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Apprentissage Profond pour la Segmentation Robuste et l’Analyse
Explicable des Images Cardiaques Volumiques et Dynamiques

RØsumØ: L’IRM cardiaque est largement utilisØe par les cardiologues car elle
permet d’extraire des informations riches dans les images. Toutefois, si cela est
fait manuellement, le processus d’extraction des informations est fastidieux et
prend beaucoup de temps. Compte tenu des progrŁs de l’intelligence arti�cielle,
je dØveloppe des mØthodes d’apprentissage profond pour traiter l’automatisation
de plusieurs tâches essentielles de l’analyse de l’IRM cardiaque. Tout d’abord, je
propose une mØthode basØe sur les rØseaux de neurones convolutifs pour e�ectuer
la segmentation cardiaque sur des ensembles d’images IRM petit axe. Dans cette
mØthode, Øtant donnØ que la prØdiction d’une segmentation d’une coupe dØpend
de celle d’une coupe adjacente, la cohØrence 3D et la robustesse sont explicitement
imposØes. De plus, je propose une mØthode de classi�cation de plusieurs pathologies
cardiaques, avec une nouvelle approche d’apprentissage profond pour extraire des
attributs dØrivØs des images a�n de caractØriser la forme et le mouvement du c÷ur.
En particulier, le modŁle de classi�cation est explicable, simple et �exible. En�n
et surtout, la mŒme mØthode d’extraction d’ØlØments est appliquØe à un ensemble
de donnØes exceptionnellement volumineux (UK Biobank). La classi�cation
non supervisØe des donnØes est ensuite e�ectuØe sur les attributs extraits pour
caractØriser ces pathologies cardiaques. Pour conclure, je discute de plusieurs
prolongements possibles de mes recherches.
Mots clØs: Apprentissage profond, segmentation cardiaque, analyse cardiaque,
cinØ-IRM

Deep Learning for Robust Segmentation and Explainable Analysis
of 3D and Dynamic Cardiac Images

Abstract: Cardiac MRI is widely used by cardiologists as it allows extracting rich
information from images. However, if done manually, the information extraction
process is tedious and time-consuming. Given the advance of arti�cial intelligence,
I develop deep learning methods to address the automation of several essential
tasks on cardiac MRI analysis. First, I propose a method based on convolutional
neural networks to perform cardiac segmentation on short axis MRI image stacks.
In this method, since the prediction of a segmentation of a slice is dependent
upon the already existing segmentation of an adjacent slice, 3D-consistency and
robustness is explicitly enforced. Second, I develop a method to classify cardiac
pathologies, with a novel deep learning approach to extract image-derived features
to characterize the shape and motion of the heart. In particular, the classi�cation
model is explainable, simple and �exible. Last but not least, the same feature
extraction method is applied to an exceptionally large dataset (UK Biobank).
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Unsupervised cluster analysis is then performed on the extracted features in search
of their further relation with cardiac pathology characterization. To conclude, I
discuss several possible extensions of my research.
Keywords: Deep learning, cardiac segmentation, cardiac analysis, cine MRI
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1.1 Context

1.1.1 Medical Image Analysis for Fighting Cardiovascular Dis-
eases: Big Challenges

According to the World Health Organization1, cardiovascular diseases are the �rst
cause of death in the world. It is estimated that about 18 million people died
from cardiovascular diseases in 2016, which is 31% of all global deaths. While
the problems caused by cardiovascular diseases have been noticed in high-income
countries for a long time, the social and economic impact is particularly heavy in
low- and middle-income countries these days, in which over three-quarters of the
deaths caused by cardiovascular diseases take place.

In order to diagnose and treat cardiovascular diseases, clinicians routinely rely
on medical imaging. Medical images hence play an indispensable role in preventing
and treating cardiovascular diseases. While medical images are the source of many
valuable data in general, how to interpret them and extract the most useful and
relevant information from them remain a challenge for many reasons. First, medical
images are quite di�erent from ordinary images. The expertise in medicine, which
can only be obtained by medical professionals after years of study and practice, is
required to understand and interpret medical images. However, the medical profes-
sionals’ shortage has remained a concern worldwide ([Al-Shamshi 2017]). And the
situation is unlikely to be much better in the near and medium-term future. So
there are often not enough medical professionals to interpret the medical images.

1https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
(accessed January 30, 2019)

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
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Second, manually processing and interpreting medical images, even if by experienced
medical professionals, is a tedious and time-consuming job. Medical-image-related
methods and tools to help medical professionals to relieve their burden are always
in demand ([Adelman 2014]). Third, as we are already in the era of big data, more
and more medical data, in particular, medical image data, are available in recent
years. How to make good use of them is still largely an open question [Lee 2017].

1.1.2 Rise of Deep Learning

Over the last few years, deep learning has achieved great success in various areas
of arti�cial intelligence. As shown in [LeCun 2015], deep learning has dramati-
cally improved the state-of-the-art in various domains, such as image processing,
speech recognition, visual object recognition, drug discovery, and genomics. The
fact that deep learning is very good at discovering intricate structures in data makes
it extremely versatile. Furthermore, based on modern hardware and software, deep
learning models are very fast even when applied to large images.

Being aware of the various advantages of deep learning, people wonder what
it can bring to medical image analysis. Nowadays, many researchers in medical
image analysis are trying to apply deep learning to cope with various challenges
in the domain. According to [Litjens 2017], the use of deep learning is rather
successful in performing medical image analysis for di�erent tasks (e.g. image
classi�cation, object detection, segmentation, registration) and application areas
(e.g. neuro ([Chen 2016]), retinal ([Zilly 2017]), pulmonary ([Cheng 2016]), digital
pathology ([Han 2016]), breast ([Dalmis 2017]), cardiac [Oktay 2018], abdominal
([Ravishankar 2016]), musculoskeletal ([Forsberg 2017])). Therefore, deep learning
is being considered as a very powerful and promising method in medical image anal-
ysis. Yet the study of deep learning in medical image analysis is just at its beginning.
While some encouraging accomplishments have been achieved, the research in this
direction still has much to explore ([Zhou 2017]).

1.2 Main Objectives

Given the context above, this thesis focuses on the development and application of
deep learning methods to tackle cardiac-related problems in medical image analysis.
More speci�cally, the main questions we investigate are:
� Deep learning models usually learn from large amounts of data. In order to
better train deep learning models, can we apply existing simulation and synthesis
methods in medical image analysis for the data augmentation of cardiac images?
� Compared with accuracy, the consistency and robustness of cardiac segmentation
have been less explored topics. How to make the segmentation of cardiac images
more consistent and robust?
� While clinicians often rely on image-derived features for cardiac diagnosis, how
can we extract useful features from cardiac images for pathology classi�cation in
an explainable manner using deep learning?
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� With image-derived features, is it feasible to identify cases of cardiac pathologies
in a large general population even without labels for training (i.e in an unsupervised
way)?

1.3 Structure of the Thesis

The thesis is presented in chronological order.
Chapter 2 shows that using an existing method of cardiac mesh simulation

and image synthesis, data augmentation can be e�ectively done for training a deep
learning model of cardiac segmentation. This chapter is adapted from [Zheng 2018c].

Chapter 3 aims at developing and evaluating a deep-learning-based cardiac
segmentation model with consistency and robustness. For this purpose, a technique
called spatial propagation of segmentation is proposed. This chapter is based on
the publication [Zheng 2018b].

Chapter 4 describes how shape-related and motion-derived features can be
extracted from cardiac images based on deep learning, and how these features enable
classi�cation of cardiac pathologies in an explainable way. The work presented in
this chapter is published in [Zheng 2018a].

Chapter 5 highlights an example of unsupervised cluster analysis of shape-
related and motion-characteristic features extracted from the large UK Biobank
dataset. This study will be submitted to a journal soon for publication.

Chapter 6 summarizes the main contributions of the thesis and discusses the
perspectives.
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Part of this chapter corresponds to the following scienti�c article:

� [Zheng 2018c] 3D Consistent Biventricular Myocardial Segmentation
Using Deep Learning for Mesh Generation
Qiao Zheng, HervØ Delingette, Nicolas Duchateau and Nicholas Ayache. arXiv
preprint, 2018

2.1 Introduction

While most research about myocardial segmentation focuses on either left ventricle
(LV) [Avendi 2016a] or right ventricle (RV) [Avendi 2017] segmentation on 2D slices,
there is a great need for 3D-consistent biventricular (BV) segmentation, in which LV
and RV together are segmented. 3D-consistent BV segmentation provides not only
consistency, but also robustness on poor-quality slices (e.g. near apex). Its output
may then be used to generate complete meshes. These advantages are missing from
most other methods. For example the model of [Tran 2016] is not very capable
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Figure 2.1: Overview of the proposed method. (1) Segmentation of a single slice at
the middle of the volume by the initialization network. (2) Propagation of predicted
mask towards base and apex by the spatial propagation network.

of segmenting the slices near apex. The lack of publicly available automatic BV
mesh generation tool and the success of deep learning on medical image analysis
[Zhou 2017] motivate us to develop this method based on two neural networks :
the former segments a single slice in the volume and the latter propagates the
segmentation to the other slices.

The most competitive BV myocardial segmentation methods are the automatic
ones. Shape-constrained deformable models are applied on a dataset of 28 CT
volumes in [Ecabert 2008]. The chain takes 22s for a volume. In [Zheng 2008] 4-
chamber segmentation is performed using steerable features learned on a dataset of
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457 annotated CT volumes. The speed is 4s per volume. The authors of [Wang 2013]
apply marginal space learning and probabilistic boosting-tree on a dataset of 100
annotated MRI volumes to learn to jointly delineate LV and RV. It spends about 3s
on each volume. We cannot compare directly with these methods on their reported
error measures due to di�erences in datasets. In this paper we propose an e�ective
pipeline based on 2 neural networks combining the assets of 2D (speed) and 3D
(consistency). An original loss function is also applied for training. Our approach
has the following advantages:

� Unlike the above-mentioned papers our networks are trained on a publicly
available dataset STACOM [Tobon-Gomez 2013].

� The dataset we use of 15 annotated volumes is much smaller than the above-
mentioned datasets. Our method is data-e�cient as its generalize even with
small training sets.

� Unlike the above methods, our method is model-free. Anyone familiar with
deep learning may implement our networks without di�culty.

� Our method takes about 3s to segment a volume. This is the same as the
fastest one in the above methods.

� Compared to MRI images, CT images usually have much better resolution and
stronger heart/background contrast. Working with MRI images, we actually
solve a more challenging version of segmentation problems.

2.2 Approach

The overview of our approach is shown in Figure 2.1.

2.2.1 Data preprocessing.

2.2.1.1 Cropping ROI.

Usually on MRI images there is more information than we need for myocardium
segmentation. If this is the case, getting rid of irrelevant background information
can simplify the job of segmentation. For any cardiac MRI short axis image set of a
subject to be used as input to our model, we process 3D stacks of 2D slices, cropped
around the heart. First, 3D image volumes are constructed by arranging the 2D
MRI slices. Then a 2D ROI is manually determined for each volume such that the
myocardium on all slices is included. We usually locate the borders of ROI such
that there is a 10mm to 20mm margin between them and the largest myocardium
on slices. Finally the sub-volume de�ned by the ROI is cropped.
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2.2.1.2 Resampling.

As standardization the cropped volume is resampled into an isotropic volume by
linear interpolation. The goal of this step is to standardize the input volume data
to our model as well as to generate more slices of which the appearance gradually
changes along the large axis. This smoothness of change is helpful for the propaga-
tion of segmentation to be accurate.

2.2.1.3 Identifying basal slice.

Most MRI image volumes include cardiac structures above the base. Furthermore,
since our method aims to segment the myocardium up to the base, we manually
identify the base slice near mitral annulus. The propagation of myocardium seg-
mentation, as we will present in detail later, will stop once the slice of base is
reached. For images of reasonably good quality (e.g. STACOM) the segmentation
can be initialized from any slice around the middle of the volume. So in this paper,
for testing on the 3 testing cases of STACOM in each fold, the initialization slice is
automatically chosen as the one in the middle of the volume.

2.2.2 Initial segmentation.

We then apply the initialization network to segment the selected slice. The output is
a mask of which each pixel is a probability (0 for background and 1 for myocardium).

2.2.3 Spatial segmentation propagation.

Then we apply the spatial propagation network to propagate segmentation masks.
During upward (towards base) propagation, we suppose the slices up to that of in-
dex z are already segmented. Taking this slice, its predicted mask and the next
4 slices (z+1 to z+4) as input, the spatial propagation network predicts the next
4 segmentation masks. The iteration stops at the base slice. Similarly, we down-
ward (towards apex) propagate the segmentation masks. Thereby we complete the
segmentation.

2.3 Networks

2.3.1 Multi-scale coarse-to-�ne prediction

The two neural networks we use for this paper are characterized by multi-scale
coarse-to-�ne predictions (Figure 2.2 and Figure 2.3). As presented in Figure 2.2,
the main body of the initialization network is separated into 3 sub-networks with
input/output sizes 32, 64 and 128 respectively. SubNet32, taking a downsampled
slice of size 32 as input, outputs a predicted mask of the same size. Then SubNet64
takes a downsampled slice of size 64 and incorporates the predicted mask of size 32
to make a prediction of size 64. Similarly, SubNet128 outputs the �nal predicted
mask of size 128. During training, 3 loss functions which compare the outputs of
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Figure 2.2: The initialization network: the number marked to the left of each row is
the size of output feature maps in the row; the upper number(s) in the rectangle of
convolution layer is the �lter size while the lower number indicates output channels;
the number in rectangle of downscaling layer is the applied scale.
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Figure 2.3: The spatial propagation network: the number marked to the left of
each row is the size of output feature maps in the row; the upper number(s) in
the rectangle of convolution layer is the �lter size while the lower number indicates
output channels; the number in rectangle of downscaling layer is the applied scale.
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SubNet32, SubNet64 and SubNet128 with the ground truth masks of size 32, 64
and 128 respectively are applied. The spatial propagation network, consisting of
SubNet64 and SubNet128, has analogous structure and loss functions for training.

2.3.2 Loss function.

The networks are trained by stochastic gradient descent. An original loss function
is designed to overcome numerical instability and class imbalance during training.
We call it stabilized and class-balanced cross entropy loss, where pixel-wise losses are
added to work with a total loss. For each pixel, suppose the predicted probability
is p and the ground truth is g. The pixel loss is

pixelLoss =

8
>><

>>:

0 if jg � p0j < t,
�log(p0) if g = 1 and p0 � 1� t,
�log(1� p0) if g = 0 and p0 � t,

(2.1)

with
p0 = ap+ b (2.2)

and a, b and t are parameters such that a > 0, b > 0, a + 2b = 1 and 0 < t <
1. To roughly preserve the predicted probability, a is set close to 1, b and t are set
near 0. In this paper we empirically pick a = 0.999, b = 0.0005 and t = 0.02.

The purpose of applying (2) is to avoid computation of logarithm on any value
too close to 0 while roughly reserving the predicted probability. Without it, poorly
predicted values of p may result in extremely large loss and gradient values, which
may harm numerical stability of training and even cause over�ow.

On the other hand, there is a strong imbalance between myocardial and back-
ground pixel. The latter represents around 80% of the image. With common loss
functions, the overall training e�ect of background pixels dominates the e�ect of
the myocardial pixels. It may hinder the network performance in recognizing the
myocardium. Setting the loss to 0 in (1) whenever the prediction is close enough to
ground truth reduces the e�ect. When the predicted probabilities for background
are close enough to 0, our loss function stops �pulling� them further to 0 and instead
focuses on �pushing� the probabilities on myocardium to 1.

2.3.3 Convolution layer group.

The two networks mainly consist of convolution layer groups. In each group, a
convolution layer is followed by a batch normalization layer and a leaky ReLU layer
of negative part coe�cient 0.25.

2.3.4 Data augmentation inside network.

The �rst layers in the two networks are noise layers for data augmentation during
training to make the networks more robust. They are removed in testing. Data
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augmentation includes randomly rotating input slices together and adding Gaussian
and pepper-and-salt noise.

2.4 Experiments

Our experiments involved an existing dataset with MRI image volume sequences: 15
subjects from STACOM [Tobon-Gomez 2013] (30 instants per cycle, with ground
truth segmentation). After resampling to isotropic volume of voxel size 1.25mm
there are about 60 slices below the base in each volume. We divide the 15 cases into
5 groups of 3 cases. In each fold of the 5-fold cross-validation, the 3 cases of one
picked group are used as testing. And the training set consists of the 12 cases from
the remaining 4 groups.

2.4.1 Training.

As data augmentation to generate a large database with ground truth from a small
database, we combine a motion simulation method and an image synthesis algo-
rithm to generate realistic volume sequence variants of the training cases. In-
farcted mesh motion sequences were simulated according to the scheme depicted
in [Duchateau 2016]. Then the original volume sequences were warped to generate
synthesized image variants using an algorithm inspired from [Prakosa 2013]. For
each of the training subjects, 31 (1 healthy and 30 infarcted) 30-instant volume
sequence variants were generated. In total 12*31*30=11160 volumes were used for
training the spatial segmentation network in each fold of the 5-fold cross-validation.
On the other hand, we observe better image/mesh coincidence around end-diastole
than around end-systole in the synthesized sequences. Considering the trade-o� be-
tween robustness (diversity in training set) and accuracy (image/mesh coincidence),
we decide to train the initialization network only with volumes from 10 instants
around end-diastole. Hence it is trained on 12*31*10=3720 volumes. Please note
the augmentations of a same case remain similar. Our synthesized database is not
comparable to real ones of similar size in terms of diversity and richness.

We use only the slices below the base in synthesized volumes to train the spatial
propagation network. For the initialization net we also use these slices except the
top 1/6 and the bottom 1/6 of them. The potentially poor image quality of slices
near base and apex may cause additional inaccuracies.

The networks are trained by stochastic gradient descent with batch size 1 and
learning rate 0.0001. The initialization network is trained for 300000 iterations. It
takes about 23 hours in total on GPU. The spatial propagation network is trained
for 600000 iterations, which together take roughly 44 hours.

2.4.2 Testing.

The method is tested on the end-diastole (the only instant where ground truth is
available) of testing cases. It takes about 3s to segment a volume using GPU. The
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Figure 2.4: Upper: prediction (white) and ground truth (red) for the two tested
cases from STACOM. Lower left: the generated meshes for the two tested cases
from STACOM. Lower right: segmentation results (green) without application of
propagation.
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Figure 2.5: Slice-wise Dice Index on the test set.



2.5. Conclusion and Perspectives 15

output probabilities are binarized to obtain myocardium/background segmentation
taking 0.5 as threshold. We use the Dice index to measure performance. The
3D Dice indices (considering all pixels of all slices below base) are 0.7851 for case
v1 and 0.7817 for case v2. The predicted masks and the ground-truth (axial and
coronal views) as well as the BV meshes generated directly from the predicted masks
using CGAL1 are presented in the lower left part of Figure 2.4. In Figure 2.5, 2D
Dice indices for both subjects change smoothly across slices, con�rming the spatial
consistency of our method.

For comparison, if we use the initialization network to segment all the slices in-
dependently without propagation, the method not only loses the spatial consistency
but also fails completely on the slices near apex (the lower right part of Figure 2.4).
Our propagation method therefore appears crucial to maintain spatial consistency
and reach accurate results even on the most di�cult slices.

2.5 Conclusion and Perspectives

We demonstrate that our deep-learning-based automatic method for BV segmenta-
tion is robust, and combines the assets of 2D (speed) and 3D to provide spatially
consistent meshes ready to be used for simulations. Besides, we proposed two orig-
inal networks: (i)the initialization network predicts segmentation in a multi-scale
coarse-to-�ne manner; (ii)the second network propagates segmentation with spatial
consistency. A novel loss function is also proposed to overcome class imbalance. For
training, we use image synthesis as data augmentation. Meshes of high quality are
generated. In the future, we will explore the capacity of neural networks in main-
taining temporal consistency of segmentation. As we only use 15 subjects in this
paper, signi�cant improvement is expected if more data are added afterwards.

1http://www.cgal.org
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3.1 Introduction

The manual segmentation of cardiac images is tedious and time-consuming, which
is even more critical given the new availability of huge databases (e.g. UK Biobank
[Petersen 2016]). Magnetic resonance imaging (MRI) is widely used by cardiolo-
gists. Yet MRI is challenging to segment due to its anisotropic resolution with
somewhat distant 2D slices which might be misaligned. There is hence a great need
for automated and accurate cardiac MRI segmentation methods.

In recent years, many state-of-the-art cardiac segmentation methods are based
on deep learning and substantially overcome the performance of previous methods.
Currently, they dominate various cardiac segmentation challenges. For instance,
in the Automatic Cardiac Diagnosis Challenge1 (ACDC) of MICCAI 2017, 9 out
of the 10 cardiac segmentation methods were based on deep learning. In particu-
lar, the 8 best-ranked methods were all deep learning ones. Deep learning meth-
ods can be roughly divided into to 2 classes: 2D methods, which segment each
slice independently (i.e.[Winther 2017], [Tran 2016], [Baumgartner 2017]), and 3D
methods, which segment multiple slices together as a volume (i.e.[Isensee 2017],
[Baumgartner 2017]). 2D methods are popular because they are lightweight and
require less data for training. But as no 3D context is taken into consideration,
they might hardly maintain the 3D-consistency between the segmentation of di�er-
ent slices, and even fail on �di�cult� slices. For example, the 2D method used in
[Tran 2016] achieves state-of-the-art segmentation on several widely used datasets
but makes the most prominent errors in apical slices and even fails to detect the
presence of the heart.

