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Résumé long en français

Résumé

Mots clés : Télédétection satellitaire, Masses de données, Décomposition d’opérateurs, Non-

négativité, Parcimonie, Dynamiques de l’océan, Fouille de données, Apprentissage statistique,

Fusion de donnés multi-capteurs, Reconstruction haute-résolution, Interpolation.

Au cours des dernières années, la disponibilité toujours croissante de données de télédétection

multi-source de l’océan a été un facteur clé pour améliorer notre compréhension des dynamiques

de la surface de l’océan, de la circulation océanique et des interactions atmosphère-océan. A

cet égard, il existe un potentiel largement sous-exploité dans les ensembles de données actuel-

lement disponibles. Il est donc essentiel de mettre au point des approches efficaces pour mieux

exploiter ces ensembles de données afin de résoudre, par des méthodes de fouille de données

et d’apprentissage statistique, des problèmes tels que la fusion multi-capteurs, la reconstruc-

tion haute résolution ou l’analyse multi-paramètres des processus d’intérêt. En particulier, la

décomposition des processus géophysiques en modes pertinents est une question clé pour les pro-

blèmes de caractérisation, de prédiction et de reconstruction. Inspirés par les progrès récents en

séparation aveugle des sources issus de l’introduction de formulations non-négatives et parcimo-

nieuses, nous visons, dans la première partie de cette thèse, à étendre les modèles de séparation

aveugle de sources sous contraintes au problème de la caractérisation et décomposition d’opéra-

teurs ou fonctions de transfert entre variables d’intérêt, en se concentrant sur des formulations

non-négatives. Dans ce travail, nous développons des schémas computationnellement efficaces

reposant sur des fondations mathématiques solides, y compris la reformulation du problème de

décomposition d’opérateurs sous contraintes comme la décomposition par dictionnaire d’opéra-

teurs linéaires estimés localement, pour améliorer ainsi la flexibilité du modèle. Nous illustrons

la pertinence des modèles de décomposition proposés dans différentes applications impliquant

l’analyse, la segmentation et la prédiction de dynamiques géophysiques. Par la suite, étant donné

que la disponibilité toujours croissante d’ensembles de données multi-sources supporte l’explo-

ration des approches pilotées par les données en tant qu’alternative aux formulations classiques

basées sur des modèles, nous explorons, dans la deuxième partie de ce travail, des approches

basées sur les données récemment introduits pour l’interpolation des champs géophysiques à

partir d’observations satellitaires irrégulièrement échantillonnées. De plus, en vue de la future
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mission SWOT, la première mission satellitaire à produire des observations d’altimétrie par sa-

tellite complètement bidimensionnelles et à large fauchée, nous nous intéressons à évaluer dans

quelle mesure les données SWOT, combinées ou non aux données altimétriques conventionnelles,

permettraient une meilleure reconstruction des champs altimétriques.

Introduction

Au cours des dernières années, la télédétection satellitaire a produit une grande quantité de don-

nées d’observation provenant d’une grande variété de sources. En effet, une vaste gamme de types

de capteurs différents (imagerie multi et hyper-spectrale, imagerie SAR, imagerie micro-ondes,

etc.) permet l’observation de différents paramètres géophysiques et géochimiques terrestres, océa-

niques et atmosphériques (hauteur de la surface la mer, température de la surface de la mer,

couverture végétale, développement urbain, etc.) à différentes résolutions spatio-temporelles, ce

qui représente une énorme quantité de données très peu exploitées.

Une meilleure exploitation de ces ensembles de données nous permettrait d’améliorer la

qualité, la puissance et la précision des modèles et des représentations des processus géophy-

siques et géochimiques, ainsi que de dépasser les limites associées tant aux données actuellement

disponibles, comme le fait qu’aucun capteur satellite ne permet de fournir des observations

haute-résolution des dynamiques de l’océan à la fois temporellement et spatialement, qu’aux

modèles et représentations actuels, trop complexes pour permettre une analyse efficace et une

reconstruction haute résolution basée sur des observations, ou trop simples pour appréhender

toute la variabilité spatio-temporelle des processus étudiés. Cependant, pour exploiter pleine-

ment le potentiel de ces nouveaux ensembles de données, une compréhension approfondie de la

relation entre les différentes variables impliquées est nécessaire.

À cet égard, la mise en œuvre de nouvelles approches pour exploiter pleinement le poten-

tiel des ensembles de données actuellement disponibles apparaît clairement comme un enjeu

de recherche majeur. En particulier, les approches d’exploration de données et d’apprentissage

automatique pourraient être utilisées dans ce contexte pour une grande variété d’applications,

allant de la fusion de données multi-sources et la reconstruction à haute résolution à l’analyse

multi-paramétrique des processus géophysiques ou géochimiques, l’analyse spatio-temporelle et

la segmentation de la dynamique des systèmes.

Dans ce contexte, cette thèse a deux objectifs majeurs :

1. Explorer les formulations non-négatives et parcimonieuses [69,155,200,233] pour dévelop-

per de nouvelles méthodes non supervisées pour caractériser les relations entre variables

à partir d’un ensemble représentatif d’observations. En effet, étant donné le succès récent

des nouvelles formulations [69, 155, 200, 233] pour s’attaquer aux problèmes de séparation
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aveugle des sources [201], elles apparaissent comme une alternative intéressante pour ré-

soudre le problème de la caractérisation des opérateurs à partir d’observations. Dans le

contexte de la télédétection océanique, la disponibilité toujours croissante des observations

motive davantage l’exploration d’approches pilotées par les données comme une alternative

puissante aux schémas classiques basées sur des modèles.

2. Exploiter les méthodes et les formulations développées pour la résolution des problèmes

inverses en télédétection océanique multi-sources/multi-paramètres, avec un accent parti-

culier sur la reconstruction à haute résolution des champs des dynamiques de la surface

de la mer à partir de données satellitaires. En particulier, nous exploiterons des nouveaux

développements en altimétrie satellitaire produisant des observations satellitaires bidimen-

sionnelles à large fauchée, dans le cadre de la future mission satellitaire SWOT [59,74,78].

Motivations géophysiques pour des approches pilotées par les données

Comme indiqué précédemment, la quantité de données de télédétection océanique multi-sources

et de données in situ disponibles a connu une croissance considérable au cours des dernières

décennies, ce qui a été un facteur clé pour des possibilités d’analyse plus approfondies menant à

une meilleure compréhension des dynamiques de la surface de l’océan, de la circulation océanique

et des interactions atmosphère-océan. En particulier, des efforts considérables ont été déployés

pour comprendre les relations et les interactions entre les différentes quantités physiques océa-

niques impliquées [4, 33,97,114,160,227].

En ce qui concerne la télédétection par satellite, les missions satellitaires actuelles (et fu-

tures) comportent généralement des observations partielles et irrégulièrement échantillonnées,

ce qui est liée à la conception des orbites considérées, la géométrie des trajectoires des satellites,

l’occlusion par des nuages, etc. De plus, les techniques d’interpolation utilisées actuellement ne

parviennent pas à reconstruire avec précision les dynamiques de la surface de l’océan à plus

petite échelle [34,68,73,74]. A cet égard, l’identification des limites des missions de télédétection

satellitaires actuelles a conduit au développement de nombreuses améliorations des technologies

de télédétection, telles que la future mission altimétrique SWOT. Il est important de noter que

SWOT sera la première mission d’altimétrie satellitaire à exploiter l’interférométrie radar pour

produire des observations altimétriques bidimensionnelles à large fauchée, par opposition aux

altimètres conventionnels qui ne peuvent produire des mesures altimétriques que sur la trace

nadir du satellite [59,74,78]. Ces développements motivent des efforts actuels qui se concentrent

à la fois sur l’exploration de la synergie entre les différents traceurs dynamiques de l’océan pour

améliorer la reconstruction des dynamiques de la surface de l’océan, et sur le développement de

méthodes alternatives de reconstruction à haute résolution des dynamiques océaniques à partir

d’observations satellitaires à échantillonnage irrégulier.
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D’autre part, la hauteur de la surface de la mer (SSH) est, comme indiqué dans [244], une

quantité intégrée en profondeur qui contient des informations sur la structure de densité de la

colonne d’eau et que capture des structures à méso-échelle de 50 km à quelques centaines de

kilomètres, ce qui signifie que les courants de surface peuvent être directement extraits à partir

des champs de SSH en exploitant le balance géostrophique Au niveau des méso-échelles, ces cou-

rants interagissent avec les champs de température de surface de la mer (SST) à grande échelle,

ce qui implique que les dynamiques de la surface de l’océan forment un système complexe d’in-

teractions qui varient sur une large gamme d’échelles, à la fois dans l’espace et dans le temps [244].

En outre, l’existence d’un mode dynamique de la surface de l’océan, appelé mode SQG

(Quasi-Géostrophie de surface), caractérisé par une fonction de transfert linéaire entre la tem-

pérature (SST) et la hauteur (SSH) de la surface de l’océan, a été démontrée dans des nombreux

études théoriques et opérationnels [97,99,115,131,132,142,143,244].

En effet, des travaux récents soulignent que la dynamique de la surface de l’océan peut être

caractérisée par des relations linéaires locales SST-SSH qui correspondent précisément à des

opérateurs Laplaciens fractionnaires [97, 115, 132, 142, 143, 244] qui peuvent être exprimés dans

le domaine de Fourier comme :

FH(ŜSH) = −γ |k|−2αFT (ŜST) (1)

où k est le vecteur de longueur d’onde horizontale, FT et FH sont respectivement des filtres li-

néaires de SST et SSH et γ est un coefficient de normalisation [99,244]. La variation du paramètre

α, qui contrôle le couplage effectif entre la SST et la SSH, conduit à différents modèles théo-

riques classiques [244]. Pour α = 1/2, en particulière, on recourt au modèle quasi-géostrophique

de surface [99,131,143,244].

Sous l’hypothèse SQG, deux conclusions principales peuvent être tirées de l’équation (1) :

1. Les courants de surface, donnés par les gradients orthogonaux de la SSH, peuvent alors

être calculés à partir des dérivés spatiales d’une version filtrée de la SST [114,244].

2. Une seule fonction de transfert linéaire ne suffise pas pour capturer complètement la grande

complexité des dynamiques de la surface de l’océan. En effet, la relation SQG (1) suppose

des conditions de mélange vertical spécifiques, qui ne sont pas forcement valables partout

et à tout moment. [85, 116, 143]. De plus, lorsque la dynamique de la surface de l’océan

est réellement déterminée par des dynamiques SQG, le paramètre γ peut varier à la fois

dans l’espace et dans le temps [99, 143, 244], par exemple en fonction de la profondeur de

la couche de mélange.

Ces résultats ont motivé le développement de nouvelles méthodes statistiques pilotées par les

données pour combiner l’information disponible dans les observations de la SSH avec d’autres
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données de télédétection, telles que la SST ou les données in situ [4, 36, 244, 268]. Tandis

que [85,116] ont étudié des couplages linéaires SSH-SST en exploitant des représentations dans

le domaine de Fourier (domaine fréquentiel), Tandeo et al. [244] se sont appuyés sur le fait que,

pour des échelles horizontales entre 50 km et quelques centaines de kilomètres, la turbulence

de surface est compatible avec la théorie des turbulences géostrophiques, pour conclure que la

dynamique de la surface de l’océan peut être prédite à partir des variations de la densité ho-

rizontale en surface, possiblement dominées par des champs de SST. Ils ont exploité cette idée

pour explorer les fonctions de transfert linéaires entre la SST et la SSH en introduisant une

décomposition multimodale à l’aide d’un modèle de régression à classe latente, de sorte que les

relations locales entre la SST et la SSH sont décrites par une fonction de transfert linéaire choisi

parmi un nombre prédéfini de fonctions de transfert possibles.

Cependant, les résultats rapportés dans la littérature montrent qu’une seule fonction de

transfert linéaire de type SQG ne suffit pas pour représenter avec précision toute les dynamiques

de méso-échelle de la surface de l’océan dans une région donnée [244]. De plus, une limite

importante des modèles de régression à classe latente est qu’ils ne peuvent tenir compte que d’un

ensemble fini de fonctions de transfert linéaires. En revanche, le mode SQG est caractérisé par une

seule classe de fonctions de transfert linéaires, à savoir l’opérateur Laplacien fractionnaire γ∆1/2,

mais implique un paramètre scalaire positif γ [99, 143, 244], qui est liée à des caractéristiques

géophysiques locales (par exemple, la profondeur de la couche de mélange). Par conséquent, les

dynamiques de la surface de de l’océan de type SQG, caractérisées par un paramètre γ variant

continuellement, peuvent ne pas être bien représentées par des modèles de régression à classe

latente.

Contributions

Dans le contexte présenté ci-dessus, la nécessité de formulations plus complexes permettant de

répondre aux limites des modèles actuels, ainsi que la réussite des modèles sous contraintes dans

des applications de séparation aveugle de sources, nous ont amenés à explorer les développements

récents dans ce domaine pour essayer de développer des modèles de décomposition plus efficaces.

Formellement, le problème de séparation aveugle de sources implique la décomposition d’un

signal ou d’une image donné comme la superposition de différentes composantes :

y =
K∑

k=1

αksk + ω (2)

où y ∈ R
I , le coefficient αk ∈ R quantifie la contribution de la composante sk ∈ R

I , qui

correspond au signal ou à l’image de référence k et ω ∈ R
I est un processus de bruit blanc

Gaussien avec une covariance Σ ∈ R
I×I qui modélise l’erreur d’estimation. Le principe de la

séparation aveugle de sources consiste alors à exploiter des observations des signaux ou des

images y pour identifier et séparer les sources sk en quantifiant les coefficients de mélange αk,
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de sorte que la reconstruction finale se rapproche du signal approximée y. À cet égard, des

contraintes supplémentaires peuvent être considérées pour imposer des restrictions physiques ou

structurelles à la décomposition afin d’améliorer l’identifiabilité et l’interprétabilité du modèle.

Ces dernières années, les contraintes de non-négativité et de parcimonie se sont révélées particu-

lièrement intéressantes pour produire des décompositions plus pertinentes et plus interprétables.

Dans ce travail, nous visons à étendre les modèles de séparation aveugle des sources sous

contraintes au problème de la caractérisation et décomposition d’opérateurs à partir des obser-

vations :

yn =
K∑

k=1

αnkfk (xn) + ωn (3)

où xn ∈ R
J , yn ∈ R

I , et nous visons à identifier αnk ∈ R, les coefficients de mélange qui

modélisent la contribution de chaque mode à la reconstruction de yn pour un xn donné, et

fk : RJ → R
I , une fonction, linéaire ou non-linéaire, associée au mode k. ωn ∈ R

I est un pro-

cessus de bruit, généralement un bruit Gaussien additif, représentant l’incertitude du modèle.

Sur la base des progrès récents, nous nous concentrerons particulièrement sur des formulations

linéaires sous contraintes de non-négativité ou parcimonie des coefficients de mélange αnk. Même

si cela dépasse le cadre de ce travail, nous soulignons qu’il est possible également d’envisager

des contraintes supplémentaires sur les fonctions de transfert modales fk.

Il est à noter qu’en étendant les formulations de séparation aveugle de sources au problème

de la décomposition d’opérateurs, nous suggérons que les modes dynamiques en jeu ne s’excluent

pas les uns les autres, mais se superposent. Ceci est significativement différent de l’hypothèse

de base faite par les modèles de régression à classe latente, comme dans [244], qui supposent

qu’un seul mode est actif à un emplacement spatio-temporel donné. A notre connaissance, ceci

est le première étude à montrer, à partir d’une analyse pilotée par les données, la superposi-

tion continue de multiples modes dynamiques associés à différents types de fonction de transfert.

De plus, tandis que des travaux précédents se sont concentrés soit sur des couplages li-

néaires spatialement homogènes [85, 116], soit sur un ensemble fini de fonctions de transfert

linéaires [244], nous allons considérer ici des représentations beaucoup plus riches, qui consi-

dèrent toutes les possibilités de mélange parmi un ensemble fini de familles de relations linéaires.

Dans le contexte de l’océanographie physique, cette thèse s’ajoute à un corpus de travaux

en cours, à la fois théoriques et pratiques, qui montrent que la dynamique à méso-échelle

de la surface l’océan peut être caractérisée par un couplage linéaire local entre la SST et la

SSH [97, 115, 132, 142, 143, 244]. Nous soulignons de plus que des approches multimodales sont

nécessaires, car une seule fonction de transfert linéaire ne suffit pas pour capturer complètement

la variabilité spatio-temporelle, complexe et non-stationnaire, des dynamiques méso-échelle de la
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surface de l’océan. Des travaux précédents ont plutôt exploré des fonctions de transfert moyennes

régionales [85, 116] ou des modèles de mélanges à classes latentes [244]. En ce qui concerne la

télédétection par satellite, dans le cadre de cette thèse, nous poursuivons des efforts pour amé-

liorer les méthodes d’interpolation actuelles [57] ou développer des approches alternatives pour

la reconstruction à haute résolution des dynamiques de la surface de l’océan à partir des données

satellitaires échantillonnées irrégulièrement [67, 162, 257]. Plus précisément, nous nous concen-

trons sur l’exploitation des observations à large fauchée pour l’interpolation à haute résolution

des champs d’anomalie de la hauteur de la surface de l’océan (SLA), dans la perspective de la

future mission altimétrique SWOT.

Partie I : Décomposition non-négative d’opérateurs

Modèles et algorithmes

Comme nous l’avons indiqué précédemment, inspirés par le succès récent des approches de

séparation de sources sous contraintes de non-négativité et parcimonie, nous visons à étendre

les modèles de séparation sous contraintes à la caractérisation d’opérateurs à partir de données.

Dans ce travail, nous traitons ces questions et développons des schémas mathématiques solides

et efficaces. Nos principales contributions sont :

• Une formulation basée sur la méthode des moindres carrés dans l’espace d’observations,

sous contrainte de non-négativité, ainsi que le développement de différents algorithmes

d’estimation associées.

• Une reformulation du problème considérée comme un problème d’apprentissage de dic-

tionnaires, pour gagner en flexibilité de modélisation, y compris la possibilité d’envisager

d’autres contraintes, tels que la parcimonie.

• L’évaluation expérimentale des schémas numériques proposés, qui soulignent la pertinence

du cadre d’apprentissage de dictionnaires.

Généralement, nous nous concentrerons sur les cas où des contraintes sont imposées soit sur

les coefficients de décomposition, soit sur les modes de décomposition eux-mêmes. En particu-

lier, nous introduisons un nouveau modèle de décomposition non-négative pour les opérateurs

linéaires et étudions différents algorithmes d’estimation des paramètres, y compris une reformu-

lation du modèle qui exploite les techniques d’apprentissage de dictionnaires. Plus particulière-

ment, cette reformulation nous permettra d’obtenir une plus grande souplesse et la possibilité

de modifier les contraintes du modèle de façon simple.

Modèle de superposition non-négative de modes linéaires

Prenons un ensemble de données d’observation à plusieurs variables {x,y}n, où xn ∈ R
J , yn ∈ R

I

désigne la n-ème paire d’observations. Les variables xn et yn peuvent, par exemple, faire référence
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à des vecteurs, des patchs d’images pour différentes modalités ou des états successifs d’un système

dynamique, en fonction du cas d’étude considéré. Nous nous concentrons sur le modèle (3) en

supposant que la relation potentiellement non-linéaire entre xn et yn, donnée par la réponse

fonctionnelle fk (xn), peut être approximée localement, avec une précision raisonnable, par un

opérateur linéaire. Nous considérons la décomposition de l’opérateur linéaire fk (xn) reliant les

variables xn et yn sous des contraintes de non-négativité. Cela se traduit par le modèle suivant :

yn =
K∑

k=1

αnkβkxn + ωn

s.c.




αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK

||βk||F = 1, ∀ k ∈ J1,KK

(4)

où xn ∈ R
J , yn ∈ R

I , αnk ∈ R
+ sont des coefficients de mélange non-négatifs quantifiant la

contribution du mode linéaire k à la reconstruction de yn pour un xn donné, βk ∈ R
I×J est une

matrice de régression représentant le mode k, || · ||F est la norme de Frobenius et ωn ∈ R
I est

un processus de bruit Gaussien centré avec matrice de covariance Σ, représentant à la fois les

incertitudes du modèle et les erreurs d’observation. N et K indiquent respectivement le nombre

total d’observations et de modes, alors que k ∈ J1,KK et n ∈ J1, NK indiquent respectivement le

mode et observation actuelles.

Une contrainte de non-négativité a été imposée sur les coefficients de mélange αnk, ins-

piré par le succès des décompositions non-négatives pour des applications dans lesquelles une

superposition positive de différentes parties se produit naturellement [155]. La contrainte de

non-négativité permet de distinguer la forme des relations linéaires entre les variables xn et yn

de la magnitude de ces relations. De plus, une contrainte de normalisation sur les matrices de

régression modales βk a été ajoutée pour éliminer les indéterminations d’échelle et améliorer

l’identifiabilité du problème.

Le modèle (4) nous permet de résoudre des problèmes de décomposition impliquant des

contributions linéaires mixtes et de généraliser les problèmes de mélange linéaires impliquant

des régressions linéaires et les modèles de régression à classes latentes [47,244]. Par rapport aux

modèles de l’état de l’art, tels que la régression classique et les modèles de régression à classes

latentes [47, 244], les principales caractéristiques de notre formulation proposée sont doubles :

premièrement, elle tient compte des amplitudes possiblement variables des relations linéaires ;

deuxièmement, elle évalue explicitement l’importance relative des différentes relations linéaires.

Cela présente un grand intérêt pour diverses applications telles que les tests d’hypothèses de

régression, l’identification de fonction de transfert, etc.
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Algorithmes

Nous énonçons l’estimation des paramètres du modèle (4) à partir d’un ensemble d’observations

{x,y}n comme la solution d’un problème d’optimisation sous contraintes non-linéaire et non-

convexe :

∀n,





[
α̂nk, β̂k

]
= arg min

αnk,βk

N∑
m=1

Wn
m

∣∣∣∣∣

∣∣∣∣∣ym −
K∑
k=1

αnβkxm

∣∣∣∣∣

∣∣∣∣∣

2

Σ

αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK

||βk||F = 1, ∀k ∈ J1,KK

(5)

où || · ||Σ est une norme pondérée selon la covariance Σ. Nous supposons que, selon les facteurs

de pondération Wn
m, plusieurs paires d’observation (xm,ym) peuvent partager des coefficients

de mélange relativement similaires {αnk}. A cette égard, plus Wn
m est grand, plus les coefficients

de mélange {αnk} et {αmk} sont similaires. La matrice de pondération W peut représenter à

la fois des a priori de régularité espace-temps, de sorte que les paires d’observations proches

dans l’espace et/ou le temps doivent partager des décompositions d’opérateurs similaires, ainsi

que des a priori de similarité dans l’espace des variables, de sorte que les paires d’observations

similaires partagent des décompositions similaires. Cela semble raisonnable pour des nombreuses

applications où les paramètres devraient être corrélés et varier de façon continue dans le domaine

spatio-temporel considéré. Le paramétrage de la matrice de pondération W devrait alors dé-

pendre de l’application et peut être lié à des idées similaires utilisées dans la modélisation basée

sur la covariance [16] et les schémas non-locaux [25, 207]. Concernant les problèmes d’identi-

fiabilité, si le nombre de modes K vérifie K > I, l’estimation des coefficients de mélange αnk
devient impossible à partir d’une seule paire d’observations (xn,yn). A cette égard, la matrice de

pondération W fournit également un moyen d’aborder l’estimation des paramètres de mélange

dans de telles situations.

Algorithme des moindres carrés alternés

Approche par minimisation directe Compte tenu de la nature non-linéaire et non-

convexe du problème de minimisation sous contraintes (5), l’estimation conjointe des paramètres

de modèle αnk et βk n’est pas simple. Heureusement, ce problème de minimisation conjointement

non-convexe devient convexe lorsque l’estimation est effectuée pour un ensemble de paramètres

uniquement, tout en considérant l’autre ensemble de paramètres comme fixe. Naturellement,

cela suggère une approche de minimisation alternée, qui conduit aux mises à jour suivantes des

ensembles de paramètres du modèle αnk et βk, itérées jusqu’à la convergence :

• β-step : Minimisation sur βk sous contraintes de normalisation avec αnk fixe.

• α-step : Minimisation sur αnk sous contraintes de non-négativité avec βk fixe.
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Approche par descente de gradient L’inconvénient de la simplicité de l’approche de

minimisation directe est qu’elle est sujette aux problèmes numériques. Comme indiqué dans la

littérature sur la séparation aveugles des sources [10], les projections alternées sur les espaces de

solutions non-contraintes et contraintes peuvent induire un comportement divergent ou numé-

riquement instable. Pour traiter un tel problème, l’approche de minimisation directe peut être

adoucie en considérant une descente de gradient. Ceci est ensuite combiné avec une projection

sur l’espace des solutions non-négatives, ce qui revient à une méthode de gradient proximal [37].

Algorithme d’apprentissage de dictionnaires

Le problème de décomposition considéré peut être reformulé comme un problème d’appren-

tissage de dictionnaires. Dans (4), l’opérateur linéaire
∑K
k=1 αnkβk peut être considéré comme

la décomposition de l’opérateur linéaire local reliant les variables y et x pour l’index n. Cet opé-

rateur linéaire local peut être estimé comme suit selon un critère des moindres carrées pondérés

utilisant la matrice de pondération W :

Θn =

(
N∑

m=1

Wm
n ymxTm

)(
N∑

m=1

Wm
n xmxTm

)−1

(6)

où Wn
m sont des coefficients de pondération qui rendent compte des contributions relatives des

paires d’observations (xm,ym) à l’estimation de l’opérateur linéaire Θn associé à la paire d’ob-

servations (xn,yn). Cette estimation des moindres carrés revient à résoudre indépendamment le

critère des moindres carrés pour chaque index n dans (4).

A partir des opérateurs linéaires locaux {Θn}n, le problème (4) est lié à la décomposition

non-négative de chaque opérateur linéaire Θn :

Θn =
K∑

k=1

αnkβk + Υn

s.c.




αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK

||βk||F = 1, ∀ k ∈ J1,KK

(7)

ou la nouvelle matrice d’erreur Υn est une matrice Gaussienne.

De plus, ce problème de décomposition sous contraintes peut être approximée comme un

problème de décomposition basée sur l’apprentissage de dictionnaires :





[
Â, B̂

]
= argmin

A,B
||Φ−BA||2F

Akn ≥ 0, ∀k ∈ J1,KK,∀n ∈ J1, NK

||[B]:k||2 = 1, ∀k ∈ J1,KK

(8)
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où la matrice Φ ∈ R
IJ×N est obtenue en concaténant des opérateurs vectorisés θn = vec(Θn)

(i.e. Φ = [θ1|...|θN ]), les colonnes de la matrice A ∈ R
K×N contient les coefficients de mélange

αnk quantifiant la contribution de chaque mode k pour la reconstruction de l’opérateur linéaire

local vectorisé θn et les colonnes de B ∈ R
IJ×K (notées [B]:k) contiennent des versions vectori-

sées des matrices de régression linéaire modales βk.

L’estimation des paramètres du modèle (8) revient, sous cette nouvelle formulation, à un

problème classique d’apprentissage de dictionnaires couplé à une contrainte de non-négativité.

L’apprentissage de dictionnaires est un problème classique en traitement du signal, pour lequel

de nombreuses méthodes, exploitant différentes contraintes, ont été proposées [3,10,13,155,156].

Ici, puisque nous considérons une contrainte de non-négativité, nous résolvons la minimisation

(8) en utilisant une méthode de gradient proximal [37] pour tenir compte de la non-négativité

de la matrice de coefficients de mélange A. Cela implique l’itération des deux étapes suivantes

jusqu’à la convergence :

• L’estimation par des moindres carrés de la matrice de dictionnaire. B sous des contraintes

de normalisation.

• L’estimation de la matrice de coefficients de mélange A à l’aide d’une méthode de gradient

proximal [37] pour appliquer la non-négativité.

Alternativement, on peut choisir une technique d’apprentissage de dictionnaires différente

pour appliquer une contrainte différente (par exemple, KSVD [3] pour la parcimonie). Cela donne

à la formulation basée sur l’apprentissage de dictionnaires une flexibilité et une adaptabilité

accrues, étant donné que des contraintes de modèle alternatives peuvent ainsi être introduites

de manière transparente dans le modèle (4).

Comparaison des algorithmes proposées

Nous avons évalué les performances des algorithmes présentés pour traiter le modèle de dé-

composition général (4) dans des cas idéaux et non-idéaux. Nous considérons les algorithmes

introduits précédemment, à savoir l’algorithme des moindres carrées alternes et la décomposi-

tion d’opérateurs linéaires locaux par apprentissage de dictionnaires.

Nous étudions et comparons les algorithmes proposés en termes d’identification de para-

mètres et de performances de reconstruction des observations dans divers environnements ex-

périmentaux, notamment des environnements idéaux sans bruit, des cas impliquant un nombre

variable de modes de décomposition et des configurations considérant des observations et des

paramètres bruitées, afin de mieux comprendre la robustesse et les limites des algorithmes pro-

posés. Nous discutons ensuite de l’apport principal de notre approche par rapport aux méthodes

de l’état de l’art pour l’analyse et la décomposition d’opérateurs.
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Nous rapportons des expériences numériques pour évaluer les modèles et les algorithmes

proposés. Nous exploitons des données synthétiques pour effectuer une analyse quantitative de

la performance d’estimation et une analyse de sensibilité par rapport à des paramètres clés et

des hypothèses de modélisation.

Globalement, la décomposition par dictionnaire des opérateurs linéaires locaux semble offrir

les meilleures performances en termes d’identification du modèle, de stabilité et de complexité

de calcul dans des conditions favorables. Alternativement, dans des configurations non-idéales,

des algorithmes moins stables, tels que l’algorithme des moindres carrées alternes, peuvent néan-

moins s’avérer utiles pour l’identification du modèle et la reconstruction des observations.

À cet égard, les résultats rapportés suggèrent la nécessité de considérer des contraintes et/ou

des a priori de régularisation supplémentaires pour résoudre les problèmes d’identifiabilité du

modèle (4) dans des configurations non-idéales. En effet, même si nos expériences suggèrent que

le modèle et les algorithmes proposés offrent de bonnes performances de reconstruction dans

la plupart des configurations considérés, ce qui les rend adaptés à la plupart des problèmes de

reconstruction/prédiction, l’identification du modèle semble être considérablement sensible aux

configurations non-idéales, où l’hypothèse de partage des paramètres est assouplie ou lorsque

le nombre ou la sélection d’observations auxiliaires pour l’estimation des paramètres induit des

erreurs. Les résultats suggèrent également que l’identifiabilité du modèle peut être améliorée en

introduisant des approches d’estimation robustes pour les opérateurs linéaires locaux et/ou des

contraintes de modèle supplémentaires.

Cependant, les modèles et algorithmes proposés ont été utilisés avec succès dans des applica-

tions de reconstruction/prédiction et de segmentation [165,166,169]. Ces applications soulignent

la pertinence de la décomposition non-négative proposée par rapport aux méthodes basés sur

l’orthogonalité ou les régressions à classe latente, qui sont considérés dans la plupart des travaux

précédents [85,90,116,244].

Applications

Dans ce travail, nous présentons aussi l’application des algorithmes proposés à plusieurs pro-

blèmes impliquant à la fois la segmentation et la reconstruction/prédiction. Nous décrivons

les avantages des formulations proposées par rapport à des modèles classiques pour une série

de problèmes inverses en océanographie physique et en géosciences. En particulier, nous nous

concentrons sur la caractérisation des dynamiques de la surface de l’océan à partir de différents

traceurs satellitaires océaniques (SST, SSH, SSS), ainsi que sur des problèmes de reconstruc-

tion/prédiction des systèmes dynamiques.

XVIII



Résumé long en français

D’abord, nous illustrons l’utilité du modèle de décomposition linéaire non-négative proposé

pour la prédiction par analogues [175] des systèmes dynamiques, avec un cas d’étude considérant

le système dynamique de Lorenz ’96. Les résultats obtenus indiquent qu’intégrer le modèle de

décomposition non-négative d’opérateurs locaux dans un schéma de prédiction par analogues

améliore l’identifiabilité du modèle pour des petits ensembles de données d’apprentissage et

rends la méthode plus robuste au bruit.

Nous illustrons une deuxième application pour la caractérisation des dynamiques de la sur-

face de l’océan à partir de la synergie présentée par différents champs géophysiques, à savoir la

température de la surface de la mer (SST) et la salinité de la surface de la mer (SSS). Nous

analysons les relations entre la SST et la SSS dans la mer d’Alboran, une région qui présente de

fortes patterns saisonniers associées à l’apport d’eau froide de l’Atlantique à travers le détroit

de Gibraltar. Nos résultats suggèrent que la décomposition proposée est capable de capturer ces

patterns saisonniers et de séparer avec précision deux relations SST-SSS opposées, démontrant

ainsi la pertinence du schéma proposé pour la séparation des processus physiques à partir de la

synergie entre diffèrent traceurs.

Dans une troisième application, nous illustrons la pertinence des modèles proposés pour étu-

dier et décomposer les dynamiques de la surface de l’océan à partir des synergies entre données

multi-capteurs, à savoir la température de la surface de la mer (SST) et la hauteur de la surface

de la mer (SSH), dans la région d’Agulhas. Nous rappelons que, comme indiqué précédemment,

d’un point de vue théorique [131,143], les champs de SST et SSH devraient être liées entre eux

par des fonctions de transfert linéaires qui correspondent exactement à des opérateurs Lapla-

ciens fractionnés [97, 115, 132, 142, 143, 244]. Notre modèle surpasse de manière significative le

modèle de régression à classes latentes développé dans [244] de plus d’un ordre de grandeur en

termes d’EQM de prédiction de la SSH. De plus, nous montrons que notre modèle récupère un

premier mode dynamique fortement corrélé à la dynamique SQG, c’est-à-dire à une fonction

de transfert Laplacien factionnaire, ainsi qu’un deuxième mode dynamique qui agit comme une

correction locale par rapport au premier mode. A cette égard, notre modèle fournit un moyen

simple d’évaluer localement dans quelle mesure la dynamique SQG s’applique. Enfin, ces décou-

vertes corroborent réellement l’existence de modes dynamiques superposés, plutôt que de modes

mutuellement exclusifs, comme supposé dans [244].

Les applications rapportées illustrent clairement la pertinence du modèle proposé en tant

qu’alternative intéressante aux formulations classiques faisant appel à des a priori d’orthogonalité

ou à des formulations plus simples, telles que la régression linéaire classique ou les modèles à

classes latentes.
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Partie II : Interpolation de champs d’altimétrie à partir de don-

nées de télédétection satellitaire

Dans une deuxième partie de ce travail, nous nous éloignons des problèmes inverses au sens géné-

ral, pour nous orienter vers un type spécifique de problème inverse, l’interpolation à haute réso-

lution des cartes d’anomalie de la hauteur de la surface de l’océan (SLA) à partir d’observations

satellitaires. Dans ce contexte, nous suivons initialement [66] et explorons une reformulation de

notre modèle de décomposition non-négative comme un problème de super-résolution d’images.

Par la suite, nous suivons le travail présenté dans [67,161,162] et abordons le problème du point

de vue de l’assimilation de données. Nous explorons aussi des stratégies pour mieux exploiter les

observations satellitaires altimétriques et leur synergie, ainsi que des stratégies potentielles pour

inclure des traceurs océaniques supplémentaires (température de la surface de la mer, courants

géostrophiques, etc.).

Aujourd’hui, la plupart de sources de données de télédétection utilisent différentes straté-

gies d’échantillonnage à plusieurs résolutions spatio-temporelles, et impliquent généralement un

échantillonnage irrégulier de la surface de l’océan ainsi qu’une grande proportion de données

manquantes, en raison de l’occlusion par des nuages, les caractéristiques des orbites des satel-

lites, etc. Dans ce contexte, l’élaboration de produits d’altimétrie dans une grille régulière et

sans données manquantes est d’un intérêt majeur pour la recherche et l’industrie.

Comme nous l’avons déjà mentionné, le problème d’interpoler un champ dans une grille ré-

gulière à partir de données échantillonnées de manière irrégulière appartient à la famille des

problèmes inverses, qui ont été étudiés de manière approfondie dans la littérature [63, 177,

195, 207]. En sciences de la mer, les méthodes de pointe reposent sur l’interpolation optimale

(OI) [20,57,152], une approche basée modèle qui consiste à modéliser la structure de covariance

spatio-temporelle du champ à interpoler, généralement sous l’hypothèse que cette structure de

covariance reste constante dans l’espace et dans le temps. Une telle hypothèse n’est pas toujours

vérifiée, ce qui conduit à un manque de précision dans la représentation des dynamiques des

structures à plus petite échelle. En effet, l’hypothèse Gaussienne inhérente aux techniques OI

provoque le lissage des champs reconstruits, et il a été vérifié qu’il n’est pas possible de récupérer

les structures à petite échelle (entre 10 et 100 km) à l’aide d’OI [34,68,73].

D’une autre part, les techniques d’assimilation de données [61] sont considérées comme un ou-

til basée modèle particulièrement puissant pour l’interpolation de champs géophysiques à haute

résolution, à condition que le modèle physique choisi soit suffisamment précis et n’implique pas

un coût computationnel prohibitif. De plus, la plupart des méthodes alternatives qui ne reposent

pas sur l’OI ou l’assimilation de données restent principalement basées sur des modèles, mal-

gré la disponibilité croissante de jeux de données volumineux, issus à la fois de la télédétection
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satellitaire ou d’observations in situ, ainsi que de simulations numériques ou de réanalyses, qui

soutient l’exploration des approches pilotées par les données comme une alternative puissante

et efficace [67,207].

Dans ce contexte, nous suivons des développements récents [65–67,162,207] qui, compte tenu

de la grande variété de données d’observation, de simulation et de ré-analyse à haute résolution

disponibles, explorent des stratégies pilotées par les données comme une alternative puissante

et efficace aux approches basées sur des modèles pour l’interpolation de champs géophysiques

à haute résolution. Les approches pilotées par les données visent, en général, à exploiter les

ensembles de données disponibles pour émuler le modèle physique derrière le processus d’inté-

rêt et mieux capturer les variabilités spatio-temporelles qui ne peuvent pas être complètement

expliqués par des modèles simplifiés, purement numériques.

D’un point de vue opérationnel, parmi les avancements récentes en télédétection, la mis-

sion satellite SWOT (Surface Water and Ocean Topography), issue d’une collaboration entre

la NASA, le Centre Français d’Études Spatiales ( CNES) et les agences spatiales britannique

et canadienne, vise à fournir des cartes altimétriques à haute résolution pour l’hydrologie et

l’océanographie. Plus précisément, la mission SWOT sera la première mission à exploiter des

altimètres d’interférométrie radar en bande Ka produisant, pour la première fois, des observa-

tions satellitaires bidimensionnelles à large fauchée [59,74,78]. De plus, la très haute résolution

spatiale de la mission (∼ 1 km) devrait nous permettre de mieux capturer et de mieux com-

prendre les processus à méso-échelle et subméso-échelle [59, 74], ce qui constitue l’un des plus

grands défis dans la recherche océanographique actuelle.

Par la suite, nous tenterons d’aborder le problème de l’interpolation de champs géophysiques

selon différentes perspectives méthodologiques pilotées par les données. Suivant les formulations

précédemment introduites [66,169], nous formulerons d’abord le problème comme un problème de

super-résolution d’images exploitant des modèles de convolution, pour étendre ainsi les approches

de décomposition d’opérateurs présentées précédemment à ce nouveau problème. Ensuite, nous

suivrons [67,161,162] pour porter notre attention vers des approches d’assimilation pilotées par

les données. En préparation pour le lancement de la mission SWOT en 2021, nous explorons

également le potentiel d’exploiter les observations SWOT pour la reconstruction de champs

altimétriques haute-résolution dans le contexte des méthodes pilotées par les données.

Modèles convolutionels localement adaptées pour la super-résolution des champs

d’altimétrie

Dans un premier temps, nous nous concentrons sur l’application des modèles et méthodes in-

troduits dans la première partie de cette thèse au problème de l’interpolation pilotée par les

données des champs de SLA à partir d’observations satellitaires échantillonnées de manière irré-
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gulière. À cette fin, nous suivons [63, 66, 169], et reformulons le problème en tant que problème

de super-résolution d’images pour exploiter les modèles de décomposition d’opérateurs proposés

pour la décomposition d’opérateurs convolutionels de super-résolution.

La super-résolution est un problème classique en traitement de l’image qui a été largement

étudié dans la littérature [82, 231]. Les avancements récents en apprentissage automatique et

l’avènement d’outils de calcul de plus en plus puissants rendent les modèles de super-résolution

particulièrement intéressants pour des problèmes complexes, tels que ceux liés aux géosciences,

à l’océanographie et à la météorologie. À cet égard, des techniques de super-résolution ont déjà

été appliquées à des problèmes d’amélioration des images de télédétection [272].

Contrairement aux applications classiques de super-résolution, des nombreuses applications

en télédétection satellitaire impliquent non seulement des images à basse résolution, mais égale-

ment des informations complémentaires à haute résolution échantillonnées de manière irrégulière.

À cet égard, la disponibilité de telles données partielles à haute résolution motive le développent

de modèles de super-résolution adaptés localement, dans le but de prendre en compte la va-

riabilité spatio-temporelle des processus d’intérêt. Á cette fin, la décomposition est exploitée

comme un moyen d’adapter localement des opérateur convolutionels de super-résolution à des

domaines spatiaux plus petits, augmentant ainsi la localisation du modèle et les performances

de reconstruction. Nous explorons également d’autres contraintes, notamment l’orthogonalité

et la parcimonie, pour illustrer les avantages de la formulation non-négative dans ce contexte

particulier.

Nous traitons donc un problème de super-résolution d’image à partir d’informations haute

résolution échantillonnées de manière irrégulière. Suivant des approches récentes de super-

résolution [2, 252, 253], nous considérons des modèles convolutionels adaptés localement. Nos

contributions méthodologiques sont doubles :

• Les modèles convolutionels proposés combinent à la fois des images basse résolution et une

source d’information secondaire à haute résolution, permettant ainsi la fusion de différentes

sources de données hétérogènes dans un cadre de super-résolution simple et unifié.

• Nous explorons les représentations basées sur des dictionnaires pour des opérateurs de

convolution avec différents types de contraintes, à savoir des contraintes d’orthogonalité,

de non-négativité et de parcimonie [12, 273]. Ces représentations sous contraintes basées

sur des dictionnaires sont particulièrement pertinentes pour générer des modèles de super-

résolution adaptés localement et calibrés à partir d’un faible nombre de données d’entraî-

nement à haute résolution.

Nous appliquons la méthode proposée à des données multi-source de télédétection océa-

nique. Nous abordons la reconstruction d’images haute résolution de la SLA à partir de données
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d’altimétrie satellitaire échantillonnées irrégulièrement, d’images haute résolution de la SST,

et d’images basse résolution de la SLA. De cette façon, la super-résolution multimodale des

champs altimétriques est faite en prenant en compte une source d’information haute résolution

supplémentaire. A cette égard, la fusion de données pose un problème dans un grand nombre

d’applications de télédétection, où plusieurs capteurs associés à différents stratégies d’échan-

tillonnage peuvent contribuer à la reconstruction d’une image haute résolution, ce qui rend la

formulation proposée particulièrement pertinente pour des applications réelles.

D’un point de vue méthodologique, nous complétons aussi les modèles précédents de super-

résolution par convolution [2,253] par l’évaluation de différentes décompositions sous contraintes

basées sur des dictionnaires, et par l’utilisation d’une source d’information haute résolution com-

plémentaire. À cet égard, les décompositions basées sur les dictionnaires sont considérées comme

un moyen pour mieux prendre en compte les variabilités spatio-temporelles par le biais des pa-

ramétrisations du modèle adaptées localement.

Nous considérons un cas d’étude en Méditerranée Occidentale, où nous rapportons des si-

mulations numériques qui exploitent des expériences de simulation d’un système d’observa-

tion (OSSE) pour évaluer les performances de la formulation proposée pour l’interpolation des

champs de SLA, en considérant plusieurs dictionnaires sous différentes contraintes. Nos expé-

riences démontrent la pertinence des modèles de super-résolution proposés, en particulier sous

des contraintes de non-négativité, pour obtenir une meilleure adaptation locale et produire une

meilleure reconstruction des détails à haute résolution, par rapport aux approches classiques

telles que l’OI.

Interpolation pilotée par les données de champs d’altimétrie à partir de don-

nées de télédétection satellitaire

Malgré les résultats prometteurs obtenus avec les modèles convolutionels, le succès récent des

modèles alternatifs pilotées par les données [8, 66, 67, 162, 169, 213] nous a motivé à explorer

d’autres méthodes pilotées par les données pour l’interpolation de champs altimétriques à partir

de données satellitaires. En effet, la disponibilité toujours croissante des jeux de données de

télédétection, in situ et de simulation motive véritablement l’exploration des approches pilotées

par les données en tant qu’une alternative puissante aux schémas classiques basés sur des mo-

dèles. Ces schémas pilotés par les données [8, 66, 67, 162, 169, 213] permettent d’avoir un cadre

générique et efficace pour l’exploration de la synergie entre les données multi-source, cars ils

ne nécessitent pas d’une vérification préalable des a priori géophysiques spécifiques. De plus, ils

surpassent considérablement les approches classiques telles que l’OI. Parmi les schémas évalués,

l’assimilation analogue (AnDA) [67, 161, 162] apparaît comme particulièrement pertinente pour
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modéliser explicitement les dépendances temporelles des dynamiques de la surface de l’océan.

En particulier, nous nous concentrons sur l’exploitation des observations synthétiques SWOT,

en préparation du lancement de la mission SWOT en 2021 [59,74]. À cet égard, nous explorons le

potentiel des observations SWOT, combinées ou non avec des données nadir (au long de la trace

satellitaire), pour surmonter les limites des produits altimétriques actuellement disponibles pour

la reconstruction de champs d’altimétrie à haute résolution. Il est important de noter qu’une

attention particulière est portée à la caractérisation de la contribution des observations SWOT

pour la reconstruction des dynamiques de la surface de l’océan à plus petite échelle.

Nous considérons un cas d’étude en Méditerranée Occidentale, une région présentant des

processus à méso-échelle avec des échelles horizontales caractéristiques inférieures à 100 km

[6,181,203,204,225]. Nous effectuons des expériences de simulation d’un système d’observation

(OSSE) en considérant des stratégies d’échantillonnage spatio-temporel réelles appliques à des

données synthétiques de vérité terrain à haute résolution, afin d’évaluer les performances de

différents schémas d’interpolation pilotés par les données pour la reconstruction de champs de

SLA à partir de données satellitaires multi-sources. Il est important de noter que nous considé-

rons différents stratégies d’échantillonnage spatio-temporel, notamment celles liées à des sources

altimétriques conventionnelles produisant des observations uniquement au long des traces sa-

tellitaires [204], ainsi que celles liées à la future mission SWOT produisant des observations

bidimensionnelles à large fauchée, et explorons l’analyse conjointe des deux sources de données

altimétriques. En particulier, la pertinence d’AnDA en tant que méthode privilégiée pour évaluer

l’impact des différentes stratégies d’échantillonnage spatio-temporel considérées est démontrée.

De plus, nous explorons ensuite l’utilisation de sources de données alternatives, telles que les

champs de SLA à basse résolution (résolus par OI) ou les champs de gradient de SLA (résolus nu-

mériquement), comme sources d’informations complémentaires pour améliorer les performances

de reconstruction d’AnDA.

Enfin, les OSSE considérées impliquent des niveaux de bruit non corrélés réalistes à la fois

pour les données nadir et pour les données SWOT. Toutefois, pour les données SWOT, des

sources de bruit corrélées sont également attendues [59]. Étant donné qu’AnDA s’est révélée

extrêmement sensible à ces sources de bruit corrélées, nos résultats devraient être considérés

comme une limite supérieure de l’amélioration attendue de la mission SWOT pour la recons-

truction de champs altimétriques. Il est important de noter que ces sources de bruit doivent

être correctement prises en compte dans le modèle d’interpolation considéré [171]. À cet égard,

nous introduisons l’assimilation des gradients des observations SWOT (résolus numériquement)

comme stratégie possible pour traiter les sources de bruit corrélé contaminant les données SWOT.
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Globalement, nos résultats confirment la pertinence d’AnDA par rapport aux approches de

l’état de l’art (OI [57,204], MS-VE-DINEOF [161,213] et NN-LLOD [169]) pour une reconstruc-

tion améliorée des structures à méso-échelle des champs de SLA, pour des échelles horizontales

allant de ∼ 20 km à ∼ 100 km. En effet, nous rapportons une amélioration de 32% (12%) en

termes d’EQM (corrélation) pour la reconstruction des champs de SLA et de 29% (27%) en

termes d’EQM (corrélation) pour la reconstruction des champs de gradient de SLA par AnDA

à partir des données nadir (par rapport à OI). Nos expériences suggèrent également une amé-

lioration supplémentaire des performances de reconstruction si nous considérons l’assimilation

AnDA conjointe des observations SWOT et nadir : 42% (12%) en termes d’EQM (corrélation)

pour la reconstruction des champs de SLA et 34% (29%) en termes d’EQM (corrélation) pour

la reconstruction des champs de gradient de SLA (par rapport à OI).

