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Quelques mots de français

Ce chapitre consiste en une traduction littérale de l’introduction vers le français.

Quelques mots sur la coloration de graphes

Cette thèse explore des questions qui s’inscrivent dans le cadre de la théorie des graphes :
on s’intéresse à des propriétés structurelles (planarité, faible densité, sous-graphes in-
terdits) qui permettent de partitionner les éléments du graphe en peu d’ensembles
sans interaction interne (par exemple la partition de sommets en ensembles indépen-
dants, la partition d’arêtes en couplace, etc). Il y a deux dimensions à cette thèse : les
problèmes qu’on étudie, et la méthode principale que l’on utilise pour les résoudre.
Les problèmes de partition de graphe sont habituellement présentés en termes de col-
orations, où chaque ensemble de la partition se voit attribuer une couleur, et où les
contraintes sont traduites dans ce cadre (par exemple deuw sommets adjacents ne
doivent pas être coloriés pareil).

Les premiers résultats de coloration de graphe concernent principalement les
graphes planaires, en terme de coloration de cartes. En essayant de colorier une
carte des comtés d’Angleterre, Guthrie remarqua en 1852 que quatre couleurs suffi-
saient pour colorier cette carte de façon à ce que deux régions partageant une frontière
reçoivent des couleurs différentes. Cela devint la Conjecture des Quatre Couleurs :
tout graphe planaire est 4-coloriable (implicitement, de façon à ce que deux régions
partageant une frontière reçoivent des couleurs différentes). En effet, le graphe obtenu
en représentant chaque région avec un sommet et chaque frontière avec une arête entre
les deux régions incidentes est planaire - en supposant qu’aucune région n’est séparée
en deux morceaux ou plus. Réciproquement, tout graphe planaire correspond à une
certaine carte : il y a une dualité entre cartes et graphes planaires.

Dans une tentative de s’approcher de cette conjecture, Wernicke prouva en 1905
un lemme structurel sur les graphes planaires. Dans ce but, il mit au point un outil
pour prouver ce lemme par contradiction. En supposant qu’un contre-exemple ex-
iste, l’objectif est de montrer qu’un plongement planaire de ce contre-exemple ne peut
satisfaire ce qu’on appelle la formule d’Euler, que tout plongement planaire satisfait.
Dans ce but, il suffit de montrer qu’il y a au moins autant d’arêtes que de sommets et
de faces. L’idée était d’attribuer en conséquence des poids dans le plongement (c’est
à dire qu’on attribue un poids de 1 à chaque arête, et un poids de −1 à chaque som-
met ou face), et de prouver qu’en définissant des règles pour redistribuer localement
les poids dans le graphe (à poids total constant), on peut garantir que chaque élé-
ment (sommet, arête, face) a un poids positif. On peut immédiatement conclure : il
y donc au moins autant d’arêtes que de sommets et de faces. Par conséquent, à par-
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tir d’arguments locaux on peut extraire une information globale. C’était là le premier
exemple d’une méthode de déchargement3

Bien que très simple, la méthode de déchargement s’est montrée décisive pour
le Théorème des Quatre Couleurs, finalement prouvé en 1976 par Appel et Haken.
En réalité, elle s’est montrée extrêmement puissante dans certains contextes, en par-
ticulier lorsqu’il s’agit de problèmes de coloration dans des graphes avec une forte
information structurelle (par exemple les graphes planaires ou plus généralement les
graphes peu denses). Par conséquent, de nombreuses variations et astuces sont désor-
mais venues enrichir la version de 1905.

Cependant, l’étude de la coloration de graphes a cessé depuis longtemps d’être
restreinte au cadre étroit des graphes planaires. Dans l’ensemble des graphes, la ques-
tion n’est plus de savoir si quatre couleurs suffisent. En effet, on peut considérer un
graphe consistant en un nombre arbitraire de sommets tous adjacents les uns aux
autres ; il aura besoin d’autant de couleurs qu’il contient de sommets. Pour cette
raison, les seules bornes que l’on peut espérer dans le cas général seront fonctions
d’autres paramètres. La première borne évidente pour le nombre de couleurs néces-
saires (ce à quoi on fera désormais référence en termes de nombre chromatique, dénoté
habituellement χ) est le nombre de sommets dans le graphe ; peu importent les adja-
cences dans le graphe, en coloriant chaque sommet différemment, on s’assure d’éviter
que deux sommets adjacents aient la même couleur. Un algorithme naïf pour colorier
le graphe est de choisir itérativement un sommet non colorié, de le colorier différem-
ment de tous ses voisins déjà coloriés (en évitant si possible d’utiliser une nouvelle
couleur), et ce jusqu’à ce que tous les sommets soient coloriés. Par conséquent, si tout
sommet est adjacent à au plus, disons, 99 sommets, alors on sait immédiatement que
le nombre chromatique est au plus 100. Pour un meilleur algorithme de coloration, on
peut prendre soin de choisir un bon ordre sur les sommets. Par exemple, supposons
que tout sommet a au plus 99 voisins, mais que l’un d’entre eux a au plus 98 voisins.
Alors, si le graphe est connexe (c’est à dire en un seul morceau : on peut aller de
n’importe quel sommet à n’importe quel autre en suivant les arêtes), on peut traiter
les sommets par distance décroissante au sommet spécial (en tranchant arbitrairement
en cas d’égalité). Tous les sommets sauf le dernier ont au moins un voisin non colorié
lorsqu’ils sont traités, donc il y a au plus 98 choix de couleurs à éviter pour chaque. Dès
lors, on sait que le graphe est en réalité 99-coloriable, et pas seulement 100-coloriable.
En réalité, indépendamment de s’il y a un sommet de plus petit degré, on peut obtenir
la même conclusion pour tous les graphes connexes à n (n ≥ 2) sommets sauf un (si n
est pair) ou deux (si n est impair).

Ceci peut être exprimé de façon plus formelle. Le degré maximum d’un graphe
G, que l’on note ∆(G), est le nombre maximum de voisins qu’un sommet peut avoir.
On sait de par l’algorithme naïf que (∆(G) + 1) couleurs suffisent pour tout graphe
G, et ceci peut être amélioré la plupart du temps : tout graphe connexe G est ∆(G)-
coloriable à moins que G soit une clique ou un cycle impair.

On peut définir une extension de la coloration de sommets, où au lieu d’avoir les
mêmes k couleurs disponibles pour tout le graphe, chaque sommet a son propre en-
semble de k couleurs et doit être colorié avec l’une d’entre elles. Étant donné une
attribution de listes L de k couleurs à chaque sommet du graphe, on dit que le graphe

3Il semble que le nom provienne effectivement d’un parallèle avec les réseaux électriques [Hay77].
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est L-coloriable s’il y a une coloration propre telle que tout sommet est colorié depuis
sa liste attribuée. Si le graphe est L-coloriable pour toute telle attribution, alors on dit
que le graphe est k-choisissable. De façon peut-être contre-intuitive, il n’est pas plus
facile de colorier un graphe où les couleurs disponibles pour des sommets voisins
peuvent différer (voir la Figure 0.1).

{3, 4}{1, 2}

{1, 3} {1, 4} {2, 3} {2, 4}
Figure 0.1: Un exemple de graphe 2-coloriable qui n’est pas 2-choisissable.

L’exemple de la Figure 0.1 peut en réalité être généralisé de façon à montrer que
pour tout k, un graphe 2-coloriable n’est pas nécessairement k-choisissable. Cepen-
dant, il y a effectivement des graphes pour lesquels calculer le nombre chromatique
par liste est aisé. Par exemple, tous les cycles pairs sont 2-choisissables.

D’autres variations de colorations peuvent être introduites. Par exemple, on peut
essayer de colorier les sommets avec la contrainte supplémentaire que deux sommets
avec un voisin commun ne doivent pas recevoir la même couleur. C’est alors une
coloration de carré, et le nombre chromatique correspondant est noté χ2. De façon simi-
laire, on peut essayer de colorier les arêtes du graphe, en lieu et place de ses sommets,
avec la condition que deux arêtes incidentes à un même sommet doivent recevoir des
couleurs différentes. C’est alors une coloration d’arêtes. Ces deux colorations peuvent
être naturellement étendues aux listes. Dans cette thèse, nous cherchons des condi-
tions suffisantes pour que des graphes soient coloriés au carré ou que leurs arêtes
soient coloriées par liste avec peu de couleurs.

Vue d’ensemble

Le Chapitre 1 contient une introduction progressive aux graphes et à la coloration,
des définitions et notations impliquées dans cette thèse , ainsi qu’une brève présenta-
tion de la méthode de déchargement. Cette thèse suit trois axes principaux. Dans le
Chapitre 2, on donne un aperçu illustré des outils de déchargement qui sont utilisés
dans ces travaux : des méthodes élégantes que nous appliquons, et des astuces pra-
tiques que nous développons. On essaye en particulier de donner une intution des
méthodes de déchargement dites globales. Dans ce but, on considère une coloration
exotique, à savoir la "coloration d’arêtes voisin-distinguante", où l’on recherche une
coloration d’arêtes propre, avec la condition supplémentaire que deux voisins ne
doivent pas être incidents au même ensemble de couleurs. En plus de son histoire
propre, cette coloration présente la caractéristique intéressante de bien se comporter
par rapport à toutes les méthodes et outils désirés, ce qui en fait un candidat naturel
pour l’illustration.
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On traite ensuite de deux cas particulier ; la coloration d’arêtes par liste (Chapitre 3)
et la coloration de carré (Chapitre 4). Dans le cadre de la coloration d’arêtes par liste,
on prouve notamment que la List Coloring Conjecture faible est vraie pour les graphes
planaires de degré maximum 8 (c’est-à-dire qu’ils sont arête 9-choisissables), ce qui
améliore un résultat de Borodin de 1990. Bien que la preuve complète soit longue de
24 pages, par rapport à seulement deux dans le cas de degré maximum au moins 9,
elle repose sur une seule idée décisive, qui consiste en un argument de recoloration
pour contourner les problèmes de réduction.

Dans le cas de la coloration de carré, l’objectif est de colorier le carré du graphe, ou,
de façon équivalente, de colorier à distance 2 le graphe : on recherche une coloration
propre des sommets qui satisfait la condition supplémentaire que deux sommets avec
un voisin commun ne peuvent recevoir la même couleur. La maille est la longueur
d’un plus petit cycle dans le graphe. On s’intéresse principalement aux conditions
suffisantes sur la densité d’un graphe pour qu’il soit coloriable avec le nombre min-
imum de couleurs, ou presque. On généralise la plupart des résultats existants sur
les graphes planaires de maille donnée en remplaçant la condition sur la maille par
une condition plus générale sur le degré moyen maximum (mad) et en abandonnant
l’hypothèse de planarité.

De plus, le fait que la maille soit un paramètre discret contrairement au mad signi-
fie qu’on peut obtenir une information plus fine avec le mad. En particulier, on sait que
le carré des graphes planaires de maille au moins 7 et de degré maximum suffisam-
ment grand peut être colorié avec le nombre minimum de couleurs, alors que cela
peut être faux pour le carré de graphes planaires de maille 6. Les graphes planaires
de maille au moins 6 ont un mad strictement inférieur à 3. À l’aide d’un argument
de déchargement global, on peut en réalité prouver que l’hypothèse de planarité est,
une fois de plus, superflue, et que cette propriété est en fait vraie dès lors que le degré
maximum est suffisamment grand par rapport à la différence entre 3 et le mad.
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Introduction

A few words on graph coloring

This thesis explores subjects in the field of graph theory: it studies structural properties
(planarity, sparsity, forbidden subgraphs) that help partition elements of the graph
into few sets with no interaction within (e.g. vertex partition into stable sets, edge
partition into matchings, etc). There are two dimensions to this thesis: the problems
we study, and the main method that we use to solve them. Partition problems in graph
are usually discussed in terms of colorings, where each set in the partition is assigned
a color, and the constraints are translated in that setting (e.g. two adjacent vertices
should not be colored the same).

The first results about graph coloring deal mainly with planar graphs in the form of
the coloring of maps. While trying to color a map of the counties of England, Guthrie
noted in 1852 that four colors were sufficient to color the map so that no regions shar-
ing a common border received the same color. It became known as the Four Color
Conjecture, that every planar graph is 4-colorable (implicitely: so that no two adjacent
vertices receive the same color). Indeed, the graph obtained by representing each re-
gion with a vertex and each border with an edge between the two incident regions is
planar - assuming no region is split in two parts or more. Reciprocally, every planar
graph corresponds to some map: there is a duality between maps and planar graphs.

In an attempt to get closer to the conjecture, Wernicke proved in 1905 a structural
lemma on planar graphs. For this purpose, he introduced a tool to prove the lemma
by contradiction. Assuming a counter-example exists, the goal is to prove that a pla-
nar embedding of this graph cannot satisfy the so-called Euler’s formula, which every
planar embedding satisfies. To that purpose, it suffices to prove that there are at least
as many edges as there are vertices and faces. The idea was to assign weights accord-
ingly in the embedding (that is, we assign a weight of 1 for every edge, −1 for every
vertex and face), and prove that by defining rules to redistribute the weight locally
in the graph (with constant total weight), we can ensure that every element (vertex,
edge, face) has a non-negative weight. The conclusion immediately follows: there are
at least as many edges as there are vertices and faces. Consequently, from local count-
ing arguments we can derive a global fact. This was the first example of a discharging
method4. Albeit very simple, the discharging method proved to be decisive toward
the Four Color Theorem, eventually proved in 1976 by Appel and Haken. In fact, it
proved itself extremely powerful in some settings, particularly when it comes to col-
oring problems in graphs with strong structural information (e.g. planar graphs or

4Apparently the name does indeed stem from a comparison with electrical networks [Hay77].
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more generally sparse graphs). Consequently, many variations and tricks have now
enriched the 1905 version.

The study of graph coloring has however long stopped being restricted to the nar-
row field of planar graphs. In the class of all graphs, the question is no longer whether
four colors suffice. Indeed, we can consider a graph made of any amount of vertices all
adjacent to each other: it will need just as many colors as it has vertices. Therefore, the
only bounds we can hope for in the case of general graphs will be functions of other
parameters. The first obvious bound for the number of colors required (which we will
refer to from now as the chromatic number, usually denoted by χ) is the number of ver-
tices in the graph: no matter the adjacencies in the graph, by coloring each vertex in a
different color, we ensure that no two adjacent vertices will receive the same color. A
naive algorithm to color the graph is to pick any vertex, color it differently from all its
already colored neighbors (avoiding to introduce a new color if possible), and repeat
until the whole graph is colored. Consequently, if no vertex is adjacent to more than,
say, 99 vertices, then we immediately know that its chromatic number is at most 100.
For a better coloring algorithm, we can choose a good order on the vertices. For ex-
ample, assume that no vertex is adjacent to more than 99 neighbors, but we know that
there is one which is adjacent to at most 98. Then, if the graph is connected (i.e. in one
piece: we can go from any vertex to any other) then we can pick vertices by decreasing
distance to that special vertex (breaking ties arbitrarily). All vertices except for the last
one have a neighbor which is not colored yet, so at most 98 colors to avoid. Therefore,
we know that the graph is actually 99-colorable, and not merely 100-colorable. In fact,
regardless of whether there is a vertex of smaller degree, we can reach the same con-
clusion for every connected graph on n (n ≥ 2) vertices except for one (if n is even) or
two (if n is odd).

We can express it more formally as follows. The maximum degree of a graph G,
denoted ∆(G), is the maximum number of neighbors a vertex can have. We know
from the naive algorithm that (∆(G) + 1) colors suffice for every graph G, and this can
be improved most of the time: every graph G is ∆(G)-colorable unless G is a clique or
an odd cycle.

We can define an extension of vertex coloring, where instead of having the same k
colors available for the whole graph, every vertex has its own set of k colors and has
to be colored from it. Given a list assignment L of k colors to each vertex of the graph,
we say that the graph is L-colorable if there is a proper coloring such that every vertex
is colored from its assigned list. If the graph is L-colorable for every such assignment,
then we say the graph is k-choosable.Perhaps counter-intuitively, it is not easier to color
a graph where the colors available for neighbors may be different (see Figure 0.2).

{3, 4}{1, 2}

{1, 3} {1, 4} {2, 3} {2, 4}
Figure 0.2: An example of a 2-colorable graph which is not 2-choosable.
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The example of Figure 0.2 can in fact be generalized so as to show that for every k,
a 2-colorable graph may not be k-choosable. However, there are indeed some graphs
for which computing the list chromatic number is easy. For example, all even cycles
are 2-choosable.

Other coloring variants can be introduced. For example, we can try to color the
vertices with the additional constraint that two vertices with a common neighbor may
not receive the same color. This is a square coloring, and the corresponding chromatic
number is denoted by χ2. Similarly, we can try to color the edges of the graph, instead
of the vertices, with the condition that two edges incident to a same vertex must re-
ceive different colors. This is an edge coloring. Both colorings can naturally be extended
to lists. In this thesis, we seek sufficient conditions for graphs to be square colored or
list edge colored with few colors.

Global picture

Chapter 1 contains a gentle introduction to graphs and colorings, some definitions
and notation involved in this thesis, as well as a brief presentation of the discharging
method. This PhD thesis follows three main axes. In Chapter 2, we give an illustrated
overview of the discharging tools that are used for this work: nice methods that we
apply, and handy tricks that we develop. We try in particular to give an intuition of
global discharging arguments. For that purpose, we consider an exotic kind of color-
ing, namely "adjacent vertex distinguishing edge coloring", where we seek a proper
edge coloring with the extra property that no two neighbors are incident with the
same set of colors. Beside its own history, the interesting characteristic of that coloring
is that it behaves nicely with regard to all desired methods and tools, which makes it
a natural candidate for illustration.

We then discuss two special cases: list edge coloring (Chapter 3) and square color-
ing (Chapter 4). In the realm of list edge coloring, we most notably prove that the weak
List Coloring Conjecture is true for planar graphs of maximum degree 8 (i.e. that they
are edge 9-choosable), thus improving over a result of Borodin from 1990. Though the
full proof is 24 pages long, compared to a lean two to solve the case of maximum de-
gree at least 9, it rests upon a single decisive idea, which lies in a recoloring argument
to get around reducibility problems.

In the case of square coloring, the goal is to color the square of the graph, or, equiv-
alently, to 2-distance color the graph: we look for a proper coloring of a graph that
satisfies the additional condition that the same color cannot be assigned to two ver-
tices with a common neighbor. We are mainly interested in sufficient conditions on
the sparsity of a graph for it to be colorable with the minimum number of colors or
close to it. We generalize most of the existing results on planar graphs with given
girth by supplanting the condition on the girth with a more general condition on the
maximum average degree (mad) and dropping the planarity hypothesis.

Also, the fact that the girth is a discrete parameter contrary to the mad means that
we can obtain more refined information with mad. In particular, it was known that the
square of planar graphs with girth at least 7 and sufficiently large maximum degree
can be colored with the minimum number of colors, while this can be false for squares
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of planar graphs with girth 6. It holds that all planar graphs with girth at least 6
have mad less than 3. With a global discharging argument, we can actually prove that
planarity is, again, unnecessary, and that this property is in fact true as soon as the
maximum degree is sufficiently larger than a function of the gap between 3 and the
mad.
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Chapter 1

Preliminaries

In this chapter, we recall all the definitions and notation used in the thesis. Section 1.1
contains an illustrated introduction to the notions of graphs and colorings. Section 1.2
contains the additional definitions needed, presented in a colder way. In Section 1.3,
we briefly introduce the idea of a discharging argument.

1.1 Basic introduction to graphs and coloring

Graphs

Informally, a graph is a set of points, with lines connecting some pairs of them (see
Figure 1.1).

Figure 1.1: This is a graph.

We refer to the points as vertices, and to the lines as edges. There cannot be two
edges connecting the same pair of two vertices (see Figure 1.2a), nor can there be an
edge connecting a vertex to itself (see Figure 1.2b).

(a) (b)

Figure 1.2: These are not graphs.
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Let us formalize the previous notions. For any set X , we denote by
(
X
2

)
the set of

2-element subsets of X .

Definition 1.1. A graph G is an ordered pair (V,E) of finite sets, with E ⊆
(
V
2

)
. The set V

is the set of vertices and E the set of edges.

Note that E induces a symmetric and irreflexive binary relation over V , the adja-
cency relation. Given an edge e, since e ∈

(
V
2

)
there are two distinct vertices x, y such

that e = {x, y}, which we refer to as the endpoints of e. By abuse of notation, given an
edge e with endpoints x and y, we write equivalently e = (x, y) or e = (y, x) instead of
e = {x, y}. If two vertices x, y are adjacent, we say that y is a neighbor of x, and that the
edge (x, y) is incident to x and to y. Given a vertex x, we define its degree d(x) to be its
number of neighbors.

Given a graph G = (V,E) and a subset X ⊆ V of vertices, we can define the
subgraph induced by X in G, denoted by G[X], as the graph G′ = (X,E ′) with E ′ =
E ∩

(
X
2

)
. More generally, we say a graph H is an induced subgraph of G if it is the

subgraph induced in G by some subset of vertices (see Figure 1.3). Very informally,
it corresponds to erasing from the pictures all vertices in V \ X and thus all incident
edges too.

(a) (b)

Figure 1.3: The graph on the left is an induced subgraph of the graph in Figure 1.1,
while the one on the right is not.

We can relax a bit the definition of induced subgraphs. Given a graph G = (V,E),
H = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E ∩

(
V ′

2

)
(see Figure 1.4). Very

informally, a subgraph is what we can obtain by erasing from the picture some vertices
and their incident edges, and/or some edges. We denote this property by H ⊆ G. We
say that H is a proper subgraph of G if H is not G itself.

(a) (b)

Figure 1.4: The graph on the left is a subgraph of the graph in Figure 1.1, while the one
on the right is not.

Given a graph G = (V,E), let R∗ be the transitive closure of the adjacency relation
in G. If R∗ is total (i.e. for every two vertices x, y ∈ V , we have xR∗y), then we say
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the graph G is connected. Less formally, given two vertices u, v ∈ V , we say that there
is a path between u and v if there is a sequence (u = w0, w1, . . . , wp = v) of vertices
such that each wi is adjacent to wi+1. The graph G is connected if there is path between
any two vertices in V . In other words, the graph is in one piece, i.e. if we build
a physical representation of the graph where vertices are wooden rings with actual
strings between neighbors, then it suffices to take hold of just one ring for the whole
set of rings to follow. Not all graphs are connected, so we say that an induced subgraph
H of G is a connected component of G if it is a maximal connected induced subgraph of
G. Note that the decomposition of G into connected components is unique. We denote
#cc(G) the number of connected components of G.