On the other hand, 3D methods should theoretically be robust to these issues.
But in [Baumgartner 2017], with experiments on the ACDC dataset, the authors
found that all the 2D approaches they proposed consistently outperformed the 3D
method being considered. In fact, 3D methods have some signi�cant shortcomings.
First, using 3D data drastically reduces the number of training images. Second, 3D
methods mostly rely on 3D convolution. Yet border e�ects from 3D convolution
may compromise the information in intermediate representations of the neural net-
works. Third, 3D methods require far more GPU memory. Therefore, substantial
downsampling of data is often necessary for training and prediction, which causes
loss of information.

One possible way to combine the strengths of 2D and 3D methods is to use recur-
rent neural networks. In [Poudel 2016], the authors merge U-Net [Ronneberger 2015]
and a recurrent unit into a neural network to process all slices in the same stack,
arranging the slices from the base to the apex. Information from the slices already
segmented in the stack is preserved in the recurrent unit and used as context while
segmenting the current slice. Comparisons in [Poudel 2016] prove that this contex-
tual information is helpful to achieve better segmentation. However, the approaches
based on recurrent neural networks are still limited. On the one hand, as the slice

1https://www.creatis.insa-lyon.fr/Challenge/acdc/. Accessed September 15 2017

https://www.creatis.insa-lyon.fr/Challenge/acdc/
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thickness (usually 5 to 10mm) is often very large compared to the slice resolution
(usually 1 to 2mm), the correlation between slices is low except for adjacent slices.
Thus, considering all slices at once may not be optimal. On the other hand, the
prediction on each slice made by a recurrent neural network does not depend on an
existing prediction. With this setting, the automatic segmentation is remarkably dif-
ferent from the procedure of human experts. As presented in [Suinesiaputra 2015],
human experts are very consistent in the sense that the intra-observer variability is
low; yet the inter-observer variability is high, as segmentation bias varies remark-
ably between human experts. Hence in general, for given a slice, there is no unique
correct segmentation. But human operators still maintain consistency in their pre-
dictions respectively. Being inspired by these facts, we adopt a novel perspective:
we train our networks to explicitly maintain the consistency between the current
segmentation and the already predicted segmentation on an adjacent slice. We do
not assume that there is a unique correct segmentation. Instead, the prediction for
the current slice explicitly depends on another previously predicted segmentation.

Another possible method to improve segmentation consistency is to incorporate
anatomical prior knowledge into neural networks. In [Oktay 2018], the segmentation
models are trained to follow the cardiac anatomical properties via a learned repre-
sentation of the 3D shape. While adopting novel training procedure, this method
is based on 3D convolution neural networks for segmentation. So the issues of 3D
methods discussed above still exist.

In this paper, we propose a novel method based on deep learning to perform
cardiac segmentation. Our main contribution is threefold:
� The spatial consistency in cardiac segmentation is barely addressed in general,
while this is a remarkable aspect of human expertise. Our method explicitly pro-
vides spatially consistent results by propagating the segmentations across slices.
This is a novel perspective, as we do not assume the existence of a unique correct
segmentation, and the prediction of the current segmentation depends on the seg-
mentation of the previous slice.
� After training our method with a large dataset, we demonstrate its robustness and
generalization ability on a large number of unseen cases from the same cohort as
well as from other reference databases. These aspects are crucial for the application
of a segmentation model in general, yet have not yet been explored before.
�Most segmentation methods proceed in a 2D manner to bene�t from more training
samples and higher training speed in comparison with 3D methods. In contrast, we
proposed an original approach that keeps the computational assets of 2D methods
but still addresses key 3D issues.
We hence believe in its potential impact on the community2.

2The code and the models are available in this repository: https://github.com/julien-
zheng/CardiacSegmentationPropagation
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Figure 3.1: Intra- and inter-dataset inconsistencies of the basal slice ground-truth
(RVSC contains no basal slice and is therefore not shown).
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Figure 3.2: Ground-truth adaptation proposed for UK Biobank. the basal slice is
�rst identi�ed (blue), then the RVC labels are removed in this slice, and the labels
are removed from the slices above (pink).
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3.2 Data

3.2.1 Datasets

The proposed method was trained using four datasets: the very large UK
Biobank[Petersen 2016] dataset through our access application3, the ACDC chal-
lenge training dataset, the Sunnybrook dataset [Radau 2009] (made available for the
MICCAI 2009 challenge on automated left ventricle (LV) segmentation), and the
Right Ventricle Segmentation Challenge (RVSC) dataset [Petitjean 2015] (provided
for the MICCAI 2012 challenge on automated right ventricle (RV) segmentation).
Depending on the dataset, expert manual segmentation for di�erent cardiac struc-
tures (e.g. the left and right ventricular cavity (LVC, RVC), the left ventricular
myocardium (LVM)) is provided as ground-truth for all slices at end-diastole (ED)
and/or end-systole (ES) phases. All other structures in the image are considered
as background (BG). Training involved a subset (80%) of the UK Biobank dataset.
Testing used the remaining 20% from the same dataset, as well as the whole three
other datasets. Details about these datasets are provided in the appendix. We
mainly adopt the metrics used in the three challenges above to measure segmenta-
tion performance. The exact de�nitions of the metrics used in this paper (e.g. Dice
index, Hausdor� distance, presence rate) are provided in the appendix.

3.2.2 Notation and Terminology

In this paper, slices in image stacks are indexed in spatial order from the basal to
the apical part of the heart. Given an image stack S, we denote N the number
of its slices. Given two values a and b between 0 and N , we note S[a; b] the sub-
stack consisting of slices of indexes in the interval [round(a); round(b)[ (round(a) is
included while round(b) is excluded) with round the function rounding to nearest
integer. For instance, if S is a stack of N=10 slices of indexes from 0 to 9, then
S[0:2N; 0:6N ] is the stack consisting of slices number 2 to 5. Similarly, if the basal
slice is de�ned in S, we denote base its index. Then S[base] and S[base+1] are the
basal slice and the �rst slice below the base.

Segmentation of slices above and below the base of the heart can be quite dif-
ferent. For convenience, in a stack with known base slice, we call the slices located
above it the AB (above-the-base) slices, and the ones located below it BB (below-
the-base) slices. In the remainder of this paper, we propose methods to determine
the base slice for image stacks of UK Biobank using the provided ground-truth.

Finally, given a segmentation maskM , edge(LV C;LVM) is the number of pairs
of neighboring pixels (two pixels sharing an edge, de�ned using the 4-connectivity)
onM such that one is labeled to LVM while the other is to LVC. Similarly we de�ne
edge(LV C;BG) and edge(LV C;RV C).

3Application Number 2964.
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3.2.3 Adaptation of the UK Biobank Ground-Truth

Let’s �rst compare the segmentation conventions followed by the ground-truth be-
tween datasets. For BB slices, the convention is roughly the same: if LV is seg-
mented, LVC is well enclosed in LVM; if RVC is segmented, it is identi�ed as the
whole cardiac cavity zone next to the LV. But for AB slices, the variability of seg-
mentation conventions within and between datasets can be signi�cant. In Figure
3.1, we show examples of (base slice, ground-truth) pairs from UK Biobank (row-1
and row-2, two di�erent cases), ACDC (row-3) and Sunnybrook (row-4). For bet-
ter visualization, we crop out the heart regions from the original MRI images and
ground-truths accordingly. The segmentation ground-truth on these similar images
are signi�cantly di�erent. In particular, we notice the intra- and inter-dataset in-
consistencies in the segmentation of (1) the RVC at the out�ow tract level, (2) the
LVM and LVC at the mitral valve level (some dataset seems to be segmented in
a way such that the LVC mask is always fully surrounded by the LVM mask). In
contrast, the convention seems roughly the same for the BB slices.

Hence we decided to adapt the ground-truth of UK Biobank to improve both
consistency and generality. As presented in Figure 3.2, we i) set all pixels in all
the slices above the base to BG; ii) relabel all the pixels in the basal slice originally
labeled as RVC to BG while keeping the LVC and LVM pixels unchanged; iii) keep
the ground-truth of all slices below the base unchanged.

Moreover, we propose a method to determine the basal slice automatically in
the stacks of UK Biobank. While checking the ground-truth of the slices starting
from the apex part, the basal slice is determined as the �rst one such that:
- the LVC mask is not fully surrounded by the LVM mask:

edge(LV C;BG) + edge(LV C;RV C) > 0 (3.1)

- or the area of the RVC mask shrinks substantially comparing to that of the slice
below: (

overlap(RV C1; RV C2)=RV C2 � T1

RV C1=RV C2 � T2

(3.2)
(3.3)

with RV C1 and RV C2 the RVC masks of the slice and the slice below it respectively,
T1=0:75 and T2=0:8 thresholds. If the basal slice is not determined after examining
all slices in the stack, we de�ne that the index of the base slice is �1 (so S[base+1]
is the �rst slice in the stack).

According to the current international guidelines in [Schulz-Menger 2013], the
�standard� basal slice is the topmost short-axis view slice that has more than 50%
myocardium around the blood cavity. To test whether the UK Biobank basal slices
determined above are close to the standard basal slices, we randomly picked 50 cases
(50 ED stacks + 50 ES stacks) and estimated their standard basal slices at ED and
ES visually according to the guidelines. Among the 100 pairs of standard basal slice
and ground-truth-deduced basal slice, 59 pairs are exactly the same, 40 pairs are
1-slice away in stack, and only 1 pair is 2-slice away. The �adapted� ground-truth
will stand as the ground-truth for the rest of this paper.



24
Chapter 3. Consistent and Robust Segmentation with Spatial

Propagation

������������ ������������

���	�
������ � ����� � �����������
�
�
���������

���

��

��

��

�

�

� � �� � �

� �� �� ��

��� �� ��� ��

�

�� ��

�� ���

��� ���

��� ���

��� ��
��������	�	�
������
�
�������������������������

��������
����������
���
����

��
����� ��!�

"
�������� ��!�

�� #�
������
���$���	�����%�����&����'
�	�

"
�������� ��!�����������������������

��
����� ��!����������('���
))������

Figure 3.3: ROI-net: for ROI determination over image stack. A sigmoid function
is applied to the output channel to generate pixel-wise probabilities.

3.3 Methods

Our method mainly consists of two steps: region of interest (ROI) determination
and segmentation with propagation. The �rst step is either based on a trained
neural network (the ROI-net) or on center cropping, depending on the dataset. The
second step is based on either the LVRV-net or the LV-net (originally designed by
us and inspired from U-net [Ronneberger 2015]), depending on whether the RVC
must be segmented. This section will also present the image preprocessing methods
and the loss functions we used.

3.3.1 Region of Interest (ROI) Determination: ROI-net

On cardiac MRI images, de�ning an ROI is useful to save memory usage and to
increase the speed of segmentation methods. There are many di�erent ROI deter-
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Figure 3.4: LVRV-net and LV-net: for cardiac segmentation on ROIs. S[i] is the
slice to be segmented and M[i] is the predicted mask. A softmax function is applied
to the output channels to generate pixel-wise 4- or 3-class probabilities.
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mination methods available in the community. But for most of them, the robustness
remains a question, as the training and the evaluation are done with cases from the
same cohort of limited size. We propose a robust approach as follows. With a large
number of available cases from UK Biobank, a deep learning based method becomes
a natural choice. In particular, we design the ROI-net (Figure 3.3) to perform heart
segmentation on MRI images.

Notice that for some datasets (Sunnybrook and RVSC), the images are already
centered around the heart. Similar to what was done in [Tran 2016], in such cases,
images are simply cropped. However this is not valid for most datasets (here UK
Biobank and ACDC), and an ROI needs to be determined speci�cally for each
stack based on the predictions of ROI-net, as explained in the following. ROI-
net is a variant of U-net with a combination of convolutions, batch normalizations
(BN) and leaky ReLUs (LReLU) [Maas 2013] as building blocks. In leaky ReLU
the gradient parameter when the unit is not active is set to 0:1. Furthermore, we
implement deep supervision as in [Kayalibay 2017] to generate low resolution (of
size 32 and 64) segmentation outputs, and then upsample and add them to the �nal
segmentation. A sigmoid function is applied to the output channel of ROI-net to
generate pixel-wise probabilities.

In brief, ROI-net takes one original MRI image as input and predicts pixel-wise
probabilities as a way of heart/background binary segmentation (0 for background,
1 for the heart, and the threshold is 0.5 in inference). The heart to be segmented is
de�ned as the union of LVC, LVM, and RVC. The ROI determination takes only the
ED stack slices into account. In practice, an ROI containing the heart with some
margin at ED also contains well the heart at other instants including ES.

3.3.1.1 Training

The network is trained with slices in S[(base+1); (base+1)+0:4N ] (the 40% of slices
just below the base) of the ED stack S from the UK Biobank training cases. The
purpose of using only slices in S[(base+1); (base+1)+0:4N ] is to avoid the top slices
around the base on which RVC ground-truth shrinks (Figure 3.1), and the bottom
slices around the apex on which the heart is small and almost does not a�ect the
ROI determination.

3.3.1.2 Prediction

To con�rm the robustness of ROI-net for inference, we apply it to the sub-stacks
roughly covering the largest cross-section of the hearts in a dataset (the position of
the base is supposed to be unknown for individual cases). The slice indexes of these
sub-stacks are determined based on visual observation for a given dataset. More
speci�cally, the trained ROI-net is used to segment slices in S[0:2N; 0:6N ] of the
ED stack S of all the UK Biobank cases, and slices in S[0:1N; 0:5N ] of the ED stack
S of all the ACDC cases. For noise reduction and as post-processing for the ROI
net, for each image, only the largest connected component of the output heart mask
is kept for prediction.
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3.3.1.3 ROI Determination

For each ED stack, the union of all predicted heart masks, as well as the minimum
square M covering their union, is determined. We add to it a padding of width 0:3
times the size of M to generate a larger square bounding box, which is de�ned as
the ROI for the case.

After ROI determination on an ED stack, the same ROI applies to both the
ED and ES stacks of the same case. Then the ED and ES stacks are cropped out
according to this ROI and used as inputs for the LVRV-net and the LV-net in the
second step. Hence in the remainder of this paper, we refer to the cropped version
of the images, slices or stacks.

3.3.2 Segmentation with Propagation: LVRV-net and LV-net

The second step is segmenting the cropped images (the ROIs). Depending on
whether we segment RVC or not, we proposed two networks: LVRV-net and LV-net.
They share the same structure template as depicted in Figure 3.4. Both perform slice
segmentation of S[i] taking S[i-1], the adjacent slice above, and M [i-1] its segmen-
tation mask, as contextual input. In the contextual input, there are �ve channels in
total: S[i-1] takes one, while M [i-1], being converted to pixel-wise one-hot channels
(BG, LVC, LVM, RVC), takes four. In case S[i] is the �rst slice to be segmented
in a stack, M [i-1] does not exist and is set to a null mask; in case S[i] is the top
slice in a stack, S[i-1] does not exists and is set to a null image. The main body of
LVRV-net and LV-net is also a variant of U-net with convolution, BN, LReLU and
deep supervision, very similar to that of ROI-net. In addition to the main body,
an extra encoding branch encodes the contextual input. Information extracted by
the main body encoding branch and the extra encoding branch are combined at the
bottom of the network, before being decoded in the decoding branch. Finally, a
softmax function is applied to the output channels to generate pixel-wise 4- or 3-
class probabilities. For inference, each pixel is labeled to the class with the highest
probability.

3.3.2.1 Training

LVRV-net and LV-net are trained to segment slices S[i] in S[(base+1); N ] (the BB
slices, the green column in Figure 3.2) and S[base;N ] (the basal slice and the BB
slices, the blue column and the green columns in Figure 3.2) respectively of the stack
S at ED and ES of the UK Biobank training set. Regarding the contextual input,
S[i-1] and M [i-1] are set to a null image or a null mask if they are not available as
described above; otherwise M [i-1] is set to the corresponding ground-truth mask.

3.3.2.2 Testing

The trained LVRV-net and LV-net are used to segment the cases in the UK Biobank
testing set and the other datasets (ACDC, Sunnybrook, RVSC). Let us note S0 the
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sub-stack to be segmented and M 0 the corresponding predicted mask stack. Notice
that for UK Biobank, S0 is S[(base+1); N ] for LVRV-net, and S[base;N ] for LV-
net; for the other datasets, S0 is the whole stack. LVRV-net or LV-net iteratively
segments S0[i] by predicting M 0[i], taking S0[i-1] and M 0[i-1] as contextual input,
for i = 0, 1, 2, etc.. In other words, the segmentation prediction of a slice is used
as contextual information while segmenting the slice immediately below it in the
next iteration. The segmentation prediction is iteratively �propagated� from top to
bottom (or roughly speaking from base to apex) slices in S0.

3.3.2.3 Post-processing

We post-process the predictions at each iteration while segmenting a stack (hence
the post-processed mask will be used as the contextual mask in the next iteration if
it exists). A predicted mask is considered as successful if the two conditions below
are satis�ed:
- LVM is present on the mask;
- LVC is mostly surrounded by LVM:

�
edge(LV C;BG) + edge(LV C;RV C)

�

� 0:5� edge(LV C;LVM)
(3.4)

The parameter 0:5 above is determined empirically. If the predicted mask is success-
ful, for LVRV-net only, we further process the mask by preserving only the largest
connected component of RVC and turning all the other RVC connected components
(if they exist) to background; otherwise, the predicted mask is reset to a null mask.

3.3.3 Image Preprocessing

Each input image or mask of the three networks in this paper (ROI-net, LVRV-net,
and LV-net) is preprocessed as follows:

3.3.3.1 Extreme Pixel Value Cutting and Contrast Limited Adaptive
Histogram Equalization (CLAHE) for ROI-net only

Input images to ROI-net are thresholded to the 5th and 95th percentiles of gray
levels. Then we apply CLAHE as implemented in OpenCV4 to perform histogram
equalization and improve the contrast of the image with the parameters clipLimit =
3 and tileGridSize = (8; 8).

3.3.3.2 Padding to Square and Resize

The input image or mask is zero-padded to a square if needed. Then it is resampled
using nearest-neighbor interpolation to 128�128 for ROI-net or 192�192 for LVRV-
net and LV-net.

4https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html

https://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
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3.3.3.3 Normalization

Finally, for each input image of all networks, the mean and standard deviation
of the slice intensity histogram cropped between the 5th and 95th percentiles are
computed. The image is then normalized by subtracting this mean and dividing by
this standard deviation.

3.3.4 Loss Functions

We use the two Dice loss (DL) functions below to train the three neural networks
mentioned above. As suggested in [Wolterink 2017], loss functions based on Dice
index help overcoming di�culties in training caused by class imbalance.

3.3.4.1 DL1 for ROI-net Training

Given an input image I of N pixels, let’s note pn the pixel-wise probability predicted
by ROI-net and gn the pixel-wise ground-truth value (gn is either 0 or 1). DL1 is
de�ned as

DL1 = �
2
PN

n=1 pngn + "
PN

n=1 pn +
PN

n=1 gn + "
(3.5)

where " is used to improve the training stability by avoiding division by 0, i.e. when
pn and gn are 0 for each pixel n. Empirically we take " = 1. The value of DL1 varies
between 0 and -1. Good performance of ROI-net corresponds to DL1 close to -1.

3.3.4.2 DL2 for LVRV-net Training

For the segmentation of a N -pixel input image, the outputs are four probabilities
pn;c with c = 0; 1; 2; 3 (BG, LVC, LVM and RVC) such that

P
c pn;c = 1 for each

pixel. Let’s note gn;c the corresponding one-hot ground-truth (gn;c is 1 if the pixel
is labeled with the class corresponding to c; otherwise gn;c is 0). Then we de�ne

DL2 = �
1
4

3X

c=0

(
2
PN

n=1 pn;cgn;c + "
PN

n=1 pn;c +
PN

n=1 gn;c + "
) (3.6)

The role of " here is similar to that in DL1. Empirically we use " = 1.

3.3.4.3 DL3 for LV-net Training

Its formula is very similar to that of DL2. The only di�erence is, instead of calcu-
lating the average of the 4 Dice index terms with c ranges from 0 to 3, DL3 sums up
the 3 Dice index terms with c ranges from 0 to 2 (BG, LVC, LVM) and computes
their average.
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3.4 Experiments and Results

The three networks (ROI-net, LVRV-net, LV-net) are implemented using Tensor-
Flow5 and trained with 3078 UK Biobank cases as described in the �Methods�
section. Then they are applied to the other datasets (ACDC, Sunnybrook, RVSC)
without any �ne-tuning or further training.

3.4.1 Technical Details about Training the Three Networks

ROI-net is trained for 50 epochs and applied to these cases to determine the ROIs.
The cropped ROI volumes are then used to train LVRV-net and LV-net for 80 epochs.
For each of the three networks, weights are initialized randomly, Adam optimizer is
used with initial learning rate 0.0001, batch size is set to 16, and data augmenta-
tion is applied (the input images are randomly rotated, shifted and zoomed in/out
along the row/column dimension independently, �ipped horizontally and �ipped
vertically).

3.4.2 Experiments on UK Biobank & Contribution of the Propa-
gation

The three trained networks are evaluated on the 756 evaluation cases of UK Biobank.

