

Opérateur de Laplace–Beltrami discret sur les surfaces digitales

Thomas Caissard

▶ To cite this version:

Thomas Caissard. Opérateur de Laplace–Beltrami discret sur les surfaces digitales. Mathématique discrète [cs.DM]. Université de Lyon, 2018. Français. NNT: 2018LYSE1326. tel-02082779v3

HAL Id: tel-02082779 https://theses.hal.science/tel-02082779v3

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nº d'ordre NNT : xxx

THÈSE DE DOCTORAT DE L'UNIVERSITÉ DE LYON

opérée au sein de l'Université Claude Bernard Lyon 1

École Doctorale 512 InfoMaths

Spécialité de doctorat : Informatique

Soutenue publiquement le 13/12/2018, par : Thomas Caissard

Opérateur de Laplace–Beltrami discret sur les surfaces digitales

Devant le jury composé de :

Mme. Debled-Rennesson Isabelle, Pr. des Universités, Université de Lorraine
M. Passat Nicolas, Pr. des Universités, Université de Reims Champagne-Ardenne
Mme. Chaine Raphaëlle, Pr. des Universités, Université Lyon 1
M. Cohen-Steiner David, Chargé de Recherches INRIA, INRIA Sophia Antipolis
M. Coeurjolly David, Directeur de Recherches CNRS, Université Lyon 1
M. Lachaud Jacques-Olivier, Pr. des Universités, Université Savoie Mont Blanc
M. Roussillon Tristan, Maitre de Conférences, INSA Lyon

Rapporteure Rapporteur Examinatrice Examinateur Directeur de thèse Co-directeur de thèse

Composition de la FST

UNIVERSITÉ CLAUDE BERNARD - LYON 1				
Président de l'Université	M. le Professeur Frédéric FLEURY			
Président du Conseil Académique	M. le Professeur Hamda BEN HADID			
Vice-président du Conseil d'Administration	M. le Professeur Didier REVEL			
Vice-président du Conseil Formation et Vie Universitaire	M. le Professeur Philippe CHEVALIER			
Vice-président de la Commission Recherche	M. Frabrice VALLÉE			
Directrice Générale des Services	Mme Dominique MARCHAND			
COMPOSANT	TE SANTÉ			
Faculté de Médecine Lyon Est - Claude Bernard	Directeur : M. le Professeur G.RODE			
Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux	Directeur : Mme la Professeure C.BURILLON			
Faculté d'Odontologie	Directeur : M. le Professeur D.BOURGEOIS			
Institut des Sciences Pharmaceutiques et Biologiques	Directeur : Mme la Professeure C. VINCIGUERRA			
Institut des Sciences et Techniques de la Réadaptation	Directeur : M. X. PERROT			
Département de formation et Centre de Recherche en Biologie Humaine	Directeur : Mme la Professeure A-M. SCHOTT			
COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE				
Faculté des Sciences et Technologies	Directeur : M. F. DE MARCHI			
Département Biologie	Directeur : M. le Professeur F. THEVENARD			
Département Chimie Biochimie	Directrice : Mme C. FELIX			
Département GEP	Directeur : M. Hassan HAMMOURI			
Département Informatique	Directeur : M. le Professeur S. AKKOUCHE			
Département Mathématiques	Directeur : M. le Professeur G. TOMANOV			

Directeur	·м	le Pi	rofesseur	н	BFN	HADID
Directeur	• 1/1•	IC I I	Ulcoscul	11.	DLIN	

Directeur : M. le Proiesseur J-C PLEN	ΙEΙ

UFR Sciences et Techniques des Activités Physiques Directeur : M. Y.VANPOULLE

et Sportives	Directeur : M. Y.VANPOULLE
Observatoire des Sciences de l'Université de Lyon	Directeur : M. B. GUIDERDONI
Polytech Lyon	Directeur : M. le Professeur E.PERRIN
Ecole Supérieure de Chimie Physique Electronique	Directeur : M. G. PIGNAULT
Institut Universitaire de Technologie de Lyon 1	Directeur : M. le Professeur C. VITON
Ecole Supérieure du Professorat et de l'Education	Directeur : M. le Professeur A. MOUGNIOTTE
Institut de Science Financière et d'Assurances	Directeur : M. N. LEBOISNE

Département Mécanique Département Physique

Table des Matières

Introduction		3
--------------	--	---

partie I Préliminaires

Chapitre 1	Géométrie différentielle	11
1.1	Calcul différentiel et surfaces	11
1.2	L'opérateur de Laplace–Beltrami	21
1.3	Conclusion	24
Chapitre 2	Modèles de surfaces discrètes	27
2.1	Complexes simpliciaux et complexes cellulaires	27
2.2	Surfaces digitales	31
2.3	Conclusion	39
Chapitre 3	Interlude : Convergence d'opérateurs	41
3.1	Espaces de Banach et convergences d'opérateurs	41
3.2	La forme de Dirichlet associée à l'opérateur de Laplace–Beltrami	43
3.3	Retour sur les variétés différentielles	44
3.4	Conclusion	46

partie II Discrétisation de l'opérateur de Laplace-Beltrami

Chapitre 4	Panorama des discrétisations de l'opérateur de Laplace–Beltrami	51
4.1	Propriétés des laplaciens discrets	53
4.2	Opérateurs combinatoires	56
4.3	Deux opérateurs sur les triangulations	57
4.4	Opérateur sur des surfaces polygonales généralisées	62
4.5	Opérateur de convolution de Belkin et al.	65
4.6	Une autre approximation globale	69
4.7	Conclusion	71
Chapitre 5	Un opérateur de Laplace–Beltrami convergent sur les surfaces digitales	73
5.1	Différences finies sur des courbes digitales	74
5.2	Adaptation d'un laplacien existant : un contre exemple à la C^2 -convergence	78
5.3	Contribution principale : discrétisation de l'opérateur via l'équation de la chaleur	81
5.4	Preuve de la C^2 -convergence de \mathfrak{L}_h	84
5.5	Conclusion	94
5.6	Résultats annexes	94
Chapitre 6	Analyse numérique de la C ² -Convergence	97
6.1	Tests sur la sphère	97
6.2	C ² -convergence de la courbure moyenne	99
6.3	Détails sur l'implémentation	102
6.4	Diffusion de la chaleur	105

6.5	Lissage et approximation de surfaces	107
6.6	Flot de courbure moyenne	108
6.7	Conclusion	111
	Conclusion et perspectives	113
	Bibliographie	119

Introduction

De nombreux thèmes de la modélisation géométrique et de l'informatique graphique traitent de l'étude de surfaces de dimension deux plongées dans R³. La représentation discrète de ces surfaces se fait en général au travers d'un maillage caractérisé par les coordonnées de ses sommets ainsi que des informations de connectivité. Une des questions classiques qui apparaît lors de l'étude de ces objets est la définition d'une notion de calcul : quel sens peut-on donner à la dérivée d'une fonction définie sur ce maillage ? La théorie du calcul sur ces objets regroupe l'ensemble des études qui tentent de répondre à cette question. Plus précisément, le but est de donner de bonnes définitions (le terme de bonne reste ici à définir) d'opérateurs différentiels agissant sur des domaines discrets. On distingue deux approches lors de l'élaboration des méthodes de calcul. La première a pour but de développer un calcul purement discret, qui ne tient pas compte d'un objet continu sous-jacent. On cherche ici à construire une théorie discrète du calcul différentiel, analogue à la théorie continue. On va dans ce cas élaborer des versions discrètes de propriétés et de théorèmes de la géométrie différentielle : qu'est-ce que la courbure gaussienne sur un objet discret? Peut-on obtenir une version discrète du théorème de Stokes? La seconde approche, subtilement différente, est de partir d'un objet continu et de discrétiser celui-ci pour approximer, avec une certaine précision (qui dépend en général de la taille des briques discrètes utilisées), les opérateurs continus en assurant certaines propriétés de l'objet discrétisé (comme par exemple une bonne approximation des normales). On s'intéresse dans ce cas là à des notions de convergence des opérateurs discrets vers les opérateurs continus : on veut, par exemple, que lorsque l'on raffine l'approximation, les opérateurs différentiels discrets soient de plus en plus proches des opérateurs continus. La différence entre calcul discrétisé et calcul discret est bien sûr très fine, les deux théories se nourrissant l'une de l'autre.

Figure 0.1 Philosophie de la géométrie discrète - Eric Andres

Dans le cadre de la géométrie discrète, ou géométrie digitale (*c.-à-d.* la géométrie qui s'intéresse à des sous-ensembles de \mathbb{Z}^n), la philosophie générale est analogue au calcul discret : les différents acteurs de cette théorie cherchent à construire une géométrie de ces objets, en prenant exemple des outils de géométrie classique ou bien encore d'arithmétique. Cette philosophie est parfaitement illustrée dans la figure 0.1. Nous nous plaçons dans cette thèse du côté du calcul discrétisé. Ce choix provient principalement du fait que nous souhaitons comparer, dans un cadre théorique, les quantités estimées aux quantités continues. La méthode employée dans cette thèse permet à la fois de prouver des théorièmes de convergence des quantités discrètes vers les quantités continues, mais aussi, par des analyses numériques, de confirmer expérimentalement ces résultats.

Cadre de la thèse La problématique centrale de cette thèse est l'élaboration d'un opérateur de Laplace–Beltrami discret sur les surfaces digitales. Pour répondre à cette question, nous nous plaçons dans un cadre théorique où les surfaces digitales sont le résultat d'une approximation, ou processus de discrétisation, d'une surface continue sous-jacente. La difficulté de l'élaboration de cet opérateur est en fait due à deux problèmes inhérents à cette discrétisation et de façon plus générale aux surfaces digitales :

- (i) Les sommets de l'objet discrétisé n'interpolent pas la surface continue. En d'autres termes, notre surface digitale n'est qu'une approximation de la surface continue et non un échantillonnage de celle-ci. Afin d'étudier la convergence de l'approximation d'opérateurs ou de quantités différentielles (comme la courbure ou bien l'aire) il est tout d'abord nécessaire d'étudier la relation entre la surface discrétisée et la surface continue. De nombreuses études ont été faites à ce sujet, mais nous retiendrons dans cette thèse l'approche adoptée par Lachaud et Thibert [LT16] qui utilisent la théorie de la mesure géométrique introduite au début du vingtième siècle par Herbert Federer. Ils utilisent cette théorie pour mettre en relation la surface discrète et la surface continue via la fonction de projection au plus proche voisin. Les auteurs montrent que cette fonction de projection n'est pas bijective partout (étant donné un point de la surface discrète, celui-ci peut posséder plus d'une projection sur la surface continue). On ne peut donc pas, pour l'opérateur de Laplace-Beltrami, appliquer directement les discrétisations existantes qui supposent la bijectivité de l'application de projection (on citera notamment les travaux de Max Wardeztky comme exemple clef [War10]).
- (ii) Le second problème vient de la nature même de la surface digitale. Son caractère isotétique, c'est-à-dire le fait que toutes les faces de notre objet sont alignées avec les axes de la grille canonique, nous impose d'utiliser des techniques plus élaborées pour l'estimation de quantités différentielles. Par exemple, nous savons que les normales triviales (*c.-à-d.* les vecteurs perpendiculaires) aux faces de la surface digitale n'approximent pas les vraies normales de la surface continue sous-jacente. C'est un des points qui nous différencie des théories existantes du calcul discret où il est généralement supposé que les normales de la surface continue sous un certain raffinement de la discrétisation (voir par exemple les travaux de Mikhail Belkin *et al.* [BSW08; BSW]).

Nous faisons donc face à deux problèmes : d'une part, notre surface n'est qu'une approximation de la surface continue sous-jacente, et d'autre part, l'estimation triviale de quantités géométriques sur la surface digitale ne nous apporte pas en général une bonne estimation de cette quantité. Nous possédons déjà des réponses au second problème : ces dernières années, de nombreux articles se sont attachés à développer des méthodes pour approximer certaines quantités géométriques sur les surfaces digitales, méthodes que nous décrirons dans cette thèse. Ces nouvelles techniques d'approximation des normales nous permettent d'injecter des informations de mesure sur les éléments de notre surface. Nous utilisons donc l'estimation de normales pour répondre au premier problème, qui nous permet en fait d'approximer de façon précise le plan tangent en un point de la surface et, via une méthode d'intégration, contourner la non-bijectivité de la fonction de projection.

Si nous nous intéressons particulièrement à l'opérateur de Laplace-Beltrami dans cette thèse, c'est qu'il est en fait un opérateur central dans toute théorie de calcul discret. Cet opérateur est au cœur de nombreuses équations aux dérivées partielles (comme par exemple l'équation de la chaleur, les équations de diffusion ou bien l'équation de Schrödinger) et joue donc un rôle important dans la modélisation de processus physiques. L'opérateur de Laplace-Beltrami est un opérateur différentiel d'ordre deux : c'est un opérateur qui agit sur les fonctions et dans le cas particulier des espaces euclidiens, il correspond à la somme des dérivées secondes de la fonction. Géométriquement, il caractérise la déviation locale d'une fonction par rapport à son voisinage. Nous verrons d'ailleurs que, lorsqu'il est appliqué aux coordonnées de la surface, l'opérateur est intrinsèquement relié à la courbure moyenne de la surface qui est elle-même reliée au gradient de l'aire infinitésimale de surface. Du point de vue de l'informatique graphique, l'opérateur apparaît dans de nombreuses théories. Son étude spectrale sur les graphes permet par exemple de caractériser les plus courts chemins, et son étude au travers de l'équation de la chaleur est relié aux marches aléatoires dans un graphe [Lov96]. Sur les images, la discrétisation de l'opérateur permet de récupérer les contours saillants [HS92] puisque l'opérateur correspond à la dérivée spatiale des pixels. Il intervient également dans de nombreuses méthodes d'étude géométrique des surfaces comme le lissage par flot de courbure moyenne, l'approximation de formes par la décomposition spectrale, le calcul de distances via l'équation de la chaleur [LZ10]. Le spectre de l'opérateur nous fournit une base des fonctions sur la surface discrète, au même titre que la décomposition de Fourier sur des grilles régulières [VL08]. D'un point de vue théorique, l'opérateur de Laplace-Beltrami est au cœur du calcul discret : il permet, quand il est dérivé d'un calcul, de tester nombreuses de ses propriétés, comme par exemple la stabilité des opérateurs du calcul.

Projet CoMeDiC Cette thèse a été financée par le projet de l'Agence Nationale de la Recherche (ANR) "Convergent Metrics for Digital Calculus" (COMEDIC)¹. Ce projet a pour but de combler l'écart qui existe entre le calcul discret sur les surfaces digitales et le calcul continu. L'idée générale est d'estimer de façon précise les mesures des éléments des surfaces pour les injecter dans un calcul discret tel que les solutions d'équations aux dérivées partielles sur ces domaines convergent vers les solutions du calcul discret standard. Cette approche est envisageable grâce aux récents progrès en géométrie digitale des estimateurs

^{1.} ANR-15-CE40-0006

d'aire, de normales et de courbure. Le projet est décomposé en deux tâches principales. La première concerne le calcul discret digital et les modèles variationnels et plus précisement la définition de métriques sur les surfaces digitales et la convergence d'opérateurs, l'adaptation des problèmes variationnels dans le calcul digital et les performances du calcul. La seconde tâche se concentre sur les applications du calcul digital discret aux problèmes variationnels en analyse d'image, en analyse géométrique et en optimisation de formes. Cette thèse se concentre essentiellement sur la première tâche. Nous traitons en effet de la convergence d'un opérateur du calcul discret, à savoir l'opérateur de Laplace–Beltrami, et nous abordons donc des aspects théoriques concernant cet opérateur. Les applications présentées dans cette thèse sont là pour illustrer les propriétés de l'opérateur discrétisé, et, n'étant que des adaptations d'applications déjà existantes sur d'autres surfaces discrètes, ne constituent pas un apport scientifique au domaine de l'analyse de formes.

Nous résumons maintenant, à l'aide des prochains paragraphes, les différents chapitres de cette thèse. Celle-ci est divisée en deux parties : la première introduit des éléments de géométrie différentielle sur les surfaces continues ainsi que le cadre théorique discret dans lequel nous allons travailler. Sont présentés les complexes simpliciaux, dont les réalisations dans \mathbb{R}^n sont les triangulations, les complexes cellulaires, et un cas particulier de ceux-ci, les surfaces digitales. La seconde partie, qui constitue le cœur de la thèse, est consacrée aux discrétisations de l'opérateur de Laplace–Beltrami. Nous résumerons plusieurs discrétisations existantes de la littérature, puis nous présenterons notre discrétisation sur les surface digitales, dont nous montrons un certain type de convergence. Nous faisons ensuite une comparaison numérique entre les discrétisations présentées précédemment et notre opérateur discret. Nous explorons également quelques applications de l'opérateur discrétisé sur les surfaces digitales pour mettre en avant une propriété d'anisotropie de celui-ci.

Chapitre 1 : géométrie différentielle Nous présentons dans ce chapitre la géométrie différentielle des surfaces au travers de la théorie du calcul extérieur. Il est légitime de se poser la question suivante : pourquoi utilisons-nous cette théorie? Il existe après tout de nombreuses autres approches pour décrire les algorithmes de traitement géométrique des surfaces discrètes. La théorie du calcul extérieur est, dans une large mesure, le langage moderne de la géométrie différentielle des surfaces et de la physique théorique. Nous pouvons donc puiser dans les nombreux outils développés dans ce langage pour enrichir et exprimer de nombreux problèmes d'analyse en géométrie discrète. Le calcul extérieur nous permet également d'écrire et de mettre en œuvre de nombreuses méthodes, apparemment disjointes, dans un cadre unifié. Nous définirons donc la notion d'algèbre extérieure, utile pour calculer des volumes en plus grande dimension, puis la théorie des espaces courbes, dont les objets centraux sont les variétés riemanniennes. Après avoir formalisé les opérateurs différentiels principaux sur ces surfaces, comme le gradient d'un champ scalaire ou bien encore la divergence d'un champ vectoriel, nous présenterons l'objet central de cette thèse : l'opérateur de Laplace-Beltrami. En plus de donner sa formulation dans le langage du calcul extérieur, nous parlerons de quelques problèmes ouverts concernant sa décomposition spectrale, décomposition qui joue un rôle central dans de nombreuses applications.

Chapitre 2 : modèles de surfaces discrètes Ce chapitre est consacré aux représentations discrètes des surfaces continues. Nous résumons également des résultats de topologie sur les surfaces digitales, qui nous serviront lors de la preuve de convergence de la discrétisation de l'opérateur de Laplace–Beltrami proposée sur les surfaces digitales. Nous introduisons également une version du calcul extérieur, appelée calcul extérieur discret, sur les complexes simpliciaux. C'est l'occasion, pour nous, de résumer quelques propriétés de ce calcul, et de montrer la facilité d'implémentation de celui-ci. Nous présentons également un estimateur de normales sur les surfaces digitales, qui sera la brique de base pour la discrétisation de l'opérateur de Laplace–Beltrami. Cet estimateur nous permet en effet de calculer la mesure des faces de la surfaces digitale, qui nous permet d'approximer de façon précise l'intégration de fonctions sur ces surfaces.

Interlude sur la convergence d'opérateurs Cet interlude clôt la première partie de la thèse et nous permet de présenter le cadre théorique de convergence dans lequel nous allons développer nos preuves. Nous insistons sur le fait que dans le cas de l'opérateur de Laplace-Beltrami, nous parlons de convergence entre espaces de fonctions : nous verrons qu'il existe de nombreuses façons d'aborder la convergence, là où il suffit pour des quantités géométriques (comme la courbure ou bien l'aire) de regarder simplement la valeur absolue de la différence entre la quantité continue et son pendant discrétisé.

Chapitre 4 : Panorama des discrétisations de l'opérateur de Laplace–Beltrami Nous résumons dans ce chapitre plusieurs discrétisations de l'opérateur de Laplace–Beltrami sur plusieurs types de surfaces discrètes. Nous commençons le chapitre par une description des propriétés que l'on souhaite satisfaire pour un opérateur de Laplace–Beltrami discret. Nous utilisons pour cela l'article d'Alexa et Wardetzky "Discrete Laplace operators : No free lunch" [War+07] qui à partir des propriétés continues de l'opérateur dérive les propriétés discrètes de celui-ci. Pour chaque opérateur présenté, nous ajoutons à la fin du paragraphe un résumé de ses propriétés. Nous présentons des opérateurs sur les graphes, sur les complexes simpliciaux et sur les complexes cellulaires qui prennent la forme de l'équation (4.1.1). Nous présentons ensuite deux opérateurs qui sont des discrétisations globales par convolution sur la surface.

Chapitre 5 : Un opérateur de Laplace–Beltrami convergent sur les surfaces digitales Nous résumons dans ce chapitre les travaux publiés pendant cette thèse dans la conférence "Discrete Geometry for Computer Imagery" et dans la revue "Journal of Mathematical Imaging and Vision" [Cai+17; Cai+18]. Nous commençons le chapitre par une motivation pour la définition d'un opérateur convergent sur les surfaces digitales. Nous montrons que l'application du calcul extérieur discret sur des courbes 1D plongées dans le plan ne donne pas un opérateur convergent (au sens défini dans l'interlude). Nous utilisons donc l'approche proposée par Belkin *et al.* sur les triangulations [BN08; BSW; BSW08] que nous adaptons sur les surfaces digitales. Nous faisons également la preuve de convergence de cet opérateur sur les surfaces digitales en nous servant des outils de la théorie de la mesure géométrique de Federer, ainsi que des propriétés de l'équation de la chaleur montrées par Belkin *et al.*.

Chapitre 6 : Analyse numérique de l'opérateur Nous présentons dans ce chapitre une analyse numérique de notre discrétisation de l'opérateur de Laplace–Beltrami sur les surfaces digitales. Nous commençons dans un premier temps par calculer l'erreur d'approximation entre l'opérateur discret et l'opérateur continu pour différentes fonctions définies sur la sphère ainsi que différentes valeurs pour le paramètre de la méthode. Nous comparons ensuite notre opérateur avec d'autres opérateurs de la littérature soit appliqués directement sur la surface digitale, soit appliqués sur le *marching cube* [LC87] de la surface digitale. Cela nous permet de mettre en évidence le fait que (dans le cadre de ces expériences) seul notre opérateur possède la propriété de convergence prouvée au chapitre précédent. Nous effectuons ensuite la même analyse mais pour l'estimation de courbure moyenne. En plus de nous comparer avec les autres opérateurs discrets, nous utilisons également deux autres estimateurs de courbure moyenne convergents sur les surfaces digitales. Nous mettons ensuite en évidence, au travers de deux applications, une propriété d'anisotropie de notre opérateur par rapport à l'opérateur combinatoire sur les graphes.

Première partie

Préliminaires

La géométrie différentielle est une discipline des mathématiques qui, comme son nom l'indique, applique les outils du calcul différentiel ($c.-\dot{a}-d$. l'étude de la notion de dérivée d'une fonction) à la géométrie. Les objets centraux de cette théories sont les variétés riemanniennes, des ensembles qui possèdent une régularié suffisante pour aborder la notion de dérivation de fonctions définies sur celles-ci. Dans le cadre de cette thèse, la géométrie différentielle est, pour nous, un outil que nous cherchons à adapter sur des surfaces représentables et

stockables sur les ordinateurs ($c.-\dot{a}-d$. les surfaces discrètes). Le but est ici de développer des algorithmes et méthodes pour étudier des problèmes géométriques sur ces surfaces. Nous introduisons dans le premier chapitre de cette thèse l'opérateur de Laplace–Beltrami au travers du calcul extérieur et énumérons quelques-unes de ses propriétés géométriques et spectrales dans le cadre continu. Le choix d'un premier chapitre très théorique nous permet de mettre en évidence un concept clef lié à l'opérateur que nous souhaitons discrétiser : la métrique riemannienne ($c.-\dot{a}-d$. comment la surface se courbe localement). Dans cette optique, nous verrons que le calcul extérieur permet de décomposer l'opérateur en une partie puremement combinatoire (la dérivée extérieure) et une partie "métrique" (l'opérateur de Hodge). Dans un second temps, nous introduisons quelques représentations des surfaces discrètes et notamment l'objet central de cette thèse, à savoir les surfaces digitales.

Ce second chapitre est aussi l'occasion pour nous d'introduire un estimateur de normales sur les surfaces digitales, que nous utiliserons dans la discrétisation de l'opérateur de Laplace–Beltrami afin de mesurer localement l'aire de la surface discrète. L'éstimation locale de l'aire est en effet au coœur de toute discrétisation géométrique de l'opérateur de Laplace–Beltrami comme nous le verrons dans la seconde partie de cette thèse. Enfin, dans le dernier chapitre de cette partie, nous présentons le cadre d'étude théorique de convergence de l'opérateur de Laplace–Beltrami. Nous rappelons des éléments d'analyse fonctionnelle, et décrivons les différentes approches qui peuvent-être envisagées lors de l'étude de la convergence de l'opérateur.

Géométrie différentielle

1

Sommaire

1.1	Calcul différe	entiel et surfaces	11
	$\hookrightarrow 1.1.1$	Algèbre extérieure	12
	$\hookrightarrow 1.1.2$	Variétés différentielles	14
	$\hookrightarrow 1.1.3$	Le tenseur métrique	17
	$\hookrightarrow 1.1.4$	La dérivée extérieure	18
	$\hookrightarrow 1.1.5$	L'opérateur de Hodge	19
1.2	L'opérateur	de Laplace–Beltrami	21
	$\hookrightarrow 1.2.1$	Opérateur de Laplace–Beltrami et formes différentielles	22
	\hookrightarrow 1.2.2	Comprendre les valeurs propres de l'opérateur	23
1.3	Conclusion		24

Comme énoncé dans l'introduction de cette partie, nous résumons ici des éléments de géométrie différentielle afin de présenter l'opérateur de Laplace–Beltrami sur les variétés Riemanniennes. Nous mettons en évidence le rôle de la métrique (c.-à-d. la déformation locale de la surface) dans l'opérateur à la fois au travers de sa définition dans les cartes, mais aussi via le calcul extérieur. Nous nous attardons également sur le spectre de l'opérateur, qui met en évidence quelques propriétés géométriques fondamentales de celui-ci.

1.1 Calcul différentiel et surfaces

La géométrie différentielle discrète traite de l'étude différentielle sur les structures géométriques (par exemple des triangulations 2D plongées en 3D). L'approche généralement considérée lors de l'élaboration d'une telle théorie est de s'appuyer sur les outils de géométrie différentielle sur les variétés riemanniennes. Bien que nos surfaces ne soient pas intrinsèquement différentiables (ou plus précisément uniquement différentiables par morceaux), la compréhension du calcul discret ne peut se passer de la compréhension de ces analogues sur les variétés. Nous jugeons donc nécessaire de présenter la théorie de l'algèbre extérieure (ou algèbre de Grassmann), qui offre un cadre de calcul qui ne dépend pas d'une base choisie sur la variété. Un des théorèmes centrals de cette théorie est le théorème de Stokes qui nous permet de faire le lien entre l'intégrale d'une quantité sur un domaine, et cette même quantité au bord du domaine. Une des conséquences majeures pour la théorie du calcul discret est que nous n'avons besoin que de considérer des quantités ponctuelles (par exemple des fonctions évaluées aux sommets du maillage) pour calculer. Nous considérerons dans tout ce qui suit une surface 2D plongée dans \mathbb{R}^3 , qui sera l'objet d'étude continu central de cette thèse. Le lecteur pourra se référer au livre de Lee [Lee03] pour une introduction au calcul extérieur. Nous introduisons dans un premier temps l'algèbre extérieur, un outil qui permet de mesurer des volumes dans

des espaces arbitrairement grands. Dans un second temps, nous présentons les surfaces riemanniennes ($c.-\dot{a}-d$. les variétés différentielles) en introduisant le concept de plan tangent et de dérivée sur ces surfaces. Nous voyons ensuite la notion de tenseur métrique, qui permet d'exprimer, en combinaison avec l'algèbre extérieur, des vecteurs sans système de coordonnées locales. Enfin, nous présentons les deux opérateurs centraux du calcul extérieur : la dérivée extérieure et l'opérateur de Hodge.

1.1.1 Algèbre extérieure

Le produit extérieur (ou *wedge product* en anglais) est une construction algébrique utilisée en géométrie pour étudier les aires, les volumes et leurs analogues en dimension plus élevée. Ce produit est anti-commutatif (c'est-à-dire que $\mathbf{u} \wedge \mathbf{v} = -\mathbf{v} \wedge \mathbf{u}$) et linéaire en chacun de ses termes. Commençons tout d'abord par donner un exemple pour illustrer \wedge en deux dimensions. Le plan cartésien \mathbb{R}^2 est un espace vectoriel que l'on peut équiper d'une base standard de vecteurs unitaires

$$oldsymbol{e}_0 \coloneqq egin{bmatrix} 1 \ 0 \end{bmatrix}, oldsymbol{e}_1 \coloneqq egin{bmatrix} 0 \ 1 \end{bmatrix}.$$

Un vecteur v s'écrit alors dans cette base comme

$$\mathbf{v} = \mathbf{v}^0 \mathbf{e}_0 + \mathbf{v}^1 \mathbf{e}_1,$$

une combinaison linéaire des vecteurs de base de \mathbb{R}^2 . Soient deux vecteurs \mathbf{u} et \mathbf{v} de \mathbb{R}^2 . Il existe alors un unique parallélogramme (à translation près) possédant ces deux vecteurs comme côtés. L'aire de celui-ci correspond à la valeur absolue du déterminant de la matrice formée par ces deux vecteurs :

Aire :=
$$\begin{vmatrix} u^0 & v^0 \\ u^1 & v^1 \end{vmatrix} = |u^0 v^1 - u^1 v^0|.$$

Calculons maintenant le produit extérieur entre ces deux vecteurs :

$$\mathbf{u} \wedge \mathbf{v} = (\mathbf{u}^{0} \mathbf{e}_{0} + \mathbf{u}^{1} \mathbf{e}_{1}) \wedge (\mathbf{v}^{0} \mathbf{e}_{0} + \mathbf{v}^{1} \mathbf{e}_{1})$$

= $\mathbf{u}^{0} \mathbf{v}^{0} \mathbf{e}_{0} \wedge \mathbf{e}_{0} + \mathbf{u}^{0} \mathbf{v}^{1} \mathbf{e}_{0} \wedge \mathbf{e}_{1} + \mathbf{u}^{1} \mathbf{v}^{0} \mathbf{e}_{1} \wedge \mathbf{e}_{0} + \mathbf{u}^{1} \mathbf{v}^{1} \mathbf{e}_{1} \wedge \mathbf{e}_{1}$
= $(\mathbf{u}^{0} \mathbf{v}^{1} - \mathbf{u}^{1} \mathbf{v}^{0}) \mathbf{e}_{0} \wedge \mathbf{e}_{1}.$

Nous pouvons donc voir que la norme de ce vecteur correspond à l'aire du parallélogramme calculée précédemment (voir la figure 1.1). Remarquez aussi que le signe de cet opérateur dépend de l'orientation de la base choisie (sens horaire ou anti-horaire). Plus généralement, nous aurions pu choisir arbitrairement des vecteurs de base de \mathbb{R}^2 : le produit extérieur permet ainsi de comparer l'aire d'un parallélogramme par rapport à un parallélogramme canonique (que nous avons la liberté de choisir). En ce sens, le produit extérieur nous fournit une formulation de l'aire indépendante de la base choisie. Plus généralement, étant donné un espace vectoriel fini V et une base (e_1, \ldots, e_n) de celui-

Figure 1.1 Le produit extérieur entre deux vecteurs u et v est un 2-vecteur, dont la norme est égale à l'aire du parallélogramme engendré par ces deux vecteurs.

ci, nous pouvons écrire $x := \sum x^i e_i$ et $y := \sum y^i e_i$. En utilisant les règles du produit extérieur, nous avons

$$\mathbf{x} \wedge \mathbf{y} = \sum_{i < j} (\mathbf{x}^i \mathbf{y}^j - \mathbf{x}^j \mathbf{y}^i) \mathbf{e}_i \wedge \mathbf{e}_j.$$
(1.1.1)

Le produit extérieur nous permet d'assembler des vecteurs de V pour créer des sous-espaces vectoriels de dimension plus élevé. Nous avions par exemple dans l'équation (1.1.1) créé un sous-espace vectoriel de dimension deux, qui correspond géométriquement au plan engendré par x et y possédant l'aire du parallélogramme calculée précédemment. L'objet x/y est appelé un 2-vecteur (ou bivecteur). On peut ainsi étendre la construction pour un nombre arbitraire de vecteurs de V. Pour p = 0, 1, ..., n, nous définissons un nouvel espace vectoriel $\bigwedge_p V$ dont les éléments sont des p-vecteurs de V, et p est appelé le degré. Nous avons en particulier $\bigwedge_0 V = \mathbb{R}, \bigwedge_1 V = V$ et $\bigwedge_n V = \mathbb{R}$. Pour $2 \leq p < n, \bigwedge_p V$ est composé d'éléments représentés comme

$$\mathbf{x}_1 \land \mathbf{x}_2 \land \ldots \land \mathbf{x}_p$$

où chacun des x_i appartient à V. Il est donc possible de construire l'espace des p-vecteurs en combinant des vecteurs à l'aide du produit extérieur.

Le produit extérieur produit une algèbre associative appelée *algèbre extérieure* ou bien encore *algèbre de Grassmannn*. Intéressons-nous maintenant à l'espace dual de $\bigwedge_p V$. Commençons tout d'abord par définir les *fonctionnelles linéaires*. Une fonctionnelle linéaire $\alpha : V \to \mathbb{R}$ est une transformation linéaire des éléments de V vers \mathbb{R} . Ainsi, étant donnés $v, w \in V$ et $a, b \in \mathbb{R}$,

$$\boldsymbol{\alpha}(\boldsymbol{a}\boldsymbol{v}+\boldsymbol{b}\boldsymbol{w})=\boldsymbol{a}\boldsymbol{\alpha}(\boldsymbol{v})+\boldsymbol{b}\boldsymbol{\alpha}(\boldsymbol{w}).$$

L'ensemble de ces fonctionnelles sur V constitue un espace vectoriel appelé espace dual à V, et souvent noté V^{*}. Si e_1, \ldots, e_n forment une base de V, nous pouvons définir la base duale $\epsilon^1, \ldots, \epsilon^n$ de V^{*} par

$$\epsilon^{i}(\boldsymbol{e}_{j}) = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{sinon} \end{cases}$$

et nous avons donc par linéarité

$$\epsilon^{i}(\boldsymbol{v}) = \epsilon^{i}\left(\sum_{j} \boldsymbol{e}_{j}\boldsymbol{v}^{j}\right) = \sum_{j} \epsilon^{i}(\boldsymbol{e}_{j})\boldsymbol{v}^{j} = \boldsymbol{v}^{i}.$$
(1.1.2)

En d'autres termes ϵ^i extrait la i-ème coordonnée du vecteur v. Ces fonctionnelles linéaires sont appelées *formes*. On peut, de la même façon qu'avec les p-vecteurs, utiliser le produit extérieur pour définir l'espace vectoriel des p-formes $\bigwedge^p V$. Ainsi, $\bigwedge^0 V$ est l'espace des fonctions évaluées sur des scalaires et $\bigwedge^n V$ l'espace des applications scalaires. Pour les autres valeurs de p, l'espace vectoriel $\bigwedge^p V$ est composé d'élément

$$\alpha_1 \wedge \ldots \wedge \alpha_p$$
.

Une p-forme est donc une application linéaire des p-tuples de vecteurs dans les scalaires. Nous verrons que dans le cas discret, les p-formes discrètes sont des applications d'objets géométriques simples (sommets, arêtes et triangles par exemple) vers \mathbb{R} . L'un des principaux avantages des p-formes est qu'elles permettent de faire du calcul sans coordonnées (*e.g.* étant donné une forme α et un vecteur ν l'évaluation de $\alpha(\nu)$ ne dépend pas du système de coordonnées choisi pour les calculs).

Les notions introduites précédemment sur le produit extérieur et sur les p-vecteurs sont valables pour un espace vectoriel donné V. Nous allons maintenant introduire le concept de variétés, qui peut-être vu comme une généralisation des espaces vectoriels. Nous utiliserons les outils de l'algèbre extérieure pour calculer sur de telles surfaces.

1.1.2 Variétés différentielles

Les variétés les plus générales sont les variétés topologiques : ce sont des espaces munis de certaines propriétés qui donnent un sens à "ressemblent localement à \mathbb{R}^{d} ". Bien que l'aspect topologique soit largement étudié, une des applications des variétés se trouve dans le calcul. Il est naturel de vouloir étendre la notion de volume calculée classiquement via des intégrales, ou bien la notion de courbure, calculée par différentiation sur des objets plus complexes que des droites ou des plans.

Une variété topologique est une collection ou bien atlas d'homéomorphismes vers l'espace euclidien appelés cartes (voir la figure 1.2 pour un exemple de carte). Nous supposons que ces cartes sont compatibles entre elles : étant données deux cartes (A, φ) et (B, ψ) , si $A \cap B \neq \emptyset$ alors la composition $\psi \circ \varphi^{-1}$ est aussi un homéomorphisme appelé l'application de transition. Cette structure est suffisante pour étudier les propriétés topologiques des variétés, comme la compacité ou bien la connexité, mais ne suffit pas pour le calcul. Pour qu'une variété soit adaptée au calcul elle doit être différentielle, ce qui se traduit par la différentiabilité de ses cartes de transition. Nous considérons dans cette thèse les variétés différentielles qui sont plongées dans \mathbb{R}^3 . Pour un traitement rigoureux de ces espaces, nous conseillons le livre de John M. Lee "Introduction to Smooth Manifolds" [Lee03].

Nous introduisons maintenant la notion de plan tangent à une variété en suivant la construction décrite dans le chapitre 3 du livre de Lee. Posons-nous la question suivante :

Figure 1.2 Un exemple de carte de coordonnées (U, φ) d'une variété M. L'ensemble U est appelé l'espace des coordonnées ou bien voisinage des coordonnées de la carte. L'application φ quant à elle est appelée l'application des coordonnées (locales) et les composantes de cette fonction sont appelées les coordonnées locales.

étant donné une variété M plongée dans \mathbb{R}^n , quel sens peut-on donner au terme "vecteur tangent" à un point p de cette variété? Avant de pouvoir répondre à cette question, posonsnous d'abord une autre question : qu'est-ce qu'un élément de \mathbb{R}^n ? D'un côté, un élément \mathbf{x} de \mathbb{R}^n est un point de l'espace que l'on exprime via ses coordonnées (x^1, \ldots, x^n) . De l'autre côté, lorsque nous sommes amenés à faire du calcul, nous imaginons ces éléments comme des vecteurs, qui sont des objets possédant une longueur (leur norme) et une direction, mais dont la localisation dans l'espace ne joue aucune importance. Un vecteur $\mathbf{v} = \sum v^i \mathbf{e}_i$ (avec \mathbf{e}_i les vecteurs de la base standard) est une flèche dont le point initial se situe n'importe où dans \mathbb{R}^n : l'important du point de vue du calcul est la direction et la longueur du vecteur. Étant donné un point a de \mathbb{R}^n , l'*espace tangent géométrique* de \mathbb{R}^n en a, noté \mathbb{R}^n_a est l'ensemble $\{a\} \times \mathbb{R}^n = \{(a, v) \mid v \in \mathbb{R}^n\}$. Un *vecteur tangent géométrique*, noté \mathbf{v}_a ou bien $\mathbf{v}|_a$, dans \mathbb{R}^n est un élément de cet espace. C'est donc l'ensemble des vecteurs ancrés en a. Ces objets nous permettent de définir la dérivée directionnelle dans \mathbb{R}^n : tout vecteur tangent géométrique \mathbf{v}_a donne une application $D_{\mathbf{v}|_a} : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ appelée la dérivée directionnelle :

$$D_{\boldsymbol{\nu}}|_{\boldsymbol{\alpha}} f = D_{\boldsymbol{\nu}} f(\boldsymbol{\alpha}) = \frac{d}{dt}\Big|_{t=0} f(\boldsymbol{\alpha} + t\boldsymbol{\nu}).$$

Si $v_{\alpha} = \sum v^{i} e_{i} |_{\alpha}$ dans la base standard, la dérivée directionnelle s'écrit

$$D_{\boldsymbol{\nu}}\big|_{\mathfrak{a}} f = \sum_{i} \nu^{i} \frac{\partial f}{\partial x^{i}}(\mathfrak{a}).$$

On définit l'ensemble des dérivations en a, noté $T_a \mathbb{R}^n$, comme l'ensemble des applications de $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ linéaires et satisfaisant la règle du produit. Lee montre que cet ensemble est de dimension finie et qu'il est isomorphe à \mathbb{R}^n_a . Il énonce alors le lemme suivant

LEMME Corollaire 3.3 de [Lee03] Pour tout $a \in \mathbb{R}^n$, les n dérivées

$$\left.\frac{\partial}{\partial x^{i}}\right|_{a},\ldots,\frac{\partial}{\partial x^{n}}\right|_{a}$$

définies comme

$$\frac{\partial}{\partial x^{i}}\Big|_{a} f = \frac{\partial f}{\partial x^{i}}(a)$$

forment une base de $T_{\alpha}\mathbb{R}^n,$ qui est donc de dimension n.

En d'autres termes, les dérivées directionnelles de f en a forment une base de l'espace vectoriel des dérivations en a, $T_a \mathbb{R}^n$, qui correspond donc au plan tangent géométrique. Un vecteur de $T_a \mathbb{R}^n$ s'écrit donc comme

$$\mathbf{v}\big|_{\mathfrak{a}} = \sum \mathbf{v}^{\mathfrak{i}} \frac{\partial}{\partial x^{\mathfrak{i}}} \Big|_{\mathfrak{a}}.$$

Sachant représenter un vecteur du plan tangent géométrique, il est possible de définir la notion de plan tangent sur une variété noté $T_q M$. Dans le cadre de cette thèse, nous nous intéressons à des variétés plongées dans \mathbb{R}^3 : nous pouvons donc identifier le plan tangent $T_q M$ de la variété comme un plan tangent géométrique de \mathbb{R}^2 . Nous ne détaillerons donc pas ici la construction rigoureuse de $T_q M$ qui implique l'étude de la différentielle de la fonction de passage en coordonées locales ϕ . Informellement, le plan tangent est construit à l'aide d'un plan tangent géométrique dans l'espace euclidien des cartes de la variété.

La différentielle de f au point q est la fonctionnelle df : $T_q M \to \mathbb{R}$ définie comme

$$\mathrm{df}(\boldsymbol{\nu})_{q} := (\mathrm{D}_{\boldsymbol{\nu}} \mathrm{f})(q).$$

La différentielle de f est définie indépendamment de toute base du plan tangent : elle requiert uniquement le vecteur v défini en q. On voit donc que la différentielle df de f évaluée sur le vecteur v est équivalente à la dérivée directionnelle D_v de v évaluée sur la fonction f. On peut donc exprimer la différentielle df en coordonnées locales x comme

$$df\left(\sum_{i}\nu^{i}\frac{\partial}{\partial x^{i}}\right)\bigg|_{q}=\sum_{i}\nu^{i}\frac{\partial f}{\partial x^{i}}(q)=(D_{\nu}f)(q).$$

Si l'on restreint f aux fonctions de coordonnées xⁱ, alors

$$dx^{i}(\boldsymbol{\nu}) = dx^{i}\left(\sum_{j} \nu^{j} \frac{\partial}{\partial x^{j}}\right) = \sum_{j} \nu^{j} dx^{i}\left(\frac{\partial}{\partial x^{j}}\right) = \nu^{i},$$

ce qui indique que pour chaque i, l'action de la fonctionnelle dx^i sur v extrait la i-ème coordonnée de v. La différentielle des coordonnées est donc duale aux vecteurs tangents et sont donc exactement les éléments de l'espace cotangent, *c*.-à-*d*.,

$$dx^i = \epsilon^i$$
,

(1.1.1)

et toute expression comprenant ces vecteurs de bases est une *forme différentielle* (d'où leur nom). En résumé, en tout point q de la variété différentielle M, il existe un plan tangent T_qM qui est un espace vectoriel possédant comme base les vecteurs $\frac{\partial}{\partial x^i}$. Le plan tangent possède également un espace dual, appelé T_q^*M , qui lui aussi possède une base de vecteurs dx^i qui correspondent exactement aux fonctionnelles extrayant la i-ème composante d'un vecteur v de T_qM .

