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Abstract

The rapid development of DNA sequencing technologies is expanding the hori-
zons of population genetic studies. It is expected that genomic data will increase
our ability to reconstruct the history of populations. While this increase in ge-
netic information will likely help biologists and anthropologists to reconstruct the
demographic history of populations, it also poses big challenges. In some cases,
simplicity of the model could lead to erroneous conclusions about the population
under study. Recent works have shown that DNA patterns expected in individuals
coming from structured populations correspond with those of unstructured popu-
lations with changes in size through time. As a consequence it is often difficult to
determine whether demographic events such as expansions or contractions (bot-
tlenecks) inferred from genetic data are real or due to the fact that populations
are structured in nature. Moreover, most methods allowing to reconstruct past
population size changes do not always account for structure effects. In this thesis,
some recent results in population genetics are presented: (i) a model choice proce-
dure is proposed to distinguish one simple scenario of population size change from
one of structured population, based on the distribution of coalescence times of two
genes, showing that for these simple cases, it is possible to distinguish both models
using genetic information of one single individual; (ii) by using the notion of in-
stantaneous coalescent rate, it is demonstrated that for any scenario incorporating
structured population, regardless of the complexity, there always exists a panmitic
scenario with a precise function of population size changes having exactly the same
distribution for the coalescence times of two genes. This not only explains why
spurious signals of bottlenecks can be found in structured populations but also
predicts the demographic history that actual inference methods are likely to re-
construct when applied to non panmitic populations. Finally, (iii) a method based
on a Markov process is developed for inferring past demographic events taking the
structure into account. This method uses the distribution of coalescence times of
two genes to detect past demographic changes in structured populations from the
DNA of one single individual. Some applications of the model to genomic data are
discussed.
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Introduction générale

L’objectif principal de cette thèse est l’étude et le développement de modèles per-
mettant de reconstruire certains aspects du passé d’une population à partir de
données génétiques. Un des aspects fondamentaux de notre recherche est la recon-
struction de l’histoire démographique. L’histoire démographique d’une population
peut être caractérisée par des changements de taille, par l’existence de flux de gènes
avec d’autres populations, dans le cadre de modèles de populations structurées ou
encore par l’existence de phénomènes d’extinctions et de recolonisations dans le
cadre de modèles de « métapopulations » (Hey and Machado, 2003). Au cours de
cette introduction nous nous concentrerons principalement sur des modèles non
structurées et le terme « histoire démographique » sera principalement et fonda-
mentalement caractérisée par les changements de « taille efficace ». Nous entendons
par « taille efficace », le nombre d’individus présents dans une population idéale
(modèle de Wright-Fisher, décrit plus bas) dont une certaine mesure de la diversité
génétique est la même que celle de la population étudiée (voir Charlesworth (2009)
pour une discussion sur les différentes notions de taille efficace). Une population
idéale est celle qui vérifie les hypothèses du modèle proposé par Wright en 1931,
et que nous présentons dans la section suivante. Différentes méthodes statistiques
sont utilisées pour estimer la taille efficace d’une population, ainsi que pour inférer
la manière dont cette taille efficace change au cours du temps.

L’émergence de nouvelles techniques de séquençage (en anglais Next Genera-
tion Sequencing) a entraîné un développement accéléré de la génomique des popula-
tions. Avec l’augmentation du volume des données disponibles, l’emploi de modèles
robustes, capables de tirer un maximum d’information des séquences d’ADN est
devenu davantage nécessaire. De nouvelles techniques et de nouveaux modèles ont
vu le jour et leur développement continue encore aujourd’hui. Actuellement, il est
possible de récupérer entièrement la séquence d’ADN d’un seul individu diploïde
et, à partir ce cela, d’estimer certains paramètres de l’histoire démographique de
la population d’où il provient. Cela a un impact retentissant, notamment dû au
fait que ce genre de méthodes peut aider à mieux connaître l’évolution récente de
l’espèce humaine. De plus, la reconstruction de l’histoire démographique est aussi
utilisée pour mieux comprendre l’histoire récente des espèces menacées en relation
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avec l’histoire des peuplements humains, de leurs impacts sur les environnements
naturels ou avec les changements climatiques passés.

La grande majorité des méthodes utilisées aujourd’hui est basée sur des modèles
qui font certaines hypothèses simplificatrices sur les populations étudiées. C’est
grâce à ces hypothèses simplificatrices qu’il est possible d’appliquer les résultats
issus de la théorie des probabilités, afin de décrire l’évolution au cours du temps
des populations étudiées. Il est donc très important que le modèle arrive à iden-
tifier les caractéristiques fondamentales de la population que l’on veut décrire.
Une hypothèse qui est souvent faite est celle du random-mating (ou panmixie),
c’est-à-dire que l’on suppose que la reproduction entre les individus se fait de
manière aléatoire, et que tous ont la même chance d’avoir des descendants. Cette
hypothèse engendre des conséquences qui seront discutées tout au long de cette
thèse. Un autre modèle très étudié et particulièrement simple est celui qui suppose
que la population est divisée en différentes colonies, entre lesquelles il existe un
flux de gènes symétrique dû, par exemple, à la migration d’une certaine proportion
d’individus. Ce modèle est nommé n-island model (ou modèle en île).

Quelques études ont montré que les modèles utilisés pour décrire l’évolution
au cours du temps d’une population sous l’hypothèse de panmixie, peuvent ne pas
être appropriés pour décrire l’évolution d’une population structurée. En fait, des
résultats de simulations indiquent que, lorsqu’on utilise une méthode basée sur
l’hypothèse de panmixie pour reconstruire l’histoire démographique d’une popu-
lation structurée, on est amené à inférer des changements de taille n’ayant jamais
eu lieu. Par ailleurs, l’histoire démographique inférée peut varier, selon la manière
de constituer l’échantillon utilisé pour l’analyse. Cela présente un vrai problème
au moment d’appliquer un modèle sur un scénario réel. Si nous ne savons pas si
la population étudiée est plus proche d’un modèle panmictique que d’un modèle
structuré, comment alors interpréter l’histoire démographique inférée par la méth-
ode ? Est-ce que les changements de taille détectés pourraient aussi être expliqués
par des effets de la structure ? Quels sont les effets de la structure lorsqu’on veut
reconstruire l’histoire démographique sous l’hypothèse de panmixie ?

Le travail de recherche présenté dans cette thèse vise à donner des arguments
théoriques pour répondre à ces questions. Cela nous amènera à construire un
modèle permettant de détecter correctement les évènements démographiques dans
le passé des populations structurées.

Nous commencerons, dans le chapitre 1, par décrire quelques modèles classiques
de génétique des populations, qui servent à établir les bases du développement
théorique fait dans cette thèse. Nous présenterons le modèle de Wright-Fisher
ainsi que des notions telles que la dérive génétique et la panmixie. Nous verrons
aussi comment le coalescent de Kingman est obtenu à partir du modèle de Wright-
Fisher, lorsque la taille de la population devient grande. Des concepts importants
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comme « Ancêtre Commun le Plus Récent » et « temps de coalescence » sont aussi
introduits. En particulier, le « temps de coalescence de deux gènes » est la pierre
angulaire de tout notre travail. Dans la section 1.3 nous abordons quelques exten-
sions du coalescent de Kingman qui sont fondamentales pour les méthodes visant
à inférer l’histoire démographique. Parmi ces extensions, le coalescent structuré
s’avère particulièrement important pour nous, car c’est le point de départ pour
construire le modèle présenté dans le chapitre 4.

La plupart des méthodes utilisées pour inférer les changements de taille d’une
population au cours du temps se basent sur la théorie développée par Griffiths
and Tavaré (1994). Cette théorie établit une manière de reconstruire l’histoire
démographique backward, c’est-à-dire, en remontant le temps du présent vers le
passé. On suppose que la taille de la population au présent (t = 0) est égale à N0
et on définit une fonction λ qui permet de calculer la taille à chaque instant t > 0
par :

N(t) = N0λ(t).

Si on prend deux individus haploides (ou deux gènes) au hasard dans la popula-
tion et qu’on remonte le temps, on finit par trouver à un moment donné, l’ancêtre
commun de ces deux individus. On note T2 le temps auquel l’ancêtre commun
de deux gènes apparaît, lorsqu’on remonte le temps du présent vers le passé. On
pourra considérer T2 comme étant une variable aléatoire à valeurs dans R+. Selon
le modèle proposé par Griffiths and Tavaré (1994), dans une population panmic-
tique dont la taille change au cours du temps d’une manière déterministe, donnée
par une fonction λ, il est possible d’écrire la loi de T2 comme :

FT2(t) = P(T2 ≤ t) = exp
(
−
∫ t

0

1
λ(u)du

)
.

Il est par ailleurs possible de d’établir (sous certaines hypothèses) des relations
entre les valeurs de T2 et les données issues du séquençage de l’ADN, ce qui permet
d’appliquer le modèle théorique sur des populations réelles. Néanmoins, nous
nous concentrerons dans cette thèse sur l’étude de la distribution de T2 (le temps
de coalescence de deux gènes qui n’est jamais directement accessible avec des «
données réelles »).

Il est important de remarquer que la distribution du temps de coalescence sous
un modèle de population avec taille variable proposée par Griffiths and Tavaré
(1994), est obtenue sous l’hypothèse que la population est panmictique. Par des
résultats de simulations, il a été montré que si on applique une méthode d’inférence
basée sur l’hypothèse de panmixie sur une population structurée, on trouve des
changements de taille de population, même si la population n’a pas changé de
taille. Cela met en cause l’existence des changements inférés par ce genre de
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méthodes. Par conséquent, il est nécessaire de développer des théories permettant
de distinguer les vrais changements de taille des effets de la structure. C’est dans
cette direction que le travail présenté dans le chapitre 2 est orienté. Nous montrons
qu’il est possible de distinguer deux modèles simples, dont un panmictique avec
changement de taille et l’autre considérant une population structurée, à partir de
la distribution de T2. Les deux modèles comparés sont très simples :

• Modèle 1 : population panmictique, avec un changement de taille instantané
d’un rapport α, survenu à l’instant T (appelé SSPSC )

• Modèle 2 : n-island model avec un nombre n d’îles et un flux de gènes égal
à M (appelé StSI )

Chacun de ces deux modèles est gouverné par deux paramètres : (α, T ) pour
le premier, et (n,M) pour le second. Nous remarquons qu’il existe des jeux de
paramètres qui font que les deux premiers moments de T2 soient très proches sous
les deux modèles. Néanmoins, les fonctions de densité de T2 pour chaque modèle
restent assez différentes. Afin de trouver les jeux de paramètres qui font que les
deux modèles soient le plus proches possibles (vis à vis de la distribution de T2),
nous mettons en place une stratégie d’estimation par maximum de vraisemblance,
à partir d’un vecteur de valeurs de T2. Des résultats des simulations montrent que
cette stratégie est capable de trouver correctement les paramètres correspondant
à chaque modèle. Afin de déterminer lequel des deux modèles correspond le plus
à un ensemble de valeurs de T2, nous appliquons la procédure suivante :

1. Estimer par maximum de vraisemblance les paramètres pour chacun des
deux modèles à partir des valeurs de T2 (on utilisera seulement la moitié des
valeurs pour des raison d’indépendance entre estimation de paramètres et
test statistique)

2. Pour chaque modèle, réaliser un test de Kolmogorov-Smirnov pour déter-
miner si les valeurs de T2 correspondent au modèle ou non (on utilisera
l’autre moitié des valeurs).

Si, après avoir appliqué le test, un modèle est rejeté et pas l’autre, cela veut dire
que le modèle qui n’a pas été rejeté est celui qui correspond le mieux aux données.
Si aucun des deux est rejeté, ou les deux sont rejetés, le modèle le plus approprié
est choisi par un critère basé sur la valeur de la vraisemblance des paramètres.

Les résultats de simulations sur plusieurs combinaisons de paramètres, in-
diquent que la stratégie proposée permet d’identifier correctement le modèle le
plus approprié pour expliquer les données, à partir des valeurs de T2. Nous con-
statons que les paramètres sont très bien estimés, notamment le nombre d’îles
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sous un modèle structuré. Cela suggère qu’il doit être possible d’estimer le nom-
bre d’îles sous un modèle de population structurée, à partir d’un seul individu
diploïde. Nous discutons aussi comment cette stratégie de choix de modèle peut
être appliquée à de données génomiques. À la fin du chapitre (Subsection 2.7.4),
nous montrons quelques résultats préliminaires issus de simulations, qui nous font
penser que la méthode peut être appliquée sur des scénarios réels, même si une
étude approfondie est encore nécessaire. Nous mentionnons également quelques ré-
sultats de robustesse qui ont été réalisés dans le cadre d’un stage de M1 (Alexandre
Changenet).

Nous avons aussi trouvé une relation intéressante entre les paramètres des deux
modèles. En particulier, le nombre d’îles (n) et le ratio du changement de taille (α)
sont très corrélés. Cela veut dire, par exemple, que si on applique le modèle 1 sur
des données qui correspondent au modèle 2, le ratio du changement de taille inféré
sera plus important si le nombre d’îles du modèle 2 est grand. Donc, même un très
fort changement de taille inféré par une méthode qui suppose que la population est
panmictique, pourrait être faux si la population étudiée est structurée et composée
d’un grand nombre d’îles.

La stratégie développée dans le chapitre 2 vise à donner des outils théoriques, afin
de déterminer dans quels cas les changements de taille qui apparaissent lorsqu’on
reconstruit l’histoire démographique d’une population, sont simplement une con-
séquence du fait que la population est structurée, et donc, ne sont pas de vrais
changements de taille. Néanmoins, les modèles comparés sont très simples. Actuelle-
ment, il existe différentes méthodes capables d’inférer non pas un, mais plusieurs
changements de taille survenus dans le passé. Il est aussi possible de considérer
que la taille d’une population change suivant une fonction λ (par exemple, de
manière linéaire ou exponentielle), ce qui implique que la taille de la population
est différente à chaque instant t.

Un premier pas en direction d’une généralisation de la méthode à des scénarios
plus complexes serait d’étudier s’il est possible de distinguer un modèle de popu-
lation structurée, d’un modèle considérant des changements arbitraires dans une
population panmictique. C’est la question abordée dans le chapitre 3. Nous mon-
trons que pour n’importe quelles valeurs des paramètres (n0,M0) sous un n-island
model, il est toujours possible de trouver une fonction λ telle que la fonction de
répartition de T2, sous un modèle panmictique, avec une histoire démographique
déterminée par λ est identique à la fonction de répartition de T2 sous un n-island
model avec n0 îles et un taux de migration égal à M0. Une conséquence directe
de ce résultat est que les valeurs de T2 ne permettent pas de décider, dans le cas
général, si les changements de taille sont dus aux effets de la structure, et donc que
le n-island model est indiscernable d’un modèle panmictique avec changements de
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taille arbitraires.
Par ailleurs, nous montrons comment la fonction λ peut s’exprimer de manière

simple en fonction des paramètres du n-island model. Cette fonction détermine la
manière dont la taille d’une population panmictique doit changer, pour faire en
sorte que la distribution de T2 soit identique à celle du n-island model correspon-
dant. Dans un contexte plus général, nous présentons des arguments permettant
de voir que quel que soit le modèle considéré, il est possible de décrire un modèle
panmictique avec une fonction précise de changements de taille λ dont la fonction
de répartition de T2 est identique à celle du premier. Nous montrons que cette
fonction λ peut être obtenue à partir de la fonction de répartition et la densité de
T2 par la relation :

λ(t) = P(T2 > t)
fT2(t) ,

où fT2 est la densité de T2. Cette expression s’avère très utile car elle permet
de prédire l’histoire démographique reconstruite par n’importe quelle méthode
basée sur l’hypothèse de panmixie, lorsque cette méthode est appliquée sur une
population qui est proche d’un n-island model, et plus généralement d’un modèle
quelconque dont on connaît la fonction de répartition et la densité de T2.

Il est important de remarquer que sous un modèle structuré comme le n-island
model, cette fonction λ ne correspond pas à des changements de taille. Nous
montrerons que sous le n-island model, les valeurs de λ peuvent varier même si la
taille de la population reste constante, ou peuvent même indiquer une décroissance
alors que la taille de la population a augmenté. Par conséquent, les valeurs de
λ ne doivent pas être interprétées comme des changements de taille tant qu’on
n’a pas vérifié que la population étudiée est proche d’un modèle panmictique.
Dans le cadre d’un scénario plus général que celui considérant une population
panmictique, l’inverse de la fonction λ (c’est-à-dire, 1/λ) représente le taux de
coalescence de deux gènes à chaque instant t. C’est pour cette raison que nous
utilisons le terme IICR (de l’anglais Inverse Instantaneous Coalescence Rate) pour
désigner la fonction λ.

Nous pouvons donc constater que la notion de « taille efficace » d’une popu-
lation sous le n-island model devient problématique, car il n’est plus possible de
caractériser cette taille par une quantité fixe, même si la taille de la population
reste constante. Nous verrons aussi que lorsqu’on remonte suffisamment loin dans
le temps sous un n-island model, l’IICR s’approche d’une asymptote horizontale,
qui pourrait être considérée comme une « taille efficace de population ancestrale ».
De même, pour de grandes valeurs de M (le taux de migration) dans un n-island
model, l’IICR s’approche rapidement d’une asymptote horizontale qui correspond
à ce qui a été considéré par d’autres auteurs comme étant la « taille efficace » d’un
modèle structuré, avec un taux de migration très fort (strong migration limit).
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Une extension simple du n-island model consiste à considérer différentes valeurs
du taux de migration (M) à différents moments du passé, tout en gardant le nombre
d’îles (n) constant. Nous verrons que ces changements de M font varier l’IICR
d’une manière particulière : une grande valeur de M dans un intervalle temporel
correspond à une valeur plus petite de l’IICR, alors qu’une petite valeur de M fait
correspondre un IICR supérieur. Cela implique que lorsqu’on utilise une méthode
qui suppose que la population est panmictique alors que la population est en
réalité structurée , les changements dans le taux de migration sont interprétés par
la méthode comme étant des changements de taille de la population. Ce constat
amène à imaginer qu’il est possible de reproduire les changements de taille inférés
par une méthode basée sur l’hypothèse de panmixie, en appliquant cette méthode
sur une population de taille constante, qui suit un n-island model, et dont le taux
de migration change. Nous donnons un exemple, considérant une population de
taille constante, structurée selon un n-island model avec trois valeurs différentes
du taux de migration, pendant trois intervalles du passé. Nous montrons que
l’histoire démographique reconstruite par une des méthodes les plus récentes (Li
and Durbin, 2011) à partir des données simulées sous le scénario décrit, correspond
à l’histoire démographique reconstruite par le PSMC à partir des vraies données
issues du génome humain.

Les méthodes se basant sur l’hypothèse de panmixie sont les plus utilisées pour
reconstruire l’histoire démographique. Cependant, si on les applique sur une pop-
ulation structurée, il existe un risque de retrouver de faux changements de taille
qui peuvent être fortement influencés par des changements de taux de migra-
tion. Afin de mieux comprendre les effets des changements de taux de migration
dans l’histoire démographique reconstruite par ces méthodes (qui n’est autre que
l’IICR), nous nous intéressons à la fonction de répartition de T2, sous un n-island
model avec des changements de taux de migration. Nous proposerons dans le
chapitre 4 un modèle basé sur un processus de Markov pour décrire l’évolution
de deux lignées sous le n-island model. Ce modèle permet de suivre deux lignées,
correspondant à deux gènes, en remontant le temps, du présent (t = 0) jusqu’au
moment où on trouve leur ancêtre commun (T2). Nous appelons ce modèle NIMC
(en anglais N-Islands Markov Chain). Le NIMC calcule la fonction de répartition
de T2 sous un modèle de population structurée (le n-island model), permettant no-
tamment d’inclure des changements dans le taux de migration à différents instants
dans le passé.

Le modèle à partir duquel nous construisons le NIMC est un processus de
Markov à temps continu. Ce processus considère trois états différents. À un
instant t donné, les deux lignées peuvent :

1. être dans la même île
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2. être dans des îles différents

3. avoir atteint leur ancêtre commun.

Nous construisons le générateur infinitésimal de ce processus sous un n-island
model, ce qui permet de calculer le semigroupe de transition associé. La matrice du
semigroupe de transition associé à ce processus contient la fonction de répartition
de T2 ainsi que sa densité.

La propriété de Markov dans le NIMC permet de décrire l’évolution des deux
lignées jusqu’à l’apparition de l’ancêtre commun, à partir de n’importe quel in-
stant t, indépendamment de l’évolution du processus avant t. Nous utilisons cette
propriété pour introduire un changement dans le taux de migration à l’instant
t = t1. Il est de même possible de changer le taux de migration à plusieurs in-
stants différents (t1, t2, ..., tn). Par ailleurs, le même argument permet de rajouter
des variations dans la taille totale de la population à différents instants du passé.

Il est donc possible, dans le cadre du modèle NIMC, de calculer la fonction de
répartition ainsi que la densité de T2 sous un n-island model avec des changements
de taux de migration et de changements de taille.

Le modèle que nous développons dans le chapitre 4 ouvre différentes voies
pour de futures études en génétique des populations. La possibilité de connaître
la fonction de répartition ainsi que la densité de T2 permet, par exemple, de
prédire l’histoire démographique qui sera reconstruite par une méthode basée sur
l’hypothèse de panmixie, lorsqu’elle est appliquée sur une population structurée.
Par ailleurs, dans le cadre du NIMC, il devient possible d’étudier l’histoire dé-
mographique d’une population structurée, tout en éliminant les effets de faux
changements de taille présentes lorsqu’on utilise une méthode supposant que la
population est panmictique.
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Chapter 1

Models and concepts

The present chapter contains a description of some fundamental models and con-
cepts from population genetics. The contributions presented in this thesis heavily
rely on these models and concepts. Some important definitions such as panmictic
population and genetic drift are introduced in the models presented in section 1.1.
A key population genetic model is presented in section 1.2: the coalescent, along
with the concept of coalescence time. In particular, the coalescence time of two
genes is the cornerstone of this thesis. The different extensions of the coalescent
presented in section 1.3 are fundamental for many methods used for reconstruct-
ing the demographic history of populations. Especially, the structured coalescent
is very important, given that it provides the basis for the model developed in chap-
ter 4. Readers familiar with these concepts may still want to read this section even
if superficially to accustom themselves with the terminology, and formalism.

1.1 Early models on population genetics

1.1.1 Hardy-Weinberg equilibrium
The origins of the mathematical theory of population genetics can be traced back to
1908 with the works of the British mathematician Godfrey Harold Hardy (Hardy,
1908) and the German physician Wilhelm Weinberg (Weinberg, 1908). Their pa-
pers where independently published, in English and German respectively, withing
a few months of each other. Nowadays, the law stated by them is know as the
Hardy-Weinberg equilibrium. For some anecdotal and historical comments,
see Crow (1988). The derivation of the law can be presented as follows.

Consider a diploid population evolving in the absence of any evolutionary forces
(i.e. there is no selection, no mutation and mating between individuals occurs at
random without any kind of reproductive advantage). If we look at some partic-
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AA Aa aa
AA AA 1

2AA;
1
2Aa Aa

Aa 1
2AA;

1
2Aa

1
4AA;

1
2Aa;

1
4aa

1
2Aa;

1
2aa

aa Aa 1
2Aa;

1
2aa aa

Table 1.1: Frequencies of alleles after random mating

ular locus where any of two alleles (A or a) may be present, we have then three
possibilities, AA for dominant (homozygous), Aa for heterozygous and aa for re-
cessive (homozygous). Suppose that at some generation g, the frequencies of AA,
Aa, aa are respectively p, 2q, r and that sexes are evenly distributed over the three
variants. In addition let’s assume that generations are not overlapping so that,
when giving birth to a new generation, the current one disappears. Under these
assumptions, the allele frequencies p1, 2q1, r1 at generation g+ 1 can be calculated
according to the frequencies at generation g. Considering all possible pairings
(table 1.1.1) we get:

p1 =(p+ q)2

2q1 =2(p+ q)(q + r)
r1 =(q + r)2

(1.1)

It is worth commenting that in order to carry out the computations for obtain-
ing the relations in equation 1.1 it has been implicitly assumed that population
size (denoted N) and, consequently, the number of individuals having one specific
allele, is so big that, for example, fractions NAA/N and (NAA − 1)/(N − 1) are
both equal to p, which is the frequency of AA (here NAA represents the number
of individuals having the genotype AA). The question of interest here is whether
alleles frequencies in generation g+ 1 are the same as in generation g. By looking
at (2q1)2 and recalling that p+ 2q + r = 1, it can then be deduced from equation
1.1 that the condition for proportions to remain unchanged is:

q2 = pr (1.2)

as stated in (Hardy, 1908) and (Weinberg, 1908).
In other words, the Hardy-Weinberg law stands that, under the above hypoth-

esis and provided that condition 1.2 holds, alleles frequencies will not change from
one generation to the next. Furthermore, this equilibrium is maintained, as long as
conditions do not change. The reason for this is that q2

1 = p1r1, which implies that
alleles frequencies on generation g + 2 will be equal to those of generation g + 1
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and so on. Note also that q2
1 = p1r1 always holds, no matter what the values of

p, q and r are in the previous generation. Consequently, if any external factor (for
instance, changes in the environment leading to non random matting or selective
pressure) forces the frequency of alleles in the population to move away from the
equilibrium, once the influence of external factors disappears, the equilibrium is
reached at the next generation, regardless of the proportions of alleles at the time
when all conditions were restored. This almost instantaneous move to the equilib-
rium from any allelic proportions is rather stunning. It should also be noted that
there are infinitely many trios p, 2q, r for which Hardy-Weinberg equilibrium can
be reached (see Figure 1.1).

This rather simple principle had a high impact in the biologist community
because, even if it describes an idealised state, it overthrew the erroneous idea
that the frequency of one allele in the population was determined by whether the
allele is dominant or recessive (Hardy, 1908). For a generalisation of the Hardy-
Weinberg law to more than two alleles and more than one locus, see Ewens (2012).

1.1.2 The Wright-Fisher model
The Wright-Fisher model, named after the works of Wright (Wright, 1931) and
Fisher (Fisher, 1930), is a widely studied model in population genetics. Essentially,
the hypothesis are the same as those of Hardy-Weinberg equilibrium with the
difference being that the population is finite. This apparently minor difference has
important consequences, especially the possibility that one allele may completely
disappear from the population without selection. As in the above paragraph, it is
assumed that there is no mutation, individuals have equal chances to reproduce,
generations are not overlapping, so at every new generation, the entire population
is fully replaced by its descendants. In contrast, population size is finite (let’s say
equal to N haploid individuals) and constant from one generation to the next.

Under this model, given that all individuals have the same chance to reproduce,
the ancestors of individuals in the present generation can be obtained by randomly
sampling, with replacement, the individuals of the previous generation (Figure 1.2
left). If we now focus on a single loci with two allelic variants (A and a), it is
possible to describe how the proportions of these alleles vary in the population
when going forward in time. Note that, at generation n + 1, the probability that
one individual has allele A is equal to the proportion of allele A at generation n.
Denoting p the proportion of allele A in generation n, any individual at generation
n + 1 has allele A with probability p. Consequently, the number of individuals
having the allele A at generation n+1 can be modelled by a Binomial distribution
with parameters N and p, where N is the size of the population. Note that the
expected value for the number of individuals with allele A in generation n+ 1 (the
expected value of a Binomial distribution is Np) is equal to the number of individ-
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Figure 1.1: Allele frequencies in Hardy-Weinberg equilibrium. The intersections
of any vertical line with these three curves indicates values of p, 2q and r satisfying
the condition of Hardy-Weinberg equilibrium.

uals with allele A in generation n. This is a similarity with the Hardy-Weinberg
equilibrium: on average, allele frequencies are expected to remain constant. How-
ever, the fact that population size is finite makes the number of individuals with
allele A to vary randomly following a Binomial distribution. In other words, in
a finite population allele frequencies are subject to genetic drift (Figure 1.3 a).
Note also that at each generation there is a non zero probability that one of the
two alleles becomes extinct, which means that the other one has become fixed in
the population. Another interesting point is that the quantity of individuals with
allele A at the next generation depends only on the proportion of allele A in the
current generation, with no dependency on allelic proportions before. This allows
to see the number of individuals in the population having the allele A at each
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Figure 1.2: Wright-Fisher simulation and genealogy of the sample at the present

generation, as a Markov Chain with states space E = {0, 1, ..., N} and transition
probability given by:

Pkl = P(N i+1
A = k|N i

A = l) =
(
N

k

)( l
N

)k(
1− l

N

)(N−k)
(1.3)

for any k and l elements of E and for N i
A being the number of individuals with

allele A at generation i. Note also that if the number of individuals with allele A
reaches the value zero, it will remain zero thereafter. The same occurs if it gets
the value N . Using the Markov chain terminology, this means that states 0 and
N are absorbing states.

Another interesting point is that under the Wright-Fisher model, diversity in
the population disappears almost certainly. It can be seen from equation 1.3 that
the probability of having only individuals with allele A at any generation is not
zero and so is the probability of not having any individual with allele A. Denoting
τ the number of the generation (going forward in time) when allele A either gets
fixed or disappears, it can be shown that the probability of τ to be finite is equal to
one. For technical details see Delmas and Jourdain (2006) and Ewens (2012). This
means that one of the two alleles will be fixed in the population with probability
one and that diversity will disappear. It can also be proved that the probability
that allele A gets fixed in the population is equal to the proportion of allele A in
the first generation. Moreover, the expected time for diversity to disappear tends
to a continuous function of the initial proportion of allele A (denoted X0) as N
increases (equation 1.4).
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E
[
τ |X0 = bNxc

]
∼ −2N

(
xlog(x) + (1− x)log(1− x)

)
(1.4)

In Figure 1.3 (b), the mean values of τ has been computed from independent
simulations of generations until fixation or extinction of one allele. For each value of
the number of individuals with allele A at the first generation (i.e. 0 < X0 < 100),
1000 independent simulations have been done, then we computed mean of observed
τ . For the population size we used N = 100.

Figure 1.3: (a) Five independent simulations of the number of individuals with
allele A in a population of size 20 under the Wright-Fisher model. (b) Empirical
and theoretical values of the mean of the time for diversity to disappear in a
Wright-Fisher model with population size N = 100.

There are other models to study the evolution of populations forward in time.
For example, Moran (1958) considers a haploid population in which generations are
overlapping. In the Moran model, at times t = 1, 2, ..., we choose two individuals
randomly and with replacement from the population. One of them reproduces (i.e.
copies itself) and the other dies. Each individual has probability 1/N of being
chosen, with the special case that (given that choice is made with replacement)
the same individual can reproduce and then die. Thus, the population size does
not change. Unlike in the Wright-Fisher model, the number of individuals with
allele A can only increase by one, decrease by one or remain constant after one
iteration.

The Moran model and the Wright-Fisher model belong to a class of population
genetic models allowing to describe gene genealogies over the time. Under these
models, if we trace lineages back in time (Figure 1.2 right) and let the population
size to increase (formally N → +∞), we obtain a random process which is very
important in population genetics: the coalescent. See Wakeley (2009) for a very
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clear derivation of the coalescent from the Wright-Fisher and the Moran models.
In the next section we will see a brief description of the coalescent as a limit
random process for the Wright-Fisher model when population size increases.

1.2 The coalescent
The coalescent, also known as the Kingman’s coalescent after the works of King-
man (Kingman, 1982a,c,b), is a milestone in population genetics. A clear under-
standing of the principal insights of the coalescent is crucial to perceive the main
ideas behind most of the models used nowadays. Basically, the coalescent is a
random process allowing to reconstruct the genealogy of a group of haploid indi-
viduals sampled in the present (Figure 1.2 right). This genealogy can always be
modeled regardless of what happens with the genealogy of the rest of individuals
in the population (for example, take just the first four individuals in Figure 1.2
right). When analyzing the genealogy backward in time under a Wright-Fisher
model, the assumption that all individuals have the same chance to reproduce is
equivalent to consider that each individual "chooses" its ancestor randomly within
the previous generation. If, by chance, two individuals choose the same ancestor,
we say that a coalescent event has occurred. If we start with a sample size of k,
then at most k−1 coalescent events can occur (note that more than two individu-
als could choose the same ancestor in the previous generation, which corresponds
to a coalescent event between more than two individuals). Note also that after a
coalescent event occurs, the number of distinct lineages decreases at least by one.
When the number of distinct lineages gets equal to one, we say that the Most
Recent Common Ancestor (MRCA) has been reached.

Let’s suppose that we sample k individuals from a population evolving under
a Wright-Fisher model. We want to reconstruct their genealogical tree. When
moving back from one generation to the previous, it is convenient to distinguish
three cases: there are k different ancestors in the previous generation (Gk,k), there
are k− 1 different ancestors (denoted Gk,k−1), and there are k− 2 or less different
ancestors (Gk,l, with l ≤ k − 2). In the first case, no coalescent event occurred, in
the second, only one coalescent event occurred and in the third there was two or
more coalescent events. The probabilities of the first two cases can be computed
as follows:
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P(Gk,k) =N(N − 1)(N − 2)...(N − k + 1)
Nk

=(1− 1
N

)(1− 2
N

)...(1− k − 1
N

) = 1−
∑k−1
i=1 i

N
+O( 1

N2 )

P(Gk,k−1) =

(
k
2

)
N(N − 1)(N − 2)...(N − k + 2)

Nk

=

(
k
2

)
N

(1− 1
N

)(1− 2
N

)...(1− k − 2
N

) =

(
k
2

)
N

+O( 1
N2 )

(1.5)

where O( 1
N2 ) is a term that decreases to zero as fast as 1

N2 when N goes to infinity.
As the identity

P(Gk,k) + P(Gk,k−1) + P(Gk,l) = 1
must hold, we deduce that Gk,l = O( 1

N2 ). Thus, for high values of N , more pre-
cisely when N is much bigger than k (k << N), the value of Gk,l can be neglected
and thus, only two cases are possible (i.e. there is at most one coalescent event
when going from one generation to the previous). Of course, this approximation
is not accurate for low values of N . For example, if N = 20 and k = 10 we have
that P (G10,8) = 0.372 which is too large to be neglected. In Figure 1.4 we can
observe how the assumption that no more than one coalescence event occurs in
the previous generation, gets more accurate as N increases.

Under this approximation, the process of moving back, one generation at a
time, can be simulated by a series of independent random variables with Bernoulli
distribution. The probability of success for the Bernoulli is the probability ofGk,k−1
(the number of different lineages decreases by one). Note also that each success will
change the parameter of the Bernoulli thenceforth, while it will remain the same if
there is no coalescent event. Thus, for a sample of k individuals, the probability of
a coalescent event to occurs when moving one generation back (success) is equal to
k(k−1)/2N . Consequently, the number of generations we have to move back until
the first coalescent event appears (denoted T gk ) follows a Geometrical distribution
with parameter k(k− 1)/2N . The probability that the k lineages stay distinct for
more than τ generations is then computed by:

P(T gk > τ) =
(

1− k(k − 1)
2N

)τ
(1.6)

Define now a real valued random variable Tk such that bNTkc = T gk (bxc
denotes the integer part of x). In other words Tk is a way of counting the time
in units of N generations (when Tk = 1, T gk = N). For any t ∈ R we have from
equation 1.6:
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Figure 1.4: Probability of having no more than one coalescent event when moving
back to the previous generation under the Wright-Fisher model. The probabilities
are computed for a fixed sample size (k = 10) and for values of N going from 100
to 10000.

P(Tk > t) = P(T gk > bNtc) =
(

1− k(k − 1)
2N

)bNtc
(1.7)

As we are interested in large values of N , using that:
(

1− k(k − 1)
2N

)bNtc
−−−−→
N→+∞

e−
k(k−1)

2 t

the random variable Tk can be considered as an Exponential with parameter k(k−
1)/2. We have then:

FTk(t) = P(Tk ≤ t) = 1− e−(k2)t (1.8)
It is also interesting to comment that, if we focus only on two lineages from the

sample of size k, the probability that these two lineages coalesce in the previous
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generation is equal to 1/N . Using the same reasoning as before, the number of
generation during which these two lineages will remain different, follows a Geo-
metrical distribution with parameter 1/N . Then, counting the time in units of N
generations, we have that the time during which two particular lineages remain
separate (that will be denoted T2) follows an Exponential distribution of parame-
ter one. This is another way to understand Tk (the time during which k lineages
will remain distinct):

Tk = min{T 1
2 , T

2
2 , ..., T

k
2 }, with T i2 ∼ Exp(1) for i = 1...k

The minimum of k exponential random variables has an exponential distribution
with parameter being the sum of all the parameters of the exponential random
variables. We have again that Tk ∼ Exp

(
k(k − 1)/2

)
.

By using the coalescent approximation, the genealogy of a sample of size k can
be simulated by k−1 independent Exponential random variables {Tk, Tk−1, ..., T2},
with Ti ∼ Exp

(
i(i − 1)/2

)
. Each value of Ti represents the time during which i

lineages stay different (in units of N generations), that is the time when the first
coalescence of i individuals occurs. The lineages that coalesce at each time are
chosen randomly from the i different lineages (see Figure 1.5 for an example of
simulation).

In a more theoretical way, which is actually the way it was presented by King-
man (1982c), the coalescent is a continuous-time Markov process over a discrete
state space. Starting with a sample of size k, the discrete state space (denoted ϕ)
will be the set of all different partitions of {1, 2, ..., k}. At the present (time zero),
we consider the partition formed by all the singletons {i}, with i = 1...k. After the
first coalescence event, say it was between i and j, a new partition will be created
by joining the sets i and j while keeping the others unchanged. Consider ξ and
η, two elements of ϕ, we denote "ξ ≺ η" if η can be obtained from ξ by joining
together two elements of ξ. Consequently, |η| = |ξ| − 1 (| · | means the number of
elements). At any time, the distinct lineages of the genealogical tree correspond
to one partition of {1, 2, ..., k}. After a coalescence event, two lineages are joined
as well as the corresponding elements of the partition (see Figure 1.5 right side).
The time at which coalescence events occur between two different lineages is expo-
nential with rate one, and whenever two lineages coalesce, the process jumps from
one state to another. Thus, the coalescent is a Markov process with Q-matrix (or
infinitesimal generator) given by:

Q = (qξη) : qξη =


−i(i− 1)/2 if ξ = η, with i = |ξ|

1 if ξ ≺ η,
0 otherwise
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Figure 1.5: Example of a coalescent tree. At the left, the values of coalescence time
for 5, 4, 3 and 2 lineages respectively. At right, we can see how a new partition of
the set {1, 2, 3, 4, 5} is obtained after a coalescence event by join two subsets.

Example Take only three genes, labeled {1}, {2}, and {3}. The coalescence
tree is described by all possible configurations of the three lineages (at time t,{
{1}, {2, 3}

}
means that lineage 2 and 3 have already merged or coalesced while

lineage 1 remains distinct). The state space is then given by:

ϕ =
{{
{1}, {2}, {3}

}
,
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
,
{
{2, 3}, {1}

}
,
{
{1, 2, 3}

}}
Keeping the states in the same order as above, the Q-matrix is:
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Q =


−3 1 1 1 0
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
0 0 0 0 0


According to the theory of continuous-time Markov process, the corresponding
transition semigroup (denoted Pt) is obtained by doing the matrix exponential
(Pt = etQ). This is a matrix whose entries (Pt(i, j)) represent the probability of
being in state j at time t given that the process was in state i at time zero. In
this case the transition semigroup Pt is a 5× 5 matrix given by:

Pt =



e−3t e−t−e−3t

2
e−t−e−3t

2
e−t−e−3t

2 1− 3e−t−e−3t

2

0 e−t 0 0 1− e−t
0 0 e−t 0 1− e−t
0 0 0 e−t 1− e−t
0 0 0 0 1


The distribution function of the time of the first coalescence event (which is in

this case T3, given that the sample size is equal to three) can be computed using
the matrix Pt. The probability that a coalescence event occurs in the interval [0, t]
is equal to the probability that the to be in state "two", "three","four" or "five",
given that it was in state "one" at time zero. More simply, this probability is equal
to the probability of not being in state "one" at time t. We have:

FT3(t) = P(T3 ≤ t) =Pt(1, 2) + Pt(1, 3) + Pt(1, 4) + Pt(1, 5)
=1− Pt(1, 1) = 1− e−3t

in correspondence with 1.8.