3.4.2.1 ROI Determination by ROI-net

The trained ROI-net is applied to determine and crop ROIs (prediction on the ED
sub-stack S[0:2N; 0:6N ], the minimum square to cover the union of the predicted
masks in the sub-stack, etc.). For all the cases, the determined ROI is successful in
the sense that the heart (de�ned as the union of the pixels labeled to LVC, LVM
or RVC in the ground-truth) is fully located inside the ROI, at both ED and ES.
Furthermore, all the ROIs are small: the heart and the ROI are distant from 18� 3
pixels in average, for image and ROI sizes of 209� 1 and 91� 8 pixels respectively.

3.4.2.2 LVRV-net and LV-net

We report the segmentation performance in terms of Dice index and Hausdor� dis-
tance in Table 3.1. The mean values are reported along with the standard deviation
in parentheses. LV-epi is de�ned as the union of the LVC and LVM.

We notice that the Dice index of the LVM is signi�cantly lower than that of the
other parts. We believe that this is partly due to the variability of the ground-truth
in UK Biobank as presented in Figure 3.5. This kind of variability in�uences both
the learning and the evaluation of our method. The Dice index of LVM is most
heavily a�ected. Indeed, on the one hand, LVM is more di�cult to segment than
LVC due to its shape. Ambiguity on the ground-truth makes the learning of the
LVM segmentation even harder. On the other hand, LVM represents a small volume.

5https://www.tensorflow.org/

https://www.tensorflow.org/
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Table 3.1: Segmentation Results (Mean and Standard Deviation) on the UK
Biobank Testing Cases

Dice Hausdor� (mm)
LVM LVC LV-epi RVC LVM LVC LV-epi RVC

proposed 0.769 0.903 0.932 0.881 7.66 5.94 7.13 10.39
LVRV-net (0.06) (0.03) (0.01) (0.04) (4.55) (2.26) (4.32) (4.71)
LVRV-mid- 0.767 0.904 0.931 0.886 8.96 5.87 8.46 9.90
starting-net (0.06) (0.03) (0.01) (0.04) (10.94) (2.90) (10.98) (4.01)
LVRV-no- 0.793 0.915 0.939 0.896 9.86 6.66 9.40 10.32

propagation- (0.05) (0.03) (0.01) (0.03) (12.03) (7.74) (12.03) (5.32)
net

proposed 0.752 0.896 0.923 - 9.78 6.97 8.72 -
LV-net (0.06) (0.04) (0.02) (-) (9.22) (3.43) (9.22) (-)

Figure 3.5: UK Biobank ground-truth variability: These slices are extracted from 4
di�erent cases in UK Biobank. Compared to the ground-truth of the slices in the
second row, the ground-truth of the slices in the �rst row clearly under-segments
the portion of myocardium between LV and RV (indicated by the arrows).
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Figure 3.6: An example of slice group division (G1 to G5) in a stack.

The Dice index is hence more sensitive to errors in this structure. In general, not
only for LVM, the variability in UK Biobank ground-truth reduces the performance
for all structures in terms of Dice index. In contrast, the Hausdor� distance is much
less sensitive to this variability, which also explains the better performance of our
model.

Notice that the results reported in Table 3.1 are based on 3D volumes. To
evaluate the performance of LVRV-net across di�erent slices, given a structure (e.g.
LVM), we also provide results for 5 evenly distributed levels from the slice S[base+1]
to the last slice on which the structure is present (Figure 3.6). Group 1 (G1) is on
top of the sub-stack and close to the base. Group 5 (G5) is close to the apex. Then
we evaluate the segmentation performance of LVRV-net in terms of heart (de�ned
as the union of LVC, LVM, and RVC) presence rate (Figure 3.7), and 2D Hausdor�
distance for 4 di�erent structures (Figure 3.8).

The evaluation results of LV-net are reported in Table 3.1. Note that although
the results of LVRV-net and LV-net are in the same table, LV-net is applied to the
basal slice S[base] (the adapted ground-truth of which has no RVC mask) while
LVRV-net is not. The higher ground-truth variability on S[base], what we observe
in UK Biobank, may explain the slightly lower performance measures of LV-net.

We notice that in general, the performances of the networks are better on ED
stacks than on ES stacks. Since the heart is larger at ED than at ES, maybe it is
also easier to be segmented at ED.
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Figure 3.7: Performance measured by heart presence rate (PR) of the LVRV-net,
the LVRV-mid-starting-net and the LVRV-no-propagation-net on UK Biobank.

3.4.2.3 LVRV-net vs. Its Variants: Justi�cation of the Top-Starting-
Propagation Procedure

To justify our designs of propagation and of starting propagation from the top slice
in the proposed method, we compare LVRV-net with two variants of it, which are
considered as baselines. The �rst baseline is the LVRV-no-propagation-net. Its
structure is obtained by removing the extra propagation branch from LVRV-net. So
LVRV-no-propagation-net takes an image as its only input and outputs the predicted
segmentation mask. LVRV-no-propagation-net is trained and evaluated in the same
way as LVRV-net. The evaluation results are reported in Table 3.1, Figure 3.7 and
Figure 3.8. Another baseline is the LVRV-mid-starting-net. Its structure is identical
to that of LVRV-net. But it is trained and then evaluated to segment the middle
slice (determined from slice index) in S[(base+1); N ] with a null contextual input
mask, and to propagate the segmentation results upward to the top and down to the
bottom of S[(base+1); N ] using the prediction of the already segmented adjacent
slice as the contextual input mask. The results are reported in Table 3.1, Figure 3.7
and Figure 3.8.

In Table 3.1, we can see that in terms of Dice index, LVRV-net and LVRV-mid-
starting-net are almost the same while LVRV-no-propagation-net is slightly (0.01 to
0.02) higher. Yet in terms of Hausdor� distance, LVRV-net is clearly the best with
low values of both mean and standard deviation. Regarding the PR by groups in
Figure 3.7, we �nd that LVRV-net and LVRV-no-propagation-net detect the presence
of the heart slightly better than LVRV-mid-starting-net in G5. In Figure 3.8 we
can see that the di�erences on mean values of Hausdor� distance are pretty small
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Figure 3.8: Performance measured by Hausdor� distance of the LVRV-net, the
LVRV-mid-starting-net and the LVRV-no-propagation-net on UK Biobank. The
�rst column indicates both the mean and the standard deviation values, while the
second column depicts the standard deviation values only. The four rows stand for
LVM, LVC, LV-epi and RVC respectively.
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(within 1mm) for the three networks; but on standard deviation, especially for the
LV structures, LVRV-net largely outperforms its variants, sometimes by several mm.
Furthermore, we performed the Mann-Whitney U test to prove that the contribution
of the propagation is statistically signi�cant. Under the null hypothesis that the
LVRV-net and LVRV-no-propagation-net predictions have the same distribution in
terms of 3D Hausdor� distance, with the results on the UK Biobank testing set as
samples, we obtain p-values of <0.001, <0.001, 0.001, and 0.042 for the LVC, LVM,
LV-epi, and RVC respectively, which are small enough (� 0:05) to conclude on the
signi�cance of the results. LVRV-net is clearly more robust than its variants.

To better understand the role of propagation as well as the robustness achieved
by the LVRV-net, we look at the cases for which di�erent methods have extremely
contrasting performances, and de�ne that the LVRV-no-propagation-net fails while
the LVRV-net succeeds on a stack, if the latter outperforms the former on Haus-
dor� distance by a large value S, for any of the 4 structures (LVM, LVC, LV-epi,
and RVC). And vice versa. For illustration, we use S=30mm, but similar inter-
pretations can stand for other values of S. In Figure 3.9 to 3.11, we present three
typical examples out of the 73 stacks in the UK Biobank testing set for which the
LVRV-no-propagation-net fails while the LVRV-net succeeds. In the �rst example,
on the one hand, the apex is so faint on the apical slice that it is barely possible
to determine its size precisely. The ground-truth apex seems to be somewhat too
large while the LVRV-net prediction looks a little bit too small (in a way learned
from the training set with ground-truth variability). But the LVRV-net prediction
still well determines the location of the apex using the contextual information. On
the other hand, there is a structure on the slice of appearance very similar to the
heart. The LVRV-no-propagation-net is confused by it and hence makes a com-
pletely wrong prediction. If we reconstruct the anatomical mesh of the heart based
on the segmentation (to overcome the problem of large slice thickness, we apply
interpolation to generate the segmentation on the intermediate slices between two
adjacent slices), the mesh reconstructed from LVRV-no-propagation-net is clearly
wrong on the apex. Similarly, the LVRV-no-propagation-net misses the right struc-
ture and/or makes a false positive prediction. In contrary, LVRV-net fails while
LVRV-no-propagation-net succeeds on only 10 stacks. For 7 of them, LVRV-net
predicts a tiny false positive component on a slice either below the apex or around
the base. These failures may be simply �xed via the removal of all but the largest
connected components. For the other 3 stacks, the errors are caused by image qual-
ity problems including large artifact on image and serious misalignment between
adjacent slices.

The authors of [Bai 2017b] propose a method achieving human-level MRI analy-
sis on UK Biobank. They aim at segmenting as accurately as possible each slice, in
contrast with our method, which focuses on the consistency of segmentation across
slices. Though the results of their method and that of ours are not directly compa-
rable due to the di�erences on metrics (e.g. 2D Hausdor� Distance vs 3D Hausdor�
Distance), training/testing datasets, preprocessing methods, etc., [Bai 2017b] in-
spired us to compare the performance of our method with that of human experts
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Table 3.2: Segmentation Results on the ACDC Dataset, Compared to the Perfor-
mance from the State-of-the-art Methods

Dice Hausdor� (mm)
LVM LVC LVM LVC

mean std mean std mean std mean std
proposed 0.715 0.07 0.862 0.08 9.76 3.31 8.74 3.76
LV-net

Isensee et al. 0.873 - 0.930 - 9.668 - 8.416 -
[Isensee 2017]
Jang et al. 0.879 0.04 0.938 0.05 9.76 6.02 7.27 4.83
[Jang 2017]

Wolterink et al. 0.87 0.04 0.93 0.05 11.31 5.62 8.68 4.51
[Wolterink 2017]

in terms of 3D consistency, which is the main focus of our method. In Figure 3.9,
Figure 3.10 and Figure 3.11, for each example, we present a slice of the long-axis
view (the last row) for both meshes reconstructed from the ground-truth and the
LVRV-net prediction. As indicated by the arrows, with qualitative comparison we
�nd that among these pairs of meshes the ground-truth reconstruction meshes are
less regular and less smooth. It suggests that our method maintains 3D consistency
even better than human experts.

3.4.3 Generalization Ability to Other Datasets

All the 3 trained networks are applied to the other 3 datasets without �netuning
for two reasons. First, we do so to demonstrate their strong generalization ability.
Second, as the 3 networks are designed to be big to learn from the large UK Biobank
dataset of thousands of cases, �netuning them on small datasets of tens of cases
easily results in over�tting. In fact, we have tried to �netune LVRV-net on ACDC.
While a certain level (e.g. 10 epochs) of �netuning is bene�cial, over�tting happens
very soon afterward (obviously since the 50th epoch).

3.4.3.1 Experiments on ACDC

The trained ROI-net is applied to the ED sub-stacks S[0:1N; 0:5N ] of the 100 ACDC
cases. Again as we found in the experiments on UK Biobank, the ROI determination
is successful on 100% of the cases, as all the ROIs contain the heart completely on
the one hand, and are very reasonably small on the other hand.

As we pointed out in the �Data� section, the RVC is segmented in ACDC with
conventions quite di�erent from that of UK Biobank. So we only try to segment
the LV with the trained LV-net. Some slices to be segmented in ACDC are located
well above the base. They are quite di�erent from all the slices used to train LV-
net so LV-net can predict some false positives. To deal with this challenge, for the
application on ACDC only, we add three more points to the LV-net postprocessing
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Figure 3.9: An example of the segmentation on di�cult slices (zoomed-in versions of
ROIs for better visualization) and the reconstructed meshes with the ground-truth,
the prediction of LVRV-net and that of the LVRV-no-propagation-net. The last
row shows a slice of the long-axis view of the meshes reconstructed with the ground-
truth and the LVRV-net prediction (irregularities of the ground-truth reconstruction
meshes are indicated by the arrows). The large-spread abnormal structures on the
meshes in the third column are due to the interpolation of the wrong segmentation
(indicated by the arrows). The �rst two rows are the segmentation on the last two
slices of the stack. The apex is faint and there is another structure very similar
to the heart. The LVRV-net correctly predicts the location of the apex, while the
LVRV-no-propagation-net prediction is completely wrong.
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Figure 3.10: An example of the segmentation on di�cult slices (zoomed-in versions
of ROIs for better visualization) and the reconstructed meshes with the ground-
truth, the prediction of LVRV-net and that of the LVRV-no-propagation-net. The
last row shows a slice of the long-axis view of the meshes reconstructed with the
ground-truth and the LVRV-net prediction (irregularities of the ground-truth recon-
struction meshes are indicated by the arrows). The large-spread abnormal structures
on the meshes in the third column are due to the interpolation of the wrong segmen-
tation (indicated by the arrows). The �rst two rows are the segmentation on the
last two slices of the stack. The LVRV-no-propagation-net predicts RVC incorrectly
on the slice just above the apex and makes a false positive prediction of LVM on
the other slice.
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Figure 3.11: An example of the segmentation on di�cult slices (zoomed-in versions
of ROIs for better visualization) and the reconstructed meshes with the ground-
truth, the prediction of LVRV-net and that of the LVRV-no-propagation-net. The
last row shows a slice of the long-axis view of the meshes reconstructed with the
ground-truth and the LVRV-net prediction (irregularities of the ground-truth recon-
struction meshes are indicated by the arrows). The large-spread abnormal structures
on the meshes in the third column are due to the interpolation of the wrong seg-
mentation (indicated by the arrows). The LVRV-no-propagation-net makes a false
positive prediction of LV on an intermediate slice.
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Table 3.3: Segmentation Results by Pathological Group on the ACDC Dataset
Dice Hausdor� (mm)

LVM LVC LVM LVC
mean std mean std mean std mean std

Dilated 0.705 0.04 0.916 0.02 8.50 2.31 7.19 1.81
cardiomyopathy
Hypertrophic 0.773 0.05 0.792 0.12 12.02 3.74 11.41 5.48

cardiomyopathy
Myocardial 0.708 0.06 0.890 0.03 9.83 3.51 8.35 2.40
infarction
Abnormal 0.666 0.07 0.850 0.06 9.54 2.83 8.08 2.77

right ventricle
Normal 0.721 0.06 0.863 0.05 8.93 2.76 8.67 3.72

procedure:
� The �rst condition for a successful predicted mask becomes �both LVC and LVM
are present� (instead of �LVM is present�).
� If the predicted mask is successful, only the largest components of LVC and LVM
are respectively reserved as predicted masks.
� If the predicted LVC mask has any neighboring background pixels, we reset the
prediction of those pixels to LVC (indicated by the arrows in Figure 3.12). We do
so to follow the ACDC convention that LVC is almost always enclosed by LVM.

Among the methods in the ACDC challenge, [Isensee 2017] (ranked 1st),
[Jang 2017] (ranked 4th) and [Wolterink 2017] (ranked 5th) report their perfor-
mances on the 100 training cases. The performances on these cases of LV-net and
these methods are presented in Table 3.2. Due to the variability of the UK Biobank
training set ground-truth, as well as the di�erence between UK Biobank and ACDC
images, LV-net is not as good as the state-of-the-art methods on Dice index. But
it is rather comparable to them in terms of the mean of Hausdor� distance, and
even better in terms of the standard deviation. This con�rms the robustness of our
method. In Figure 3.12, we also show some examples of LV-net prediction along
with the ACDC ground-truth and the UK Biobank ground-truth on similar slices.
It is clear that LV-net learns the segmentation �pattern� of the ground-truth from
UK Biobank, which is di�erent from that of ACDC.

We also �nd that the di�erence between the performances of our method on the
5 pathological groups remains limited as presented in Table 3.3. The pathological
group seems to have less in�uence than the image quality of individual stack on the
segmentation performance. Being trained with cases from the general population,
our method generalizes well to the cases with pathology.
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Table 3.4: Segmentation Results (Mean and Standard Deviation) on the Sunnybrook
Dataset, Compared to the Performance from the State-of-the-art Methods

Dice APD (mm) PGC (%)
LVC LV-epi LVC LV-epi LVC LV-epi

proposed 0.88 0.94 2.11 1.95 97.08 99.21
LV-net (0.07) (0.03) (0.49) (0.42) (6.04) (2.95)
Tran 0.92 0.96 1.73 1.65 98.48 99.17

[Tran 2016] (0.03) (0.01) (0.35) (0.31) (4.06) (2.20)
Winther et al. 0.94 0.95 - - - -
[Winther 2017] (0.03) (0.03) (-) (-) (-) (-)
Avendi et al. 0.94 - 1.81 - 96.69 -
[Avendi 2016a] (0.02) (-) (0.44) (-) (5.7) (-)
Queiros et al. 0.90 0.94 1.76 1.80 92.70 95.40
[Queiros 2014] (0.05) (0.02) (0.45) (0.41) (9.5) (9.6)
Poudel et al. 0.90 - 2.05 - 95.34 -
[Poudel 2016] (0.04) (-) (0.29) (-) (7.2) (-)

3.4.3.2 Experiments on Sunnybrook

The slices to be segmented of the 30 cases in Sunnybrook are well located on or
below the base of the heart. We segment them with the trained LV-net. In a way
similar to the practice in [Tran 2016], 160 � 160 central zones are cropped out as
ROIs, which are then used as inputs to LV-net. Comparison of the performance
of LV-net and up-to-date state-of-the-art research is presented in Table 3.4. LV-
net is somewhat less accurate on Dice index and on average perpendicular distance
(APD). But its robustness makes it comparable or even better than the state-of-
the-art on the percentage of good contours (PGC). Examples of predicted masks
and ground-truth are shown in Figure 3.13.

3.4.3.3 Experiments on RVSC

The slices to be segmented for the 16 cases in RVSC are all located below the base
and above the apex. Similar to [Tran 2016], 216 � 216 central zones are cropped
out as ROIs. We then apply the trained LVRV-net on these ROIs and evaluate the
predicted RVC masks. Comparison with the up-to-date state-of-the-art research
is presented in Table 3.5. In terms of Hausdor� distance, our method not only
achieves better mean value but also generates much smaller standard deviation value
compared the to state-of-the-art. Examples of predicted masks and ground-truth
are presented in Figure 3.14.
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Figure 3.12: Examples of ground-truth (�rst column) vs prediction (second column)
on ACDC dataset (the arrows indicate the pixel labels reset to LVM). We also add
similar slices with the ground-truth in UK Biobank (third column). The 3 rows
correspond to slices roughly on the top (around the base), in the middle and at the
bottom (around the apex) of image stacks. LVC and LVM are marked as purple
and brown respectively. Note that these images are zoomed-in versions of ROIs for
the sake of better visualization. They are not the ROIs which LVRV-net and LV-net
take as inputs.
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Figure 3.13: Examples of ground-truth (�rst column) vs prediction (second column)
on Sunnybrook dataset. The 3 rows correspond to slices roughly on the top (around
the base), in the middle and at the bottom (around the apex) of image stacks. LVC
and LVM are marked as purple and brown respectively. Note that these images are
zoomed-in versions of ROIs for the sake of better visualization. They are not the
ROIs which LVRV-net and LV-net take as inputs.
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Figure 3.14: Examples of ground-truth (�rst column) vs prediction (second column)
on RVSC dataset. The 3 rows correspond to slices roughly on the top (around the
base), in the middle and at the bottom (around the apex) of image stacks. RVC
is marked as green. Note that these images are zoomed-in versions of ROIs for the
sake of better visualization. They are not the ROIs which LVRV-net and LV-net
take as inputs.
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Table 3.5: Segmentation Results on the RVSC Dataset, Compared to the Perfor-
mance from the State-of-the-art Methods

Dice Hausdor� (mm)
RVC RVC

mean std mean std
proposed LVRV-net 0.82 0.07 7.56 3.50
Tran [Tran 2016] 0.84 0.21 8.86 11.27

Winther et al. [Winther 2017] 0.85 0.07 - -
Avendi et al. [Avendi 2016b] 0.81 0.21 7.79 5.91
Zuluaga et al. [Zuluaga 2013] 0.76 0.25 11.51 10.06

3.5 Conclusion and Discussion

We propose a method of segmentation with spatial propagation that is based on
originally designed neural networks. By taking the contextual input into account,
the spatial consistency of segmentation is enforced. Also, we conduct thorough
and unprecedented testing to evaluate the generalization ability of our model and
achieve performance better than or comparable to the state-of-the-art. Furthermore,
an exceptionally large dataset (UK Biobank) collected from the general population
is used for training and evaluation.