1.1.3 Le tenseur métrique

Une propriété importante des formes différentielles et des vecteurs définis de manière générale sur les variétés est qu'ils sont exprimés de manière indépendante de tout système de coordonnées. La différence principale entre les vecteurs et les formes est la façon dont ils réagissent à un changement de coordonnées pour préserver leur invariance. Plus précisément, les éléments du plan tangent T_qM se comportent comme des tenseurs contravariants (*c.-à-d.* ils varient dans la direction opposée par changement de coordonnées), et les éléments de l'espace cotangent T_q^*M se comportent comme des tenseurs covariants (*c.-à-d.* ils varient dans la même direction que le changement de coordonnées).

Intuitivement, les quantités contra-variantes comprennent les vecteurs de coordonnées qui représentent la position d'un objet ou bien la dérivée d'une position par rapport au temps (comme la vélocité ou bien l'accélération) ; et les quantités covariantes comprennent les dérivées de fonctions sur l'espace, comme le gradient ou bien encore la divergence d'un champ scalaire. De plus, à cause de l'antisymétrie du produit extérieur sur les vecteurs et sur les formes, les p-vecteurs et les p-formes sont des tenseurs antisymétriques des quantités contra-variantes et covariantes, respectivement. A noter qu'on introduit généra-lement les p-formes et les p-vecteurs comme les éléments des tenseurs antisymétriques (autrement appelés tenseurs alternés, voir par exemple le chapitre 12. du livre de Lee [Lee03]).

Les tenseurs symétriques nous permettent de mettre en relation les p-vecteurs et les pformes à travers le tenseur métrique. Considérons un espace vectoriel V équipé d'un produit intérieur, c'est-à-dire une application des paires de 1-vecteurs vers les réels. Celleci est généralement noté $\langle v, w \rangle : V \times V \rightarrow \mathbb{R}$. C'est une application symétrique, bilinéaire, non-dégénérée et positive définie. Elle s'écrit en coordonnées locales

$$\langle \mathbf{v}, \mathbf{w} \rangle := \sum_{i} \sum_{j} v^{i} w^{j} \langle e_{i}, e_{j} \rangle.$$

C'est donc une somme pondérée linéaire des produits intérieurs des éléments de bases. On décrit un tel opérateur via sa matrice $\dim(M) \times \dim(M)$ (par exemple 2 × 2 dans le cas d'une surface 2D) qui possède les entrées

$$(\mathbf{G})_{ij} := g_{ij} = \langle e_i, e_j \rangle$$

tel que

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i} \sum_{j} v^{i} w^{j} g_{ij},$$

ce qui donne sous forme matricielle

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathsf{T}} \mathbf{G} \mathbf{w}$$

où $\mathbf{v} = (v^1, \dots, v^n)^T$ et $\mathbf{w} = (w^1, \dots, w^n)^T$. On voit donc que sous la métrique euclidienne (lorsque **G** est égal à la matrice identité **I**), le produit intérieur correspond au produit scalaire des coordonnées.

Étant donné que le produit intérieur $\langle v, w \rangle$ est une application linéaire de w lorsque v est fixée, la fonction α définie par

$$\alpha(w) := \langle v, w \rangle$$

est une fonctionnelle linéaire sur V, elle appartient donc à l'espace dual V^{*}. Cette construction nous permet d'exhiber la version covariante de v à l'aide du produit intérieur. Les composantes de α dans la base de V^{*} s'écrivent alors comme

$$\alpha_j = \sum_i \nu^i g_{ij}.$$

De la même façon, étant donnée une forme α , le vecteur contravariant associée à α s'exprime dans la base de V comme

$$v^{i} = \sum_{j} \alpha_{j} g^{ij} \tag{1.1.3}$$

où g^{ij} correspond aux valeurs de l'inverse de la matrice **G** (*c.-à-d.* (**G**⁻¹)_{ij} := g^{ij}). Dans le langage des tenseurs, le passage d'une quantité contra-variante à une quantité covariante est appelée la descente d'indices, et l'inverse la montée d'indices. Dans le cas particulier des 1-formes (resp. des 1-vecteurs), l'opération contra-variant \rightarrow covariant (resp. covariant \rightarrow contra-variant) est une application linéaire des 1-formes (resp. champ de vecteurs $\mathcal{X}(M)$ de M) vers les champs de vecteurs $\mathcal{X}(M)$ de M (resp. les 1-formes) : elle est noté par \sharp (resp. \flat). Ces opérateurs sont appelés les isomorphismes musicaux.

La théorie nous montre que

$$\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle = \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{G}^{-1} \mathbf{b},$$

où $\mathbf{a} = (\alpha^1, \dots, \alpha^n)$ et $\mathbf{b} = (\beta^1, \dots, \beta^n)$. La matrice \mathbf{G}^{-1} existe toujours (car le produit scalaire est non-dégénéré). La matrice \mathbf{G} est appelé le *tenseur métrique*. Bien que nous ayons défini le tenseur métrique pour des espaces généraux, un tenseur métrique peut-être également défini pour les espaces tangents T_qM . Ce tenseur est symétrique et covariant. Il est également toujours de rang deux.

1.1.4 La dérivée extérieure

La dérivée extérieure étend la notion de dérivée aux formes différentielles, de telle façon qu'elle ne dépend pas des coordonnées et ne requiert pas la spécification d'une métrique. La dérivée extérieure d est un opérateur des p-formes vers les (p + 1)-formes, $d : \bigwedge^p(T^*M) \rightarrow \bigwedge^{p+1}(T^*M)$. Tout comme le produit extérieur produit des formes de haut degré à l'aide de formes de degré inférieure, la dérivée extérieure augmente le degré d'une forme. La 1-forme df $\in \bigwedge^1$ de toute fonction $f \in \bigwedge^0$ est la dérivée usuelle de la fonction f, à savoir :

$$df = \sum_{i} \frac{\partial f}{\partial x^{i}} dx^{i}.$$

De manière plus générale, la dérivée extérieure est simplement

$$d\alpha = \sum_i (d\alpha^i) \wedge dx^i.$$

La dérivée extérieure est donc un substitut pour les opérateurs standards en géométrie différentielle : appliquée à une 0-forme, l'opération ressemble au gradient d'un champ scalaire, appliquée à une 1-forme, l'opérateur agit comme le rotationnel d'un champ de vecteurs et enfin appliquée à une 2-forme, elle ressemble à la divergence. En considérant df comme étant une quantité covariante, et ∇f (*c.-à-d.* le gradient de f) comme étant une quantité contra-variante (la dérivée d'un champ scalaire), nous pouvons mettre en relation ces deux quantités via le tenseur métrique :

$$df(\mathbf{v}) = \langle \nabla f, \mathbf{v} \rangle, \qquad (1.1.4)$$

c.-à-d. df(v) est la dérivée directionnelle de f le long de v. On peut donc extraire les composantes de ∇f à l'aide du tenseur métrique et de df, pour produire un vecteur qui "pointe" vers la direction de plus grande pente. On peut convertir de façon similaire la différentielle de formes de degré supérieur via le tenseur métrique (nous spécifierons ces transformations dans la prochaine section consacrée à l'opérateur de Hodge).

Géométriquement, la dérivée extérieure mesure la variation d'une p-forme simultanément dans toutes les p directions du parallélépipède de dimension p, et est donc une généralisation naturelle de la dérivée unidimensionnelle sur les graphes de fonctions.

1.1.5 L'opérateur de Hodge

Nous présentons ici le dernier opérateur de base sur les formes différentielles, l'opérateur de dualité de Hodge, noté *. Cet opérateur, qui met en relation une p-forme avec une (n - p)-forme, vient compléter le produit extérieur (qui permet de construire des formes de plus haut degré en les combinant) et la dérivée extérieure (qui permet de constuire des formes de dimensions inférieures). Cet opérateur est, par construction, un isomorphisme entre les espaces de formes (car nous supposons ici que le produit intérieur défini en chaque point q de la variété n'est pas dégénéré). L'action de l'opérateur de Hodge sur la base orthonormale $e^{i_1} \land \ldots \land e^{i_p}$ de \bigwedge^p produit la base duale :

$$\star(\varepsilon^{\mathfrak{i}_1}\wedge\ldots\wedge\varepsilon^{\mathfrak{i}_p})=\varepsilon^{\mathfrak{i}_{p+1}}\wedge\ldots\wedge\varepsilon^{\mathfrak{i}_n},$$

où l'ordre des indices de $\{i_1, \ldots, i_p, i_{p+1}, \ldots, i_n\}$ est une permutation paire des entiers $1, \ldots, n$. Considérons maintenant une 1-forme $\alpha = \sum_j \alpha_i \epsilon^i$, nous avons

$$\star \boldsymbol{\alpha} = \sqrt{|\mathbf{G}|} \sum_{i} \left(\sum_{j} \alpha_{j} g^{ij} \right) (\star \boldsymbol{\varepsilon}^{i})$$

où $|\mathbf{G}|$ représente le déterminant du tenseur métrique sur $\bigwedge^{p}(\mathsf{T}_{q}\mathsf{M})$ et la quantité $\left(\sum_{j} \alpha_{j} g^{ij}\right)$ est la version contravariante de α . La (n-p)-forme $\star \alpha$ est appelée le dual de Hodge de α .

Il existe une unique forme appelée forme de volume et notée volⁿ tel que

$$\operatorname{vol}^{n}(e_{1} \wedge \ldots \wedge e_{n}) = 1$$

Cette forme s'écrit comme

$$\operatorname{vol}^n = \sqrt{|\mathbf{G}|} dx^1 \wedge \ldots \wedge dx^n = \sqrt{|\mathbf{G}|} \varepsilon^1 \wedge \cdots \wedge \varepsilon^n.$$

La multiplication par $\sqrt{|\mathbf{G}|}$ nous assure que $\star(1) = \operatorname{vol}^n$. Cette forme représente le volume canonique liée à notre algèbre : elle est déterminée par l'orientation de la variété et possède une norme unitaire. Elle nous permet notamment de mettre en relation l'opérateur de Hodge et le produit intérieur. Soient deux formes α et β , le produit extérieur appliqué à α et $\star\beta$ donne une n-forme (*c.-à-d.* un scalaire). Nous citons la relation suivante :

$$\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \text{ vol}^n$$

où le produit scalaire est celui défini précédemment via le tenseur métrique. Cette relation joue un rôle central dans la définition du calcul extérieur. On parle parfois de la trinité Hodge, produit intérieur et produit extérieur : si l'on définit deux des trois opérateurs, nous pouvons utiliser l'égalité pour déterminer le troisième.

Dans le cas spécial de \mathbb{R}^3 , nous pouvons mettre en lien le produit extérieur, l'opérateur de Hodge avec des quantités traditionnelles du calcul vectoriel. Supposons que la métrique en chaque point de la variété soit euclidienne et soient trois quantités contra-variantes **u**, *v* et *w* nous avons :

$$\begin{split} \mathbf{u} \cdot \mathbf{v} &= \star (\mathbf{u} \wedge \star \mathbf{v}) = \star (\mathbf{v} \wedge \star \mathbf{u}), \\ \mathbf{u} \times \mathbf{v} &= \star (\mathbf{u} \wedge \mathbf{v}) \text{ et,} \\ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) &= \star (\mathbf{u} \wedge \mathbf{v} \wedge \mathbf{w}). \end{split}$$

L'opérateur de Hodge permet aussi de mettre en relation le langage des formes avec le calcul différentiel classique. Pour une 1-forme dans \mathbb{R}^3 , le rotationnel est donné par

$$\star d\alpha \equiv \nabla \times \alpha$$

et la divergence par

$$\star \mathbf{d} \star \boldsymbol{\alpha} \equiv \nabla \cdot \boldsymbol{\alpha}$$

(nous utilisons ici le symbole \equiv pour montrer qu'il y a équivalence entre les deux définitions, c'est-à-dire que le tenseur métrique nous permet de mettre en relation les quantités covariantes et contravariantes).

Pour résumer, l'opérateur de Hodge \star est une application linéaire des p-formes vers les (n - p)-formes qui requiert un tenseur métrique ainsi qu'une orientation de la surface sous-jacente. Il procure un produit scalaire généralisé sur la variété, et permet de faire le

$$0 \longrightarrow \bigwedge^{0} \underbrace{\overset{d}{\longleftarrow} \bigwedge^{1} \underbrace{\overset{d}{\longleftarrow} \bigwedge^{2} \longrightarrow 0}_{Id\left(\int\right) Id} 0$$

$$0 \longrightarrow \mathbb{R} \xrightarrow{\delta} \chi(M) \xrightarrow{curl} \mathbb{R} \longrightarrow 0$$

Figure 1.3 Le complexe de Rham illustre les différents opérateurs entre formes et géométrie différentielle. Les opérateurs musicaux # et b font le lien entre le calcul extérieur et les champs vectoriels à travers la montée et la descente des indices. Ils permettent par exemple d'obtenir les composantes du gradient depuis la forme associée.

lien entre les opérateurs classiques de géométrie différentielle et le calcul extérieur des formes différentielles.

Le complexe de Rham de la figure 1.3 synthétise tous les opérateurs décrits dans cette section.

1.2 L'opérateur de Laplace–Beltrami

L'opérateur de Laplace [Eva10], ou bien laplacien, est un opérateur différentiel donné par la divergence du gradient de fonctions définies dans l'espace euclidien. Il est généralement noté Δ , ou bien encore ∇^2 . Si u est une fonction deux fois différentiable de \mathbb{R}^n dans \mathbb{R}^n , l'opérateur s'écrit

 $\Delta \mathbf{1} \mathbf{I} = \nabla^2 \mathbf{f} := \nabla \cdot \nabla \mathbf{1} \mathbf{I}$

où

$$\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$$

c.-à-d. ∇ représente les dérivées partielles par rapport à la base canonique de \mathbb{R}^n . L'opérateur s'écrit en coordonnées cartésiennes

$$\Delta u = \sum_{i} \frac{\partial^2 u}{\partial x_i^2}$$

c'est-à-dire la somme des dérivées partielles secondes de u.

Géométriquement, l'opérateur de Laplace Δ d'une fonction u en un point p mesure à quelle vitesse la moyenne des valeurs de u sur un voisinage autour de p dévie de u(p) lorsqu'on s'éloigne de p. L'opérateur intervient dans de nombreuses équations différentielles décrivant des phénomènes physiques tels que les potentiels électriques ou gravitationels, les équations de diffusion pour la chaleur ou bien pour les fluides, la propagation d'ondes et en mécanique quantique. L'opérateur de Laplace est le plus simple des opérateurs elliptiques, et intervient largement dans la théorie de Hodge (qui étudie les groupes de cohomologies des variétés différentielles) [Hod89].

1.2.1 Opérateur de Laplace–Beltrami et formes différentielles

L'opérateur de Laplace sur les espaces euclidiens possède une généralisation sur les variétés différentielles. Une très bonne introduction à sa formulation, et nombre de ses propriétés sont résumées dans le livre de Rosenberg "The Laplacian on a Riemannian Manifold" que nous conseillons fortement [Ros97]. L'opérateur prend toujours la forme

$$\Delta \mathfrak{u} = \nabla \cdot \nabla \mathfrak{u},$$

cependant, nous considérons maintenant que u est fonction des points de la variété. L'opérateur s'écrit en coordonnées locales

$$\Delta u = \nabla^2 u = \frac{1}{\sqrt{|\mathbf{G}|}} \sum \frac{\partial}{\partial x^i} \left(\sqrt{|\mathbf{G}|} \sum_j g^{ij} \frac{\partial u}{\partial x^j} \right).$$

Pour une dérivation explicite de cette formule, se référer au livre de Rosenberg [Ros97], ou bien encore au livre de Jost [Jos05]. Explicitons la formulation de l'opérateur dans la théorie du calcul extérieur. La dérivée extérieure, comme discuté dans le paragraphe 1.1.4, est un opérateur des p-formes vers les (p + 1)-formes. L'opérateur de Hodge va nous permettre de définir une application qui agit dans le sens inverse. La codifférentielle $\delta : \bigwedge^p \to \bigwedge^{p-1}$ est définie comme

$$\delta := (-1)^{n(p+1)+1} \star d \star .$$

Il est possible de montrer que cet opérateur est l'adjoint de la dérivée extérieure vis-à-vis du produit scalaire, c'est-à-dire qu'étant donné deux formes différentielles α et β :

$$\langle \mathbf{d}\boldsymbol{\alpha},\boldsymbol{\beta}\rangle = \langle \boldsymbol{\alpha},\boldsymbol{\delta}\boldsymbol{\beta}\rangle.$$

Nous pouvons utiliser la codifférentielle pour (re)-définir l'opérateur de Laplace généralisé sur les variétés différentielles. L'opérateur de Laplace–de Rham est un isomorphisme entre p-formes et est formellement défini comme

$$\Delta^{\mathsf{R}} := \mathsf{d}\delta + \delta \mathsf{d} = (\mathsf{d} + \delta)^2.$$

L'opérateur de Laplace–Beltrami est le cas particulier de l'opérateur de Laplace–de Rham restreint sur les 0-formes :

$$\Delta := d\delta.$$

Dans \mathbb{R}^3 , l'opérateur de Laplace–Beltrami est identique à l'opérateur de Laplace à un signe près :

$$\Delta \mathfrak{u} = -\nabla^2 \mathfrak{u}$$

L'opérateur est auto-adjoint vis-à-vis du produit scalaire, *c*.-à-d. $\langle \Delta \alpha, \beta \rangle = \langle \alpha, \Delta \beta \rangle$.

Figure 1.4 Deux formes qui possèdent la même décomposition spectrale en vecteurs propres et valeurs propres du laplacien. Cet exemple a été construit par Gordon, Webb et Wolpert (voir leur article "You can't here the shape of a drum" [GW96]).

1.2.2 Comprendre les valeurs propres de l'opérateur

Calculer les valeurs analytiques du spectre de l'opérateur de Laplace–Beltrami, c'est-à-dire trouver les formules des valeurs propres λ_k et des vecteurs propres ϕ_k définis comme

$$\Delta \phi_k = \lambda_k \phi_k$$

est encore un problème largement ouvert, qui intéresse de nombreuses théories mathématiques. Bien qu'il soit possible de calculer ces valeurs pour des objets spécifiques comme les rectangles, les disques, les ellipses ou les triangles, il n'existe peu ou pas de formules closes pour des objets plus compliqués (par exemple, nous ne connaissons que les huit premières valeurs propres de l'opérateur sur un hexagone [Sun04]). Dans le cas de la géométrie différentielle discrète, la décomposition spectrale de l'opérateur joue un rôle central dans de nombreuses applications. Elle est un des éléments clefs de la théorie des "functional maps", qui permet de faire de la comparaison de formes dans un espace abstrait [Ovs+17]. Cette décomposition permet également d'effectuer des opérations de lissage ou bien de filtrage dans le domaine spectral [LZ10]. Nous détaillons deux problèmes liés au spectre de l'opérateur dans les paragraphes suivants.

Le problème de Dirichlet (ou problème direct) Ce problème peut se formuler ainsi : si je connais plus ou moins la forme de mon domaine, que puis-je en déduire pour les valeurs propres de l'opérateur de Laplace–Beltrami ? La première valeur propre non-nulle λ_1 de l'opérateur de Laplace dans un intervalle ou bien un plan est appelé le timbre fondamental. Si l'on s'intéresse à la vibration d'une corde de guitare ou bien d'une peau de batterie, la première valeur propre correspond à la fréquence dominante de l'oscillation et est donc le timbre principal que l'on entend lorsque l'on joue un de ces instruments. Si l'on prend le point de vue de la diffusion de la chaleur, les solutions de l'équation de la chaleur (nous en reparlerons plus précisément dans la partie suivante) sont données par le théorème de décomposition de Sturm-Liouville qui met en lien la décomposition spectrale et le noyau de la chaleur :

 $\begin{array}{ll} T\,H\,\acute{E}\,O\,R\,\grave{E}\,M\,E\ Théorème\ de\ décomposition\ de\ Sturm-Liouville \eqref{1.2.1} \\ Pour\ \partial M\ compact,\ il\ existe\ une\ base\ orthonormale\ complète\ \{\varphi_0,\varphi_1,\ldots\}\ de\ L^2(\partial M) \\ composée\ des\ fonctions\ propres\ de\ l'opérateur\ de\ Laplace–Beltrami.\ L'ensemble\ des \\ valeurs\ propres\ \lambda_i\ associées\ aux\ vecteurs\ propres\ satisfait \end{array}$

$$\lambda_0 \leqslant \lambda_1 \leqslant \lambda_2 \leqslant \cdots \to \infty.$$

Pour tout i on a $\varphi_i\in C^\infty(\partial M)$ et

$$p(x, y, t) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

Nous voyons donc bien que (λ_1, ϕ_1) donne l'information dominante, car $e^{-\lambda_1}\phi_1(x)\phi_1(y)$ est le mode qui décroît le plus lentement lorsque t augmente. Lord Rayleigh, en 1877, conjecture qu'étant donné un domaine Γ et une boule B de même aire, la première valeur propre de l'opérateur sur Γ devrait-être plus grande que celle calculée sur la boule B [Ray77]. Il faudra attendre plusieurs décennies avant que cette conjecture soit montrée indépendamment par Faber [Fab23] et Kranh [Kra25]. Weyl, en 1911, a montré la conjecture de Lorentz qui met en relation le nombre de valeurs propres de l'opérateur et la forme de la surface [Wey11].

Le problème inverse : Can one hear the shape of a drum? Considérons maintenant la question inverse : peut-on déterminer la structure d'un objet en écoutant ses vibrations? Cette question fut proposée par Schuster en 1882. Nous savons que dans le cas de la décomposition de Fourier, les coefficients déterminent une fonction intégrable. Il ne serait donc pas impensable qu'une séquence infinie de valeurs propres détermine la forme d'un objet. Malheureusement, Gordon, Web et Wolpert nous montrent dans les années 90 que non [GW96] dans leur papier "You can't heat the shape of a drum" (leur contre-exemple est illustré dans la figure 1.4). Cependant, tout n'est pas perdu, Mark Kac en 1966 montre un lien entre des invariants géométriques et le noyau de la chaleur [Kac66] dans son article "Can one hear the shape of a drum?" sur un polygone Γ :

$$\sum_{k}^{\infty} e^{-\lambda_{k}t} \sim \frac{1}{4\pi t} \left(\text{Aire}(\Gamma) - \sqrt{4\pi t} \, \text{Périmètre}(\partial\Gamma) + \frac{2\pi t}{3} (1 - \gamma(\Gamma)) \right),$$

où $\gamma(\Gamma)$ correspond au genre de la forme et Γ est un polygone. Ce théorème fut généralisé par McKean et Singer une année plus tard [MS67]. Nous verrons, dans le théorème (4.5.1), que la relation entre le noyau de la chaleur et les invariants géométriques ont été mis en évidence à la fin des années 40 par Minakshisundaram et Pleijel [Min53; MP49].

1.3 Conclusion

Cette section conclut notre présentation des outils de géométrie différentielles nécessaires au calcul discret. Nous avons présenté l'algèbre extérieure, qui nous permet de mesurer des volumes en dimension élevée, les variétés différentielles, qui généralisent les espaces vectoriels et permettent d'étendre la notion de calcul différentiel à une classe d'objet plus vaste. L'algèbre extérieure nous a permis de mettre en lien les vecteurs du plan tangent T_qM et les formes de son espace dual T_q^*M , reliant les outils classiques de calcul différentiel comme la notion de gradient ou de divergence à la théorie du calcul extérieur. Fort de ces notions, nous avons présenté l'objet central de cette thèse : l'opérateur de Laplace–Beltrami. Nous avons mis en évidence sa formulation à la fois dans l'espace des formes ainsi que sa représentation en coordonnées locales où nous avons observé le rôle du tenseur métrique. Nous avons ensuite énoncé quelques problèmes liés à sa représentation spectrale à travers le théorème de décomposition de Sturm-Liouville (voir le théorème (1.2.1)) d'une part, et d'autre part son lien avec le noyau de la chaleur via les travaux de Kac ou bien encore Pleijel. Nous allons dans le prochain chapitre nous intéresser à quelques représentations discrètes des variétés comme les complexes simpliciaux ou bien les surfaces digitales. Nous présenterons une version discrète du calcul extérieur sur les complexes simpliciaux, mais aussi comment évaluer la mesure (*c.-à-d.* l'aire, la longueur) d'éléments sur les surfaces digitales.

Modèles de surfaces discrètes

Sommaire

2.1	Complexes s	impliciaux et complexes cellulaires	27
	$\hookrightarrow 2.1.1$	Définitions	28
	\hookrightarrow 2.1.2	Le calcul extérieur discret sur les complexes simpliciaux	30
2.2	Surfaces dig	itales	31
	\hookrightarrow 2.2.1	Définitions	32
	\hookrightarrow 2.2.2	Relation entre ∂X et $\partial_h X$	34
	\hookrightarrow 2.2.3	Estimation de normales	36
2.3	Conclusion		39

Ce chapitre a pour but d'introduire plusieurs modèles d'approximation de surfaces courbes en informatique graphique. Nous présenterons les complexes simpliciaux, les complexes cellulaires et les surfaces digitales (qui sont des cas particuliers de complexes cellulaires). Nous omettons de nombreuses représentations des variétés telles que les nuages de points, ou bien encore les surfaces construites à base de splines et d'autres modèles plus exotiques de surfaces discrètes. Sauf mention contraire, les variétés sont de dimension deux et sont plongées dans l'espace vectoriel euclidien \mathbb{R}^3 .

2.1 Complexes simpliciaux et complexes cellulaires

Le modèle de représentation classique des surfaces sur les ordinateurs est la triangulation. Cet objet a été, et est encore largement étudié de nos jours : il est par exemple au centre des moteurs de rendu temps réels modernes présents sur les cartes graphiques. L'objet mathématique associé, qui englobe une classe beaucoup plus large de surfaces discrètes, est le complexe simplicial. Cette structure permet de décrire certains types d'espaces topologiques (comme les triangulations) mais est aussi présente en topologie algébrique, car elle est un outil puissant pour calculer des groupes d'homologie (des polytopes par exemple). La notion de complexes simpliciaux s'étend naturellement à la notion de CW-complexe, introduite par Whitehead [Whi49] qui englobe par exemple les quadrangulations, ou bien encore des ensembles de polygones joints par leurs arrêtes. Nous présentons dans ce paragraphe la notion de complexe simplicial et illustrons quelques-unes des opérations réalisables sur ceux-ci. Nous mentionnerons succinctement les CW-complexes (aussi nommés complexes cellulaires). Nous présenterons également dans ce paragraphe le calcul extérieur discret construit sur les complexes simpliciaux par Hirani, Desbrun, Leok et Marsden [Hir03; Des+05].

Figure 2.1 Les quatre premiers types de simplexes sont représentés de gauche à droite.

2.1.1 Définitions

Comme mentionné dans l'introduction de ce paragraphe, l'objet mathématique couramment utilisé pour représenter les surfaces triangulées est le complexe simplicial de dimension 2. Il possède en effet de bonnes propriétés combinatoires et topologiques. Ces surfaces sont construites à partir de "briques" de base appelées simplexes (voir la définition (2.1.1)).

DÉFINITION p-simplexe

(2.1.1)

Un p-simplexe σ^p est l'enveloppe convexe de p+1 points distincts et non alignés ν_0,\ldots,ν_p dans $\mathbb{R}^N.$ Plus précisément :

$$\sigma^p = \{ x \in \mathbb{R}^N \mid x = \sum_{i=0}^p \mu^i \nu_i \text{ avec } \mu^i \geqslant 0 \text{ et } \sum_{i=0}^p \mu^i = 1 \}.$$

Les points v_0, \ldots, v_p de \mathbb{R}^N sont appelés les sommets du simplexe σ^p et le nombre p correspond à la dimension de celui-ci. Ainsi, un simplexe de dimension 0 est un point, un simplexe de dimension 1 est un segment, et un simplexe de dimension 2 est un triangle. Tout simplexe couvrant un sous-ensemble de v_0, \ldots, v_p est appelé une face de σ^p (le terme de face comprend donc ici les sommets, les arêtes, les faces triangulaires et ainsi de suite en dimension supérieure). Nous dénotons par $|\sigma^p|$ le p-volume de σ^p dans \mathbb{R}^N (que nous supposons égal à 1 pour p = 0). Par exemple, le p-volume d'un simplexe de dimension 2 (un triangle) correspond à son aire. La figure 2.1 illustre les simplexes de dimensions 0, 1, 2 et 3.

Ces simplexes sont ensuite collés pour former un complexe simplicial (et donc la représentation des surfaces triangulées) de la façon suivante :

DÉFINITION Complexe simplicial de dimension 2 (2.1.2) Un complexe simplicial \mathcal{K} dans \mathbb{R}^N est une collection de 0-simplexes, 1-simplexes et de 2-simplexes de \mathbb{R}^N tels que

- 1. toute face d'un simplexe ${\mathcal K}$ est dans ${\mathcal K}.$
- 2. L'intersection de deux simplexes de dimension p dans \mathcal{K} est soit une face des deux simplexes, soit l'ensemble vide.

Cette définition nous assure que toutes les arêtes de tous les triangles sont dans le com-

Figure 2.2 A gauche une triangulation du lapin de Standford, à droite une quadrangulation de la même surface.

Figure 2.3 Est illustré à gauche la clôture (en jaune) de deux simplexes (en rouge), au milieu l'étoilé (en jaune) d'un simplexe de dimension 0 et enfin à droite le link (en jaune) du même simplexe. Image reproduite depuis Wikipedia (https://en.wikipedia.org/wiki/Simplicial_complex).

plexe simplicial. Afin d'assurer que le complexe simplicial \mathcal{K} est une variété, nous ajoutons la propriété suivante à \mathcal{K} :

3. tout simplexe de dimension 1 dans \mathcal{K} est contenu dans exactement deux simplexes de dimension 2 de \mathcal{K} .

En d'autres termes, toute arête du complexe est contenue dans exactement deux triangles du complexe. Une illustration d'une triangulation se trouve dans la figure 2.2. A noter que nous n'autorisons pas ici les recollements via les simplexes de dimension zéro. Étant donnée une collection de simplexes S dans \mathcal{K} , nous rappelons trois opérations standarts sur le complexe :

- 1. La clôture de S (dénoté Cl(S)) est l'union des faces de tous les simplexes de S.
- L'étoilé (dénoté St(S)) est l'union des étoilés de chacun des simplexes de S. Pour un simplexe s, l'étoilé de s est l'ensemble des simplexes possédant s comme face (à noter que l'étoilé n'est pas forcément un complexe simplicial).
- 3. Le link (dénoté Lk(S)) qui est égal à $Cl St(S) \setminus St Cl(S)$. C'est la clôture de l'étoilé de S moins l'étoilé de toutes les faces de S.

Une illustration de ces différentes opérations topologiques se trouve dans la figure 2.3.

Nous pouvons généraliser les complexes simpliciaux en remplaçant les simplexes par des cellules. Informellement, on obtient un complexe cellulaire (ou bien CW-Complexe en

Figure 2.4 Un exemple de p-formes. Est associé à chaque p-chaîne orientée une valeur qui représente la valeur de la forme sur la chaîne considérée. L'image est inspirée de la Figure 3.1 présente dans la thèse d'Hirani [Hir03].

topologie) en agglomérant des p-boules ouvertes. C'est-à-dire que les briques de bases ne sont plus des enveloppes convexes de points mais plutôt des objets homéomorphes à une p-boule. Dans le cas discret, ceux-ci sont représentés par des points, des arêtes et des polygones généraux définis par une boucle fermée d'arêtes. Un exemple de quadrangulation se trouve dans la figure 2.2. Cette notion nous sera utile lorsque nous parlerons de l'opérateur de Laplace–Beltrami d'Alexa et Wardetzky [AW11].

2.1.2 Le calcul extérieur discret sur les complexes simpliciaux

Nous présentons maintenant la théorie du calcul extérieur discret sur les complexes simpliciaux. Nous invitons le lecteur à se référer à la thèse d'Hirani [Hir03] et au cours de Desbrun, Hirani, Leok et Marsden [Des+05] pour plus de détails. La philosophie adoptée pour développer cette théorie est de construire un pendant discret du calcul extérieur (présenté dans le paragraphe 1.1) qui n'est pas une approximation de la théorie continue.

Prenons donc un complexe simplicial orienté \mathcal{K} de dimension deux plongé dans \mathbb{R}^3 (notons que le calcul discret développé ici est valable pour tout complexe à dimension arbitraire). La première étape est d'introduire l'espace des p-formes discrètes. Pour cela, le calcul extérieur discret emprunte à la topologie algébrique le concept de chaînes et de cochaînes (voir le livre de Munkers [Mun84]). L'espace des chaînes $C_p(\mathcal{K}, \mathbb{Z})$ est le groupe abélien (ou groupe commutatif) généré par une base des p-simplexes orientés. Cet espace est une somme formelle des éléments de \mathcal{K} à coefficients dans \mathbb{Z} . L'idée est donc ici d'assigner un nombre entier à chacun des éléments du complexe simplicial \mathcal{K} . On définit alors une p-forme discrète α comme un homéomorphisme du groupe des chaînes vers \mathbb{R} .¹ Cet ensemble est appelé l'espace des cochaînes en topologie algébrique. L'ensemble des pformes discrètes et dénoté $\bigwedge_d^p(\mathcal{K})$ où d représente la dimension. On peut construire de la même façon l'espace dual des p-formes (pensez par exemple à la dualité Voronoi / Delaunay pour une triangulation).

La dérivée extérieure discrète correspond alors à l'opérateur de cobord de la topologie algébrique. En d'autres termes, si l'on voit notre complexe simplicial comme un graphe,

^{1.} D'un point de vue discret, une p-forme discrète est alors une assignation d'une valeur à chacun des éléments du maillage qui peut-être par exemple stockée dans un tableau de dimension p.

l'application est représentée par la matrice d'adjacence signée : $(d_0)_{ij} := \pm 1$ si x_i appartient au simplexe numéroté i. Le signe est déterminé quant à lui par l'orientation du simplexe j². Le calcul extérieur discret est muni d'un produit intérieur construit à partir de l'opérateur de Hodge. Étant données deux p-formes discrètes σ_1^p et σ_2^p , le produit intérieur s'écrit (sous forme matricielle)

$$\left\langle \sigma_{1}^{p}, \sigma_{2}^{p} \right\rangle \coloneqq (\sigma_{1}^{p})^{\mathsf{T}} \star_{p} \sigma_{2}^{p},$$

où \star_p est l'opérateur de Hodge entre les p-formes discrètes. Dans la version du calcul extérieur discret de Desbrun *et al.*, l'étoile de Hodge discrète est une matrice diagonale dont les termes sont déterminés par des rapports de mesures des simplexes primaux et duaux. D'autres auteurs (comme par exemple Grady et Polimeni) choisissent des matrices de Hodge ayant une forme différente.

La codifférentielle est définie de manière similaire comme étant l'adjoint de la dérivée extérieure par rapport au produit scalaire. Par exemple, la codifférentielle sur les 1-formes d'une surface de dimension 2 est donnée par

$$\delta_1 := -\star_0^{-1} \mathbf{d}_1^\mathsf{T} \star_1$$

et $\delta_1 : \bigwedge_1^p(\mathcal{K}) \to \bigwedge_d^0(\mathcal{K})$. On peut alors définir l'opérateur de Laplace–Beltrami discret sur les 0-formes :

$$\mathcal{L}\sigma^0 := \delta_1 d_0 \sigma^0 := -\star_0^{-1} d_1^\mathsf{T} \star_1 d_0 \sigma^0.$$

Un calcul direct (voir la section 6.4 de la thèse d'Hirani [Hir03]) nous donne

$$\left\langle \mathcal{L}\mathfrak{u}, \sigma^{0} \right\rangle \coloneqq \frac{1}{|\star \sigma^{0}|} \sum_{\sigma^{1} = [\sigma^{0}, \sigma_{k}^{0}]} \frac{\left|\star \sigma^{1}\right|}{\left|\sigma^{1}\right|} (\mathfrak{u}(\sigma^{0}) - \mathfrak{u}(\sigma_{k}^{0}))$$

avec σ^1 l'ensemble des 1-formes possédant σ^0 comme extrémité (noté $[\sigma^0, \sigma_k^0]$ ici) et $|\cdot|$ la mesure associée à une forme discrète (par exemple la longueur de l'arête pour σ^1 sur les triangulations). L'intérêt du calcul extérieur discret est dans la formulation générique de ces opérateurs, et son implémentation plutôt facile (toutes les opérations dans le calcul sont en fait des multiplications de matrices).

2.2 Surfaces digitales

L'objectif de cette section est de présenter et définir un cadre théorique pour étudier les *surfaces digitales*. Le lecteur peut se référer à [LT16; KR04; Her12] pour une étude approfondie des structures. Une surface digitale est, informellement, le bord topologique d'un ensemble de voxels centrés sur la grille cubique \mathbb{Z}^3 . Ces surfaces proviennent en général du bord de la partition d'une image volumétrique. Ces objets apparaissent souvent dans la modélisation des matériaux, ou bien encore dans l'imagerie médicale étant donné que, par exemple, les outils d'acquisition volumétrique de tomographie produisent ce type

^{2.} Par exemple, si l'on voit une 1-forme comme un vecteur, la dérivée extérieure appliquée aux 0-formes (situées aux extrémités de celui-ci) produit une 1-forme (une application linéaire "du vecteur" vers les réels) qui est égale à la différence des deux valeurs. Il en va de même pour les formes de degré supérieur.

Figure 2.5 Illustration des notations utilisées pour les surfaces digitales. Sont représentés un ensemble compact X en gris et son bord ∂X en orange, le discrétisé de Gauss $D_h(X)$, son plongement h-cubique $Q_h[D_h(X)]$ en jaune et le h-bord $\partial_h X$ en bleu. La grille cubique \mathbb{F}_h^2 est affichée en vert sur la droite, ainsi que le "bord cubique" $\mathbb{F}_h^1 \cap \partial_h M$ en rouge. Le bord topologique du plongement h-cubique est utilisé pour transférer des intégrales depuis ∂X vers leur contrepartie discrète. La grille cubique sert ensuite à découper l'intégrale sur des éléments de dimension d, approximant ainsi la somme continue par une somme discrète.

d'objet (voir par exemple [Hil+99; Fli+05]). Nous présentons ici un cadre d'étude théorique de ces surfaces : nous parlons d'une méthode de construction, appelée processus de discrétisation de Gauss, à partir de surfaces continues caractérisées par exemple par une fonction implicite, ou bien encore par la description analytique de leur forme. Le but est ici de donner un cadre unique où nous pouvons comparer différentes discrétisations de quantités géométriques comme l'estimation des normales ou bien encore de la courbure. Nous présentons quelques propriétés topologiques des surfaces digitales, ainsi qu'un estimateur de normales convergent.

2.2.1 Définitions

On considère un espace compact X de dimension N avec un bord rectifiable plongé dans \mathbb{R}^N . La propriété de rectifiabilité, introduite par Herbert Federer [Fed69], nous assure que l'aire de la surface est calculable. C'est une généralisation multidimensionnelle de la notion de rectifiabilité des courbes (autrement appelée la longueur d'arc) qui date de l'antiquité, mais dont la définition communément utilisée est dûe à Camille Jordan. Le lien entre X et son approximation digitale est fait à travers le processus de discrétisation de Gauss :

 $\begin{array}{ll} D\,\acute{e}\,\mathsf{FINITION}\ \text{Discrétisation de Gauss} & (2.2.1)\\ \text{Soit }h>0 \text{ le pas de discrétisation. La discrétisation de Gauss d'une forme euclidienne}\\ X\subset \mathbb{R}^N \text{ est définie comme } D_h(X):=X\cap (h\mathbb{Z})^N \text{ où }N \text{ est la dimension.} \end{array}$

Ce processus de discrétisation considère les points discrets de la grille infinie de taille h et conserve ceux qui intersectent la forme X (voir figure 2.5). On note un ensemble digital par $D_h(X)$. C'est, de par sa définition, un sous-ensemble de \mathbb{Z}^N d'échelle h. Si l'ensemble des points discrets ne provient pas du processus de discrétisation de Gauss, nous noterons celui-ci par Z (de ce point de vue, la discrétisation de Gauss correspond à un sous-ensemble des ensembles digitaux Z). Il est clair que de nombreuses propriétés continues ne sont
pas conservées par la discrétisation. Nous pouvons néanmoins espérer que lorsque le pas de la grille se raffine, nous pouvons récupérer la plupart de ces propriétés. Les propriétés topologiques sont par exemple préservés pour un pas suffisamment fin de la grille (voir [KR04]) pour certaines classes de surfaces, au moins en dimension deux. La préservation des propriétés géométriques se traduit par la précision de leur estimation. Étant donné un estimateur géométrique discret, il devrait tendre vers sa contrepartie continue lorsque le pas de la grille se raffine. Nous appelons la propriété d'un tel estimateur, dans le langage de la géométrie discrète, la *convergence multigrille*. Est associé à cette propriété une vitesse de convergence qui traduit l'erreur d'estimation dépendant du pas de discrétisation h.

Nous définissons maintenant le bord d'un ensemble digital Z : pour tout point $z \in (h\mathbb{Z})^N$ (appelés points digitaux), le cube fermé de dimension N aligné sur les axes centré en z est dénommé par Q_z^h et appelé un h-cube (la longueur de ses arêtes est h). On définit alors le plongement h-cubique d'un ensemble digital Z comme $Q_h[Z] := \bigcup_{z \in \mathbb{Z}} Q_z^h$.

DÉFINITION h-bord

(2.2.2)

(2.2.3)

Le h-bord de X, dénommé $\partial_h X$, est le bord topologique du plongement h-cubique de la discrétisation de Gauss de X :

$$\partial_h X := \partial \left(\bigcup_{z \in D_h(X)} Q_z^h \right).$$

Cet ensemble est représenté en bleu dans figure 2.5.

Enfin, nous définissons la grille cubique associée à un ensemble digital Z. Nous construisons cet ensemble par produit cartésien de segments de dimension un [LT16]. Plus précisément, on assigne des coordonnées dans $\left(\frac{h}{2}\mathbb{Z}\right)^N$ à chacune des cellules de l'espace. Pour chaque $t \in \frac{h}{2}\mathbb{Z}$, on associe l'ensemble $I_h(t)$ tel que

$$\mathrm{I}_{\mathrm{h}}(\mathrm{t}) := egin{cases} \left[\mathrm{t} - rac{\mathrm{h}}{2}; \mathrm{t} + rac{\mathrm{h}}{2}
ight] & \mathrm{si} \ \mathrm{t} \in \mathrm{h}\mathbb{Z} \ \{\mathrm{t}\} & \mathrm{sinon} \end{cases}$$

Maintenant, si $z \in (\frac{h}{2}\mathbb{Z})^N$ alors $I_h(z) := I_h(z_1) \times \cdots \times I_h(z_N)$ où z_i est la ième coordonnées de z.