In a coalescence tree, the length of the branches corresponds to the time intervals
between coalescence events. Thus, the total height of the tree is the time when the
sample reaches its MRCA. A natural question then is how far in the past should we
go in order to find the ancestor of k individuals sampled in the present. Denoting
HT (k) the height of the coalescence tree of k genes (which is actually the time
to reach the MRCA of the sample), we can see that HT (k) is the sum of k − 1
independent exponential random variables. Hence, it is possible to compute the
mean height of the tree by:

E
(
HT (k)

)
= E

( k∑
i=2

Ti

)
=

k∑
i=2

E(Ti) =
k∑
i=2

2
i(i− 1) = 2(1− 1

k
) (1.9)
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From the above formula we can draw two interesting conclusions. First, un-
der a Wright-Fisher model with large population size, the MRCA of a sample,
on average, will never be beyond 2N generations (N being the population size),
regardless of the sample size. This implies that adding individuals to the sample is
not expected to increase the height of the corresponding coalescence tree. Second,
due to the fact that E(T2) = 1, the last two lineages are in average those who
will take more time to coalesce. In other words, more than half of the coalescence
tree will have only two branches on average. This is somehow intuitively because
lineages coalesce at rate "k choose 2" which implies that coalescence events are
more likely to arrive when there are many lineages, and less likely when there are
just a few. Consequently, the variance of the total height of the tree depends more
on the variance of T2 than on the variance of any Tk for k > 2. Another interesting
result is that the probability that the MRCA of the whole population is reached
with a sample of size k is (k − 1)/(k + 1). See Ian W. Saunders (1984) for more
details on this and related results.

1.3 Some extensions of the coalescent

1.3.1 The coalescent with variable population size
Consider that the population size changes over the time in a deterministic way.
Denote N(j) the population size j generations before the present. The size of the
population at the present is N(0) and it will be used as the reference population
size (i.e. N = N(0) ). Define, for any value of N the function λN as:

λN(t) = N(bNtc+ 1)
N

.

This function will be the population size change function when using a time scale
in units of N generations. We also suppose that the changes in population size are
of the same magnitude for any value of N . Formally, we assume that

lim
N→∞

λN(t) = λ(t),

where λ(t) is finite and strictly positive for all t ≥ 0.
Using the same notation as above, T g2 represents the number of generations we

have to move back until the occurrence of a coalescent event between two lineages.
Assume population is evolving under a Wright-Fisher model, except that now, the
population size may vary at each generation. The probability that two lineages
remain different for more than s generations backward in time can be calculated
by:
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P(T g2 > s) =
s∏
j=1

(
1− 1

N(j)

)
, (1.10)

which gives, when taking the log:

− log
(
P(T g2 > s)

)
= −

s∑
j=1

log
(

1− 1
N(j)

)
. (1.11)

Applying now the inequality

∀x ∈ [0, 1], x ≤ − log(1− x) ≤ x

1− x,

for x = 1/N(j) and summing over all values of j, we get:
s∑
j=1

1
N(j) ≤ −

s∑
j=1

log
(

1− 1
N(j)

)
≤

s∑
j=1

1
N(j)− 1 . (1.12)

Moreover, note that:
s∑
j=1

1
N(j) =

∫ s

0

1
N(buc+ 1)du

and, doing the change of variable v = u/N , this integral becomes:

=
∫ s/N

0

N

N(bNvc+ 1)dv =
∫ s/N

0

1
λN(v)dv.

By doing a similar transformation to the right term of the inequality 1.12, we have
for all s ∈ R and all value of N :∫ s/N

0

1
λN(v)dv ≤ − log

(
P(T g2 > s)

)
≤
∫ s/N

0

1
λN(v)− 1

N

dv. (1.13)

Taking s = bNtc and recalling that T2 is such that bNT2c = T g2 , if we take the
limit when N goes to infinity we obtain:∫ t

0

1
λ(v)dv ≤ − log

(
P(T2 > t)

)
≤
∫ t

0

1
λ(v)dv

and finally:

P(T2 > t) = exp
(
−
∫ t

0

1
λ(v)dv

)
. (1.14)
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In a similar way, it is possible to compute the distribution of Tk, the probability
that k lineages remain distinct for more than t units of coalescent time, under a
model with variable population size. The distribution of Tk is given by:

P(Tk > t) = exp
(
−
(
k

2

)∫ t

0

1
λ(v)dv

)
. (1.15)

For more details and some related derivations, see Tavaré (2004).

A population with variable size can also be modeled by a classic coalescent
process, but considering a non-linear time scale. See Nordborg (2001) for some
intuitive explanations. For a rigorous analysis see Donnelly and Tavaré (1995) and
Griffiths and Tavaré (1994).

Example The above results are useful for studying many different demographic
scenarios. For example, consider a population whose size changes geometrically
with rate α. We assume α ∈ [−l, l], l > 0 and l << N . Note that, in this example,
α > 0 means that the population size was lower in the past, while α < 0 means
that the population size was higher in the past. At each generation, we have:

N(j) = bN(1− α

N
)jc.

The function of population size change is then:

λN(t) =
bN(1− α

N
)bNtc+1c

N
and satisfies that:

N(1− α
N

)bNtc+1 − 1
N

≤ λN(t) ≤
N(1− α

N
)bNtc+1

N
when taking the limit we get:

λ(t) = e−αt.

Now, we can compute the distribution of the coalescence time for two lineages
using equation 1.14:

P(T2 > t) = exp
(
−
∫ t

0
eαvdv

)
= exp

(1− eαt
α

)
and by 1.15 we also have:

P(Tk > t) = exp
((

k

2

)
1− eαt
α

)
.
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From the two above equations we can note that for high values of α, which
correspond with a stronger population expansion, it is more likely that lineages
remain different for more time. In other words, a larger population size makes the
occurrence of coalescent events more difficult. When the present population size
is larger than the past population size, coalescent trees are likely to have longer
branches at the bottom and many coalescent events will appear at the top (Figure
1.6 right side). Inversely, if the population is small at the present and large in
the past, coalescence events between lineages are more likely to occur close to the
present, which cause the trees to have shorter branches (Figure 1.6 left side).

Figure 1.6: Influence of the demographic history on the topology of coalescence
trees. Left: population decrease exponentially; center: constant size population;
right: exponential growth.

We can think at the function 1/λ(v) as an intensity function or an instantaneous
coalescence rate because it determines if coalescence events are more likely to
occur as t varies. This will be discussed with more details in chapter 3. On
the other hand, λ(v) corresponds to the function of population size changes in a
random-mating population. Most of the methods proposed for reconstructing past
demography of populations are based on the development presented above. Under
the assumption that the function λ is estimated correctly, it is possible to know
the population size at any time in the past by the equality N(t) = Nλ(t) with N
being the present population size which is used as reference. The time can be also
be re-scaled in different ways (years, generations, number of substitutions, etc.)
but we will not go into the details here.
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1.3.2 The structured coalescent
Kingman’s coalescent is based on the assumption that populations are panmictic
and isolated. However, most populations in nature are subdivided into colonies
of different sizes exchanging genetic material through migration of individuals or
genes. Models allowing to incorporate this structure are then needed in order to
describe more realistic scenarios. However, including structure in the coalescent
implies an increasing of complexity. When modelling the genealogy in a subdivided
population, it is not enough to trace back only the ancestry of the sample. If we
want to maintain the Markovian character of the coalescent, we also need to keep
track of the locations of lineages at each time in the past. The reason is that,
just after the reproduction, the descendants of one single individual are in the
same island. Going back in time, this implies that coalescence events between two
individuals can only occur if both are in the same island.

A coalescent-like process was introduced by Takahata (1988) for a population
subdivided into two colonies. The general form of this ancestral process was sub-
sequently formulated by Notohara (1990). We will see a brief presentation of this
process, which be refer to as the "structured coalescent". This presentation can
also be found in Herbots (1994) and Wilkinson-Herbots (1998).

Consider a haploid population, divided into colonies or subpopulations which
are partially connected between each other by migration. Reproduction inside
each colony happens randomly as in a Wright-Fisher model. We identify each
subpopulation with subsequent natural numbers, starting from one. Denote L the
set of the subpopulation labels. The size of subpopulation i is Ni = 2ciN haploid
individuals, where ci is a constant positive integer and N is considered large. The
factor two is useful for applications to diploid populations in the sense that, if we
assume subpopulation i have ciN diploid individuals, the number of genes at a
particular locus is then 2ciN . We sample a finite number n0 of individuals at some
generation (which will be considered time zero), keeping also the information about
the island each individual comes from. Then, we count the number of ancestors
the sample of n0 individuals has in each subpopulation, at each time in the past,
going from time zero to the time when the MRCA is reached.

As in the standard Kingman’s coalescent, the genealogy is then modelled by
tracing lineages back in time, but now we also keep track of the island where each
lineage is at any time. Coalescence between lineages in different islands are not
allowed. When moving back in time, two types of events can occur. The first one
is a coalescence between two lineages inside the same island. As a consequence, the
number of distinct ancestors the sample has inside that subpopulation decreases
by one. It can be proved (Cannings, 1974) that the rate at which this event occurs
is inversely proportional to the size of the subpopulation. The other event that can
occur when moving back in time can be seen as a "backward migration", which is
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when an ancestor of subpopulation i is an immigrant from subpopulation j. In this
case, the number of distinct ancestors in subpopulation i decreases by one, while
that in subpopulation j increases by one. The rate at which this type of event
occurs is given by a migration matrix, whose entries contains the migration rate
from subpopulation j to subpopulation i (denotedMij/2), after the corresponding
change in time scale (Herbots, 1994). By analogous arguments as in the Kingman’s
coalescence, the probability of having two coalescence events, two migrations or a
coalescence and a migration at the same time is assumed to be zero.

In order to write the Q-matrix of the structured coalescent, some notations
need to be introduced:

• L : the set of the subpopulation labels;

• αi(t), t ≥ 0: the number of ancestors in the subpopulation i at time t. The
time has been appropriately re-scaled (Herbots, 1994) and is counted from
the present (t = 0) to the MRCA;

• α(t) = (αi(t))i∈L ;

• (ε)i: the element of NL having all components equal to zero except the i-th
component which is equal to one:

(εi)j = δij =
{

1 if j = i
0 otherwise ;

• if α(t) = α, when two lineages in subpopulation i coalesce, the value of α(t)
changes to α− εi;

• if α(t) = α, a "backward migration" from subpopulation i to subpopulation
j changes the value of α(t) to α− εi + εj.

The structured coalescent is then a continuous-time Markov chain {α(t), t ≥ 0}.
The entries of its Q-matrix are given by:

Qα,β =



(
αi
2

)
1
ci

if β = α− εi

αi
Mij

2 if β = α− εi + εj and j 6= i

−
∑
i∈L

{
αi
Mi

2 + 1
ci

(
αi
2

)}
if β = α

0 otherwise .

(1.16)
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The Q-matrix can be interpreted in an intuitive way: when tracing back the
genealogy of the sample, any pair of lineages inside subpopulation i has coalescence
rate 1/ci, and a particular lineage moves from subpopulation i to subpopulation j
at rate Mij/2.

The structured coalescence has been used as a framework for modelling demo-
graphic scenarios on structured populations cite (Wakeley, others)(Wakeley, 2001).
It has been rigorously proved (Herbots, 1994) that, under some hypothesis for re-
production and migration, the genealogy of a sample from a subdivided population
in a discrete-time model, after a change in the time scale, is actually the structured
coalescent. In chapter 4 we propose a model based on the structured coalescent for
studying the evolution of a subdivided population, taking into account the changes
in migration rates and population size.

1.4 Methods for demographic inference
In a neutral model of mutations (mutations that do not reduce or increase the
chances of individuals to reproduce), the genealogical process is not affected by
mutations. As a consequence, selectively neutral mutations can be easily incorpo-
rated to the model, based on the idea that the mutation process is independent of
the genealogical process. Thus, we can study the joint effects of mutation and ge-
netic drift on genomic data by simulating a genealogy backward in time and then
adding mutations on the tree according to a Poisson process (Hudson, 2002). This
is equivalent (and by far more efficient) that simulating the entire population for a
long number of generations forward in time. The idea that the observed patterns
on present DNA sequences are the result of random mutations on a random tree
has completely changed the way we see genetic data. This has been a fundamental
contribution of the coalescent, beside its mathematical interest.

Key events taking place in the evolutionary process can leave marks on the
genealogies of individuals sampled at present times. Hence, methods allowing
to figure out the shape genealogies have, could throw some light on the history
of populations. On the other hand, even if the neutral mutation process and
the genealogical process can be studied independently, the patterns of mutations
on present data are strongly related with the genealogy. Neutral mutations, by
definition, don’t affect the genealogy, but the way the mutation process is modeled
(a Poisson process over the given genealogy) makes that mutations on the sample
are strongly dependent on the underlying genealogy. For example, if the ancestor
of two genes is far in the past (corresponding with a higher branch length), it is
more likely to have mutations over the branches of the genealogical tree. These
mutations we will be reflected on the data by differences between genes at some
positions in the DNA sequences. Following this reasoning, for a given genealogy
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and a fixed mutation rate, we can compute the probability to observe a particular
pattern of mutations in the present sample. In other words, we can compute the
likelihood of any given genealogy with respect to the observed pattern of mutations.
No matter how big a sample is, the underlying genealogy is unique (the genealogical
tree of the ancestors from the present to the MRCA) and, in principle, it could
be estimated using a maximum likelihood strategy. However this is impossible in
practice due to the high dimension of the space of all possible genealogies. Given
that the underlying genealogy is unknown in most of the cases, the methods used
to reconstruct the demographic history sometimes take the integral (or rather an
approximation) over all possible underlying genealogies.

The coalescent theory along with the subsequent theoretical developments allow
to describe the relationship between population size over time and the genealogy
of genes. This relationship has been exploited by many coalescent-based methods
with the aim of inferring the demographic history from DNA sequences in different
ways:

• Compare observed distribution of pairwise genetic differences with expected
distributions derived from coalescence theory

• Given a specific model for sequence evolution and assumed some determinis-
tic demographic changes (for example constant population size, exponential
grow, bottleneck), compute the likelihood of an observed set of DNA se-
quences.

• Infer past demographic history from a reconstructed genealogy.

In Beaumont (1999) a method is presented for detecting expansions or declines
of a population. Going back in time, it is considered that the population size
changes from a value N0 (which is size at the time when the sample has been
taken, and considered as the present population size) to an ancestral value N1
and stay constant thereafter. Forward in time, this corresponds to a population
that was constant in the past until some time (denoted tf ) and then began to
change in size from tf until the present. Two demographic models are considered:
linear population size change with ratio r = N0

N1
or exponential population size

change with rate r. For each model, assuming the underlying genealogy is known,
the likelihood of the parameters r and tf with respect to the observed data is
described based on Griffiths and Tavaré (1994). Then, the integral over all possible
genealogies is approximated by Markov Chain Monte Carlo (MCMC) simulations.
This makes it possible to find approximations to the posterior Likelihood of the
parameters.

A method for inferring demographic history based on gene genealogies was
introduced by Pybus et al. (2000). Given a set of DNA sequences, the authors
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reconstruct more plausible genealogy from a set G∗ of possible genealogies, by a
Maximum Likelihood approach as proposed by Felsenstein (1981). Then, based
on the estimated genealogy, a Maximum Likelihood Estimation strategy allows to
select, from a set of candidate demographic scenarios H, the one that maximise the
likelihood with respect to the reconstructed genealogy. The hypothetical scenarios
are piecewise constant functions that authors call skyline plots and represent the
population size at different time intervals. Unlike other approaches developed until
then, the method of Pybus et al. (2000) does not assume any prior demographic
scenario (many other methods assume a particular function of population size
changes, ex: linear grow, constant, bottleneck). For this reason, authors stated
that the framework is a nonparametric way to do estimates. However, the method
is still based on the coalescence theory for changing population size (Griffiths and
Tavaré, 1994) which assumes that population is panmictic.

The spectacular progress of genotyping and sequencing technologies during the
last decade has enabled the production of high density genome-wide data in many
species. New statistical methods accounting for recombination and scalable to the
analysis of whole genome sequences have been proposed. Some of them (Li and
Durbin, 2011; Schiffels and Durbin, 2014; Sheehan et al., 2013) are based on the
Sequentially Markovian Coalescent model (McVean and Cardin, 2005a; Marjoram
and Wall, 2006), an approximation of the classical coalescent with recombination
(Hudson, 1983), where coalescent trees are assumed to be Markovian along the
genome. Thanks to this Markovian assumption, maximum likelihood estimates of
past population sizes can be efficiently obtained from the observation of one or
several diploid genomes.

Other statistical methods for estimating population size history are based on
the ABC approach (Beaumont et al., 2002; Csilléry et al., 2010; Beaumont, 2010).
For example, PopSizeABC (Boitard et al., 2016) estimates complex population size
histories involving many population size changes from a sample of whole-genome
sequences. To do this, the method considers two classes of summary statistics
which are very informative about past population size: the folded allele frequency
spectrum (AFS) and the average linkage disequilibrium (LD) at different physical
distances. Combining these summary statistics with the ABC framework allows
to do accurate estimations of the population sizes from the first few generations
before the present back to the expected time to the most recent common ancestor
of the sample. Details about this method can be found in Annexes.

Most of the methods proposed for estimating demographic history are based on
the assumption that population is panmictic. As we will see in the next section,
this may be problematic when we analyse a population which is structured.
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1.5 Confounding effects of population size changes
in structured population

Whereas methods to infer population size changes have become increasingly pop-
ular a growing number of studies (Wakeley, 1999; Vogl et al., 2003; Städler et al.,
2009; Chikhi et al., 2010; Heller et al., 2013) have found that when populations
are structured spurious population size changes can be detected. For instance, in
Chikhi et al. (2010), the authors found that the method proposed in Beaumont
(1999) for detecting and quantifying population size changes using microsatel-
lites was sensitive to the effects of structure. The analysis was done using the
method MSVAR (Beaumont, 1999) applied to simulated data under the n-island
and stepping-stone models. It was shown that MSVAR inferred population size
changes even though data were simulated assuming a constant size population.
Moreover, the results of the parameter estimations were different under the same
scenario for different values of migration or different sampling scheme. In another
study (Heller et al., 2013) also found signals of recent population decrease when
the Bayesian Skyline Plot method (Drummond et al., 2005) was applied to data
simulated under a structured scenario. The reconstructed demographic history
was also sensitive to the sampling scheme in the scenarios analysed in Heller et al.
(2013).

Following the work of these authors and others we explored the effects of the
structure on the estimation of population size changes as inferred by the method
implemented in PopSizeABC (Boitard et al., 2016). PopSizeABC is based on an
ABC approach and uses information from linkage disequilibrium (LD) and genomic
data from several individuals to infer a history of population size changes similar
to those inferred by the PSMC or MSMC. We simulated data under two scenarios
involving an n-island model with ten islands and migration rate of one. In both
scenarios the size of one island was considered to be 500, meaning that the size of
the entire population was equal to 5000 (the size of a single deme as well as that
of the metapopulation are represented with dotted horizontal lines in Figures 1.7
and 1.8). The population size was assumed constant in both cases.

The first scenario consider a simple n-island model. We simulated 50 haploid
sequences sampled from the same island and applied PopSizeABC. The method
detected a decrease on the population size: starting about 10, 000 generations
before the present, the population size decreased from a value of 10, 000 to a
value close to 1000 at about 100 generations before the present (Figure 1.7, left
panel). We then changed the sampling scheme and simulated 50 haploid sequences,
sampling 5 haploid sequences in each island. We found a substantially different
history indicating a population size close to 5000 at about 100, 000 generations
before the present, followed by an increasing between 100, 000 generations and 8000
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generations before the present and then a decrease from 8000 to 500 generations
before the present, staying close to an effective size of 5000 from 500 generations
before the present (Figure 1.7, right panel).

Figure 1.7: Effects of the structure on the estimation of PopSizeABC with different
sample schemes.

The second scenario considers that the 10 subpopulations of effective size 500
diverged from a population that was panmictic with a population size of 5000,
according to an isolation with migration model (Nielsen and Wakeley, 2001). The
migration rate at the present is supposed symmetrical and equal to one. The
PopSizeABC analysis was done from 50 haploid sequences sampled from the same
island. The divergence occurred 40 generations before the present (Figure 1.8 left
panel) and 200 generations before the present (Figure 1.8 right panel). We found
in both cases a decreases from a population size close to 7000, 1000 generations
before the present, to a population size close to 600, 50 generations before the
present.

As we can see, even complex and recent methods for inferring the population size
that uses LD patterns can be sensitive to population structure. A theory should
thus be developed in order to decide if the changes detected by these methods
are related with past population size changes or are mainly effects of population
structure, and changes thereof.
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Figure 1.8: Estimation of PopSizeABC when applied to a scenario of isolation with
migration.
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Chapter 2

Demographic inference using
genetic data from a single
individual: separating population
size variation from population
structure

In section 1.5 we illustrated how methods assuming that population is panmictic
tend to infer a demographic history with signals of population size change when
applied to a population which is structured, even though the total population
size remains constant. This makes us question whether the history inferred using
many methods currently available actually identifies real population size changes.
A way to address this would be to use a method allowing to determine whether
the population under study is closer to a panmictic model than to a structured
model. In the following chapter we present our first attempt at addressing this
complex issue. We started by studying the properties of the distribution of coa-
lescent times under two simple demographic models. This allowed us to see that
even though structured models generated signals similar to bottleneck populations
the statistical distributions were different. As a consequence this allowed us to de-
velop a method aiming to distinguish a structured population from a panmictic
population subjected to a single population size. This chapter describes this work
and it is nearly identical to the published work Mazet et al. (2015b). The only
difference is that we have added at the end (section 2.7) some theoretical proof
and preliminary results on the application to real data which were not done when
the study was submitted and published.
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Abstract
The rapid development of sequencing technologies represents new opportunities
for population genetics research. It is expected that genomic data will increase
our ability to reconstruct the history of populations. While this increase in genetic
information will likely help biologists and anthropologists to reconstruct the demo-
graphic history of populations, it also represents new challenges. Recent work has
shown that structured populations generate signals of population size change. As
a consequence it is often difficult to determine whether demographic events such as
expansions or contractions (bottlenecks) inferred from genetic data are real or due
to the fact that populations are structured in nature. Given that few inferential
methods allow us to account for that structure, and that genomic data will nec-
essarily increase the precision of parameter estimates, it is important to develop
new approaches. In the present study we analyse two demographic models. The
first is a model of instantaneous population size change whereas the second is the
classical symmetric island model. We (i) re-derive the distribution of coalescence
times under the two models for a sample of size two, (ii) use a maximum likelihood
approach to estimate the parameters of these models (iii) validate this estimation
procedure under a wide array of parameter combinations, (iv) implement and val-
idate a model rejection procedure by using a Kolmogorov-Smirnov test, and a
model choice procedure based on the AIC, (v) derive the explicit distribution for
the number of differences between two non-recombining sequences. Altogether we
show that it is possible to estimate parameters under several models and perform
efficient model choice using genetic data from a single diploid individual.

2.1 Introduction
The sheer amount of genomic data that is becoming available for many organisms
with the rapid development of sequencing technologies represents new opportuni-
ties for population genetics research. It is hoped that genomic data will increase
our ability to reconstruct the history of populations (Li and Durbin, 2011; Schiffels
and Durbin, 2014) and detect, identify and quantify selection (Vitti et al., 2013).
While this increase in genetic information will likely help biologists and anthropol-
ogists to reconstruct the demographic history of populations, it also exposes old
challenges in the field of population genetics. In particular, it becomes increasingly
necessary to understand how genetic data observed in present-day populations are
influenced by a variety of factors such as population size changes, population struc-
ture and gene flow (Nielsen and Beaumont, 2009). Indeed, the use of genomic data
does not necessarily lead to an improvement of statistical inference. If the model
assumed to make statistical inference is fundamentally mis-specified, then increas-
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ing the amount of data will lead to increased precision for perhaps misleading if not
meaningless parameters and will not reveal new insights (Nielsen and Beaumont,
2009; Chikhi et al., 2010; Heller et al., 2013).

For instance, several recent studies have shown that the genealogy of genes
sampled from a deme in an island model is similar to that of genes sampled from a
non structured isolated population submitted to a demographic bottleneck (Chikhi
et al., 2010; Heller et al., 2013). As a consequence, using a model of population
size change for a spatially structured population may falsely lead to the inference
of major population size changes (Nielsen and Beaumont, 2009; Städler et al.,
2009; Chikhi et al., 2010; Heller et al., 2013; Paz-Vinas et al., 2013). Conversely,
assuming a structured model to estimate rates of gene flow when a population
has been submitted to a population size change, may also generate misleading
conclusions, even though the latter case has been much less documented. More
generally, previous studies have shown that spatial processes can mimic selection
(Currat et al., 2006), population size changes (Leblois et al., 2006; Chikhi et al.,
2010; Heller et al., 2013) or that changes in gene flow patterns can mimic changes in
population size (Wakeley, 1999; Broquet et al., 2010). The fact that such dissimilar
processes can generate similar coalescent trees poses exciting challenges (Nielsen
and Beaumont, 2009). One key issue here is that it may be crucial to identify the
kind of model (or family of models) that should be used before estimating and
interpreting parameters.

One solution to this problem is to identify the “best” model among a set of com-
peting models. This research program has been facilitated by the development of
approximate Bayesian computation (ABC) methods (Beaumont et al., 2002; Cor-
nuet et al., 2008; Beaumont, 2010). For instance, using an ABC approach, Peter
et al. (2010) showed that data sets produced under population structure can be dis-
criminated from those produced under a population size change by using up to two
hundred microsatellite loci genotyped for 25 individuals. In some cases, relatively
few loci may be sufficient to identify the most likely model (Sousa et al., 2012;
Peter et al., 2010), but in others, tens or hundreds of loci may be necessary (Peter
et al., 2010). ABC approaches are thus potentially very powerful but they are
often used as black boxes which provide results on a specific problem but limited
understanding on the properties of genetic data in general. Also, since most ABC
methods use summary statistics, which are rarely sufficient they typically lose part
of the information present in the genetic data compared to likelihood-based meth-
ods (Beaumont, 2010). Analytical approaches on the contrary are often limited to
very simple models and do not exhibit the flexibility of ABC methods but they
allow us to improve our understanding of genetic data. For instance, the theory
developed for the coalescent under structured models is crucial to understand why
population structure mimics population size changes. Below, we use intuitive and
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analytical results to explain exactly that and identify connections between models
and parameters that would typically be missed with ABC approaches.

In the present study we are interested in describing the properties of the coales-
cent under two demographic models and in devising a new statistical test and new
parameters estimation procedures. The two models were a model of population
size change and a model of population structure. More specifically we re-derived
the full distribution of T2, the time to the most recent common ancestor for a
sample of size two for a model of sudden population size change and for the n-
island model. We then used a maximum likelihood-like approach to estimate the
parameters of interest for each model (timing and ratio of population size change
for the former and number of migrants and number of islands for the latter).
We developed a statistical test that identifies data sets generated under the two
models and an AIC (Akaike Information Criterion) model choice procedure for
the cases where both models were rejected. We also tested the robustness of our
model choice approach by simulating data under four other models, two models
of population size change and two stepping-stone models. Finally, we show how
these results may apply to genomic data such as SNPs and how they could be
extended to real data sets (for which the T2 is not usually known) and for other
demographic models. In particular we discuss how our results are relevant in the
context of the PSMC (Pairwise Sequentially Markovian Coalescent) method (Li
and Durbin, 2011), which has been now extensively used on genomic data and also
uses a sample size of two.

2.2 Demographic models

2.2.1 Population size change:
We consider a simple model of population size change, where N(t) represents
the population size (N , in units of genes or haploid genomes) as a function of
time (t) expressed in generations scaled by N , the population size, and where
t = 0 is the present, and positive values represent the past (Figure 2.1 (a)). More
specifically we assume a sudden change in population size at time T in the past,
where N changes instantaneously by a factor α. This can be summarized as
N(t) = N(0) = N0 for t ∈ [0, T [, N(t) = N(T ) = αN0 for t ∈ [T,+∞[. If
α > 1 the population went through a bottleneck (Figure 2.1) whereas if α < 1 it
expanded. Since N represents the population size in terms of haploid genomes,
the number of individuals will therefore be N/2 for diploid species. Note also that
for a population of constant size the expected coalescence time of two genes is N
generations, which therefore corresponds to t = 1. In other words, one unit of
standardized time corresponds to N generations. We call this model the SSPSC,
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which stands for Single Step Population Size Change.

Figure 2.1: Demographic models. (a): Single step population size change (SSPSC)
model. The x-axis represents t, the time to the past in units of generations scaled
by the number of genes. At time t = T, (going from the present to the past) the
population size changes instantaneously from N0 to N1 by a factor α. The y-axis
represents the population sizes in units of N0 (i.e. N(t)/N(0)). (b): Structured
symmetrical island (StSI) model for n = 5 islands. Each circle represents a deme
of size N . All demes are connected to each other by symmetrical gene flow, repre-
sented by the edges. In this example the total number of genes is 5N . Note that
these two models are scaled such that N0 in the SSPSC model corresponds to
N in the StSI model. This implicit scaling is natural since by setting the number
of islands to n = 1, the two models will be identical for α = 1 too, leading to
N0 = N .

2.2.2 Structured population:
Here we consider the classical symmetric n-island model Wright (1931), see Figure
2.1 (b), where we have a set of n islands (or demes) of constant size N , intercon-
nected by gene flow with a migration rate m, where M

2 = Nm is the number of
immigrants (genes) in each island every generation. The whole metapopulation
size is therefore nN (this is the total number of genes or haploid genomes). Again,
N is the number of haploid genomes, and N/2 the number of diploid individu-
als. We call this model the StSI, which stands for Structured Symmetrical Island
model.
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2.3 The distribution of coalescence times: qual-
itative and quantitative analyses

In this section we used previous results (Herbots, 1994; Donnelly and Tavaré, 1995)
to derive the distribution of coalescent times for the two models of interest. We
show that even though they are different, these distributions can be similar under
an indefinitely large number of parameter values (Figures 2.2 and 2.3). Moreover
we show that even when the distributions are distinguishable, their first moments
may not be. In particular, we show that the first two moments (mean and variance)
are near identical for a large number of parameter combinations. Before doing that
we start by providing a simple intuitive rationale explaining why and how a model
of population structure can be mistaken for a model of population size change.
This intuitive approach is important because it allows us to understand how the
parameters of the two models ((T , α) and (M , n), respectively) are linked.

2.3.1 Intuitive and qualitative rationale:
We start by taking two genes sampled in the present-day population under the
Single Step Population Size Change (SSPSC) model. If we assume that α > 1
(population bottleneck from an ancient population of size N1 to a current popu-
lation of size N0, with N1 = αN0) the probability that the two genes coalesce will
vary with time as a function of N0, N1 and T . If T is very small, then most genes
will coalesce at a rate determined by N1, whereas if T is very large the coalescence
rate will be mostly determined by N0. If we now take two genes sampled from the
same island in the Structured Symmetrical Island (StSI) model, we can also see
that their coalescence rate will depend on N , the size of the island and on m, the
migration rate. If m is very low, the coalescence rate should mostly depend on N .
If m is high, the two genes may see their lineages in different islands before they
coalesce. As a consequence the coalescence rate will depend on the whole set of
islands and therefore on the product nN , where n is the total number of islands.

This intuitive description suggests that there is an intrinsic relationship be-
tween T and 1/M , and between α and n. The reason why structured populations
exhibit signals of bottlenecks is because in the recent past the coalescence rate
depends on the local island size N , whereas in a more distant past it depends on
nN . In other words, it is as if the population size had been reduced by a factor of
n. As we will see this rationale is only qualitatively correct, but it suggests that
if we want to distinguish them it may be necessary to derive the full distribution
of the coalescence times under the two models. We shall denote these coalescence
times T SSPSC2 and T StSI2 , respectively.
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2.3.2 Derivation of the distribution of coalescence times:
The distribution of T SSPSC2 The generalisation of the coalescent in populations
of variable size was first rigorously treated in Donnelly and Tavaré (1995)), and
is clearly exposed in Tavaré (2004)). Details of the derivation can be found in
the Supplementary Materials. In the case of the SSPSC model, this leads to the
following pdf

fSSPSCT2 (t) = e−tI[0,T [(t) + 1
α
e−T−

1
α

(t−T )I[T,+∞[(t), (2.1)

where I[a,b[(x) is the Kronecker index such that

I[a,b[(x) =

1 for x ∈ [a, b[
0 otherwise.

The distribution of T StSI2 Herbots (1994) derived the distribution of the coa-
lescence time T StSI2 of two genes for our structured model, see the Supplementary
Materials for details and Hudson et al. (1990) and Griffiths (1981) for further
reading. If we set γ = M

n−1 and if ∆ is the discriminant of the polynomial D, with
D = θ2 + θ(1 + nγ) + γ, then the two solutions of D are

α = 1
2
(
1 + nγ +

√
∆
)
,

β = 1
2
(
1 + nγ −

√
∆
)

and if we set

a = γ − α
β − α

= 1
2 + 1 + (n− 2)γ

2
√

∆
.

we then obtain the pdf of T StSI2 which is an exponential mixture:

fStSIT2 (t) = ae−αt + (1− a)e−βt. (2.2)

2.3.3 First moments:
Equations 2.4 and 2.5 are different hence showing that it is in principle possible
to identify genetic data produced under the two demographic models of interest.
The two equations can be used to derive the expectation and variance of the two
random variables of interest, T SSPSC2 and T StSI2 . Their analytic values can be
easily expressed as functions of the model parameters:
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E
(
T SSPSC2

)
=1 + e−T (α− 1),

V ar
(
T SSPSC2

)
=1 + 2Te−T (α− 1) + 2αe−T (α− 1)− (α− 1)2e−2T ,

E(T StSI2 ) =n,

V ar(T StSI2 ) =n2 + 2(n− 1)2

M
.

It is interesting to note that the expected time in the StSI model is n and does
not depend on the migration rate (Durrett, 2008). The variance is however, and
as expected, a function of both n and M . For the SSPSC model, the expected
coalescence time is a function of both T and α. We note that it is close to 1 when
T is very large and to α when T is close to zero. Indeed, when the population
size change is very ancient, even if α is very large the expected coalescence time
will mostly depend on the present-day population size, N0. Similarly, when T is
small it will mostly depend on N1. The relationship that we mentioned above
between n and α (and between M and 1/T ) can be seen by noting that when T
is close to zero (and M is large), the expectations under the two models are α
and n, and the variances are V ar

(
T SSPSC2

)
≈ 1 + 2α(α− 1)− (α− 1)2 = α2 and

V ar(T StSI2 ) ≈ n2. This exemplifies the intuitive rationale presented above. This
relationship is approximate and will be explored below, but can be illustrated in
more general terms by identifying scenarios with similar moments.

As figure 2.2 shows, the two models provide near-identical pairs of values for
(E(T2), V ar(T2)) for “well chosen” parameters (T, α) and (M,n). Here by setting
T to 0.1 (and M to 9, i.e. 1/M ≈ 0.11) whereas α and n were allowed to vary
from 1 to 100, and from 2 to 100, respectively, we see that the two models exhibit
very similar behaviours. We also plotted a second example obtained by setting M
to 0.5 and T to 1.09, and varying n and α as above. These examples ilustrate how
n and α (respectively, M and 1/T ) are intimately related.

The near-identical values obtained for the expectation and variance under the
two models explain why it may be difficult to separate models of population size
change from models of population structure when the number of independent
genetic markers is limited. However, the differences between the distributions
of coalescence times under the two models suggest that we can go further and
identify one model from another. For instance, figure 2.3 shows that even in cases
where the first two moments are near-identical (T = 0.1 and α = 10 versus M = 7
and n = 9), it should be theoretically possible to distinguish them. This is exactly
what we aim to do in the next section. In practice, we will assume that we have
a sample of nL independent T2 values (corresponding to nL independent loci) and
will use these T2 values to (i) estimate the parameter values that best explain
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this empirical distribution under the two models of interest, (ii) use a statistical
test to compare the empirical distribution with the expected distribution for the
maximum likelihood (ML) estimates and reject (or not) one or both of the models.
For simplicity, and to make it easier to read, we will often use the term loci in the
rest of the manuscript when we want to mention the number of independent T2
values.

2.4 Model choice and parameter estimation

2.4.1 General principle and parameter combinations:
Given a sample (t1, ..., tnL) of nL independent observations of the random variable
T2, we propose a parameter estimation procedure and a goodness-of-fit test to de-
termine whether the observed distribution of the T2 values is significantly different
from that expected from the theoretical T SSPSC2 or T StSI2 distributions. This sam-
ple can be seen as a set of T2 values obtained or estimated from nL independent
loci. We took a ML approach to estimate the parameters (T, α) and (M,n) under
the hypothesis that the nL-sample was generated under the T SSPSC2 and the T StSI2
distributions, respectively. We note here that the ML approach was applied to a
reduced parameter space due to the fact that the likelihood is actually unbounded
(see Supplementary materials for the details of the estimation procedure). The ML
estimates (T̂ , α̂) and (M̂, n̂) were then used to define T SSPSC2 or T StSI2 reference dis-
tributions. The Kolmogorov-Smirnov (KS) test which allows to compare a sample
with a reference distribution was then used to determine whether the observed nL
sample could have been generated by the respective demographic models. In other
words this allowed us to reject (or not) the hypothesis that the (t1, ..., tnL) sample
was a realization of the reference distributions (T StSI2 or T SSPSC2 ). Note that the
estimation procedure and the KS test were performed on independent sets of T2
values. We thus simulated twice as many T2 values as needed (2nL instead of nL).
With real data that would require that half of the loci be used to estimate (T̂ , α̂)
and (M̂, n̂), whereas the other half would be used to perform the KS test.

We expect that if the estimation procedure is accurate and if the KS test is
performing well we should reject the SSPSC (respectively, the StSI) model when
the data were simulated under the StSI (resp., the SSPSC) model. On the contrary
we should not reject data simulated under the SSPSC (resp., the StSI) model when
they were indeed simulated under that model. To validate our approach we used
(t1, ..., t2nL) data sampled from the two T2 distributions and quantified how the
estimation procedure and the KS test performed. In order to do that, we varied
the parameter values ((T, α) and (M,n)) for various 2nL values as follows. For T
and α we used all 36 pairwise combinations between these two sets of values (0.1,
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0.2, 0.5, 1, 2, 5), and (2, 4, 10, 20, 50, 100), respectively. For M and n we used all
the 48 combinations between the following values (0.1, 0.2, 0.5, 1, 5, 10, 20, 50) and
(2, 4, 10, 20, 50, 100), respectively. For 2nL we used the following values (40, 100,
200, 400, 1000, 2000, 20000). Altogether we tested 588 combinations of parameters
and number of loci. For each 2nL value and for each parameter combination (T, α)
(or (M,n)) we realized 100 independent repetitions of the following process. We
first simulated a sample of 2nL values using the pdfs of the SSPSC (resp. StSI)
model with (T, α) (resp. (M,n)). We then used the first nL values to obtain the
ML estimates (T̂ , α̂) for the SSPSC model and (M̂, n̂) for the StSI model. Then,
we performed a KS test using a 0.05 threshold on the second half of the simulated
data (i.e. nL values) with each of the theoretical distributions defined by the
estimated parameters. Finally, after having repeated this process 100 times we
recorded all estimated parameters and counted the number of times we rejected
the SSPSC and StSI models for each parameter combination and each 2nL value.

2.4.2 Maximum Likelihood Estimation (MLE) in the SSPSC
case:

We know from equation 2.4 the pdf of the coalescence time in the SSPSC model of
two genes. We can thus write the likelihood function for any couple of parameters
(α, T ), given one observation ti as:

Lti(α, T ) = 1
α
e−T−

1
α

(ti−T )I[0,ti[(T ) + e−tiI]ti,+∞[(T ).

Given nL independent values t = (t1, t2, ..., tnL), the likelihood is:

LSSPSC(α, T ) =
nL∏
i=1

Lti(T, α),

and taking the log it gives:

log(LSSPSC(α, T )) =
nL∑
i=1

log(Lti(α, T )).

Lemma 1. Given a set of nL independent observations {t1, t2, ..., tnL}, if we re-
strict the domain of the log-likelihood function log(LSSPSC) to the set {(α, t) ∈
R2|α > 0, t < maxi∈{1..nL}(ti)}, all the critical points are of the form

ma = (αa, ta), a ∈ {1, 2, ..., nL}.

with
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αa = 1
K

nL∑
i=1

tiIta≤ti − ta and K =
nL∑
i=1

Iti<ta .

This lemma means that all the local maxima we are interested in, are located at the
points ma, which are necessarily on the vertical lines of the form {(α, ta), α ∈ R+},
a ∈ {1, 2, ..., nL}. The search procedure is thus simplified since we have nL can-
didates for approximating the MLE. Amongst those nL points, we take the one that
maximizes the log-likelihood function : (α̂, T̂ ) = argmaxa∈{1,...,nL}{log(LSSPSC(ma))}.
For the proof and some comments, see Supplementary Materials.