We draw a graph on paper by placing each vertex at a point and representing each
edge by a curve joining the locations of its endpoints (see Figure 1.1). The way the
vertices and edges are drawn are considered irrelevant: all that matters is the number
of vertices and the adjacency relation between them.

However, the way the graph can be drawn is not irrelevant. We say that two graphs
are isomorphic if they can be drawn in the same way. More formally, two graphs are
isomorphic if there exists a bijection between their respective sets of vertices that pre-
serves the adjacency relation. In this work, we do not make a distinction between two
isomorphic graphs. In particular, any drawing of a graph is enough to reconstruct the
graph itself.

Sparse graphs

A planar embedding of a graph is a drawing of it such that no two edges cross. Since
no two edges cross, in a planar embedding of a connected graph, the plane is thus
divided into regions delimited by an alternating sequence of vertices and edges. In
other words, for every point M in the plane that stays clear of the points/vertices
and of the curves/edges, if there are at least 3 vertices in the graph, there exists some
p ≥ 3 such that the region of the plane to which M belongs is delimited by some
(v1, e1, v2, . . . , vp, ep) such that each ei corresponds to (vi, vi+1) (indices taken modulo
p). Since we consider E as a set of unordered pairs of vertices, some of the information
here is unnecessary. It suffices to say that the region of the plane to whichM belongs is
delimited by (v1, v2, . . . , vp). This is a face of the planar embedding. Therefore, a planar
embedding can be defined as the triple (V,E, F ), where F is the set of faces.

Definition 1.2. A planar graph is a graph that admits a planar embedding, i.e. can be drawn
on the plane so that no two edges cross.

In fact, we know that a planar graph admits in particular a planar embedding
where every edge is drawn straight [Fáry48]. The graph depicted in Figure 1.5 is
planar, because it is isomorphic to the graph in Figure 1.1 and thus admits a planar
embedding.

Not all graphs are planar. For example, the graph K5 on five vertices with all
possible edges between them is not planar (see Figure 1.6). A graph on n vertices with
all possible edges between them is called a complete graph, and is referred to as Kn.

The embedding presented in Figure 1.6 is only one possible embedding of the
graph: how can we argue that not a single embedding of the graph K5 is planar?
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Figure 1.5: A non-planar embedding of a planar graph.

Figure 1.6: A non-planar graph.

A first partial answer is linked to the properties of a planar embedding.

Lemma 1.1 (Euler’s formula). For every planar embeddingM = (V,E, F ) of a connected
graph, it holds that

|V | − |E|+ |F | = 2

If the embedded graph G = (V,E) is not connected, we plug in the number of con-
nected components as |V | − |E| + |F | = 1 + #cc(G). However, when trying to decide
whether a graph is planar, it suffices to consider each connected component indepen-
dently. The same will go for all problems we study in this thesis, so the connected
case, as presented in Lemma 1.1, is enough. There is a straightforward proof of the
formula by recurrence, but we present later in this chapter a proof using a discharging
argument (see Section 1.3).

We will use Lemma 1.1 to argue that the graph in Figure 1.6 admits no planar
embedding. Assume for contradiction that it does, that there is a planar embedding
M = (V,E, F ) with V = {1, 2, 3, 4, 5} and E =

(
V
2

)
. Then |V | = 5 and |E| =

(
5
2

)
=

10, therefore, by Lemma 1.1, |F | = 7. However, note that in any planar embedding,
each edge belongs to at most two faces, while each face contains at least three edges.
Therefore, |F | ≤ 2|E|

3
< 7, a contradiction. We can similarly argue that the graph K3,3

in Figure 1.7 is not planar either. A graph on n + m vertices with all possible edges
between the n first vertices and the m last ones, and no other edge in the graph, is
called a complete bipartite graph and is referred to as Kn,m.

Figure 1.7: K3,3 is not planar.

In fact, the distinction between planar and non-planar graphs lies precisely in these
two graphs. Contracting an edge (u, v) in a graph G means deleting the edge (u, v) and
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replacing the two vertices u and v with a new vertex w with the same neighbors (i.e. w
is adjacent to a vertex z in the new graph iff u or v was adjacent to z in G). A graph H
is a minor of a graph G if H can be obtained from a subgraph of G by contracting some
edges. This notion of minor helps us characterize planar graphs, as follows.

Theorem 1.2. [Wag37] A graph G is planar iff neither K5 nor K3,3 is a minor of G.

The argument that we used to prove that K5 is not a planar graph can be gener-
alized. Indeed, we argued that for every planar embedding (V,E, F ), it holds that
|F | ≤ 2|E|

3
. If we plug this back in Euler’s formula, we obtain that 2 = |V | − |E|+ |F | ≤

|V |− |E|
3

. Therefore, in every planar graph, 3|V | > |E|. We can reformulate this in terms
of average degree. The average degree of a graph G = (V,E), denoted ad(G), is the sum
of the degrees of its vertices, averaged by the number of vertices. By the so-called
handshake lemma, it is also equal to twice the number of edges over the number of
vertices.

ad(G) =

∑
v∈V

d(v)

|V |
=

2|E|
|V |

Therefore, in a planar graphG, we have ad(G) < 6. However, the average degree is
not a very tell-tale parameter on a graph. Indeed, consider a graph with on one side 10
vertices all adjacent to each other, and on the other side 90 vertices with no neighbor
at all. We know that a subgraph of it has average degree 9 and is thus not planar.
However, the whole graph has average degree 4.5, which does not contradict Euler’s
formula. A better parameter is the maximum average degree, denoted mad(G), which is
the maximum average degree of a subgraph of G.

mad(G) = max
H⊆G

ad(H)

The parameter mad(G) can be efficiently computed by translating the question into
a flow problem on the right graph [Coh10]. Since every subgraph of a planar graph is
itself a planar graph, it holds that mad(G) < 6 for every planar graph. However, by
the fact that mad(K5) = 4, this is not a characterization of planar graphs.

Note that there exist non-planar graphs with mad arbitrarily close to 2 (from above),
as can be seen by considering K5 where edges (u, v) are repeatedly substituted with a
vertex of degree 2 adjacent to both u and v (there are exactly five vertices of degree 4,
and overwhelmingly many vertices of degree 2). However, we can prove that every
graphGwith mad(G) ≤ 2 is planar. Indeed, assume by contradiction that some graphs
with mad ≤ 2 are not planar, and take G = (V,E) to be one with a minimum number
of vertices. Then every proper induced subgraph H of G still satisfies mad(H) ≤ 2,
and has less vertices than G, thus is planar. Consequently, the graph G is connected.
If there is a vertex u in G that is of degree 1, let H = G[V \ {u}], and v the neighbor
of u in G. By assumption, H is planar. Given a planar embedding of H , we can add
u close to v and thus obtain a planar embedding of G, a contradiction. Now, if there
is no vertex of degree 1 in G, since G is connected and non-planar, every vertex must
be of degree at least 2. However, the average degree is at most 2, so every vertex must
be of degree exactly 2. Then G is a cycle, which is a planar graph (see Figure 1.8),
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a contradiction. A cycle is a connected graph where every vertex is of degree 2 (see
Figure 1.8). A cycle can be written as (v1, v2, . . . , vp) (we then denote it Cp) where p is
the length, i.e. the number of vertices in the cycle, and each vi is adjacent exactly to vi−1

and vi+1 (subscripts taken modulo p).

Figure 1.8: The cycle on six vertices.

Consequently, as far as the maximum average degree is concerned, we determined
the best possible sufficient condition for a graph to be planar. Proving anything
stronger without involving any other parameter than the mad would be impossible.
We address similar questions in harder settings along this thesis. However, there is
more to the mad in planar graphs than the above remark that mad(G) < 6 for any
planar graph G.

To argue that K5 is not planar, we introduced the inequality that |F | ≤ 2|E|
3

. How-
ever, this inequality is not enough to argue that K3,3 is not planar either. Here, the
number of vertices is 6, the number of edges is 9, so the number of faces in a poten-
tial planar embedding could be 5 without contradiction. However, we can note that
there are no three vertices in K3,3 all adjacent to each other (i.e. K3,3 contains no tri-
angle). Consequently, in a potential planar embedding every face would contain at
least four edges, thus the previous inequality becomes |F | ≤ |E|

2
, and we can conclude

that K3,3 is not planar. Again, we can plug the inequality back in Euler’s formula, and
say that in any planar embedding (V,E, F ) of a graph with no triangle, we must have
2 = |V | − |E|+ |F | ≤ |V | − |E|

2
. Therefore, in every such planar graph, 2|V | > |E|, and

mad(G) < 4.
More generally, given a graph G, we define its girth g(G) as the length of a smallest

cycle which is a subgraph of G. If no subgraph of G is a cycle, we set g(G) = +∞. The
previous two formulas (when g(G) = 3 or g(G) = 4) can be generalized as Lemma 1.3
when G is planar.

Lemma 1.3 (Folklore). Every planar graph G satisfies (mad(G)− 2)(g(G)− 2) < 4.

Consequently, any planar graph with finite girth g(G) satisfies mad(G) < 2g(G)
g(G)−2

,
and every planar graph with infinite girth satisfies mad(G) < 2. The correspondence
for small girth is presented in Table 1.1.

Vertex coloring

Let us now introduce the notion of coloring. Informally, a coloring of a graph is an
assignment of one color to each vertex such that no two neighbors have the same
color.
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If G is planar and g(G) ≥ 3 4 5 6 7 8 9 10 11 12 13 . . . +∞
Then mad(G) < 6 4 10

3
3 14

5
8
3

18
7

5
2

22
9

12
5

26
11

. . . 2

Table 1.1: Girth/mad correspondence when G is a planar graph.

Definition 1.3. Given a graph G = (V,E) and an integer k, a function c : V → {1, . . . , k}
is a proper k-coloring of G if c(u) 6= c(v) for every edge (u, v).

All along this thesis, we often drop the adjective "proper", as all the colorings we
consider are proper. If a graph admits a k-coloring, we say it is k-colorable. It is easy to
find a coloring of a graph: it suffices to color each vertex in a different way. However,
the question is to minimize the number of colors used on the whole graph, or at least
to bound it reasonably. The chromatic number χ(G) of a graph G is the smallest integer
k such that G admits a k-coloring.

Computing the chromatic number of a graph is an NP-complete problem [GJ79]. In
fact, with no additional information on the input graph, it is even NP-hard to decide
whether a given graph admits a 3-coloring, even for a planar graph where every vertex
has at most 4 neighbors [Dai80]. However, if one is willing to compromise on the
number of colors, it is often possible to efficiently find a coloring with fewer colors than
the total number of vertices in a graph. The compromise has to be generous, for it is
NP-complete even to approximate the chromatic number of a graph within a bounded
factor [Zuc06]. We use the notion of greedy coloring, as follows. Given a graph G =
(V,E) and an ordering O = (x1, . . . , xn) on V , in the greedy coloring of G relative to O,
every xi has the smallest color that does not appear on N(xi) ∩ {x1, . . . , xi−1}.

Let the maximum degree ∆(G) of a graph G be the maximum degree of a vertex
in G. By considering the greedy coloring of G relative to any order, we obtain that
χ(G) ≤ ∆(G) + 1. This bound is obviously reached for complete graphs (for any n, we
have χ(Kn) = n and ∆(Kn) = n− 1), but also for odd cycles (see Figure 1.9).

3

1
2

1
2

Figure 1.9: The cycle on five vertices, C5, satisfies ∆(C5) = 2 and χ(C5) = 3.

In fact, we can prove that these are the only two cases where the bound is tight.

Theorem 1.4 (Brooks’ theorem [Bro41]). Every connected graph G satisfies χ(G) ≤ ∆(G)
unless G is a clique or an odd cycle.

There are many independent proofs of Theorem 1.4, a nice sample of which can be
found in a recent survey by Cranston and Rabern [CR14]. Interestingly, one of them
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involves nothing else than considering a greedy coloring relative to a right order on
the vertices. Given a graph G, the size of a maximum clique of G, denoted ω(G), is the
largest integer p such thatKp is a subgraph ofG (a clique ofG is a subgraph ofGwhich
is a complete graph). Computing a maximum clique in a graph is NP-complete, and
the size of a maximum clique is a lower-bound of the chromatic number. However,
the chromatic number cannot in general be bounded from above by a function of the
size of a maximum clique. In fact, there are graphs with arbitrarily large girth and
arbitrarily large chromatic number [Erd59].

The notion of coloring can be extended. Instead of having the same set of k colors
for the whole graph, we can wonder what happens when each vertex has its own list
of k colors to be colored from. Given a list assignment L : V → P(N), we say a graph
G = (V,E) is L-colorable if there is a coloring c : V → N such that (i) c(u) 6= c(v)
whenever (u, v) is an edge, and (ii) c(u) ∈ L(u) for every vertex u. For any integer k, a
graph G = (V,E) is k-choosable if G is L-colorable for every list assignment L of at least
k colors to each vertex.

Again, we try to minimize the number of colors used in each list. The choice number
χ`(G) of a graph G is the smallest integer k such that G is k-choosable.

A k-choosable graph is L-colorable for any list assignment of k colors to each ver-
tex, so it is in particular k-colorable. Any graph is L-colorable for every list assignment
L of disjoint non-empty sets of colors to each vertex. Therefore, it might be tempting
to believe that the hardest case is when all the lists are the same and there is the most
possible conflicts between neighbors. In other words, that every k-colorable graph
is necessarily k-choosable too. However, the hardest case is in between, as K2,4 is
2-colorable (each side gets one color) but not 2-choosable (see Figure 1.10).

{3, 4}{1, 2}

{1, 3} {1, 4} {2, 3} {2, 4}
Figure 1.10: An example of a 2-colorable graph which is not 2-choosable.

In fact, we can generalize the example of K2,4 by considering any Kn,nn , which is a
2-colorable but not n-choosable graph. Therefore, the parameter χ`(G) − χ(G) can be
arbitrarily large, as stated in Theorem 1.5.

Theorem 1.5 (Folklore). The parameter χ` − χ is not bounded on the class of all graphs.

There are also positive results to obtain. Theorem 1.4 still holds in the case of list
coloring.

Theorem 1.6 ([Viz76]). Every graph G satisfies χ`(G) ≤ ∆(G) unless G is a clique or an
odd cycle.

As a direct corollary of Theorem 1.6, even cycles are 2-choosable, which will actu-
ally be a useful fact all along this thesis.
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Lemma 1.7 (Folklore). Even cycles are 2-choosable.

The above result can be strongly generalized, as was done by Erdős et al. [ERT79]:

Lemma 1.8 ([ERT79]). If G is a 2-connected graph that is neither a clique nor an odd cycle,
and L is a list assignment on the vertices of G such that ∀u ∈ V (G), |L(u)| ≥ d(u), then G is
L-colorable.

In this thesis, we are interested in positive results where the choice number is the
same as, or not much bigger than, the chromatic number. We consider in particular
two coloring variants.

Edge coloring

The first variant consists in coloring edges instead of vertices. Given a graph G =
(V,E) and an integer k, a function c : E → {1, . . . , k} is an edge k-coloring of G if
c(u, v) 6= c(v, w) for every two incident edges (u, v) and (v, w). Again, we try to mini-
mize the number of colors used. The chromatic index χ′(G) of a graph G is the smallest
integer k such that G admits an edge k-coloring.

Note that χ′(G) ≥ ∆(G), as the edges incident to a vertex of degree d need to receive
d different colors. Note also that χ′(G) ≤ 2∆(G)−1, as no edge is incident to more than
2∆(G) − 2 other edges. As a direct consequence, the inapproximability result about
vertex coloring (that approximating the chromatic number within a constant factor is
NP-hard) cannot be translated to edge coloring. A much stronger result actually holds:

Theorem 1.9 (Vizing’s theorem [Viz64]). Every graph G satisfies χ′(G) ∈
{∆(G),∆(G) + 1}.

The proof that χ′(G) ≤ ∆(G) + 1 is constructive, and we can thus easily edge color
any graph with just one more color than is optimal. However, it is still NP-complete
to decide whether χ′(G) = ∆(G) (G is said to be Class 1) or χ′(G) = ∆(G) + 1 (G is said
to be Class 2) [Hol81].

We define the list extension of edge coloring similarly as the list extension of vertex
coloring. Given a list assignment L : E → P(N), we say a graph G = (V,E) is edge
L-colorable if there is a coloring c : E → N such that (i) c(u, v) 6= c(v, w) whenever (u, v)
and (v, w) are edges, and (ii) c(u, v) ∈ L(u, v) for every edge (u, v). For any integer k,
a graph G = (V,E) is edge k-choosable if G is edge L-colorable for every list assignment
L of at least k colors to each edge. The choice index χ′`(G) of a graph G is the smallest
integer such that G is edge k-choosable.

Note that the previous trivial bounds still hold here: every graph G satisfies
∆(G) ≤ χ′`(G) ≤ 2∆(G) − 1 (see Section 3.1 for more information). We finish by
stating here a theorem on the list edge coloring of multigraphs which will also be put
in context in Section 3.1, but which will prove useful in all the other chapters. A graph
with no odd cycle is a bipartite graph. A multigraph is a graph where there may have
more than one edge between two vertices, and there may be an edge whose two end-
points are the same (that is, a loop). The two drawings in Figure 1.2 are not graphs, but
are multigraphs. Most definitions have a natural extension to multigraphs. A bipartite
multigraph is a multigraph with no loop, such that the underlying graph is bipartite.
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Theorem 1.10. [BKW97] For every bipartite multigraph G = (V,E) and every edge list
assignment L : E → P(N) such that |L(u, v)| ≥ max(d(u), d(v)), the multigraph G is edge
L-colorable.

Square coloring

The second variant consists in coloring the square of the graph, i.e. properly coloring
the vertices with the extra condition that two vertices with a common neighbor must
receive different colors. Given a graph G = (V,E) and an integer k, a function c : V →
{1, . . . , k} is a square k-coloring of G if c(u) 6= c(v) for every edge (u, v) and c(u) 6= c(v)
for every two vertices u, v with a common neighbor. We denote by χ2(G) the smallest
integer k such that G admits a square k-coloring.

Note that χ2(G) ≥ ∆(G)+1, as the vertices adjacent to a vertex u of degree d need to
receive pairwise different colors (they have a common neighbor), each different from
the color received by u (they are all adjacent to u), which makes for d + 1 different
colors on u and its neighborhood. Note also that χ2(G) ≤ ∆(G)2 + 1, as each vertex
has at most ∆(G) neighbors, each of which has at most ∆(G)− 1 other neighbors.

The list extension goes with no surprise. Given a list assignment L : V → P(N),
we say a graph G = (V,E) is square L-colorable if there is a coloring c : V → N such
that (i) c(u) 6= c(v) whenever (u, v) is an edge, (ii) c(u) 6= c(v) whenever u and v have a
common neighbor, and (iii) c(u) ∈ L(u) for every vertex u. For any integer k, a graph
G = (V,E) is square k-choosable if G is square L-colorable for every list assignment L of
at least k colors to each vertex. We denote by χ2

`(G) of a graph G the smallest integer
such that G is square k-choosable.

The term "2-distance" can also be used instead of "square" in the above definitions.
We investigate more deeply this notion in Section 4.1.

1.2 Definitions and notation
We introduce the additional definitions and notation needed in this thesis. We split
them in two parts: first the standard notions, and then the more specific ones.

Standard notions

Let us first extend a bit our basic notions, so as to make it a bit easier to manipulate
graphs. We drop subscripts when there is no ambiguity about the graph considered.

Given a graph G = (V,E), a vertex v ∈ V and a set A ⊆ V , the neighborhood of A,
denoted by NG(A), is the set of vertices of V \ A adjacent to a vertex of A. The degree
of v in the subset A, denoted by dA(v) is its number of neighbors in G that belong to
A. The latter case is an abuse of notation, which requires that there is no ambiguity
about the graph considered. The notion of adjacency, incidency, and neighbors can
be naturally extended to multigraphs. The degree of v in a multigraph G = (V,E, µ),
denoted by dG(v) is its number of incident edges (loops are counted twice).

We now consider how two vertices relate in a graph. We denote Pp+1 the graph on
p+ 1 vertices which contains a path of length p and no other edge. Given two vertices
v, w ∈ V , the distance between v and w, denoted by d(v, w), is the length of a shortest
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path between them. The diameter of G, denoted by diam(G), is the maximum distance
between two vertices in G (which is infinite if some pair is such that there is no path
between them).

Let us now look at selected parts of graph. Given two sets V ′ ⊆ V and E ′ ⊆ E, we
define G \ (V ′ ∪ E ′) (the graph G where the elements of V ′ and E ′ have been deleted),
as the subgraph of G obtained from G[V \ V ′] = (V ′′, E ′′) by considering (V ′′, E ′′ \E ′).
A connected graph G is 2-connected for every u ∈ V , the graph G \ {u} is connected.

We look into the number of neighbors of each vertex in a graph. Given a graph
G = (V,E), we define the minimum degree of G, denoted by δ(G), as the minimum
degree of a vertex in G. Given an integer d, the graph G is d-regular if ∆(G) = δ(G),
i.e. every vertex in G is of degree d. The graph G is d-degenerate if every subgraph H of
G satisfies δ(H) ≤ d (in other words, there is a total order on the vertices of the graph
such that every vertex has at most d neighbors after himself in that order).

We consider cycles in a graph. An odd cycle is a cycle of odd length, and an even
cycle is a cycle of even length. We also call C3 a triangle. Given a graph G = (V,E) and
two cycles C and C ′ in G, we say that C and C ′ are adjacent if they share an edge, and
incident if they share a vertex.

We now go into special graph classes. A forest is a graph with no cycle as a sub-
graph. A tree is a connected forest. A cactus is a graph whose every 2-connected sub-
graph is a cycle. A star is a graph of diameter 2, with no triangle. A subcubic graph is a
graph with no vertex of degree more than 3.

We consider some transformations of a graph. Given a graphG = (V,E), we define
a 1-subdivision of G as the graph obtained from G by replacing some edge (u, v) ∈ E
with a vertex w adjacent only to u and v. We define a subdivision of G as a graph
obtained from G by iteratively (any number of times, from 0 to arbitrarily many) con-
sidering 1-subdivisions of G. We define the square of G, denoted by G2, as the graph
(V,E ′) obtained from G by adding an edge between any two vertices with a common
neighbor in G. More formally, E ′ = E ∪ {(v, w)|∃z ∈ V, (v, z), (w, z) ∈ E}. In other
words, E ′ = {(v, w)|1 ≤ dG(v, w) ≤ 2}. More generally, given an integer k, we define
the kth power of G, denoted by Gk, as the graph (V,E ′) obtained from G by adding
an edge between any two distinct vertices at distance at most k in G. More formally,
E ′ = {(v, w)|1 ≤ dG(v, w) ≤ k}.