Ces résultats mettent en évidence le potentiel des observations SWOT pour fournir plus

d’informations que les observations altimétriques nadir conventionnelles. Globalement, nos ex-

périences confirment réellement le potentiel des observations SWOT pour mieux contraindre

AnDA et améliorer la reconstruction des dynamiques de méso-échelle des champs altimétriques.

Nous pouvons tirer trois conclusions principales :

• L’utilisation conjointe des observations nadir et des observations SWOT dans AnDA ap-

paraît naturellement comme la meilleure stratégie, avec un gain relatif d’interpolation

d’environ 14,71% (resp. 42,36%) en termes d’EQM par rapport à AnDA (resp. OI) appli-

qué uniquement aux données nadir.

• Contrairement à ce qui se passe pour les données nadir, l’accumulation de données SWOT

sur plusieurs jours à une incidence négative sur les performances d’interpolation.

• L’échantillonnage temporel irrégulier des observations SWOT pour une région donnée,

impliquant généralement une période de revisite de 10 jours pour les latitudes moyennes,

entraîne une variabilité temporelle des performances d’interpolation relativement grande.

Conclusion

Au long de cette thèse, nous avons cherché à explorer des approches pilotées par les données

pour traiter différentes problèmes inverses dans le contexte de l’océanographie physique et des

géosciences, avec un accent particulier sur la reconstruction des dynamiques de la surface de

l’océan à partir d’observations satellitaires. À cet égard, nous avons exploré l’exploitation de

méthodologies pilotées par les données pour la résolution des problèmes de segmentation et

de reconstruction dans des contextes scientifiques multiples. Il est important de noter que ces

travaux contribuent à des efforts conjoints actuels des communautés des géosciences et du trai-

tement du signal pour exploiter la disponibilité toujours croissante de données de télédétection,

in situ et de modélisation/réanalyse afin d’améliorer notre compréhension des dynamiques des
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océans et des interactions océan-atmosphère. À cet égard, cette thèse est, compte tenu de son

sujet, à l’interface entre les sciences des données et les géosciences. En tant que tel, nous avons

essayé de combler en partie le fossé entre le traitement du signal et les problèmes en géosciences,

afin d’améliorer les modèles utilisés actuellement pour la segmentation et la reconstruction des

dynamiques de la surface de l’océan.

Inspirés par le succès récent des formulations de séparation aveugle de sources sous contraintes

de non-négativité et parcimonie pour des applications de traitement du signal et des images,

dans la première partie de ce travail nous avons étendu les modèles de séparation aveugle de

sources sous contraintes au problème de la caractérisation et décomposition d’opérateurs à par-

tir d’observations. Nous avons développé des modèles pertinents et proposé des algorithmes

efficaces reposant sur des fondations mathématiques solides pour l’estimation des paramètres

du modèle. Nous avons également exploré plusieurs applications pour la segmentation des dy-

namiques de la surface de l’océan à partir de données de télédétection satellitaire et pour la

reconstruction/prédiction de systèmes dynamiques.

Dans une deuxième partie de cette thèse, nous nous sommes concentrés sur un problème par-

ticulier, l’interpolation de champs géophysiques à haute résolution à partir de données échan-

tillonnées de manière irrégulière, avec un intérêt particulier pour l’interpolation des champs

d’anomalie de la hauteur de la surface de l’océan (SLA) à partir d’ observations altimétriques

satellitaires. En préparation du lancement de la mission SWOT en 2021, nous avons aussi exploré

l’effet de différents stratégies d’échantillonnage, plus particulièrement celles relatives à l’altimé-

trie nadir classique et à l’interférométrie radar à large fauchée.

Pour conclure, nous voudrions souligner le potentiel des modèles de décomposition d’opé-

rateurs à partir d’observations en tant qu’outil d’analyse des couplages de différentes traceurs

océaniques. Nous espérons en particulier que les modèles développés permettront de mieux com-

prendre les interactions entre les différentes variables océaniques, les processus régissant les

dynamiques des océans, et le rôle de l’océan au sein du système terrestre mondial.

Nous espérons également que nos découvertes contribueront à des nouveaux développements

en termes de segmentation des dynamiques de la surface de l’océan, d’interpolation à haute

résolution des champs géophysiques à partir d’observations haute résolution multi-sources, et

d’autres applications connexes, telles que la reconstruction à haute résolution des courants de

surface de la mer, entre autres.
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Abstract
Keywords: Satellite remote sensing, Massive datasets, Operator decomposition, Non-negativity,

Sparsity, Ocean dynamics, Data mining, Statistical learning, Multi-sensor data fusion, High-

resolution reconstruction, Interpolation.

In the last few decades, the ever-growing availability of multi-source ocean remote sensing

data has been a key factor for improving our understanding of upper ocean dynamics, ocean cir-

culation and atmospheric-ocean interactions. In this regard, a largely under-exploited potential

exists within available datasets. Developing efficient approaches to better exploit these datasets

is of major importance to address, through data mining and statistical learning approaches,

problems such as multi-sensor data fusion, high-resolution reconstruction or multi-parameter

analysis of processes of interest. Particularly, the decomposition of geophysical processes into

relevant modes is a key issue for characterization, forecasting and reconstruction problems. In-

spired by recent advances in blind source separation brought forth with the introduction of

non-negative and sparse formulations, we aim, in the first part of this thesis dissertation, at

extending constrained blind source separation models to the problem of observation-based char-

acterization and decomposition of linear operators or transfer functions between variables of

interest, with an emphasis on a non-negative setting. In this work, we develop mathematically-

sound and computationally-efficient schemes, including the reformulation of the constrained

operator decomposition problem as the constrained dictionary-based decomposition of locally

estimated linear operators, thus enhancing model flexibility. We illustrate the relevance of the

proposed decomposition models in different applications involving the analysis, segmentation and

forecasting of geophysical dynamics. Subsequently, given that the ever-increasing availability of

multi-source datasets supports the exploration of data-driven alternatives to classical model-

driven formulations, we explore, in the second part of this work, recently introduced data-driven

models for the interpolation of geophysical fields from irregularly-sampled satellite-derived ob-

servations. Importantly, with a view towards the future SWOT mission, the first satellite mission

to produce complete two-dimensional wide-swath satellite altimetry observations, we focus on

assessing the extent to which SWOT data, combined or not with conventional nadir along-track

data, may lead to an improved reconstruction of altimetry fields.
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For the sake of legibility, the meaning of abbreviations and acronyms defined here is also recalled

at its first appearance in the text of a chapter.
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AT Along-track
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NN-LLOD Non-negative Local Linear Operator Decomposition

ODE Ordinary Differential Equation

OI Optimal Interpolation

OMP Orthogonal Matching Pursuit

OSS Observing System Simulation Experiment

OST Ocean Surface Topography

PCA Principal Component Analysis

PDF Probability Density Function

POD Proper Orthogonal Decomposition

PSF Point Spread Function

QG Quasi-Geostrophy

RMSE Root Mean Squared Error

rRMSE Relative Root Mean Squared Error

nRMSE Normalized Root Mean Squared Error

ROMS Regional Ocean Modeling System

SAR Synthetic Aperture Radar

SLA Sea Level Anomaly

SNR Signal-to-Noise Ratio

SQG Surface Quasi-Geostrophy

SSH Sea Surface Height

SSS Sea Surface Salinity

SST Sea Surface Temperature
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SVD Singular Value Decomposition

SWH Significant Wave Height

SWOT Surface Water Ocean Topography
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Notation
We define hereafter the notation to be used throughout the present thesis dissertation.

Linear algebra

x Scalar

x Vector

X Matrix

X Set

Sets

C Set of complex numbers

R Set of real numbers

N Set of natural numbers

R
+ Set of positive real numbers

R
N Set of real-valued vectors of size N

R
N×M Set of real-valued matrices of size N ×M
{·}n Set of elements enumerated according to n

#X Cardinality of set X , i.e., the number of elements in set X

Symbols and operators

In Identity matrix of size n× n
✶X Indicator function with value 0 ∀ x ∈ X and +∞ otherwise

XT Transposition operator applied to matrix X

CH Conjugate transposition operator applied to complex-valued matrix C

⊙ Hadamard (element-wise) product

[X]kl Element from the k-th line and l-th column of matrix X

[X]k: k-th line of matrix X
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Notation

[X]:l l-th column of matrix X

[X]k,m:n Vector built from the m-th to n-th elements of the k-th line of matrix X

[X]k:l,n Vector built from the k-th to l-th elements of the n-th column of matrix X

[X]k:l,: Matrix built from the k-th to l-th lines of matrix X

[X]:,m:n Matrix built from the m-th to n-th columns of matrix X

[X]k:l,m:n Matrix built from the k-th to l-th lines and the m-th to n-th columns of matrix X

[x]k k-th element of vector x

||X||F Frobenius norm, i.e.,
√
trXTX

||x||2 Euclidean (ℓ2) norm, i.e.,
√∑

i x
2
i

||x||1 ℓ1-norm, i.e.,
∑
i |xi|

||x||0 ℓ0-norm, i.e., number of non-zero elements of x

||X||∗ Nuclear norm, i.e.,
∑
r λr(X), where λr(X) are the singular values of X

tr(·) Trace of a square matrix

vec(·) Vectorization operator

∇(·) Nabla operator (Gradient)

δij Kronecker delta with value 1 if i = j and 0 otherwise

Probability, statistics and random variables

X Random variable

E(X) Expectation/Expected value of X

E(X|Y ) Conditional expectation of X with respect to Y

var(X) Variance of X, i.e., E(X2)− E(X)2

var(x) Covariance matrix of vector x, i.e., E(xxT )− E(x)2

cov(X,Y ) Covariance of X and Y , i.e., E((Y − E(X))(Y − E(Y ))

cov(x,y) Cross-covariance matrix of vectors x and y, i.e., E((x− E(x))(y− E(y))T )

N (µ, σ2) Univariate Gaussian distribution with mean µ and variance σ2

N (µ,Σ) Multivariate Gaussian distribution with mean vector µ and covariance matrix Σ

UX Uniform distribution over set X
X ∼ L Random variable X with probability distribution L
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Introduction and thesis summary

"The man who moves a mountain begins by carrying away small stones."

Confucius

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.1 Context

In the last few years, satellite remote sensing has produced great amounts of observation data

from a wide variety of sources. A vast array of different sensor types (multi and hyper-spectral

imaging, SAR imaging, microwave imaging, etc) allows for the observation of different terres-

trial, oceanic and atmospheric geophysical and geobiochemical parameters (sea surface height,

sea surface temperature, vegetation cover, urban development, etc) at different spatio-temporal

resolutions, which amounts to a huge quantity of greatly underexploited data.

Successfully exploiting these datasets would allow us to improve the quality, power and ac-

curacy of geophysical and geobiochemical process models and representations and tackle short-

comings associated both with currently available datasets, like the fact that no satellite sensor
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is capable of producing high-resolution data both in space and time, and with current mod-

els and representations, which are either too complex to allow for efficient observation-based

high-resolution analysis and reconstruction or too simple to fully capture the spatio-temporal

variability of the considered processes. To fully exploit the potential within these new datasets,

however, a thorough understanding of the relationship between the involved variables is needed.

In this regard, the development of new approaches to fully exploit the potential within cur-

rent datasets appears clearly as a major research issue. Particularly, data mining and machine

learning approaches could be used in this context for a wide variety of applications, ranging

from multi-source data fusion and high-resolution reconstruction to multi-parameter analysis

of geophysical or geobiochemical processes and spatio-temporal analysis and segmentation of

system dynamics.

In this context, this thesis has two major objectives:

1. Explore non-negative and sparse formulations [69, 155, 200, 233] to develop new unsuper-

vised methods to characterize variable relationships from a representative set of observa-

tions. Indeed, given the recent success of novel formulations [69,155,200,233] to tackle blind

source separation issues [201], they appear as an appealing alternative to tackle the prob-

lem of the observation-based characterization of operators. In the context of ocean remote

sensing, the ever increasing availability of observations further motivates the exploration

of data-driven approaches as an powerful alternative to classic model-driven schemes.

2. Exploit the developed methods and formulations for the resolution of inverse problems

in multi-source/multi-parameter ocean remote sensing, with a special focus on the high-

resolution reconstruction of sea surface dynamics fields form satellite-derived data. Par-

ticularly, we will exploit new developments in satellite altimetry producing wide-swath

satellite observations in the context of the future SWOT satellite mission [59,74,78].

Additionally, given the vast amounts of available data, special attention must be put into the

scalability of the developed solutions, thus ensuring a smooth transition towards the processing

of massive datasets of high-dimensional variables.

This project is part of the Cominlabs-Lebesgue-Mer SEACS (Stochastic modEl dAta Coupled

representationS for the analysis, simulation and reconstruction of upper ocean dynamics) project,

that gathers researchers in applied mathematics, ICTs and oceanography and aims at proposing

new stochastic models and representations for ocean dynamics. One of its main research axis,

which focuses on developing data mining and machine learning approaches, provides the main

setting for this thesis.

2



1.2. Geophysical motivations for data-driven approaches

1.2 Geophysical motivations for data-driven approaches

As previously stated, the amount of multi-source ocean remote sensing and in situ data available

has experienced considerable growth in the last few decades, which has been a key factor for

more thorough analysis possibilities leading to a better understanding of upper ocean dynam-

ics, ocean circulation and atmosphere-ocean interactions. In particular, a considerable amount

of effort has been put into understanding the relationships and interactions between different

oceanic physical quantities [4, 33,97,114,160,227].

Regarding satellite remote sensing, current (and future) satellite missions usually involve

partial, irregularly-sampled observations due to orbit design, satellite track geometry, cloud

occlusion, etc. Moreover, current state-of-the-art interpolation techniques fail to accurately re-

construct smaller scale upper ocean dynamics features [34,68,73,74]. In this respect, limitations

identified within the current generation of remote sensing satellite missions have led to the

development of new, improved remote sensing technologies, such as the future SWOT altime-

try mission. Importantly, SWOT will be the first mission to exploit radar interferometry to

produce two-dimensional wide-swath altimetry observations, as opposed to current generation

altimeters that can only produce altimetry measurements along a narrow nadir track [59,74,78].

Such developments further motivate current efforts focusing on both the exploration of the syn-

ergy between different ocean tracers to enhance the reconstruction of upper ocean dynamics

and the development of alternative high-resolution ocean dynamics reconstruction methods for

irregularly-sampled satellite observations.

On the other hand, sea surface height (SSH) is, as stated in [244], a depth-integrated quantity

that contains information on the density structure of the water column, and captures mesoscale

structures from 50 km up to a few hundred kilometers, which means that surface currents can

be directly retrieved from SSH fields using the geostrophy balance. At the mesoscale level, such

currents further stir large-scale sea surface temperature (SST) fields, which shows that upper

ocean dynamics form a complex system of interactions that vary over a wide range of scales,

both in space and time [244].

Additionally, the existence of a sea surface dynamical mode, referred to as the SQG mode

(Surface Quasi-Geostrophy), characterized by a linear transfer function between SST and SSH

has been exhibited both from theoretical and observation-driven studies [97, 99, 115, 131, 132,

142,143,244].

Indeed, recent work points out that upper ocean dynamics may be characterized by local

SSH-SST linear relationships that correspond precisely to fractional Laplacian operators [97,
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115,132,142,143,244], which can be expressed in the Fourier domain as:

FH(ŜSH) = −γ |k|−2αFT (ŜST) (1.1)

where k is the horizontal wavelength vector, FT and FH are linear filters of SST and SSH re-

spectively and γ is a normalization coefficient [99,244]. Varying parameter α, which controls the

effective coupling between SST and SSH, leads to different classical theoretical models [244]. For

α = 1/2, one resorts to the surface quasi-geostrophic model [99,131,143,244].

Under the SQG hypothesis, two main conclusions can be drawn from Equation (1.1):

1. Surface currents, given as the orthogonal gradient of the SSH, can then be derived as

spatial derivatives of a filtered version of the SST [114,244];

2. A single linear transfer function may not be enough to capture the high complexity of upper

ocean dynamics. The SQG relationship (1.1) assumes specific vertical mixing conditions,

which may not be valid anywhere or at any time [85, 116, 143]. Furthermore, when upper

ocean dynamics are truly driven by SQG dynamics, parameter γ may vary both in space

and time [99,143,244], for instance in relation to the mixed layer depth.

These findings motivated the development of new statistical observation-driven methods to

combine available SSH information with other remote sensing data, such as microwave SST, or

in situ data [4,36,244,268]. Whereas [85,116] investigated Fourier-based representations of linear

SSH-SST couplings, Tandeo et al. [244] relied on the fact that, for horizontal scales between 50

km and a few hundred kilometers, the upper ocean turbulence is compatible with the geostrophy

turbulence theory to conclude that upper ocean dynamics may be predicted from surface density

horizontal variations possibly dominated by SST fields. They exploited this idea to explore linear

transfer functions between SSH and SST by introducing a multi-modal decomposition, using a

latent class regression model, such that local SSH-SST relationships are described by one among

a predefined number of possible linear transfer functions.

However, results reported in the literature show that a single SQG-like linear transfer func-

tion does not suffice to capture the whole mesoscale upper ocean dynamics of a particular

region [244]. Moreover, an important limitation of latent class regression models is that they can

only account for a finite set of linear transfer functions. By contrast, the SQG mode is character-

ized by a single class of linear transfer functions, namely the fractional Laplacian operator γ∆1/2,

but involves a free positive scalar parameter γ [99, 143, 244], which relates to local geophysical

features (e.g., mixed layer depth). As a result, SQG-like upper ocean dynamics, characterized

by continuously-varying γ parameters, may not be well represented by latent class regression

models.
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Such considerations support the introduction of a linear mixture model where the relationship

between SST and SSH is modeled as a non-negative linear combination of K linear regressions:

yn =
K∑

k=1

αnkβkxn + ωn (1.2)

where xn ∈ R
J , yn ∈ R

I relate, respectively, to the SST and SSH fields, αnk ∈ R are mixing

coefficients that model the contribution of each linear mode to the reconstruction of yn given

xn, βk ∈ R
I×J is the regression matrix associated with mode k, and ωn ∈ R

I is a noise process,

usually a Gaussian noise. Model (1.2) can then be interpreted as a characterization of the rela-

tionship between xn and yn as the superposition of K linear relations, where observation-wise

non-negative adjustable amplitude parameters αnk are used to take into account local variations

in the strength of the relationships, in a manner similar to coefficient γ in Equation (1.1).

Furthermore, Model (1.2) bears a close resemblance to constrained blind source separation

formulations. This naturally suggest the extension of constrained blind source separation models

to the problem of operator decomposition. Importantly, non-negative and sparse blind source

separation issues, which have proven to be of particular interest to obtain more relevant and/or

interpretable decompositions, constitute an important inspiration source for our work, and will

then considerably influence the models and algorithms proposed in this thesis dissertation.

1.3 Contributions

In the context presented above, the need for more complex formulations that can tackle the

shortcomings of current models, and the success of constrained models in blind source separa-

tion applications, led us to seek inspiration in recent developments in blind source separation

to try and develop more efficient decomposition models. In this work, we aim at extending con-

strained blind source separation models to the problem of observation-based characterization

and decomposition of operators:

yn =
K∑

k=1

αnkfk (xn) + ωn (1.3)

where xn ∈ R
J , yn ∈ R

I , and we aim at identifying αnk ∈ R, the mixing coefficients that model

the contribution of each mode to the reconstruction of yn given xn, and fk : RJ → R
I , a linear

or non-linear function associated with mode k. ωn ∈ R
I is a noise process, usually considered to

be additive Gaussian noise, representing model uncertainty. Following recent advancements, we

will particularly focus on linear formulations considering additional non-negativity or sparsity

constraints on mixing coefficients αnk. Even though it falls beyond the scope of this work, we

point out that one may also consider additional constraints on modal transfer functions fk.
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It should be noted that, by extending blind source separation formulations to the problem of

operator decomposition, we suggest that the dynamical modes in play do not exclude each other

but are rather superimposed. This is significantly different from the basis assumption made by

latent class regression models, as in [244], which assume that only one mode is active at any

space-time location. To our knowledge, this is the first study to exhibit, from an observation-

driven analysis, the continuous superimposition of multiple dynamical modes associated with

different types transfer functions.

Moreover, whereas previous works focused either on spatially homogeneous linear couplings

[85, 116] or on a finite set of linear transfer functions [244], we will consider here much richer

representations, which account for all mixing possibilities between a finite set of families of linear

relationships.

In the context of physical oceanography, this thesis adds to an ongoing body of work, both

theoretical and practical, that shows that mesoscale upper ocean dynamics may be character-

ized by a local linear coupling between SST and SSH [97, 115, 132, 142, 143, 244]. We further

stress that multi-modal approaches are necessary, as a single linear transfer function does not

suffice to capture the complex non-stationary space-time variability of mesoscale upper ocean dy-

namics. Previous work rather explored regional mean transfer functions [85, 116] or latent class

mixture models [244]. As far as satellite remote sensing is considered, in this thesis work we

further extend current efforts to either improve current interpolation methods [57] or develop

alternative approaches for the high-resolution reconstruction of upper ocean dynamics from

irregularly-sampled satellite data [67, 162, 257]. Specifically, we concentrate on the exploitation

of wide-swath observations for the high-resolution interpolation of sea level anomaly (SLA) fields,

with a view towards the future SWOT altimetry mission. Importantly, the exploration of the

potential of the SWOT mission led to a fruitful scientific collaboration with the Mediterranean

Institute for Advanced Studies (IMEDEA) in Mallorca, Spain, in the context of OSTST project

MANATEE.

Finally, we would like to point out that even though our original motivation was to overcome

the drawbacks of classical models for physical oceanography applications, the proposed model

and algorithms seem to have much greater capabilities. In fact, they constitute a tool for analyz-

ing relationships between variables, i.e., for analyzing and synthesizing variable correlation. Such

a tool would allow for the analysis, segmentation and reconstruction of the relationship between

any two interest variables, thus allowing for deeper insight into the nature of said relationship

and leading to a more thorough understanding of the interactions between variables and the

processes and phenomena behind them.
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Hopefully, our findings will open new research avenues in terms of characterization of upper

ocean dynamics, high-resolution in-painting and reconstruction of satellite-derived geophysical

fields and multi-source high-resolution reconstruction of sea surface currents, amongst other

possible applications.

1.4 Dissertation outline

This thesis dissertation is organized in three parts, as follows.

In Part I we focus on the extension of constrained blind source separation models to the

problem of the data-driven characterization and decomposition of operators. Chapter 2 presents

the state-of-the-art methods for constrained blind separation, introduces the problem of operator

decomposition and reviews some of the most relevant applications involving operator decompo-

sition. In Chapter 3, we present our proposed models and algorithms for model characterization,

and we evaluate their performance in Chapter 4. Some relevant examples of application of the

proposed models and algorithms for both reconstruction and segmentation issues in Geosciences

are presented in Chapter 5.

In Part II, we focus on the high-resolution reconstruction of sea level anomaly (SLA) fields

from partial, irregularly-sampled satellite observations, with a particular interest in the explo-

ration of the potential of SWOT observations for the reconstruction of upper ocean dynamics. In

Chapter 6 we introduce the context of the problem of interest, including a brief review of satel-

lite remote sensing altimetry, as well as the state-of-the-art algorithms for the high-resolution

reconstruction of sea surface dynamics and related work. In Chapter 7, we present an application

of the non-negative decomposition models and associated algorithms introduced in Part I to the

problem of interest. The potential of SWOT for the high-resolution reconstruction of SLA fields

in the context of a fully data-driven data assimilation framework is explored in Chapter 8.

In Part III, we conclude this thesis dissertation by presenting our main conclusions and

future work perspectives in Chapter 9.
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2.1 Introduction

In order to provide the methodological and theoretical framework for this thesis dissertation, this

chapter briefly introduces state-of-the-art methods and models for the problem of blind source

separation, including recently introduced formulations involving sparsity and non-negativity and

methodological developments to efficiently characterize the proposed models. Formally, the blind

source separation problem involves decomposing a given signal or image as the superposition of

K different components:

y =
K∑

k=1

αksk + ω (2.1)

where y ∈ R
I , coefficient αk ∈ R quantifies the contribution of component sk ∈ R

I , which

corresponds to the k-th reference signal or image and ω ∈ R
I is a white Gaussian noise pro-

cess with covariance Σ ∈ R
I×I that models the estimation residual. The principle behind blind
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source separation is then to exploit observations of signal or image y to identify and separate

sources sk by quantifying mixing coefficients αk, so that the final reconstruction correctly ap-

proximates approximate signal y. In this respect, additional constraints may be considered to

impose physically or structurally-motivated restrictions on the decomposition to enhance model

identifiability and interpretability. In recent years, non-negative and sparsity constraints have

proven to be of particular interest to produce relevant and interpretable decompositions. In this

respect, we aim at extending these approaches to the problem of operator decomposition:

yn =
K∑

k=1

αnkfk (xn) + ωn (2.2)

where xn ∈ R
J , yn ∈ R

I , and we aim at identifying αnk ∈ R, the mixing coefficients that model

the contribution of each mode to the reconstruction of yn given xn, and fk : RJ → R
I , a linear

or non-linear function associated with mode k. ωn ∈ R
I is a noise process, usually considered to

be additive Gaussian noise, representing model uncertainty. This problem has been considerably

less studied despite its close similarity to the problem of blind source separation.

In this chapter, we establish the theoretical basis of constrained blind source separation

models and operator decomposition formulations. In Section 2.2, we review the problem of

blind source separation and explore different constraints propose in the literature, including

orthogonality, sparsity and non-negativity (Section 2.2.1), as well as the associated methods

and algorithms developed for model characterization (Section 2.2.2). Subsequently, we present

current models used to address the problem of operator decomposition in Section 2.3, discussing

the most classically used techniques and their theoretical bases, applications, and limitations. We

also explore some recently introduced alternative models for operator decomposition. Building

on these results, we will focus, in the following chapters, on the identified shortcomings of current

models and address the extension of the blind source separation approaches presented here to the

problem of observation-based characterization and decomposition of operators, with a particular

focus on applications to physical oceanography.

2.2 Blind source separation

The separation and identification of contributions associated with different types of sources or

processes from multiple observations (without any a priori knowledge of the processes behind

the generation of such observations), formally known as blind source separation, is a general

problem in signal and image processing [40, 157, 201]. It provides the methodological base for

the models and algorithms developed in this thesis dissertation. Broadly speaking, blind source

separation comes to decomposing a signal or image as the sum of K components:

y =
K∑

k=1

αksk + ω (2.3)

14
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where y ∈ R
I , coefficient αk ∈ R quantifies the contribution of component sk ∈ R

I , which

corresponds to the k-th reference signal or image and ω ∈ R
I is a white Gaussian noise process

with covariance Σ ∈ R
I×I that models the estimation residual. The objective is to identify the

sources sk and mixing coefficients αk that better approximate signal y.

Methodologically, the most general method for blind source separation is Independent Com-

ponent Analysis (ICA) [39, 40, 111–113, 158]. Under general hypothesis of non-Gaussianity and

statistical independence of sources sk, ICA comes to the separation of sources sk by optimizing

a given independence criterion. The choice of this criterion is problem-dependent and closely re-

lates to the choice of constraints in the case of constrained blind source separation. Particularly,

classical ICA implementations consider independence criteria such as the minimization of mu-

tual information or the maximization of non-Gaussianity, among others. Principal Component

Analysis (PCA), on the other hand, is an alternative, widely used source separation method,

which we will further develop in the following sections. In particular, PCA aims at identifying

a set of orthogonal sources sk that best explain the variability of the considered data, in the

sense that the variance explained by each source sk is maximal. In this respect, one may con-

sider PCA as a particular case of ICA, under the choice of an appropriate independence criterion.

Importantly, the identifiability of model (2.3) will depend on the dimension of observations

I, the number of observations N and the number of sources considered K, so that the problem

may become under-determined if the number of sources to detect is too big or if the number of

observations considered is too small. In this respect, depending on the specific characteristics of

the dataset or application considered, model (2.3) may become intractable, which justifies the

introduction of additional constraints in order to improve model identifiability. In particular,

significant advances in blind source separation have been reported in the last decade with the

introduction of concepts such as non-negativity and sparsity [69,155,200,233].

2.2.1 Proposed formulations

2.2.1.1 Orthogonal decompositions

Orthogonality is probably the most widely used constraint in most scientific disciplines, given

its convenient mathematical properties, methodological simplicity and ease of interpretation.

Formally, the orthogonally constrained blind source separation problem involves constraining

model (2.3) as follows:

y =
K∑

k=1

αksk + ω, subject to 〈sp, sq〉 = 0,∀ p 6= q, p, q ∈ J1,KK (2.4)
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where 〈·, ·〉 is the internal product in the vector space of signals sk, i.e., the vector dot product.

This model then translates into a constrained least squares minimization problem:





[α̂k, ŝk] = argmin
αk,sk

∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

〈sp, sq〉 = 0, ∀ p 6= q, p, q ∈ J1,KK

(2.5)

where || · ||Σ is the covariance-weighted norm.

In oceanography and environmental sciences in particular, orthogonality-based decompo-

sition approaches [90, 206] have been classically used for the analysis and decomposition of

ocean and atmosphere dynamics. The flagship method exploiting orthogonality for dimen-

sionality reduction, analysis and segmentation is known as Empirical Orthogonal Functions

(EOF) [77, 140, 174, 197, 198] within the oceanographic and meteorologic communities, while it

is known as Principal Component Analysis (PCA) [104–106, 206] within the signal processing

community.

2.2.1.2 Tikhonov regularization

Tikhonov regularization is among the most widely used methods for constraining ill-posed

problems in signal and image processing. Even though similar formulations where proposed

independently in a variety of scientific contexts [70, 102, 103, 209, 247], the work of Andrey

Tikhonov [247–251] is usually given credit for popularizing it.

Tikhonov regularization involves a weighted ℓ2-norm constraint for coefficients vectors α =

[α1, . . . , αK ]T :

y =
K∑

k=1

αksk + ω, subject to ||Γα||22 ≤ ǫ (2.6)

where ǫ ∈ R
+ is a user-set tolerance parameter, and Γ is a weighting matrix, the Tikhonov

matrix, determining the type of constraint one wishes to impose. In particular, the Tikhonov

matrix is usually chosen as a multiple of the identity matrix Γ = cI, so that the constraint comes

to a classic ℓ2-norm minimization penalizing solutions with bigger norms [196]. Alternatively,

one may consider other operators for Γ to enforce alternative priors. Model (2.6) then translates

into the following constrained minimization problem:





[α̂k, ŝk] = argmin
αk,sk

∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

||Γα||22 ≤ ǫ
(2.7)
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or, equivalently:





[α̂k, ŝk] = argmin
αk,sk

||Γα||22∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

≤ ǫ
(2.8)

where || · ||Σ is the covariance-weighted norm.

Intuitively, Tikhonov regularization can be interpreted in a Bayesian sense, with matrix Γ

relating to the a priori uncertainties of mixing coefficients αk. Under a Gaussianity hypothesis

, the Tikhonov solution comes to the Maximum A Posteriori (MAP) estimate of vector α,

provided that Γ is chosen accordingly [260]. More generally, for homoscedastic problems with

uncorrelated errors, the Tikhonov solution relates to the minimal unbiased estimator [7].

2.2.1.3 Non-negativity

In the context of the blind source separation problem formulated in Equation (2.3), non-

negativity constraints have been exploited extensively to develop part-based representations

with multiple applications, ranging from learning parts of faces or semantic features of text [155]

to audio blind source separation of convolutive mixtures [69]. They were first introduced by

drawing inspiration from situations in nature where a process or phenomena can be explained

by the naturally occurring addition of multiple contributing factors, and where an inherent

non-negativity exists within the problem solution (e.g. physical measurements, pixel intensities,

frequency counts, etc). Under such conditions, they allow us to impose structural/physical con-

straints on models in order to avoid physically impossible or absurd results.

Formally, the non-negatively constrained blind source separation problem involves constrain-

ing model (2.3) as follows:

y =
K∑

k=1

αksk + ω, subject to αk ≥ 0,∀ k ∈ J1,KK (2.9)

which translates into a constrained least squares minimization problem:





[α̂k, ŝk] = argmin
αk,sk

∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

αk ≥ 0, ∀k ∈ J1,KK

(2.10)

where || · ||Σ is the covariance-weighted norm.

In practice, non-negativity can be enforced in several manners, most notably by means of

optimization schemes such as active set algorithms [145], iterative update rules that maintain
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non-negativity [155], and constrained alternating least squares [275] exploiting proximal opera-

tors [37], amongst others. Classical non-negatively constrained problems include Non-negative

Least Squares (NNLS) [145] and Non-negative Matrix Factorization (NMF) [69,155,200].

Non-negative matrix factorization The problem of non-negative matrix factorization (NMF)

[11,107,155] involves approximating a non-negative matrix Y as the product of two lower rank

matrices (W,H): Y ≈WH, where Y ∈ R
I×N , W ∈ R

I×K , H ∈ R
K×N , with K ≤ min{I,N}.

Provided that matrix Y contains relevant data whose physical origin or structure can be

effectively modeled as the non-negative superposition of multiple physical processes, such de-

compositions may allow to effectively separate physically or structurally mixed data sources.

Multiple applications of NMF have been proposed, including text mining [155] and audio source

separation [69], amongst others [11].

In the case of blind source separation, one may reformulate a constrained version of Equation

(2.3) as follows:

Y = SA + W, subject to:





[S]ik ≥ 0, ∀ i ∈ J1, IK, ∀k ∈ J1,KK

[A]kn ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK
(2.11)

which induces the following constrained minimization problem:





[
Ŝ, Â

]
= argmin

S,A
||Y− SA||2F

[S]ik ≥ 0, ∀i ∈ J1, IK,∀k ∈ J1,KK

[A]kn ≥ 0, ∀k ∈ J1,KK,∀n ∈ J1, NK

(2.12)

where the columns of matrix Y ∈ R
I×N contain N observations yn to be decomposed into K

sources, represented as columns of matrix S ∈ R
I×K , so that each line of matrix A ∈ R

K×N

contain N coefficients αnk relating to one of the resolved sources. A key difference with model

(2.9), however, lies in the fact that in the non-negative matrix factorization formulation sources

are also considered to be non-negative (sk ≥ 0), which may be adequate (or even more suitable)

for multiple physical problems.

Among relevant extensions of classic NMF formulations we may cite those involving addi-

tional constraints or hypotheses, such as sparsity [81,107], low-rank approximations [81,277] and

matrix symmetry [136].
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2.2.1.4 Sparsity

Sparsity constraints were introduced for dimensionality reduction. Their purpose is to allow for

the development of simpler representations of high-dimensional data [246]. The main interest

for this is the development of simpler models and representations that are easier to understand.

Effectively, constraining solutions to be as sparse as possible will nullify all but the strongest

parts or components of the solution, thus allowing for these to be given greater relative impor-

tance in the final reconstruction (provided that an adequate number of non-zero components is

parametrized, of course).

Formally, sparsity constraints impose restrictions on the number of non-zero coefficients αk:

y =
K∑

k=1

αksk + ω, subject to #{αk 6= 0} ≤M (2.13)

In practice, this should be achieved by restricting the ℓ0-norm of coefficients vectors α =

[α1, . . . , αK ]T : (i.e. the number of non-zero elements of vector α),

y =
K∑

k=1

αksk + ω, subject to ||α||0 ≤M (2.14)

which translates into the following constrained minimization problem:





[α̂k, ŝk] = argmin
αk,sk

∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

||α||0 ≤M
(2.15)

or, equivalently:





[α̂k, ŝk] = argmin
αk,sk

||α||0∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

≤ ǫ
(2.16)

where || · ||Σ is the covariance-weighted norm, and ǫ ∈ R
+ and M ∈ Z are user-set tolerance

parameters.

However, since this minimization is an NP-hard, usually intractable problem, the constraint

is generally relaxed and the ℓ1-norm is considered instead:





[α̂k, ŝk] = argmin
αk,sk

∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

||α||1 ≤M
(2.17)
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or, equivalently:





[α̂k, ŝk] = argmin
αk,sk

||α||1∣∣∣∣∣

∣∣∣∣∣y−
K∑
k=1

αksk

∣∣∣∣∣

∣∣∣∣∣

2

Σ

≤ ǫ
(2.18)

where || · ||Σ is the covariance-weighted norm, and ǫ ∈ R
+ and M ∈ Z are user-set tolerance

parameters.

Several sparse representation algorithms exist to compute (or approximate) the solution

of this minimization problem, including (but not restricted to) KSVD [3] and proximal split-

ting methods [37]. Other relevant sparse representation approaches include dictionary learning

schemes exploiting joint sparsity and non-negativity constraints, such as K-WEB [13].

2.2.2 Associated numerical methods

2.2.2.1 Methods for orthogonality formulations

Principal Component Analysis To provide some historical context and background, or-

thogonal decomposition techniques have their origin in social sciences, going back to the works

of Pearson [206]. The seminal work by Hotelling [104–106] formally introduced Principal Com-

ponent Analysis (PCA), probably the most widespread orthogonal decomposition technique. In

the geosciences domain, EOFs where introduced in the 1940s [77,140,174,197,198]. PCA/EOFs

has also been used in several other domains. To cite a few, it is known as the Hotelling trans-

form [104,104,106] in multivariate quality control and also as proper orthogonal decomposition

(POD) [178,179] in mechanical engineering. Moreover, it also relates closely to techniques such

as the discrete Karhunen–Loève transform (KLT) [164] in signal processing, and factor analy-

sis [95]. Even though PCA is mainly an exploratory analysis technique, it can be used for both

dimensionality reduction [92] and filtering [197] in a straightforward manner.

Generally speaking, PCA aims at decomposing a set of observations of possibly correlated

variables as a linear combination of an ensemble of uncorrelated variables (or principal com-

ponents). To achieve this, principal components are chosen to ensure that each one of them

accounts for the largest possible variability while being orthogonal to each other. In this respect,

PCA closely relates to ICA, and on may think of PCA as particular implementation of ICA in-

volving an independence criterion that enforces independence up to the second-order moments,

thus involving the maximization of the variance explained by each component under the assump-

tion that components are orthogonal [39]. Conversely, ICA may be viewed as an extension of

PCA, with the particularity that PCA imposes independence up to the second-order moments

only (given the maximization of variance of orthogonal components), whereas ICA may impose
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independence up to higher orders, depending on the considered criterion [39].

Formally, given a dataset of observations yn ∈ R
I , n = 1, . . . , N (which we can assume to be

centered without loss of generality), PCA will resort to a decomposition of the covariance struc-

ture underlying the data in order to discover the directions of maximal variance. It is important

to note that, for geophysical applications, observations yn may contain values of a geophysical

field at I distinct locations si at time tn, in which case the covariance matrix elements [C]ij
contains the covariances between full time series at location pairs (si, sj). Alternatively, obser-

vations yn may reflect a geophysical field value at I distinct times ti at a fixed location sn;

covariance matrix elements [C]ij will then be the covariances between full spatial maps of y at

different times (ti, tj).

More specifically, given the data matrix Y = [y1, . . . ,yN ]T ∈ R
N×I , PCA first computes the

empirical covariance matrix as:

C =
1
N

YTY (2.19)

PCA aims at finding the orthogonal basis of vectors uk, k = 1, . . . ,K (the principal compo-

nents) that better explain the variability of the dataset, in the sense that each vector will have

the maximum possible variance. This yields the following optimization problem:





uk = arg max
u

uTCu

uTu = 1
(2.20)

which can be easily identified as an eigendecomposition problem

Cu = λ2u (2.21)

The vector basis we are looking for is then the ensemble of the K eigenvectors associated

with the K largest eigenvalues λ2
k of covariance matrix C.

λ2
k = uTk Cuk =

1
N
||Yuk||2 (2.22)

which is proportional to the variance accounted for by the k-th principal component vk, i.e the

variance of the projection of observations onto each one of the found directions uk: vk = Yuk.

In practice, computing the covariance matrix C can be avoided by resorting to the SVD

decomposition of matrix Y

Y = VΛUT (2.23)
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where V ∈ R
N×R and U ∈ R

I×R are unitary matrices (i.e., VTV = UTU = IR), R is the rank

of data matrix Y and the diagonal matrix Λ ∈ R
R×R contains the singular values λ ∈ R

+ of Y.

One may then express covariance matrix S as

C =
1
N

UΛΛTVTVUT =
1
N

UΛΛTUT =
1
N

UΛΛTUT =
1
N

UΛ2UT (2.24)

Then, columns of matrix U correspond to principal components and the term 1/N can be

integrated into matrix Λ to yield eigenvalues λ2
k.

We may then sort the eigenvalues in decreasing order and sort the columns of U accordingly,

so that the order of the eigenvalues and components corresponds to the level of explained vari-

ability.

Going back to Equation (2.23), one may reconstruct the whole data matrix using the esti-

mated principal components and eigenvalues:

Y = VΛUT =
R∑

k=1

λkvku
T
k (2.25)

where vk = [V]:k is the k-th column of matrix V. It is then easy to see that matrix VΛ (vec-

tors λkvk) contains the coefficients that allow the reconstruction of the data from the principal

components. This quantity is then referred to as the PCA scores or expansion coefficients. In

this regard, PCA coefficients λkvk characterize the decomposition of observations yn as a linear

combination of R principal components uk.

It is possible, alternatively, to reconstruct observation yn independently by computing:

yn = [V]n:ΛUT =
R∑

k=1

λk[V]nkuTk (2.26)

where [V]n: is the n-th line of matrix V and [V]nk is the k-th element of [V]n:.

Additionally, we may also use PCA as a dimensionality reduction technique by keeping only

the M first principal components and exploiting the smaller-dimensional representation yielded

by PCA scores λkvk. Indeed, PCA will yield an orthogonal base of principal components uk on

which one may project the original data, thus obtaining a new M -dimensional representation

in the space of PCA scores λkvk. For high values of I, choosing M appropriately may help

tackle high dimensional problems. Usually, M is chosen so as to ensure that a certain proportion

of the total variability of the dataset, given by varexplained(M) ∈ [0, 1], is kept. Moreover,
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varexplained(M) can be easily computed with the aid of eigenvalues λ2
k.

varexplained(M) =

M∑
p=1

λ2
p

R∑
q=1

λ2
q

(2.27)

Similarly, it is also possible to reconstruct the original data from a reduced number of princi-

pal components using Equations (2.25) and (2.26) and obtain a smoothed version of the original

observations, thus performing a PCA-based filtering.

Extensions of PCA Several extensions to classical PCA have been developed to tackle some

of its identified shortcomings. Even though the orthogonality constraint gives PCA rather useful

properties, it also imposes the non-correlation of identified principal components, whereas real

physical phenomena tend to be correlated/non-orthogonal. This means that PCA modes tend

to be difficult to interpret, as physically coherent modes/dynamics may be spread across or

mixed within the identified principal components. Some of the extensions to tackle this short-

coming include rotated EOFs [95, 117, 118, 126, 130, 221], which involves rotating part of the

identified principal components, thus breaking orthogonality, in such a way so as to minimize

a given simplicity criterion (cost function) that penalizes model complexity, thus inducing a

more interpretable decomposition. In the same spirit, Simplified Component Technique-Lasso

EOFs (SCoTLASS EOFs) [91,121,122] tries to simultaneously impose orthogonality and model

simplicity by adding a Lasso-type sparsity-promoting ℓ1-norm constraint to identified princi-

pal components. However, this is a non-convex optimization problem whose resolution involves

advanced numerical methods that rely on the integration of an appropriately defined ordinary

differential equation (ODE), with a high associated computational cost. Nonetheless, some re-

formulations have been proposed to achieve simpler solutions for SCoTLASS [42,265]. A related

work dealing with sparse variants of PCA involves different techniques, including exploiting ran-

dom effects models for principal components and/or incorporating shrinkage of eigenvalues [154].

Finally, a number of authors have focused on sparse formulations of PCA for high-dimensional

cases where the number of observations is smaller than the dimension of observations (N << I)

by modeling irrelevant variables as uncorrelated noise [15,119,159].

A second shortcoming of PCA relates to its sensitivity to outliers within the analyzed dataset.

Early attempts to deal with this limitation gave birth to the first variants of what is now

referred to as Robust PCA, and focused on exploiting robust estimation of covariance and

correlation matrices in the context of PCA [88, 108–110, 226] . The ever increasing availability

of information and the advent of big data has recently sparkled a renewed interest in Robust

PCA techniques in the context of machine learning and data mining [45, 120]. A particularly

interesting approach [267] formulates Robust PCA as a decomposition of data matrix Y = L+S
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as the sum of a low rank matrix L and a sparse matrix S by minimizing a two-term cost function:

[
L̂, Ŝ

]
= argmin

L,S
||L||∗ + λ||S||1 (2.28)

where ||L||∗ is the nuclear norm of L, given by the sum of its singular values and λ is a parame-

ter that controls the relative importance trade-off between L and S. The main idea behind this

formulation lies in the fact that, for many applications, low-rank representations are associated

with general, mean solutions or patterns, such as a faces in facial recognition or background

images in video surveillance, while sparse representations (also referred to as the "noise" compo-

nents) relate to variations or disturbances to these mean states, e.g. variations in faces due to

illumination changes or moving objects in video sequences [120]. This problem, also known as

principal component pursuit, has been the object of several studies. While some authors focus on

more theoretical aspects, such as model identification, parameter selection, algorithmic compu-

tational complexity and extensions to cases considering missing data [30], others propose more

complex formulations, particularly for the structure of the "noise" component matrix S [18,276].

Another shortcoming of classic PCA in the domain of geophysics lies on its inability to maxi-

mize variance on both the temporal and spatial domains simultaneously [90]. Indeed, depending

on how the data matrix Y is built and structured, only either spatial or temporal covariance is

considered. Extended EOF [22,23,71,214,263] is an approach that deals with this limitation by

considering augmented observations that include both spatial and temporal information. Con-

sidering spatio-temporal information at decomposition allows this approach to not only discover

static spatial or temporal modes, but also to put forward and extract propagating structures

and periodic signals buried within the original data. An alternative approach to obtain similar

insight, known as Complex EOF [21, 94, 137, 215, 235], relies on the decomposition of complex

fields built from both the original considered field and spatially or temporally lagged (displaced)

versions of the original field. Such representation will then intrinsically contain spatio-temporal

information that will be discoverable via a PCA decomposition performed over the complex

valued field.

Limitations of PCA PCA(EOF) and similar approaches rely on a strong assumption of mode

orthogonality and on the hypothesis that an orthogonal decomposition yields the best represen-

tation, which may not always be the case. As clearly demonstrated in [189], it should be noted

that there are no guarantees that an orthogonal decomposition will yield individual dynamical

modes or modes that relate to individual kinematic degrees of freedom. Moreover, EOF derived

modes will probably not be statistically independent, and will be strongly influenced by the

modal non-locality needed to ensure that variance is maximized globally.
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2.2.2.2 Methods for Tikhonov regularization

The greatest advantage of Tikhonov regularization is that it allows for the direct derivation of an

analytic expression for parameter estimators, given that the ℓ2-norm exploited is a continuous

and derivable function for all real valued vectors α ∈ R
K . Importantly, this means that no

indirect methods need to be developed to compute the Tikhonov-regularized solution for the

general blind source separation problem (2.6). Indeed, in the case of blind source separation,

one may reformulate Equation (2.6) as follows:

Y = SA + W, subject to: ||A||2F < ǫ (2.29)

which induces the following constrained minimization problem:

[
Ŝ, Â

]
= argmin

S,A
||Y− SA||2F + ||A||2F (2.30)

where the columns of matrix Y ∈ R
I×N contain N observations yn to be decomposed into K

sources, represented as columns of matrix S ∈ R
I×K , so that each line of matrix A ∈ R

K×N

contain N coefficients αnk relating to one of the resolved sources.