DÉFINITION Grille cubique primale

L'ensemble $\mathbb{F} := \{I_h(z)\}_{z \in (\frac{h}{2}\mathbb{Z})^N}$ pave l'espace euclidien \mathbb{R}^N avec les hypercubes et leur faces. On l'appelle la *grille cubique primale* de taille h. Les éléments de **F** sont appelés *cellules*. L'ensemble des éléments de dimension d est dénommé \mathbb{F}_h^d (avec $0 \leq d \leq N$).

Comme mentionné dans la définition, la grille cubique pave l'espace entier : par exemple \mathbb{F}_{h}^{2} est l'ensemble des carrés centrés sur les points digitaux de la grille (en vert dans figure 2.5). Ainsi, lorsque l'on veut sélectionner tous les éléments de la frontière (par exemple une courbe digitale en rouge sur la droite de figure 2.5), nous prenons l'intersec-

tion entre \mathbb{F}_{h}^{1} et le h-bord $\partial_{h}X$ (ou bien $\partial Q_{h}[Z]$ lorsque l'on a un ensemble arbitraire de points digitaux). Un exemple de surface digitale 2D plongée dans \mathbb{R}^3 est illustré dans la figure 2.6.

Nous allons maintenant nous intéresser aux propriétés topologiques des surfaces digitales. Nous verrons qu'il est possible de mettre en lien une surface digitale obtenue via le processus de discrétisation de Gauss avec la variété sous-jacente. Les récents travaux que nous présentons dans la prochaine section fournissent un socle solide pour le calcul sur les surfaces digitales : outre le théorème d'intégration fourni, les auteurs mettent en évidence de nombreuses propriétés topologiques des surfaces digitales, via la fonction de projection, dont la plus importante semble être la convergence Hausdorff de celles-ci vers la variété. L'étude de la fonction de projection nous donne également un outil pour ramener des quantités définies sur la surface discrète vers la variété, ce qui, dans notre cas, sera utile pour la discrétisation de l'opérateur de Laplace-Beltrami sur les surfaces digitales.

2.2.2 Relation entre ∂X et $\partial_h X$

les carrés une aire en h^2 .

La conservation des propriétés topologiques a été largement étudiée, surtout dans le cas des images 2D, à l'aide d'outils morphologiques. On peut par exemple citer les travaux de Pavlidis [Pav82] et Serra [Ser83] qui établissent le premier théorème d'homéomorphisme pour des courbes suffisamment différentiables digitalisées sur une grille carré ou bien hexagonale en utilisant le processus de discrétisation de Gauss. Un des éléments clefs qu'ils découvrirent indépendamment dans leurs travaux, est la notion de R-regularité, plus tard appelée *par*R-*regularité*. Nous résumons ici les résultats et propriétés de [LT16]. Les preuves associées peuvent être trouvées dans [LT16; Lac06]. Les inférences topologiques et géométriques du bord discret $\partial_h X$ peuvent être étudiées en utilisant une approche fonctionnelle de la fonction distance à un ensemble compact A et l'application de projection associée. Si $A \subset \mathbb{R}^N$, la *fonction de distance* δ_A est la fonction de \mathbb{R}^N définie comme

$$\delta_A(\mathbf{x}) := \inf\{\|\mathbf{x} - \mathbf{a}\| : \mathbf{a} \in A\}$$

où $\|\cdot\|$ est la norme euclidienne classique.

Le *R-offset* de A, dénoté A^R est l'ensemble des points dont la distance à A sont inférieurs à R. L'*axe médian* Med(A) $\subset \mathbb{R}^N$ de A est l'ensemble des points de \mathbb{R}^N qui possèdent plus d'une projection sur A via δ . Le *reach* de A, noté reach(A), est

$$\inf\{\delta_A(x): x \in Med(A)\}$$

c.-à-d. la plus petite distance à l'axe médian.

DÉFINITION Application de projection (2.2.4) L'application de projection sur un ensemble compact A est l'application

$$\xi: \mathbb{R}^{\mathsf{N}} \setminus \operatorname{Med}(\mathsf{A}) \to \mathsf{A}$$

qui associe à tout point x de $\mathbb{R}^N \setminus Med(A)$ son unique point le plus proche sur A.

Cette application est continue sur $\mathbb{R}^d \setminus Med(A)$, et plus précisément

THÉORÈME Proposition 1 de [LT16] et théorème 4.8 de [Fed59] (2.2.1)

Soit *A* un compact avec reach positif. Alors pour tout $p \in A$ et pour tout $\iota \in [0, 1[$, la projection ξ_A est $\frac{1}{1-\iota}$ -Lipschitz dans une boule centrée en p de rayon ι reach(*A*).

Dans le cas particulier où $A=\partial X$ est un domaine compact de $\mathbb{R}^N,$ on a l'équivalence suivante :

THÉORÈME [Fed59]

(2.2.2)

Soit A un domaine compact de \mathbb{R}^N . Le reach de ∂A est strictement positif si et seulement si ∂X est une hyper surface de classe $C^{1,1}$, c'est-à-dire qu'elle est de classe C^1 et que la fonction qui assigne la normal à ∂X à tout point x de ∂X est Lipschitz.

Notons que si X est une variété à reach positif, alors elle est de classe C² presque partout. C'est une conséquence du théorème de Rademacher (3.1.6 dans [Fed69]). On dénote par $\xi := \xi_{\partial X}$ l'application de projection sur ∂X .

Le théorème (2.2.3) assure la stabilité entre ∂X et $\partial_h X$: la distance entre les deux ensembles est bornée par le pas de discrétisation h. En d'autres termes, étant donné un point $y \in \partial_h X$, il existe toujours un point x sur ∂X dans une boule de rayon $\frac{\sqrt{N}}{2}h$ centrée en y.

THÉORÈME Théorème 1 de [LT16]

Soit X un domaine compact de \mathbb{R}^N tel que le reach de ∂X est supérieur à R. Alors, pour tout pas de discrétisation $0 < h < 2R/\sqrt{N}$, la distance de Hausdorff entre ∂X et $\partial_h X$ est inférieure à $\sqrt{N}h/2$. Plus précisément :

$$\forall x \in \partial X, \exists y \in \partial_h X \begin{cases} \|x - y\| \leqslant \frac{\sqrt{N}}{2}h \\ \text{and } y \in \mathfrak{n}(x, \frac{\sqrt{N}}{2}h)) \end{cases}, \forall y \in \partial_h X, \|y - \xi(y)\| \leqslant \frac{\sqrt{N}}{2}h.$$

où n(x, a) est le segment de longueur 2a centré sur x et aligné avec le vecteur normal à ∂X en x.

L'étude de ξ montre que l'application n'est pas toujours bijective : plus précisément, elle est surjective partout, mais non-injective sur un sous-ensemble de $\partial_h X$:

$$Mult(\partial X) := \{ x \in \partial X : \exists y_1, y_2 \in \partial_h X, y_1 \neq y_2, \xi(y_1) = \xi(y_2) = x \}.$$

Cet ensemble est appelé la *multiplicité* de ∂X . Nous savons cependant caractériser la taille de cet ensemble :

$$\begin{array}{ll} T \, \text{H}\,\acute{e}\, O\, R\,\grave{e}\, M\, E \, \mbox{Th}\,\acute{e}\, or \end{tabular} & (2.2.4) \\ Si \, h \leqslant R/\sqrt{N} \, \mbox{alors} & \\ & Aire(Mult(\partial X)) \leqslant K_1(h) \, Aire(\partial X) \, h, \\ \\ avec \, K_1(h) = \frac{4\sqrt{3}N^2}{R} + O(h) \leqslant \frac{2\sqrt{3}d^2 4^{N-1}}{R}. \end{array}$$

Ainsi, la mesure de Mult tend vers zéro lorsque le pas de discrétisation de la grille tend vers zéro. Le théorème (2.2.4) joue un rôle central dans la preuve de convergence des intégrales discrètes : il permet de montrer que la discrétisation de la somme continue est négligeable sur les parties non-bijectives de la variété.

Nous avons donc maintenant accès à un outil mathématique qui nous permet de comparer la surface digitale $\partial_h X$ et son pendant continue ∂X . La fonction de projection ξ jouera un rôle crucial dans la preuve de convergence de la discrétisation de l'opérateur de Laplace– Beltrami présenté dans le chapitre 5. Nous l'utiliserons pour étendre les fonctions définies sur la surface digitale à l'espace ambiant \mathbb{R}^d , ce qui se révélera utile pour étudier la convergence via le processus d'intégration digitale décrit dans ce même chapitre. Un des éléments clés de cette discrétisation est l'estimation de normales digitales convergente, ce qui nous allons présenter dans la prochaine section.

2.2.3 Estimation de normales

L'estimation de normales convergente est un point crucial pour le calcul discret. Là où il est généralement supposé que, sous certaines contraintes d'échantillonage, les normales des faces convergent sur une triangulation, ce n'est jamais vrai dans le cas des surfaces digitales. En effet, il existe un nombre fini de normales élémentaires aux faces sur les surfaces digitales (au nombre de six : une pour chaque direction le tout multiplié par deux pour le signe) et ce quel que soit le pas de discrétisation h. De récents progrès nous

Figure 2.7 Estimation des normales sur l'octaflower de dimension $256 \times 256 \times 256$ avec R = 4 et h = 1 ici.

fournissent néanmoins des méthodes pour estimer les normales sur ces surfaces. Nous ne détaillerons pas ici les algorithmes sur les courbes discrétisées, mais nous invitons le lecteur à aller voir le chapitre de Coeurjolly, Lachaud et Roussillon qui énumère les nombreuses approches envisageables [CLR12].

Nous présentons dans cette section un estimateur s'appuyant sur des intégraux invariants développés sur les surfaces digitales par Coeurjolly *et al.* [CLL13; CLL14]. Les invariants intégraux sont utilisés en géométrie différentielle discrète pour estimer des quantités différentielles (voir les articles de Pottmann *et al.* [Pot+09; Pot+07] ou bien encore le livre de Morvan [Mor08] pour une introduction complète). L'idée est de calculer l'intégrale en tout point x de l'intersection entre la forme avec un noyau. De nombreux noyaux peuvent-être considérés, mais nous choisissons ici l'intégrale volumique définie comme

$$\mathcal{V}_{\mathsf{R}}(\mathbf{x}) := \int_{\mathsf{B}_{\mathsf{R}}(\mathbf{x})} \chi(\mathsf{p}) d\mathsf{p},$$

où $R \in \mathbb{R}^*_+$ et χ est la fonction caractéristique de X et $B_R(x)$ est la boule de taille R centrée en x. Il est alors possible de montrer que cette quantité est reliée à la courbure moyenne de la surface (nous définissons la courbure moyenne dans le paragraphe 4.3.2). Nous avons le lemme suivant LEMME [Pot+09; Pot+07]

Étant donné un compact X plongée dans \mathbb{R}^3 et $x \in \partial X$, nous avons

$$\mathcal{V}_R(\mathbf{x}) = \frac{2\pi}{3}R^3 - \frac{\pi H(\mathbf{x})}{4}R^4 + O(R^5)$$

où H correspond à la courbure moyenne en x.

Si l'on sait calculer \mathcal{V}_R , nous pouvons donc estimer la courbure moyenne via

$$\tilde{H}(\mathbf{x}) := \frac{8}{3R} - \frac{4V_R(\mathbf{x})}{\pi R^4}.$$

De façon similaire, les directions principales de courbure sont reliées à la quantité \mathcal{V}_R . Considérons la matrice de covariance d'un sous-ensemble $Y \in \mathbb{R}^d$ comme

$$\mathbf{J}(\mathbf{Y}) := \int_{\mathbf{Y}} (\mathbf{p} - \dot{\mathbf{Y}}) (\mathbf{p} - \dot{\mathbf{Y}})^{\mathsf{T}} d\mathbf{p} = \int_{\mathbf{Y}} \mathbf{p} \mathbf{p}^{\mathsf{T}} d\mathbf{p} - \operatorname{Vol}(\mathbf{Y}) \mathbf{Y} \dot{\mathbf{Y}}^{\mathsf{T}},$$

où Ý est le *centroïde* de Y et Vol(Y) son volume. Pour des entiers positifs r, s, t, nous rappelons la définition des (r, s, t)-moments $m_{r,s,t}(Y)$ de Y :

$$\mathfrak{m}_{\mathbf{r},\mathbf{s},\mathbf{t}} := \iiint_{\mathbf{Y}} \mathbf{x}^{\mathbf{r}} \mathbf{y}^{\mathbf{s}} z^{\mathbf{t}} d\mathbf{x} d\mathbf{y} dz.$$

Le volume de Y correspond au (0, 0, 0)-moment $m_{0,0,0}(Y)$ dans cette formulation. Par souci de simplicité, notons par A l'ensemble $B_R(x) \cap M$. La matrice de covariance de A est alors

$$\mathbf{J}(A) = \begin{bmatrix} m_{2,0,0}(A) & m_{1,1,0}(A) & m_{1,0,1}(A) \\ m_{1,1,0}(A) & m_{0,2,0}(A) & m_{0,1,1}(A) \\ m_{1,0,1}(A) & m_{0,1,1}(A) & m_{0,0,2}(A) \end{bmatrix} - \frac{1}{m_{0,0,0}(A)} \begin{bmatrix} m_{1,0,0}(A) \\ m_{0,1,0}(A) \\ m_{0,0,1}(A) \end{bmatrix} \otimes \begin{bmatrix} m_{1,0,0}(A) \\ m_{0,1,0}(A) \\ m_{0,0,1}(A) \end{bmatrix}$$

Il a été montré dans [Pot+09] que les valeurs propres et les vecteurs propres de J(A) nous donnent les courbures principales et les directions principales de courbure :

LEMME Théorème 2. de [Pot+09] (2.2.2) Étant donné une variété M, les valeurs propres λ_1 , λ_2 et λ_3 de J(A) possèdent le développement de Taylor suivant

$$\begin{split} \lambda_1 &= \frac{2\pi}{15} \mathsf{R}^5 - \frac{\pi}{48} \left(3\kappa^1(\mathbf{x}) + \kappa^2(\mathbf{x}) \right) \mathsf{R}^6 + \mathsf{O}(\mathsf{R}^7), \\ \lambda_2 &= \frac{2\pi}{15} \mathsf{R}^5 - \frac{\pi}{48} \left(\kappa^1(\mathbf{x}) + 3\kappa^2(\mathbf{x}) \right) \mathsf{R}^6 + \mathsf{O}(\mathsf{R}^7), \\ \lambda_3 &= \frac{19\pi}{480} \mathsf{R}^5 - \frac{9\pi}{512} \left(\kappa^1(\mathbf{x}) + \kappa^2(\mathbf{x}) \right) \mathsf{R}^6 + \mathsf{O}(\mathsf{R}^7), \end{split}$$

où $\kappa^1(\mathbf{x})$ et $\kappa^2(\mathbf{x})$ sont les courbures principales de ∂M en \mathbf{x} .

Les vecteurs propres associés à λ_1 et λ_2 correspondent aux directions principales de courbure et celui associé à λ_3 la normale à la surface au point x.

Dans le cas des surfaces digitales, le calcul de V_R est trivial : il suffit juste de compter les points discrets qui sont à l'intérieur de la surface dans une boule euclidienne de rayon R. En terme d'implémentation, l'approche triviale nous donne une complexité en $O(\frac{n}{(hR)^3})$ (une boule de rayon R possède en moyenne 1/R cubes de taille h) si l'on suppose que l'on est capable de dire en temps constant si un point est dans M. Il est également possible de paralléliser l'algorithme sur GPU (voir [Per+16]). Le seul paramètre de la méthode est la taille de la boule R pour le calcul de V_R . Il a été observé en pratique qu'une taille de $R = kh^{\frac{1}{3}}$ où k est un réel positif donne les meilleurs résultats pour l'estimateur sur les surfaces digitales. Le choix de k caractérise la taille de la boule lorsque h = 1, c'est-à-dire la taille de la boule dans l'espace euclidien. Un exemple d'estimation de normales est illustré dans la figure 2.7. Nous énonçons le théorème de convergence de l'estimateur de normales via les intégraux invariants.

T HÉORÈME Théorème 14 de [LCL17] (2.2.5) Soit X un domaine compact de \mathbb{R}^3 tel que son bord ∂X possède un reach supérieur à ρ et est de class C³. Alors, pour le processus de discrétisation de Gauss, l'éstimateur de normales via les invariants intégraux converge vers la normale analytique n. Plus précisément, en posant R = kh^{1/3} (la taille du noyau) avec k une constant arbitraire positive nous avons

$$\begin{split} &\exists h_X \in \mathbb{R}^+, \forall h \in \mathbb{R}, 0 < h < h_X, \\ &\forall x \in \partial X, \forall \tilde{x} \in \partial_h X, \\ &\text{Si } \|\tilde{x} - x\|_\infty \leqslant h \text{ alors } \left\| \tilde{n}(\tilde{x}) - n(x) \right\| \leqslant O(h^{\frac{2}{3}}). \end{split}$$

Nous avons vu que pour tout point de ∂X , il existe toujours au moins un point sur $\partial_h X$ (que l'on obtient via la fonction de projection ξ) dans le cas de la discrétisation de gauss ce qui implique que nous avons toujours convergence de l'estimateur si nous utilisons ce procédé de discrétisation. Les auteurs exposent de façon similaire les théorèmes de convergence de la courbure moyenne, de la courbure gaussienne et des directions principales de courbure.

Nous avons présenté un estimateur de normales sur les surfaces digitales convergent (avec une preuve théorique de celle-ci). Cet estimateur est, à l'heure actuelle, le plus performant (en termes d'implémentation et d'erreur d'estimation) sur les surfaces digitales. Nous insistons ici sur le fait que nous possédont une preuve de convergence, qui nous réutiliseront dans la discrétisation de l'opérateur de Laplace–Beltrami. Il est néanmoins possible de raffiner l'estimateur à l'aide des travaux de Foare, Lachaud, Coeurjolly et Gueth [Coe+16]. Les auteurs présentent dans cet article une méthode pour améliorer l'estimation de normales en prenant en compte les parties saillantes de la discrétisation. Nous n'utilisons pas cette méthode d'estimation dans cette thèse par le simple fait que nous n'avons pas de preuve de convergence théorique.

2.3 Conclusion

Ce traitement de la convergence joue un rôle central dans la discrétisation d'estimateurs différentiels sur les surfaces digitales. Dans le cas de quantités géométriques scalaires

(comme la courbure et l'aire) ou bien vectorielles (comme les normales), il est suffisant de considérer la valeur absolue entre la quantité estimée et la vraie quantité. Les choses se compliquent dans le cas de l'opérateur de Laplace–Beltrami. En effet, nous avons vu que celui-ci est un opérateur entre espace de fonctions. La première question naturelle à se poser est le choix de l'espace de fonctions dans lequel nous voulons étudier la convergence. Ce choix va déterminer la qualité des théorèmes de convergence fournis. Une fois l'espace de fonctions choisi, il reste encore à déterminer quel type de convergence étudier dans ces espaces. Nous pouvons par exemple regarder la convergence des valeurs des fonctions, ou bien encore la convergence des opérateurs entre les espaces de fonctions. Nous allons dans le prochain chapitre, présenter un cadre théorique qui résume et fixe la notion de convergence que nous allons traiter dans cette thèse. Nous allons pour cela tout d'abord décrire de façon abstraite les types de convergence que l'on peut étudier entre espace de fonctions, pour ensuite spécifier sur quel espace nous travaillerons.

Interlude : Convergence d'opérateurs

Nous verrons dans le prochain chapitre qu'une discrétisation de l'opérateur de Laplace-Beltrami doit vérifier plusieurs propriétés, inférées depuis les propriétés continues de l'opérateur. Nous nous sommes concentrés dans cette thèse sur la notion de convergence d'opérateurs. Pour un traitement général des notions de convergence, nous invitons le lecteur à consulter l'ouvrage de John Hunter et Bruno Nachtergaele [HN01]. Nous introduisons tout d'abord un outil essentiel dans l'étude de la convergence entre espace de fonctions : les espaces de Banach. Nous présentons donc de façon général la théorie de la convergence d'opérateurs, et nous spécifions ensuite deux espaces de fonctions qui nous seront utiles dans cette thèse. Dans un premier temps nous introduisons l'espace des fonctions deux fois différentiables, qui nous permettent de traiter la convergence locale des opérateurs, et dans un second temps les espaces de Sobolev qui traitent de la convergence des fonctions en mesure autrement appelé convergence par intégration. Dans le cas de l'opérateur de Laplace-Beltrami, le premier espace correspond à la version forte de l'opérateur, c'est-à-dire l'opérateur évalué sur des points, là où le second espace correspond à la version faible de l'opérateur, défini par intégration. La validation théorique d'un certain type de convergence de l'opérateur de Laplace-Beltrami discret vers l'opérateur continue nous donne une meilleure compréhension du comportement empirique de celui-ci : des applications locales de l'opérateur (comme par exemple le calcul de la courbure moyenne) nécessitent une convergence plus forte que des applications globales (comme par exemple la résolution d'équations de Poisson).

3.1 Espaces de Banach et convergences d'opérateurs

Nous commençons par définir les espaces de Banach, qui sont au cœur de l'analyse fonctionnelle. Un espace vectoriel muni d'une norme induit un espace dont la métrique d est dérivée de la norme, *c*.-à-d. d(x, y) = ||x - y||.

DÉFINITION Espaces de Banach

(3.1.1)

Un espace de Banach est un espace vectoriel normé qui est complet vis-à-vis de la métrique dérivée de sa norme.

On peut alors, étant donné deux espaces de Banach X et Y, définir l'espace des opérateurs linéaire entre X et Y noté $\mathfrak{L}(X, Y)$. Une fonction $\mathfrak{T} : X \to Y$ est linéaire si

$$\mathfrak{T}(\lambda x + \mu y) = \lambda \mathfrak{T}(x) + \mu \mathfrak{T}(y)$$

pour $\lambda, \mu \in \mathbb{R}$ et $x, y \in X$. Un sous-ensemble des applications linéaires intéressant est l'espace des opérateurs bornés $\mathfrak{B}(X, Y)$. Un opérateur linéaire est dit borné si il existe $M \ge 0$ tel que

$$\|\mathfrak{T}x\| \leqslant M\|x\|$$

pour tout $x \in X$. On peut alors définir la *norme d'opérateur* (ou bien norme uniforme) comme

$$\|\mathfrak{T}\|_{\mathrm{op}} = \inf_{M \ge 0} \left\{ \|\mathfrak{T}x\| \leqslant M \|x\|, \text{ pour tout } x \in X \right\} = \sup_{x \neq 0} \frac{\|\mathfrak{T}x\|}{\|x\|}.$$

En d'autres termes, la norme d'opérateur mesure l'erreur de déviation de l'application de l'opérateur à x par rapport à x. Considérons maintenant que nous avons une suite d'opérateurs $(\mathfrak{T}_{\varepsilon}) \in \mathfrak{B}(X, Y)^1$. Cette suite *converge uniformément* vers un opérateur $\mathfrak{T} \in \mathfrak{B}(X, Y)$ si

$$\lim_{\varepsilon \to 0} \|\mathfrak{T}_{\varepsilon} - \mathfrak{T}\|_{\mathrm{op}} = 0$$

Une autre forme de convergence, appelé *convergence forte* existe. Un suite d'opérateurs $(\mathfrak{T}_{\varepsilon})$ converge fortement vers \mathfrak{T} si

$$\forall x \in X, \lim_{\varepsilon o 0} \mathfrak{T}_{\varepsilon} x = \mathfrak{T} x$$

pour tout $x \in X$. La convergence forte d'une application linéaire correspond donc à la convergence point-à-point des valeurs par rapport à la norme induite sur Y. Remarquons que la distinction entre convergence uniforme et convergence forte n'est valable que pour les opérateurs entre espaces de Banach, et est confondu lorsque l'on considère simplement les vecteurs de ces espaces. Il est possible de montrer que la convergence uniforme implique la convergence forte (*c.-à-d.* la convergence uniforme est plus forte que la convergence forte).

Il existe un troisième type de convergence, appelé *convergence faible*. Nous avons besoin, pour expliciter ce type de convergence, de reparler des espaces duaux (que nous avons déjà introduits dans le paragraphe 1.1.1 dans le cadre des formes différentielles). L'espace dual à un espace vectoriel comprend toutes les fonctionnelles réelles (*c.-à-d.* les fonctions de X dans \mathbb{R}), qui sont en général appelées formes linéaires. Nous avons vu que l'espace dual X^{*} d'un espace vectoriel X est également un espace vectoriel, et que l'on pouvait construire sa base à l'aide de la base canonique de X, en utilisant des fonctions qui "extraient" les coordonnées (voir l'équation (1.1.2)). Un suite d'opérateurs $(\mathfrak{T})_{\varepsilon}$ converge faiblement vers \mathfrak{T} si

$$\forall \mathbf{x} \in \mathbf{X}, \forall \varepsilon, \lim_{\varepsilon \to 0} \varphi(\mathfrak{T}_{\varepsilon} \mathbf{x}) = \varphi(\mathfrak{T} \mathbf{x}),$$

pour toute fonctionnelle linéaire bornée de X^{*}. Si nous reprenons l'image d'une fonctionnelle $\varphi(\mathbf{x})$ qui extrait les coordonnées de x, alors la convergence faible peut-être vue comme la convergence en coordonnées.

Supposons maintenant que nous souhaitions résoudre l'équation $\mathfrak{T}\mathbf{u} = \mathbf{f}$ approximée par $\mathfrak{T}_{\varepsilon}\mathbf{u}_{\varepsilon} = \mathbf{f}$. Cette formulation est appelée en analyse numérique un schéma de discrétisation. Nous dirons que le schéma de discrétisation est *convergent* si $\|\mathbf{u}_{\varepsilon} - \mathbf{u}\|_{X} \xrightarrow{\varepsilon \to 0} 0$, qu'il est *cohérent* si $\|\mathfrak{T}_{\varepsilon}\mathbf{u} - \mathfrak{T}\mathbf{u}\|_{Y} \xrightarrow{\varepsilon \to 0} 0$ et qu'il est *stable* si il existe une constante M, indépendante de ε tel que $\|\mathfrak{T}_{\varepsilon}^{-1}\| \leq M$. Ces trois propriétés jouent un rôle central en ana-

^{1.} Nous verrons dans le chapitre 4 et le chapitre 5 que dans le cas discret, la suite d'opérateurs correspond à une famille de laplaciens paramétrée par ε qui dépend lui-même du maillage considéré (par exemple le pas de la grille h dans le cas des surfaces digitales). Ce formalisme nous permet d'étudier la convergence via des raffinements de la discrétisation utilisée.

Figure 3.1 Un résumé des différents types de convergences ainsi que les liens entre elles. La convergence uniforme implique la convergence forte qui elle-même implique la convergence faible. Dans le cadre des schémas d'approximations, la convergence forte plus la propriété de stabilité implique la convergence des solutions du schéma. La cohérence du schéma est équivalente à la convergence forte.

lyse numérique. La propriété de stabilité limite l'amplification des erreurs de la solution lorsque $\varepsilon \rightarrow 0$. La convergence nous assure tout simplement que les solutions approximées convergent vers les vraies solutions de l'équation. La propriété de cohérence nous donne un critère de convergence point-à-point des solutions de l'équation. L'*équivalence de Laxi-Richtmyer* [LR56] (aussi appelé théorème fondamental de l'analyse numérique) nous dit qu'une approximation cohérente est convergente si et seulement si elle est stable. Ce théorème nous permet de montrer la convergence des solutions (qui est assez difficile à établir) en prouvant la cohérence (qui est beaucoup plus facile) et la stabilité (qui peut-être montrée en utilisant les propriétés sous-multiplicatives des normes de matrices).

Nous résumons toutes les relations de convergences dans la figure 3.1.

3.2 La forme de Dirichlet associée à l'opérateur de Laplace–Beltrami

Nous avons jusqu'à maintenant présenté de façon abstraite la convergence d'opérateur entre espaces de Banach, sans spécifier les espaces sous-jacents. Intéressons-nous à une sous-classe d'espace de Banach : les espaces de Sobolev. Ces espaces sont au cœur des équations aux dérivées partielles. Les solutions de celles-ci se trouvent naturellement dans les espaces de Sobolev plutôt que dans les espaces de fonctions continues.

Considérons le problème de Dirichlet associé à l'opérateur de Laplace-Beltrami

$$-\Delta u = f \quad x \in \Gamma,$$

 $u(x) = 0 \quad x \in \partial \Gamma,$

avec $f : \Gamma \to \mathbb{R}$ une fonction donnée et $\Gamma \subset \mathbb{R}^n$. Pour formuler tout problème d'équations aux dérivées partielles de manière précise, nous devons spécifier dans quel espace les solutions de l'équation vivent. Il est également nécessaire de préciser comment les dérivées sont définies et dans quel sens les solutions vérifient les conditions aux bords. Nous considérons ici les *solutions faibles* qui satisfont l'équation au sens des distributions. Soit $C_c^{\infty}(\Gamma)$ l'ensemble des *fonctions de test* de Γ , *c.-à-d*. l'ensemble des fonctions dont les dérivées partielles sont continues et à support compact dans Γ . Soit φ une telle fonction. Une multiplication et une intégration par partie de l'équation de Dirichlet donnent

$$\int_{\Gamma} \langle \nabla \mathfrak{u}, \nabla \varphi \rangle \, \mathrm{d} \mathfrak{vol} = \int_{\Gamma} \mathsf{f} \, \varphi \, \mathrm{d} \mathfrak{vol}.$$

Nous avons donc transformé le problème de Dirichlet en un problème variationnel. Supposons maintenant que la solution u et la fonction de test φ appartiennent au même espace. Dans ce cas là, ∇u et $\nabla \varphi$ doivent être deux fois intégrables. L'espace des fonctions deux fois intégrables est l'espace $\mathcal{H}_0^1(\Gamma)$. Cet espace correspond à la clôture de $C_c^{\infty}(\Gamma)$ dans l'espace de Sobolev $W^{1,2}(\Gamma)$, ce qui informellement correspond à l'ensemble des fonctions de L²(Γ) dont les dérivées partielles faibles sont dans L²(Γ) (se référer au livre de John Hunter et Bruno Nachtergaele [HN01] pour une définition précise des espaces de Sobolev).

$$\int_{\Gamma} \left\langle \nabla \mathfrak{u}, \nabla \phi \right\rangle d \mathfrak{vol} = \left\langle \mathsf{f} | \phi \right\rangle$$

pour tout $\varphi \in \mathcal{H}^1_0(\Gamma)$, où $\langle \cdot | \cdot \rangle$ et l'opérateur de mise en dualité entre $\mathcal{H}^{-1}(\Gamma)$ et $\mathcal{H}^1_0(\Gamma)$.

L'unicité de la solution nous est donnée par le théorème de représentation de Riesz

 $\label{eq:constraint} \begin{array}{ll} T \, \text{H}\, \acute{\text{E}}\, O \, R \, \grave{\text{E}}\, M \, E \, \, \text{Représentation de Riesz} & (3.2.1) \\ \text{Soit } \mathfrak{h} \mbox{ une fonctionnelle bornée d'un espace de Hilbert } \mathcal{H}. \mbox{ Il existe alors un unique} \\ \text{vecteur } \mathbf{u} \in \mathcal{H} \mbox{ tel que} \end{array}$

 $\mathfrak{h}(\mathfrak{u}) = \langle \mathfrak{u}, \mathfrak{v} \rangle$

pour tout $v \in \mathcal{H}$.

Remarquons d'ailleurs que nous avions, dans le paragraphe 1.1.3, utilisé ce théorème sans le mentionner pour mettre en relation les formes et les vecteurs à travers le produit scalaire défini sur T_pM .

3.3 Retour sur les variétés différentielles

Dans le cadre de cette thèse, nous nous intéressons à l'opérateur de Laplace–Beltrami défini sur les variétés différentielles. Plus précisément, nous souhaitons approximer l'opérateur défini sur le bord ∂M d'une variété différentielle compacte M de dimension 3 plongée dans \mathbb{R}^3 (à noter que ce que nous allons présenter par la suite tient pour toute variété différentielle, car il est toujours possible de la plonger dans un espace euclidien d'assez grande dimension, le résultat étant dû à Whithney [WET92]). Considérons donc une variété M équipée d'un produit scalaire sur le plan tangent (*c.-à-d.* d'un tenseur métrique), l'opérateur faible de Laplace–Beltrami est une application qui a tout $u \in \mathcal{H}^1_0(M)$ associe la distribution $\Delta u \subset \mathcal{H}^{-1}(M)$ et est donné par

$$\langle \Delta u | \phi \rangle = \int_{\mathcal{M}} g(\nabla u, \nabla \phi) dvol$$

pour tout $\varphi \in \mathcal{H}^1_0(M)$ (g correspond ici au produit intérieur en chaque point de la variété). L'opérateur faible est une généralisation de l'opérateur de Laplace–Beltrami dans le sens où pour toute fonction continument différentiable u sur M, la version forte de l'opérateur est l'unique fonction continue qui satisfait

$$\int_{\mathcal{M}} \Delta u \, \varphi \, dvol = \int_{\mathcal{M}} g(\nabla u, \nabla \varphi) dvol$$

pour tout $\varphi \in \mathcal{H}^1_0(M)$. Nous verrons dans la prochaine partie que la version faible de l'opérateur joue un rôle clef lorsque l'on souhaite le discrétiser : on peut par exemple employer des techniques d'éléments finis sur les triangulations pour obtenir une discrétisation.

Si nous revenons maintenant à la convergence d'opérateurs, nous pouvons considérer deux cadres de convergence. La première, associée à la forme forte de l'opérateur, considère la convergence entre fonctions deux fois différentiables sur le bord d'un sous-ensemble compact de \mathbb{R}^3 , espace que nous nommerons $C^2(\partial M)$. Nous sommes obligés de considérer des ensembles compacts : une conséquence importante qui provient de l'analyse classique est le théorème des valeurs maximales (voir [Rud76] par exemple). Ce théorème nous dit que si K est un ensemble compact, et $u : K \to \mathbb{R}$ est une fonction continue (au sens topologique du terme), alors u est bornée et atteint ses minimas et maximas dans K. Étant donné que ∂M est aussi compact et que chaque fonction de $C^2(\partial M)$ est continue (par définition), ces fonctions sont bornées (ce qui est aussi vrai pour le gradient de ces fonctions). $C^2(\partial M)$ combinée avec la norme de Lebesgue L[∞](∂M) est alors un espace de Banach. Nous rappelons que dans le cas continu, la norme de Lebesgue des espaces L^p est donnée par

$$\|\mathbf{u}\|_{p} := \left(\int_{\partial M} |\mathbf{u}(\mathbf{x})|^{p} \, \mathrm{d}\mathbf{x}\right)^{\frac{1}{p}}$$

avec $1\leqslant p<\infty$ et dans le cas particulier de $p=\infty$

 $\|u\|_{C^2(\partial M)} = \|u\|_{\infty} := sup\{ C \ge 0 \, | \, u(x) \leqslant C \text{ pour presque tous les } x \}.$

Nous considérerons donc la convergence forte de l'opérateur Δ dans $C^2(\partial M)$ que nous appellerons la C^2 -convergence. Étant donnée une approximation \mathfrak{L} de Δ , \mathfrak{L} est C^2 -convergent si

$$\lim_{\varepsilon \to 0} \left\| \mathfrak{Lu} - \Delta \mathfrak{u} \right\|_{C^2(\partial \mathcal{M})} = 0$$

pour toute fonction $u \in C^2(\partial M)$. Le paramètre ε représente un certain pas de discrétisation, ou bien d'approximation de la variété ∂M . De manière similaire, nous pouvons considérer la convergence de l'opérateur faible que nous appellerons \mathcal{H}_0^1 -convergence (ou bien convergence point-à-point). \mathfrak{L} est \mathcal{H}_0^1 -convergent si

$$\lim_{\varepsilon \to 0} \left\| \mathfrak{Lu} - \Delta \mathfrak{u} \right\|_{\mathcal{H}^1_0(\partial M)} = 0$$

pour toute fonction $u \in \mathcal{H}^1_0(\partial M)$. La convergence faible n'est pas à confondre avec l'opérateur faible : nous sommes en effet libres de considérer la convergence forte (ce que nous faisons ici) de l'opérateur faible ou bien encore la convergence faible de l'opérateur fort.²

Il est nécessaire, lorsque l'on discrétise un opérateur, de savoir quel type de convergence nous souhaitons. Si l'on veut par exemple calculer le vecteur de courbure moyenne, ou bien encore l'énergie de Willmore, nous devons considérer la C^2 -convergence. Dans le cas de la résolution d'équations au dérivées partielles, il est suffisant d'avoir une convergence des quantités intégrées, *c.-à-d*. de considérer la \mathcal{H}^1_0 -convergence. Nous verrons d'ailleurs que la théorie de la mesure géométrique nous dit qu'il n'est pas possible, pour une certaine classe de discrétisations, d'obtenir une convergence point-à-point.

3.4 Conclusion

Nous pouvons maintenant conclure cette première partie, qui nous fournit tous les outils d'analyse et de géométrie utiles pour cette thèse. Nous avons présenté la théorie de calcul extérieur, qui généralise le calcul différentiel à des formes plus compliquées : les variétés riemanniennes. Nous avons présenté l'opérateur de Laplace-Beltrami dans le calcul extérieur et donné sa formulation en coordonnées locales. Nous avons également présenté quelques éléments et théorèmes sur sa décomposition spectrale, utiles pour les applications en analyses de formes géométriques. Nous avons ensuite présenté quelques modèles de représentations des variétés, à savoir les complexes simpliciaux, les complexes cellulaires et les surfaces digitales. Nous avons résumé le pendant discret du calcul extérieur sur les complexes simpliciaux développé par Desbrun, Hirani et ses collègues. Celui-ci nous permet de calculer sur les surfaces discrètes en utilisant uniquement des opérations matricielles. L'injection de la mesure des éléments de surfaces se fait au travers de la discrétisation de l'opérateur de Hodge. Dans le cas du calcul extérieur discret, la mesure est modélisée comme des rapports des mesures primales et duales de la surface. Pour les surfaces digitales, nous avons exposé des éléments de topologie reliant le bord de la variété et son discrétisé de Gauss. Nous avons insisté sur la fonction de projection ξ , qui nous permet entre autres de ramener des quantités définies sur la surface discrète sur la variété. Cet outil se révélera essentiel lors de la preuve de C²-convergence de notre discrétisation de l'opérateur de Laplace-Beltrami. Nous avons également présenté un estimateur de normales convergent sur les surfaces digitales à travers les intégraux invariants, et énoncé un théorème de convergence multigrille. Enfin, nous avons spécifié dans cet interlude les espaces de fonctions utiles à la convergence lorsque l'on s'intéresse à l'opérateur de

^{2.} La lecture des différents articles traitant de la convergence de l'opérateur peut-être trompeuse. Du point de vue de la géométrie différentielle discrète, la C²-convergence est simplement appelée convergence forte, ou bien encore convergence point-à-point. La \mathcal{H}^1_0 -convergence est, quant à elle, appelée la convergence faible dans la majorité des travaux existants (nous pensons ici à ceux de Wardetzky, ou bien encore Hildebrandt). En analyse numérique, la notion de convergence fait référence à la convergence des schémas de discrétisations, et le choix de l'espace dépend largement des travaux considérés.

Laplace–Beltrami. Nous allons maintenant attaquer le cœur de cette thèse, à savoir donner une discrétisation de l'opérateur de Laplace–Beltrami sur les surfaces digitales.

Deuxième partie

Discrétisation de l'opérateur de Laplace–Beltrami

Panorama des discrétisations de l'opérateur de Laplace–Beltrami

4

Sommaire

4.1	Propriétés des laplaciens discrets		53
	\hookrightarrow 4.1.1	Propriétés du laplacien continu	53
	\hookrightarrow 4.1.2	Propriétés du laplacien discret	54
4.2	Opérateurs combinatoires		56
	\hookrightarrow 4.2.1	L'opérateur d'ombrelles	56
	\hookrightarrow 4.2.2	L'opérateur de Tutte	56
	\hookrightarrow 4.2.3	Le laplacien de graphe normalisé	57
4.3	Deux opérateurs sur les triangulations		57
	\hookrightarrow 4.3.1	L'opérateur des cotangentes de Pinkall	57
	\hookrightarrow 4.3.2	L'opérateur de Desbrun <i>et al.</i>	60
4.4	Opérateur sur des surfaces polygonales généralisées		62
	\hookrightarrow 4.4.1	Généralisation de l'aire à un polygone non-planaire	62
	\hookrightarrow 4.4.2	Formulation matricielle et algorithme	64
4.5	Opérateur de convolution de Belkin et al.		65
	\hookrightarrow 4.5.1	Existence et décomposition de la solution fondamentale	66
	\hookrightarrow 4.5.2	Approximations pour t petit	67
	\hookrightarrow 4.5.3	Laplacien fonctionnel	68
4.6	Une autre a	pproximation globale	69
	\hookrightarrow 4.6.1	Fonctions r-locales	69
	\hookrightarrow 4.6.2	Discrétisation à partir du schéma des cotangentes	70
4.7	Conclusion		71

L'opérateur de Laplace–Beltrami est un opérateur différentiel d'ordre deux : il est nécessaire de définir un cadre de calcul discret pour des structures plongées telles que les maillages. Les premiers éléments de calcul discret peuvent être attribués au calcul de Regge [Reg61] pour la physique quantique, où le domaine discret est modélisé par des tétrahèdres adjacents et la métrique est complètement déterminé par la longueur des arêtes. On voit également apparaître des opérateurs de Laplace discrets pour la théorie spectrale des graphes dans les années cinquante : sont étudiés ici le polynôme caractéristique et la décomposition en vecteurs propres et valeurs propres de la matrice d'adjacence du graphe (appelée matrice de laplacien) [Chu97; Ros04; CL06].

Plus tard, avec le développement des outils d'acquisition géométrique et des techniques de modélisation, l'intérêt s'est tourné vers un calcul plus général s'appliquant sur les maillages et plus généralement sur les complexes simpliciaux. De là est née la fameuse formule des

cotangentes. Elle semble apparaître en premier en 1959 dans le travail de Duffin [Duf59] qui proposa une formulation de l'énergie de Dirichlet sur des surfaces triangulées continues par morceaux. Trente ans après, en 1988, Dziuk [Dzi88; Dzi90] étudie les éléments finis linéaires sur les surfaces polyhédrales sans référence explicite à la formule des cotangentes. En 1993, Pinkall et Polthier [PP93] emploie la formule pour une représentation fonctionnelle du vecteur de courbure moyenne, permettant de calculer explicitement les surfaces minimales discrètes [KP96; Pol02b; Pol02a; PR02; Ros05]. Desbrun et al. [Des+99; Mey+03] ont aussi utilisé la formule des cotangentes pour exprimer l'aire du gradient de surfaces continues par morceaux. Ils effectuent une remise à l'échelle via le terme d'aire : en résulte une formulation de l'opérateur qui agit sur des fonctions (c.-à-d. des quantités point-à-point) au lieu d'agir sur des fonctionnelles (c.-à-d. des quantités intégrées). Plus récemment, Bobenko et Springsborn [BS07] ont dérivé une version intrinsèque de l'opérateur pour des surfaces polyhédrales qui obéit au principe maximum discret. De nombreux autres travaux [Tau95; Tau01; Pol02a; Fuj95; May01; Mey+03] concernant la formule existent. Enfin, remarquons que la formule peut-être construite via des méthodes d'éléments finis (voir par exemple [LZ10]).

