]. The valence neutrons are weakly bound
in the neutron-rich fluorine isotopes. For n removal from 29F the residual nucleus is particle
unbound and S2n(

29F)=1.443(654) MeV with respect to the ground state of 27F. According
to the 2016 mass evaluation [120], the 28F ground state is unbound with respect to 27F+n
decay with Sn(

28F)=−220(50) keV. For n removal from 27F, Sn(
27F)=1.270(405) MeV and

Sn(
26F)=0.757(147) MeV [120]. On the other hand, the valence protons are very well-bound

in 29Ne, with Sp(
29Ne)=22.631 MeV.

Exclusive n-removal cross sections and their momentum distributions are computed for
the 28F and 26F final state energies, for different assumed orbitals occupied by the removed
neutrons. The proton removal calculations are carried out assuming removal from sd-shell
orbitals.

B.2 Formalism and parameters

B.2.1 The nucleon-nucleon system

For such inverse-kinematics reactions on a proton target, the eikonal model S-matrices entering
the nucleon-removal cross-sections describe the flux loss of the forward traveling residual nuclei
and the removed nucleon due to scattering and/or absorption. This is the result of their two-
body interactions with the proton target. At the energies of interest here there is no absorption
in the nucleon-nucleon (NN) system and the NN interactions (i.e. of the removed neutron or
proton with the target proton) are entirely elastic. The NN S-matrix will be denoted Sjp(b)
where the label j denotes the species of the removed nucleon, i.e. j = n, p. This NN scattering
operator, a function of the NN impact parameter, b, is conventionally written [121] as:

Sjp(b) = 1− Γjp(b) (B.1)
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where Γjp in the np or pp profile function. This is determined by the two-dimensional (2D)
Fourier transform of the NN scattering amplitude fjp(q), from:

Γjp(b) =
1

2iπk

∫

d2q e−iq·b fjp(q) (B.2)

where the integral is over all momentum transfer components q in the plane perpendicular to
the beam direction (the usual z-axis). Thus, the inverse transform gives:

fjp(q) =
ik

2π

∫

d2b eiq·b Γjp(b) (B.3)

The NN profile functions of Eq. B.2 are parameterized, in the usual notation [121], as:

Γjp(b) =
σjp
2i

(i+ αjp) g2(βjp, b) (B.4)

where g2(β, b) is a normalized 2D Gaussian form factor:

g2(β, b) =
1

2πβ
exp(−b2/2β) (B.5)

representing the finite-range form factor of the NN interaction. Thus, from Eq. B.3:

fjp(q) =
k

4π
σjp (i+ αjp) exp(−βjpq2/2) (B.6)

As is now evident from the optical theorem identity, namely:

Im.f(0◦) = Im.f(q = 0) =
k

4π
σtot, (B.7)

the σjp in Eq. B.6 are the np and pp total cross sections. These were calculated here from the
Charagi and Gupta parameterization [122] of the experimental NN data, giving, respectively
for the three energies of 204, 210 and 221 MeV/nucleon, σpp=2.1561, 2.1595 and 2.1708 fm2,
and σnp=3.9886, 3.9291 and 3.8646 fm2.

As it is also clear from Eq. B.6, the parameters αjp are the ratios of the real to the imaginary
parts of the NN forward-scattering amplitudes, fjp(q = 0), while the βjp determine the ranges
of the Gaussian NN interaction (Gaussian range γjp =

√
2βjp). These αjp are computed to

be, respectively for the three energies of 204, 210 and 221 MeV/nucleon, αnp=0.660, 0.638 and
0.598 and αpp=1.161, 1.130 and 1.075, values interpolated from the published tabulation (on
the interval 100-1000 MeV) of Ref. [123].