We finish with some definitions in the case of a planar embeddingM = (V,E, F ).
A vertex v or an edge e = (v, w) is incident to a face f if v appears on the boundary of
f , or the vertices v and w appear consecutively on the boundary of f , respectively. The
degree of a face, denoted d(f), is the length of the corresponding cycle.

Specific notions

All along this thesis, in the figures, when drawing a part of a graph (or configuration),
we draw in black a vertex that has no other neighbor than the ones already repre-
sented, in white a vertex that might have other neighbors than the ones represented.
Note that the white vertices may coincide with other vertices (black or white), pro-
vided that this does not contradict the existing edges (a white vertex may only coin-
cide with a vertex that is depicted as neither a neighbor nor a neighbor of neighbor).
When there is a label inside a white vertex, it is an indication on the number of neigh-
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bors it has. The label ’i’ means "exactly i neighbors", the label ’i+’ (resp. ’i−’) means
that it has at least (resp. at most) i neighbors. There is a distinction between a black
vertex with i depicted neighbors, and a white vertex with a label ’i’ inside. Examples
of this can be found in Figure 1.11.

2

(a) This configuration appears in C4.

(b) This configuration does not appear in C4.

Figure 1.11: Examples of configurations which appear or do not appear in the cycle on
four vertices C4.

The first definitions are about an approach opposite to that of graph subdivision:
we seek to view paths with all internal vertices of degree 2 as we would a single edge.
In a graph G = (V,E), a chain is a set of vertices of degree 2 that form an induced path.
The length of a chain is its number of vertices. The endpoints of a chain C are the two
vertices in N(C). A chain of p vertices is also referred to as a p-link, whose endpoints
are thus p-linked.

All along this thesis, we consider graph properties whose study can be reduced to
connected graphs. For example, when trying to decide whether a graph is 3-colorable,
it suffices to consider each connected component independently. Therefore, we rarely
even mention connectivity. When we consider a graph, we always assume implic-
itly that it is connected, and if it is not, we implicitly consider each of its connected
components independently.

Given a theorem, a minimal counter-example is a graph that does not satisfy the the-
orem, but such that every smaller graph satisfies it. Unless specified otherwise, a
smaller graph is one with less vertices, or one with as many vertices but less edges. In
other words, the default order on graphs is the lexicographic order on (|V (G)|, |E(G)|).

1.3 What is a discharging argument?
First, we would like to emphasize that there is no formal definition of what a discharg-
ing method is. A discharging proof usually follows this outline:

1. Assume we have a set S of various elements that interact in a given way (it could
be the vertices, edges and faces in some planar embedding, or the n integers from
1 to n, etc), and that we want to compute a function f of S that can be expressed,
for some function ω, as f(S) =

∑
a∈S ω(a).

2. Assign to each element a of S a weight of ω(a).

3. Design discharging rules in order to reorganize the weight along S while main-
taining a constant total weight.

4. Compute, for each a ∈ S, the new weight ω′(a).

5. Observe that
∑

a∈S ω
′(a) is easier to compute, and derive the value f(S).
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Mostly, we say that a proof is based on a discharging method when it relies on the
idea of local counting arguments in order to derive a global formula. In particular, in
a discharging proof, the local counting arguments are usually presented in terms of
discharging. The motivation behind that is to make the calculation easier. By defining
formal rules about who gives what weight to who, we ensure that the total weight is
constant, and in particular that no weight is lost or counted twice.

In a way, we could say that Gauss’ idea1 about how to compute the sum of
all integers from 1 to n is a primitive example of a discharging method. Here,
S = {1, 2, . . . , n}, and we want to compute N =

∑
a∈S a. Therefore, we assign to

each integer its own value as a weight. Then we design a single discharging rule, that
every integer a gives half its initial weight to the element n + 1 − a (see Figure 1.12).
Now, all the elements have the same2 weight of n+1

2
. It is now extremely easy to derive

N as
∑

a∈S a = N = n× n+1
2

.
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Figure 1.12: An illustration of Gauss’ argument for n = 7 from a discharging perspec-
tive, from left to right.

Another nice, simple illustration of what a discharging method can be is a graphical
proof of Euler’s formula in planar graphs. The proof was initially presented in the
more general setting of polyhedra [Thu78]. We insist that the proof sketched here
is purely for illustrational purpose, and has no pretention to rigor. Here, we have
a planar embedding M = (V,E, F ) of our favorite planar graph, and we want to
compute the exact value of |V | − |E| + |F |, so we set S = V ∪ E ∪ F . We can pick
a notion of right and left in the embedding, and without loss of generality assume
that M is such that no edge is perfectly horizontal. We assign to each vertex and
each face (including the outer face) a weight of 1, and to each edge a weight of −1.
Again, we define a single discharging rule, that each vertex and each edge gives all
its weight to the face immediately to its right (see Figure 1.13): this is well-defined
since no edge is perfectly horizontal. All vertices and edges have a final weight of 0,

1Or so the legend has it... [Hay06]
2The use of the word "discharging" makes all the more sense here: at the end the total weight is

uniformly distributed, thus reaching equilibrium.
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Figure 1.13: An illustration of the proof of Euler’s formula from a discharging perspec-
tive, from top to bottom. Here we consider a simple graph with just two faces.

so we can concentrate on faces. No matter how bizarre the embedding can be, the
vertices and edges immediately to the left of an inner face necessarily form a sequence
of alternating vertices and edges, whose two endpoints are vertices who give their
weight to another face. Thus, the number of vertices immediately to the left of an
inner face will always be one less than the number of edges. It follows that the final
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weight of any inner face is 0. We can then safely disregard them, and look only at
the final weight of the outer face. The same analysis stands in that case, except that
there may be more than one sequence (if the graph is not connected, one for each
connected component), and that the two endpoints of each sequence don’t give their
weight to another face. Consequently, each sequence has one more vertex than edges,
and contributes a weight of 1 to the outer face. For #cc the number of connected
components, the final weight of the outer face is thus 1 + #cc, hence the conclusion
that |V | − |E|+ |F | = 1 + #cc, as stated in the connected case in Lemma 1.1.

For example, let us consider the same setting as in the above paragraph, up until
the discharging rule. The initial weights are thus of 1 for every vertex or face, and of
−1 for every edge. Here, we set a rule that every edge shares all its weight equally
among its two incident vertices and two incident faces (if the edge is twice incident to
the same face, the face still receives two parts of the share). It follows immediately that
every vertex v has a final weight of 1− d(v)

4
, and similarly for each face. Consequently,

if we multiply by 4 to get rid of fractions and combine with the previous remarks, we
get that ∑

v∈V

(4− d(v)) +
∑
f∈F

(4− d(f)) = 4 + 4#cc

Instead of sharing equally between incident vertices and incident faces, we can choose
to unbalance it in favor of vertices or faces. In fact, we can choose any ratio, and thus
obtain for any a, b ∈ N that∑

v∈V

(2(a+ b)− a× d(v)) +
∑
f∈F

(2(a+ b)− bd(f)) = 2× (1 + #cc)× (a+ b)

For example, if we take a = 1 and b = 2, we derive∑
v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) = −6× (1 + #cc) < 0 (1.1)

The simple action of assigning to each vertex and each face a good weight, whose
total on the graph we know to be negative, can already be informative. Here, let us set
that each vertex is assigned a weight of d(v)−6, and each face a weight of 2d(f)−6: we
know the total to be negative by (1.1). Since every face of a simple planar graph has
degree at least 3, no face has a negative initial weight. Therefore, at least one vertex
must have a negative weight. In other words, every planar graph contains a vertex of
degree at most 5. We call this an unavoidable configuration (a planar graph cannot avoid
containing it).

We can use this fact to prove the following lemma.

Lemma 1.11 (Folklore). Every planar graph is 6-colorable.

Proof. Assume for contradiction that some planar graphs are not 6-colorable. Among
them, take G to be one with the minimum number of vertices. If G contains a vertex
u of degree at most 5, we can 6-color G \ {u} by minimality. Then u has at most 5
neighbors, so there is one of the six colors that does not appear on any neighbor of
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u, and we color u with it. Therefore, we can extend the 6-coloring of G \ {u} to G, a
contradiction. For this reason, that configuration (the graph contains a vertex of degree
at most 5) is called reducible.

The graph G is thus a planar graph that does not contain a vertex of degree at most
5. However, we argued that this is an unavoidable configuration for planar graphs,
a contradiction. Consequently, no counter-example exists and every planar graph is
6-colorable.

This argument can be pushed a bit further to obtain that every planar graph is
5-colorable. Here no discharging at all is involved, just a good weight assignment
to the vertices. Introducing even a tiny amount of discharging strengthens a lot the
conclusion. We already mentioned that Wernicke proved the first structural lemma
involving discharging, let us state the result here.

Lemma 1.12. [Wer04] Every planar graph G contains a vertex of degree at most 4 or a vertex
of degree 5 adjacent to a vertex of degree 5 or 6.

Proof. By contradiction. Assume that G is a planar graph whose every vertex has
degree at least 5, and such that the neighbors of every vertex of degree 5 are all of
degree at least 7. LetM = (V,E, F ) be a planar embedding of G. For simplicity, we
only present the proof whenM is a triangulation. We could argue that it is sufficient to
prove that case, or adapt the proof to deal with the case whereM is not a triangulation.
However, our goal is merely to give an idea of the proof.

We assign an initial weight ω of ω(v) = d(v) − 6 to each vertex v ∈ V , and ω(f) =
2d(f) − 6 to each face f ∈ F . We know by (1.1) that the total weight of the graph
is negative. We try to redistribute the weight along the graph in such a way that
every vertex and every face has a non-negative final weight, a contradiction. Note
that sinceM is a triangulation, every face f has an initial weight of exactly 0, so we
can concentrate on the vertices. Only vertices of degree 5 have a negative weight, and
every vertex of degree at least 7 has a positive weight.

We define a single rule R1: for every vertex v of degree at least 7,

• Rule R1 is when v is adjacent to three vertices u1, u2, u3, such that (v, u1, u2) and
(v, u2, u3) are faces, and d(u2) = 5. Then v gives 1

5
to u2 (see Figure 1.14).

7+

v
5 u2

u1

u3

1
5

Figure 1.14: The discharging rule R1.

Let ω′ be the final weight assignment on the graph, after application of RuleR1. Let
us argue that ω′(v) ≥ 0 for every vertex v ∈ V and ω′(f) ≥ 0 for every face f ∈ F . The
second holds immediately because ω(f) = ω′(f) for every face f ∈ F .
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Let u be a vertex of degree 5. By assumption, all five neighbors of u are of degree at
least 7, and all give incident faces are triangles. Therefore, Rule R1 applies fives times,
and the vertex u has an initial weight of−1, receives 5× 1

5
, and thus has a non-negative

final weight.
Let u be a vertex of degree 6. By definition, Rule R1 does not apply, and ω′(u) =

ω(u) = 0, so u has a non-negative final weight.
Let u be a vertex of degree at least 7. By definition and since all incident faces are

triangles, Rule R1 applies for each neighbor of degree 5. By assumption, the vertex
u cannot belong to a triangle with two vertices of degree 5. Therefore, at most d(u)

2

neighbors of u may be of degree 5. The vertex u has an initial weight of d(u) − 6 ≥ 1,
gives at most d(u)

2
× 1

5
away, thus has a final weight of 9

10
d(u)−6, which is non-negative

since d(u) ≥ 7.

Lemma 1.12 is a proof that these two configurations (a vertex of degree at most
4, a vertex of degree 5 adjacent to a vertex of degree 5 or 6) are unavoidable for a
planar graph. Lemma 1.12 can in fact be used to obtain the fastest possible algorithm
to 5-color a planar graph.

When a coloring theorem is said to be proved through a discharging argument, it
usually means that its proof has the following outline:

Assume for contradiction that the theorem is not true, and consider G a minimal
counter-example (for some order ≺ on graphs).

1. Prove that there are some configurations {C1, C2, . . . , Cp} that G cannot contain
(these are reducible configurations). Typically, argue that if G contains a configu-
ration Ci, then there exists a smaller graph G′ that is a counter-example to the
theorem, a contradiction to the minimality of G.

2. Use a discharging method to prove the structural lemma that every graph sat-
isfying the theorem hypotheses must contain one of {C1, C2, . . . , Cp} (this is an
unavoidable set of configurations).

In the proof of Lemma 1.12, the discharging rules are very simple. In particular,
the charge is only sent to a vertex at a bounded distance (here only to neighbors). The
discharging method is based on the idea of using local counting arguments in order
to derive a global formula. However, it could happen that there is a sub-structure of
unbounded size on which the sum of weights is easy to compute, actually easier than
through local arguments. Then, it might be interesting to design discharging rules
that can send some charge arbitrarily far away. We then say that the discharging argu-
ment is global. This variant on the discharging method was only introduced in 2007 by
Borodin, Ivanova and Kostochka [BIK07]. When there is a single global discharging
rule, we typically call it Rg (where ’g’ stands for global). For the design of a global
discharging rule, we are often interested in using the sub-structure without having to
make everything explicit. To that purpose, it can be convenient to use the notion of
common pot, where the sub-structure contains vertices which receive from that com-
mon pot, and vertices that give to it. To keep some information on the total weight, we
need to control somehow what happens inside the common pot. Since we usually try
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to show that everything has a non-negative final weight, we are usually satisfied with
checking that the value of the common pot at the end is non-negative, i.e. no weight
was created. In that case we say the global discharging rule is valid. Sometimes, the
global discharging rule can be designed in such a way that the weight actually does
not travel arbitrarily far, but the design still depends on a sub-structure of unbounded
size (thus the proof is not made of purely local arguments). We then say that the dis-
charging argument is semi-global.

By increasing the number of reducible configurations to over 600 and designing
involved discharging rules, the bound in Lemma 1.11 can be further lowered to 4. In
the same spirit as Lemma 1.12, significant research effort has been devoted to study-
ing unavoidable sets in planar graphs, as a source of interest regardless of whether the
configurations in these sets are reducible for some coloring problems. For example, it
can be proved that in a planar graph of minimum degree 4, there must be, simultane-
ously, a triangle, a cycle of length 5 and a cycle of length 6 [FJMŠ02]. More often, the
goal is to prove that in a planar graph with no small vertex (i.e. no vertex of degree
less than 3, 4 or 5), there is necessarily a configuration of bounded degree, which is
sought as large as possible. Note that if a planar graph is allowed to have vertices
of degree 2, then absolutely nothing of the kind can be said, since it suffices to arti-
ficially increase the degree of all the other vertices by adding many parallel vertices
of degree 2. Lemma 1.12 states that in a planar graph of minimum degree 5, there
is a configuration of two adjacent vertices of small degree (the sum of the degrees is
at most 11). This bound of 11 can be proved to be optimal. The same question was
studied for planar graphs of minimum degree 3 or 4. Also, what about the minimal
sum of the degrees of the vertices in a triangle? In a (not necessarily induced) path
of three vertices? In a (not necessarily induced) cycle of length four? These questions
were largely studied, but are not the topic of this thesis. We refer the reader to two nice
surveys [Bor13, JV13], and from now on focus on unavoidable sets that were designed
with a particular coloring problem in mind.
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Chapter 2

Illustrated Discharging Methods

In this chapter, we illustrate some aspects of the discharging method. Unless specified oth-
erwise, the ideas presented here appeared in a joint work with Nicolas Bousquet and Hervé
Hocquard [BBH13].

The presentation is necessarily biased from personal experience of discharging.
However, this bias is made necessary by the fact that a full survey of various dis-
charging arguments would hardly fit in a single chapter. We refer the reader to the
nice recent guide to discharging by Cranston and West [CW13] for an overview of
discharging methods used for coloring purpose. The discharging method also proves
itself useful outside the area of coloring, for example in combinatorial geometry as
illustrated in a paper by Radoičić and Tóth [RT08], but we largely disregard such ap-
plications here. In a way, some amortized analysis proofs of algorithm complexity can
be said to be of the same kin as discharging proofs. This is however not the topic of
this chapter.

As introduced in Section 1.3, a discharging proof of a coloring theorem is almost
always presented as a final product, which the authors present out of the blue in the
form of a set of reducible configurations and a set of discharging rules, with the ap-
propriate arguments about their correctness. Here we are interested in the process
behind it. We consider a problem, and strive step by step to obtain the best results
for it through discharging arguments. We start with standard, local arguments (see
Section 2.1) then move on to more exotic global arguments (see Section 2.2), before
making some more general remarks (see Section 2.3). The goal of this chapter is to
give some intuition on the discharging method: when possible we refrain from being
too formal. On the contrary, the proofs in Chapters 3 and 4 are presented in a more
classical way.

We will from now on concentrate on a variant of coloring which is well-adapted for
the illustration of various discharging methods. An Adjacent Vertex-Distinguishing edge
k-coloring (AVD k-coloring) is a proper edge k-coloring such that no two neighbors are
incident with the same set of colors. More formally, for any edge coloring c : E → N
and any vertex u ∈ V , we set φc(u) = {c(uv)|v ∈ N(u)}. In that setting, an AVD k-
coloring is a proper edge coloring c : E → {1, . . . , k} such that for any edge uv ∈ E,
φc(u) 6= φc(v). Note that there is no way to AVD color the graph K2, as no coloring of
its single edge can distinguish the two vertices. In order to avoid dealing with special
cases everytime we reduce a configuration, we extend the definition so that any edge

33



coloring of K2 is considered to be an acceptable AVD 1-coloring. Note that this only
influence results for graphs with a connected component isomorphic to K2. We define
for every graph G the AVD chromatic index χ′avd as the smallest integer such that G is
AVD k-colorable.

We do not strive for a full bibliography around this problem, but we present shortly
some selected facts. Since an AVD coloring is a proper edge coloring, every graph G
satisfies χ′avd(G) ≥ ∆(G). In addition, every graph G with two adjacent vertices of
degree ∆(G) satisfies χ′avd(G) ≥ ∆(G)+1. Zhang et al. [ZLW02] completely determined
χ′avd for paths, cycles, trees, complete graphs, and complete bipartite graphs. They
noted that a cycle of length five requires five colors, but conjectured that it is the only
graph with such a gap between χ′avd(G) and ∆(G). Note that the problem of AVD
coloring is unusual in this that an AVD k-coloring of a graph does not necessarily
induce an AVD k-coloring of its subgraphs, as illustrated in Figure 2.1.

{1, 2, 3}

{2, 3}
{1, 2}

{1, 3}
{2, 3}

3
2

1

3
2

{1}
1 {1, 5}

{1, 2}
{2, 3}

{3, 4}
{4, 5}

1
2

3

4
5

Figure 2.1: An example of a graph (left) which admits an AVD 3-coloring, while it
admits an induced subgraph (right) which requires 5 colors.

Conjecture 2.1. [ZLW02] Every graph G on at least 6 vertices satisfies χ′avd(G) ≤ ∆(G) + 2.

Balister et al. [BGLS07] proved Conjecture 2.1 for graphs with ∆(G) = 3 and for
bipartite graphs.
For edge coloring, Theorem 1.9 ensures that the chromatic index of a graph is either
∆(G) or ∆(G)+1. The classification of graphs depending on this received considerable
interest (for instance [SZ01]). For AVD coloring, Conjecture 2.1 would imply that the
AVD chromatic index of a graph can only have three values: ∆(G), ∆(G)+1 or ∆(G)+
2. When considering a given graph class that allows two vertices of maximum degree
to be adjacent, there are only two possible upper bounds: ∆(G) + 1 or ∆(G) + 2.
Similarly, the classification of graph classes depending on this received subsequent
interest, and we consider here sufficient conditions with regards to ∆(G) and mad(G)
for a graph G to be AVD (∆(G) + 1)-colorable.

2.1 Local arguments
Letm ∈ R+ andD ∈ N. We seek a theorem of the form “Every graphGwith mad(G) <
m and ∆(G) ≥ D is AVD (∆(G) + 1)-colorable”. If we consider a minimal counter-
example G to that theorem, we obtain that every proper subgraph H of G such that
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mad(H) < m and ∆(H) ≥ D is AVD (∆(H) + 1)-colorable. The first condition is
always true, as mad(H) ≤ mad(G) by definition. However, we can easily imagine that
∆(H) may become smaller than D, and then we cannot assume anything about the
AVD colorability of H . To avoid that tricky situation, we reformulate the theorem so
that the hypotheses are hereditarily satisfied: “For every integer k ≥ D, every graph
G with mad(G) < m and ∆(G) ≤ k is AVD (k + 1)-colorable”. Note that the new
statement is only stronger than the previous one.

We follow the usual outline of a discharging proof, and first look for configurations
that cannot appear in a minimal counter-example. Keep in mind that our goal is to
prove that the existence of a minimal counter-example is a contradiction, by showing
that it cannot satisfy the theorem hypotheses. Here, we will try to prove that a minimal
counter-example has large average degree. In other words, we want to argue that there
cannot be too large a proportion of small vertices in the graph.

Let k ≥ D, and let G be a minimal graph with ∆(G) ≤ k that is not AVD (k + 1)-
colorable. Our goal is to prove that mad(G) ≥ m. Indeed, if every minimal graph G
with ∆(G) ≤ k that is not AVD (k+1)-colorable satisfies mad(G) ≥ m, then every graph
G with ∆(G) ≤ k and mad(G) < m is AVD (k + 1)-colorable. We will proceed step-
by-step and try to obtain the best possible lower bounds on mad(G), i.e. the largest
possible value for m such that mad(G) ≥ m.

Note that, by the existence of C5 which requires 5 colors, we cannot hope for any
result with D < 4 with the stronger version of our theorem. We thus assume from
now on D ≥ 4. In particular, if G contains at most five edges, we can color each with a
different color, thus obtaining an AVD (k + 1)-coloring. Therefore we can assume that
G contains at least six edges.

One reducible configuration, no discharging rule

We can prove that a vertex with a neighbor of degree 1 must have many other neigh-
bors.

Lemma 2.2. G cannot contain a vertex u adjacent to at least one vertex of degree 1 and at
most k

2
vertices of degree > 1 (see Figure 2.3).

u

v1

vp≥1

2+w1

2+w`≤ k
2

Figure 2.2: The configuration of Lemma 2.2.