The computation of the solution for minimization problem (2.30) yields the following analytic

expression:

A =
[
STΣ−1S + ΓTΓ

]−1
STΣ−1Y (2.31)

which simplifies to

A =
[
STΣ−1S + IK

]−1
STΣ−1Y (2.32)

when Γ = IK .

2.2.2.3 Methods for non-negative formulations

Active-set algorithms Active sets algorithms are based on the assumption that only some

of the n inequality constraints involved in minimization (2.10) are active (i.e. the associated co-

efficient αk is zero). The main idea is that constrained minimization problem (2.10) boils down

to an unconstrained minimization problem on the passive set only (i.e. on coefficients αk which

are not null), assuming that the active set is known. Active set coefficients αk are then simply

set to zero to obtain the full solution of the constrained problem.

The simplest version of an active set method will then exploit an alternating least squares

scheme to approximate the solution. In this respect, an initial feasible solution is found and

all n constraints are considered to be in the passive set. At each iteration, the unconstrained

minimization problem on the passive set is solved, variables in the active set are identified and
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removed from the passive set, and the process is repeated. The algorithm stop is given by a

convergence condition, usually on some measure of the optimality of the solution.

Methods for non-negative matrix factorization Numerically, algorithms for non-negative

matrix factorization rely mostly on alternating least squares and multiplicative update rules (in-

troduced in [155]). Given that minimization problem (2.12) involves a matrix product, it is

non-convex if a joint minimization over both A and S is attempted. However, the sub-problem

of optimizing A (resp. S) while considering S (resp. A) as fixed is indeed convex. This strongly

motivates the application of ALS-type algorithms. At each iteration, one may then exploit

gradient-splitting algorithms using proximal operators or similar optimization techniques. Al-

ternatively, Lee and Seung introduced in [155] a set of multiplicative update rules that ensure

that the cost function introduced in constrained minimization problem (2.12) decreases at each

iteration (even thought such update rules provide no assurance of convergence towards a global

minimum).

2.2.2.4 Methods for sparse formulations

KSVD KSVD [3] is a sparse dictionary learning algorithm designed to iteratively solve prob-

lem (2.15) by alternating optimizations over sparse mixing coefficients αk and signals sk. In this

respect, KSVD closely relates to alternating least squares approaches. Specifically, the optimiza-

tion of reference signals sk is performed by rewriting problem (2.15) in matricial form:

Y = SA + W, subject to: ||[A]:n||0 ≤M,∀n ∈ J1, NK (2.33)

This new formulation induces the following constrained minimization problem:





[
Ŝ, Â

]
= argmin

S,A
||Y− SA||2F

||[A]:n||0 ≤M, ∀n ∈ J1, NK
(2.34)

where the columns of matrix Y ∈ R
I×N contain N observations yn to be decomposed into K

sources, represented as columns of matrix S ∈ R
I×K , so that each line of matrix A ∈ R

K×N

contain N coefficients αnk relating to one of the resolved sources, and [A]:n denotes the n-th

column of matrix A.

KSVD updates the dictionary of reference signals S iteratively, by sequentially updating each

reference signal sk (column [S]:k in matrix S). To this end, the cost function of minimization

problem (2.34) can be rewritten as

||Y− SA||2F =

∣∣∣∣∣∣

∣∣∣∣∣∣
Y−

K∑

j=1

sj [A]j:

∣∣∣∣∣∣

∣∣∣∣∣∣

2

F

=

∣∣∣∣∣∣

∣∣∣∣∣∣


Y−

K∑

j 6=k
sj [A]j:


− sk[A]Tk:

∣∣∣∣∣∣

∣∣∣∣∣∣

2

F

= ||Ek − sk[A]k:||2F

(2.35)
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so that the product SA is decomposed as the sum of K rank-1 matrices. Ek is then the error

matrix when all but the k-th reference signal are considered. The objective now is to find the

reference signal sk so that sk[A]k: is the rank-1 matrix that best approximates Ek, while respect-

ing the sparsity constraint imposed on matrix A and enforced in Equation (2.35) by vector [A]k:.

To ensure that sparsity is respected, KSVD identifies which observations yi use signal sk,

given by non-zero elements of [A]k:. It then defines index vector ωk containing the indexes of

the actually-exploited observations

ωk = {i|1 ≤ i ≤ K, [A]ki 6= 0} (2.36)

and then uses this index vector to define matrix Ωk ∈ R
N×|ω| containing ones at positions

(ωk(i), i) and zeros elsewhere.

Matrix Ωk is then used to constraint Equation (2.35) so that only observations that use

signals sk given by [A]k: are considered. If we compute YR
k = YΩk ∈ R

N×|ω| we obtain a matrix

that only contains observations that use signal sk. Similarly, the product [A]Rk: = [A]k:Ωk will

discard all zero entries of [A]k:. It can then be deduced that ER
k = EkΩk ∈ R

N×|ω| will contain

only error columns involving signal sk. If we apply this matrix product and go back to Equation

(2.35), we obtain:

||Ek − sk[A]k:||2F =
∣∣∣
∣∣∣ER

k − sk[A]Rk:

∣∣∣
∣∣∣
2

F
(2.37)

where sparsity compliance has been assured by the product with matrix Ωk, and we may now

jointly optimize over sk and [A]Rk: without contradicting the imposed sparsity.

The optimization over sk and [A]Rk: is achieved by using SVD [83] to decompose matrix

ER
k = U∆V and setting sk = [U]:1 and [A]Rk: = [∆]11[V]:1. Note that such decomposition

ensures that [A]Rk: has at most the same number of non-zero elements as [A]k:, if not less, thus

ensuring sparsity is respected.

The optimization of coefficients αk, on the other hand, is performed by means of orthogonal

matching pursuit.

Orthogonal matching pursuit Matching pursuit (MP) [183] is a sparse coding algorithm

that relies on sequentially finding the best sparse approximation for signal y given reference sig-

nals sk. To achieve this, at each step the reference signal s∗
k most correlated to y is identified.

An approximation of y using only s∗
k is then computed by estimating the associated coefficient

α∗
k. This approximation is then subtracted from signal y. In this way, the selection of the next

most correlated signal at the next iteration is computed based on residual y − α∗
ks

∗
k from the

previous iteration. The process is repeated until a maximum number of M signals are selected
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(or, alternatively, until the residual error is smaller than a threshold ǫr).

It should be noted that MP relies on the hypothesis that the dictionary of signals sk is

over-complete, which means that K > I, where y ∈ R
I . Moreover, MP computes an approxi-

mate solution of minimization problem (2.15). However, it can be shown that the algorithm will

converge monotonically for any signal y spanned by reference signals sk [3, 43,183,205].

Orthogonal matching pursuit (OMP) [43,205] is an natural extension of MP, which consists

in updating all coefficients of already extracted signals sk at each iteration, rather than only

updating the coefficient of the currently selected signal s∗
k. This boils down to an orthogonal

projection of signal y onto the space spanned by the previously selected signals sk, hence the

name of the extension.

2.2.2.5 Methods for multiple constraints

Alternating Least Squares For problems where multiple parameters must be optimized, the

principle behind alternating least squares (ALS) [10,58,96,238,274] lies on sequentially comput-

ing the optimal value of each parameter while the remaining parameters remain fixed. In this

way, the alternating least squares approach will optimize sk while considering fixed coefficients

αk and subsequently optimize coefficients αk while considering fixed sources sk. This process is

repeated until convergence.

This general scheme for multi-parameter optimization is a particular case of non-linear Gauss-

Seidel optimization schemes, which implies that its convergence is not always ensured. However,

local convergence of ALS-type algorithms can be ensured under appropriate conditions [10,58],

usually verified in practice. We refer the interested reader to [10,58] for a more detailed discus-

sion of the mathematical criteria influencing convergence for ALS algorithms.

At each step, the optimization of the considered parameter relies on an adequate minimiza-

tion scheme, such as gradient descent, direct minimization, gradient-splitting methods exploiting

proximal operators, etc., depending on the considered parameter and on any desired constraint.

Proximal gradient methods One of the main challenges of using non-negativity/sparsity

constraints lies on the non-differentiability of the constraints that prevents the direct exploitation

of classical optimization methods, such as gradient descent. In this respect, proximal gradient

methods are a family of optimization methods developed to deal with possibly non-differentiable

cost functions.
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Formally, we consider the following multivariate minimization problem:

min
x
F (x) +G(x) (2.38)

where x ∈ R
N , F (x) : R

N −→ ]− inf,+ inf] ∈ C1, i.e., F (x) is differentiable and both F (x)

and ∂F (x)
∂x

, its derivative with respect to x, are continuous, and G(x) : RN −→ ]− inf,+ inf] is

a lower-semicontinuous, not necessarily differentiable function. In the context of blind source

separation, F (x) is a data fit function measuring the distance between observed data and model

reconstruction, while G(x) is the desired constraint function.

The proximal operator of function G(x) is defined as

proxG(u) = argmin
x
G(x) +

1
2
||u− x||22 (2.39)

so that the proximal operator yields the closest point to u that minimizes function G(x). We

notice that if function G(x) is the indicator function ✶S of some convex set S ⊂ R
N , then the

associated proximal operator comes to the projection of u onto S. The proximal operator is,

then, an extension of the notion of projection.

Proximal operators have a number of properties that make them specially suitable for iter-

ative minimization algorithms [37], such as verifying the following inclusion:

p = proxG(u) ⇐⇒ u− p ∈ ∂G(p), ∀u ∈ R
N ,∀p ∈ R

N (2.40)

where ∂G(p) is the subdifferential of function G, a set-valued function defined as

∂G : RN −→ 2R
N

: x −→
{

u ∈ R
N |∀y ∈ R

N , (y− x)T u +G(x) ≤ G(y)
}

(2.41)

which can be thought of as the set of gradients (slopes) of the affine minorants of G at x. This

means that if p is given by the proximal operator of function G(x) at point x, then the difference

vector x− p belongs to the set of the subgradients of G(x).

Another interesting property of proximal operators is that they are firmly non-expansive:

||proxG(x)− proxG(y)||2+||(x− proxG(x))− (y− proxG(y))||2 ≤ ||x− y||2 , ∀x ∈ R
N ,∀y ∈ R

N

(2.42)

which implies that proximal operators have a non-empty set of fixed points that corresponds to

the set of the minima of G [37].
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From these properties, it is shown in [38] that minimization problem (2.38) has at least one

solution, and that its solutions verify the following fixed point equation:

x = proxγG (x− γ∇F (x)) , ∀γ ∈ R
+ (2.43)

which suggest the following iterative approach:

xn+1 = proxγG (xn − γ∇F (xn)) , ∀γ ∈ R
+ (2.44)

which comes to applying a classic gradient descent, followed by the proximal operator associated

to G.

Proximal gradient methods for constrained blind source separation For the prob-

lems of non-negative and sparse blind source separation introduced in Equations (2.9) and (2.14),

for example, one may design an alternating minimization approach in which two steps are iter-

ated until convergence.

A first step comes to optimizing reference signals sk with fixed coefficients αk.

A second step comes to the optimization of constrained coefficients αk with fixed reference

signals sk. To achieve this, coefficients are first estimated without constraints using a classic

gradient descent:

α̂i+1
k = α̂ik +

sTk Σ−1

(
y−

K∑
p=1

α̂ipsp

)

sTk Σ−1sk
, ∀ k ∈ J1,KK (2.45)

The desired constraint G(αk) is then imposed by means of the appropriate proximal operator

α̂i+1
k = proxG(α̂i+1

k ), ∀ k ∈ J1,KK (2.46)

In this respect, non-negativity can be enforced by setting

G(αk) = ✶R+(αk) =





0, αk ≥ 0

+ inf, αk < 0
, ∀ k ∈ J1,KK (2.47)

whose associated proximal operator is

prox✶
R+ (αk) =




α, αk ≥ 0

0, αk < 0
, ∀ k ∈ J1,KK (2.48)
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Sparsity, on the other hand, involves a weighted ℓ1-norm penalty:

G(α) = γ ||α||1 (2.49)

where weight γ controls the compromise between reconstruction similarity and the ℓ1-norm reg-

ularization.

The associated proximal operator for this function is the soft-thresholding operator:

[
proxγ||α||1(α)

]
k

= softγ(αk) =





αk − γ, αk > γ

0, |αk| ≤ γ
αk + γ, αk < −γ

(2.50)

Alternatively, sparsity constraints may also involve a weighted ℓ0-norm penalty:

G(α) = γ ||α||0 (2.51)

where weight γ controls the compromise between reconstruction similarity and the ℓ0-norm reg-

ularization.

The associated proximal operator for this function is the hard-thresholding operator:

[
proxγ||α||0(α)

]
k

= hard√
2γ(αk) =




αk, |αk| >

√
2γ

0, |αk| ≤
√

2γ
(2.52)

2.3 Operator decomposition

Even though extensive literature exists on the problem of blind source separation, the very similar

problem of observation-based characterization and decomposition of operators (relationships

between variables of interest) has not been studied as extensively. As stated in our introductory

chapter, we aim at extending constrained blind source separation models to the problem of the

observation-based characterization and decomposition of operators:

yn =
K∑

k=1

αnkfk (xn) + ωn (2.53)

where xn ∈ R
J , yn ∈ R

I , and we aim at identifying αnk ∈ R, the mixing coefficients that model

the contribution of each mode to the reconstruction of yn given xn, and fk : RJ → R
I , a linear

or non-linear function associated with mode k. ωn ∈ R
I is a noise process, usually considered

to be additive Gaussian noise, representing model uncertainty. Similarly to the problem of blind

source separation, one may also consider additional constraints on either mixing coefficients αnk

31



Chapter 2. State of the art and related work

or modal transfer functions fk to better constraint the problem to the specific application or

dataset considered.

In this section, we provide insights into some of the most relevant applications where operator

decomposition has been studied, in domains ranging from fluid dynamics and dynamical system

analysis to image super-resolution.

2.3.1 Orthogonality-based decompositions

2.3.1.1 Joint EOFs

To study the relationship between multiple variables, one may wish to apply PCA simultaneously

to more than one field, in order to discover relevant information about the coupling between

them. For vectorial fields, such as sea surface winds or geostrophic velocities, one may again

resort to the PCA decomposition of a complex-valued field built from the quantities of interest.

In more general settings, however, either an Extended EOFs analysis of the relationship between

the two fields of interest or, alternatively, an SVD decomposition of their cross-covariance ma-

trix, may be more viable alternatives.

The most straightforward way of performing a Joint EOF analysis involves building ex-

tended observations combining the considered fields, in a manner similar to Extended EOFs, so

that both field observations xn ∈ R
J and yn ∈ R

I are represented in the extended observation

zn ∈ R
I+J : zn = [xn,yn]. In this regard, the PCA decomposition of extended observations zn

will produce jointly estimated PCA components uk = [ux
k ,u

y
k ]. Principal components ux

k and

u
y
k then relate, respectively, to the decomposition of xn and yn, whereas PCA scores λkvk are

shared between the two representations, as they have been jointly estimated so that each ex-

tended PCA component uk individually explains a maximal fraction of the variability of the

extended dataset Z built from extended observations zn. Interestingly, if the fields under study

are uncorrelated, this approach will produce the same components as the independent PCA

decomposition of each separate field, sorted according to their variance.

The main advantage of such an approach is that the covariance matrix of extended vector zn

will consider both the covariance structures of xn and yn independently, as well as their cross

covariance structure. However, this approach may fail to account for statistical differences in

the fields and requires the relative weighting and normalization of the extended observations

to take differences in magnitude, considered units and sampling into account, and to avoid any

bias towards the field with the highest variability.
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Alternatively, one may directly apply an SVD decomposition to the cross-covariance matrix

of observations xn and yn

C =
1
N

XTY = VΛUT =
R∑

r=1

λrvru
T
r (2.54)

where data matrices X = [x1, . . . ,xN ]T ∈ R
N×J and Y = [y1, . . . ,yN ]T ∈ R

N×I are build

from observations from both fields, V ∈ R
J×R and U ∈ R

I×R are unitary matrices (i.e.,

VTV = UTU = IR), R is the rank of cross-covariance matrix C and the diagonal matrix

Λ ∈ R
R×R contains the singular values λ ∈ R

+ of C.

Similarly to classical PCA, resorting to the SVD decomposition of matrix C will yield an

orthogonal decomposition of the cross-covariance into the R highest covariability modes of the

two fields. It can indeed be shown that the SVD decomposition will lead to pairs of principal

components for fields xn and yn given, respectively, by singular vectors uk and vk, so that each

pair of principal components explains as much as possible of the mean-squared cross-covariance

between the considered fields [19]. This is due to the fact that SVD will select singular vectors

pairs so that the covariance between the projections of datasets X and Y onto, respectively, the

left and right singular vectors vk and uk is maximal for each pair. In this respect, the maximal

covariance explained by each pair of singular vectors is given by their corresponding singular

value, and the PCA expansion coefficients Lx ∈ R
J×R and Ly ∈ R

I×R are then obtained by

projecting matrices X and Y onto orthonormal basis V and U, respectively [19]:

Lx = XV (2.55)

Ly = YU (2.56)

One can then sort the singular values in decreasing order and sort the columns of matrices

U, V, Λ, Lx and Ly accordingly, so that the order of the singular values and joint PCA com-

ponents corresponds to the level of covariability explained.

In this context, assuming a linear operator A ∈ R
J×I can accurately approximate the rela-

tionship between datasets X and Y, then an expression for operator A can be derived:

Y = XA = X
[
N
(
VD−1

x ΛUT
)]

(2.57)

where Dx = LTx Lx = VTXTXV is the covariance matrix of Lx. Importantly, matrix Dx is

diagonal by construction, as Lx corresponds to the projection of observations X onto the space

spanned by left singular vectors vk (which, by definition, diagonalizes the covariance matrix of

xn).
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Alternatively, an equivalent expression for observations xn and yn can be obtained:

yn = ATxn = N
(
UΛD−1

x VT
)

xn (2.58)

2.3.1.2 Canonical correlation analysis

Canonical correlation analysis (CCA) [19,93,106,236,261] is a related approach for the analysis of

the covariability between two variables xn ∈ R
J and yn ∈ R

I . The principle behind this method

lies in identifying maximally correlated linear transformations of the two variables of interest

[19, 93, 106, 236, 261]. In this regard, CCA will iteratively look for the linear transformations

v ∈ R
J and u ∈ R

I that, when applied to observations xn and yn, produce a pair of transformed

variables with maximal correlation:

[v,u] = argmax
v,u

corr(vTxn,u
Tyn) (2.59)

subject to the constraint that each new pair of identified canonical variables (vTxn,u
Tyn)

must be uncorrelated (orthogonal) to the canonical variables previously identified. An addi-

tional constraint imposing that the variance of canonical variables is unitary, i.e., var(vTxn) =

var(uTyn) = 1, is needed to ensure the unicity of the decomposition. Intuitively, we may view

CCA as a projection of variables xn and yn onto lower-dimensional subspaces where they are

maximally correlated [19,93,106,236,261].

Methodologically, this can be expressed as the following constrained minimization problem

[V,U] = argmax
V,U

tr
(
VTXTYU

)

Subject to





VTXTXV = IL

UTYTYU = IL

(2.60)

where data matrices X = [x1, . . . ,xN ]T ∈ R
N×J and Y = [y1, . . . ,yN ]T ∈ R

N×I are build

from observations from both fields, V ∈ R
J×L and U ∈ R

I×L are matrices whose k-th columns

correspond to the k-th linear transformation pair (vk,uk) yielding the k-th canonical variable

pair (vTk xn,u
T
k yn), and L is the number of pairs of canonical variables considered.

In this regard, it can be proven [19] that the solution to this minimization problem is given

by

V = C
−1/2
x V̂ (2.61)

U = C
−1/2
y Û (2.62)
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where Cx = 1
NXTX and Cy = 1

NYTY are, respectively, the covariance matrices of xn and yn,

and V̂ and Û are given by the first L components of the SVD decomposition:

C = C
−1/2
x CxyC

−1/2
y = V̂ΛÛT (2.63)

where Cxy = 1
NXTY is the cross-covariance matrix between observations xn and yn, V̂ ∈ R

J×R

and Û ∈ R
I×R are unitary matrices (i.e., V̂T V̂ = ÛT Û = IR), R is the rank of matrix C and

the diagonal matrix Λ ∈ R
R×R contains the singular values λ ∈ R

+ of C [19].

Compared to the SVD approach presented before, we may regard CCA as an SVD de-

composition of the cross-covariance matrix between two datasets previously normalized by their

respective covariance matrices. In this regard, as in the SVD decomposition presented in the pre-

vious section, a linear operator relating variables xn and yn may be approximated from the CCA

decomposition. Importantly, when compared to the SVD decomposition of the cross-covariance

matrix presented before, each pair of identified canonical variables will be more strongly corre-

lated between them, but explain a lower fraction of the covariability between the two fields of

interest [19].

A far as practical applications are concerned, CCA is useful to gain insight into how differ-

ent components of variables xn and yn relate to each other, the amount of variability shared

among different components within the two datasets and to model relationships between the two

variables [254]. Indeed, CCA has been successfully used in a variety of applications, including

classification, multivariate regression and dimensionality reduction [93,236,259].

2.3.1.3 Singular value decomposition of linear operators

Let’s consider a linear system given by

yn = Axn (2.64)

where yn ∈ R
I , xn ∈ R

J are observations of signals or images, while A ∈ R
I×J is a linear

operator governing the relationship between the observed variables.

For the sake of simplicity, we assume that either operator A is known or, alternatively, that

we have a dataset of N observation pairs {x,y}n large enough that operator A may be accu-

rately estimated in a mean-squared-error sense: A = YXT
[
XXT

]−1
, where columns of matrices

X ∈ R
J×N and Y ∈ R

I×N correspond, respectively, to observations xn and yn.
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One may then use an SVD decomposition to decompose linear operator A:

A = VΛUT =
R∑

r=1

λrvru
T
r =

R∑

r=1

λrAr (2.65)

where V ∈ R
I×R and U ∈ R

J×R are orthogonal matrices (i.e., VTV = UTU = IR), R is the

rank of operator A and the diagonal matrix Λ ∈ R
R×R contains the singular values λr ∈ R

+ of

matrix A. λr is then the r-th singular value with associated left and right singular vectors vr

and ur. As such, matrix A is then decomposed as the sum of R rank-1 matrices Ar = vru
T
r .

Moreover, columns of matrices U, V and Λ can be sorted according to their respective sin-

gular values λr in decreasing order. Singular values λr characterize then the decomposition of

operator A as a combination of rank-1 matrices Ar = vru
T
r . In this respect, matrix A can be

seen as the weighted, ordered sum of R separable matrices Ar, in the sense that each matrix

Ar can be written as the product of two vectors vr and ur. This may be useful for applications

where separable models naturally arise, such as the separation of image filters into horizontal

and vertical components.

Finally, it can be proven [55, 234] that reconstructing A using only the largest K singular

values and associated singular vectors yields the best rank-K approximation of operator A,

which may be useful for applications where low-rank operator or matrix approximations are

required.

2.3.1.4 Eigendecomposition of linear dynamical operators

More specifically, we may consider a linear dynamical system given by

xn = Axn−1 (2.66)

where xn ∈ R
J is the system state vector at time index n, while A ∈ R

J×J is a dynamical

operator governing the system evolution.

As in the previous section we assume, for the sake of simplicity, that either operator A is

known or, alternatively, that we have a dataset of N observations {x}n large enough that opera-

tor A may be accurately estimated in a mean-squared-error sense: A = XnXT
n−1

[
Xn−1XT

n−1

]−1
,

where columns of matrices Xn ∈ R
J×(N−1) and Xn−1 ∈ R

J×(N−1) correspond, respectively, to

observations xn and xn−1.

Provided linear operator A is diagonalizable, we may perform a spectral decomposition of

the dynamics governing the evolution of state variable xn by means of an eigendecomposition
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of operator A, which yields:

A = UΛU−1 =
J∑

j=1

λj [U]:j [U−1]j: (2.67)

where U ∈ C
J×J is a square matrix whose columns [U]:j = uj are the eigenvectors of matrix A

with associated eigenvalues λj ∈ C, which are contained in the diagonal matrix Λ ∈ C
J×J , and

eigenvalues and eigenvectors verify:

Auj = λjuj (2.68)

It should be noted that matrix U is not necessarily unitary (U−1 = UH) for the general case

of a diagonalizable operator A, so that the eigendecomposition of an arbitrary linear operator

will not necessarily yield an orthogonal decomposition. For the decomposition to be orthogonal,

A must be a normal matrix (AAT = ATA), so that the eigendecomposition yields a unitary

matrix U:

A = UΛUH =
J∑

j=1

λjuju
H
j (2.69)

In particular, if the considered dynamical system is self-adjoint, i.e., if operator matrix A

is symmetrical (A = AT ), then all its eigenvalues λj ∈ R are real and U is a real orthogonal

matrix (U−1 = UT ):

A = UΛUT =
J∑

j=1

λjuju
T
j (2.70)

Matrix A is then decomposed as the sum of J matrices Uj = uju
T
j , so that eigenvalues

λj then characterize the decomposition of dynamical system matrix A as a combination of J

matrices Uj = uju
T
j .

2.3.1.5 Limitations of orthogonality-based decompositions

Similarly to classical PCA (EOF) and similar approaches, the orthogonality-based variability

analysis and operator decomposition formulations presented here rely on a strong assumption

of mode orthogonality, and on the hypothesis that an orthogonal decomposition yields the best

representation, which may not always be the case. Once again we refer to the fact that there

are no guarantees that an orthogonal decomposition will yield individual dynamical modes or

modes that relate to individual kinematic degrees of freedom [189]. Moreover, for PCA-based

approaches, derived modes will probably not be statistically independent, and will be strongly

influenced by the modal non-locality needed to ensure that variance is maximized globally [189].

2.3.2 Dynamic mode decomposition

Dynamical system analysis and decomposition is a key issue in multiple and varied disciplines

such as fluid dynamics [229], medical care [17], neuroscience [24], epidemiology [216], robotic con-

trol [9], image and video processing [139], finance [184] and power system analysis [237], to cite a
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few. Among a wide variety of approaches, Dynamic Mode Decomposition (DMD) [138,228,264] is

one of the most widely used techniques to decompose operators representing dynamical systems

into physically relevant modes. Importantly, as illustrated by the previously cited examples, ap-

plications of DMD span a vast number of different scientific disciplines. In particular, DMD relies

on SVD decomposition [83] and exploits a finite-dimensional approximation of the Koopman op-

erator [134,138], an infinite-dimensional linear representation of a finite-dimensional non-linear

dynamical system.

2.3.2.1 The Koopman Operator

Let’s consider a classical discrete-time, possibly non-linear dynamical system given by

xn+1 = f(xn) (2.71)

where xn ∈ R
J is a state vector, lying on a smooth manifoldM⊂ R

J , that accurately represents

system dynamics.

The Koopman operator [26, 134, 138, 187, 188] is defined as an infinite-dimensional linear

operator K acting on the space of all possible observable functions of xn, g(x) ∈ G, g(x) :M−→
C, that verifies:

Kg(xn) = g(f(xn)) = g(xn+1) (2.72)

so that a linearization of the non-linear dynamics is obtained by a projection of the dynami-

cal system from the space of system states x to the space of observable functions g(x), at the

cost of considering now an infinite-dimensional problem. Indeed, given that the definition of the

Koopman operator considers the infinite-dimensional space of all possible observable functions

g(x), the existence of a linear operator that verifies Equation (2.72) can be guaranteed.

Moreover, from Equation (2.72) it is possible to see that this linear representation of a dy-

namical system allows one to evolve the system (represented in the space spanned by observables

g(x)) simply by a multiplication with the Koopman operator.

As previously stated, the Koopman operator is defined on the space of all scalar mea-

suring functions g(x). In this sense, moving from a classical state space representation to a

Koopman representation in the space of observables g(x) involves a shift from nonlinear but

finite-dimensional dynamics to linear but infinite-dimensional dynamics. On one hand, linear

representations offer multiple advantages and increased simplicity. On the other hand, the infi-

nite dimensionality of the new representation tends to be difficult to handle. In practice, however,

a sufficiently large but finite approximation of the infinite dimensional Koopman operator usu-

ally provides adequate results.
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If one considers the eigendecomposition of the Koopman operator

Kφk = λkφk (2.73)

where λk ∈ C are the Koopman eigenvalues, then φk : M −→ C, the Koopman eigenfunctions,

define a set of coordinates for the observables g on which we can represent and advance the system

dynamics by means of a linear operator. Indeed, following spectral decomposition principles, any

vector of observables g can be written as:

g(x) =




g1(x)

g2(x)
...

gI(x)




=
+∞∑

k=1

φk(x)




v1
k

v2
k
...

vIk




=
+∞∑

k=1

φk(x)vk (2.74)

where vik, the i-th element of vector vk, is the k-th coefficient of observable function gi when pro-

jected onto the basis of eigenfunctions {φk}, so that each function gi is expressed as a weighted

sum of an infinite number of eigenfunctions φk. vk is thus the k-th Koopman mode of observable

vector g, associated with the k-th Koopman eigenfunction φk.

The main advantage of this representation is that it allows for the evolution of the system

in the space of observables simply by means of a product involving the Koopman eigenvalues:

g(xn+1) = Kg(xn) = K
+∞∑

k=1

φk(xn)vk =
+∞∑

k=1

Kφk(xn)vk =
+∞∑

k=1

λkφk(xn)vk (2.75)

Applying the same principle recursively from g(x0), we obtain:

g(x1) = Kg(x0) = K
+∞∑

k=1

φk(x0)vk =
+∞∑

k=1

Kφk(x0)vk =
+∞∑

k=1

λkφk(x0)vk (2.76)

g(x2) = Kg(x1) = K
+∞∑

k=1

λkφk(x0)vk =
+∞∑

k=1

λkKφk(xn)vk =
+∞∑

k=1

λ2
kφk(xn)vk (2.77)

...

g(xn+1) = Kg(xn) = K
+∞∑

k=1

λnkφk(x0)vk =
+∞∑

k=1

λnkKφk(x0)vk =
+∞∑

k=1

λn+1
k φk(x0)vk (2.78)

so that the final Koopman decomposition is given by:

g(xn+1) =
+∞∑

k=1

λn+1
k φk(x0)vk =

+∞∑

k=1

λn+1
k ωk (2.79)

where we have absorbed scalar values φk(x0) into Koopman mode ωk = φk(x0)vk.
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In this regard, the Koopman decomposition describes observable functions g(x) as a sum of

fixed modes vk whose time variability and dynamical evolution is encoded by Koopman eigenval-

ues λk, which provides additional information relating to spatial structures and their temporal

evolution [135, 239]. Importantly, for any given Koopman dynamical mode, its frequency and

rate of decay are given, respectively, by the phase and module of the associated Koopman eigen-

value λk [239]. In general, Koopman modes (and thus Koopman eigenfunctions) then relate to

the spatial nature of the problem of interest, while temporal information is encoded in Koopman

eigenvalues. In this respect, Koopman analysis then usually focuses on studying the spatial dis-

tribution of Koopman modes (eigenfunctions) and their temporal evolution, which is governed

by Koopman eigenvalues λk [135,239,241].

Interestingly, in the original formulation of his theory [134], Koopman worked with measure

preserving Hamiltonian flows, so that the Koopman operator is then unitary and eigenfunctions

φk are orthonormal in the space of observables g(x) [138], which yields:

vk =




v1
k

v2
k
...

vIk




=




〈φk, g1〉
〈φk, g2〉

...

〈φk, gI〉




(2.80)

The orthogonality of Koopman modes (eigenfunctions), however, can only ensured under

certain conditions, as we will discuss later.

In this context, all non-linear dynamics are captured by the Koopman operator, while the

Koopman eigenfunctions produce a basis of non-linear functions in which the dynamical sys-

tem in question becomes linear. To deal with this infinite-dimensional representation, one can

truncate the infinite series of Koopman eigenfunctions to an appropriate finite number of terms

by considering only the first K eigenfunctions. In this respect, this truncation also involves re-

stricting observables g to a Koopman-invariant subspace G ⊂ G [138, 228, 239, 241], so that the

restriction of K to this subspace induces a finite-dimensional linear operator K that allows us

to evolve the system dynamics within the restricted subspace.

g(xn+1) = Kg(xn) = K
K∑

k=1

φk(xn)vk =
K∑

k=1

Kφk(xn)vk =
K∑

k=1

λkφk(xn)vk = . . . =
K∑

k=1

λn+1
k ωk

(2.81)

Finding the Koopman eigenfunctions and associated Koopman eigenvalues of a dynamical

system, however, is one of the most challenging parts of Koopman spectral analysis. One of

the most popular approaches developed to solve this problem, dynamic mode decomposition

(DMD), relies on exploiting a set of measures of system dynamics observables to estimate the

Koopman modes and the associated Koopman eigenvalues.
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2.3.2.2 The dynamic mode decomposition algorithm

Dynamic mode decomposition (DMD) [138, 223, 228, 256, 264] is a data-driven approach that

allows for the approximation of Koopman modes and eigenvalues directly from a set of measures

of observables of a dynamical system1.

Let’s consider a set of observables g1, . . . , gI , with gi ∈ M,∀i ∈ J1, IK that span, approxi-

mately, a Koopman invariant subspace and denote then the observable vector g = [g1, . . . , gI ]T .

Assuming we have an ensemble of measures g(x1), . . . ,g(xn) of our dynamical system, we

build the following data matrices:

Yn−1 = [g(x1), . . . ,g(xn−1)] (2.82)

Yn = [g(x2), . . . ,g(xn)] (2.83)

Intuitively, one may infer that Yn = AYYn−1, with AY a finite dimensional approximation

of the complete infinite-dimensional Koopman operator K. This finite dimensional approxima-

tion corresponds to the restriction of K to the subspace of observables g1, . . . , gI , and relates to

the finite-dimensional nature of our ensemble of observations.

It is straightforward, then, that AY may be computed as

AY = YnY
†
n−1 (2.84)

where (·)† denotes the Moore-Penrose pseudo-inverse.

Formally, the Koopman mode decomposition theorem [138,228] states that, given an eigen-

function φk ∈ span{gi} of K with associated eigenvalue λk that verifies:

φk(x) =
I∑

i=1

zigi(x) = zTg(x) (2.85)

for some z = [z1, . . . , zI ]T ∈ C
I , if z ∈ R(Yn−1) where R(Yn−1) is the range of Yn−1, i.e., the

subspace spanned by the columns of Yn−1, then zH is a left eigenvector of AY with eigenvalue

λk: zHAY = λkz
H .

1Depending on the author and the scientific community involved, the exact definition of DMD may not be
identical. Certain authors follow the historical developments of the methodology and refer to DMD when the
decomposition is applied directly to state vector x, i.e., when no observable functions are considered, and use
the term Extended DMD (EDMD) to refer to the technique considering a set of observables g(x). More recent
developments use the name DMD to refer to the more general approach involving observable functions. One may
indeed consider the identity observable function g(x) = x, so that both approaches are related. In this chapter,
we follow the latter convention and refer to the more general approach as DMD.

41



Chapter 2. State of the art and related work

Assuming, without loss of generality, that the left and right eigenvectors of AY, zHk and vk,

are normalized, i.e., zHk vk′ = δkk′ , ∀k, k′ ∈ J1,KK, it can be shown that observable functions

g(x) verify [138,228,239]:

g(x) =
K∑

k=1

φk(x)vk (2.86)

which implies that, if the set of available observables is sufficiently large to verify φk ∈ span{gi}
and rich enough that z ∈ R(Yn−1), then the Koopman decomposition of observable functions

g can be accurately approximated from the DMD eigenvalues and associated modes of matrix

AY [138]. We may then compute the eigendecomposition of matrix AY: AYωk = λkωk in order

to obtain the Koopman modes and eigenvalues.

Alternatively, rather than directly computing AY and its eigendecomposition directly, DMD

resorts to the SVD decomposition of Yn−1:

Yn−1 = USVT (2.87)

so that

Yn = AYUSVT (2.88)

UTYnVS−1 = UTAYU = A′
Y (2.89)

One can then compute matrix A′
Y and its eigendecomposition A′

Yω′
k = λkω

′
k to obtain its

eigenvalues λk and eigenvectors ω′
k. Given that AY and A′

Y are related by a coordinate change

associated with the orthonormal basis given by columns of matrix U, then it is straightforward

that AY and A′
Y share the same eigenvalues λk. Additionally, Koopman modes ωk can be

computed as ωk = Uω′
k, which implies:

AYωk = AYUω′
k = λkωk (2.90)

and given that

Yn = AYUSVT =⇒ AY = YnVS−1UT (2.91)

we obtain

ωk =
1
λk

YnVS−1ω′
k (2.92)

which gives us another expression for the computation of Koopman modes.

If one wishes to compute the Koopman eigenfunctions φ(xn) rather than the Koopman

modes, these can be approximated from the left eigenvectors zHk of matrix AY as φk(xn) =

zHk g(xn).
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2.3.2.3 Orthogonality of the Koopman decomposition

Generally speaking, DMD results in a data-driven non-orthogonal decomposition onto a set

of modes that attempts to capture de behaviour of a dynamical system from a set of obser-

vations [135]. In this respect, exploiting non-orthogonal decompositions may enhance DMD’s

capabilities to better represent the behaviour of the dynamical system under study, despite the

increased computational cost associated with non-orthogonal decompositions [135]. DMD can be

regarded, then, as a data-driven alternative to more classical model decomposition techniques,

such as PCA or POD [135]. In this regard, to yield a decomposition onto orthogonal Koopman

modes, DMD would require the dynamical system in question to be normal (or self-adjoint),

so that the linear operator K, the restriction of infinite-dimensional Koopman operator K to

the space of observable functions G, is a normal (or symmetrical) matrix with a unitary (or

orthogonal) eigendecomposition. Under this conditions, the DMD decomposition closely relates

to the eigendecomposition of normal and self-adjoint operators presented previously in Section

2.3.1.4.

2.3.2.4 Limitations of dynamic mode decomposition

In general, DMD and related approaches rely on strong assumptions, such as the time invari-

ance of the Koopman operator, the finite-dimensional approximation of the infinite-dimensional

Koopman operator and the correct selection and availability of observable functions that span

a Koopman-invariant subspace, all of which are necessary to ensure the feasibility of DMD. For

a wide range of applications, however, these hypotheses may not always be valid, which may

prevent DMD (or related techniques) to be applied or to provide significant or interpretable

results.

2.3.2.5 Beyond DMD

Given the non-trivial limitations of DMD, several extensions have been proposed for the DMD

algorithm. To tackle the problem of the Koopman-invariance of the subspace spanned by observ-

able functions g(x), multiple approaches have been developed, including the use of non-linear

basis functions [264], reproducing kernels [129] or delay coordinates [87,271]. Particularly, some

studies propose to learn Koopman invariant subspaces, which comes down to learning observ-

able functions g(x) directly from data. While [240] exploits neural networks to this end, another

study [163] uses dictionary-learning techniques to approximate observable functions g(x). Inter-

estingly, a combination of both techniques is proposed in [264], where DMD is coupled with a

dictionary learned using neural networks.

Other studies focus on characterizing DMD in the context of noisy observables g(x) [52,202]

and developing suitable approaches to treat observation noise explicitly [44, 100] or indirectly

[239, 242]. In particular, [239] formulates the DMD algorithm in the context of a Bayesian
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framework, thus allowing for the characterization of observation noise. Moreover, given that the

Bayesian formulation allows for the automatic tuning of hyper-parameters, the authors propose

to estimate the number of considered modes by exploiting a sparsity-promoting prior. They

further benefit from the probabilistic formulation by using Monte Carlo techniques to compute

parameter and modeling uncertainties. Alternatively, [242] deals not only with observation noise

but also with process noise in the context of stochastic dynamical systems by exploiting an

orthogonal projection onto past system dynamics.

Non-negative and sparse DMD To improve the interpretability and representation power

of DMD, a few studies have investigated extensions involving the low-rank estimation of system

dynamics [35, 48, 98, 123, 269] and the exploitation of additional constraints, such as joint spar-

sity and non-negativity [241]. Closely related to our subject of interest, in [241], most notably,

Takeishi et al. propose a constrained version of DMD, so that dynamic modes are estimated

under joint sparsity and non-negativity constraints. To achieve this, the authors propose to re-

formulate DMD as a block-multiconvex optimization problem. By exploiting a polar-coordinate

expression for Koopman eigenmodes mk = φk(x0)vk = and eigenvalues λk:

mi
k = qike

jθi
k , qik, θ

i
k ∈ R (2.93)

λk = rke
jψk , rk, ψk ∈ R (2.94)

where j is the imaginary unit and mi
k = [mk]i is the i-th element of eigenmode mk. We can now

define matrices [Q]ki = qik, [Θ]ki = e(jθi
k

), [R]kt = rt−1
k , [Ψ]kt = e(j(t−1)ψk), with k = 1, . . . ,K,

i = 1, . . . , I and t = 1, . . . , n+ 1, where K is the maximum number of considered modes.

With this new notation, the DMD problem can be rewritten as the following minimization

problem:

[q̂ik, θ̂
i
k, r̂k, ψ̂k] = arg min

qi
k
,θi

k
,rk,ψk

||Y− (Q⊙Θ)(R ⊙Ψ)||2F (2.95)

where Y = [g(x0), . . . ,g(xn)] is the full data matrix and ⊙ denotes the elementwise product.

Once DMD is reformulated as a minimization problem, the authors use a block coordi-

nate descent, which comes down to a particular implementation of gradient descent for block-

multiconvex functions [270]. The purpose of this reformulation is to allow for the introduction

of additional constraints on variable q, θ, r and ψ for problem (2.95):

[q̂ik, θ̂
i
k, r̂k, ψ̂k] = arg min

qi
k
,θi

k
,rk,ψk

||Y− (Q⊙Θ)(R ⊙Ψ)||2F + c(q, θ, r, ψ) (2.96)
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The authors propose, in particular, to impose non-negativity and an ℓ1-norm regularization

on dynamic modes, i.e., fixing q ≥ 0, θ = 0 and adding a regularization term proportional to |q|:

c(q, θ, r, ψ) = c(q) = γ
K∑

k=1

I∑

i=1

|qik|+ ✶q≥0(q) (2.97)

with γ being a regularization parameter and ✶q≥0(q) being an indicator function whose value is

0 if q ≥ 0 and +∞ otherwise. After the introduction of the additional constraints, the authors

rely on a proximal Newton-type method coupled with a block coordinate descent to solve opti-

mization problem (2.96).

As far as applications are concerned, Takeishi et al. justify the choice of a jointly non-negative

and sparse formulation as a means to better adapt the DMD algorithm to the problem of sep-

arating background and foreground in video sequences, as both constraints appear as naturally

relevant for this particular task.

Otherwise, operator decomposition formulations similar to DMD, but involving alterna-

tive constraints, have been introduced in other scientific domains. Most notably, Tikhonov-

regularized formulations have been successfully exploited within the image processing commu-

nity to tackle the problem of image super-resolution, as detailed in the following section.

2.3.3 Tikhonov-regularized decompositions

Within the image processing community, recent super-resolution methods exploit linear patch-

based operators and their decomposition to tackle memory constrained super-resolution appli-

cations [2].

Image super-resolution or upscaling refers to the problem of creating a coherent and visually

pleasant high-resolution version of a low-resolution image, without loss of sharpness or detail. It

closely relates to the problem of deblurring, with the exception that in super-resolution the low-

resolution initial image is considered to be sharp at its original size [253]. Since super-resolution

involves the interpolation of new values at sub-pixel locations, it is inherently an ill-posed prob-

lem, as each pixel in the low-resolution image must be mapped into multiple pixels [2, 41,253].

Among the variety of approaches proposed to tackle this problem, exemplar-based methods

use a patch-based (or feature-based) approach to learn a function between low-resolution and

high-resolution spaces [252], based on hypothesis that patches lie in local manifolds that are in

correspondence, i.e., similar patches in the low-resolution space are mapped to similar patches

in the high-resolution space [253]. The simplest method exploiting this idea consists in approx-

imating each low-resolution patch as a linear combination of its most similar patches and using

the estimated coefficients to obtain a reconstruction from the corresponding patches in the high-
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resolution space. This technique relates to approaches such as neighbour embedding [101], local

linear embedding [222] and non-local means [25, 207]. Here, and in more elaborate approaches

that learn a non-linear function to go from a low-resolution space to a high-resolution space, we

require a training dataset of low-resolution/high-resolution patch pairs.

Usually, a single global function to be applied to every patch will most probably not be able

to adequately super-resolve an image, given the complex, non-linear nature of the problem [41].

In this respect, some methods propose to locally approximate the non-linear function relating

the low-resolution and high-resolution spaces by multiple local linear functions. In particular,

Jointly Optimized Regressors (JOR) [41] separates patches pairs in the training dataset into

clusters using K-means [180] and computes a single linear regression (called a regressor) per

cluster. The problem of super-resolution for a new image boils down to assigning each patch of

the image to the cluster that yields the lower super-resolution error and applying the associated

regressor.

Building on this principle, Anchored Neighborhood Regression (ANR) [252] performs the

initial clustering by computing a low-resolution sparse dictionary using KSVD [3]. Each element

of the dictionary will then have an associated regressor, so that super-resolution comes to finding

the dictionary element most correlated to the low-resolution patch to super-resolve. In ANR, re-

gressors for each dictionary element are computed from its K nearest elements in the dictionary.

Adjusted Anchored Neighborhood Regression (A+) [253] is an extension of ANR that improves

performance by looking for the K nearest neighbours for the computation of each regressor in

the whole dataset of low-resolution training patches (rather than only in the low-resolution dic-

tionary elements).

More specifically, from a set of low-resolution patches X ∈ R
dL and corresponding high-

resolution patches Y ∈ R
dH , A+ uses KSVD to compute low-resolution dictionary DL =

[dL1 , . . . ,d
L
N ] ∈ R

dL×N and the corresponding high-resolution dictionary DH = [dH1 , . . . ,d
H
N ] ∈

R
dH×N . For each element of the low resolution dictionary dLi , A+ builds a regressor Wi using

ridge regression

Wi = argmin
W′
||WXi −Yi||2F + λ ||W||2F (2.98)

where matrix Xi = [xi1, . . . ,x
i
K ] ∈ R

dL×K contains the K low-resolution patches closest to dLi

in the training dataset and matrix Yi = [yi1, . . . ,y
i
K ] ∈ R

dH×K contains the corresponding high-

resolution patches. To super-resolve a new image, for each patch x, we find its closest dictionary

element dLx and apply the associated regressor Wx:

ŷ = Wxx (2.99)
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One of the main disadvantages of the above mentioned approaches lies on the high memory

requirements needed to stock the estimated regressors. Indeed, standard A+ implementations

consider N = 65, 536 regressors. Given that the memory requirement of A+ is O(NdHdL+NdL),

this means, for example, a memory footprint of 1.2GB for a x4 upscaling (dL = 31, dH = 144,

single precision) [2]. To deal with this limitation, Regressor Basis Learning (RB) [2] builds on

A+ and decomposes regressors onto a set of R basis regressors {W̃j}j=1,...,R and representation

coefficients {αji}j=1,...,R:

Wi =
R∑

j=1

αjiW̃
j (2.100)

so that only basis regressors and coefficients are stored, which diminishes the memory complex-

ity at the expense of some extra computational complexity, given that at run-time one must

now reconstruct regressor Wi before applying it.

One of the main limitations of this approach, however, is that it relies on Tikhonov regular-

ization (also known as ridge regression), i.e., an ℓ2-norm penalization, for the decomposition of

regressors Wi:

[
W̃j , αji

]
= arg min

Ŵj′ ,αj′

i

N∑

i=1

∣∣∣∣∣∣

∣∣∣∣∣∣




R∑

j=1

αjiW̃
j


Xi −Yi

∣∣∣∣∣∣

∣∣∣∣∣∣

2

F

+ λ
∣∣∣
∣∣∣W̃

∣∣∣
∣∣∣
2

F
(2.101)

where W̃ = [W̃1, . . . ,W̃R].

However, more strongly constrained decompositions might be more suitable. In particular,

considering a sparsity constraint on coefficients αji may help reduce memory requirements even

further.

2.4 Conclusion

In this chapter, we introduced the problem of blind source separation and associated models and

algorithms, which we aim at extending to the problem of operator decomposition. Furthermore,

we also introduced some of the problems and applications on which operator decomposition

methods have been developed and applied, so as to provide some context relating to the general

problem of operator decomposition and the wide variety of disciplines to which it relates.