Dans la volonté d'une théorie plus générale s'est développé le calcul extérieur discret dans la communauté des mathématiques appliquées et celle d'analyse de formes. "L'école allemande" du calcul discret développa un calcul 2D exact qui généralise le laplacien des cotangentes. Celui-ci est basé sur des éléments (conformes ou non-conformes) finis [PP03], obtenant ainsi des résultats théoriques tels que le théorème de Stokes ou bien encore la décomposition de Hodge. Les applications sont nombreuses : l'intégration exacte permet de faire du remaillage via des projections L², la déformation de structures en prescrivant des données de premier ordre, etc. Cette théorie est un socle pour le calcul effectif, mais possède cependant une limitation importante : la restriction aux surfaces triangulées (et de plus avec de bons ratios pour des laplaciens positifs).

Une autre version du calcul discret provient de la thèse d'Hirani [Hir03] et du monographe de Desbrun, Hirani, Leok et Marsden [Des+05]. Ils proposent ici une construction via la définition d'une surface duale, qui n'est pas restreinte aux triangulations. L'idée centrale n'est pas de proposer une approximation du calcul continu, mais au contraire un analogue discret :

We do not prove that these definitions converge to the smooth counterparts. The definitions are chosen so as to make some important theorems like the generalized Stokes' theorem true by definition, to preserve naturality with respect to pullbacks, and to ensure that operators are local.

[Hir03; Des+05]

Il est possible d'inclure des mesures géométriques dans le calcul via les isomorphismes musicaux (*flat* et *sharp* qui convertissent des k-formes en champ vectoriels et vice versa) et l'opérateur de Hodge. A noter que l'opérateur de Laplace–Beltrami formulé à travers le calcul extérieur discret coïncide avec le schéma des cotangentes sur les triangulations lorsque la dualité Voronoi / Delaunay est utilisée.

En parallèle émerge un autre calcul discret dans la communauté d'image, graphes, circuits électriques et d'analyse de réseaux, résumé dans le livre de Grady et Polimeni [GP10]. Les mesures sont aussi incorporées au calcul, mais sans relation avec l'espace ambiant, ce qui permet de faire de l'analyse sans la connaissance du plongement du domaine. Les auteurs montrent comment les processus de filtrages classiques et les (version discrètes des) modèles énergétiques (e.g. Mumford-Shah, variation totale) peuvent être formulés dans leur théorie.

Une version similaire du calcul discret sur les "chainlets" apparaît en théorie géométrique de la mesure, pour l'analyse mathématique de formes compactes générales telles que les fractales [Har93; Har99]. Nous pouvons aussi mentionner une approche en analyse complexe [Mer01; Mer08] avec des applications en paramétrisation de surfaces digitales et cartes de textures [Car+13].

Belkin *et al.* ont développé un opérateur pour les nuages de points [BSW] qui a été étendu par Qin *et al.* [Qin+]. Cet opérateur a été développé pour l'analyse massive de données en dimension élevée (comme par exemple la reconstruction de sous-variétés en géométrie discrète ou bien en apprentissage automatique). Le cœur de la discrétisation utilise l'équation de la chaleur pour construire l'opérateur. Des opérateurs plus "exotiques" peuvent être trouvés dans [HP11; War+07; HPW06]. Notons dans notre cas l'opérateur développé par Wardetzky et Alexa sur des surfaces polygonales non planaires [AW11] : celui-ci généralise le schéma des cotangentes et peut s'appliquer directement sur nos surfaces digitales.

4.1 Propriétés des laplaciens discrets

Motivé par la formulation continue de l'opérateur de Laplace–Beltrami sur des variétés riemanniennes, la question de l'existence d'un opérateur discret sur les surfaces polygonales (*c.-à-d.* les complexes simpliciaux de dimension 2) se pose. Wardetzky *et al.* [War+07] ont donné une liste de propriétés qu'un opérateur discret devrait remplir afin d'imiter sa contrepartie continue. Pour cela, ils listent les propriétés continues de l'opérateur, et donnent leur pendant discret.

4.1.1 Propriétés du laplacien continu

Considérons une surface différentiable \mathcal{M} , pouvant posséder un bord, équipée d'une métrique riemannienne, *c.-à-d.*, une notion intrinsèque de distance. Soit L² le produit intérieur intrinsèque de deux fonctions u et v de \mathcal{M} défini par $\langle u, v \rangle_{L^2} := \int_{\mathcal{M}} uv dA$, et soit $\Delta = -\text{div}$ grad l'opérateur de Laplace–Beltrami intrinsèque. Les propriétés de cet opérateur sont les suivantes :

- **(NULL)** $\Delta u = 0$ si u est constante.
- **(SYM)** Symétrie : $\langle \Delta u, v \rangle_{L_2} = \langle u, \Delta v \rangle$ si u et v sont au moins de classe C² et s'annulent sur le bord de \mathcal{M} .
- **(LOC)** Support local : pour toute paire $p \neq q$ de points, $\Delta u(p)$ est indépendant de u(q). En d'autres termes, changer la valeur de la fonction à un point distant de p n'affecte pas l'action du laplacien localement.

- (LIN) Précision linéaire : $\Delta u = 0$ dès que \mathcal{M} est un sous ensemble d'un plan euclidien arbitraire, et u = ax + by + cz + d est une fonction linéaire du plan.
- (MAX) Principe maximum : les fonctions harmoniques (celles qui satisfont $\Delta u = 0$ à l'intérieur de \mathcal{M}) n'ont pas de maximas locals (ou bien de minimas) sur les points intérieurs.
- (PSD) Positif semi-defini : l'énergie de Dirichlet, $E_D(u) = \int_{\mathcal{M}} ||\text{grad } u||^2 dA$, est nonnégative. Étant donné le choix du signe de Δ , nous avons $E_D(u) = \langle \Delta u, u \rangle \ge 0$ si u est au moins de classe C^2 et disparaît aux bord de \mathcal{M} .

Nous souhaitons donc qu'une version discrète du laplacien vérifie (au moins partiellement) ces propriétés.

4.1.2 Propriétés du laplacien discret

Considérons un complexe simplicial \mathcal{K} composé d'un ensemble de sommets V, d'un ensemble d'arêtes E et d'un ensemble de faces F. Un opérateur de Laplace–Beltrami discret sur \mathcal{K} est défini par son action sur des fonctions évaluées sur les sommets,

$$(\mathcal{L}\mathfrak{u})_{\mathfrak{i}} = \sum_{\mathfrak{j}} w_{\mathfrak{i}\mathfrak{j}}(\mathfrak{u}_{\mathfrak{i}} - \mathfrak{u}_{\mathfrak{j}}), \qquad (4.1.1)$$

où i et j représentent les indices des sommets. Notons qu'un opérateur de cette forme satisfait automatiquement (NULL). Nous avons déjà parlé précédemment des propriétés de convergences de l'opérateur discret, à savoir la C²-convergence ainsi que la \mathcal{H}^1_0 convergence. Nous listons maintenant les autres propriétés désirables pour un laplacien discret de cette forme :

(SYM) $w_{ij} = w_{ji}$. En algèbre linéaire, un opérateur autoadjoint A est un opérateur qui satisfait pour tout vecteur x et y l'égalité

$$\langle \mathcal{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathcal{A}\mathbf{y} \rangle$$

où $\langle \cdot \rangle$ est le produit scalaire standard sur \mathbb{R}^n . Cette propriété se traduit sur les matrices par $\mathbf{A} = \mathbf{A}^T$ où \mathbf{A}^T correspond à la transposée de la matrice \mathbf{A} . En théorie, cette propriété nous assure qu'il existe une base orthonormée de l'espace vectoriel constituée des vecteurs propres de \mathbf{A} et que de plus toutes les valeurs propres sont réelles. En pratique, cette conséquence nous donne accès à des algorithmes plus rapides lors de la résolution d'équations différentielles discrètes, ou bien encore dans la décomposition spectrale elle-même. Un très bon résumé d'algèbre linéaire peut se trouver dans le livre de Halmos [Hal48] ou bien encore dans celui de Lax [Lax07].

(LOC) Les poids sont associés aux arêtes du maillage, tel que $w_{ij} = 0$ si et seulement si i et j ne partagent pas une arête dans \mathcal{K} . De la même façon que dans le cas continu, changer la valeur d'une fonction à un sommet j n'affecte pas l'action de l'opérateur discret en i, si i et j ne partagent pas une arête commune. Cette propriété se traduit dans la théorie des graphes : lorsque l'on discrétise un processus de diffusion via une marche aléatoire dans un graphe, les poids w_{ij} correspondent aux probabilités de transition le long des sommets du graphe.

(LIN)

 $(Lu)_i = 0$ pour tout sommet qui n'appartient pas au bord si \mathcal{K} est une ligne droite plongée dans le plan et que u est une fonction linéaire de ce plan, évaluée aux sommets de \mathcal{K} . Cette propriété se traduit par l'équation

$$0 = (\mathcal{L}u)(x_i) = \sum_j w_{ij}(u(x_i) - u(x_j)).$$

Etant donné que la fonction u est linéaire en x, nous pouvons l'écrire comme u(x) = ax + b ce qui nous donne

$$0 = (\mathcal{L}u)(x_i) = \sum_j w_{ij}(ax_i + b - (ax_j + b)),$$

ce qui est équivalent à

$$0 = (\mathcal{L}x)_i = \sum_j w_{ij}(x_i - x_j).$$

En d'autres termes, pour montrer (LIN), il suffit d'étudier l'opérateur discret uniquement sur le plongement de \mathcal{K} .

- **(POS)** $w_{ij} \ge 0$ pour tout $i \ne j$. De plus, pour tout sommet i, il existe au moins un sommet j tel que $w_{ij} > 0$. Cette condition est suffisante pour le principe maximum (MAX).
- (PSD) la matrice L associée à l'application linéaire est positive semi-definie vis-à-vis du produit intérieur L₂ et possède un noyau de dimension un. L'énergie positive de Dirichlet est alors donnée par $\sum_{i,j} w_{ij} (u_i - u_j)^2$ (par simple application du produit scalaire). Il est assez facile de montrer que dans le cas général, (SYM) + (POS) implique (PSD). Soit u une fonction discrète non constante :

$$\begin{split} u^{\mathsf{T}} L u &= \sum_{i} u_{i} \sum_{j} w_{ij} (u_{i} - u_{j}) \\ &= \sum_{ij} u_{i} w_{ij} (u_{i} - u_{j}) \\ &\underset{(\mathsf{SYM})}{=} \sum_{i>j} w_{ij} (u_{i} (u_{i} - u_{j}) + u_{j} (u_{j} - u_{i})) \\ &= \sum_{i>j} w_{ij} (u_{i} - u_{j})^{2} \underset{(\mathsf{POS})}{>} 0. \end{split}$$

Nous noterons par la suite la propriété de C²-convergence par (C²-CON), et la propriété de \mathcal{H}_0^1 -convergence par (\mathcal{H}_0^1 -CON).

Nous allons dans les prochaines sections détailler des opérateurs locaux qui ont la forme de l'équation (4.1.1). Nous verrons des laplaciens combinatoires qui ne dépendent pas de la géométrie de la surface, puis le fameux schéma des cotangentes, ainsi qu'une généralisation de celui-ci sur les surfaces constituées de polygones non-planaires. Pour chacune des discrétisations, nous donnerons un résumé des propriétés de l'opérateur.

4.2 Opérateurs combinatoires

Cette classe d'opérateurs représente de la façon la plus simple, des laplaciens discrets. Leurs coefficients sont entièrement basés sur des informations de connectivités (parfois appelés combinatoire du maillage). Le principal avantage de ces discrétisations est qu'il n'est pas nécessaire de modifier la matrice associée lors d'une opération géométrique sur celui-ci (par des processus itératifs de lissage par exemple). Cet avantage est encore plus flagrant si l'on requiert une décomposition coûteuse de la matrice (pensez par exemple à la décomposition spectrale). Le principal inconvénient est bien sûr le manque d'informations géométriques, qui s'accentue par exemple lorsque l'échantillonnage n'est pas uniforme. Nous explicitons ici les principaux laplaciens combinatoires. Nous référons le lecteur aux travaux de Zhang pour plus de détails vis-à-vis de ces opérateurs [ZhaO4].

4.2.1 L'opérateur d'ombrelles

Cet opérateur est une généralisation directe du laplacien utilisé en traitement d'image sur des grilles régulières. L'idée est ici de prendre la moyenne des valeurs de la fonction dans un petit voisinage. On a :

$$w_{ij} = \begin{cases} 1 & \text{si i et j possèdent une arête commune} \\ 0 & \text{sinon.} \end{cases}$$

Propriétés de l'opérateur Les propriétés (SYM), (LOC) et (POS) sont satisfaites, cependant (LIN) n'est pas validée. Cela vient du fait que l'opérateur combinatoire est indépendant du plongement du maillage, et donc que le plongement planaire est "invisible" aux yeux d'un tel opérateur (on peut construire un contre-exemple en considérant un échantillonage non-linéaire d'une droite de \mathbb{R}^2). Nous avons vu que (SYM) + (POS) \implies (PSD) : l'opérateur combinatoire est donc positif défini. La nature combinatoire de l'opérateur ne permet de valider ni (\mathcal{H}_0^1 -CON), ni (C²-CON). On peut expliciter un contre-exemple à ces deux convergences sur la lanterne de Schwartz (voir la figure 4.3). Voir également l'article de Zhang [Zha04].

4.2.2 L'opérateur de Tutte

Cet opérateur est donné par la normalisation par ligne de l'opérateur sur les ombrelles. Il prend donc la forme suivante

$$(\mathfrak{L}_{\text{combi}}\mathfrak{u})(\mathfrak{x}_{\mathfrak{i}}) := \sum_{\mathfrak{x}_{\mathfrak{j}}\prec Lk} \frac{1}{\mathfrak{d}_{\mathfrak{i}}}(\mathfrak{u}(\mathfrak{x}_{\mathfrak{j}}) - \mathfrak{u}(\mathfrak{x}_{\mathfrak{i}}))$$
(4.2.1)

où d_i est la valence (ou degré) du sommet x_i et $x_j \prec Lk x_i$ représente l'ensemble des sommets adjacents à x_i . Cet opérateur correspond aux poids suivant dans la formulation de l'équation (4.1.1) :

$$w_{ij} = \begin{cases} \frac{1}{d_i} & \text{si i et j partagent une arête commune} \\ 1 & \text{si i = j} \\ 0 & \text{sinon.} \end{cases}$$

Propriétés de l'opérateur Cet opérateur ne valide pas (SYM) en général. Plus précisément, la propriété n'est plus vraie sur les maillages non-réguliers (où les sommets ne possèdent pas la même valence). De par sa construction, cet opérateur valide (LOC). Nous savons cependant que (PSD) est conservé [Zha04]. Nous savons également que le spectre de cet opérateur est compris dans [0; 2] est donc qu'il possède la propriété (POS). De la même façon que l'opérateur des ombrelles, (LIN) et (\mathcal{H}_0^1 -CON) ne sont pas respectées.

4.2.3 Le laplacien de graphe normalisé

Cet opérateur est une version symétrique de l'opérateur de Tutte. Soit d_i la valence du sommet i (le nombre de sommets adjacents à i), nous avons :

 $w_{ij} = \begin{cases} \frac{1}{\sqrt{d_i d_j}} & \text{ si i et j partagent une arête commune} \\ 0 & \text{ sinon.} \end{cases}$

Propriétés de l'opérateur L'opérateur valide (SYM) par construction. Cet opérateur ne possède pas la propriété (PSD) et possède une décomposition spectrale non-bornée. Il n'est non plus ni (LIN), ni (\mathcal{H}^1_0 -CON) et encore moins (C²-CON) pour les mêmes raisons que les deux derniers opérateurs.

4.3 Deux opérateurs sur les triangulations

Nous présentons dans cette section deux opérateurs locaux sur les triangulations. Ces deux opérateurs sont communément regroupés sous le nom d'opérateur des cotangentes, composées de nombreuses discrétisations du Laplace–Beltrami sur les triangulations. Le premier opérateur, dû à Pinkall et Polthier [PP93], fut développé dans le cadre du calcul numérique de surfaces discrètes minimales (que nous détaillerons). Le second opérateur, dû à Desbrun *et al.* [Des+99; Mey+03], est une discrétisation du gradient de l'aire.

4.3.1 L'opérateur des cotangentes de Pinkall

Comme mentionné dans l'introduction de cette section, l'opérateur des cotangentes de Pinkall et Polthier [PP93] fut à l'origine construit pour générer des surfaces minimales discrètes. La question de trouver des surfaces d'aire minimum étant donné un bord de \mathbb{R}^d est un problème énormément étudié depuis les travaux de Lagrange. Le problème peut être formulé de la façon suivante : étant donné un ensemble fini $\Gamma = \{\Gamma_1, \Gamma_2, \Gamma_3, ...\}$ de courbes fermées plongées dans \mathbb{R}^d , parmi toutes les surfaces à topologie prescrite (fixe) couvrant Γ , trouver celles qui possèdent l'aire minimale. Les solutions de ce problème sont appelées les surfaces minimales. Dans les années trente, Radó [Rad33] et Douglas [Dou31] résolvent indépendamment le problème pour des surfaces circulaires en montrant l'existence de minimiseurs. Une des clefs de la preuve de Douglas consiste à minimiser l'énergie de Dirichlet $\mathcal{D}f = \int_{\mathcal{D}} |df|^2 dx$.

On peut se poser naturellement la question d'une méthode pour calculer ces surfaces minimales en utilisant des approximations finies des surfaces continues. En effet, Douglas [Dou27] dès 1927 utilise les différences finies pour approximer de telles surfaces. Si l'on se place maintenant dans \mathbb{R}^3 , une approche plus flexible du problème consiste à trianguler

Figure 4.1 Deux exemples de surfaces minimales qui font partie des surfaces de Seifert : leur bord est un nœud (ou bien un ensemble de nœuds appelé un lien) c'est-à-dire le plongement d'un cercle dans \mathbb{R}^3 . Les deux bords de cette surface sont le nœud de trèfle (au milieu), et un cercle (qui forme l'anneau extérieur)

l'ensemble Γ de courbes de \mathbb{R}^3 et ensuite bouger les sommets afin de minimiser l'aire totale de la triangulation. Suivant cette approche, Wagner [Wag77] appliquent une méthode type Newton pour trouver les points critiques de l'aire fonctionnelle, Dziuk [Dzi90] et Brakke [Bra92] applique une descente de gradient L² (le flot de courbure moyenne discret) pour obtenir des minimiseurs discrets, et Pinkall et Polthier [PP93] (que nous détaillerons dans la section suivante) présentent un algorithme itératif qui minimise aussi le gradient de l'aire (cette méthode peut-être vue comme une descente de gradient H¹). Une illustration d'une telle surface se trouve dans la figure 4.1.

L'article de Pinkall et Pothier définit une surface minimale discrète avec l'équivalence suivante (voir la Définition 3. [PP93]) : une surface discrète (au sens des complexes simpliciaux) est minimale si et seulement si une petite perturbation des sommets de la surface dans une petite région augmenterait l'aire totale de la surface. Soit un complexe simplicial \mathcal{K} et deux plongements de ce complexe \mathfrak{T}_1 et \mathfrak{T}_2 (c'est-à-dire que \mathfrak{T}_1 et \mathfrak{T}_2 possèdent la même topologie, mais des coordonnées différentes). Le cœur de leur méthode est d'étudier l'application $f : \mathfrak{T}_1 \to \mathfrak{T}_2$, qui correspond à une transformation de \mathfrak{T}_1 en \mathfrak{T}_2 . L'énergie de Dirichlet \mathcal{E}_D de cette application f est alors la somme des énergies $f|_t$ (la restriction de f à un triangle t de \mathfrak{T}_1) sur chacune des paires de triangles de la transformation. L'énergie s'écrit alors comme dans le cas continu :

$$\mathcal{E}_{D}(f\big|_{t}) = \frac{1}{2} \int_{t} |\nabla f|^{2}.$$

Figure 4.2 L'application linéaire f associe un triangle t_1 de \mathcal{T}_1 à un triangle t_2 de \mathcal{T}_2 . L'énergie de Dirichlet peut-être ensuite discrétisée par paire de triangles en utilisant les angles des triangles d'origine ainsi que les longueurs des arêtes du triangle d'arrivé. La preuve décompose f en φ et ψ qui associent les triangles à un triangle élémentaire t_e : il est ensuite possible de calculer les dérivées de ces applications et d'en déduire l'énergie de Dirichlet associée.

Ils montrent alors que cette énergie possède une formule close dépendant des angles et des longueurs de chacun des triangles :

$$\mathcal{E}_{D}(f\big|_{t}) = \frac{1}{4} \sum_{i=1}^{3} \cot \alpha_{i} \cdot |\alpha_{i}|^{2},$$

où les α_i correspondent aux angles du triangle d'origine et a_i correspond aux longueurs des arêtes du triangle d'arrivé (voir figure 4.2). Les auteurs montrent également qu'en sommant les énergies autour d'un sommet et en considérant f comme étant l'identité, la formule précédente devient la formule des cotangentes :

$$(\mathfrak{L}_{cot}^*\mathfrak{u})(x_i) := \frac{1}{4} \sum_{x_j \prec Lk \ x_i} (cot(\alpha_{ij}) + cot(\beta_{ij}))(\mathfrak{u}(x_i) - \mathfrak{u}(x_j)),$$

avec $x_j \prec Lk x_i$ l'ensemble des sommets du Link de x_i (ou plus formellement l'ensemble des faces propres du Link de x_i), et α_{ij} et β_{ij} les angles opposés à l'arête ij. Les poids de la matrice de l'opérateur dans la formulation de l'équation (4.1.1) sont donc ici

$$w_{ij} = \begin{cases} \frac{1}{4} \left(\cot(\alpha_{ij}) + \cot(\beta_{ij}) \right) & \text{ si i et j partagent une arête commune} \\ 0 & \text{ sinon.} \end{cases}$$

Propriétés de l'opérateur L'opérateur possède toutes les propriétés d'un opérateur local discret sauf (POS). (SYM) est validée trivialement par construction, ainsi que (LOC). \mathfrak{L}_{cot}^* possède toujours la propriété (PSD) même si les poids sont négatifs (son spectre est strictement positif [War+07]). Wardetzky a montré (\mathcal{H}_0^1 -CON) dans sa thèse [War10] : étant donné une famille de triangulations qui convergent (au sens de Hausdorff) vers la variété différentielle, le schéma des cotangentes converge dans \mathcal{H}_0^1 si et seulement si les

Figure 4.3 La lanterne de Schwarz utilisée par Wardetzky dans sa thèse pour donner un contre-exemple de la convergence point-à-point de l'opérateur des cotangentes \mathfrak{L}_{cot}^* .

normales des triangles convergent vers les vraies normales de la surface. Sont également montrées la convergence des solutions du problème de Dirichlet, ainsi qu'une convergence en norme d'opérateur. Wardetzky exhibe aussi un contre-exemple pour la C²-convergence : il utilise pour cela la fameuse lanterne de Schwarz (voir la figure 4.3).

4.3.2 L'opérateur de Desbrun et al.

Étant donnée une surface M orientée de dimension deux plongée dans \mathbb{R}^3 , nous pouvons étudier sa forme locale via l'application de Gauss $v : M \to \mathbb{S}^2$ donné par le vecteur normal unitaire (à la surface) $v = v_p$ pour tout point $p \in M$. Sa dérivée au point p est une forme linéaire du plan tangent T_pM en p de M au plan tangent $T_{v_p}\mathbb{S}^2$ de la sphère unité. Ces espaces étant naturellement identifiés (ce sont des plans de \mathbb{R}^3), nous pouvons voir la dérivée comme un endomorphisme $S_p : T_pM \to T_pM$. Cette application est appelée l'opérateur de forme ou bien encore l'application de Weingarten.

L'opérateur de forme détermine complètement la courbure de la surface. Il est néanmoins plus pratique de ne pas travailler directement avec l'opérateur S_p mais plutôt avec des quantités scalaires. Les valeurs propres κ_1 et κ_2 de S_p sont appelées les courbures principales et apportent beaucoup d'informations géométriques sur la surface (au même titre que la courbure en une dimension).

La courbure gaussienne $K = \kappa_1 \kappa_2$ correspond au déterminant de S_p et la courbure moyenne $H = \frac{\kappa_1 + \kappa_2}{2}$ à la moitié de sa trace. Le signe de H dépendant du choix d'orientation du vecteur normal unitaire ν au point p, on peut également considérer le vecteur de

courbure moyenne $H := H\nu$. Dans notre cas, nous supposons que les normales pointent vers l'extérieur de la surface.

La courbure de Gauss est une notion intrinsèque : elle ne dépend pas de l'immersion de la surface dans \mathbb{R}^3 . En d'autres termes, K reste inchangée en pliant la surface sans l'étirer. De ce fait, les surfaces développables telles que les cylindres ou les cônes possèdent une courbure de Gauss nulle, car elles peuvent être construite en pliant un plan. La courbure moyenne quant à elle est extrinsèque, mais possède une interprétation variationnelle (dont nous reparlerons plus tard dans ce chapitre). Par rapport au produit interne L² $\langle U, V \rangle := \int U_p \cdot V_p dA$ sur les champs vectoriels, le vecteur de courbure moyenne correspond à la négation du gradient de l'aire fonctionnelle, souvent appelée première variation d'aire : $\mathbf{H} = -\nabla A$ rea (de la même façon que la négation du gradient de la longueur d'une courbe est égale à son vecteur de courbure κN). Si l'on considère localement la variété M comme la fonction de hauteur f par rapport au plan tangent $T_p M$ alors $H(p) = \Delta f$. Alternativement, il est possible d'écrire $\mathbf{H} = \nabla_M \cdot \nu = \Delta x$, où \mathbf{x} correspond au vecteur de plongement appartenant à \mathbb{R}^3 et où Δ correspond ici à l'opérateur de Laplace–Beltrami intrinsèque à la surface.

Cette liaison intrinsèque entre l'opérateur de Laplace–Beltrami et la courbure moyenne est le point de départ de la discrétisation de Desbrun *et al.* sur les surfaces triangulées. Afin de discrétiser la courbure moyenne en un point p de la surface, nous regardons le gradient vis-à-vis de p de l'aire A_i de tous les triangles adjacents à p. Le calcul du gradient de l'aire pour chaque triangle par rapport à un sommet et la somme de tous ces gradients nous permet de retomber sur la formule des cotangentes pondérée :

$$(\mathfrak{L}_{\cot}\mathfrak{u})(\mathfrak{x}_{\mathfrak{i}}) := \frac{1}{2\mathsf{A}_{\mathfrak{i}}} \sum_{\mathfrak{x}_{\mathfrak{j}}\prec \operatorname{Lk}\mathfrak{x}_{\mathfrak{i}}} (\cot(\alpha_{\mathfrak{i}\mathfrak{j}}) + \cot(\beta_{\mathfrak{i}\mathfrak{j}}))(\mathfrak{u}(\mathfrak{x}_{\mathfrak{j}}) - \mathfrak{u}(\mathfrak{x}_{\mathfrak{i}})).$$
(4.3.1)

Remarquez que l'opérateur de Pinkall et Polthier correspond à la version faible de l'opérateur de Desbrun (*c.-à-d.* nous n'avions par divisé par A_i). C'est donc pour cela que nous l'avions noté \mathfrak{L}_{cot}^* (en référence à la dualité des p-formes).

Un retour au calcul extérieur discret Nous avons présenté de façon général l'opérateur de Laplace–Beltrami sur les complexes simpliciaux dans le paragraphe 2.1.2. Une dérivation explicite à l'aide des opérateurs de Hodge montre que lorsque l'on considère une triangulation 2D plongée dans \mathbb{R}^3 avec une dualité Voronoi / Delaunay, nous retombons exactement sur l'opérateur des cotangentes \mathfrak{L}_{cot} . Plus précisément nous avons

$$(\star_0)_{\mathfrak{i}\mathfrak{i}} = |\star\sigma_{\mathfrak{i}}^0| = A_{\mathfrak{i}}; \quad (\star_1)_{\mathfrak{i}\mathfrak{i}} = \frac{|\star\sigma_{\mathfrak{i}}^1|}{|\sigma_{\mathfrak{i}}^1|} = \frac{1}{2}\cot(\alpha_{\mathfrak{i}}) + \cot(\beta_{\mathfrak{i}})$$

(rappelez-vous que A_i correspond ici à un tiers de l'aire des triangles adjacents au sommet numéroté i).

Propriétés de l'opérateur L'opérateur de Desbrun *et al.* possède les mêmes propriétés que celui de Pinkall et Polthier, sauf (SYM) : la multiplication par $\frac{1}{2A_i}$ invalide la symétrie de

l'opérateur. Il est cependant possible de le rendre symétrique par un changement de base de fonctions (voir [LZ10]).

4.4 Opérateur sur des surfaces polygonales généralisées

Nous présentons dans cette section une généralisation du schéma des cotangentes sur les surfaces polygonales généralisées. Nous travaillerons dans toute cette section sur des complexes cellulaire (CW-Complexes) dont les éléments de bases sont des polygones (pas forcément planaires) non-dégénérés. Cette discrétisation est due à Alexa et Wardetzky [AW11]. Étant donné un polygone p du complexe possédant k_p sommets, nous reprenons les notations utilisées dans l'article, à savoir que $\mathbf{X}_p = (\mathbf{x}_1^p, \dots, \mathbf{x}_{k_p}^p)^T$ désigne la matrice de taille $k_p \times 3$ des sommets ordonnés cycliquement le long du bord de p, $\mathbf{E}_p = (\mathbf{e}_1^p, \dots, \mathbf{e}_{k_p}^p)^T$ désigne la matrice, toujours de taille $k_p \times 3$, des arêtes orientées le long du bord de p $(c.-à-d. \ \mathbf{e}_i^p := \mathbf{x}_{i+1} - \mathbf{x}_i)$ et $\mathbf{B}_p = (\mathbf{b}_1^p, \dots, \mathbf{b}_{k_p}^p)^T$ la matrice des milieux de chaque \mathbf{e}_i^p $(c.-à-d. \ \mathbf{b}_i^p := 1/2(\mathbf{x}_{i+1} + \mathbf{x}_i))$.

4.4.1 Généralisation de l'aire à un polygone non-planaire

En repartant de la section précédente, nous savons que l'opérateur de Laplace–Beltrami est intrinsèquement lié au gradient d'aire de la surface. Afin de calculer ce gradient, il est tout d'abord nécessaire de définir ce que l'on entend par le gradient d'aire d'un polygone nonplanaire. Le vecteur d'aire $\mathbf{A}(\gamma)$ d'une courbe fermée simple plongée dans \mathbb{R}^3 est donnée par l'intégrale surfacique du vecteur normal d'une surface ayant pour bord γ . Nous savons, en utilisant le théorème de Stokes, que cette quantité $\mathbf{A}(\gamma)$ ne dépend que du bord, et pas du choix de la surface intérieure

$$\mathbf{A}(\gamma) = \frac{1}{2} \oint_{\gamma} \mathbf{x} \times d\mathbf{x},$$

où x représente le vecteur de position de γ (voir [Sul08]). La discrétisation de l'opérateur va donc s'effectuer par face polygonale du complexe.

Il est possible de montrer que la matrice

$$\mathbf{A}_{\mathfrak{p}} := \mathbf{E}_{\mathfrak{p}}^{\mathsf{T}} \mathbf{B}_{\mathfrak{p}}$$

associée à une face polygonale p est une matrice antisymétrique de taille 3×3 dont le vecteur de Darboux a_p (c'est-à-dire l'unique vecteur satisfaisant $a_p \times x = A_p x$ pour tout x dans \mathbb{R}^3) est égal au vecteur d'aire de p (voir le Lemme 1. [AW11]). L'amplitude $|a_p|$ du vecteur d'aire associée p correspond à la plus grande aire parmi toutes les projections orthogonales de p sur les plans de \mathbb{R}^3 . Assez étonnamment, les points au milieux des arêtes de la face polygonale forment toujours un plan qui possède comme normale a_p . L'aire de la projection de p sur ce plan correspond à l'amplitude du vecteur d'aire (voir Lemme 2. [AW11]).

Figure 4.4 Le gradient de l'aire maximale $|a_p|$ par rapport à x_1 est construit en prenant la moitié du produit vectoriel entre le vecteur $[\tilde{x}_0 \tilde{x}_2]$ et a_p . Géométriquement, cela revient à prendre la moitié de la rotation d'angle de $\frac{\pi}{2}$ du vecteur $[\tilde{x}_0 \tilde{x}_2]$ dans le plan de la projection maximale du polygone.

Nous savons maintenant comment caractériser le vecteur d'aire d'un polygone p. La formule close est donnée par

$$\mathfrak{a}_\mathfrak{p} = rac{1}{2}\sum_\mathfrak{i} x_\mathfrak{i} imes x_{\mathfrak{i}+1}$$

où la somme est cyclique par rapport aux sommets de p. Le calcul (se référer à l'article [AW11]) montre que

$$(\nabla_{\mathbf{x}_{\mathfrak{i}}}|\boldsymbol{\mathfrak{a}}_{\mathfrak{p}}|)^{\mathsf{T}} = \frac{1}{2|\boldsymbol{\mathfrak{a}}_{\mathfrak{p}}|}\boldsymbol{\mathfrak{a}}_{\mathfrak{p}} \times (\boldsymbol{x}_{\mathfrak{i}-1} - \boldsymbol{x}_{\mathfrak{i}+1}) = \frac{1}{2|\boldsymbol{\mathfrak{a}}_{\mathfrak{p}}|}\boldsymbol{A}_{\mathfrak{p}}(\boldsymbol{x}_{\mathfrak{i}-1} - \boldsymbol{x}_{\mathfrak{i}+1}).$$

Cette formule possède une interprétation géométrique intéressante : la multiplication du vecteur $\mathbf{x}_{i-1} - \mathbf{x}_{i+1}$ par la matrice $\frac{1}{|\mathbf{a}_p|}\mathbf{A}_p$ revient à prendre la moitié du produit vectoriel avec le vecteur d'aire normalisée, donnant un vecteur perpendiculaire à \mathbf{a}_p et $\mathbf{x}_{i-1} - \mathbf{x}_{i+1}$, de longueur déterminé par la projection de $\mathbf{x}_{i-1} - \mathbf{x}_{i+1}$ sur l'espace orthogonal à \mathbf{a}_p . On peut donc interpréter le gradient comme une rotation d'angle $\frac{\pi}{2}$ de l'arête projeté $\mathbf{x}_{i-1} - \mathbf{x}_{i+1}$ dans le plan d'aire maximale suivi d'une multiplication par un demi (voir la figure 4.4). Dans le cas des triangulations, nous retombons sur la construction du schéma des cotangentes de Desbrun *et al.* : le gradient de l'aire $\nabla_{\mathbf{x}_i}|\mathbf{a}_p|$ est perpendiculaire à l'arête opposé à \mathbf{x}_i . Dans le cas des polygones, le produit scalaire entre le gradient et l'arête [$\mathbf{x}_{i-1}\mathbf{x}_{i+1}$] vaut 0. Autrement dit, la variation de l'aire par rapport à \mathbf{x}_i ne dépend que des sommets adjacents à \mathbf{x}_i , et de la même façon que sur les triangulations, plus \mathbf{x}_i se rapproche de l'arête [$\mathbf{x}_{i-1}\mathbf{x}_{i+1}$] plus la norme du gradient augmente.

4.4.2 Formulation matricielle et algorithme

Si nous revenons à la définition discrète de l'opérateur de Laplace–Beltrami, nous savons que

$$\mathcal{L} = \delta d$$

où δ , la codifférentielle, est l'adjoint formel de d par rapport au produit scalaire L₂. Nous avons également vu que le gradient de l'aire était relié à l'opérateur de Laplace–Beltrami via

$$\mathbf{H} = \mathbf{H}\mathbf{v} = \Delta \mathbf{x} = -\nabla$$
 Area,

c'est-à-dire que la courbure moyenne est égale à l'opérateur de Laplace–Beltrami appliquée au plongement x de M et est aussi égale au gradient de l'aire de la surface. C'est précisément ce lien qui permet à Alexa et Wardetzky de montrer via le Lemme 3. (en utilisant les résultats précédents) que

$$\nabla_{\mathbf{x}_{\mathfrak{i}}}|\mathfrak{a}_{\mathfrak{p}}| = \left(\frac{1}{2|\mathfrak{a}_{\mathfrak{p}}|}\mathfrak{a}_{\mathfrak{p}} \times (\mathbf{x}_{\mathfrak{i}-1} - \mathbf{x}_{\mathfrak{i}+1})\right)^{\mathsf{T}} = \left(\tilde{\mathbf{L}}_{\mathfrak{p}}\mathbf{X}\right)_{\mathfrak{i}}$$

où $\tilde{\mathbf{L}}_{\mathfrak{p}} := \mathbf{d}^{\mathsf{T}} \tilde{\mathbf{M}}_{\mathfrak{p}} \mathbf{d}$ et

$$\tilde{M}_{\mathfrak{p}} := \frac{1}{|\alpha_{\mathfrak{p}}|} B_{\mathfrak{p}} B_{\mathfrak{p}}^{\mathsf{T}}.$$

En assemblant les petites matrices \tilde{M}_p ils construisent la version faible de l'opérateur \mathfrak{L}_{quad}^* dont la matrice s'écrit

$$\mathbf{L}_{\mathrm{OUAD}}^* = \mathbf{d}^{\mathsf{T}} \mathbf{M}_1 \mathbf{d}. \tag{4.4.1}$$

Ici, \mathbf{M}_1 est la matrice du produit intérieur sur les 1-formes. Malheureusement, cette matrice n'est pas positive définie en général. On peut néanmoins la modifier pour obtenir un opérateur positif défini (voir le Théorème 1 [AW11]). La construction de chaque petite matrice \mathbf{M}_f se fait à travers l'Algorithme 1. On peut retrouver l'opérateur fort \mathfrak{L}_{quad} (évalué

Algorithme 1 Calcul des matrices M_p par polygone de la surface discrète. La matrice C correspond aux vecteurs colonnes qui forment la base du noyau de \tilde{E}^T . Ceux-ci peuvent être calculés rapidement en utilisant une décomposition en valeurs singulières de la matrice.

```
1:
            CONSTRUIRE \mathbf{M}_{\mathfrak{p}} (polygone \mathfrak{p}, paramètre \lambda)
                   B, E, \tilde{\mathbf{E}} \in \mathbb{R}^{k_{\mathfrak{p}} \times 3}
  2:
                   Pour tous les sommets x_i de p
  3:
                            (\mathbf{E})_{i} \leftarrow (\mathbf{x}_{i+1} - \mathbf{x}_{i})^{\mathsf{T}}
  4:
                            (\mathbf{B})_{i} \leftarrow \frac{1}{2}(\mathbf{x}_{i+1} + \mathbf{x}_{i})^{\mathsf{T}}
  5:
                   \mathbf{A} = \mathbf{E}^{\mathsf{T}}\mathbf{B}
  6:
                  \tilde{\mathbf{M}} = \frac{\sqrt{2}}{||\mathbf{A}||} \mathbf{B} \mathbf{B}^{\mathsf{T}}
  7:
                   \tilde{\mathbf{n}} = \text{normaliser}(-\mathbf{A}_{23}, \mathbf{A}_{13}, -\mathbf{A}_{12})^{\mathsf{T}}
  8:
                   Pour tous les sommets x_i de p
  9:
                           \tilde{\mathbf{x}}_{i} \leftarrow \mathbf{x}_{i} - \langle \mathbf{x}_{i}, \tilde{\mathbf{n}} \rangle \, \tilde{\mathbf{n}}
10:
                   Pour tous les sommets x_i de p
11:
                            (\tilde{\mathbf{E}})_{i} \leftarrow (\tilde{\mathbf{x}}_{i+1} - \tilde{\mathbf{x}}_{i})^{\mathsf{T}}
12:
                   \mathbf{C} = le noyaux orthogonal à \tilde{\mathbf{E}}^{\mathsf{T}} (en utilisant SVD par exemple)
13:
                   \mathbf{M}_{\mathfrak{v}} = \tilde{\mathbf{M}} + \lambda \mathbf{C} \mathbf{C}^{\mathsf{T}}
14:
```

sur les sommets) en multipliant par la matrice du produit intérieur sur les 0-formes :

$$\mathbf{L}_{\text{QUAD}} = \mathbf{M}_{0}^{-1} \mathbf{d}^{\mathsf{T}} \mathbf{M}_{1} \mathbf{d}$$

avec

$$(\mathbf{M}_0)_{\mathfrak{i}\mathfrak{i}} := \sum_{\mathfrak{p}\in\mathfrak{i}} \frac{|\mathfrak{a}_{\mathfrak{p}}|}{k_{\mathfrak{p}}}.$$

En d'autres termes, chaque polygone incident au sommet i contribue à hauteur de $1/k_p$ fois l'aire de sa projection à la masse totale de i. On voit ici que la matrice $\mathbf{M}_0^{-1}\mathbf{d}^{\mathsf{T}}\mathbf{M}_1$ est en fait l'opérateur de codifférentielle discrète δ . Dans le langage du calcul extérieur discret, la matrice \mathbf{M}_0 correspond à la matrice de l'opérateur de Hodge sur les 0-formes, et la matrice \mathbf{M}_1 correspond à l'opérateur de Hodge sur les 1-formes (qui diffère ici de celui présenté précédemment car il n'est plus diagonal dans le cas général).

Propriétés de l'opérateur L'opérateur \mathfrak{L}_{quad}^* est symétrique par construction, mais la multiplication par la matrice du produit intérieur des 0-formes annule la symétrie (nous avions obtenu exactement le même résultat pour le schéma des cotangentes). Nous savons de plus (voir le Théorème 1 de l'article) qu'il vérifie (PSD). Au vu de la construction locale sur chaque polygone, (LOC) est aussi satisfaite. La section 3.1 de l'article [AW11] démontre aussi (LIN). Seule la convergence de Dirichlet (\mathfrak{H}_0^1 -CON) n'est pas prouvée, mais seulement observée expérimentalement (via la Figure 7.).

Nous avons mis l'accent sur les opérateurs géométriques utiles en analyse géométrique de formes. Ont été omis de nombreuses variantes du schéma des cotangentes, l'opérateur des valeurs moyennes [FH05] des opérateurs sur les graphes, les opérateurs sur les nuages de points (qui nécessitent des constructions plus compliquées, ou bien des pré-triangulations du nuage) ainsi que tous les algorithmes 2D (tels que les filtres par convolution et les opérateurs de morphologie mathématique). Nous allons maintenant présenter des opérateurs non-locaux : malgré la perte de nombreuses propriétés des opérateurs discrets, les opérateurs non-locaux nous permettent d'obtenir une C^2 -convergence en général, ce qui n'est pas le cas des opérateurs définis au sens de l'équation (4.1.1).

4.5 Opérateur de convolution de Belkin et al.

Nous introduisons ici une première discrétisation non-locale de l'opérateur de Laplace– Beltrami. Celle-ci est due à Belkin *et al.* [BN08; BSW; BSW08]. L'opérateur discrétisé agit sur des fonctions définies sur des triangulations, et se base sur l'équation de la chaleur. Cette méthode peut être vue comme une convolution discrète entre des différences de fonctions et une gaussienne paramétrée par le pas de temps de l'équation de la chaleur.

Soit (M, g) une variété riemannienne compacte sans bord. L'opérateur de la chaleur $T := -\Delta + \partial_t$ agit sur les fonctions $C(M \times (0, +\infty))$ qui sont C^2 sur M et C^1 sur $(0, +\infty)$. L'*équation de la chaleur* est donnée par

$$\begin{cases} \operatorname{T} u(x,t) = 0 & \forall (x,t) \in M \times (0,\infty) \\ u(x,0) = f(x) & \forall x \in M \end{cases}.$$
(4.5.1)

Une *solution fondamentale* de l'équation de la chaleur est une fonction continue p : $M \times M \times (0, +\infty) \rightarrow \mathbb{R}$ qui est C² vis-à-vis de x, C¹ vis-à-vis de t et telle que

$$T_y p = 0$$
 et $\lim_{t \to 0} p(\cdot, y, t) = \delta_y$

où δ_y est une fonction de Dirac centrée en y (voir la figure 4.5 pour une illustration).