2.4.3 MLE in the StSI case:
Under the StSI model the expression of the critical points is not analytically de-
rived. We know from equation 2.5 the pdf of coalescence times for two genes.
Given nL independent values t = (t1, t2, ..., tnL) we can compute the log-likelihood
function for any set of parameters (n,M) as:

log(LStSI(n,M)) =
nL∑
i=1

log(ae−αti + (1− a)e−βti))

We used the Nelder-Mead method (Nelder and Mead, 1965) implementation of
scipy (Jones et al., 2001) to find numerically an approximation to the maximum of
the likelihood function. This method returns a pair of real numbers (n̂, M̂). Since
n should be an integer we kept either bn̂c or bn̂c+ 1, depending on which had the
largest log-likelihood value.

2.4.4 Akaike Information Criterion and robustness to model
departures:

Once we have computed our aproximations to the MLE for each case (i.e. (α̂, T̂ )
for SSPSC and (n̂, M̂) for StSI), we proceed to do the KS test. At this stage it
is possible to reject both models (or none of them if the data are not sufficiently
informative). Rejection of both models may arise as a consequence of various fac-
tors such as estimation errors or when the data were produced by models different
from the SSPSC and StSI models (see below). By using an Akaike Information
Criterion (AIC) (Akaike, 1974), it may still be possible to identify which of the
two models is the most likely to explain the data. We carried out additional simu-
lations (see Supplementary Materials) to illustrate how the AIC allows us to select
the closest model when the KS test rejects the two models even though the data
were generated by one of them. Note that our reference models are both charac-
terized by two parameters. Therefore, a simple comparison of the MLE is enough
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to make a choice. Nevertheless, the AIC values are easy to compute and they
can be useful in order to quantify the information loss when we choose one model
rather than the other. The AIC procedure is also more general and could be used
to compare more complex models.

Indeed, if the data were generated by different models of population size change
or population structure, it would be important to determine whether our approach
would allow us to identify the closest model. For instance, if the data were gen-
erated by a model of population structure different from the StSI model, the AIC
may identify the StSI as the best model even if it is rejected by our KS test. As
a test of robustness we carried out additional simulations with data generated
under four demographic models departing from our two simplistic models. The
first model is analogous to our SSPSC but with four instantaneous population
size changes at four different moments in the past. The second one is a model
of exponential population size change similar to that of Beaumont (1999), with
a recent exponential expansion. The third and fourth are symmetrical stepping-
stone models with 16 islands (4 × 4) and 49 islands (7 × 7) respectively (Kimura
and Weiss, 1964). For consistency we call them 4SPSC (four steps population
size change), SEPSC (single exponential population size change), 4x4StSSS and
7x7StSSS (structured symmetrical stepping-stone). For these models the KS is
expected to reject both the SSPSC and StSI most of the time, when nL is large.
However, when we apply the AIC procedure we should identify the StSI model as
the best model when data were simulated under the two StSSS models, and we
should identify the SSPSC as the best model when data were simulated under the
4SPSC and SEPSC. We used the ms software (Hudson, 2002) to simulate data
and we repeated the experiment 100 times for each value of nL (the sample size).
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2.5 Results
Figure 2.4 shows, for various values of nL, the results of the estimation of α (panels
(a), (c), and (e), for simulations assuming α = 10 and T = (0.1, 1, 2), respectively
; see Supplementary Material for the other values) and the estimation of n (panels
(b), (d), and (f) for simulations with n = 10 and M = (10, 1, 0.5), respectively;
see Supplementary Material for the other values, corresponding to 26 figures and
168 panels). The first thing to notice is that both α and n are increasingly well
estimated as nL increases. This is what we expect since nL represents the amount
of information (the number of T2 values or independent loci.) The second thing to
note is that the two parameters are very well estimated when we use 10, 000 values
of T2. This is particularly obvious for n compared to α, probably because n must
be an integer, whereas α is allowed to vary continuously. For instance, for most
simulations we find the exact n value (without error) as soon as we have more than
1000 loci. However, we should be careful in drawing very general rules. Indeed,
when fewer T2 values are available (i.e. fewer independent loci), the estimation
precision of both parameters depends also on T andM , respectively. Interestingly,
the estimation of α and n are remarkable even when these parameters are small.
This means that even “mild” bottlenecks may be very well quantified (see for
instance the Supplementary materials for α = 2, T values between 0.1 and 1 when
we use only 1000 loci). We should also note that when the bottleneck is very
old (T = 5) the estimation of the parameters is rather poor and only starts to be
reasonable and unbiased for nL = 10, 000. This is not surprising since the expected
TMRCA is 1. Under the SSPSC model most genes will have coalesced by t = 5,
and should therefore exhibit T2 values sampled from a stationary population (i.e.
α = 1). As the number of loci increases, a small proportion will not have coalesced
yet and will then provide information on α. The expected proportion of genes that
have coalesced by t = T = 5 is 0.993.

Figure 2.5 shows for various values of nL the results of the estimation of T
(panels (a), (c), and (e), for simulations assuming T = 0.2 and α = (2, 20, 100),
respectively; see Supplementary Material for the other values) and the estimation
of M (panels (b), (d), and (f), for simulations with M = 20 and n = (2, 20, 100),
respectively; see Supplementary Material for the other values). As expected again,
the estimates are getting better as nL increases. For the values shown here we can
see that T , the age of the bottleneck, is very well estimated even when α = 2 (for
nL = 10, 000). In other words, even a limited bottleneck can be very precisely
dated. For stronger bottlenecks fewer loci (between 500 and 1000) are needed
to still reach a high precision. This is particularly striking given that studies
suggest that it is hard to identify bottlenecks with low α values (Girod et al.,
2011). Interestingly, the panels (b), (d) and (f) seem to suggest that it may be
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more difficult to estimate M than T . As we noted above this observation should
be taken with care. Indeed, T and M are not equivalent in the same way as α
and n. This is why we chose to represent a value of M such that M = 1/T , and
why one should be cautious in drawing general conclusions here. Altogether this
and the previous figure show that it is possible to estimate with a high precision
the parameters of the two models by using only 500 or 1000 loci from a single
diploid individual. There are also parameter combinations for which much fewer
loci could be sufficient (between 50 and 100).

In Figure 2.6 we show some results of the KS test for the two cases (See the
Supplementary Materials for the other parameter combinations). In the left-hand
panels ((a), (c), and (e)) the data were simulated under the SSPSC model and
we used the StSI model as a reference (i.e. we ask whether we can reject the
hypothesis that genetic data were generated under a structured model when they
were actually generated under a model of population size change). In the right-
hand panels ((b), (d) and (f)) the same data were compared using the SSPSC model
as reference and we computed how often we rejected them using a 5% rejection
threshold. The left-hand panels exhibit several important features. The first is
that, with the exception of T2 = 5 we were able to reject the wrong hypothesis in
100% of the cases when we used 10, 000 independent T2 values.

This shows that our estimation procedure (as we saw above in figures 2.4 and
2.5) and the KS test are very powerful. The second feature is that for T = 5,
the test performs badly whatever the number of independent loci (at least up to
10, 000). This is expected since the expected TMRCA of two genes is t = 1, and
99.3% of the loci will have coalesced by t = 5. This means that out of the 10, 000,
only c.a. 70 loci are actually informative regarding the pre-bottleneck population
size. Another important feature of the left-hand panels is that the best results
are generally obtained for T = 1, 0.5 and 2, whichever the value of α. This is in
agreement with Girod et al. (2011) in that very recent population size changes are
difficult to detect and quantify. The observation is valid for ancient population size
changes as well. The right-hand panels are nearly identical, whichever α value we
used (see also Supplementary Materials), and whichever number of T2 values we
use. They all show that the KS test always rejects a rather constant proportion
of data sets. This proportion varies between 3 and 15%, with a global average
of 8.9%. Altogether our KS test seems to be anti-conservative. This is expected
when the quality of estimations is low (which is especially true for low nL values).
Moreover, since the KS test uses a reference distribution based on the estimated
rather than the true values, it is expected to reject the hypothesis that simulated
data come from a SSPSC (or a StSI) model more often than the value of 5%.
Slight differences between estimated and real values of the parameters may raise
the global average of rejections. As a test we repeated the KS test by using the
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true value and used 1000 independent data sets instead of 100, and found that the
tests rejected between 4.5% and 5.5% of the data sets.

Figure 2.7 is similar to Figure 2.6 but the data were simulated under the StSI
model and the KS test was performed first using the SSPSC model as a reference
((a), (c), (e)) and then using the StSI model as a reference ((b), (d), (f)). The
left-hand panels ((a), (c), and (e)) show results when we ask whether we can reject
the hypothesis that genetic data were generated under a population size change
model when they were actually generated under a model of population structure.
In the right-hand panels ((b), (d), and (f)) we computed how often we rejected
the hypothesis that genetic data were generated under the StSI model when they
were indeed generated under that model of population structure. Altogether, the
left-hand panels suggest that the results are generally best when M = (0.1, 0.2, 1),
but that we get very good results for most values of M when we have 10, 000 loci
and can reject the SSPSC when the data were actually generated under the StSI
model. The right-hand panels show, as in Figure 2.6, that for all the values of nL
and n we reject a rather constant proportion of data sets (between 5 and 10%).
Altogether the two previous figures (figures 2.6 and 2.7) show that it is possible to
identify the model under which the data were generated by using a single diploid
individual.

Figure 2.8 shows the effectiveness of the AIC to identify the best model when
the data were generated assuming models of population structure or population
size change other than the SSPSC and StSI models. The scenarios we considered
were the 4SPSC, SEPSC, 4x4StSSS and 7x7StSSS models presented above. When
the data were generated under a model of population size change whether it was
the 4SPSC or the SEPSC (left panel) the AIC identifies the SSPSC as the best
model, even for low numbers of loci. When we simulated data under the two
stepping-stone models (4x4StSSS and 7x7StSSS, right panel) the situation was
slightly different. The AIC allowed us to select the StSI as the "best" model with
great probability for all nL values larger than 400. We note that these results are
also evident when one looks at the log-likelihoods (see Supplementary Materials).
When nL increases the probability with which a population size model explains
data generated by a structured model (or vice versa) becomes increasingly low.

Figure 2.9 is divided in four panels showing the relationships between T and
M (panels (b) and (d), for various values of α and n) and between α and n (panels
(a) and (c), for various values of T and M). In each of the panels we simulated
data under a model for specific parameter values represented on the x-axis, and
estimated parameters from the other model, and represented the estimated value
on the y-axis. Since we were interested in the relationship between parameters
(not in the quality of the estimation, see above), we used the largest nL value
and plotted the average of 100 independent estimation procedures. In panel (a)
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we simulated a population size change (SSPSC) for various T values (represented
each by a different symbol) and several values of α on the x-axis. We then plotted
the estimated value of n̂ for each case (i.e. when we assume that the data were
generated under the StSI model). We find a striking linear relationship between
these two parameters conditional on a fixed T value. For instance, a population
bottleneck by a factor 50 that happened N0 generations ago (T = 1) is equivalent
to a structured population with n̂ ≈ 22 islands (and M̂ ≈ 0.71). Panel (c) is similar
and shows how data simulated under a structured population generates specific
parameters of population bottlenecks. Panels (b) and (d) show the relationship
between T and M . We have plotted as a reference the curve corresponding to
y = 1/x. As noted above and shown on this graph, this relationship is only
approximate and depends on the value of α and n. Altogether, this figure exhibits
the relationships between the model parameters. They show that the qualitative
relationships between α and n, and between T and 1/M discussed above are real
but only correct up to a correcting factor. Still, this allows us to identify profound
relationships between population structure and population size change.

2.6 Discussion
In this study we have analysed the distribution of coalescence times under two
simple demographic models. We have shown that even though these demographic
models are strikingly different (Figure 1) there is always a way to find parameter
values for which both models will have the same first two moments (Figure 2.2).
We have also shown that there are intrinsic relationships between the parameters
of the two models (Figure 2.9). However, and this is a crucial point, we also showed
that the distributions were different and could therefore be distinguished using a
single diploid individual. Using these distributions we developed a ML estimation
procedure for the parameters of both models (T̂ , α̂) and (M̂, n̂) and showed that the
estimates are accurate, given enough genetic markers. We showed that by applying
a simple KS test we were able to identify the model under which specific data sets
were generated. In other words, we were able to determine whether a bottleneck
signal detected in a particular data set could actually be caused by population
structure using genetic data from a single individual. We also implemented an
AIC procedure to identify the “best” of our two models in cases where the KS test
rejected both the SSPSC and StSI models. The AIC approach was tested with the
two reference models and with four additional scenarios. Our results suggest that
it is thus possible to use our approach to determine whether the population under
study is structured or not even when the data were not generated by one of our
two models.

The fact that a single individual provides enough information to estimate de-
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mographic parameters is in itself striking (see in particular the landmark paper
by Li and Durbin (2011)), but the fact that one individual (or rather sometimes
as few as 500 or 1000 loci from that one individual) potentially provides us with
the ability to identify the best of two (or more) models is remarkable as well.
The PSMC (pairwise sequentially Markovian coalescent) method developed by Li
and Durbin (2011) reconstructs a theoretical demographic history characterized by
population size changes, assuming a single non structured population. Our study
does not estimate as many parameters as the PSMC and is currently not applica-
ble to real data (but see below). However, it provides a proof of concept and goes
therefore one step further. It is a first step towards a more realistic and perhaps
critical reconstruction of the demographic history of populations. The models used
here are necessarily simplistic, and several authors have noted that real popula-
tions are likely to have gone through complex histories which would require models
putting together the two families of scenarios proposed (i.e. population structure
and population size change). In Wakeley (1999), a model considering a structured
population that went through a bottleneck in the past was developed. Wakeley
(1999) discussed the idea that, in structured populations and under some condi-
tions, an affective size can be computed which will therefore change when changes
in the migration rate or the size of islands (demes) occur. He noted that changes
in population structure can thus be mistaken for changes in effective population
size. This idea is of course older and can be found implicitly or explicitly in studies
aiming at computing the effective population size of structured populations (e.g.
Nei and Takahata (1993)) since the various formulae derived to compute the ef-
fective size are functions the migration rate, the number of demes and the deme
size. The framework presented here should thus be helpful to the aim of setting
these two scenarios apart in order to detect (for example) false bottleneck signals.
Nevertheless, while our study provides several new results, there are still several
important issues that need to be discussed and much progress that can still be
made.

2.6.1 T2 and molecular data
The first thing to note is that we assume, throughout our study, that we have
access to the coalescence times T2. In real data sets, this is never the case and
the T2 are rarely estimated from molecular data. While this is a limitation, we
note that the PSMC actually estimates the distribution of T2 values. In its default
implementation the PSMC software does not output this distribution but it can
be modified to do it by using specific commands. The PSMC will then provide
a discretized distribution in the form of a histogram with classes defined by the
number of time periods for which population size estimates are computed. In any
case, this suggests that it is in theory possible to use the theoretical work of Li and

49



Durbin to generate T2 distributions, which could then be used with our general ap-
proach, to compare the history reconstructed by the PSMC with the StSI model.
Moreover, it is possible to use the theory developed here to compute, conditional
on the T2 distribution, the distribution of several measures of molecular polymor-
phism. For instance, consider an infinite site mutation model with mutation rate
θ. Assuming that the coalescent time of two non recombining DNA sequences is
t, the number of mutations between them will follow a Poisson distribution with
parameter 2tθ. This allows us to compute the conditional distribution of Nd, the
number of differences between pairs of non recombining sequences as:

P(Nd = k|T2 = t) = e−2tθ (2tθ)k
k!

If we know the density of T2, it is then possible to compute the distribution of Nd

by taking the integral over all possible values of t:

P(Nd = k) =
∫ +∞

0
P(Nd = k|T2 = t)fT2(t) dt

by doing the computations for the two models studied here (see details in Supple-
mentary Materials) we get:

For the SSPSC model,

P(NSSPSC
d = k) = (2θ)k

(2θ + 1)k+1 + (2θ)kSk

with
Sk =

k∑
i=0

e−T (2θ+1)T k−i

(k − i)!

(
1

α(2θ + 1
α

)i+1 −
1

(2θ + 1)i+1

)
For the StSI model,

P(NStSI
d = k) = a

α + 2θ

(
1

1 + α
2θ

)k
+ 1− a
β + 2θ

(
1

1 + β
2θ

)k

Applying this to real data and validating it across the parameter space is an
important issue that would deserve a full and independent study, which we plan
to carry out in the near future.

2.6.2 Error in estimating T2

As noted in the previous section, we have been assuming that the T2 values were
known without error. As an additional validation step we carried out simulations
in which the T2 values were known with some random error. We considered the
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case where T2 values were estimated with a random noise drawn from a normal
distribution with the following standard errors, 1% and 5% (See Supplementary
Materials for details). We then used the corresponding T2 distributions with vari-
ous nL values to infer the model parameters and apply the model choice procedures.
Our results suggest that even with a standard error of 5% the parameters are well
estimated and the model choice procedure is also very efficient. For instance, we
identify the right model with 100% success for the chosen parameters with less
than 10, 000 loci. As expected the number of loci required to reach a particular
level of precision (as measure by the mean standard error, MSE) is larger when
the T2 are estimated with error rather than without error. It is interesting to note
that the MSE values seem to reach a plateau for some parameters (α and T ) for
nL values between 10, 000 and 100, 000 but not for others (n and M). Altogether,
this suggests that even with errors in the estimation of T2 values a number of loci
between 1, 000 and 10, 000 will be enough to estimate the models parameters and
to identify or reject models with great confidence.

2.6.3 Demographic models
In our study we limited ourselves to two simple models. It would thus be important
to determine the extent to which our approach could be applied to other demo-
graphic models. The n-island or StSI model is a classical model whose strongest
assumptions is probably that migration is identical between all demes. This is
likely to be problematic for species with limited vagility. In fact, for many species
a model where migration occurs between neighbouring populations such as the
stepping-stone is probably more likely. At this stage it is unclear whether one
could derive analytically the pdf of T2 for a stepping-stone model. The work by
Herbots (1994) suggests that it may be possible to compute it numerically by in-
versing the Laplace transform derived by this author. This has not been done to
our knowledge. Interestingly, this author has also shown that it is in principle
possible to derive analytically the pdf of T2 in the case of a two-island model with
populations of different sizes. Again, this would provide us with other structured
models against which population size change models could be compared.

The SSPSC model has also been used for several decades (Rogers and Harp-
ending, 1992) and represents a first step towards using more complex models of
stepwise population size changes (McManus et al., 2015), or models with more
complex trajectories. For instance, the method of Beaumont (1999) to detect,
date and quantify population size changes (Goossens et al., 2006; Olivieri et al.,
2008; Quéméré et al., 2012; Salmona et al., 2012) assumes either an exponential
or a linear population size change. It should be straightforward to compute the
pdf of T2 under these two models because the coalescent theory has been very well
developed for populations with variable size (Donnelly and Tavaré, 1995; Tavaré,
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2004) and it is possible to write the pdf of T2 for any demographic history involving
any type of population size changes. Significant work would be needed to apply
the general framework outlined here to additional demographic models. But the
possibilities opened by this study are rather wide.

2.6.4 Comparison with previous work and generality our
of results

The present work is part of a set of studies aimed at understanding how population
structure can be mistaken for population size change and at determining whether
studies identifying population size change are misleading or valid (Chikhi et al.,
2010; Heller et al., 2013; Paz-Vinas et al., 2013). It is also part of a wider set
of studies that have recognised in the last decade the importance of population
structure as potential factor biasing inference of demographic (Leblois et al., 2006;
Städler et al., 2009; Peter et al., 2010; Chikhi et al., 2010; Heller et al., 2013;
Paz-Vinas et al., 2013) or selective processes (Currat et al., 2006; Hallatschek and
Fisher, 2014). Here we demonstrated that it is possible to separate the SSPSC
and StSI models using only one individual. Without undermining this result, we
also want to stress that we should be cautious before extending these results to
any set of models, particularly given that we only use the information from T2.
Much work is still needed to devise new tests and estimation procedures for a
wider set of demographic models and using more genomic information, including
recombination patterns as in the PSMC method (Li and Durbin, 2011). Beyond
the general approach outlined here we would like to mention the study of Peter
et al. (2010) who also managed to separate one structure and one PSC (Population
Size Change) model. These authors used an ABC approach to separate a model of
exponential PSC from a model of population structure similar to the StSI model.
Their structured model differs from ours by the fact that it is not an equilibrium
model. They assumed that the population was behaving like an n-island model
in the recent past, until T generations in the past, but that before that time, the
ancestral population from which all the demes of size N derived was not struc-
tured and was of size N . When T is very large their model is identical to the StSI,
but otherwise it may be quite different. For instance, the fact that their model
assumed that the number of demes was 100 means that they also simulated an
instantaneous 100-fold population size increase. It is unclear whether such a sce-
nario is necessarily more realistic than Wright’s n-island model. Still, the fact that
they managed to separate the two models using an ABC approach is promising as
it suggests that there is indeed information in the genetic data for models beyond
those that we studied here. We can therefore expect that our approach may be
applied to a wider set of models. We also stress that these authors used a much
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larger sample size (25 diploid individuals corresponding to 50 genes). They used a
maximum of 200 microsatellites which corresponds therefore to 10,000 genotypes,
a number very close to the maximum number used here. This stresses the com-
plementarity of analytical and ABC approaches. Our study provided new results
and several intuitive insights into the relationships of structured and population
size change models. We believe that such intuitions would not have been easily
found with an ABC approach because ABC methods are often used as black boxes
providing results on specific models, rather than general results. For instance we
identified the linear relationships between the parameters (α and n, and T and
1/M). Altogether these analytical developments open up new avenues of research
for the distribution of coalescent times under complex models and for larger sample
sizes.

2.6.5 Sampling and population expansions
Recent years have also seen an increasing recognition of the fact that the sampling
scheme together with population structure may significantly influence demographic
inference (Wakeley, 1999; Städler et al., 2009; Chikhi et al., 2010; Quéméré et al.,
2012; Heller et al., 2013; Paz-Vinas et al., 2013). For instance, in the n-island
model, and under a number of simplifying assumptions (strong migration assump-
tion for instance) genes sampled in different demes will exhibit a genealogical tree
similar to that expected under a stationary Wright-Fisher model (Wakeley, 1999).
Since our work was focused on T2 we mostly presented our results under the as-
sumption that the two genes of interest were sampled in the same deme. For
diploids this is of course a most reasonable assumption. However, the analytical
results presented above also allow us to express the distribution of T2 when the
genes are sampled in different demes. We did not explore this issue further here,
but it would be important to study the results under such conditions. Interestingly,
we find that if we assume that the two genes are sampled in two distinct demes,
we detect population expansions rather than bottlenecks. This could happen if
we considered a diploid individual whose parents came from different demes. In
that case, considering the two genes sampled in the deme where the individual
was sampled would be similar to sampling his two parental genes in two different
demes. Interestingly, Peter et al. (2010) noted that when the 25 individuals were
sampled in different demes, they would detect population size expansions rather
than bottlenecks. This is different from our results since they considered that pairs
of alleles would still be in the same deme (since they considered diploids). Our
results are therefore complementary and qualitatively in agreement with theirs.
Similarly, Heller et al. (2013) also found and noted that signals of population ex-
pansion could be detected under scattered sampling schemes. Also, Paz-Vinas
et al. (2013) noted that signals of population expansion could be detected in cases
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where the sampling scheme changed and when there was asymetrical gene flow
between populations.

2.6.6 Conclusion: islands within individuals
To conclude, our results provide a general framework that can be extended to
whole families of models. We showed for the first time that genomic data from a
single individual can be used to estimate parameters that have to our knowledge
never been estimated. During the last decade there has been a major effort to use
programs such as STRUCTURE (Pritchard et al., 2000) to estimate the number
of "subpopulations" or genetic clusters on the basis of a large number of samples,
across the geographical distribution of a particular species. Our work suggests that
we can in principle provide additional results and insights with only one individual.
It is important to stress though that the answer provided here is different from
that obtained with STRUCTURE and similar methods and programs (Pritchard
et al., 2000; Guillot et al., 2005; Chen et al., 2007; Corander et al., 2004). We
do not aim at identifying the populations from which a set of individuals comes.
Rather we show that the genome of a single individual informs us on the whole
set of populations, hence including individuals which have not been sampled. In
other words, even though we assume that there are n populations linked by gene
flow, we show that each individual, is a genomic patchwork from this metapopu-
lation. We find these results reassuring, in an era where genomic data are used to
confine individuals to genetic clusters and where division rather than connectivity
is stressed.

Beyond this crucial change in outlook towards genomic data, we wish to stress
that it is remarkable that we were able to estimate the number of islands (and
the number of migrants) in the StSI model. This means that one can in principle
use genomic data from non model or model organisms to determine how many
islands make up the metapopulation from which one single individual was sampled,
and estimate how connected these demes are. This is particularly meaningful
for species for which the number of individuals with genomic data is limited.
Our ability to estimate n is one of the most striking and powerful results of our
study. The number of islands should be obtained across species and individuals
for comparative analyses. These results would provide unique insights into the
structure of species for which it is difficult to obtain samples in the field such as
endangered lemurs (Olivieri et al., 2008; Quéméré et al., 2012).

54



Figure 2.2: Expected value and Variance of T2 under the SSPSC and StSI mod-
els. This figure ilustrates how both models can have the same pair of values
(E(T2), V ar(T2)) for many sets of parameters. For the SSPSC model the time at
which the population size change occured was fixed to T = 0.1 whereas α var-
ied from 1 to 100 in one case, and T = 1.09, whereas α varied from 1 to 200 in
the other case. For the StSI model the migration rate was fixed to M = 9 and
M = 0.5, whereas n varies from 2 to 100.
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Figure 2.3: Density of T2 under the SSPSC and StSI models. Two sets of parameter
values (panels (a) and (b), respectively) were chosen on the basis that expectations
and variances were close. Panel (a): Density for the SSPSC model with T = 0.1
and α = 10.94, and for the StSI model with M = 9 and n = 10. For this set of
parameters we have E

(
T SSPSC2

)
= 9.994, and E

(
T StSI2

)
= 10, V ar

(
T SSPSC2

)
=

118.7 and V ar
(
T StSI2

)
= 118.0. Panel (b): The same, but for T = 1.09 and

α = 125.91, and for M = 0.5 and n = 43. The corresponding expectations and
variances are E

(
T SSPSC2

)
= 42.997, and E

(
T StSI2

)
= 43, V ar

(
T SSPSC2

)
= 8905

and V ar
(
T StSI2

)
= 8905.
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Figure 2.4: Estimation of α and n. Panels (a), (c) and (e): Estimation of α under
the SSPSC model for different sample sizes and T values. Simulations performed
with α = 10 and T = (0.1, 1, 2). Panels (b), (d) and (f): Estimation of n under
the StSI model for different sample sizes and M values. Simulations performed
with n = 10 and M = (10, 1, 0.5).

57



Figure 2.5: Estimation of T and M . Panels (a), (c), (e)): Estimation of T under
the SSPSC model for different sample sizes and values of α. Simulations performed
with α = (2, 20, 100) and T = 0.2. Panels (b), (d), (f): Estimation of M under
the StSI model for different sample sizes and values of n. Simulations performed
with n = (2, 20, 100) and M = 5.
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Figure 2.6: Proportion of rejected data sets simulated under the SSPSC model.
Panels (a), (c) and (e): the reference model is the StSI model. Panels (b), (d),
and (f): the reference model is the SSPSC, i.e. the model under which the data
were simulated. Note that for the abscissa we used 2nL instead of nL because in
order to perform the KS test it is necessary to first estimate the parameters using
nL loci and then an independent set of nL values of T2.
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Figure 2.7: Proportion of rejected data sets simulated under the StSI model. Pan-
els (a), (c), and (e): the reference model is the SSPSC. Panels (b), (d), and (f):
the reference model is the StSI model, i.e. the model under which the data were
simulated. Note that for the abscissa we used 2nL instead of nL because in order
to perform the KS test it is necessary to first estimate the parameters using nL
loci and then an independent set of nL values of T2.
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Figure 2.8: Model choice using the AIC for various demographic models. This
figure shows the proportion of times the AIC selected the SSPSC (resp. the StSI)
as the best model, as a function of nL, the number of independent loci or T2 values.
For each nL value, the experiment was repeated 100 times, and the number of times
one model was chosen is plotted. In each panel we represent the model selected by
the AIC as "Best" and the model under which the data were simulated as "Sim".
In the left panel the data were simulated under the two models of population size
change, namely the 4SPSC (4 stepwise population size changes) and the SEPSC (a
single exponential population increase. In the right panel, the data were simulated
under the two stepping-stone models models, the 4x4StSSS (with 4x4 islands) and
the 7x7StSSS (with 7x7 islands). This figure shows that the AIC provides very
good results to identify a structured model compared to a model of population
size change.
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Figure 2.9: Relationships between parameters of the models
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2.7 Theoretical details and perspectives

2.7.1 Derivations of distributions of T SSPSC
2 and T StSI

2

The distribution of T SSPSC2 If we denote by λ(t) the ratio N(t)
N(0) where t is the

time scaled by the number of genes (i.e. units of coalescence time, corresponding
to bN(0)tc generations), we can compute the probability density function (pdf)
fSSPSCT2 (t) of the coalescence time T SSPSC2 of two genes sampled in the present-day
population. Indeed, the probability that two genes will coalesce at a time greater
than t is

P(T SSPSC2 > t) = e−
∫ t

0
1

λ(x)dx , (2.3)
where

λ(x) = I[0,T [(x) + αI[T,+∞[(x),
and I[a,b[(x) is the Kronecker index such that

I[a,b[(x) =

1 for x ∈ [a, b[
0 otherwise.

Given that the pdf is

fSSPSCT2 (t) = (1− P(T SSPSC2 > t))′

Equation (1) can be rewritten as

P(T SSPSC2 > t) = e−tI[0,T [ + e−T−
1
α

(t−T )I[T,+∞[.

This leads to the following pdf

fSSPSCT2 (t) = e−tI[0,T [(t) + 1
α
e−T−

1
α

(t−T )I[T,+∞[(t). (2.4)

The distribution of T StSI2 An easy way to derive the distribution of the co-
alescence time T StSI2 of two genes for our structured model, is to compute the
probability that two genes are identical by descent when they are sampled from
the same or from different populations. These two probabilities are respectively
denoted by ps(θ) and pd(θ), where θ = 2uN is the scaled mutation rate, u being
the per locus mutation rate.

Indeed, using a classical scaling argument, we can note that

ps(θ) = E(e− θ2 2TStSI2 ) = E(e−θTStSI2 ).
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In other words ps(θ) is the Laplace transform of T StSI2 .
We can compute this probability as follows. Taking two genes from the same

island and going back in time, there are three events that may occur: a coalescence
event (with rate 1), a mutation event (with rate θ) and a migration event (with
rate M). Taking now two genes from different islands, they cannot coalesce and
therefore only a mutation or a migration event may occur. Migration events can
then bring the lineages in the same island with probability 1

n−1 , and in different
islands with probability n−2

n−1 . We thus obtain the following coupled equations:

ps(θ) = 1
1 +M + θ

+ M

1 +M + θ
pd(θ),

and
pd(θ) = M/(n− 1)

M + θ
ps(θ) + M(n− 2)/(n− 1)

M + θ
pd(θ).

By solving them, we obtain

ps(θ) = θ + γ

D
and pd(θ) = γ

D

with
γ = M

n− 1 and D = θ2 + θ(1 + nγ) + γ.

We can then obtain the full distribution through the Laplace transform formula,
if we note that

ps(θ) = θ + γ

(θ + α)(θ + β) = a

θ + α
+ 1− a
θ + β

with
a = γ − α

β − α
= 1

2 + 1 + (n− 2)γ
2
√

∆
,

where

α = 1
2
(
1 + nγ +

√
∆
)

and
β = 1

2
(
1 + nγ −

√
∆
)
,

∆ = (1 + nγ)2 − 4γ being the discriminant of the polynomial D. Noting now that
for any θ and any α we have∫ +∞

0
e−αse−θs ds = 1

θ + α
,

it is straightforward to see that the pdf of T StSI2 is an exponential mixture:

fStSIT2 (t) = ae−αt + (1− a)e−βt. (2.5)
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2.7.2 Proof of the Lemma 2.1
Lemma 2. Given a set of nL independent observations {t1, t2, ..., tnL}, the critical
points of interest of the log-likelihood function log(LSSPSC) are of the form

ma = (αa, ta), a ∈ {1, 2, ..., nL},

with

αa = 1
K

(
nL∑
i=1

tiIta<ti −Kta
)

and K =
nL∑
i=1

Iti≤ta .

Proof. Given nL independent values t = (t1, t2, ..., tnL), the likelihood is:

LSSPSC(α, T ) =
nL∏
i=1

Lti(α, T ),

and taking the log:

log(LSSPSC(α, T )) =
nL∑
i=1

log(Lti(α, T )), (2.6)

where

Lti(α, T ) = 1
α
e−T−

1
α

(ti−T )IT≤ti + e−tiIT>ti . (2.7)

First note that:

• For T > ti, Lti(α, T ) = e−ti is constant (with respect to (α, T )).

• If α 6= 1 (α = 1 means there is no change in the population’s size) then
Lti(α, T ) has a discontinuity at T = ti.

As we are interested in the case α 6= 1, the log-likelihood function has discon-
tinuities at each ti, i = 1 . . . nL.

For i ∈ {0, 1, ..., nL + 1}, let Ci = {(α, T ) ∈ R+ × R+, ti < T < ti+1}
with t0 = 0 and tnL+1 = +∞.

Now let be C = ⋃nL
i=0 Ci (Figure 2.10). We can see that LSSPSC(α, T ) is con-

tinuously differentiable in the interior of C.
Given that we do not consider negative values for α or T , we split the parameter

space into two subsets C and R2\C. If (α, T ) ∈ C, taking the log and the derivative
with respect to T in equation (2.7) gives:
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∂

∂T
log (Lti(α, T )) =

−1 + 1
α

if T < ti

0 otherwise.

As we can see, if α < 1 then ∂
∂T

log(Lti(α, T )) > 0 for all i and if α > 1 then
∂
∂T

log(Lti(α, T )) < 0 for all i. A consequence, ∇ log(LSSPSC(α, T )) will never be
zero in the interior of C if α 6= 1. �

This fact suggests that the min and max values of LSSPSC (if they exist) have
the form (α, ti).

Let’s find the critical points of log(LSSPSC) over the lines (α, ti) with ti ∈
{t1, t2, ..., tnL}. When we fix the value of T the function becomes a function of the
single variable α. If T = ta for a ∈ {1, ..., nL} it follows from (2.6) that:

log(LSSPSC(α, ta)) =
nL∑
i=1

[
log

( 1
α

)
− ta −

1
α

(ti − ta)
]
Ita≤ti −

nL∑
i=1

tiIta>ti .

Denoting K =
nL∑
i=1

Ita≤ti , we then have:

log(LSSPSC(α, ta)) = K
(

log
( 1
α

)
− ta

)
− 1
α

nL∑
i=1

(ti − ta)Ita<ti −
nL∑
i=1

tiIta>ti .

Let us find the zeros of the derivative in α:

∂

∂α
log(LSSPSC(α, ta)) = 0⇔− K

α
+ 1
α2

nL∑
i=1

(ti − ta)Ita≤ti = 0

⇔− αK +
nL∑
i=1

(ti − ta)Ita≤ti = 0

⇔α = 1
K

nL∑
i=1

tiIta≤ti − ta = αa.

Hence, the maximum value of the log-likelihood function (if it exists) is of the
form:

ma =
(

1
K

nL∑
i=1

tiIta≤ti − ta, ta
)
, a ∈ {1, 2, ..., nL}.

We then take (α̂, T̂ ) = argmaxa∈{1,...,nL}{log(LSSPSC(ma))} as the Maximum
Likelihood Estimation.
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Remark: Note that the function LSSPSC actually does not have any upper
bound. Let (t1, t2, ..., tnL) be the nL observations of T2 sorted form the lower
value to the higher value.

For T = tnL we have from (2.6) and (2.7):

LSSPSC(α, tnL) = 1
α
e−
∑nL

i=1 ti

which clearly goes to +∞ as α goes to zero. Besides, let us note that mnL = 0!
So in practice, we remove tnL from the possible values for T̃ , our ma remaining a
good estimate for the parameters, since the probability P(tnL−1 < T ) is very low
for most of the situations: less than 10−4 for all values of nL ≥ 20 if T ≤ 1 , and
less than 10−6 for all values of T ≤ 5 if nL ≥ 100.

2.7.3 Number of differences between pairs
If we assume that the scaled mutation rate is equal to θ, then the number of
differences between pairs of non recombining sequences (Nd), conditioned by the
value of T2 can be computed as:

P(Nd = k|T2 = t) = e−2tθ (2tθ)k
k! .

If the density of T2 is known, then we can compute the number of differences by
taking the integral over all possible values of T2:

P(Nd = k) =
∫ +∞

0
P(Nd = k|T2 = t)fT2(t)dt.

In the following lines we derive the distribution of Nd for the two models under
study.

Number of differences in the SSPSC model Let’s use the intermediate
result:

Ik =
∫ T

0
tke−ct dt = −1

k
T ke−cT + k

c
Ik−1

from which, by recursion,

Ik = k!
ck
I0 −

k−1∑
i=0

k!
(k − i)!T

k−i e
−cT

ci+1 ,

with
I0 = 1− e−cT

c
,
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we get: ∫ T

0
tke−ct dt = k!

ck+1 −
k∑
i=0

k!
(k − i)!

T k−ie−cT

ci+1 .

We know that:

P(NSSPSC
d = k) =

∫ +∞

0
P(Nd = k|T2 = t)fTSSPSC2

(t) dt,

which is equal to:∫ +∞

0
e−2tθ (2tθ)k

k!

(
e−tI[0,T [(t) + 1

α
e−T−

1
α

(t−T )I[T,+∞[(t)
)
dt.

This integral can be computed as the sum of two integrals:

(2θ)k
k!

∫ T

0
tke−(2θ+1)t dt+

∫ +∞

T

1
α
e−T−

1
α

(t−T ) (2θ)k
k! tke−2tθ dt.

The second integral can be calculated by doing:∫ +∞

T

1
α
e−T−

1
α

(t−T ) (2θ)k
k! tke−2tθ dt = 1

α

(2θ)k
k! e−T (2θ+1)

∫ +∞

0
(u+ T )ke−u( 1

α
+2θ) du,

with∫ +∞

0
(u+T )ke−u( 1

α
+2θ) du =

k∑
i=0

Ci
kT

k−i
∫ +∞

0
uie−u( 1

α
+2θ) du =

k∑
i=0

Ci
kT

k−i i!
( 1
α

+ 2θ)i+1 .

Putting all together:

P(NSSPSC
d = k) = (2θ)k

(2θ + 1)k+1 + (2θ)k
k∑
i=0

e−T (2θ+1)T k−i

(k − i)!

(
1

α(2θ + 1
α

)i+1 −
1

(2θ + 1)i+1

)

Number of differences in the StSI model Here we will use the intermediate
result: ∫ +∞

0
tke−ct dt = k!

ck+1 .

As we stated before, in the StSI case we have:

P(NStSI
d = k) =

∫ +∞

0
P(Nd = k|T2 = t)fTStSI2

(t) dt.

Substituting the conditional probability and the density of T StSI2 , this is equal to:∫ +∞

0
e−2tθ (2tθ)k

k!
(
ae−αt + (1− a)e−βt

)
dt.
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By linearity we have:

a
(2θ)k
k!

∫ +∞

0
tke−(α+2θ)t dt+ (1− a)(2θ)k

k!

∫ +∞

0
tke−(β+2θ)t dt,

and finally:

a
(2θ)k
k!

k!
(α + 2θ)k+1 + (1− a)(2θ)k

k!
k!

(β + 2θ)k+1

Hence, the distribution of NStSI
d can be written as:

P(NStSI
d = k) = a

α + 2θ

(
1

1 + α
2θ

)k
+ 1− a
β + 2θ

(
1

1 + β
2θ

)k

2.7.4 Preliminary results on the number of differences
Having an explicit expression for the distribution of the number of differences (Nd)
makes it possible to use a strategy analogous to the one based on T2, in order to
distinguish this two simple models based on genetic data. Thus, we can use a
chi-square test to decide whether the observed data can be explained by one of
these two models. It is also possible to estimate parameter of both models from
real data, based on the explicit expression of the distribution function of Nd.

The development of efficient algorithms for doing parameter estimation is in
progress. Also, a work is in progress in order to identify whether it is possible
to distinguish the two models using a reasonable amount of genetic information,
and in a reasonable amount of time. Some preliminary results indicates that the
strategy presented for the distribution of T2 could be applied to real data using
the observed values of Nd.

We can see from Figure 2.11 that the method is able to distinguish both models.
In order get the results shown in Figure 2.11, we did the following:

• We simulated data (vectors of nL independent values ofNd, for nL ∈ {40, 100, 200, 400, 1000, 2000, 20000})
under a panmictic model with a bottleneck of ratio 4 occurred in different
times.