Broadly speaking, blind source separation formulations provide efficients algorithms exploit-

ing alternative constraints to classical orthogonal decomposition issues, most notably involving

non-negativity and sparsity. These novel formulations have recently proved to be a powerful alter-

native to orthogonality-based models such as PCA, allowing for the development of more relevant

and/or more interpretable decompositions. As far as applications are considered, the DMD algo-

rithm exploits, in the context of dynamical system analysis, spectral decomposition principles to
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Table 2.1 – Synthesis of constrained blind source separation algorithms. Comparison criteria include enforced
constraints, convergence properties, flexibility and code availability.

Algorithm Orthogonal Sparse Non-negative Convergence Flexibility Code

PCA X × × + − +

KSVD × X × − − +

ALS × X X − + −

Proximal operators X X X + + −

decompose the Koopman operator, an infinite-dimensional linearization of a spatio-temporally

invariant dynamical system. Given its non-trivial shortcomings, a few extensions of DMD have

been proposed to tackle its limitations, and related operator decomposition approaches exploit-

ing other constraints have also been proposed in other scientific domains. Nonetheless, the prob-

lem of constrained operator decomposition remains, in general, considerably unexplored. This

strongly supports the need for alternatively constrained operator decomposition models. In this

respect, this thesis work aims at extending the constrained blind source separation formulations

explored in this chapter to the problem of data-driven operator decomposition. To guide our

efforts throughout this thesis dissertation, we present a synthesis of the explored constrained

blind source separation algorithms in Table 2.1, where comparison criteria include enforced con-

straints, convergence properties, flexibility and code availability. These results will help us better

conceive the operator decomposition models and algorithms we will introduce in the following

chapters.

In the next chapter, we will thus draw inspiration from the applications and formulations

introduced here, and from their limitations, in order to develop novel models by extending clas-

sical blind source separation issues to the problem of observation-based operator decomposition.

Importantly, the methodological basis introduced here establishes the core foundations on which

our proposed models will rely.
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"Essentially, all models are wrong, but some are useful."

George E. P. Box
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3.1 Introduction

As stated in the previous chapter, inspired by the recent success of non-negative and sparse blind

source separation, we aim at extending constrained blind source separation models to the data-

driven characterization of operators. Overall, given the need for more complex formulations that

can tackle the shortcomings of current models briefly identified and explored in previous sections,

recent advances in blind source separation applications using sparse and non-negative constraints

make them particularly appealing to address the observation-based characterization and decom-

position of operators. This chapter addresses these issues and develops mathematically-sound

and computationally-efficient schemes. Our main contributions are three-fold:
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Chapter 3. Proposed models and algorithms

• A least-square formulation in the observation space under non-negativity constraints as-

sociated with different estimation algorithms;

• A reformulation of the considered non-negative issue as a dictionary leaning problem to

gain modeling flexibility, including the ability to consider alternative priors, such as spar-

sity;

• The experimental evaluation, in the next chapter, of the proposed numerical schemes,

which point out the relevance of the dictionary learning framework.

Typically, we will focus on cases where constraints are imposed on either decomposition

coefficients and/or on decomposition modes themselves. In particular, we introduce a novel non-

negative decomposition model for linear operators and investigate different parameter estimation

algorithms, including a reformulation of the model that exploits dictionary learning techniques.

Most notably, this reformulation will allow us to gain increased flexibility and the ability to

change model constraints in a simple way.

3.2 General model

In order to extend constrained blind source separation models to the problem of observation-

based decomposition of operators, we start by formalizing the problem of operator decomposi-

tion.

Formally, the general and unconstrained observation-based decomposition of operators amounts

to considering operators which relate variables of interest x and y, and state a general decom-

position according to K modes as the superposition of K responses to input variable x. For a

dataset {xn,yn}, this may be given by:

yn =
K∑

k=1

αnkfk (xn) + ωn (3.1)

where xn ∈ R
J , yn ∈ R

I , αnk ∈ R are mixing coefficients that model the contribution of each

mode to the reconstruction of yn given xn, fk : R
J → R

I is a linear or non-linear function

associated with mode k, and ωn ∈ R
I is a noise process, usually a Gaussian noise.

For the sake of simplicity, and given the envisioned applications, we will focus on the linear

version of problem (3.1). The general, unconstrained linear problem can be expressed as the

linear decomposition of the operator relating two observable variables xn and yn into K linear

modes:

yn =
K∑

k=1

αnkβkxn + ωn (3.2)
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3.3. Non-negative linear superposition of linear modes

where xn ∈ R
J , yn ∈ R

I , αnk ∈ R are mixing coefficients that model the contribution of each

linear mode to the reconstruction of yn given xn, βk ∈ R
I×J is the regression matrix associated

with mode k, and ωn ∈ R
I is a noise process, usually a Gaussian noise. Model (3.2) can be

interpreted as a characterization of the relationship between xn and yn as the superposition of

K linear relations.

3.3 Non-negative linear superposition of linear modes

Let us consider a multivariate observation dataset {x,y}n, where xn ∈ R
J , yn ∈ R

I denote

the nth observation pair. Variables xn and yn may, for instance, refer to feature vectors, image

patches for different modalities or successive states of a dynamical system, depending on the

targeted case-study. We focus on model (3.2) under the assumption that the potentially non-

linear relationship between xn and yn, given by functional response fk (xn), can be locally

approximated, with reasonable accuracy, by a linear operator. The idea of exploiting a local

linear approximation of non-linear operators directly relates to classical approaches such as

local linear embedding [222] and non-local means [25, 207]. We consider the decomposition of

the approximated linear operator relating variables xn and yn under non-negativity constraints.

As stated in [166], this translates into the following model for the relationship between variables

xn and yn:

yn =
K∑

k=1

αnkβkxn + ωn

Subject to




αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK

||βk||F = 1, ∀ k ∈ J1,KK

(3.3)

where xn ∈ R
J , yn ∈ R

I , αnk ∈ R
+ are non-negative mixing coefficients quantifying the contri-

bution of linear mode k to the reconstruction of yn for a given xn, βk ∈ R
I×J is a regression

matrix representing mode k, || · ||F is the Frobenius norm and ωn ∈ R
I is a centered Gaussian

noise process with covariance matrix Σ, representing both model uncertainties and observa-

tion errors. N and K denote, respectively, the total number of observations and modes, while

k ∈ J1,KK and n ∈ J1, NK indicate, respectively, the current mode and observation.

A non-negativity constraint has been imposed on mixing coefficients αnk, drawing inspira-

tion from the success of non-negative decompositions in applications where naturally occurring

positive superposition of parts exists [155]. The non-negativity constraint provides the mean

for distinguishing the form of the linear relationships between variables xn and yn from the

magnitude of these relationships. Additionally, a normalization constraint on modal regression

matrices βk has been added to eliminate scaling indeterminacies and improve the identifiability
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of the problem.

Model (3.3) allows us to address decomposition problems involving mixed linear contri-

butions and generalizes linear mixture problems involving linear regressions and latent class

regression models [47,244]. The later might be viewed as a simplified version of our model (3.3),

where mixing coefficients do not depend on index n and only one mode is actually active for

each sample pair. Besides, a classical linear regression resorts to model (3.3) with K = 1 and

αnk = α∗ ∀ k ∈ J1,KK, ∀n ∈ J1, NK.

Compared to state-of-the-art models like classical regression and latent class regression mod-

els [47,244], the key features of our proposed formulation are two-fold: first, it accounts for pos-

sibly varying magnitudes of the linear relationships; second, it explicitly evaluates the relative

importance of different linear relationships. This is of wide interest for a variety applications such

as regression hypothesis testing, transfer function identification, regime-switching dynamics, etc.

Finally, it may also be noted that any non-linear decomposition model (3.2) may be re-

stated as a linear decomposition model (3.3) according to the vector of regression variables

(f0 (xn) , .., fK (xn)). In the subsequent, we assume that candidate non-linear functional re-

sponses (fK (xn)) are given a priori and we address the estimation of mixing coefficients (αnk)

and regression matrices (βk).

3.3.1 Latent class model

Under the assumption that for each pair of variables xn and yn there is a strongly dominant

mode, that is to say that for any sample pair (xn,yn) only one of the mixing coefficients αnk
is non-null, we can introduce a hidden variable zn that indicates the mode which operates for

each sample pair (xn,yn), and derive a simplified latent class formulation for model (3.3) :





P (yn|zn = k) ∼ N (0,Σk, r (xn,yn))

r (xn,yn) = yn − α∗
nkβkxn

α∗
nk = argmin

αnk

||yn − αnkβkxn||2Σk

(3.4)

where N (0,Σk, ·) is a centered Gaussian distribution with covariance matrix Σk and || · ||Σk
is

the mode dependent covariance-weighted distance.

It may be noted that this latent class model still generalizes latent class regression models

as used in [244], since non-null coefficients αnk may still vary with respect to sample index n.

Given its lower computational complexity, this latent class model is of particular interest in the

proposed multi-stage calibration process for model (3.3), and may be used as an initialization.

52



3.3. Non-negative linear superposition of linear modes

3.3.2 Parameter estimation

We state the estimation of model parameters for model (3.3) from a set of observations {x,y}n
as the resolution of the following non-linear, non-convex constrained optimization problem:

∀n,





[
α̂nk, β̂k

]
= arg min

αnk,βk

N∑
m=1

Wn
m

∣∣∣∣∣

∣∣∣∣∣ym −
K∑
k=1

αnkβkxm

∣∣∣∣∣

∣∣∣∣∣

2

Σ

αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK

||βk||F = 1, ∀k ∈ J1,KK

(3.5)

where ||·||Σ is a weighted norm according to covariance Σ. We assume that, according to weighing

factors Wn
m, multiple observation pairs (xm,ym) may share relatively similar mixing coefficients

{αnk}. The greater Wn
m, the more similar the expected mixing coefficients {αnk} and {αmk}.

Weighing matrix W may encode both space-time smoothness priors, such that observation

pairs close in space and/or time are expected to share similar operator decompositions, as well

as observation-space similarity priors, for instance that observation pairs with similar regression

variables may share similar decompositions. This seems reasonable for many applications where

parameters are expected to correlate and vary smoothly in the considered spatio-temporal space.

The parameterization of weighing matrix W is expected to be application-dependent and may

be related to similar ideas used in covariance-based modeling [16] and non-local schemes [25,

207]. Regarding identifiability issues, if the number of modes K verifies K > I (where I is

the dimension of observation vector yn), the estimation of mixing coefficients αnk becomes

intractable from a single observation pair (xn,yn) 1. As such, weighing matrix also provides a

means to address the estimation of mixing parameters in such situations.

3.3.2.1 Single observation solution

An interesting particular case of model (3.3), studied in [166], arises when K ≤ I. In this case,

model parameters may be estimated from only observation pair (xn,yn) for each index n, with

relates to the parameterization of weighing matrix W as

Wn
m =





1, m = n

0, m 6= n
(3.6)

1For a fixed set of linear modes βk, the estimation of mixing coefficients αnk requires solving a linear system
involving K unknowns and I equations
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and translates to the following constrained minimization problem:

∀n,





[
α̂nk, β̂k

]
= arg min

αnk,βk

∣∣∣∣∣

∣∣∣∣∣yn −
K∑
k=1

αnkβkxn

∣∣∣∣∣

∣∣∣∣∣

2

Σ

αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK

||βk||F = 1, ∀k ∈ J1,KK

(3.7)

Nonetheless, it should be noted that the condition K ≤ I does not singlehandedly guarantee

that Equation (3.7) will have a solution. Indeed, for pathological cases where the system’s

Gramian matrix is not invertible more observations need to be considered to compute a solution

(as in Equation (3.5)). In this respect, a compromise exists between the number of observations

considered, which will increase model robustness and numerical stability, and the locality of the

model, which increases as less observations are considered.

3.3.3 Alternating least squares algorithm

3.3.3.1 Direct minimization approach

Given the non-linear, non-convex nature of constrained minimization problem (3.5), the joint

estimation of model parameters αnk and βk is not straightforward. Conveniently, this jointly

non-convex minimization problem becomes convex when estimation is performed for one set

of parameters only while considering the other set of parameters to be fixed. Naturally, this

suggests an alternating minimization approach, which leads to the following updates of model

parameter sets αnk and βk being iterated until convergence:

β-step: Minimization over βk with fixed αnk and externally forced normalization con-

straints2

β̂i+1
k = β̂ik +



N∑

n=1

α̂ink


yn −

K∑

p=1

α̂inpβ̂
i
pxn


xTn



[
N∑

n=1

(
α̂ink

)2
xnxTn

]−1

(3.8)

β̂i+1
k =

β̂i+1
k∣∣∣

∣∣∣β̂i+1
k

∣∣∣
∣∣∣
F

, ∀k ∈ J1,KK (3.9)

α-step: Minimization over αnk with fixed βk and externally forced non-negativity constraints

α̂i+1
nk = α̂ink +

N∑
m=1

Wn
m

[
xTm

(
β̂ik

)T
Σ−1

(
ym −

K∑
p=1

α̂inpβ̂
i
pxm

)]

N∑
m=1

Wn
m

[
xTm

(
β̂ik

)T
Σ−1β̂ikxm

] (3.10)

2Since linear modes βk are shared by all observation pairs, one set of regression matrices is estimated using
all observation pairs in the training dataset. In this respect, all observation pairs are weighted equally for the
estimation of modal regression matrices, under the assumption that they contribute uniformly to the estimation
of the globally shared linear modes. Hence, to correctly fit the model, all global linear modes should be adequately
sampled so as to be represented equally within the training dataset.
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α̂i+1
nk = max

{
0, α̂i+1

nk

}
(3.11)

For the case where a single observation pair suffices to estimated model parameters (Equation

(3.7)), the alternating minimization approach presented here is still valid, but requires Equation

(3.10) to be modified in order to consider the current observation pair (xn,yn) only:

α̂i+1
nk = α̂ink +

xTn

(
β̂ik

)T
Σ−1

(
yn −

K∑
p=1

α̂inpβ̂
i
pxn

)

xTn

(
β̂ik

)T
Σ−1β̂ikxn

(3.12)

3.3.3.2 Gradient-splitting approach

The downside to the simplicity of the alternating minimization approach is that it is prone to

numerical issues. As acknowledged in the blind source separation literature [10], the alternating

projections on the unconstrained and constrained solution spaces may induce divergent or nu-

merically unstable behaviour. To handle such a problem, the direct minimization introduced in

Equation (3.10) may be softened by considering a gradient descent:

α̂i+1
nk = α̂ink + 2δ




N∑

m=1

Wn
mxTm

(
β̂ik

)T
Σ−1


ym −

K∑

p=1

α̂inpβ̂
i
pxm




 (3.13)

where δ is the used defined gradient descent step.

For the single-observation case (Equation (3.7)), the α-step reduces to:

α̂i+1
nk = α̂ink + 2δ


xTn

(
β̂ik

)T
Σ−1


yn −

K∑

p=1

α̂inpβ̂
i
pxn




 (3.14)

This is then combined with a projection onto the constrained non-negative solution space

(Equation (3.11)), which comes down to a gradient based proximal splitting method [37].

Even though less necessary (since the renormalization constraint imposed in Equation (3.9)

comes down to a simple rescaling), the same gradient based reformulation can be used for the

estimation of modal linear regression matrices βk:

β̂i+1
k = β̂ik + 2δ



N∑

n=1

α̂inkΣ
−1


yn −

K∑

p=1

α̂inpβ̂
i
pxn


xTn


 (3.15)

3.3.3.3 Latent class model calibration

For latent class model (3.4), we derive a classical iterative Expectation-Maximization (EM)

procedure [14,46,232] to infer model parameters βk and αnk according to a maximum likelihood

criterion. At iteration i, the E-step comes to compute the posterior of hidden variables zn given
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current model parameters βik and αnk:

τ i+1
nk = P (zn = k|xn,yn) =

πikN
(
0,Σk,yn − α̂inkβ̂ikxn

)

K∑
l=1

πilN
(
0,Σk,yn − α̂inlβ̂ilxn

) (3.16)

The M-step then updates model parameters as follows:

πi+1
k = P (z = k) =

1
N

N∑

n=1

τ i+1
nk (3.17)

β̂i+1
k =

[
1
N

N∑

n=1

τ i+1
nk ynα̂

i
nkx

T
n

] [
1
N

N∑

n=1

τ i+1
nk α̂inkxnα̂

i
nkx

T
n

]−1

(3.18)

α̂i+1
nk =

yTn
(
Σi
k

)−1
β̂i+1
k xn

xTn

(
β̂i+1
k

)T (
Σi
k

)−1
β̂i+1
k xn

(3.19)

Σi+1
k =

N∑
n=1

τ i+1
nk

(
yn − α̂i+1

nk β̂i+1
k xn

) (
yn − α̂i+1

nk β̂i+1
k xn

)T

N∑
n=1

τ i+1
nk

(3.20)

Non-negativity constraints over αnk and normalization constraints over βk are forced after

each EM iteration (Equations (3.9) and (3.11)).

Experimentally, it has been noted that an ill-conditioned or nearly singular covariance matrix

may result in numerical instabilities in the update of scalars αnk (Equation (3.19)). Hence, we

may consider a variant of the algorithm with a spherical covariance matrix, Σi
k = σ2II , ∀k ∈

[1,K]. Similar approaches have proven to be effective in the context of Feasible Generalized Least

Squares (FGLS), where considering an spherical covariance structure has proven to improve

algorithm robustness [220,266]. We will refer to this variant of the EM algorithm as the pseudo-

EM algorithm.

3.3.3.4 Moment-based estimation of regression parameters

Regarding initialization issues, we also derive a moment-based estimation of regression matrices

βk. Noting that all amplitude information is contained in coefficients αnk, a direct application

of the orthogonality principle [190] yields that regression matrix βk that minimizes the root

mean square estimation error is the matrix that causes vectors βkxn and yn to be collinear for

all sample pairs (xn,yn) assigned to mode k. Therefore, assuming that we are provided with

some estimates or initial values of posteriors τnk (Equation (3.16)), we can derive the following

moment-based estimate for regression matrix βk:
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β̂k =

[
1
N

N∑

n=1

τnkynxTn

] [
1
N

N∑

n=1

τnkxnxTn

]−1

(3.21)

We then define a moment-based iterative conditional estimation (MICE) algorithm, following

[5,210–212]. It consists in replacing the update of regression matrices βk in the M-step of the EM

procedures (Equation (3.18)) by the above moment-based update (Equation (3.21)). As detailed

below, this moment-based estimation is considered as initialization to the EM iterations, since

it does not require any knowledge regarding initial values for mixing coefficients αnk.

3.3.3.5 Full implementation of the ALS algorithm

We detail in Algorithm 1 the overall procedure for the calibration of model (3.3). We adopt

a greedy approach to improve convergence properties. As initialization, we perform an initial

K class clustering of the data using a simple k-means algorithm [128, 180, 192], compute initial

binary posteriors τnk, and exploit the MICE update of regression matrices βk and mixing co-

efficients αnk. We then iterate the EM (or pseudo-EM) procedure until convergence for latent

class model (3.4) and follow with iterations of the ALS procedure (exploiting either a direct

minimization scheme or a gradient descent approach) until convergence for general model (3.3).

Algorithm 1 Non-negative Alternating Least Squares. Taken from [166]. c© 2016 IEEE.

1: Input: {xn}, {yn}
2: Initialization:

τ0
nk ← k-means(xn,yn)[
α̂1
nk, β̂

1
k, τ

1
nk, π

1
k,Σ

1
k

]
← MICE(xn,yn, τ0

nk)
3: repeat[

α̂i+1
nk , β̂

i+1
k , τ i+1

nk , πi+1
k ,Σi+1

k

]
← EM

(
xn,yn, α̂

i
nk, β̂

i
k, τ

i
nk, π

i
k,Σ

i
k

)

or[
α̂i+1
nk , β̂

i+1
k , τ i+1

nk , πi+1
k ,Σi+1

k

]
← pseudo-EM

(
xn,yn, α̂

i
nk, β̂

i
k, τ

i
nk, π

i
k,Σ

i
k

)

4: until convergence
5: repeat[

α̂i+1
nk , β̂

i+1
k

]
←ALS

(
xn,yn, α̂

i
nk, β̂

i
k

)

6: until convergence

3.3.3.6 Estimator bias and variance

It is straightforward to demonstrate that the parameter estimators α̂nk and β̂k (Equations (3.9),

(3.10) and (3.12)) are unbiased (i.e. E(α̂nk) = αnk and E(β̂k) = βk) and have variances given

by:

var(β̂k) =



N∑

n=1

α2
nk

∣∣∣∣∣∣

∣∣∣∣∣∣

(
N∑

n=1

α2
nkxnxTn

)−1

xn

∣∣∣∣∣∣

∣∣∣∣∣∣

2

F


Σ (3.22)
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var(α̂nk) =

N∑
m=1

(Wn
m)2 ∣∣∣∣Σ−1βkxm

∣∣∣∣2
F

(
N∑
m=1

Wn
m ||Σ−1βkxm||2F

)2 (3.23)

For the single observation case, we obtain:

var(α̂nk) =
1

||Σ−1βkxn||2F
(3.24)

In this context, Equation (3.22) gives the covariance between lines
[
β̂k

]
i:

of the estimator of

the kth-mode linear regression matrix. Alternatively, one can compute the element-wise second

order moment of estimator β̂k:

var

([
β̂k

]
ij

)
= E

{([
β̂k

]
ij
−
[
β̂k

]
ij

)([
β̂k

]
i∗j∗
−
[
β̂k

]
i∗j∗

)}

=
N∑

n=1

α2
nkx

T
n



(

N∑

n=1

α2
nkxnxTn

)−1



:j



(

N∑

n=1

α2
nkxnxTn

)−1


j∗:

xn [Σ]ii∗
(3.25)

where
[
β̂k

]
ij

is the first order moment of estimator β̂k, given by:

[
β̂k

]
ij

= [β]i:

[
N∑

n=1

α2
nkxnxTn

]

(

N∑

n=1

α2
nkxnxTn

)−1



:j

= [β]ij (3.26)

3.4 Reformulation based on local linear operators

As detailed below, the considered decomposition issue may be restated as a dictionary learning

problem. In (3.3), linear operator
∑K
k=1 αnkβk can be regarded as a decomposition of the local

linear operator relating variables y and x for index n. This local linear operator may be estimated

as follows according to a weighted least-square criterion using weighing matrix W:

Θn =

(
N∑

m=1

Wm
n ymxTm

)(
N∑

m=1

Wm
n xmxTm

)−1

(3.27)

where again Wn
m are weighting coefficients that account for the relative contributions of observa-

tion pairs (xm,ym) to the estimation of the linear operator Θn relating observation pair (xn,yn).

This least-square estimate comes to solve independently the least-square criterion for each index

n in (3.3). Here, as in model (3.3), there is also a compromise between model robustness and

computational stability and model locality, ultimately determined by the number of auxiliary

observations considered for the estimation of local linear operators Θn.

58



3.4. Reformulation based on local linear operators

Given local models {Θn}n, problem (3.3) relates to the non-negative decomposition of linear

operators Θn. It can be shown that model (3.3) (which yields optimization problem (3.5)) can

be reformulated as:

Θn =
K∑

k=1

αnkβk +

Υn︷ ︸︸ ︷(
N∑

m=1

Wn
mωmxTm

)(
N∑

m=1

Wn
mxmxTm

)−1

Subject to




αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK

||βk||F = 1, ∀ k ∈ J1,KK

(3.28)

The reformulation introduced by the estimation of local linear operators Θn induces an error

matrix Υn ∈ R
I×J that depends directly on observations xm and weights Wn

m. However, given

the Gaussian nature of the original error term ωm, the new error matrix Υn, being a linear

combination of Gaussian terms, is a Gaussian matrix.

Computation of the first and second order moments of the new error matrix elements [Υn]ij
introduced in Equation (3.28) gives:

E {[ Υn ]ij} = 0 (3.29)

[Ψn](ij)(i∗j∗) = E {[ Υn ]ij [ Υn ]i∗j∗}

=
N∑

m=1

(Wn
m)2 xTm



(

N∑

m=1

Wn
mxmxTm

)−1



:j



(

N∑

m=1

Wn
mxmxTm

)−1


j∗:

xm [Σ]ii∗

(3.30)

where sub-indexes [A]:j and [A]l: denote, respectively, the j-th column and the l-th line of matrix

A. This leads to the conclusion that Υn (and thus Θn) is heteroscedastic, i.e., its elements

present a non-constant variance Ψn that depends on the observations xn and weights Wn
m used

to estimate the considered linear operator Θn. In this respect, adequately choosing the linear

regression weights Wn
m should allow us to better manage the heteroscedastic nature of model

(3.28).

3.4.1 Parameter Estimation

Given local models {Θn}n, parameter estimation for model (3.28) then translates to the following

constrained optimization problem:





[
α̂nk, β̂k

]
= arg min

αnk,βk

N∑
n=1



∣∣∣∣∣

∣∣∣∣∣Θn −
K∑
k=1

αnkβk

∣∣∣∣∣

∣∣∣∣∣

2

Ψn




αnk ≥ 0, ∀n ∈ J1, NK,∀k ∈ J1,KK

||βk||2 = 1, ∀k ∈ J1,KK

(3.31)
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3.4.1.1 Direct minimization

The unconstrained direct minimization of the cost function introduced in (3.31) yields the fol-

lowing estimators for model parameters:

α̂nk =

vec (βk)
T (Ψn)−1


vec (Θn)−

K∑
p=1
p 6=k

αnpvec (βp)




vec (βk)
T (Ψn)−1 vec (βk)

(3.32)

β̂k =

N∑
n=1

αnk


Θn −

K∑
p=1
p 6=k

αnpβp




N∑
n=1

α2
nk

(3.33)

where vec(·) denotes the matrix vectorization operator and Ψn is the covariance matrix of

vectorized error matrix υn = vec(Υn). It is important to notice that vectorized error matrix υn

remains heteroscedastic, with its observation-dependent covariance matrix Ψn containing the

second order moments of error matrix Υn.

3.4.1.2 Estimator bias and variance

It can be proven that estimators (3.32) and (3.33) are unbiased and present variances given by:

var(α̂nk) =
1

vec (βk)
T Ψ−1

n vec (βk)
(3.34)

var(β̂k) =

N∑
n=1

α2
nkΨn

(
N∑
n=1

α2
nk

)2 (3.35)

3.4.1.3 ALS-based formulation

Similarly to the formulation introduced for (3.7), an ALS-base formulation that couples these

estimators (either via direct minimization or a gradient-based proximal-splitting method) with

projections onto the corresponding constrained sub-spaces could be used to numerically re-

solve constrained minimization problem (3.31). However, the minimization of this least-square

criterion using ALS or gradient-splitting schemes would require the computation of an error

covariance matrix Ψn for each local linear operator Θn, which implies a considerable increase

in the computational complexity. Therefore, we propose an alternative method based on the

dictionary-based decomposition of vectorized versions of local linear operators Θn where, for

the sake of simplicity, we also consider a simplified homoscedastic covariance structure.
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3.4. Reformulation based on local linear operators

3.4.2 Dictionary-based decomposition of local linear operators

The constrained minimization problem presented in Equation (3.31) can be reformulated as a

blind dictionary learning based decomposition. To do so, we consider the set {Θ}n of all N

local linear operators, to which we apply the vectorization operator in order to rewrite Equation

(3.31) as:





[
Â, B̂

]
= argmin

A,B
||Φ−BA||2F

Akn ≥ 0, ∀k ∈ J1,KK,∀n ∈ J1, NK

||[B]:k||2 = 1, ∀k ∈ J1,KK

(3.36)

where matrix Φ ∈ R
IJ×N is obtained by concatenating vectorized operators θn = vec(Θn) (i.e.

Φ = [θ1|...|θN ]), columns of matrix A ∈ R
K×N contain mixing coefficients αnk quantifying the

contribution of each mode k for the reconstruction of vectorized local linear operator θn and

columns of B ∈ R
IJ×K (noted as [B]:k) contain vectorized versions of modal linear regression

matrices βk, i.e., [B]:k = vec(βk).

The estimation of model parameters for model (3.36) resorts, under this new formulation,

to a classical dictionary learning problem coupled with a non-negativity constraint. Dictionary

learning is a classical problem in signal processing, for which numerous methods, exploiting

different constraints, have been proposed [3, 10, 13, 155, 156]. Moreover, the dictionary learning

based reformulation has some considerable advantages when compared to other proposed ap-

proaches [166]. Effectively, this formulation is more flexible and adaptable than previously intro-

duced models, since model constraints can be changed seamlessly simply by changing the blind

dictionary learning approach used to solve constrained minimization (3.36) (e.g. NMF [155],

KSVD [3], etc). Here, since we consider a non-negative constraint, we solve minimization (3.36)

using a proximal splitting method [37] to account for the non-negativity of mixing coefficients

matrix A. It involves the iteration of the following two steps until convergence:

1. The least-squares estimation of dictionary matrix B under normalization constraints

||[B]:k||2 = 1, ∀k:

Bi+1 = Φ
(
Ai
)T (

Ai
(
Ai
)T)−1

(3.37)

[
Bi+1

]
:k

=

[
Bi+1

]
:k

||[Bi+1]:k||2
∀k ∈ J1,KK (3.38)

2. The estimation of the mixing coefficients matrix A using a gradient descent based proximal

splitting method [37] to enforce non-negativity:

Ai+1 = Ai − 2λ
(
Bi
)T (

Φ−BiAi
)

(3.39)
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[
Ai+1

]
kn

= max
{

0,
[
Ai+1

]
kn

}
,∀k ∈ J1,KK,∀n ∈ J1, NK (3.40)

Alternatively, one may choose a different dictionary-learning technique to enforce a different

constraint (e.g. KSVD [3] for sparsity). This gives the dictionary-based formulation increased

flexibility and adaptability, since alternative model constraints can thus be introduced seamlessly

into model (3.3).

3.4.3 Model training and application

We may distinguish two different situations in terms of model parameter estimation for this

dictionary-based formulation:

• Model training: Regression matrices β̂k (matrix B̂ in formulation (3.36)) and mixing

coefficients α̂nk (matrix Â in formulation (3.36)) are jointly estimated for a set of local

linear operators Θn obtained from a training dataset {x,y}n. Estimated regression ma-

trices β̂k will be considered as the dictionary of regression modes βk when the model is

applied to new observations and are thus stored for future use.

• Model application: Given a trained dictionary of operators {β̂}k (matrix B̂ in formu-

lation (3.36)), mixing coefficients α̂nk (matrix Â in formulation (3.36)) are estimated for

a new observation dataset {x∗,y∗}n. Two approaches may be considered. Similarly to the

training step, linear operators {Θ∗}n can be estimated for the new dataset, and mixing

coefficients can be computed by projecting these operators onto the previously trained

dictionary (using a non-negativity constraint). Alternatively, mixing coefficients can be es-

timated directly from observations using a least-squares criterion derived from model (3.3)

without the prior estimation of linear operators {Θ∗}n. Both approaches can be imple-

mented using proximal operators, as in the model training step, or classical non-negative

least-squares solvers [145]. It should be noted that the estimation of mixing coefficients

α∗
nk for new observations (x∗

n,y
∗
n) may exploit only data from the training dataset, which,

in the context of dynamical system prediction, provides the algorithm with actual predic-

tion capabilities (since no knowledge of y∗
n = x∗

n+1 is needed for the estimation of mixing

coefficients αnk).

3.4.4 Computational complexity analysis

Table 3.1 presents a summary of complexity of the different algorithms, namely the alternating

least squares exploiting a direct minimization (Equations (3.8), (3.9), (3.10) and (3.11)), the

alternating least squares exploiting a gradient descent (Equations (3.8), (3.9), (3.13) and (3.11))

and the dictionary-based local linear operator decomposition (Equations (3.37), (3.38), (3.39)

and (3.40)), expressed in number of operations. Subsequently, we will refer to these algorithms as

ALS-direct, ALS-gradient and LLOD, respectively. From these results, it is clear that differences
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3.5. Conclusion

Table 3.1 – Computational cost of the different steps of the proposed algorithms, in number of operations.

ALS-direct ALS-gradient LLOD

Θn estimation - - NM [2J2 + 2IJ ]
+N [J3 + IJ2]

α/A-step 2NK[MKIJ + 1]
+NK[I2 + IJ + 2I + 1]

+MNK[I2 + 2IJ + J + 1]

2NK[MKIJ + 1]
+NK[I2 + IJ + 2I + 1]

+1

NK[2IJ + 2]
+NIJ + 1

α/A ≥ 0 NK NK NK

β/B-step NK[IJ + I]
+N [2J2 + 2IJ + I + 1]]

+J3 + IJ2 + IJ

NK[IJ + I]
+N [2J2 + 2IJ + I + 1]]

+J3 + IJ2 + IJ

NK2 +K2IJ
+KIJ +K3

β/B normalization K[3IJ + 1] K[3IJ + 1] K[3IJ + 1]

in computational complexity arise from the different strategies used to approximate the uncon-

strained solution, as the cost of implementing model constraints is identical for all algorithms.

ALS-gradient is more computationally demanding that ALS-direct, which seems in agreement

with the more gradual manner in which the solution is approximated. In this respect, the added

computational cost comes as a downside of having a more regular, smoother approach. As far

as LLOD is concerned, complexity is shifted from the optimization stage to the estimation of

local linear operators. Globally, however, LLOD involves a lower computational complexity than

both variants of the ALS algorithm.

3.5 Conclusion

In this chapter, we addressed the extension of constrained blind source separation models to the

observation-based decomposition of operators. We formally introduced a non-negative additive

mixing model for operators, including a dictionary-based reformulation, and derived associated

estimation algorithms. The dictionary-based formulation led to a greater modeling flexibility

and possible straightforward extensions considering other constraints, including, for example,

sparsity-based priors. Importantly, the proposed models and algorithms have been used for

multiple applications successfully presented in a number of national and international publica-

tions [62,165–167,169], and are also the main subject of a journal article [168].

In the next chapter, we focus on performing numerical experiments to evaluate and compare

the model identification and observation reconstruction performance of the proposed algorithms

under both ideal and non-ideal settings.
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4.1 Introduction

In this chapter we evaluate the performance of the algorithms introduced in the previous chapter

to address the general decomposition model (3.3) under ideal and non-ideal settings. We consider

the three algorithms introduced in the previous chapter, namely ALS-direct, ALS-gradient and

LLOD.

We study and compare the proposed algorithms in terms of parameter identification and

observation reconstruction performance in a variety of experimental settings, including ideal

noiseless settings, cases involving a variable number of decomposition modes and configurations

considering noisy observations and parameters, in order to gain insight into the robustness and

limitations of the proposed algorithms. We further discuss the main contribution of our approach

compared with state-of-the-art methods for the analysis and decomposition of operators.
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Figure 4.1 – Probability density function (PDF) for the normalized mean squared estimation error (nMSE)
for mixing coefficients αnk. Results presented for the ALS algorithm using a gradient descent approach (ALS-
gradient), the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based decomposition of
local linear operators (LLOD). All presented probability distributions where computed using a Gaussian kernel.

We report numerical experiments to evaluate the proposed models and algorithms. We exploit

synthetic data to perform a quantitative analysis of the estimation performance and a sensitivity

analysis w.r.t. key parameters and modeling hypotheses.

4.2 Synthetic dataset generation

We consider synthetic data (xn,yn) so that we are provided with ground-truth data. We proceed

as follows. Mixing coefficients αnk are simulated by means of a clustering-based approach so that

they involve state-dependent variabilities. Elements of linear regression matrices βk are sampled

from a normal distribution N (0, 1), and regression matrices are subsequently normalized. A

cluster-based strategy is used to generate observation pairs, so that Nc cluster centroids xc are

sampled from a multivariate normal distribution N (0, σ2
c I) and Nx clustered observations are

sampled for each cluster from a multivariate normal distributionN (xc, σ2
xI) centered around each

cluster centroid. Mixing coefficients αnk are emulated by sampling the same mixing coefficient

for all observation pairs in a given cluster from a uniform distribution U[0,Gα]. Corresponding

observations yn are then generated by applying model (3.3) to xn.
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Figure 4.2 – Probability density function (PDF) for the normalized mean squared estimation error (nMSE) for
linear modes βk. Results presented for the ALS algorithm using a gradient descent approach (ALS-gradient), the
ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based decomposition of local linear
operators (LLOD). For ALS, two different initialization schemes for αnk are presented: a random initialization
and an initialization based on the binary clustering of observations xn into K classes. All presented probability
distributions where computed using a Gaussian kernel.

4.3 Estimation performance under ideal settings

We first evaluate estimation performance under ideal noise-free conditions, i.e., when no obser-

vation noise is present, which means that noise process ωn in Equation (3.3) represents modeling

error only. Moreover, we consider that all observations pairs within the same cluster share ex-

actly the same operator decomposition, in the sense that no parameter noise in either mixing

coefficients αnk or modal regression matrices βk is considered. The minimal inter-cluster dis-

tance dmin verifies dmin > 6σx, which ensures a nearest neighbour search will only select points

within the same cluster, such that they truly share the same mixing coefficients. All considered

algorithms (ALS-direct, ALS-gradient, LLOD) where applied to a dataset generated considering

I = 30, J = 2, K = 2, Nc = 100, Nx = 300, σ2
c = 1 and σ2

x = d2
min/360. M = 100 nearest neigh-

bours are used to estimate model parameters for each observation pair (xn,yn), with uniform

weighting Wn
m = 1/M,∀n,m. The experience is repeated 100 times and results are averaged over

all runs to ensure statistical significance.

We consider two different initialization schemes for mixing coefficients αnk. The random ini-

tialization involves a random sampling from a uniform distribution U[0,Gα]. The clustering-based

initialization relies on an initial clustering of observations xn into K clusters and a subse-
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Table 4.1 – Error statistics (after convergence) for the different algorithms considered, computed over 100 runs of
the algorithms with randomly generated data.

Parameter Setting Initialization Mean Median Variance

αnk ALS-direct Clustered 7.5371× 10−1 1.1134× 10−2 2.4298× 101

Random 1.5546× 100 1.9618× 10−2 9.2158× 101

ALS-gradient Clustered 1.5744× 10−1 1.2882× 10−1 9.5170× 10−3

Random 1.5194× 10−1 1.2397× 10−1 8.8158× 10−3

LLOD 1.1983× 10−2 9.2061× 10−3 1.1242× 10−4

βk ALS-direct Clustered 2.7868× 10−1 1.4808× 10−2 1.7997× 10−1

Random 2.8436× 10−1 9.7638× 10−3 2.0602× 10−1

ALS-gradient Clustered 3.2184× 10−1 6.4106× 10−2 1.7588× 10−1

Random 2.8090× 10−1 5.9336× 10−2 1.3902× 10−1

LLOD 1.1750× 10−2 8.7974× 10−3 9.9564× 10−5

quent binary assignment of mixing coefficients αnk according to the corresponding cluster [166].

Given that both initializations yield similar results, we focus, unless explicitly specified, on the

clustering-based initialization, which does no require an initial guess of the maximum amplitude

Gα of the mixing coefficients. For completeness, both initialization schemes’ error statistics are

presented in Table 4.1.

Figure 4.1 presents the probability density function (PDF) of the normalized mean squared

estimation error (nMSE) for mixing coefficients αnk, defined as nMSE (αnk, α̂nk) = 1/K ·
∑K
k=1

[∑N
n=1 (αnk − α̂nk)2/

∑N
n=1(αnk)2

]
, with αnk being the real mixing coefficients and α̂nk

being the estimated mixing coefficients. Figure 4.2 presents similar results for linear modes βk.

All PDFs where computed from the 100 simulation runs using a non-parametric Gaussian kernel

based estimation. The dictionary-based LLOD algorithm yields a better reconstruction perfor-

mance for both αnk and βk, with an error PDF presenting higher values around zero and a

rapidly decaying tail for higher error levels. By contrast, the two ALS schemes depict similar

patterns for the estimation of regression matrices βk, with a secondary mode of the PDF centered

around high nMSE values. These patterns indicate that the ALS algorithms do not converge

for a significant fraction of cases. For 11% (resp.12%) of the simulations, the nMSE is greater

than 0.5 for the ALS-direct (resp. ALS-gradient) scheme, whereas it remains at 0% for the

LLOD algorithm. For mixing coefficients αnk, ALS-gradient presents a wider, non-zero-centered

mode, which reflects a lower parameter identification performance. As far as the ALS-direct

is considered, even though it depicts higher probability levels around zero, its PDF presents,

nonetheless, a slowly decaying tail, which reflects a higher instability, with high error values

(greater than 0.5) for a significant percentage (approximately 20%) of the simulations. Of the

considered algorithms, only the LLOD approach displays consistent and stable performance for

the identification of both mixing coefficients αnk and linear modes βk.
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Figure 4.3 – Normalized mean squared estimation error (nMSE) median evolution for mixing coefficients αnk.
Results presented for the ALS algorithm using a gradient descent approach (ALS-gradient), the ALS algorithm
using a direct minimization (ALS-direct) and the dictionary-based decomposition of local linear operators (LLOD).

Estimation statistics reported in Table 4.1 further support these conclusions. For both the

mean, median and variance of the estimation error after convergence (500 iterations), LLOD

outperforms the both ALS algorithms by at least one order of magnitude. Most notably, the

instability of ALS-direct can be observed in the high variance levels and considerable difference

between mean and median values of parameters estimation errors.

Regarding convergence properties, we report in Figures 4.3 and 4.4 the median nMSE (at

convergence) as a function of the iteration number for mixing coefficients αnk and linear modes

βk. The LLOD approach presents a much slower and smoother convergence than the two ALS

schemes for mixing coefficients αnk, while also converging to a lower nMSE value. Conversely, for

linear modes βk, convergence is significantly slower for the ALS-gradient algorithm, while both

the ALS-direct scheme and the LLOD approach present fast convergence towards low nMSE

values. Overall, the ALS-direct scheme depicts a fast convergence (about 10 iterations) for both

parameters, but we may underline that the convergence towards the actual parameters is not

guaranteed as shown above. Regarding the LLOD approach, convergence is reached in about 10

iterations for linear modes βk and 100 iterations for mixing coefficients αnk.

A complementary experiment addresses the evaluation of estimation performance with re-

spect to the number of classes K. We vary the number of classes K = 2, . . . , 10 and generate

observations using the same procedure as previously. The experience is repeated 100 times for
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Figure 4.4 – Normalized mean squared estimation error (nMSE) median evolution for linear modes βk. Results
presented for the ALS algorithm using a gradient descent approach (ALS-gradient), the ALS algorithm using a
direct minimization (ALS-direct) and the dictionary-based decomposition of local linear operators (LLOD).
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Figure 4.5 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for mixing
coefficients αnk as a function of the number of classes K considered. Results presented for the ALS algorithm
using a gradient descent approach (ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct)
and the dictionary-based decomposition of local linear operators (LLOD).
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Figure 4.6 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for linear
modes βk as a function of the number of classes K considered. Results presented for the ALS algorithm using a
gradient descent approach (ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct) and the
dictionary-based decomposition of local linear operators (LLOD).
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Figure 4.7 – Normalized mean squared yn reconstruction error (nMSE) final median value (at convergence) as a
function of the number of classes K considered. Results presented for the ALS algorithm using a gradient descent
approach (ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD).

71



Chapter 4. Algorithm evaluation and benchmarking

each number of classes K and results are averaged over all runs for each value of K. Figures

4.5 and 4.6 present the median nMSE (at convergence) for mixing coefficients αnk and linear

modes βk as a function of the number of classes K, for the different algorithms considered.

We also depict the median nMSE (at convergence) for the reconstruction of variables {yn} in

Figure 4.7. Obtained results show that the LLOD outperforms both variants of the ALS for

the recovery of both mixing coefficients αnk and linear modes βk. As expected, ALS-direct is

the least performant algorithm, which can be explained by a greater numerical instability and

a higher estimation variance. Specifically, results show that the high performance degradation

for K > 3 for ALS-direct is related to the existence of rapid oscillations between multiple local

minima at each iteration, most probably due to the instabilities brought about by the alter-

nating projections onto the constrained and unconstrained solution spaces. Overall, parameter

recovery performance is degraded as K increases, so that we report good parameter recovery

performance only for a low number of classes (K < 4). Reconstruction performance, on the

other hand, is weakly affected by the number of classes K, with low nMSE values for LLOD and

rather poor nMSE levels both ALS variants (and particularly ALS-direct). These results relate

to the identifiability of the model. This identifiability becomes weaker as the number of classes

K increases, since so does the number of parameters to be estimated (given by K(N + IJ)),

while the quantity of available information to estimate these parameters remains constant (since

N , I and J , the number and dimensions of observations xn and yn, remain unchanged).

4.4 Estimation performance with noisy mixing coefficients

We further evaluate the robustness of the proposed algorithms in the case of noisy mixing co-

efficients, that is to say that for a given observation index n in Equation (3.5) not all auxiliary

observations pairs with index m and non-zero coefficients Wn
m may share exactly the same mix-

ing coefficients αnk. The considered experiment proceeds as follows. A random Gaussian noise

is added to the initially cluster-specific mixing coefficients αnk in order to obtain observation-

specific coefficients, which will no longer be shared by observations in the same cluster. To prevent

the existence of negative mixing coefficients due to the addition of Gaussian noise, the initial

cluster-specific mixing coefficients are now sampled from a uniform distribution U[100Gα,101Gα].

This simulation setting implies that the M = 100 nearest-neighbors of sample n involve

varying mixing coefficients, such that model (3.3) does not hold exactly and is only an approxi-

mation. In this respect, parameter similarity for close observations will now depend on the noise

variance and, thus, on the signal-to-noise ratio (SNR) between the generated mixing coefficients

αnk and the added noise. As noise variance increases (SNR decreases), the relationship between

observation similarity (in terms of distance and of belonging to a given cluster) and parameter

similarity becomes weaker. The minimal inter-cluster distance dmin verifies dmin > 6σx, which

ensures a nearest neighbour search will only select points within the same cluster.
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Figure 4.8 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for mixing
coefficients αnk as a function of mixing coefficient signal-to-noise ratio (SNR) when Gaussian noise is added to
cluster-specific mixing coefficients. Results presented for the ALS algorithm using a gradient descent approach
(ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based decompo-
sition of local linear operators (LLOD).

All considered algorithms (ALS-direct, ALS-gradient, LLOD) where applied to a dataset

generated considering I = 30, J = 2, K = 2, Nc = 100, Nx = 300, σ2
c = 1 and σ2

x = d2
min/360.

Again, no observation noise is present, so that noise process ωn in Equation (3.3) represents mod-

eling error only. M = 100 nearest neighbours are used to estimate model parameters for each

observation pair (xn,yn), with uniform weighting Wn
m = 1/M,∀n,m. The experience is repeated

100 times and results are averaged over all runs, to ensure statistical significance. Moreover, these

100 simulation runs are repeated considering varying SNR levels: SNR = {10−1, 100, . . . , 105}.

Figures 4.8 and 4.9 present the median nMSE (at convergence) for mixing coefficients αnk
and linear modes βk as a function of the SNR of mixing coefficients. We also depict the me-

dian nMSE (at convergence) for the reconstruction of variables {yn} in Figure 4.10. The LLOD

approach is clearly the most sensitive to noisy mixing coefficients. Linear modes βk are highly

affected even for low noise levels. For SNR values below 104, the approach converges to linear

modes significantly different from the ground-truth ones. By contrast, the retrieval of mixing

coefficients αnk as well as reconstruction performance for variables {yn} from observations {xn}
seems consistent for SNR levels greater than 101. As far as ALS algorithms are concerned, their

performance is weakly affected by noisy mixing coefficients αnk as illustrated by Figures 4.8 and

4.9. They however lead to poor estimation performance for the identification of linear modes βk

even for SNR values greater than 104. Overall, these experiments suggest identifiability issues
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Figure 4.9 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for linear
modes βk as a function of mixing coefficient signal-to-noise ratio (SNR) when Gaussian noise is added to cluster-
specific mixing coefficients. Results presented for the ALS algorithm using a gradient descent approach (ALS-
gradient), the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based decomposition
of local linear operators (LLOD).

for model (3.3) for noisy mixing coefficients even at high SNR values. It seems that there may

exist a set of estimated linear regression matrices β̂k, different from the true modal regression

matrices βk, that lead to low reconstruction errors (typically nMSE values below 0.01). This im-

plies that the proposed algorithms will be suitable for reconstruction applications, but will also

suffer from non-unique solutions for the identification of regression modes {βk}. Nonetheless,

it is worth noting that the non-uniqueness of the solution will not necessarily prevent the al-

gorithms to be considered for identification/segmentation applications using mixing coefficients

{αnk} as illustrated in [165, 166]. From a computational point of view, one may investigate ad-

ditional constraints or priors onto mixing coefficients αnk and/or linear modes βk to overcome

such identifiability issues.