For the NN range parameters, βjp, following e.g. Ref. [124], these are chosen such that
the calculated NN total and total elastic cross sections derived from the S-matrices are equal,
since the energies of current interest are below the pion production threshold and there is no
inelasticity in the NN system. Explicitly, given the form of Eq. B.4, this requires that:

βjp =
σjp(1 + α2

jp)

16π
(B.8)

Calculations show that there is very little sensitivity of the calculated removal single-particle
cross sections to the details of these assumed αjp parameter choices, and to their corresponding
derived βjp ranges.
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B.2.2 The nucleon-residue system

The remaining reaction inputs are the eikonal S-matrices that describe the effects of the inter-
actions of the 26,28F core/residual nuclei with the proton target. These are calculated within the
optical limit of the Glauber multiple-scattering theory, also called the tρ folding approximation
to the proton-residue optical potential. These potentials include the size and asymmetry of the
nuclei through the point-neutron and proton densities of the residues (r). The proton-residual-
nucleus optical potential used is:

Upr(R) =
∑

j=n,p

∫

dr ρ(j)r (r) tjp(|R + r|) (B.9)

Here, the NN effective interaction, tjp, consistent with the NN S-matrix discussion above is:

tjp(r) = −~v

2
σjp(i+ αjp) g3(βjp, r) (B.10)

where the parameters σjp and αjp are as discussed in the previous sections. Here v is the
residual nucleus-proton target relative velocity and g3(β, r) is a normalized 3D Gaussian
function with range parameter β.

The n and p one-body densities of the reaction residues, ρ
(j)
r , are computed using the spher-

ical Hartree-Fock (HF) calculations with the Skyrme SkX interaction [125]. Such calculations
have been shown to provide a very good global description of the root mean squared (rms)
sizes [126] and radial forms of the matter and charge [127] distributions of both stable and
asymmetric nuclei. In the case of reactions populating 28F residues the physical nucleus is
unbound whereas the HF ground state is weakly bound. The HF density is taken to provide
a reasonable description of the spatial localization of the 28-nucleon system (in 29F and 29Ne)
during the short duration of the interaction (a few times 10−23 seconds) with the target.

B.2.3 The bound nucleon overlaps

The geometries of the neutron bound-state potentials, that generate the normalized single-
particle overlaps of the removed nucleons in the 27,29F projectiles, are also constrained by
Skyrme SkX interaction HF calculations. As is discussed in some detail in Ref. [128], for
consistency with the range of the residue-proton optical potentials, that is determined by
the ρ

(j)
r , the bound states potential geometry is adjusted to reproduce the separation energy

and the rms radius of the single-particle orbital as calculated using the HF. This gives
Wood-Saxon binding potential geometries with reduced radius and diffuseness parameters
(r0, a0) = (r0, 0.7): a Thomas-form spin-orbit potential with a depth of 6 MeV and the
same geometry parameters is added. The radii r0, constrained as stated above (for full
details see section III of Ref. [128]) are, respectively for 29F and 27F of 1.2401 and 1.2297 fm
(ν1d3/2), 1.2045 and 1.1966 fm (nu1d5/2), 1.1222 and 1.0875 fm (ν2s1/2) for the neutron
(ν) orbitals. The lowest pf -shell orbitals are unbound in the spherical HF calculation
and r0 values 1.25 fm were assumed for the ν1f7/2 and ν2p3/2 orbitals. Similarly for the
proton orbits in 29Ne, removal calculations are performed for removal from the π1d3/2, π1d5/2
and π2s1/2 orbitals, with deduced reduced radii r0 of 1.3915, 1.3471 and 1.2707 fm, respectively.
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B.3 Reaction and calculations

The single-particle and theoretical neutron-removal cross sections to 28F and 26F final states
(all with C2S=1) are calculated assuming, in each case, removal from the ν1d3/2, ν1d5/2,
ν2s1/2, ν1f7/2 and ν2p3/2 orbitals. The shapes of the momentum distributions in each case
are also calculated, all normalized to an integrated cross section of 1 mb. For unbound, mass
A − 1 final states, assuming an isotropic disintegration of the system into (A − 2)+n, the
mass A − 2 residue momentum distribution has an additional broadening to the calculated
A − 1 momentum distribution, requiring its convolution with a rectangular distribution, see
e.g. Ref. [129]. The proton removal calculations to 28F final states are similarly performed.