4.5.1 Existence et décomposition de la solution fondamentale

On peut montrer, via le principe de Duhamel, que cette solution est unique et qu'elle est symétrique vis-à-vis des deux variables spatiales. Celle-ci s'écrie

$$\mathbf{u}(\mathbf{x}, \mathbf{t}) = \int_{\mathbf{y} \in \partial M} \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{t}) \mathbf{u}(\mathbf{y}, \mathbf{0}) d\mathbf{y}$$

où $p \in C^{\infty}(\partial M \times \partial M \times \mathbb{R}^+)$ est le noyau de la chaleur [Ros97].

Si nous prenons la restriction de ∂M à un espace vectoriel, le noyau de la chaleur possède une forme close :

$$p_{\mathbb{R}^d}(x,y,t) = \frac{e^{-\frac{\|x-y\|_2^2}{4t}}}{(4\pi t)^{\frac{d}{2}}}$$

où $\|\cdot\|_2$ est la norme euclidienne. Malgré l'existence et l'unicité de u sur les variétés riemanniennes, il n'existe pas dans le cas général de formules closes pour la solution de l'équation de la chaleur. Nous avons cependant le théorème suivant dû à Minakshisundaram et Pleijel [Min53; MP49] : THÉORÈME Développement de Minakshisundaram-Pleijel(4.5.1)Soit ∂M une variété riemannienne compacte. Il existe alors un unique noyau de lachaleur, c'est-à-dire une fonction

$$\mathsf{K} \in \mathsf{C}^{\infty}(\partial \mathsf{M} \times \partial \mathsf{M} \times (\mathbf{0}, \infty))$$

qui satisfait l'équation de la chaleur et qui pour chaque $x \in \partial M$ possède un développement asymptotique

$$K(x,y,t) \simeq_{t\to 0} \frac{e^{-\frac{d_{\partial M}(x,y)^2}{4t}}}{(4\pi t)^{\frac{d}{2}}} (v_0(x,y) + tv_1(x,y) + t^2v_2(x,y) + \dots)$$

où les $\nu_k \in C^{\infty}(\partial M \times \partial M)$ sont des invariants riemanniens qui ne dépendent que de la courbure et de ses dérivées successives.

Outre la preuve originale, plusieurs approches sont possibles pour prouver ce théorème. L'idée générale est de se restreindre à une boule géodésique autour de x, et ensuite d'étendre la solution à toute la variété. La preuve de Minakshisundaram et Pleijel utilise une sommation (due au mathématicien italien E.E. Levi) de solutions élémentaires pour étendre le résultat à toute la variété. D'autres approches [Mol75] relatives à la théorie des semi-groupes peuvent être employées pour effectuer cette opération.

4.5.2 Approximations pour t petit

Ne possédant pas de formules closes, nous ne pouvons pas directement discrétiser le noyau de la chaleur. Il existe cependant de nombreuses études sur le comportement du noyau lorsque t est petit (souvent appelé "small time asymptotics of diffusion process" en anglais). Les travaux les plus célèbres sont certainement ceux de Varadhan, qui a montré que

$$\lim_{t\to 0} t\log p(x, y, t) = -\frac{d_{\partial M}(x, y)^2}{4}$$

sur une certaine classe de variétés. En d'autres termes, le noyau de la chaleur se comporte comme la distance géodésique pour t faible. Nous pouvons également citer un résultat plus général du à Molchanov [Mol75] :

$$p(x,y,t) \underset{t\to 0}{\simeq} \frac{e^{-\frac{d_{\partial M}(x,y)^2}{4t}}}{(4\pi t)^{\frac{d}{2}}}.$$

La dernière équation nous donne une approximation pour le calcul du noyau de la chaleur. Étant donnée la complexité des algorithmes de calcul de géodésiques sur les surfaces, Belkin *et al.* [BN08] nous donnent une étape supplémentaire pour discrétiser le noyau de la chaleur. Il suffit de remplacer la distance géodésique par la distance euclidienne :

$$\tilde{p}(x,y,t) = \frac{e^{-\frac{\|x-y\|_2^2}{4t}}}{(4\pi t)^{\frac{d}{2}}}.$$
(4.5.2)

On obtient alors un noyau de la chaleur extrinsèque, qui approxime le vrai noyau de la chaleur pour des petits t.

4.5.3 Laplacien fonctionnel

Nous retraçons ici les idées développées par Belkin *et al.* pour la discrétisation de l'opérateur de Laplace–Beltrami sur les complexes simpliciaux [BSW08; BSW]. La première étape de discrétisation de l'équation de la chaleur est d'appliquer un schéma d'Euler implicite à ∂_t . La première partie de l'équation (4.5.1) devient alors :

$$\Delta u(x,t) = \lim_{t \to 0} \frac{u(x,t) - u(x,0)}{t}$$

En injectant l'équation (4.5.2), et en remarquant que $\int_{y \in \partial M} \tilde{p}(\cdot, y, \cdot) dy = 1$ nous avons

$$\Delta u(x,t) = \lim_{t \to 0} \frac{1}{t} \left(\int_{y \in \partial M} \tilde{p}(x,y,t) u(y,0) dy - u(x,0) \right)$$
(4.5.3a)

$$=\lim_{t\to 0}\frac{1}{t}\int_{y\in\partial\mathcal{M}}\tilde{p}(x,y,t)(u(y,0)-u(x,0))dy, \qquad (4.5.3b)$$

ce qui nous donne une formulation asymptotique de l'opérateur. Le paramètre de temps joue un rôle essentiel dans la discrétisation : il contrôle en effet la taille de la convolution. Le noyau de la chaleur p est une gaussienne paramétré par son écart type $\sigma = \sqrt{2t}$. Plus le temps augmente (c'est-à-dire plus nous laissons la chaleur se diffuser sur la surface) plus la gaussienne sera étalée et plus nous moyennons la fonction d'entrée. Belkin propose d'utiliser une taille fixe indépendante de la taille de la triangulation. Nous verrons que pour les tests numériques de convergence, il faut mieux utiliser un pas de temps qui est fonction de la taille de la triangulation.

Nous introduisons l'opérateur de Laplace fonctionnel, qui nous donne une notation compacte de l'équation (4.5.3b) qui se révélera utile par la suite :

DÉFINITION Opérateur de Laplace fonctionnel [BSW08] (4.5.1) Étant donné un point $x \in \partial M$ et une fonction $u \in C^2(\partial M)$, l'opérateur fonctionnel de Laplace est

$$(\mathfrak{L}_h^*)(x) := \frac{1}{t_h(4\pi t)^{\frac{d}{2}}} \int_{y\in \partial \mathcal{M}} e^{-\frac{\|x-y\|^2}{4t}}(\mathfrak{u}(y) - \mathfrak{u}(x))dy.$$

où t_{h} est une fonction continue qui tend vers zéro quand h tend vers zéro.

Nous citons également un théorème important de convergence de l'opérateur fonctionnel vers l'opérateur continu :

 $\begin{array}{ll} T\,H\,\acute{e}\,O\,R\,\grave{e}\,M\,E\ \text{Convergence fonctionnelle}\ [BSW08] & (4.5.2) \\ \acute{e}\,tant\ donn\acute{e}\ un\ point\ x\in\partial M\ et\ une\ fonction\ u\in C^2(\partial M),\ nous\ avons \end{array}$

$$\lim_{t_h \to 0} (\mathfrak{L}_h^* \mathfrak{u})(x) = (\Delta \mathfrak{u})(x)$$

Nous nous servirons de ce théorème pour décomposer notre opérateur et montrer la convergence de celui-ci. La preuve détaillée se trouve dans [BN08]. Belkin et Niyogi
réduisent tout d'abord l'intégrale à une boule géodésique centrée en x. Ils effectuent ensuite un changement de coordonnées via l'application exponentielle, ce qui leur permet de passer d'un laplacien intrinsèque à un laplacien ambiant (sur le plan tangent). Enfin, une étude fine du noyau donne le résultat de convergence fonctionnelle.

L'opérateur proposé par Belkin *et al.* correspond à la discrétisation de l'équation (4.5.3b) sur les triangulations. Nous avons

$$(\mathfrak{L}_{b}\mathfrak{u})(x_{i}) = \frac{1}{4\pi t^{2}} \sum_{x_{j}} e^{-\frac{d(x_{i},x_{j})^{2}}{4t}} (\mathfrak{u}(x_{j}) - \mathfrak{u}(x_{i}))A_{j}, \qquad (4.5.4)$$

où A_j représente un tiers de la somme des aires des triangles adjacents à x_j , la somme étant faite pour tous les sommets de la triangulation.

Propriétés de l'opérateur La construction de l'opérateur par convolution viole la propriété (LOC). En effet, la matrice associée à l'application linéaire n'est pas du tout creuse. L'opérateur ne satisfait pas non plus (SYM) (à cause de la pondération par l'aire des triangles adjacents). L'opérateur valide cependant (POS) et (\mathcal{H}_0^1 -CON) (car il C²-converge). (LIN) n'a pas été prouvée.

4.6 Une autre approximation globale

Une autre discrétisation par convolution a été proposée par Hildebrandt et Polthier [HP11] sur des surfaces triangulées. Elle leur permet de montrer la convergence du vecteur normale de courbure moyenne, ainsi que l'énergie de Willmore. Des applications telles que le flot de Willmore, ou bien celui par courbure moyenne sont alors envisageables en utilisant leur nouvelle discrétisation.

4.6.1 Fonctions r-locales

L'idée de cet article [HP11] est de partir de la définition faible de l'opérateur de Laplace– Beltrami (typiquement l'opérateur des cotangentes) et de venir le tester sur certaines fonctions localisée à norme L¹ constante. Ils introduisent donc le concept de fonctions r-locales.

DÉFINITION Fonction r-locale [HP11]

(4.6.1)

Soit M une variété différentielle plongée dans \mathbb{R}^3 , et soit C_D une constante positive. Pour tout $x \in M$ et pour $r \in \mathbb{R}^+$, une fonction $\varphi : M \to \mathbb{R}$ est dite r-locale en x (par rapport à C_D) si les critères suivants sont respectés :

 $\begin{array}{l} \text{P1} \quad \phi \in H^1_0(M),\\ \text{P2} \quad \phi(y) \geqslant 0 \text{ pour tout } y \in M,\\ \text{P3} \quad \phi(y) = 0 \text{ pour tout } y \in M \text{ lorsque } d_M(x,y) \geqslant r,\\ \text{P4} \quad \|\phi\|_{L^1} = 1, \text{ et}\\ \text{P5} \quad |\phi|_{W^{1,1}} \leqslant \frac{C_D}{r}. \end{array}$

Les fonctions satisfaisant les propriétés (P2), (P3) et (P4) peuvent être utilisées pour approximer la valeur d'une fonction en x de toute fonction f via l'intégrale $\int_M f \varphi dvol$. Dans ce sens, les fonctions r-locales sont des approximations de la distribution de Dirac

(voir le lemme 4 [HP11]). Les auteurs montrent ensuite une convergence point-à-point de l'opérateur testé sur de telles fonctions dans le Théorème 5. La preuve utilise la \mathcal{H}^1_0 -convergence de l'opérateur des cotangentes, ainsi que des propriétés sur les fonctions r-locales.

Ils donnent dans l'appendice deux familles de fonctions r-locales. La première est appelée la famille des chapeaux géodésiques. Celle-ci est donnée par

$$\phi_{r,\boldsymbol{x}_i} = \frac{\tilde{\phi}_{r,\boldsymbol{x}_i}}{\|\tilde{\phi}_{r,\boldsymbol{x}_i}\|_{L^1}}$$

avec

$$\tilde{\varphi}_{r,\mathbf{x}_{i}}(x_{j}) = \max\left\{0, 1 - \frac{\delta_{M}(x_{i}, x_{j})}{r}\right\},\$$

où δ_M désigne la distance géodésique entre x_i et x_j sur la surface triangulée. En pratique, il est coûteux d'évaluer la distance géodésique entre deux points. On peut néanmoins remplacer le distance géodésique par la distance euclidienne, ce qui donne naissance à la famille de fonction r-locales dites de chapeaux extrinsèques. Pour une valeur de r suffisamment petite, cette famille de fonctions satisfait les propriétés de r-localité.

4.6.2 Discrétisation à partir du schéma des cotangentes

Étant donné l'opérateur des cotangentes sous forme matricielle \mathfrak{L}_{cot} , et la matrice Φ possédant les entrées $\Phi_{ij} = \varphi_{r,x_i}(x_j)$ (c'est-à-dire la fonction r-locale du sommet x_i évaluée au sommet x_j), l'opérateur \mathfrak{L}_{r-loc} prend la forme

$$\mathbf{L}_{\mathsf{RLOCAL}} = \Phi \mathbf{L}_{\mathsf{COT}}.$$
 (4.6.1)

Le nombre d'entrées de la matrice associée à \mathfrak{L}_{r-loc} dépend du nombres de sommets dans le support de φ et donc de r. En pratique, le paramètre r est une puissance de la taille locale du maillage h (comme dans le cas des surfaces digitales).

Propriétés de l'opérateur L'opérateur possède les même propriétés que celui de Belkin *et al.* à savoir (\mathcal{H}_0^1 -CON) et (POS). Les auteurs montrent en plus la C²-convergence de leur opérateur sur les triangulations. Pour un choix arbitraire d'une famille de fonctions rlocales, la matrice Φ n'est pas symétrique. Il est cependant possible de la rendre symétrique. L'idée est de décomposer Φ en une partie symétrique et une partie anti-symétrique :

$$\Phi = \frac{1}{2}(\Phi + \Phi^\mathsf{T}) + \frac{1}{2}(\Phi - \Phi^\mathsf{T}).$$

Cette égalité est toujours vraie pour les matrices carrés. Ils remarquent alors que pour un certain choix de fonction r-locale φ les entrées de la partie symétrique dominent largement celles de la partie non-symétrique. Remarquons que si nous prenons la famille des fonctions chapeaux, et si de plus nous fixons un r constant pour tous les sommets de la surface, la matrice Φ est automatiquement symétrique (et de ce fait la partie antisymétrique est nulle).

	(SYM)	(LOC)	(LIN)	(POS)	(PSD)	$(\mathcal{H}^1_0\text{-CON})$	(C ² -CON)
Ombrella	1	1	X	1	1	×	×
\mathfrak{L}_{combi}	×	\checkmark	×	\checkmark	1	×	×
\mathfrak{L}_{cot}^*	1	\checkmark	\checkmark	×	1	×	×
\mathfrak{L}_{cot}	X	\checkmark	\checkmark	X	1	\checkmark	×
\mathfrak{L}_{quad}^*	1	\checkmark	\checkmark	X	1	?	×
\mathfrak{L}_{quad}	×	\checkmark	\checkmark	×	1	?	×
\mathfrak{L}_{b}	×	×	?	1	?	\checkmark	√
\mathfrak{L}_{r-loc}	1	×	?	\checkmark	?	\checkmark	1

Table 4.1Résumé des différentes propriétés des opérateurs présentés. Les cinq premières lignes correspondent aux opérateurs locaux définis au sens de l'équation (4.1.1), là où les deux dernières correspondent aux opérateurs par convolution. Bien que de nombreuses propriétés soient perdues par ces derniers, nous gagnons la C²-convergence.

4.7 Conclusion

Nous résumons les propriétés des opérateurs présentés dans ce chapitre dans le tableau 4.1. Des opérateurs par convolution sur des nuages de points existent : on peut par exemple utiliser le schéma de Belkin *et al.* sur des triangulations locales de nuages [BSW]. Il est aussi possible d'utiliser le triangle de Pascal pour construire un opérateur convergent sur les courbes [EMC11]. Nous allons dans le prochain chapitre utiliser la discrétisation de Belkin *et al.* pour construire un opérateur convergent point-à-point sur les surfaces digitales. Nous montrerons la convergence, et l'illustrerons à travers des tests numériques.

5

Un opérateur de Laplace–Beltrami convergent sur les surfaces digitales

Sommaire

5.1	Différences finies sur des courbes digitales					
	\hookrightarrow 5.1.1	Calcul exté	rieur discret sur des courbes digitales	74		
	\hookrightarrow 5.1.2	Différences	s finies	75		
	\hookrightarrow 5.1.3	Opérateur	non-symétrique avec estimation des mesures	77		
5.2	Adaptation d	Adaptation d'un laplacien existant : un contre exemple à la C^2 -converger				
	78					
5.3	Contribution	principale	: discrétisation de l'opérateur via l'équat	tion de la		
	chal	eur		81		
	\hookrightarrow 5.3.1	Extension	de u à \mathbb{R}^{d+1}	81		
	\hookrightarrow 5.3.2	Intégration	82			
	\hookrightarrow 5.3.3	Formulatio	n de l'opérateur	83		
5.4	5.4 Preuve de la C^2 -convergence de \mathfrak{L}_h			84		
	\hookrightarrow 5.4.1	Une borne	sur (Q2)	85		
	\hookrightarrow 5.4.2	Une borne	sur (Q3)	89		
		5.4.2.1	Une borne sur Lip(ũ)	90		
		5.4.2.2	Bornes pour $\operatorname{Lip}_{\mathfrak{T}}(g^{h}_{\dot{\mathfrak{s}}})$ et $\ g^{h}_{\dot{\mathfrak{s}}}\ _{\mathfrak{T}}$	91		
		5.4.2.3	Conclusion sur la borne de (Q3)	93		
	\hookrightarrow 5.4.3	Résultat ge	énéral de convergence	93		
5.5	Conclusion			94		
5.6	Résultats an	nexes		94		

Nous présentons dans ce chapitre une discrétisation de l'opérateur de Laplace–Beltrami sur des surfaces digitales possédant la propriété de C^2 -convergence (que nous appellerons aussi propriété de convergence point-à-point). Notre méthode adapte le travail de Belkin *et al.* présenté dans le chapitre précédent sur les surfaces digitales. Nous allons définir un opérateur par convolution discrète sur ces surfaces.

La discrétisation combine une discrétisation temporelle de l'équation de la chaleur (via une méthode d'Euler implicite) ainsi qu'une discrétisation spatiale de l'intégrale du noyau de la chaleur (via une estimation locale d'aire). Cette discrétisation peut être vue comme une convolution surfacique entre le noyau de la chaleur et des différences de fonctions. L'opérateur résultant possède la propriété de C²-convergence, qui peut être utilisée pour estimer la courbure moyenne mais aussi l'énergie de Willmore [Wil96].

Nous allons, avant de parler de la discrétisation via l'équation de la chaleur, donner deux motivations pour la définition d'un tel opérateur. Nous montrons pour cela deux contreexemples à la C²-convergence via d'une part l'application du calcul extérieur discret sur les courbes digitales et d'autre part une adaptation de l'opérateur d'Alexa et Wardetzky sur les surfaces digitales. Nous observerons également de façon empirique que l'application directe des opérateurs existants décrits dans le chapitre 4 sur les surfaces digitales échoue à la C²-convergence dans le chapitre 6, ce qui nous donne une autre motivation pour la définition d'un opérateur particulier à nos surfaces. Après avoir présenté le calcul extérieur discret sur les courbes, et l'adaptation de la discrétisation d'Alexa et Wardetzky nous décrivons la discrétisation de l'équation de la chaleur sur les surfaces digitales : nous utilisons un schéma numérique dû à Lachaud et Thibert [LT16] pour approximer le laplacien fonctionnel introduit par Belkin et al. [BSW08]. La dernière section de ce chapitre est consacrée à la preuve de C²-convergence de notre opérateur. Nous dérivons des bornes fines sur le noyau de la chaleur euclidien, ce qui nous permet d'utiliser le théorème (5.3.1) pour montrer la convergence de notre opérateur lorsque l'ensemble digital est restreint à la discrétisation de Gauss d'un ensemble compact plongé dans \mathbb{R}^{d+1} .

5.1 Différences finies sur des courbes digitales

Comme mentionné dans l'introduction, ce résultat motive la section suivante où nous donnerons une discrétisation convergente de l'opérateur en utilisant des convolutions de différences de fonctions avec des gaussiennes. Nous introduisons dans un premier temps notre définition du calcul extérieur discret sur les courbes digitales en utilisant sur la définition originale du calcul sur les complexes simpliciaux que nous avons décrite dans le paragraphe 2.1.2, puis nous montrons que la formulation de l'opérateur à travers le calcul se traduit par un opérateur de double différence finie non-symétrique. Nous utilisons ensuite le théorème de Taylor-Lagrange et montrons que sous certaines conditions, l'opérateur ne valide pas la propriété de C²-convergence dans le cas général.

5.1.1 Calcul extérieur discret sur des courbes digitales

Soit C une courbe plongée dans \mathbb{R}^2 , et $D_h(C)$ son discrétisé de Gauss. Nous numéroterons les arêtes (ou lignels) de la surface de façon à ce que l'arête i possède pour bord les deux sommets \mathbf{x}_i et \mathbf{x}_{i+1} . La numérotation des sommets (dans le sens horaire ou anti-horaire) induit naturellement une orientation des arêtes. Une k-forme discrète σ^k (avec k valant 0 ou 1 ici) est donnée par une valeur réelle $\sigma^k(\mathbf{x})$ associée à chaque sommet et chaque arête (nous avons ici deux complexes de chaînes de dimension zéro et un).

La dérivée extérieure $d_0 : \bigwedge^0(D_h(\mathcal{C})) \to \bigwedge^1(D_h(\mathcal{C}))$ est ici définie comme la matrice d'adjacence signée : $(d_0)_{i,j} = \pm 1$ si \mathbf{x}_i appartient à l'arête j (le signe dépendant de l'orientation de l'arête). Nous munissons notre calcul extérieur discret avec un produit intérieur L_2 :

$$\left\langle \sigma_{1}^{k},\sigma_{2}^{k}
ight
angle =\left(\sigma_{1}^{k}
ight)^{\mathsf{T}}\star_{k}\sigma_{2}^{k}$$

où \star_k est l'opérateur de Hodge entre k-formes. En tant que matrice, l'étoile de Hodge est une matrice diagonale qui a pour valeurs sur notre courbe discrète

$$(\star_0)_{ii} = 2^{-1}(\mu_i + \mu_{i+1}); (\star_1)_{ii} = \mu_i^{-1}$$

où μ_i est une mesure de l'arête i. La codifférentielle $\delta_1 : \bigwedge^1(D_h(\mathcal{C})) \to \bigwedge^0(D_h(\mathcal{C}))$ est ici toujours l'adjoint de d par rapport au produit intérieur L₂. L'opérateur de Laplace–Beltrami (qui correspond à l'opérateur de Rham sur les 0-formes) s'écrit donc

$$\mathbf{L} = \delta_1 \mathbf{d}_0 = \star_0^{-1} \mathbf{d}_0^\mathsf{T} \star_1 \mathbf{d}_0$$

Le calcul extérieur discret sur les courbes digitales (tout comme celui sur les complexes simpliciaux) possède une interprétation en terme de surface duale. Construisons la surface duale $D_h^d(\mathbb{C})$ à $D_h(\mathbb{C})$: nous prenons les sommets duaux comme étant les centres des arêtes, et les arêtes duales comme étant l'union des demi-arêtes entre les sommets duaux. Nous pouvons alors attacher des valeurs réelles à chacun de ces éléments, ce qui forme l'espace des k-formes duales $\bigwedge_d^k(D_h^d(\mathbb{C}))$. L'opérateur de Hodge inversé \star_0^{-1} correspond alors au passage d'une quantité définie sur les arêtes duale à une quantité définie sur les sommets primaux (celle-ci est multipliée par $\frac{1}{2}(\mu_i + \mu_{i+1})$, *c.-à-d*. la mesure de l'arête duale). De la même façon, l'opérateur de Hodge \star_1 est une application de $\bigwedge_n^1(D_h^d(\mathbb{C}))$ dans $\bigwedge_d^0(D_h^d(\mathbb{C}))$. La transposée de d₀ correspond à la dérivée extérieure sur les 0-formes duales. On peut montrer que l'opérateur **L** possède une formule close par sommet :

$$(\mathcal{L}u)(x_i) = \frac{2}{\mu_i + \mu_{i+1}} \left[\frac{1}{\mu_i} u(x_{i-1}) + \frac{1}{\mu_{i+1}} u(x_{i+1}) - \left(\frac{1}{\mu_i} + \frac{1}{\mu_{i+1}} \right) u(x_i) \right].$$

Une illustration géométrique de l'opérateur L sur les courbes digitales se trouve dans la figure 5.1 : nous explicitons chaque opération effectuée via les opérateurs du calcul discret en reprenant l'idée de dualité du calcul extérieur discret. L'opérateur L issu du calcul est en fait alors une double différence finie non symétrique. Nous allons maintenant, en revenant à la définition de la dérivée, montrer que cet opérateur ne possède pas la propriété de C^2 -convergence en général.

5.1.2 Différences finies

Nous considérons toujours une courbe continue du plan \mathbb{C} . Soit de plus une fonction deux fois différentiable $\mathfrak{u} : \mathbb{C} \to \mathbb{R}$. La dérivée de \mathfrak{u} au point $x \in \mathbb{C}$ est donnée par la limite suivante :

$$u^{(1)}(x) := \lim_{\varepsilon \to 0} \frac{u(x+\varepsilon) - u(x)}{\varepsilon}$$

Ici, ε représente un petit déplacement géodésique le long de la courbe \mathbb{C} depuis le point x. En ré-appliquant la formule de dérivée sur la dérivée elle-même nous obtenons l'opérateur de Laplace appliqué à la fonction u sur la courbe \mathbb{C} :

$$u^{(2)}(x) = (\Delta u)(x) := \lim_{\varepsilon \to 0} \frac{u(x+\varepsilon) + u(x-\varepsilon) - 2u(x)}{\varepsilon^2}.$$

Figure 5.1 Illustration de l'opérateur de Laplace–Beltrami discret obtenu en utilisant le calcul extérieur discret sur les courbes digitales. L'opérateur discret

$$\mathcal{L}: \bigwedge^{0}(D_{h}(\mathcal{L})) \to \bigwedge^{0}(D_{h}(\mathcal{L}))$$

agit sur les 0-formes σ^0 (les fonctions) définies sur les sommets de la courbe discrète. Nous injectons les informations de mesures des arêtes μ à travers les opérateurs \star_0^{-1} et \star_1 . Étant donné un point x_i et ses deux arêtes adjacentes numérotées par i et i + 1, nous avons

$$(\mathcal{L}\mathfrak{u})(x_{\mathfrak{i}}) = \frac{2}{\mu_{\mathfrak{i}} + \mu_{\mathfrak{i}+1}} \left[\frac{1}{\mu_{\mathfrak{i}}} \mathfrak{u}(x_{\mathfrak{i}-1}) + \frac{1}{\mu_{\mathfrak{i}+1}} \mathfrak{u}(x_{\mathfrak{i}+1}) - \left(\frac{1}{\mu_{\mathfrak{i}}} + \frac{1}{\mu_{\mathfrak{i}+1}} \right) \mathfrak{u}(x_{\mathfrak{i}}) \right].$$

Ce schéma correspond donc à une double différence finies non symétrique.

Nous pouvons donc approximer l'opérateur de Laplace sur la courbe par :

$$(\Delta_1 \mathfrak{u})(\mathfrak{x}) := rac{\mathfrak{u}(\mathfrak{x}+\mathfrak{e}) + \mathfrak{u}(\mathfrak{x}-\mathfrak{e}) - 2\mathfrak{u}(\mathfrak{x})}{\mathfrak{e}^2}.$$

Cette discrétisation est une double différence finie symétrique. En injectant le théorème de Taylor-Lagrange

$$\mathfrak{u}(\mathbf{x}\pm\varepsilon) = \mathfrak{u}(\mathbf{x})\pm\frac{1}{1!}\mathfrak{u}^{(1)}(\mathbf{x})\varepsilon + \frac{1}{2!}\mathfrak{u}^{(2)}(\mathbf{x})\varepsilon^{2} + O(\varepsilon^{3})$$

dans notre approximation du laplacien, on obtient :

$$(\Delta_1 \mathfrak{u})(\mathfrak{x}) = \frac{\mathfrak{u}^{(2)}(\mathfrak{x})\varepsilon^2 + O(\varepsilon^3)}{\varepsilon^2} = \mathfrak{u}^{(2)}(\mathfrak{x}) + O(\varepsilon).$$

Ainsi l'erreur commise avec ce schéma d'approximation est linéaire en ε .

Il est également possible d'approximer l'opérateur par une discrétisation non-symétrique. Étant données deux distances géodésiques ε_1 et ε_2 (à gauche et à droite) et un point $x \in C$ nous avons

$$(\Delta_2 \mathfrak{u})(\mathbf{x}) := \frac{2}{\varepsilon_1 + \varepsilon_2} \left[\frac{1}{\varepsilon_1} \mathfrak{u}(\mathbf{x} - \varepsilon_1) + \frac{1}{\varepsilon_2} \mathfrak{u}(\mathbf{x} + \varepsilon_2) - \left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} \right) \mathfrak{u}(\mathbf{x}) \right].$$

Cette approximation est appelée double différence finie non symétrique. En remplaçant $u(x - \varepsilon_1)$ et $u(x + \varepsilon_2)$ par leur développement de Taylor-Lagrange nous avons

$$(\Delta_2 \mathfrak{u})(\mathfrak{x}) = \frac{2}{\varepsilon_1 + \varepsilon_2} \left[\mathfrak{u}^{(1)}(\mathfrak{x}) + \frac{\varepsilon_1}{2} \mathfrak{u}^{(2)}(\mathfrak{x}) + (-\mathfrak{u}^{(1)}(\mathfrak{x})) + \frac{\varepsilon_2}{2} \mathfrak{u}^{(2)}(\mathfrak{x}) + O(\varepsilon_1^2 + \varepsilon_2^2) \right]$$

qui se simplifie en

$$(\Delta_2 \mathfrak{u})(\mathbf{x}) = \mathfrak{u}^{(2)}(\mathbf{x}) + \mathcal{O}(\varepsilon_1 + \varepsilon_2).$$

Ici l'erreur d'approximation commise est toujours linéaire en $\varepsilon_1 + \varepsilon_2$.

5.1.3 Opérateur non-symétrique avec estimation des mesures

Supposons que nous savons approximer la paire de distances géodésiques ε_1 , ε_2 par $\tilde{\varepsilon}_1$ et $\tilde{\varepsilon}_2$. L'opérateur s'écrit alors

$$(\Delta_3 \mathfrak{u})(x) := \frac{2}{\tilde{\epsilon}_1 + \tilde{\epsilon}_2} \left[\frac{1}{\tilde{\epsilon}_1} \mathfrak{u}(x - \epsilon_1) + \frac{1}{\tilde{\epsilon}_2} \mathfrak{u}(x + \epsilon_2) - \left(\frac{1}{\tilde{\epsilon}_1} + \frac{1}{\tilde{\epsilon}_2} \right) \mathfrak{u}(x) \right].$$

Toujours en remplaçant $u(x - \epsilon_1)$ et $u(x + \epsilon_2)$ avec le développement de Taylor-Lagrange dans la définition de Δ_3 nous avons :

$$(\Delta_3 \mathfrak{u})(\mathfrak{x}) = \frac{2}{\tilde{\epsilon}_1 + \tilde{\epsilon}_2} \left[\left(\frac{\epsilon_2}{\tilde{\epsilon}_2} - \frac{\epsilon_1}{\tilde{\epsilon}_1} \right) \mathfrak{u}^{(1)}(\mathfrak{x}) + \left(\frac{\epsilon_1^2}{2\tilde{\epsilon}_1} + \frac{\epsilon_2^2}{2\tilde{\epsilon}_2} \right) \mathfrak{u}^{(2)}(\mathfrak{x}) + O\left(\frac{\epsilon_1^3}{\tilde{\epsilon}_1} + \frac{\epsilon_2^3}{\tilde{\epsilon}_2} \right) \right].$$

Nous pouvons donc voir qu'il y a convergence si les valeurs extremales des ratios $\frac{\varepsilon_1}{\varepsilon_1}$ et $\frac{\varepsilon_2}{\varepsilon_2}$ tendent vers 1 : dans ce cas là, le terme de la dérivée première s'annule, et nous obtenons une approximation de la dérivée seconde. A l'inverse, si ces ratios ne tendent pas vers 1, alors il n'y a pas convergence. Nous illustrons dans la figure 5.2 un contre-exemple à la

Figure 5.2 Nous affichons le ratio entre la mesure estimée d'une arête de la courbe digitale (ici la discrétisation d'un cercle de rayon un) et la vraie mesure projetée (*c.-à-d.* la longueur géodésique). Bien qu'en moyenne ce ratio vale un (en rouge ∘), les valeurs extremales (en vers ∘ et bleu □) ne tendent pas vers un.

convergence. Nous discrétisons pour cela un cercle unité avec le processus de discrétisation de Gauss, et estimons les normales via la méthode des segments maximaux [CLR12]. Une fois les normales obtenues, nous pouvons récupérer la longueur des segments en effectuant un produit scalaire avec la normale perpendiculaire au segment. Nous savons théoriquement qu'un tel estimateur converge dans le pire des cas avec une erreur en O(h) pour certaines classes de formes. Nous observons dans le cas de la sphère une vitesse de convergence plus rapide en O($h^{\frac{3}{2}}$). Cependant, nous voyons sur la figure que même si les ratios valent en moyenne 1, les valeurs extrêmales des ratios ne tendent pas vers 1 (il y a un biais constant), ce qui nous fournit un contre-exemple à la C²-convergence de l'opérateur Δ_3 .

5.2 Adaptation d'un laplacien existant : un contre exemple à la C²-convergence

Une seconde idée pour discrétiser l'opérateur de Laplace–Beltrami sur les surfaces digitales est d'utiliser la formulation proposée par Alexa et Wardetzky sur les surfaces polygonales généralisées [AW11] que nous avions présentée dans le paragraphe 4.4. Le cœur de la méthode réside dans la discrétisation du gradient de l'aire maximale sur un polygone. Nous rappelons que les auteurs montrent que ce gradient prend la forme suivante sur un polygone p :

$$\nabla_{\mathbf{x}_{\mathfrak{i}}}|\boldsymbol{\alpha}_{\mathfrak{p}}| = \left(\frac{1}{2|\boldsymbol{\alpha}_{\mathfrak{p}}|}\boldsymbol{\alpha}_{\mathfrak{p}} \times (\mathbf{x}_{\mathfrak{i}-1} - \mathbf{x}_{\mathfrak{i}+1})\right)^{\mathsf{T}} = \left(\tilde{\mathbf{L}}_{\mathfrak{p}}\mathbf{X}\right)_{\mathfrak{i}}$$

où $\tilde{\mathbf{L}}_{\mathfrak{p}} := \mathbf{d}^{\mathsf{T}} \tilde{\mathbf{M}}_{\mathfrak{p}} \mathbf{d}$ et

$$\tilde{M}_{\mathfrak{p}} := \frac{1}{|\alpha_{\mathfrak{p}}|} B_{\mathfrak{p}} B_{\mathfrak{p}}^{\mathsf{T}}.$$

Dans le cas des surfaces digitales, le polygone p correspond à un carré (ou face) de côté h. Le but ici est d'injecter la mesure de cette face dans le calcul du gradient, mesure qui nous est donnée par

$$\mu(\mathfrak{p}) := \mathfrak{h}^2 \langle \tilde{\mathfrak{n}}, \mathfrak{n}_e \rangle \tag{5.2.1}$$

où \tilde{n} est la normale estimée à la face et n_e la normale perpendiculaire à la face (voir [CLR12] et les références citées dans le paragraphe 2.3 pour plus d'informations). Cette estimation de l'aire est appelée la mesure de la cellule; elle correspond à l'aire de la cellule projetée sur le plan tangent induit par la normale estimée (voir la figure 5.3). Nous projetons donc la face sur le plan passant par le centre de la face et ayant pour normale \tilde{n} . Plus précisément, si nous notons par x_i les sommets de cette face et par y_i les sommets projetés, avec $1 \le i \le 4$ dans notre cas, nous avons

$$y_{\mathfrak{i}} := x_{\mathfrak{i}} - \langle x_{\mathfrak{i}} - b_{\mathfrak{p}}, \tilde{\mathfrak{n}} \rangle \, \tilde{\mathfrak{n}}$$

où b_p est le centroïde de la face (par exemple $\frac{1}{2}(x_1 + x_3)$). Nous modifions donc la matrice B_p en remplaçant les milieux des x_i par les milieux des y_i . La valeur de $|a_p|$ est alors donnée par la mesure de p à savoir $\mu(p)$. Nous présentons une modification de l'Algorithme 1 dans l'Algorithme 2.

Algorithme 2 Calcul des matrices M_p par face de la surface digitale pour l'opérateur \mathfrak{L}^*_{quad} . La matrice **C** corresponds aux vecteurs colonnes qui forment la base du noyau de E^T . Ceuxci peuvent être calculés rapidement en utilisant une décomposition en valeurs singulières de la matrice.

1:	CONSTRUIRE $\mathbf{M}_{\mathfrak{p}}$ (face \mathfrak{p} , normale estimée $\tilde{\mathfrak{n}}$, pas de discrétisation \mathfrak{h} , paramètre λ)
2:	$\mathbf{B},\mathbf{E}\in\mathbb{R}^{4 imes 3}$
3:	$\mathbf{b}_{\mathfrak{p}} \leftarrow \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_3)$
4:	Pour tous les sommets x_i de la face p
5:	$ y_i \leftarrow x_i - \langle x_i - b_p, \tilde{n} \rangle \tilde{n}$
6:	Pour tous les sommets y _i
7:	$ (\mathbf{E})_{i} \leftarrow (\mathbf{y}_{i+1} - \mathbf{y}_{i})^{T}$
8:	$ (\mathbf{B})_{\mathfrak{i}} \leftarrow \frac{1}{2}(\mathbf{y}_{\mathfrak{i}+1} + \mathbf{y}_{\mathfrak{i}})^{T}$
9:	$\mu(\mathfrak{p}) \leftarrow \mathfrak{h}^2 \left< ilde{\mathfrak{n}}, \mathfrak{n}_e \right>$
10:	$ ilde{\mathbf{M}} = rac{1}{\mu(\mathfrak{p})} \mathbf{B} \mathbf{B}^{T}$
11:	$\mathbf{C} = $ le noyau orthogonal à \mathbf{E}^{T} (en utilisant SVD par exemple)
12:	$\mathbf{M}_{\mathfrak{p}} = ilde{\mathbf{M}} + \lambda \mathbf{C} \mathbf{C}^{T}$
-	

L'argument qui nous permet d'utiliser cette projection est l'invariance du calcul du gradient par polygone de la surface. Les auteurs mentionnent, en effet à la fin du paragraphe 3.2 de l'article, que le choix de la base pour le calcul de \tilde{M} n'a aucune conséquence à cause de la présence de l'opérateur de dérivée extérieure **d**. Le choix du point appartenant au plan tangent n'a donc pas d'importance, c'est pourquoi nous choisissons le centre de la face \mathfrak{p} . Nous notons ce nouvelle opérateur par \mathfrak{L}^*_{auad} .

Nous allons maintenant montrer un contre-exemple à la C²-convergence pour \mathfrak{L}^*_{quad} . Pour ce faire, nous allons comparer l'estimation de courbure moyenne sur un tore discrétisé via le processus de Gauss à la vraie courbure moyenne sur la surface continue. Nous rappelons que l'opérateur de Laplace–Beltrami est relié à la courbure moyenne **H** via

$$\Delta \mathbf{x} = 2\mathbf{H}\mathbf{n}$$

où $\mathbf{x} \in M$ et \mathbf{n} est la normale à la surface M au point \mathbf{x} . Nous exhibons maintenant un contre-exemple à la C²-convergence de \mathfrak{L}^*_{quad} . Nous considérons une boule unité \mathbb{S}^3 et la fonction continue $\mathfrak{u} : \partial \mathbb{S}^3 \to \mathbb{R}$, $e^{\mathbf{x}}$. Soient θ l'angle azimutal et ϕ l'angle polaire. L'opérateur de Laplace sphérique s'écrit alors :

$$\Delta_{\partial \mathbb{S}^3} \mathfrak{u}(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 \mathfrak{u}}{\partial \theta^2} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial \mathfrak{u}}{\partial \phi} \right).$$
(5.2.2)

Nous avons donc

$$\Delta_{\partial \mathbb{S}^{3}} e^{x} = \Delta_{\partial \mathbb{S}^{3}} e^{\sin \theta \cos \phi}$$

= $\frac{e^{\sin \theta \cos \phi}}{\sin \phi} (\sin^{2} \theta \sin \phi - \cos \theta) + e^{\sin \theta \cos \phi} \cos \theta (\cos \theta \cos^{2} \phi - \sin \phi + \frac{\cos^{2} \theta}{\sin \phi}).$
(5.2.3)

Nous calculons le discrétisé de Gauss de \mathbb{S}^3 pour des pas de h décroissants. Pour relier la fonction définie sur $\partial \mathbb{S}^3$ et $\partial_h \mathbb{S}^3$, nous étendons la fonction u définie sur $\partial \mathbb{S}^3$ au point p dans le sens de la normale en p (nous formalisons ce concept dans la définition (5.3.1)). Le graphe de convergence est affiché dans la figure 5.4. Bien qu'il existe une nette amélioration entre l'opérateur sur les graphes et \mathfrak{L}^*_{quad} de l'erreur (nous passons d'une erreur qui diverge à une erreur constante), nous n'obtenons pas expérimentalement la C²-convergence.

Nous avons donc vu que d'une part l'application de l'opérateur issu du calcul discret sur les courbes digitales et d'autre part que \mathfrak{L}^*_{quad} nous permet d'exhiber deux contre-exemples à la C²-convergence. Nous avions déjà remarqué dans le chapitre 4 qu'en règle générale, les opérateurs locaux définis au sens de l'équation (4.1.1) ne possèdent pas la propriété (C²-CON), ce que nous confirmons sur les surfaces digitales. Nous nous tournons donc vers une formulation globale par convolution de l'opérateur de Laplace–Beltrami pour obtenir une discrétisation convergente de celui-ci.

Figure 5.4 Résultats de C²-convergence de la norme du vecteur de courbure moyenne calculé avec L^{*}_{quad}. Nous comparons ici l'opérateur discret appliqué à la fonction e^x sur une sphère de rayon un par rapport sa valeur analytique. Nous affichons en bleu (→→) l'erreur induite par L^{*}_{quad} et en vert (→→) l'erreur induite par L^{*}_{quad}, présenté dans l'Algorithme 2. Les lignes pointillées correspondent à l'erreur maximum, là où les lignes pleines correspondent à l'erreur moyenne entre le discrétisé et le vrai opérateur de Laplace–Beltrami.