Proof. Assume for contradiction that G contains a vertex u with p ≥ 1 neighbors
v1, . . . , vp of degree 1 and ` ≤ k

2
vertices of degree ≥ 2. Color by minimality

G \ {v1, . . . , vp}. We try to color the edges (u, vi) so as to extend the AVD (k + 1)-
coloring to the whole graph. For the coloring to be proper, every edge (u, vi) must
avoid the ` colors which already appear in the neighborhood of u. That leaves k+1− `
possible colors. We now try to find a coloring which distinguishes u from its neigh-
bors of same degree, which are at most `. There are

(
k+1−`
p

)
different ways of coloring
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the edges (u, vi). There are at most ` sets of colors which are equal to φc(w) for some
neighbor w of u. Therefore, if

(
k+1−`
p

)
≥ ` + 1, then the coloring can be extended to G,

a contradiction. Since k − ` ≥ p ≥ 1, it suffices to have k + 1 − ` ≥ ` + 1, hence the
conclusion.

Note that Lemma 2.2 implies that no vertex of degree at most k
2

+ 1 can have a
neighbor of degree 1. Is Lemma 2.2 sufficient to obtain a theorem of the desired form?
It is enough for m = 2.

Proposition 2.3. The graph G satisfies ad(G) ≥ 2.

Proof. Assume for contradiction that ad(G) < 2. A connected graph H = (V,E) with a
cycle satisfies |E| ≥ |V |, hence such a graph satisfies ad(H) ≥ 2. Therefore, since G is
connected by assumption, the graph G contains no cycle. Then G is a tree. We remove
the leaves of the tree, and take a leaf of the resulting tree (which is non-empty since G
contains more than just one edge). This vertex has at least one neighbor of degree 1 (it
was not a leaf of G), and at most one neighbor of degree more than 1 (it is a leaf of the
resulting tree). By Lemma 2.2, this is not possible.

In our pursuit of a largest possible m, we therefore set m = 2 + a, with a ∈ R+.
Note that Lemma 2.2 is not sufficient to prove the theorem with any a > 0, as a long
cycle has maximum average degree equal to its average degree of 2, and Lemma 2.2
does not apply.

Two configurations, two discharging rules

We can prove that there cannot be a long chain of vertices of degree 2, as was done in
previous works.

Lemma 2.4 ([HM13]). G cannot contain a chain of length 3 (see Figure 2.3).

w1 v1 u v2 w2

Figure 2.3: The configuration of Lemma 2.4.

Proof. Assume for contradiction that G contains a vertex u with two neighbors v1 and
v2, d(u) = d(v1) = d(v2) = 2. Let w1 and w2 be the other neighbors of v1 and v2,
respectively (see Figure 2.3). Color by minimality G \ {u}. For the coloring to be
proper, every edge (u, vi) must avoid the color that appears on (vi, wi). If w1 is of
degree 2, note that the single edge incident to w1 and not to v1 is different from (u, v2)
by assumption (otherwise G would be a C3 and thus have less than 6 edges).

We choose for (u, v1) a color that is distinct from the colors of (v1, w1), (v2, w2),
and from that of the single edge incident to w1 and not to v1 if d(w1) = 2 (this last
requirement to ensure we distinguish v1 and w1). Then we pick for (u, v2) a color that
is distinct from the colors of (u, v1), (v2, w2), (v1, w1), and from that of the single edge
incident to w2 and not to v2 if d(w2) = 2. Since D ≥ 4, there are at least 5 colors and
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such choices are possible. Now, the vertices v1 and w1 are indeed distinguished, either
by the fact that d(w1) 6= 2 or by the color choice of (u, v1). Similarly, u is distinguished
from v1 by choice of (u, v2). We symmetrically reach the same conclusions for v2 and
w2, and u and v2, respectively.

We thus exhibited an AVD (k + 1)-coloring of G, a contradiction.

Are Lemmas 2.2 and 2.4 sufficient to obtain a theorem of the desired form with
a > 0? We assign to each vertex u a weight of d(u) − 2 − a. We strive for a discharg-
ing procedure that leaves a non-negative weight on all vertices at the end. This will
guarantee us that ad(G) ≥ 2 + a and thus mad(G) ≥ 2 + a. Vertices of degree 1 have a
negative weight of −1− a, and a single neighbor. Vertices of degree 2 have a negative
weight of −a, no neighbor of degree 1 (by Lemma 2.2) and at least one neighbor of de-
gree more than 2 (by Lemma 2.4). Note that vertices of degree at least 3 have positive
weight, and we will try to discharge the weight from them to the vertices of degree 1 or
2. Since we do not have any other piece of information about the graph, every vertex of
degree at least 3 must be able to provide 1 + a to each of its neighbors of degree 1, and
a to each of its neighbors of degree 2. By assuming D ≥ 4 (remember that k ≥ D), we
can ensure by Lemma 2.2 that no vertex of degree 3 will have a neighbor of degree 1.
However, there may be vertices of degree 3 only adjacent to vertices of degree 2 whose
other neighbor is of degree 2. Therefore, a must satisfy 3 − 2 − a ≥ 3 × a, i.e. a ≤ 1

4
.

This is in fact sufficient as soon as D ≥ 6, and we obtain the following proposition.

Proposition 2.5. If D ≥ 6, the graph G satisfies ad(G) ≥ 2 + 1
4
.

Proof. We reformulate the above arguments in a more formal way. Let us assign to
each vertex u in G a weight of ω(u) = d(u) − 2 − 1

4
. We design two discharging rules

R1 and R2 (see Figure 2.4): the first states that every vertex u adjacent to a vertex v
of degree 1 gives a charge of 1 + 1

4
to v, the second states that every vertex u adjacent

to a vertex v of degree 2 gives a charge of 1
4

to v. We apply R1 and R2 on G with the
initial weight assignment. Let ω′ be the resulting weight assignment on the vertices of
G. Our goal is to prove that ω′(u) ≥ 0 for every vertex u of G.

1 + 1
4

2

1
4

Figure 2.4: The discharging rules R1 (left) and R2 (right) of Proposition 2.5.

Let u be a vertex of G. We consider different cases depending on the degree of u.
Note that by Lemma 2.2, a vertex with a neighbor of degree 1 must have at least 4
neighbors of degree at least 2, and thus be itself of degree at least 5.

• Assume d(u) = 1.
Then ω(u) = −1 − 1

4
. As already noted, the neighbor of u is not of degree 1 or 2.

Therefore, the vertex u gives nothing and receives 1 + 1
4

by R1. Consequently, the
vertex u has a non-negative final weight.

• Assume d(u) = 2.
Then ω(u) = −1

4
. If u has a neighbor of degree 2, then they both give 1

4
to the
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other, so it cancels out and we can pretend it doesn’t happen. No neighbor of
u is of degree 1, and u may not have both neighbors of degree 2 by Lemma 2.4.
Therefore, the vertex u gives nothing and receives at least 1

4
by R2: it has a non-

negative final weight.

• Assume d(u) = 3.
Then ω(u) = 3

4
. All the neighbors of u are of degree at least 2. The vertex u gives

at most 3× 1
4

by R2 and has a non-negative final weight.

• Assume 4 ≤ d(u) ≤ 7.
Then ω(u) = d(u)−2− 1

4
. The vertex u has more than k

2
, thus at least 4, neighbors

of degree at least 2. Therefore, it gives at most (d(u) − 4) × (1 + 1
4
) + 4 × 1

4
=

d(u) × 5
4
− 4 by rules R1 and R2. It has thus a non-negative final weight, as

d(u)− 2− 1
4
≥ d(u)× 5

4
− 4 when d(u) ≤ 7.

• Assume d(u) ≥ 8.
Then ω(u) = d(u) − 2 − 1

4
. The vertex u has more than k

2
, thus at least k+1

2
,

neighbors of degree at least 2. Therefore, it gives at most (d(u) − k+1
2

) × (1 +
1
4
) + k+1

2
× 1

4
= d(u) × 5

4
− k+1

2
by Rules R1 and R2. Let us argue that it has

a non-negative final weight: we must have d(u) − 2 − 1
4
≥ d(u) × 5

4
− k+1

2
, i.e.

k
2
− 7

4
≥ d(u)× 1

4
. Since d(u) ≤ k, it suffices to have k

4
≥ 7

4
, i.e. k ≥ 7, which holds

since k ≥ d(u) ≥ 8. Therefore, the vertex u has a non-negative final weight.

Every vertex inG has a non-negative final weight, thus ad(G)−2− 1
4

=
∑

v∈V ω(v) =∑
v∈V ω

′(v) ≥ 0, hence the conclusion.

From now on we omit the formal case analysis: all relevant information is already
contained in the forbidden configurations, rule definitions, and analysis of the bounds
on a.

Three reducible configurations, two discharging rules

As noted before, Lemma 2.2 implies that no vertex of degree less than k
2

+ 1 can have
a neighbor of degree 1. One can strengthen that result.

Lemma 2.6 ([HM13]). G cannot contain two adjacent vertices u and v with d(u) 6= d(v) and
d(u) + d(v) ≤ k

2
+ 2 (see Figure 2.5).

u v

d(u) 6= d(v)

d(u) + d(v) ≤ k
2

+ 2

Figure 2.5: The configuration of Lemma 2.6.
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Proof. Assume for contradiction that G contains two adjacent vertices u and v with
d(u) 6= d(v) and d(u) + d(v) ≤ k

2
+ 2. The proof here is much more direct than that of

Lemma 2.2. Color by minimality G \ {(u, v)}. Since d(u) 6= d(v), no effort is required
to distinguish u and v. There are initially k + 1 colors available for the edge (u, v), we
possibly remove as many as (d(u) − 1) + (d(v) − 1) colors to enforce the propriety of
the coloring. Now, if there are at least (d(u) − 1) + (d(v) − 1) + 1 choices of colors
for (u, v), we know that there will be at least one that will distinguish u and v from
their respective neighbors. This holds since k + 1 − 2(d(u) + d(v) − 2) ≥ 1, hence the
conclusion.

Now, Lemma 2.6 tells us that a vertex u with 3 ≤ d(u) ≤ k
2

has no neighbor of
degree 1, nor any of degree 2. As argued before, Lemmas 2.2 and 2.4 guarantee that
every vertex of degree 1 or 2 has a neighbor of degree at least 3 (assuming D ≥ 4).
Therefore, the only constraint is that vertices of degree at least k

2
+ 1 must afford to

give weight to all their neighbors of degree 1 or 2 (1 + a to each neighbor of degree
1, and a to each neighbor of degree 2). Let us consider the worst case scenario for
the neighborhood of a vertex u with d(u) ≥ k

2
+ 1. The worst neighbors are those of

degree 1. By Lemma 2.2, the vertex u cannot have more than d(u) − k
2
− 1 neighbors

of degree 1. Assume it has just as many. Its other neighbors are of degree at least
2, and the worst case is when they are all of degree 2. Consequently, a must satisfy
d(u) − 2 − a ≥ d(u) × a + (d(u) − k

2
− 1) × 1 for every d(u) ≥ k

2
+ 1. In other words,

the constant a must satisfy k
2
− 1 ≥ a× (d(u) + 1) for every d(u) ≥ k

2
+ 1. The strongest

constraint comes from d(u) = k, so it suffices to have a ≤
k
2
−1

k+1
= 1

2
− 3

2(k+1)
. We can take

a arbitrarily close to 1
2
, which results in the following.

Proposition 2.7. For every ε > 0, if d is large enough, then ad(G) ≥ 2 + 1
2
− ε.

Shifting the density argument to a subgraph of G

There is a simple trick that drastically improves Proposition 2.7. When we try to prove
that no minimal counter-example can exist, we assume one exists, and prove that its
average degree is at least 2+a, a contradiction to the theorem hypothesis that the max-
imum average degree is less than 2 + a. It could happen that the considered minimal
counter-example has low average degree, but still contains a dense subgraph.

Let us sketch the consequences here. Let H be the graph obtained from G by delet-
ing all vertices of degree 1, as was done in [HM13]. Again, we assign to every vertex
u of H a weight of dH(u) − 2 − a. By Lemma 2.2, the vertices of degree at most k

2
in

H have the same degree in G. Therefore, by Lemma 2.6, vertices of degree at most k
2

in H have no neighbor of degree 2 in H . We can again concentrate on large vertices:
a must satisfy d(u) − 2 − a ≥ d(u) × a for every d(u) ≥ k

2
+ 1 (by the same argumen-

tation as for Proposition 2.7). The strongest constraint comes from d(u) = k+1
2

, i.e.
k+1

2
− 2 − a ≥ k+1

2
× a. In other words, we can take a = 1 − 6

k+3
, and thus a arbi-

trarily close to 1. Therefore, simply by shifting the density argument to a well-chosen
subgraph of the minimal counter-example, we move up from Proposition 2.7 to the
following.

Proposition 2.8. For every ε > 0, if d is large enough, then mad(G) ≥ 3− ε.

39



Shifting the notion of minimality

There are other tricks that prove useful. For example, the considered order on graphs
is traditionally the subgraph order (H ≺ G iff H is a proper subgraph of G). Some-
times, it is interesting to transform the graph more subtly than just by considering a
subgraph. For this to be possible, we need to pick the right notion of minimality.

In our case, let us consider the lexicographic order on the sequence of the number of
vertices of given degree in the graph, sorted by decreasing order. Now, if G contains a
vertex uwith exactly two neighbors v1 and v2, thenG is larger than the graph obtained
from G by replacing u with two vertices of degree 1, one adjacent to v1 and the other
to v2. We call such a transformation G ⊗ {u}. We can generalize it to a vertex u of
any degree p ≥ 2. In that case, G ⊗ {u} corresponds to the graph obtained from G by
replacing u with p vertices of degree 1, each adjacent to a different neighbor of u in G.
We can further generalize this notion to any set S of q vertices u1, . . . , uq of degree at
least 2. We set G ⊗ S to be the graph obtained from G by deleting the edges in G[S]
then successively considering when d(ui) ≥ 2 the operation ⊗{ui}, for 1 ≤ i ≤ q (see
Figure 2.6). Note that the order on the vertices of S has no influence on G⊗ S.

u v

Figure 2.6: An example of the effect of ⊗: here we consider two adjacent vertices u, v
of degree 3 (left), and the result of ⊗{u, v} (right).

We do not define G ⊗ {v} when v is a vertex of degree 1, for that would result in
the very same graph. As S consists only of vertices of degree at least 2, it holds that
G⊗ S ≺ G for non-empty S.

We suddenly obtain much more information on our minimal counter-example, see
Lemma 2.9 (note that a proper subgraph of G is still smaller than G in the new order,
which makes the previous lemmas still valid here). Note also that mad(G ⊗ S) ≤
mad(G), which is in fact crucial. When considering a proper subgraph, or the result of
a ⊗ operation on G, this is obvious and could even be omitted. However, some graph
transformations, no matter how tempting (like contracting every edge between two
vertices of degree 2), are made impossible by the fact that the resulting graph, though
smaller, may have a larger maximum average degree and not satisfy the induction
hypotheses. That constraint has to be kept in mind. On the contrary, when considering
planar graphs, edge contractions are extremely convenient (multiple edges beware),
while some transformations used in the setting of bounded average degree graphs
might result in a non-planar graph.

Let us first make some remarks about chains of degree 2. By Lemma 2.4, in G, all
maximal chains of vertices of degree 2 are of length either 1 or 2 (i.e. contain exactly
one vertex of degree 2 or exactly two). Note that from an AVD point of view, a chain
of length two and a chain of length one behave the same, in the sense that coloring
one is equivalent to coloring the other. More formally, the graph obtained from G by
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contracting an edge between two vertices of degree 2 or subdividing an edge incident
to a vertex of degree 2 with no neighbor of degree 2 is AVD (k + 1)-colorable iff G
is. Indeed, D ≥ 4, and a maximal chain does not, by definition, have any neighbor
of degree 2. Consider two maximal chains of degree 2, (u1, v1, v2, u2) and (u1, v, u2)
(internal vertices of degree 2). When restricting the problem to the chain, the only
constraint for the second chain is that the colors of (u1, v) and (u2, v) differ. The vertex
v has no neighbor of degree 2, and thus does not need to be distinguished. The main
constraint for the first chain is that v1 is distinguished from v2, i.e. that the colors of
(u1, v1) and (u2, v2) differ. Then the coloring has to be proper, which means we need
to find a color for (v1, v2) that differs from those of (u1, v1) and (u2, v2). However,
D ≥ 4, so such a color is available regardless of the situation, and that constraint is
insignificant. Therefore, from now on, we do not make separate cases for both. We are
now ready for the following lemma.

Lemma 2.9. G cannot contain a vertex u adjacent to both a vertex of degree 1 and a vertex of
degree 2 (see Figure 2.7).

u v1v2

Figure 2.7: The configuration of Lemma 2.9.

Proof. Assume for contradiction that G contains a vertex u adjacent to both a vertex
v1 of degree 1, and a vertex v2 of degree 2. Let C be the maximal chain of vertices
of degree 2 to which v2 belongs, with w its other endpoint (remember |C| ≤ 2 by
Lemma 2.4). Color by minimality G ⊗ {C}. Now, by the above paragraph, the only
constraint on (u, v2) is that its color should differ from that of the edge between w and
C. Assume that both edges are of the same color. Then we swap the colors of (u, v2)
and of (u, v1). The set of colors incident to u remains the same, and v1 has no neighbor
to be distinguished from, but now the color of (u, v2) differs from that at the other end
of the chain, and we can safely extend the AVD (k + 1)-coloring to G (if |C| = 2, we
pick a proper color for the internal edge, which is possible since it has two constraints
and there are at least 5 colors).

Lemma 2.9 is very convenient in the sense that, in the discharging argument, the
only two troublesome neighbors are those of degree 1 and those of degree 2, which
abide by different rules. This lemma guarantees us that we never have to deal with
both at the same time. If a vertex has neighbors which require charge from it, then
either they are all of degree 1 or all of degree 2. If we follow the same path as before,
by considering the graph G where all vertices of degree 1 have been removed, we
miss some of essential information gained through Lemma 2.9. The information loss
might grow in the way if we are to design other lemmas similar to the last. When
we shift the density argument to a proper subgraph H of the graph G on which we
have structural information, it often happens that, in the discharging analysis, we have
to make double considerations about the degree of the vertex in H , in G (also about
the nature of its neighbors in G that do not appear in H , and about the degree in G
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of its neighbors in H). In a sense, while we consider H for the analysis, the actual
information we need is in G. Let us consider a trick around this issue in the following
section.

Ghost vertices

We introduce a way of combining the power of the previous approach (considering
only a subgraph for density measures, as used for Proposition 2.8) and the information
of the initial one (no vertex deletion, all information stays in the graph, as used for
Proposition 2.7). The trick is to design discharging arguments that use the structure of
the initial graph to prove that the considered subgraph has a high average degree.

The approach used for Proposition 2.8 was:
Dense subgraph method

• Let V1 ( V , and consider G[V1].

• Every vertex u in G[V1] has an initial weight of dV1(u)−m.

• Can we discharge in G[V1] in such a way that every vertex in V1 has a non-
negative weight?

• If yes, then we have
∑

u∈V1(dV1(u)−m) ≥ 0, thus mad(G) ≥ ad(G[V1]) ≥ m.

The new approach is:
Ghost vertices method

• Let V1 ∪ V2 be a partition of V .

• Every vertex u in G has an initial weight of d(u)−m.

• Can we discharge in G in such a way that :

1. Every vertex in V1 has a non-negative weight,
2. Every vertex u in V2 has a final weight of at least d(u)−m+ dV1(u)?

• If yes, then for ω′ the new weight assignment, we have
∑

v∈V2(d(v)−m+dV1(v)) ≤∑
v∈V2 ω

′(v), as well as
∑

v∈V ω(v) =
∑

v∈V ω
′(v) and

∑
v∈V1 ω

′(v) ≥ 0. Therefore,

∑
v∈V1

(dV1(v)−m) ≥
∑
v∈V1

(dV1(v)−m) +
∑
v∈V2

(d(v)−m+ dV1(v))−
∑
v∈V2

ω′(v)

≥
∑
v∈V1

(dV1(v)−m) + |E(V1, V2)|+
∑
v∈V2

(d(v)−m)−
∑
v∈V2

ω′(v)

≥
∑
v∈V1

(d(v)−m) +
∑
v∈V2

(d(v)−m)−
∑
v∈V2

ω′(v)

≥
∑
v∈V

ω(v)−
∑
v∈V2

ω′(v)

≥
∑
v∈V1

ω′(v)

≥ 0
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We can conclude that mad(G) ≥ ad(G[V1]) ≥ m.

In other words, the vertices in V2 can be seen but, in a way, do not contribute to the
sum analysis (the meaning of their final weight is essentially "this vertex has no posi-
tive contribution on the total weight of the rest of the graph"). This particularity leads
us to informally refer to them as ghost vertices. Any result proved using ghost vertices
can be proved, albeit more tediously perhaps, when deleting them completely from
the graph. However, they can simplify the presentation of the discharging analysis,
and this is the point of their introduction.

Similarly, the idea of ghost vertices can be translated to planar graphs, where not
all vertices are mapped in the mapping considered (not all vertices have shadows).
However, in that case, considering a proper subgraph cannot help: a graph may have
low average degree and a subgraph of high average degree, but if a subgraph is not
planar, then neither was the initial graph. The only point of introducing ghost vertices
in the planar case is to reduce the number of discharging rules. That trick appears in a
joint work with Jakub Przybyło on a variant of AVD coloring on planar graphs, which
we do not present here.

In our problem, we consider V2 (the set of ghost vertices) to be the set of vertices of
degree 1 in G, and again assign to each vertex u in G an initial weight of d(u)− 2− a.
Vertices of degree 1 have a weight of−1−a, instead of needing an extra charge of 1+a,
they only need an extra charge of 1 in the latter approach. The bound on a does not
change, as it still needs to be smaller than 1 but can be arbitrarily close to it (just as in
the proof of Proposition 2.8, a vertex may be such that all its neighbors are of degree
2). However, this allows for a more refined bound on the corresponding d, but we do
not dwell on this.

Despite this progress, we still are not able to prove anything for the class of graphs
with mad < 3 in general (no ε inserted). We turn to a powerful variant of the dis-
charging method, where Lemma 2.9 and the notion of ghost vertices will turn out to
be useful.

2.2 Global arguments
We claimed that the discharging method is based on the idea of local counting argu-
ments in order to derive a global formula. However, it could happen that there is a
sub-structure of unbounded size on which the sum of weights is easy to compute, ac-
tually easier than through local arguments. Therefore, we sometimes mix local and
global arguments in the discharging process. This variant on the dicharging method
depends heavily on the emergence of a good sub-structure.