• we estimated the parameters, using a MLE approach under both models,
using half of the data.

• We did a chi-square test to decide whether the data (the other half of the
data) is explained by the SSPSC model (or the StSI model) with the esti-
mated parameters.

69



When the number of independent values of Nd is large enough (nL = 20000)
we can see that the chi-square test rejects the hypothesis that the data correspond
to a StSI model (which is the wrong model) almost every time (Figure 2.11 left
panel). However the rejection rate for the SSPSC model (which is the correct
model) is low (Figure 2.11 right panel).

The accuracy in the estimation of the number of islands (n) under an n-island
model is also remarkable. We can see in Figure 2.12 the estimations of n, from
20000 independent values of Nd, simulated under an n-island model with n = 10
and migration rate (M) equal to 0.1, 1 and 50. For each value ofM we repeated 100
times the process of simulate the data and estimate n by a Maximum Likelihood
Strategy. Most of the time for M = 0.1 (Figure 2.12 left) the estimated value of
n was the right value (10) being the minimum estimated value equal to 9 and the
maximum equal to 11. For M = 1 and M = 50 (Figure 2.12 middle and right) the
estimation of n was always equal to 10.
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Figure 2.10: Cutting the parameter space, taking into account the discontinuities
of the log-likelihood function in R2
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Figure 2.11: Results of a Chi-2 test using the number of pairwise differences. Data
were simulated under the panmictic model with one population size change.

Figure 2.12: Accuracy on the estimation of n.
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Chapter 3

On the importance of being
structured: instantaneous
coalescence rates and human
evolution - Lessons for ancestral
population size inference?

The hypothesis test developed in the previous chapter allows us to separate two
simple models using the distribution of T2 values. Even if the same strategy ap-
pears to have good results when applied to real data (ongoing Masters project of
Alexandre Changenet), the models considered are still very simplistic. A natural
question that arises is whether a similar procedure would be able to distinguish
between a structured model and a panmictic model with many population size
changes. In the following chapter we will see that any strategy developed to sep-
arate a structured model from a panmictic model with an arbitrary function of
population size changes will fail if this strategy is based only on the distribution
of T2 values. Moreover, we will give the exact function of pseudo-population size
changes (λ) which makes the distribution of T2 under a panmictic model be iden-
tical to the one of an n-island model. This allows to predict the population size
changes that will be inferred by methods assuming panmixia, when applied to
a structured population. We will also note that the notion of effective size in a
structured model is unclear, given that we cannot characterise this effective size
by a single number, even though the population remains constant. The chapter is
identical to the published work Mazet et al. (2015a).
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Abstract
Most species are structured and influenced by processes that either increased or re-
duced gene flow between populations. However, most population genetic inference
methods assume panmixia and reconstruct a history characterized by population
size changes. This is potentially problematic since population structure can gener-
ate spurious signals of population size change through time. Moreover, when the
model assumed for demographic inference is misspecified, genomic data will likely
increase the precision of misleading if not meaningless parameters. For instance,
if data were generated under an n-island model (characterized by the number
of islands and migrants exchanged) inference based on a model of population size
change would produce precise estimates of a bottleneck that would be meaningless.
In addition, archaeological or climatic events around the bottleneck’s timing might
provide a reasonable but potentially misleading scenario. In a context of model
uncertainty (panmixia versus structure) genomic data may thus not necessarily
lead to improved statistical inference.

We consider two haploid genomes and develop a theory which explains why
any demographic model with structure will necessarily be interpreted as a series of
changes in population size by inference methods ignoring structure. We formalize
a parameter, the IICR (inverse instantaneous coalescence rate), and show that it is
equivalent to a population size only in panmictic models, and is mostly misleading
for structured models. We argue that this issue affects all population genetics
methods ignoring population structure may infer population size changes that
never took place. We apply our approach to human genomic data.
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3.1 Introduction
Most species are structured, and do not behave as panmictic populations (Wake-
ley, 1999; Harpending and Rogers, 2000; Goldstein and Chikhi, 2002; Charlesworth
et al., 2003; Harding and McVean, 2004). They have been influenced by habitat
fragmentation, expansion or reconnection events that either increased or reduced
the amount of gene flow between local populations, as a result of climatic or anthro-
pogenic events (Goossens et al., 2006; Quéméré et al., 2012). While genomic data
offer the possibility to reconstruct with increasing precision major events in that
complex history (Gutenkunst et al., 2009; Li and Durbin, 2011; Sheehan et al.,
2013; Schiffels and Durbin, 2014; Liu and Fu, 2015), it is computationally very
difficult to account for population structure. As a consequence, many inferential
methods tend to ignore population structure (Li and Durbin, 2011; Sheehan et al.,
2013; Liu and Fu, 2015). This is potentially problematic because an increasing
number of studies have shown that population structure generates spurious signals
of changes in population size, even when populations were stationary (Wakeley,
1999, 2001; Nielsen and Beaumont, 2009; Chikhi et al., 2010; Peter et al., 2010;
Heller et al., 2013; Paz-Vinas et al., 2013; Mazet et al., 2015b). Here, we pro-
vide a simple theoretical framework which explains why any inferential method
ignoring population structure will always infer population size changes as soon
as populations are actually structured. In other words, this theory explains why
any real demographic history, with or without structure, will necessarily and opti-
mally be interpreted as a series of changes in population size by methods ignoring
population structure.

We consider the case of two haploid genomes and we study T2, the coalescence
time for a sample of size two (i.e. the time to the common ancestor of two ran-
domly sampled sequences (Herbots, 1994; Griffiths and Tavaré, 1994; Mazet et al.,
2015b)). We predict the history that any coalescent-based population genetics
methods ignoring structure will try to reconstruct. We introduce a parameter,
which we call the IICR (inverse instantaneous coalescence rate). Since coalescence
rates are expected to be inversely related to effective population sizes, it may seem
natural to see the IICR as an “instantaneous population size”. However, we stress
that the IICR is equivalent to a population size only in panmictic models. For
models incorporating population structure the IICR exhibits a temporal trajectory
that can be strongly disconnected from the real demographic history (i.e. identi-
fying a decrease when the population size was actually constant or increasing).

We apply our approach to simulated data and use the PSMC (Pairwise Sequen-
tially Markovian Coalescent) method (Li and Durbin, 2011) as a reference method
because it allows to reconstruct the history of a population or species from one
single diploid genome. Also, this method has been applied to a wide array of
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vertebrate species including reptiles (Green et al., 2014), birds (Zhan et al., 2013;
Hung et al., 2014) and mammals such as primates (Prado-Martinez et al., 2013;
Zhou et al., 2014), pigs (Groenen et al., 2012) and pandas (Zhao et al., 2013)
and its outputs have been and typically are interpreted in terms of population
size changes. However, our results are general and not specifically related to that
particular method.

We then apply our approach to human data and show that an alternative model
involving a minimum of three changes in migration rates can explain the PSMC
results obtained by Li and Durbin (2011). The scenario that we infer represents
an alternative to the population crashes and increases depicted in various popu-
lation genetic studies, but is strikingly in phase with fossil data and provides a
more realistic framework as several authors have suggested (Goldstein and Chikhi,
2002; Harding and McVean, 2004). Altogether we call for a major re-evaluation
of what genomic data can actually tell us about the demographic history of our
species. Beyond our species we argue that genomic data should be re-interpreted
as a consequence of changes in levels of connection rather than simple changes in
population size (see also Wakeley (1999, 2001); Harding and McVean (2004) for
interesting models incorporating structure).

3.2 Models, Theory

3.2.1 Coalescence time for a sample of size 2 in a model of
population size change

We consider a model of arbitrary and instantaneous population size change, where
N(t) represents the population size (N , in units of genes or haploid genomes) as a
function of time (t) scaled by the number of genes (i.e. in units of coalescence time,
corresponding to bN(0)tc generations). We consider that t = 0 is the present, and
positive values represent the past. Since N represents the population size in terms
of haploid genomes, the number of individuals will be N/2 for diploid species.
We can then apply the generalisation of the coalescent in populations of variable
size (Griffiths and Tavaré, 1994; Donnelly and Tavaré, 1995; Tavaré, 2004). If we
denote by λ(t) the ratio N(t)

N(0) , we can then compute the probability density function
(pdf) fPSCT2 (t) of the coalescence time T2 of two genes sampled in the present-day
population. Indeed, the probability that two genes will coalesce at a time greater
than t is

P(T2 > t) = e−
∫ t

0
1

λ(x) dx (3.1)

Given that

76



fPSCT2 (t) = (1− P(T2 > t))′ (3.2)

we can write the pdf as

fPSCT2 (t) = (1− e−
∫ t

0
1

λ(x) dx)′ = 1
λ(t)e

−
∫ t

0
1

λ(x) dx (3.3)

Consequently, if we know the pdf of the coalescence time T2, the corresponding
population size change function λ(t) can be computed as:

λ(t) = P(T2 > t)
fPSCT2 (t) (3.4)

This equation may be seen as a simple rearrangement of previously known
results (Griffiths and Tavaré, 1994; Tavaré, 2004), which we cited above, and to
some extent it is. However, it practically means that if we only had access to a
finite set of T2 values we could in theory infer the history λ(t) by simply computing
this ratio. In the case of a model of population size change this computation is
by definition giving us the actual history of population size change. We show
below how this ratio can be computed for any demographic scenario for which T2
distributions can be derived or simulated. And it is this computation for other
models that significantly changes the outlook to genetic data and coalescence rates.

3.2.2 Instantaneous coalescence rate for a sample of size 2
If we consider now the coalescence time of two genes sampled in a population
under an arbitrary model, whichever model this may be (structured or not, with
population size change or not, etc.), and if we assume that we know its pdf , fT2(t),
it is straightforward to compute the ratio λ(t) of equation (3.4)

λ(t) = P(T2 > t)
fT2(t) (3.5)

Let us now denote g(t) = P(T2 > t). We then have by definition fT2(t) = −g′(t),
hence

1
λ(t) = −g

′(t)
g(t) = − log(g(t))′ (3.6)

from where we get, since g(0) = 1,

g(t) = elog(g(t)) = e−
∫ t

0
1

λ(x) dx (3.7)

It therefore follows that the pdf fT2(t) = −g′(t) can always be written as
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fT2(t) = 1
λ(t)e

−
∫ t

0
1

λ(x) dx (3.8)

even if the so-computed function λ(t) has nothing to do with any population size
change.

In other words, for any given model, there always exists a function λ(t) which
explains the coalescence time distribution of this model for a sample of size two,
fT2(t). The pdf of T2 can thus always be written as a function of λ(t) as in
equation (3.8), exactly as if the model under which the data were produced was
only defined by population size changes. This function λ(t) is a fictitious or spurious
population size change function whose coalescence time T2 would mimic perfectly
the demographic model.

Now, if we define µ(t) as

µ(t) = 1
λ(t) = fT2(t)

P(T2 > t) (3.9)

it should be natural to see µ(t) as an instantaneous coalescence rate, as it rep-
resents the probability that two lineages which have not yet coalesced at time t
(as expressed by the denominator), will do so in an infinitesimal amount of time
starting at t (as expressed in the numerator). Another way to realize it is to use
theoretical results and terminology from reliability theory. If we note that T2 can
be seen as a lifetime, then, we can also note that the quantity µ(t) = 1

λ(t) , known as
the hazard function or failure rate in the reliability engineering community, repre-
sents the instantaneous rate of failure of a system at time t (see for instance Ruegg
(1989) or Klein and Moeschberger (2003)). The term instantaneous is central and
we show in the next section that it is crucial for the interpretation of structured
models.

3.2.3 Linking population structure and population size change
We now consider a model of population structure such as the classical symmetric
n-island model (Wright, 1931), where we have a set of n islands (or demes) of
constant size N , interconnected by gene flow with a migration rate m, where
M
2 = Nm is the number of immigrants (genes) in each island every generation.
The total number of genes or haploid genomes in the whole metapopulation is nN
and it is therefore constant. Again, N is the number of haploid genomes, and N/2
the number of diploid individuals.

Under this model we can write the pdf for T2 (see Herbots (1994); Wilkinson-
Herbots (1998); Mazet et al. (2015b) for details and Bahlo and Griffiths (2001)
for related results and Charlesworth et al. (2003) for an insightful review) by
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considering the cases when the two genes are sampled from the same (s) or from
different (d) demes.

fStSIT s2
(t) = ae−αt + (1− a)e−βt (3.10)

fStSIT d2
(t) = ce−αt − ce−βt (3.11)

where

a = γ − α
β − α

, c = γ

β − α
(3.12)

and where −α and −β are the roots of the polynomial

θ2 + θ(1 + nγ) + γ (3.13)

whose discriminant is ∆ = (1 + nγ)2 − 4γ, and therefore

α = 1
2
(
1 + nγ +

√
∆
)

(3.14)

and

β = 1
2
(
1 + nγ −

√
∆
)

(3.15)

with γ = M
n−1 = αβ.

Now let us consider a hypothetical demographic history characterized by pop-
ulation size changes but without any population structure. For that history to
explain the data generated by a model of population structure, this hypothetical
demographic history will correspond to the function λ(t) as defined by equation
3.5. Thus, in the case of two haploid genomes sampled in the same deme (a most
reasonable assumption for a diploid individual) we get:

λs(t) = P(T2 > t)
fStSIT s2

(t) =
a
α
e−αt + 1−a

β
e−βt

ae−αt + (1− a)e−βt = (1− β)e−αt + (α− 1)e−βt
(α− γ)e−αt + (γ − β)e−βt (3.16)

It is then trivial to compute the function λs(t) for any set of parameters n
and M . Figure 3.1 shows for instance in panel (a) the corresponding curves for
n = 50 and M values between 0.1 and 50. As expected (Chikhi et al., 2010;
Mazet et al., 2015b) we observe a (fictitious) population decrease from a large
hypothetical ancestral population of size Nh

a to a smaller hypothetical current
population of size Nh

c . Note that λs(t) is a population size ratio, which does
not provide absolute values of the effective population size. In our case, it is
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however trivial to show that for t sufficiently close to 0, we find that λs(t) = 1
and hence it follows that Nh

c = N , the size of a deme. Indeed, at the time of
sampling, the coalescence history for two genes sampled from the same deme is
mostly dependent on the size of the local deme. Interestingly, this is true for any
value of M . Figure 3.1 indicates that as M becomes larger, Nh

a = N lim
t→+∞

λs(t)
becomes closer to nN , represented by the horizontal dashed line. This is expected:
when the migration rate increases the whole set of populations behaves less and less
like a structured model and increasingly like a single random mating population of
size nN . Several authors have shown that under the strong migration condition,
it is possible to define a coalescent effective population size towards which the
structured population tends (Sjödin et al., 2005; Wakeley and Sargsyan, 2009).
Panel (b) shows indeed that when M is very high (M = 100 and M = 500) the
n-island model behaves as a population characterized by a constant size until the
very recent past. For instance, when M = 500, λs(t) only drops at time t = 0.02,
which for N = 100 would correspond to 2 generations ago. In other words, the
strong migration assumption implicitly assumes that the bottleneck seen in our
results is so recent that it can be neglected. Using the terminology introduced by
Wakeley (1999), it assumes that the scattering phase is very short. Altogether our
results provide a more general framework which allows us to easily incorporate the
strong migration assumptions.

Coming back to panel (a) we also note that as M decreases, the fictitious bot-
tleneck becomes older and the ancestral population becomes larger, for a constant
value of n, the number of islands. We can derive the asymptotic coalescent ef-
fective size of this n-island model by computing the limit of λ(t) when t goes to
infinity, and find that, since 0 < β < α,

Nh
a = N lim

t→+∞
λs(t) = N

α− 1
γ − β

= N

β
, (3.17)

where we recall that β was the smallest of the roots found above (equation 3.15).
By developing equation 3.15, we find

β = 1
2

1 + n

n− 1M −
√(

1 + n

n− 1M
)2
− 4M
n− 1

 (3.18)

Here we can see that for large values of M , λs(t) is close to

Nh
a = N(n+ (n− 1)2

nM
) (3.19)

This is the nucleotide diversity effective size computed in Nei and Takahata
(1993) for the n-island model.
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If we now perform the same analyses and computations for the case where the
haploid genomes are sampled from different demes leads to the following result:

λd(t) =
1
α
e−αt − 1

β
e−βt

e−αt − e−βt
= βe−αt − αe−βt

γe−αt − γe−βt
(3.20)

Here the population dynamics is inverted, and we observe a fictitious popula-
tion expansion. Figure 3.2.3 shows some plots of λd(t) for different values of M .
This is in agreement with several previous studies which noted that when sam-
pling is carried out across demes the bottleneck signal either disappears or can be
replaced by a population expansion signal (Peter et al., 2010; Chikhi et al., 2010;
Heller et al., 2013). We note that lim

t→0
(λd(t)) = +∞. The two lineages being in

different demes at time t = 0, it is by definition impossible for them to coalesce in
the very recent past, since a migration event has first to occur. Let us note also
that lim

t→∞
(λd(t)) = 1

β
as for λs.

Our results, as expressed by equations (3.16) and (3.20), stress the difficulty in
defining an effective size for a structured population, because a structured popu-
lation has properties that a non structured population does not have. It behaves
like a non-structured population that changes in size. The IICR is therefore what
connects the two (structured and panmictic) models. As a consequence, there is
no overwhelming reason to summarize its properties by one single number when
it actually is defined either by a number of islands and a migration rate, or by
a full trajectory of effective sizes. We point towards the studies of Sjödin et al.
(2005) and Wakeley and Sargsyan (2009) for models and conditions under which
an effective size can be defined. What we wish to stress is that the theory pre-
sented here provides a general framework for explaining and predicting population
size changes that population genetics methods will infer. Below, we illustrate how
this can be applied to simple and complex structured models and we also predict
the population size changes that methods ignoring structure will infer. Given that
λ(t) does not necessarily correspond to actual changes in Ne we introduce the in-
verse instantaneous coalescence rate or IICR, which we will use for the rest of the
manuscript instead of λ(t). The reason for this is that the IICR is only equivalent
to an instantaneous coalescent Ne in the case of models without structure. For
other models, it is, in the absence of a better term, the inverse of an instantaneous
coalescence rate. The IICR is of course by definition a function of time and implic-
itly leads us to consider a trajectory rather than a single value even for constant
size models such as the n-island model.
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3.2.4 Application to simulated and real data
In order to illustrate how an observed distribution of T2 values can be used to infer
the IICR we carried out simulations under structured and unstructured scenarios.
Data were simulated using the ms software (Hudson, 2002). For each scenario, we
simulated independent values of T2 and used them to estimate the IICR at various
time points ti, as follows:

̂IICR(ti) = 1− F̂T2(ti)
f̂T2(ti)

(3.21)

where F̂T2(ti) is the estimated or empirical cumulative distribution function of
T2 and f̂T2(ti) is an estimated approximation of its density around ti. The two
scenarios of population size change without structure were simulated with the
followingms commands: ms 2 100 -T -L -G -16.094 -eG 0.1 0.0 for the exponential
population size change (Figure 3.3, panel (a)) and ms 2 100 -T -L -eN 0.01 0.1
-eN 0.06 1 -eN 0.2 0.5 -eN 1 1 -eN 2 2 (Figure 3.3, panel (b)) for the stepwise
population size change.

In addition, for the scenarios involving population structure (Figures 3.4 and
3.5) we simulated both T2 values and DNA sequences assuming an n-island model
with n = 10 demes of size of N = 1000 haploid genomes each (i.e. 500 diploids),
and a mutation rate of µ = 10−8. We then computed the empirical IICR from
the T2 values, and did a PSMC analysis using the corresponding DNA sequences.
The ms commands used to produce the data for a model with three changes in
migration rates was ms 2 100 -t 600 -r 120 30000000 -I 10 2 0 0 0 0 0 0 0 0 0 1 -eM
3 5 -eM 6 0.8 -eM 15 5 -p 8 and ms 2 100 -t 600 -r 120 30000000 -I 10 2 0 0 0 0
0 0 0 0 0 1 -eN 1 0.5 -p 8 for a model in which deme sizes doubled (and hence the
metapopulation too). We also simulated scenarios with a 10- and a 50-fold deme
size increase. We either keptM , the number of migrants, or m, the migration rate,
constant after the changes in N (supplementary figures). In addition we simulated
a scenario where the deme size varied according to a complex step function, and
inferred the IICR under various migration rates (see supplementary figures).

For the comparisons with the analyses of the human data we assumed the
mutation rate used by Li and Durbin (2011), namely µ = 2.5×10−8. These authors
note that the PSMC is not expected to give reliable estimates of recent population
sizes (i.e less than 10 KY in humans), and we therefore carried out simulations with
and without a recent demographic expansion following the Neolithic transition.
The simulations incorporating a recent increase in deme size in humans produce
PSMC and IICR profiles similar to the red line whereas the lack of a recent increase
produce a curve that is flat in the recent past (see supplementary figures). For
simplicity, the genomic data for the scenario with three migration rate changes were
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simulated assuming n = 10 demes. The ms command used was ms 2 100 -t 1590
-r 318 30000000 -I 10 2 0 0 0 0 0 0 0 0 0 0.55 -eM 4.5 4 -eM 18.0 0.55 -eM 47.5
0.85. This command simulates an n-island model n = 10 islands, of size N = 1060
haploid genomes or 530 diploids. A generation time of 25 years and a mutation rate
µ = 2.5× 10−8 were assumed as in Li and Durbin (2011). Following these authors
we simulated 100 independent 30 MB long “chromosomes” which were then used
together to represent the full 3 GB long human genome. Under that scenario,
the scaled mutation is θ = 4 × 530 × 2.5 × 10−8 × 30 × 106 = 1590. Given that
each island has 530 diploid individuals, the metapopulation is composed by 5300
diploid individuals. In ms commands, the migration rate and time are scaled in
units of the diploid deme size. The number of migrants exchanged was M = 0.55
in the recent past and M = 0.85 in the most ancient past, and changed at various
times indicated by the eM flag in the ms command. Going from the past to the
present, the ms commands thus simulates the following demographic events: M
decreased from 0.85 to 0.55 around 47.5×4×530×25 = 2, 517, 500 years ago, then
M increased from 0.55 to 4.00 approximately 18 × 4 × 530 × 25 = 954, 000 years
ago, and finally M decreased 4.5× 4× 530× 25 = 238, 500 years ago from 4.00 to
0.55. After that M remained constant. Moreover, in addition to scenarios where
the deme size never changed we also simulated scenarios with a rapid increase in
deme size 0.25 × 4 × 530 × 25 = 13, 250 years ago by a factor 40, to represent
the Neolithic transition. The figures without this change are in the supplementary
material.

3.3 Results

3.3.1 Predicting the inferred demographic history of non
structured and structured populations: illustrations
by simulations

Figure 3.3 shows the results for non structured populations that were subjected to
various histories of population size change. The left-hand panel shows a population
that experienced an exponential decrease from a previously constant size ancestral
population. As expected, the blue solid line obtained using the full theoretical T2
distribution is identical to the simulated history of population size changes (i.e. the
real population size changes). The stepwise red solid line represents the empirical
IICR. The number of ti values or steps can be changed depending on the precision
that one wishes to reach and the total number of T2 values. We chose values
similar to those typically used in recent genomic studies for comparison (Zhao
et al., 2013; Zhan et al., 2013; Zhou et al., 2014) but a much greater precision can
be achieved under our framework. The right-hand panel shows similar results but
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for a population that went through various stepwise population size changes. This
shows the remarkable match between the theoretical and empirical IICR curves
and the simulated history. When a population is not structured the IICR will
exactly match the real history in terms of population size changes.

Figure 3.4 is similar to Figure 3.3 but with structured populations: we sam-
pled two haploid genomes under the n-island model, with n = 10 and M = 1.
Panel (a) shows the results when the genomes were sampled in the same deme
(a single diploid individual) whereas panel (b) shows the results when the two
haploid genomes were sampled in different demes. These figures show again that
the empirical and theoretical IICR distributions match each other. Moreover they
predict the population size change history inferred by the PSMC. This suggests
that the PSMC does not infer a population size change but the IICR and estimates
it rather well. Finally, the IICR and the PSMC identify a (spurious) population
decrease or increase depending on the sampling scheme even though the total num-
ber of haploid genomes was constant (horizontal dashed line representing the real
population size). These results are in agreement with several studies showing that
different sampling strategies applied to the same set of populations may lead to
infer quite distinct demographic histories (Chikhi et al., 2010; Heller et al., 2013)
even though they used different methods. Whereas the effect described by Heller
et al. (2013) was observed using the Bayesian Skyline Plot method (Drummond
et al., 2005), Chikhi et al. (2010) used the msvar approach of Beaumont (1999).

While Figures 3.3 and 3.4 illustrate and validate the theory developed in previ-
ous sections using two models (the n-island and population size change) for which
the T2 distribution is known, our approach to estimate the IICR is still valid when
we have values of T2 but the distribution is not known. This can happen for mod-
els that can be simulated but for which no analytical results exist (Figure 3.5). In
panel (a) of Figure 3.5, we considered an n-island model with n = 10 demes where
the total population size remained constant (each deme had a size of N = 1000
haploid genomes or N/2 = 500 diploids) but migration rates changed at three dif-
ferent moments in the last 30, 000 generations, as indicated by the vertical arrows.
This scenario mimics a set of populations whose connectivity is changing due to
fragmentation or reconnection of habitat either due to climatic or anthropogenic
effects (Goossens et al., 2006; Quéméré et al., 2012). The demographic history
reconstructed by the PSMC matches again the history predicted by the empiri-
cal IICR, but it is strikingly different from the actual size of the metapopulation
(horizontal line). Whereas the total population size was constant throughout, the
reconstructed history suggests that the population expanded and contracted on at
least two occasions. A more serious issue arises from the fact that the population
size changes inferred by the PSMC do not appear to match the times at which the
migration rates changed, at least at the level of precision provided by the PSMC.
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For instance, the last change in migration rate, M1, occurred 6, 000 generations
in the past. Instead, the PSMC infers a population expansion and contraction
after that event. Panel (b) corresponds to a scenario in which the size of all demes
doubled 2, 000 generations before the present. Here the striking result comes from
the fact that whereas the population size doubled (black broken line) the IICR and
PSMC would suggest a continuous population decrease over a very long period,
whose timing has again little to do with the actual history of the population. The
population size change is thus missed by the PSMC. See Supplementary figures
for cases where the population increased by a factor 10 and 50 and where either
M or m was constant. Altogether this figure and the associated supplementary
figures suggest that changes in migration patterns or changes in deme size may be
misinterpreted by population genetics methods that ignore population structure,
and that there is a need for methods able to identify population structure from
population size change (see Peter et al. (2010); Chikhi et al. (2010); Heller et al.
(2013); Mazet et al. (2015b)).

3.3.2 A tentative re-interpretation of human past demog-
raphy: on the importance of being structured

In their study Li and Durbin (2011) applied the PSMC to genomic data obtained
from humans and inferred a history of population size changes. As demonstrated
above, what the PSMC estimates is the IICR which does not necessarily cor-
respond to real population size changes, but may also arise from a model with
changes in migration rates. To illustrate this we applied our approach to identify
an island model with constant population size reproducing closely the IICR ob-
tained by Li and Durbin (2011). For simplicity we arbitrarily assumed that the
number of islands was n = 10, and that there were three changes in migration
rates as this is the minimum number of changes required to obtain an IICR curve
with two humps, assuming a constant deme size. We propose a history in which
migration rates (Mi, i = 1, 2, 3, 4) changed at three moments (T i, i = 1, 2, 3),
and where M1 corresponds to the number of migrants exchanged between demes
each generation during the period between the present and T 1. More specifically,
we found a change in migration rates (from M4 = 0.85 to M3 = 0.55) around
T 3 = 2.52 million years (MY) ago, then a major increase (from M3 = 0.55 to
M2 = 4) around T 2 = 0.9− 1.0 MY and finally a major decrease (from M2 = 4 to
M1 = 0.55) around T 1 = 0.23 − 0.25 MY ago. In other words our results would
suggest changes in connectivity at the start of the Lower Pleistocene (dated at 2.58
MY), which corresponds to the emergence of the genus Homo. The most striking
change corresponds to major increase in connectivity just before the transition
between the Lower and Middle Pleistocene (dated at 0.78 MY). We find that the
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Middle Pleistocene is characterized by high and sustained gene flow. Finally, con-
nectivity abruptly decreases at 210− 230 KY ago just before the earliest remains
of anatomically modern humans Homo sapiens at ca. 200 KY.

3.4 Discussion

3.4.1 The IICR and the PSMC
In this study we have shown that it is always possible to find a demographic history
involving only population size changes that perfectly explains any distribution
of coalescence times T2, even when this distribution was actually generated by
a model in which there was no population size change. To illustrate this we
first focused on a simple n-island model for which the pdf of T2 can be derived,
and obtained an analytic formula of the fictitious population size change history,
named IICR (inverse instantaneous coalescence rate), as a function of the number
of islands and the migration rate of the model. We also showed that the IICR can
be computed for any (neutral) model from any observed distribution of T2 values.
We showed that the empirical and theoretical IICRs were identical when the latter
could be obtained. We then obtained the empirical IICR under models involving
changes in migration rates or in deme size. This suggests that, at least for a
sample of size 2, even an infinite amount of genetic data from independent loci
alone may not allow to distinguish structure and population size change models.
Also, the history of population size changes in Figure 3.5 would suggest that four
demographic changes occured, two expansions and two contractions, whereas only
three changes of the migration rate were actually simulated.

The theory presented here is simple and general. It allows us to predict the
IICR and state that any method ignoring population structure will try to estimate
the IICR. In the case of complex demographic histories with population structure,
interpreting the IICR as a population size or a ratio of population sizes can be
misleading. To clarify the difference between the IICR and an effective population
size we can consider the following rationale. If a structured population could be
summarized by a single Ne then a change in gene flow should be matched by a
simultaneous change in Ne. In that case, changes in Ne would be misleading (since
the size would not change) but their timing might still be meaningful. For instance
a “hump” inferred using diCal or the PSMC could be easily translated into a change
in gene flow patterns. In such a case, we could re-interpret the changes in Ne by
saying, for each hump, that gene flow decreased and then increased again. What
the IICR shows is that it is not that simple. The fact that a structured model
can only be summarized by a trajectory of spurious population sizes means that
the timing of changes in migration rates will interact in a complex manner hence
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generating IICR profiles that may be only loosely related with population-related
events. This can be seen in Figures 3.5 and 3.6 (and the supplementary figures).

These results do not invalidate the use of panmictic models for the reconstruc-
tion of population history as long as population structure can indeed be neglected
(supplementary figures), but it certainly stresses the need for caution in the inter-
pretation of this history. When Li and Durbin published their landmark study in
2011 they showed for the first time that it was possible to reconstruct the demo-
graphic history of a population by using the genome of a single diploid individual
(Li and Durbin, 2011). It was a remarkable feat based on the SMC model intro-
duced by McVean and Cardin (2005b). Its application to various species (Prado-
Martinez et al., 2013; Zhou et al., 2014; Groenen et al., 2012; Zhao et al., 2013;
Green et al., 2014; Zhan et al., 2013; Hung et al., 2014) has been revolutionary and
led to the development of new methods (Sheehan et al., 2013; Schiffels and Durbin,
2014; Liu and Fu, 2015). However, the increasing number of studies pointing at the
effect of population structure (Leblois et al., 2006; Nielsen and Beaumont, 2009;
Chikhi et al., 2010; Heller et al., 2013; Paz-Vinas et al., 2013) or changes in pop-
ulation structure (Wakeley, 1999, 2001; Wakeley and Aliacar, 2001; Städler et al.,
2009; Broquet et al., 2010; Heller et al., 2013; Paz-Vinas et al., 2013) in generating
spurious changes in inferred population size suggested that new models should be
analysed that can incorporate population structure (Goldstein and Chikhi, 2002;
Harding and McVean, 2004). For instance, Mazet et al. (2015b) have recently
shown that genomic data from a single diploid individual can be used to distin-
guish an n-island model from a model with a single population size change. Their
likelihood-based approach uses the distribution of coalescence times for a sample
of size two (T2). This study represents an interesting alternative since it should be
possible to determine whether a model of population structure is more likely than
a model of population size change to explain a particular data set. The approach
of Mazet et al. (2015b) is however limited to a very simple model of population size
change. Demographic models inferred by several recent methods (Li and Durbin,
2011; Schiffels and Durbin, 2014; Sheehan et al., 2013; Liu and Fu, 2015) are not
limited to one population size change. They are thus more realistic, and, as we
have shown here this comes at a certain price. Since they allow for several tens of
population size changes, they mimic more precisely the genomic patterns arising
from structured models. Therefore, they reconstruct a demographic history that
can optimally explain any particular pattern of genomic variation only in terms of
population size changes. As we have shown here, and until we can separate models
(see below) this casts doubts on any history reconstructed from genomic data by
the above-mentioned approaches. Indeed, if any pattern of (neutral) genomic vari-
ation can be interpreted efficiently in terms of population size changes, then how
can we identify the cases where the observed genomic data were not generated by
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population size changes?
Li and Durbin (2011) acknowledged that one should be cautious when inter-

preting the changes inferred by their method. For instance, they showed (see their
Supplementary Materials) that when one population of constant size N splits in
two half sized populations that later merge again, their method will identify a
change of N even though N actually never changed. Still, their method is im-
plicitly or explicitly used and interpreted in terms of population size changes,
including by themselves. There are therefore several issues that need to be ad-
dressed. One issue is to determine whether it is possible to separate models of
population size change from models of population structure (Mazet et al. (2015b),
see below). When population structure can be ignored, our results actually con-
tribute to the validation of the PSMC (supplemental figures). We found that
the PSMC performed impressively well and generally reconstructed the IICR with
great precision. It is therefore at this stage one of the best methods (Sheehan
et al., 2013; Schiffels and Durbin, 2014; Liu and Fu, 2015) published so far and
remains a landmark in population genetics inference.

3.4.2 The IICR: towards a critical interpretation of effec-
tive population sizes

The concept of effective size is central to population genetics. It allows popula-
tion geneticists to replace complex real-world populations by equivalent and sim-
pler Wright-Fisher populations that would have the same “rate of genetic drift.”
(Wakeley and Sargsyan, 2009). The concept is however far from trivial and it is not
always clear what authors mean when they mention the Ne of a particular species
or population, as rightly noted by Sjödin et al. (2005) among others. Several Nes
have been defined depending on the property of interest (inbreeding, variance in
allele frequency over time, etc.) and its relationship to genetic drift (Wakeley and
Sargsyan, 2009). This is a complex issue which we do not aim at reviewing or
discussing in detail here.

The IICR is related to the coalescent Ne (Sjödin et al., 2005; Wakeley and
Sargsyan, 2009) but it is explicitly variable with time. Given that most species
are likely to be spatially structured, interpreting the IICR as a simple (coalescent)
effective size may generate serious misinterpretations.

The IICR is a trajectory of instantaneous “population sizes” which fully ex-
plains complex models without loss of information. The circumstances under which
this trajectory can indeed be appropriately summarized by one effective popula-
tion size is still to be determined and will depend on the questions asked and the
amount of markers used. For instance, for “strong migration scenarios” (M = 500
and M = 100) the inferred population size changes are recent and abrupt, and
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the period during which the population was stationary will be significant in gen-
erating patterns of genetic diversity (Wakeley, 1999, 2001; Wakeley and Aliacar,
2001; Charlesworth et al., 2003; Wakeley and Sargsyan, 2009). However, even
for such cases of low genetic differentiation (FST ≈ 1/2001 = 0.0005 and FST ≈
1/401 = 0.0025, respectively), the spurious population size drop could perhaps be
detected with genomic information. For M = 100 the population size decrease
starts between t = 0.05 and t = 0.10, which for N = 100 to N = 1000 could corre-
spond to values between 5 to 100 generations ago, respectively. In other words, an
n-island model may actually behave differently from a WF model even under some
“strong migration” conditions. The approximation will therefore be valid for some
questions and data sets, and invalid for others (Charlesworth et al., 2003; Wake-
ley and Sargsyan, 2009). Note also that for very low migration rates (M = 0.1,
M = 0.2, corresponding to very high FST ≈ 0.71 and FST ≈ 0.56, respectively)
the recent history is also characterized by a stationary IICR. Most genes will then
coalesce within demes and only a small proportion will provide information on
the ancient IICR values and therefore on population structure (see Mazet et al.
(2015b)).

3.4.3 The IICR and the complex history of species: to-
wards a critical re-evaluation of population genetics
inference

The PSMC has now been applied to many species, generating curves that are
very similar to those represented in Figure 3.5. In panel (a) the population size
changes detected by the PSMC were not correlated in a simple manner to the
changes in gene flow or deme size. This is likely the result of two factors. First, a
structured population cannot always be summarized by a single number. Second,
the PSMC requires a discretized distribution of time which may lead to missing
abrupt changes such as those simulated here. For real data sets where changes
in migration rates or in population size may be smoother, this may not be so
problematic. For the human data, assuming a simple model of population structure
we inferred periods of change in gene flow which correspond to major transitions
in the recent human evolutionary history, including the emergence of anatomically
modern humans. Given that humans are likely to have been subjected to a complex
history of spatial expansions and contractions and changes in the levels of gene
flow (Wakeley, 1999; Harpending and Rogers, 2000; Wakeley, 2001; Goldstein and
Chikhi, 2002; Harding and McVean, 2004), our results are necessarily simplistic but
suggest that a re-interpretation of panmictic models may be needed and possible.
Our results are at odds with a history of population crashes and increases depicted
in various population genetic studies, but it is in phase with fossil data and provides
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a more realistic interpretation framework. We thus wish to call for a critical
reappraisal of what can be inferred from genetic or genomic data. The histories
inferred by methods ignoring structure represent a first approximation but they
are unlikely to provide us with the information we need to better understand the
recent evolutionary history of humans or other species. It is difficult to imagine
that humans have been one single panmictic population whose size has changed
over the last few million years (i.e. since the appearance of the Homo genus) . This
does not minimize the achievement of the Li and Durbin (2011) study, but it does
question how inference from genetic data are sometimes presented and interpreted.

3.4.4 Perspectives
We focused throughout this study on T2, the time to the most recent common
ancestor for a sample of size two. For larger samples we can define Tk as the time
during which there are k lineages. It would be important to determine whether,
for structured models, the IICR estimated from the distribution of Tk varies sig-
nificantly with k. If that were the case, that would suggest that it is possible to
separate structure from population size change with the distributions of Tk for
various k values. The reason for this is that population size change models should
generate identical IICR for all Tk distributions, since they should all correspond to
the same (real) history of population size change. To our knowledge the distribu-
tion of Tk for k > 2 has not yet been derived for the n-island or other structured
models (but see interesting studies such as Wakeley and Aliacar (2001); Wakeley
(2001); Nielsen and Wakeley (2001)).