Given the experiments in this paper, we notice that our method is very robust in
terms of distance measures (e.g. Hausdor� distance) but less precise than the state-
of-the-art in terms of Dice index. The variability of ground-truth in the UK Biobank
training set is one important reason for that. For instance, the high ground-truth
variability on the basal slice, which is included in the testing sub-stacks for LV-net
but not for LVRV-net, explains the slightly lower performance measures of LV-net
in Table 3.1. Yet this kind of variability commonly exists in large datasets so we
have to decide to accept and cope with it. Furthermore, inconsistency problems
may occur in segmentation (as illustrated and discussed), to which the Dice index
might not be sensitive. We believe that on this problem more attention should be
paid to the Hausdor� distance, according to which our proposed method performs
better. For instance, in the third example shown in Figure 3.11, a small spot of false
positive of LVC segmentation is predicted by LVRV-no-propagation-net. This is a
very typical case of inconsistency: the false positive part is quite small compared
to the ground-truth LVC, and therefore only causes a slight reduction of the Dice
index. But it certainly brings about an explosion of the Hausdor� distance.

We did not directly measure the human performance in terms of 3D metrics on
UK Biobank to compare with our method. However, the authors of [Bai 2017b] did
conduct experiments on UK Biobank to measure human performance in terms of 2D
metrics. Taking the inter-observer variability of 3 human experts into account, the
reported human expert levels are about 0.93(LVC), 0.88(LVM), and 0.88(RVC) in
terms of 2D Dice index, and about 3.1mm(LVC), 3.8mm(LVM) and 7.4mm(RVC) in
terms of 2D Hausdor� distance. Though these results are not directly comparable to
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ours, they may still give a rough idea of human performance. We roughly estimate
that our method, while mainly focusing on consistency, has a performance still a
little bit lower than that of human experts in terms of accuracy.

Most of the existing segmentation methods do not explicitly take spatial con-
sistency into account. In particular, they do not accurately segment the �di�cult�
slices around the apex. Our method, segmenting in a spatially consistent manner, is
particularly more robust than them on these slices. The importance of correctly seg-
menting these slices is often underestimated. In many cutting-edge research projects
(e.g. cardiac motion simulation and image synthesis), as a primary step, 3D meshes
need to be built based on segmentation. Without spatial consistency and success on
the apical slices of the segmentation, the generated meshes would be problematic.

Finally, we wonder whether our method, with better performance on distance
measures than many state-of-the-art methods, would be a great tool for cardiac mo-
tion analysis. Intuitively, the smaller the Hausdor� distance between the predicted
and the ground-truth contours at each instant is, the more precisely the trajectory of
the corresponding structure (e.g. LVC, LVM, RVC) can be tracked across time, and
hence the better the motion can be characterized. We expect to carry out research
on this in the future.

3.6 Appendix

3.6.1 Datasets

3.6.1.1 UK Biobank Dataset

It comprises short-axis cine MRI of 4875 participants from the general population.
Details of the magnetic resonance protocol are described in [Petersen 2016]. Each
time series is composed of 3D volumes with 10mm slice thickness and in-plane resolu-
tion ranging from 1.8mm to 2.3mm. Expert manual segmentation using CVI426 for
LVC, LVM, and RVC is provided as ground-truth at both ED and ES. The quality
of ground-truth varies highly across the cases. We exclude about one thousand cases
that are provided with incomplete (e.g. missing ground-truth on some slice(s)) or
unconvincing ground-truth (e.g. visually signi�cant image/mask mismatch). Then
we split the remaining 3834 cases into 2 sets of 3078 cases and 756 cases, for training
and evaluation respectively.

3.6.1.2 Automated Cardiac Diagnosis Challenge (ACDC) Dataset

The ACDC dataset comprises short-axis cine MRI of 100 subjects, which are divided
into 5 groups of equal size: dilated cardiomyopathy, hypertrophic cardiomyopathy,
myocardial infarction, abnormal right ventricle and normal subjects. Each time
series is composed of 3D volumes with 5mm to 10mm slice thickness and in-plane

6https://www.circlecvi.com/

https://www.circlecvi.com/
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resolution ranging from 0.7mm to 1.9mm. Expert manual segmentation for LVC,
LVM, and RVC is provided as ground-truth at both ED and ES phases.

3.6.1.3 Sunnybrook Dataset

The validation and the online sub-datasets of the Sunnybrook dataset, made avail-
able for the MICCAI 2009 challenge on automated left ventricle (LV) segmentation,
contains short-axis cine MRI from 30 subjects with di�erent cardiac conditions:
healthy (6 cases), hypertrophy (8 cases), heart failure with infarction (8 cases), and
heart failure without infarction (8 cases). Each time series is composed of 6 to 12
2D cine stacks with a slice thickness of 8mm and in-plane resolution ranging from
1.3mm to 1.4mm. Expert-delineated ground-truth contours of the endocardium, or
LVC, are provided at both ED and ES phases. Those of epicardium, or LVM, are
provided only at ED phase.

3.6.1.4 Right Ventricle Segmentation Challenge (RVSC) Dataset

The RVSC dataset comprises 16 training 2D short-axis cine MRI stacks consisting
of slices located across the ventricle. The in-plane resolution ranges from 0.57mm
to 0.97mm. Ground-truth delineation of endocardial borders (LVC contours) and
epicardial borders are provided at both ED and ES phases for the training cine
stacks.

3.6.2 Metrics

3.6.2.1 Dice Index

The Dice index measures the overlap between two areas (2D Dice index) or two
volumes (3D Dice index). It is de�ned as

D(A;B) = 2
A \B
A+B

(3.7)

for two areas or two volumes A and B. The Dice index varies from 0 (complete
mismatch) to 1 (perfect match).

3.6.2.2 Hausdor� Distance

The Hausdor� distance measures the distance between two areas (2D Hausdor�
distance) or two volumes (3D Hausdor� distance). It is de�ned as

H(A;B) = max
�

max
p2A

�
min
q2B

d(p; q)
�
; max

q2B

�
min
p2A

d(p; q)
��

(3.8)

where d denotes Euclidean distance. A smaller Hausdor� distance implies a better
match.
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3.6.2.3 Average Perpendicular Distance

The average perpendicular distance (APD) [Radau 2009] measures the distance in
mm from one contour to another, averaged over all contour points.

3.6.2.4 Percentage of Good Contours

Given a set of ground-truth contours and the corresponding predicted contours, the
percentage of good contours (PGC) de�ned in [Radau 2009] is the fraction of the
predicted contours which have APD less than 5mm away from the ground-truth
contours.

3.6.2.5 Presence Rate

Segmentation methods may miss a structure totally on some di�cult slices. Given
the segmentation predictions on a sub-stack, the presence rate (PR) of a structure
is de�ned as the ratio between the number of predicted masks with the structure
and the number of slices in the sub-stack.

On the UK Biobank and ACDC datasets, we use the 3D Dice index and 3D
Hausdor� distance as metrics, similar to what has been done for the ACDC STA-
COM MICCAI 2017 challenge. For Sunnybrook, we use the 2D Dice index, APD,
and PGC as in the MICCAI 2009 challenge on automated LV segmentation. For
RVSC, we use 2D Dice index and 2D Hausdor� distance as done for the MICCAI
2012 challenge on automated RV segmentation.
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� [Zheng 2018a] Explainable Cardiac Pathology Classi�cation on Cine
MRI with Motion Characterization by Semi-Supervised Learning of
Apparent Flow
Qiao Zheng, HervØ Delingette and Nicholas Ayache. Submitted to Medical
Image Analysis in November 2018, under minor revision in February 2019

4.1 Introduction

Cine magnetic resonance imaging (cine MRI) is widely used in the clinic as an
approach to identify cardiac pathology. For both the patients and the clinicians,
there is hence a great need for automated accurate cardiac pathology identi�ca-
tion and classi�cation based on MRI images as mentioned in [Rueckert 2016] and
[Comaniciu 2016], as well as in the myocardial infarct classi�cation challenge run
at the STACOM workshop in 2015 ([Suinesiaputra 2018]). Recently, the state-of-
the-art cardiac pathology classi�cation methods extract various features from MRI
images and perform classi�cation based on these features. Despite the great results
achieved so far, there are still some aspects that need to be further explored.

First, most classi�cation models, including the state-of-the-art models, take
many feature values together as input to a single or a group of machine learn-
ing classi�ers (e.g. [Khened 2017], [Khened 2018], [Wolterink 2017], [Cetin 2017],
[Isensee 2017]), and output the predicted probability distribution over several
classes. Like many other machine learning methods, or more speci�cally like most
deep learning methods, these classi�cation models are not easy to interpret. On the
one hand, most of the models contain at least hundreds of parameters and it is im-
practical to examine and explain the role of each parameter. On the other hand, as
many features are used simultaneously, it is hard to tell in a straightforward manner
which feature value contributes to the identi�cation of which category. This draw-
back on explainability causes many problems as pointed out in [Holzinger 2017].
For instance, the lack of explainability is a signi�cant hurdle for their widespread
adoption in the clinic despite their performance. Moreover, under the new European
General Data Protection Regulation, it may also generate legal issues in business,
as companies are required to be able to explain why decisions have been made by
their models upon demand. Hence we propose a simple classi�cation model with
9 input features and 14 parameters in total such that the role and contribution of
each feature or parameter are clear and explainable.

Second, in terms of data availability in medical image analysis, we usually
have access to a large amount of unlabeled data and a small amount of labeled
data. How to make good use of the available data to train automatic methods re-
mains an open question ([Weese 2016]). Semi-supervised learning appears to be
a powerful approach to tackle this challenge in general ([Bai 2017a], [Gu 2017],
[Cheplygina 2018]). In this paper, while cardiac motion is estimated in a �ow-
based manner like in many other methods ([Gao 2016], [Parajuli 2017]), we extend
it as a semi-supervised learning method to train a network for apparent �ow gen-
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eration, using the dataset of Automatic Cardiac Diagnosis Challenge (ACDC) of
MICCAI 2017 ([Bernard 2018]), for which the ground-truth segmentation mask is
only available for 2 time frames. Although the percentage of the segmented frames
in the dataset is small, making e�cient use of their segmentation masks in training
is essential for the generated �ow to have better consistency. In particular, with
the supervision of the masks in training, we show that cardiac structures are better
preserved after warping by the generated �ow.

Third, the state-of-the-art classi�cation methods most exclusively focus on fea-
tures extracted at two instants: the instants of end-diastole (ED) and end-systole
(ES). The other instants are often ignored in pathology classi�cation. For ex-
ample, in the ACDC challenge, 3 out of the 4 cardiac pathology classi�cation
methods, including [Khened 2017] (as well as its updated version [Khened 2018]),
[Wolterink 2017] and [Cetin 2017], use only features based on ED and ES. The
authors of [Isensee 2017] propose the only method in the ACDC challenge which
explores the instants other than ED and ES by quantifying the volume change and
by measuring the LV-RV dissynchrony. Yet much information about cardiac mo-
tion (e.g. how individual myocardial segments move) is still excluded from the
extracted features. While more and more research e�orts are put on cardiac motion
estimation (e.g. [Qin 2018a], [Qin 2018b], [Xue 2018], [Yang 2017], [Yan 2018]) and
cardiac disease assessment via motion analysis (e.g. [Gilbert 2017], [Dawes 2017],
[Lu 2018]), we propose to explore the impact of speci�c motion features to learn the
detection of cardiac pathologies by extracting some useful time series of simple and
straightforward features from cine MRI image sequences. Ideally, the resulting time
series should be both informative enough to be used for classi�cation and intuitive
to be understood by a physician.

In this paper, we propose a novel and explainable method to classify a subset of
cardiac pathologies using deep learning of cardiac motion (in the form of apparent
�ows) and shape. Our main contribution is threefold:
� Semi-supervised learning of �ow: a novel semi-supervised learning method
is applied to train a neural network model, which outputs apparent �ows given two
MRI images from the same 2D+t cine MRI image sequence. This allows to learn
the motion as apparent �ows e�ciently from both segmented and non-segmented
image data.
�Motion-characteristic features: combining the apparent �ows across time with
cardiac segmentation, time series of the radius and thickness of myocardial segments
are extracted to describe cardiac motion. As features, they are easy to interpret and
allow to characterize di�erent shapes and motions of cardiac pathologies.
� Explainable classi�cation model: we train a set of 4 simple classi�ers to
perform binary classi�cations. Each classi�er performs a logistic regression and
takes no more than 3 feature values as input, which makes it very simple and easy to
interpret. On the ACDC challenge training set and testing set, our model achieves
95% and 94% as classi�cation accuracy respectively, which is comparable to the
state-of-the-art.
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Figure 4.1: Overview of the feature extraction method: 1. Apparent �ow generation
given the ED frame and another frame on the same slice; 2. Cardiac segmentation
on the ED and ES frames and division of the ED myocardium mask to 6 segments;
3. Extraction of the shape-related features, including the calculation of the volumes,
volume ratios and myocardial thickness of a heart given the segmentation masks;
4. Extraction of motion-characteristic features, including the creation of segment
radius and thickness time series given a slice with the corresponding apparent �ow
maps and segmentation mask.
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4.2 Data

4.2.1 Dataset

The proposed method is trained and evaluated on the ACDC challenge dataset,
which consists of a training set of 100 cases and a testing set of 50 cases. The cine
MRIs were acquired with a conventional SSFP sequence ([Bernard 2018]). Most of
the cases contain about 10 slices of short-axis MRIs. And the number of frames in the
cases varies between 12 and 35. ACDC training set and testing set are respectively
divided into 5 pathological groups of equal size (we cite below the properties of each
group as provided on the website, though they are only roughly exact according to
our measure and observation):
� dilated cardiomyopathy (DCM): left ventricle cavity (LVC) volume at ED larger
than 100 mL=m2 and LVC ejection fraction lower than 40%
� hypertrophic cardiomyopathy (HCM): left ventricle (LV) cardiac mass higher than
110 g=m2 , several myocardial segments with a thickness higher than 15 mm at ED
and a normal ejection fraction
� myocardial infarction (MINF): LVC ejection fraction lower than 40% and several
myocardial segments with abnormal contraction
� RV abnormality (RVA): right ventricle cavity (RVC) volume higher than 110
mL=m2 or RVC ejection fraction lower than 40%
� normal subjects (NOR)
Please note that the abnormal contraction mentioned in the characteristics of MINF
is quite vague as a property. In addition, both MINF and DCM cases have low LVC
ejection fractions. And sometimes, a myocardial infarction causes a dilated LVC
(for which we should classify the case to MINF instead of DCM according to ACDC
challenge). As we will present later, it is indeed a challenge to distinguish them.

For the cases of ACDC training set, expert manual segmentation for LVC, RVC
and the left ventricular myocardium (LVM) is provided as ground-truth for all slices
at ED and ES phases; all other structures in the image are considered as background.
For the cases of ACDC testing set, no ground-truth information about classi�cation
or segmentation is available. For performance evaluation on the testing set, the
predicted results of a model need to be submitted online.

4.2.2 Notation

In this paper, slices in image stacks are indexed in spatial order from the basal part
to the apical part of the heart. Given an image stack S, we denote NS the number
of its slices. Given two values a and b between 0 and NS�1, we note S[a; b] the sub-
stack consisting of slices of indexes in the interval [round(a); round(b)[ (round(a) is
included while round(b) is excluded).
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Figure 4.2: Overview of the classi�cation method: the 4 binary classi�ers are applied
in sequence to classify a case to RVA, HCM, DCM, MINF or NOR.

4.3 Methods

Our method mainly consists of two parts: feature extraction (Figure 4.1) and clas-
si�cation based on features (Figure 4.2). But the region of interest (ROI) needs to
be determined �rst.

4.3.1 Preprocessing: Region of Interest (ROI) Determination

As a preprocessing step, the ROI needs to be determined on the original MRI
images. Short-axis MRI images usually cover a zone much larger than that of
the heart. To save memory usage and to increase the speed of apparent �ow and
segmentation methods, it is better to work on an appropriate ROI instead. For
this purpose, we directly apply an existing ROI method: we use the trained ROI-
net exactly as described in [Zheng 2018b] to de�ne an ROI. Brie�y speaking, the
ROI-net is a variant of U-net ([Ronneberger 2015]) for heart/background binary
segmentation. It is applied on several middle slices on the ED image stack. As
shown in [Zheng 2018b], this ROI determination method is very robust and succeeds
in all cases of the ACDC dataset. In the remainder of this paper, we only refer to
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Figure 4.3: ApparentFlow-net: for apparent �ow generation. The output is a map
of pixel-wise �ow F t .

the automatically cropped ROI of the images.

4.3.2 Feature Extraction Step 1: Apparent Flow Generation

As shown in Figure 4.1, there are four steps for feature extraction. In this �rst step,
the ApparentFlow-net, which is a variant of U-net ([Ronneberger 2015]) as shown
in Figure 4.3, is proposed. U-net, with the encoder-decoder structure consisting of
layers of various sizes of receptive �elds, can e�ectively integrate local and global
information, which is necessary for the analysis of the shape and motion of the
heart on MRIs. Previously, we successfully used some variants of U-net for cardiac
segmentation ([Zheng 2018b]). So we expect a similar structure would also work
for the estimation of cardiac motion. The ApparentFlow-net is applied to generate



56
Chapter 4. Explainable Pathology Classi�cation with Motion

Characterization

pixel-wise apparent �ow given a pair of image frames on the same slice as input:
the ED frame and another frame of index t on the same slice. In other words, the
generated apparent �ow map is a displacement �eld of the slice between ED and
instant t. In a later step, combined with the segmentation mask, we will extract
cardiac motion features from the sequences of apparent �ow maps on a slice. The
details of this extraction are available in the sub-section 3.5. While there exists
some researches that explore image registration (or equivalently, apparent �ow)
using unsupervised learning (e.g. [Balakrishnan 2018], [Krebs 2018], [de Vos 2017],
[Li 2017]), we propose a semi-supervised learning approach to make e�cient use of
a large amount of non-segmented images and a small amount of images segmented
manually by experts.

In general, the idea of representing motion by apparent �ow is based on two
assumptions. First, we assume that the pixel intensities of an object do not change
much between the two frames. Second, it is assumed that neighboring pixels have
similar motion. By observation, we �nd that these assumptions usually hold on the
slices located below the base and above the apex with some margin. This is due
to the limited out-of-plane motion on these slices (this is less the case for the slices
around the base and the apex). Hence ApparentFlow-net is trained and applied on
the middle slices only.

If we note IED (P ) and It (P ) the pixel intensity of the two input frames
of ApparentFlow-net at position P = (x; y), according to the �rst assumption
above, ApparentFlow-net should generate an apparent �ow map F t with F t (P ) =
(F x

t (P ); F y
t (P )) between ED and t enabling image reconstruction such that the

following intensity discrepancy is minimized:

LIMG (F t ) =
X

P

�
IED (P )� It

�
P + F t (P )

��2

(4.1)

Meanwhile, the �ow should also preserve the regularity of the motion of neighbor-
ing pixels according to the second assumption above. While there are already some
methods in the community to impose di�eomorphisms (e.g. demon’s algorithm as
in [Pennec 1999], LDDMM as in [Hernandez 2008]), we propose a simple one to only
discourage the occurrence of the extreme situations such as the crossing between two
adjacent pixels or rotations greater than 90�(Figure 4.4). As long as these unrealis-
tic motion patterns do not appear, there is no penalty on the regularity at all and
the network is free to generate whatever �ow without being in�uenced by the regu-
larity constraint. More precisely, let us note WF t as the warping function such that
WF t (P ) = P + F t (P ). For two adjacent pixels P = (x; y) and P x + = (x+ 1; y) in
a row, we want the warped pixel WF t (P x + ) to stay on the right of the warped pixel
WF t (P ) (similarly for the adjacent pixels P and P y + = (x; y+1) in a column) (see
Figure 4.4). Otherwise, we say that a crossing on the x-components (y-components)
of the �ow pairs occurs and a penalty should apply. This translates as the following
criterion to be minimized (more details about the derivation are available in the
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Figure 4.4: Examples of adjacent pixel pairs transformed by apparent �ow for which
the crossing penalty applies or not.

appendix section):

LCROSS (F t )

=
X

P

min (1 +
@F x

t (P )
@x

; 0)2 + min (1 +
@F y

t (P )
@y

; 0)2 (4.2)

Moreover, we further encourage the �ow to preserve the segmentation masks
of cardiac structures S 2 {LVC, LVM, RVC}. The warped segmentation masks of
these structures should approximately match the ground-truth masks on the corre-
sponding frame. Let us note MS

ED and MS
ES the binary ground-truth segmentation

mask (of pixel intensity value 0 or 1) of S at the instants of ED and ES (the only
instants for which the ground-truth is available in the ACDC training set). This
constraint on the �ow between ED and ES is based on the Dice coe�cient

LGT (FES ) =
X

S2fLVC ;LVM ;RVC g

Dice(MS
ED ;M

S
ES �WFES ) (4.3)

The formula of the Dice function is provided in the appendix section.
Finally, the overall loss function for training the ApparentFlow-net is a linear

combination of the terms LIMG , LCROSS and potentially LGT . We adopt a semi-
supervised approach for which LGT is applied when ground-truth segmentation is
available:

Low (F t ) = LIMG (F t ) + p1LCROSS (F t ) + p21t = ESLGT (F t ) (4.4)

where 1t = ES is the indicator function for the event t = ES. 1t = ES is necessary
as for the instants t other than ED and ES, the ground-truth segmentation is not
provided in ACDC. Please note that this is a typical method of semi-supervised
learning. It makes use of a small amount of labeled data (the images with ground-
truth segmentation) and a large amount of unlabeled data (the images without
ground-truth).
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4.3.3 Feature Extraction Step 2: Segmentation

In this step, an existing model for segmentation proposed in [Zheng 2018b], the
LVRV-net, is applied to segment MRI image stacks as presented in [Zheng 2018b].
With the concept of propagation along the long axis, this method was proven to be
robust, as the results achieved on several di�erent datasets are all comparable or
even better than the state-of-the-art. For more details about the structure, training
and application of the LVRV-net, please refer to [Zheng 2018b]. When we train and
evaluate our method on the ACDC training set (100 cases), in each fold of a 5-fold
cross-validation, the trained LVRV-net as given by [Zheng 2018b] is �netuned with
the 80 cases used for training before being applied on the remaining 20 cases; for
the evaluation of our method on ACDC testing set (50 cases), the trained LVRV-net
is �rst �netuned with the 100 cases of ACDC training set.