Alternating cycles

For example, in G, we can note that there cannot be two vertices of degree 2 with the
same two neighbors. Indeed, if there are two such vertices u1 and u2 with the same two
neighbors v1 and v2 (note that d(v1), d(v2) ≥ 3 by Lemma 2.4), we colorG⊗{u1, u2}, and
consider the corresponding coloring of G (which is not necessarily an AVD coloring).
Then, we switch if necessary the colors of (u1, v1) and (u2, v1) so that the coloring is
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proper, which results in an AVD (k+ 1)-coloring of G. In fact, this possibility to switch
the colors of two incident edges can be interpreted in terms of list coloring: here the
goal was to list color a cycle on 4 vertices, where the list of colors assigned to the pair
(ui, vj) is that of the colors of (u1, vj) and (u2, vj).

We generalize this idea by setting H the multigraph with vertex set VH = {v ∈
V | d(v) ≥ k+1

2
}, and with edge set EH the pairs of vertices in VH that are the endpoints

in G of a (non-empty) chain of vertices of degree 2. By Lemma 2.6, the set EH is in
bijection with the set of maximal chains of vertices of degree 2 in G. The previous
remark implies that there is no digon in H . We can similarly prove that there is no
loop, nor any triangle, etc. In fact, we can go further and claim that H is a forest.

Indeed, assume that there is a cycle C in H . Color by minimality G ⊗
{Corresponding maximal chains of C } (see Figure 2.8 for a case where C is a tri-
angle). Similarly as before, it all boils down to L-coloring an even cycle, where L is an
assignment of two colors to each edge. By Lemma 1.7 (which obviously still stands in
the case of edge coloring), the even cycle is L-colorable, andG is AVD (k+1)-colorable.
Consequently, H is a forest.
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1

{1, 2}
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{1, 2}

{2, 3}
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2

1

2

2

1

3

2

1

Figure 2.8: There is no triangle in H .

Since H is a forest, every connected component contains more vertices than edges.
In other words, there are at least as many vertices of degree k

2
+ 1 adjacent to a vertex

of degree 2 than maximal chains of vertices of degree 2. We can make use of that
property, as follows. We assign to each vertex u a weight of d(u) − 2 − a, and design
two discharging rules. As before, we take the vertices of degree 1 to be ghost vertices,
and thus set that every vertex of degree at least 2 gives a charge of 1 to every neighbor
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of degree 1. The second rule is what we call a global discharging rule, in the sense that the
charge might travel arbitrarily far away. Every vertex of degree at least k+1

2
adjacent to

a vertex of degree 2 gives a charge of 2a to a common pot, while every vertex of degree
2 receives a from the common pot. We already argued that the common pot will have
a non-negative final value, which we refer to as the global discharging rule being valid
(i.e. not used for spontaneous charge generation).

Assume D ≥ 9. Lemma 2.2 ensures that vertices with a neighbor of degree 1 have
at least 5 neighbors of degree at least 2, and no neighbor of degree 2 by Lemma 2.9.
Therefore, if a vertex u has a neighbor of degree 1, then only the first discharging
rule applies. The vertex u has a non-negative final weight as long as d(u) − 2 − a ≥
(d(u) − 5) × 1, i.e. a ≤ 3. By Lemma 2.6, only vertices of degree at least 5 may have a
neighbor of degree 2, and if they do, by Lemma 2.9, they do not have any neighbor of
degree 1. Therefore, if a vertex u has a neighbor of degree 2, then d(u) ≥ 5 and only
the second discharging rule applies. The vertex u has a non-negative final weight as
long as d(u) − 2 − a ≥ 2 × a, i.e. a ≤ 1. It follows that every vertex of degree 1 has a
final weight of −1, and every other vertex a non-negative weight, hence the following
conclusion:

Proposition 2.10. If D ≥ 9, then mad(G) ≥ 3.

We defined a global discharging rule as a rule that may allow some charge to travel
arbitrarily far. One may note that we could avoid that situation here. Indeed, since we
know H to be a forest, we could merely pick a vertex of degree 1 in H , assign it the
maximal chain which corresponds to its incident edge, and remove it. By repeating
the operation until H is a stable set, evey maximal chain of vertices of degree 2 is
assigned to a neighbor of it. We can then transform the global discharging rule to make
it state instead that every vertex to which a chain is assigned distributes a charge of
2 equally among the vertices in the chain. Then no charge moves further away than
to a neighbor of neighbor. According to our definition, this should mean that the
discharging proof is not global anymore. However, since the discharging rules have
to take into account a structure of unbounded size in order to be defined (here, you
need the full knowledge of a tree H to be able to decide to which edge a vertex in the
middle gives weight to), we cannot say the method is purely local neither. When a
global discharging proof can be written so that no charge travels arbitrarily far away,
we say that the proof is semi-global.

Consequently, this simple trick of using well-known coloring results (e.g. every
even cycle is 2-choosable) so as to reduce large structures with too many small ver-
tices enables us to reach the threshold of 3. Purely local arguments seemed too weak
for such a conclusion. However, in this very special case, it turns out that a purely local
argument, when combined with a right order on graphs, can be even more powerful.
Indeed, by considering a yet more refined order on graphs, we can prove that there is
no vertex with two neighbors of degree 2 in G. This, combined with a slightly tech-
nical argument to improve Lemma 2.6, yields a proof using purely local discharging
arguments that every graph G with mad(G) < 3 and ∆(G) ≥ 4 is AVD (∆(G) + 1)-
colorable. This is optimal, as shows the graph in Figure 2.9. However, this is a purely
ad hoc proof which has very little chance of being of interest in other settings, con-
trary to the proof presented above, so we do not go into details here. A similar global
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discharging argument based on Lemma 1.7 can for example be found in [CH10]. We
do not dwell on the topic, but rather question if the threshold of 3, once close, now
reached, can be broken.

Figure 2.9: A graph G with ∆(G) = 3 and mad(G) = 11
4
< 3 such that χ′avd(G) = 5.

Beyond alternating cycles

In order to reach the threshold of 3, we simply used the classical result that an even
cycle is 2-choosable, a result which proved decisive in other discharging proofs, e.g. in
the case of list edge coloring [CH10]. There are stronger list coloring results than the
fact that even cycles are 2-choosable, and the solution again came from the area of list
edge coloring [BKW97]. The following method is due to Woodall [Woo10] who first
proposed an alternative presentation of a theorem in [BKW97] in terms of discharging,
when the initial paper offered a less tell-tale sequence of equations.

We present here its transposition in the setting of AVD coloring, and choose sim-
plicity over any improvement on the lower bound on the maximum degree.

We start with an easy structural lemma on bipartite multigraphs.

Lemma 2.11. Let H be a bipartite multigraph with vertex set V (H) bipartitioned into A∪B,
with A 6= ∅. For α > 0, if for every non-empty subset B′ ⊆ B and A′ = N(B′) ⊆ A, there
exists a vertex u ∈ A′ with dB′(u) < α, then α|A| > |B|.

Proof. By induction on |B|. If |B| < α, since |A| ≥ 1, the conclusion holds. If |B| ≥ α,
there exists u ∈ A with d(u) < α. We apply the induction hypothesis to the graph
H \ ({u} ∪N(u)). It follows that α(|A| − 1) > |B| − α, hence the result.

Similarly as for Lemma 2.6, we can prove that no small vertex has more than one
small neighbor.

Lemma 2.12. G cannot contain a vertex v adjacent to two vertices u and w with d(u) =
d(v) = d(w) and d(u) ≤ k

4
+ 1.

Proof. We color by minimality G \ {(u, v), (v, w)}. Each edge of (u, v) and (v, w) has
at most (d(u) − 1) + (d(u) − 2) colors to avoid for the coloring to be proper, and an
additional (d(u) − 1) colors to avoid conflicts (each neighbor of u or w might create a
conflict). Therefore, each of the two edges has at least k

4
+ 2 available colors. Now we

only have to pick the right colors among those, so that there is no conflict between v
and its neighbors. We color the edge (v, w) in such a way that there can be no conflict
between u and v (this is possible as k

4
+ 2 ≥ 2). Now we know that v cannot be in

conflict with u, the edge (u, v) is the only one left uncolored and it still has k
4

+ 1
possible choices if we disregard the conflicts between v and its neighbors. The vertex
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v has at most k
4

neighbors with whom to be in conflict, and none of them is u. We
only need to remove an additional k

4
colors from the colors available for (u, v), and we

color it with one of the remaining colors (there is at least one). We thus obtain an AVD
(k + 1)-coloring of G, a contradiction.

We consider vertices of degree at most m to be small, and set D such that m ≤ k
8
.

By Lemma 2.6, all the neighbors of a small vertex umust either be of degree at least
3k
8

or of degree exactly d(u). By Lemma 2.12, the vertex u has at most one neighbor of
degree d(u), and thus has at least d(u)− 1 neighbors of degree at least 3k

8
. Let S be the

set of vertices of degree at least 2 and at most m in G. Note that by the above remark,
every vertex of S is of degree 0 or 1 in G[S].

LetG′ be the multigraph obtained fromG by contracting any edge inG[S] (we keep
the multiple edges thus created, if any), and S ′ the set of vertices corresponding to S
in G′. Note that no vertex in S ′ is of degree less than 2 or more than 2m in G′. Let B be
the set of vertices of degree at least 3k

8
in G. By the above remark, all the neighbors of

a vertex in S are either in B or in S. Note that B ∩ S = ∅ since 3k
8
> m. Let H be the

bipartite multigraph obtained from G′[B ∪ S ′] by deleting the edges in G′[B]. We try
to prove that |S ′| < 2m|B|.

Assume it is not the case, and |S ′| ≥ 2m|B|.
We claim that there is a non-empty set S ′′ ( S ′ such that the subgraph H ′′ of H

obtained by considering H[S ′′ ∪ N(S ′′)] is such that every vertex in B′′ = N(S ′′) has
degree at least 2m in H ′′. Indeed, otherwise, in every subgraph S ′′ ( S ′, there is a
vertex in N(S ′′) of degree less than 2m in H[S ′′ ∪ N(S ′′)], thus Lemma 2.11 holds and
|S ′| < 2m|B|, a contradiction.

Color by minimality G ⊗ S ′′. As already noted in the case of alternating cycles,
this corresponds to a list of dS′′(v) colors assigned to each edge incident to v ∈ B′′ and
to a vertex in S ′′. Similarly, this corresponds to an edge list assignment of H ′′ such
that ∀u ∈ B′′,∀v ∈ S ′′, if (u, v) is an edge then |L(u, v)| = dH′′(u) ≥ 2m ≥ dH′′(v).
Consequently, Theorem 1.10 applies, and H ′′ can be colored. To obtain an AVD (k+1)-
coloring, it remains to color any edge between two vertices of degree at most m. They
are already distinguished since they were contracted, so their incident sets of colors
will be disjoint except for the color of their common edge. Since m ≤ k

8
, it suffices to

take any color beside the k
4

that may already appear around one of the two vertices.
Hence the conclusion that |S ′| < 2m|B|.

We consider G, and assign to each vertex u a weight of d(u) −m. We introduce a
global discharging rule, that every vertex in B gives a charge of m2 to a common pot,
from which every vertex u in S draws a charge of d(u) if d(u) ≤ m

2
, and m − d(u) if

d(u) ≥ m
2

. Note that every small vertex draws from the common pot a charge of at
most m

2
. Therefore, the vertices in S ′ draw a total weight of at most m

2
× |S ′| from the

common pot, while the vertices in B give a total weight of m2 × |B| to the common
pot. We know that |S ′| < 2m|B|, so m

2
× |S ′| < m2 × |B|, and the global rule is hence

valid. We reintroduce the now usual rule that every vertex of degree at least k
2

gives
a charge of 1 to every neighbor of degree 1. We take all vertices of degree at most m

2

to be ghosts. The two rules above ensure that every ghost vertex gives nothing and
receives a weight equal to its degree, and that each small vertex that is not a ghost
gives nothing and receives a weight which is just enough to get to a non-negative final
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weight. For large enough D, we can ensure that the vertices in B can afford to give to
the common pot and to their neighbors of degree 1 (remember from Lemma 2.2 that
they make for at most half the neighbors) without getting to a negative final weight.
The vertices that are neither small nor in B have a final weight equal to their initial
weight, which was positive by choice of "small". Therefore, the following holds.

Proposition 2.13. If D is large enough, then mad(G) ≥ m.

In other words, there is no threshold on the maximum average degree.

Theorem 2.14. For every m ∈ R+, if G is a graph with mad(G) < m and ∆(G) large enough
with regard to m, then G is AVD (∆(G) + 1)-colorable.

2.3 Some remarks on the discharging method
The proof sketch behind a coloring theorem obtained with a discharging argument
(with the corresponding unavoidable set {C1, . . . , Cp} of reducible configurations) can
equivalently be seen as proof by induction (The empty graph can be colored, any
graph obtained from a colorable graph by the reverse operation to the reduction when
detecting a configuration Ci is colorable), where some space is dedicated to proving
that the induction is complete (every graph can be built from the empty graph exclu-
sively by the previous operations). The reducibility proofs could also be seen as parts
of a pre-processing algorithm, which is proved by the discharging argument to always
output the empty graph. Note that the reducible configurations detection can be sped
up by assigning weight, applying the discharging rules, and looking around elements
with a negative weight. When the discharging argument is purely local, this will very
often grant a linear or quadratic coloring algorithm.

Note that a global discharging argument relies heavily on the sub-structure that is
used. We need both to have a coloring argument to deal with it when present, and a
discharging argument to say that its absence has implications on the average degree.
The structure of an even cycle is massively used, but Theorem 1.10 is also extremely
powerful. However, there is no reason to restrain oneself from using more exotic struc-
tures, like cacti with the help of Brooks’ theorem (see the proof of Theorem 4.19). The
main drawback to global discharging proofs is that it can significantly increase the
running time of the coloring algorithm (if the global sub-structure is too hard to de-
tect), and sometimes destroy entirely the initial hope of a coloring algorithm (if we
appeal to an external, non-constructive coloring result).

Despite this warning, we should emphasize that most discharging proofs are con-
structive and immediately yield a polynomial coloring algorithm. We started this
chapter by trying to define discharging proofs in opposition to non-discharging proofs.
It could be noted that every single discharging proof can be translated in the realm of
linear programming, with no discharging involved. This gives hope for at least partial
automatization of the discharging proving (or checking) process.

It seems reasonable to believe that, in the last proof that we sketched, the strong
global discharging argument cannot be replaced with local ones. However, can we
find a natural example of a global discharging proof on planar graphs which cannot
be transformed into one with no unbounded structure involved?
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Chapter 3

Edge Coloring

In this chapter we consider the problem of list edge coloring. It includes personal work [Bon13],
as well as joint work with Benjamin Lévêque and Alexandre Pinlou [BLP14d].

3.1 An overview of edge coloring
Edge coloring is a subcase of vertex coloring, as coloring the edges of a graph G is
equivalent to coloring the vertices of the corresponding line graph L(G), defined as
follows. The line graph L(G) has vertex set E(G), and two vertices of L(G) are adjacent
iff their corresponding edges are incident in G. The class of line graphs is a strong
restriction of the whole class of graphs. Indeed, an edge (u, v) is incident only to edges
that have u or v as an endpoint. All the edges with endpoint u are incident to each
other, and symmetrically for v. Consequently, in a line graph, there cannot be a ver-
tex with three neighbors pairwise non-adjacent. There are other induced subgraphs
that cannot appear in a line graph, and Beineke proved that we can actually obtain a
characterization of the class of line graphs this way.

Theorem 3.1 ([Bei70]). The class of line graphs is exactly the class of graphs that do not
contain any of the nine graphs depicted in Figure 3.1 as an induced subgraph.

Figure 3.1: The nine forbidden induced subgraphs in a line graph.

The restriction is in fact so strong that, contrary to what happens in the general
case where the choice number can be arbitrarily larger than the chromatic number
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(see Section 1.1), it is conjectured that, in this special case, there can be no difference at
all between the two.

Conjecture 3.2 (List Coloring Conjecture). Every graph G satisfies χ′(G) = χ′`(G).

The conjecture was suggested independently by Vizing in 1975, Albertson and
Collins in 1981, and Bollobás and Harris in 1985. The latters were the only group to
publish it [BH85] (see [JT96] for a full survey). Little is known toward this conjecture,
but at least χ′`(G) cannot be arbitrarily larger than χ′(G):

Theorem 3.3 ([Kah96]). On the set of all graphs, it holds that χ′`(G) = χ′(G) · (1 + o(1)) as
∆(G)→ +∞.

Let us now make some easy observations on edge coloring. Note that ∆(G) ≤
χ′(G) ≤ χ′`(G) ≤ 2∆(G) − 1. The first part follows from the observation that given
a vertex u in a graph G, all the edges incident to u are incident to each other, and
need different colors. If a graph G is edge k-choosable, then it is edge L-colorable for
every list assignment L of k colors to each edge. In particular, the graph G is edge
k-colorable, which settles the middle inequality. For the last inequality, we can simply
use a greedy algorithm that colors all the edges one after the other with the smallest
available color. In the worst case, the edge to color is incident to two vertices of degree
∆(G) whose all other incident edges are already colored. Consequently, there is a color
available for the edge, besides the 2× (∆(G)− 1) colors possibly used on the incident
edges. We say that a graph G is minimally edge-choosable if it is edge ∆(G)-choosable.

We do not have much information about Class 1 graphs in general (recall that a
graphG is Class 1 if it is edge ∆(G)-colorable). A natural option toward Conjecture 3.2
is therefore to restrict the problem to a graph class which was already proved to be
Class 1. The hope is that the same structural properties that were helpful for standard
edge coloring will turn out to remain helpful when lists are involved.

This hope proved to be justified in the case of bipartite graphs for example, as
proved by Galvin through a kernel argument [Gal95].

Theorem 3.4 ([Gal95]). Every bipartite multigraph is minimally edge-choosable.

Using a similar argument, Borodin, Kostochka and Woodall managed to strengthen
the previous theorem. It takes into account local maximal degrees instead of the max-
imum degree of the graph (see Theorem 1.10). We will mention its implications later
in this chapter.

Note that Conjecture 3.2 can be generalized to lists of vectors instead of lists of col-
ors. In that setting, each edge is assigned a linearly independent family of k vectors,
and we try to color them in such a way that the set of vectors incident to each vertex is
a linearly independent family. We denote by χ′v(G) the minimum number of (linearly
independent) vectors to assign to each edge to ensure that G can be colored. In 1989,
Rota conjectured that in the complete bipartite graphs Kn,n, a choice of n vectors on
each edge is enough, provided some restrictions on the choice of lists. This is called
Rota’s Bases Conjecture, though it was initially not presented in terms of graph col-
oring [HR94]. Only partial results are known toward this so far (see e.g. [AK14] for
a weaker version or [Dri97, Dri98] for particular values of n). However, we are not
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aware of any indication that it should not be true for every graph G with no restric-
tions on the choice of lists (replacing n with χ′(G)), hence the following question: is it
true that every graph G satisfies χ′v(G) = χ′(G)?

Another direction of research is to find lower bounds on the average degree of a
critical Class 2 graph (that is, a Class 2 graph whose proper subgraphs are Class 1).
The best known bound so far is that of Theorem 3.5.

Theorem 3.5 ([Woo07]). Every critical Class 2 graph G satisfies ad(G) ≥ 2∆(G)
3

.

As a direct corollary, it holds that graphs with smaller maximum average degree
must be Class 1, as follows.

Corollary 3.6. Every graph G with mad(G) < 2∆(G)
3

is edge ∆(G)-colorable.

It is even conjectured that Theorem 3.5 is true with ∆(G)−1 instead of 2∆(G)
3

[Viz65,
SZ01, SZ02]. However, we do not know yet how to obtain such a linear dependency
in the case of list coloring. So far, the best and only result of the kind is as follows:

Theorem 3.7 ([BKW97]). Every graph G with mad(G) <
√

2∆(G) is edge ∆(G)-choosable.

The proof method behind Theorem 3.7 is similar to the one presented in Chapter 2
(see the proof of Theorem 2.14) as a global discharging argument coupled with a pow-
erful coloring result (namely Theorem 1.10). The idea is actually useful outside the
field of list edge coloring. As illustrated in Chapters 2 and 4, the same proof method
can be successfully applied to other colorings.

In the case of planar graphs, Vizing [Viz65] proved that χ′(G) = ∆(G) for every
planar graph G with ∆(G) ≥ 8. He gave examples of planar graphs with ∆(G) = 4 or
5 that are not Class 1, and conjectured that no such graph exists for ∆(G) = 6 or 7. This
remains open for ∆(G) = 6, but the case ∆(G) = 7 was solved through a discharging
argument.

Theorem 3.8 ([SZ01]). Every planar graph G with ∆(G) ≥ 7 is edge ∆(G)-colorable.

However, the best known result for list coloring is that when ∆(G) ≥ 12, a planar
graph G is minimally edge-choosable [BKW97].

Theorem 3.9 ([BKW97]). Every planar graph G with ∆(G) ≥ 12 is edge ∆(G)-choosable.

A lot of incremental results were proved about planar graphs with restrictions on
cycles. Two cycles are said to be incident if they share at least a vertex, and adjacent if
they share at least an edge.

For example, Cranston [Cra09] proved that, when adjacent triangles do not appear
in the graph, ∆(G) ≥ 9 suffices to prove that G is edge ∆(G)-choosable. This is also
true when ∆(G) ≥ 8 and there is either no 5-cycle or no 6-cycle [MWY09].

It is also known that planar graphs with ∆(G) ≥ 7 and no C4 [HLC06] or no two
adjacent C≤4 [LMW13], or ∆(G) ≥ 8 and no triangle adjacent to a C4 [LX11] are mini-
mally edge-choosable. We strengthened these last results by proving that:

Theorem 3.10. Every planar graphGwith ∆(G) ≥ 7 and no triangle adjacent to aC4 satisfies
χ′`(G) = ∆(G).

51



The proof, which can be found in Section 3.2, relies on a global discharging ar-
gument. The global character of the proof aims at ensuring that vertices of degree 2
receive extra weight, and stems from two global structures. One is a tree-like struc-
ture based on the fact that there is no alternating cycle of vertices of degree 2. The
other, more atypical, is a fan-like structure composed of consecutive faces of degree 4
incident to a same vertex, with a vertex of degree 3 opposite to it. The claim is that if
one end of the fan is a vertex of degree 2, then by spreading out the fan as much as
possible, the other end of the fan will afford to give some extra weight to the vertex of
degree 2.

As mentioned earlier, an easier case of the List Coloring Conjecture is when χ′

reaches the lower bound ∆: otherwise it is harder to prove that χ′` is actually exactly
the same. Fortunately, we also have a strong upper-bound on the χ′, as χ′(G) ≤ ∆(G)+
1 by Theorem 1.9.