One simple solution to this question is to simulate genetic data under a struc-
tured model of interest and then compare the simulated Tk distributions under
that model and the Tk distributions of the corresponding model of population size
change identified using the T2 distribution. Preliminary simulations suggest that
the Tk distributions produce different IICRs, at least for some models of popu-
lation structure. For instance, we predict that the analysis of human genomic
data with the PSMC and with the MSMC should produce different curves under
a model of population structure but identical ones for a model of population size
change. This prediction can be tested by comparing the PSMC and MSMC curves
of Li and Durbin (2011) and Schiffels and Durbin (2014), respectively. Visual in-
spection of the corresponding figures suggests indeed that they are different, and
therefore that our model of population structure is a valid alternative. However,
we stress that an independent study is required. Indeed, the history reconstructed
by these methods with real data is not very precise and the two curves are not
easily comparable because they are expected to provide poor estimates at different
moments. Any difference between the two analyses should thus be evaluated and
validated with simulations.
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Finally, one underlying assumption of our study is that the coalescent rep-
resents a reasonable model for the genealogy of the genes sampled. Given that
the coalescent is an approximation of the true gene genealogy, and that there are
species for which the coalescent may not be the most appropriate model (Wakeley
and Sargsyan, 2009) we should insist that our results can, at this stage, only be
considered for coalescent-like genealogies. The development of similar approaches
for other genealogical models would definitely be a very interesting avenue of re-
search.
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Figure 3.1: Inferred population size changes for n-island models with constant size.
This figure shows λs(t) for different values of M , the number of migrants, and n,
the number of islands. In panel (a) we assumed an island model with n = 50, and
varied M , the number of migrants between 0.1 and 50. In panel (b) we varied n
between 50 and 500 and used two large values for M , namely 100 and 500. For
both panels, the y axis is scaled by N and the horizontal dashed lines correspond
to nN , the total population size. In all cases, λs(t) identifies a population decrease.
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Figure 3.2: Inferred population size changes for n-island models and samples from
different demes. This figure shows λd(t) for different values of M , the number of
migrants. The number of islands, was assumed to be n = 50. Samples come from
different islands. In all cases, λd(t) identifies a population increase.
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Figure 3.3: Inferred population size changes for populations without structure.
For both panels the x-axis represents time in generations, whereas the y-axis rep-
resents population size in units of 104 diploids (an IICR of 0.5 corresponds to
500 ∗ 10 = 5000 diploid genomes). Panel (a) represents a panmictic population
that experienced an exponential decrease from a previously constant size ancestral
population. The solid blue line (theoretical IICR) was obtained using equation 3.4.
The dashed line represents the simulated demographic history and corresponds to
the total number of haploid genomes (the actual size). The stepwise red solid
curve (estimated IICR) was obtained using the simulated T2 values and equation
3.21. Panel (b) shows a history of stepwise population size changes. The color
codes are identical to panel (a).
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Figure 3.4: Inferred population size changes under population structure and two
sampling schemes. This figure shows the predicted population size changes that
will be inferred for an n-island model under the assumption that populations are
not structured. For both panels the x-axis represents time in generations, whereas
the y-axis represents real or inferred population size in units of 104 diploid genomes.
We simulated an n-island model with n = 10 and M = 1 and computed the
theoretical IICR using equation 3.4, and the estimated IICR using the simulated
T2 values and equation 3.21. The color codes are identical to Figure 3.3. The green
solid lines represent the history inferred by the PSMC. Panel (a) shows the results
when the two haploid genomes are sampled in the same deme. In panel (b) they
come from different demes. The constant size of the metapopulation at y = 0.5
corresponds to 5, 000 diploid genomes or 10 islands of size 500 diploids.
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Figure 3.5: Inferred population size changes under population structure with
changes in migration rates or deme size. The x-axis represents time in genera-
tions, whereas the y-axis represents real or inferred population size in units of 104

diploid genomes. Color codes are identical to figure 3.4. Data where simulated un-
der an n-island model with n = 10. In panel (a) the population size was constant
in size with each deme having a size N = 1000 haploid genomes (500 diploids)
but three changes in migration rate occured at T3 = 30, 000, T2 = 12, 000, and
T1 = 6, 000 generations in the past. Before T3 the migration rate was M3 = 5.
At T3 it changed to M2 = 0.8 and remained constant until T2, and then changed
to M1 = 5 at T1. After that it remained at M = 1 until the present. In panel (b)
all the demes doubled in size from 500 to 1, 000 haploids (or 250 to 500 diploids)
at T = 2, 000 generations and migration was constant with M = 1.
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Figure 3.6: Human history with changes in migration rates. This figure shows,
in red, the history of population size changes inferred by Li and Durbin from the
complete diploid genome sequences of a Chinese male (YH) (Wang et al., 2008).
The 10 green curves correspond to the IICR of ten independent replicates of the
same demographic history involving three changes in migration rates. The x-
axis represents time in years in a log scale, whereas the y-axis represents real or
inferred population size in units of diploid genomes. The times at which these
changes occur are represented by the vertical arrows at 2.52 MY ago, 0.95 MY
ago and 0.24 MY ago. The blue shaded areas correspond to (i) the beginning of
the Pleistocene (Pleist.) at 2.57-2.60 MY ago, (ii) the beginning of the Middle
Pleistocene (Mid. Pleist.) at 0.77-0.79 MY ago, and (iii) the oldest known fossils
of anatomically modern humans (AMH), at 195-198 KY ago. Following Li and
Durbin (2011) we assumed that the mutation rate was µ = 2.5 × 10−8 and that
generation time was 25 years. We also kept their ratio between mutation and
recombination rates. Each deme had a size of 530 diploids and the total number
of haploid genomes was thus constant and equal to 10, 600.
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Chapter 4

Detecting past demographic
events in structured populations

In chapter 3 we gave the exact function of population size changes that will be
inferred by a method assuming panmixia when applied to a population evolving
under an n-island model (we named it IICR for Inverse Instantaneous Coalescent
Rate). We have also shown that it is not possible, based on the distribution of T2
(and consequently, based on any statistics computed from pairs of genes), to decide
whether the population under study is structured or panmictic, because there will
always be a panmictic population whose change in size can explain any distribution
of T2 values. As we illustrated in the examples, even if we were certain that the
population is structured, the relation between the IICR (or the demographic his-
tory reconstructed by methods assuming panmixia) and past demographic events
is not clear. When analysing a structured population with a method assuming pan-
mixia, constant population size may lead to reconstructed histories with a clear
signal of recent decrease or increase, depending on the sampling scheme. Some-
times, even a recent expansion in a population can be interpreted as a bottleneck.
Even changes in gene flow can be interpreted as population size changes. The
theory developed in the following chapter aims to clarify the relation between the
IICR and past demographic events under a structured population.

The demographic history of a population has a strong influence on the genealogy
of genetic samples. Consequently, if we assume some model for describing the evo-
lution of a population over time, it is possible to depict the shape that coalescence
trees will have. Then it is possible to compute the likelihoods of the parameters
involved in the model, with respect to the trees or some observed statistics. Many
population genetic studies are based somehow on this intuition and some of them
manage to find the parameters that best explain observed data, by using a maxi-
mum likelihood (or a Bayesian) approach. However, unless the assumed model is
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very simplistic, analytical expressions for the likelihood of the parameters based
on observed data are very challenging to obtain. Besides, even minor modifica-
tions to the model in order to introduce a little bit of realism may highly increase
the complexity of likelihood computations. In the following, we introduce the N-
Island Markov Chain (NIMC), a framework based on the classical n-island model
of Wright. The NIMC relies on a continuous Markov process to compute the dis-
tribution of coalescence times of two haploid individuals (or genes). By using this
approach, it becomes possible to include past demographic events (like migration
rate changes and population size changes) without any increase in the complexity
of the likelihood expression. Moreover, this idea can be used as a way to detect
population size changes beyond the confounding effect of population structure.

We start by constructing a Markov process that describes the evolution of two
lineages backward in time under the n-island model, based on the ideas of the
structured coalescent discussed in subsection 1.3.2. The Markovian property makes
it easy to consider past demographic events like changes in migration rate and
population size. Moreover, explicit expressions for the distribution function and
the density of T2 are derived, which makes it possible to trace the IICR in a
precise way. We discuss some applications of the NIMC, especially that it is
possible to accurately detect past changes in population size. We also propose a
way to detect past demographic events based on the IICR inferred with methods
assuming panmixia, and discuss how the NIMC framework can be directly applied
to genomic data.

4.1 Coalescence times for a sample of size two in
structured populations

The distribution of coalescence times in models that account for structure in the
population has been a central point in many population genetics studies (Taka-
hata, 1988; Notohara, 1990; Barton et al., 2002; Wakeley, 2001; Wilkins and Wake-
ley, 2002; Barton and Wilson, 1995). A very elegant extension of the coalescent
was presented in Herbots (1994). This extension, named Structured Coalescent,
is based on a continuous-time Markov chain and allows to compute explicitly
the moment-generating function of the coalescence time of two genes under a
wide range of models considering population structure (Herbots, 1994; Wilkinson-
Herbots, 1998). The idea of a continuous-time Markov chain for tracking lineages
backward in the time is also present in other works. For example, Wang and Hey
(2010) used a Markov process to compute the coalescence time of two genes under
the isolation-with-migration model (Nielsen and Wakeley, 2001). In this work a
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three state continuous-time Markov chain was used to trace back two lineages until
the MRCA (i.e. S11: both lineages are in subpopulation 1, S22: both lineages are in
subpopulation 2 and S12: there is one lineage in subpopulation 1 and one in subpop-
ulation 2). Even though the authors did not provide analytical expressions for the
distribution of the coalescence time, they gave a formula that can be approximated
by using numerical integration methods. One year latter, Hobolth et al. (2011)
proposed the idea of taking advantage of the continuous-time Markov chain repre-
sentation to compute the distribution of coalescence times by mean of the matrix
exponential, which led to very simple ways to write the expressions, that can be
approximated numerically. Moreover, the authors noted that the matrix exponen-
tial framework can be extended to more than two populations and more than two
genes. In the following we construct the N-Island Markov Chain (NIMC), a model
allowing to detect past demographic events (changes in migration rate and change
in population size) in a population evolving under the n-island model.

4.1.1 The N-Island Markov Chain: a continuous-time Markov
process for the n-islands model

In the following paragraphs we present the N-Island Markov Chain (NIMC), a
simplified version of the structured coalescent Herbots (1994) for the case of an
n-island model. Just like the structured coalescent, the NIMC is a model for
reconstructing the genealogy of genes back in time, from the present to the MRCA.
Here, it is discussed a very simple case: we trace back just two lineages coming from
two haploid individuals sampled in a population evolving under the n-island model.
We will see that (given that we are considering a symmetrical gene flow between
subpopulations), it is easy to include past demographic events into the model,
specifically changes in the migration rates and the size of the total population.

We start by considering the classical n-island model of Wright (Wright, 1931).
In this model, we have n islands (or demes) of constant size, connected by gene
flow (figure 4.1.1 a.). The size of one island is considered equal to N haploid
individuals. Given that all demes have the same size, the whole metapopulation
size is nN haploid individuals. Islands are interconnected by the same amount of
gene flow. Using the same notation as in subsection 1.3.2, backward migrations
from deme i to deme j arrive at rateMij/2. This means that, going back in time, a
lineage can migrate from deme i to deme j with rate Mij/2. In the n-island model
migration is symmetrical. So, backward migrations from any deme i to any other
deme j arrive at the same rate. Let’s define M such that, for any pair of demes
(i, j), the rate of backward migrations from i to j is equal to M

2(n−1) . Consequently,
if a lineage is in deme i, it migrates out of deme i at rate M

2 .
Now, suppose that we take a sample of two haploid individuals (or two genes)
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from the population and we trace back their lineages until they coalesce. Three
different configurations (or states) are possible for the two lineages, when going
from the present to the moment when they reach their common ancestor:

1. lineages are in the same subpopulation (state s or 1)

2. lineages are in different subpopulations (state d or 2)

3. lineages have coalesced (state c or 3).

Figure 4.1: (a) n-island model for n = 5 islands. Each circle represents a deme
of size N . All demes are connected to each other by symmetrical gene flow, rep-
resented by the edges. In this example the total number of haploid individuals is
5N . (b) States of the continuous-time Markov process obtained when the lineages
of two genes are traced back in time. Note that state c is an absorbing state.

In a similar way as in the structured coalescent (Herbots, 1994), we have a continuous-
time Markov chain when tracing back lineages from the present until the MRCA.
In this case, the process is simpler than that described by Herbots (1994) because,
in the n-island model, migration rates are equal in all directions. Moreover, given
that we are interested just in the coalescence of two haploid individuals, the pro-
cess will stop when the two lineages coalesce. In other words, we can consider
state c as an absorbing state. Let us now find the rates at which the process
jumps from one state to another.

When lineages are in the same subpopulation (state s) a coalescence event may
occur. Given that population size is constant, coalescence events inside the same
subpopulation arise at rate one. Moreover, if the process is in state s, one of both
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lineages may migrate to a different deme (note that this is a backward migration
which occurs when the ancestor of one individual is in a different island). This
occurs with rate 2 × M

2 = M . On the other hand, when lineages are in different
demes (state d), a coalescence event is not possible (lineages must be in the same
subpopulation in order to coalesce). However lineages may migrate. Note that not
all migrations make the process to jump from state d to state s. Assuming that one
lineage is in subpopulation i and the other one is in subpopulation j (with i 6= j),
a backward migration from deme i to deme j arises at rate M

2(n−1) so as a backward
migration from deme j to deme i. Thus, a migration event that implies a change
from state d to state s arises at rate 2 × M

2(n−1) = M
n−1 . Hence, the instantaneous

rate matrix Q (the infinitesimal generator of the Markov process) is given by:

Q =

−(M + 1) M 1
M
n−1 − M

n−1 0
0 0 0

 (4.1)

The values on the diagonal in the matrix Q are such that rows sum to zero.
Once the infinitesimal generator is known, the transition semigroup of the Markov
process can be computed by the matrix exponential:

Pt = etQ. (4.2)

The cell (i, j) of the matrix Pt indicates the probability that the process is in
state j at time t given that it was in state i at time zero. Thus, the probability
that two genes sampled in the same subpopulation have reached their MRCA at
time t can found in Pt(1, 3) (first row, third column of matrix). In the same way,
the probability that two genes sampled in different subpopulations have reached
the MRCA at time t is equal to Pt(2, 3). As in chapter 3, the coalescence time
of two genes sampled in the same subpopulation will be denoted T s2 , while that
of two genes sampled in different populations will be called T d2 . The cumulative
distribution function (cdf ) of these random variables can then be computed from
the transition semigroup:

FT s2 (t) = P(T s2 ≤ t) = Pt(1, 3)
FT d2 (t) = P(T d2 ≤ t) = Pt(2, 3).

(4.3)

Let S0 and D0 be the events considering that genes were sampled in the same
subpopulation and different subpopulations respectively. Conditioning on S0 and
D0, it is possible to write the distribution function of the time to reach the MRCA
of two genes (T2) by the formula of total probabilities:
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FT2(t) = P(T2 ≤ t) = P(T s2 ≤ t)P(S0) + P(T d2 ≤ t)P(D0)
= Pt(1, 3)P(S0) + Pt(2, 3)P(D0).

(4.4)

Under the assumption that the sampling is done uniformly over the n islands, the
distribution function becomes:

FT2(t) = 1
n
Pt(1, 3) + n− 1

n
Pt(2, 3). (4.5)

The density of T2 for these three cases can also be computed from the matrix
Pt. This is done by using a classical property of the transition semigroup of a
Markov process (Lemma 4.1.1), along with the particular form of the matrix Q.

Lemma 4.1.1. Let Pt be the transition semigroup of a continuous-time Markov
process with infinitesimal generator Q. Then:

P ′t = PtQ. (4.6)

Proof. The transition semigroup can be computed from the infinitesimal generator
by doing the matrix exponential:

Pt = etQ =
∞∑
k=0

(tQ)k
k! .

Taking the derivative, we obtain:
( ∞∑
k=0

(tQ)k
k!

)′
=
∞∑
k=1

k(tQ)k−1Q

k! =
( ∞∑
k=0

(tQ)k
k!

)
Q = PtQ.

By looking at the product of matrices PtQ (and given that the third column of
Q is the vector (1, 0, 0)) it can be noted that the third column of P ′t is equal to
the first column of Pt. This implies that the probability density function (pdf ) of
the coalescence times of two genes can be directly recovered from the transition
semigroup:

fT s2 (t) = F ′T s2 (t) = Pt(1, 1)
fT d2 (t) = F ′T d2

(t) = Pt(2, 1).
(4.7)

By equation 4.5, the density of T2 for an n-island model can be written as:

fT2(t) = F ′T2(t) = 1
n
Pt(1, 1) + n− 1

n
Pt(2, 1). (4.8)
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4.1.2 An explicit expression for the transition semigroup
As sown above, evaluating the transition semigroup at time t only involves com-
puting the matrix exponential. For relative small matrices, there is a variety of
numerical methods available (Moler and Loan, 2003). In the very simple case
considered here (i.e. a sample size of two from an n-island model), it is possible
to obtain an analytical expression for the entries of the matrix Pt. In order to
compute the matrix exponential given in equation 4.2 we should diagonalise the
matrix Q. After some computations, it is possible to find that the eigenvalues of
Q are:

λ1 =− 1
2
(
γ +M + 1 +

√
∆
)
,

λ2 =− 1
2
(
γ +M + 1−

√
∆
)
,

λ3 =0,

(4.9)

with γ = M
n−1 and ∆ = (γ +M + 1)2 − 4γ.

The corresponding eigenvectors are:

v1 =

 1
λ1+M+1

M

0

 ; v2 =

 1
λ2+M+1

M

0

 ; v3 =

 1
1
1

 . (4.10)

By denoting α = −λ1 and β = −λ2 and inverting the matrix of the eigenvectors,
it is possible to write the matrix Q as:

Q = ADA−1, (4.11)
where

A =

 1 1 1
M+1−α

M
M+1−β

M
1

0 0 1

 ; D =

 −α 0 0
0 −β 0
0 0 0

 ;

A−1 =


β−M−1
β−α

M
β−α

1−β
β−α

M+1−α
β−α − M

β−α
α−1
β−α

0 0 1

 .
Finally, observing that αβ = γ and α + β = γ +M + 1, and defining:

c = γ
β−α ; a = γ−α

β−α ,

the transition semigroup can be computed explicitly:
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Pt =



ae−αt + (1− a)e−βt M
β−α(e−αt − e−βt) 1− a

α
e−αt − 1−a

β
e−βt

ce−αt − ce−βt β−γ
β−αe

−αt − α−γ
β−αe

−βt 1− c
α
e−αt + c

β
e−βt

0 0 1


(4.12)

Note that explicit expressions for fT s2 and fT d2 that can be found in Pt(1, 1) and
Pt(2, 1) are in perfect agreement with previous theoretical works (Herbots, 1994;
Mazet et al., 2015b,a). A general explanation for this fact will be given in below.

4.1.3 Incorporating past demographic events to the n-island
model

The principal advantage of the NIMC framework is that we can use the semigroup
property in a convenient way, in order to "restart" the process at any time. The
semigroup property states that:

Pt+u = PtPu, ∀t, u > 0. (4.13)
From the perspective of the NIMC, this means that the probability of going from
one state to another in time t + u can be calculated by multiplying the infinites-
imal generator evaluated at t (Pt) by the infinitesimal generator evaluated at u
(Pu), and looking at the corresponding entry of the resulting matrix. Besides, the
distribution function of T s2 can be written by using the law of total probabilities:
if St indicates that the system is in state s at time t, Dt that the system is in state
d at time t and Ct that the system is in state c at time t, we have:

P(T s2 ≤ t+ u) = P(St)P(T s2 ≤ u) + P(Dt)P(T d2 ≤ u) + P(Ct).
Replacing by the corresponding entries of the matrix Pt this can be written as:

Pt+u(1, 3) =P(T s2 ≤ t+ u)
=Pt(1, 1)Pu(1, 3) + Pt(1, 2)Pu(2, 3) + Pt(1, 3)Pu(3, 3)

=
(
PtPu

)
(1, 3).

(4.14)

If the matrixQ remains constant over the time, the process is a time-homogeneous
Markov process. When we use two different matrices (say Q0 in [0, T [ and Q1 in
[T,+∞[), the process becomes time-dependent. However, equation 4.14 suggests
that we could "restart" the process after a change in the Q-matrix, conditioning
on where the lineages were in the instant of the change (i.e. at time T ).
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Changing migration rates Consider a population that evolves under an n-
island model with a change in gene flow at some point in the past (let’s say at
t = T ). This means that gene flow is equal to M0 between the present and time
t = T (going from the present to the past) and it is equal to M1 from time T to
+∞. Consequently, there will be two different Q matrices with the corresponding
transition semigroups. Let P 0

t be the transition semigroup corresponding to M0
and P 1

t that corresponding to M1. Using the same reasoning as in equation 4.14,
the cdf of the coalescence time of two genes sampled in the same island, under
this new model can be computed as:

FT s2 (t) =

P 0
t (1, 3), if t ≤ T

P 0
T (1, 1)P 1

t−T (1, 3) + P 0
T (1, 2)P 1

t−T (2, 3) + P 0
T (1, 3) otherwise.

(4.15)

In the same way, the distribution of coalescence times when genes are sampled in
different islands is given by:

FT d2 (t) =

P 0
t (2, 3), if t ≤ T

P 0
T (2, 1)P 1

t−T (1, 3) + P 0
T (2, 2)P 1

t−T (2, 3) + P 0
T (2, 3) otherwise.

(4.16)

More generally, if P̃t is the corresponding transition semigroup of the model
described above, then:

P̃t =

Pt, if t ≤ T

P 0
TP

1
t−T otherwise.

(4.17)

The model can be extended in order to consider different values of gene flow
at different times. Let

0 = t0 < t1 < ... < tn < tn+1 = +∞.

Assume for each interval [ti, ti+1) the gene flow is constant and equal to Mi. For
each interval we have the corresponding infinitesimal generator (Qi) and the tran-
sition semigroup (P i

t ). If P̃t is the infinitesimal generator of an n-island model with
changes in the migration rate as described here, then we have:

P̃t =
 k−1∏

i=0
P i
ti+1−ti

P k
t−tk , (k = max{i|ti < t}). (4.18)

The cdf of T s2 and T d2 under an n-island model with changes in gene flow can
then be computed from P̃t in the same way as in equation 4.3. Regarding the
probability density function (pdf ) of T s2 and T d2 it can be noted that:
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P̃t
′ = P̃tQk (k = max{i|ti < t}). (4.19)

This and the fact that for any k the third column of Qk is the vector (1, 0, 0) allow
to recover the pdf of T s2 and T d2 from P̃t in the same manner as in equation 4.7.

Changing population size Let’s now consider that at each time ti defined
above, the size of the entire population changes by a factor of λi and remains
constant inside [ti, ti+1). Consequently, the size of each island will be multiplied
by the same factor λi. In this new scenario, withMi and λi being the gene flow and
population size change function on interval [ti, ti+1) respectively, the infinitesimal
generator for each interval is:

Qi =

−(Mi + λi) Mi λi
Mi

n−1 − Mi

n−1 0
0 0 0

 (4.20)

and the corresponding transition semigroup can be computed as usual:

P i
t = etQi . (4.21)

For the matrix Qi, we can have analogous results as in equations 4.9-4.11. The
eigenvalues of the matrix Qi are:

xi1 =− 1
2
(
γi +Mi + λi +

√
∆
)

xi2 =− 1
2
(
γi +Mi + λi −

√
∆
)

xi3 =0,

(4.22)

with γi = Mi

n−1 and ∆ = (γi +Mi + λi)2 − 4λiγi.
The corresponding eigenvectors are:

vi1 =


1

xi1+Mi+λi
Mi

0

 ; vi2 =


1

xi2+Mi+λi
Mi

0

 ; vi3 =

 1
1
1

 . (4.23)

Denoting αi = −xi1 and βi = −xi2 and inverting the matrix of the eigenvectors, it
is possible to write the matrix Qi as:

Qi = AiDiA
−1
i , (4.24)

where
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Ai =


1 1 1

Mi+λi−αi
Mi

Mi+λi−βi
Mi

1

0 0 1

 ; Di =


−αi 0 0

0 −βi 0

0 0 0

 ;

A−1
i =


βi−Mi−λi
βi−αi

Mi

βi−αi
λi−βi
βi−αi

Mi+λi−αi
βi−αi − Mi

βi−αi
αi−λi
βi−αi

0 0 1

 .
Observing that αiβi = λiγi and αi + βi = γi +Mi + λi, and defining:

ai = γi−αi
βi−αi ; ci = αiβi

βi−αi ,

the transition semigroup can be computed explicitly:

P i
t = Aie

DiA−1
i =

aie
−αit + (1− ai)e−βit Mi

βi−αi (e
−αit − e−βit) 1− λi( aiαi e

−αit + 1−ai
βi
e−βit)

ci
λi

(e−αit − e−βit) βi−γi
βi−αi e

−αit − αi−γi
βi−αi e

−βit 1− ci
αi
e−αit + ci

βi
e−βit

0 0 1


.

(4.25)
As in equation 4.3, the cdf of T s2 and T s2 can be computed from P i

t . Besides, by
lemma 4.1.1 we have (P i

t )′ = P i
tQi. Looking at the form of Qi, it is easy to see

that:

P i
t (1, 3)′ = λiP

i
t (1, 1)

P i
t (1, 2)′ = λiP

i
t (1, 2),

(4.26)

which implies that the pdf of T s2 and T d2 can be computed as well from P i
t .

The transition semigroup (called P̃t) associated to an n-island model with
changes in gene flows and population sizes as described above, can be computed
as in equation 4.18. Also, equation 4.19 allows to evaluate its derivative at t. If
we consider now T s2 (T d2 ), the coalescence times of two genes sampled in the same
island (different islands) under an n-island model with these modifications, then:

FT s2 (t) = P̃t(1, 3)
FT d2 (t) = P̃t(2, 3)

(4.27)
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and

fT s2 (t) = F ′T s2 (t) = λkP̃t(1, 1)
fT d2 (t) = F ′

T d2
(t) = λkP̃t(2, 1) (k = max{i|ti < t}). (4.28)

In summary, the N-Island Markov Chain allows to compute the cdf and the
pdf of the coalescence time of two genes sampled in a population evolving under
an n-island model with changes in the gene flow and the metapopulation size
over the time. The NIMC model is based on the transition semigroup of the
Markov process that describes the history of two lineages back to the MRCA. The
cdf and the pdf can be evaluated precisely by using explicit expressions, and in
a very efficient way given that computations involve only the product of 3 × 3
matrices. Moreover, given that we have an exact expression for the cdf as well
as the pdf of T s2 and T d2 , it is possible to compute the IICR by the formulas
given below. This could be useful in order to predict the demographic history
that will be reconstructed by methods like PSMC (Li and Durbin, 2011) when
they are applied to structured populations. In practice, the main interest of the
framework presented here is that it makes possible to detect past demographic
events on structured populations, which is beyond the scope of actual methods.
To our knowledge, most of the methods proposed for reconstructing population
size changes through time are based on the panmictic hypothesis and therefore
are sensible to gene flow and structure, which lead them to detect fake signals
of bottleneck or expansions (Chikhi et al., 2010; Heller et al., 2013; Mazet et al.,
2015a). The framework proposed here is able to overcome these limitations. In the
following we expose how to use this framework to infer past demographic events
from real data beyond the confounding effects of structure.

4.2 Applications of the NIMC framework
In order to have numerical values of the cdf and the pdf of T2 for the scenar-
ios under study, we have developed an implementation of the N-Island Markov
Chain, using the python programming language. We carried out a validation of
this implementation by comparing the values the pdf of T2 with empirical distri-
butions obtained from simulations using the software ms (Hudson, 2002). Details
concerning these validations can be found in Annexes. The software is available
at https://github.com/willyrv/nimc. In the following, we discuss some possible
applications of the NIMC framework.

109



4.2.1 Detecting a bottleneck beyond the confounding ef-
fects of population structure

Perhaps the main advantage of the NIMC framework is that it gives a way to dis-
entangle the effects of population structure when reconstructing the demographic
history. It is well known that methods based on the assumption that the population
is panmictic, are likely to find past population size changes when the population is
structured, even if the population size has remained constant (Heller et al., 2013;
Chikhi et al., 2010). In chapter 3 we gave the precise demographic history that
methods assuming panmixia will reconstruct when applied to a population evolv-
ing under an n-island model, based on the distribution of the coalescence time of
two genes. We also show that this demographic history depends on whether the
two genes were sampled from the same island or from different islands. In the fol-
lowing, we will focus on the case where the two genes were sampled from the same
island, because it is the one that corresponds to sampling one diploid individual
from the population.

To illustrate how it is possible to avoid the confounding effects of the structure
using the NIMC framework, we compared the results of parameter estimation
under two structured scenarios involving population structure (Figure 4.2). The
first scenario was an n-island model with constant size, ten islands and a migration
rate of one (n = 10 andM = 1, Figure 4.2 left). The second was the same n-island
model with n = 10 and M = 1 but having a recent increase in the population size
by a factor of 10 at time T = 0.5. Using the ms software (Hudson, 2002), we
simulated a set of 10000 independent values of T s2 (the coalescence time of two
genes, sampled in the same island), under these two scenarios. Then, we applied a
maximum likelihood estimation based on two different models. The first model was
the one used in chapter 2 for finding maximum likelihood estimates of the time
(T ) when bottleneck occurred and the ratio (α) of the bottleneck. This model
assumes that population is panmictic. The second model also uses maximum
likelihood estimation strategy, but assuming that population is structured. In this
case we used the density given by the NIMC framework. More precisely, we used
the density of T s2 that corresponds to the NIMC model with constant migration
rate and one single population size change. The number of island and the migration
rate were fixed so that n = 10 and M = 1.

We can see from Figure 4.3 (left panel) that the method assuming panmixia
(the first model described in the above paragraph) finds a strong bottleneck which
agrees with Chikhi et al. (2010) and Heller et al. (2013). This is not surprising
because, as it was explained in chapter 3, the demographic history reconstructed
by methods based on this hypothesis follows the corresponding IICR, which is
not always correlated with real population size changes. However, the method
based on the NIMC framework (the second model described in the above para-
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Figure 4.2: Two scenarios involving population structure and the corresponding
IICR based on T s2 (the coalescence time of two genes sampled in the same island).
Left panel: an n-island model with n = 10 islands and migration rate M = 1.
The population size and the migration rate are constant. The corresponding ms-
command used for simulating the T s2 values was: ms 2 10000 -T -L -I 10 2 0 0 0
0 0 0 0 0 0 1. Right panel: the same n-island model with n = 10 and M = 1 with
an increase in population size of a factor 10 at time T = 0.5. The migration rate
is constant. The corresponding ms-command used for simulating the T s2 values
was: ms 2 10000 -T -L -I 10 2 0 0 0 0 0 0 0 0 0 1 -eN 0.25 0.1. Note that, in the
right panel, the population size as well as the IICR have been scaled with respect
to the size of one island.

graph) finds that the ratio of the bottleneck is almost one (Figure 4.3, right panel),
which corresponds better to the real population history in terms of population size
changes.

As it has been described in chapter 3, the effects of structure in methods assum-
ing a panmictic population can be so strong that a recent increase in population
size may be unnoticed. Going back in time, we can see from Figure 4.2 (right
panel) that the magnitude of the decrease in the IICR, caused by a recent increase
by a factor of 10 in the population size, is small compared to the increase caused
by the population structure. By consequence, when we try to fit a bottleneck to
the data, based on a model assuming panmixia, we find a population size change
in the opposite direction, that is, a decrease when actually the population has in-
creased in size by a factor of 10 (Figure 4.4 left panel). Conversely, using a model
based on the NIMC framework makes it possible to fit the bottleneck in the correct
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Figure 4.3: Spurious signals of population size changes found by methods assuming
panmixia (left panel) disappear when inference is done under the NIMC framework
(right panel).

direction, which corresponds with the real population size change (Figure 4.4 right
panel). Applying a model assuming panmixia to a population which is structured,
leads to find a decrease in population size by a factor close to 10, when actually,
the population size has increased in size by a factor of 10. By contrast, when we
analyse the same population using the NIMC framework, the inferred population
size change is in agreement with the real demographic history.

Inferring the demographic history under the assumption of panmixia may lead
to results that are strikingly different from those when structure is incorporated
to the model. In many real scenarios, it is not very realistic to assume that
population is panmictic. As a consequence, the demographic history reconstructed
by a method based on this assumption, may not correctly reflect the changes in the
population size. This confounding effect of population structure can be removed
by using models that intrinsically incorporate structure to describe the evolution of
populations. In this direction, the NIMC framework offers a very simple solution
that can be incorporated to many inference methods in a relative simple way.

4.2.2 Using the transition semigroup for computing the
instantaneous coalescence rate

Another interesting application of the NIMC framework is the possibility of trac-
ing the IICR in a precise way. This implies that we will be able to predict the
demographic history that any method based on the assumption that population
is panmictic will find, when it is applied to a population evolving under any of
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Figure 4.4: The problem of having bottleneck signals in the opposite direction of
real bottlenecks when the population is structured, can be solved by incorporating
population structure to the model.

the scenarios considered in the NIMC framework. Moreover, it is very efficient to
compute IICR given that the evaluation of the pdf only involves the product of
3× 3 matrices.

The relation between the distribution of coalescence times and the changes in
population size through time is well known (see Tavaré (2004) for a detailed re-
view) and many population genetic studies describe how it can be used to infer
the demographic history (Mazet et al., 2015b; Pybus et al., 2000; Strimmer and
Pybus, 2001). In order to detect past changes in population size, it is common
to look for patterns in present days data that are somehow in relation with co-
alescence times. These patterns can be either differences between independent
sequences of DNA (Drummond et al., 2005; Mazet et al., 2015b), microsatellites
(Beaumont, 1999; Nikolic and Chevalet, 2014), allele frequency spectrum (Liu and
Fu, 2015) or, more recently, full DNA sequences (Li and Durbin, 2011; Sheehan
et al., 2013; Schiffels and Durbin, 2014; MacLeod et al., 2013). However, almost
all the studies trying to estimate population size variations over the time consider
an isolated panmictic population and neglect any kind of structure and gene flow.
This may be a very limiting simplification when applying the model to real data,
given that populations are structured to some extent in nature. Moreover, differ-
ent models considering demographic changes and geographical structure can be
explained equally well by the same class of genealogies (Nielsen and Beaumont,
2009). Besides, it has been shown that neglecting structure and gene flow may
lead to detect fake bottleneck or expansion signals (Chikhi et al., 2010; Heller
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et al., 2013) or even a bottleneck when the population size has in reality increased
(Mazet et al., 2015a). In this sense, Mazet et al. (2015a) pointed out that the
function of population size change inferred by most of the methods reconstructing
past demography (denoted λ) is rather the inverse of the coalescence rate function
that changes through time depending on the parameters of the assumed model. In
Mazet et al. (2015a) authors noted that this λ function corresponds perfectly to
population size changes in a panmictic population but in the general case, it is a
coalescence rate function (called IICR or Inverse Instantaneous Coalescence Rate).
Confounding the IICR with a population size change function inferred from data
coming from a structured population may lead to detect spurious population size
changes. Furthermore, by using the relation between the coalescence rate function
and the distribution of the coalescence times of two genes under an n-island model,
Mazet et al. (2015a) obtained the "fake demographic history" that should be re-
constructed by methods like the PSMC (Li and Durbin, 2011), showing that this
history is strongly dependent on the sampling strategy. The inverse coalescence
rate function is time-dependent and (assuming that cdf and pdf of T2 are known)
can be computed as:

λ(t) = 1− FT2(t)
fT2(t) . (4.29)

By using the NIMC framework, we can compute the λ function (or IICR) for a
wide variety of scenarios, which allows to predict the "demographic changes" that
most methods will find when they are applied to a population which is structured.
For example, in a classical n-island model, the IICR that corresponds to two genes
sampled inside the same subpopulation (λs), as well as in different populations
(λd), can be obtained from the transition semigroup of the NIMC as follows:

λs(t) = 1− Pt(1, 3)
Pt(1, 1) and λd(t) = 1− Pt(2, 3)

Pt(2, 1) . (4.30)

A more theoretical case is when we assume that the sampling is done uniformly
over the n islands. We have then:

λ(t) =
1−

(
1
n
Pt(1, 3) + n−1

n
Pt(2, 3)

)
1
n
Pt(1, 1) + n−1

n
Pt(2, 1) . (4.31)

The IICR of an isolation with migration model The plots of λs presented
in chapter 3 (Figure 3.1) suggest that when migration rate is high, populations
should behave like panmictic populations, as it is intuitively expected. Previous
works have considered structured models with high rate of migration, also known
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as the strong-migration limit (Nordborg, 2001; Notohara, 1993; Nagylaki, 1980).
In these works, it has been proved that coalescence trees in structured scenarios
with high migration are equivalent to standard coalescence trees, after a change in
the time scale. Consequently, the larger the migration rate, the closer the cdf of
T s2 in a structured model to the corresponding cdf of T2 in a panmictic model. As
expected, this also holds for the NIMC (Figure 4.5). For example, we simulated a
sample of 3× 106 independent values of T2 under a model considering a constant-
size population. This sample was compared with the corresponding theoretical
distribution of T s2 given by the NIMC framework with M = 10000 and constant
population size. We did a Kolmogorov-Smirnov test and the obtained p-value was
0.7491. This means that three millions of markers are not enough to distinguish a
panmictic model from an n-island model with M = 10000.

Figure 4.5: Comparisons between the empirical distribution of simulated values
of T2 under a panmictic model with constant population size, and the theoretical
distribution of T s2 of an n-island model with constant population size, for different
values of the migration rate M . The size of the panmictic population is assumed
to be equal to 10×N , while the population evolving under the n-island model is
composed by 10 subpopulations of size N . The values of the migration rate M
are 1, 5, 10, 50, 100, 500 and 1000. The left panel (a) and the right panel show the
same data, with just a change in the time axis t.

It is possible to take advantage of this convergence to the standard coalescent,
in order to have an approximation of the cdf and the pdf of T s2 in models like
the isolation with migration (Nielsen and Wakeley, 2001). This may be useful in
order to compute the likelihood of parameters in these kind of models based on
the observed data (for example, the time when population diverged, and the rate
of migration after divergence), based on statistics depending on the distribution
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of T s2 like, for example, the number of pairwise differences. Moreover, having
an expression for the cdf and the pdf allows to trace in a precise way the IICR
that corresponds to a given model of population differentiation. As discussed
in chapter 3, the IICR corresponds to the demographic history reconstructed by
methods assuming that the population is panmictic. Consider that the population
at time zero (the present) is subdivided into two subpopulations, connected with
the same amount of gene flow, being M = 1. Going back in time, we can trace
the IICR (i.e. λs) that corresponds to this scenario using the formula 4.30 (Figure
4.6 left). Note that, as t increases, the IICR approaches asymptotically to the line
y = 1/β, where β is the value that was introduced in chapter 2 subsection 2.7.1
when doing the derivations for the density of T2 under the n-island model. In
correspondence with chapter 3 equation 3.17, we see that when t goes to infinity,
the IICR tends to 1/β. This limit value depends on the parameters of the model,
in this case n = 2 and M = 1, and could be interpreted as the structured ancestral
effective size (saeffs), going back in time, given that the IICR stabilises at this
value when we go far enough in the past. Moreover, we have the following first
order approximation:
Lemma 4.2.1. Let n and M be the number of islands and the migration rate of
an n-island model. Consider β as introduced in chapter 2, subsection 2.7.1. Then:

1
β

= n+ 1
M

(n− 1)2

n
+ o

( 1
M

)
, (4.32)

where limM→∞Mo
(

1
M

)
= 0.

Proof. We recall that:

γ = M

n− 1 and ∆ = (1 + γ)2 − 4γ.

Following the definitions in subsection 2.7.1 we have:

1
β

= 2
1 + nγ −

√
∆

= 2(1 + nγ +
√

∆)
(1 + nγ)2 −∆ = 1 + nγ +

√
∆

2γ

=n− 1
2M + n

2 + 1
2

√
∆
γ2 .

Replacing γ and taking n out of the square root, we get:

1
2

√
∆
γ2 =n2

(
1 + n− 1

M
( 2
n
− 4
n2 ) + (n− 1)2

M2n2

)1/2

=n2 + n− 1
2M − n− 1

nM
+ o

( 1
M

)
,
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and finally

1
β

= n+ 1
M

(n− 1)2

n
+ o

( 1
M

)
.

Note that the saeffs is inversely proportional to the migration rate M . In
other words, a low migration rate makes the ancestral population size look larger
and a high value of M makes the ancestral population size look lower, from the
perspective of the IICR. Consequently, methods assuming panmixia will detect a
higher population size change when the migration rate is low. On the other hand,
increasing the value of M not only decreases the saeffs but also makes the IICR
converge quickly (see chapter 3 Figure 3.1). Moreover, for any value of M , the
saeffs will always be higher than the number of islands n (this can be observed
from the equations in Theorem 4.2.1) and it approaches asymptotically to n when
M increases.

Using the NIMC framework, it is possible to approximate a model like the one
proposed in Nielsen and Wakeley (2001) (with the difference that here the gene
flow is symmetrical). In this model, the authors consider two populations which
are descendent from a panmictic ancestral population. A model like the one in
Nielsen and Wakeley (2001), can be approximated by an n-island model with two
islands and one change in the migration rate M at some time T in the past. To
that end, we consider a population which is subdivided into two colonies at the
present, with migration rate M = 1. Going back in time, at time T , the migration
rate changes from M = 1 to M = 10000. In Figure 4.6 we show some plots of the
IICRs corresponding to the described scenario, for different values of T (the time
when populations diverged). The considered values for the time when populations
diverged were T = 5, T = 2 (left panel) and T = 1, T = 0.5, T = 0.1 (right panel).
Note that, for a classical n-island model with n = 2 and M = 1, the IICR is
almost constant and equal to the saeffs for t > 3 (Figure 4.6 a). Starting from the
present (t = 0), the IICR increases from 1 to some value (that we have called the
saeffs). Once the IICR stabilises close to this value, increasing the migration rate
M makes the IICR decrease to a different saeffs which depends on the parameter
n and the new value of M . Going back in time, the IICR remains almost constant
and equal to this new saeffs after the increase of the value of M . As expected,
the saeffs corresponding to high values of M in this scenario is close to 2. For
low values of M , the IICR starts from one and increases until some saeffs which is
higher than 2. If the change fromM0 toM1 (withM0 < M1) arrives after the IICR
exceeds the saeffs corresponding to M0, we will observe a reduction of the IICR,
going back in time (Figure 4.6 a). Consequently, if we interpret the demographic
history reconstructed by a method assuming a panmictic population (now going
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forward in time), we will detect a sudden increase in the population size at the
time when the splitting occurred, followed by a period (long or short, depending
on when the split occurred) when population was constant and then a decrease
in a recent past. Thus, if the split is more ancient than the time when the IICR
reaches the saeffs, we will observe a bump. On the other hand (Figure 4.6 b), if
the split is more recent than the time when the IICR reaches the saeffs, we will
observe a sudden bottleneck signal (going forward in time).