5.3 Contribution principale : discrétisation de l'opérateur via l'équation de la chaleur

Motivé par les deux paragraphes précédents, nous allons maintenant présenter une discrétisation de l'opérateur qui est C²-convergente. Nous nous tournons vers une méthode par convolution introduite par Belkin *et al.* [BSW08] dans la paragraphe 4.5 : nous discrétisons pour cela la convolution entre des noyaux de la chaleur euclidiens et des différences de fonctions sur nos surfaces. À la différence de Belkin *et al.*, les sommets de nos maillages ne sont pas sur la variété différentielle sous-jacente. Outre la nécessité d'approximer de façon précise les mesures de nos éléments, nous avons dans un premier temps besoin de mettre en relation les valeurs de la fonction sur la surface discrète avec celles sur la variété. Nous utilisons pour cela la théorie de la mesure géométrique de Federer [Fed59] qui nous permet de mettre en lien les deux objets via la fonction de projection ξ (définie dans la définition (2.2.4)). Nous considérons dans tout ce qui suit une variété riemannienne M de dimension d plongée dans \mathbb{R}^{d+1} Nous supposons que cette variété est compacte : cela nous permet de considérer l'espace des fonctions $C^2(\partial M)$ équipé de la norme de Lesbegue L^{∞} . Nous rappelons qu'avec ces hypothèses, un tel espace est un espace de Banach (car nos fonctions sont bornées).

5.3.1 Extension de u à \mathbb{R}^{d+1}

Comme mentionné dans le théorème (2.2.3), le h-bord $\partial_h M$ est une O(h)-Hausdorff approximation de ∂M . Nous avons donc besoin d'étendre la définition de u sur ∂M dans un tube autour de $\partial_h M$:

Figure 5.5 Illustration de l'extension tubulaire \tilde{u} de u à \mathbb{R}^2 dans le cas d'une fonction du plan. La variété ∂M est ici une courbe γ (en noire sur la figure) plongée dans \mathbb{R}^2 . La fonction \tilde{u} est égale à u quand $x \in \gamma$, et est égale à $u \circ \xi$ lorsque x est dans le $\frac{\sqrt{d+1}}{2}h$ -offset de ∂M (dénommé ici $\gamma^{\frac{\sqrt{d+1}}{2}h}$ et est représenté en jaune sur la figure).

DÉFINITION Extension tubulaire de u (5.3.1) Étant donné une fonction u définie sur ∂M , l'extension tubulaire \tilde{u} de u à \mathbb{R}^{d+1} est

$$\tilde{\mathfrak{u}}: \mathfrak{x} \mapsto \begin{cases} \mathfrak{u}(\mathfrak{x}) & \text{si } \mathfrak{x} \in \partial M\\ (\mathfrak{u} \circ \xi)(\mathfrak{x}) & \text{si } \mathfrak{x} \in \mathbb{R}^{d+1} \setminus \partial M \text{ et } \delta_{\partial M}(\mathfrak{x}) \leqslant \frac{\sqrt{d+1}}{2}h\\ 0 & \text{sinon} \end{cases}$$

où ξ est l'application de projection qui a tout point x de l'espace associe le proche voisin et $\delta_{\partial M}$ est la fonction de distance. Une illustration de cette définition peut être trouvée dans la figure 5.5.

L'idée est ici de prolonger la fonction dans le sens des normales dans un tube de taille $\frac{\sqrt{d+1}}{2}h$. Nous savons (cf. théorème (2.2.3)) qu'il existe toujours une projection d'un point de $\partial_h M$ sur ∂M , ce qui nous assure que la fonction \tilde{u} est bien définie. Notons cependant que de par sa définition, \tilde{u} n'est pas continue sur le bord du tube, et donc non-différentiable.

5.3.2 Intégration digitale

Il s'agit maintenant de discrétiser l'équation (4.5.3b) sur nos surfaces digitales. Nous utilisons le schéma numérique introduit par Lachaud et Thibert [LT16].

DÉFINITION Intégration digitale

Soient Z un ensemble digital et h son pas de discrétisation. Soient $f : \mathbb{R}^{d+1} \to \mathbb{R}$ une fonction intégrable et \hat{n} un estimateur de normales. L'intégrale digitale est donnée par

$$DI_{h}(f,Z,\hat{\mathbf{n}}) = \sum_{\tilde{\mathbf{r}} \in \mathbb{F}_{h}^{d} \cap \partial Q_{h}[Z]} h^{d} f(\dot{\tilde{\mathbf{r}}}) \mu(\tilde{\mathbf{r}}),$$

où $\dot{\tilde{r}}$ est le centroïde d'une d-cellule \tilde{r} et $\mu(\tilde{r}) = |\hat{n}(\dot{\tilde{r}}) \cdot n(\dot{\tilde{r}})|$ l'aire estimée d'un surfel \tilde{r} avec n la normale triviale de la d-cellule \tilde{r} .

L'intégrale est approximée par une somme discrète sur les éléments de dimension d. Étant donné une cellule $\tilde{\mathbf{r}}$, la fonction est évaluée au centroïde $\dot{\tilde{\mathbf{r}}}$, et nous utilisons une approximation de l'aire de la cellule μ présenté dans l'équation (5.2.1). Nous utilisons sur les surfaces discrètes des invariants intégraux pour estimer la normale [CLL14; LCL14] qui possèdent la propriété de convergence vers leur contrepartie continue. A noter que la somme des mesures sur toute la surface donne un estimateur d'aire globale de ∂M qui converge vers la vraie aire de ∂M (voir [LT16]). Cette mesure est un élément clef de l'intégration discrète, qui donne lieu à un estimateur d'intégrale convergent.

Si l'on restreint Z dans la définition (5.3.2) à la discrétisation de Gauss d'un ensemble compact à reach positif, le théorème (5.3.1) nous donne une preuve théorique de convergence de l'intégrale digitale vers la somme continue.

THÉORÈME Théorème 4. de [LT16](5.3.1)Soit M un domaine compact de \mathbb{R}^{d+1} à reach positif R. Pour $h \leq \frac{R}{\sqrt{d+1}}$, l'intégraledigitale converge vers l'intégrale continue sur ∂M . Plus précisément, pour toute fonctionintégrable f : $\mathbb{R}^{d+1} \to \mathbb{R}$, nous avons

$$\begin{split} \left| \int_{\partial M} f(x) dx - DI_{h}(f, D_{h}(M), \hat{\mathbf{n}}) \right| \\ & \leq 2^{d+3} (d+1)^{\frac{3}{2}} \operatorname{Area}(\partial M) \Big(\operatorname{Lip}(f) \sqrt{d+1} \, \mathbf{h} + \|f\|_{\infty} \cdot \|\hat{\mathbf{n}}(\dot{c}) - \mathbf{n}(\dot{c})\|_{\text{est}} \Big), \end{split}$$

 $\operatorname{où} \||f\|_{\infty} := \max_{\mathbf{x} \in \mathbb{R}^{d+1}} |f(\mathbf{x})| \text{ et } \operatorname{Lip}(f) := \max_{\mathbf{x} \neq \mathbf{y}} |f(\mathbf{x}) - f(\mathbf{y})| / \|\mathbf{x} - \mathbf{y}\|_2.$

5.3.3 Formulation de l'opérateur

En appliquant le principe de discrétisation des intégrales de la définition (5.3.2) à l'équation (4.5.3b), nous définissons notre opérateur de Laplace–Beltrami sur les surfaces digitales. Le choix entre l'équation (4.5.3a) et l'équation (4.5.3b) est théorique : nous utiliserons la propriété du gradient de u pour borner u(x) - u(y). Concernant le paramètre de temps t, nous le choisissons ni trop grand (pour ne pas trop lisser) ni trop petit (pour ne pas retomber sur le laplacien de graphe). Nous posons $t : \mathbb{R}^*_+ \to \mathbb{R}$ la fonction du paramètre de temps discret. C'est une fonction du pas de la grille h, et pour plus de lisibilité, nous la dénommerons t_h dans le reste de ce papier. Nous prendrons typiquement $t_h := k_t h^{\alpha}$ avec $\alpha > 0$ et k_t est une constante qui correspond à la taille de la gaussienne pour un pas de discrétisation égal à un (voir la paragraphe 4.5).

DÉFINITION Opérateur de Laplace–Beltrami digital (5.3.3) Soient Z un ensemble digital et h le pas de discrétisation. Soit u une fonction définie au moins sur $\partial_h M$. L'opérateur de Laplace–Beltrami digital est :

$$(\mathfrak{L}_{h}\mathfrak{u})(\tilde{s}) := \frac{1}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \sum_{\tilde{r} \in \mathbb{F}_{h}^{d} \cap \partial Q_{h}[Z]} e^{-\frac{||\tilde{r}-\hat{s}||^{2}}{4t_{h}}} [\mathfrak{u}(\dot{\tilde{r}}) - \mathfrak{u}(\dot{\tilde{s}})] \mu(\tilde{r}),$$

où $\dot{\tilde{r}}$ (resp. $\dot{\tilde{s}}$) est le centroïde du surfel \tilde{r} (resp. \tilde{s}), $\mu(\tilde{r})$ est égale au produit scalaire entre une normale estimée et la normale orthogonale au surfel \tilde{s} et t_h est une fonction en h qui tend vers zéro lorsque h tend vers zéro.

Nous détaillons l'implémentation de l'algorithme dans le paragraphe 6.3.

5.4 Preuve de la C^2 -convergence de \mathfrak{L}_h

Nous posons $t_h := h^{\alpha}$ pour $\alpha > 0$ pour la suite. La stricte positivité de α est un pré-requis pour le théorème (4.5.2) étant donné que t_h est une fonction qui a pour limite zéro en zéro. Nous supposons que l'erreur induite par l'estimateur de normales est bornée, c'està-dire que $\|\hat{\mathbf{n}}(\dot{\tilde{\mathbf{c}}}) - \mathbf{n}(\dot{\tilde{\mathbf{c}}})\|_{est} \leq O(h^{\beta})$ avec $\beta > 0$. La valeur de β dépend entièrement de l'estimateur utilisé [CLR12]. Nous rappelons par exemple que la vitesse de convergence multigrille des invariants intégraux [CLL14; LCL14] est de $O(h^{2/3})$.

Nous montrons la C²-convergence de notre discrétisation de l'opérateur de Laplace– Beltrami lorsque l'ensemble Z considéré provient d'une discrétisation de Gauss d'une variété compacte M dans \mathbb{R}^{d+1} . Nous étudions l'opérateur sur le bord ∂M de cette variété, dont le discrétisé est ici $\partial_h M$. Soit \tilde{s} un quad appartenant à $\mathbb{F}_h^d \cap \partial_h M$ nous montrons que

$$\left| (\Delta \mathbf{u})(\boldsymbol{\xi}(\dot{\tilde{\mathbf{s}}})) - (\mathfrak{L}_{\mathbf{h}}\tilde{\mathbf{u}})(\dot{\tilde{\mathbf{s}}}) \right|$$
(5.4.1)

est bornée par une fonction qui tend vers zéro quand h tend vers zéro.

Tout d'abord, nous découpons l'équation (5.4.1) en utilisant l'inégalité triangulaire

$$\left| (\Delta \mathbf{u})(\xi(\dot{\tilde{\mathbf{s}}})) - (\mathfrak{L}_{h}\tilde{\mathbf{u}})(\dot{\tilde{\mathbf{s}}}) \right| \leq \left| (\Delta \mathbf{u})(\xi(\dot{\tilde{\mathbf{s}}})) - (\mathfrak{L}_{h}^{*}\mathbf{u})(\xi(\dot{\tilde{\mathbf{s}}})) \right|$$
(Q1)

+
$$\left| (\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{\tilde{s}})) - (\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}})(\dot{\tilde{s}}) \right|$$
 (Q2)

$$+ \left| \left(\mathfrak{L}_{h}^{*} \tilde{\mathfrak{u}} \right) (\dot{\tilde{s}}) - \left(\mathfrak{L}_{h} \tilde{\mathfrak{u}} \right) (\dot{\tilde{s}}) \right|$$
(Q3)

La preuve est découpée en trois parties :

- (i) La convergence de (Q1) est donnée par le théorème (4.5.2) de Belkin et al..
- (ii) Une borne sur (Q2) est donnée dans la paragraphe 5.4.1. L'idée est ici d'étudier la différence entre l'intégrale de \mathcal{L}_{h}^{*} appliquée à u et \mathcal{L}_{h}^{*} appliquée à \tilde{u} . Nous utiliserons pour cela les résultats présentés en annexe dans le paragraphe 5.6.

(iii) Le lemme (5.4.2) de le paragraphe 5.4.2 donne une borne sur (Q3). C'est une combinaison du lemme (5.4.3) (où nous étudions la norme et le gradient d'une certaine fonction g^h_e) et du théorème (5.3.1) de Lachaud et Thibert.

Le résultat de convergence générale se trouve dans la paragraphe 5.4.3 au travers du théorème (5.4.1). Nous ne donnons pas une vitesse de convergence globale étant donné que nous ne connaissons pas celle du théorème (4.5.2) de Belkin *et al*.

5.4.1 Une borne sur (Q2)

 $\begin{array}{l} \mbox{LEMME Borne sur (Q2)} (5.4.1) \\ \mbox{Soient } {\pmb s} \in \mathbb{F}_h^d \cap \partial_h M, \mbox{$\mathfrak{u} \in C^2(\partial M)$ une fonction et son extension $\tilde{\mathfrak{u}}$. Pour $t_h = h^\alpha$, $0 < \alpha \leqslant \frac{2}{2+d}$ et $h \leqslant h_{max}$ avec h_{max} le minimum entre $Diam(\partial M)$, $K_3(d, \alpha, Diam(\partial M))$ et $R/\sqrt{d+1}$, nous avons} \end{array}$

$$|(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{\tilde{s}})) - (\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}})(\dot{\tilde{s}})| \leqslant \operatorname{Area}(\partial M) \|\nabla \mathfrak{u}\|_{\infty} \left[\mathsf{K}_{1}(d)\mathsf{h}^{1-\alpha(1+\frac{d}{2})} + \mathsf{K}_{2}(d)\mathsf{h}^{2-\alpha\frac{3+d}{2}}\right]$$

avec

$$K_1(d) := \frac{\sqrt{d+1}}{2^{d-1}e\pi^{\frac{d}{2}}} \text{ and } K_2(d) := \frac{3(d+1)}{2^{d+\frac{5}{2}}\sqrt{e}\pi^{\frac{d}{2}}}.$$

PREUVE En utilisant la définition (4.5.1), nous avons :

$$\begin{split} |(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{\tilde{s}})) - (\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}})(\dot{\tilde{s}})| &= \frac{1}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \left| \int_{\mathfrak{y}\in\partial\mathcal{M}} e^{-\frac{||\mathfrak{y}-\dot{\xi}(\dot{\tilde{s}})||^{2}}{4t_{h}}} [\mathfrak{u}(\mathfrak{y}) - \mathfrak{u}(\xi(\dot{\tilde{s}}))] dVol \right. \\ &\left. - \int_{\mathfrak{y}\in\partial\mathcal{M}} e^{-\frac{||\mathfrak{y}-\dot{\tilde{s}}||^{2}}{4t_{h}}} [\tilde{\mathfrak{u}}(\mathfrak{y}) - \tilde{\mathfrak{u}}(\dot{\tilde{s}})] \right| dVol. \end{split}$$

Sachant que $[\mathfrak{u}(\mathfrak{y}) - \mathfrak{u}(\xi(\dot{\tilde{s}}))] = [\tilde{\mathfrak{u}}(\mathfrak{y}) - \tilde{\mathfrak{u}}(\dot{\tilde{s}})]$, nous factorisons par $[\mathfrak{u}(\mathfrak{y}) - \mathfrak{u}(\xi(\dot{\tilde{s}}))]$ pour obtenir :

$$\left| \left(\mathfrak{L}_{h}^{*}\mathfrak{u} \right) (\xi(\tilde{s})) - \left(\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}} \right) (\tilde{s}) \right|$$

$$= \frac{1}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \left| \int_{\mathfrak{y}\in\partial\mathcal{M}} \left(e^{-\frac{||\mathfrak{y}-\dot{\tilde{s}}||^{2}}{4t_{h}}} - e^{-\frac{||\mathfrak{y}-\xi(\dot{\tilde{s}})||^{2}}{4t_{h}}} \right) \left[\mathfrak{u}(\mathfrak{y}) - \mathfrak{u}(\xi(\dot{\tilde{s}})) \right] d\mathrm{Vol} \right|.$$

$$(5.4.3)$$

Étant donné que la norme du gradient de u est bornée (cf. le théorème des valeurs maximales), nous savons que u est Lipschitz-continue avec une constante de Lipschitz égale à $\|\nabla u\|_{\infty}$. L'équation (5.4.3) devient alors

$$\begin{split} &|(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{s})) - (\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}})(\dot{s})| \\ &\leqslant \frac{1}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \int_{\mathfrak{y}\in\partial\mathcal{M}} \left| e^{-\frac{||\mathfrak{y}-\dot{s}||^{2}}{4t_{h}}} - e^{-\frac{||\mathfrak{y}-\xi(\dot{s})||^{2}}{4t_{h}}} \right| \cdot \left| \mathfrak{u}(\mathfrak{y}) - \mathfrak{u}(\xi(\dot{s})) \right| dVol \\ &\leqslant \frac{||\nabla\mathfrak{u}||_{\infty}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \int_{\mathfrak{y}\in\partial\mathcal{M}} \left| e^{-\frac{||\mathfrak{y}-\dot{s}||^{2}}{4t_{h}}} - e^{-\frac{||\mathfrak{y}-\xi(\dot{s})||^{2}}{4t_{h}}} \right| \cdot ||\mathfrak{y}-\xi(\dot{s})|| dVol \end{split}$$
(5.4.4)

Notons $b := e^{-\frac{||\mathbf{y}-\hat{\mathbf{\xi}}||^2}{4t_h}} - e^{-\frac{||\mathbf{y}-\hat{\mathbf{\xi}}(\hat{\mathbf{\xi}})||^2}{4t_h}}$ et donnons une borne sur |b|. Étant donné le signe arbitraire de b, nous allons dans un premier temps donner une borne inférieure négative puis une borne supérieure positive à b et conclure en utilisant le lemme (5.6.1).

Figure 5.6 Illustration de la fonction de projection ξ . Le centre des surfels $\dot{\tilde{s}}$ (*en jaune*) sont projetés en utilisant ξ sur les points bleus. Le cœur de la preuve du lemme (5.4.1) réside dans la comparaison entre $||\mathbf{y} - \tilde{s}||$ et $||\mathbf{y} - \xi(\tilde{s})||$. Nous utilisons également une inégalité triangulaire dans $(\tilde{s}, \xi(\tilde{s}), \mathbf{y})$ pour la preuve.

Dérivons tout d'abord la borne supérieure. Nous utilisons l'inégalité triangulaire mise au carré dans $(\dot{\tilde{s}}, \xi(\dot{\tilde{s}}), \mathbf{y})$ (voir figure 5.6) :

$$\|\mathbf{y} - \dot{\tilde{\mathbf{s}}}\|^2 \ge \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - 2\|\mathbf{y} - \dot{\tilde{\mathbf{s}}}\|\|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|.$$

Sachant que $\|y-\dot{\tilde{s}}\|\leqslant \|y-\xi(\dot{\tilde{s}})\|+\|\dot{\tilde{s}}-\xi(\dot{\tilde{s}})\|$ nous avons :

$$\begin{split} \|\mathbf{y} - \dot{\tilde{\mathbf{s}}}\|^2 \\ \geqslant \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - 2\left(\|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\| + \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|\right)\|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\| \\ = \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - 3\|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - 2\|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\| \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|. \end{split}$$

Nous appliquons maintenant la propriété de Hausdorff entre $\partial_h M$ et ∂M au terme $||\dot{\tilde{s}} - \xi(\dot{\tilde{s}})||$ (théorème (2.2.3)) :

$$\|\mathbf{y} - \dot{\tilde{\mathbf{s}}}\|^2 \ge \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 - \frac{3(d+1)}{4}h^2 - \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|\sqrt{d+1}h.$$

Nous divisons ensuite par $4t_h$, et appliquons la fonction e^{-x} à l'inégalité

$$e^{-\frac{||\mathbf{y}-\dot{\mathbf{s}}||^2}{4t_h}} \leqslant e^{-\frac{||\mathbf{y}-\xi(\dot{\mathbf{s}})||^2}{4t_h}} e^{\frac{3(d+1)}{16t_h}h^2 + \frac{||\mathbf{y}-\xi(\dot{\mathbf{s}})||\sqrt{d+1}}{4t_h}}h^2$$

et soustrayons $e^{-\frac{||\mathbf{y}-\boldsymbol{\xi}(\dot{\mathbf{s}})||^2}{4t_h}}$ de chaque côté :

$$b\leqslant e^{-\frac{||y-\xi(\mathring{s})||^2}{4t_h}}\left(e^{\frac{3(d+1)}{16t_h}h^2+\frac{||y-\xi(\mathring{s})||\sqrt{d+1}}{4t_h}h}-1\right).$$

Pour $0 \le x \le 2.51286$ l'inégalité $e^{x/2} - 1 \le x$ est vraie (voir le lemme (5.6.2) dans l'annexe). Nous l'appliquons à la dernière équation :

$$b \leqslant e^{-\frac{\|\mathbf{y}-\xi(\hat{s})\|^2}{4t_h}} \left[\frac{3(d+1)}{8t_h} h^2 + \frac{\|\mathbf{y}-\xi(\hat{s})\|\sqrt{d+1}}{2t_h} h \right] =: c.$$

La borne c est valide lorsque $0 \le x \le 2.51286$. En remplaçant x par $\frac{3(d+1)}{8}h^{2-\alpha} + \frac{||\mathbf{y}-\xi(\hat{\mathbf{s}})||\sqrt{d+1}}{2}h^{1-\alpha}$ et en supposant que $h \le \text{Diam}(\partial M)$ (ce qui est raisonnable dans notre contexte) nous avons :

$$\begin{aligned} &\frac{3(d+1)}{8}h^{2-\alpha} + \frac{||\mathbf{y} - \xi(\dot{\mathbf{s}})||\sqrt{d+1}}{2}h^{1-\alpha} \leqslant 2.51286 \\ & \Leftarrow \frac{3(d+1)}{8}h^{2-\alpha} + \frac{\text{Diam}(\partial M)\sqrt{d+1}}{2}h^{1-\alpha} \leqslant 2.51286 \\ & \Leftarrow h^{2-\alpha} \left(\frac{3(d+1)}{8} + \frac{\sqrt{d+1}}{2}\right) \leqslant 2.51286 \\ & \Leftarrow \frac{h^{2-\alpha}}{8} \left(3(d+1) + 4\sqrt{d+1}\right) \leqslant 2.51286 \\ & \Leftarrow h \leqslant \exp\left[\frac{3.00086 - \log\left(3(d+1) + 4\sqrt{d+1}\right)}{2-\alpha}\right] =: K_3(d, \alpha). \end{aligned}$$
(5.4.5)

L'étape suivante est de trouver une borne inférieure négative pour b. Nous utilisons une inégalité triangulaire mise au carré dans $(\dot{\tilde{s}}, \xi(\dot{\tilde{s}}), y)$ (voir figure 5.6) et à nouveau la propriété d'Hausdorff entre $\partial_h M$ et ∂M :

$$\begin{split} \|\mathbf{y} - \dot{\tilde{\mathbf{s}}}\|^2 &\leqslant \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 + \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 + 2\|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\| \|\dot{\tilde{\mathbf{s}}} - \xi(\dot{\tilde{\mathbf{s}}})\| \\ &\leqslant \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|^2 + \frac{d+1}{4}h^2 + \|\mathbf{y} - \xi(\dot{\tilde{\mathbf{s}}})\|\sqrt{d+1}\,h. \end{split}$$

En utilisant la même dérivation que précédemment nous avons

$$b \geqslant e^{-\frac{||y-\xi(\hat{s})||^2}{4t_h}} \left(e^{-\frac{d+1}{16t_h}h^2 - \frac{||y-\xi(\hat{s})||\sqrt{d+1}}{4t_h}h} - 1 \right) =: a.$$

Le lemme (5.4.3) nous donne $|b|\leqslant max\{|\alpha|,c\}.$ Il s'agit maintenant de borner la valeur absolue de α :

$$\begin{split} |\mathfrak{a}| &= e^{-\frac{||\mathfrak{y}-\xi(\mathring{s})||^2}{4t_h}} \left| e^{-\frac{d+1}{16t_h}h^2 - \frac{||\mathfrak{y}-\xi(\mathring{s})||\sqrt{d+1}}{4t_h}h} - 1 \right| \\ &= e^{-\frac{||\mathfrak{y}-\xi(\mathring{s})||^2}{4t_h}} \left(1 - e^{-\frac{d+1}{16t_h}h^2 - \frac{||\mathfrak{y}-\xi(\mathring{s})||\sqrt{d+1}}{4t_h}h} \right). \end{split}$$

Pour $0 \le x$, l'inégalité $1 - e^{-x} \le x$ est vraie ce qui donne

$$|\mathfrak{a}| \leqslant e^{-\frac{||\mathfrak{y}-\xi(\hat{\mathfrak{s}})||^2}{4t_h}} \left[\frac{d+1}{16t_h} h^2 + \frac{||\mathfrak{y}-\xi(\hat{\mathfrak{s}})||\sqrt{d+1}}{4t_h} h \right]$$

Nous avons donc max{|a|, c} = c ce qui donne en utilisant le lemme (5.4.3) :

$$|\mathbf{b}| = \left| e^{-\frac{\|\mathbf{y} - \dot{\mathbf{s}}\|^2}{4t_{h}}} - e^{-\frac{\|\mathbf{y} - \boldsymbol{\xi}(\dot{\mathbf{s}})\|^2}{4t_{h}}} \right|$$

$$\leq e^{-\frac{\|\mathbf{y} - \boldsymbol{\xi}(\dot{\mathbf{s}})\|^2}{4t_{h}}} \left[\frac{3(d+1)}{8t_{h}} h^2 + \frac{\|\mathbf{y} - \boldsymbol{\xi}(\dot{\mathbf{s}})\|\sqrt{d+1}}{2t_{h}} h \right].$$
(5.4.6)

Nous injectons l'équation (5.4.6) dans l'équation (5.4.4) :

$$\begin{split} &|(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{s})) - (\mathfrak{L}_{h}\tilde{\mathfrak{u}})(\dot{s})| \\ &\leqslant \frac{\|\nabla u\|_{\infty}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \cdot \frac{3(d+1)}{8t_{h}}h^{2} \int_{\mathbf{y}\in\partial\mathcal{M}} \|\mathbf{y} - \xi(\dot{s})\|e^{-\frac{\|\mathbf{y} - \xi(\dot{s})\|^{2}}{4t_{h}}} d\mathrm{Vol} \\ &+ \frac{\|\nabla u\|_{\infty}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \cdot \frac{\sqrt{d+1}}{2t_{h}}h \int_{\mathbf{y}\in\partial\mathcal{M}} \|\mathbf{y} - \xi(\dot{s})\|^{2}e^{-\frac{\|\mathbf{y} - \xi(\dot{s})\|^{2}}{4t_{h}}} d\mathrm{Vol} \\ &= \frac{3(d+1)\|\nabla u\|_{\infty}}{8(4\pi t_{h})^{\frac{d}{2}}}h^{2} \int_{\mathbf{y}\in\partial\mathcal{M}} \frac{\|\mathbf{y} - \xi(\dot{s})\|}{t_{h}^{2}}e^{-\frac{\|\mathbf{y} - \xi(\dot{s})\|^{2}}{4t_{h}}}d\mathrm{Vol} \\ &+ \frac{\|\nabla u\|_{\infty}\sqrt{d+1}}{2(4\pi t_{h})^{\frac{d}{2}}}h \int_{\mathbf{y}\in\partial\mathcal{M}} \frac{\|\mathbf{y} - \xi(\dot{s})\|^{2}}{t_{h}^{2}}e^{-\frac{\|\mathbf{y} - \xi(\dot{s})\|^{2}}{4t_{h}}}d\mathrm{Vol} \end{split}$$

Pour borner la première intégrale, nous utilisons l'inégalité $xe^{-x^2} \leq 1/\sqrt{2e}$ qui est valide pour tout $x \in \mathbb{R}$. Soit $x = \frac{||\mathbf{y} - \xi(\dot{\mathbf{s}})||}{2\sqrt{t_h}}$ nous avons

$$\frac{\|\boldsymbol{y}-\boldsymbol{\xi}(\dot{\tilde{\boldsymbol{s}}})\|}{t_h^2}e^{-\frac{\|\boldsymbol{y}-\boldsymbol{\xi}(\dot{\tilde{\boldsymbol{s}}})\|^2}{4t_h}}\leqslant \frac{\sqrt{2}}{\sqrt{e}\cdot t_h^{\frac{3}{2}}}.$$

Pour la seconde intégrale, nous savons que pour tout $x \in \mathbb{R}$, $x^2e^{-x^2} \leq 1/e$. Soit $x = \frac{||y-\xi(\hat{s})||}{2\sqrt{t_h}}$ nous avons

$$\frac{\|\mathbf{y}-\boldsymbol{\xi}(\dot{\tilde{\mathbf{s}}})\|^2}{t_h^2}e^{-\frac{\|\mathbf{y}-\boldsymbol{\xi}(\dot{\tilde{\mathbf{s}}})\|^2}{4t_h}}\leqslant \frac{4}{e\cdot t_h}.$$

La combinaison de ces deux résultats nous donne :

$$\begin{split} &\|(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\dot{\tilde{s}})) - (\mathfrak{L}_{h}\tilde{\mathfrak{u}})(\dot{\tilde{s}})\| \\ &\leqslant \left[\frac{3\sqrt{2}(d+1)\|\nabla\mathfrak{u}\|_{\infty}}{8\sqrt{e}(4\pi)^{\frac{d}{2}}} \cdot \frac{h^{2}}{t_{h}^{\frac{3+d}{2}}} + \frac{2\|\nabla\mathfrak{u}\|_{\infty}\sqrt{d+1}}{e(4\pi)^{\frac{d}{2}}} \frac{h}{t_{h}^{1+\frac{d}{2}}}\right] \int_{\mathfrak{y}\in\partial M} d\mathrm{Vol} \\ &= \left[\frac{3\sqrt{2}(d+1)\|\nabla\mathfrak{u}\|_{\infty}}{8\sqrt{e}(4\pi)^{\frac{d}{2}}} \cdot \frac{h^{2}}{t_{h}^{\frac{3+d}{2}}} + \frac{2\|\nabla\mathfrak{u}\|_{\infty}\sqrt{d+1}}{e(4\pi)^{\frac{d}{2}}} \frac{h}{t_{h}^{1+\frac{d}{2}}}\right] \mathrm{Area}(\partial M). \end{split}$$

Nous remplaçons finalement t_h par h^α

$$\begin{split} &|(\mathfrak{L}_{h}^{*}\mathfrak{u})(\xi(\mathring{s})) - (\mathfrak{L}_{h}^{*}\tilde{\mathfrak{u}})(\mathring{s})| \\ &\leqslant \left[\frac{3\sqrt{2}(d+1) \|\nabla u\|_{\infty}}{8\sqrt{e}(4\pi)^{\frac{d}{2}}} \cdot h^{2-\alpha\frac{3+d}{2}} + \frac{2 \|\nabla u\|_{\infty}\sqrt{d+1}}{e(4\pi)^{\frac{d}{2}}} h^{1-\alpha(1+\frac{d}{2})} \right] \operatorname{Area}(\partial M) \\ &= \operatorname{Area}(\partial M) \|\nabla u\|_{\infty} \left[\frac{3 \cdot (d+1)}{2^{d+\frac{5}{2}}\sqrt{e}\pi^{\frac{d}{2}}} h^{2-\alpha\frac{3+d}{2}} + \frac{\sqrt{d+1}}{d^{d-1}e\pi^{\frac{d}{2}}} h^{1-\alpha(1+\frac{d}{2})} \right]. \end{split}$$

ce qui nous donne la borne souhaitée. L'erreur diminue lorsque l'exposant de h est positif, c'est-à-dire que $2 - \alpha \frac{3+d}{2} > 0$ et $1 - \alpha (1 + \frac{d}{2}) > 0$. Il en découle d'un analyse simple que $\alpha \leq 2/(2 + d)$, ce qui conclut la preuve du lemme.

5.4.2 Une borne sur (Q3)

 $\begin{array}{l} \mbox{LEMME} \\ \mbox{Supposons que l'estimateur de normales converge avec une vitesse en } O(h^{\beta}) \mbox{ et posons } \\ \mbox{t}_h = h^{\alpha}. \mbox{ Pour } h \leqslant h_0 = R/\sqrt{d+1}, \mbox{ } \pounds_h \mbox{ C}^2\mbox{-converge vers } \pounds_h \mbox{ si} \end{array}$

$$0<\alpha<\min\left\{\frac{2}{d+2},\frac{2\beta}{d+1}\right\}$$

à une vitesse de

$$C h^{1-\alpha(\frac{d}{2}+1)} + O(h^{\beta-\alpha\frac{1+d}{2}}),$$

où

$$C := \frac{48(d+1)^2}{\pi^{\frac{d}{2}}} \operatorname{Area}(\partial M) \|\nabla u\|_{\infty}.$$

Nous n'explicitons la constante que pour le premier terme de la vitesse de convergence car le second terme dépend d'un estimateur de normales arbitraire. Nous introduisons une fonction $g_{\dot{s}}^{h}: \mathbb{R}^{d+1} \to \mathbb{R}$ définie comme

$$\forall \mathbf{x} \in \mathbb{R}^{d+1}, g_{\hat{\mathbf{s}}}^{h}(\mathbf{x}) := \frac{1}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{||\mathbf{x} - \hat{\mathbf{s}}||^{2}}{4t_{h}}} (\tilde{\mathbf{u}}(\mathbf{x}) - \tilde{\mathbf{u}}(\dot{\mathbf{s}})).$$
(5.4.7)

Le lemme (5.4.2) donne des conditions nécessaires pour la convergence de l'approximation digitale de l'intégrale de g^h_{ξ} sur ∂M . Plus précisément, nous voulons montrer que

$$\lim_{h\to 0} \left| \int_{\mathbf{x}\in\partial\mathcal{M}} g^{h}_{\hat{\mathbf{s}}}(\mathbf{x}) d\mathrm{Vol} - \sum_{\mathbf{r}\in\mathbb{F}^{d}_{h}\cap\partial_{h}\mathcal{M}} g^{h}_{\hat{\mathbf{s}}}(\dot{\tilde{\mathbf{r}}})\mu(\mathbf{r}) \right| = 0.$$

En utilisant théorème (5.3.1) nous avons

$$\begin{split} \left| \int_{\mathbf{x}\in\partial\mathcal{M}} g_{\dot{\tilde{s}}}^{h}(\mathbf{x}) d\text{Vol} - \sum_{\mathbf{r}\in\mathbb{F}_{h}^{d}\cap\partial_{h}\mathcal{M}} g_{\dot{\tilde{s}}}^{h}(\dot{\tilde{\mathbf{r}}})\mu(\mathbf{r}) \right| \\ \leqslant 2^{d+3}(d+1)^{\frac{3}{2}} \operatorname{Area}(\partial\mathcal{M}) \left(\operatorname{Lip}(g_{\dot{\tilde{s}}}^{h})\sqrt{d+1} \ h + \|g_{\dot{\tilde{s}}}^{h}\|_{\infty}O(h^{\beta}) \right). \end{split}$$
(5.4.8)

Nous allons maintenant donner une borne supérieure fine de $\text{Lip}(g_{\hat{s}}^{h})$ et $||g_{\hat{s}}^{h}||_{\infty}$, qui dépendra de h. Dans un premier temps, nous étudions la restriction de ũ à l'extension tubulaire de $\partial_{h}M$ dans le paragraphe 5.4.2.1, ce qui nous permet de montrer une borne supérieure sur la constante de Lipschitz associée à ũ. Nous montrerons ensuite dans le paragraphe 5.4.2.2 une borne pour $\text{Lip}(g_{\hat{s}}^{h})$ ainsi que pour $||g_{\hat{s}}^{h}||$ dans la restriction tubulaire. Finalement, en injectant les bornes calculées dans le paragraphe 5.4.2.2 dans le théorème (5.3.1) nous montrerons le lemme (5.4.2).

5.4.2.1 Une borne sur Lip(\tilde{u})

Étant donné que ũ est définie comme la composition entre u et la fonction de projection ξ , nous avons besoin d'expliciter la constante de Lipschitz associée à ξ . Pour trouver une borne sur Lip(ũ), nous bornons le gradient de ũ. Nous avons donc besoin que ũ soit différentiable. Malheureusement, les dérivées de ũ ne sont pas définies sur le bord topologique de l'extension de ∂M . Nous allons, pour le moment, restreindre notre analyse à l'intérieur de l'extension tubulaire (*c*.-à-*d*. l'offset) $\mathcal{T} := (\partial M)^{\frac{\sqrt{d+1}}{2}h}$ (voir figure 5.5). Nous notons pour une fonction arbitraire Lip $_{\mathcal{T}}f := \max_{x,y \in \mathcal{T}, x \neq y} |f(x) - f(y)|/||x - y||_2$. Nous savons que la constante de Lipschitz est bornée par la norme (vectorielle) maximale :

$$\operatorname{Lip}_{\mathcal{T}}(\tilde{\mathfrak{u}}) \leqslant \max_{\mathbf{x}\in\mathcal{T}} \Big\{ \big\| (\nabla \tilde{\mathfrak{u}})(\mathbf{x}) \big\|_{\infty} \Big\} = \max_{\mathbf{x}\in\mathcal{T}} \Big\{ \big\| (\nabla \mathfrak{u}\circ\xi)(\mathbf{x}) \big\|_{\infty} \Big\}.$$

En utilisant la propriété de dérivation des fonctions composées nous avons :

$$\operatorname{Lip}_{\mathcal{T}}(\tilde{\mathfrak{u}}) \leqslant \max_{\mathbf{x}\in\mathcal{T}} \Big\{ \big\| (J\xi(\mathbf{x}))^{\mathsf{T}} (\nabla \mathfrak{u})(\xi(\mathbf{x})) \big\|_{\infty} \Big\},$$
(5.4.9)

où J $\xi(\mathbf{x})$ est le jacobien de ξ au point \mathbf{x} et $(\nabla \mathbf{u})(\xi(\mathbf{x}))$ est l'application du gradient de \mathbf{u} au point $\xi(\mathbf{x})$. Pour $\mathbf{h} \leq R/\sqrt{d+1}$ (avec R le reach de ∂M), nous savons du théorème (2.2.1) que ξ est 2-Lipschitz dans une boule de rayon R/2 (ici nous posons $\iota = 1/2$ ce qui nous donne une borne supérieure sur \mathbf{h} , et la propriété 2-Lipschitz de ξ). En conséquence, chacun des termes dans la transposée de la jacobienne est bornée par 2 (car chacune des dérivées partielles est bornée). On a donc :

$$\operatorname{Lip}_{\mathcal{T}}(\tilde{\mathfrak{u}}) \leq 2 \max_{\mathbf{x} \in \mathcal{T}} \left\{ \left\| (\nabla \mathfrak{u})(\xi(\mathbf{x})) \right\|_{\infty} \right\}$$
(5.4.10)

Nous savons de plus que ξ est surjective dans tout le domaine, l'équation (5.4.9) devient alors

$$\operatorname{Lip}_{\mathcal{T}}(\tilde{\mathfrak{u}}) \leq 2 \max_{\mathbf{x} \in \mathcal{T}} \left\{ \left\| (\nabla \mathfrak{u})(\xi(\mathbf{x})) \right\|_{\infty} \right\} = 2 \| \nabla \mathfrak{u} \|_{\infty}.$$
(5.4.11)

En effet, comme tout point de ∂M possède une pré-image dans $(\partial M)^{\frac{\sqrt{d+1}}{2}h}$ par la fonction ξ , la norme infinie atteint la même valeur pour les deux côtés de l'égalité.