Consequently, a weaker form of Conjecture 3.2 (called the weak List Coloring Con-
jecture (weak LCC), or alternatively Vizing’s conjecture) is the following:

Conjecture 3.11 (weak List Coloring Conjecture). Every graph G satisfies χ′`(G) ≤
∆(G) + 1.

Borodin [Bor90] proved in 1990 that the weak List Coloring Conjecture is true for
planar graphs of maximum degree at least 9.

Theorem 3.12 ([Bor90]). Every planar graphGwith ∆(G) ≥ 9 is edge (∆(G)+1)-choosable.

His proof was later simplified by Cohen and Havet [CH10] into a short and elegant
global discharging proof. Again, a lot of partial positive results appeared on planar
graphs with restrictions on cycles. Here we prove the following:

Theorem 3.13. Every planar graph G with ∆(G) ≤ 8 is edge 9-choosable.

This solves the weak List Coloring Conjecture for planar graphs with maximum
degree 8, mentioned in a recent survey of Borodin [Bor13] as Problem 5.9. Unfortu-
nately, the proof is rather long and mostly made of case analyses, as presented in Sec-
tion 3.3. Here, global discharging did not appear to be useful, and the configurations
and arguments are purely local. In fact, the decisive idea in the proof lies on recoloring
arguments using directed graphs (see Claims 3, 4 and 6 of Section 3.3 for occurrences
of it in the proof). Roughly, we prove that, when trying to reduce a given configura-
tion, we can extend the partial coloring to the whole graph unless the remaining colors
for each edge satisfy a very specific property. We note that any recoloring of a partic-
ular set of (already colored) edges will break that property. We consider a larger set of
edges, that we try to recolor so as to recolor in particular one of the desired edges. We
therefore represent the constraints with a directed graph with the larger set of edges
as a vertex set. We add a directed edge from a vertex to another when the edge corre-
sponding to the former could be colored with the color of the latter (in case the latter
was recolored too, that is). Then it suffices to study the out-degrees and prove that
there is either a color permutation which contains one of the desired edges, or that
a new color can be introduced on one edge and the change propagated to a desired
edge.
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This new trick allows us to deal with configurations that would not yield under
usual techniques, and thus to lower the bound in Theorem 3.12 as follows.

Corollary 3.14. Every planar graph with ∆(G) ≥ 8 is edge (∆(G) + 1)-choosable.

Though this simple argument does not seem to be enough to prove Conjecture 3.11
for ∆ = 7, it might be interesting to try to improve similarly Theorem 3.9.

Since it is known that planar graphs with ∆(G) ≤ 4 are edge (∆(G) + 1)-
choosable [JMS99, Viz76], the remaining cases for the weak List Coloring Conjecture
restricted to planar graphs are when ∆(G) ∈ {5, 6, 7}. There is no obvious order on
the complexity of these three cases. If other problems are any indication, the case
∆(G) = 5 will be solved through an ad hoc coloring of the entire graph by breaking it
into appropriate substructures (e.g. two subcubic forests, or a spanning collection of
cycles and a subcubic graph), while the case ∆(G) = 7 will be solved through a (pos-
sibly computer-assisted) discharging argument. As for ∆(G) = 6, it will be a hybrid
case, the last one to yield, because none of the two approaches preferred for higher
and lower cases apply here. Of course, this is mere speculation. However, note that
the case ∆(G) = 6 is the only open case left for standard edge coloring with ∆ colors,
as well as for other similar problems which we do not dwell on.

For an informal hint of why the discharging method is harder to use when ∆(G) ≤
6 and edges are involved (not that it is impossible), let us recall from Chapter 1 the
usual proof sketch. We consider by contradiction a minimal counter-example, and first
prove that some configurations are reducible. Usually, such configurations correspond
to ruling out the cases where there are too many small vertices in one place, or where
there is a small vertex with no large vertex around. The notions of "small" and "large"
usually depend on the number of colors available. However, when ∆(G) ≤ 6, and the
number of colors is say 7, while edges have to be colored, the notion of "small" can
barely include vertices of degree 5, let alone vertices of degree 6. Then, we cannot rule
out the case of a planar triangulation where most vertices are of degree 6, and the rest
of degree 5. Assume we assign to each vertex a weight of its degree minus 6 and to
each face a weight of twice its degree minus 6, and try to prove that the total weight
cannot be negative (looking for a contradiction to Euler’s formula). Then no element
has a positive weight, while vertices of degree 5 have a negative one: the situation is
hopeless even if we manage to relax it to some small degree. In our case, the current
techniques that we use to reduce configurations for the list edge coloring problem are
simply not enough.

3.2 Every planar graph G with ∆(G) ≥ 7 and no triangle
adjacent to a C4 is edge ∆(G)-choosable

In this section, we prove Theorem 3.10 that a planar graph G with ∆(G) ≥ 7 and no
triangle adjacent to a cycle of length 4 is edge (∆(G))-choosable.

Let k ≥ 7. Given a planar embedding of a graph and a face f = (u, v, w, x), we
say w is the vertex opposite to u in f . If there is a face (t, u1, v, u2) with d(t) = 2
and d(v) = 3, we say a neighbor w of u1 is the (v, u1)-support of t if the sequence
(t, v, v1, v2, . . . , vp−1, vp = w) of consecutive neighbors of u1 contains only vertices of
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degree 3 except for t, and any two consecutive neighbors of the sequence are part of
the boundary of a face of degree 4 that contains u1, while the edge (u1, w) belongs to
a face of degree at least 5, or to a face of degree 4 with a vertex of degree at least 4
opposite to w (see Figure 3.2). Given t, v and u1, at most one vertex can satisfy this
property. Note that v can itself be the (v, u1)-support of t, and that it can even be also
the (v, u2)-support of t. Note that, by definition, if w is the (v, u1)-support of t, then the
edge (u1, w) is incident, on one side, to either a face of degree at least 5, or to a face of
degree 4 where the vertex opposite to w is of degree ≥ 4, and, on the other side, to a
face of degree 4 where the vertex opposite to w is of degree 3. Consequently, a vertex
cannot be support more than twice, as a support vertex is of degree 3.

x3

4+v3

u1

t

u2 v

x1

v1

v2

x2

The vertex v2 is the (v, u1)-
support of t.

u1

t

u2

v

4+

5+

The vertex v is both the
(v, u1)-support and the
(v, u2)-support of t.

Figure 3.2: Examples of supports.

Forbidden Configurations

A constraint of an element e ∈ E is an already colored element ofE that is adjacent to e.

We define configurations (C1) to (C7) (see Figure 3.3). Configurations (C1), (C4) and
(C7) are standard. Configurations (C2) and (C3) follow from the theorem statement.
Configuration (C5) appears in [CKŠ07], and we introduce Configuration (C6).

• (C1) is an edge (u, v) with d(u) + d(v) ≤ k + 1 and d(u) ≤ bk
2
c.

• (C2) is a cycle (u, v, w, x) such that (u,w) is a chord.

• (C3) is a cycle (u, v, w, x, y) such that (w, y) is a chord.

• (C4) is a cycle (u1, v1, ..., up, vp, u1), p ≥ 2 where ∀i, d(vi) = 2.

• (C5) is a vertex v1 with d(v1) = 2 such that, for u and x1 its two neighbors, there
is a path (v1, x1, v2, . . . , vp, xp, vp+1) (p ≥ 1) such that ∀i, vi is adjacent to u, with
∀ 2 ≤ i ≤ p, d(vi) = 3, and d(vp+1) = 2.
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• (C6) is a vertex v1 with d(v1) = 2 such that, for u and x1 its two neighbors, there is
a cycle (x1, v2, x2, . . . , xp−1, vp) such that ∀i, vi is adjacent to u, and ∀i ≥ 2, d(vi) =
3.

• (C7) is a vertex u with d(u) = 4 that has at least two neighbors u1 and u2 with
d(u1) = d(u2) = 4.

u v

d(u) + d(v) ≤ k + 1
d(u) ≤ bk

2
c

(C1)

u

v w

x

(C2)

u

v w
x

y

(C3)

up

v1

u3

vp
u1 u2

v2

(C4)

xp

vp+1

u

v1

x1
v2

x2

vp

xp−1

(C5)

u v1
x1

vp

xp−1

v2
x2

(C6)

u1 u u2

(C7)

Figure 3.3: Forbidden configurations.

Lemma 3.15. If G is a minimal planar graph such that ∆(G) ≤ k, no triangle is adjacent
to a cycle of length four, and χ′′` (G) > k + 1 or χ′`(G) > k, then G cannot contain any of
Configurations (C1) to (C7).

Proof.

Claim 1. G cannot contain (C1).

Proof. Using the minimality of G, we color G \ {(u, v)}. Since ∆(G) ≤ k, and d(u) +
d(v) ≤ k+ 1, the edge (u, v) has at most k− 1 constraints. There are k colors, so we can
color (u, v), thus extending the coloring of G \ {(u, v)} to G.

Claim 2. G cannot contain (C2).

Proof. The triangle (u, v, w) shares two edges with the cycle (u, v, w, x) of length 4.

Claim 3. G cannot contain (C3).
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Proof. The triangle (u, x, y) shares an edge with the cycle (u, v, w, x) of length 4.

Claim 4. G cannot contain (C4).

Proof. Using the minimality ofG, we colorG\{vi}1≤i≤p. Every edge (ui, vi) or (vi, ui+1)
(subscript taken modulo p) has at most k − 2 constraints, so there are at least 2 colors
available for each of them. Since even cycles are 2-choosable, we can color the (ui, vi)’s
and (vi, ui+1)’s. Then we can extend the coloring of G \ {vi}1≤i≤p to G.

Claim 5. G cannot contain (C5).

Proof. Let L : E → P(N) be a color assignment such that ∀a ∈ E, |L(a)| ≥ k and such
that G is not L-colorable. Using the minimality of G, we L-color G \ {vi|1 ≤ i ≤ p+ 1}.
We denote by L′(e) the remaining available colors for every edge e that is not colored
yet.

Every edge e incident to u and not colored yet has at most d(u)−(p+1) ≤ k−(p+1)
constraints, thus |L′(e)| ≥ p+1. Every edge e that is not incident to u and is not colored
yet has at most k − 2 constraints, thus |L′(e)| ≥ 2. We consider the worst case, i.e. that
these inequalities are actually equalities.

We first consider the case where L′(v1, x1) 6⊂ L′(u, v1) or L′(vp+1, xp) 6⊂ L′(u, vp+1).
Consider w.l.o.g. L′(v1, x1) 6⊂ L′(u, v1). Color (v1, x1) with a color that does not belong
to L′(u, v1), and color arbitrarily (x1, v2), . . . , (xp, vp+1), successively. Then at least p− 1
colors remain for each (u, vi) with 2 ≤ i ≤ p, while p colors remain for (u, vp+1) and p+1
for (u, v1) by assumption. We color arbitrarily (u, v2), . . . , (u, vp+1), in that order, and
finally (u, v1): then G is L-colorable, a contradiction. Thus we can assume from now
on that L′(v1, x1) ⊂ L′(u, v1) and L′(vp+1, xp) ⊂ L′(u, vp+1). We prove the following.

1. We can color {(u, vi), (vi, xi), (xi, vi+1)|1 ≤ i ≤ p} \ {u, v1} in such a way that for L′′

the list assignment of remaining available colors for the edges uncolored yet (here (u, v1) and
(u, vp+1)), we have L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| = |L′′(u, vp+1| = 1.

Proof. We consider two cases depending on whether L′(u, v1) = L′(u, vp+1).

• Assume L′(u, v1) 6= L′(u, vp+1).
Let a be a color in L′(u, v1) \ L′(u, vp+1). Color (v1, x1) with a color other
than a, then color successively (x1, v2), . . . , (xp, vp+1), (u, v2), . . . , (u, vp). Now
|L′′(u, v1)| ≥ 1, |L′′(u, vp+1)| ≥ 1 and L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| =
|L′′(u, vp+1)| = 1. Indeed, if |L′′(u, vp+1)| = 1 then, since a 6∈ L′(u, vp+1), the color
a does not appear on the edges (x1, v2), . . . , (xp, vp+1), (u, v2), . . . , (u, vp). Together
with the fact that (v1, x1) was purposely not colored with a and these are the only
uncolored edges around (u, v1), we have that a ∈ L′′(u, v1) \ L′′(u, vp+1).

• Assume L′(u, v1) = L′(u, vp+1).
We color (v1, x1), (x1, v2), . . . , (xp, vp+1) as though it were a cycle (i.e. (v1, x1) and
(xp, vp+1) have to receive different colors): it is possible since even cycles are 2-
choosable. Then we color arbitrarily the (u, vi)’s with 2 ≤ i ≤ p. It follows
that L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| = |L′′(u, vp+1)| = 1. Indeed, L′(u, v1) =
L′(u, vp+1), and for S the set of colors on the edges (u, v2), . . . , (u, vp), for α and
β the colors of (v1, x1) and (vp+1), we have L′′(u, v1) = L′(u, v1) \ (S ∪ α) and
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L′′(u, vp+1) = L′(u, v1)\ (S ∪β). If |L′′(u, v1)| = |L′′(u, vp+1)| = 1, then {α, β}∩S =
∅. Since α 6= β, this implies L′′(u, v1) 6= L′′(u, vp+1).

♦

By (1), we color {(u, vi), (vi, xi), (xi, vi+1)|1 ≤ i ≤ p} \ {u, v1} in such a way that, for
L′′ the list of remaining available colors for (u, v1) and (u, vp+1), we have L′′(u, v1) 6=
L′′(u, vp+1) if |L′′(u, v1)| = |L′′(u, vp+1| = 1. We color arbitrarily (u, v1) and (u, vp+1),
starting with the one with fewest available colors if any, thus extending the L-coloring
of G \ {vi|1 ≤ i ≤ p+ 1} to an L-coloring of G, a contradiction.

We first prove an intermediary claim which will be instrumental in the proof of
Claim 7.

Claim 6. Let Γ be K2,3, and y (resp. z) be a vertex of degree 3 (resp. 2) in Γ. The graph Γ is
L1-edge-colorable for any list assignment L1 of 3 colors to each of the two edges incident to z
and 2 colors to each of the other edges, where the two edges incident to y but not to z do not
receive the two same colors.

Proof. We denote a, b, c the three edges incident to y, where c is the edge (y, z), and
d (resp. e, f ) the other edge incident to c (resp. b, a). We have |L1(a)| = |L1(b)| =
|L1(e)| = |L1(f)| = 2 and |L1(c)| = |L1(d)| = 3, with L1(a) 6= L1(b). We consider
different cases depending on the list intersections. In the first three cases, we do not
use the fact L(a) 6= L(b), which allows us to consider in these cases the problem to be
symmetric w.r.t. (a, b, c) and (f, e, d).

• Assume L1(a) ∩ L1(e) 6= L1(b) ∩ L1(f).
W.l.o.g., assume that (L1(a) ∩ L1(e)) \ (L1(b) ∩ L1(f)) 6= ∅ and take an element α
of it. Color a and e with α. One of b and f still has 2 colors available. Assume
w.l.o.g. it is b. Then we color successively f, d, c and b.

• Assume L1(a) ∩ L1(e) = L1(b) ∩ L1(f) and L1(a) ∪ L1(e) 6= L1(b) ∪ L1(f).
Then assume w.l.o.g. L1(a) ( L1(b) ∪ L1(f). Color a with α 6∈ (L1(b) ∪ L1(f)).
Then either L1(e) = L1(f) and we color d with β 6∈ L(f), then color successively
c, b, e and f . Or L1(f) 6= L1(e): we color f with a color not in L1(e), and we can
color (b, c, d, e) since even cycles are 2-choosable.

• Assume L1(a) ∩ L1(e) = L1(b) ∩ L1(f), L1(a) ∪ L1(e) = L1(b) ∪ L1(f) and L1(a) ∪
L1(b) 6⊆ L1(c) or L1(e) ∪ L1(f) 6⊆ L1(d).
Then assume w.l.o.g. L1(a)∪L1(b) 6⊆ L1(c) and there is α ∈ L1(a) \L1(c). Color a
with α. If α 6∈ L1(b), color f, e, b, d and c, and similarly if α 6∈ L1(f): color b, e, f, d
and c. If α ∈ L1(b) ∩ L1(f), then α ∈ L1(e) by assumption. Then we color e with
α, and color successively b, f, d and c.

• Assume L1(a)∩L1(e) = L1(b)∩L1(f), L1(a)∪L1(e) = L1(b)∪L1(f), L1(a)∪L1(b) ⊆
L1(c) and L1(e) ∪ L1(f) ⊆ L1(d).
Then we must have L1(a) = {1, 2}, L1(b) = {1, 3} and L1(c) = {1, 2, 3}, and for
some α 6∈ {2, 3}, L1(f) = {α, 2}, L1(e) = {α, 3} and L1(d) = {α, 2, 3}. Then we
color a with 1, b with 3, c with 2, d with 3, e with α and f with 2.
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Thus Γ is L1-colorable.

Claim 7. G cannot contain (C6).

Proof. Let L : V ∪ E → P(N) (resp. E → P(N)) be a color assignment such that
∀a ∈ V ∪E, |L(a)| ≥ k+ 1 (resp. ∀a ∈ E, |L(a)| ≥ k) and such that G is not L-colorable.
Using the minimality of G, we L-color G \ {vi|1 ≤ i ≤ p}. Note that d(vi) ≤ 3 < k

2

for all 1 ≤ i ≤ p, so coloring the edges is enough. We denote by L′(e) the remaining
available colors for every edge e that is not colored yet.

Every edge e incident to u and not colored yet has at most d(u)−p+1 (resp. d(u)−p)
constraints, thus |L′(e)| ≥ p. Every edge e incident to x1 and not colored yet has at most
d(x1) − 3 + 1 (resp. d(x1) − 3) constraints, thus |L′(e)| ≥ 3. Every edge e that is not
incident to u nor x1 and is not colored yet has at most k−2+1 (resp. k−2) constraints,
thus |L′(e)| ≥ 2. In the worst case, these inequalities are actually equalities. We first
prove the following two claims.

1. We can color {(u, vi), (vi, xi), (xi, vi+1)|2 ≤ i ≤ p − 1} \ {u, v2} in such a way that
for L′′ the list assignment of remaining available colors for the edges uncolored yet, we have
L′′(x1, v2) 6= L′′(x1, vp) if |L′′(x1, v2)| = |L′′(x1, vp)| = 2.

Proof. We consider two cases depending on whether L′(x1, v2) = L′(x1, vp).

• Assume L′(x1, v2) 6= L′(x1, vp).
Let a ∈ L′(x1, v2) \ L′(x1, vp), and color (v2, x2) with a color distinct from a. Color
successively (x2, v3), . . . , (xp−1, vp), then (u, v3), . . . , (u, vp−1). Now a ∈ L′′(x1, v2)\
L′′(x1, vp) unless |L′′(x1, vp)| ≥ 3.

• Assume L′(x1, v2) = L′(x1, vp).
We color (v2, x2), (x2, v3), . . . , (xp−1, vp) as though it were a cycle (i.e. (v2, x2) and
(xp−1, vp) have to receive different colors): it is possible since even cycles are 2-
choosable. Then we color arbitrarily the (u, vi)’s with 3 ≤ i ≤ p − 1. It follows
that L′′(x1, v2) 6= L′′(x1, vp) if |L′′(x1, v2)| = |L′′(x1, vp)| = 2.

♦

By (1), we color {(u, vi), (vi, xi), (xi, vi+1)|2 ≤ i ≤ p− 1} \ {u, v2} in such a way that
for L′′ the list assignment of remaining available colors for the edges uncolored yet,
we have L′′(x1, v2) 6= L′′(x1, vp) if |L′′(x1, v2)| = |L′′(x1, vp)| = 2. Then, we can assume
|L′′(x1, v2)| = |L′′(x1, vp)| = |L′′(u, v2)| = |L′′(u, vp)| = 2, |L′′(u, v1)| = |L′′(v1, x1)| = 3
and L′′(x1, v2) 6= L′′(x1, vp). Then we color G by Claim 6.

Claim 8. G cannot contain (C7).

Proof. We color G \ (u, u1), it has at most 6 adjacent edges, and at least 7 colors in its
list, so we can color it.
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Discharging rules

Given a planar map, we design discharging rules R1.1, R1.2, R1.3, R1.4, R2.1, R2.2, R3.1,
R3.2, R4 and Rg (see Figure 3.4). We also use a so-called common pot which is empty at
the beginning, receives weight from some vertices and gives weight to some others.
Rules on faces:

For any face f of degree at least 4,

• Rule R1 is when f is incident to a vertex u of degree d(u) ≤ 3.

– Rule R1.1 is when d(f) = 4, and for v the vertex incident to f that is not
consecutive to u on the boundary of f , we have d(v) ≤ 3. Then f gives 1 to
u.

– Rule R1.2 is when d(f) = 4, and for v the vertex incident to f that is not
consecutive to u on the boundary of f , we have d(v) ≥ 4. Then f gives 3

2
to

u.

– Rule R1.3 is when d(f) ≥ 5 and d(u) = 3 or d(u) = 2 and the two neighbors
of u are not adjacent. Then f gives 3

2
to u.

– Rule R1.4 is when d(f) ≥ 6 and d(u) = 2 such that its two neighbors are
adjacent. Then f gives 5

2
to u.

• Rule R2 is when f is incident to a vertex u of degree 4 ≤ d(u) ≤ 5.

– Rule R2.1 is when d(f) = 4 or d(u) = 5. Then f gives 1
2

to u.

– Rule R2.2 is when d(f) ≥ 5 and d(u) = 4. Then f gives 1 to u.

• RuleR3 is when f contains an edge such that there is a vertex u of degree d(u) = 2
that is adjacent to its two endpoints. Then f gives 1

2
to u.

Note that if a vertex u appears more than once on the boundary of f , the rules are
applied as many times as u appears on the boundary.
Rules on vertices:

• RuleR4 states that for any quadruple (x, u, u1, v) such that x is the (v, u1)-support
of u, x gives 1

4
to u. (Note that R4 can be applied twice for the same x and u if

there are two different such quadruples involving them).

• Rule Rg states that for any vertex x of degree k, x gives 1 to the common pot, and
every vertex of degree 2 draws 1 from it.

Lemma 3.16. A graph G with ∆(G) ≤ k that does not contain Configurations (C1) to (C7) is
not planar.

Proof. Assume for contradiction that G is planar. Then it admits an embedding in the
plane with no crossing edges. We attribute to each vertex u a weight of d(u) − 6, and
to each face a weight of 2d(f)− 6, and apply discharging rules R1, R2, R3, R4 and Rg.