In fact, in [Zheng 2018b], LVRV-net was trained to start the segmentation prop-
agation from a given slice on which the ventricle cavities are supposed to be present.
In other words, it was only trained to identify LV and RV labels on the slices below
the base. So it might not work well if the basal slice is not determined in a stack
and if the top slice in the volumetric image is located above the base. In this case,
if we apply the original LVRV-net starting from the top slice, it might make a false
positive prediction. With �netuning on ACDC, we �nd that this issue is solved. In
general, the �netuned LVRV-net successfully learns from the ground-truth segmen-
tation masks of ACDC that no foreground pixel is present (i.e. predict everything
to be background) on the slices above the base and start segmentation propagation
only when the base is reached. So it is no longer necessary to determine the basal
slice manually. On the resulting sets of segmentation masks, we can hence also de-
termine the location of the base, which is necessary for the calculation of volumes
and the determination of sub-stacks for motion extraction as we will present later.

With the segmentation mask, we determine B L and B R , the barycenters of LVC
and RVC respectively. Then all the pixels P labeled to LVM on the segmentation
mask are divided into 6 segments, depending on in which interval [k�=3; (k+ 1)�=3[
for k in [0; 5] the angle between the vectors B L P and B L B R is. An example of the
resulting 6 segments are shown in Figure 4.1. This division of segments is inspired
by the 17-segment system recommended by the American Heart Association (AHA)
in [Cerqueira 2002]. Indeed, in the AHA system, on all short-axis slices around the
base and at the level of mid-cavity, the myocardium is divided into 6 segments.

4.3.4 Feature Extraction Step 3: Shape-Related Features

Based on the segmentation masks generated in the previous step, we estimate the
volumes of LVC, LVM and RVC of a case at ED and ES. For each of the two phases,
the volume of LVC is calculated by approximating the LVC between two adjacent
slices as a truncated cone and summing up all the truncated cone volumes:

VLVC =
X

i

(Si + Si +1 +
p
SiSi +1 )(Li +1 � Li )=3 (4.5)
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Table 4.1: The extracted features used by our classi�cation model
Feature Notion (and De�nition)

RVC volume at ED VRVC ;ED

LVC volume at ES VLVC ;ES

RVC ejection fraction EFRVC (= 1� VRVC ;ES=VRVC ;ED )
LVC ejection fraction EFLVC (= 1� VLVC ;ES=VLVC ;ED )

Ratio between RVC and RRVCLV ;ED

LV volumes at ED (= VRVC ;ED =(VLVC ;ED + VLVM ;ED ))
Ratio between LVM and RLVMLVC ;ED

LVC volumes at ED (= VLVM ;ED =VLVC ;ED )
Maximal LVM thickness MT LVM ;ED

in all the slices at ED
Radius motion RMD

disparity
Thickness motion TMD

disparity

where Si is the area of LVC on the slice i and Li is the slice position along the
long axis. The volume of LVM and RVC is calculated in a similar way. Then
we normalize all the volumes by the corresponding body surface area (BSA) of
the subject, which is a traditional practice based on the assumption that BSA is
related to the metabolic rate. BSA can be computed from the height and the weight
provided in ACDC (using the Mosteller formula BSA=

p
height � weight=60 ).

With the segmentation masks and volumes at ED and ES, we then compute the
7 shape-related features as listed in the �rst 7 rows of Table 4.1.

4.3.5 Feature Extraction Step 4: Motion-Characteristic Features

4.3.5.1 Slice Selection

For each case, let S be the image stack at ED (following the Notation part in the
previous section). Given the segmentation masks of each slice generated in Step 2,
we note i1 the index of the �rst slice on which RVC mask is present (roughly the
�rst slice below the base), and i2 the index of the last slice on which LVC mask is
present (roughly the last slice above the apex), and h = i2�i1+1. Then we focus on
extracting motion information from the sub-stack Smid = S[i1 + 0:1h; i2 + 1� 0:2h].
Please note that among the slices between the base and the apex, we exclude the
top 10% and the bottom 20% and consider the remaining 70% in the middle, since
the out-of-plane motion is particularly large in the slices close to the base or the
apex.
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Figure 4.5: De�nitions of B i , I k;i , Ok;i , RAk;i and Tk;i , for the extraction of motion-
characteristic time series. The �rst row shows the de�nitions at t0; the second row
presents the de�nitions at ti for i 2 [1; 9]. 1st column: Frames at t0 and
ti , based on which the apparent �ow is generated. 2nd column: B i is the
barycenter of warped LVC (segmented at t0) at ti . 3rd column: I k;i is the
barycenter of the warped inner boundary of segment Sk at ti . 4th column:
Ok;i is the barycenter of the warped outer boundary of segment Sk at ti . 5th
column: RAk;i = jB i I k;i j=BSA, Tk;i = jB i Ok;i j=BSA�RAk;i .
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Figure 4.6: Examples of typical slice from 4 of the 5 pathological categories in ACDC.
1st column: the segmentation of the 6 myocardial segments (the boundaries of the
segmentation masks are marked by lighter colors). 2nd column: time series of
the radius (solid lines) and the thickness (dotted lines) of the 6 segments. 3rd
column: a visualization of the motion information. For each segment, the radius
connecting the LVC barycenter B 0 and the segment inner boundary barycenter I k; 0

(marked by the light green arrow) at ED is plotted. The segment inner boundary
barycenter at ES is marked by the light orange arrow. The radius of the circle is
proportional to the di�erence of segment thicknesses at ES and ED (�Tk;i ).
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4.3.5.2 Frame Sampling

As presented in Figure 4.1, for each slice in Smid , let us note f the number of frames
available (all the frames together form a cardiac cycle). We sample 10 frames of
instant ti for i in [0,9], such that t0 is the instant of ED and ti = round(t0 + i�f=10)
mod f for i in [1,9]. The 10 sampled frames hence cover the whole cardiac cycle.
Applying the ApparentFlow-net of Step 1 in all the 9 pairs of frame (t0; ti ), we
obtain 9 apparent �ow maps F t i . Hence for each pixel P , we get its warped position
WF t i

(P ) for i in [1,9].

4.3.5.3 Time Series Extraction

Then, with the convention that Ft0 is the null apparent �ow (and hence WF t0
is the

identity function), the barycenter of LVC at ti for i 2 [0; 9], B i , is de�ned as the
average of WF t i

(P ) for all the pixels P labeled as LVC on the segmentation mask
MED at t0 (the 2nd column of Figure 4.5):

B i = average(fWF t i
(P ) j P 2 LV C onMED g) (4.6)

In a similar way, for each myocardial segment Sk (k 2 [0; 5]) and each instant ti
(i 2 [0; 9]), we de�ne I k;i , the barycenter of the inner boundary of the myocardial
segment Sk at ti (the 3rd column of Figure 4.5):

I k;i = average(fWF t i
(P ) j P 2 LV C onMED

& P has neighboring pixel(s) 2 Skg)
(4.7)

and Ok;i , the barycenter of the outer boundary of the myocardial segment Sk at ti
(the 4th column of Figure 4.5):

Ok;i = average(fWF t i
(P ) j P 2 Sk

& P has neighboring pixel(s) 2 background onMED g)
(4.8)

Finally, as shown in the 4th column of Figure 4.5, we de�ne the radius of Sk at ti
normalized by BSA:

RAk;i = jB i I k;i j=BSA (4.9)

and the thickness of Sk at ti normalized by BSA:

Tk;i = jB i Ok;i j=BSA�RAk;i (4.10)

We hence generate two time series fRAk;i : i 2 [0; 9]g and fTk;i : i 2 [0; 9]g to
represent the contraction and the thickening of Sk .

4.3.5.4 Visual Correspondence between Time Series and Pathologies

We compute the two time series introduced above for all the slices in Smid of all
the cases in ACDC. From the majority of the cases, we manage to visually identify
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several typical slices with the time series characterizing the motion of the corre-
sponding category. Examples of such typical slices are presented in Figure 4.6. To
sum up our observation on the typical slices of each category as shown in Figure
4.6:
� NOR: all segments have similar radius and thickness at all instants; their contrac-
tion and thickening are synchronous and with comparable scales.
� HCM: the segments not only look proportionally thicker at ED, but also thicken
more and contract stronger in the radial direction.
� DCM: the radiuses are quite large; the segments are moving so little that neither
contraction nor thickening is obvious.
� MINF: the radiuses are quite large; some segments are clearly much more active
than others.

4.3.5.5 Motion-Characteristic Feature Values

To better distinguish DCM and MINF cases, we de�ne two additional feature values
which often indicate the abnormal contraction described in the de�nition of MINF.

The �rst one is �radius motion disparity� (RMD). Given a case, we consider the
set of radius series fRAk;i : i 2 [0; 9]g of all the segments Sk on all the slices in the
sub-stack Smid (e.g. if there are 4 slices in Smid , we consider a set of 6�4 = 24 time
series). We �rst de�ne the disparity of motion over all the segments in Smid at the
instant ti as the di�erence between the maximum and minimum contraction at ti :

RDi = max
Sk2Smid

RAk;i =RAk;0 � min
Sk2Smid

RAk;i =RAk;0 (4.11)

Then RMD is de�ned as the maximum disparity along the cardiac cycle:

RMD = max
i2[0 ;9 ]

RDi (4.12)

The second motion-characteristic feature value is named �thickness motion dis-
parity� (TMD). For each slice s in Smid and each ti , we de�ne the thickness motion
disparity of the slice s at ti as

TD s;i = ( max
k2[0 ;5 ]

Tk;i � min
k2[0 ;5 ]

Tk;i )= min
k2[0 ;5 ]

Tk;0 (4.13)

where we normalize the thicknesses by the minimum segment thickness at t0 on slice
s taking into account that myocardial thickness may vary across slice.

Finally, TMD is de�ned as

TMD = max
s2Smid ; i2[0 ;9 ]

TD s;i (4.14)

4.3.6 Classi�cation

4.3.6.1 4-Classi�er Classi�cation Model

Using the 7 shape-related features and the 2 motion-characteristic features as
input, a classi�cation model is proposed (Figure 4.2) to classify the 5 pathological
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categories of ACDC. It consists of 4 binary classi�ers:
� RVA classi�er: RVA cases v.s. all the other cases.
� HCM classi�er: HCM cases v.s. MINF, DCM and NOR cases.
� DCM classi�er: DCM cases v.s. MINF and NOR cases.
� MINF classi�er: MINF cases v.s. NOR cases.

The 4 binary classi�cations are arranged in increasing order of di�culty of the
binary classi�cation tasks. RVA and HCM cases can be identi�ed based on the
commonly used shape-related features. So they are classi�ed �rst. DCM and MINF
cases are somewhat similar in terms of sizes and ejection fractions. We use the novel
motion-characteristic features to better distinguish them. Hence this more di�cult
classi�cation is performed at the end.

4.3.6.2 Explainable Manual Feature Selection

To keep the classi�ers simple, limit their risk of over�tting and increase their ex-
plainability, we chose no more than 3 features for each classi�er as shown in Table
4.2:
� For RVA classi�er, according to the de�nition provided by ACDC, the RVC vol-
ume at ED and the RVC ejection fraction are the most relevant features. We add
one more feature, the ratio between RVC and LV volumes at ED, as we �nd that
most RVA cases have disproportionately large RVC.
� For HCM classi�er, LVC ejection fraction and maximal LVM thickness are selected
according to the de�nition of HCM. The ratio between LVM and LVC volumes at
ED is added because with most HCM cases this ratio is exceptionally high due to
the exceptional myocardial thickness .
� For DCM classi�er, as DCM cases are usually dilated at ED and inactive from ED
to ES, their volumes of LVC at ES can be exceptionally large. So this feature is used.
In addition, we also use radius motion disparity and thickness motion disparity.
� For MINF classi�er, by de�nition, LVC ejection fraction is enough to distinguish
MINF cases from NOR cases

4.3.6.3 Model of Classi�ers

Each of the 4 classi�ers is just a ridge logistic regression model. For a training case
of index m, if we note fm;i the i-th feature values used as input of the classi�er and
ym (-1 or 1, corresponding to no or yes) the binary ground-truth of the case, then
the classi�er is trained by minimizing

Lclassi�er (fpig; b)

=
1
2

X

i

p2
i + C

X

m

log
�

exp
�
� ym (

X

i

pi fm;i + b)
�

+ 1
� (4.15)

with respect to the parameters fpig and b. C is the inverse of regularization strength.
After the training is done, given a case of index l and feature values fl;i , the pre-
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Table 4.2: The input features of the 4 binary classi�ers
Input Feature(s)

RVA Classi�er VRVC ;ED , EFRVC , RRVCLV ;ED

HCM Classi�er EFLVC , RLVMLVC ;ED , MTLVM ;ED

DCM Classi�er VLVC ;ES , RMD , TMD
MINF Classi�er EFLVC

diction the sign of
P

i pi fl;i + b. If it is non-negative, the prediction of the trained
classi�er is yes; otherwise it is no.

4.3.6.4 Flexibility and Versatility of the Model

Finally, we would also like to point out that the 4 classi�ers function independently.
While they are grouped together to form the proposed classi�cation model in this
paper, they can certainly be applied separately or grouped in a di�erent manner
in other situations if appropriate. This proposed classi�cation model is hence very
�exible and versatile.

4.4 Experiments and Results

We evaluate our method in two di�erent ways. On the one hand, the model is
trained with ACDC training set and then tested on ACDC testing set. On the
other hand, a 5-fold cross-validation is performed on ACDC training set. For the
latter, the 100 cases of ACDC training set are partitioned into 5 subsets of 20 cases,
such that in each subset there are exactly 4 cases of each of the 5 categories.

In addition, we also analyze the proposed model by comparing it with various
other models. Since the ground-truth category is only available for the cases in the
training set (and not for those in the testing set), this analysis is based on the results
on the training set.

4.4.1 Training ApparentFlow-net

4.4.1.1 Parameters and Data

In the training process with the whole ACDC training set, as well as in each of the
5 training processes of the 5-fold cross validation, the ApparentFlow-net is trained
using the loss function Low (F t ) introduced in the Method section for 50 epochs
with batch size 16. In terms of loss function parameter, we empirically �nd that
p1 = 103 and p2 = 105 work well. These values are hence used for training. In
terms of training data, for each case in the corresponding training set, we use the
slices in the sub-stack S[i1 + 0:2h; i2 + 1 � 0:2h] (with the notation introduced in
the sub-section 3.5.1). In other words, we approximately exclude the top 20% and
the bottom 20% of all the slices covering the LV cavity, and select the remaining
60% in the middle. This slice selection for training (middle 60%) is slightly more
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Table 4.3: The mean(standard deviation) of Dice coe�cients achieved by comparing
MES �WFES andMED for 3 cardiac structures in the 5-fold cross-validation on ACDC
training set.

Training Method Dice
LVM LVC RVC

semi-supervised 0.84(0.07) 0.94(0.07) 0.87(0.19)
(proposed)
unsupervised 0.76(0.08) 0.93(0.06) 0.83(0.22)

conservative than that for the application of the method (middle 70%). This design
is aimed to further reduce the impact of the out-of-plane motion in training. For
each selected slice, the frame pairs of indices (ED, t) for all frame index t are
used to train the ApparentFlow-net. Only when t = ES, the term LGT (F t ) in
Low (F t ) using the segmentation ground truth is applied. With our automatic slice
selection approach, in total, there are 13672 frame pairs used for training in the
ACDC training set. Among the 13672 frame pairs, only 515 pairs (3.77%) come
with segmentation ground-truth such that the term LGT (F t ) applies.

4.4.1.2 Performance

To measure its performance, in each evaluation of the 5-fold cross-validation, for all
the slices in the sub-stack S[i1 +0:2h; i2 +1�0:2h] of all the 20 cases for evaluation,
we apply the trained ApparentFlow-net to generate FES . Then we use it to warp
the ground-truth segmentation mask at ES, noted as MES , to obtain MES �WFES .
MES �WFES is then compared with MED , the corresponding ground-truth masks
at ED, using Dice coe�cient (2D version) on LVM, LVC and RVC. Overall, the
means(standard deviations) of Dice coe�cients achieved on LVM, LVC and RVC in
the 5-fold cross-validation are reported in Table 4.3.

Additionally, we also visually evaluate the apparent �ow generated by the
ApparentFlow-net. We �nd that the apparent �ow is indeed good enough to charac-
terize the cardiac motion of the typical cases in the pathological categories. Several
examples are given in the appendix section.

4.4.1.3 Importance of Supervision in Training

In order to understand the importance of the small amount of segmentation ground-
truth used in the proposed semi-supervised learning method, we also train a variant
of ApparentFlow-net using only unsupervised learning. The only modi�cation is
the removal of the term LGT (F t ) from Low (F t ) such that the variant is trained
without any ground-truth for supervision. As reported in Table 4.3, the means of
Dice coe�cients on LVM, LVC and RVC are all lower than the corresponding results
achieved by the semi-supervised learning method. In particular, there is a large drop
from 0.84 to 0.76 on the mean of Dice coe�cient on LVM. So the proposed semi-
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Table 4.4: The classi�cation performance on the testing set (50 cases) and training
set (100 cases) of ACDC by di�erent models

Model Testing Set Training Set Evaluation Method on
Accuracy Accuracy Training Set

proposed model 94% 95% 5-fold cross-validation
[Isensee 2017] 92% 94% 5-fold cross-validation

[Wolterink 2017] 86% 91% 4-fold cross-validation
[Cetin 2017] 92% 100% forward feature selection and

leave-one-out cross-validation
[Khened 2017] 96% 90% 70 cases for training, 20 for

validation, 10 for evaluation
[Khened 2018] 100% N.A. N.A.

supervised learning method is indeed better than its unsupervised learning variant
by making e�cient use of the small amount of segmented images.

4.4.2 Finetuning LVRV-net

LVRV-net is already trained in [Zheng 2018b] for 80 epochs on a subset of about
3000 cases of UK Biobank ([Petersen 2016]). In the training process with the whole
ACDC training set, as well as in each of the 5 training processes of the 5-fold
cross validation, LVRV-net is �netuned for 920 epochs on the corresponding train-
ing data, with exactly the same loss function and training parameters as given in
[Zheng 2018b]. With the �netuning, the means (standard deviations) of 3D Dice
coe�cients achieved on LVC, LVM and RVC segmentation volumes in the 5-fold
cross-validation are 0.94(0.06), 0.90(0.03) and 0.89(0.12).

4.4.3 Proposed Classi�cation Model

Apparent �ows and segmentation masks are generated by the ApparentFlow-net
and the �netuned LVRV-net, from which the 7 shape-related features and the 2
motion-characteristic features are extracted. Then the 4 ridge logistic regression
binary classi�ers are implemented using Scikit-learn [Pedregosa 2011] and trained
on the cases of the categories they are supposed to classify. For example, DCM
classi�er is trained on the cases of NOR, MINF and DCM; the cases of RVA or
HCM are not used to train it. In terms of classi�er parameter, we empirically �nd
that C = 50 works well and use it in this paper. The performances of some variants
with di�erent values of C are provided in the appendix section.

4.4.3.1 Classi�cation Performance

As presented in Table 4.4, on the testing set, the accuracy of our model is 94%. In
the 5-fold cross-validation on the training set, our method achieves an accuracy of
95%. Hence our model achieves performances that are comparable to those of the
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Figure 4.7: The confusion matrix of the predictions by the proposed classi�cation
model in the 5-fold cross-validation on the training set of ACDC.

state-of-the-art on both the training set and the testing set. This is quite remarkable
because, in contrast to the state-of-the-art, each classi�er in our model uses only
up to three features and has only up to 4 parameters. In total, our model uses 9
features and has 14 parameters. And each feature is selected in a clearly explainable
manner. On the testing set, among the two methods with performances better than
ours, [Khened 2017] uses a random forest of 100 trees and [Khened 2018] applies
a more sophisticated ensemble system. Therefore, those classi�cation models are
less straightforward to interpret than ours. Furthermore, since our model has very
similar performances on the training and testing sets, there seems to be little over�t.

Based on the confusion matrix of the prediction in the 5-fold cross-validation
on the ACDC training set (Figure 4.7), for the binary classi�cation of NOR, RVA,
HCM, DCM and MINF, we calculate and �nd that the precision values are 0.87,
1.00, 1.00, 0.91 and 1.00; the recall values are 1.00, 0.90, 0.95, 1.00 and 0.90.