The inelastic breakup (or stripping) contribution to the removal cross sections, the result
of inelastic interactions of the removed nucleon and the target, and that usually dominates
in reactions on light nuclear targets such as 9Be and 12C, is absent in the case of the proton
target. Thus, all of the calculated removal cross sections result from the elastic breakup (or
diffraction dissociation) component of the removal cross section, for details see e.g. Ref. [119].
Before being compared to experimental results, the calculated momentum distributions have
been convoluted with the response of the experimental setup in order to account for the
different experimental resolutions.
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B. Heusch, B. Jonson, C. Le Brun, S. Leenhardt, M. Lewitowicz, M. J. López, K. Marken-
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S. Beceiro-Novo, K. Boretzky, M. J. G. Borge, M. Chartier, A. Chatillon, L. V. Chulkov,
D. Cortina-Gil, H. Emling, O. Ershova, L. M. Fraile, H. O. U. Fynbo, D. Galaviz,
H. Geissel, M. Heil, D. H. H. Hoffmann, H. T. Johansson, B. Jonson, C. Karagian-
nis, O. A. Kiselev, J. V. Kratz, R. Kulessa, N. Kurz, C. Langer, M. Lantz, T. Le Bleis,
R. Lemmon, Yu. A. Litvinov, K. Mahata, C. Müntz, T. Nilsson, C. Nociforo, G. Nyman,
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[85] M. Nikolić. Kinematics and multiparticle systems. Documents on modern physics. Gordon
and Breach, 1968.

[86] E. M. Aitala, S. Amato, J. C. Anjos, J. A. Appel, D. Ashery, S. Banerjee, I. Bediaga,
G. Blaylock, S. B. Bracker, P. R. Burchat, R. A. Burnstein, T. Carter, H. S. Carvalho,
N. K. Copty, L. M. Cremaldi, C. Darling, K. Denisenko, S. Devmal, A. Fernandez, G. F.
Fox, P. Gagnon, C. Gobel, K. Gounder, A. M. Halling, G. Herrera, G. Hurvits, C. James,
P. A. Kasper, S. Kwan, D. C. Langs, J. Leslie, B. Lundberg, J. Magnin, A. Massafferri,
S. MayTal-Beck, B. Meadows, J. R. T. de Mello Neto, D. Mihalcea, R. H. Milburn, J. M.
de Miranda, A. Napier, A. Nguyen, A. B. d’Oliveira, K. O’Shaughnessy, K. C. Peng,
L. P. Perera, M. V. Purohit, B. Quinn, S. Radeztsky, A. Rafatian, N. W. Reay, J. J.
Reidy, A. C. dos Reis, H. A. Rubin, D. A. Sanders, A. K. S. Santha, A. F. S. Santoro,
A. J. Schwartz, M. Sheaff, R. A. Sidwell, A. J. Slaughter, M. D. Sokoloff, J. Solano,
N. R. Stanton, R. J. Stefanski, K. Stenson, D. J. Summers, S. Takach, K. Thorne, A. K.
Tripathi, S. Watanabe, R. Weiss-Babai, J. Wiener, N. Witchey, E. Wolin, S. M. Yang,
D. Yi, S. Yoshida, R. Zaliznyak, and C. Zhang. Experimental evidence for a light and
broad scalar resonance in d+ → π−π+π+ decay. Phys. Rev. Lett., 86:770–774, Jan 2001.

[87] R. J. Charity, J. M. Elson, J. Manfredi, R. Shane, L. G. Sobotka, B. A. Brown, Z. Cha-
jecki, D. Coupland, H. Iwasaki, M. Kilburn, Jenny Lee, W. G. Lynch, A. Sanetullaev,
M. B. Tsang, J. Winkelbauer, M. Youngs, S. T. Marley, D. V. Shetty, A. H. Wuosmaa,
T. K. Ghosh, and M. E. Howard. Investigations of three-, four-, and five-particle decay

171



channels of levels in light nuclei created using a 9C beam. Phys. Rev. C, 84:014320, Jul
2011.

[88] R. Hanbury Brown and R.Q. Twiss. Lxxiv. a new type of interferometer for use in radio
astronomy. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 45(366):663–682, 1954.

[89] G.I. Kopylov. Like particle correlations as a tool to study the multiple production mech-
anism. Physics Letters B, 50(4):472 – 474, 1974.

[90] F. M. Marqués et al. Two-neutron interferometry as a probe of the nuclear halo. Phys.

Lett., B476:219–225, 2000.