We further evaluate the extent to which we may account for other noise configurations, es-

pecially when neighbours in the observation space may not share similar mixing patterns. To

study such situations, we simulate possibly overlapping clusters. As such, neighboring observa-

tion pairs (xm,ym) and (xn,yn), which are associated with non-null weighing coefficients Wn
m,

may belong to different clusters and have, hence, different mean mixing coefficients αmk and

αnk. Numerically, we proceed as follows to simulate such datasets. Initial cluster centroids are

sampled from a multivariate Gaussian distribution N (0, σ2
c ). To ensure initial cluster separa-

tion, an additional acceptance/rejection sampling strategy is used to reject all cluster centroids
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Figure 4.10 – Normalized mean squared yn reconstruction error (nMSE) final median value (at convergence)
as a function of mixing coefficient signal-to-noise ratio (SNR) when Gaussian noise is added to cluster-specific
mixing coefficients. Results presented for the ALS algorithm using a gradient descent approach (ALS-gradient),
the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based decomposition of local
linear operators (LLOD).

that are too close to other centroids, according to a minimal distance dmin. Given the Gaus-

sian nature of the centroid sampling distribution, the distance between cluster centroids will

follow a Rayleigh distribution with scale parameter σc. Taking this into account, the minimal

distance is chosen as dmin = σc/e, which ensures a relatively uniform spatial distribution of clus-

ter centroids. For each cluster, we sample observation data {xn} from Gaussian distributions

N (xc, σ2
x) with a standard deviation σx ranging from 1

100dmin to 30
100dmin. For a standard devia-

tion of 1
100dmin, the simulation leads to non-overlapping clusters, whereas overlapping starts to

occur from standard deviation values of 1
6dmin and above. We then evaluate estimation perfor-

mance as a function of parameter λ = 6 σx

dmin
. Figures 4.11 and 4.12 present the median nMSE

(at convergence) for mixing coefficients αnk and linear modes βk as a function of parameter

λ = 6 σx

dmin
. Obtained results indicate, most notably, that ALS-gradient seems to be unable to

correctly recover mixing coefficients αnk as soon as clusters are close enough so that observa-

tions from neighbouring clusters start to intervene in the estimation of model parameters, which

occurs at around σx/dmin = 1/6, i.e. when λ = 6σx/dmin = 1. ALS-direct, on the other hand,

seems more robust to cluster overlapping, with a slightly increasing nMSE as clusters merge.

Moreover, LLOD seems to perform worst in the intermediate variance ranges, where parame-

ters for observations near the cluster edge will be computed using wrongly selected neighbours

from nearby clusters, while parameters for observations closer to the centroid will be estimated

correctly from observations selected from the same cluster. Such behaviour can be also observed
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Figure 4.11 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for mixing
coefficients αnk as a function of the ratio between cluster standard deviation σx and minimal distance dmin

(parameter λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the ALS algorithm using a

gradient descent approach (ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct) and the
dictionary-based decomposition of local linear operators (LLOD).

for the estimation of linear modes βk, whereas ALS-based algorithms seems to remain relatively

robust to cluster overlap for the recovery of regression matrices βk.

Taking all previous considerations into account, it seems clear that ALS-direct should be

used when cluster overlap may exist or when doubts may arise over how many auxiliary obser-

vations should be used and whether the chosen number of auxiliary observations may lead to the

incorrect selection of nearest neighbours from nearby clusters. LLOD, on the other hand, should

be used for cases where cluster overlap and the correct selection of the number of neighbours M

are not an issue, since in such cases it will allow for a better model identification performance,

both in terms of mixing coefficients αnk and linear modes βk.

We specifically investigate robust estimation schemes to improve the performance of LLOD

w.r.t. such overlap patterns. When cluster overlapping occurs, local linear operators Θn for

points near the clusters’ edge are computed using observations from both the current and neigh-

bouring clusters. When compared to local linear operators computed for observations closer to

the cluster centroid (which are estimated using only observations from the current cluster), the

later local linear operators tend to involve considerably larger values and will thus dominate

the dictionary-based decomposition (Equation (3.36)). To tackle this problem, two different

strategies are explored. The first strategy comes to compute the mean mΦ and standard de-
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Figure 4.12 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for linear
modes βk as a function of the ratio between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the ALS algorithm using a gradient descent

approach (ALS-gradient), the ALS algorithm using a direct minimization (ALS-direct) and the dictionary-based
decomposition of local linear operators (LLOD).

viation σΦ of mean values of estimated local linear operators and filter all observations whose

associated local linear operator Θn mean value deviates from mΦ, with cutoff values mΦ ± fc,
where fc = nσΦ, for n = {1, 2, 3}. The second strategy involves the robust estimation of local

linear operators Θn using an iterative re-weighted least squares approach (considering i = 25

iterations) [29].Figures 4.13 and 4.14 present the median nMSE (at convergence) for mixing co-

efficients αnk and linear modes βk as a function of parameter λ = 6 σx

dmin
, for the original LLOD

and for the two robust variants considered. For the sake of simplicity, only the most performant

filtering strategy, namely that considering fc = σΦ, is depicted. Reported results suggest that

both approaches increase the robustness of LLOD, with best results obtained with the filtering

scheme with the lowest cutoff value, closely followed by the robust regression approach, which

has the additional advantage of not discarding any observations. These approaches consistently

improve the working range of LLOD, which we define as the range of values for λ in which

nMSE < 0.1. The working range of the original LLOD is λ ∈ [0,∼1.08], which corresponds to a

maximum overlap (in term of percentage of overlapping points between two clusters) of 0.55%,

while the working range of the robust LLOD variants is λ ∈ [0,∼1.26], which corresponds to a

maximum overlap of 1.73%.
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Figure 4.13 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for mixing
coefficients αnk as a function of the ratio between cluster standard deviation σx and minimal distance dmin

(parameter λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the original dictionary-based

local linear operator decomposition (LLOD) and for two robust variants, namely Filtered LLOD, a filtering of
local linear operators with mean value deviation higher than fc = σΦ (where σ2

Φ is the local linear operator mean
value variance), and Robust LLOD, which involves the iterative re-weighted least squares estimation of local linear
operators Θn.

4.5 Latent class initialization evaluation

Following our initial developments, presented in [166], we evaluate the proposed latent class

model initialization procedures using synthetic datasets and considering the direct minimization

version of ALS (ALS-direct), as it is the simplest parameter characterization solution. We con-

sider the single observation solution formulation (3.7), with an additional focus on comparing

both initialization variants of the ALS algorithm (EM and pseudo-EM) for latent class model

(3.4). We simulate data according to model (3.3), considering I = 3, J = 2, N = 100000, K = 2

and randomly generated mixing coefficients α∗
nk and regression matrices β∗

k, with Gα = 100.

For this experiment, we consider a single cluster of observations xn ∼ N (µ, σ2I), with elements

of µ being drawn from a uniform distribution U[−Gµ,Gµ] with Gµ = 2, and σ2 being drawn

from a uniform distribution U[0,Gσ ] with Gσ = 20. For the generation of observations yn, ωn is

sampled from a multivariate centered normal distribution with a diagonal covariance matrix Σd.

Each element of the diagonal of covariance matrix Σd was sampled from a uniform distribution

U[0,G2
Σd

], with GΣd
= 1. Given that we focus on the single observation formulation, we generate a

different αnk for each observation pair (xn,yn), so that no parametrizations are shared between

any two different observation pairs.
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Figure 4.14 – Normalized mean squared estimation error (nMSE) final median value (at convergence) for linear
modes βk as a function of the ratio between cluster standard deviation σx and minimal distance dmin (parameter
λ = 6 σx

dmin
), for initially non-overlapping clusters. Results presented for the original dictionary-based local linear

operator decomposition (LLOD) and for two robust variants, namely Filtered LLOD, a filtering of local linear
operators with mean value deviation higher than fc = σΦ (where σ2

Φ is the local linear operator mean value
variance), and Robust LLOD, which involves the iterative re-weighted least squares estimation of local linear
operators Θn.

Both versions of the ALS-direct algorithm are then applied to the generated dataset to

estimate its mixing coefficients αnk and regression matrices βk. With a view to characterizing

calibration performance, we analyze the evolution of the normalized mean squared error (nMSE)

between our parameter estimates β̂k and α̂nk and the real parameter values β∗
k and α∗

nk (eαnk

and eβk
) for both variants of the algorithm. The obtained results are presented in Figure 4.15.

We also compute the final log-likelihood L (αnk,βk) =
N∑
n=1

log (p (yn|xn, αnk,βk)) for latent class

initialization model (3.4), and the final relative mean squared error (rMSE, presented as a per-

centage) for the reconstruction of variables {yn}. The results are summarized in Table 4.2.

To further assess the quality of the reconstruction, histograms of the relative mean squared

reconstruction error (rMSE) for the EM and pseudo-EM variants of the considered algorithm

are presented in figure 4.16, with a logarithmic scale for the number of occurrences and line

plots instead of bars to allow for an easier comparison of the two considered variants.

From these results, we can conclude that the proposed algorithm accurately estimates model

parameters with reasonable error statistics (Table 4.2). The EM variant of the algorithm out-

performs the pseudo-EM variant, since it reaches lower error values and higher log-likelihood
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Figure 4.15 – Normalized mean squared parameter estimation errors (nMSE) for the single observation version
of the ALS-direct algorithm (Algorithm 1) applied to a single-cluster ground-truth synthetic dataset without
parameter sharing between observations. Results presented for both the EM and pseudo-EM initialization variants
of the considered algorithm. Reported initialization variants are based on model (3.4), a latent class simplification
of the proposed decomposition model (3.3). Vertical lines indicate the iteration number at which the change between
the EM (pseudo-EM) procedure for the latent class model (3.4) and the ALS procedure for general model (3.3)
occurs. Taken from [166]. c© 2016 IEEE.

80



4.5. Latent class initialization evaluation

Table 4.2 – Estimation features for the single observation version of the ALS-direct algorithm (Algorithm 1) applied
to a single-cluster ground-truth synthetic dataset without parameter sharing between observations. Reported
results include mixing coefficients αnk normalized mean squared estimation error (eαnk

), modal matrices βk

normalized mean squared estimation error (eβk
), final log-likelihood (L (αnk, βk)) for the latent class initialization

using model (3.4), and final relative mean squared error (rMSE, presented as a percentage) for the reconstruction
of variables {yn}. Results presented for both the EM and pseudo-EM initialization variants of the considered
algorithm. Reported initialization variants are based on model (3.4), a latent class simplification of the proposed
decomposition model (3.3). Taken from [166]. c© 2016 IEEE.

EM variant pseudo-EM variant

eαnk
0.19 % 8.02 %

eβk
0.40 % 4.47 %

rMSE 0.07 % 0.48 %
L (αnk,βk) −8.8305× 105 −1.4104× 106
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Figure 4.16 – Relative mean squared reconstruction error (rMSE) histograms for the single observation version
of the ALS-direct algorithm (Algorithm 1) applied to a single-cluster ground-truth synthetic dataset without
parameter sharing between observations. Results presented for both the EM and pseudo-EM initialization variants
of the considered algorithm. Reported initialization variants are based on model (3.4), a latent class simplification
of the proposed decomposition model (3.3).

values (Table 4.2). This result is explained by the fact that the pseudo-EM variant does not

take the covariance structure of estimation residuals into account for the estimation of model
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parameters. As far as reconstruction of observations yn is concerned, the reported relative mean

squared error (rMSE) values (Table 4.2) indicate that both variants have good reconstruction

performance, with a greater accuracy for the EM variant.

Furthermore, to analyze the convergence properties of our two latent class initialization

variants, we study the evolution of the log-likelihood L(i)(β̂k, α̂nk). Convergence is considered

to have been reached once the relative change in log-likelihood ∆L(i) is smaller than a given

threshold λL = 10−4:

∆L(i) =
L
(
β̂ik, α̂

i
nk

)
− L

(
β̂i−1
k , α̂i−1

nk

)

L
(
β̂i−1
k , α̂i−1

nk

) < λL = 10−4 (4.1)

The evolution of the log-likelihood L(i) and the relative change in log-likelihood ∆L(i) (equa-

tion (4.1)) is presented for both the EM and pseudo-EM variants of our algorithm in Figure 4.17.

From Figure 4.17, it may be concluded that the pseudo-EM variant seems to reach conver-

gence faster in general, which may be partially explained by the fact that, contrary to the EM

variant, it does not suffer from numerical instabilities associated with the inversion of a possibly

ill-conditioned or nearly singular covariance matrix.

Taking previous results into account, we conclude that the EM variant of the algorithm

should be used when possible, but in cases where numerical instability problems may arise, the

pseudo-EM variant could be a viable choice. Choosing between these two algorithm variants

implies making a compromise between accuracy and numerical stability and will ultimately

depend on the nature of each specific problem and dataset.

4.6 Conclusion

In the previous chapter, we formally introduced a non-negative additive mixing model for oper-

ators, including a dictionary-based reformulation, and derived associated estimation algorithms.

In this chapter, we performed numerical experiments to evaluate the estimation performance of

the proposed algorithms. Regarding the valorization of our contributions, results reported in this

chapter where presented in an international conference [166] and are, along with the theoret-

ical developments presented in the previous chapter, the subject matter of a journal article [168].

Overall, the dictionary-based decomposition of local linear operators seems to provide the

best performance in terms of model identification, stability and computational complexity un-

der favorable settings. Alternatively, under non-ideal settings, less stable algorithms, such as the

ALS-direct, may nonetheless prove useful for model identification and observation reconstruc-
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Figure 4.17 – Log-likelihood L(i) (top) and relative change in log-likelihood ∆L(i) (bottom) evolution for the single
observation version of the ALS-direct algorithm (Algorithm 1) applied to a single-cluster ground-truth synthetic
dataset without parameter sharing between observations. Results presented for both the EM and pseudo-EM
initialization variants of the considered algorithm. Reported initialization variants are based on model (3.4), a
latent class simplification of the proposed decomposition model (3.3).

tion.

In this respect, reported results suggest the need for additional regularization constraints

or priors to tackle identifiability issues for model (3.3) in non-ideal configurations. Indeed, even

though our experiments suggest that the proposed model and algorithms have good reconstruc-

tion performance in most settings, which makes them suitable for most reconstruction/prediction

issues, model identification appears to be considerably sensitive to non-ideal settings, where the

parameter sharing hypothesis is relaxed or where the number or selection of auxiliary obser-

vations for parameter estimation induces errors. Results also suggest that model identifiability

can be improved by introducing robust estimation approaches for local linear operators and/or

additional model constraints.
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The proposed models and algorithms, however, have been successfully used in both recon-

struction/forecasting and segmentation applications [165, 166, 169], which we will explore in

the following chapter. These applications stress the relevance of the proposed non-negative de-

composition of operators compared with orthogonality-based or latent class settings, which are

considered in most previous works [85,90,116,244].

As far as methodological aspects are concerned, reported results suggest that future work

should focus on developing strategies for increasing model robustness and algorithm performance,

further exploring sparsity and/or other alternative or additional constraints, and identifying and

evaluating new possible applications.
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5.1 Introduction

In the previous chapter, we performed an exhaustive performance analysis of the algorithms

developed to characterize the proposed non-negative linear decomposition model. Reported re-

sults put forward the advantages and limitations of the proposed algorithms, and reveal the

need for the introduction of additional constraints and/or robust regression approaches to deal

with model identifiability issues under non-ideal conditions. Particularly, proposed approaches

seem more suitable for reconstruction applications, as they may involve non-unique solutions

in the context of parameter estimation for model characterization and segmentation. As previ-

ously reported, however, the proposed model and algorithms have been successfully applied in

both segmentation/characterization and reconstruction issues. In this chapter, we present the

application of the proposed algorithms to several problems involving both segmentation and

reconstruction/prediction of system dynamics. We report the advantages of the proposed for-

mulations with respect to state-of-the-art models for a range of inverse problems in physical

oceanography and geosciences.
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5.2 Data-driven forecasting of dynamical systems

We further illustrate the interest of the proposed non-negative linear decomposition model for the

forecasting of dynamical systems using analog forecasting methods [175], which we will further

explore in the second part of this thesis dissertation, most notably in Section 6.3.4. We apply

the proposed blind non-negative local linear operator decomposition to Lorenz ’96 dynamics,

which have been extensively studied in the assimilation and forecasting literature, since they are

representative of chaotic geophysical dynamical systems (e.g., the atmosphere).

5.2.0.1 Data and methodology

Essentially, the Lorenz ’96 dynamical system is a simple forced dissipative system with quadratic

non-linear terms, defined as follows:

∂si

∂t
= (si+1 − si−2) si−1 − si + F ∀i ∈ J1, LK (5.1)

where s is the system’s state vector, F is a forcing constant and the boundary conditions

s−1 = sN−1,s0 = sN and sN+1 = s1 are assumed to be true. Lorenz introduced this multi-

dimensional atmospheric model to study predictability issues in weather forecasting. Despite its

simplicity, the system maintains key physical properties of atmospheric systems, such as dissi-

pation, advection, quadratic non-linearity and external forcing. In this simplified model, each

variable si is associated to the value of an atmospheric variable (e.g. temperature, humidity, etc)

measured along L evenly distributed points around a circle of constant latitude of the earth.

Forcing parameter F models external forcing and, for values F > 8 the system becomes chaotic.

We let the reader refer to [176] for a more detailed description of Lorenz ’96 model. An example

of a typical Lorenz ’96 time series is depicted in Figure 5.3.

Methodologically, we aim at characterizing a linear forecasting operator A (s(t)) to predict

s(t+ ∂t) from s(t)

s(t+ ∂t) = A (s(t)) s(t) (5.2)

Moreover, the characterization of operator A (s(t)) involves the dictionary-based non-negative

decomposition presented in Section 3.4.2, so that operator A (s(t)) is decomposed as the non-

negative superposition of K linear modes:

A (s(t)) =
K∑

k=1

αk (s(t)) βk (5.3)

where αk (s(t)) ∈ R
+ are non-negative mixing coefficients quantifying the contribution of linear

mode k to the reconstruction of s(t+ ∂t) for a given s(t). and βk ∈ R
I×J is a regression matrix

representing mode k.
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Following the principle of analog forecasting, forecasting operator A (s(t)) is to be estimated

by means of a data-driven approach exploiting a catalog of simulations of Lorenz’ 96 time series,

as explained below.

We simulate Lorenz ’96 40-dimensional time series with forcing parameter F = 8 and time

step ∂t = 0.05. We build training and test datasets from independent time series corresponding

respectively to 2×105 and 200 consecutive time steps. Following [161,175], we consider a locally-

linear analog model. It comes to fitting a multivariate linear regression Θn ∈ R
I×J :

yn = Θnxn (5.4)

where, for given time series s and variable index l∗ ∈ J1, 40K, variable xn is given by a 21-

dimensional vector of consecutive variables at time t∗

xn =




s(t∗, l∗ − 10)
...

s(t∗, l)
...

s(t∗, l∗ + 10)




(5.5)

and variable yn corresponds to the 3-dimensional vector of corresponding consecutive variables

at time t∗ + ∂t

yn =




s(t∗ + ∂t, l∗ − 1)

s(t∗ + ∂t, l)

s(t∗ + ∂t, l∗ + 1)


 (5.6)

Following our proposed local linear operator decomposition model, local linear operators Θn

are estimated for each observation pair (yn,xn) under the hypothesis that the nearest obser-

vation pairs in the training dataset, referred to as analogs, share the same Θn. In agreement

with the proposed non-negative local linear operator decomposition model, the estimation of Θn

resorts, numerically, to a weighted least-square estimate from the dataset formed by the analogs

(ym,xm) of pair (yn,xn), the weights accounting for relative similarities.

We illustrate here the application of the proposed non-negative decomposition with K = 4

modes. Given the dictionary {β̂}k learned from the training dataset by means of our proposed

local linear operator decomposition algorithm, we state the analog forecasting operators of the

test dataset according to model (3.31). It resorts to the estimation of mixing coefficients in

model (3.31). More precisely, for the current observation pair (y∗
n,x

∗
n) in the test dataset, the

associated analog forecasting operator involves the non-negative projection of the previously

estimated locally-linear operator Θ∗
n, computed for test observation (y∗

n,x
∗
n) from its M analog

pairs (y∗
m,x

∗
m) in the training dataset, onto the manifold spanned by the estimated modes {β̂}k.
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Figure 5.1 – Illustration of the complete dictionary-based local linear analog forecasting operator non-negative
decomposition. Nearest neighbours are searched (in the train dataset) for observations in the train dataset to
estimate local linear operators, which are then decomposed to obtain a dictionary of modal matrices βk. Local
linear operators are subsequently estimated for observations in the test dataset (new observations) from nearest
neighbours in the train dataset, and then projected onto the manifold spanned by modal matrices βk under non-
negativity constraints. The forecasting for the next time step simply amounts to the application of the projected
linear operator to the current state.

This provides the algorithm with true prediction capabilities, as all local linear operators for

observations in the test dataset are estimated from observations in the train dataset only. The

forecasting for the next time step simply amounts to the application of the projected linear

operator to the current state.

A schema illustrating the complete dictionary-based local linear analog forecasting operator

decomposition approach is presented in Figure 5.1

5.2.0.2 Results

Figure 5.2 illustrates the prediction performance for the decomposition of local linear analog

forecasting operators, for different parameter settings with a focus on variable index l∗ = 20 of

the Lorenz ’96 state. We report the normalized root mean square error (RMSE) of the forecast-

ing as a function of the number of analogs used, for the locally-linear analog forecasting with no

decomposition (full line) and the proposed analog forecasting using a non-negative decomposi-

tion (dashed line). Three scenarios are simulated: i) a noise-free scenario with a large catalog

(N = 2×105 exemplars) (Figure 5.2a), ii) a noisy scenario with a large catalog and noise variance

σ2
noise = 0.1 (Figure 5.2b), iii) a noise-free scenario with a small catalog (N = 2×103 exemplars)
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Figure 5.2 – Forecasting performance of local linear analog forecasting operators: we depict the normalized fore-
casting RMSE vs. the number of analogs used to estimate the locally-linear analog forecasting operator for Lorenz
’96 dynamics for: locally-linear operators (Full line), the proposed non-negative decomposition of locally-linear
operators with K = 4 modes (Dashed line). We consider three experimental settings: a noise-free scenario with a
large catalog of 2 × 105 exemplars, a noisy scenario with a large catalog of 2 × 105 exemplars, a noise-free scenario
with a smaller catalog of 2 × 103 exemplars.

(Figure 5.2c). For illustration purposes, and for the sake of completeness, we also depict in Fig-

ure 5.3 an example of the real Lorenz ’96 time series alongside with the reconstructed Lorenz

’96 for the base case involving a large, noise-free catalog and considering K = 250 neighbours.

Reported results indicate that the non-negative decomposition of local operators in an analog-

based prediction scheme clearly reduces forecasting errors when the analogs are sampled from

a noisy or reduced catalog. This is in agreement with the fact that this decomposition can be

seen as a projection of the original operator into a lower-dimensional space, which makes the

identification of the model feasible for small datasets and improves robustness to noise.
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Figure 5.3 – Illustration of the reconstruction of Lorenz ’96 dynamics using the proposed dictionary-based local
linear analog forecasting operator non-negative decomposition. Real Lorenz ’96 time series alongside with the
reconstructed Lorenz ’96 for the base case involving a large, noise-free catalog and considering K = 250 neighbours.

5.3 Multi-tracer synergies for the characterization of upper ocean

dynamics

5.3.1 Segmentation of upper ocean dynamics from SST/SSS relationships in

the Alboran Sea

We illustrate a second application of the proposed non-negative decomposition to the character-

ization of upper ocean dynamics from the synergy exhibited by different sea surface geophysical

fields, namely sea surface temperature (SST) and sea surface salinity (SSS). As illustrated in

Figure 5.5a, we analyze the relationships between SST and SSS in the Alboran Sea (35◦N -

38◦N ,0◦W - 5◦W ). This region involves strong seasonal patterns associated with the intake of

cold Atlantic water through the Gibraltar strait, which strongly affects the SST signature in the

Alboran Sea and results in a shift from positive to negative correlations between SST and SSS

fields, as can be observed in the time series of the SSS-SST correlation depicted in Figure 5.4.

We expect the proposed non-negative decomposition to capture this seasonal patterns.
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Figure 5.4 – Correlation time series of the considered ground-truth sea surface salinity (SSS) and sea surface
temperature (SST) fields in the Alboran Sea.

5.3.1.1 Data and methodology

For the reported experiments, we exploit 1/16◦ operational Regional Ocean Modeling System

(ROMS) simulations of the Western Mediterranean Operational Forecasting System (WMOP)

numerical model from SOCIB [124,125] from 2009 to 2012. WMOP is a regional reparametriza-

tion of the ROMS general ocean circulation model, nested in the Mediterranean Ocean Forecast-

ing System (MFS), focused on producing high-resolution realistic ocean dynamics simulation in

the Mediterranean Sea.

Following our dictionary-based local linear operator decomposition formulation (3.31), we

analyze the relationships between daily SST and SSS images (Figure 5.5a) using a convolutional

model for 3×3 image patches, which comes to considering SSS pixel values can be approximated

daily by a single shared linear regression Θ(tn) on values from the corresponding 3 × 3 SST

patches, under the hypothesis that all daily patches share the same linear relationship:

SSS(tn, p) = Θ(tn)vec (PSST (tn, p)) , ∀p (5.7)

where SSS(tn, p) is the SSS pixel value at location p for day tn, PSST (tn, p) is the corresponding

3 × 3 SST patch centered at location p for day tn, vec(·) is the matrix vectorization operator

and Θ(tn) is the local linear operator relating daily SSS pixel values to the corresponding SST

patch values.

The estimation of local linear regressions Θ(tn) follows the proposed local linear operator

decomposition model (3.31). Particularly, the choice of auxiliary observation pairs (xm,ym) in

Equation (3.27) relies here on a time domain similarity criterion for neighbour selection, in the

sense that all patches extracted from the same daily SST-SSS image pair at day tn are considered

as auxiliary observations and used for the estimation of local linear operators.
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Daily estimated linear operators are subsequently decomposed into K = 2 modes using the

proposed non-negative local linear operator decomposition (3.31):

Θ(tn) =
K∑

k=1

αk(tn)βk (5.8)

to obtain modal regression matrices βk and non-negative mixing coefficients αk(tn). Given the

learned dictionary, mixing coefficients are then re-estimated directly from SST-SSS observations.

Importantly, it should be noted that, given the time domain locality criterion considered, the

proposed decomposition comes to the analysis and characterization of the temporal variability

of the SST-SSS relationship.

5.3.1.2 Results

Figure 5.5b presents the SSS fields predicted by each mode. The first mode clearly captures

an inversion of the SST, while the second mode captures a sign-coherent SST-SSS relationship.

This is further illustrated in Figure 5.6 by the SST-SSS correlation probability density functions

computed independently, via a Gaussian-kernel estimation, for dates when either one of the

estimated modes are dominant. These results suggest that the proposed decomposition is capable

of accurately separating the two opposite SST-SSS relationships, and demonstrate thus the

relevance of the proposed scheme for the separation of physical processes from multi-tracer

synergies.

5.3.2 Segmentation of upper ocean dynamics from SST/SSH relationships in

the Agulhas region

The main objective of this section is to illustrate the relevance of the proposed models to

investigate and decompose upper ocean dynamics from multi-sensor data synergies, namely sea

surface temperature (SST) and sea surface height (SSH). We recall that, as previously stated,

from a theoretical point of view [131, 143], SST and SSH images are expected to be related

through linear transfer functions that correspond precisely to fractional Laplacian operators

[97,115,132,142,143,244] and can be expressed in the Fourier domain as:

FH(ŜSH) = −γ |k|−2αFT (ŜST) (5.9)

where k is the horizontal wavelength vector, FT and FH are linear filters of SST and SSH

respectively and γ is a normalization coefficient [99, 244]. Varying parameter α, which controls

the effective coupling between SST and SSH, leads to different classical theoretical models [244].

For α = 1/2, for example, one resorts to the surface quasi-geostrophic model [99, 131, 143, 244].

For this application, we consider the direct minimization ALS method introduced in Section

3.3.3.1.
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(a) Simulated fields

(b) Modal SSS predictions

Figure 5.5 – Non-negative decomposition of SST-SSS relationships in the Alboran Sea: (a) Ground-truth SST and
SSS fields on March 22nd, 2011, (b) SST-derived predictions of the SSS fields for each mode of the considered
dictionary-based local linear operator decomposition considering K = 2 modes.
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Figure 5.6 – Distribution of SST-SSS correlation when mode 1 (resp. mode 2) of the two-class dictionary-based
local linear operator decomposition dominates, i.e. αn1 > αn2 (resp. αn2 > αn1).

5.3.2.1 Remote Sensing Data

Following [244], we exploit the same SST-SSH dataset considered therein, which the authors used

to perform the latent class segmentation of upper ocean dynamics. As SSH data, we use the daily

delayed time Maps of Absolute Dynamic Topography (MADT) produced by Collecte Localisa-

tion Satellites (CLS) (available online at http://www.aviso.oceanobs.com/). This information

combines the signal of several altimeters onto a 1/3◦ Mercator projection grid. We consider data

from 2004 since four altimeters were available (Jason-1, Envisat or ERS-2, Topex/Poseidon and

GFO). As SST data, we use optimally interpolated microwave SSTs provided by Remote Sensing

System (RSS) (available online at http://www.ssmi.com/). It combines the signal of three mi-

crowave radiometers (Tropical rainfall measuring missions Microwave Image (TMI), Advanced

Microwave Scanning Radiometer Earth observing system (AMSR-E) and WindSAT) which are

robust to the presence of clouds. The spatial resolution is 1/4◦ × 1/4◦ and the temporal resolu-

tion is the same as the MADT data, i.e. daily. We bilinearly interpolate the MADT data onto

the SST grid.

We focus on the Agulhas region, a dynamical ocean region between longitudes 5◦E to 65◦E

and latitudes 30◦S to 48◦S. Given the joint series of satellite observations, we extract SST

patches (noted as y) and the associated concentric SSH patches (noted as x). Overall, the

processed dataset is composed of approximately 5 × 106 pairs of vectors y and x. To infer the

parameters of the considered model, i.e. mixing coefficients αnk and regression matrices βk for

each dynamical mode in model (3.3), we first build a training dataset as a random sample of
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(a) Latent class regression model

(b) Proposed model

Figure 5.7 – Ocean surface dynamics segmentation. Predicted SSH per mode for the 1st January, 2004. Reported
results correspond to both considered models, namely our proposed non-negative decomposition model and a latent
class regression model introduced in [244], considering K = 2 classes. Taken from [166]. c© 2016 IEEE.
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N = 105 elements taken over the whole year 2004 (for a given day, we use about 2% of the

data to fit the model). In a second step, we apply the inferred model to the entire processed

dataset (which consists of approximately 1.3 × 104 patch pairs for each day of the year 2004)

by considering the trained regression matrices βk and re-estimating mixing coefficients αnk on

a daily basis to extract the spatio-temporal characteristics of the different dynamical modes.

5.3.2.2 Methodology

Following our proposed approach, we consider a generalized linear mixture model where the

relationship between SST and SSH is a non-negative linear combination of K linear regressions.

Given the dimensionality of the problem and involved variables, we consider here the simplified,

single observation formulation of model (3.3), which relates to constrained optimization problem

(3.7). In this respect, a unique mixing coefficient αnk is affected to each observation pair (xn,yn),

with no two pairs sharing the same parametrization. The observation-wise adjustable amplitude

parameters αk ∈ R
+ are here used to take into account local variations in the strength of the

relationships, in a manner similar to coefficient γ in Equation (5.9). In the real domain, rewriting

linear transfer functions as matricial operators and formulating a patch-based combination of

linear regressions, we resort to:

y(si, ti) =
∑

k

αk (si, ti)βk x(si, ti) (5.10)

where y(si, ti) ∈ R
I×1 and x(si, ti) ∈ R

J×1 are vectorized versions of local patches centered at

location si at time ti, as shown in Figure 5.8. The matricial operator βk ∈ R
I×J characterizes the

k-th additive component, which relates SSH and SST fields through a linear filter. It is given by I

vectorized versions of spatial convolution matrices, where
√
I is the considered SSH patch width.

We typically set
√
I = 3 for our experiments, in order to be able to capture two-dimensional

information. Similarly to [244], the SST patch width
√
J is set according to the Rossby radius

of the study region, i.e., the mean size of mesoscale structures. For the Agulhas region, we con-

sidered
√
J = 9 which, at the spatial resolution of the dataset used, corresponds to a Rossby

radius of 200 km. Coefficients αk may be regarded as mixing coefficients for the different dynam-

ical modes in play at a given space-time location. With respect to notations in Equation (5.9),

linear filter βk accounts for both the transfer function in (5.9) as well as linear filters FH and FT .

Similarly to [244], a key aspect here is the choice of the number of classes K, with several

possible criteria for finding an optimal value being proposed in the literature. In our case, em-

pirical results show that for the Agulhas region as few as K = 2 classes suffice to accurately

characterize upper ocean dynamics, with a higher number of classes only resulting in a random

partitioning of a class into several similar sub-classes. Additional modes do not bring significant

improvement in terms of mean square error statistics either.
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Figure 5.8 – Sketch of the considered patch-based representation of the SST field (in degrees represented in false
colors), denoted by x, and the SSH field (in meters represented by contour lines), denoted by y, at locations si

and sj and time ti. Adapted from [244]. c© 2014 IEEE.

We calibrate model parameters using the direct minimization ALS algorithm applied to

the training dataset. The retrieved regression matrices βk are then used as the true regression

matrices for the test dataset, and the ALS algorithm is used with fixed βk to estimate mixing

coefficients αnk for the test dataset. For comparison purposes, we also apply a classical regression

model, a latent class regression model with two classes [244], and a one-mode version of model

(3.3) (i.e., K = 1) to the same datasets.

Spatio-temporal Analysis of Dynamical Modes and SSH Prediction We exploit the

estimated parameters of model (3.3) to perform the spatio-temporal analysis of upper ocean

dynamics. For each day of the year 2004, each term of the non-negative decomposition can be

computed separately to obtain a modal SSH prediction ŷnk:

ŷnk = αnk βk xn (5.11)
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Besides, the computation of the complete non-negative decomposition allows us to perform

a global estimation of a SSH patch from the corresponding SST patch:

ŷn =
K∑

k=1

αnk βk xn (5.12)

Using these tools, we analyze the spatio-temporal variabilities, accuracy and evolution of both

modal and global predictions and prediction errors to evaluate the relevance of the proposed

model for the spatio-temporal analysis and characterization of upper ocean dynamics.

Model Learning with SQG Mode Forcing We introduce an alternative version of model

(5.10) that comes to constrain the first mode of the non-linear decomposition to involve a SQG

transfer function [99, 131, 143]. It amounts to setting the linear regression matrix βk for the

first mode to a matrix associated to a fractional Laplacian operator with α = 1/2. For this

model, parameter estimation proceeds similarly to the ALS approach for generic model (3.3),

except that the regression matrix for the SQG mode is never updated. We use, as numerical

approximation of the fractional Laplacian operator, the regression matrix that best approximates

the Fourier-based transfer function (5.9) in the real domain for the considered patch sizes
√
I

and
√
J .

5.3.2.3 Results

Model comparison and benchmarking We illustrate the intrinsic difference between the

latent class regression model (K = 2) and the proposed model (K = 2) through the contribution

of each mode to the reconstruction of the SSH field (Figure 5.7). Whereas the latent class re-

gression model performs some binary spatial segmentation, the proposed model decomposes the

SSH field according to two additive components: the first one providing a coarse prediction of

the SSH field comprising the mean north-south gradient, the second one consisting of a negative

anomaly along the Agulhas current (the region depicting the greater current values).

These results clearly demonstrate the relevance of the non-negative decomposition. It allows

us to distinguish the form of the retrieved linear relationships between the SST and SSH fields,

i.e. the normalized regression matrices βk, from the local magnitude of these linear relationships,

i.e. the mixing coefficients αnk. This is a key feature, as the local magnitude of the retrieved

linear relationships is expected to vary in space and time, especially in relation to the depth of

the mixing layer. Our model also provides the means to test for the relative relevance of one-

mode against two-mode models. The two-mode model leads to a significant relative improvement

by a factor of 20 (Table 5.1)

.

From a quantitative point view, we report in Table 5.1 the relative mean square error (rMSE,

given as a percentage) for the reconstruction of the SSH field for each considered model. With
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Figure 5.9 – SSH reconstruction error for the 1st January, 2004. Reported results correspond to our proposed
non-negative decomposition model considering K = 2 classes. The Jet colormap was explicitly chosen to enhance
contrast between positive and negative reconstruction error values.

Table 5.1 – Relative mean square error (rMSE, given as a percentage) for the different models considered. [Reported
results correspond to a simple global linear regression; the two-class latent regression model introduced in [244]
and our proposed non-negative decomposition model considering K = 1 and K = 2 classes. Taken from [166]. c©
2016 IEEE.

rMSE

Linear regression 28.69 %
Two-class latent regression model [244] 27.22 %
Proposed model with K = 1 1.67 %
Proposed model with K = 2 0.08 %

respect to [244], the proposed model reduces rRMSE values by a factor of approximately 16

(resp. 340) for the reconstruction considering K = 1 (resp. k = 2) modes.

We further illustrate the reconstruction capabilities of the proposed algorithm by depicting,

in Figure 5.9, the reconstruction error field en = yn − ŷn for the 1st January, 2004. As far

as reconstruction performance is concerned, the proposed formulation allows for the accurate

reconstruction of the SSH field from the observed SST field and the retrieved modal regression

matrices. Indeed, the reconstruction error for the SSH field is relatively small compared to the

ground-truth SSH field. Moreover, higher error values are mostly found in or near the Agulhas

current path. This is to be expected, given that this is the most dynamic part of the region and

involves, thus, the higher local variance. It should also be noted that even though the algorithm

is capable of retrieving and reconstructing most of the Agulhas current dynamics, it is still

unable to completely and accurately reconstruct some smaller scale structures.

SQG Forcing vs. No Forcing We compare SSH prediction statistics for two-mode model

(3.3) with and without SQG forcing for the first mode. We compute the spatio-temporal nor-

malized root-mean squared error (nRMSE) of the global SSH prediction by normalizing SSH

reconstruction RMSE by the standard deviation of the real SSH. The same analysis is performed
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Table 5.2 – Normalized root mean squared error (nRMSE) values for global SSH and SSH gradient predictions
for a two-mode model with and without external SQG forcing, and for a single-mode model without SQG forc-
ing.nRMSE values where calculated by normalizing the spatio-temporal global prediction RMSE for SSH and SSH
gradient fields by the spatio-temporal standard deviation of the real SSH and SSH gradient fields.

SSH SSH gradient

No forcing (K = 2) 0.0297 0.1302
SQG forcing (K = 2) 0.0370 0.1635

No forcing (K = 1) 0.1312 0.3164

for real and predicted SSH gradients. Additionally, we report RMSE statistics for a single mode

model (K = 1) without SQG forcing. Results are summarized in Table 5.2.

We report greater nRMSE values for model (3.3) with SQG forcing compared to model (3.3)

without SQG forcing. Interestingly, the most energetic mode of this second model is highly

correlated to a SQG mode (R2 > 0.95, p < 0.001). These results suggest that SST-SSH obser-

vation data truly embeds SQG-like dynamics as a dominant dynamical mode. We interpret the

improved SSH prediction issued from model (3.3) without SQG forcing as a result of its better

ability to account for the transfer functions applied during SST and SSH pre-processing steps

(e.g., point spread function (PSF) of the instrument, space-time interpolation,etc.). As expected,

model (3.3) considering 2 modes without SQG forcing also clearly outperforms the one-mode

version of model (3.3).

From these results, we select model (3.3) without SQG forcing as our reference model to

further investigate the spatio-temporal variabilities of upper ocean dynamics from SST-SSH

relationships.

Spatio-temporal Distribution and Seasonality We first analyze the temporal variability

of the considered multi-modal SST-SSH decomposition. We report in Figure 5.10 the time series

of daily fraction of variance explained (FVE), computed as 1 − FV U , with FV U being the

fraction of variance unexplained, i.e., the ratio between the reconstruction error variance and

the ground-truth field variance, for SSH and SSH gradient predictions for model (3.3). Except

for one specific day, which may involve specific numerical issues, FVE values show a low variabil-

ity for both cases, with typical values greater than 99.5% for SSH fields and greater than 98%

for SSH gradient fields. The analysis of the FVE for the first mode of the decomposition, i.e.

the SQG-like mode (Figure 5.10, top), indicates that this mode captures the overall meridional

structure of the SSH field and accounts for 80%-85% of the overall variability. Interestingly, it

exhibits a weak seasonal pattern with maximum FVE values in winter, around July and August.

This is in agreement with previous studies [85,115,143,244], as wintertime involves a lower upper

stratification and is expected to depict stronger SQG-like SST-SSH relationships.
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Figure 5.10 – Time series of the daily FVE (Fraction of Variance Explained) for model (3.3): top, SSH prediction
for the first mode (SQG-like mode); middle, global SSH prediction; bottom, global SSH gradient prediction.
FVE is computed as 1 − F V U , with F V U being the fraction of variance unexplained, i.e., the ratio between the
reconstruction error variance and the ground-truth field variance.

To characterize the spatial distribution of the retrieved modes, we present in Figure 5.11 the

mean annual SSH prediction for each mode. The first mode clearly captures a local mean SSH

level, which is consistent with the FVE levels previously reported. The second mode is mainly

active in the strong current area and acts as a negative compensation around the mean value

captured by the first mode. The second mode can be regarded as a local correction to the first

mode so as to more accurately reconstruct the global SSH field at each spatio-temporal location.

The spatial mapping of standard deviation of the SSH prediction error from the first mode in

Figure 5.12 further stresses that the prediction errors to be compensated by the second mode

are mainly located within the frontal region associated with the strongest currents. This is in

agreement with Figure 5.11 (bottom) which clearly highlights a stronger contribution of the

second mode within this area. Effectively, the statistical analysis of the relationship between the

first mode SSH prediction error standard deviation and the second mode SSH prediction reveals

a high correlation (R2 > 0.90, p < 0.001).

Analysis of mixing parameters We further investigate the spatio-temporal distribution

and physical interpretation of model parameters, particularly of mixing coefficients αnk. We

compute the mean annual mapping of the mixing coefficients for each mode for the year 2004

as well as the time series of their daily spatial mean. Results are presented in figures 5.13 and

5.14 respectively.
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Figure 5.11 – Mean annual SSH field prediction for each dynamical mode of model (3.3): top, first mode (SQG-like
mode); bottom, second mode.

Figure 5.12 – Mean annual SSH prediction error standard deviation for the first mode (SQG-like mode) of model
(3.3).

The mean annual spatial distribution of mixing coefficients bears a close resemblance to

mean annual SSH field predictions (Figure (5.11)), which indicates that mixing coefficients are

strongly related to modal SSH predictions (R2 > 0.35, p < 0.001), and to real SSH values for

the first mode (R2 > 0.95, p < 0.001). As far as the daily evolution of the spatial mean of

mixing coefficients is concerned, we can see that both modes are strongly correlated (R2 > 0.80,

p < 0.001), with a common trend shared by both modes. A clear seasonality can also be ob-

served, with higher values for the mixing coefficients in winter, between the months of July and

October, and lower values for the mixing coefficients in summer, between the months of January

and April, as well as clear transition periods in between. Mean second mode mixing coefficients

may involve two plateaus in winter and summer, whereas mean first mode coefficients depict a

102



5.3. Multi-tracer synergies for the characterization of upper ocean dynamics

Figure 5.13 – Mean annual mapping of mixing coefficients α for each dynamical mode of model (3.3): top, mode
1 (SQG-like mode); bottom, mode 2.

more continuous pattern.

To further investigate the interpretation of mixing coefficients αk and better understand

their role in the proposed model, we analyze the time series of the mixing coefficients within

four 1/2◦ × 1/2◦ zones. As detailed in Figure 5.15a, we select two zones within the frontal area,

referred to as active zones, and two zones away from the frontal area, referred to as passive zones.

In figure 5.15b, we report the time series of the daily mean mixing coefficients for each zone

and for the two dynamical modes of model (3.3). For all zones, first mode mixing coefficients

depict a much smaller temporal variability than second mode mixing coefficients. This is in

agreement with the interpretation of the first mode as a mean proxy of the SSH and the second

mode as a local correction. In passive zones, second mode mixing coefficients involve more periods

with very low values, which indicates a weaker local contribution of the second mode in passive

zones with respect to active zones. This might suggest some relationship to the local forcing

of upper ocean dynamics by ocean surface winds [147]. Regarding active zones, both modes

seem to significantly contribute throughout the year. It may also be noted that zones A1 and

P2 depict a clear correlation between the mixing coefficients of the two modes (respectively,

R2 > 0.74, p < 0.001; R2 > 0.34, p < 0.001). By contrast, zone P1 shows a much weaker

correlation and zone A2 even presents anti-correlation patterns. This observation suggests that

the analysis of local space-time patterns of mixing coefficients may provide additional means
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Figure 5.14 – Time series of the daily mean of mixing coefficients α of model (3.3): top, mode 1 (SQG-like mode);
bottom, mode 2.

for the characterization of local upper ocean dynamics, for instance related to vertical mixing

conditions.

5.3.2.4 Conclusion

Applied to the 2004 daily 1/4◦× 1/4◦ satellite SSH and SST data within an active ocean region

off South Africa, our model significantly outperforms the latent class regression model developed

in [244] by more than one order of magnitude in terms of SSH prediction (respectively, 0.08% vs

27.22% for the SSH reconstruction rRMSE). Interestingly, we show that our model retrieves a

first dynamical mode that is strongly correlated to SQG dynamics, i.e. to a fractional Laplacian

transfer function. This dynamical mode accounts for the mean SSH field and captures most

of the spatio-temporal variability of the region (above 80%). By contrast, the application of

a latent class regression model, as in [244], splits this mode into different ones, which can be

interpreted as reparametrization of SQG-like dynamics with different mean mixing coefficient

values. As such, our model provides a simple mean to locally evaluate the extent to which SQG

dynamics apply. This is achieved at the resolution of the considered field, typically 1/4◦× 1/4◦.

By contrast, Fourier-based analyses, as in [85,116], typically consider regional scales. Moreover,

the second dynamical mode acts as a local correction to the first mode. It shows more activity

in the frontal area, where the strongest sea surface currents are observed. These findings truly

support the existence of superimposed dynamical modes, rather than mutually exclusive ones

as assumed in [244]. This seems more in agreement with the expected continuous shift between

ideal SQG-like dynamics and non-SQG dynamics, especially with respect to the space-time vari-
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(a) Considered zones for the analysis of mixing coefficients in model (3.3). The location of
each zone is reported on top of the real SSH annual mean.

(b) Time series of the daily mean of mixing coefficients α for each zone.

Figure 5.15 – Spatio-temporal variability of mixing coefficients α of model (3.3) with respect to four contrasted
zones.

ability of the upper ocean stratification and mixed layer depth [85, 99, 115, 116, 131, 143, 244].

Complementary analyses should be undertaken to fully asses the geophysical interpretability of

the proposed decomposition.

5.4 Conclusion

We presented, throughout this chapter, a variety of applications of the novel non-negative linear

decomposition model to a number of problems in physical oceanography and geosciences. Par-
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ticularly, we focus on the characterization of upper ocean dynamics from satellite-derived ocean

tracers (SST,SSH,SSS) and on reconstruction/forecasting issues for the Lorenz ’96 model.

For each one of the proposed applications, we compared our proposed model and algorithms

to state-of-the-art formulations and presented their advantages with respect to more classical

models. The reported applications clearly illustrate the relevance of the proposed model as an

interesting alternative to more classical formulations involving orthogonality priors or simpler

formulations, such as classical linear regression and latent class models. As far as the valoriza-

tion of our contributions is considered, it is worth mentioning that the applications detailed here

have been successfully presented in a number of national and international conferences [165–167].