Figure 4.6: The IICR for an isolation-with-migration model for distinct values of
T , the time when populations diverge. Panel (a): classical n-island model (or a
model having an split older than T = 10), split at T = 5 and split at T = 2. Panel
(b): the split occurs at T = 1, T = 0.5 and T = 0.1.

Signals of population size changes explained by an n-island model with
changes in gene flow The above discussion gives some intuitive ideas on how
changes in gene flow in an n-island model produces "fake" signals of population
size changes. Going back in time, provided that the IICR has stabilised around
the saeffs, an increase of gene flow will cause a decrease in the IICR. Conversely,
if we reduce gene flow, the IICR is expected to increase, leading to an increase in
the estimated population size, when we use a method assuming panmixia. This
suggests that past population size changes found in many studies carried out by
using methods based on panmixia (Li and Durbin, 2011; Prufer et al., 2014; Cahill
et al., 2013; Zhou et al., 2013), could also be explained by scenarios of structured
population with changes in gene flow and with absolutely no change in population
size. To illustrate this, we applied the PSMC method (Li and Durbin, 2011) to
one of the human sequences analysed in Li and Durbin (2011), we removed the
most recent part of the inferred history and scaled it conveniently so the first value

118



(starting from the most recent value) is equal to one. Then, we proposed an n-
island model with constant population size and three changes in migration rates at
three different times, for which the IICR is surprisingly similar to the demographic
history inferred by PSMC (Figure 4.7). This can be interpreted as follows. Con-
sider a scenario of structured population for describing the evolution of the human
species. Assume that humans have evolved under an n-island model with constant
population size and that genetic flow between subpopulations has changed at three
different times in the past. Based on the demographic history inferred by PSMC
(or by any other method assuming panmixia), the described structured scenario
could be indistinguishable from one scenario considering a panmictic population
with changes in population size. We followed the same procedure for the Nean-
derthal genome analysed in Prufer et al. (2014) and we also found an n-island
model with constant size and changes in gene flow, whose corresponding IICR is
very close to the demographic history inferred by PSMC (Figure 4.7). In each case,
the scenario having an IICR close to the inferred demographic history, was found
by tracing the IICR corresponding to different scenarios and comparing them to
the target demographic history. By using the intuition given above (increasing the
migration rate makes the estimated population size to be lower, and decreasing
the migration rate makes it to be higher), it was possible to find scenarios having
an IICR very close to the demographic history inferred by PSMC which is based
on a model assuming panmixia.

It is important to clarify that the objective of the above paragraph is not at
all to propose a new way for interpreting the history of human evolution. We are
convinced that a symmetrical n-island model (even including changes in population
size and migration rate) is still a very simplistic model to describe the evolution of
any species. It is also simplistic to consider that reproduction between individuals
in a population occurs at random. For these reasons, the results obtained with
any model should be interpreted with care, when analysing a real population. In
any case, what is important here is that the NIMC makes available a wide range
of alternative scenarios that worth considering when inferring the demographic
history of populations.

On the other hand, there may be scenarios considering a panmictic population
with changes in population size, for which it is not possible to find any n-island
model with constant size and changes in gene flow, having an IICR close to the
one of the panmictic population. In other words just changes in gene flow are not
enough to interpret any signal of population size change. For example, a strong
signal of bottleneck in the past cannot be explained by an n-island model with
changes in gene flow, if the bottleneck is more ancient than the time when the
IICR of an n-island model "stabilises" close to the saeffs. Beyond this time (going
back in time), the IICR of an n-island model is never under n (the number of

119



Figure 4.7: Searching for structured models having the same IICR that the pro-
posed panmictic models with population size changes. In both cases, we consider
an n-island model with constant population size and three changes in migration
rate at three different times. Left panel: the demographic history reconstructed by
PSMC in Li and Durbin (2011) from the DNA of one individual (labelled CHN.A)
also corresponds to the IICR of an n-island model with 10 islands and constant
population size. The changes in the migration rate are given (backward in time) by
the vectors T = (0, 7, 30, 85) and M = (0.8, 50, 0.8, 1.8). Right panel: the history
inferred by PSMC from a Neanderthal genome in Prufer et al. (2014) is close to
the IICR of an n-island model with five islands (n = 5), constant population size
and changes (back in time) given by T = (0, 2, 14, 90) and M = (1.5, 2, 0.12, 0.15).

islands), no matter how much the migration rate increased. This means that,
beyond this time, a bottleneck making the population size to decrease under the
value of n cannot be explained by an n-island model considering only changes in
the migration rate.

4.3 Perspectives

4.3.1 Inferring parameters based on the IICR obtained
from other methods

In Figure 4.7 we show that it is possible, given a curve representing the population
size changes of a panmictic population, to find an n-island model with changes
in migration rates, whose IICR closely corresponds to the given population size
changes under panmixia. This suggests an indirect way to do inference of model
parameters under the NIMC framework based on the demographic history (which is
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not other than the IICR) inferred by any method assuming panmixia (like PSMC
or MSMC). The inferred demographic history can be used as "target" curve to
be approximated by the IICR of a model described by the NIMC framework.
Changing the parameters of the NIMC model will make the corresponding IICR
change. This can be done in a convenient way, until we get a model whose IICR
is close to the given demographic history.

Figure 4.8: Demographic inference by a curve fitting process using the IICR of the
NIMC.

We developed a python implementation of the described procedure. The soft-
ware is available at https://github.com/MaxHalford/StSICMR-Inference. Basi-
cally the software tries to solve a curve fitting problem by using the IICR corre-
sponding to different NIMC-based models, with different set of parameters (Figure
4.8). The objective is to find an n-island model with changes in gene flow and popu-
lation size, whose corresponding IICR is as close as possible to a given curve (which
is the "target"). The parameters to estimate are: the number of islands (n), the
times when changes in gene flow or population size occur (a vector T ), the values
of migration rate in any time interval (a vector M) and the values of population
size, starting by 1 at the present (a vector α). The target curve can be the one
obtained by a PSMC analysis on real data. The method uses a genetic algorithm
to minimise the distance between the IICR and the "target" curve, evaluated at
some different points. Even if the parameter space is huge, the method manage
to find models whose IICR is close to the "target" demographic history. However,
from our experience, it is possible to get an IICR even closer to the one found
by the minimisation algorithm, simply by visual comparisons using the notions
discussed above. For example, both IICRs in Figure 4.7 where found very quickly
by visual comparisons and intuitively changing the corresponding parameters.
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4.3.2 Links with observable quantities
Having an analytical expression for the density of T2 can be useful in order to esti-
mate model parameters. Based on this density, Maximum Likelihood Estimation
(MLE) strategies can be proposed to find (at least in theory) good estimations
for the time when gene flow changed, as well as for the magnitude of this change.
Likewise, a MLE strategy could be used to reconstruct population size changes
in an n-island model, based on values of T2. However, coalescence times are not
observable quantities and even if some authors have published works allowing to
estimate trees from genomic data (Pybus et al., 2000; Strimmer and Pybus, 2001;
Drummond et al., 2005) it is still very challenging to reconstruct in a precise man-
ner the genealogy based on the data. Other methods based on Hidden Markov
Models and taking into account the recombination (Li and Durbin, 2011; Schiffels
and Durbin, 2014; Sheehan et al., 2013) are shown to accurately infer the coales-
cence times of two locus along the chromosome, provided a previous set of time
windows is defined. If a stepwise approximation to the pdf of T2 is considered, this
inferred values could be interpreted as observations which would make possible to
estimate model parameters by MLE. Even though this idea worth a deep explo-
ration, we prefer to link model parameters and genomic data in a more direct way.
In the following, two approaches will be discussed: one based on the number of
segregating sites of non recombining loci (Watterson, 1975; Mazet et al., 2015b)
and the other based on a Hidden Markov Chain along the chromosomes, in the
same way as Li and Durbin (2011).

Number of segregating sites It is possible to compute, conditional on the
values of T2, the distribution of several measures of molecular polymorphism. For
example, under an infinite site mutation model with mutation rate θ, it is possible
to compute the number of differences between pairs of non recombining sequences
(Nd), as it was proposed in subsection 2.6.1. If we suppose that the coalescence
time of two non recombining DNA sequence is equal to t, the distribution of Nd is
a Poisson distribution with parameter 2θ. The number of difference between pairs
of non recombining sequence can then be computed as:

P(Nd = k|T2 = t) = e−2tθ (2tθ)k
k! . (4.33)

As we know the density of T2, we can take the integral over all possible values of
t:
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P(Nd = k) =
∫ +∞

0
P(Nd = k|T2 = t)fT2(t) dt

= 1
k!

∫ +∞

0
e−2tθ(2tθ)kfT2(t) dt.

(4.34)

This integral can be computed using numerical methods in a relatively efficient
way, given that fT2(t) can be evaluated at any t, using the explicit expression from
the NIMC model or computing the matrix exponential numerically.

Constructing a Hidden Markov Chain over the genome In Li and Durbin
(2011), authors proposed a new method (the PSMC) for estimating the popula-
tion size at different time intervals in the past from a single diploid genome. This
method is based on the Sequentially Markovian Coalescence (McVean and Cardin,
2005b) which is an approximation to the coalescent with recombination (Hudson,
1983). The PSMC uses a Hidden Markov Chain were the observations are given
by a diploid sequence (actually there are only two possible observed states at each
position inside the genome: homozygous or heterozygous). The hidden states are
the coalescence times at each position. When moving along the genome, recombi-
nation events break the chromosomes, making a mosaic of distinct chunks of DNA,
inherited from different ancestors. Consequently, the coalescence time of two genes
at the left of a recombination event is different from the coalescence time at the
right side of the recombination, given that they were not inherited from the same
ancestor. This implies a change from one state to another. The transition prob-
ability between hidden states was explicitly computed by Li and Durbin (2011)
in function of the population size at each time in the past (i.e. λ(t)). Thus, the
PSMC model is able to compute the likelihood of a given demographic history,
with respect to the observed data (the observed data is actually the full genome of
a diploid individual). The method uses the Expectation Maximisation (EM) algo-
rithm to find a demographic history who maximises the likelihood of the observed
genome.

The PSMC method is based on the assumption of panmixia. As discussed in
chapter 3, the demographic history inferred by this kind of methods is what we
defined as IICR. This means that, if we consider an n-island model, instead of a
panmictic population, the transition probabilities described in the PSMC model
depend on the IICR. Moreover, in this chapter we propose a way to evaluate
the IICR over time. Combining these two models, it is possible to compute the
likelihood of the parameters of any model described by the NIMC, based on full
diploid genomes. Then, the EM algorithm, or any other maximum likelihood
strategy, could be used to find the values of the parameter that best explain the
observed data.
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4.3.3 Extending the NIMC to more than two genes
The same reasoning used to derive the transition semigroup of the Markov process,
that arises when two lineages are traced back in time, under an n-island model,
can be extended to three lineages. If we take three genes from the population
and trace back their lineages, until the time of the first coalescent event (that we
denote T3), there are four possible states for the ancestral lineages at any time t
between the present (t = 0) and T3:

1. the three ancestral lineages are in the same deme;

2. exactly two among three remaining lineages are in the same deme;

3. all the three lineages are in different demes;

4. two of the three lineages have coalesced.

Given that we are interested in tracing the lineages on-ly until the time when
the first coalescent event occurs, we consider that state 4 is absorbing. Assuming
that the number of subpopulations is equal to n and that the rate at which one
lineage migrates is equal to M/2, we proceed as in subsection 4.1.1 and get that
the corresponding Q-matrix in this case is:

Q =


−3M

2 − 3 3M
2 0 3

M
2(n−1) −M(2n−3)

2(n−1) − 1 M(n−2)
n−1 1

0 3M
n−1 − 3M

n−1 0
0 0 0 0

 . (4.35)

Once the Q-matrix is known, we have, for example, the cdf of the time when
the first coalescent event occurs, conditioned by sampling the three genes from the
same deme. Denoting S, the event indicating that the three genes were sampled
from the same deme and T s3 , the time of the first coalescence event, we have:

P(T s3 ≤ t) = P(T3 ≤ t|S) = Pt(1, 4) = etQ(1, 4).

It is also possible to trace back three lineages until the MRCA. In this case we
have 6 possible states for the Markov process:

1. the three ancestral lineages are in the same deme;

2. two lineages are in the same deme and one in a different deme;

3. all the three lineages are in different demes;
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4. only two lineages have coalesced (which means that there are only two ances-
tral lineages left), and the two remaining ancestral lineages are in the same
deme;

5. only two lineages have coalesced (which means that there are only two ances-
tral lineages left), and the two remaining ancestral lineages are in different
demes;

6. the three lineages have coalesced.

The corresponding Q-matrix is given by:

Q3 =



−3(M2 + 1) 3M
2 0 3 0 0

M
2(n−1) −M(2n−3)

2(n−1) − 1 M(n−2)
n−1 0 1 0

0 3M
n−1 − 3M

n−1 0 0 0
0 0 0 −(M + 1) M 1
0 0 0 M

n−1 − M
n−1 0

0 0 0 0 0 0


. (4.36)

Remark: In the bottom right-hand corner of the matrix Q3 we recognise the rate
matrix Q, which describes the genealogical process for two lineages. The sixth
state is an absorbing state and corresponds to the state when the three lineages
found their MRCA.

Once the entries of the Q-matrix are computed, we can compute the transition
semigroup by the matrix exponential. In the general case, analytical expressions for
the transition semigroups can be hard to obtain but we can evaluate it at any value
of t by computing the matrix exponential numerically (Moler and Loan, 2003).
However, in practice it could be hard to compute the transition semigroup of the
Markov process for larger numbers of genes given that, when the number of lineages
increases, the number of states will grow rapidly, making the Q-matrix so big that
computing the matrix exponential will become computationally intractable.

Extending the NIMC framework to samples larger than two, makes it possible
to compute the probability of a given genealogy under an n-island model incor-
porating changes in gene flow and population size. This could be useful when
trying to estimate parameters related to the demographic history. Moreover, the
matrix Q3 given above can be used to compute the joint density of (T3, T2). This
joint distribution under an n-island model could be substantially different from
the same joint distribution under a panmictic model with any function of popula-
tion size changes (λ). If this is the case, then it would be possible to construct a
method for distinguish an n-island model from a general scenario assuming pan-
mictic population with any function of population size changes, using tree haploid
individuals.
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Conclusion

Les travaux présentés dans cette thèse sont le résultat d’un cheminement im-
portant. Mathématicien de formation j’ai commencé à travailler sur les données
génomiques pour la première fois avec Simon Boitard à l’INRA ainsi qu’avec Olivier
Mazet. Le but était de me familiariser avec une méthode qui venait d’être dévelop-
pée, le PSMC (Li and Durbin, 2011) et de l’appliquer à des données de séquençage
de races de mouton. Lorsque l’idée de faire une thèse a commencé à prendre
forme une des idées initiales était de développer une approche similaire mais pour
plusieurs génomes. J’ai donc passé les premiers mois de ma thèse à essayer de
comprendre tous les éléments nécessaires à l’implémentation du PSMC. J’ai aussi
beaucoup travaillé avec Simona Gruséa sur les certains problèmes mathématiques.
Par ailleurs lorsque j’avais commencé à discuter des résultats sur les moutons dans
le cadre de réunions de travail avec O. Mazet, S. Oitard, S. Gruséa et L. Chikhi, ce
dernier a mentionné le problème de la structure des populations. Il notait que que
les races de moutons sont particulièrement structurées et que certains changements
de tailles pourraient n’avoir jamais eu lieu mais correspondre à des changements de
flux géniques. Cette idée qui fut très vite partagée par tous les membres impliqués
dans ce travail a fait son chemin et m’a amené à changer de manière significa-
tive le centre de mon travail. Le fait que les méthodes de DiCal (Sheehan et al.,
2013) et MSMC (Schiffels and Durbin, 2014) aient été publiées ont aussi facilité ce
changement. Nous nous doutions bien entendu que d’autres groupes travaillaient
sur ce problème (l’utilisation de génomes multiples pour reconstruire l’histoire des
populations). Et notre intérêt pour la structure ne faisait que croître.

D’autant plus que la plupart des méthodes d’inférence démographique en géné-
tique des populations sont centrées sur les changements de taille efficace. Ces
changements sont devenus quasiment synonymes d’histoire démographique. comme
nous l’avons dit à de nombreuses reprises, ces méthodes supposent que la popula-
tion (en réalité, l’espèce) est panmictique, en négligeant l’existence d’une structure
qui changerait le modèle de reproduction des individus. Dans cette thèse, nous
nous sommes donc intéressé à des effets de la structure sur les changements de
taille inférés par les méthodes basées sur l’hypothèse de panmixie.

Différents travaux publiés avant même que cette thèse n’ai commencé ont mon-

126



tré que, lorsqu’on analyse une population structurée avec une méthode qui suppose
que la population est panmictique, certains changements inférés ne correspondent
pas à des vrais changements de taille. Donc, une manière de distinguer ces change-
ments de taille des effets de la structure serait de vérifier que la population étudié
est plus proche d’un modèle panmictique que d’un modèle structuré. Nous avons
montré qu’il est possible de distinguer deux modèles très simples dont un consid-
érant une population panmictique avec un changement de taille et l’autre étant le
n-island model. Pour ce faire nous avons proposé un test basé sur des valeurs de
temps de coalescence de deux gènes (T2).

Nous montrons aussi que dans le cas général, les valeurs de T2 ne permettent
pas distinguer un modèle panmictique avec changements de taille non contraints
d’un modèle structuré. La raison est que, pour un modèle structuré quelconque (et
d’ailleurs, pour n’importe quel modèle), il est possible de construire une fonction
λ correspondant à des changement de taille de population sous un modèle panmic-
tique qui fait que la distribution de T2 sous le modèle panmictique est identique
à celle de T2 sous le modèle structuré. Par ailleurs, nous montrons que, lorsqu’on
étudie une population structurée en se basant sur l’hypothèse de panmixie, on peut
trouver des changements de taille complètement décorrélés de vrais changements
de taille de population, pouvant même interpréter des changements de flux de gènes
comme étant des bottlenecks. Cela laisse voir que l’inférence d’évènements démo-
graphiques dans le passé des populations structurées peut s’avérer problématique
si on utilise une méthode basée sur l’hypothèse de panmixie.

Afin d’étudier l’histoire démographique d’une population structurée nous avons
développé un modèle à partir du coalescent structuré. Ce modèle (nommé NIMC
pour N-island Markov Chain) est basée sur un processus de Markov en temps
continu et permet d’incorporer des changements dans le flux de gènes ainsi que
dans la taille de la population. Nous montrons que les changements de taille inférés
sous ce modèle correspondent à des vrais changements de taille de la population
même lorsqu’elle est structurée.

Ce travail s’est réalisé dans le cadre d’une collaboration étroite entre biolo-
gistes, et mathématiciens et a ouvert de nombreuses voies de recherche. D’autres
études seront nécessaires pour établir des critères permettant de décider, dans un
cas général, si une population est plus proche d’un modèle panmictique ou bien
d’un modèle de population structurée. Nous discutons dans le dernier chapitre
comment le NIMC peut être utilisé pour obtenir la fonction de répartition de T3,
le temps d’apparition du premier ancêtre de deux gènes dans un échantillon de
trois gènes. La densité jointe de T2 et T3 peut être utilisée pour reconstruire des
arbres généalogiques en vue de donner des critères pour choisir le modèle le plus
proche dans un cas réel.

J’ai par ailleurs co-dirigé plusieurs étudiants au cours de cette thèse. Je n’ai

127



pas présenté les résultats obtenus mais je peux noter que le travail du chapitre 2
qui étaient fondé sur les temps de coalescence a été étendu de deux manières. Nous
avons testé la robustesse de l’estimation des paramètres du n-island en simulant de
nombreux modèles plus réalistes, afin de voir quel types de biais pouvaient exister.
Par ailleurs j’ai aussi développé cette approche en permettant de l’appliquer à des
données de séquences et ai co-dirigé un étudiant qui a appliqué cette approche à des
données réelles issues des espèces menacées pour lesquelles des données génomiques
étaient accessibles.
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Abstract
Inferring the ancestral dynamics of effective population size is a long-standing question in

population genetics, which can now be tackled much more accurately thanks to the massive

genomic data available in many species. Several promising methods that take advantage of

whole-genome sequences have been recently developed in this context. However, they

can only be applied to rather small samples, which limits their ability to estimate recent pop-

ulation size history. Besides, they can be very sensitive to sequencing or phasing errors.

Here we introduce a new approximate Bayesian computation approach named PopSi-

zeABC that allows estimating the evolution of the effective population size through time,

using a large sample of complete genomes. This sample is summarized using the folded

allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of

physical distance, two classes of statistics that are widely used in population genetics and

can be easily computed from unphased and unpolarized SNP data. Our approach provides

accurate estimations of past population sizes, from the very first generations before present

back to the expected time to the most recent common ancestor of the sample, as shown by

simulations under a wide range of demographic scenarios. When applied to samples of 15

or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), Pop-

SizeABC revealed a series of population declines, related to historical events such as

domestication or modern breed creation. We further highlight that our approach is robust to

sequencing errors, provided summary statistics are computed from SNPs with common

alleles.
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Author Summary

Molecular data sampled from extant individuals contains considerable information about
their demographic history. In particular, one classical question in population genetics is to
reconstruct past population size changes from such data. Relating these changes to various
climatic, geological or anthropogenic events allows characterizing the main factors driving
genetic diversity and can have major outcomes for conservation. Until recently, mostly
very simple histories, including one or two population size changes, could be estimated
from genetic data. This has changed with the sequencing of entire genomes in many spe-
cies, and several methods allow now inferring complex histories consisting of several tens
of population size changes. However, analyzing entire genomes, while accounting for
recombination, remains a statistical and numerical challenge. These methods, therefore,
can only be applied to small samples with a few diploid genomes. We overcome this limi-
tation by using an approximate estimation approach, where observed genomes are sum-
marized using a small number of statistics related to allele frequencies and linkage
disequilibrium. In contrast to previous approaches, we show that our method allows us to
reconstruct also the most recent part (the last 100 generations) of the population size his-
tory. As an illustration, we apply it to large samples of whole-genome sequences in four
cattle breeds.

Introduction
Reconstructing the ancestral dynamics of effective population size is important in several con-
texts. From a long term evolutionary perspective, the history of population size changes can be
related to various climatic or geological events, and reconstructing this history allows studying
the impact of such events on natural species [1]. This demographic history also provides a sta-
tistical null model of neutral evolution that can subsequently be used for detecting loci under
selection [2, 3]. In conservation biology, the recent dynamics of effective population size in
endangered species, as reconstructed from genetic data, can efficiently be used to decipher the
time frame of a population decline, hence allowing to separate anthropogenic from natural fac-
tors [4].

Until recently, methods allowing to infer the history of population size changes from genetic
data were designed for data sets consisting of a limited number of independent markers or non
recombining DNA sequences [5–8]. However, the spectacular progress of genotyping and
sequencing technologies during the last decade has enabled the production of high density
genome-wide data in many species. New statistical methods accounting for recombination and
scalable to the analysis of whole genome sequences are thus needed, in order to take advantage
of this very rich source of information.

In this context, several promising approaches allowing to infer complex histories, including
several tens of stepwise population size changes, have recently been proposed [9–13]. Some of
them, called PSMC [9], MSMC [10] and diCal [11], are based on the Sequentially Markovian
Coalescent (SMC or SMC’) models [14, 15], an approximation of the classical coalescent with
recombination [16], where coalescent trees are assumed to be Markovian along the genome.
Thanks to this Markovian assumption, maximum likelihood estimates of past population sizes
can be efficiently obtained from the observation of one (for PSMC) or several (for MSMC and
diCal) diploid genomes. Another approach [12] is based on the length of Identity By State
(IBS) segments shared between two chromosomes along the genome. Using an iterative search,
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it aims at finding a history of past population size changes for which the expected distribution
of IBS segment lengths matches that observed in one diploid genome.

While the above methods take advantage of whole-genome data, they are so far restricted to
the analysis of small sample sizes. In the case of SMC based methods, this implies a limited res-
olution for the estimation of recent population sizes. Indeed, the most recent time at which
these methods can infer population size is determined by the time to the most recent coales-
cence event occurring in the sample, which is older for small samples. For instance in humans,
PSMC cannot estimate population sizes more recently than 400 generations (10,000 years)
before present (BP), and MSMC cannot estimate these sizes more recently than 40 generations
(1,000 years) BP. The most recent time for which an inference is possible will differ between
species. In populations with small recent population sizes, coalescence events will occur at a
higher rate than in larger populations, so the inference of recent history will be more accurate.
Inference approaches based on the distribution of IBS segment length may be less affected by
the use of small samples. Using this approach, estimations of population size in the Holstein
cattle breed were obtained from a single genome even for the first few generations BP [12], and
were in good agreement with estimations obtained from pedigree information in this breed
[17–19]. However, the accuracy of the IBS approach used in this study has not been formally
validated using simulations.

Another concern of the above methods is their sensitivity to sequencing errors. False posi-
tive SNPs can lead to a strong overestimation of population sizes in the recent past, i.e. in the
first few hundred generations BP, both with PSMC [9, 12] and with the distribution of IBS seg-
ment length [12]. In contrast, false negative SNPs lead to underestimate population size at all
time scales, but the magnitude of this effect is much weaker [12]. Efficient strategies for esti-
mating these error rates and correcting the data accordingly have been proposed in [12]. How-
ever, the estimation step typically requires other sources of information than the sampled
sequences, such as independent SNP chip data for the same individuals, which in many cases
are not available. Phasing errors may also be an issue when inference is based on phased haplo-
type data, which is typically the case for MSMC [10] or diCal [11]. MSMC inference can also
be based on unphased data, but this reduces the estimation accuracy [10].

Here we introduce a new statistical method named PopSizeABC, allowing estimating popula-
tion size history from a sample of whole-genome sequences. One of the main motivations for
developing this method is to take advantage of large sample sizes in order to reconstruct the
recent history as well. Since statistical approaches based on the full likelihood of such samples
seem currently out of reach, even with approximated models such as the SMC, we followed an
Approximate Bayesian Computation (ABC) [20] approach, which simplifies the problem in two
ways. First, this approach does not focus on the full likelihood of sampled genomes, but on the
likelihood of a small set of summary statistics computed from this sample. Second, population
size histories that are consistent with these observed summary statistics are inferred by intensive
simulations rather than by complex (and generally intractable) mathematical derivations.

ABC is a popular approach in population genetics, which has already been applied to the
analysis of large-scale population genetic data sets [21–25]. However, none of these previous
studies tried to estimate complex population size histories involving a large number of popula-
tion size changes. To address this question, we considered two classes of summary statistics:
the folded allele frequency spectrum (AFS) and the average linkage disequilibrium (LD) at dif-
ferent physical distances. These two classes of statistics are very informative about past popula-
tion size, and each of them is the basis of several inference approaches in population genetics
[13, 26–31]. Therefore, combining them within an ABC framework seems very promising.

Applying our ABC approach to samples of 25 diploid genomes, simulated under a large
number of random population size histories, we show that it provides, on average, accurate
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estimations of population sizes from the first few generations BP back to the expected time to
the most recent common ancestor (TMRCA) of the sample. This result is confirmed by the
study of several specific demographic scenarios, where our method is generally able to recon-
struct the population size history from present time back to the expected TMRCA, while
PSMC or MSMC reconstruct it only for a limited time window.

We then apply this method to samples of 15 or 25 genomes in four different cattle breeds,
which reveals interesting aspects of cattle history, from domestication to modern breed crea-
tion. Through this application to a real data set, we also illustrate how sequencing and phasing
errors, if not taken into account, can have a dramatic influence on the estimated past popula-
tion sizes. Our method is actually insensitive to phasing errors, because it uses unphased data.
In addition, we show that a simple modification in the choice of summary statistics makes it
robust to sequencing errors.

Results

Overview of the approximate Bayesian computation (ABC) estimation
procedure
Following several recent studies [9–12], we modeled population size history as a stepwise con-
stant process with a fixed number of time windows, where population size was constant within
each window but was allowed to change from one window to the next. Time windows were
defined in generations, for instance the most recent window went from one to ten generations
before present (BP), and the most ancient window started 130,000 generations BP. This model
allows approximating all simple demographic scenarios generally considered in population
genetics studies (constant size, linear or exponential growth or decline, bottleneck . . .), as well
as a large range of more complex demographic scenarios, provided population size changes
occurred more recently than 130,000 generations BP.

Our estimation procedure was based on the observation of n diploid genomes sampled from
the same population. We summarized this data set using two classes of summary statistics: (i)
the folded allele frequency spectrum (AFS) of the sample, which includes the overall propor-
tion of polymorphic sites in the genome and the relative proportion of those polymorphic sites
with i copies of the minor allele, for all values of i between 1 and n, and (ii) the average linkage
disequilibrium (LD) for 18 bins of physical distance between SNPs, from approximately 500 bp
to 1.5Mb. We generated a very large number of population size histories, by drawing the popu-
lation size in each time window from a prior distribution. For each history, we simulated a
sample of n diploid genomes and computed a distance between the summary statistics obtained
from this simulated sample and those obtained from the observed sample. A given proportion
(called tolerance) of the most likely histories was accepted based on this distance. Finally, the
joint posterior distribution of population sizes was estimated from the population sizes of
accepted histories. Different statistical approaches were compared for this last estimation step.

A detailed description of the model and of the ABC procedure described above is provided
in the Methods.

Accuracy of ABC estimation and relative importance of summary
statistics
In order to optimize our ABC estimation procedure and to evaluate its average performance,
we first applied it to a large number of genomic samples simulated under random population
size histories. These pseudo-observed datasets (PODs) included 25 diploid genomes and 100
independent 2Mb-long regions. For each POD, population sizes were estimated by ABC, using
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450,000 simulated datasets of the same size. These estimated values were compared with their
true values for different tolerance rates and different ABC adjustment approaches to process
the accepted histories. We found that the best procedure was to accept simulated histories with
a tolerance rate of 0.005, to adjust their parameter values using a non linear neural network
regression [32], and to summarize the resulting posterior distribution by its median. Indeed,
point estimations of population sizes obtained by this procedure showed very small bias and
the lowest prediction errors (PE) (Fig 1). Moreover, the posterior distributions of population
sizes in each time window were correctly estimated, as shown by the accuracy of the 90% credi-
ble interval (S1 Fig, left), while the size of this credible interval was much lower than that
obtained by the other adjustment approaches considered (S1 Fig, right). We used this proce-
dure throughout the remaining of this study.

ABC provided accurate estimations of population sizes for a large range of times in the past
(Fig 1). The best results were obtained from 10 to 5,000 generations BP, where the prediction
error was below 0.1: this means that the average distance between true and estimated popula-
tion sizes for this period of time was more than 10 times smaller than if the population sizes
were estimated from the prior distribution. In the very recent past (from 0 to 10 generations
BP), this prediction error was slightly larger but remained below 0.2. The prediction error also
increased for times more ancient than 5,000 generations BP, while remaining quite low
(PE� 0.3) until approximately 20,000 generations BP. This increase in prediction error above
5,000 generations BP can be related to a coalescence argument. At this time, the observed sam-
ples have coalesced to their common ancestor at most of the genomic regions, so the influence
of demography on the current sample is reduced. Indeed, when rescaling time from

Fig 1. Optimization of ABC procedure. Prediction error (left panel) and bias (right panel) for the estimated population size in each time window, evaluated
from 2,000 random population size histories (see Methods). Summary statistics considered in the ABC analysis were (i) the AFS and (ii) the average zygotic
LD for several distance bins. These statistics were computed from n = 25 diploid individuals, using all SNPs for AFS statistics and SNPs with a MAF above
20% for LD statistics. The posterior distribution of each parameter was obtained by rejection, ridge regression [33] or neural network regression [32]. The
tolerance rate used for each of these approaches was the one providing the lowest prediction errors, for different values from 0.001 to 0.05. Population size
point estimates were obtained from the median or the mode of the posterior distribution. The prediction errors were scaled in order that point estimates
obtained from the prior distribution would result in a prediction error of 1.

doi:10.1371/journal.pgen.1005877.g001
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generations to coalescent units (as described in Methods), we observed that the prediction
error averaged over PODs started to increase shortly after the expected TMRCA (S2 Fig).

Our simulation study also highlighted the contribution of the different summary statistics.
First, we found that population size history can be estimated quite well using either the AFS
statistics alone or the LD statistics alone, but that combining the two classes of statistics clearly
leads to the lowest PE for all time windows (Fig 2, left). As some demographic histories were
more difficult to estimate than others, the PE differed between histories, but we observed that
combining AFS and LD statistics allowed to reduce these differences (Fig 2, right). It also led to
a reduction of the width of the 90% credible interval, as compared with the interval obtained
using either class of statistics alone (S3 Fig). Another important advantage of combining AFS
and LD statistics is to enable estimating the per site recombination rate. Indeed, the PE of this
parameter was equal to 0.2 when using all statistics, versus 0.96 and 0.75 when using, respec-
tively, AFS or LD statistics alone. Second, we found that using the polymorphic site AFS, i.e.
the AFS without the overall proportion of SNPs, resulted in much higher PEs than using the
full AFS (Fig 2). Third, we observed that computing LD at each SNP pair as a correlation
between two vectors of n genotypes or as a correlation between two vectors of 2n alleles was
equivalent in terms of PE (S4 Fig). This result implies that, with our approach, using unphased
data rather than phased data will not decrease the estimation accuracy. Besides, computing LD
from SNPs with relatively frequent alleles (MAF� 5–20 %) resulted in lower PEs than comput-
ing it from all SNPs (S4 Fig). In the following, LD statistics were always computed from geno-
type data at SNPs with a MAF above 20%, unless otherwise specified.

Fig 2. Accuracy of ABC estimation and relative importance of the summary statistics. Prediction error for the estimated population size in each time
window (left) and standard deviation of this error (right), evaluated from 2,000 random population size histories. Summary statistics considered in the ABC
analysis included different combinations of (i) the AFS (possibly without the overall proportion of SNPs) and (ii) the average zygotic LD for several distance
bins. These statistics were computed from n = 25 diploid individuals, using all SNPs for AFS statistics and only those with a MAF above 20% for LD statistics.
The posterior distribution of each parameter was obtained by neural network regression [32], with a tolerance rate of 0.005. Population size point estimates
correspond to the median of the posterior distribution. The prediction errors were scaled in order that point estimates obtained from the prior distribution
would result in a prediction error of 1.

doi:10.1371/journal.pgen.1005877.g002
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Influence of the amount of data on ABC estimation
Another important question was to assess the amount of data that needs to be simulated and
observed in order to achieve optimal accuracy. We first studied the influence of the number of
simulated samples and found that increasing this number above 450,000 would not improve
the estimation. Indeed, equally low PE and equally small (and accurate) confidence intervals
could be obtained using 200,000 simulated samples (S5 Fig).

We then considered the influence of the genome length of observed and simulated samples
(S6 Fig). As expected, PEs and the width of credible intervals decreased when the genome
length increased. However, only small differences were observed between the performances
obtained with 50 and 100 2Mb-long segments, and generating simulated data sets with much
more than 100 2Mb-long segments (the default setup considered here) would become very
challenging from a computational point of view (see the Methods for more details). For the
analysis of observed data sets with a genome length above 200Mb, we thus considered the
alternative strategy consisting in comparing observed statistics computed from the full
genome (which is computationally very easy) with simulated statistics computed from a sub-
set of the genome. We may think about these simulated summary statistics as an approxima-
tion of the genome-wide simulated statistics. To evaluate this strategy, we assumed that the
genome length was 100 2Mb-long segments in the observed sample and 10 2Mb-long seg-
ments in the simulated samples (S7 Fig). Credible intervals were only slightly improved com-
pared to using a genome length of 10 2Mb-long segments in both simulated and observed
datasets, but PEs and their variance between scenarios were reduced, especially for the most
recent and the oldest time windows, reaching values almost as low as those obtained when
using 100 2Mb-long segments in both simulated and observed datasets. This strategy was thus
applied in the further sections of the manuscript, where simulated statistics used for ABC esti-
mation were computed from genomes made of 100 2Mb-long segments, independently of the
genome length in the observed data.

We also studied the influence of sample size on population size estimations (S8 Fig).
Comparing several sample sizes from n = 10 to n = 50, we observed that using large samples
resulted in a more accurate estimation of population sizes in the first 100 generations BP.
For instance, in the most recent time window, PE was equal to 0.153 for n = 50 versus 0.212
for n = 10, and the 90% credible interval was narrower (ratio between upper and lower
bound of 36 versus 74). These improvements resulted from the fact that low frequency alleles,
which are better captured from large samples, are very informative about recent population
history. In contrast, population sizes at times more ancient than 10,000 generations BP were
more accurately estimated from small samples, although the magnitude of this effect was
lower than for recent population sizes (PE of 0.66 for n = 50 versus 0.63 for n = 10 in the
most ancient window). This is likely due to statistical overfitting: increasing the sample size
leads to increasing the number of AFS statistics, so if these additional statistics are not suffi-
ciently informative they may introduce some noise and reduce the prediction ability of the
model.

Finally, we found that computing AFS statistics only from SNPs exceeding a given minor
allele frequency (MAF) threshold (from 5 to 20%) resulted in larger PEs and confidence inter-
vals, except for the most ancient population sizes (S9 Fig). Again, this comes from the fact that
low frequency alleles are very informative about recent population history. However, as we dis-
cuss later, introducing a MAF threshold might be necessary for the analysis of real data sets, so
it is interesting to note that even with a MAF threshold of 20% the PE was not much larger
than with all SNPs (0.24 versus 0.17 in the worst case).
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Estimation of specific demographic scenarios using ABC
To illustrate the performance of our ABC approach, we then considered six specific demo-
graphic scenarios: a constant population size of 500, a constant population size of 50,000, a
population size declining from 40,000 to 300 individuals between 3,600 and 100 generations
BP, a population size increasing from 2,500 to 60,000 individuals between 1,500 and 250 gener-
ations BP, a population size experiencing one expansion from 6,000 to 60,000 individuals fol-
lowed by a bottleneck of the same magnitude, between 34,000 and 900 generations BP, and a
“zigzag” scenario similar to the previous one but including one additional bottleneck between
520 and 50 generations BP (see Fig 3 for more details). The decline scenario was chosen to
mimic the estimated population size history in Holstein cattle [12], the expansion scenario was
chosen to mimic the estimated population size history in CEU humans [10], and the “zigzag”
scenario has been proposed in [10] as a typical example of very complex history. For each sce-
nario, we simulated 20 PODs of 25 diploid genomes, each genome consisting in 500 indepen-
dent 2Mb-long segments.

We observed that all PODs from a same scenario provided very similar ABC estimations
(Fig 3). This suggests that increasing the observed genome length would not improve the
obtained estimations, at least with the levels of mutation (1e-8 per bp) and recombination (5e-
9 per bp) and the population sizes considered here. Besides, as expected from our previous sim-
ulation results, population size history could be reconstructed for all scenarios from a few gen-
erations BP back to at least the expected TMRCA of the sample, with the only two exceptions
described below.

First, population size estimations in the most recent time window (less than 10 generations
BP) often showed a slight bias towards intermediate values, as can be seen in the large constant
size scenario, the decline scenario and the expansion scenario. This partly comes from the fact
that we estimated population size by the median of the posterior distribution, which tends to
shrink it away from our prior boundaries. When estimating population sizes from the mode of
the posterior distribution, we were able to better reconstruct the very recent population size in
these three scenarios (S10 Fig). Nevertheless, using the mode also brought other issues: it led to
less smooth population size histories (S10 Fig) and, on average, to larger PEs than using the
median (Fig 1). Second, the zigzag scenario was incompletely reconstructed: the initial increase
of population size and the subsequent first bottleneck could be recovered, but the second bot-
tleneck was replaced by a slow decline.