5.4.2.2 Bornes pour $Lip_{\mathfrak{T}}(g^h_{\dot{\mathfrak{k}}})$ et $\|g^h_{\dot{\mathfrak{k}}}\|_{\mathfrak{T}}$

Nous donnons ici des bornes exactes pour la constante de Lipschitz ainsi que la norme de $g_{\dot{\varepsilon}}^{h}$. Nous utilisons la notation raccourcie suivante pour cette section :

$$\|\nabla \tilde{\mathbf{u}}\|_{\mathfrak{T}} := \max_{\mathbf{x} \in \mathfrak{T}} \Big\{ \big\| (\nabla \tilde{\mathbf{u}})(\mathbf{x}) \big\|_{\infty} \Big\}.$$

Nous montrons une preuve du lemme suivant :

LEMME Pour $h \leq h_0 = R/\sqrt{d+1}$ nous avons $\|g_{\dot{s}}^{h}\|_{\mathfrak{I}} \leq \frac{2 \cdot \|\nabla u\|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha \frac{1+d}{2}} \text{ et } \operatorname{Lip}_{\mathfrak{I}}(g_{\dot{s}}^{h}) \leq \frac{6 \cdot \|\nabla u\|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha(1+\frac{d}{2})}.$ (5.4.3)

PREUVE En injectant la propriété de Lipschitz de ũ dans équation (5.4.7) nous avons

$$\|g_{\dot{s}}^{h}\|_{\mathfrak{T}} = \max_{\mathbf{x}\in\mathfrak{T}} \left(\frac{e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \cdot (\tilde{\mathbf{u}}(\mathbf{x}) - \tilde{\mathbf{u}}(\dot{s})) \right) \leqslant \max_{\mathbf{x}\in\mathfrak{T}} \left(\frac{e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \cdot \operatorname{Lip}_{\mathfrak{T}}(\tilde{\mathbf{u}}) \cdot \|\mathbf{x}-\dot{s}\|_{2} \right).$$

Nous savons que pour tout $y \in \mathbb{R}$, $ye^{-y^2} \leq 1/2$. En remplaçant y par $\frac{||\mathbf{x} - \dot{\mathbf{s}}||}{2\sqrt{t_h}}$ dans l'équation précédente nous avons

$$\frac{||\mathbf{x} - \dot{\tilde{\mathbf{s}}}||}{t_h} e^{-\frac{||\mathbf{x} - \dot{\tilde{\mathbf{s}}}||^2}{4t_h}} \leqslant \frac{1}{\sqrt{t_h}}.$$

Finalement, en utilisant l'équation (5.4.11) et en remplaçant t_h par h^α nous obtenons la borne sur la norme de $g^h_{\dot{s}}$:

$$\|g^{h}_{\dot{s}}\|_{\mathfrak{T}} \leqslant \frac{2 \cdot \|\nabla u\|_{\infty}}{t_{h}^{\frac{1}{2}} (4\pi t_{h})^{\frac{d}{2}}} = \frac{2 \cdot \|\nabla u\|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha \frac{1+d}{2}} \,.$$

Étudions maintenant la constante de Lipschitz de $g_{\hat{s}}^h$. Sachant que $\operatorname{Lip}_{\mathfrak{T}}(g_{\hat{s}}^h) \leq ||\nabla g_{\hat{s}}^h||_{\mathfrak{T}}$ nous allons tout d'abord dériver $g_{\hat{s}}^h$ et ensuite trouver une borne sur le gradient de cette dérivée. Le gradient de $g_{\hat{s}}^h$ est :

$$\nabla g^{h}_{\tilde{\mathbf{s}}}(\mathbf{x}) = \frac{\nabla \tilde{\mathfrak{u}}(\mathbf{x})}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{||\mathbf{x}-\hat{\mathbf{s}}||^{2}}{4t_{h}}} + \frac{\tilde{\mathfrak{u}}(\mathbf{x}) - \tilde{\mathfrak{u}}(\dot{\tilde{\mathbf{s}}})}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \nabla e^{-\frac{||\mathbf{x}-\hat{\mathbf{s}}||^{2}}{4t_{h}}}.$$

Nous calculons maintenant le gradient de l'exponentielle :

$$abla e^{-rac{||\mathbf{x}-\dot{\mathbf{s}}||^2}{4t_{
m h}}} = -rac{||\mathbf{x}-\dot{\mathbf{s}}||}{2t_{
m h}}e^{-rac{||\mathbf{x}-\dot{\mathbf{s}}||^2}{4t_{
m h}}}.$$

Ce qui nous donne :

$$\nabla g^{h}_{\hat{s}}(x) = \frac{\nabla \tilde{u}(x)}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{||x-\hat{s}||^{2}}{4t_{h}}} - \frac{||x-\dot{s}|| [\tilde{u}(x) - \tilde{u}(\dot{\tilde{s}})]}{2t_{h}^{2}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{||x-\hat{s}||^{2}}{4t_{h}}}.$$

Nous appliquons maintenant l'inégalité triangulaire pour continuer :

$$\begin{split} \|\nabla g_{\dot{s}}^{h}\|_{\mathfrak{I}} &\leqslant \frac{\|\nabla \tilde{\mathfrak{u}}\|_{\mathfrak{I}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}} + \max_{\mathbf{x}\in\mathfrak{I}} \left\{ \frac{|\tilde{\mathfrak{u}}(\mathbf{x}) - \tilde{\mathfrak{u}}(\dot{s})| \|\mathbf{x}-\dot{s}\|_{2}}{2t_{h}^{2}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}} \right\} \\ &\leqslant \frac{\|\nabla \tilde{\mathfrak{u}}\|_{\mathfrak{I}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}} + \text{Lip}_{\mathfrak{I}}(\tilde{\mathfrak{u}}) \cdot \max_{\mathbf{x}\in\mathfrak{I}} \left\{ \frac{\|\mathbf{x}-\dot{s}\|^{2}}{2t_{h}^{2}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{\|\mathbf{x}-\dot{s}\|^{2}}{4t_{h}}} \right\}. \end{split}$$

Comme mentionné dans la preuve du lemme (5.4.1), une étude élémentaire de fonction montre que $\forall y \in \mathbb{R}$, $y^2 e^{-y^2} \leq 1$ (nous utilisons ici une borne moins fine pour ensuite pouvoir factoriser plus facilement certains termes). En remplaçant y par $\frac{||x-\hat{s}||}{2\sqrt{t_h}}$ dans l'équation précédente nous avons :

$$\frac{\|\mathbf{x} - \dot{\tilde{\mathbf{s}}}\|^2}{t_h^2} e^{-\frac{\|\mathbf{x} - \dot{\tilde{\mathbf{s}}}\|^2}{4t_h}} \leqslant \frac{4}{t_h}$$
(5.4.12)

ce qui nous permet d'extraire la borne finale sur $\|\nabla g^h_{\hat{s}}\|_{\mathbb{T}}$:

$$\begin{split} \|\nabla g_{\hat{s}}^{h}\|_{\mathfrak{I}} &\leqslant \frac{\|\nabla \tilde{u}\|_{\mathfrak{I}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} + \operatorname{Lip}_{\mathfrak{I}}(\tilde{u}) \cdot \max_{x \in \mathfrak{I}} \left\{ \frac{\|x - \dot{\tilde{s}}\|^{2}}{2t_{h}^{2}(4\pi t_{h})^{\frac{d}{2}}} e^{-\frac{\|x - \dot{\tilde{s}}\|^{2}}{4t_{h}}} \right\} \\ &\leqslant \frac{\|\nabla \tilde{u}\|_{\mathfrak{I}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} + \frac{2\operatorname{Lip}_{\mathfrak{I}}(\tilde{u})}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \quad (\text{avec l'équation (5.4.12)}) \\ &\leqslant \frac{\|\nabla \tilde{u}\|_{\mathfrak{I}}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} + \frac{4\|\nabla u\|_{\infty}}{t_{h}(4\pi t_{h})^{\frac{d}{2}}} \quad (\text{avec l'équation (5.4.11)}). \end{split}$$

En combinant l'équation (5.4.9) et l'équation (5.4.11) nous avons $\|\nabla \tilde{u}\|_{\mathcal{T}} \leq 2 \|\nabla u\|_{\infty}$. Nous injectons cette inégalité pour continuer le calcul :

$$\begin{split} \left\| \nabla g^{h}_{\hat{s}} \right\|_{\mathfrak{I}} &\leqslant \frac{2 \| \nabla u \|_{\infty}}{t_{h} (4\pi t_{h})^{\frac{d}{2}}} + \frac{4 \| \nabla u \|_{\infty}}{t_{h} (4\pi t_{h})^{\frac{d}{2}}} \\ &= \frac{6 \| \nabla u \|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha(1+\frac{d}{2})} \quad (\text{avec } t_{h} = h^{\alpha}), \end{split}$$

ce qui démontre le lemme (5.4.3).

5.4.2.3 Conclusion sur la borne de (Q3)

Nous injections le lemme (5.4.3) dans l'équation (5.4.8) :

$$\begin{split} \left| \int_{\mathbf{x}\in\partial\mathcal{M}} g_{\dot{\mathbf{s}}}^{h}(\mathbf{x}) d\mathrm{Vol} - \sum_{\mathbf{r}\in\mathbb{F}_{h}^{d}\cap\partial_{h}\mathcal{M}} g_{\dot{\mathbf{s}}}^{h}(\dot{\tilde{\mathbf{r}}})\mu(\mathbf{r}) \right| \\ &\leqslant 2^{d+3}(d+1)^{\frac{3}{2}} \operatorname{Area}(\partial\mathcal{M}) \left(\operatorname{Lip}(g_{\dot{\mathbf{s}}}^{h})\sqrt{d+1} \ h + \|g_{\dot{\mathbf{s}}}^{h}\|_{\infty} O(h^{\beta}) \right) \\ &\leqslant 2^{d+3}(d+1)^{\frac{3}{2}} \operatorname{Area}(\partial\mathcal{M}) \left(\frac{6 \cdot \|\nabla u\|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha(1+\frac{d}{2})}\sqrt{d+1} \ h + \frac{2 \cdot \|\nabla u\|_{\infty}}{(4\pi)^{\frac{d}{2}}} \cdot h^{-\alpha\frac{1+d}{2}} O(h^{\beta}) \right) \\ &= \frac{48(d+1)^{2}}{\pi^{\frac{d}{2}}} \operatorname{Area}(\partial\mathcal{M}) \|\nabla u\|_{\infty} \ h^{1-\alpha(\frac{d}{2}+1)} + \operatorname{Area}(\partial\mathcal{M}) O(h^{\beta-\alpha\frac{1+d}{2}}). \end{split}$$

Le résultat peut être étendu à tout l'espace (*c.-à-d.* en remplaçant \mathcal{T} par ∞ dans la norme) étant donné que le théorème (5.3.1) ne considère que la borne Lipschitz et la borne l_{∞} dans \mathcal{T} (la preuve est restreinte à des quantités calculées dans l'extension tubulaire de $\partial_h M$). Nous écrivons donc :

$$\begin{split} \left| \int_{\mathbf{x}\in\partial M} g_{\dot{\mathbf{s}}}^{h}(\mathbf{x}) dVol - \sum_{\mathbf{r}\in\mathbb{F}_{h}^{d}\cap\partial_{h}M} g_{\dot{\mathbf{s}}}^{h}(\dot{\mathbf{r}})\mu(\mathbf{r}) \right| \\ &\leqslant \frac{48(d+1)^{2}}{\pi^{\frac{d}{2}}} Area(\partial M) \|\nabla u\|_{\infty} h^{1-\alpha(\frac{d}{2}+1)} + Area(\partial M)O(h^{\beta-\alpha\frac{1+d}{2}}). \end{split}$$

ce qui montre le lemme (5.4.2).

5.4.3 Résultat général de convergence

Nous résumons le résultat central de cette thèse au travers du théorème (5.4.1), qui nous donne les conditions nécessaires pour la C^2 -convergence de notre discrétisation de l'opérateur de Laplace–Beltrami sur les surface digitales. La preuve de ce théorème est aussi l'occasion de résumer tous les résultats présentés dans cette partie concernant la convergence.

Théorème

(5.4.1)

Soient **s** un surfel de $\mathbb{F}_{h}^{d} \cap \partial_{h}M$, une fonction $u \in C^{2}(\partial M)$ et son extension \tilde{u} de la définition (5.3.1). Soit $t_{h} = h^{\alpha}$ et supposons que l'estimateur de normales possède une vitesse de convergence égale à un $O(h^{\beta})$. Soit h_{0} le minimum entre Diam (∂M) , $R/\sqrt{d+1}$ et $K_{3}(d, \alpha, Diam(\partial M))$ (où K_{3} est une constante définie dans l'équation (5.4.5)). Pour $0 < h \leq h_{0}$ nous avons

$$0 < \alpha < \min\left\{\frac{2}{d+2}, \frac{2\beta}{d+1}\right\} \quad \Longrightarrow \quad \lim_{h \to 0} \left|(\Delta \mathfrak{u})(\xi(\dot{\mathfrak{s}})) - (\mathfrak{L}_{h}\tilde{\mathfrak{u}})(\dot{\mathfrak{s}})\right| = 0.$$

PREUVE Nous rappelons au lecteur que la condition $\alpha > 0$ est donnée par le théorème (4.5.2) car t_h doit tendre vers zéro lorsque h tend vers zéro. Alors le lemme (5.4.1) nous donne la condition suivante pour la convergence :

$$\alpha < \frac{2}{d+2},$$

et le lemme (5.4.2) la même condition plus

$$\alpha < \frac{2\beta}{d+1}.$$

En combinant ces conditions pour α , le théorème (4.5.2) de Belkin *et al.* pour la convergence de l'équation (Q1), le lemme (5.4.1) pour la borne sur l'équation (Q2) et le lemme (5.4.2) pour la borne sur l'équation (Q3), nous obtenons notre résultat. Notre opérateur de Laplace–Beltrami digital est donc C²-convergent vis-à-vis de l'opérateur continu sur les variétés. Les conditions sur la borne supérieure pour h₀ de h sont données par le lemme (5.4.1) et le lemme (5.4.2).

5.5 Conclusion

Nous avons présenté dans ce chapitre deux discrétisations de l'opérateur de Laplace-Beltrami qui ne possède pas la propriété de C^2 -convergence : l'une sur les courbes digitales utilisant la théorie du calcul extérieur discret et l'autre sur les surfaces digitales qui est en fait une adaptation de l'opérateur d'Alexa et Wardetzky où nous injections la mesure de nos faces. Ces deux opérateurs ont motivé la définition d'un opérateur par convolution. Nous avons adapté la méthode de Belkin et al. sur les surfaces digitales, toujours en intégrant cette notion de mesure des faces. Nous avons montré dans les paragraphes suivants les différents lemmes et théorèmes nécessaires à la preuve théorique de la C²-convergence, résultat que nous résumons au travers du théorème (5.4.1). Concernant les propriétés de notre nouvel opérateur, nous avons montré qu'il possède (C²-CON), il n'est pas (SYM) par construction (la multiplication par la mesure μ annule la symétrie). L'opérateur n'est pas non plus (LOC) par construction (puisque nous effectuons une convolution sur la surface discrète). Tout comme il n'existe pas de résultat sur (LIN) concernant L_b, nous ne savons pas si (LIN) est satisfaite. Enfin, (PSD) est encore une question ouverte pour notre opérateur, là où il a été montré dans le cas de L_b qu'il possédait cette propriété [DRW10]. Nous allons maintenant faire une analyse numérique de l'opérateur dans le prochain chapitre.

5.6 Résultats annexes

 $\label{eq:lemma} \begin{array}{l} \mathsf{LEMME}\\ \mathsf{Soient} \ \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in \mathbb{R}, \, \mathsf{si} \ \mathfrak{a} \leqslant 0 \ \mathsf{et} \ \mathfrak{c} \geqslant 0, \, \mathsf{alors} \end{array}$

(5.6.1)

 $a \leq b \leq c \implies |b| \leq \max\{|a|, c\}.$

PREUVE Nous séparons la preuve en deux cas suivant le signe de b. Si $b \le 0$, alors $|b| \le |a|$ et donc $|b| \le \max\{|a|, c\}$. Si b > 0, alors $|b| = b \le |c| = c$ comme $c \ge 0$ et donc $|b| \le \max\{|a|, c\}$.

(5.6.2)

LEMME Soit $x \in [\frac{-1}{e}; +\infty[,$

$$e^{\frac{x}{2}} - 1 \leqslant x \iff 0 \leqslant x \leqslant -\frac{1}{2} \left[2W_{-1} \left(-\frac{1}{2\sqrt{e}} \right) + 1 \right] \approx 2.51286$$

où W_{-1} est la branche inférieure de la *W*-fonction de Lambert (parfois appelée fonction omega fonction ou bien "product logarithms").

PREUVE Nous utilisons la W-fonction de Lambert pour montrer ce lemme. Un étude approfondie de celle-ci peut être trouvée dans le livre de Corless, Gonnet, Hare et Knuth [Cor+96]. Elle est définie comme la fonction multi-valuée W qui satisfait

$$z = W(z)e^{W(z)}$$

pour $z \in \mathbb{C}$. C'est de façon équivalente la fonction inverse de $f(w) = we^w$. Le graphe de cette fonction sur la ligne des réels est dessiné dans la figure 5.7. W possède deux branches réelles communément appelées W_0 et W_{-1} définies dans l'intervalle -1/e < x < 0 qui se joignent en x = -1/e. Cela veut dire entre autres que l'équation $x = we^w$ possède deux solutions dans cet intervalle (un par branche). Nous utiliserons également l'identité $W(xe^x) = x$. Notons finalement que la branche W_0 est croissante dans cet intervalle, contrairement à W_{-1} qui est décroissante.

Figure 5.7 Graphe des deux branches principales de la *W*-fonction de Lambert. W_0 est en orange et W_{-1} en verte. Les deux branches sont jointes de façon continue au point (-1/e, -1).

Nous effectuons une preuve par équivalence d'inégalités avec $x \geqslant \frac{-1}{e}$:

$$\begin{split} e^{\frac{x}{2}} - 1 \leqslant x \\ \iff e^{\frac{x}{2}} \leqslant x + 1 \\ \iff -(x+1)e^{-\frac{x}{2}} \leqslant -1 \\ \iff -(\frac{x}{2} + \frac{1}{2})e^{-(\frac{x}{2} + \frac{1}{2})} \leqslant -\frac{1}{2\sqrt{e}}. \end{split} \qquad \text{en multipliant par } \frac{1}{2\sqrt{e}} \end{split}$$

En remplaçant X par $-\frac{1}{2}(x+1)$ nous avons

$$X \geqslant W_{-1}(-\frac{1}{2\sqrt{e}}) \text{ et } X \leqslant W_0(-\frac{1}{2\sqrt{e}})$$

ce qui donne

$$-(2W_0(-\frac{1}{2\sqrt{e}})+1) = 0 \leqslant x \leqslant -(2W_{-1}(-\frac{1}{2\sqrt{e}})+1) \approx 2.51286$$

étant donné que $W_0(-\frac{1}{2\sqrt{e}}) = \frac{1}{2}$.

L		

Analyse numérique de la C²-Convergence

6

Sommaire

6.1	Tests sur la sphère	97		
	$ \hookrightarrow 6.1.1 $ C^2 -convergence pour différentes valeurs de $lpha$	98		
	\hookrightarrow 6.1.2 Comparaisons avec d'autres opérateurs	98		
6.2	C ² -convergence de la courbure moyenne	99		
6.3	Détails sur l'implémentation			
6.4	Diffusion de la chaleur			
6.5	Lissage et approximation de surfaces			
	\hookrightarrow 6.5.1 Approximation via la décomposition spectrale	108		
6.6	Flot de courbure moyenne	108		
6.7	Conclusion	111		

Nous présentons dans ce chapitre diverses analyses numériques mettant en avant les bonnes propriétés de l'opérateur \mathfrak{L}_h . Nous affichons dans un premier temps les graphes de convergence de notre opérateur pour différentes valeurs du paramètre de convolution α . Nous comparons ensuite notre opérateur avec plusieurs autres opérateurs de la littérature présentés dans le chapitre 4 à travers deux expériences. Nous présentons ensuite un résultat empirique concernant notre opérateur, qui nous permet de rendre sa matrice creuse. Enfin, nous montrons plusieurs applications de \mathfrak{L}_h à nos surfaces digitales.

6.1 Tests sur la sphère

Nous reprenons dans ce paragraphe le cadre de convergence décrit dans le paragraphe 5.2. Nous analysons donc ici la C²-convergence sur les surfaces digitales de notre opérateur de Laplace–Beltrami discret. Nous considérons toujours une boule unitaire S³, mais nous allons cette fois-ci ajouter deux fonctions en plus de e^x à savoir z et x^2 . Soient θ l'angle azimutal et ϕ l'angle polaire. Nous avons donné dans l'équation (5.2.2) la formule explicite pour l'opérateur de Laplace–Beltrami sphérique. Nous avons donc

$$\begin{split} \Delta_{\partial \mathbb{S}^3} & z = \Delta_{\partial \mathbb{S}^3} \cos \varphi = -2 \cos \varphi, \\ \Delta_{\partial \mathbb{S}^3} & x^2 = \Delta_{\partial \mathbb{S}^3} \sin^2 \theta \cos^2 \varphi \\ &= 2 \cos^2 \theta \left(2 \cos^2 \varphi - \sin^2 \varphi \right) + 2(\sin^2 \theta - \cos^2 \theta), \end{split}$$

en plus de la fonction e^x donnée dans l'équation (5.2.3).

Nous calculons le discrétisé de Gauss de S^3 pour des pas de h décroissants. A titre d'exemple, le discrétisé possède 1902 faces pour h = 0.1 et 188502 faces pour h = 0.01.

Table 6.1 Résumé des vitesses de convergence pour différentes valeurs de t_h et différentes fonctions \tilde{u} . Le modèle h^{γ} est plaqué sur les valeurs par régression linéaire pour donner une idée de la vitesse de convergence. Les données utilisées sont les mêmes que dans la figure 6.2. La table nous donne les valeurs du paramètre du modèle γ en fonction de la valeur de α et de la fonction \tilde{u} . Notons que plus la valeur de α est grande, plus la vitesse de convergence est élevée.

α	$\tilde{\mathfrak{u}}(\mathbf{x},\mathbf{y},z)=z$	$\tilde{\mathfrak{u}}(\mathbf{x},\mathbf{y},z)=\mathbf{x}^2$	$\tilde{u}(x,y,z) = e^x$
1	0.9846	1.0594	0.985
$\frac{2}{3}$	1.1039	0.8147	0.8630
$\frac{1}{3}$	1.0993	0.3468	0.3612
$\frac{1}{6}$	1.0621	0.1732	0.1732
$\frac{1}{12}$	1.0611	0.0861	0.0852

Étant donné que la surface discrète n'interpole pas le bord de la sphère, nous remplaçons les fonctions u par des fonctions \tilde{u} (voir la définition (5.3.1)). Nous utilisons l'estimateur de normale des invariants intégraux [CLL14] pour calculer la mesure des faces μ . Nous regardons tout d'abord la convergence pour des valeurs différentes de α , et comparons ensuite notre opérateur avec d'autres opérateurs de la littérature.

6.1.1 C²-convergence pour différentes valeurs de α

Nous affichons les graphes pour différentes valeurs de α dans t_h : h (*en rouge* —), $h^{\frac{2}{3}}$ (*en bleu* —), $h^{\frac{1}{3}}$ (*en vert* —), $h^{\frac{1}{6}}$ (*en violet* —) et $h^{\frac{1}{12}}$ (*en orange* —) dans la figure 6.2. Les résultats numériques de convergence sont compilés dans la Table 6.1. Notre opérateur \mathfrak{L}_h est une convolution entre une gaussienne de déviation standard $\sigma = \sqrt{2t_h}$ et des différences de fonctions. Lorsque le pas de discrétisation h diminue (*c.-à-d.* l'approximation digitale de la surface s'affine), la déviation standard de la gaussienne diminue et le nombre de sommets en son sein croît.

Nous pouvons observer que quand h tend vers zéro, l'erreur infinie l_{∞} (*c.-à-d.* l'erreur maximum) diminue. De plus, pour les fonctions x^2 et e^x , la vitesse de convergence augmente en corrélation avec α (*c.-à-d.* plus α est grand, plus la vitesse de convergence est rapide).

6.1.2 Comparaisons avec d'autres opérateurs

Nous comparons dans la figure 6.3 la vitesse de convergence de nombreuses discrétisations de l'opérateur. Les opérateurs \mathfrak{L}_{combi} (de l'équation (4.2.1)), \mathfrak{L}_{quad} (de l'équation (4.4.1)) et \mathfrak{L}_{h} (définition (5.3.3)) sont directement calculés sur la surface digitale $\partial_{h}\mathbb{S}^{3}$; \mathfrak{L}_{cot} (de l'équation (4.3.1)), \mathfrak{L}_{b} (de l'équation (4.5.4)) et \mathfrak{L}_{r-loc} (de l'équation (4.6.1)) sont eux calculés sur la triangulation construite avec l'algorithme des marching cubes. Étant donné que les sommets de cette triangulation coïncident avec les centroïdes des surfels de la surface digitale, tous ces opérateurs sont évalués aux mêmes points. Le paramètre de temps t pour la discrétisation de Belkin *et al.* [BSW08] doit dépendre de la densité de la triangulation. Nous prenons ici le même paramètre que pour notre discrétisation, à savoir $t_{h} = h^{\frac{1}{3}}$. Quant au paramètre r de \mathfrak{L}_{r-loc} , nous prenons, comme conseillé par les auteurs $h^{\frac{1}{3}}$ (ce qui correspond en fait à la même taille de convolution que les deux opérateurs précédents).

Afin d'être le plus proche du cadre pratique du papier de Belkin *et al.* [BSW08], nous considérons également l'opérateur \mathfrak{L}_b^P , qui correspond à l'application de \mathfrak{L}_b sur la projection des sommets du marching cubes sur la sphère analytique. Dans notre cas, cet opérateur est la vérité terrain étant donné que les sommets sont sur le bord de la sphère. Finalement, nous calculons également \mathfrak{L}_{cot}^P , \mathfrak{L}_{r-loc}^P et \mathfrak{L}_{quad}^P sur cette même projection. Les différentes discrétisations de la sphère sont illustrées dans la figure 6.1.

Nous voyons tout d'abord, comme prévu par la théorie, que \mathcal{L}_{combi} (---), \mathcal{L}_{cot} (---) et \mathfrak{L}_{cot}^{P} (----) ne sont pas C²-convergent sur le marching cubes et sur sa projection. L'opérateur sur les surfaces polygonales généralisées (ici notre surface) d'Alexa et Wardetzky possède le même comportement que L_{cot} (ce qui est attendu étant donné que cet algorithme est une généralisation du schéma des cotangentes). La mauvaise approximation de l'espace tangent par nos surfaces digitales au travers des normales élémentaires ne donne pas une approximation convergente des aires et donc aucun de ces opérateurs ne convergent. Nous savons également (voir [Xu04a; Xu04b]) que L_{cot} n'est C²-convergent que si chaque sommet du maillage est de valence six, ce qui n'est pas le cas ici. Concernant les opérateurs sur la projection du marching cubes, même si la somme des aires des triangles converge vers l'aire de la sphère, beaucoup de triangles sont dégénérés (à cause de la projection) ce qui a pour effet une mauvaise approximation locale des mesures, et donc pas de C²-convergence. Nous observons aussi que \mathfrak{L}_{b} (-----) n'est pas C²-convergent, mais avec des erreurs moindres (encore une fois à cause de la mauvaise approximation du plan tangent). A l'opposé, \mathfrak{L}_{b}^{P} (\rightarrow) converge point-à-point, comme attendu [BSW08]. Les erreurs entre \mathfrak{L}_h et \mathfrak{L}_h^p sont proches. On observe cependant un écart de 10² pour la fonction u(x, y, z) = z. \mathfrak{L}_{r-loc} montre un comportement non convergent. En effet, notre cadre pratique ne colle pas avec celui prévu dans le papier [HP11] : notre fonction de projection ξ n'étant pas bijective en général, et les normales estimées sur le marching cube n'étant pas convergentes, la convergence en norme d'opérateur faible de \mathfrak{L}_{cot} n'est plus valable (voir [War+07]), ce qui est un pré-requis pour la convergence point à point de \mathfrak{L}_{r-loc} . Concernant \mathfrak{L}_{r-loc} ^P, la projection du marching cube, même si cette surface satisfait les propriétés du Théorème 7. de [HP11], le ratio d'aspect des triangles ρ diverge sur la projection, invalidant la constante C de leur théorème.

6.2 C²-convergence de la courbure moyenne

Nous présentons dans cette section d'autres résultats numériques pour la convergence de notre opérateur. On s'intéresse ici au calcul du vecteur de courbure moyenne à travers l'opérateur de Laplace–Beltrami. Nous rappelons que l'opérateur est lié au vecteur de courbure moyenne :

$$\Delta e(\mathbf{x}) = 2H_{\mathbf{x}}n_{\mathbf{x}}$$

où n_x correspond au vecteur normal unitaire à la surface au point x, H_x la courbure moyenne au point x et e est ici la fonction qui à un point x de la variété associe son plongement (voir le paragraphe 4.3.2). Nous avons, étant donné la matrice X de taille

Figure 6.1 Les différentes discrétisations de la sphère utilisées pour comparer les opérateurs de Laplace-Beltrami. La boule unité \mathbb{S}^3 est discrétisée en utilisant le processus de Gauss décrit dans la définition (2.2.1). L'image de gauche correspond à la surface digitale $\partial_h \mathbb{S}^3$ (voir la définition (2.2.2) pour la construction d'un tel objet) où sont calculés \mathfrak{L}_h , \mathfrak{L}_{quad} et \mathfrak{L}_{combi} . L'image centrale est la surface obtenue après l'application de l'algorithme des marching cubes où nous calculons \mathfrak{L}_b , \mathfrak{L}_{r-loc} et \mathfrak{L}_{cot} . Enfin, l'image à droite représente la projection du marching cubes sur la sphère analytique. Sont calculés sur celle-ci \mathfrak{L}_b^P , \mathfrak{L}_{cot}^P et \mathfrak{L}_{r-loc}^P .

Figure 6.2 Des résultats de convergence entre Δ et \mathfrak{L}_h pour la norme infinie sont estimés sur la boule unité $\partial \mathbb{S}^3$. Nous utilisons $t_h = h$ en rouge, $t_h = h^{\frac{2}{3}}$ en bleu, $t_h = h^{\frac{1}{3}}$ en vert, $t_h = h^{\frac{1}{6}}$ en violet et $t_h = h^{\frac{1}{2}}$ en orange.

Figure 6.3 Résultats de convergence point à point sur de nombreuses approximations de l'opérateur de Laplace–Beltrami sur différents discrétisés de la boule unité. Sont affichées les erreurs infinies entre Δ et \mathcal{L}_{cot} , \mathcal{L}_{cot}^{P} , \mathcal{L}_{combi} , \mathcal{L}_{b} , \mathcal{L}_{b}^{P} , \mathcal{L}_{r-loc} , \mathcal{L}_{quad} , \mathcal{L}_{quad}^{P} et \mathcal{L}_{h} . Les paramètres de convolution t_{h} et r sont tous égaux à $h^{\frac{1}{3}}$.

 $k \times 3$ (k correspond ici aux nombres de faces du maillage) des coordonnées et L la matrice associée à l'opérateur de Laplace–Beltrami discret \mathcal{L}

$$\mathbf{L}\mathbf{X} = 2\mathbf{H}\cdot\mathbf{N}$$

c.-à-d. l'application de **L** aux coordonnées **X** nous donne une matrice $k \times 3$ où chaque ligne correspond au vecteur de courbure moyenne associé à chaque élément de la surface discrète (· désigne ici la multiplication ligne par ligne des vecteurs n_x par la courbure moyenne associée H_x). Nous désignerons la courbure moyenne associée à un opérateur de Laplacien par **H** avec en indice le nom de l'opérateur (par exemple H_{cot} pour la courbure moyenne associée à l'opérateur des cotangentes).

Outre le calcul de la courbure moyenne via les opérateurs de Laplace–Beltrami discrétisés, nous utilisons également deux estimateurs de courbure moyenne sur les surfaces digitales. Le premier estimateur est celui des invariants intégraux présenté dans le paragraphe 2.2.3. Nous utilisons ici une implémentation via la transformée de Fourier de la grille cubique (la convolution sur la grille dans le domaine spatial correspond à une multiplication dans le domaine spectral). Nous notons cet estimateur par H_{II} . Nous estimons également la courbure moyenne via la méthode de *Jet Fitting* [CP05] que nous notons H_{jet} . Nous affichons dans un premier temps la courbure calculée sur la surface "Goursat" discrétisée via le processus de Gauss avec un pas de discrétisation de h = 0.1 (ce qui correspond à une forme de taille 200 × 200 × 200 dans l'espace digital) dans la figure 6.4. Comme attendu,

les courbures H_{combi} et H_{cot} calculées via les opérateurs locaux \mathfrak{L}_{combi} et \mathfrak{L}_{cot} ne sont pas de bons estimateurs de courbure moyenne du fait qu'ils ne possèdent pas la propriété (C²-CON). Les autres opérateurs sont similaires visuellement, avec peut-être le meilleur résultat pour H_{jet} . Nous affichons également dans le tableau l'erreur infinie pour chaque discrétisation : nous observons ici que le meilleur estimateur est H_{jet} . Viens ensuite H_{II} avec une erreur de 0.05 et tout de suite derrière notre discrétisation H_h . Notre opérateur montre donc dans ce cas de bonnes propriétés par rapport à l'état de l'art sur les surfaces digitales. Au niveau du de temps de calcul, il est vingt fois plus rapide que H_{jet} mais à peu près dix fois plus lent que l'estimation faite par H_{II} via la transformée de Fourier.

Nous affichons dans un second temps dans la figure 6.5 les erreurs ponctuelles pour chaque opérateur, ainsi que le graphe de convergence associé. L'affichage des erreurs nous permet de visualiser les zones où les opérateurs font les erreurs les plus importantes. Par exemple, pour H_{jet} , les erreurs sont maximales près des axes. Dans le cas de H_{II} et H_h , les erreurs sont concentrées près des escaliers de la surface. Pour H_{r-loc} , les erreurs se situent aux arêtes de la forme. Le graphe de convergence nous confirme les résultats de C²-convergence obtenus dans le paragraphe précédent, à savoir que seul H_h possède cette propriété. Nous voyons que comme précédemment, H_{jet} est le meilleur estimateur en terme d'erreur, avec derrière H_{II} et enfin H_h .

Nous avons montré dans ce paragraphe que notre nouvel opérateur fournit une bonne approximation de la courbure moyenne sur les surfaces digitales. Bien que par rapport à H_{II} et H_{jet} , H_h exhibe des erreurs de convergence plus élevées, il reste quand même une bonne approche à l'estimation de courbure moyenne sur les surfaces digitales.

6.3 Détails sur l'implémentation

Toutes les expériences présentées dans ce chapitre ont été im-
plémentées via la librairie DGtal [Dgt], une librairie libre de
droits en C++. L'algorithme naïf effectue la somme sur tous
les points de la surface et sa complexité est en $O(n_{sommets}^2)$
(à noter que l'algorithme peut se paralléliser car le calcul de
\mathfrak{L}_h pour chaque point de la surface est indépendant). Nous
présentons maintenant une méthode alternative pour l'im-
plémentation du laplacien. L'opérateur est une convolution
entre des différences de fonctions et une gaussienne de va-

x	erf(x)
1	0.842 700 793
1.5	0.966 105 146
2.0	0.995 322 265
2.5	0.999977910
3.0	0.999 999 257

riance $\sigma = \sqrt{2t}$, et nous savons que l'information contenue en dessous de la gaussienne se situe à quelques multiples de cette variance principale (voir figure 6.6). Plus précisemment, l'intégrale d'une gaussienne correspond à la fonction d'erreur *erf*, dont nous affichons quelques valeurs dans le tableau ci-contre et dont nous traçons le graphe dans la figure 6.6. Il n'est donc pas nécessaire d'effectuer le calcul sur toute la surface, car la majorité des éléments de la somme sont négligeables au delà d'une certaine distance (*c.-à-d.* quelques multiples de $\sqrt{2t}$). Concernant l'implémentation, nous effectuons un parcours en largeur de la surface pour chaque point : l'algorithme a donc maintenant une compléxité en O(k n_{sommets}) et, de la même façon que pour l'implémentation naïve, cet algorithme est parallélisable par point. Outre une vitesse de calcul plus rapide, ce nouvel

Opérateur	Valeur Min.	Valeur Max.	l_∞	Taille	Temps
H _{combi}	-0.01	0.01	0.34	—	52.7ms
H _{cot}	-10.92	12.94	12.81		1.1s
H _{r-loc}	-0.09	0.25	0.10	$4.5 h^{rac{1}{3}}$	506s
H _h	-0.15	0.34	0.06	4.5 h	53s
\mathbf{H}_{b}	-0.20	0.38	0.10	4.5 h	144s
\mathbf{H}_{II}	-0.14	0.34	0.05	$4.5 h^{rac{1}{3}}$	7.3s
\mathbf{H}_{jet}	-0.10	0.35	0.03	$4.5 h^{\frac{1}{3}}$	1200s

Figure 6.4 Illustration de différents estimateurs de courbure moyenne sur le discrétisé d'une surface d'équation $0.03(x^4 + y^4 + z^4) - 2(x^2 + y^2 + z^2) = 8$ avec un pas de discrétisation h valant 0.1 (soit 236094 surfels pour la surface digitales et 438470 sommets pour la triangulation et une forme de taille $200 \times 200 \times 200$ dans l'espace digital). Nous affichons la norme du vecteur de courbure moyenne (c'est-à-dire la valeur absolue de la courbure moyenne) sur les images. Se trouvent dans le tableau les valeurs minimales et maximales, l'erreur infinie l_{∞} , la taille de la convolution et le temps de calcul pour la norme du vecteur de courbure moyenne des opérateurs H_{combi} , H_{cot} , H_{r-loc} , H_{h} , H_{b} , H_{II} et H_{jet} .

Figure 6.5 Illustration de différents estimateurs de courbure moyenne sur le discrétisé d'une surface d'équation $0.03(x^4 + y^4 + z^4) - 2(x^2 + y^2 + z^2) = 8$ avec un pas de discrétisation h valant 0.1 (soit 236094 surfels pour la surface digitales et 438470 sommets pour la triangulation et une forme de taille $200 \times 200 \times 200$ dans l'espace digital). Nous affichons l'erreur infinie entre la norme du vecteur de courbures moyennes estimées (via les différents opérateurs) et la vraie norme du vecteur de courbures moyennes. Nous affichons également le graphe de convergence avec H_{r-loc} (----), H_{II} (----), H_b (----) et H_h (----).

Figure 6.6 Une gaussienne de variance $\sigma = 1$ centrée en zéro. La majorité de l'aire sous la courbe est située entre quelques multiples de σ , ce que nous affichons via les hachures sous la courbe.

Figure 6.7 Illustration des graphes de convergence sans la coupe de la gaussienne (---) et avec la coupe de gaussienne (---). Le paramètre t_h est fixé à $h^{\frac{1}{3}}$ et $k(t_h) := log(-log(t_h)) + 1$.

algorithme nous permet d'obtenir des matrices relativements creuses de l'opérateur, ce qui nous donne accès à des algorithmes d'algèbres linéaires plus efficaces (comme par exemple le calcul de la décomposition spéctrale).

Nous affichons dans la figure 6.7 les graphes de convergence de l'opérateur utilisé jusqu'à maintenant mais également de l'opérateur coupé que nous appelons $\mathfrak{L}_h|_{k(t_h)\times\sigma}$ dans cette figure. Nous avons fixé $t_h = h^{\frac{1}{3}}$ et $k(t_h) = \log(-\log(t_h)) + 1$ (qui correspond à une fonction qui augmente très lentement vers l'infini quand t_h tend vers zéro). Nous observons toujours la même vitesse de convergence, avec un petit biais en plus. Nous utiliserons dorénavant la version améliorée de l'algorithme pour toutes les expériences qui suivent.

6.4 Diffusion de la chaleur

Nous mettons en évidence, dans cette section, la propriété d'isotropie de \mathfrak{L}_h par rapport à \mathfrak{L}_{combi} . Rappelez-vous que l'équation de la chaleur discrète est donnée par

$$L\mathfrak{u}(x,t)=\frac{1}{t}(\mathfrak{u}(x,t)-\mathfrak{u}(x,0))$$

où u(x, 0) est donné. Nous allons prendre ici un Dirac centrée en x comme fonction initiale pour la résolution de la chaleur (cette méthode correspond à la première étape

Figure 6.8 Résultat de diffusion de la chaleur pour les opérateurs \mathfrak{L}_{combi} (à gauche) et \mathfrak{L}_{h} (à droite).

de l'algorithme décrit par Crane [CWW13]). Dans le cas de l'opérateur combinatoire, la solution de l'équation de la chaleur correspond à la solution de l'équation suivante :

$$(\mathbf{I} - t\mathbf{L}_{\text{combi}})\mathbf{u}(\mathbf{x}, t) = \mathbf{u}(\mathbf{x}, 0) \tag{6.4.1}$$

où I correspond à la matrice d'identité et L_{COMBI} correspond à la matrice associée à l'opérateur \mathfrak{L}_{combi} (voir l'équation (4.2.1)). Cette approximation correspond à un schéma d'Euler implicite, qui est inconditionnellement stable (*c.-à-d.* l'erreur d'approximation n'est pas dépendante du pas de temps t choisi). Nous avons également vu que dans le cas de \mathfrak{L}_h , nous avions explicitement discrétisé la solution de l'équation de la chaleur :

$$u_{h}(\tilde{\mathbf{p}},t) = \frac{1}{4\pi t} \sum_{\tilde{\mathbf{w}}} e^{-\frac{\|\tilde{\mathbf{w}}-\tilde{\mathbf{p}}\|^{2}}{4t}} u(\tilde{\mathbf{w}},0) \mu(\tilde{\mathbf{w}})$$
(6.4.2)

avec μ la mesure d'un élément \tilde{w} de notre surface. Dans le cas où μ est restreinte à un Dirac nous avons

$$u_{h}(\tilde{\mathbf{p}},t) = \frac{1}{4\pi t} e^{-\frac{\|\tilde{\mathbf{w}}-\tilde{\mathbf{p}}\|^{2}}{4t}} \mu(\tilde{\mathbf{w}}).$$
(6.4.3)

Nous allons donc calculer d'une part la diffusion de la chaleur via l'opérateur combinatoire \mathfrak{L}_{combi} en résolvant l'équation (6.4.1) et d'autre part calculer directement cette diffusion via l'équation (6.4.3) qui correspond à notre discrétisation de l'opérateur de Laplace–Beltrami. La fonction utilisée en entrée est ici un Dirac centré en x. Cette méthode correspond à la première étape du calcul des géodésiques introduite par Crane *et al.* [CWW13]. Pour mettre en évidence la correction d'anisotropie, nous discrétisons un plan d'équation x+2z = 0. La surface digitale produite prend la forme de marches d'escaliers. Les résultats sont affichés dans la figure 6.8. Étant donné que cette diffusion décroît exponentiellement, nous affichons le négatif du logarithme de la solution. Nous ramenons également les valeurs entre 0 et 1 pour avoir des échelles homogènes. Nous pouvons voir que la diffusion via la résolution de l'équation (6.4.1) est aplatie dans le sens des marches d'escaliers, effet que nous corrigeons via notre discrétisation.

Figure 6.9 Lissage par l'opérateur de Laplace–Beltrami discret \mathfrak{L}_h avec k = 10, 50, 200. L'image en haut à gauche correspond à la surface discrète initiale nommée OctaFlower.

6.5 Lissage et approximation de surfaces

Nous illustrons dans ce paragraphe deux méthodes de lissage. Nous présentons dans un premier temps le *Laplacian smoothing* qui consiste tout simplement à appliquer l'opérateur de lissage

$$L_s = I - L$$

au plongement de la forme discrète. La matrice L utilisée ici correspond soit à la matrice L_{combi} , soit à la matrice de l'opérateur \mathfrak{L}_h . Étant donnée la matrice du plongement X, la forme lissée s'écrit

$$\mathbf{X}_{k} = \mathbf{L}_{s}^{k} \mathbf{X}$$

où k représente le nombre d'applications de l'opérateur de lissage L_s . Cette opération correspond en fait à un lissage des coordonnées. La taille du lissage est déterminée par l'opérateur de Laplace–Beltrami discret choisi. Dans le cas de \mathcal{L}_{combi} , l'opérateur L_s moyenne les sommets dans un voisinage de taille un, là où \mathcal{L}_h effectue un moyennage par une gaussienne paramétrée par t_h (qui correspond donc à un lissage plus important). Nous comparons, dans la figure 6.9, le lissage via \mathcal{L}_h (sur la colonne de gauche) et \mathcal{L}_{combi} (sur la colonne de droite) pour différentes valeurs de k. Le principal désavantage de cette méthode est qu'elle réduit le volume de la forme (celle-ci tend en fait vers son barycentre), ce que nous observons bien dans les deux cas. Néanmoins, nous observons que dans le cas de \mathcal{L}_h , les lignes saillantes de l'*octaflower* sont mieux conservées que dans le cas de \mathcal{L}_{combi} .

6.5.1 Approximation via la décomposition spectrale

Le spectre de l'opérateur de Laplace–Beltrami est un outil puissant en analyse géométrique des surfaces discrètes. Il procure en effet une base des fonction C² sur la surface, au même titre que la transformée de Fourier sur les grilles [VL08]. Si nous savons calculer ce spectre, alors nous pouvons utiliser des techniques d'analyse de Fourier pour faire par exemple de l'approximation de surfaces, ou bien encore du filtrage. Nous illustrons tout d'abord dans la figure 6.10 les fonctions propres associées à notre opérateur \mathfrak{L}_h sur un cube de taille 129³. Nous observons que les fonctions propres de cet opérateur mettent en évidence les symétries de la forme. Nous illustrons de la même façon les fonctions propres de \mathfrak{L}^*_{quad} sur ce cube : nous observons toujours les symétries de la forme et obtenons des résultats similaires à la décomposition de \mathfrak{L}_h .

Une fois la décomposition spectrale calculée, nous pouvons nous en servir pour faire de l'approximation de formes. Soit E la matrice des vecteurs propres colonnes triés dans l'ordre croissant de leur valeur propre associée. Notons également la matrice X de taille $n_{sommets} \times 3$ des coordonnées de la surfaces. L'idée est de venir projeter ces coordonnées sur une partie de la base spectrale. Nous avons plus précisément :

$$\mathbf{X}^{(k)} := \mathbf{E}^{(k)} (\mathbf{E}^{(k)})^{\mathsf{T}} \mathbf{X}$$

où l'exposant (k) sur la matrice E signifie que l'on prend les k premiers vecteurs propres de l'opérateur. Physiquement, les plus petites valeurs propres correspondent aux fréquences les plus faibles de la forme : plus nous ajoutons de vecteurs propres à la décomposition, plus nous captons les détails de la forme. Nous présentons dans la figure 6.12 l'erreur Hausdorff entre la surface approximée et la surface digitale originale. Nous comparons la décomposition de notre opérateur avec celle de \mathcal{L}_{combi} . Nous voyons qu'avec \mathcal{L}_h , nous atteignons une précision *sub-pixel* pour environ 250 vecteurs propres, là où cette précision n'est pas atteinte pour 600 vecteurs propres dans le cas de \mathcal{L}_{combi} . Nous affichons également l'erreur d'approximation spectrale via l'opérateur \mathcal{L}^*_{quad} : nous observons que la précision *sub-pixel* est atteinte pour environ 280 valeurs propres, ce qui est moins bien que \mathcal{L}_h , mais toujours bien mieux que \mathcal{L}_{combi} .