With this chapter, we conclude the first part of this thesis dissertation. In the next part,

we distance ourselves from inverse problems in a general sense, a shift our focus towards a

specific type of inverse problem, namely the interpolation of high-resolution sea level anomaly

(SLA) maps from satellite-derived observations. In this context, we initially follow [66] and

explore a reformulation of our non-negative decomposition model as a super-resolution image

processing issue. Subsequently, we develop on the work introduced in [67, 161, 162] and tackle

the problem from a data assimilation point of view. We explore strategies to better exploit

satellite-derived observations and their synergy and also evaluate potential strategies to include

additional oceanic tracers (sea surface temperature, geostrophic currents, etc). The connection

and potential integration between the considered data assimilation methodology and previously

introduced non-negative/sparse operator decomposition approaches is also briefly explored.
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"For me context is the key – from that comes the understanding of everything."

Kenneth Noland
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6.1 Introduction

In the previous chapters, we focused on the extension of constrained blind source separation for-

mulations to the problem of data-driven operator decomposition, with a view towards tackling

inverse problems in a general sense. In the second part of this thesis work, we direct our attention

towards one particular inverse problem, namely the interpolation of high-resolution geophysical

fields (and particularly sea level anomaly fields) from satellite-derived data. In this chapter, we

present the context and motivation behind the idea of exploiting data-driven methods for the

problem of interpolating geophysical fields from satellite data, including a brief description of

satellite altimetry and associated observation datasets, and a review of classical state-of-the-art

geophysical field interpolation models, their hypothesis and limitations.
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Thanks to recent advancements in remote sensing, in situ measurements and numerical

models, an ever increasing amount of data, coming from a wide range of sources, is gathered

daily. However, most of these data sources use different sampling strategies at multiple spatio-

temporal resolutions, and usually involve irregular sampling patterns and missing data due to

cloud occlusion, satellite orbit and track geometry, etc. In this context, the processing of such

datasets to produce gridded gap-free products is of major interest for both research and industry.

As already mentioned, the problem of producing a regularly-gridded field from irregularly-

sampled data belongs to the family of inverse problems, which have been extensively stud-

ied [63, 177, 195, 207]. In ocean sciences, sate-of the-art methods rely on Optimal Interpolation

(OI) [20, 57, 152], a model-driven approach that involves modeling the spatio-temporal covari-

ance structure of the field to be interpolated, usually under the hypothesis that this covariance

structure remains constant in space and time. Such a hypothesis is not always verified, which

leads to a lack of accuracy in the representation of the dynamics of smaller scale structures.

Indeed, the Gaussian assumption inherent to OI techniques causes smaller scale structures to be

smoothed, and it has been verified that it is not possible to recover fine scale structures (between

10-100 km) using OI [34,68,73]. Such limitation also relates to the inherent track separation in

conventional altimeter tracks, governed by the orbit design and sampling strategies of currently

space-borne altimetry missions.

On the other hand, data assimilation techniques [61] have been regarded as a particularly

powerful model-driven tool for the interpolation of high-resolution geophysical fields, provided

that the chosen physical model is sufficiently accurate and does not bear a prohibitive compu-

tational cost. Nowadays, most alternative methods that do not rely on OI or data assimilation

remain mostly model-driven, in spite of the growing availability of massive datasets, issued from

both real remote sensing or in situ observations as well as numerical simulations or reanalysis

issues, that supports the exploration of data-driven approaches as a powerful and efficient alter-

native [67,207].

Here, we follow recent developments [65–67, 162, 207] that, given the great variety of high-

resolution observation, simulation and reanalysis datasets available, explore data-driven strate-

gies as a powerful, computationally efficient alternative to model-based approaches for the in-

terpolation of high-resolution geophysical fields. Data-driven approaches aim, in general, at

exploiting available datasets, which can be considered to accurately depict the spatio-temporal

variability of the fields of interest, to emulate the physical model behind the process of interest

and better capture the spatio-temporal variabilities that may not be accounted for in simplified,

purely numerical models.
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From an operational point of view, among recent advancements in remote sensing, the Surface

Water and Ocean Topography (SWOT) satellite mission, a joint effort between the US National

Aeronautics and Space Administration (NASA), the French Centre Nationale d’Etudes Spatiales

(CNES) and the UK and Canada Space Agencies, aims at providing high resolution altimetry

maps for both hydrology and oceanography. Specifically, the SWOT mission will be the first

mission to exploit Ka-band radar interferometry altimeters producing, for the first time, com-

plete two-dimensional wide-swath satellite tracks [59,74,78], as seen in Figure 6.3. Moreover, the

mission’s unparalleled high spatial resolution (1 km) should allow us to better capture mesoscale

and sub-mesoscale processes [59,74], which constitutes one of the great challenges within current

oceanography research.

In the following chapters, we will attempt to tackle the problem of the data-driven inter-

polation of geophysical fields from different methodological perspectives. Following previously

introduced formulations [66, 169], we will first formulate the problem as a super-resolution im-

age processing issue exploiting convolutional models and extend the dictionary-based local linear

operator decomposition presented in previous chapters to this new problem. Subsequently, we

follow [67, 161, 162] and shift our focus towards data-driven data assimilation formulations. In

preparation for the SWOT mission launch in 2021, we also explore, in subsequent chapters, the

potential of exploiting SWOT-like observations in the context of data-driven methods for the

reconstruction of high-resolution altimetry fields.

6.2 Satellite altimetry

In this section, we present a brief overview of satellite altimetry, including an overview of the

satellite remote sensing technologies and methodology behind the data products to be used

for the interpolation of regularly-gridded, gap free SLA fields, with particular focus on their

spatio-temporal characteristics, noise properties and the fundamental differences between them.

6.2.1 Along-track nadir altimetry

In the last few decades, multiple ocean altimetry missions have been implemented and subse-

quently launched into space, starting from the first generation altimeters such as Seasat (1978)

and Geosat (1985) to currently airborne and operative missions such as Jason 2-3, Sentinel

3A-3B, Cryosat or Saral/Altika. The ocean surface topography (OST) measurements provided

by these altimeters have permitted considerable advancements in our understanding of ocean

dynamics and ocean-atmosphere interactions [72,193,194].

Conventional altimetry missions rely on either traditional radar altimeters or more complex

synthetic aperture radar (SAR) instruments. Both technologies work by emitting radar pulses

towards the ocean surface and measuring the return time ∆t to estimate the ocean surface to-

111



Chapter 6. Context and related work

Figure 6.1 – Comparison of conventional pulse-limited radar altimetry (left) and synthetic aperture radar (SAR)
altimetry (right). Credits: R.K. Raney, Johns Hopkins University Applied Physics Laboratory1. Used with permis-
sion.

pography, with the difference that SAR altimetry performs a batch processing of coherent groups

of multiple pulses transmitted at successive times. In SAR altimetry, successive pulses are trans-

mitted as the satellite moves, and by processing the return time, amplitude, phase and Doppler

frequency a two-dimensional view with higher along-track resolution can be achieved [219]. Fig-

ure 6.11 presents an illustration of conventional and SAR altimetry. As opposed to conventional

altimetry, which only takes measurements directly in the nadir direction, SAR senses each along-

track spatial location as long as it is illuminated by the satellite beam and exploits the satellite

movement to simulate a larger antenna (hence the name synthetic aperture antenna). In this

way, the full Doppler bandwidth (the frequency range of signals produced as a result of the

ocean surface falling in and out of sight of the radar as the satellite moves) is exploited, so that

the power reflected from the ocean surface is more efficiently used, thanks to SAR instruments

not being pulse-limited like traditional single-pulse radar altimeters.

More precisely, satellite altimetry measures the distance between the satellite and the ocean

surface, also known as the altimetric range, by measuring the return time ∆t of an emitted radar

pulse. From the measured altimetric range, multiple ocean tracers can be computed, each one

1 http://www.altimetry.info/radar-altimetry-tutorial/how-altimetry-works/delay-doppler-or-

sar-altimetry/
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Figure 6.2 – Different quantities derived from altimetric measurements with reference to the Earth’s Geoid and
the Ellipsoid. Credits: CLS. Source: duacs. cls. fr

2. Used with permission.

comporting a particular interest for the study of different oceanic processes and phenomena.

Figure 6.22 presents a schema explaining the most relevant tracers that can be obtained from

the satellite-measured distance and other relevant reference levels, such as the geoid (a surface

of equal gravitational potential, perpendicular to the gravity field, and relating to the mean sea

level and the equilibrium position of the ocean) and the reference ellipsoid (the best fit of the

earth true shape). In future chapters, in particular, we will focus on Sea Level Anomaly (SLA),

which can be seen as either variations of the Sea Surface Height (SSH) around the Mean Sea

Surface (MSS) (with reference to the Ellipsoid), or variations of the Absolute Dynamic Topog-

raphy (ADT) around the Mean Dynamic Topography (MDT) (with reference to the Geoid).

The main limitation of conventional altimetry is that it can only produce measures along

the nadir of the satellite track, with a radar altimeter footprint width of around 2-10 km, as

observed in Figure 6.3. This implies that, when compared to other remote sensing data sources

(e.g. microwave sea surface temperature (SST)), conventional altimeter observations may involve

2 https://duacs.cls.fr/faq/different-sea-surface-heights-used-in-altimetry/
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a very scarce sampling of the ocean surface with higher rates of missing data, bigger gaps and

increased sensibility to orbit characteristics such as track separation and revisit time. Indeed,

current generation altimeters have spatial gaps of the order of 100 km between tracks. In par-

ticular, it should be noted that a compromise exists between track separation and revisit time,

with smaller track separation involving longer revisit times and vice-versa. In this respect, no

satellite mission is currently capable of providing high-resolution observations in both space and

time. As far as instrument noise and observation errors are considered, the instrument character-

istics and along-track nature of conventional altimetry induces observation error processes that

can be modeled as centered, white, Gaussian noise processes. In this respect, the covariance of

observation noise for current generation altimetry missions lies in the range σ2
n ∈ [3, 5] cm2 [204].

Preliminary studies on the exploitation of nadir along-track satellite-derived data have proven

that at least two altimeters are needed to accurately resolve the main spatio-temporal scales of

global ocean processes [133], with further studies validating and illustrating this point [50, 51].

In [191], Morrow and Le Traon show that at least three altimeters are needed to capture

mesoscale signals and processes. Subsequent studies exploiting both numerical models and real

satellite data concluded that using up to four altimeters at the same time helps improve the

accuracy and reconstruction power of state-of-the-art interpolation techniques exploiting these

datasets [75,148–151,204]. However, even though experiments combining multiple altimeters al-

low for the reconstruction of scales that would be unattainable using a single altimeter, no com-

bination of current airborne altimeters is capable of completely resolving the smaller mesoscale

(below 50-70 km) [68,73] or the sub-mesoscale processes (below 10 km) [34], which are nonethe-

less crucial to increasing our understanding of a great number of oceanic processes [74]. In

this respect, multiple studies show the importance of sub-mesoscale processes in ocean circu-

lation [31, 74, 144, 258]. In particular, whereas mesoscale processes relate mainly to horizontal

transport, sub-mesoscale processes seem to be associated with stronger vertical velocities and

vorticity magnitudes, and would thus play a particularly important role for the transfer of ocean

properties from the surface and upper ocean to the deep ocean [144]. Moreover, recent studies

show that high-resolution measurements of OST can be used to characterize vertical ocean cur-

rents in the upper ocean [53,132].

In this context, the need for the development of novel altimetry techniques that improve

on current altimeters to enhance their observation capabilities in order to better observe and

resolve OST at smaller scales appears clearly. The Surface Water Ocean Topography (SWOT)

mission, which we discuss in the next section, is one of such new developments, exploiting a

novel wide-swath altimetry principle that will allow for unprecedented horizontal resolution for

the observation of OST.
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(a) Conventional along-track altimetry (b) Wide-swath SWOT altimetry

Figure 6.3 – Comparison of classic nadir along-track observations (6.3a) and off-nadir wide-swath SWOT obser-
vations (6.3b). Adapted from [170]. c© 2019 IEEE.

6.2.2 Surface Water Ocean Topography altimetry mission

The Surface Water Ocean Topography (SWOT) mission is a joint effort between the US Na-

tional Aeronautics and Space Administration (NASA), the French Centre Nationale d’Etudes

Spatiales (CNES) and the UK and Canada Space Agencies, expected to go airborne in 2021. It

aims at simultaneously responding to scientific questions from both hydrology and oceanogra-

phy by providing high resolution altimetry maps for land water masses, rivers, coastal regions

and the global ocean. In preparation for the mission launch in 2021, we also explore, in subse-

quent chapters, the potential of exploiting SWOT-like observations in the context of data-driven

methods for the reconstruction of high-resolution altimetry fields.

6.2.2.1 Wide-swath radar interferometry altimetry

Specifically, the SWOT mission will be the first mission to exploit a novel wide-swath Ka-band

radar interferometry altimeter producing, for the first time, complete two-dimensional off-nadir

wide-swath satellite tracks [59,74,78] as seen in Figure 6.3.

A comparison of along-track nadir-looking altimeters and off-nadir wide-swath interferom-

etry altimeters is presented in Figure 6.53. As observed, the off-nadir track allows for a wider

footprint of the instrument, while a higher resolution can be achieved by exploiting interferom-

etry between two off-nadir radiometers.

The main instrument on the SWOT satellite is a Ka-band radar interferometer (KaRIn),

based on two SAR radiometry antennas mounted on opposite ends of a 10 m boom, as il-

lustrated in Figure 6.4 [76]. The principle used for the interferometry measurement involves

illuminating each swath from a single antenna and measuring the back-scatter for both anten-

nas. The difference in phase between the received signals can then be used to estimate the OST

on the two-dimensional swath. Moreover, in order to have simultaneous measurements for both

3 https://www.aviso.altimetry.fr/en/techniques/altimetry/future-evolutions/interferometers.

html

115

https://www.aviso.altimetry.fr/en/techniques/altimetry/future-evolutions/interferometers.html
https://www.aviso.altimetry.fr/en/techniques/altimetry/future-evolutions/interferometers.html


Chapter 6. Context and related work

Figure 6.4 – SWOT satellite scheme. A 10 m boom separates two SAR antennas. Each antenna receives the
backscatter from both swaths, which are illuminated by a single antenna with two different polarizations (to
have two separate simultaneous measurements). Interferometry is used to estimate the OST for both swaths
from the received backscatter on both antennas. Taken from [76]. c© American Meteorological Society. Used with
permission.

swaths, each one of them is illuminated with a different polarization (horizontal or vertical).

The satellite payload also includes a classic SAR nadir-looking altimeter to obtain simultaneous

nadir along-track OST measurements as well.

The altimetric measurements provided by SWOT will involve two swaths of 50 km, spanning

from 10 km o 60 km in the across-track direction (measured from nadir). This amounts to a total

observation zone spanning 120 km in the cross-track direction, with two 10 km gaps between

the nadir along-track measurement and the interferometer swaths. After post-processing, SWOT

measurements are expected to have an along-track and across-track resolution of 1 km and a total

noise standard deviation of around σSWOT = 1 cm (considering a root-sum-squared (RSS) error

analysis criteria) [54, 59]. Moreover, the proposed orbit for SWOT will involve a gap between

swaths of around 130 km, with a total orbital cycle of around 23 days and a repetitivity subcycle

with a mean revisit period of approximately 10 days. Given the constant track separation and the

varying (spatial) revisit time (which decreases as we move away from the Equator), the proposed

orbit will involve higher track density for higher latitudes (since earth surface also decreases with

latitude). In this respect, the mission’s unparalleled high spatial resolution should allow us to

better capture mesoscale and sub-mesoscale processes [59,74], which constitutes one of the great

challenges within current oceanography research.
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Figure 6.5 – Comparison of along-track nadir-looking altimeters (left) and off-nadir wide-swath interferometry
altimeters (right). The off-nadir track allows for a wider footprint of the instrument, while a higher resolution can
be achieved by exploiting interferometry between two off-nadir radiometers. Credits: AVISO3. Used with permission.

6.2.2.2 Noise sources in SWOT

One of the main limitations concerning the future SWOT mission involves the numerous sources

of error associated with radar interferometry measurements.

Indeed, given the instrument characteristics and the geometric nature of the wide-swath

radar interferometry measurements, SWOT will be subjected to different error sources, with

two main type of errors being identified. Below we specify the most relevant error sources. We

refer the interested reader to [59] for an in-depth discussion of all the error sources identified for

SWOT and to [78] for details concerning their numerical simulation. Additionally, most error

sources specified below are also taken into account in realistic numerical simulations of SWOT

observations [78].

Instrumental errors:

• KaRIn instrument noise: the observation error associated with the KaRIn interferom-

eter radar instruments is a centered, uncorrelated white Gaussian noise, whose variance

depends on the ocean significant wave height (SWH) and on cell (pixel) surface, and hence

on the distance to nadir (since pixel size increases as we move away from nadir).

• Roll errors: It corresponds to errors introduced due to uncertainties in the satellite roll

estimation (roll knowledge/gyro error) or due to uncertainties in roll corrections performed

during the stabilization of the satellite (roll control error). Given the geometrical nature

of this error, it is a spatially correlated random process in the across-track direction.

• Phase errors: It involves uncertainties due to changes in the relative phase between the

two back-scatter signal pairs in the interferometric pair [59]. It may be introduced by radar
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electronic systems, mechanical/thermal antenna systems and/or multi-path in the back-

scatter signal or external signals. Statistically, this noise presents a uniform distribution

over each swath and is decorrelated between the two swaths.

• Baseline dilation errors: relates to uncertainties in the baseline (distance between the

two SAR antennas) due to physical changes in the boom on which the antennas are

mounted (thermal or mechanical dilation/contraction). Given its nature, it is a correlated

error in the cross-track direction.

• Timing errors: Associated with uncertainties in the measurement of return times for

the interferometry measurements. Given that the look angle variation is small across the

swath, a timing error will involve a constant height bias across the swath [59]. The timing

error is thus correlated and constant in the across-track direction.

Geophysical errors:

• Wet troposphere errors: Involves uncertainties due to delay in the radar signal in-

troduced by water vapor in the atmosphere. It is the major geophysical source or error.

Statistically, it is characterized by a uniform phase distribution.

• Dry troposphere errors: Involves uncertainties due to delay in the radar signal intro-

duced by ’dry’ gases in the troposphere. This error source is not simulated in [78].

• Ionosphere errors: Involves uncertainties due to delay in the radar signal introduced by

electromagnetic dispersion in the ionosphere. This error source is not simulated in [78].

• Sea state bias: relates to bias introduced by local changes in the electromagnetic reflec-

tivity of the ocean surface due to wave crests and troughs (since reflectivity is higher for

wave troughs). This error source is not simulated in [78].

Among these sources of errors, KaRIn instrument noise, roll and phase errors and wet tro-

posphere errors are the strongest and most relevant. It should also be noted that many of these

error sources are correlated, which introduces additional difficulties and limitations for the ex-

ploitation of SWOT observations for the interpolation of high-resolution SLA fields.

6.3 Geophysical field interpolation

We dedicate this section to providing a brief introduction of the most widely used approaches

for the interpolation of geophysical fields in the context of oceanography and geosciences appli-

cations.
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6.3.1 Exemplar-based methods

Initially developed for image processing issues, patch-based and exemplar-based models rely on

the representation of images using a dictionary of representative exemplars extracted from the

considered dataset. Among these approaches, non-local means and non-local priors [25,207] have

recently known some success in remote sensing applications [63, 177]. Importantly, integrating

these approaches into data assimilation formulations led to the development of analog data

assimilation [89, 161, 243], which we formulate later within this Section as a data assimilation

issue.

6.3.2 Projection-based methods

Projection-based approaches have recently been applied successfully to the interpolation of geo-

physical fields. They involve the data-driven computation of a set of basis functions providing

a low-dimensional representation of the considered dataset, and the interpolation of missing

values by exploiting a projection onto the estimated basis functions. Among these approaches,

orthogonal projection approaches such as Data Interpolating Empirical Orthogonal Functions

(DINEOF) [8] and Variable EOFs DINEOF (VE-DINEOF) [213] have been particularly suc-

cessful in remote sensing interpolation issues. However, given that orthogonal decompositions

may not be fully geophysically-consistent, alternative constraints for projections, such as non-

negativity, have also been explored in the context of geophysical field interpolation [169].

6.3.2.1 Multi-scale VE-DINEOF

VE-DINEOF [213] is a state-of-the-art data-driven approach for the interpolation of irregularly-

sampled geophysical fields that relies on an EOF [90,206] decomposition. The principle behind

this approach is simple, and involves an iterative procedure in which, at each iteration, missing

data values are reconstructed by exploiting an EOF decomposition of the field of interest (with

missing values being set to zero for the computation of EOFs). While the number of EOFs

considered for the interpolation of missing values is increased sequentially at each iteration in

classical DINEOF, VE-DINEOF relies on an improved formulation in which the number of

EOFs used for missing data interpolation is optimized at each iteration using cross-validation.

Furthermore, in [162] we introduced Multi-scale Variable EOFs DINEOF (MS-VE-DINEOF),

a multi-scale, patch-based version of VE-DINEOF. This new formulation was developed to

ensure a fair comparison between VE-DINEOF and AnDA in the context of the interpolation

of geophysical fields.

6.3.3 Data assimilation

Data assimilation refers, in a general way, to methods aimed at combining the equations gov-

erning the behaviour of a dynamical system (which ultimately determine a numerical model)
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with observations conveying information related to such dynamical system, which can be either

direct observations of the system state variables, or a function of such state variables. The objec-

tive is to improve reconstruction/forecasting performance of the numerical model by exploiting

the additional information introduced by observations. Formally, a state-space formulation is

used [61]: 



x(t) = M (x(t− δt)) + ǫ(t)

y(t) = H (x(t),Ω(t)) + η(t)
(6.1)

where t is a discrete time index, x is the hidden state sequence to be reconstructed and y is the

observed data sequence.M is a dynamical model relating the current state x(t) to the previous

state x(t− δt). H is an observation operator, where Ω(t) is a mask accounting for missing data

at time t and ǫ(t) and η(t) are random noise processes accounting for modeling and observation

uncertainties.

In classical data assimilation, modelM is applied at each time step to produce an initial fore-

cast xf . This forecast is then corrected using observation y(t) to produce an improved forecast,

usually referred to as the analysis xa. The assimilation of observation y(t) to produce analysis

xa can be achieved by means of either stochastic approaches (such as Kalman [127] or parti-

cle filters [86]) aiming at producing the maximum a posteriori estimate (i.e. the most probable

state) given the current state and observation sequence, or variational approaches (such as as

3DVAR [173]) aiming at optimizing a cost function (that penalizes observation error), by means

of gradient-descent approaches, to produce an improved prediction xa. For cases considering both

a linear modelM = M and a linear observation operator H = H subject to centered, Gaussian

noises η(t) and ǫ(t), both stochastic and variational data assimilation produce equivalent results,

boiling down to an optimal estimation of the analysis xa(t) in a minimum-mean-square-error

(MMSE) sense. Comparatively, however, stochastic data assimilation approaches have the ad-

vantage that, since they are formulated within a probabilistic Bayesian framework, they allow

for the characterization of uncertainty, thus not only producing an improved prediction, but also

characterizing its probability distribution and allowing for the computation of prediction and

model uncertainty.

Data assimilation has been classically used in geosciences for the interpolation of geophysi-

cal fields from irregularly-sampled satellite-derived observations, for example sea level anomaly

(SLA) fields [153, 204]. Optimal Interpolation (OI), which relies on linearity and Gaussianity

hypothesis, is certainly the most widely used framework.

In the reminder of this section, we introduce the most relevant data assimilation methods,

namely the classic Kalman Filter, the Ensemble Kalman Filter, introduced as an extension of

the classic Kalman Filter for high-dimensional, non-linear systems, and Optimal Interpolation,

the most popular state-of-the-art method for the interpolation of geophysical fields.
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6.3.3.1 Kalman Filter

The Kalman filter [127] is probably the most widely used approach for data assimilation, despite

the fact that it involves considerably restrictive hypotheses, including linearity of both the model

operatorM = M and the observation operator H = H, and Gaussianity of both the model error

ǫ(t) and the observation error η(t), with known covariance matrices B and R respectively.

Under these hypotheses, the Kalman filter provides recursive expressions for the characteri-

zation of the probability distribution P (x(t)|Y1:t) of the state x(t) given the series of past noisy

observations Y1:t = [y(1), . . . ,y(t)], assuming all model parameters are known. In the condi-

tions given by the Kalman filter hypotheses, P (x(t)|Y1:t) is a Gaussian distribution, so that

the Kalman filter characterizes such distribution by giving expressions for its mean x̂t|t (i.e. the

mean state x(t) at time t given all previous observations Y1:t) ) and its associated covariance

matrix Pt|t.

Methodologically, the Kalman filter resorts to the computation of the MMSE estimation of

state x(t) which, in the context of stochastic data assimilation, is given by the mean state x̂t|t
being determined by the conditional expectation of xt = x(t) given all previous observations

Y1:t:

x̂t|t = E[xt|Y1:t] (6.2)

Developing on this expression and exploiting the Gaussian assumptions of the Kalman formu-

lation, the Kalman recursion can be derived. We refer the reader to [127] for derivation details.

The Kalman recursion involves two steps that are repeated until convergence.

• Prediction step: Involves applying model M to obtain the estimation of forecast x̂t|t−1

given the previous analysis x̂t−1|t−1 and all past observations up to time t − 1, and the

computation of the associated covariance matrix Pt|t−1.

x̂t|t−1 = Mx̂t−1|t−1 (6.3)

Pt|t−1 = MPt−1|t−1MT + B (6.4)

• Update step: Involves exploiting the Gaussian assumptions to compute the Kalman

gain Kt and assimilate current observation yt to obtain analysis x̂t|t and its associated

covariance matrix Pt|t.

Kt = Pt|t−1HT
(
HPt|t−1HT + R

)−1
(6.5)

x̂t|t = x̂t|t−1 + Kt

(
yt −Hxt|t−1

)
(6.6)

Pt|t = (I−KtH) Pt|t−1 (6.7)
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It should be noted that similar recursions can be defined by considering all past and future

observations Y1:T = [y(1), . . . ,y(T )], thus allowing for the processing of entire datasets in order

to exploit all information within an observation time series (past and future) to improve state

dynamics reconstruction. Such schemes are known as Kalman smoothers, and usually involve

a forward pass in which past observations are used to correct current state predictions, as in

a standard Kalman filter, and a backward pass in which time is inverted and the procedure is

repeated backwards, so that future observations are exploited to correct past estimations of the

system state.

The inherent limitations of the Kalman filter associated with the strongly restrictive Gaus-

sian, linear hypotheses motivated the development of numerous extensions more suitable to

address more complex situations. For the proposed approaches we will exploit in this thesis

work, we rely on one of such extensions, namely the Ensemble Kalman Filter [27,61].

6.3.3.2 Ensemble Kalman Filter

As previously stated, the interpolation of geophysical fields may involve non-linear dynamical

models M. Additionally, given the high-dimensional nature of most geophysical datasets, the

use of Kalman filters is usually not possible, given the prohibitive computational cost associ-

ated with high-dimensionality, particularly for matrix inversions and storage. To tackle these

shortcomings, several extensions of the Kalman filter have been proposed. In geosciences, the

Ensemble Kalman filter [27,60,61] is particularly appealing given its simplicity and straightfor-

ward implementation.

The basic principle behind the Ensemble Kalman filter relies on the Gaussianity hypothesis,

particularly for the filtering posterior distribution P (x(t)|Y1:t). Indeed, the Ensemble Kalman

filter relies on Monte Carlo simulations to estimate the mean and covariance of the filtering

posterior distribution, as opposed to computing it directly as in a classic Kalman filter. Similarly

to a Kalman filter, the Ensemble Kalman filter starts by considering an initialization relating

to the initial prior distribution of the system state vector, and then proceeds by sampling an

ensemble of Gaussian vectors x
f
i (0) ∼ N (x(0),B)∀i = 1, . . . , N (called members). It then

iterates prediction and update steps exploiting Monte Carlo simulations based on this ensemble:

• Prediction step: Involves applying model M to ensemble members to generate a new

ensemble x
f
i (t) and estimating the forecast xf (y) and its covariance matrix Pf (t) from the

new ensemble.

xf (t) =
1
N

N∑

i=1

x
f
i (t) (6.8)

Pf (t) =
1

N − 1

N∑

i=1

[
x
f
i (t)− xf (t)

] [
x
f
i (t)− xf (t)

]T
(6.9)
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• Update step: Involves computing the Kalman gain Ka(t), generating an ensemble of

samples y
f
i (t) ∼ N

(
Hxf (t),R

)
∀i = 1, . . . , N , and exploiting these samples and observa-

tions y(t) to update ensemble members and characterize the filtering posterior distribution

P (x(t)|Y1:t) from the updated ensemble.

Ka(t) = Pf (t)HT
[
HPfHT + R

]−1
(6.10)

xai (t) = x
f
i (t) + Ka(t)

(
y(t)− y

f
i (t)

)
(6.11)

xa(t) =
1
N

N∑

i=1

xai (t) (6.12)

Pa(t) =
1

N − 1

N∑

i=1

[xai (t)− xa(t)] [xai (t)− xa(t)]T (6.13)

As with the Kalman filter, an Ensemble Kalman smoother can be derived by starting at t = T

and running a backward pass in time, with the particularity that, for each time t, the update

step involves the computation of a Kalman smoother gain Ks(t) = Pa(t)MT
[
Pf (t+ 1)

]−1
, so

that Pa(t)M needs to be estimated as the sample covariance of ensemble members for cases

where operator M is not linear [208,245].

Compared to a classic Kalman filter, it has been proven that for linear dynamical systems M

and observation operators H with Gaussian uncertainties ǫ(t) and η(t), the Ensemble Kalman

Filter converges to the same solution as the Kalman filter. This is, however, not true for cases

involving non-linear systems or non-Gaussian uncertainties [146].

6.3.3.3 Optimal Interpolation

Optimal Interpolation (OI), also known as Objective Analysis, is among the most widely used

data assimilation techniques in oceanography and meteorology. It was first introduced by Gandin

in [141] for meteorological applications and latter applied in the context of physical oceanogra-

phy in [20]. Numerous currently available ocean datasets, e.g. CMEMS altimetry data products,

are produced by exploiting optimal interpolation.

Methodologically, OI relies on a Bayesian formulation to derive the Maximum A Posteriori

(MAP) estimate of an irregularly sampled field x, under the hypothesis that it follows a Gaus-

sian distribution with a constant covariance matrix and that the observation operator H = H

is linear. In this respect, the length of the considered covariance structure will then represent

a trade-off between model locality, relating to fine scale reconstruction, and observation avail-

ability, relating to the size of the gaps to be filled. It may be noted that the Kalman smoother

provides a sequential solution of the OI problem.
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Indeed, under the assumption that model error ǫ and observation error η are uncorrelated,

and that their respective covariance matrices B and R are known, OI aims at finding the best

linear unbiased estimation at each time step t:

x(t) = x(t− δt) + K(y(t)−Hx(t− δt)) (6.14)

where the objective is to estimate the optimal weight matrix K. In the context of stochastic

data assimilation, and given the Gaussian and linear hypothesis, the optimal weighting matrix

K is given by:

K = E
[
(x(t)− x(t− δt))(y(t)−Hx(t− δt))T

]
E
[
(y(t)−Hx(t− δt))(y(t)−Hx(t− δt))T

]−1

(6.15)

= E
[
(ǫ(t)(η(t)−Hǫ(t))T )

]
E
[
(η(t)−Hǫ(t))(η(t)−Hǫ(t))T

]−1
(6.16)

= E
[
ǫ(t)ǫ(t)T

]
HT

(
E
[
η(t)η(t)T

]
+ HE

[
ǫ(t)ǫ(t)T

]
HT

)−1
(6.17)

= BHT
(
R + HBHT

)−1
(6.18)

which is in agreement with the result obtained with a Kalman filter in the context of a Gaussian,

linear problem.

Even though OI was originally formulated in the context of stochastic data assimilation, it

should be noted that, since OI assumes the Gaussian and linear hypotheses to hold true, the

same result can be obtained by means of a variational data assimilation techniques minimizing

the following cost function:

C(x) = [x(t)−x(t−δt)]B−1[x(t)−x(t−δt)]+ [y(t)−Hx(t−δt)]R−1[y(t)−Hx(t−δt)] (6.19)

Finally, given that the Gaussian hypothesis involves spatio-temporally invariant mean co-

variance structures that tend to smooth out fine scale details, it should be expected that OI will

not be able to fully exploit high-resolution information available within observation datasets

associated with both current and/or future altimetry missions, such as SWOT. In this respect,

considerable efforts are being made to improve OI [57] or find alternative approaches [67,162,257].

Escudier et al. [57], for example, propose to improve OI by considering an additional bathymetry

constraint. Following these efforts, we will focus in the following chapters on completely data-

driven approaches that exploit available observations to emulate dynamical model M, thus

avoiding the use of restrictive model hypothesis, such as spatio-temporally invariant covariance

structures.

6.3.4 Analog Forecasting

As previously stated, in the following chapters we will focus on data-driven approaches for the

interpolation of geophysical fields. The approaches we will consider for this purpose rely on the
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principle of analog forecasting, which we will briefly introduce here.

Analog forecasting is a data-driven forecasting technique first introduced by Lorenz in the

context of atmospheric forecasting [175]. The principle behind analog forecasting relies on ex-

ploiting an ensemble of past observations of system dynamics x to obtain a forecast. In this sense,

the implementation of analog forecasting is simple and straightforward, and consists in finding

similar situations (or analogs) to current state x(t) within the ensemble of past system dynam-

ics, retrieve the future state associated with the analogs (called the successors) and exploit this

information to produce a forecast. Once the analogs and successors have been retrieved, models

of varying complexity can be formulated on the base of these analogs and successors.

The two main components involved in an analog forecasting scheme, independently of the

complexity of the analog model considered, are the catalog of past observations (or simulations)

of state x and a distance measure. The catalog must be large enough to be representative of the

complete system dynamics, so that sufficiently similar analogs can be found, specially given that

the probability of finding a perfect analog is small [175]. The choice of the distance measure is

also important, with the selection of analogs, and hence the results, being considerably affected

by the choice of the distance.

Methodologically, the principle of analog forecasting bears close resemblance to classical

approaches such as K nearest neighbours (KNN), non-local means [25,207] and local linear em-

bedding (LLE) [222]. Similarly to these related techniques, analog forecasting strongly depends

on the correct selection of analogs, and is thus considerably sensitive to the curse of dimension-

ality. In this respect, the exploitation of analog forecasting schemes when high-dimensional data

is considered usually requires the previous application of a dimensionality reduction technique,

such as PCA [90,206].

6.3.5 AnDA: The analog data assimilation framework

The analog data assimilation (AnDA) [161] was introduced as a data-driven alternative to clas-

sical data assimilation, and should allow us to tackle the fact that classical data assimilation

strongly depends on the accuracy and computational efficiency of numerical model M. AnDA

is based on the hypothesis that dynamical modelM can be emulated by exploiting a catalog of

realistic observations/simulations of the dynamical system.

In this way, at each time step, dynamical model M is replaced by a data-driven numerical

approximation, thus replacing the model-based forecasting step with a data-driven alternative.
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Formally, this boils down to the following state-space formulation:





x(t) = F (x(t− δt)) + ǫ(t)

y(t) = H (x(t),Ω(t)) + η(t)
(6.20)

where t is a discrete time index, x is the hidden state sequence to be reconstructed and y is

the observed data sequence. H is an observation operator, where Ω(t) is a mask accounting for

missing data at time t and ǫ(t) and η(t) are random noise processes accounting for modeling and

observation uncertainties. Compared to classical data assimilation model (6.1), this new formu-

lation introduces F , an analog forecasting operator that exploits analog forecasting techniques

to emulate dynamical model M in formulation (6.1). Specifically, for current system state x,

and assuming a catalog of past state dynamics large enough to accurately depict the underlying

processes is available, operator F is built from the K most similar states to x within the cata-

log, referred to as analogs. Given that the future state of these analogs, known as successors, is

known and exists within the catalog, this information can be used to adjust a forecasting model

that can be subsequently applied to the current state x to obtain forecast xf . In this respect,

the procedure relies on the similarity between the current state x and simulated states stored

in the catalog.

In the context of stochastic data assimilation, the analog forecasting operator F involves

the data-driven characterization of the transition probability between analogs and successors

p(x(t)|x(t− δt)), so that the analog forecast xf is obtained by sampling from the estimated dis-

tribution. Assuming a Gaussian prior x(t)|x(t − δt) ∼ N (µt,Σt), as in [161], the mean µt and

covariance matrix Σt are estimated from the K nearest neighbours of the current system state

within the catalog. Multiple strategies can be used for the estimation of these parameters, and

we refer the reader to [67,161,162] for an in-depth discussion. Here, we shall consider a locally-

linear model that involves fitting a weighted linear regression between the K nearest analogs and

their successors. The fitted linear regression is then applied to the current state to obtain mean

µt. Covariance matrix Σt then comes to the empirical covariance of the residuals of the fitted

linear regression. In this formulation, linear regression weights are introduced to account for the

distance between the current state and its analog within the catalog, so that closer analogs will

have a stronger contribution to the estimation of the forecasting linear regression. To this end,

following [162], a Gaussian kernel, normalized by the median distance between analogs and the

current system state, is used.

Once this step is completed, analog data assimilation proceeds similarly to classical data

assimilation and exploits a stochastic scheme to combine forecast xf with observation y and

produce the analysis xa. In our current implementation, we consider an Ensemble Kalman fil-

ter/smoother (EnKFS) to assimilate partial observations sampled at a δt time step.
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The application of the proposed framework to the reconstruction of high-resolution geophys-

ical fields from irregularly-sampled data requires, however, the implementation of a number of

strategies to deal with both the two-dimensional geometry as well as the high-dimensional nature

of the data, as discussed in the following section.

6.3.5.1 Multi-scale patch-based analog data assimilation for high-dimensional geo-

physical fields

6.3.5.2 Multi-scale decomposition

Given that we focus on resolving smaller scales not resolved by current methods, and that OI

already provides an efficient way of estimating large scale dynamics, AnDA follows classical scale

space decomposition principles [182] and exploits a multi-scale decomposition:

x = x̄ + dx + ζ (6.21)

so that larger scales x̄ are resolved by means of an OI scheme, while the reconstruction of the

anomaly field dx relies on the proposed analog data assimilation, with unresolved scales being

represented by ζ.

6.3.5.3 Patch-based state space formulation

Following recent advancements in image processing [63,207] and data assimilation [67] issues, the

two-dimensional nature of the considered data is tackled by extracting and vectorizing Wp×Wp

overlapping patches of anomaly field dx = x − x̄. We consider overlapping patches, so that

the analog data assimilation is thus performed independently at the patch level, with the final

anomaly field reconstruction being obtained by means of a simple overlapping patch averaging

scheme. We denote a patch centered at position s at time t as P(s, t).

6.3.5.4 EOF-based representation of patches

Depending on the chosen patch size Wp, the vectorized anomaly patches p(s, t) = vec(P(s, t))

may probably involve a high number of dimensions. This is particularly problematic for the

proposed framework, given that the analog forecasting is highly sensitive to the curse of di-

mensionality, as it relies on a K nearest neighbour search, with the relevance of the neighbour

selection being highly degraded as dimension increases. To deal with this drawback, an EOF-

based decomposition [90] of vectorized anomaly patches p(s, t) is used:

p(s, t) =
NEOF∑

k=1

αk(s, t)Bk (6.22)

where Bk are the EOF basis functions learned from the ensemble of all patches p(s, ·) at loca-

tion s, and αk(s, t) are the coefficients of the decomposition of patch p(s, t), at location s and
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time t, onto these EOF basis functions. At each location, only the NEOF strongest EOF basis

functions are retained, so that analog data assimilation is subsequently performed on coefficients

αk(s, t) representing each patch decomposition onto its locally computed EOF basis functions.

In this way, analog forecasting (including the nearest neighbour search) and data assimilation

are performed on the projection of patches p(s, t) onto a lower-dimensional space of their EOF-

based representation, given by coefficients αk(s, t), rather than on the high-dimensional space

of patches p(s, t).

It should be noted that even though the original AnDA framework exploits PCA-based

decompositions for the dimensionality reduction of vectorized patches, it is possible to con-

sider alternative decomposition models exploiting different constraints, such as sparsity or non-

negativity. In this respect, depending on the dataset considered, alternative constraints may

indeed allow for a more performant decomposition involving fewer dimensions or a more inter-

pretable decomposition giving coefficients αk(s, t) a physical spatio-temporal signification. To

this end, one may indeed exploit blind source separation models and algorithms similar to those

introduced in the first part of this thesis dissertation.

6.4 Conclusion

In this chapter, we presented the context and set the methodological bases for the problem of

the interpolation of high-dimensional geophysical fields, and more particularly of SLA fields,

from irregularly sampled satellite-derived data.

We briefly explained the state-of-the-art methods used to tackle this problem, their basic

working principles and limitations, and illustrated the need for more data-driven approaches in

this era of big data pouring from space. We also introduced the two main type of altimetry data

we will consider and explained their characteristics and fundamental differences. Importantly,

we will focus, on this second part of this thesis dissertation, on wide-swath altimeter data, with

a view towards the future SWOT mission to be launched in 2021.

In the next chapters, we will build on the concepts presented here to tackle the data-driven

interpolation of SLA fields from satellite-derived altimetry data. In particular, we will exploit

and compare approaches based on both non-negative decomposition models for convolutional

operators, as introduced in [66, 169] and presented in the first part of this work, and on de-

velopments recently introduced in [67, 161, 162] for the data-driven analog data assimilation of

irregularly-sampled observations and its application to the interpolation of high-dimensional

geophysical fields.
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7.1 Introduction

In this chapter, we focus on the application of the models and methods introduced in the first

part of this thesis to the problem of the data-driven interpolation of SLA fields from irregularly-

sampled satellite-derived observations.

To this end, we follow [63,66,169] and reformulate the problem as an image super-resolution

issue and exploit the proposed decomposition models for the decomposition of super-resolution
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convolutional models. The decomposition is exploited as a means to locally-adapt the super-

resolution operator to smaller spatial domains, thus increasing model locality and reconstruc-

tion performance. We also explore alternative constraints, namely orthogonality and sparsity, to

illustrate the advantages of the non-negative formulation in this particular context.

As illustrated in our analysis of the state-of-the-art methods relating to this work, image

super-resolution or upscaling appears as a classical problem in image processing, and has been

extensively studied in the literature [82,231]. Recent advancements in machine learning and the

advent of ever more powerful computational tools make super-resolution models particularly

appealing for complex problems, such as those arising from geosciences, oceanography and me-

teorology. In this respect, super-resolution techniques have also been applied to remote sensing

image enhancement problems [272].

Contrary to the classical image super-resolution setting, numerous satellite remote sens-

ing applications do not only involve low-resolution images but also irregularly-sampled high-

resolution information. As illustrated before, the later may be due to specific sampling patterns,

such as along-track narrow-swath satellite data, as well as to partial occlusions caused by weather

conditions [64,80]. In this respect, the availability of such partial high-resolution data supports

locally-adapted super-resolution models, rather than models fully trained offline, with a view to

accounting for the space-time variabilities of the monitored processes.

In the following sections, we address image super-resolution issues from irregularly-sampled

high-resolution information. Following state-of-the-art super-resolution models [2, 252, 253], we

consider locally-adapted convolution-based models. Our methodological contributions are two-

fold:

1. The proposed convolution-based models combine both a low-resolution image and a sec-

ondary image source, thus allowing for the fusion of heterogeneous data sources within a

simple, unified super-resolution framework.

2. We explore dictionary-based representations of the convolutional operators with different

types of constraints, namely orthogonality, non-negativity and sparsity constraints [12,273].

Such dictionary-based representations and constraints are particularly appealing to resort

to locally-adapted super-resolution models calibrated from a low number of high-resolution

training data.

As case study, we apply the proposed framework to multi-source ocean remote sensing data,

namely the reconstruction of high-resolution SLA (Sea Level Anomaly) images from satellite-

derived along-track altimeter data, a high-resolution SST (Sea Surface Temperature) image and

a low-resolution SLA image. We report numerical experiments, which demonstrate the relevance

of the proposed super-resolution models, especially under non-negativity constraints, compared

with classical approaches such as OI.
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7.2 Model formulation

7.2.1 Problem statement

In classical image super-resolution problems, we aim at reconstructing a series of high-resolution

images {Y(t)}t at different times {t1, ...., tT } from the corresponding series of low-resolution

images {YLR(t)}t. Additionally, in the considered application setting, we are also provided

with:

• A complementary source of high-resolution images {X(t)}t, which may depict some local

or global correlation with {Y(t)}t;

• An irregularly-sampled dataset of high-resolution point-wise observations {t̃(k), s̃(k), Ỹ(k)}k,
with t̃(k), s̃(k) and Ỹ(k) respectively the time, location and value of the kth high-resolution

observation.

In the context of the interpolation of SLA fields from satellite-data, the irregularly-sampled

dataset corresponds to along-track observations of the SLA fields, as observed in Figure 7.1,

which presents an example of the considered along-track sampling patterns.

Following [63,66,169], the reconstruction of high-resolution image Y(t) given low-resolution

image YLR(t) is stated according to the following convolution-based model:

Y(t) = YLR(t) + HY ∗YLR(t) + HX ∗X(t) + N(t) (7.1)

where N(t) is a space-time noise process. HY (resp. HX) is the two-dimensional impulse response

of the YLR (resp. X) component of the proposed convolutional model. HY and HX are charac-

terized by (2Wp + 1) × (2Wp + 1) discrete representations onto the considered high-resolution

grid. Importantly, HY and HX are space-and-time-varying operators and capture the space-time

variabilities of (Y,YLR) and (Y,X) relationships. This model can be regarded as a patch-based

super-resolution approach where high-resolution image Y at a given location is computed as a

linear combination of (2 ∗Wp + 1) × (2 ∗Wp + 1) patches of images X and YLR centered at

the same location. Parametrization HX = 0 clearly relates to regression-based super-resolution

models, such as JOR [41], ANR [252] and A+ [253].

From a physical point of view, considering linear couplings between different ocean dynamical

tracers relates to recent studies that demonstrate the existence of the SQG mode, characterized

by a linear transfer function between SST and SSH [97,99,115,131,132,142,143,244]. Indeed, as

indicated in Chapter 1, recent work points out that upper ocean dynamics may indeed be char-

acterized by local SSH-SST linear relationships that correspond precisely to fractional Laplacian

operators [97,115,132,142,143,244]. In this respect, operators HY and HX may involve numer-

ical approximations of theoretical fractional Laplacian operators. Moreover, the proposed linear
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coupling between low and high-resolution sources of information directly relates to inter-scale

interactions observed in upper-ocean dynamics, with turbulent flow allowing for the transport

of energy between multiple spatio-temporal scales.

7.2.2 Unconstrained model calibration

The calibration of model (7.1) amounts to the estimation of the (2Wp + 1)× (2Wp + 1) matrix

representations of operators HY and HX at any space-time location. The availability of the

irregularly-sampled dataset {t̃(k), s̃(k), Ỹ(k)}k provides the means for this locally-adapted cali-

bration. It may be noted that, in classical image super-resolution issue, such models are trained

offline or involve nearest-neighbor techniques using a training dataset of joint low-resolution

and high-resolution image patches [252, 253], which closely relates to analog forecasting meth-

ods [175], non-local means [25,207] and local linear embedding [222].

Following these approaches, we proceed as follows. For a given space-time location (t0, s0), we

regard all data such that t̃(k) ∈ [t0−Dt, t0 +Dt] and ‖s̃(k)−s0‖22 ≤ Ds as observations for model

(7.1) at location (t0, s0). Parameters Dt and Ds state respectively the spatio-temporal extent of

the considered neighborhood around location (t0, s0). This principle of accumulating observa-

tions on a spatio-temporal neighbourhood around the location and time of interest relates to the

idea of considering fixed spatial and temporal correlation scales in the context of stochastic data

assimilation, as is done, for example, in OI. Moreover, this idea is a key concept further explored,

in the next chapter, for the construction of pseudo-observations in the context of a completely

data-driven data assimilation framework. Given the irregular sampling of the high-resolution

dataset, no guarantees exist that sampling locations s̃(k) will lie within the considered X/YLR

grid, and thus (2Wp+ 1)× (2Wp+ 1) high-resolution X patches and low-resolution YLR patches

might need to be interpolated around spatio-temporal locations (s̃(k), t̃(k)) to build a coherent

dataset for model calibration.