Since Configurations (C1) and (C4) do not appear, the subgraph induced in G by
the edges incident to a vertex of a degree 2 is a forest, both its neighbors are of degree
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Figure 3.4: Discharging rules R1, R2 and R3.

k. Thus there are at least as many vertices of degree k as there are vertices of degree 2,
so Rg is valid: the common pot does not distribute more weight than it receives.

We first prove the following useful lemma:

Lemma 3.17. In G, every vertex v0 with d(v0) = 2 that belongs to a face f0 = (u1, v1, u2, v0)
with d(v1) = 3 admits a (v1, u1)-support and a (v1, u2)-support.

Proof. Assume by contradiction that v0 has no (v1, u1)-support. Let (f0, f1, . . . , fp) be a
maximal sequence of distinct faces of degree 4 where fi = (u1, vi+1, xi, vi) (here x0 = u2)
and d(vi+1) ≤ 3. Note that d(vi+1) = 3 for every 0 ≤ i ≤ p since Configurations (C5)
and (C6) do not appear. Let f ′ be the other face to which the edge (u1, vp+1) belongs.
We have d(f ′) ≥ 4 since G does not contain Configuration (C3). By the contradiction
assumption, we have f ′ = (u1, vp+1, xp+1, vp+2) with d(vp+2) ≤ 3 as vp+1 would oth-
erwise be a (v1, u1)-support of v0. Since p was chosen to be maximal, we must have
f ′ = f0, a contradiction with the fact that Configuration (C6) does not appear in G.

We show that all the vertices have a weight of at least 0 in the end.

Let u be a vertex of G. Since Configuration (C1) does not appear, d(u) ≥ 2. We
consider different cases depending on the value of d(u).

60



1. d(u) = 2.
We consider two cases depending on whether u is incident to a triangle.

a) Assume u belongs to a triangle (u, v, w).
Let f1 and f2 be the two faces adjacent to (u, v, w), where f1 is the face in-
cident to u. Then, in order to avoid Configurations (C2) and (C3), we must
have d(f1) ≥ 6 and d(f2) ≥ 5. So, by Rules R1.4, R3 and Rg, u receives 5

2
from

f1, 1
2

from f2 and 1 from the common pot. So u has an initial weight of −4,
gives nothing and receives 4, so it has a non-negative final weight.

b) Otherwise, let f1 and f2 be the two faces to which u belongs, with d(f1), d(f2) ≥ 4.
For each fi ∈ {f1, f2}, we have three cases:

i. Either fi = (u, u1, v, u2), with d(v) ≤ 3.
Then d(v) = 3 since Configuration (C4) does not appear, and by
Lemma 3.17, u has a (v, u1)-support, and a (v, u2)-support. Thus, by
Rules R1.1 and R4, u receives 1 from fi and 1

4
from each of its (v, _)-

supports, so u receives 3
2

on the side of fi.
ii. Or fi = (u, u1, v, u2), with d(v) ≥ 4.

Then, by Rule R1.2, u receives 3
2

on the side of fi.
iii. Or d(fi) ≥ 5.

Then, by Rule R1.3, u receives 3
2

on the side of fi.

So u receives 2 × 3
2

from f1 and f2, and it receives 1 from the common pot:
u has an initial weight of −4, gives nothing and receives 4, so it has a non-
negative final weight.

2. d(u) = 3.
We consider three cases depending on the faces u is incident to.

a) Assume u belongs to a triangle (u, v, w).
Let f1 and f2 be the two other faces that are incident to u. To avoid Config-
urations (C2) and (C3), we must have d(f1), d(f2) ≥ 5. So u gives nothing as
it cannot be a support. By Rule R1.3, u receives 2 × 3

2
, has an initial weight

of −3 and gives nothing, so it has a non-negative final weight.

b) Assume u belongs to three faces f1 = (u, u1, v1, u2), f2 = (u, u2, v2, u3) and f3 =
(u, u3, v3, u1), with d(v1), d(v2), d(v3) ≤ 3.
Then u cannot be a support so it gives nothing. Vertex u has an initial weight
of−3, gives nothing, and receives 3×1 by RuleR1.1, so it has a non-negative
final weight.

c) Otherwise, u belongs to a face f1 such that either d(f1) ≥ 5 or f1 = (u, u1, v1, u2)
with d(v1) ≥ 4.
Then u has an initial weight of −3, gives at most 2 × 1

4
by R4 as a vertex

cannot be support more than twice, and receives at least 3
2

+ 2 × 1 by Rule
R1, so it has a non-negative final weight.

3. d(u) = 4.
We consider two cases depending on whether u is incident to a triangle.
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a) Assume u is incident to a triangle.
Then, since Configurations (C2) and (C3) do not appear, u is incident to two
faces f1 and f2 such that d(f1), d(f2) ≥ 5. So u has an initial weight of −2,
gives nothing, and receives at least 2×1 by RuleR2.2, so it has a non-negative
final weight.

b) Otherwise, u is incident to at least 4 faces of degree at least 4.
Then u has an initial weight of −2, gives nothing, and receives at least 4× 1

2

by Rule R2, so it has a non-negative final weight.

4. d(u) = 5.
Since Configurations (C2) and (C3) do not appear, u is incident to (at least three
and in particular) two faces f1 and f2 such that d(f1), d(f2) ≥ 4. So u has an initial
weight of −1, gives nothing, and receives at least 2 × 1

2
by Rule R2.1, so it has a

non-negative final weight.

5. 6 ≤ d(u) ≤ k − 1.
Vertex u has a non-negative initial weight, gives nothing, receives nothing, so it
has a non-negative final weight.

6. d(u) = k.
Then u has an initial weight of at least 1, gives 1 to the common pot according to
Rg and no other rule applies, so it has a non-negative final weight.

So all the vertices have a non-negative final weight after application of the dis-
charging rules. Let us now prove that the same holds for the faces.

Let f be a face of G. We consider different cases depending on the value of d(f).
Since Configuration (C3) does not appear, f cannot give weight according to R3 if
d(f) ≤ 4. Note also that since Configuration (C1) does not appear in G, R3 can only be
applied if the two endpoints of the edge are of degree k.

1. d(f) = 3.
Then f has an initial weight of 0, gives nothing, receives nothing, so it has a
non-negative final weight.

2. d(f) = 4.
Assume f = (u, v, w, x), where u has the minimum degree. We consider two
cases depending on d(u).

a) d(u) ≤ 3.
Then, since Configuration (C1) does not appear, d(v), d(x) ≥ 6, and f gives
nothing to them. Face f has an initial weight of 2. It gives at most 2 × 1
to u and w by Rule R1.1, or at most 3

2
+ 1

2
to u and w by Rules R1.2 and R2.1

(depending on whether d(w) ≤ 3). So it has a non-negative final weight.

b) d(u) ≥ 4.
Then f has an initial weight of 2, gives at most 4× 1

2
to u, v, w and x by Rule

R2.1, so it has a non-negative final weight.
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3. d(f) = 5.
We take f = (u, v, w, x, y), where u has minimum degree, and d(w) ≤ d(x). Face
f has an initial weight of 4. We consider different cases depending on d(u).

a) d(u) ≤ 3.
Then, since Configuration (C1) does not appear in G, d(v), d(y) ≥ 6. We are
in one of the following three cases.

i. d(w) ≤ 3.
Then, since Configuration (C1) does not appear in G, d(x) ≥ 6. So, f
gives 3

2
both to u and w by Rule R1.3, and may give 1

2
to a vertex of

degree 2 adjacent to both x and y, by Rule R3. So f has an initial weight
of 4, gives at most 7

2
, and has a non-negative final weight.

ii. 4 ≤ d(w) ≤ 5.
Then f gives 3

2
to u by Rule R1.3, at most 1 to w by Rule R2, and may

give 1 to x by Rule R2 or 1
2

to a vertex of degree 2 adjacent to both x and
y by Rule R3. So f has an initial weight of 4, gives at most 7

2
, and has a

non-negative final weight.
iii. d(w) ≥ 6.

Then f gives 3
2

to u by Rule R1.3, and may give 1
2

to a vertex of degree 2
adjacent to both v and w, both w and x, or both x and y, respectively, by
Rule R3. So f has an initial weight of 4, gives at most 3

2
+ 3× 1

2
= 3, and

has a non-negative final weight.

b) d(u) ≥ 4.
Then, since Configuration (C7) does not appear in G, there are at most 3
vertices of degree 4 in f . So f has an initial weight of 4, gives at most 3×1+
2× 1

2
= 4, by Rules R2.2, R2.1 and R3, and has a non-negative final weight.

4. d(f) = 6.
Face f has an initial weight of 6, so it must not give more than 6 away. Since
Configuration (C3) does not appear in G, R1.4 cannot apply more than once. We
consider four cases depending on the number N of vertices of degree at most 3
on the boundary of f . Note that N ≤ 3 since Configuration (C1) does not appear
in G.

• If N = 0, then by Rules R2 and R3, f gives at most d(f)× 1 ≤ 6 away.

• If N = 1, then since Configuration (C1) does not appear in G, f is incident
to at most two vertices of degree 4. Thus, by Rule R1, f gives at most 5

2
to its

only neighbor of degree at most 3, and by Rules R2 and R3, f gives at most
4× 1

2
extra weight. So f gives at most 5

2
+ 3 ≤ 6 away.

• IfN = 2, then since Configuration (C1) does not appear inG, f is incident to
at most one neighbor of degree 4. Thus, by Rule R1 and since R1.4 is applied
at most once, f gives at most 5

2
+ 3

2
to its two incident vertices of degree at

most 3, and by Rules R2 and R3, f gives at most 1 extra weight. So f gives
at most 4 + 1 ≤ 6 away.

• Otherwise, N = 3. Since Configuration (C1) does not appear in G, f is
incident to no vertex of degree 4, and R3 cannot be applied. Thus, by Rule
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R1 and since R1.4 is applied at most once, f gives at most 5
2

+ 2 × 3
2

to its
three incident vertices of degree at most 3, and neither R2 nor R3 apply. So
f gives at most 11

2
≤ 6 away.

5. d(f) ≥ 7.
In the worst case, f gives 5

2
× bd(f)

2
c by R1.4, and it may give an additional 1

2
by

R3 if d(f) is odd, so f has a non-negative final weight. It can easily be checked,
as follows.

a) If d(f) = 7.
Then 2d(f)− 6− (3× 5

2
+ 1

2
) = 0 ≥ 0

b) If d(f) = 8.
Then 2d(f)− 6− (d(f)

2
× 5

2
) = 3

4
d(f)− 6 ≥ 0

c) Otherwise, d(f) ≥ 9.
Then 2d(f)− 6− (d(f)

2
× 5

2
+ 1

2
) = 3

4
d(f)− 13

2
≥ 0.

Consequently, after application of the discharging rules, every vertex and every
face of G has a non-negative weight,

∑
v∈V (d(v)−6)+

∑
f∈F (2d(f)−6) ≥ 0. Therefore,

G is not planar.

Conclusion

Proof of Theorem 3.10
Let Γ be a planar graph with no triangle adjacent to a cycle of length four, such that

∆(Γ) ≥ 7, and Γ is not list edge ∆(Γ)-choosable (resp. list total (∆(Γ) + 1)-choosable).
Graph Γ has a subgraph G that is a minimal graph such that G is not list edge
∆(Γ)-choosable (resp. list total (∆(Γ) + 1)-choosable). We set k = ∆(Γ) ≥ 7. As
∆(G) ≤ ∆(Γ) = k, by Lemma 3.15, graph G cannot contain (C1) to (C7). Lemma 3.16
implies that G is not planar, thus Γ is not planar, a contradiction. �

3.3 Every planar graph G with ∆(G) ≥ 8 is edge
(∆(G) + 1)-choosable

In this section, we prove Theorem 3.13 that planar graphs with maximum degree at
most 8 are edge 9-choosable. Combined with Theorem 3.12, this implies Corollary 3.14
that every planar graph G with maximum degree ∆(G) ≥ 8 is edge (∆(G) + 1)-
chosable.

Terminology and notation

For a given planar embedding, a vertex v is a weak neighbor of a vertex uwhen the two
faces adjacent to the edge (u, v) are triangles (see Figure 3.5). A vertex v is a semi-weak
neighbor of a vertex uwhen one of the two faces adjacent to the edge (u, v) is a triangle
and the other is a cycle of length four (see Figure 3.6).

64



u v

Figure 3.5: Vertex v is a weak neighbor
of u.

u v

Figure 3.6: Vertex v is a semi-weak neighbor
of u.

For any vertex u, we define special types of weak neighbors of degree 5 of u, as
follows. The notation comes from E for ”Eight” (when d(u) = 8) and S for ”Seven”
(when d(u) = 7). The index corresponds to the discharging rules (introduced in Sec-
tion 3.3). Consider a weak neighbor v of degree 5 of u.

• Vertex v is an E2-neighbor of u with d(u) = 8 when one of the two following
conditions is satisfied (see Figure 3.7):

– There are two vertices w1 and w2 with d(w1) = d(w2) = 6 such that (u, v, w1)
and (v, w1, w2) are faces (see Figure 3.7a).

– There are three vertices w1, w2 and w3 with d(w1) = d(w3) = 6 and d(w2) = 7
such that (u, v, w1), (v, w1, w2) and (u, v, w3) are faces (see Figure 3.7b).

8u v

6

w1

6

w2

1

(a)

8u v

6

w1

7

w2

6
w3

(b)

Figure 3.7: Vertex v is an E2-neighbor of u.

• Vertex v is an E3-neighbor of u with d(u) = 8 when v is not an E2-neighbor of u,
and there is a vertex w with d(w) ≤ 7 such that (u, v, w) is a face (see Figure 3.8).

• Vertex v is an E4-neighbor of u with d(u) = 8 when v is not an E2 nor an E3-
neighbor of u (see Figure 3.9). That is, when the third vertices of the two faces
containing the edge (u, v) are both of degree 8.
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8u v

7−
w

Figure 3.8: Vertex v is an E3-neighbor of u.

8u v

8

8

Figure 3.9: Vertex v is an E4-neighbor of u.

• Vertex v is an S2-neighbor of u with d(u) = 7 when there are two vertices w1

and w2 with d(w1) = d(w2) = 6 such that (u, v, w1) and (u, v, w2) are faces (see
Figure 3.10).

7u v

6

w1

6
w2

Figure 3.10: Vertex v is an S2-neighbor of u.

• Vertex v is an S3-neighbor of u with d(u) = 7 when v is not an S2-neighbor of u,
and v has four neighbors w1, w2, w3 and w4 such that (u, v, w1) and (u, v, w4) are
faces, and one of the following two conditions is satisfied:

– (v, w1, w2), (v, w2, w3) and (v, w3, w4) are faces, and d(w1) = d(w4) = 7 and
d(w2) = d(w3) = 6 (see Figure 3.11a).

– d(w4) = d(w2) = 6 and either d(w1) = 7 (see Figure 3.11b) or d(w3) = 7 (see
Figure 3.11c). Note that there is no constraint on the order of w2 and w3 in
the embedding.

• Vertex v is an S4-neighbor of u with d(u) = 7 when v is not an S2- nor S3- neighbor
of u, and either there is a vertex w with d(w) ≤ 7 such that (u, v, w) is a face (see
Figure 3.12a), or v is adjacent to two vertices w1 and w2 (both distinct from u)
such that d(w1) = 6 and d(w2) = 7 (see Figure 3.12b).

Note that if a weak neighbor v of u has none of the previous types, then u and v
must satisfy one of the following four hypotheses:
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7u v

7

w1

6

w2

6
w37

w4

(a)

7u v

7

w1

6

w2

w36
w4

(b)

7u v

w1

6

w2

7
w36

w4

(c)

Figure 3.11: Vertex v is an S3-neighbor of u.

7u v

7−
w

(a)

7u v
6

w1

7
w2

(b)

Figure 3.12: Vertex v is an S4-neighbor of u.

• d(v) 6= 5

• d(u) 6∈ {7; 8}

• d(u) = 7, the third vertex of each of the two triangles adjacent to (u, v) is of degree
8, and the two other neighbors of v are either both of degree 6 or both of degree
at least 7.

Forbidden Configurations

We define configurations (C1) to (C11) (see Figure 3.13).

• (C1) is an edge (u, v) with d(u) + d(v) ≤ 10.

• (C2) is a cycle (u, v, w, x) such that d(u) = d(w) = 3.

• (C3) is a vertex u with d(u) = 8 that has three neighbors v1, v2 and v3 such that v1

and v2 are weak neighbors of u, with d(v1) = d(v2) = 3 and d(v3) ≤ 5.

• (C4) is a vertex u with d(u) = 8 that has four neighbors v1, v2, v3 and v4 such that
v1 is a weak neighbor of u and v2 is a semi-weak neighbor of u, with d(v1) =
d(v2) = 3, d(v3) ≤ 5 and d(v4) ≤ 5.

• (C5) is a vertex u with d(u) = 8 that has four weak neighbors v1, v2, v3 and v4 with
d(v1) = 3, d(v2) = d(v3) = 4 and d(v4) ≤ 5.

• (C6) is a vertex u with d(u) = 8 that has five neighbors v1, v2, v3, v4 and v5 such
that v1 is a weak neighbor of u with d(v1) = 3, d(v2) = 4, d(v3) ≤ 5, d(v4) ≤ 5 and
d(v5) ≤ 7.
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• (C7) is a vertex u with d(u) = 8 that has four weak neighbors v1, v2, v3 and v4,
such that d(v1) = 3, vertex v2 is an E2-neighbor of u, d(v3) ≤ 5 and d(v4) ≤ 5.

• (C8) is a vertex u with d(u) = 7 that has three neighbors v, w and x such that w is
adjacent to v and x, d(w) = 6, d(v) = d(x) = 5, and there is a vertex y of degree 6,
distinct from w, that is adjacent to x.

• (C9) is a vertex u with d(u) = 7 that has three weak neighbors v1, v2 and v3 such
that d(v1) = d(v2) = 4 and either v3 is an S2, S3 or S4-neighbor, or d(v3) = 4.

• (C10) is a vertex u with d(u) = 7 that has three neighbors v1, v2 and v3 such that
d(v1) = 4, vertex v2 is an S3-neighbor of u and d(v3) ≤ 5.

• (C11) is a vertex u with d(u) = 5 that has three neighbors v, w and x such that w
is adjacent to v and x, and d(v) = d(w) = d(x) = 6.

u v

d(u) + d(v) ≤ 10

(C1)

v

3
u

3
w

x

(C2)

8
u 3 v1 weak

3 v2 weak

5− v3

(C3)

8
u

3 v1 weak

3 v2 semi-weak
5− v3

5− v4

(C4)

8
u

3 v1 weak

4 v2 weak
4 v3 weak

5− v4 weak

(C5)

8
u

3 v1 weak

4 v2

5− v3

5− v4

7− v5

(C6)

8
u

3 v1 weak

5 v2 E2

5− v3 weak

5− v4 weak

(C7)

7
u

5 v

6 w

5 x

6 y

(C8)

7
u 4 v1 weak

4 v2 weak

5− v3 weak
S2, S3, S4 or d(v3) = 4

(C9)

7
u

5 v2 S3

4 v1

5− v3

(C10)

5
u

6 v

6 w

6 x

(C11)

Figure 3.13: Forbidden configurations.

We first introduce the two following useful lemmas.

Lemma 3.18. Let G be the graph with five edges (a, b, c, d, e) such that (b, c, d, e) forms a
cycle and a is incident only to b and e (see Figure 3.14). Let L : {a, b, c, d, e} → P(N) a list
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assignment of at least two colors on every edge, where either |L(b)| ≥ 3 or L(b) 6= L(a). The
graph G is L-edge-colorable.

Proof. We consider w.l.o.g. the worst case, i.e. |L(a)| = |L(c)| = |L(d)| = |L(e)| = 2. We
consider two cases depending on whether L(c) ∩ L(e) = ∅.

• L(c) ∩ L(e) 6= ∅.
Then let α ∈ L(c) ∩ L(e). We color c and e in α. Since |L(b)| ≥ 3 or L(a) 6= L(b),
we can color a and b. We color d.

• L(c) ∩ L(e) = ∅.
Then let α ∈ L(b) \ L(a). We color b in α, and consider two cases depending on
whether α 6∈ L(c) or α 6∈ L(e).

– α 6∈ L(c).
Then we color successively e, a, d and c.

– α 6∈ L(e).
Then we color successively c, d, e and a.

b

e

c

d

a

Figure 3.14: The graph of Lemma 3.18.

Lemma 3.19. Let G be the star on three edges (a, b, c). Let L : {a, b, c} → P(N) a list
assignment such that |L(a)| ≥ 2, |L(b)| ≥ 2, |L(c)| ≥ 2. The graph G is L-edge-colorable
unless L(a), L(b) and L(c) are all equal and of cardinality 2.

Proof. Assume we do not have L(a) = L(b) = L(c) with |L(a)| = 2. We assume without
loss of generality that |L(a)| ≥ 3 or that |L(a)| = |L(b)| = |L(c)| = 2 with L(a) 6= L(b)
and L(a) 6= L(c). We color c in a color that is not available for a if possible, in an
arbitrary color otherwise. We color successively b and a.

Lemma 3.20. If G is a minimal planar graph with ∆(G) ≤ 8 such that χ′`(G) > 9, then G
does not contain any of Configurations (C1) to (C11).

Proof. Let L be a list assignment on the edges of G with |L(e)| ≥ 9 for every edge e of
G. We prove that if G contains any of Configurations (C1) to (C11), then there is a sub-
graph H of G, that can be L-edge-colored by minimality, and whose L-edge-coloring
is extendable to G, a contradiction.

A constraint of an edge e ∈ E is an already colored edge that is incident to e. In
the following, we denote generically ê the list of available colors for an edge e at
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the moment it is used: the list is implicitely modified as incident edges are colored.
Proving that the L-edge-coloring of H can be extended to G is equivalent to proving
that the graph induced by the edges that are not colored yet is L′-colorable, where
L′(e) = ê for every edge e. We sometimes delete edges. Deleting an edge means that
no matter the coloring of the other uncolored edges, there will still be a free color
for it (for example, when the edge has more colors available than uncolored incident
edges). Thus the deleted edge is implicitely colored after the remaining uncolored
edges.

We use the same notations as in the definition of Configurations (C1) to (C11) (see
Figure 3.13).

Claim 1. G cannot contain (C1).

Proof. Using the minimality ofG, we colorG\{(u, v)}. Since d(u)+d(v) ≤ 10, the edge
(u, v) has at most 10 − 2 constraints. There are 9 colors, so we can color (u, v), thus
extending the coloring to G.