4.4.3.2 Interpretation of Mis-Classi�cation

As our classi�er can be interpreted easily, we �gure out for each of the 5 misclassi�ed
cases (Figure 4.7) why the prediction is di�erent from the ground-truth. In fact,
they all seem to be somewhat ambiguous in terms of pathological category:
� Patients 082 and 088 are of ground-truth RVA but are classi�ed as NOR. According
to our segmentation, they have VRVC ;ED , EFRVC and RRVCLV ;ED values all very
similar to that of the NOR cases. For instance, they have the third and the �rst
lowest RRVCLV ;ED values (0.755 and 0.691) among all the RVA cases, which are well
in the range of that of the NOR cases.
� Patient 022 is of ground-truth HCM but is predicted as NOR. Unlike all the other
HCM cases, patient 022 has both EFLVC (0.622) and MT LVM ;ED (14.7mm) in the
normal ranges, which makes it look like a NOR case.
� Patients 050 and 060 are of ground-truth MINF but are predicted as DCM. Their
values of VLVC ;ES (118.0mL=m2 and 83.5mL=m2 ) are the two highest among all
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Table 4.5: The parameters of the 4 logistic regression binary classi�ers trained on
the training set of ACDC

Parameters of the Trained Classi�er
RVA Classi�er 0:010VRVC ;ED � 4:695EFRVC

+14:012RRVCLV ;ED � 9:906
HCM Classi�er 8:434EFLVC + 4:614RLVMLVC ;ED

+0:420MT LVM ;ED � 16:580
DCM Classi�er 0:104VLVC ;ES � 0:918RMD

�7:758TMD � 0:321
MINF Classi�er �17:122EFLVC + 7:994

the non-DCM cases and well in the range of that of the DCM cases. In terms of
motion disparity, on RMD and TMD , unlike the majority of the MINF cases, their
values (0.245 and 1.173 for patient 050, 0.316 and 1.246 for patient 060) are also in
the ranges of that of the DCM cases. For these reasons, the DCM classi�er predicts
them to be DCM cases.

4.4.3.3 Explaining the Classi�ers

The 4 binary classi�ers are just logistic regression models. As presented in the
previous section, their prediction depends on the sign of the sum

P
i pi fl;i + b. To

understand what is learned from the data by the trained classi�ers, in Table 4.5 we
show the coe�cients of the classi�ers trained with all the relevant cases in ACDC.
We �nd that the signs of the parameters pi all correspond to the positive or negative
correlation between the feature and the binary classi�cation task. For instance, in
the trained RVA classi�er, the signs of the coe�cients of VRVC ;ED and RRVCLV ;ED

are both positive, as a large RVC volume and a high ratio between the RVC and
LV volumes are both indicators of RV abnormality; on the other hand, since low
RVC ejection fraction usually signi�es RV abnormality, the coe�cient of EFRVC is
negative. Similarly, such a correspondence applies to all the coe�cients of the 3
other trained classi�ers. In particular, for MINF classi�er, the learned threshold on
EFLVC to distinguish MINF cases from NOR cases is 7:994=17:122 = 0:467, which
can well separate them according to their de�nitions.

4.4.4 Variants of the Proposed Classi�cation Model

We compare the proposed classi�cation model with its variants for a justi�cation of
our design and a more comprehensive understanding of the model.

4.4.4.1 Importance of Motion-Characteristic Features

To better understand the value of the two proposed motion-characteristic features,
we further train three variants of DCM classi�er which use zero or one motion-
characteristic feature as input. And the set of input features is the only di�erence
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Table 4.6: The performance of the variants of DCM classi�er on the training set of
ACDC

DCM Classi�er Input # of Mis-Classi�cation
on the 60 DCM, MINF

and NOR cases
VLVC ;ES , RMD , TMD (proposed) 2

VLVC ;ES , TMD 2
VLVC ;ES , RMD 3

VLVC ;ES 4

between these models. As shown in Table 4.6, on the 60 cases of NOR, MINF and
DCM, while DCM classi�er makes only two errors, the variant using only shape-
related feature VLVC ;ES misclassi�es 4 cases. But improvements can be made by
using at least one motion-characteristic feature. As can be visualized in Figure
4.8, the motion characteristic features RMD and TMD allow the separation of the
majority of the cases of DCM and MINF. Combining them with the shape-related
feature VLVC ;ES together as the input, the DCM classi�er can make more accurate
classi�cation.

4.4.4.2 Proposed Model on Non-Normalized Features

We test whether BSA normalization is required for our model to achieve high per-
formance. Among the 9 proposed features, only the values of VRVC ;ED and VLVC ;ES

would be di�erent without BSA-normalization. And only RVA and MINF classi�ers
which use these two features as input would be a�ected. As presented in Table 4.7,
without BSA-normalization on the features, the 5-fold cross validation accuracy on
ACDC training set only drops a little bit to 94%. The proposed model still remains
accurate.

4.4.4.3 Proposed Model with Inversed Classi�er Order

As presented previously, the 4 classi�ers in the proposed model are arranged accord-
ing to the estimated di�culties of the corresponding classi�cation task. To con�rm
the importance of this order, we create another model by inversing the order of the
classi�ers. So, unlike the proposed model shown in Figure 4.2, in this variant, a
case goes through successively MINF, DCM, HCM and RVA classi�ers instead. As
shown in Table 4.7, the accuracy of this variant is quite low. Hence the proposed
order of the classi�ers is indeed important.

4.4.4.4 Variants with Other Classi�er Models

We replace the proposed logistic regression classi�ers with 3 other types of classi�ers
on the same sets of input features, including Lasso, LassoCV (Lasso with model se-
lection by cross-validation) and random forest. Details of these models are available



4.4. Experiments and Results 71

Figure 4.8: The motion-characteristic features (RMD and TMD ) of the DCM
and MINF cases in the training set of ACDC. The majority of the cases are well
separable with these two features.

in the appendix section. As reported in Table 4.7, their performances are clearly
below that of the proposed model. Our choice of logistic regression as the classi�er
model is hence justi�ed.

4.4.4.5 Variants without Manual Input Feature Selection

To evaluate if the manual feature selection is useful for the model to be accurate,
we train several modi�ed versions of the proposed model without manual feature
selection. They all consist of 4 classi�ers to perform the same binary classi�cation
tasks as in the proposed model. But each of the 4 classi�ers of these variants
takes all 9 features together as input. In total, we implement 6 models with the
following models as their classi�ers respectively (details of these models are available
in the appendix section): support vector machine (SVM), relevance vector machine
(RVM), Lasso, LassoCV, random forest and high dimensional discriminant analysis
(HDDA) model.

As reported in Table 4.7, on the BSA-normalized features as well as on the non-
normalized features, they all have accuracy lower than that of the proposed model
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by at least 6%. This justi�es the necessity of manual feature selection, at least on a
relatively small dataset like ACDC. We are not yet able to examine the importance
of manual feature selection on large datasets.

To better understand the roles of the features, we further examine the variant
with random forest classi�ers without manual feature selection trained on the 100
cases of ACDC training set. For each of the 4 classi�ers, we compute the feature
importance for each of the 9 features to determine the most important one. The im-
portance of a feature is de�ned as the total reduction of the entropy brought by that
feature in all the trees in the random forest. We �nd that for RVA, HCM and DCM
classi�ers, the most important features are RRVCLV ;ED , RLVMLVC ;ED and VLVC ;ES

respectively, which are among the features manually selected for the correspond-
ing proposed classi�ers. For MINF classi�er, the two most important features are
RRVCLV ;ED and EFLVC , which have roughly the same importance (0.35 and 0.32).
Only EFLVC is used in the proposed model according to its direct relevance. These
observations provide further support for our manual feature selection.

4.4.4.6 Variants without Binary Classi�cation

The proposed model divides the 5-category classi�cation task into 4 binary classi�-
cation sub-tasks. In order to understand whether this special design contributes to
the achieved high accuracy, we train and evaluate 2 variants on the same set of 9 fea-
tures. A random forest and a multi-layer perceptron (MLP) are respectively trained
to predict a case to be one of the �ve categories directly without binary classi�cation
(details of these models are available in the appendix section). As reported in Table
4.7, their performances are not as good as that of the proposed model. Hence the
strategy of performing a series of binary classi�cation makes sense.

4.5 Conclusion and Discussion

We propose a method of cardiac pathology classi�cation based on originally de-
signed and trained neural networks and classi�ers 1. A novel semi-supervised train-
ing method is applied to train ApparentFlow-net which provides pixel-wise motion
information. Combining the apparent �ow generated by ApparentFlow-net and the
segmentation masks predicted by LVRV-net, we introduce two novel features that
characterize the motion of myocardial segments. These motion-characteristic fea-
tures are not only intuitive for visualization but also very valuable in classi�cation.
The proposed classi�cation model consists of 4 small binary classi�ers. Each classi-
�er works independently and takes up to 3 features with clearly explainable relevance
as input. On ACDC training set and testing set, the proposed model achieves 95%
and 94% respectively as classi�cation accuracy. Its performance is hence comparable
to that of the state-of-the-art. To justify our design of the proposed classi�cation
model, we also quantitatively compare it with other models.

1The code and the model will be available in this repository: https://github.com/julien-
zheng/CardiacMotionFlow
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The apparent �ow generated by ApparentFlow-net and the originally designed
time series of myocardial segment motion are not only straightforward to understand
but also useful for classi�cation. We believe that making the automatic methods
more understandable and explainable is important, as it is not only helpful to facili-
tate the implementation and application of the research of medical image analysis in
clinics but also useful to improve transparency and to gain trust in medical practice
([Holzinger 2017], [Rueckert 2016]).

Furthermore, the motion information we extract from the apparent �ow is fairly
rich. We believe that ApparentFlow-net may be a powerful tool of motion extraction
for the community. The way we extract the time series and the motion-characteristic
features from the �ow maps is just one of the so many possible applications. Also,
ApparentFlow-net is trained in a semi-supervised manner. This training approach
is highly relevant to the current situation of data availability in medical image
analysis, as we usually have access to a relatively large amount of unlabeled data
and a relatively small amount of labeled data. In a word, much more potential
applications in various circumstances of apparent �ow are yet to be explored.

Regarding the extraction of the motion-characteristic features, one could use
the segmentation network to segment all frames and then derive the motion-
characteristic features from the segmentation masks. However, we �nd that the
resulting time series characterizing the cardiac motion (e.g. the time series of the
radius and thickness as shown in the second column of Figure 4.6) by this approach
are not as temporally consistent as we would expect. In fact, the segmentation
network was trained to segment the frames at ED and ES only. And no constraint
has ever been imposed to make the segmentation masks temporally consistent. The
problem would be clearer if we look at the two frames in the �rst column in Figure
4.5. While the ED frame (upper image) is easy to segment, the other frame (lower
image) appears to be more challenging due to the presence of massive trabeculations.
Moreover, as the segmentation network segments the two frames independently, it is
not obvious how to ensure the consistency of the segmentation masks. This problem
can be solved using the ApparentFlow-net instead to extract motion. As shown in
the second column of Figure 4.6, with the ApparentFlow-net, the extracted time
series of the radius and thickness of the segments are reasonably smooth, which
re�ects the enforced temporal consistency.

We could have used existing traditional registration models to supervise the
training of ApparentFlow-net or even replace ApparentFlow-net by a deformable
registration algorithm (e.g. LDDMM, LCC-Demons, etc.). However, we notice that
in order to make the traditional registration models work reasonably well on an
unseen dataset like ACDC, the estimation and �netuning of key parameters in these
models are necessary. For instance, the authors of [Krebs 2019] empirically estimate
the key parameters of LCC-Demons ([Lorenzi 2013]) and SyN ([Avants 2008]) before
applying them on ACDC. Our method is simpler in the sense that it learns every-
thing from data and requires no manual model/parameter estimation/adjustment.
Hence, on the one hand, our method is easier and more convenient to be applied
to various datasets that are reasonably similar to the training set. On the other
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hand, it allows us to take advantage of the increasing number of data available in
the community. We believe a method with these advantages is very interesting and
worth trying. Moreover, as far as we observe, our registration method is accurate
enough to characterize the cardiac motion. Some examples are provided in Figure
4.9 to show that the generated apparent �ow characterizes the motion patterns of
typical cases in several pathological categories. And as shown in the second column
of Figure 4.6, with the apparent �ow generated by the ApparentFlow-net, the ex-
tracted time series of the radius and thickness of the segments enable us to easily
distinguish the typical cases of di�erent cardiac pathologies.

A straightforward comparison with prior works on 2D registration methods on
the ACDC dataset shows that the ApparentFlow-net performs rather well. Indeed
when looking at the Dice coe�cients achieved on LVC and RVC, our approach leads
to 0.94 and 0.87 respectively (see Table 4.3). In [Hering 2019], the authors describe
a learning-based method leading to Dice coe�cients at best equal to 0.90 on the
same structures (based on Fig.3 of [Hering 2019]) and also performances of a non-
learning-based method similar to [Rühaak 2013] with at most 0.80 of Dice. Note
however that in this comparison, di�erences on cross-validation (5-fold v.s. 10-fold),
slice selection and ROI determination may hinder the analysis.

While analyzing and extracting the cardiac motion, we adopt a 2D slice-by-slice
processing method, without taking the motion on neighboring slices into account.
The reason behind this choice is the fact that the inter-slice distance in the short-axis
MRIs in ACDC is quite large. Usually, the inter-slice distance between two adjacent
slices in MRI stacks is 5 to 10mm. The heart may hence have obviously di�erent
shape and motion even on two adjacent slices. In this case, ignoring the neighboring
slices for motion estimation might be reasonable. However, if our method is to be
applied on some volumetric images with small inter-slice distance, a modi�cation of
the approach by taking neighboring slices into account might be bene�cial.

An issue that would hinder the generalization of pathology classi�cation models
like ours is the lack of a standard and universal de�nition of pathological category
[Suinesiaputra 2016]. For instance, there is another public dataset made available
for the MICCAI 2009 challenge on automated LV segmentation [Radau 2009] (the
dataset is also known as the Sunnybrook dataset (SD)) containing pathological
cases. The 4 categories of SD are heart failure with infarction, heart failure without
infarction, LV hypertrophy and healthy. While a hypertrophic case in ACDC has a
LV cardiac mass over 110g=m2 and several myocardial segments of thickness over
15mm at ED by de�nition, the hypertrophic cases according to SD de�nition only
need to have a LV cardiac mass over 83g=m2 . And no threshold is proposed for the
myocardial segment thickness by the SD de�nition. In fact, we �nd multiple cases
in SD which are of LV cardiac mass between 83g=m2 and 110g=m2 and maximal
segment thicknesses well below 15mm. They are identi�ed as hypertrophic cases in
SD. But they would not be considered as hypertrophic at all according to ACDC.
Similarly, the category of infarction is de�ned di�erently in SD and ACDC. In
SD, the infarction is determined by the evidence of late gadolinium enhancement;
abnormal cardiac motion might not be observable. Yet in ACDC, the infarction
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category is de�ned by the presence of abnormal motion. With such discrepancies
between the de�nitions in di�erent datasets, it is di�cult for the community to train
a classi�cation model on a dataset such that it generalizes well to the others. We
hence appeal for more attention on this issue.

Another issue that may limit the generalization of our classi�cation model is the
small size of the ACDC dataset used for training. ACDC training set has only 100
cases of 5 pathological categories. Moreover, in each pathological category, there
are only 20 cases. Consequently, on the one hand, many pathological categories are
not included in ACDC. On the other hand, for each of the 5 pathological categories
in ACDC, we would expect that the 20 cases might not be enough to represent all
cases in the category. In order to achieve good generalization, we may need larger
datasets with more pathological categories to train the model.

Also, notice that the proposed simple classi�cation model of only 14 parameters
is somewhat speci�c to the ACDC dataset. If we need to adapt our model to
perform classi�cation on a larger dataset with more pathological categories, it may
be necessary to increase the size and hence the number of parameters of the model.

Finally, we would like to point out that although some single-value hand-crafted
motion-characteristic features (e.g. RMD and TMD ) are used in this paper, we
believe that for some pathology it would be better to use the whole time series of
segment radius or thickness as input to a classi�cation model. For instance, if we aim
to discover subtler characteristics related to the motion (e.g. dyssynchrony, septal
�ash) from a larger dataset, doing so might become appropriate and necessary. We
expect to carry out research on this topic in the future.

4.6 Appendix

4.6.1 Loss Function for Training ApparentFlow-Net

To penalize the crossing or large rotations of �ows, we compute the di�erence be-
tween of the warped x-components (resp. y-components) of each pair of horizontally
(resp. vertically) adjacent pixels P x + and P (resp. P y + and P ). There is a cross-
ing if and only if this di�erence is smaller than 0, for which a penalty which is equal
to the square of this di�erence applies. Otherwise no penalty applies. Hence we
come up with the term LCROSS (F t ) to penalize the crossing of �ows:
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=
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in which @F x
t (P )=@x is computed with �nite di�erence as F x

t (P x + )� F x
t (P ) (and

similarly for @F y
t (P )=@y).

The Dice function in the term LGT (FES ) is de�ned on two images U and V as
described in [Zheng 2018b]

Dice(U; V ) = �
2
P

P U(P )V (P ) + "P
P U(P ) +

P
P V (P ) + "

(4.17)

with " = 1 a term for better numerical stability in training.

4.6.2 Variants of the Proposed Classi�cation Model with Di�erent
Values of Parameter C

We also perform 5-fold cross-validation on the ACDC training set for the variants
of the proposed classi�cation model by varying the parameter C in the 4 logistic
regression classi�ers. Their performances are reported in Table 4.8.

4.6.3 Variants of the Proposed Classi�cation Model with Di�erent
Classi�ers and Input Features

4.6.3.1 Variants with Other Classi�er Models

We replace the proposed ridge logistic regression classi�ers by other types of classi-
�ers on the same sets of input features:
� Lasso classi�ers: in this variant, each of the 4 classi�ers is a least absolute shrink-
age and selection operator (Lasso). The constant alpha that multiplies the L1 term
is empirically chosen to be 10�4.
� LassoCV classi�ers: each of the 4 classi�ers is a Lasso model with model selection
by cross-validation (LassoCV). The optimal constant alpha is searched in the range
[10�4; 10�0:5] in a 4-fold cross-validation on the training data.
� random forest classi�ers: each of the 4 classi�ers is a random forest of 1000 trees
which expand their nodes in training until all leaves are pure or all leaves contain
less than 2 samples. Entropy is used to measure the quality of a split in training.

4.6.3.2 Variants without Manual Input Feature Selection

We train several variants of the proposed model without manual feature selection.
They all consist of 4 classi�ers arranged in the same order to perform the same
binary classi�cation tasks as in the proposed model. But each of the 4 classi�ers
in these variants takes all the 9 features together as input. In total, we implement
and examine 6 variants with the following models as their classi�ers respectively:
� Variant with SVM classi�ers: each of the 4 binary classi�ers is a support vector
machine (SVM) with linear kernel and penalty parameter C=50.
� Variant with RVM classi�ers: each of the 4 binary classi�ers is a relevance vector
machine (RVM) as introduced in [Tipping 2003] with linear kernel.
� Variant with Lasso classi�ers: each of the 4 binary classi�ers is a Lasso. Lasso is
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known as a model capable of performing both variable selection and regularization.
alpha, the constant that multiplies the L1 term, is empirically set to 10�4.
� Variant with LassoCV classi�ers: each of the 4 binary classi�ers is a Lasso with
model selection in a 4-fold cross-validation on the training data. The optimal
constant alpha is searched in the range [10�4; 10�0:5].
� Variant with random forest classi�ers: in this variant, each of the 4 binary
classi�ers is a random forest of 1000 trees which expand their nodes in training
until all leaves are pure or all leaves contain less than 2 samples. Entropy is used
to measure the quality of a split in training.
� Variant with HDDA classi�ers: each of the 4 binary classi�ers is a high dimen-
sional discriminant analysis (HDDA) model, which is an expectation-maximization
algorithm designed for high-dimensional data clustering based on the ideas of
dimension reduction and parsimonious modeling ([Bouveyron 2007], [Orlhac 2018]).
Though the 9-feature space in this paper is not high dimensional, we show the
performance of such a sophisticated method for comparison.

4.6.3.3 Variants without Binary Classi�cation

We train and evaluate the following 2 variants on all the 9 input features. These
variants are obtained by replacing the 4 binary classi�ers with a single multi-class
one:
� Variant using random forest: it is a random forest of 1000 trees which expand
their nodes in training until all leaves are pure or all leaves contain less than 2
samples. Entropy is used to measure the quality of a split in training.
� Variant using MLP: it is a multi-layer perceptron (MLP). It has 2 hidden layers
of 32 neurons with tanh activation function. Adam optimizer is used to train it for
105 epochs with learning rate 0.001.

4.6.3.4 Implementation of the Variants

Among the above variants of the proposed classi�cation model with di�erent clas-
si�ers and input features, the HDDA classi�ers are implemented using the HDDA
python toolbox downloaded from the GitHub page https://github.com/mfauvel/
HDDA, the RVM classi�ers are implemented in Python according to the method
described in [Tipping 2003], and all the other variants are implemented with Scikit-
learn.

4.6.4 Examples of Apparent Flow Generated by the
ApparentFlow-net

We provide 4 examples of the apparent �ow generated by the ApparentFlow-net
of 4 ACDC training set cases in di�erent pathological categories. In Figure 4.9,
given the frames at ED (�rst column) and the frames around ES (second column),

https://github.com/mfauvel/HDDA
https://github.com/mfauvel/HDDA
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we apply the trained ApparentFlow-net to generate the apparent �ow maps (third
column).