Irregularly-sampled observations Ỹ(k) and X and YLR patches interpolated around sample

locations are then exploited to fit local impulse responses HX and HY using a least squares

approach, which comes to minimize the mean square reconstruction error E (HX,HY) for the

high-resolution detail δY = Y−YLR at irregularly-sampled dataset positions (s̃(k), t̃(k)):

E (HX,HY) =
∑

k

∣∣∣∣
∣∣∣∣δỸ (k)− δ̂Ỹ (k)

∣∣∣∣
∣∣∣∣
2

(7.2)

where

δ̂Ỹ(k) = HY ∗YLR

(
t̃ (k) , s̃ (k)

)
+ HX ∗X

(
t̃ (k) , s̃ (k)

)
(7.3)

Assuming the number of available observations is sufficiently large, minimization (7.2) resorts

to a least-square estimation of operators HY and HX.
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7.2.3 Dictionary-based decompositions

A critical aspect of the above least-square minimization is the number of available training data

points and the underlying balance between locally-adapted and robust parametrizations. With

a view to improving estimation robustness as well model interpretability, we explore dictionary-

based decomposition approaches. They resort to the following decomposition of operators HX

and HY:

H{X,Y} =
K∑

k=1

αkD
{X,Y}
k (7.4)

where DY
k (resp. DX

k ) is the kth component of the dictionary of operators for operator HY (resp.

HX) and αk is the kth scalar coefficient that states the decomposition of operator HY (resp. HX)

onto dictionary element DY
k (resp. DX

k ). It should be noted that a joint dictionary-based repre-

sentation is considered, so that decomposition coefficients αk are shared by the two convolutional

operators HY and HX. In this respect, the proposed dictionary-based convolutional operator

decomposition closely relates to the operator decomposition models and algorithms presented

in the first part of this thesis dissertation, and most notably to the dictionary-based decompo-

sition of local linear operators (LLOD), as convolution operators H{X,Y} can be regarded as

locally estimated linear operators Θn (as defined in Equation (3.27)) to be decomposed onto

a set of representative dictionary elements D
{X,Y}
k under adequately selected constraints. In

particular, the selection of the nearest neighbours for the computation of local linear operators

Θn (Equation (3.27)) in this context responds to a spatio-temporal locality criteria defined by

spatio-temporal extent parameters Dt and Ds, which delimit the neighbourhood within which

nearest neighbours will be selected.

Following classical dictionary-based settings [199], we explore the application of our previ-

ously introduced decomposition model (3.28) for convolution operators. We investigate three

different types of constraints for dictionary elements {D{X,Y}
k } and decomposition coefficients

{αk}, namely orthogonality, sparsity and non-negativity constraints. Following local linear oper-

ator decomposition model (3.28), the calibration of these dictionary-based settings first involves

the estimation of dictionary elements {D{X,Y}
k } using training data. We here assume we are

provided with a previously computed representative dataset of unconstrained estimates of oper-

ators HY and HX from Equation (7.2), denoted by {Hn
Y,H

n
X}n. More precisely, the considered

dictionary-based decompositions are as follows:

• Orthogonality constraint: under this constraint, dictionary elements {D{X,Y}
k } form

an orthonormal basis with no other constraints onto coefficients {αk}. This decomposi-

tion relates to the application of principal component analysis (PCA) [206] to dataset

{Hn
Y,H

n
X}n. Given the trained dictionaries, the estimation of decomposition coefficients

{αk} comes to the projection of the unconstrained operator estimates onto dictionary

elements {D{X,Y}
k }.
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Figure 7.1 – Illustration of the irregular sampling of high-resolution observations associated with ocean remote
sensing data: sea level anomaly image with the sampled along-track positions by satellite altimeters (cyan squares)
in a ±10-day time window around April 20th, 2012. Adapted from [169]. c© 2017 IEEE.

• Sparsity constraint: the sparse dictionary-based decomposition [3] resorts to comple-

menting Mean Squared Error (MSE) criterion (7.2) with the ℓ1-norm of coefficients {αk}.
We apply a KSVD scheme to dataset {Hn

Y,H
n
X}n to train dictionary elements {D{X,Y}

k }.
Given the trained dictionaries, we proceed similarly to KSVD and use orthogonal match-

ing pursuit [205] for the sparse estimation of decomposition coefficients {αk} for any new

unconstrained operator estimate.

• Non-negativity constraint: the non-negative dictionary-based decomposition constrains

coefficients {αk} to be non-negative. Given dataset {Hn
Y,H

n
X}n, the training of dictionary

elements {D{X,Y}
k } resorts to the minimization of reconstruction error (7.2) under non-

negativity constraints for the decomposition coefficients. This comes to the application of

the LLOD algorithm as it was originally defined in Chapter 3. Following this formulation,

we exploit the iterative proximal operator-based algorithm [37] defined by Equations (3.37),

(3.38), (3.39) and (3.40). In this respect, given the trained dictionary, the estimation of

decomposition coefficients {αk} comes to a least-square estimation under non-negativity

constraints.

7.2.4 Locally-adapted dictionary-based convolutional models

The application of the proposed dictionary-based decompositions to the super-resolution of

irregularly-sampled high-resolution images involves the following steps. For a given dictionary-

based decomposition, we first train the associated dictionaries {DX
k ,D

Y
k }. Considering the entire

image time series, we proceed to the unconstrained estimation of operators HX and HY from

Equation (7.2) for a variety of spatio-temporal neighborhoods with given parameters DTr
s and

DTr
t . Parameters DTr

s and DTr
t are set such that the number of high-resolution observations is

high enough to solve for least-square criterion (7.2). We typically sample around 1500 neighbor-
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Table 7.1 – Normalized root mean square reconstruction error (nRMSE) for daily high-resolution SLA images
{Y (t)}t, for a global convolutional model and for locally-adapted decompositions of a global convolutional model
using principal component analysis (PCA) [206], KSVD [3] and non-negative decomposition (NN), considering
K = 2, K = 5 and K = 10 classes. The nRMSE value for daily low-resolution SLA images {YLR(t)}t is given as
reference (noted as SLALR). Best results for each number of classes K considered are presented in bold. Results
that outperform a global convolutional model are underlined.

K = 2 K = 5 K = 10

PCA 0.1807 0.1734 0.1680
KSVD 0.2228 0.2228 0.2228
NN 0.1807 0.1734 0.1666

Global model 0.1755
SSHLR 0.2228

hoods to build a representative dataset of operators HX and HY.

Given the trained dictionaries, we proceed to the super-resolution of an image at a given date

t∗ as follows. For any given spatial location s∗, we first estimate the associated decomposition co-

efficients {αk} from the subset of high-resolution observations in a spatio-temporal neighborhood

of space-time location (t∗, s∗) with parameters DSR
s and DSR

t . The later parameters typically

define smaller spatio-temporal neighborhoods than training neighborhoods with parameters DTr
s

and DTr
t . As such, estimated coefficients {αk} come to the projection of more local convolutional

operators onto the subspace spanned by the estimated dictionaries, thus yielding a more locally-

adapted model (7.1) This calibrated model is then applied to the reconstruction of image Y
in a neighborhood of location (t∗, s∗). In this way, the dictionary decomposition provides the

means to reduce the dimensionality of the problem by projecting local convolutional operators

{Hn
Y,H

n
X}n onto the subspace spanned by dictionary elements {D{X,Y}

k }, which allows for the

accurate estimation of more local convolutional operators, since less observations are necessary

for model calibration in the lower-dimensional subspace. To reduce the computational time, we

perform the calibration of locally-adapted models for a regular subsampling of the image grid,

typically DSR
s /2, and use a spatial averaging of overlapping local reconstructions to obtain a

single high-resolution reconstruction of image Y.

7.2.4.1 Experiments

7.2.5 Data and Methodology

As case study, we consider an application to ocean remote sensing data, more particularly to the

reconstruction of sea-surface height (SLA) image time series from along-track altimeter data.

As previously explained, satellite altimeters are narrow-swath sensors such that high-resolution

altimeter data is only acquired along the satellite track path [218], resulting in an particularly

scarce and irregular sampling of the ocean surface as illustrated in Figure 7.1. Interestingly,

numerous studies have pointed out the potential contribution of high-resolution sea surface
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Figure 7.2 – Probability distribution for the normalized root mean square reconstruction error (nRMSE) for daily
high-resolution SLA images {Y (t)}t, for a global convolutional model and for locally-adapted decompositions
of a global convolutional model using principal component analysis (PCA) [206], KSVD [3] and non-negative
decomposition (NN) and considering K = 10 classes. The probability distribution of the nRMSE for daily low-
resolution SLA images {YLR(t)}t is given as reference (noted as SLALR).

Figure 7.3 – High-resolution SSH image Y reconstruction, April 20th, 2012: first row, from left to right, real
high-resolution SSH image Y , low-resolution SSH image YLR (noted as SSHLR), reconstruction of high-resolution
SSH image Y using global convolutional model (7.1); second row, reconstruction of high-resolution SSH image Y

using a 10-class locally-adapted decomposition (7.4) of global convolutional model (7.1) using, from left to right,
principal component analysis (PCA) [206], KSVD [3] and non-negative decomposition (NN). Adapted from [169].
c© 2017 IEEE.
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temperature (SST) images to the reconstruction of SSH images (and hence of SLA images as

well), as they share common geometrical patterns associated with the underlying upper ocean

dynamics [131,143]. In addition, optimally-interpolated products [218] provide a low-resolution

reconstruction of the SLA image. Overall, the reconstruction of high-resolution SLA image time

series resorts to a super-resolution issue from irregularly-sampled high-resolution information as

stated in Section 7.2. It may be stressed that this case study involves a scaling factor of about

10 between the low-resolution and high-resolution data, which makes it particularly challenging

compared with classical image super-resolution issues.

In our experiments, we exploit a ground-truth dataset issued from an observing system

simulation experiment (OSSE) for a case study region in the Western Mediterranean Sea (36.5◦N

to 40◦N , 1.5◦E to 8.5◦E). A high-resolution numerical simulation of the Western Mediterranean

Operational Forecasting System (WMOP) model [124] is used to generate daily high-resolution

SLA and SST images from 2009 to 2013 for a 1/20◦ grid. The along-track dataset is simulated

by sampling the SLA images at real along-track positions issued from from multiple altimetry

missions in 2014 and 2015 (see Figure 7.1). Given the simulated along-track dataset, optimally-

interpolated SLA fields [218], referred to as low-resolution SLA images YLR, are computed for

a 1/8◦ grid resolution. The calibration of the proposed convolutional operators is performed

by considering Wp = 1, which corresponds to 3 × 3 convolutional masks. We use the following

parameter setting for spatio-temporal neighborhoods: t0 ±Dt-day time windows with Dt = 10,

and Ds × Ds spatial neighborhoods with DTr
s = 7◦ for the training step and Ds = 2◦ for the

locally-adapted calibration steps.

7.2.6 Results

In Table 7.1, we report the average normalized root mean square reconstruction error (nRMSE)

for daily high-resolution SLA images {Y (t)}t, for a global convolutional model and for locally-

adapted convolutional models, using principal component analysis (PCA) [206], KSVD [3] and

non-negative dictionary-based decomposition (NN) and considering K = 2, K = 5 and K = 10

elements in the dictionaries. The reconstruction nRMSE for daily low-resolution SLA images

{YLR(t)}t (noted as SLALR) is given as reference.

From Table 7.1, locally-adapted convolutional models clearly outperform global models for

K ≥ 5 (with the exception of the KSVD-based decomposition), which can be explained by

the improved local adaptation to local spatio-temporal variabilities through locally-adapted

decomposition coefficients. In this respect, the non-negative decomposition outperforms alter-

native approaches, with a maximum relative gain (with respect to optimally-interpolated

low-resolution SSH images {YLR(t)}t, at K = 10) of 25.22% for NN, 24.60% for PCA and

21.23% for a global convolutional model.
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These results are further illustrated by the reconstruction of high-resolution SLA image Y

for sample date April 20th, 2012 presented in Figure 7.3 and by the probability distributions of

daily reconstruction normalized root mean square error for high-resolution SLA images {Y (t)}t,
computed for the global convolutional model and for each one of the considered locally-adapted

models with K = 10, presented in Figure 7.2. Visually, the proposed super-resolution models

clearly improve the reconstruction of finer-scale details compared to the low-resolution image.

The model using non-negativity constraints seems to involve slightly sharper gradients compared

with the unconstrained model. The PCA-based model appears visually less relevant, while the

KSVD-based model seems unable to exploit the high-resolution information sources to enhance

the low-resolution altimetry field. We hypothesize that the low performance of KSVD may relate

to the low number of dictionary elements considered, as KSVD relies on the over-completeness

of the dictionary to produce adequate sparse representations. In this way, KSVD may require a

much larger number of dictionary elements to achieve good reconstruction performance, which

would go in detriment of the dimensionality reduction introduced by the dictionary-based de-

composition that ultimately enables the local readjustment of the convolutional model.

7.3 Conclusion

In this chapter, we explored the application of operator decomposition models introduced in

Chapter 3 to the interpolation high-resolution of SLA fields from irregularly-sampled along-

track satellite data.

Additionally, we addressed the multi-modal super-resolution of irregularly-sampled high-

resolution images by considering an additional high-resolution source of information, namely

the SST field. Data fusion arises as an issue in a number of remote sensing applications, where

several sensors associated with different regular and irregular sampling patterns may contribute

to the reconstruction of a given high-resolution image, which makes the proposed formulation

particularly relevant for real-world applications.

As a case study, we considered the reconstruction of high-resolution SLA images in the West-

ern Mediterranean Sea, and exploited the WMOP model alongside with an observing system

simulation experiment (OSSE) to evaluate the performance of the proposed dictionary-based for-

mulation under different constraints, namely orthogonality, sparsity and non-negativity. From a

methodological point of view, we complement previous convolution-based super-resolution mod-

els [2,253] with the evaluation of different constrained dictionary-based decompositions and the

use of a complementary high-resolution image source.

In this respect, dictionary-based decompositions are regarded as a means to better account

for spatio-temporal variabilities through more locally-adapted model calibrations. Moreover, our

numerical experiments support the selection of non-negativity constraints to achieve a better
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local adaptation. They demonstrate the relevance of the proposed approach to achieve a better

reconstruction of higher-resolution details, compared with the optimally-interpolated fields. In

this respect, reported methods have led to relevant results, including the specific application

demonstrated in this chapter, which have been presented in different national and international

conferences [62,167,169].

As far as possible methodological improvements are concerned, future work should include

non-local extensions of the proposed model to combine spatio-temporal and similarity-based

neighborhoods as considered in regression-based super-resolution models [2, 253]. Non-linear

dictionary-based decomposition seems particularly appealing to combine non-linear mapping,

for instance convolutional neural networks (CNN) based models [49], and locally-adapted mod-

els. As far as ocean remote sensing applications are considered, applying the proposed models to

different sampling patterns, for instance along-track narrow-swath satellite data vs. wide-swath

satellite data, appears to be of interest, the later possibly enabling the modeling of higher-order

geometrical details.

Despite the relevance of the formulation developed in this chapter for the interpolation of

high-resolution SLA fields from satellite-derived observations, in the next chapter we shift our

focus away from non-negative operator decomposition issues to explore interpolation issues ex-

ploiting the Analog Data Assimilation, a promising alternative method introduced in [67,161,162]

for the interpolation of high-resolution geophysical fields from irregularly-sampled data. Impor-

tantly, the Analog Data Assimilation is formulated as a stochastic data assimilation frame-

work, which allows it to explicitly model intrinsic temporal relationships existing within the

exploited datasets. Subsequently, we will explore such formulations and compare them to the

high-resolution interpolation methods introduced in this chapter. In particular, we will also focus

on exploiting SWOT synthetic observations, in preparation for the mission launch in 2021.
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8.1 Introduction

In previous chapters, we explored the use of operator decomposition models as a data-driven

approach for the interpolation of high-resolution SLA fields from irregularly-sampled satellite

observations. Despite the promising results obtained, recent success of alternative data-driven

assimilation models, introduced in [67, 161, 162], motivated us to shift our efforts and explore

alternative data-driven methods for the interpolation of SLA fields from satellite-derived data,

and particularly from SWOT observations.

In this respect, with a view towards the SWOT mission launch in 2021 [59,74], we focus here

on exploiting recent developments in data-driven interpolation schemes to assess the extent to

which SWOT data, combined or not with nadir along-track data, may lead to an improved recon-

struction of altimetry fields. We use an observing system simulation experiment (OSSE) frame-

work and consider a case-study region in the Western Mediterranean Sea, which is known to in-

volve mesoscale processes with characteristic horizontal scales below 100 km [6,181,203,204,225].

As exposed in Chapter 6, current and past generation satellite altimetry missions have played

a substantial role in improving our understanding of sea surface dynamics, despite only being able

to provide measurements along the nadir satellite track, with a small radar altimeter footprint

width of around 2-10 km, as observed in Figure 8.2. Even though the fusion of multiple altime-

ters allows for the reconstruction of scales that would be unattainable using a single altimeter,

no combination of currently airborne altimeters is capable of completely resolving the smaller

mesoscale (below 50-70 km) [68,73] or the sub-mesoscale processes (below 10 km) [34], which are

nonetheless crucial to increasing our understanding of a great number of oceanic processes [74].

Overall, it is generally considered that current satellite-derived altimetry fields hardly resolve

horizontal scales below 100 km. In this respect, the SWOT mission’s unparalleled high spatial res-

olution (2 km) should allow us to better capture mesoscale and sub-mesoscale processes [59,74],

which constitutes one of the great challenges within current oceanography research. The ability

to exploit SWOT data within interpolation schemes to improve the reconstruction of smaller

scale processes in altimetry fields remains, however, an open question [32,79,84,224,257].

As previously stated, given the heterogeneity of currently available remote sensing altimetry

observations, the processing and fusion of datasets involving different sampling strategies at

multiple spatio-temporal resolutions, irregular sampling patterns and missing data to produce

gridded gap-free products is of major interest. The problem of interpolating irregularly-sampled

data onto a regular grid belongs to the family of inverse problems, which have been extensively

studied [63,177,195,207]. In general, geophysical field interpolation issues can be classified into

either model-driven or data-driven approaches. Among model-driven approaches, optimal inter-

polation and data assimilation issues are among the state-of-the-art methods for the interpolation
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of geophysical fields from irregularly-sampled data. In this respect, given the current limitations

of these approaches, considerable efforts are being made to improve OI [57] or find alterna-

tive approaches [257]. Particularly, Ubelmann et al. [257] developed Dynamical Interpolation,

an alternative approach that exploits the Quasi-Geostrophy (QG) physical model by imposing

a vorticity conservation constraint, and applied it to synthetic SWOT observations. Interest-

ingly, from a physical point of view, Dynamic Interpolation comes to considering locally-varying

spatio-temporal covariance structures. As far as data assimilation is considered, preliminary

studies involving the assimilation of SWOT data have been performed. In particular, Carrier

et al. [32] explore the assimilation of synthetic SWOT observations within a variational data

assimilation framework, with promising results for the long-term assimilation of SWOT data.

Besides model-driven approaches, the growing availability of large-scale datasets, issued from

real remote sensing, in situ observations, numerical simulations and reanalysis, has motivated the

development of data-driven approaches as a powerful and efficient alternative to model-driven

schemes [67, 207]. Initially developed for image processing issues, patch-based and exemplar-

based models have recently known some success in remote sensing applications [63, 177], while

integrating these approaches into data assimilation formulations led to the development of ana-

log data assimilation [89,161,243]. Alternatively, projection-based approaches, exploiting either

classical orthogonal decompositions [8, 213] or alternative constraints like non-negativity [169],

are also among state-of-the-art methods for the interpolation of geophysical fields. In this chap-

ter, we focus on such data-driven approaches [8,66,67,162,169,213] for the processing of SWOT

data, as they provide a generic and computationally-efficient framework to explore the synergy

between multi-source satellite-derived data and do not require specific geophysical priors to be

verified. In particular, we concentrate here on evaluating the potential of SWOT observations

to improve the reconstruction of smaller scale features in satellite-derived altimetry fields.

Regarding methodological considerations, the Analog Data Assimilation (AnDA), a com-

pletely data-driven data assimilation approach that exploits available observations to emulate

dynamical model M (thus avoiding the use of restrictive model hypothesis, such as spatio-

temporally invariant covariance structures), was introduced in [161] following recent efforts that

explore data-driven methods as an alternative to classical model-driven issues for the interpo-

lation of geophysical fields [65, 66, 207]. Moreover, in [67], the authors further demonstrated

the relevance of the data-driven AnDA framework for the interpolation of high-dimensional

geophysical fields, namely sea surface temperature (SST) fields largely obscured by clouds and

irregularly-sampled satellite-derived sea level anomaly (SLA) fields. Extending on this work,

we develop in this chapter an application of various data-driven geophysical field interpola-

tion approaches, an particularly of AnDA, to the reconstruction of SLA fields in the Western

Mediterranean Sea from multi-source satellite altimetry data. Importantly, we explore different

spatial sampling patterns and consider both nadir along-track altimetry sources [204] as well as

wide-swath altimetry, with a view towards the upcoming SWOT mission [59,74]. As previously
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explained, we specifically focus on evaluating the potential of SWOT observations to enhance

the reconstruction of small-scale features in satellite-derived altimetry fields.

In the remainder of this chapter, we first present a brief overview of the considered data-

driven models. Subsequently, the considered case-study, data and observing system simulation

experiment (OSSE) developed to evaluate the relevance of SWOT data to improve the recon-

struction of altimetry fields are presented. We then report experimental results to assess the

performance of the different data-driven approaches considered. Particularly, the relevance of

AnDA as the preferred method to assess the impact of the considered space-time sampling of

the sea surface is demonstrated. To optimize parameter settings for the proposed data-driven

methodology, we perform a preliminary analysis of the sensitivity of the AnDA framework to

its most relevant internal parameters and to different noise sources. Subsequently, our experi-

ments exploit the proposed OSSE, which considers real spatio-temporal sampling patterns and

high-resolution synthetic ground-truth datasets, to benchmark the proposed AnDA scheme un-

der different experimental settings. This allows us to demonstrate the relevance of the pro-

posed approach for the high-resolution reconstruction of SLA fields from irregularly-sampled

data sources involving real satellite-derived spatio-temporal sampling patterns, including nadir

along-track altimetry and pseudo-SWOT patterns. Importantly, particular attention is paid to-

wards characterizing the contribution of SWOT observations to the reconstruction of fine-scale

upper ocean dynamic features in satellite-derived altimetry fields. The potential for the fusion of

multiple data sources, including nadir along-track and SWOT observations as well as additional

complementary datasets, to improve SLA field reconstruction performance within the proposed

methodology is also clearly demonstrated. Finally, the assimilation of numerically-resolved ob-

servation gradients is explored as a possible alternative to deal with correlated noise sources in

SWOT observations.

Overall, reported results support the relevance of the proposed AnDA scheme for an im-

proved reconstruction of mesoscale structures for horizontal scales ranging from ∼20 km to ∼100

km, with considerable gains with respect to Optimal Interpolation (OI) [57]. Furthermore, we

demonstrate both a considerable gain, in terms of reconstruction error, for the reconstruction

of smaller scales structures not correctly resolved by current methods, as well as a potential

additional gain derived from the joint assimilation of both altimetry data sources considered.

Particularly, our results suggest that the data-driven joint analysis of nadir along-track altimetry

data and SWOT data leads to the best reconstruction performance.

8.2 Benchmarked methods

To evaluate the relevance of SWOT observations to improve the data-driven reconstruction of

high-resolution SLA fields from satellite-derived observations, we consider three different data-

driven approaches. Specifically, we evaluate projection-based approaches considering classical or-
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thogonality constraints and non-negative constraints by considering MS-VE-DINEOF [161,213]

(Section 6.3.2.1) and the data-driven locally-adapted convolution-based non-negative decompo-

sition approach presented in the previous chapter (NN-LLOD) [169]. Additionally, we consider

the Analog Data Assimilation framework, introduced in [161] and presented in Section 6.3.5.

For comparison purposes, we also consider Optimal Interpolation [20, 57, 141] (Section 6.3.3.3),

the state-of-the-art model-driven approach for the interpolation of geophysical fields.

8.3 Case study and data

We illustrate the relevance of the proposed approaches by implementing an Observing System

Simulation Experiment (OSSE), considering a case-study region in the Western Mediterranean

Sea (36.5◦N to 40◦N , 1.5◦E to 8.5◦E). The chosen region of interest for our experiments, the

Western Mediterranean Sea, is a highly dynamic region characterized by relatively small Rossby

radii, with smaller structures that make the reconstruction of mesoscale and sub-mesoscale sea

surface dynamics from satellite data appear as particularly challenging. In this respect, the

Mediterranean Sea can be regarded as a small-scale ocean laboratory, as a wide variety of global

mesoscale and sub-mesoscale ocean processes are also present, at smaller scale, within both the

basin and sub-basin scales [6, 181, 225, 255]. As such, developing efficient strategies to correctly

capture and represent smaller scales within the Mediterranean Sea is of the utmost importance

for the exploitation of the scientific potential that exists within the region.

8.3.1 Data

A synthetic ground-truth dataset of daily high-resolution SLA fields from 2010 to 2013 is gen-

erated using the Western Mediterranean Operational Forecasting System (WMOP) numerical

model from SOCIB [124]. WMOP is particularly relevant for scientific studies in the Mediter-

ranean, given it is a regional re-parametrization of the Regional Ocean Modeling System (ROMS)

model nested in the larger scale Mediterranean Ocean Forecasting System (MFS) [124, 255],

with a view to producing high-resolution realistic ocean dynamics simulations in the Western

Mediterranean Sea. The original grid resolution of the model varies between 1.8 km and 2.2

km (∼ 1/50◦). We refer interested readers to [124] for an in-depth discussion of implementation

details and validation of the WMOP model. In our case-study experiments, high-resolution SLA

fields produced by WMOP are down-sampled to a 1/20◦ resolution.

8.3.2 Observing System Simulation Experiment

The generated ground-truth SLA fields dataset is split into a training dataset comprising years

2010-2012, from which a catalog of analog/successor pairs is created, and a test dataset built

from ground-truth SLA fields from 2013, which serves as ground-truth for the generation of
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synthetic observations and the evaluation of reconstruction performance.

Synthetic observations emulating satellite altimetry are generated using the proposed OSSE,

which exploits spatio-temporal locations derived from real satellite tracks from a four altime-

ter configuration (comprising Jason-2, Cryosat-2, Saral-Altika and Hy-2A satellite missions) in

2014. The year 2014 was chosen as reference because it provides the greatest number of spatio-

temporal locations from real airborne altimetry missions. Acquisition noise is simulated by means

of a centered additive Gaussian white noise of variance σ2
n.

SWOT-like observations, on the other hand, are generated from the ground-truth high-

resolution SLA fields using the SWOT simulator [78], provided by the SWOT science team.

Synthetic observations obtained with the SWOT simulator are produced by linearly interpo-

lating the ground-truth fields onto a synthetically generated SWOT-like 2 km resolution grid

computed using expected orbit characteristics of the SWOT mission. Additionally, the SWOT

simulator emulates most noise sources expected to influence the mission once launched. Accord-

ing to the SWOT mission error budget [59], this includes both correlated noise sources, related to

the novel radar interferometry based altimetry technique, its sampling spatio-temporal geometry

and atmospheric perturbations (e.g. roll, phase, timing, baseline dilation and wet troposphere

errors), and uncorrelated noise related to sensor acquisition error (e.g. KaRIn instrument noise).

Both types of synthetic observations are linearly interpolated onto a regular 1/20◦ grid to

match the high-resolution ground-truth SLA fields.

8.3.3 Pseudo-observations

To further investigate alternative sampling strategies, two different synthetic observation gen-

eration methods are explored. The first strategy comes to simply considering observations at

times t0, t0 + δt,. . ., t0 +nδt,. . . etc directly. Alternatively, the second strategy relies on building

pseudo-observations by accumulating observations on a time window t0 ± D centered at cur-

rent day t0. Additionally, for both strategies, we may solely consider either nadir along-track or

SWOT observations or, alternatively, we may also combine these two types of observations, thus

allowing for the seamless fusion of both data sources within the different data-driven interpola-

tion schemes considered. An illustration of this principle and a visual comparison of these two

strategies is presented in Figure 8.2.

8.4 Method comparison and benchmarking

We first perform a preliminary comparative analysis of the considered methods by evaluating

their performance when exploiting nadir along-track altimetry observations. For all the reported

experiments, performance is measured by means of the root mean squared error (RMSE, in m)
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(a) SLAGT (b) AT (c) SW OT

Figure 8.1 – Comparison of nadir along-track observations (8.1b) and SWOT observations (8.1c) generated from
ground-truth high-resolution SLA fields (8.1a) using real satellite tracks spatio-temporal locations and the SWOT
simulator, respectively. Adapted from [170]. c© 2019 IEEE.

(a) AT0 (b) AT5

(c) SW OT0 (d) SW OT5

(e) AT0 + SW OT0 (f) AT5 + SW OT5

Figure 8.2 – Pseudo-observations generated from the synthetic ground-truth SLA fields by considering either
observations at current day t0 or observations accumulated over a time window t0 ± D, with D = 5 days, for both
nadir along-track altimetry (noted as ATD with D = {0, 5}) and pseudo-SWOT observations (noted as SW OTD

with D = {0, 5}) (8.2a) Daily nadir along-track observations. (8.2b) Nadir along-track observations accumulated
on a window t0 ± D with D = 5 days. (8.2c) Daily SWOT observations. (8.2b) SWOT observations accumulated
on a window t0 ± D with D = 5 days. (8.2e) Fusion of daily nadir along-track and SWOT observations. (8.2f)
Fusion of nadir along-track and SWOT observations accumulated on a window t0 ± D with D = 5 days. Adapted
from [170]. c© 2019 IEEE.
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Table 8.1 – Root mean squared error (Correlation) for SLA and SLA gradient (∇SLA) reconstruction from
nadir along-track observations for the different algorithms considered, namely OI [57], NN-LLOD [169], MS-VE-
DINEOF [161,213] and AnDA [161,162]. Best result in bold.

Setting SLA ∇SLA

OI 0.02927 (0.8451) 0.006655 (0.6052)
MS-VE-DINEOF 0.02820 (0.9059) 0.006416 (0.6339)
NN-LLOD 0.02115 (0.6965) 0.004506 (0.5893)

AnDA 0.01978 (0.9457) 0.004699 (0.7660)

and correlation coefficient, for both the predicted SLA field and the gradient of the predicted

SLA field (∇SLA). The default parameter settings considered for AnDA and MS-VE-DINEOF

are: patch size Wp = 30 pixels (∼ 150 km, 1 pixel ≈ 5 km), K = 25 neighbours, assimilation lag

δt = 1 days, NEOF = 9 EOF components, pseudo-observation half-window size D = 5 days. The

OI SLA reconstruction used a Gaussian covariance parametrization with a temporal correlation

scale of 10 days and a spatial correlation scale of 100 km. The NN-LLOD approach exploited an

operator basis issued from altimetry data accumulated on a 21-day window. The local fitting of

the convolutional operators was achieved for 2◦ × 2◦ overlapping regions.

Table 8.1 presents SLA and ∇SLA RMSE and correlation results obtained when considering

solely nadir along-track data for the different methods considered. From Table 8.1, AnDA clearly

outperforms the other proposed approaches with a relative SLA RMSE gain of 32.42% (resp.,

27.74% and 3.66%) w.r.t. OI (resp., NN-LLOD and MS-VE-DINEOF). This is interpreted as a

consequence of the greater ability of AnDA to account for temporal dependencies, as it relies on

a data assimilation formulation. The other proposed approaches, on the other hand, only take

temporal dependencies into account implicitly within their formulations. From these results, we

subsequently focus on exploring the use of SWOT observations within the AnDA framework.

8.5 AnDA Parameter Sensitivity Analysis

We report the sensitivity of the proposed AnDA framework to its most relevant internal param-

eters, namely the impact of the patch size Wp, the number of neighbours K, the assimilation

lag δt and the pseudo-observation half-window size D. For the sensitivity analysis, only daily

nadir along-track data is considered, so that the impact of considering SWOT observations can

be subsequently explored under ideal conditions involving optimized parameter settings. For all

the reported experiments, performance is measured by means of the root mean squared error

(RMSE, in m) and correlation coefficient. Performance is evaluated on both the predicted SLA

field and the gradient of the predicted SLA field ∇SLA. Test are performed by varying the

parameter of interest under the following base parameter settings: Wp = 35 pixels (∼ 175 km,

1 pixel ≈ 5 km), K = 100 neighbours, σ2
n = 0, δt = 1 days, D = 0 days, NEOF = 9 EOF

components.
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8.5.1 Patch size
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Figure 8.3 – AnDA sensitivity to patch size Wp (1 pixel ≈ 5 km) (top) SLA reconstruction root mean squared
error (RMSE) and correlation as a function of patch size (in km). (bottom) SLA gradient reconstruction root mean
squared error (RMSE) and correlation as a function of patch size (in km). Taken from [171]. c© 2018 IEEE.

Figure 8.3 presents SLA and ∇SLA RMSE and correlation coefficient as a function of patch

size Wp. From the reported results, the optimal patch size seems to lie within the range of 125-200

km, which roughly corresponds to ten times the region’s internal Rossby radius of deformation.

This result is coherent with the range of scales we are trying to resolve, i.e., those between the

smallest scale resolved by OI (∼ 100 km) and the size of the smallest mesoscale features present

in the region (∼ 10-15 km). Additionally, it seems reasonable that, in order to capture mesoscale

dynamics, the considered patch size should be at least twice as big as the size of the mesoscale

features to be resolved. The obtained gain is in agreement with the expected potential gain

of AnDA to better resolve mesoscale structures in the horizontal scale range of ∼10-15 km to

∼100 km. Additional experiments (not shown here) indicate that, for SWOT-like data, the best

performance is indeed obtained with a patch size of Wp = 150 km.

8.5.2 Number of neighbours

Figure 8.4 presents SLA and∇SLA RMSE and correlation coefficient as a function of the number

of nearest neighbours K used in the analog forecasting step. Interestingly, the best reconstruction

performance is obtained for K = 25 neighbours. Increasing the number of neighbours seems to

hinder reconstruction performance, which may be explained by the existing compromise between

model locality in state space and the number of neighbours K used in the analog forecasting step.

In this respect, a more local description in state space is obtained by using fewer neighbours, and
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Figure 8.4 – AnDA sensitivity to number of neighbours K. (top) SLA reconstruction root mean squared error
(RMSE) and correlation as a function of the number of neighbours used in the forecasting step of AnDA. (bottom)
SLA gradient reconstruction root mean squared error (RMSE) and correlation as a function of the number of
neighbours used in the forecasting step of AnDA. Taken from [171]. c© 2018 IEEE.

thus considering a higher number of neighbours translates into a more global estimated model,

which may negatively affect reconstruction performance.

8.5.3 Assimilation lag

Figure 8.5 presents SLA and ∇SLA RMSE and correlation as a function of the assimilation

lag δt considered in the assimilation step of the AnDA framework. Not surprisingly, the further

away observations are in time, the less effective the correction introduced by the assimilation.

In this respect, as observations are further away, the linear approximation introduced by the

analog forecasting operator looses validity and becomes less accurate, which partially explains

the algorithm’s decrease in performance.

8.5.4 Pseudo-observations half-window size

Figure 8.6 presents SLA and∇SLA RMSE and correlation coefficient as a function of the pseudo-

observation half-window size D (with the total size of the t0 ± D pseudo-observation window

size being W = 2D+1). The best performance is obtained for a half-window size of D = 5 days,

which is coherent with the temporal correlation scales of the smaller mesoscale features we are

interested in reconstructing. Additionally, this seems to be the parameter that has the biggest

effect on performance (at least for the nadir along-track observations considered).
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Figure 8.5 – AnDA sensitivity to assimilation lag δt. (top) SLA reconstruction root mean squared error (RMSE)
and correlation as a function of the assimilation lag δt (in days) used for the assimilation of observations in
AnDA. (bottom) SLA gradient reconstruction root mean squared error (RMSE) and correlation as a function of
the assimilation lag δt (in days) used for the assimilation of observations in AnDA.
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Figure 8.6 – AnDA sensitivity to observation half-window size D. (top) SLA reconstruction root mean squared
error (RMSE) and correlation as a function of the half-window size D (in days) for observations accumulated on a
time window t0 ± D days. (bottom) SLA gradient reconstruction root mean squared error (RMSE) and correlation
as a function of the half-window size D (in days) for observations accumulated on a time window t0 ± D days.
Taken from [171]. c© 2018 IEEE.
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Table 8.2 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction from
nadir along-track observations accumulated on a window t0 ± D with D = 5 days under different noise settings,
considering a centered additive white Gaussian noise with variance σ2

n = {0, 1, 3, 5} cm2. Best result in bold.
Results for OI [57] and NN-LLOD [169] given as reference.

Setting SLA ∇SLA

σ2
n = 0 cm2 0.01969 (0.9465) 0.004687 (0.7679)
σ2
n = 1 cm2 0.01975 (0.9459) 0.004705 (0.7664)
σ2
n = 3 cm2 0.01978 (0.9457) 0.004699 (0.7660)
σ2
n = 5 cm2 0.01992 (0.9448) 0.004714 (0.7651)

OI 0.02927 (0.8451) 0.006655 (0.6052)
NN-LLOD 0.02115 (0.6965) 0.004506 (0.5893)

8.6 AnDA Noise sensitivity analysis

A preliminary step towards the characterization of the performance of AnDA in the context of

the interpolation of high-resolution SLA fields from altimetry data consists in evaluating the

effect of acquisition noise on reconstruction performance. To this end, we evaluate the effect of

different noise types and sources for nadir along-track and SWOT data independently.

8.6.1 Nadir along-track data

Data acquisition errors for conventional altimeter nadir along-track data involve uncorrelated

noise sources, so that, as previously explained, they can be simulated by means of a centered

white Gaussian random noise process of variance σ2
n. For current airborne altimetry missions,

noise variance is in the σ2
n = [3, 5] cm2 range [204]. To study the effect of noise for AnDA

reconstruction performance, we simulate along-track data with a variable observation error

σ2
n = {0, 1, 3, 5} cm2. The base parameter settings considered are: Wp = 30 pixels (∼ 150

km, 1 pixel ≈ 5 km), K = 25 neighbours, δt = 1 days, D = 5 days, NEOF = 9 EOF components.

Table 8.2 presents SLA and ∇SLA RMSE and correlation for nadir along-track observations

under the considered noise settings. Results for OI [57] and NN-LLOD [169] are also given as

reference. From these results, it seems clear that AnDA remains considerably robust to noise

sources inherent to nadir along-track data. This can be explained by the use of an Ensem-

ble Kalman Filter and Smoother (EnKFS) within the AnDA framework, since this stochastic

assimilation technique relies on Gaussian noise hypothesis and thus works best under such

conditions. It should also be noted that even under the harshest noise conditions AnDA still

outperforms OI and NN-LLOD, which illustrates the potential of AnDA for improving the recon-

struction of high-resolution SLA fields, specially considering both OI and NN-LLOD interpolate

the high-resolution SLA field from noise-free nadir along-track SLA observations accumulated

on a window t0 ±D of size D = 10 days (i.e. double the size of the window considered here by

AnDA).
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8.6.2 SWOT data

The characterization of the effect of SWOT-like observations noise requires the distinction

between correlated and uncorrelated noise sources. As previously explained, according to the

SWOT mission error budget, SWOT will present both correlated noise relating to the sampling

technique and geometry, and to atmospheric perturbations (e.g. roll, phase, timing, baseline

dilation and wet troposphere errors) and uncorrelated noise sources relating to instrument error

(e.g. KaRIn noise). We refer the interested reader to [59, 78] for a detailed description of the

error sources involved in SWOT and their simulation implementation in the SWOT simulator.

Taking this into account, we consider here three distinct situations to account for the different

nature of error sources.

In Table 8.3, we present SLA and ∇SLA RMSE and correlation when pseudo-SWOT obser-

vations are considered for these three distinct cases, namely an ideal case where no noise sources

exist, a second case where only an uncorrelated (KaRIn) noise source is involved and a worst-

case scenario where both correlated and uncorrelated noise sources are involved. We consider

here real observations associated with the current day only (D = 0). From Table 8.3, we can

conclude that correlated noise presence in SWOT data, in particular, seems to have a strong

effect on performance, whereas AnDA seems relatively robust to uncorrelated KaRIn noise. We

believe two distinct effects to be present here. On one hand, when considering SWOT data more

pixels are present in observations (given the wide-swath nature of the altimeter track), which

may enhance the effects of both noise types, even though correlated noise seems to produce the

greater effect on performance. On the other hand, AnDA uses an EnFKS, which works best

when noise is uncorrelated, and is unable to handle correlated noise properly without the use

of additional techniques [224]. Our results also indicate that both effects seem to be enhanced

when data is accumulated over several days (not shown here).

8.7 Nadir along-track vs. SWOT data

To evaluate the effect of different observation sampling patterns, we now consider both nadir

along-track observations and pseudo-SWOT wide-swath high-resolution SLA observations ob-

tained using the SWOT simulator [78], and compare the performance of AnDA when assimilating

both types of observations separately. The experimental procedure and performance metrics con-

sidered are identical to those in Section 8.6. Given the sensitivity of the system to correlated

noise sources, we consider only KaRIn noise for SWOT data and an intermediate noise level

of σ2
n = 3 cm2 for nadir along-track data, under the assumption that a pre-processing scheme

can be exploited to either filter correlated noise sources [84] or take them into account into

the correlation structure of data assimilation schemes [224]. Additional alternative strategies to

deal with correlated noise sources will be presented and briefly discussed in Section 8.10. The

default parameter settings considered are: Wp = 30 pixels (∼ 150 km, 1 pixel ≈ 5 km), K = 25
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Table 8.3 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction from
daily SWOT observations under different noise settings, namely ideal SWOT observations without noise sources,
SWOT observations when considering only correlated noise sources (KaRIn noise), and SWOT observations when
both correlated and uncorrelated noise sources are considered. Best result in bold.

Setting SLA ∇SLA

No noise 0.01802 (0.9548) 0.004410 (0.7894)
KaRIn noise 0.01810 (0.9543) 0.004436 (0.7857)
All noise sources 0.03765 (0.8143) 0.005791 (0.5900)

Table 8.4 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction
from nadir along-track observations (ATD) and wide-swath SWOT observations (SW OTD). For each type of
observations, both daily observations (D = 0) and observations accumulated on a time window t0 ±D with D = 5
days are considered. Best result in bold.

Setting SLA ∇SLA

AT0 0.02395 (0.9186) 0.005507 (0.6989)
AT5 0.01978 (0.9457) 0.004699 (0.7660)

SWOT0 0.01810 (0.9543) 0.004436 (0.7857)
SWOT5 0.01920 (0.9502) 0.004345 (0.7913)

neighbours, δt = 1 days, NEOF = 9 EOF components.

Table 8.4 presents SLA and ∇SLA RMSE and correlation results obtained when considering

nadir along-track data and SWOT data independently, for current observations only and for

observations accumulated on a time window t0 ± D, with D = 5 days. From Table 8.4, a first

interesting result is that considering SWOT observations for the current day only (without ac-

cumulation) is already enough to outperform OI, MS-VE-DINEOF, NN-LLOD and AnDA when

considering only along-track data. We report a mean normalized RMSE (nRMSE, computed by

normalizing the RMSE by the standard deviation of the ground-truth high-resolution SLA fields)

gain of around 2.8% for the whole year 2013 and 6.2% for days when at least one SWOT track

is observed (with respect to AnDA applied to nadir along-track data accumulated on a time

window t0 ±D with D = 5 days). This clearly highlights that the performance gain relates to

the availability of SWOT observations. This is in agreement with previous studies [32,217] that

suggest that SWOT observations should be able to provide as much information as four conven-

tional altimeters for the reconstruction of mesoscale features. To further evaluate this result in

detail, we present in Figure 8.7 the time series of the nRMSE for the AnDA assimilation of nadir

along-track observations accumulated on a time window t0±D with D = 5 days (Figure 8.7, top)

and for the AnDA assimilation of daily SWOT observations (Figure 8.7, middle). The nRMSE

gain between them, i.e., the gain obtained when considering daily SWOT observations rather

than nadir along-track observations accumulated on a time window t0 ±D with D = 5 days is

also depicted (Figure 8.7, bottom). The red filling indicates periods during which there is a posi-

tive nRMSE gain when considering daily SWOT data rather than nadir along-track observations
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accumulated on a time window t0 ± D with D = 5 days (i.e. nRMSESWOT0 ≤ nRMSEAT5).

We also consider the time series of the proportion of the total SLA field covered by observations,

depicted in Figure 8.8, where we present the observation coverage proportion (given as the ratio

between the number of observed pixels and the total number of pixels in the considered region,

excluding land pixels) for nadir along-track observations accumulated on a time window t0 ±D
with D = 5 days (Figure 8.8, top) and for daily SWOT observations (Figure 8.8, middle), and

the coverage proportion gain between them, i.e., the coverage gained by considering daily SWOT

observations rather than nadir along-track observations accumulated on a time window t0 ±D
with D = 5 days. Similarly to Figure 8.7, the red filling indicates periods during which there is

an nRMSE gain when considering daily SWOT data rather than nadir along-track observations

accumulated on a time window t0 ±D with D = 5 days (i.e. nRMSESWOT0 ≤ nRMSEAT5).

Not surprisingly, the assimilation of daily SWOT data seems to outperform the assimilation

of nadir along-track observations accumulated on a time window t0 ±D with D = 5 days most

of the time, with few days involving a loss in performance when considering SWOT data. In-

deed, for days when a SWOT swath exists within the considered region, the surface coverage of

such swath (and thus the amount of information contained within such swath) is considerably

larger when compared to the surface coverage (and information contained) in nadir along-track

observations accumulated on a time window t0 ±D with D = 5 days, as can be clearly seen in

Figure (8.8, bottom). This increased surface coverage may then partially explain the improved

reconstruction performance. By contrast, days where no SWOT observation exists involve a very

small mean nRMSE gain of 0.8% w.r.t. the AnDA interpolation of nadir along-track data, with

around 38% of such days actually involving a loss in reconstruction performance (with a mean

nRMSE loss of around 2%). In this respect, days involving a loss in performance are, as expected,

mostly related to a loss in observation coverage, i.e. days when no SWOT observation exist. For

such days, AnDA relies solely on the Analog Forecasting scheme to produce a prediction when

considering daily SWOT observations, whereas when considering nadir along-track observations

accumulated on a time window t0 ± D with D = 5 days AnDA will always assimilate some

information conveyed by observations.

Another interesting, yet counterintuitive, result is that performance seems to decrease when

accumulating SWOT observations over a time window t0 ±D. We hypothesize that wide-swath

observations, given their two-dimensional nature and higher continuous spatial coverage, are

prone to capturing moving/changing structures multiple times as observations are accumulated,

thus creating inconsistent SLA observations leading to the reconstruction of fictitious struc-

tures. Accumulating SWOT observations will then tend to increase the sensitivity of AnDA to

changes in the SLA field occurring during the days over which observations are accumulated.

In this respect, accumulating observations over multiple days seems to be an appropriate strat-

egy to improve AnDA SLA reconstruction performance for nadir along-track data, whereas for
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Figure 8.7 – Time series of the normalized root mean squared error (nRMSE) for the AnDA assimilation of nadir
along-track observations accumulated on a time window t0 ± D with D = 5 days (top, noted as AT5) and for the
AnDA assimilation of daily SWOT observations (middle, noted as SW OT0). The time series of the nRMSE gain
obtained when considering daily SWOT observations rather than nadir along-track observations accumulated on
a time window t0 ± D with D = 5 days (given by nRMSEAT5

− nRMSESW OT0
) is also depicted (bottom, noted

as Gain). The red filling indicates periods during which there is a positive nRMSE gain when considering daily
SWOT data rather than nadir along-track observations accumulated on a time window t0 ± D with D = 5 days
(i.e. nRMSESW OT0

≤ nRMSEAT5
).

SWOT data AnDA seems to be prone to issues arising from inconsistencies between accumu-

lated observations. An illustration of this principle is presented in Figure 8.9, where we depict

the ground-truth SLA fields (8.9a), as well as the observations and interpolated SLA fields for

the AnDA assimilation of nadir along-track observations accumulated on a time window t0±D
with D = 5 days (Figures 8.9c and 8.9d), daily SWOT observations (Figures 8.9e and 8.9f), and

SWOT observations accumulated on a time window t0 ±D with D = 5 days (Figures 8.9g and
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Figure 8.8 – Time series of the observation coverage (given as the ratio between the number of observed pixels
and the total number of pixels in the considered region, excluding land pixels) for nadir along-track observations
accumulated on a time window t0 ± D with D = 5 days (top, noted as AT5) and for daily SWOT observations
(middle, noted as SW OT0). The time series of the coverage gain obtained when considering daily SWOT obser-
vations rather than nadir along-track observations accumulated on a time window t0 ± D with D = 5 days is also
depicted (bottom, noted as Gain). The red filling indicates periods during which there is a positive nRMSE gain
when considering daily SWOT data rather than nadir along-track observations accumulated on a time window
t0 ± D with D = 5 days (i.e. nRMSESW OT0

≤ nRMSEAT5
).