In order to explore why ABC failed to fully reconstruct this zigzag history, we considered
five variants of this scenario (S11 Fig). For a zigzag scenario with smaller population sizes than
the original one (ten times lower in all time windows), we observed that ABC could recover the
full sequence of expansions and contractions (S11 Fig, top right). This was also the case when
only one of the two bottlenecks of this “zigzag small” history was simulated (S11 Fig, bottom).
In contrast, when only the most recent bottleneck of the “zigzag large” scenario was simulated,
ABC could still not reconstruct it (S11 Fig, middle left). Actually, the decline wrongly estimated
by ABC in this case led to very similar summary statistics as the true bottleneck (S12 Fig), and
the population size trajectory corresponding to the true bottleneck was included in the 90%
credible interval inferred by ABC (S11 Fig, middle left). We also observed that PODs simulated
under the wrong decline history would lead to very similar ABC estimations that those simu-
lated under the true bottleneck history (S11 Fig, middle, left vs right). These results suggest that
the accuracy of our ABC approach is not strongly affected by the complexity (i.e. the number
of expansions and declines) of the true history, but that some specific demographic events, in
particular those implying recent population size changes in large populations, can be difficult
to identify using this approach. This conclusion was supported by the study of four additional
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Fig 3. Estimation of population size history using ABC in six different simulated scenarios. a small constant population size (N = 500, top left), a large
constant population size (N = 50,000, top right), a decline scenario mimicking the population size history in Holstein cattle (middle left), an expansion
scenario mimicking the population size history in CEU human (middle right), a scenario with one expansion followed by one bottleneck (bottom left) and a
zigzag scenario similar to that used in [10] (bottom right), with one expansion followed by two bottlenecks. For each scenario, the true population size history
is shown by the dotted black line, the average estimated history over 20 PODs is shown by the solid black line, the estimated histories for five random PODs
are shown by solid colored lines, and the 90% credible interval for one of these PODs is shown by the dotted red lines. The expected time to the most recent
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complex scenarios, implying similar expansions and declines as in S11 Fig but in a different
order, i.e. the first event was a bottleneck and it was followed by a population decline (S13 Fig).
Except the recent part of the “bottleneck2 recent large” scenario (S13 Fig, top left), all aspects
of these histories occurring more recently than the expeted TMRCA were accurately recon-
structed by ABC.

Because one of our objectives was to estimate the population size history in taurine cattle,
we studied more precisely the continuous decline scenario that is expected in this species [12],
and evaluated if variations from this scenario could be detected by ABC (S14 Fig). We found
that a decline of the same magnitude (from 40,000 to 300), but occurring suddenly either 200
generations BP (top right) or 1,000 generations BP (middle left), would lead to a clearly distinct
ABC estimation, although ABC had a tendancy to smooth population size changes. We also
considered two scenarios where population size increased again after the sudden decline occur-
ing 1,000 generations BP, either quickly to a relatively high value (5,000, middle right) or more
recently to a lower value (1,000, bottom left). In the two scenarios, both the bottleneck phase
and the recovery phase could be inferred by ABC. Finally, we studied an alternative scenario
where the initial continuous decline was followed by a sudden decline to 100 between 230 and
140 generations BP and by a later recovery to 1,000 (bottom right). Assuming generation time
in cattle is about 5 years, the time frame of this bottleneck (between 1,150 and 700 years BP)
would correspond to the Middle Age period, where cattle population sizes may have decreased
drastically because of wars, famines and cattle plagues [34]. Again, we found that ABC should
be able to distinguish this scenario from a simple continuous decline.

Comparison with MSMC
For each scenario of Fig 3, we also analyzed five simulated samples with MSMC [10], using two,
four or eight of the haplotypes from each sample. When applied to two haplotypes, MSMC is an
improved version of PSMC [9], a software that has been used to estimate population size history
in many different species within the last few years [35–38]. In our simulations, MSMC based on
two haplotypes provided a very accurate estimation of the population size history within a time
window starting between a few hundreds and a few thousands generations BP, depending on
the scenario, and finishing after the expected TMRCA of 50 haplotypes (Fig 4). Within this time
window, estimations obtained by MSMC from the five replicates were all very close to the true
history, even more than ABC estimations. Outside this window however, population size histo-
ries estimated by MSMC often had a totally different trend than the true history, (see for
instance the small constant size or the decline scenario), with large differences observed between
samples (see for instance the expansion scenario). Similar results were obtained when using
MSMC with four (S15 Fig) or eight (S16 Fig) haplotypes, except that the time window where
accurate population sizes could be obtained was shifted towards recent past, as already shown in
[10]. This comes from the fact that MSMC inference is based on the time to the most recent coa-
lescence event, which decreases when the sample size increases. Thus, reconstructing the entire
population size history is generally not possible from a single MSMC analysis. This would
require concatenating different parts of the history estimated independently using different
sample sizes, which might be quite challenging in a real data analysis, because the bounds to
consider for such a concatenation are unknown. Besides, for four out of the six scenarios (the

common ancestor (TMRCA) of the sample, E[TMRCA], is indicated by the vertical dotted black line. Summary statistics considered in the ABC analysis were
(i) the AFS and (ii) the average zygotic LD for several distance bins. These statistics were computed from n = 25 diploid individuals, using all SNPs for AFS
statistics and SNPs with a MAF above 20% for LD statistics. The posterior distribution of each parameter was obtained by neural network regression [32],
with a tolerance rate of 0.005. Population size point estimates were obtained from the median of the posterior distribution.

doi:10.1371/journal.pgen.1005877.g003
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Fig 4. Estimation of population size history using MSMCwith two haplotypes in five different simulated scenarios. For each scenario, the five PODs
considered for MSMC estimation were the same as in Fig 3. The expected TMRCA shown here is also the same as in Fig 3, it corresponds to samples of 50
haploid sequences.

doi:10.1371/journal.pgen.1005877.g004
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small constant size, the expansion, the bottleneck and the zigzag), population sizes at times
more recent than approximately 100 generations BP could not be estimated by anyMSMC anal-
ysis. Indeed, the analysis with eight haplotypes, which is expected to be the most accurate for
reconstructing recent demography, provided unstable results for these scenarios. Several other
cases where MSMC failed to reconstruct properly the recent history were observed among the
additional scenarios tested with ABC, as for instance in the “bottleneck cattle middle age” sce-
nario (S17 Fig and S18 Fig) for which the recent bottleneck was not detected.

Finally, it is important to note that the simulated data that we used in these MSMC analyzes
were assumed to be perfectly phased. However, real data consist generally in statistically
inferred haplotypes, which can typically include from 1 to 10 switch errors per Mb and individ-
ual, even when using recent phasing algorithms and large sample sizes [39]. In our simulations,
analyzing phased data with such switch error rates often biased MSMC estimations, especially
for the most recent part of the demographic history (S19 Fig). To avoid this issue, MSMC can
in principle be run from unphased data, but we found that this would also affect the estimation
accuracy (S19 Fig, right column).

Application to NGS samples in cattle
We applied our ABC approach to estimate the population size history in four cattle breeds,
using large samples of diploid genomes recently published by the 1,000 bull genomes project
[40]. An important issue when analyzing NGS data is the potential influence of sequencing and
phasing errors on the estimations. To investigate this question, we first evaluated how these
errors affect the summary statistics considered in our ABC approach. We considered a set of
12 Holstein animals for which the haplotypes inferred from NGS data within the 1,000 bull
genomes project could be compared with those inferred from 800K SNP chip data obtained
independently from another project. Assuming that 800K data are free of genotyping errors,
we computed the summary statistics from these data and checked whether similar values could
be obtained from NGS data at the same positions (S20 Fig). We found that the average gametic
LD (i.e. the LD computed from haplotype data) was significantly smaller with NGS data than
with 800K data at long physical distances, but not at short ones. This likely comes from an
increased level of phasing errors in NGS data as compared to 800K data. Indeed, such errors
tend to artificially break the correlation between SNPs within each individual, which reduces
LD. Besides, as they are relatively rare, we expect their influence to be significant only when
comparing SNPs at large physical distance.

In contrast, the average zygotic LD (i.e. the LD computed directly from genotype data) was
identical for the NGS and the 800K data. We also observed a perfect match between the poly-
morphic site AFS obtained from the NGS data subsampled at 800K positions, and from 800K
data. Finally, the overall proportion of SNPs was similar in the two types of data. More pre-
cisely, based on the 800K positions and the sample of 12 individuals, we found approximately
0.5% of false positive SNPs, i.e. positions that were found polymorphic when using NGS data
but not when using 800K data (S21 Fig, left), and approximately 5% of false negative SNPs, i.e.
positions that were found polymorphic when using 800K data but not when using NGS data
(S21 Fig, right). Besides, the proportion of false negative SNPs did not depend on the true allele
frequency (i.e. the allele frequency in the 800K data), so it should not distort the AFS. Overall,
these results suggest that our summary statistics, when computed from genome wide unphased
NGS data, should not be affected by sequencing and phasing errors. However, the above com-
parison does not really allow to evaluate the influence of false positive SNPs when analyzing
genome wide NGS data, because the 800,000 positions of the SNP chip are strongly enriched in
true SNPs compared to the three billions of positions of the entire genome.
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To overcome this limitation, we studied directly the influence of sequencing and phasing
errors on ABC estimations, by analyzing one sample of 25 Holstein genomes with slightly dif-
ferent combinations of summary statistics (Fig 5). When LD was computed from haplotypic
data, the estimated recent population size was above 20,000 individuals, which seems quite
unrealistic given that the estimated current effective size of this breed is generally of an order of
100 [17–19, 41]. This discrepancy likely resulted from the average LD at large physical dis-
tances, which was artificially reduced by phasing errors, as discussed above. Computing LD
from genotypic data, we obtained more realistic results, with a recent population size of 7,000.
However, there was a great difference between the estimation obtained when computing AFS
statistics from all SNPs, and that obtained when computing these statistics only from SNPs
with a MAF above 10% (Fig 5). Such a large difference was not expected from simulations, nei-
ther on average over multiple random histories (S9 Fig, middle) nor in the particular cases of a
constant or declining population (Fig 3 vs S22 Fig). Thus, it must result from the influence of
false positive SNPs, which are much more likely to produce low frequency alleles (S21 Fig, left).
In contrast, there was little difference between the estimations obtained when computing AFS
statistics with a MAF threshold of 10 or 20%, which strongly suggests that these strategies are
both robust against sequencing errors, at least for this particular dataset. To be conservative,
we used a MAF threshold of 20% for the final analysis of the four breeds.

Fig 5. Influence of phasing and sequencing errors on ABC estimation. Estimation of population size
history in the Holstein cattle breed using ABC, based on whole genome NGS data from n = 25 animals.
Summary statistics considered in the ABC analysis were (i) the AFS and (ii) the average LD for several
distance bins. LD statistics were computed either from haplotypes or from genotypes, using SNPs with a
MAF above 20%. AFS statistics were computed using either all SNPs or SNPs with a MAF above 10 or 20%.
The posterior distribution of each parameter was obtained by neural network regression [32], with a tolerance
rate of 0.005. Population size point estimates were obtained from the median of the posterior distribution.
Generation time was assumed to be five years.

doi:10.1371/journal.pgen.1005877.g005
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This analysis outlined several interesting features of cattle demographic history (Fig 6).
Before 10,000 years BP, the population sizes estimated in the four breeds were very similar, in
agreement with the fact that all four breeds descend from a same ancestral population, i.e. the
initial Bos taurus population which resulted from the domestication of the wild aurochs, Bos
primigenius, approximately 10,000 years BP [42]. This common estimated history is character-
ized by a population decline starting approximately 50,000 years BP. In particular, a sharper
decrease was observed from approximately 20,000 years BP, which could correspond to the
intensification of anthropogenic effects like hunting or later herding [42]. Shortly after domes-
tication, the inferred population size histories could be divided into two groups, Holstein and
Fleckvieh on one hand, Angus and Jersey on the other hand. This is consistent with the origin
of these breeds: Holstein and Fleckvieh ancestors were brought into Europe through the Danu-
bian route approximately between 7,500 and 6,000 years BP, while Angus and Jersey have
more diverse origins and partly descend from animals that were brought into Europe through
theMediterranean route approximately between 9,000 and 7,300 years BP [43, 44]. Population
size histories in the four breeds finally diverged during the last 500 years, which is consistent
with the progressive divergence of these breeds induced by geographic isolation and, from the
18th century, by the creation of modern breeds [45]. This lead to recent effective population
sizes of 290 in Angus, 390 in Jersey, 790 in Holstein and 2,220 in Fleckvieh.

The 90% credible intervals associated to these estimated population size histories are shown
in S23 Fig. We performed posterior predictive checks by sampling population size histories
from the posterior distributions and simulating new genomic samples from these histories

Fig 6. Estimation of population size history in four cattle breeds using ABC. Angus (n = 25 animals),
Fleckvieh (n = 25), Holstein (n = 25) and Jersey (n = 15). Estimations were obtained independently in each
breed, based on whole genome NGS data from sampled animals. Summary statistics considered in the ABC
analysis were (i) the AFS and (ii) the average zygotic LD for several distance bins. These statistics were
computed using SNPs with a MAF above 20%. Other parameter settings are the same as in Fig 5.

doi:10.1371/journal.pgen.1005877.g006
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[46]. The summary statistics obtained from these samples were similar to those observed in the
real data (S24 Fig). We also checked that the best simulated histories provided summary statis-
tics that were indeed similar to the observed summary statistics (S25 Fig). Finally, we note that
point estimations of the average per site per generation recombination rate were quite similar
between breeds: it was equal to 3.66e-9 in Holstein, 3.89e-9 in Fleckvieh, 4.58e-9 in Jersey and
5.00e-9 in Angus.

Discussion

Methodological contribution
Applying our ABC approach to genomic samples simulated under a large number of random
population size histories, we showed that it provides, on average, accurate estimations of popu-
lation sizes from the first few generations BP back to the expected TMRCA of the sample.
Because the estimation accuracy depends on the true population size history, we also analyzed
genomic samples simulated under 20 specific demographic scenarios with various levels of
complexity: a constant population size (2 scenarios), a monotonic decrease (3 scenarios) or
expansion (1 scenario), a single bottleneck (3 scenarios), a single bottleneck plus an additional
expansion or decrease (9 scenarios) or two bottlenecks plus an additional expansion (2 scenar-
ios). For most of these scenarios, PopSizeABC could reconstruct the population size history
from present time back to the expected TMRCA of the sample. Within this time limits, the
only situations where the ABC point estimates were very different from the true history were
those implying a decline or expansion occurring in a large population (more than 5,000 indi-
viduals) within the last few hundreds generations. Indeed, when large population sizes are
combined with frequent population size changes (in our model, recent time windows are also
the shortest ones), each time window represents a very small part of the coalescent history,
which explains why these scenarios are particularly difficult to reconstruct. However, in these
situations, the true history was still included within the 90% credible interval, and the increased
width of this interval compared to other time windows suggested that the point estimate was
less reliable. Similarly, in all scenarios, the width of the credible interval increased rapidly for
times that were more ancient than the expected TMRCA, which corresponds thus to the upper
bound of the time period where ABC estimation could be trusted.

Interestingly, we observed that PopSizeABC behaved quite differently fromMSMC [10], a
recent full-likelihood SMC-based method allowing to analyze multiple diploid genomes. On
one hand, for the 20 scenarios considered here, MSMC estimated more accurately than PopSi-
zeABC the population sizes at several time points. This was expected because ABC inference
implies a much larger degree of approximation than MSMC inference. On the other hand, the
total time period for which each demographic history could be correctly reconstructed with a
single MSMC analysis was much smaller than with ABC. Besides, in most scenarios, recent
population sizes (in the first 100 generations BP or even more) could not be inferred by any
MSMC analysis, while they could be inferred by ABC. In our study of cattle demography,
reconstructing the population size history for this recent period allowed to highlight the speci-
ficity of each breed. In many other situations, and especially in a conservation perspective, esti-
mating recent demography is actually crucial.

The better performance of ABC to reconstruct recent population size history is partly
explained by the possibility of using larger samples. We generally considered samples of 25 dip-
loid genomes, which resulted in more accurate estimations of population sizes in the last 30
generations than using only 10 diploid genomes (S8 Fig). Indeed, large samples contain rare
alleles. Since these alleles result from mutations that occurred in the most recent part of the
coalescent tree, their relative proportion in the AFS is informative about the recent variations
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of population size. Interestingly, gaining accuracy for recent time periods by increasing the
sample size had no strong negative impact on the reconstruction of the older demographic his-
tory (except for times older than the TMRCA), contrary to what was observed with MSMC.
The use of LD statistics must also contribute to the reconstruction of recent demography
because, in our simulations, predictions of population sizes at times more recent than 100 gen-
erations BP were still acurate when rare alleles were removed (S9 Fig). As discussed below, the
average LD at long physical distances is expected to reflect the recent population size [26].

Following previous studies [26, 30, 47], we used in our ABC approach the average LD over
different bins of physical distance in order to get information about population sizes at differ-
ent times in the past. In a finite population, LD results from a balance between drift and recom-
bination. This implies that LD between markers at long recombination distance mostly reflects
recent population sizes, while LD at short recombination distance also reflects ancient popula-
tion sizes [48]. To illustrate this, we computed our LD statistics for several simulation scenarios
consisting in a sudden expansion with fixed magnitude but occurring at different times in the
past (S26 Fig, left). As expected, we observed that LD statistics at long distance were similar to
those of a large population, thus reflecting the recent population size, while LD statistics at
small distance were similar to those of a small population, thus reflecting the ancient popula-
tion size. Besides, the more recent the expansion, the larger the distance required to observe a
LD level reflecting the large (recent) population size. Similarly, for decline scenarios, markers
at long (resp. short) distance were most of the time found to reflect the LD level in a small
(resp. large) population (S26 Fig, right; see the legend for more details)).

This relation between the recombination distance and the time horizon can even be
described more precisely. If population size is assumed to change linearly over time, it can be
shown that the expected r2 between SNPs at recombination distance c is approximately equal to

E½r2� � 1

aþ 4Nc
ð1Þ

where N is the effective population size at time 1/(2c) BP and a is a constant depending on the
mutation model [26]. The evolution of population size through time can thus be reconstructed
by computing the average r2 for different bins of recombination distance, and then inverting the
formula in Eq (1) [26, 47]. However, several authors pointed out that this approximation is
unsatisfactory, especially for non constant demography [49, 50], and could lead to wrong esti-
mations of past population sizes [50, 51]. Our ABC approach overcomes this issue, because r2

values estimated from the data are not compared to approximate theoretical predictions, but to
simulated r2 values. Using this approach, we could demonstrate that these statistics contain use-
ful information about the population size history (Fig 2). We further demonstrated two impor-
tant properties of LD statistics in the context of population size inference (S4 Fig). First,
computing r2 from genotypes is as informative as computing it from haplotypes, in the sense
that it leads to similar PEs. Second, removing rare SNPs (at least those with MAF below 5%)
when computing this LD measure reduces PE.

In our simulations, ABC inferences based on AFS statistics alone also provided accurate
estimations of population sizes at different times in the past (Fig 2). Theoretical studies have
demonstrated that complex population size histories can be estimated from AFS statistics [52],
and these statistics are already the basis of several inferential approaches in population genetics
[13, 27–29, 31]. In particular, two recent studies implemented composite-likelihood
approaches to estimate population size through time in a single population [13, 31], and
obtained convincing results on simulated data. We do not expect that our ABC approach based
on AFS statistics alone would improve the point estimations obtained by these approaches, and
analyzing very large samples (i.e. hundreds or thousands of individuals) would certainly be
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much more challenging with ABC due to the simulation step. However, one advantage of ABC
is to provide credible intervals, which allow to quantify the degree of confidence associated to a
given point estimation.

Moreover, one important conclusion of our work is that combining AFS and LD clearly
improves, on average, the estimation of population sizes (Fig 2). This stems from the fact that
these two classes of statistics are not informative for the same demographic scenarios. While
prediction errors obtained from AFS or LD statistics were quite similar for scenarios with little
population size variations (S27 Fig, top panels), better predictions were obtained from AFS
(resp. LD) statistics when the main trend of the population size history was an expansion (resp.
a decline) (S27 Fig, bottom panels). These differences were mainly due to the predictions
obtained from AFS statistics, which were much better for expansion scenarios than for decline
scenarios. Indeed, population declines accelerate the rate of recent coalescence events com-
pared to old ones. Combined with the fact that the time intervals between recent coalescence
events are intrinsically shorter than between old ones (because coalescence rates are propor-
tional to the square of the sample size), this tends to produce coalescence trees where only the
few oldest branches have a substantial length. In other words, the recent topology of coales-
cence trees in decline scenarios is very hard to infer based on observed data, making it difficult
to estimate population size variations from the AFS. These results are consistent with those
from a recent study [53], which showed that, for the inference of single bottleneck events,
including some linkage information was more efficient than using the AFS alone. Actually, one
interesting conclusion of S27 Fig is that combining LD and AFS statistics always improves the
prediction compared to using either one or the other class of statistics alone, whatever the fam-
ily of scenarios we considered.

This conclusion was also supported by the study of several specific scenarios: some could be
accurately reconstructed from AFS statistics alone but not from LD statistics alone (Fig 7, top),
and vice versa (Fig 7, middle), but the prediction obtained when combining AFS and LD statis-
tics was always close to the best of the two. In other scenarios, neither AFS or LD statistics
alone allowed to correctly estimate the demographic history, and using them jointly was there-
fore essential (Fig 7, bottom). Finally, in many scenarios, ABC estimation based either on LD
statistics alone or AFS statistics alone performed already very well, but the advantage of com-
bining AFS and LD statistics clearly appeared when using a MAF threshold that reduced the
information brought by AFS statistics (S28 Fig). Besides these effects on population size estima-
tion, note that combining AFS and LD statistics allowed to estimate the average per site recom-
bination rate, which was not possible using either one or the other class of statistics alone.

The genome wide distribution of the length of IBS segments shared between two chromo-
somes could provide another interesting class of summary statistics for ABC, because several
recent studies showed that it is very informative about population demography [12, 54]. How-
ever, we found that applying ABC from a set of statistics related to this distribution, rather
than from AFS and LD statistics, resulted in larger PEs of population sizes more recent than
100 generations BP (S29 Fig). This is likely due to the much smaller number of individuals
simultaneously considered in IBS statistics. When IBS statistics were used in addition to AFS
and LD statistics, no significant improvement was observed compared to the combination of
AFS and LD statistics. Besides, the estimation of recent population demography is mainly
influenced by the frequency of long IBS segments, which might be difficult to estimate in prac-
tice due to sequencing errors [12, 54]. Thus, we did not further investigate the inclusion of
these statistics in our approach.

Several previous studies implemented ABC approaches based on genome-wide data to infer
population genetics models [21–25]. However, none of these studies focused on the estimation
of population size through time using complex step-wise models, as we did here. In a Bayesian
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perspective, this specific question had, so far, only been adressed using a small number of inde-
pendent non-recombining loci [5–8]. Another originality of our study is to use LD summary
statistics that can only be computed from relatively long DNA sequences (at least 2Mb) with
recombination, while almost all previous genome-wide ABC studies (but see [23]) considered
short loci (� 20kb long). Even with modern computer facilities, simulating hundreds of thou-
sands of long DNA sequences required some optimization adjustments. One of them was to

Fig 7. Comparison of summary statistics for the estimation of population size history in three scenarios. “bottleneck1 recent small” (top), “bottleneck
cattle middle age” (middle) and “zigzag small” (bottom). Summary statistics considered in the ABC analysis were either the AFS statistics alone (left column),
the LD statistics alone (middle column), or the AFS and LD statistics together (right column). All other settings are similar to Fig 3, as well as the legend.

doi:10.1371/journal.pgen.1005877.g007
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reduce the space of possible simulated histories to the most realistic ones by setting constraints
on the prior distributions of population sizes (see Methods). Another one was to allow simu-
lated and observed samples to differ in two different ways. First, the total genome length was
generally smaller in simulated samples than in the observed sample, which resulted in lower
prediction errors than reducing the genome length in the observed sample down to the one
that could be efficiently achieved in simulated samples (S7 Fig). Second, when analyzing the
cattle data, the simulated summary statistics were computed from independent 2Mb-long seg-
ments, although the observed ones were computed from contiguous 2Mb-long segments.
Indeed, simulating data under the coalescent with recombination becomes extremely difficult
for long sequences. This second approximation cannot bias the estimations, because the corre-
lation structure between segments has no impact on the expected value of summary statistics.
Similar to the genome length, the correlation structure of the genome only affects the precision
(i.e. the estimation variance) of summary statistics. Despite of the additional correlation, com-
puting summary statistics in cattle using the entire genome (� 1,250 contiguous 2Mb-long seg-
ments) likely resulted in a higher precision, and thus in a more acurate estimation, than using a
subset of 100 independent 2Mb-long segments.

Analyzing real data sets with our approach presents several important advantages. First, our
approach is designed to be applied to totally unphased data. Indeed, AFS statistics are deduced
from the allele frequencies at all SNPs, which can be computed directly from genotypes. LD sta-
tistics are also computed from genotypes, although the common practice in population genet-
ics is to compute them from haplotypes. LD statistics computed from genotypes are not
identical to LD statistics computed from haplotypes, but they lead to similar estimations of
population sizes. As observed in the analysis of the cattle data (Fig 5), phasing errors can have
dramatic effects on the estimated histories, and they would certainly affect the inference for all
populations where the experimental design prevents from phasing the data with high accuracy.
Moreover, the SNP data handled by our method can be unpolarized, i.e. it is not necessary to
know which of the alleles at a given SNP is ancestral. Using polarized data would probably
improve the estimations, as this would allow computing the unfolded rather than folded AFS.
However, inferring ancestral alleles is not always possible and is prone to errors, so we chose to
focus on statistics computable for all datasets. Finally, based on the analysis of NGS data in cat-
tle, we showed that our approach can easily be made robust to sequencing errors by computing
summary statistics only from SNPs with common alleles (MAF� 10 or 20%, Fig 5). This mod-
ification is expected to increase the population size prediction errors and the width of credible
intervals if the dataset contains no sequencing errors (S9 Fig), but this seems by far preferable
to the large biases caused by sequencing errors, as illustrated by our study and several previous
ones [9, 12].

One consequence of sequencing errors is to create wrong SNP calls in the data, at genomic
positions where the observed sample is actually not polymorphic. Because these wrong SNPs
are generally associated to low frequency alleles, focusing on SNPs with common alleles
reduces the proportion of wrong SNPs in the data, and consequently their influence on sum-
mary statistics. In our application to cattle NGS data, this strategy was efficient because wrong
SNP calls were the only detectable effect of sequencing errors on the data. In particular, geno-
typing errors at true SNP calls had no impact on the summary statistics, as shown by the per-
fect match between summary statistics computed from NGS data or genotyping data at the
800K chip positions (S20 Fig). Indeed, NGS genotypes had been corrected by imputation, tak-
ing advantage of the large sample size and / or sequencing depth within each breed [40]. As
this might not be the case in all data sets, other strategies could be applied to correct for
sequencing errors, while keeping the main idea of an ABC approach based on AFS and LD sta-
tistics. For instance, one could simulate NGS data with the same coverage and error rates as the
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observed data, rather than perfect genotype data, and compute observed and summary statis-
tics directly from raw NGS data, using dedicated algorithms that account for the uncertainty of
genotype calls. Such algorithms are available both for AFS [55] and LD statistics [56], which is
another advantage of using these standard summary statistics. However, this strategy would be
much more computationally demanding than the one we used here.

Contribution to the demographic history of cattle
Until recently, effective population size estimations in cattle, and more generally in all livestock
species, were mostly based on two approaches. The first approach focuses on the few most
recent generations and estimates population size from the increase of inbreeding or coancestry
along generations, based on pedigree or molecular information [17–19]. Using this approach,
population size estimations from around 50 animals in Holstein to around 150 animals in
Simental (closely related to Fleckvieh) were obtained [19]. These estimated populations sizes
are qualitatively consistent with ours, as we estimated that the recent population size in Fleck-
vieh was about three fold larger than in Holstein, but the actual values obtained with these
approaches were substantially lower than our estimates (790 in Holstein and 2,220 in Fleck-
vieh). This may partly be due to the small bias observed with our approach in the simulated
decline scenario, using either the median (Fig 3) or the mode (S10 Fig) of the posterior distri-
bution as point estimation. But it is also important to mention that the animals sequenced in
the 1,000 bull genomes project were chosen among key ancestors of the breed, so the most
recent population size estimated in our study might reflect the population size a few genera-
tions ago rather than the current one. This could partly explain the discrepancy between the
estimates, because artificial selection has been particularly intensive within the few last genera-
tions, leading to a further decline of effective population size.

The second approach is based on the average r2 over different bins of genetical distance [26,
47], which has been already mentioned earlier in the discussion. It aims at estimating popula-
tion size on a much larger time scale and has been extensively applied in cattle [41, 57, 58] and
other livestock species [59]. Indeed, a very large number of animals have been genotyped using
SNP chips in these species, sometimes for other purposes, such as QTL detection, and used for
LD estimation. In addition to the methodological issues related to this approach, the use of
SNP chip data for population size estimation presents its own limitations. The ascertainment
bias associated to SNP chip data does not only influence AFS statistics but also LD statistics,
which in turn affects population size estimation. This is outlined by the fact that our ABC
approach based only on LD summary statistics infers different population size histories when
these statistics are computed from all the SNPs found by NGS, or only from those that overlap
with the 800K chip (S30 Fig). Regrettably, this influence of ascertainment bias on population
size estimations obtained from LD statistics is generally not accounted for by the studies using
LD. Besides, considering LD alone leads to a different prediction than considering LD and AFS
together (S30 Fig), and our simulation results suggest that the former prediction is less reliable.
Overall, the use of NGS data, and of dedicated inference approaches taking advantage of these
data, should thus considerably improve our understanding of livestock evolutionary history, at
least above 600 generations (3,000 years in cattle) BP (S30 Fig).

To our knowledge, the first (and so far the only) estimation of population size history in cat-
tle based on NGS data was obtained by [12]. This result was based on the distribution of IBS
segment length in one Australian Holstein bull sequenced at 13X coverage. The overall histo-
ries found in this study and in ours are quite consistent, as they both exhibit a strong decline of
population size from about 20,000 years BP to the very recent past, but our estimations of pop-
ulation size are generally larger. For instance the population size before this decrease was
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around 20,000 in their study and around 50,000 in ours, and the population size 1,000 years
ago was around 2,000 in their study and around 4,000 in ours. Although the most obvious dif-
ference between the two approaches is that they use different summary statistics, ABC estima-
tions obtained from IBS statistics rather lead to larger or equal population sizes than those
obtained from AFS and LD statistics (S31 Fig). Thus, we think that the difference between our
estimation and that in [12] more likely comes from a difference in the recombination rate. This
rate is set to 1e-8 per generation and per bp in [12], while our approach would rather provide
an estimation around 4e-9. Assuming that our estimation is correct, the overestimation of r by
a factor two in [12] could lead to an underestimation of N by the same factor, because one
essential parameter determining the IBS segment length distribution is the scaled recombina-
tion rate 2Nr. Further work will be needed to better understand the difference between the two
estimations.

Perspectives
Our ABC approach, as well as other SMC [9, 10] or IBS based methods [12], assumes that the
considered population has evolved forever as an isolated population. This is obviously a strong
hypothesis: for instance the cattle breeds considered here have actually diverged from a com-
mon ancestral population. Several studies have demonstrated that population structure can
leave genomic signatures similar to those of population size changes, even if each of the sub-
populations is actually of constant size [60–64]. Consequently, population size histories esti-
mated by single population approaches should be interpreted with caution. However, we
anticipate that our study will pave the way for future approaches inferring population size his-
tories jointly in multiple populations, while accounting for the history of divergences and
migrations in these populations. ABC represents a perfect framework for developing such
approaches, because of the flexibility offered by the simulation procedure. It is already widely
used in population genetics for estimating parameters in multiple population models including
for instance admixture events and some population size changes [65]. Besides, previous studies
showed that structured models and population size change models can be distinguished using
ABC [61].

In this study, the flexibility offered by ABC allowed us to infer parameters under the true
coalescent with mutation and recombination, rather than under the SMC approximation as in
[9, 10, 54]. One could actually go much further and relax also the hypotheses of the Kingman’s
(1982) coalescent. For instance in cattle, genealogies in the most recent generations are highly
unbalanced, because a few bulls with outstanding genetic values have been used to produce
thousands of offsprings through artificial insemination. Such genealogies are not consistent
with the Kingman’s coalescent, but specific algorithms combining the Kingman’s coalescent
with a few generations of forward-in-time simulations could certainly be implemented and
used to perform ABC estimations in this context.

Methods

The ABC approach
Assume we observe a datasetD, from which we want to estimate the parameters θ of a given
model. In a Bayesian framework, this involves computing the posterior probability Pðy j DÞ
for any possible parameter value. In many situations, and in particular in population genetics,
this posterior cannot be derived because of the model complexity and even numerical evalua-
tions are impossible due to the high dimensionality of the observed data space. The idea of
ABC [20] is to replace in this context the full datasetD by a vector of summary statistics S cap-
turing most information contained in the data and to estimate model parameters based on the
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approximate posterior Pðy j SÞ. The estimating procedure consists in sampling a very large
number of parameter values from a prior distribution, simulating datasets from these parame-
ter values, and accepting the parameter values leading to summary statistics that are sufficiently
similar to those of the observed dataset.

Several strategies can then be used to estimate the posterior distribution. The easiest one,
called rejection, is to compute the empirical distribution of the accepted parameter values. To
account for the imperfect match between accepted and observed summary statistics, accepted
parameter values can also be adjusted by various regression methods, using the associated sum-
mary statistics as explanatory variables. The general idea of these methods is to assume a local
regression model in the vicinity of S, with an equation of the form

yk ¼ mðSkÞ þ �k ð2Þ
where θk is the value of parameter θ in the kth simulated sample, Sk is the vector of summary
statistics in this sample,m() is a regression function varying between approaches, and �k is a
random noise. This model is fitted using all accepted samples. Adjusted parameter values are
then obtained by

ŷk ¼ m̂ðSÞ þ �̂k

where m̂ is the estimated regression function and �̂k is the empirical noise, and the posterior
distribution is finally computed as the empirical distribution of these adjusted values. A general
review on these aspects can be found in [46].

Model and priors
Here the observed dataD is a set of n diploid genomes sampled from a single panmictic popu-
lation, and the model assumed to have generated these data is the coalescent with mutation
and recombination [16]. We assume that effective population size varied according to a piece-
wise constant process. Following [9, 10], we considered a fixed number of time windows,
whose size increased exponentially from recent to old periods. More precisely, we used I = 21
windows of the form [ti, ti+1], where ti = exp(log(1 + aT)i/(I − 1)) − 1)/a generations BP for i
from 0 to I − 1, with T = 130,000 and a = 0.06, and tI = +1. These specific values of T and a
were chosen to capture important periods of cattle history. Modifying T would allow popula-
tion size changes to occur on a longer or shorter period in the past, and modifying a would
allow to describe more precisely one specific part of the history, playing on the ratio between
the length of recent versus old time windows. With our parametrization, the most recent time
window ranged from present to 10 generations BP, the second most recent ranged from 10 to
25 generations BP, . . .the second oldest ranged from 83,000 to 130,000 generations BP and the
oldest included all generations above 130,000 generations BP.

The parameters of this model are the population sizes Ni for i from 0 to I − 1, the per genera-
tion per site recombination rate r and the per generation per site mutation rate μ. Prior distri-
butions for the population sizes were taken uniform in the log 10 scale, from 10 to 100,000. In
order to avoid unrealistic trajectories, we also set that the ratio of population sizes between two
consecutive time windows could not exceed 10. In practice, we thus sampled log10(N0) uni-
formly between 1 and 5, and iteratively computed log10(Ni) = max(min(log10(Ni − 1) + α, 5), 1),
with α sampled uniformly between −1 and 1. For the recombination rate, we used an uniform
prior between 1e-9 and 1e-8, consistent with recent estimations in cattle [66]. For the mutation
rate we considered a fixed value, in order to compare our estimation approach with other
recent ones making the same hypothesis [9, 10, 12], but it would be straightforward to use a
prior distribution instead. This value was taken equal to 1e-8, as in [12].
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Summary statistics
We summarized each sample of n diploid genomes using a combination of statistics related to
the allele frequency spectrum (AFS) and the average linkage disequilibrium (LD) over the
genome. AFS statistics included the overall proportion of polymorphic sites over the genome
(one statistic) and, among these polymorphic sites, the proportion of those with i copies of the
minor allele, for i from 1 to n (n statistics). LD statistics included the average r2 over 18 different
sets of SNP pairs (18 statistics), where each set was characterized by a different physical distance
between SNPs. Indeed, the expected value of r2 between two SNPs at genetic distance c is related
to the population size 1/2c generations BP [26]. Thus, for each of the time windows of our
model, we computed r2 for SNP pairs whose physical distance would approximately correspond
to a genetic distance of 1/2t (± 5%), where t was the middle of the window, assuming a recombi-
nation rate of 1.0 cM/Mb. For the two most recent windows, the physical distance between SNPs
derived from this formula was larger than 2Mb, which could not be achieved in our simulations
(see below). We thus considered only 19 statistics out of 21 windows, corresponding to distances
between SNPs going from 282 bp to 1.4 Mb. We further dropped the LD statistic corresponding
to a distance of 282 bp, both in the simulation study and in the real data analysis, because with
our cattle data (described below) it had a strikingly low value, which was likely due to a technical
problem related to the sequencing, the calling or the accuracy of the assembly. Consequently, the
smallest distance bin used in our study was finally equal to 470 bp. This is specific to our study
and smaller distances might be used in future studies. By default, the r2 computed between two
SNPs was the zygotic LD, i.e. the correlation between the vectors of n genotypes observed at the
two SNPs [67]. But for some comparative analyzes we also calculated the well-known gametic
LD, where the correlation is computed between the two vectors of 2n alleles observed at the two
SNPs. Note that this second option is only possible for haploid or phased data.

In many situations, we computed these summary statistics only from SNPs above a given
minor allele frequency (MAF) threshold, whose value could differ between AFS and LD statis-
tics. For a MAF threshold corresponding to c copies of the minor allele, the overall proportion
of SNPs was changed to the overall proportion of SNPs with more than c copies of the minor
allele, and all other proportions in the AFS were computed relative to SNPs with more than c
copies of the minor allele. Overall, only n + 2 − c statistics were available in this case, instead of
n + 1 without MAF threshold. In contrast, the number of LD statistics was not affected by the
MAF threshold.

In a few specific analyses, we also computed summary statistics related to the distribution of
IBS segment length. We summarized this distribution by a set of 11 quantiles, from 0.0001 to 1
− 0.0001.

Implementation
We simulated 250,000 samples of 100 haploid genomes usingms [68], with parameters sampled
from the priors described above. We chose this software because it allows simulating the exact
coalescent with mutation and recombination, but faster algorithms based on approximations of
this model could be used in future studies. For computational reasons, each haploid genome
included only 100 independent 2Mb-long long segments. From each simulated sample of 100
haploid genomes, five different samples of n diploid genomes were created, for n equal to 10, 15,
20, 25 and 50. Each of these samples was created by choosing at random 2n haploid genomes
among 100 (without replacement). In addition, 200,000 samples of 25 diploid genomes were
simulated directly fromms samples of 50 haploid genomes. Thus, ABC analyses focusing on a
sample size of 25 diploid genomes were based on 450,000 simulated samples (unless specified),
while analyses involving other sample sizes were based on 250,000 simulated samples.
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For the real data set, a total of 234 phased bull genomes were obtained from the 1,000 bull
genomes project, Run II [40]. These included 129 Holstein (125 Black and 4 Red), 43 Fleckvieh,
47 Angus and 15 Jersey animals. Holstein animals came from various flocks with distinct geo-
graphical origins. In order to study homogeneous groups, we thus focused on the 52 Holstein
animals from Australia (other geographical origins had significantly lower sample sizes). We
further selected 25 unrelated animals within each breed with the following procedure: first, we
removed all animals that were either extremely inbred or extremely related to another sampled
animal, based on the genomic relationship matrix computed from GCTA [69]. Then, we sam-
pled 25 animals at random among the remaining ones. For the Jersey breed, as only 15 animals
were available and as they were found to be all unrelated to each other, we kept them all.

The summary statistics described above were computed using the same python script for
both simulated and cattle samples. Since the length of cattle chromosomes was much larger
than that of simulated segments (2Mb), we first cut each cattle chromosome into consecutive
but non-overlapping 2Mb-long segments. To keep the approach computationally efficient, the
average LD for a given distance bin was not evaluated from all SNP pairs satisfying the distance
condition, but from a random subset of these pairs. This subset was selected by an iterative
search along each 2Mb-long region, so that intervals defined by all SNP pairs did not overlap.

With the default parameter values described above, simulating 100 genomic samples and
computing all summary statistics for these samples took approximately three hours on a stan-
dard computer, using a single core. Using 200 cores in parallel on a computing cluster, we
could obtain 450,000 samples of summary statistics in less than 48 hours.