Visually, we �nd that the apparent �ow can indeed characterize the cardiac
motion of the typical cases in the pathological categories. As expected, the apparent
�ow on the LVM of a NOR case is oriented along the gradient of the image intensity
and has roughly the same amplitude throughout the left ventricle, signifying the
synchronous and uniform contraction and thickening of the LVM of the NOR case.
For a HCM cases, we can see that the �ow on LVM is excessively large, which means
that the contraction and thickening is excessive, a typical phenomenon we �nd on
HCM cases. Conversely, the �ow on the LVM of a DCM case is small since the
hearts of DCM cases usually do not contract or thicken enough. Finally, the �ow on
the LVM of a MINF case is not uniform: some myocardial segments contract and
thicken much less than the others. This is a typical symptom that we can �nd on
MINF cases.
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Table 4.7: The 5-fold cross validation accuracy on the training set of ACDC of the
variants of the proposed classi�cation model

Method BSA- Non-
Normalized Normalized
Features Features

logistic regression classi�ers 95% 94%
(proposed model)

logistic regression classi�ers 63% 64%
in inversed order
Lasso classi�ers 89% 91%

LassoCV classi�ers 80% 81%
random forest classi�ers 85% 87%

logistic regression classi�ers 88% 88%
w/o manual feature selection

SVM classi�ers 87% 84%
w/o manual feature selection

RVM classi�ers 88% 72%
w/o manual feature selection

Lasso classi�ers 85% 86%
w/o manual feature selection

LassoCV classi�ers 84% 87%
w/o manual feature selection

random forest classi�ers 86% 88%
w/o manual feature selection

HDDA classi�ers 49% 46%
w/o manual feature selection
one single random forest 87% 88%
w/o binary classi�cation

one single MLP 84% 84%
w/o binary classi�cation
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Table 4.8: The 5-fold cross-validation performance on the ACDC training set of
some variants of the proposed classi�cation model with various values of parameter
C

C Training Set Accuracy
1 76%
5 88%
10 92%
50 95%
100 95%
500 93%
1000 93%
5000 93%
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Figure 4.9: Four examples of the apparent �ow generated by the ApparentFlow-net
of 4 ACDC training set cases in di�erent pathological categories. The images in the
�rst column are the frames at ED. The images in the second column are the frames
around ES. The apparent �ow maps corresponding to the pairs of frames in the �rst
and second columns are shown in the third column. The apparent �ow can indeed
characterize the cardiac motion of the typical cases in the pathological categories.
NOR: synchronous and uniform �ow on LVM; HCM: excessively large �ow on LVM;
DCM: very small �ow on LVM; MINF: asynchronous and ununiform �ow on LVM.
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Part of this chapter corresponds to the following scienti�c article:

� [Zheng 2019] Unsupervised Shape and Motion Analysis of 3822 Car-
diac 4D MRIs of UK Biobank
Qiao Zheng, HervØ Delingette, Kenneth Fung, Ste�en E. Petersen and
Nicholas Ayache. Submitted to Computerized Medical Imaging and Graphics
in February 2019

5.1 Introduction

In recent years, more and more data are made accessible for research in medi-
cal image analysis. For instance, the UK Biobank study of [Petersen 2017] has
released a dataset containing the cardiac cine MRI images of thousands of volun-
teers, from which various key cardiovascular functional indexes can be extracted for
analysis ([Attar 2019]). The Alzheimer’s Diseases Neuroimaging Initiative (ADNI,
[Toga 2015]) has accumulated brain scan images of about two thousand participants.
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The abundant data available in the community is certainly a highly valuable resource
([Rueckert 2016], [Suinesiaputra 2016]). Researchers are hence less constrained by
the scarcity of data which has been a prevailing challenge for a long time. Further
research is necessary ([Zhang 2016], [Barillot 2016]) on new topics associated with
big data. For example, one major challenge is how to make good use of unlabeled
data ([de Bruijne 2016], [Weese 2016]). In fact, while there are more and more la-
beled data available, an important part of medical images are still unlabeled. This is
understandable as it is in general expensive and tedious to diagnose and label cases
by human experts. Methods that can extract useful information from unlabeled
data are hence interesting and might potentially save a lot of time and e�ort.

Many research projects have been developed to perform pathology-related analy-
sis using features extracted from medical images. Many of these works focus on brain
scan images. For example, in [Parisot 2018], feature vectors extracted from brain im-
ages are used for the prediction of autism spectrum disorder and Alzheimer’s disease.
An anatomical landmark based deep feature representation for MRI is proposed in
[Liu 2018] for diagnosis of brain disease. Some other studies are based on digital
histopathological images. For instance, [Madabhushi 2017] discusses the predictive
modeling of digital histopathological images from a detection, segmentation, feature
extraction, and tissue classi�cation perspective. [Komura 2018] reviews the machine
learning methods for histopathological image analysis. But there are less pathology-
related and feature-based researches on cardiac images than on brain scan images
and digital histopathological images. And currently, this research ([Zheng 2018a],
[Khened 2018], [Khened 2017], [Isensee 2017], [Wolterink 2017], [Cetin 2017]) is
mostly about pathology classi�cation in the dataset of Automatic Cardiac Diag-
nosis Challenge (ACDC) of MICCAI 2017, which contains 100 cases with labels.
The work of [Attar 2019] is one of the very �rst projects to propose a fully auto-
matic, high throughput image parsing work�ow for the analysis of cardiac MRI in
UK Biobank with systematic tests of the performance. As an extension of the pre-
vious works and a challenge to ourselves, we wish to conduct unsupervised analysis
on large unlabeled cardiac image datasets.

Clustering, an unsupervised machine learning technique that groups similar en-
tities together, might be suitable for analyzing large unlabeled datasets. Up to now,
clustering has been widely used on image segmentation in medical image analysis.
For example, the authors of [Kinani 2017] develop a tool based on clustering to out-
line brain lesion contours. Unsupervised segmentation of 3D lung CT images is pro-
posed in [Moriya 2018] based on clustering and deep representation learning. Some
studies show that clustering is also a powerful tool for classi�cation. For instance, a
clustering method is applied to classify the analyzed brain images into healthy and
multiple sclerosis disease in [Moldovanu 2015]. The authors of [Kawadiwale 2014]
introduce various clustering techniques to classify brain MR images into normal and
malformed. While most of the application of clustering in the domain is on brain
images, we aim to extend its application to cardiac images.

In this paper, we perform a cluster analysis of a group of features extracted
from the cardiac MR images of the UK Biobank dataset. Our main contributions
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are threefold:
� We conduct a cardiac-pathology-related analysis on a large unlabeled dataset.
� As a novel application of a classic method in medical image analysis, clustering is
used in our analysis to group cases without supervision.
� Among the resulting clusters, two can indeed be identi�ed as leaning toward
pathological categories.

5.2 Data

5.2.1 UK Biobank

The proposed method was applied to the very large UK Biobank cardiac MRI
dataset, see [Petersen 2016]1. It comprises short-axis cine MRI of about �ve thou-
sand participants from the general population. More details of the magnetic res-
onance protocol are available in [Petersen 2016]. Each time series consists of 3D
volumes with slice thickness of 8mm for short-axis images and 6mm for long-axis
images. The in-plane resolution is 1.8mm � 1.8mm. Volumes at end-diastole (ED)
and end-systole (ES) and ejection fraction for left ventricle cavity (LVC) were de-
rived from InlineVF analysis algorithm ([Jolly 2013], [Lu 2010]) performed by UK
Biobank (Field 22421-22422). Those values are considered in this paper as ground-
truth (or reference) values. To be consistent with our previous research such as
[Zheng 2018b] and [Zheng 2018a], we exclude roughly one thousand cases that are
provided with incomplete or unconvincing ground-truth. The remaining 3822 cases
are then used for cluster analysis. For part of these cases, the measures of LVC
volumes at ED and ES and LVC ejection fraction are provided as ground-truth by
UK Biobank.

As pointed out on the website of UK Biobank2 and in [Fry 2017], while UK
Biobank participants are not representative of the general population with evidence
of a ‘healthy volunteer’ selection bias (and hence cannot be used to provide represen-
tative disease prevalence and incidence rates), valid assessment of exposure-disease
relationships are nonetheless widely generalizable and does not require participants
to be representative of the population at large.

5.2.2 ACDC

In the experiment part, we will show the correspondence between some resulting
clusters and the de�nition of some pathology categories de�ned in the ACDC
challenge. Furthermore, a classi�cation model trained on ACDC by [Zheng 2018a]
will be applied on UK Biobank for comparison with the clustering method proposed
in this paper. The ACDC challenge dataset consists of 100 cases, which are divided
into 5 pathological groups of equal size according to their pathology on either the
left ventricle (LV) or the right ventricle (RV):

1Application Number 2964.
2https://www.ukbiobank.ac.uk/scientists-3/
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Table 5.1: The 9 features generated by our feature extraction method. Among them
8 are selected for cluster analysis.

Feature Notion Selected
RVC volume at ED VRVC ;ED yes
LVC volume at ES VLVC ;ES yes

RVC ejection fraction EFRVC yes
LVC ejection fraction EFLVC no

Ratio between RVC and RRVCLV ;ED yes
LV volumes at ED

Ratio between LVM and RLVMLVC ;ED yes
LVC volumes at ED

Maximal LVM thickness MT LVM ;ED yes
in all the slices at ED

Radius motion RMD yes
disparity

Thickness motion TMD yes
disparity

� dilated cardiomyopathy (DCM): left ventricle cavity (LVC) volume at ED larger
than 100 mL=m2 and LVC ejection fraction lower than 40%
� hypertrophic cardiomyopathy (HCM): left ventricle (LV) cardiac mass higher
than 110 g=m2 , several myocardial segments with a thickness higher than 15 mm
at ED and a normal ejection fraction
� myocardial infarction (MINF): LVC ejection fraction lower than 40% and several
myocardial segments with abnormal contraction
� RV abnormality (RVA): right ventricle cavity (RVC) volume higher than 110
mL=m2 or RVC ejection fraction lower than 40%
� normal subjects (NOR)

5.3 Methods

There are mainly three steps in the proposed method: feature extraction, feature
selection and cluster analysis.

5.3.1 Feature Extraction

The feature extraction method used in this paper is the same as the one proposed
in our previous work published by [Zheng 2018a]. We brie�y describe its principal
steps again below.

The �rst part of the feature extraction method generates 7 shape-related fea-
tures. Segmentation with spatial propagation has been proven to be consistent and
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robust ([Zheng 2018b], [Zheng 2018c]). With the cardiac segmentation method pro-
posed in [Zheng 2018b], the cardiac images are segmented such that we obtain the
masks of LVC, left ventricle myocardium (LVM) and RVC on both ED and ES
frames. Then the volumes of LVC, LVM and RVC at both ED and ES can be com-
puted directly, as can the thickness of LVM. Finally, 7 shape-related features are
generated (the �rst 7 terms in Table 5.1).

The second part of the method extracts 2 motion-characteristic features. Using a
neural network which outputs apparent �ow maps given image pairs, we get a series
of apparent �ow maps characterizing the in-plane motion for each MRI slice of each
case. Combined with the LVM segmentation mask obtained as described above,
the motion of each myocardium pixel is hence available. Eventually, 2 features
are computed to present the disparity of the radial myocardial motion and the
myocardial thickening respectively (the last 2 rows in Table 5.1).

In total, from the images of each case, 9 features characterizing the shape and
the motion of the heart are extracted.

5.3.2 Feature Selection

As shown in [Zheng 2018a], these extracted features can be used for cardiac pathol-
ogy classi�cation in the ACDC dataset with performances comparable to the state-
of-the-art. However, these features are not necessarily independent. Some might
be redundant if there are highly correlated feature pairs. In cluster analysis, if too
many variables are used simultaneously, the redundant ones serve only to create
noise that harms the clustering. So it is helpful to select a sub-group of features by
removing highly correlated feature pairs.

For each pair among the 9 extracted features, we compute the Pearson corre-
lation coe�cient and the maximal information coe�cient (MIC) ([Reshed 2011]).
The former measures the linear correlation between two features, while the latter
measures the mutual information between features. If there is any highly correlated
pair according to these measures (i.e. Pearson correlation coe�cient of absolute
value above 0.8, or MIC above 0.5), we will exclude one feature in this pair. The
remaining features are then considered as selected.

5.3.3 Cluster Analysis

We perform a model selection of Gaussian mixture model using the Bayesian in-
formation criterion (BIC). Then the selected Gaussian mixture model is applied to
cluster the 8 selected features.

5.3.3.1 Gaussian Mixture Model Selection

A Gaussian mixture model ([Reynolds 2009]) is a probabilistic model which assumes
that the data points are generated from a mixture of a certain number of Gaussian
distributions with unknown parameters. An expectation-maximization algorithm is
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used to iteratively estimate its parameters from data. Then the �tted model can
assign to each sample the Gaussian component it most likely belongs to.

We use the Gaussian mixture model as implemented in scikit-learn
([Pedregosa 2011]). It has two major parameters, the type of covariance matrix
and the number of components, upon which a selection is necessary. For this pur-
pose, we calculate the Bayesian information criterion (BIC, [Wit 2012]) for Gaussian
mixture models with di�erent types of covariance matrix and numbers of compo-
nents. In theory, BIC recovers the true number of components approximately. We
�t the Gaussian mixture models with the following types of covariance matrix:
� ‘tied’: all components share the same covariance matrix;
� ‘diag’: each component has its own diagonal covariance matrix;
� ‘full’: each component has its own covariance matrix.
The number of components is also varied. By looking for models with the smallest
BIC scores, we wish to select the most simple model that can �t the data thereby
idenitifying the most suitable type of covariance matrix and a range of reasonable
numbers of components.

The number of components will �nally be determined by examining the sizes of
resulting clusters of the Gaussian mixture models. More details will be provided in
the Experiments and Results section.

5.3.3.2 Analysis of the Resulting Clusters

The clusters generated by the selected model will be examined. In particular, we
verify if the cases in any of the clusters correspond to a pathological category ac-
cording to the de�nitions of pathologies given by the ACDC challenge.

5.4 Experiments and Results

5.4.1 Feature Extraction

With the feature extraction method introduced in the Methods section, for each of
the 3822 UK Biobank cases, 9 feature values are extracted.

5.4.2 Feature Selection

We calculate the Pearson correlation coe�cient and MIC for each pair of features
among the 9 extracted features. In Figure 5.1, the plot of Pearson correlation co-
e�cient versus MIC, it is clear that the absolute value of the Pearson correlation
coe�cient and MIC are positively correlated. There is only one point on the up-
per left corner of the plot representing a highly correlated pair. It corresponds to
VLVC ;ES and EFLVC , which are of Pearson correlation coe�cient -0.80 and MIC 0.51.
The strong negative correlation between these two features is reasonable, since by
de�nition EFLVC = 1 � VLVC ;ES=VLVC ;ED , in which VLVC ;ED is the LVC volume
at ED. Therefore, VLVC ;ES and EFLVC appear to be redundant. Hence we exclude
EFLVC and select the remaining 8 features for cluster analysis (Table 5.1).
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Figure 5.1: Pearson correlation coe�cient versus MIC. Each point corresponds to
a pair of features. The point in the upper-left corner corresponds to VLVC ;ES and
EFLVC . The strong negative correlation between these two features is reasonable,
since by de�nition EFLVC = 1 � VLVC ;ES=VLVC ;ED , in which VLVC ;ED is the LVC
volume at ED.

5.4.3 Cluster Analysis

5.4.3.1 Gaussian Mixture Model Selection

The BIC scores of the Gaussian mixture models with various types of covariance
matrix and numbers of components are plotted in Figure 5.2. It is clear that the ‘full’
covariance matrix type is the best among the three. The ‘full’ covariance matrix
type is hence selected.

And in terms of the number of components, the Gaussian mixture models with
the ‘full’ covariance matrix type of 3 to 10 components have the smallest BIC
scores. Among them, we �nd that:
� The models of 3 to 6 components only generate large clusters, each of which
contains at least about one hundred cases.
� The models of 7 and 8 components bring about only one small cluster (less than
a dozen cases).
� The models of 9 and 10 components give rise to two small clusters (less than a
dozen cases).
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Figure 5.2: BIC scores of Gaussian mixture models with various types of covariance
matrix and numbers of components

According to the statistics3 provided by the British Heart Foundation , about
7 million people in the UK are living with cardiovascular diseases, which is about
10.6% of the total population. More speci�cally, if we look at the most common
cardiovascular disease categories, the percentages of UK population living with my-
ocardial infarction, atrial �brillation and heart failure are about 1.5%, 2.0% and
1.4%, respectively. This means that most of the cases in the general population do
not have a cardiac pathology. Taking the ‘healthy volunteer’ selection bias of UK
Biobank mentioned in Section 2.1 into account, the cases of cardiovascular diseases
are hence probably exceedingly rare in UK Biobank. Thus, if there is any cluster
that is related to a speci�c pathological category in an interpretable manner, its size
should be small, say, no more than 76 (2% of the 3822 UK Biobank cases).

So we can now suggest that a component number of 9 or 10 is probably most
suitable. We choose the model of 9 components for further analysis. But we would
like to point out that the two resulting small clusters of the models of 9 and 10 com-
ponents are very similar in terms of size and cases. So the results and the conclusions
shown below will be roughly the same if we use the model of 10 components.

To summarize, the Gaussian mixture model with the ‘full’ covariance matrix
type and 9 components is selected.

3https://www.bhf.org.uk/what-we-do/our-research/heart-statistics (accessed January 20, 2019)
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Table 5.2: RVC volumes and ejection fraction at ED of the cases of cluster #5 based
on our feature extraction method.

ID RVC volume at ED RVC ejection
(mL=m2 ) fraction

2512949 133.13 63.61%
2628396 175.77 43.91%
3423847 140.50 65.24%
3713328 169.65 71.59%
3874816 183.96 56.22%
4366978 134.68 52.53%
4681487 139.82 54.39%
4710306 144.86 29.69%
5101726 145.93 43.82%
5319688 151.30 51.93%
5561149 180.48 41.88%

Table 5.3: LVC volumes at ED and ejection fraction of the cases of cluster #8 based
on our feature extraction method (the 2nd and 3rd columns). The same measures
provided by the UK Biobank dataset are also shown (the 4th and 5th columns).
The two sets of measures are quite close to each other.

Ground-truth Ground-truth
ID LVC volume at ED LVC ejection LVC volume at ED LVC ejection

(mL=m2 ) fraction (mL=m2 ) fraction
2432774 189.28 19.74% 208.24 20%
3378112 213.28 18.75% 213.03 15%
4879002 133.09 27.03% 144.59 29%
5618713 192.87 26.74% 192.43 27%

5.4.3.2 Analysis of the Resulting Clusters

Among the 9 resulting clusters (termed cluster #1 to #9) of the selected model, two
are of small sizes (clusters #5 and #8). We �nd that they actually correspond to
two pathological categories according to the de�nition given by the ACDC challenge
(RVA and DCM respectively).

Cluster #5 has 11 cases (examples are given in Figure 5.3). As listed in Table 5.2,
these cases have exceptionally large right ventricles, which are above 130 mL=m2 .
In the ACDC challenge, the RVA cases are described as of RVC volumes higher
than 110 mL=m2 or RVC ejection fraction lower than 40%. Hence according to the
de�nition of ACDC, cluster #5 is a group of cases belonging to RVA.

Cluster #8 has 4 cases (examples are given in Figure 5.3). As shown in Table
5.3, these cases have large LVC volumes at ED (above 130 mL=m2 ) and low LVC
ejection fractions (below 30%). In the ACDC challenge, DCM cases are those with
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Figure 5.3: Examples of the cases in clusters #5 and #8. First row: example cases
in cluster #5, of which the RVs appear to be exceptionally large. Second row: cases
in cluster #8, of which the LVs seem to be dilated.

LVC volumes larger than 100 mL=m2 and LVC ejection fraction lower than 40%.
So cluster #8 is a group of DCM cases according to ACDC. In addition, we �nd
that the ground-truth measures of LVC volume at ED and LVC ejection fraction
are available for all 4 cases in UK Biobank (last two columns in Table 5.3). It
is straightforward to see in Table 5.3 that the measures generated by our feature
extraction method are quite close to the ground-truth.

For the other 7 clusters, which are of much larger sizes (above 70), we do not
identify any clear correspondence between them and the pathological categories
de�ned in the ACDC challenge.

5.4.4 Further Analysis for Con�rmation

To further con�rm the discovered correspondence between the two small clusters
and the two pathological categories, as well as to verify whether the large clusters
represent normal cases, in addition to manual veri�cation of the segmentation masks
and apparent �ow maps to ensure the exactness of the features, we also conduct the
following analysis.

5.4.4.1 Interpretation of the Results of an ACDC Classi�cation Model

We apply a pathology classi�cation model ([Zheng 2018a]) trained using the ACDC
dataset on the cases of clusters #5 and #8.
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Seven of the eleven cases of cluster #5 are predicted to be RVA, which is as
expected. However, the other 4 cases (2512949, 3423847, 4681487 and 5319688) are
predicted to be NOR (i.e. normal). We suggest that this is partially due to the
di�erence in the distributions of RVC ejection fraction. In ACDC, a great majority
of the RVA cases are of RVC ejection fraction well below 50%. So the trained model
has learned to rely on this feature to determine RVA cases. Yet in UK Biobank,
some RVA cases, including the 4 listed above, are of RVC ejection fraction above
50%. They are not as severe cases as in ACDC.