6.6 Flot de courbure moyenne

Nous appliquons dans ce paragraphe une méthode de discrétisation du flot de courbure moyenne. Nous avons en fait déjà partiellement présenté cette méthode au travers de la diffusion de la chaleur dans le paragraphe 6.4. Nous avions également parlé de ce flot lors de l'introduction de la construction de l'opérateur \mathfrak{L}_{cot} via la méthode de Pinkall et Polthier dans le paragraphe 4.3. Nous utilisons ici la discrétisation du flot via la méthode d'Euler implicite : il suffit donc de résoudre l'équation (6.4.1), à la différence que nous utilisons cette fois-ci comme fonction initiale le plongement de la surface discrète. De la même façon que pour la diffusion de la chaleur, nous utilisons l'équation (6.4.2) pour calculer le flot via \mathfrak{L}_{h} . Nous résolvons l'équation (6.4.1) avec l'opérateur \mathfrak{L}_{combi} ainsi qu'avec l'adaptation de l'opérateur \mathfrak{L}_{quad} présenté dans le paragraphe 4.4 (*c.-à-d.* \mathfrak{L}_{quad}^*). Les résultats du flot sont présentés dans la figure 6.13. Nous observons que les flots via

Figure 6.10 Les vingt premières valeurs propres de \mathfrak{L}_h sur un cube digital de taille 129^3 .

Figure 6.11 Nous affichons ici les vingt premières valeurs propres sur un cube de taille 129^3 pour l'opérateur \mathfrak{L}^*_{quad} .

Figure 6.12 Nous affichons l'erreur Hausdorff entre la surface digitale et l'approximation via la décomposition spectrale. Est représenté en orange l'erreur induite par \mathfrak{L}_{combi} et en vert l'erreur induite par \mathfrak{L}_{h} et en bleu celle induite par \mathfrak{L}_{quad}^{*} .

 \mathfrak{L}_{combi} et \mathfrak{L}_{quad}^* sont similaires dans leur comportement avec peut-être un effet de lissage plus prononcé pour \mathfrak{L}_{quad}^* . Le calcul du flot direct via \mathfrak{L}_h nous donne de mauvais résultats visuels : il semblerait que le flot n'ait lieu que dans les parties "plates" de la forme, et non là où la courbure est maximale, c'est-à-dire sur les arêtes saillantes de celle-ci. Nous pensons observer une erreur que nous n'avons pas étudiée dans la preuve de convergence de cet opérateur, à savoir l'erreur qu'il y a entre la fonction appliquée sur le domaine discret et la fonction appliquée sur le domaine continue. La donnée en entrée est en effet ici très bruité, ce qui expliquerait les résultats. Enfin, nous affichons les résultats du flot via \mathfrak{L}_h en résolvant cette fois-ci l'équation (6.4.1), qui donne de meilleurs résultats visuels que la méthode de calcul directe.

6.7 Conclusion

Nous avons mis en évidence expérimentalement la propriété de C²-convergence de notre opérateur, confirmant ainsi le résultat théorique obtenu dans la partie précédente. Nous avons également comparé \mathfrak{L}_h avec d'autres opérateurs de la littérature, à la fois sur la surface digitale, mais aussi sur des surfaces intermédiaires comme par exemple le *marching cubes* de la surface digitale. Nous avons ensuite illustré notre opérateur avec quelques applications pour, entre autre, montrer une propriété d'anisotropie de celui-ci. Nous allons maintenant passer à la conclusion de cette thèse, où nous présenterons une perspective pour l'opérateur de Laplace–Beltrami discret.

Figure 6.13 Illustration du flot de courbure discret pour différents opérateurs. Nous affichons dans la première colonne le flot via \mathfrak{L}_{combi} , dans la seconde colonne le flot via \mathfrak{L}^*_{quad} , dans l'avant dernière colonne le flot calculé explicitement avec \mathfrak{L}_h et enfin dans la dernière colonne le flot calculé implicitement avec \mathfrak{L}_h . Nous affichons les résultats pour différentes valeurs de t.

Conclusion et perspectives

L'article "Discrete Laplace operators : No Free Lunch" [War+07] de Wardetzky, Mathur, Kaelberer et Grinspun nous donne les propriétés que l'on peut attendre d'un opérateur de Laplace–Beltrami discret en se basant sur les propriétés continues de celui-ci. Nous nous sommes concentrés dans cette thèse sur la propriété de C²-convergence de l'opérateur discret, qui nous assure un bon comportement numérique de l'opérateur lorsqu'on l'applique à une fonction donnée en entrée. Nous avons dû faire face à deux obstacles inhérents aux surfaces digitales. Le premier problème est le fait que la surface discrète n'est pas un échantillonnage de la surface continue, mais seulement une approximation. Le second problème est la mauvaise estimation triviale de quantités géométriques simples comme l'aire ou bien encore les normales. Nous avons exposé les travaux de Lachaud et Thibert [LT16] qui utilisent la théorie de la mesure géométrique d'Herbert Federer [Fed59; Fed69] pour mettre en relation le bord discret et le bord continu via la fonction de projection au plus proche voisin. Cette théorie nous a permis de mettre en relation les fonctions définies sur la surface digitale avec les fonctions définies sur la variété. Nous avons résolu le second problème en utilisant un opérateur de normales convergent basé sur les invariants intégraux sur les surfaces digitales [CLL13].

L'étude de discrétisations existantes de l'opérateur de Laplace-Beltrami a mis en évidence le fait que l'application directe de ces opérateurs sur les surfaces digitales ne nous donne pas la C²-convergence. De manière plus globale, nous avons observé que les opérateurs locaux définis au sens de l'équation (4.1.1) avait peu de chance de nous donner la C²convergence. Ce sont ces observations, couplées à la volonté d'obtenir la C²-convergence, qui nous ont orienté vers la méthode introduite par Belkin et al. [BN08; BSW; BSW08] qui utilise le lien entre l'opérateur de Laplace-Beltrami et le noyau de la chaleur pour obtenir une discrétisation C²-convergente sur les triangulations. Nous avons montré qu'il était possible d'adapter leur méthode sur les surfaces digitales en combinant les outils de théorie de la mesure géométrique ainsi qu'un estimateur convergent des normales et avons montré la C²-convergence de ce nouvel opérateur. Nous avons ensuite effectué une analyse numérique de celui-ci en le comparant aux opérateurs existants de la littérature et avons mis en évidence que seul notre opérateur était C²-convergent dans le cadre de nos expériences. Nous avons également mis en avant des applications comme le calcul de la courbure moyenne ou encore la décomposition spectrale de l'opérateur, qui nous a permis de faire de l'approximation de formes.

De nombreuses questions restent bien sûr encore ouvertes concernant notre discrétisation de l'opérateur de Laplace–Beltrami sur les surfaces digitales :

— Nous avons, dans le paragraphe 6.3, observé par l'expérience que nous pouvions obtenir une matrice creuse de l'opérateur \mathfrak{L}_h en coupant la convolution dans un rayon qui est relié à la variance de la gaussienne utilisée et conserver la propriété de

 C^2 -convergence. Il nous faudrait montrer théoriquement que dans ce cas, l'approximation est toujours convergente. Une des pistes que nous envisageons est d'utiliser le lemme 7.1 de Belkin *et al.* présent dans leur article 'Towards a Theoretical Foundation for Laplacian-Based Manifold Methods' [BN08].

- Nous savons que le spectre de l'opérateur de Belkin *et al.* converge sur les triangulations sous certaines propriétés d'échantillonnages de la surface, résultat qui est dû à Dey *et al.* [DRW10]. Une perspective naturelle serait d'obtenir un résultat théorique similaire sur nos surfaces digitales, ce qui validerait la propriété (PSD) pour £_h. Pour prouver un tel théorème, nous pensons qu'il est nécessaire de tout d'abord montrer la convergence en norme d'opérateur de notre discrétisation. Il existe en effet de nombreux résultats en théorie spectrale supposant cette convergence. La preuve d'une telle propriété reste néanmoins un vrai challenge, puisqu'elle allie des théories mathématiques diverses (théorie spectrale, théorie sur la convergence de fonctions entre autre).
- Puisque nous parlons des propriétés de notre opérateur, la question de (LIN) reste un problème ouvert à la fois pour notre discrétisation, ainsi que pour celle de Belkin *et al.*. Nous ne savons pas à ce jour si l'un ou l'autre des opérateurs vérifie cette propriété.
- Concernant les applications de l'opérateur sur les surfaces digitales, nous pouvons envisager l'application de nombreuses méthodes existantes sur les surfaces digitales comme le flot par courbure moyenne, ou bien encore le flot de Willmore. Bien que n'étant pas une réelle avancée, il serait intéressant d'étudier le comportement de ces méthodes sur nos surfaces.
- Une autre question ouverte est le lien entre notre opérateur et le formalisme du calcul extérieur. Les différences de fonctions dans la convolution nous font fortement penser à l'opérateur de dérivée extérieure du calcul, et nous pouvons donc raisonnablement penser qu'il existe un lien entre les deux objets. Là où ce lien est plutôt évident dans le cas des opérateurs locaux (comme pour les cotangentes par exemple), nous ne savons pas dans quel cadre les deux objets s'entrelacent.

Le cœur de la méthode utilisée pour la discrétisation de l'opérateur est le lien entre l'opérateur de Laplace–Beltrami et la diffusion de la chaleur sur une surface. Nous avons en fait présenté dans cette thèse une discrétisation des solutions u(x,t) de l'équation de la chaleur via la convolution entre une gaussienne et la fonction initiale à diffuser. Nous pouvons alors nous demander s'il n'existe pas une autre méthode pour obtenir des solutions. Revenons sur la forme discrétisée de l'équation de la chaleur via la méthode d'Euler implicite qui s'écrit

$$\mathbf{L}\mathbf{u}_t = \frac{1}{t}(\mathbf{u}_t - \mathbf{u}_0)$$

où L est une discrétisation arbitraire de l'opérateur de Laplace–Beltrami. En réarrangeant les termes nous pouvons écrire

$$(\mathbf{I} - \mathbf{t}\mathbf{L})\,\mathbf{u}_{\mathbf{t}} = \mathbf{u}_{\mathbf{0}}.\tag{6.7.1}$$

Remarquons tout d'abord que si l'on prend u_0 comme étant un Dirac centré en un point x, nous retombons sur la première étape de calcul des géodésiques introduite par Crane *et al.*

[CWW13]. Notons également que lorsque l'on prend u_0 comme étant le plongement de la surface discrète, la résolution de ce système nous donne le flot par courbure moyenne associée à la surface (dont nous avions parlé dans le paragraphe 4.3 et illustré dans le paragraphe 6.6). Ces deux méthodes sont en fait un cas particulier de résolution de l'équation (6.7.1). Ne sommes-nous pas alors en train de construire un nouvel opérateur discret via la résolution de cette équation? La réponse est en faite positive, et ce nouvel opérateur s'écrit

$$\mathbf{L}_{c} := \frac{1}{t} \left((\mathbf{I} - t\mathbf{L})^{-1} - \mathbf{I} \right).$$
(6.7.2)

Nous pouvons donc nous demander quel lien existe-t-il entre l'opérateur \mathcal{L} et l'opérateur \mathcal{L}_c . Théoriquement, nous savons que le spectre des deux opérateurs est relié. La quantité $(I - tL)^{-1}$, si elle existe, peut s'écrire sous la forme d'une série (appelée série de Neumann [Wer07]) :

$$(\mathbf{I} - \mathbf{t}\mathbf{L})^{-1} = \sum_{k=0}^{\infty} \mathbf{t}^k \mathbf{L}^k.$$

En injectant cette série dans l'équation (6.7.2) nous avons

$$L_c = \frac{1}{t} \left(\sum_{k=0}^{\infty} t^k L^k - I \right) = \sum_{k=1}^{\infty} t^{k-1} L^k$$

et nous avons la relation de récurrence suivante

$$L_c = L(I + tL_c).$$
 (6.7.3)

Soient λ_i (resp. λ_i^c) les valeurs propres de L (resp. L_c) avec les vecteurs propres correspondant φ_i (resp. φ_i^c). La décomposition spectrale de L_c vérifie

$$\forall i, \mathbf{L}_{c}\boldsymbol{\varphi}_{i}^{c} = \lambda_{i}^{c}\boldsymbol{\varphi}_{i}^{c}.$$

Nous injectons l'équation (6.7.3) dans l'équation de la décomposition spectrale ce qui nous donne :

$$\forall i, \mathbf{L}(\mathbf{I} - t\mathbf{L}_c)\boldsymbol{\varphi}_i^c = \lambda_i^c \boldsymbol{\varphi}_i^c.$$

Finalement, en développant et en remplaçant $L_c \phi_i^c$ par $\lambda_i^c \phi_i^c$ nous avons

$$\forall \mathbf{i}, \mathbf{L}\boldsymbol{\phi}_{\mathbf{i}}^{c} = \frac{\lambda_{\mathbf{i}}^{c}}{1 - t\lambda_{\mathbf{i}}^{c}}(\boldsymbol{\phi})_{\mathbf{i}}^{c},$$

ce qui veut dire que

$$orall i, egin{cases} \lambda_i = rac{\lambda_i^c}{1-t\lambda_i^c} \mbox{ et } \lambda_i^c = rac{\lambda_i}{1+t\lambda_i} \ arphi_i = arphi_i^c. \end{cases}$$

Le nouvel opérateur possède donc les même vecteurs propres que L, et nous avons une relation entre les valeurs propres des deux matrices. Nous savons que l'amplitude des valeurs propres de l'opérateur de Laplace–Beltrami représente l'intensité des vibrations sur la surface lorsque l'opérateur est utilisé dans un processus de diffusion. Nous voyons donc que nous avons en quelque sorte effectué une opération de lissage du spectre puisque les

Figure 6.14 Nous affichons l'erreur infinie d'estimation entre l'opérateur de Laplace–Beltrami appliquée à la fonction $u(x, y, z) = e^x$ sur une sphère unité ∂S^3 et une de ses discrétisations. Nous présentons à gauche les résultats pour $\partial_h S^3$ avec l'erreur pour \mathfrak{L}^*_{quad} en rouge (---), pour L_c^{quad} en bleue (---) et pour \mathfrak{L}_h en vert (--). A droite, nous affichons, sur triangulation d'un échantillonnage régulier de la sphère, l'erreur en verte (---) pour \mathfrak{L}_{cot} et en orange (---) pour L_c^{cot} .

nouvelles valeurs propres sont plus petites que les valeurs propres d'origine. Ce résultat est en accord avec l'interprétation physique de l'équation de la chaleur qui diffuse les valeurs de la fonction au temps zéro sur la surface. Il faut en effet se rappeler que les solutions de l'équation de la chaleur sont données par la convolution entre une gaussienne et la fonction au temps zéro : cette opération lisse les valeurs de la fonction sur la surface, ce que nous observons également via le spectre du nouvel opérateur. Une autre propriété qui découle immédiatement est que si L est (PSD) alors L_c l'est aussi.

Parlons maintenant du choix de la matrice L. Le but que nous souhaitons atteindre ici est d'obtenir la C²-convergence pour L_c, comme nous l'avions obtenu avec \mathfrak{L}_h . D'après l'étude que nous avons menée sur les différentes discrétisation de l'opérateur de Laplace–Beltrami, l'opérateur \mathfrak{L}^*_{quad} semble être un bon candidat : l'erreur de convergence est un biais constant (par rapport à une divergence pour \mathfrak{L}_{combi} par exemple) et l'opérateur possède des propriétés spectrales similaires à celle de \mathfrak{L}_h . Si nous prenons donc en entrée \mathfrak{L}^*_{quad} pour la méthode et que nous observons les graphes de convergence pour la courbure moyenne, nous obtenons en effet la C²-convergence de \mathcal{L}^{quad}_{c} (voir le graphe de gauche de la figure 6.14). Ce résultat nous conforte dans l'idée que \mathfrak{L}^*_{quad} est un bon candidat pour notre méthode. Nous observons également que la méthode donne un opérateur convergent lorsque l'on prend \mathfrak{L}_{cot} sur les triangulations comme opérateur en entrée (voir le graphe de la figure 6.14).

Nous n'avons, d'un point de vue théorique, ni preuve de C²-convergence de l'opérateur L_c, ni caractérisation des propriétés de la matrice à fournir en entrée à la méthode. Afin de montrer la C²-convergence, nous pensons qu'il serait judicieux de relier la quantité u(x,t) calculée via la nouvelle méthode et celle calculée via \mathfrak{L}_h (et de même pour les triangulations). Nous pourrions alors réutiliser les résultats de C²-convergence prouvés à la fois dans le cas des surfaces digitales et dans le cas des triangulations. Pour le choix de la matrice, nous pensons que la propriété de H_0^1 -convergence est suffisante pour montrer que \mathcal{L}_c C²-converge : nous observons en effet en pratique que \mathfrak{L}_{cot} produit un opéra-

teur convergent, là où \mathfrak{L}_{combi} échoue. Si nous arrivons à montrer la C²-convergence de cette méthode dans le cadre générale des surfaces polygonales, nous avons bon espoir de montrer la convergence du spectre du nouvel opérateur en utilisant par exemple pour les triangulations les résultats existants pour la discrétisation de Belkin *et al.*. Or, nous avons vu que l'opérateur en entrée de la méthode et l'opérateur produit par la méthode possèdent en fait à peu près la même décomposition spectrale. Nous pourrions peut-être ainsi répondre à un problème ouvert qui concerne la convergence des vecteurs propres de l'opérateur des cotangentes sur les triangulations (seul la convergence des valeurs propres à pour l'instant été montrée par Wardetzky [War10]).

Nous concluons cette thèse par quelques mots sur le calcul discret. Nous avons montré que, lorsque l'opérateur de Laplace-Beltrami est tiré d'un calcul discret, il permet de tester plusieurs propriétés de celui-ci comme la convergence de ces opérateurs et de façon plus général la convergence de plusieurs équations aux dérivées partielles formulées avec celuici (rappelez-vous par exemple que la convergence de Dirichlet, $c.-\dot{a}$ -d. la convergence des solutions d'un problème d'approximation, suffit pour la convergence des équations aux dérivées partielles de type Poisson). Si nous replaçons la thèse dans le cadre du projet COMEDIC, nous avons donné des réponses concernant la discrétisations de l'opérateur de Laplace-Beltrami sur les surfaces digitales. Pour continuer, nous souhaiterions définir proprement un calcul discret sur les surfaces digitales. L'étude de \mathfrak{L}^*_{quad} semble nous indiquer qu'une bonne approche au calcul discret pour les surfaces digitales serait une approche primale-primale du calcul : l'injection de la métrique dans la formulation primale / duale d'Hirani et al. nous paraît beaucoup plus difficile et sujette à erreurs que la version de \mathcal{L}_{quad} que nous avons présentée (la difficulté réside ici dans l'injection des mesures dans le produit intérieur L₁, c.-à-d. la définition de l'opérateur de Hodge sur les 1formes). Si nous adoptons l'approche primale-primale, il nous faudrait définir proprement les formes discrètes (en s'appuyant par exemple sur la topologie algébrique appliquée aux complexes cellulaires [Mun84] et des outils de géométrie différentielle). Enfin, de nombreux opérateurs sont encore à explorer : nous n'avons pas parlé des opérateurs musicaux \sharp et \flat qui mettent en relation un champ vectoriel avec les 1-formes au travers du tenseur métrique et qui sont essentiels en géométrie discrète. Nous pourrions également envisager la discrétisation de la dérivée de Lie, qui permet, entre autre, de dériver des champs vectoriels.

Bibliographie

- [AW11] Marc ALEXA et Max WARDETZKY. "Discrete Laplacians on General Polygonal Meshes". In: ACM SIGGRAPH 2011 Papers. SIGGRAPH '11. Vancouver, British Columbia, Canada: ACM, 2011, 102 :1-102 :10 (cf. p. 30, 53, 62-65, 78).
- [BN08] Mikhail BELKIN et Partha NIYOGI. "Towards a theoretical foundation for Laplacianbased manifold methods". In : J. Comput. Syst. Sci. 74.8 (2008), p. 1289-1308 (cf. p. 7, 65, 67, 68, 113, 114).
- [Bra92] Kenneth BRAKKE. "The surface evolver". In : *Experimental Mathematics* 1.2 (1992), p. 141-165 (cf. p. 58).
- [BS07] Alexander Iwanowitsch BOBENKO et Boris SPRINGBORN. "A Discrete Laplace-Beltrami Operator for Simplicial Surfaces". In : Discrete & Computational Geometry 38.4 (2007), p. 740-756 (cf. p. 52).
- [BSW] Mikhail BELKIN, Jian SUN et Yusu WANG. "Constructing Laplace Operator from Point Clouds in \mathbb{R}^{d} ". In : *Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, p. 1031-1040 (cf. p. 4, 7, 53, 65, 68, 71, 113).
- [BSW08] Mikhail BELKIN, Jian SUN et Yusu WANG. "Discrete laplace operator on meshed surfaces". In : *Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008.* Sous la dir. de Monique TEILLAUD. ACM, 2008, p. 278-287 (cf. p. 4, 7, 65, 68, 74, 81, 98, 99, 113).
- [Cai+17] Thomas CAISSARD, David COEURJOLLY, Jacques-Olivier LACHAUD et Tristan ROUS-SILLON. "Heat kernel Laplace-Beltrami operator on digital surfaces". In : *International Conference on Discrete Geometry for Computer Imagery*. working paper or preprint. Springer. Mar. 2017, p. 241-253 (cf. p. 7).
- [Cai+18] Thomas CAISSARD, David COEURJOLLY, Jacques-Olivier LACHAUD et Tristan ROUS-SILLON. "Laplace–Beltrami Operator on Digital Surfaces". In : (2018) (cf. p. 7).
- [Car+13] Colin CARTADE, Christian MERCAT, Rémy MALGOUYRES et Chafik SAMIR. "Mesh Parameterization with Generalized Discrete Conformal Maps". In : *Journal of mathematical imaging and vision* 46.1 (2013), p. 1-11 (cf. p. 53).
- [Chu97] Fan CHUNG. *Spectral Graph Theory*. American Mathematical Society, 1997 (cf. p. 51).
- [CL06] Fan CHUNG et Linyuan LU. *Complex Graphs and Networks (Cbms Regional Conference Series in Mathematics)*. Boston, MA, USA : American Mathematical Society, 2006 (cf. p. 51).
- [CLL13] David COEURJOLLY, Jacques-Olivier LACHAUD et Jérémy LEVALLOIS. "Integral Based Curvature Estimators in Digital Geometry". In : Discrete Geometry for Computer Imagery - 17th IAPR International Conference, DGCI 2013, Seville, Spain, March 20-22, 2013. Proceedings. Sous la dir. de Rocío GONZÁLEZ-DÍAZ, María José JIMÉNEZ et Belén MEDRANO. T. 7749. Lecture Notes in Computer Science. Springer, 2013, p. 215-227 (cf. p. 37, 113).
- [CLL14] David COEURJOLLY, Jacques-Olivier LACHAUD et Jérémy LEVALLOIS. "Multigrid convergent principal curvature estimators in digital geometry". In : *Computer Vision and Image Understanding* 129 (2014), p. 27-41 (cf. p. 37, 83, 84, 98).

- [CLR12] David COEURJOLLY, Jacques-Olivier LACHAUD et Tristan ROUSSILLON. "Multigrid Convergence of Discrete Geometric Estimators". In : Digital Geometry Algorithms : Theoretical Foundations and Applications to Computational Imaging. Sous la dir. de Valentin E. BRIMKOV et Reneta P. BARNEVA. Dordrecht : Springer Netherlands, 2012, p. 395-424 (cf. p. 37, 78, 79, 84).
- [Coe+16] David COEURJOLLY, Marion FOARE, Pierre GUETH et Jacques-Olivier LACHAUD. "Piecewise smooth reconstruction of normal vector field on digital data". In : *Computer Graphics Forum*. Proc. Pacific Graphics 2016 35.7 (sept. 2016) (cf. p. 39).
- [Cor+96] Robert M. CORLESS, Gaston H. GONNET, D. E. G. HARE, David J. JEFFREY et Donald E. KNUTH. "On the LambertW function". In : Adv. Comput. Math. 5.1 (1996), p. 329-359 (cf. p. 95).
- [CP05] Frédéric CAZALS et Marc POUGET. "Estimating differential quantities using polynomial fitting of osculating jets". In : *Computer Aided Geometric Design* 22.2 (2005), p. 121-146 (cf. p. 101).
- [CWW13] Keenan CRANE, Clarisse WEISCHEDEL et Max WARDETZKY. "Geodesics in heat : a new approach to computing distance based on heat flow". In : ACM Transactions on Graphics (TOG) 32.5 (2013), p. 152 (cf. p. 106, 115).
- [Des+05] Mathieu DESBRUN, Anil N. HIRANI, Melvin LEOK et Jerrold E. MARSDEN. "Discrete exterior calculus". In : arXiv preprint math/0508341 (2005) (cf. p. 27, 30, 52).
- [Des+99] Mathieu DESBRUN, Mark MEYER, Peter SCHRÖDER et Alan H. BARR. "Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow". In : Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, Los Angeles, CA, USA, August 8-13, 1999. Sous la dir. de Warren N. WAGGENSPACK. ACM, 1999, p. 317-324 (cf. p. 52, 57).
- [Dgt] DGtal : Digital Geometry tools and algorithms library. http://dgtal.org (cf. p. 102).
- [Dou27] Jesse DOUGLAS. "A Method of Numerical Solution of the Problem of Plateau". In : *Annals of Mathematics* 29.1/4 (1927), p. 180-188 (cf. p. 57).
- [Dou31] Jesse DOUGLAS. *Solution of the Problem of Plateau*. Transactions of AMS. AMS, 1931 (cf. p. 57).
- [DRW10] Tamal DEY, Pawas RANJAN et Yusu WANG. "Convergence, Stability, and Discrete Approximation of Laplace Spectra". In : jan. 2010, p. 650-663 (cf. p. 94, 114).
- [Duf59] Richard J. DUFFIN. "Distributed and Lumped Networks". In : *Journal of Mathematics and Mechanics* 8.5 (1959), p. 793-826 (cf. p. 52).
- [Dzi88] Gerhard DZIUK. "Finite Elements for the Beltrami operator on arbitrary surfaces". In: Partial Differential Equations and Calculus of Variations. Sous la dir. de Stefan HILDEBRANDT et Rolf LEIS. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988, p. 142-155 (cf. p. 52).
- [Dzi90] Gerhard DZIUK. "An algorithm for evolutionary surfaces". In : *Numerische Mathematik* 58.1 (déc. 1990), p. 603-611 (cf. p. 52, 58).
- [EMC11] Henri-Alex ESBELIN, Rémy MALGOUYRES et Colin CARTADE. "Convergence of binomial-based derivative estimation for 2 noisy discretized curves". In : *Theoretical Computer Science* 412.36 (2011), p. 4805-4813 (cf. p. 71).

- [Eva10] Lawrence C. EVANS. *Partial differential equations*. Providence, R.I. : American Mathematical Society, 2010 (cf. p. 21).
- [Fab23] G. FABER. Beweis, daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. T. 1923,8.
 Sitzungsbericht der Bayerischen Akademie der Wissenschaften. München, 1923 (cf. p. 24).
- [Fed59] Herbert FEDERER. "Curvature measures". In : Transactions of the American Mathematical Society 93.3 (1959), p. 418-491 (cf. p. 35, 81, 113).
- [Fed69] Herbert FEDERER. *Geometric measure theory*. Grundlehren der mathematischen Wissenschaften. Springer, 1969 (cf. p. 32, 35, 113).
- [FH05] Michael S. FLOATER et Kai HORMANN. "Surface Parameterization : a Tutorial and Survey". In : Advances in Multiresolution for Geometric Modelling. Sous la dir. de Neil A. DODGSON, Michael S. FLOATER et Malcolm A. SABIN. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005, p. 157-186 (cf. p. 65).
- [Fli+05] Frédéric FLIN, Jean-Bruno BRZOSKA, Bernard LESAFFRE et al. "An adaptive filtering method to evaluate normal vectors and surface areas of 3D objects. Application to snow images from X-ray tomography". In : *IEEE Transactions on Image Processing* 14.5 (2005), p. 585-596 (cf. p. 32).
- [Fuj95] Koji FUJIWARA. "Eigenvalues of Laplacians on a Closed Riemannian Manifold and Its Nets". In : *Proceedings of the American Mathematical Society* 123.8 (1995), p. 2585-2594 (cf. p. 52).
- [GP10] Leo J. GRADY et Jonathan POLIMENI. *Discrete calculus : Applied analysis on graphs for computational science*. Springer, 2010 (cf. p. 53).
- [GW96] Carolyn GORDON et David L. WEBB. "You Can't Hear the Shape of a Drum". In : *American Scientist* 84 (jan. 1996), p. 46-55 (cf. p. 23, 24).
- [Hal48] Paul R. HALMOS. *Finite Dimensional Vector Spaces*. Annals of mathematics studies. Princeton University Press, 1948 (cf. p. 54).
- [Har93] Jenny HARRISON. "Stokes' theorem for nonsmooth chains". In : *Bulletin of the American Mathematical Society* 29.2 (1993), p. 235-242 (cf. p. 53).
- [Har99] Jenny HARRISON. "Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems". In : *Journal of Physics A : Mathematical and General* 32.28 (1999), p. 5317 (cf. p. 53).
- [Her12] Gabor T. HERMAN. *Geometry of Digital Spaces*. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, 2012 (cf. p. 31).
- [Hil+99] Tor HILDEBRAND, Andres LAIB, Ralph MÜLLER, Jan DEQUEKER et Peter RÜEG-SEGGER. "Direct three-dimensional morphometric analysis of human cancellous bone : microstructural data from spine, femur, iliac crest, and calcaneus." In : Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 14.7 (juil. 1999), p. 1167-74 (cf. p. 32).
- [Hir03] Anil N. HIRANI. "Discrete exterior calculus". Thèse de doct. California Institute of Technology, 2003 (cf. p. 27, 30, 31, 52).
- [HN01] John K. HUNTER et Bruno NACHTERGAELE. *Applied Analysis*. World Scientific, 2001 (cf. p. 41, 44).
- [Hod89] William V. D. HODGE. *The Theory and Applications of Harmonic Integrals*. Cambridge mathematical library. Cambridge University Press, 1989 (cf. p. 21).

- [HP11] Klaus HILDEBRANDT et Konrad POLTHIER. "On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces". In : *Computer Graphics Forum* 30.5 (2011), p. 1513-1520 (cf. p. 53, 69, 70, 99).
- [HPW06] Klaus HILDEBRANDT, Konrad POLTHIER et Max WARDETZKY. "On the convergence of metric and geometric properties of polyhedral surfaces". English. In : Geometriae Dedicata 123.1 (2006), p. 89-112 (cf. p. 53).
- [HS92] Robert Martin HARALICK et Linda SHAPIRO. *Computer and Robot Vision*. 1st. Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc., 1992 (cf. p. 5).
- [Jos05] Jürgen JOST. *Riemannian Geometry and Geometric Analysis*. Springer Universitat texts. Springer, 2005 (cf. p. 22).
- [Kac66] Mark KAC. "Can One Hear the Shape of a Drum?" In : *The American Mathematical Monthly* 73.4 (1966), p. 1-23 (cf. p. 24).
- [KP96] Hermann KARCHER et Konrad POLTHIER. "Construction of triply periodic minimal surfaces". In : *Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences* 354.1715 (1996), p. 2077-2104 (cf. p. 52).
- [KR04] Reinhard KLETTE et Azriel ROSENFELD. *Digital geometry : geometric methods for digital picture analysis*. The Morgan Kaufmann series in computer graphics and geometric modeling. Amsterdam, Boston : Elsevier, 2004 (cf. p. 31, 33).
- [Kra25]Edgar KRAHN. "Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises".In : Mathematische Annalen 94.1 (déc. 1925), p. 97-100 (cf. p. 24).
- [Lac06] Jacques-Olivier LACHAUD. "Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry". Habilitation à diriger des recherches. Université Sciences et Technologies - Bordeaux I, déc. 2006 (cf. p. 34).
- [Lax07] Peter D. LAX. *Linear Algebra and Its Applications*. Linear algebra and its applications v. 10. Wiley, 2007 (cf. p. 54).
- [LC87] William E. LORENSEN et Harvey E. CLINE. "Marching Cubes : A High Resolution 3D Surface Construction Algorithm". In : *Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques*. SIGGRAPH '87. New York, NY, USA : ACM, 1987, p. 163-169 (cf. p. 8).
- [LCL14] Jérémy LEVALLOIS, David COEURJOLLY et Jacques-Olivier LACHAUD. "Parameter-Free and Multigrid Convergent Digital Curvature Estimators". In : Discrete Geometry for Computer Imagery - 18th IAPR International Conference, DGCI 2014, Siena, Italy, September 10-12, 2014. Proceedings. 2014, p. 162-175 (cf. p. 83, 84).
- [LCL17] Jacques-Olivier LACHAUD, David COEURJOLLY et Jérémy LEVALLOIS. "Robust and Convergent Curvature and Normal Estimators with Digital Integral Invariants". In : *Modern Approaches to Discrete Curvature*. Sous la dir. de Pascal Romon LAURENT NAJMAN. T. 2184. Lecture Notes in Mathematics. Springer-Verlag, 2017 (cf. p. 39).
- [Lee03] John M. LEE. *Introduction to Smooth Manifolds*. Graduate Texts in Mathematics. Springer, 2003 (cf. p. 11, 14, 16, 17).
- [Lov96] László LOVÁSZ. "Random Walks on Graphs : A Survey". In : Combinatorics, Paul Erdős is Eighty. T. 2. Budapest : János Bolyai Mathematical Society, 1996, p. 353-398 (cf. p. 5).

- [LR56] Peter D. LAX et Robert D. RICHTMYER. "Survey of the stability of linear finite difference equations". In : Communications on Pure and Applied Mathematics 9.2 (1956), p. 267-293 (cf. p. 43).
- [LT16] Jacques-Olivier LACHAUD et Boris THIBERT. "Properties of Gauss Digitized Shapes and Digital Surface Integration". In : *Journal of Mathematical Imaging and Vision* 54.2 (2016), p. 162-180 (cf. p. 4, 31, 33-36, 74, 82, 83, 113).
- [LZ10] Bruno LÉVY et Hao (Richard) ZHANG. "Spectral Mesh Processing". In : ACM SIG-GRAPH 2010 Courses. SIGGRAPH '10. Los Angeles, California : ACM, 2010, 8 :1-8 :312 (cf. p. 5, 23, 52, 62).
- [May01] Uwe MAYER. "Numerical solutions for the surface diffusion flow in three space dimensions". In : 20 (jan. 2001) (cf. p. 52).
- [Mer01] Christian MERCAT. "Discrete Riemann surfaces and the Ising model". In : *Communications in Mathematical Physics* 218.1 (2001), p. 177-216 (cf. p. 53).
- [Mer08] Christian MERCAT. "Discrete Complex Structure on Surfel Surfaces". English. In : Discrete Geometry for Computer Imagery. T. 4992. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, p. 153-164 (cf. p. 53).
- [Mey+03] Mark MEYER, Mathieu DESBRUN, Peter SCHRÖDER et Alan H. BARR. "Discrete Differential-Geometry Operators for Triangulated 2-Manifolds". In: Visualization and Mathematics III. Sous la dir. d'Hans-Christian HEGE et Konrad POLTHIER. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003, p. 35-57 (cf. p. 52, 57).
- [Min53] Subbaramiah MINAKSHISUNDARAM. "Eigenfunctions on Riemannian manifolds". In : *J. Indian Math. Soc.* 17 (1953), p. 158-165 (cf. p. 24, 66).
- [Mol75] Stanislav A. MOLCHANOV. "Diffusion Processes and Riemannian Geometry". In : *Russian Mathematical Surveys* 30.1 (1975), p. 1 (cf. p. 67).
- [Mor08] Jean-Marie MORVAN. *Generalized Curvatures*. 1^{re} éd. Springer Publishing Company, Incorporated, 2008 (cf. p. 37).
- [MP49] Subbaramiah MINAKSHISUNDARAM et Agneta PLEIJEL. "Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds". In : *Can. J. Math.* 1 (1949), p. 242-256 (cf. p. 24, 66).
- [MS67] Henry P. MCKEAN Jr. et Isadore M. SINGER. "Curvature and the eigenvalues of the Laplacian". In : *J. Differential Geom.* 1.1-2 (1967), p. 43-69 (cf. p. 24).
- [Mun84] James R. MUNKRES. *Elements of Algebraic Topology*. Addison Wesley Publishing Company, 1984 (cf. p. 30, 117).
- [Ovs+17] Maks OVSJANIKOV, Etienne CORMAN, Michael BRONSTEIN et al. "Computing and Processing Correspondences with Functional Maps". In : *ACM SIGGRAPH 2017 Courses*. SIGGRAPH '17. Los Angeles, California : ACM, 2017, 5 :1-5 :62 (cf. p. 23).
- [Pav82] Theodosios PAVLIDIS. *Algorithms for Graphics and Image Processing*. Springer, 1982 (cf. p. 34).
- [Per+16] Hélène PERRIER, Jérémy LEVALLOIS, David COEURJOLLY et al. "Interactive Curvature Tensor Visualization on Digital Surfaces". In : *DGCI2016*. Sous la dir. de SPRIN-GER. T. Lecture Notes in Computer Sciences. International Conference on Discrete Geometry for Computer Imagery. Nantes, France, avr. 2016 (cf. p. 39).
- [Pol02a] Konrad POLTHIER. *Computational Aspects of Discrete Minimal Surfaces*. 2002 (cf. p. 52).

- [Pol02b] Konrad POLTHIER. Unstable Periodic Discrete Minimal Surfaces. 2002 (cf. p. 52).
- [Pot+07] Helmut POTTMANN, Johannes WALLNER, Yong-Liang YANG, Yu-Kun LAI et Shi-Min HU. "Principal curvatures from the integral invariant viewpoint". In : Computer Aided Geometric Design 24.8-9 (2007), p. 428-442 (cf. p. 37, 38).
- [Pot+09] Helmut POTTMANN, Johannes WALLNER, Qi-Xing HUANG et Yong-Liang YANG. "Integral invariants for robust geometry processing". In : Computer Aided Geometric Design 26.1 (2009), p. 37-60 (cf. p. 37, 38).
- [PP03] Konrad POLTHIER et Eike PREUSS. "Identifying vector field singularities using a discrete Hodge decomposition". In : *Visualization and Mathematics* 3 (2003), p. 113-134 (cf. p. 52).
- [PP93] Ulrich PINKALL et Konrad POLTHIER. "Computing discrete minimal surfaces and their conjugates". In : *Experimental mathematics* 2.1 (1993), p. 15-36 (cf. p. 52, 57, 58).
- [PR02] Konrad POLTHIER et Wayne ROSSMAN. *Discrete constant mean curvature surfaces and their index.* 2002 (cf. p. 52).
- [Qin+] Hongxing QIN, Yi CHEN, Yunhai WANG et al. "Laplace–Beltrami Operator on Point Clouds Based on Anisotropic Voronoi Diagram". In : *Computer Graphics Forum* (), n/a-n/a (cf. p. 53).
- [Rad33] Tibor RADÓ. On the Problem of Plateau. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge. Springer Berlin Heidelberg, 1933 (cf. p. 57).
- [Ray77] John W. S. B. RAYLEIGH. *The Theory of Sound*. The Theory of Sound v. 1. Macmillan, 1877 (cf. p. 24).
- [Reg61] Tullio REGGE. "General relativity without coordinates". English. In : Il Nuovo Cimento Series 10 19.3 (1961), p. 558-571 (cf. p. 51).
- [Ros04] Elissa Ross. "Spectral Graph Drawing : A Survey". In : 2004 (cf. p. 51).
- [Ros05] Wayne ROSSMAN. "Infinite periodic discrete minimal surfaces without self-intersections". In : 2005 (cf. p. 52).
- [Ros97] Steven ROSENBERG. *The Laplacian on a Riemannian Manifold*. Cambridge Books Online. Cambridge University Press, 1997 (cf. p. 22, 66).
- [Rud76] Walter RUDIN. *Principles of Mathematical Analysis*. International series in pure and applied mathematics. McGraw-Hill, 1976 (cf. p. 45).
- [Ser83] Jean SERRA. *Image Analysis and Mathematical Morphology*. Orlando, FL, USA : Academic Press, Inc., 1983 (cf. p. 34).
- [Sul08] John M. SULLIVAN. "Curvatures of Smooth and Discrete Surfaces". In : Discrete Differential Geometry. Sous la dir. d'Alexander I. BOBENKO, John M. SULLIVAN, Peter SCHRÖDER et Günter M. ZIEGLER. Basel : Birkhäuser Basel, 2008, p. 175-188 (cf. p. 62).
- [Sun04] Jia chang SUN. "On approximation of Laplacian eigenproblem over a regular hexagon with zero boundary conditions". In : *Journal of Computational Mathematics* 22.2 (2004), p. 275-286 (cf. p. 23).
- [Tau01] Gabriel TAUBIN. "Geometric Signal Processing on Polygonal Meshes". In : 4 (juin 2001) (cf. p. 52).
- [Tau95] Gabriel TAUBIN. "A signal processing approach to fair surface design". In : *Proc. SIGGRAPH*. 1995, p. 351-358 (cf. p. 52).

- [VL08] Bruno VALLET et Bruno LÉVY. "Spectral Geometry Processing with Manifold Harmonics". In : Comput. Graph. Forum 27.2 (2008), p. 251-260 (cf. p. 5, 108).
- [Wag77] Herbet WAGNER. "A contribution to the numerical approximation of minimal surfaces". In : *Computing* 19.1 (mar. 1977), p. 35-58 (cf. p. 58).
- [War+07] Max WARDETZKY, Saurabh MATHUR, Felix KÄLBERER et Eitan GRINSPUN. "Discrete Laplace operators : No free lunch". In : t. 07. Jan. 2007, p. 33-37 (cf. p. 7, 53, 59, 99, 113).
- [War10] Max WARDETZKY. "Discrete Differential Operators on Polyhedral Surfaces Convergence and Approximation". Thèse de doct. Freie Universität Berlin, 2010 (cf. p. 4, 59, 117).
- [Wer07] Dirk WERNER. *Funktionalanalysis*. Springer-Lehrbuch. Springer Berlin Heidelberg, 2007 (cf. p. 115).
- [WET92] Hassler WHITNEY, James EELLS et Domingo TOLEDO. *Collected Papers of Hassler Whitney*. Contemporary Mathematicians. Birkhäuser Boston, 1992 (cf. p. 44).
- [Wey11] Hermann WEYL. "Ueber die asymptotische Verteilung der Eigenwerte". In : Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911 (1911), p. 110-117 (cf. p. 24).
- [Whi49] John Henry Constantine WHITEHEAD. "Combinatorial homotopy. I". In : *Bulletin of the American Mathematical Society* 55 (mar. 1949), p. 213-245 (cf. p. 27).
- [Wil96] Thomas J. WILLMORE. *Riemannian Geometry*. Oxford science publications. Clarendon Press, 1996 (cf. p. 73).
- [Xu04a] Guoliang XU. "Convergence of discrete Laplace-Beltrami operators over surfaces". In : *Computers and Mathematics with Applications* 48.3 (2004), p. 347-360 (cf. p. 99).
- [Xu04b] Guoliang XU. "Discrete Laplace–Beltrami operators and their convergence". In : Computer Aided Geometric Design 21.8 (2004). Geometric Modeling and Processing 2004, p. 767-784 (cf. p. 99).
- [Zha04] Hao ZHANG. "Discrete combinatorial Laplacian operators for digital geometry processing". In : in SIAM Conference on Geometric Design, 2004. Press, 2004, p. 575-592 (cf. p. 56, 57).