The final ABC estimation, based on the comparison of the simulated and observed sum-
mary statistics, was performed in R using the package abc [70]. By default, we accepted simu-
lated samples with a tolerance rate of 0.005 and adjusted accepted values by a neural network
regression approach [32]. This approach allows to reduce the dimension of the set of summary
statistics and accounts for the non-linearity of the regression functionm linking parameters
and statistics (Eq (2)). Neural network regression was applied with the default parameter values
of the function abc, except for the final analysis of all cattle breeds where 100 (instead of 10)
neural networks were fitted in order to get more stable estimations. For each parameter, a
point estimate was obtained by taking the median of the posterior distribution. Variations
from this default strategy were also tried, as mentioned in the results section. In particular, we
also estimated posterior distributions using rejection or ridge regression [33], using the default
values implemented in the abc package.

Cross validation analyzes
We evaluated the performance of ABC using several subsets of summary statistics and several
choices of MAF threshold, sample size, estimation approach, or tolerance. For each specific
combination of these parameters, we conducted a cross validation study based on K = 2000
simulated samples, using the R function cvabc. The prediction error (PE) associated to a given

parameter value θ was computed as ð1=KÞðP2000

k¼1 ðŷk � y�kÞ2Þ=varðyÞ, where y�k is the true value
of θ in the kth simulated sample, ŷk is the point estimation of this value provided by ABC, and
var(θ) is the prior variance of θ. With this scaling, estimating θk from the prior distribution of θ
would result in a PE of 1.

Similarly, the estimation bias for θ was computed as ð1=KÞP2000

k¼1 ðŷk � y�
kÞ, and the empiri-

cal coverage of the 90% credible interval was evaluated by

ð1=KÞP2000

k¼1 1ðq10ðykÞ � y�
k � q90ðykÞÞ, where q10(θk) and q90(θk) are the 5% and 95% quantiles

of the posterior distribution of θk, and 1(C) is the indicative function equal to 1 if condition C
is satisfied and 0 otherwise.
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When computing these metrics for the population size N in a given time window, we
focused on parameter θ = log10(N) rather than θ = N. Without this rescaling, PEs and biases
would only reflect the estimation accuracy for large populations, while estimation errors con-
cerning small populations would be masked.

Rescaling time from generations to coalescent units
Considering a population with variable population size, let N(t) be the haploid population size
at generation t and t ¼ t

Nð0Þ be a rescaling of time in N(0) units. In this time scale, the history of

population size changes is summarized by the function:

f ðtÞ ¼ NðtÞ
Nð0Þ ; t � 0

It can be shown [71] that the genealogical process of a sample of size n from this population,
and in particular the joint distribution of all coalescence times, is identical to the genealogical
process of a sample of size n in a constant size population where time would be rescaled by the
function

LðtÞ ¼ R t

0

1

f ðxÞ dx

Consequently, all variable population size histories can be related to the classical Kingman’s
coalescent. In this process, the expected TMRCE in a sample of size n is 2

nðn�1Þ and the expected

TMRCA is 2(1 − 1/n).
In S2 Fig, the PE obtained in time window [ti, ti+1] for a given population size history was

allocated to the rescaled interval [ui, ui+1]. Applying the equations above to the specific situa-
tion of a piecewise constant population size process, ui was computed as

ui ¼
Xi

k¼0

tk � tk�1

fk
; i � 1

with tk ¼ tk
2N0

and fk ¼ Nk
N0
. PE were then averaged over histories, for several values of u between

1e-5 and 100. Note that N0 is the haploid population size here, while the population sizes men-
tioned anywhere else in this paper are always diploid population sizes. We used tk ¼ tk

2N0
,

instead of the classical tk ¼ tk
N0
mentioned above, in order to get an expected TMRCA approxi-

mately equal to 1 (rather than 2) for large samples, which facilitates the reading of S2 Fig.

Additional simulated datasets
Twenty scenarios with fixed population size history were considered for validation, see Fig 3,
S11, S13, and S14 Figs. For each of these scenarios, 20 PODs were simulated. Each of them
included 25 diploid genomes and 500 independent 2Mb-long segments. Population size
parameters were the same in all 20 replicates of each scenario, and the per site recombination
rate was also constant and equal to 5e-9.

Comparison of summary statistics obtained from NGS and genotyping
data
For 12 of the 129 Holstein bulls considered in this study, genotypes on the 800K Illumina
bovine SNP chip were obtained from the Gembal project [72]. Among the 708,771 SNPs
retained in this study after quality control, 562,746 were polymorphic among the 12 bulls
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considered here. These SNPs were used to compute the polymorphic site AFS and the LD sum-
mary statistics from genotyping data. The rate of false negative SNPs in the NGS data was esti-
mated by the proportion of these 562,746 positions for which no SNP was called from the NGS
data. Similarly, the rate of false positive SNPs in these NGS data was estimated by considering
the 145,978 SNP positions that were found monomorphic with the 800K genotypes, and com-
puting the proportion of these positions where a SNP was called in the NGS data.

Software and data availability
Python and R scripts for the PopSizeABC method can be found at https://forge-dga.jouy.inra.
fr/projects/popsizeabc/. Simulated and observed summary statistics used in this study are also
provided on this web page.

Supporting Information
S1 Fig. Accuracy of credible intervals obtained by ABC. Empirical coverage (left) and width
(right) of the 90% credible interval for the population size in each time window. The empirical
coverage is the proportion of simulated histories for which the true population size was
included in the 90% credible interval of the posterior distribution. If the posterior distribution
was correctly estimated, this proportion should have been 90%, as shown by the black horizon-
tal solid line. Parameter settings were the same as in Fig 1.
(PDF)

S2 Fig. Accuracy of ABC estimation along the coalescent process. Prediction error for the
estimated population size when time is measured in units of the expected time to the most
recent common ancestor (TMRCA) of the sample. Prediction errors were evaluated from 2,000
random population size histories. Black vertical dotted lines indicate the expected time to the
most recent coalescence event, E[TMRCE], and the expected TMRCA, E[TMRCA]. Summary
statistics considered in the ABC analysis were (i) the AFS and (ii) the average zygotic LD for
several distance bins. These statistics were computed from n = 25 diploid individuals, using all
SNPs for AFS statistics and SNPs with a MAF above 20% for LD statistics. The posterior distri-
bution of each parameter was obtained by neural network regression [32], with a tolerance rate
of 0.005. Population size point estimates correspond to the median of the posterior distribu-
tion.
(PDF)

S3 Fig. Accuracy of credible intervals obtained by ABC and relative importance of the sum-
mary statistics. Empirical coverage (left) and width (right) of the 90% credible interval for the
population size in each time window. Parameter settings were the same as in Fig 2. The very
large credible intervals obtained on average with AFS statistics, in some time windows, are due
to a retalively small number of PODs with extreme values.
(PDF)

S4 Fig. Accuracy of ABC estimation based on LD summary statistics. Prediction error for
the estimated population size in each time window, evaluated from 2,000 random population
size histories. Summary statistics considered in the ABC analysis were the average gametic LD
(triangles) or the average zygotic LD (circles) for several distance bins. These statistics were
computed from n = 25 diploid individuals, using different MAF thresholds. Other parameter
settings were the same as in Fig 2.
(PDF)
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S5 Fig. Influence of the number of simulated data sets on ABC estimation. Top: Prediction
error for the estimated population size in each time window (left) and standard deviation of
this error (right). Bottom: Empirical coverage (left) and width (right) of the 90% credible inter-
val for the population size in each time window. These quantiles were evaluated from 2,000
random population size histories. For each of these histories, one POD of n = 25 diploid
genomes was simulated, where each genome consisted in 100 independent 2Mb-long segments.
Population size history was estimated from this POD by ABC, for various numbers of simu-
lated datasets (see the legend) with the same sample size (n = 25) and genome length (100 inde-
pendent 2MB segments). Summary statistics considered in the ABC analysis were (i) the AFS
and (ii) the average zygotic LD for several distance bins. AFS statistics were computed using all
SNPs and LD statistics were computed using SNPs with a MAF above 20%. The posterior dis-
tribution of each parameter was obtained by neural network regression, with the tolerance rate
leading to the smallest prediction error. Population size point estimates were obtained from the
median of the posterior distribution.
(PDF)

S6 Fig. Influence of the genome length of simulated and observed data sets on ABC estima-
tion. Top: Prediction error for the estimated population size in each time window (left) and
standard deviation of this error (right). Bottom: Empirical coverage (left) and width (right) of
the 90% credible interval for the population size in each time window. These quantiles were
evaluated from 2,000 random population size histories. For each of these histories, one POD of
n = 25 diploid genomes was simulated, where each genome consisted in 10, 50 or 100 indepen-
dent 2Mb-long segments (see the legend). Population size history was estimated from this
POD by ABC, using 450,000 simulated datasets with the same sample size (n = 25) and genome
length. The posterior distribution of each parameter was obtained by neural network regres-
sion, with a tolerance rate of 0.005. All other settings are similar to S5 Fig.
(PDF)

S7 Fig. Using different genome lengths for simulated and observed data sets. Top: Predic-
tion error for the estimated population size in each time window (left) and standard deviation
of this error (right). Bottom: Empirical coverage (left) and width (right) of the 90% credible
interval for the population size in each time window. These quantiles were evaluated from
2,000 random population size histories. For each of these histories, one POD of n = 25 diploid
genomes was simulated, where each genome consisted in 10 or 100 independent 2Mb-long seg-
ments (see the legend). Population size history was estimated from this POD by ABC, using
450,000 simulated datasets with the same sample size (n = 25) but a possibly different genome
length (see the legend). The posterior distribution of each parameter was obtained by neural
network regression, with a tolerance rate of 0.005. All other settings are similar to S5 Fig.
(PDF)

S8 Fig. Influence of the sample size on ABC estimation. Top: Prediction error for the esti-
mated population size in each time window (left) and standard deviation of this error (right).
Bottom: Empirical coverage (left) and width (right) of the 90% credible interval for the popula-
tion size in each time window. These quantiles were evaluated from 2,000 random population
size histories. For each of these histories, one POD of n diploid genomes was simulated, for dif-
ferent values of n between 10 and 50 (see the legend). Each genome consisted in 100 indepen-
dent 2Mb-long segments. Population size history was estimated from this POD by ABC, using
450,000 simulated datasets with the same sample size and genome length. All other settings are
similar to S5 Fig.
(PDF)
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S9 Fig. Influence of MAF threshold on ABC estimation. Top: Prediction error for the esti-
mated population size in each time window (left) and standard deviation of this error (right).
Middle: Bias for the estimated population size in each time window. Bottom: Empirical cover-
age (left) and width (right) of the 90% credible interval for the population size in each time
window. These quantiles were evaluated from 2,000 random population size histories. For each
of these histories, one POD of n = 25 diploid genomes was simulated, where each genome con-
sisted in 100 independent 2Mb-long segments. Population size history was estimated from this
POD by ABC, using 450,000 simulated datasets with the same sample size and genome length.
Summary statistics considered in the ABC analysis were (i) the AFS and (ii) the average zygotic
LD for several distance bins. AFS statistics were computed using different MAF thresholds, LD
statistics were computed from SNPs with a MAF above 20%. The posterior distribution of each
parameter was obtained by neural network regression, with a tolerance rate of 0.005. Popula-
tion size point estimates were obtained from the median of the posterior distribution.
(PDF)

S10 Fig. Estimation of population size history from the mode of the posterior distribution
in six different simulated scenarios. All settings are similar to Fig 3, except that population
size point estimates were obtained from the mode of the posterior distribution.
(PDF)

S11 Fig. Estimation of population size history in the zigzag scenario and five related sce-
narios. a scenario where all population sizes are divided by ten compared to the original zigzag
(“zigzag small”, top right), a scenario where only the recent bottleneck of the original zigzag is
simulated (“bottleneck1 recent large”, middle left), a scenario corresponding to the history
wrongly inferred by ABC based on data from the “bottleneck1 recent large” scenario (middle
right), and two scenarios where only the recent (bottom left) or the old (bottom right) bottle-
neck of the “zigzag small” are simulated. All settings are similar to Fig 3.
(PDF)

S12 Fig. Observed and best simulated summary statistics in the “bottleneck1 recent large”
scenario. For one of the five PODs analyzed in this scenario, observed AFS (left) and LD
(right) statistics are shown by green full circles. The average value of these statistics over the
five best simulated data sets, i.e. the five simulated data sets leading to the smallest distance
between observed and simulated statistics, are shown by blue crosses. The variation of these
statistics over the five best simulated data sets is also indicated by blue dotted lines, which cor-
respond to the average value plus (or minus) twice the standard deviation of each statistic.
(PDF)

S13 Fig. Estimation of population size history in four scenarios including a bottlenck fol-
lowed by a population decline. Population size varied between 60,000 and 6,000 individuals in
the top panels, and between 6,000 and 600 individuals in the bottom panels. Population size
changes occurred between 2,300 and 50 generations BP in the left panels, and between 34,000
and 900 generations BP in the right panels. All settings are similar to Fig 3.
(PDF)

S14 Fig. Estimation of population size history in the decline scenario and five related sce-
narios. a sudden (rather than continuous) decline from 40,000 to 300 individuals occurring 200
generations BP (top right), a sudden decline from 40,000 to 300 individuals occurring 1,000 gen-
erations BP (middle left), the same sudden decline followed by an expansion to 5,000 individuals
occurring 580 generations BP (middle right) or an expansion to 1,000 individuals occurring 140
generations BP (bottom left), and a scenario similar to the continuous decline (top left) but
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including a sudden decline to 100 individuals between 230 and 140 generations BP, followed by
an expansion to 1,000 individuals (bottom right). All settings are similar to Fig 3.
(PDF)

S15 Fig. Estimation of past effective population size using MSMC with four haplotypes in
six different simulated scenarios. For each scenario, the five PODs considered for MSMC esti-
mation were the same as in Fig 3. The expected TMRCA shown here is also the same as in Fig 3,
it corresponds to samples of 50 haploid sequences.
(PDF)

S16 Fig. Estimation of past effective population size using MSMC with eight haplotypes in
six different simulated scenarios. For each scenario, the five PODs considered for MSMC esti-
mation were the same as in Fig 3. The expected TMRCA shown here is also the same as in Fig 3,
it corresponds to samples of 50 haploid sequences.
(PDF)

S17 Fig. Estimation of past effective population size using MSMC with four haplotypes in
the decline scenario and five related scenarios. For each scenario, the five PODs considered
for MSMC estimation were the same as in S14 Fig. The expected TMRCA shown here is also
the same as in S14 Fig, it corresponds to samples of 50 haploid sequences.
(PDF)

S18 Fig. Estimation of past effective population size using MSMC with eight haplotypes in
the decline scenario and five related scenarios. For each scenario, the five PODs considered
for MSMC estimation were the same as in S14 Fig. The expected TMRCA shown here is also
the same as in S14 Fig, it corresponds to samples of 50 haploid sequences.
(PDF)

S19 Fig. Influence of phasing errors on MSMC estimation. Estimation of past effective popu-
lation size using MSMC with four haplotypes in the “small” scenario (top), the “decline” sce-
nario (middle) and the “expansion” scenario (bottom). MSMC analyzes were run from
perfectly phased data, phased data with 1 or 10 switch errors per Mb and diploid individual, or
unphased data (i.e. two unphased diploid individuals). All other settings are similar to S15 Fig.
(PDF)

S20 Fig. Comparison of summary statistics obtained from NGS and genotyping data. poly-
morphic site AFS, i.e. without the overall proportion of SNPs (left), average gametic LD (mid-
dle) and average zygotic LD (right). These statistics were computed from 12 Holstein animals
for which both NGS data and genotyping data were available, using only SNP positions from
the 800K chip (even for the NGS data statistics). No MAF threshold was used.
(PDF)

S21 Fig. False positive and false negative rates of SNP detection in the 1,000 bull genomes
project. Error rates were computed from 12 Holstein animals for which both NGS data and
genotyping data were available. False positive SNPs were positions that were found polymor-
phic in the NGS data but not in the 800K data. Their minor allele count in the NGS data was
called the wrong minor allele count. False negative SNPs were positions that were found poly-
morphic in the 800K data but not in the NGS data. Their minor allele count in the 800K data
was called the true minor allele count.
(PDF)

S22 Fig. Estimation of population size history using ABC without rare SNPs in five differ-
ent simulated scenarios. All settings are similar to Fig 3, except that AFS statistics were
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computed only from SNPs with a MAF above 20%.
(PDF)

S23 Fig. Ninety percent credible intervals of estimated population size history in four cattle
breeds.Holstein (top left), Angus (top right), Fleckvieh (bottom left) and Jersey (bottom
right). Parameter settings are the same as in Fig 6.
(PDF)

S24 Fig. Predictive posterior check of the population size history estimated in the Holstein
cattle breed (Fig 6). Ten thousand genomic samples were simulated under population size his-
tories that were sampled from the posterior distribution estimated in Fig 6. Four combinations
of summary statistics were computed from each sample: AFS and LD statistics (top left), AFS
statistics alone (top right), LD statistics alone (bottom left) and IBS statistics (bottom right, see
the Methods for a detailed description of these statistics). For each of these combinations, a
principal component analysis (PCA) of the 10,000 simulated samples was performed: the pro-
jection of all samples on the two first dimensions of this PCA are plotted in black. The vector
of summary statistics observed in Holstein was then projected on the same hyperplan. It always
fell within the cloud of simulated summary statistics, which shows that the estimated history is
able to reproduce summary statistics that are indeed similar to the observed ones. Interestingly,
this also holds for IBS statistics, which were not used for the estimation. Results are shown for
the Holstein breed but they were similar for the other breeds.
(PDF)

S25 Fig. Observed and best simulated summary statistics in the Holstein cattle breed.
Observed AFS (left) and LD (right) statistics are shown by green full circles. The average value
of these statistics over the five best simulated data sets, i.e. the five simulated data sets leading
to the smallest distance between observed and simulated statistics, are shown by blue crosses.
The variation of these statistics over the five best simulated data sets is also indicated by blue
dotted lines, which correspond to the average value plus (or minus) twice the standard devia-
tion of each statistic.
(PDF)

S26 Fig. Influence of population size changes on LD statistics. LD statistics for several sce-
narios inplying a sudden expansion from 500 to 50,000 individuals (left) or a sudden decline
from 50,000 to 500 individuals (right). Several expansion or decline times were considered, as
well as two scenarios with a constant population size of 500 or 50,000 individuals (see the leg-
end). For each scenario, LD statistics were averaged over 20 PODs including 25 diploid
genomes and 100 2Mb-long regions. In contrast with expansion scenarios, some decline sce-
narios lead to even larger LD statistics than those obtained for a constant small population.
Indeed, as these declines are very old compared to the expected TMRCA of a population of 500
individuals, their main effect is to increase, at some loci, the time during which the sample has
only two ancestral lineages. Because this increase is very large (backward in time, population
size, and thus expected coalescence time, are suddenly multiplied by 100), mutations occuring
in this part of the coalescence tree eventually represent a large proportion of all oberved poly-
morphic sites. Besides, for two linked loci with similar topologies of the coalescence tree, muta-
tions occuring in this part of the tree lead to very high r2 values, up to 1 if the topologies are
exactly the same.
(PDF)

S27 Fig. Accuracy of ABC and relative importance of LD and AFS in different families of
scenarios. Prediction error for the estimated population size in each time window, focusing on
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scenarios with a population size below 1,000 (top left), above 10,000 (top right), below 1,000 in
the last 200 generations and above 10,000 for times more ancient than 13,000 generations BP
(bottom left) or above 10,000 in the last 200 generations and below 1,000 for times more
ancient than 13,000 generations BP (bottom left). For the two latter scenarios, the time window
where population size goes from above 10,000 to below 1,000 (or vice versa) is delimited by
vertical dotted lines. For each scenario category, PE were evaluated from 2,000 random histo-
ries. Summary statistics considered in the ABC analysis were either the AFS statistics alone, the
LD statistics alone or the AFS and LD statistics together (see the legend). All other settings are
similar to Fig 2.
(PDF)

S28 Fig. Estimation of population size history using different ABC settings in the “bottle-
neck1 old large” scenario. Summary statistics considered in the ABC analysis were either the
AFS statistics alone (left column), the LD statistics alone (middle column), or the AFS and LD
statistics together (right column). AFS statistics were computed using either all SNPs (top pan-
els) or only those with a MAF above 20% (bottom panels). All other settings are similar to Fig 3.
(PDF)

S29 Fig. Accuracy of ABC estimation based on the distribution of IBS segment lengths.
Prediction error for the population size in each time window, evaluated from 2,000 random
population size histories. Summary statistics considered in the ABC analysis included several
combinations of (i) the AFS, (ii) the average zygotic LD for several distance bins and (iii) the
distribution of IBS segment lengths within one diploid individual. These statistics were com-
puted from n = 25 diploid individuals, using all SNPs for AFS and IBS statistics and SNPs with
a MAF above 20% for LD statistics. Other parameter settings are the same as in Fig 2.
(PDF)

S30 Fig. Added value of NGS for population size history estimation. Estimation of popula-
tion size history in the Holstein cattle breed using ABC, based on whole genome NGS data
from n = 25 animals. Summary statistics considered in the ABC analysis included different
combinations of (i) the AFS and (ii) the average zygotic LD for several distance bins. These sta-
tistics were computed either from the SNPs that are included in the 800K SNP chip or from all
SNPs found in the NGS data. A MAF threshold of 20% was used for all curves and statistics.
Other parameter settings are the same as in Fig 5.
(PDF)

S31 Fig. Population size history in Holstein using IBS statistics. Estimation of population
size history in the Holstein cattle breed using ABC, based on whole genome NGS data from
n = 25 animals. Summary statistics considered in the ABC analysis were either both the AFS
and the average zygotic LD for several distance bins, or the distribution of IBS segment lengths
within one diploid individual. These statistics were computed using SNPs with a MAF above
20%. Other parameter settings are the same as in Fig 5.
(PDF)
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1 Comparing MS with theoretical distribu-

tions

1.1 Case 1. Single Wright-Fisher model. No struc-
tured constant-size population.

The expected coalescence time for two individuals in a Wright-Fisher model
is 2N generations. That’s the reason why the time is scaled by a factor of 2N .
In MS, the time is scaled by a factor of 4N which means that the expected
coalescence time of two individuals will be 0.5. In order to compare the data
simulated by MS with an exponential distribution, we need to set λ = 2.
The following commands (in MS and python) should produce the same kind
of data.

MS command:

ms 2 200000 -T | grep "(" | cut -d \: -f 2 | cut -d , -f 1

python command (using scipy)

scipy.stats.expon.rvs(scale=0.5, size=200000)

We analyze the outputs in this two cases for 200000 values. Results are
shown in figure 1 in table 1.1.

Command Mean Variance Min value Max value
MS-command 0.50104192324499919 0.25043256012112991 6e-06 7.016047

python command 0.50008269094296265 0.25128866290586221 1.8743120203292514e-06 5.5221374492935205

Table 1: Comparing the two outputs of T2 values

And the results of a KS-test are in table 2

Command KS statistic p-value
MS-command 0.0019646458602110006 0.42292233212463043

python command 0.001239959345653352 0.91819832476794261

Table 2: K-S test of the output data against the exp(2) distribution function.
The blue curve is the theoretical distribution

In order to be sure that the output values of MS behaves as an exponential
with λ = 2 we do the following experiment 1000 times:

1. Simulate 200000 values with the MS-command used before
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Figure 1: Histogram for T2 values simulated with MS and exp(2). The
theoretical function is in blue.

2. Simulate 200000 values with an exponential distribution (λ = 2)

3. Do a Kolmogorov-Smirnov test to compare the values with the theo-
retical exponential distribution (ie f(x) = λe−λx

4. We reject the null hypothesis that the data comes from that distribution
if the p-value is lower than 0.05

The number of times we rejected the null hypothesis was:

• 45 for data coming from MS (4, 5% of reject)

• 48 for data coming from scipy.stats.expon.rvs(scale=0.5, size=200000)
(4, 8% of reject)

The experiment can be reproduced by using the ”compare w MS.py”
python module. The command is KStest MS WFmodel(200000, 100, 0.05)
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1.2 Bottleneck with α = 2 at time T = 0.1 case (SSPSC)

Now we consider a model where a population (with random mating) changes
in size at time T in a factor of α.

1.2.1 Comparing T2 values

Let’s consider a model where the population decreased to a half of its size at
time T = 0.1 (going forward in time). For simulating T2 values under this
model, the following MS-command can be used (note that MS counts time
starting from the present, ie backward in the time):

MS 2 200000 -T -L -eN 0.1 2

We have to take into account that MS uses TMS = 4N generations and
the distributions we have use T = 2N generations.

P (T2SSPSC < t) = P (2T2MS < t)

P (T2MS < t) = P (
T2SSPSC

2
< t) = P (T2SSPSC < 2t)

So, in order to compare the distribution function to the data coming from
MS we have to use FT2SSPSC(2t).

And in order to compare with the values produced by MS, the T param-
eter needs to be used as 2T .

Figure 2 and Table 1.2.1 compare the outputs of the T2 values produced
by MS and by a method programming from the theoretical distribution.

Case Mean Variance Min value Max value
MS 0.90878557309999897 0.98751379447560694 1e-06 12.369535

SSPSC 0.90971717680963882 0.98378186798266054 4.202474792363943e-06 11.492613673166845

Table 3: Comparing the two outputs of T2 values

Then, we do a KS-test for comparing both outputs with the theoretical
distribution. Results are shown in table 4

Command KS statistic p-value
MS 0.0017264179181094574 0.59016399247324214

SSPSC 0.001200035111397102 0.93556672755384784

Table 4: K-S test of the output data against the theoretical SSPSC distribu-
tion function
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Figure 2: Histogram for T2 values simulated with MS and SSPSC. The the-
oretical function is plotted in blue.

The KS-test was repeated 10000 times with α = 2 and T = 0.1. We
reject if the p− value is lower than 0.05

The number of times we rejected the null hypothesis(H0: The data actu-
ally comes from the theoretical distribution) was:

• 524 for data coming from MS (5, 24% of reject)

• 484 for data coming from SSPSC (4, 84% of reject)

The experiment can be reproduced by using the ”compare MS SSPSC.py”
python script. The command used was

.compare MS SSPSC.py 2 0.1 200000 1

1.2.2 Comparing Number of SNPs

The probability distribution function of the number of mutation was derived
in the article. For t = 2N generations we have:
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P (Nb = k) =

∫ +∞

0

P (Nb = k|T b2 = t)fT b
2
(t)dt

When t = 4N generations we have to change the parameters of the dis-
tribution in order to obtain the same values that MS produces.

In order to produce data (number of segregating sites) under this model,
we can use the MS-command:

ms nobs nrep -t theta -eN T alpha

We used alpha = 2, T = 0.1 and theta = 0.05
The equivalent parameters for comparing our theoretical distribution to

MS must be 2T for the time when changes occurred and θ/2 for the mutation
rate while keeping the same value of α.

We compare the results of the MS-command

./ms 2 20000 -t 0.05 -eN 0.1 2

with the output of our function for the corresponding parameters.
The results for one single experiment are in table 1.2.2. For the histogram

see Figure 3. The results of a Chi-2 test for the same experiment are in table
6

Case Mean Variance Min value Max value
MS 0.91654999999999998 1.8696860974994656 0 12

SSPSC 0.90549999999999997 1.897169749999623 0 19

Table 5: Comparing the two outputs of NumberofMutations values

Command KS statistic p-value
MS 15.799124639791151 0.10552889013725571

SSPSC 4.4964325296196161 0.95308785841375565

Table 6: Chi2 test of the output data against the theoretical SSPSC distri-
bution function

We did 10000 independent repetitions of the experiment and we count
the number of times we rejected the hypothesis that the data is coming from
the theoretical distribution.

The number of times we rejected the null hypothesis was:

• 498 for data coming from MS (4, 98% of reject)
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Figure 3: Histogram for NumberofMutations values simulated with MS and
SSPSC. The theoretical function is in blue.

• 486 for data coming from SSPSC (4, 86% of reject)

The experiment can be reproduced by using the ”compare MS SSPSC.py”
python script. The command used was

.compare MS SSPSC.py 2 0.1 2000000 2 0.5

1.3 Structured population with n = 9 islands and M =
0.1 (StSI)

Now the model considered is the Symmetrical Island Model with 9 islands
and migration rage of 0.1. We shall compare the values of T2 as well as
Number of Mutations produced by MS with those produced by the method
written from the theoretical distribution. Finally we do the corresponding
KS and Chi2 tests.
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1.3.1 Comparing the T2 values

The MS command for simulating the values of coalescence times when two
individuals are sampled from the same island in this population is

MS 2 200000 -T -L -I 9 2 0 0 0 0 0 0 0 0 0.1

We have to take into account that MS uses TMS = 4N generations and the
distribution we have uses T = 2N generations. So, in order to compare the
distribution function to the data coming from MS we have to use FT2StSI(2t)

The Figure 4 and the table 7 show the results of 200000 independent
values simulated using MS and StSI distribution function.

Figure 4: Histogram for T2 values simulated with MS and StSI. The theoret-
ical function is in blue.

And the results of a KS-test are in table 8
As before, we did a KS test 10000 times with n = 9 and M = 0.1
The number of times we rejectet the null hypothesis (H0: The values

come from the theoretical distribution of T2 for this model) was:
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Case Mean Variance Min value Max value
MS 4.5176277987000466 347.11642120835103 7e-06 441.000519
StSI 4.5722299125887247 346.77477764513173 4.7609152318513286e-06 484.13932749856457

Table 7: Comparing the two outputs of T2 values

Command KS statistic p-value
MS 0.0013742768784799075 0.84438710150019836
StSI 0.0014041958586083481 0.82521917262152

Table 8: K-S test of the output data against the theoretical StSI distribution
function

• 499 for data coming from MS (4, 99% of reject)

• 503 for data coming from StSI (5, 03% of reject)

The experiment can be reproduced by using the ”compare MS StSI.py”
python script. The command used was

.compare MS StSI.py 9 0.1 200000 1

1.3.2 Comparing Number of SNPs

Now we compare the Number of Mutations variable for both cases.
The Figure 5 and the table 9 show the results of 200000 independent

values simulated by MS and StSI distribution function.

Case Mean Variance Min value Max value
MS 4.5271249999999998 349.74466423523086 0 437
StSI 4.4704100000000002 346.97783443283259 0 441

Table 9: Comparing the two outputs of NumberofMutations values

And the results of a Chi2-test are in table 10
We did 10000 independent repetitions of the experiment and we count

the number of times we rejected the hypothesis that the data is coming from
the theoretical distribution.

The number of times we rejected the null hypothesis was:

• 526 for data comming from MS (5, 26% of reject)

• 522 for data comming from SSPSC (5, 22% of reject)
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Figure 5: Histogram for NumberofMutations values simulated with MS and
StSI. The theoretical function is in blue.

The experiment can be reproduced by using the ”compare MS SSPSC.py”
python script. The command used was

.compare MS StSI.py 9 0.1 2000000 2 0.5
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Command KS statistic p-value
MS 193.57103521370334 0.43445621518516619
StSI 186.83623084924969 0.61144954519283146

Table 10: Chi2 test of the NumberofMutations output data against the
theoretical StSI distribution function
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Validating the implementation of the NIMC

1 Some validations of the NIMC implementation

The NIMC module is a python implementation of the N-Island Markov Chain model. In order to validate this
implementation of the NIMC, some comparison are done between the cumulative distribution function (cdf )
as well as the probability density function (pdf ) of T s

2 and T d
2 (the coalescence times of two genes sampled

in the same population or in different populations) implemented in the NIMC class, with the empirical
distribution of the values simulated with the ms software under equivalent scenarios. It is important to note
that the time in ms is scaled to 4N0 while all the theoretical computations used in the NIMC use a time
scale of 2N0. This implies that, in order to do the comparisons, it is necessary to multiply the output times
comming from ms by 2 and the times when demographic events occur for the corresponding ms commands
should be divided by 2 (i.e. if the gene flow in the NIMC model changes at time T = 1, it should be used
T = 0.5 when traslating this into the corresponding ms command).

In [1]: import tester_NIMC_T2

from tester_NIMC_T2 import tester

%matplotlib inline

t = tester()

1.1 Testing T s
2 and T d

2 under an n-island model

In [2]: n = 10

T_list = [0]

M_list = [1]

lambda_list = [1]

n_obs = 10000

number_of_tests = 100

t.do_full_comparison(n, T_list, M_list, lambda_list, n_obs, number_of_tests)

Sampling in the same island:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 2 0 0 0 0 0 0 0 0 0 1.0

1



the p-value of one single ks-test: 0.509534615757

Doing 100 ks-tests ...

2



Number of rejections with alpha=0.05: 5

Sampling in different islands:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 1 1 0 0 0 0 0 0 0 0 1.0
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the p-value of one single ks-test: 0.474966924017

Doing 100 ks-tests ...

Number of rejections with alpha=0.05: 4

1.2 Adding some gene flow changes

In [3]: n = 10

T_list = [0, 0.2, 0.5, 1]

M_list = [1, 5, 0.1, 10]

lambda_list = [1, 1, 1, 1]

n_obs = 10000

number_of_tests = 100

t.do_full_comparison(n, T_list, M_list, lambda_list, n_obs, number_of_tests)

Sampling in the same island:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 2 0 0 0 0 0 0 0 0 0 1.0 -eM 0.1 5.0 -eN 0.1 1.0 -eM 0.25 0.1 -eN

0.25 1.0 -eM 0.5 10.0 -eN 0.5 1.0

4



the p-value of one single ks-test: 0.40911489094

Doing 100 ks-tests {\ldots}

Number of rejections with alpha=0.05: 3
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Sampling in different islands:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 1 1 0 0 0 0 0 0 0 0 1.0 -eM 0.1 5.0 -eN 0.1 1.0 -eM 0.25 0.1 -eN

0.25 1.0 -eM 0.5 10.0 -eN 0.5 1.0
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the p-value of one single ks-test: 0.96474837359

Doing 100 ks-tests ...

Number of rejections with alpha=0.05: 6

1.3 Considering just population size changes with constant gene flow

In [4]: n = 10

T_list = [0, 0.2, 0.5, 1]

M_list = [1, 1, 1, 1]

lambda_list = [1, 10, 5, 0.5]

n_obs = 10000

number_of_tests = 100

t.do_full_comparison(n, T_list, M_list, lambda_list, n_obs, number_of_tests)

Sampling in the same island:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 2 0 0 0 0 0 0 0 0 0 1.0 -eM 0.1 1.0 -eN 0.1 0.1 -eM 0.25 1.0 -eN

0.25 0.2 -eM 0.5 1.0 -eN 0.5 2.0
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the p-value of one single ks-test: 0.955687502168

Doing 100 ks-tests {\ldots}

Number of rejections with alpha=0.05: 6
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Sampling in different islands:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 1 1 0 0 0 0 0 0 0 0 1.0 -eM 0.1 1.0 -eN 0.1 0.1 -eM 0.25 1.0 -eN

0.25 0.2 -eM 0.5 1.0 -eN 0.5 2.0
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the p-value of one single ks-test: 0.217524751657

Doing 100 ks-tests ...

Number of rejections with alpha=0.05: 8

1.4 Now changing both, gene flow and population size

In [5]: n = 10

T_list = [0, 0.2, 0.5, 1]

M_list = [1, 5, 0.1, 10]

lambda_list = [1, 10, 5, 0.5]

n_obs = 10000

number_of_tests = 100

t.do_full_comparison(n, T_list, M_list, lambda_list, n_obs, number_of_tests)

Sampling in the same island:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 2 0 0 0 0 0 0 0 0 0 1.0 -eM 0.1 5.0 -eN 0.1 0.1 -eM 0.25 0.1 -eN

0.25 0.2 -eM 0.5 10.0 -eN 0.5 2.0
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the p-value of one single ks-test: 0.411042128269

Doing 100 ks-tests {\ldots}

Number of rejections with alpha=0.05: 6
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Sampling in different islands:

------------------------------

The corresponding ms-command is:

./utils/ms 2 10000 -T -L -I 10 1 1 0 0 0 0 0 0 0 0 1.0 -eM 0.1 5.0 -eN 0.1 0.1 -eM 0.25 0.1 -eN

0.25 0.2 -eM 0.5 10.0 -eN 0.5 2.0
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the p-value of one single ks-test: 0.213663349949

Doing 100 ks-tests ...

Number of rejections with alpha=0.05: 6
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RÉSUMÉ : Le développement des nouvelles techniques de séquençage élargit l' horizon de la génétique de 
populations. Une analyse appropriée des données génétiques peut augmenter notre capacité à reconstruire 
l'histoire des populations. Cette énorme quantité de données disponibles peut aider les chercheurs en biologie 
et anthropologie à mieux estimer les changements démographiques subis par une population au cours du 
temps, mais induit aussi de nouveaux défis. Lorsque les modèles sous-jacents sont trop simplistes il existe un 
risque très fort d'être amené à des conclusions erronées sur la population étudiée. Il a été montré que certaines 
caractéristiques présentes dans l'ADN des individus d'une population structurée se trouvent aussi dans l'ADN de
ceux qui proviennent d'une population sans structure dont la taille a changé au cours du temps. Par conséquent 
il peut s'avérer très difficile de déterminer si les changements de taille inférés à partir des données génétiques 
ont vraiment eu lieu ou s'il s'agit simplement des effets liés à la structure. D'ailleurs la quasi totalité des 
méthodes pour inférer les changements de taille d'une population au cours du temps sont basées sur des 
modèles qui négligent la structure. 
Dans cette thèse, de nouveaux résultats de génétique de populations sont présentés. Premièrement, nous 
présentons une méthodologie permettant de faire de la sélection de modèle à partir de l'ADN d'un seul individu 
diploïde. Cette première étude se limite à un modèle simple de population non structurée avec un changement 
de taille et à un modèle considérant une population de taille constante mais structurée. Cette nouvelle méthode 
utilise la distribution des temps de coalescence de deux gènes pour identifier le modèle le plus probable et ouvre
ainsi la voie pour de nouvelles méthodes de sélection de modèles structurés et non structurés, à partir de 
données génomiques issues d'un seul individu. Deuxièmement, nous montrons, par une ré-interprétation du 
taux de coalescence que, pour n'importe quel scénario structuré, et plus généralement n'importe quel modèle, il 
existe toujours un scénario considérant une population panmictique avec une fonction précise de changements 
de taille dont la distribution des temps de coalescence de deux gènes est identique a celle du scénario structuré.
Cela non seulement explique pourquoi les méthodes d'inférence démographique détectent souvent des 
changements de taille n'ayant peut-être jamais eu lieu, mais permet aussi de prédire les changements de taille 
qui seront reconstruits lorsque des méthodes basées sur l'hypothèse de panmixie sont appliquées à des 
données issues de scénarios plus complexes. Finalement, une nouvelle approche basée sur un processus de 
Markov est développée et permet de caractériser la distribution du temps de coalescence de deux gènes dans 
une population structurée soumise à des événements démographiques tel que changement de flux de gènes et 
changements de taille. Une discussion est menée afin de décrire comment cette méthode donne la possibilité de
reconstruire l'histoire démographique à partir de données génomiques tout en considérant la structure.

MOTS-CLEFS : génétique des populations, théorie de la coalescence, temps de coalescence, histoire 
démographique, chaîne de Markov, estimation par maximum de vraisemblance.
 
ABSTRACT: The rapid development of DNA sequencing technologies is expanding the horizons of population 
genetic studies. It is expected that genomic data will increase our ability to reconstruct the history of populations.
While this increase in genetic information will likely help biologists and anthropologists to reconstruct the 
demographic history of populations, it also poses big challenges. In some cases, simplicity of the model may 
lead to erroneous conclusions about the population under study. Recent works have shown that DNA patterns 
expected in individuals coming from structured populations correspond with those of unstructured populations 
with changes in size through time. As a consequence it is often difficult to determine whether demographic 
events such as expansions or contractions (bottlenecks) inferred from genetic data are real or due to the fact 
that populations are structured in nature. Moreover, almost no inferential method allowing to reconstruct past 
demographic size changes takes into account structure effects. 
In this thesis, some recent results in population genetics are presented: (i) a model choice procedure is 
proposed to distinguish one simple scenario of population size change from one of structured population, based 
on the coalescence times of two genes, showing that for these simple cases, it is possible to distinguish both 
models using genetic information form one single individual; (ii) by using the notion of instantaneous coalescent 
rate, it is demonstrated that for any scenario of structured population or any other one, regardless how complex 
it could be, there always exists a panmitic scenario with a precise function of population size changes having 
exactly the same distribution for the coalescence times of two genes. This not only explains why spurious signals
of bottlenecks can be found in structured populations but also predicts the demographic history that actual 
inference methods are likely to reconstruct when applied to non panmitic populations. Finally, (iii) a method 
based on a Markov process is developed for inferring past demographic events taking the structure into account.
This is method uses the distribution of coalescence times of two genes to detect past demographic changes in 
structured populations from the DNA of one single individual. Some applications of the model to genomic data 
are discussed. 
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