All four cases of cluster #8 are predicted to be DCM by the classi�cation model,
which supports the correspondence between cluster #8 and DCM. In addition, by
manually checking the motion, we can con�rm areas of hypokinesia and akinesia for
these cases but also dyskinesia for one case (3378112). For case ID 2432774, we also
observe discoordinate movement of the LV myocardium suggestive of bundle branch
block, which is a type of electrical conduction disease commonly associated with
structural heart disease and heart failure. These observations suggest that these
cases might also have some relation to MINF. In fact, as pointed out in the ACDC
challenge, the increase of LVC volume can be a consequence of the adaptation of
LV due to MINF (also called cardiac remodeling).

5.4.4.2 Reduced Dimensionality Visualization Using Principal Compo-
nent Analysis

To better visualize the two isolated clusters (#5 and #8), we perform a principal
component analysis to reduce the dimensionality of the 3822 vectors of size 8 (8
selected features of 3822 cases) of UK Biobank to 2. Furthermore, the centers of the
9 clusters are also projected to the sample space of the 2 principal components. As
can be seen in Figure 5.4, the points corresponding to the cases of clusters #5 and
#8, as well as the centers of the two clusters, are indeed located far away from most
of the other points. This supports the suggestion that the cases in clusters #5 and
#8, which are pathological, are quite di�erent from most of the cases in the general
population.

5.4.4.3 Visualization using t-SNE

Similarly, another tool to visualize high-dimensional data called t-SNE (t-distributed
stochastic neighbor embedding, [van der Maaten 2008]) is applied. Its main advan-
tage is the ability to preserve local structure. So roughly speaking, points which are
close to one another in the high-dimensional space will still be close to one another
after the dimensionality reduction. t-SNE is applied to the set of the 3822 vectors
of the UK Biobank cases, as well as to the set of 3831 vectors which consists of
the 3822 UK Biobank cases and the 9 cluster centers. Before applying t-SNE, a
normalization is performed for each feature of the original data. The purpose is to
make sure that each feature is on the same scale and hence has the same importance
in t-SNE. As shown in Figure 5.5, the points of the cases and the centers of clusters
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#5 and #8 are at the edge of the ensemble of points in the embedding space. This
phenomenon is again consistent with the suggestion that clusters #5 and #8 cor-
respond to pathological cases which are rather di�erent from the other cases in the
general population.

5.4.4.4 Examination of the Two Largest Clusters

As pointed out previously, while the pathological categories of clusters #5 and #8
are identi�able, we do not see how the other seven large clusters correspond to any
cardiac pathology. In particular, the largest clusters which are of several hundreds or
even more cases probably represent groups of normal cases. To verify this, we further
examine the two largest clusters (#1 and #4, 889 and 1075 cases, respectively).

We plot the histograms of their ventricle volumes and ejection fractions, as well
as their maximal myocardial thicknesses (Figure 5.6). The distributions of #1 and
#4 look pretty similar in terms of LVC volume and LVC ejection fraction. But
they are di�erent on RVC volume, RVC ejection fraction and maximal myocardial
thickness. On average, the cases of #4 have larger RVCs with higher ejection frac-
tions. And their myocardiums also tend to be thicker than that of the cases of
#1. Furthermore, we perform the unpaired unequal variance t-test to prove that
the corresponding means of the distributions of #1 and #4 are di�erent. Under
the null hypotheses that the corresponding distributions have the same mean, the
p-values for LVC volume, LVC ejection fraction, RVC volume, RVC ejection fraction
and maximal myocardial thickness are all much below 0.05 (lower than 10�7), which
are small enough to reject the null hypotheses. This means that clusters #1 and
#4 actually exhibit signi�cant di�erent values of the 5 features (LVC volume at
ED, LVC ejection fraction, RVC volume at ED, RVC ejection fraction and maximal
myocardial thickness).

For both clusters, at least a great majority of the cases satisfy:
� LVC volumes at ED less than 100 mL=m2

� LVC ejection fraction above 40%
� RVC volumes at ED less than 110 mL=m2

� RVC ejection fraction above 40%
� Maximal myocardial thickness less than 15 mm
Hence according to the de�nitions in ACDC, these two clusters do not correspond
to any of the 4 pathological categories (DCM, HCM, MINF, RVA).

5.4.4.5 Examination of the Seven Large Clusters

To further understand the seven large clusters, we �rst systematically perform the
unpaired unequal variance t-test. For each pair of clusters in the seven large clusters,
and for each of the 8 extracted features, under the null hypothesis that the distribu-
tions of the feature has the same mean for both clusters, the p-value is computed.
In this way 21�8=168 p-values are obtained. In total, 149 p-values among them
are below 0.05, which are small enough to reject the corresponding null hypotheses.
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Table 5.4: The large p-values of the unpaired unequal variance t-tests for the 21
pairs of clusters in the seven large clusters, and for the 8 extracted features, under
the null hypothesis that the distributions of the feature has the same mean for both
clusters. For most of the cluster pairs and features, the p-values are below 0.05

cluster pair p-values above 0.05 (and the corresponding features)
(#1, #4) 0.07 (VLVC ;ES )
(#1, #6) 0.56 (RMD ), 0.05 (TMD)
(#1, #9) 0.55 (VRVC ;ED ), 0.76 (RRVCLV ;ED )
(#2, #3) 0.17 (RRVCLV ;ED ), 0.80 (RLVMLVC ;ED )
(#2, #4) 0.31 (TMD)
(#2, #7) 0.85 (RRVCLV ;ED ), 0.76 (RMD )
(#3, #4) 0.29 (RRVCLV ;ED )
(#3, #6) 0.12 (EFRVC )
(#3, #7) 0.07 (EFRVC ), 0.28 (RRVCLV ;ED ),

0.61 (MT LVM ;ED ), 0.25 (TMD)
(#4, #6) 0.70 (RLVMLVC ;ED ), 0.14 (TMD)
(#6, #7) 0.27 (EFRVC )

Table 5.5: The means and standard deviations of the measures (in mL=m2 ) by the
automatic pipeline versus the ground-truth.

Automatic pipeline Ground-truth
LVC volume at ED (mL=m2 ) 70.56 (13.91) 75.48 (28.62)
LVC volume at ES (mL=m2 ) 24.06 (9.02) 33.87 (22.82)

LVC ejection fraction 66.41% (7.33%) 56.04% (6.53%)

This con�rms that the clusters have di�erent distributions on the features. Nineteen
p-values among them are above 0.05, which signify a kind of similarity between pairs
of clusters (Table 5.4). Similarly, we perform the unpaired two-sided Mann-Whitney
rank tests, under the null hypotheses that the corresponding distributions of the fea-
tures are the same for both clusters. And we �nd again that a great majority (147)
of the p-values are below 0.05 such that the corresponding null hypotheses can be
rejected.

5.4.4.6 Measures by the Automatic Pipeline versus the Ground-Truth

As mentioned previously, for part of the UK Biobank cases, the ground-truth mea-
sures given by the InlineVF analysis algorithm of LVC volumes at ED and ES and
LVC ejection fraction are available. In particular, among the 3822 cases used in
this paper, we have access to all of the three ground-truth measures for 3212 cases.
The comparison between the means and standard deviations of the measures gen-
erated by the automatic pipeline used in this paper and the ground-truth measures
are shown in Table 5.5. It is clear that the ground-truth measures of the volumes
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are higher and of larger standard deviations than those estimated by the automatic
pipeline.

To better understand the cause of these di�erences, we plot the points of the
measures in Figure 5.7. We can see that the ground-truth values contain some obvi-
ous outliers, which are often of values well above the realistic range of LVC volumes.
This explains the fact that the ground-truth volumes have higher means and larger
standard deviations than those estimated by the automatic pipeline. Moreover, pro-
portionally, the mean of the ground-truth values of LVC volume at ED is 7.0% (=
75.48/70.56 - 1) above that of the estimates by the automatic pipeline, while for LVC
volume at ES the ground-truth is on average 40.8% (= 33.87/24.06 -1) higher than
the values obtained via the automatic pipeline. This also explains why the ground-
truth of LVC ejection fraction is on average lower than that given by the automatic
pipeline. The models obtained by the robust linear regression using Huber’s criterion
for LVC volume at ED and ES are ground-truth=1.002�automatic-pipeline+3.373
and ground-truth=0.923�automatic-pipeline+10.303, respectively. The lines corre-
sponding to the robust linear regression models (red) and the lines corresponding to
ground-truth=automatic-pipeline (black) are plotted in Figure 5.7. On both graphs
in Figure 5.7, the red line and the black line almost overlap with each other. This
means that our regression lines are near the lines of identity, which signi�es a similar-
ity between the measures by our method and those based on the InlineVF algorithm.
By comparing the regression lines and identity lines in Fig. 4 of [Suinesiaputra 2018],
we can also conclude a similarity between the measures derived from manual seg-
mentation and those based on the InlineVF algorithm. Hence our method actually
generates measures which are close to both manual and InlineVF values.

We believe that the di�erences between the measures by the automatic pipeline
used in this paper and the ground-truth are partially due to the lack of quality
control on the ground-truth. In fact, as pointed out in [Suinesiaputra 2018], the
ground-truth is generated by the InlineVF algorithm, which may fail and hence
make unreliable predictions on some cases. Without quality control, these failures
causes the outliers in Figure 5.7.

5.5 Conclusion and Discussion

In this paper, we proposed a method of unsupervised cluster analysis on a large
unlabeled dataset (UK Biobank) of the general population to identify pathologi-
cal cases based on shape-related and motion-characteristic features extracted from
cardiac cine MRI images. As far as we know, this is a topic that has rarely been
studied before. In our cluster analysis, a Gaussian mixture model is applied to clus-
ter similar cases together without supervision. As a result, among the generated
clusters, we identify two that probably correspond to two cardiac pathological cate-
gories. This idea is further supported by the observations on the results of a trained
classi�cation model and of the dimensionality reduction tools including principal
component analysis and t-SNE.
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As more and more large and unlabeled datasets are available in the community,
researchers will be able to extract interesting information by data mining. Identi-
�cation of cardiac pathology is just one among other topics such as the analysis of
motion patterns, the relationship between motion and shape features, etc. In the
future, more research may be carried out by including more data and di�erent types
of data ([Kohli 2017]), using more features, targeting other abnormalities or phe-
notype properties, etc. Various unsupervised learning methods ([Raza 2018]) other
than a Gaussian mixture model can also be applied.
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Figure 5.4: The results of dimensionality reduction by principal component analysis.
(Upper) The data points of the 3822 UK Biobank cases projected to the space of the
2 principal components. Each data point is colored according to its cluster. (Lower)
Projection of the centers (marked by the corresponding indexes and colors) of the 9
clusters to the same space.
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Figure 5.5: The results of dimensionality reduction by t-SNE. (Upper) The data
points of the 3822 UK Biobank cases in the space of the 2 embedding dimensions
after t-SNE. Each data point is colored according to its cluster. (Lower) A plot
similar to the left one with only di�erences on coloring. Only the points of clusters
#5 and #8 are highlighted with colors and circles.
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Figure 5.6: Histograms of some important measures of the cases in clusters #1
(pink) and #4 (cyan). The colors of the columns are set to be partially transparent
such that their overlaps appear to be of color dark blue. The distributions of #1
and #4 are pretty similar in terms of LVC volume and LVC ejection fraction (1st
row). But they are di�erent on RVC volume, RVC ejection fraction and maximal
myocardial thickness (2nd and 3rd rows). On average, the cases of #1 have larger
RVCs with higher ejection fractions. And their myocardiums also tend to be thicker
than that of the cases of #4. For both clusters, the measures are well in normal
ranges according to the de�nitions given by ACDC.
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Figure 5.7: The plots of the measures (in mL=m2 ) generated by the automatic
pipeline against the ground-truth for the LVC volume at ED (upper) and at ES
(lower). We can see that the ground-truth values contain some obvious outliers,
which are often of values well above the realistic range of LVC volumes. This explains
the fact that the ground-truth volumes have higher means and larger standard
deviations than those estimated by the automatic pipeline. The lines corresponding
to the robust linear regression models (red) and the lines corresponding to ground-
truth=automatic-pipeline (black) are also plotted. The red line and the black line
almost overlap with each other.
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In this thesis, we explored deep learning for robust segmentation and explain-
able analysis of 3D and dynamic cardiac images. Now we summarize the main
contributions and discuss some perspectives.

6.1 Main Contributions

6.1.1 Segmentation Using Simulation for Data Augmentation

In Chapter 2 and the corresponding study [Zheng 2018c], we show how deep learn-
ing can be applied to learn biventricular segmentation from a small dataset, using
an existing method of cardiac mesh simulation and image synthesis for large-scale
data augmentation. In addition to this data augmentation strategy, the novel spa-
tial segmentation propagation and multi-scale coarse-to-�ne networks are proposed.
Furthermore, we demonstrate that our method is robust, and combines the assets
of 2D (speed) and 3D to provide spatially consistent meshes ready to be used for
simulations. Last but not least, a novel loss function is also proposed to overcome
class imbalance.



104 Chapter 6. Conclusion and Perspectives

6.1.2 Consistent and Robust Segmentation with Spatial Propaga-
tion

In Chapter 3 and the corresponding publication [Zheng 2018b], we propose a
method of segmentation with spatial propagation that is based on originally de-
signed neural networks. By taking the contextual input into account, the spatial
consistency of segmentation is enforced. Also, we conduct thorough and unprece-
dented testing to evaluate the robustness and generalization ability of our model
and achieve performances better than or comparable to the state-of-the-art. Fur-
thermore, an exceptionally large dataset (UK Biobank) collected from the general
population is used for training and evaluation, which makes the reported results
more convincing.

6.1.3 Explainable Pathology Classi�cation with Motion Charac-
terization

In Chapter 4 and the corresponding publication [Zheng 2018a], we propose a
method of cardiac pathology classi�cation based on originally designed and trained
neural networks and classi�ers. A novel semi-supervised training method is applied
to train a network (ApparentFlow-net), which provides pixel-wise motion informa-
tion. Combining the generated apparent �ow and the segmentation masks predicted
by another network (LVRV-net), we introduce two novel features that characterize
the motion of myocardial segments. These motion-characteristic features are not
only intuitive for visualization but also very valuable in classi�cation. The proposed
classi�cation model consists of 4 small binary classi�ers. Each classi�er works inde-
pendently and takes up to 3 features with clearly explainable relevance as input. On
the training and testing datasets (ACDC), the proposed model achieves 95% and
94% respectively as classi�cation accuracy. Its performances are hence comparable
to that of the state-of-the-art. To justify our design of the proposed classi�cation
model, we also quantitatively compare it with other models.

6.1.4 Cluster Analysis of Image-Derived Features

In Chapter 5, we proposed a method of unsupervised cluster analysis on an unla-
beled dataset (UK Biobank) of 3822 cases to identify pathological cases based on
shape-related and motion-characteristic features extracted from cardiac cine MRI
images. As far as we know, this is a topic that has rarely been studied before. In
our cluster analysis, a Gaussian mixture model is applied to cluster similar cases
together without supervision. As a result, among the generated clusters, we identify
two that probably correspond to two cardiac pathological categories respectively.
This idea is further supported by the observations on the results of a trained clas-
si�cation model and of the dimensionality reduction tools.
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6.2 Publications

This thesis led to several published and submitted publications:

� [Zheng 2018c] 3D Consistent Biventricular Myocardial Segmentation
Using Deep Learning for Mesh Generation
Qiao Zheng, HervØ Delingette, Nicolas Duchateau and Nicholas Ayache. arXiv
preprint, 2018

� [Zheng 2018b] 3D Consistent and Robust Segmentation of Cardiac
Images by Deep Learning with Spatial Propagation
Qiao Zheng, HervØ Delingette, Nicolas Duchateau and Nicholas Ayache. IEEE
Transactions on Medical Imaging, 2018

� [Zheng 2018a] Explainable Cardiac Pathology Classi�cation on Cine
MRI with Motion Characterization by Semi-Supervised Learning of
Apparent Flow
Qiao Zheng, HervØ Delingette and Nicholas Ayache. Submitted to Medical
Image Analysis in November 2018, under minor revision in February 2019

� [Zheng 2019] Unsupervised Shape and Motion Analysis of 3822 Car-
diac 4D MRIs of UK Biobank
Qiao Zheng, HervØ Delingette, Kenneth Fung, Ste�en E. Petersen and
Nicholas Ayache. Submitted to Computerized Medical Imaging and Graphics
in February 2019

6.3 Software

This thesis led to the development of the following software:

� CardiacSegmentationPropagation
CardiacSegmentationPropagation is a Python-based tool for cardiac image
segmentation. Using deep learning with the spatial propagation of the seg-
mentation, the method is both consistent and robust. A package containing
the code of the method, the pre-trained weights of the model, and the in-
structions for use can be downloaded from the website of the Epione team
(https://team.inria.fr/epione/en/software/ ).

6.4 Perspectives

6.4.1 Cardiac Mesh Simulation and Image Synthesis for Deep
Learning

In Chapter 2, we demonstrate how an existing model of cardiac mesh simulation
and image synthesis ([Duchateau 2016]) can be used for data augmentation to en-
able and improve deep learning. However, we notice that simulation and synthesis

https://team.inria.fr/epione/en/software/
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models can do much more for deep learning than just this. As pointed out in
[Duchateau 2018], based on realistic electromechanical modeling and mesh simula-
tion of the heart, pathological cardiac sequences can be synthesized from real healthy
sequences. With such a method as a tool, on the one hand, researchers may generate
many pathological cardiac image sequences of various pathological categories, which
may be used for learning cardiac pathology classi�cation, detection and localization.
In fact, collecting and labeling real cardiac images of pathological cases by human
experts is both expensive and tedious. Synthesized pathological images are hence
great alternatives of the real ones. In addition, with such a generation process, the
synthesized images of a case are associated with a known electromechanical model,
which contains many known parameters, which characterize the biophysical factors
of the heart (e.g. conductivity, sti�ness, contraction, relaxation). Therefore, the
electromechanical model associated with the synthesis method can provide a big set
of information which might not be available on real images. So combining cardiac
mesh simulation and image synthesis with deep learning is research direction with
bright prospects.

6.4.2 Temporal Consistency of Segmentation

As presented in Chapter 3, the spatial consistency of segmentation can be reinforced
via the spatial propagation of segmentation masks. It is natural to ask whether the
temporal consistency of segmentation can also be improved in a similar way. As a
matter of fact, the temporal consistency of segmentation is important in the estima-
tion of the cardiac motion, which often characterizes cardiac pathologies as indicated
in Chapter 4. Moreover, without the temporal consistency of segmentation, some es-
sential cardiac measures such as the ejection fractions of the left and right ventricles
cannot be determined accurately. However, as the ground-truth of segmentation is
usually available only at the instants of the end-diastole and end-systole in most of
the datasets, it might be practically di�cult to train a deep learning model to prop-
agate segmentation across time in a supervised manner as presented in Chapter 3.
Fortunately, now we can already see some possible methods to tackle this problem.
For instance, incorporation of anatomical properties, such as the shape and location
of an organ, has been proved to be helpful in cardiac image enhancement and seg-
mentation ([Oktay 2018]). We thus expect that taking prior knowledge into account
in deep learning would make the segmentation more consistent both spatially and
temporally.

6.4.3 Semi-Supervised Learning and Unsupervised Learning

In Chapter 4 and Chapter 5, we demonstrate the application of semi-supervised
learning and unsupervised learning in medical image analysis respectively. We be-
lieve this is a promising research topic. The reality is that there are much more
unannotated medical images than annotated ones. Instead of using only the medi-
cal images with ground-truth labels, segmentation or annotation, if researchers can
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also make good use of unannotated images to train their models in semi-supervised
or even unsupervised ways, they might signi�cantly improve the performance the
models. The problem of temporal consistency of segmentation discussed above is
one of the many possible subjects on which semi-supervised or unsupervised learning
may be useful ([Raza 2018], [Cheplygina 2018], [Aganj 2018], [Bai 2017a]). Further-
more, sometimes learning from a large amount of unannotated data may enable a
model to discover previously unknown or unnoticed information. The pathological
clusters identi�ed by unsupervised learning in Chapter 5 is just one simple exam-
ple. And this character of semi-supervised learning and unsupervised learning make
them especially interesting in the current era of big data.

6.4.4 More Explainable Models

In Chapter 4, we draw attention to the problem of explainability of learning-based
models. Machine learning models, in particular, deep learning models, are not easy
to interpret. This is because most of the machine models contain at least hundreds
of parameters and it is practically infeasible to examine and explain the role of
each parameter. Furthermore, as many values or features are used simultaneously
as the input of the model, it is hard to tell in a straightforward manner whether
and how and to what degree they contribute to the results of the model respec-
tively. This drawback on explainability may cause many problems as suggested in
[Holzinger 2017]. For instance, the lack of explainability is an obvious hurdle for
the wide adoption of learning-based models in the clinic despite their performance.
Moreover, under the new European General Data Protection Regulation1, they may
also generate legal and privacy issues in business. Hence, as a proof of concept, in
Chapter 4 we propose a simple classi�cation model with a small number of input
features and parameters such that the role and contribution of each feature or pa-
rameter are clear and explainable. Fortunately, nowadays, some other researchers
are also already interested in building explainable arti�cial intelligence models for
medicine ([Lamy 2019], [Herent 2018]). More research e�orts on this topic are nec-
essary and expected.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed January 30, 2019)

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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