[91] R. Lednicky and V. L. Lyuboshits. Final State Interaction Effect on Pairing Correlations
Between Particles with Small Relative Momenta. Sov. J. Nucl. Phys., 35:770, 1982. [Yad.
Fiz.35,1316(1981)].

[92] G. Normand. Investigation of correlations in light neutron-rich nuclei. Theses, Université
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R. Schmidt, H. Spies, K. Stelzer, J. Stroth, W. Walus, E. Wajda, H.J. Wollersheim,
M. Zinser, and E. Zude. A large area detector for high-energy neutrons. Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, 314(1):136 – 154, 1992.

[99] P. Pawlowski, J. Brzychczyk, Y. Leifels, W. Trautmann, P. Adrich, T. Aumann, C.O.
Bacri, T. Barczyk, R. Bassini, S. Bianchin, C. Boiano, K. Boretzky, A. Boudard,
A. Chbihi, J. Cibor, B. Czech, M. De Napoli, J.-E. Ducret, H. Emling, J.D. Frank-
land, T. Gorbinet, M. Hellstrom, D. Henzlova, S. Hlavac, J. ImmÃ¨, I. Iori, H. Johans-
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Nuclear forces at the extremes

Résumé

L’émission de paires de neutrons par les noyaux riches en neutrons 18C et 20O (isotones
N = 12) est étudié par réactions de knock-out d’un nucléon des faisceaux secondaires 19N
et 21O, peuplant ainsi des états non liés jusqu’à 15 MeV au-dessus de leur seuil d’émission
deux neutrons. L’analyse des corrélations des triples coincidences fragment+n+n montre que
la décroissance 19N(−1p)18C∗ →16C+n+n est clairement dominée par l’émission directe de
paires. Les corrélations n-n, les plus grandes jamais observées, suggèrent la prédominance
d’un coeur de 14C entouré de quatre neutrons arrangés en paires très corrélées. De plus, une
importante compétition du mode de décroissance séquentiel est observée dans la décroissance
21O(−1n)20O∗→18O+n+n, interprétée par la déformation causée par le knock-out d’un neutron
très lié ayant pour effet de casser le coeur de 16O et ainsi de réduire le nombre de paires.

De plus, les états non liés du 26F et 28F sont étudiés. Les deux systèmes étant peuplés
par knock-out d’un nucléon du 27F dans le cas du 26F et du 29Ne ou du 29F pour 28F. Cinq
états ont été observés pour 26F avec en particulier l’état de plus basse énergie (0.39 MeV)
identifié comme l’état 3+ résultant du couplage πd5/2 ⊗ νd3/2. Pour 28F, cinq états ont aussi
été observés et l’état fondamental (200 keV) a été identifié comme étant de parité négative,
plaçant ainsi 28F dans l’̂ılot d’inversion.

Mots clés: Physique nucléaire, Structure nucléaire, Spectroscopie nucléaire, Réactions di-
rectes, Isotopes radioactifs, Analyse de données, Simulation par ordinateur.

Abstract

The emission of neutron pairs from the neutron-rich N = 12 isotones 18C and 20O has
been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating
unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds.
The analysis of triple fragment-n-n correlations shows that the decay 19N(−1p)18C∗→16C+n+n
is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest
ever observed, suggests the predominance of a 14C core surrounded by four neutrons arranged in
strongly correlated pairs. On the other hand, a significant competition of a sequential branch is
found in the decay 21O(−1n)20O∗→18O+n+n, attributed to its formation through the knockout
of a deeply-bound neutron that breaks the 16O core and reduces the number of pairs.

Moreover, unbound states in 26F and 28F have been studied. The two systems were probed
using single-nucleon knockout reaction from secondary beams of 27F respectively in the case
of 26F, and 29Ne and 29F for 28F. Five possible states have been identified in 26F, with in
particular the lowest energy one (0.39 MeV) being identified as the 3+ state resulting from the
πd5/2 ⊗ νd3/2 coupling. In the case of 28F, five unbound state have also been observed and in
particular its ground state (200 keV) has been identified as a negative parity state, meaning
that 28F is located inside the island of inversion.

Keywords: Nuclear physics, Nuclear structure, Nuclear spectroscopy, Direct reactions, Ra-
dioactive isotopes, Data analysis, Computer simulations.