8.9h). We also include the SLA field interpolated by OI as reference (Figure 8.9b). Figure 8.10

presents analogue results for the gradient of the interpolated fields ∇SLA. In this example, we

can see that the accumulation of SWOT observations leads to the reconstruction of false struc-

tures along the high front in the southern part of the region, on the Algerian coast (Figure 8.9h),

whereas the reconstruction obtained from nadir along-track data accumulated on a time window

t0 ±D with D = 5 days and from daily SWOT observations remain closer to the ground-truth
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Table 8.5 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction
from the fusion of nadir along-track observations (ATD) and SWOT observations (SW OTD). For each type of
observations, both daily observations (D = 0) and observations accumulated on a time window t0 ±D with D = 5
days are considered. Best result in bold.

Setting SLA ∇SLA

AT0 + SWOT0 0.01742 (0.9576) 0.004375 (0.7934)
AT5 + SWOT5 0.01876 (0.9523) 0.004318 (0.7952)

AT5 + SWOT0 0.01687 (0.9607) 0.004286 (0.8051)

SLA field along the coast (Figures 8.9d and 8.9f). Indeed, no daily SWOT observation exists for

this particular day (Figure 8.9e), so that all SWOT swaths accumulated come from days around

the actual reconstruction date. In this way, the SLA fields sampled by these swaths slightly differ

from the real SLA field. Even if the differences between the sampled and real SLA fields are

small, the accumulation of SWOT observations will still involve the assimilation of inconsistent

SLA fields. A similar, yet milder, effect can be observed in the eastern part of the considered

region, where the shape of the structures captured is slightly deformed southwards due to the

information conveyed by the accumulated SWOT observations.

8.8 Altimetric data fusion

We further evaluate the potential of SWOT data to improve the reconstruction of high-resolution

SLA fields by considering the joint analysis of nadir along-track and SWOT observations (which

may be regarded as equivalent to complementing SWOT wide-swath observations with the nadir

along-track data that is part of the SWOT configuration). We report in Table 8.5 SLA and

∇SLA RMSE and correlation results when jointly considering these two data sources in the

AnDA scheme. As expected, this joint analysis leads to a relative SLA RMSE gain of 6.80%

w.r.t. the sole use of SWOT data and 14.71% w.r.t. the sole use of nadir along-track data. Not

surprisingly, when considering the fusion of nadir along-track and SWOT data, the best strategy

involves the fusion of accumulated nadir along-track observations over a time window of D = 5

days, thus increasing the spatial coverage of nadir along-track data, and SWOT observations

captured on the current day only, thus fully exploiting the two-dimensional nature and added

information provided by SWOT without being negatively affected by the increased sensitivity

of AnDA to inconsistencies between accumulated SWOT observations.

This result is further validated by Figure 8.11, depicting the time series of the nRMSE for

the AnDA assimilation of nadir along-track observations accumulated on a time window t0±D
with D = 5 days (Figure 8.11, top) and for the AnDA assimilation of the fusion of nadir along-

track observations accumulated on a time window t0 ± D with D = 5 days and daily SWOT

observations (Figure 8.11, middle). The nRMSE gain between them, i.e., the gain obtained

when complementing nadir along-track observations accumulated on a time window t0±D with
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(a) SLAGT (b) SLAOI

RMSE=0.02097, Corr=0.8871

(c) AT5 (d) SLAAT5

RMSE=0.01779, Corr=0.9190

(e) SW OT0 (f) SLASW OT0

RMSE=0.02077, Corr=0.9066

(g) SW OT5 (h) SLASW OT5

RMSE=0.02992, Corr=0.8684

Figure 8.9 – AnDA SLA reconstruction results for the 2nd May, 2013. (8.9a) Real high-resolution ground-truth
SLA field. (8.9b) Optimal Interpolation SLA reconstruction obtained from nadir along-track observations with a
standard covariance parametrization considering a temporal correlation scale of 10 days and a spatial correlation
scale of 100 km. (8.9c) Nadir along-track observations accumulated on a time window t0 ± D with D = 5 days
(noted as AT5). (8.9d) AnDA SLA reconstruction from nadir along-track observations accumulated on a time
window t0 ± D with D = 5 days (noted as AT5 and depicted in Figure (8.9c)). (8.9e) Daily SWOT observations
(noted as SW OT0). (8.9f) AnDA SLA reconstruction from daily SWOT observations (noted as SW OT0 and
depicted in Figure (8.9e)). (8.9g) SWOT observations accumulated on a time window t0 ± D with D = 5 days
(noted as SW OT5). (8.9h) AnDA SLA reconstruction from SWOT observations accumulated on a time window
t0 ± D with D = 5 days (noted as SW OT5 and depicted in Figure (8.9g)). RMSE and correlation values given
for each reported result.
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(a) ∇SLAGT (b) ∇SLAOI

RMSE=0.005166, Corr=0.5698

(c) ∇SLAAT5

RMSE=0.004307, Corr=0.6465
(d) ∇SLASW OT0

RMSE=0.004118, Corr=0.6746

(e) ∇SLASW OT5

RMSE=0.004152, Corr=0.6362

Figure 8.10 – AnDA SLA gradient reconstruction results for the 2nd May, 2013. (8.10a) Real high-resolution
ground-truth SLA gradient field. (8.10b) Optimal Interpolation SLA gradient reconstruction obtained from nadir
along-track observations with a standard covariance parametrization considering a temporal correlation scale of
10 days and a spatial correlation scale of 100 km. (8.10c) AnDA SLA gradient reconstruction from nadir along-
track observations accumulated on a time window t0 ± D with D = 5 days (noted as AT5 and depicted in Figure
(8.9c)). (8.10d) AnDA SLA gradient reconstruction from daily SWOT observations (noted as SW OT0 and depicted
in Figure (8.9e)). (8.10e) AnDA SLA gradient reconstruction from SWOT observations accumulated on a time
window t0 ± D with D = 5 days (noted as SW OT5 and depicted in Figure (8.9g)). RMSE and correlation values
given for each reported result.

D = 5 days with daily SWOT data, is also depicted (Figure 8.11, bottom). The red filling in-

dicates periods during which the nRMSE gain is positive, i.e. when the additional use of daily

SWOT data improves interpolation performance (nRMSEAT5+SWOT0 ≤ nRMSEAT5). From

the reported results, it is clear that considering additional SWOT data improves reconstruction

performance considerably. Indeed, for most days, considering additional SWOT observations

helps improve reconstruction performance. Furthermore, for the few days where a loss in recon-

struction nRMSE exists, such loss is considerably small relative to the nRMSE gain from other
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days.

Figure 8.11 – Time series of the normalized root mean squared error (nRMSE) for the AnDA assimilation of nadir
along-track observations accumulated on a time window t0 ± D with D = 5 days (top, noted as AT5) and for the
AnDA assimilation of the fusion of nadir along-track observations accumulated on a time window t0 ± D with
D = 5 days and daily SWOT observations (middle, noted as AT5 + SW OT0). The time series of the nRMSE gain
obtained when complementing nadir along-track observations accumulated on a time window t0 ± D with D = 5
days with daily SWOT data (given by nRMSEAT5

− nRMSEAT5+SW OT0
) is also depicted (bottom, noted as

Gain). The red filling indicates periods during which the nRMSE gain is positive, i.e. when the additional use of
daily SWOT data improves interpolation performance (nRMSEAT5+SW OT0

≤ nRMSEAT5
).

To further highlight the performance of AnDA-based interpolations considering different ob-

servation sampling patterns and illustrate the gain brought forward by considering additional

SWOT data, Figure 8.12 depicts the ground-truth SLA fields (8.12a), as well as the observa-

tions and interpolated SLA fields for the AnDA assimilation of nadir along-track observations
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accumulated on a time window t0 ± D with D = 5 days (Figures 8.12c and 8.12d), for the

AnDA assimilation of daily SWOT observations (Figures 8.12e and 8.12f) and for the AnDA

assimilation of the fusion of nadir along-track observations accumulated on a time window t0±D
with D = 5 days and daily SWOT observations (Figures 8.12g and 8.12h). We also include the

SLA field interpolated by OI as reference (Figure 8.12b). Figure 8.13 presents analogue results

for the gradient of the interpolated fields ∇SLA. In agreement with Table 8.4, the SLA field

reconstructed from daily SWOT data appears closer to the ground-truth SLA field than the

reconstruction obtained when considering nadir along-track observations accumulated on a time

window t0±D with D = 5 days. Moreover, for the considered date, SWOT data provides addi-

tional information in the western part of the case-study region, south of Mallorca. Visually, this

leads for instance to the improved reconstruction of an eddy-like structure north of the Algerian

coast (38◦N, 4.5◦E), which is hardly recovered when considering the OI or AnDA reconstruction

from nadir along-track data only. For this region, the joint assimilation of nadir along-track

and SWOT observations seems to introduce slight differences in the delineation of small-scale

structures, when compared to the sole assimilation of SWOT data. By contrast, in the eastern

part of the case-study region, the absence of SWOT data and the scarce sampling of nadir along-

track data lead to a greater spatial smoothing of fine-scale patterns. The gradient fields further

illustrate the improvement issued from simultaneously considering SWOT and nadir along-track

data, specially compared with OI. We may nonetheless notice that a significant fraction of the

fine-scale structures could not be recovered.

If we compute the radially averaged power spectra of the ground-truth and reconstructed

SLA fields (Figure 8.14) we can see that, effectively, considering additional SWOT data helps

improve the reconstruction performance of AnDA, with the joint AnDA assimilation of nadir

along-track and SWOT data outperforming the AnDA assimilation of nadir along-track obser-

vations only for most spatial scales in the mesoscale/sub-mesoscale range. Moreover, despite the

similarity between the spectra of the assimilation of daily SWOT data and the joint assimilation

of nadir along-track observations accumulated on a time window t0 ±D with D = 5 days and

daily SWOT observations, we can observe that the joint assimilation helps better constraint the

spectrum of the reconstructed SLA field, particularly for the smaller scales, where the joint as-

similation produces a spectrum closer to the real ground-truth SLA spectrum. As expected, OI

clearly underestimates the high-resolution finer details of the ground-truth SLA fields, whereas

results obtained with AnDA approximate the ground-truth considerably better. For scales closer

to the pixel size (∼ 5 km), AnDA tends to over-estimate the spectrum, which we believe relates

to both some slight border effects due to the patch formulation (which we have observed during

our tests) and to the KaRIn pixel-wise Gaussian noise (since our experiments show that this

effect is considerably less strong when noise-free observations are considered (not shown here)).

The joint assimilation of nadir-along track and SWOT observations seems to help limit this
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(a) SLAGT (b) SLAOI

RMSE=0.03372, Corr=0.8027

(c) AT5 (d) SLAAT5

RMSE=0.03014, Corr=0.8536

(e) SW OT0 (f) SLASW OT0

RMSE=0.02314, Corr=0.9245

(g) AT5 + SW OT0 (h) SLAAT5+SW OT0

RMSE=0.02261, Corr=0.9248

Figure 8.12 – AnDA SLA reconstruction results for the 9th March, 2013. (8.12a) Real high-resolution ground-truth
SLA field. (8.12b) Optimal Interpolation SLA reconstruction obtained from nadir along-track observations with a
standard covariance parametrization considering a temporal correlation scale of 10 days and a spatial correlation
scale of 100 km. (8.12c) Nadir along-track observations accumulated on a time window t0 ± D with D = 5 days
(noted as AT5). (8.12d) AnDA SLA reconstruction from nadir along-track observations accumulated on a time
window t0 ± D with D = 5 days (noted as AT5 and depicted in Figure (8.12c)). (8.12e) Daily SWOT observations
(noted as SW OT0). (8.12f) AnDA SLA reconstruction from daily SWOT observations (noted as SW OT0 and
depicted in Figure (8.12e)). (8.12g) Fusion of nadir along-track observations accumulated on a time window t0 ±D

with D = 5 days and daily SWOT observations (noted as AT5 + SW OT0). (8.12h) AnDA SLA reconstruction
from the fusion of nadir along-track observations accumulated on a time window t0 ± D with D = 5 days and
daily SWOT observations (noted as AT5 +SW OT0 and depicted in Figure (8.12g)). RMSE and correlation values
given for each reported result. Adapted from [170]. c© 2019 IEEE.
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(a) ∇SLAGT (b) ∇SLAOI

RMSE=0.006373, Corr=0.4804

(c) ∇SLAAT5

RMSE=0.004684, Corr=0.7374
(d) ∇SLASW OT0

RMSE=0.004432, Corr=0.7685

(e) ∇SLAAT5+SW OT0

RMSE=0.004372, Corr=0.7728

Figure 8.13 – AnDA SLA gradient reconstruction results for the 9th March, 2013. (8.13a) Real high-resolution
ground-truth SLA gradient field. (8.13b) Optimal Interpolation SLA gradient reconstruction obtained from nadir
along-track observations with a standard covariance parametrization considering a temporal correlation scale of 10
days and a spatial correlation scale of 100 km. (8.13c) AnDA SLA gradient reconstruction from nadir along-track
observations accumulated on a time window t0 ±D with D = 5 days (noted as AT5 and depicted in Figure (8.12c)).
(8.13d) AnDA SLA gradient reconstruction from daily SWOT observations (noted as SW OT0 and depicted in
Figure (8.12e)). (8.13e) AnDA SLA gradient reconstruction from the fusion of nadir along-track observations
accumulated on a time window t0 ± D with D = 5 days and daily SWOT observations (noted as AT5 + SW OT0

and depicted in Figure (8.12g)). RMSE and correlation values given for each reported result. Adapted from [170].
c© 2019 IEEE.

effect to some extent.

Furthermore, we analyze the time series of the proportion of the total SLA field covered

by observations, depicted in Figure 8.15, where we present the observation coverage proportion

for nadir along-track observations accumulated on a time window t0 ± D with D = 5 days

(Figure 8.15, top) and for the fusion of nadir along-track observations accumulated on a time

window t0 ± D with D = 5 days and daily SWOT observations (Figure 8.15, middle). The
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Figure 8.14 – Radially-averaged power spectra for AnDA reconstruction results on the 9th March, 2013. Reported
power spectra correspond to the high-resolution ground-truth SLA field (GT ), the Optimal Interpolation SLA re-
construction obtained from nadir along-track observations with a standard covariance parametrization considering
a temporal correlation scale of 10 days and a spatial correlation scale of 100 km (OI), the AnDA SLA recon-
struction from nadir along-track observations accumulated on a time window t0 ± D with D = 5 days (AT5), the
AnDA SLA reconstruction from daily SWOT observations (SW OT0) and the AnDA SLA reconstruction from the
fusion of nadir along-track observations accumulated on a time window t0 ± D with D = 5 days and daily SWOT
observations (AT5 + SW OT0). Adapted from [170]. c© 2019 IEEE.

coverage proportion gain between them, i.e., the coverage gain obtained when complementing

nadir along-track observations accumulated on a time window t0 ± D with D = 5 days with

daily SWOT data, is also depicted (Figure 8.15, bottom). Similarly to Figure 8.11, the red

filling indicates periods during which the nRMSE gain is positive, i.e. when the additional use

of daily SWOT data improves interpolation performance (nRMSEAT5+SWOT0 ≤ nRMSEAT5).

As expected, the few days depicting a loss in reconstruction performance relate to periods with

maximal nadir along-track observation coverage and minimal SWOT coverage, i.e., days when

most of the region is sampled by nadir along-track observations and no SWOT observations exist.

In this respect, one may indeed expect that for days of maximal nadir along-track observation

coverage, the assimilation of nadir along-track observations only may perform nearly as well

as or even slightly better than the assimilation of the fusion of nadir along-track and SWOT

data, specially if no SWOT observations exists during such days of maximal nadir along-track

observation coverage. We hypothesize that this behaviour may also relate to inconsistencies

between SWOT and nadir along-track observations.
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Figure 8.15 – Time series of the observation coverage (given as the ratio between the number of observed pixels
and the total number of pixels in the considered region, excluding land pixels) for nadir along-track observations
accumulated on a time window t0 ±D with D = 5 days (top, noted as AT5) and for the fusion of nadir along-track
observations accumulated on a time window t0 ±D with D = 5 days and daily SWOT observations (middle, noted
as AT5 + SW OT0). The time series of the coverage gain obtained when complementing nadir along-track data
accumulated on a time window t0 ± D with D = 5 days with daily SWOT data is also depicted (bottom, noted
as Gain). The red filling indicates periods during which the nRMSE gain is positive, i.e. when the additional use
of daily SWOT data improves interpolation performance (nRMSEAT5+SW OT0

≤ nRMSEAT5
).

Finally, we further analyze interpolation performance in relation to the spatial coverage of the

available observations. We directly compare, in Figure 8.16, the spatial coverage of the joint nadir

along-track/SWOT dataset (depicted previously in Figure (8.15, middle)) to the nRMSE inter-

polation gain when complementing nadir along-track observations accumulated on a time window

t0 ±D with D = 5 days with daily SWOT data (given by nRMSEAT5 − nRMSEAT5+SWOT0 ,

previously depicted in Figure (8.11, bottom)). The red filling indicates periods during which the
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nRMSE gain is positive, i.e. when the additional use of daily SWOT data improves interpola-

tion performance (nRMSEAT5+SWOT0 ≤ nRMSEAT5). Whereas the spatial coverage of nadir

along-track observations is characterized by a relatively constant baseline around a 5% coverage,

the SWOT sampling results in periodic spikes in the coverage time series, with a characteris-

tic period of 10 days and strong coverage variations from 0% to 40%. The nRMSE gain time

series depicted in Figure (8.16, bottom) is significantly correlated to this periodic spikes pat-

tern (R=0.60, p<0.001). This indicates that the improvement in interpolation performance is

mainly observed for dates where at least one SWOT track passes through the case-study region.

Overall, whereas the mean nRMSE gain is around 5.0% for the whole year 2013, it increases

to 7.0% for days when at least one SWOT track is observed in the case-study region. We may

also notice that peaks in Figure (8.16, bottom) are visually wider than those in Figure (8.16,

top), which supports some ability of AnDA to propagate SWOT information over a few days.

Moreover, a mean nRMSE gain of 3.5% w.r.t. the AnDA interpolation of nadir along-track data

only is observed for days where no SWOT observation exist, while a very small fraction of these

days (around 1.4%) involves a loss in reconstruction performance (with a mean nRMSE loss of

around 0.2%). This further highlights the performance gain associated with the fusion of along-

track and SWOT data, specially when compared to equivalent results obtained for the AnDA

assimilation of SWOT data alone.

It should also be noted that both accumulating nadir along-track observations over a time

window and the use of wide-swath SWOT observations (or a combination of both) have proven

to be effective strategies to outperform OI, MS-VE-DINEOF and NN-LLOD. Indeed, when

compared to OI, MS-VE-DINEOF and NN-LLOD, AnDA presents lower RMSE levels and higher

correlation coefficients, which indicates that mesoscale structures are being better recovered.

8.9 Additional regressors for analog forecasting

One of the main advantages of using the locally-linear analog forecasting model (with respect

to both classical model-based forecasting and other analog forecasting formulations) is that one

may consider additional sources of information as regression variables when computing the ana-

log forecast. In this way, the linear regression model relating the K nearest analogs and their

successors may involve not only the high-resolution SLA fields in the catalog, but also additional

data sources, such as low-resolution OI interpolated SLA fields, numerically-resolved gradients,

sea surface temperature (SST) fields, etc.

In this section, we explore the effect of considering both the low-resolution OI-interpolated

SLA fields as well as the numerically-resolved high-resolution SLA gradients as additional re-

gressors. Following previous results, we consider the best case scenario identified earlier and

consider the assimilation of the fusion of nadir along-track data accumulated on a time window

t0 ±D with D = 5 days and observation noise variance σn = 3 cm2 and daily SWOT observa-
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Figure 8.16 – (Top) Time series of the observation coverage (given as the ratio between the number of observed
pixels and the total number of pixels in the considered region, excluding land pixels) for the fusion of nadir along-
track observations accumulated on a time window t0±D with D = 5 days and daily SWOT observations. (Bottom)
Time series of the nRMSE gain obtained when complementing nadir along-track observations accumulated on a
time window t0 ± D with D = 5 days with daily SWOT data (given by nRMSEAT5

− nRMSEAT5+SW OT0
). The

red filling indicates periods during which the nRMSE gain is positive, i.e. when the additional use of daily SWOT
data improves interpolation performance (nRMSEAT5+SW OT0

≤ nRMSEAT5
).

tions with correlated KaRIn noise only. We also consider the following base parameter settings:

Wp = 30 pixels (∼ 150 km, 1 pixel ≈ 5 km), K = 25 neighbours, δt = 1 days, NEOF = 9 EOF

components. Obtained root mean squared error (RMSE) and correlation results are summarized

in Table 8.6.

From Table 8.6, the contribution of considering OI-resolved low-resolution SLA fields as an

additional regressor seems to be marginal, while considering numerically-resolved high-resolution

SLA gradient fields as an additional regressor seems to provide a slight improvement in recon-

struction performance.

To further validate these conclusions, we present in Figure 8.17 the radially averaged power

spectra of the ground-truth and reconstructed SLA fields when considering no additional re-

gressors, and when considering low-resolution SLA fields and SLA gradient fields as regressors.

We also depict the power spectrum of the OI-resolved SLA field as reference. Reported power

spectra seem to suggest no noticeable improvement in reconstruction performance is produced
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Table 8.6 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction
from the fusion of nadir along-track observations accumulated on a time window t0 ± D with D = 5 days and
daily SWOT observations (AT5 + SW OT0), and considering different additional regressors, namely no additional
regressors, OI-resolved low-resolution SLA fields, and numerically-resolved high-resolution SLA gradient fields.
Best result in bold.

Setting SLA ∇SLA

AT5 + SWOT0 0.01687 (0.9607) 0.004286 (0.8051)
AT5 + SWOT0 + OI regressors 0.01679 (0.9612) 0.004277 (0.8060)
AT5 + SWOT0+∇SLA regressors 0.01656 (0.9626) 0.004218 (0.8088)

Figure 8.17 – Radially-averaged power spectra for AnDA reconstruction results when considering additional
regressors on the 9th March, 2013. Reported power spectra correspond to the high-resolution ground-truth SLA field
(GT ), the Optimal Interpolation SLA reconstruction obtained from nadir along-track observations with a standard
covariance parametrization considering a temporal correlation scale of 10 days and a spatial correlation scale of
100 km (OI), and the AnDA SLA reconstruction from the fusion of nadir along-track observations accumulated
on a time window t0 ± D with D = 5 days and daily SWOT observations when no additional regressors are
considered (AT5 + SW OT0), when OI-resolved low-resolution SLA fields are considered as additional regressors
(AT5 + SW OT0 + OI reg), and when numerically-resolved high-resolution SLA gradient fields are considered as
additional regressors (AT5 + SW OT0 + ∇ SLA reg).

by the inclusion of low-resolution SLA fields as additional predictors. The introduction of high-

resolution SLA gradient fields as additional regressors, on the contrary, seems to provide a slight

improvement in reconstruction performance for all spatial scales.

Figure 8.18 illustrates some reconstruction results by presenting ground-truth SLA and

∇SLA fields (Figures 8.18a and 8.18b), as well as interpolated SLA fields and ∇SLA fields for
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the base case considering the AnDA assimilation of the fusion of nadir along-track observations

accumulated on a time window t0 ±D with D = 5 days and daily SWOT observations (Figures

8.18c and 8.18d) and for alternative cases considering as additional regressors the OI-resolved

low-resolution SLA fields (Figures 8.18e and 8.18f) and the numerically-resolved high-resolution

SLA gradient fields (Figures 8.18g and 8.18h). These results are in agreement with the power

spectra reported in Figure 8.17. Indeed, no noticeable improvement in reconstruction can be ob-

served when low-resolution SLA fields are used as additional regressors, while the introduction

of numerically-resolved high-resolution SLA gradient fields seems to help produce results that

are closer to the ground-truth fields, particularly for the reconstruction of SLA gradient fields.

8.10 Assimilation of observation gradients

As previously demonstrated, the presence of correlated noise sources in SWOT observations has

a considerable impact on the performance of AnDA. In this respect, the exploration of tech-

niques to filter or take such noise into account seem of the utmost importance to be able to

fully exploit the scientific potential within SWOT observations when the mission goes airborne

in 2021. Currently, efforts being made to deal with SWOT noise include developing filtering

strategies [84] and considering SWOT noise structure within the covariance structure of model

(6.1) in data assimilation issues [224].

As an alternative to these methods, we present here a proof of concept involving the assim-

ilation of numerically-resolved observation gradients. Given that SWOT observations present a

wide-swath two-dimensional nature, we may indeed compute and assimilate the gradient field

of high-resolution SLA SWOT observations. The assimilation of true two-dimensional gradient

fields from nadir along-track observations, on the other hand, is not possible given that only

gradients along the satellite track can be computed from such observations. In the context of

AnDA, we achieve this by modifying observation model H so that it approximates the gradient

of observations by means of a simple finite difference method, thus introducing a relationship

between numerically-resolved gradients and system states that allows for the direct assimilation

of SLA gradients. In this way, by modifying observation operator H we may choose to assimilate

both SLA observations and their gradients, or only SLA observation gradients.

To illustrate this, we present in Table 8.7 the root mean squared error (RMSE) and corre-

lation for the AnDA assimilation of daily SWOT observations and numerically-resolved daily

SWOT observation gradients, and considering both correlated and uncorrelated noise sources.

We analyze three distinct cases, namely the assimilation of SWOT observations, the joint assim-

ilation of SWOT observations and their numerically-resolved gradients, and the assimilation of

numerically-resolved SWOT observation gradients only. For the reported experiments, we con-

sider the following base parameter settings: Wp = 30 pixels (∼ 150 km, 1 pixel ≈ 5 km), K = 25

neighbours, δt = 1 days, D = 0 days, NEOF = 9 EOF components. From the reported results, a
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(a) SLAGT (b) ∇SLAGT

(c) SLAAT5+SW OT0

RMSE=0.02261, Corr=0.9248
(d) ∇SLAAT5+SW OT0

RMSE=0.004372, Corr=0.7741

(e) SLAAT5+SW OT0
with OI regressors

RMSE=0.02227, Corr=0.9266
(f) ∇SLAAT5+SW OT0

with OI regressors
RMSE=0.004387, Corr=0.7730

(g) SLAAT5+SW OT0
with ∇SLA regressors

RMSE=0.02163, Corr=0.9311
(h) ∇SLAAT5+SW OT0

with ∇SLA regressors
RMSE=0.004301, Corr=0.7736

Figure 8.18 – AnDA SLA and SLA gradient (∇SLA) reconstruction results when considering additional regressors
for the 9th March, 2013. Reported results depict the real high-resolution ground-truth SLA field (8.18a) and SLA
gradient field (8.18b), as well as the AnDA SLA and SLA gradient reconstruction from the fusion of nadir along-
track observations accumulated on a time window t0 ± D with D = 5 days and daily SWOT observations and
considering: ((8.18c) and (8.18d)) no additional regressors, ((8.18e) and (8.18f)) OI-resolved low-resolution SLA
fields as additional regressors, and ((8.18g) and (8.18h)) numerically-resolved high-resolution SLA gradient fields
as additional regressors. RMSE and correlation values given for each reported result.
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Table 8.7 – Root mean squared error (Correlation) for AnDA SLA and SLA gradient (∇SLA) reconstruction
when assimilating daily SWOT observations and/or their corresponding numerically-resolved SWOT observation
gradients. Best result in bold.

Setting SLA ∇SLA

All noise sources + SLA assimilation 0.03765 (0.8143) 0.005791 (0.5900)
All noise sources + SLA and ∇SLA assimilation 0.03749 (0.8134) 0.005756 (0.5931)
All noise sources + ∇SLA assimilation 0.03126 (0.8621) 0.006789 (0.5367)

small marginal gain can be observed with the joint assimilation of both SWOT observations and

their corresponding gradients. The highest gain, however, involves the assimilation of SWOT

observation gradients only.

These results may be explained by the fact that the assimilated observation gradients are

computed using finite differences, which implicitly implements a mean filtering scheme. This

implies gradients are thus robust to correlated noise sources, and may suggest indeed that

considering observation gradients could be useful for the assimilation of SWOT observations

contaminated by correlated noise. Even though the best obtained performance falls below that

of previous results (even OI), this proof of concept intends to illustrate the potential of gradient

assimilation as a means to deal with the correlated noise sources associated with the SWOT

mission. In this respect, this suggest either a combination of gradient assimilation with the

filtering or covariance modeling approaches mentioned before, as well as the development of

more complex observation models capable of simultaneously assimilating multiple sources of

SLA observations and their gradients; one may consider, for example, the joint assimilation of

nadir along-track SLA observations and numerically-resolved SWOT observation gradients.

8.11 Conclusion

In the present chapter, we explored the potential of SWOT observations to overcome the limita-

tions of currently available altimetry products for the reconstruction of high-resolution sea level

anomaly (SLA) fields from satellite observations. We focused on a case-study region in the West-

ern Mediterranean Sea, characterized by small Rossby radii, and performed observing system

simulation experiments (OSSE) considering state-of-the-art data-driven interpolation schemes.

Indeed, the ever-increasing availability of remote sensing, in situ and simulation datasets truly

supports the exploration of data-driven approaches as a powerful alternative to classical model-

driven schemes. These data-driven schemes have been shown to provide computationally-efficient

and highly-flexible approaches and to significantly outperform OI. In this respect, they may be

regarded as a means to exploit high-resolution numerical simulation datasets for the reconstruc-

tion of SLA fields from partial satellite observations. Among the evaluated schemes, the Analog

Data Assimilation (AnDA) appeared as particularly relevant to explicitly model upper ocean
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dynamics temporal dependencies, and led to the best interpolation performance.

Specifically, we developed an OSSE to evaluate the performance of the considered data-driven

approaches for the interpolation of SLA fields from altimetry data. We further evaluated the

sensitivity of AnDA to its most relevant internal parameters and to different noise sources, and

benchmarked its performance for the assimilation of irregularly-sampled altimetry observations.

With a view towards the upcoming SWOT altimetry mission, we considered different observation

sampling patterns, namely satellite nadir along-track observations and wide-swath SWOT ob-

servations, and explored the joint analysis of both sources of altimetry data. Finally, we explored

the use of alternative data sources, such as OI-resolved low-resolution SLA fields or numerically-

resolved SLA gradient fields, as additional sources of information to enhance the reconstruction

performance of AnDA. Reported results support the relevance of AnDA with respect to state-

of-the-art approaches (OI [57, 204], MS-VE-DINEOF [161, 213] and NN-LLOD [169]) for the

high-resolution reconstruction of sea level anomaly (SLA) fields. We report a clear improvement

of 32% (12%) in terms of SLA RMSE (correlation) and 29% (27%) in terms of ∇SLA RMSE

(correlation) with respect to OI when considering the AnDA assimilation of nadir along-track

data. Our experiments also suggest an additional SLA reconstruction performance improvement

of 42% (12%) in terms of SLA RMSE (correlation) and 34% (29%) in terms of ∇SLA RMSE

(correlation) with respect to OI for the joint AnDA assimilation of SWOT and nadir along-track

observations.

Importantly, these results highlight the potential of SWOT observations to provide more

information than currently available nadir along-track altimetry observations. Overall, our ex-

periments truly support the potential of SWOT observations to better constraint AnDA and

improve the reconstruction of mesoscale features in satellite-derived altimetry fields. We may

draw three main conclusions:

• The joint use of nadir along-track and SWOT in AnDA naturally arises as the best strategy,

with a relative interpolation gain of about 14.71% (resp. 42.36%) in terms of SLA RMSE

w.r.t. AnDA (resp. OI) applied solely to nadir along-track data.

• Contrary to nadir along-track, the accumulation of SWOT data over consecutive days does

not help, and even negatively affects, interpolation performance.

• The irregular time-sampling of SWOT observations for a given region, typically involving

a revisit period of 10 days for mid-latitudes, results in a relatively large time variability of

interpolation performance.

Throughout most of this chapter, the considered OSSE involved realistic uncorrelated noise

levels for both nadir along-track and SWOT data. For SWOT data, however, correlated noise

sources are also expected. Given that AnDA has proven to be considerably sensitive to these cor-

related noise sources, our results might then be regarded as upper-bounds for the improvement

173



Chapter 8. Data-driven fusion of nadir along-track and SWOT data

to be expected from the SWOT mission for the reconstruction of satellite-derived altimetry

fields. Importantly, such noise sources need to be appropriately accounted for in the inter-

polation model considered [171], as previously illustrated in this chapter. In this respect, we

introduced the assimilation of numerically-resolved SWOT observation gradients as a possible

strategy to deal with correlated noise sources contaminating SWOT data. However, additional

preprocessing should still be carried out to filter correlated noise in SWOT data [84] or take its

sources into account in the correlation structure of data assimilation schemes [224]. Regarding

the valorization of these contributions, reported results have been presented in both national

and international conferences [171,172], and constitute the main subject of a journal article [170].

As far as future work perspectives are concerned, future developments should focus on com-

bining the above mentioned SWOT noise processing strategies with the AnDA framework, in

order to specifically address correlated noise sources either within the assimilation models [224]

or through a dedicated preprocessing step [84]. In this regard, the joint assimilation of SWOT

observation gradients and nadir along-track SLA data appears as a promising alternative to

deal with the correlated noise sources present in SWOT data. Hopefully, the combination of the

above mentioned strategies will help develop useful tools to process real observations from the

future SWOT altimetry mission. Other interesting research avenues include the combination of

additional sources of altimetry data, as well as the exploitation of the synergy with alternative

ocean dynamical tracers (e.g. sea surface temperature, sea surface salinity, ocean color, etc.).

Further exploring the exploitation of structural information present in wide-swath observations,

for example by means of finite size Liapunov exponents (FSLE), is also an appealing research

direction.
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9.1 Conclusions

Throughout this thesis dissertation we aimed at exploring data-driven approaches to tackle a

variety of inverse problems in the context of physical oceanography and geosciences, with a

special focus on the reconstruction of upper ocean dynamics from satellite observations. In this

regard, we explored the exploitation of data-driven methodologies for the resolution of both

segmentation and reconstruction issues in multiple scientific contexts. Importantly, this work

contributes to ongoing joint efforts between the geosciences and signal processing communities

to exploit the ever growing availability of remote sensing, in situ and modeling/reanalysis data

to improve our understanding of ocean dynamics and ocean-atmosphere interactions. In this

respect, this thesis dissertation is, given its subject matter, at the interface between data science

and geosciences. As such, we attempted throughout this work to partially bridge the gap be-

tween signal processing and geosciences issues to improve current ocean dynamics segmentation

and reconstruction models.

Inspired by the recent success of non-negative and sparse blind source separation formula-

tions in the context of signal and image processing applications, in the first part of this work we

extended constrained blind source separation models to the problem of the observation-based
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characterization and decomposition of operators. We developed relevant models and proposed

efficient and mathematically-sound algorithms for the estimation of model parameters. Besides

the benchmarking and evaluation of model robustness and algorithm complexity and perfor-

mance for a variety of ideal and non-ideal setting, we also explored a number of applications for

both the segmentation of upper ocean dynamics from remote sensing data and the reconstruc-

tion/forecasting of dynamical systems, most notably for the well-known Lorenz ’96 dynamical

model. Our results support the relevance of the proposed formulations, with respect to more

classical formulations involving orthogonal priors and spatio-temporally invariant operators, for

both the segmentation and reconstruction of system dynamics.

In a second part of this dissertation, we shifted our focus towards a particular inverse prob-

lem, namely the interpolation of high-resolution geophysical fields form irregularly-sampled data,

with a particular interest on the interpolation of sea level anomaly (SLA) fields from satellite-

derived altimetry observations. In preparation for the launch of the SWOT mission in 2021, we

explored the effect of considering different sampling patterns, more particularly those relating

to classic along-track nadir altimetry and wide-swath off-nadir radar interferometry.

Initially, we tackled the problem of the interpolation of SLA fields from satellite observations

by reformulating it as an image super-resolution issue exploiting convolutional operators. We

resorted to the operator decomposition models introduced in the first part of this work as a

means to locally adapt the super-resolution model in smaller spatial domains, thus achieving a

more performant reconstruction. In this regard, the proposed model and algorithms constitute

a novel methodological contribution to the problem of the spatio-temporal interpolation of SLA

fields from irregularly-sampled data. The convolutional operator formulation also us allowed

to benefit from additional sources of complementary information, such as high-resolution sea

surface temperature (SST) fields. In particular, we evaluated different model constraints for the

decomposition of convolutional operators, and demonstrated the relevance of non-negative is-

sues, with respect to orthogonal or sparse-base priors, for the data-driven interpolation of SLA

fields from satellite-derived, irregularly-sampled altimetry observations.

Despite the relevance of non-negative operator decomposition formulations, we subsequently

evolved towards alternative data-driven formulations exploiting analog forecasting in the con-

text of data assimilation, given their recently demonstrated suitability for the interpolation of

geophysical fields from irregularly-sampled, gap-ridden datasets. Following previous efforts, we

applied the Analog Data Assimilation (AnDA) framework to our problem of interest. In this

respect, AnDA can be regarded as a means to exploit high-resolution simulation/reanalysis

datasets to the reconstruction of SLA fields from partial satellite observations by emulating

numerical models in the context of data assimilation, thus obtaining a more performant re-

construction not subject to restrictive model hypothesis, as may be the case for classical data
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assimilation. To optimize the application of the proposed framework to our particular situation,

we investigated the sensitivity of AnDA to its most relevant internal parameters and to noise

and error sources affecting satellite-derived altimetry datasets. With a view towards the future

SWOT mission, we explored, in particular, the effect of considering both nadir along-track and

SWOT observations independently, as well as a fusion of both data sources in order to exploit

the synergy between nadir along-track and SWOT observations. Moreover, the proposed formu-

lation permitted the exploitation of complementary information sources, such as OI-resolved low

resolution SLA fields or numerically-resolved high-resolution SLA gradient fields, as regressors

in the forecasting step of the proposed data-driven data assimilation framework. In particular,

we identified a clear limitation relating to the application of stochastic data assimilation schemes

to assimilate observations contaminated by correlated noise, as is the case for SWOT data. In

this respect, we also explored the assimilation of numerically-resolved gradients as a possible

alternative to deal with such correlated noise source, even though reported results suggest more

research in this direction.

9.2 Perspectives

As far as possible future work perspectives are concerned, many interesting research avenues

have been identified throughout the present thesis work.

From a methodological point of view, more work is needed in order to improve the robust-

ness and performance of the operator decomposition models proposed in the first half of this

thesis work, in particular for non-ideal cases involving noisy mixing parameters where model

identifiability may become compromised due to the relaxation of the parameter sharing hy-

pothesis necessary for the computation of local linear operators. Considering robust estimation

approaches for local linear operators and alternative or additional constraints on either mixing

coefficients αnk or regression matrices βk may prove to be effective means of increasing model

robustness and/or rendering it more suitable for alternative applications. In particular, imposing

additional constraints on the regression matrices may be of particular interest for the interpre-

tation of the identified modes.

Additionally, non-local extensions of operator decomposition models to combine spatio-

temporal and similarity-based neighbour selection for the estimation of local linear operators,

as considered in regression-based super-resolution models [2, 253], seem of particular relevance

for geophysical field interpolation applications. Finally, the extension of the proposed models

to non-linear decompositions, for example by exploiting kernel-based formulations [230, 262] or

convolutional neural networks (CNN) based models [49], and to non-Gaussian settings also ap-

pear as a relevant research directions. In particular, non-linear dictionary-based decompositions

may prove useful for combining non-linear mappings and locally-adapted models.
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As far as practical applications for the proposed observation-based operator decomposition

framework are concerned, future work should aim at identifying possible applications where the

decomposition of local linear operators may be suitable to help produce more relevant or easier

to interpret decompositions, as well as increase reconstruction performance. It may also involve

further development of previously studied applications, such as the analysis and reconstruction

of upper ocean dynamics from joint SSH-SST observations or other alternative ocean tracers.

Further exploring the geophysical interpretation of model parameters and their relation to other

geophysical quantities should also be considered. In this respect, the application of the proposed

data-driven analysis to numerical simulations associated with idealized geophysical conditions is

of key interest [131]. The use of additional local (potential) descriptors of upper ocean dynamics

within the proposed methodology, such as SST gradient, associated quantities like SST gradient

divergence and curl, or other geophysical tracers, such as salinity and chlorophyll-a [227], could

also be considered. Moreover, the application of the proposed model at a global scale appears

promising to reveal shared or differentiating dynamical modes.

As far as data-driven geophysical field interpolation applications are concerned, applying the

NN-LLOD image super-resolution framework to the interpolation of SLA fields from SWOT

data might prove useful to gain further insight into the strengths and limitations of the pro-

posed operator decomposition model and further compare it to the Analog Data Assimilation

framework. Indeed, as illustrated by NN-LLOD results, using operator decomposition models

for the reconstruction of high-resolution SLA fields from simultaneous partial SLA observations

and high-resolution SST observations appears as a promising approach in the context of cur-

rent and future altimeter missions, and should be further explored. With regards to the Analog

Data Assimilation application considered, we once again stress the importance of combining

AnDA with present efforts to filter correlated noise sources in SWOT or, alternatively, take

them into consideration for the definition of covariance structures in data assimilation issues. In

particular, combining these approaches with the assimilation of numerically-resolved SLA ob-

servation gradients is of particular interest for the development of relevant tools for the analysis

and processing of SWOT observations once the mission is airborne. Moreover, the possibility of

combining multiple sources of altimetry data and considering additional oceanic tracers as re-

gressors in the AnDA framework opens up a number of interesting research avenues that should

be explored. Last but not least, as mentioned earlier, the two-dimensional nature of wide-swath

off-nadir interferometry observations will enable the exploitation of two-dimensional information

within altimetry observations by means of numerically-resolved gradients or finite size Liapunov

exponents (FSLE), among other techniques. In this respect, the unparalleled observational capa-

bilities of the SWOT mission encompass a rich scientific potential for an improved understanding

of ocean dynamics, ocean-atmosphere interactions and the role of the ocean in critical earth sys-

tem processes, such as climate change, and should thus be investigated thoroughly.
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Besides oceanography issues, other application fields, such as the blind identification of

MIMO (Multiple Input Multiple Output) systems that can be applied, for example, to the

multi-path problem in communication systems [1, 28,56], might also be explored.

Finally, one may also consider the integration of the proposed operator decomposition ap-

proaches into analog data assimilation methods. In particular, this may be achieved by consid-

ering the decomposition of local linear analog forecasting operators onto a dictionary computed

from the catalog of past observations. Preliminary experiments on this technique did not yield

an increase in performance when tested on the considered SLA datasets. However, given the

strong dependence of the operator decomposition reconstruction performance on the considered

application and on dataset characteristics, we believe this hybrid approach may prove useful in

non-ideal settings involving noisy or small catalogs, which have not been explored in the present

work due to time constraints. In this respect, further research is needed to verify this hypothesis

and identify relevant applications for this approach.

9.3 Final thoughts

To conclude, we would like to emphasize once again the potential of observation-based operator

decomposition models as a tool for analyzing ocean tracer couplings. In particular, we hope

the developed models will allow for a deeper understanding of the interactions between ocean

quantities, the processes governing ocean dynamics and the role of the ocean within the global

earth system.

As mentioned in the introductory chapter of this work, we also hope our findings will help new

developments in terms of upper ocean dynamics segmentation, high-resolution interpolation of

geophysical fields from multi-source high-resolution observations and related applications, such

as the high-resolution reconstruction of sea surface currents, among others.
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8.10 AnDA SLA gradient reconstruction results for the 2nd May, 2013. (8.10a) Real
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Real high-resolution ground-truth SLA gradient field. (8.13b) Optimal Interpola-

tion SLA gradient reconstruction obtained from nadir along-track observations

with a standard covariance parametrization considering a temporal correlation

scale of 10 days and a spatial correlation scale of 100 km. (8.13c) AnDA SLA

gradient reconstruction from nadir along-track observations accumulated on a

time window t0 ± D with D = 5 days (noted as AT5 and depicted in Figure

(8.12c)). (8.13d) AnDA SLA gradient reconstruction from daily SWOT obser-
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8.14 Radially-averaged power spectra for AnDA reconstruction results on the 9th March,
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from the fusion of nadir along-track observations accumulated on a time window

t0±D with D = 5 days and daily SWOT observations (AT5 +SWOT0). Adapted
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number of observed pixels and the total number of pixels in the considered re-
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Titre :  Approches pilotées par les données pour la télédétection océanique : De la décomposition non 
négative d'opérateurs à la reconstruction des dynamiques de la surface de l'océan à partir de données 
satellitaires 

Mots clés :  Télédétection satellitaire, Masses de données, Décomposition d’opérateurs, Non-négativité, 
Dynamiques de l’océan, Interpolation 

Résumé : Au cours des dernières années, la 
disponibilité toujours croissante de données de 
télédétection multi-source de l’océan a été un facteur 
clé pour améliorer notre compréhension des 
dynamiques de la surface de l’océan. A cet égard, il 
est essentiel de mettre au point des approches 
efficaces pour exploiter ces ensembles de données. 
En particulier, la décomposition des processus 
géophysiques en modes pertinents est une question 
clé pour les problèmes de caractérisation, de 
prédiction et de reconstruction. Inspirés par des 
progrès récents en séparation aveugle des sources, 
nous visons, dans la première partie de cette thèse, 
à étendre les modèles de séparation aveugle de 
sources sous contraintes de non-négativité au 
problème de la caractérisation et décomposition 
d’opérateurs ou fonctions de transfert entre variables 
d’intérêt. Nous développons des schémas 
computationnels efficaces reposant sur des  
fondations  mathématiques solides.  

Nous illustrons la pertinence des modèles de 
décomposition proposés dans différentes 
applications impliquant l’analyse et la prédiction de 
dynamiques géophysiques. Par la suite, étant donné 
que la disponibilité toujours croissante d’ensembles 
de données multi-sources supporte l’exploration des 
approches pilotées par les données en tant 
qu’alternative aux formulations classiques basées 
sur des modèles, nous explorons des approches 
basées sur les données récemment introduits pour 
l’interpolation des champs géophysiques à partir 
d’observations satellitaires irrégulièrement 
échantillonnées. De plus, en vue de la future mission 
SWOT, la première mission satellitaire à produire 
des observations d’altimétrie par satellite 
complètement bidimensionnelles et à large fauchée, 
nous nous intéressons à évaluer dans quelle mesure 
les données SWOT permettraient une meilleure 
reconstruction des champs altimétriques.  

 

 

Title: Data-driven Approaches for Ocean Remote Sensing: From the Non-negative Decomposition of 
Operators to the Reconstruction of Satellite-derived Sea Surface Dynamics 

Keywords: :  Satellite remote sensing, Massive datasets, Operator decomposition, Non-negativity, Ocean 
dynamics, Interpolation 

Abstract:  In the last few decades, the ever-growing 
availability of multi-source ocean remote sensing data 
has been a key factor for improving our understanding 
of upper ocean dynamics. In this regard, developing 
efficient approaches to exploit these datasets is of 
major importance. Particularly, the decomposition of 
geophysical processes into relevant modes is a key 
issue for characterization, forecasting and 
reconstruction problems. Inspired by recent advances 
in blind source separation, we aim, in the first part of 
this thesis dissertation, at extending non-negative 
blind source separation models to the problem of the 
observation-based characterization and 
decomposition of linear operators or transfer functions 
between variables of interest. We develop 
mathematically sound and computationally efficient 
schemes.  

We illustrate the relevance of the proposed 
decomposition models in different applications 
involving the analysis and forecasting of geophysical 
dynamics. Subsequently, given that the ever-
increasing availability of multi-source datasets 
supports the exploration of data-driven alternatives to 
classical model-driven formulations, we explore 
recently introduced data-driven models for the 
interpolation of geophysical fields from irregularly 
sampled satellite-derived observations. Importantly, 
with a view towards the future SWOT mission, the first 
satellite mission to produce complete two-dimensional 
wide-swath satellite altimetry observations, we focus 
on assessing the extent to which SWOT data may 
lead to an improved reconstruction of altimetry fields. 
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