Claim 2. G cannot contain (C2).

Proof. Using the minimality of G, we color G \ {(u, v), (v, w), (w, x), (x, u)}. Since
∆(G) ≤ 8 and d(u) = d(w) = 3, every uncolored edge has at most 8 − 2 + 1 con-
straints. There are 9 colors, so every uncolored edge has at least two available colors,
and they form a cycle of length four. We can thus apply Lemma 1.7 to extend the
coloring to G.

Claim 3. G cannot contain (C3).

Proof. By Claim 2, vertices v1 and v2 have no common neighbor other than u. By
Claim 1, for i ∈ {1, 2, 3}, vertex vi is adjacent only to vertices of degree at least 6.
So the vi’s are pairwise non-adjacent. We name the edges according to Figure 3.15.

u

v1

v2

5−
v3

c1

e1

f1

c2

e2

f2

a1

b1

a2

b2

g

Figure 3.15: Notations of Claim 3
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By minimality of G, we color G \ {v1, v2}. Since there are 9 colors and every vertex
is of degree at most 8, we have |â1|, |â2|, |b̂1|, |b̂2| ≥ 2 and |ĉ1|, |ĉ2| ≥ 3. We first prove
the following.

1. If â1 = b̂1, â2 = b̂2, and |â1| = |b̂1| = |â2| = |b̂2| = 2. Then we can recolor G \ {v1, v2} so
that the hypothesis is not satisfied anymore.

Proof. For i ∈ {1, 2}, let âi = b̂i = {αi, βi}. For i ∈ {1, 2}, let γi and δi be the color of ei
and fi, respectively. Note that γi ∈ L(ai) and δi ∈ L(bi) since |âi| = |b̂i| = 2. Note that
for a given i ∈ {1, 2}, the colors αi, βi, γi and δi are all different.

We claim that any recoloring of {e1, f1, e2, f2, g} such that the color of at least one of
{e1, f1, e2, f2} has been changed breaks the hypothesis of (1). Indeed, assume w.l.o.g.
that the color of e1 can be changed while recoloring only edges of {e1, f1, e2, f2, g}, and
consider such a coloring. We have γ1 ∈ â1 since γ1 ∈ L(a1) and the only edge of
{e1, f1, e2, f2, g} that is incident to a1 is e1, which is not colored in γ1 anymore. We have
γ1 6∈ b̂1 since γ1 6∈ {α1, β1, δ1} and the only edge of {e1, f1, e2, f2, g} that is incident to b1

is f1, which was colored in δ1. Thus â1 6= b̂1, and the hypothesis of (1) is broken.
We prove now that there exists such a recoloring. Aside from the constraints de-

rived from {e1, e2, f1, f2, g}, each edge ei or fi has at most (8 − 2) + (8 − 7) = 7 con-
straints, and g has at most (5−1)+(8−7) = 5 constraints. Let L′ be the list assignment
of the colors available for those edges, when ignoring the constraints derived from
{e1, e2, f1, f2, g}. Note that |L′(ei)|, |L′(fi)| ≥ 2 and |L′(g)| ≥ 4. Let us build the directed
graph D whose vertex set is V (D) = {e1, e2, f1, f2, g} and where for any two distinct
u, v ∈ V (D), there is an edge from u to v if the color of u belongs to L′(v). We consider
two cases depending on whether there is a cycle in D.

• There is a cycle in D.
Then we recolor accordingly the edges inG (for any edge from u to v in the cycle,
v takes the initial color of u, which belongs by definition to L′(v)). Since a cycle
contains at least two vertices, at least one of {e1, e2, f1, f2} has been recolored.

• There is no cycle in D.
Then some vertex has in-degree 0. We consider two cases depending on whether
some ei or fi has in-degree 0.

– Some ei or fi has in-degree 0.
Then it can be recolored without conflict (i.e. without recoloring the other
vertices of D).

– Every ei and fi has in-degree at least 1.
Then g has in-degree 0. So g can be recolored without conflict. Since there is
no cycle inD and every ei and fi is of in-degree at least 1, there is necessarily
an edge from g to some ei or fi, which can now be recolored without conflict.

♦

By (1), we can assume that we have a coloring of G \ {v1, v2} that does not satisfy
the hypothesis of (1). W.l.o.g., we consider the case where â1 6= b̂1 or |â1| ≥ 3. We
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color a2, b2 and c2. Then |ĉ1| ≥ 2 and â1 and b̂1 have not been modified. So we apply
Lemma 3.19 to the edges incident to v1.

Claim 4. G cannot contain (C4).

Proof. We prove Claim 4 similarly as Claim 3. By Claim 2, vertices v1 and v2 have no
common neighbor other than u. By Claim 1, for i ∈ {1, 2, 3, 4}, vertex vi is adjacent
only to vertices of degree at least 6. So the vi’s are pairwise non-adjacent. We name the
edges according to Figure 3.16. Note that among the edges named here, the edge b2 is
incident only to a2 and c2.

By minimality of G, we color G \ {v1, v2}. Since there are 9 colors and every vertex
is of degree at most 8, we have |â1|, |â2|, |b̂1|, |b̂2| ≥ 2 and |ĉ1|, |ĉ2| ≥ 3. We proceed as
for Claim 3 and prove the following.

1. If â1 = b̂1, â2 = b̂2, and |â1| = |b̂1| = |â2| = |b̂2| = 2. Then we can recolor G \ {v1, v2} so
that the hypothesis is not satisfied anymore.

Proof. For i ∈ {1, 2}, let âi = b̂i = {αi, βi}. For i ∈ {1, 2}, let γi be the color of ei. Let δ1

be the color of f1. Note that γi ∈ L(ai) since |âi| = 2. Similarly, δ1 ∈ L(b1). Note that
for a given i ∈ {1, 2}, the colors αi, βi, γi (and δ1 if i = 1) are all different.

We claim that any recoloring of {e1, f1, e2, g1, g2} such that the color of at least one
of {e1, f1, e2} has been changed breaks the hypothesis of (1). Indeed, assume that the
color of e1 can be changed while recoloring only edges of {e1, f1, e2, g1, g2}, and con-
sider such a coloring. (The cases where the color of f1 or e2 can be changed are similar).
We have γ1 ∈ â1 since γ1 ∈ L(a1) and the only edge of {e1, f1, e2, g1, g2} that is incident
to a1 is e1, which is not colored in γ1 anymore. We have γ1 6∈ b̂1 since γ1 6∈ {α1, β1, δ1}
and the only edge of {e1, f1, e2, f2, g} that is incident to b1 is f1, which was colored in
δ1. Thus â1 6= b̂1.

We prove now that there exists such a recoloring. Aside from the constraints de-
rived from {e1, e2, f1, g1, g2}, each edge e1, e2 and f1 has at most (8 − 2) + (8 − 7) = 7
constraints, and each gi has at most 4 + 1 = 5 constraints. Let L′ be the list assignment
of the colors available for those edges, when ignoring the constraints derived from
{e1, e2, f1, g1, g2}. Note that |L′(ei)|, |L′(f1)| ≥ 2, and |L′(gi)| ≥ 4. We consider w.l.o.g.
the worst case, i.e. |L′(e1)| = |L′(e2)| = |L′(f1)| = 2. Let us build the directed graph D
whose vertex set is V (D) = {e1, e2, f1, g1, g2} and where there is an edge from u to v if
the color of u belongs to L′(v).

First note that if there is an edge from some gi to some v ∈ {e1, e2, f1}, then there
are all edges from {e1, e2, f1} \ {v} to gi. Indeed, if vertex gi has in-degree at most 2,
we recolor gi and recolor v into the former color of gi. So we assume vertex gi has
in-degree at least 3. If there is an edge from v to gi, we exchange the colors of v and gi.
Thus there are all possible edges from {e1, e2, f1} \ {v} to g1.

If some ei or fi has in-degree 0, se can recolor it without conflict. So we can assume
that all of e1, e2 and f1 have in-degree at least 1. If there is no edge from {g1, g2} to
{e1, e2, f1}, then there is a directed cycle in {e1, e2, f1}, and we recolor accordingly the
edges in G. So there is at least an edge from {g1, g2} to {e1, e2, f1}. We consider w.l.o.g.
that there is an edge from g1 to e1. By the previous remark, there is an edge from e2

and f1 to g1. Both e2 and f1 have in-degree at least 1. If there is an edge from e2 to f1
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Figure 3.16: Notations of Claim 4

and an edge from f1 to e2, we exchange their colors. So we assume w.l.o.g. that there
is an edge from {e1, g1, g2} to e2. If there is an edge from e1 to e2, there is a directed
cycle on {e1, e2, g1}, and we recolor accordingly the edges inG. If there is an edge from
g1 to e2, we exchange the colors of g1 and e2. If there is an edge from g2 to e2, then by
the previous remark, there is an edge from e1 to g2. Thus there is a directed cycle on
{e1, g2, e2, g1} and we recolor accordingly the edges in G. ♦

By (1), we can assume that we have a coloring of G \ {v1, v2} that does not satisfy
the hypothesis of (1). W.l.o.g., we consider the case where â1 6= b̂1 or |â1| ≥ 3. We color
a2, b2, c2 and apply Lemma 3.19 to the edges incident to v1.

Claim 5. G cannot contain (C5).

Proof. By Claim 1, no two vi are adjacent. Since every vi is a weak neighbor of u, and
d(u) = 8, the neighborhood of u forms a cycle (see Figure 3.17). We consider two cases
depending on whether there is a vertex x such that v2, x and v3 appear consecutively
around u.

• There is a vertex x such that v2, x and v3 appear consecutively around u.
We consider without loss of generality that the neighbors of u are, clockwise, v1,
w1, v2, w2, v3, w3, v4 and w4. We name the edges according to Figure 3.17a. Note
that the edges l and o are distinct. By minimality of G, we color G \ {a, . . . , r}.

Without loss of generality, we consider the worst case, i.e. |l̂| = |ô| = |q̂| = |r̂| = 2,
|b̂| = |d̂| = |f̂ | = |ĥ| = |̂i| = |ĵ| = |k̂| = |m̂| = |n̂| = |p̂| = 4, |ĝ| = 7, and
|â| = |ĉ| = |ê| = 9. We consider two cases depending on whether î = ĵ and
î ∩ ĥ 6= ∅.

– î 6= ĵ or î ∩ ĥ = ∅.
If î 6= ĵ, we color i in a color that does not belong to ĵ. Otherwise ĥ ∩ î = ∅
and i can be deleted. In any case |ĵ| = 4 and j has exactly 3 uncolored
incident edges, so we can delete it. Then |â| ≥ 8 and a has 7 uncolored

73



incident edges, so we can delete it. Since |b̂| + |l̂| > |k̂|, there exists a color
α ∈ (b̂ ∩ l̂) ∪ ((b̂ ∪ l̂) \ k̂). Note that b and l are not incident. We color b and
l in α if possible, in an arbitrary color otherwise. If α ∈ b̂ ∩ l̂, then b and l

are colored in α and |k̂| ≥ 3. If α ∈ (b̂ ∪ l̂) \ k̂, then at least one of b and l is
colored in α and |k̂| ≥ 3. So we can delete k. Then, successively, c, m, e, n, o,
p, g, d, f , h, q and r can be deleted.

– î = ĵ and î ∩ ĥ 6= ∅.
Then let α ∈ ĵ ∩ ĥ. Note that j and h are not incident. We color j and
h in α. Since i (resp. a) is incident to both j and h, we can successively
delete i and a. We color successively r and q. Without loss of generality, we
consider the worst case, i.e. |f̂ | = |l̂| = |ô| = 2, |b̂| = |d̂| = |k̂| = |p̂| = 3,
|ĝ| = |m̂| = |n̂| = 4, and |ĉ| = |ê| = 8. We consider three cases depending on
whether f̂ ∩ n̂ = ∅ and p̂ \ ô ⊂ n̂.

∗ f̂ ∩ n̂ 6= ∅.
Then let β ∈ f̂ ∩ n̂. We color f and n in β. We delete successively e, p, o,
c, and g. we color l. We apply Lemma 1.7 on (b, k,m, d).
∗ p̂ \ ô 6⊂ n̂.

Then let β ∈ p̂ \ (ô∪ n̂). We color p in β. We color f . Since |m̂|+ |ô| > |n̂|,
there exists γ ∈ (m̂∩ ô)∪ ((m̂∪ ô)\ n̂). If γ ∈ d̂ or γ 6∈ m̂, we color d and o
in γ if possible, in an arbitrary color otherwise. We delete successively
n, e, c, m, l, k, g and b. If γ 6∈ d̂ and γ ∈ m̂, we color m and o in γ if
possible, in an arbitrary color otherwise. Note that |d̂| ≥ 2. We delete
successively e, c, g, d, b, k and l.

∗ f̂ ∩ n̂ = ∅ and p̂ \ ô ⊂ n̂.
Then let β ∈ p̂ \ ô. We color p in β. By assumption, β 6∈ f̂ ∪ ô. We color
n in a color that does not belong to o. We delete successively o, e, c and
g. We color l, and apply Lemma 3.18 on (f, b, k,m, d).

• There is no vertex x such that v2, x and v3 appear consecutively around u.
We consider without loss of generality that the neighbors of u are, clockwise, v1,
w1, v2, w2, v4, w3, v3 and w4. We name the edges according to Figure 3.17b. By
minimality of G, we color G \ {a, . . . , r}.

Without loss of generality, we consider the worst case, i.e. |l̂| = |n̂| = |ô| = |q̂| = 2,
|b̂| = |d̂| = |f̂ | = |ĥ| = |̂i| = |ĵ| = |k̂| = |m̂| = |p̂| = |r̂| = 4, |ê| = 7, and
|â| = |ĉ| = |ĝ| = 9. We consider two cases depending on whether î = ĵ and
î ∩ ĥ 6= ∅.

– î 6= ĵ or î ∩ ĥ = ∅.
If î 6= ĵ, we color i in a color that does not belong to ĵ. Otherwise î ∩ ĥ = ∅,
we can delete i. In both cases, we can delete successively j and a.

We consider three cases depending on whether q̂ ∩ ĥ = ∅ and q̂ ⊂ r̂.

∗ q̂ ∩ ĥ 6= ∅.
Then let α ∈ q̂ ∩ ĥ. We color q and h in α. We delete successively g, c, e,
r, p, k, m, l, b, d, n, p and f .
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Figure 3.17: Notations of Claim 5

∗ q̂ 6⊂ r̂.
Then let α ∈ q̂ \ r̂. We color q in α. Since |ĥ| + |p̂| > |r̂|, there exists a
color β ∈ (ĥ ∩ p̂) ∪ ((ĥ ∪ p̂) \ r̂). We color h and p in β if possible, in an
arbitrary color otherwise. We delete successively r, g, c, e, k, l, m, b, d,
f , n and o.

∗ q̂ ∩ ĥ = ∅ and q̂ ⊂ r̂.
Then let α ∈ q̂. By assumption, α ∈ r̂ \ ĥ. We color r in α, and color
q. Since |b̂| + |l̂| > |k̂|, there exists a color β ∈ (b̂ ∩ l̂) ∪ ((b̂ ∪ l̂) \ k̂). We
color b and l in β if possible, in an arbitrary color otherwise. We delete
successively k, c, g, e, and m. We color h in such a way that afterwards,
|f̂ | ≥ 3 or f̂ 6= p̂. Then we apply Lemma 3.18 on (p, f, d, n, o).

– î = ĵ and î ∩ ĥ 6= ∅.
Since î = ĵ, there exists α ∈ ĵ ∩ ĥ, we color j and h in α, and delete i and a.
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When we say that we color q|r in a color α, it means that we color q in α if
possible, otherwise we color r in α.
Let C = ĉ and G = ĝ. If q̂ ∪ r̂ 6⊂ ĝ, we consider α ∈ (q̂ ∪ r̂) \ ĝ, and color q|r
in α. Assume that q̂ ∪ r̂ ⊂ ĝ. Note that |((q̂ ∪ r̂) ∩ ĉ) ∪ (ĉ \ ĝ)| ≥ |q̂ ∪ r̂| ≥ 3,
and that |l̂| = 2. We consider α ∈ (((q̂ ∪ r̂)∩ ĉ)∪ (ĉ \ ĝ)) \ l̂. We color q|r in α
if possible, in an arbitrary color otherwise.
Note that since q and r have the same incidencies in the resulting graph,
and since |r̂| ≥ |q̂| − 1, the identity of the edge that is colored has no impact,
and we can consider w.l.o.g. that q is colored and r remains uncolored.
We remove color α from k̂ and m̂. We consider w.l.o.g. the worst case, i.e.
|k̂| = |l̂| = |n̂| = |ô| = |r̂| = 2, |b̂| = |d̂| = |f̂ | = |m̂| = |p̂| = 3, |ê| = 6, |ĝ| = 7
and |ĉ| = 8.
We consider two cases depending on whether k̂ = l̂.

∗ k̂ = l̂. Then we color m in a color that does not belong to l̂. We color
successively n, o, d, f , b, k and l.
∗ k̂ 6= l̂. Then we color l in a color that does not belong to k̂. If m̂ = n̂, then

we color d in a color that does not belong to m̂, and apply Lemma 1.7
on (b, k,m, n, o, f). If m̂ 6= n̂, then we color m in a color that does not
belong to n̂, we color k and we apply Lemma 3.18 on (b, f, o, n, d).

We then color p, q and e. We claim that ĉ 6= ĝ if |ĉ| = |ĝ| = 1. Indeed, assume
|ĉ| = |ĝ| = 1. Then, all the edges incident to g are colored differently, and
their colors belong to G. We consider two cases depending on whether q is
colored in α.

∗ Edge q is colored in α. Then α ∈ G, which implies α ∈ C by choice
of α. Since the edges incident to g are all colored differently and q is
colored in α, none of {b, d, e, f, h} is colored in α. By construction, none
of {k,m} is colored in α. By choice of α, l is not colored in α. Thus α ∈ ĉ
and α 6∈ ĝ, so ĉ 6= ĝ.
∗ Edge q is not colored in α. Then, by choice of α, we have α ∈ C \G. Since

the colors of the edges incident to g all belong to G, none of {b, d, e, f, h}
is colored in α. By construction, none of {k,m} is colored in α. By choice
of α, l is not colored in α. Thus α ∈ ĉ and α 6∈ ĝ, so ĉ 6= ĝ.

Note that |ĉ| ≥ 1 and |ĝ| ≥ 1. If |ĉ| = |ĝ| = 1, then ĉ 6= ĝ, so we color c and g
independently. If not, assume w.l.o.g. that |ĉ| ≥ 2, and color successively g
and c.

Claim 6. G cannot contain (C6).

Proof. We prove Claim 6 similarly as Claim 3. By Claim 1, for i ∈ {1, 2, 3, 4, 5}, vertex
vi is adjacent only to vertices of degree at least 11−d(vi). We name the edges according
to Figure 3.18. By minimality ofG, we colorG\{v1}. Since there are 9 colors and every
vertex is of degree at most 8, we have |â|, |b̂|, |ĉ| ≥ 2. We proceed as for Claim 3 and
prove the following.
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1. If â = b̂ and |â| = |b̂| = 2. Then we can recolor G \ {v1} so that the hypothesis is not
satisfied anymore.

Proof. Let â = b̂ = {α, β}. Let γ be the color of e and δ the color of f . Note that γ ∈ L(a)

and δ ∈ L(b) since |â| = |b̂| = 2. Note also that α, β, γ and δ are all different.
We claim that any recoloring of {e, f, g1, g2, g3, g4} such that the color of at least

one of e, f has been changed breaks the hypothesis of (1). Indeed, assume w.l.o.g.
that the color of e can be changed while recoloring only edges of {e, f, g1, g2, g3, g4},
and consider such a coloring. We have γ ∈ â since γ ∈ L(a) and the only edge of
{e, f, g1, g2, g3, g4} that is incident to a is e, which is not colored in γ anymore. We have
γ 6∈ b̂ since γ 6∈ {α, β, δ} and the only edge of {e, f, g1, g2, g3, g4} that is incident to b is
f , which was colored in δ. Thus â 6= b̂.

We prove that there exists such a recoloring. Aside from the constraints derived
from {e, f, g1, g2, g3, g4}, both e and f have at most 7 constraints, edge g1 has at most 4
constraints, edges g2 and g3 have at most 5 constraints, and g4 has at most 7 constraints.
Let L′ be the list assignment of the colors available for those edges, when ignoring
the constraints derived from {e, f, g1, g2, g3, g4}. Note that |L′(e)|, |L′(f)|, |L′(g4)| ≥ 2,
|L′(g2)|, |L′(g3)| ≥ 4 and |L′(g1)| ≥ 5. Let us build the directed graph D whose vertex
set is V (D) = {e, f, g1, g2, g3, g4} and where there is an edge from u to v if the color of
u belongs to L′(v). Let D1 be the graph obtained from D by removing any vertex v
such that there is no directed path from v to e. Let D2 be the graph obtained from D
by removing any vertex v such that there is no directed path from v to f . If e ∈ D2 and
f ∈ D1, then there is a directed path from e to f and a directed path from f to e. So
there exists a directed cycle that contains e, which we recolor accordingly. So we can
assume that e 6∈ D2 or f 6∈ D1. We consider w.l.o.g. the case f 6∈ D1. We consider four
cases depending on the structure of D1.

• V (D1) = {e}. Then we recolor e without conflict.

• |V (D1)| ≥ 2, and some vertex v 6= e has in-degree at most L′(v)− 2. Then we recolor
v, and recolor accordingly the path from v to e.
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• |V (D1)| ≥ 2, and there is an edge from e to a vertex v. Then by definition of D1, there
is a directed cycle that contains e, which we recolor accordingly.

• |V (D1)| ≥ 2, every vertex v 6= e has in-degree at least L′(v)− 1, and e has out-degree 0.
Since f 6∈ D1, we have {g1, g2, g3, g4} ∩D1 6= ∅. Let j be the minimum i such that
gi ∈ D1. Vertex gj has in-degree at least L′(gj) − 1 ≥ |V (D) \ {f, g1, . . . , gj}|, and
there is no edge from e to gj , a contradiction.

♦

By (1), we can assume that we have a coloring of G \ {v1} that does not satisfy the
hypothesis of (1). We apply Lemma 3.19 to the edges incident to v1.

Claim 7. G cannot contain (C7).

Proof. By Claim 1, no two vi are adjacent, nor is v1 adjacent to a vertex of degree at
most 7. Since every vi is a weak neighbor of u, and d(u) = 8, the neighborhood of u
forms a cycle (see Figure 3.19). We consider two cases depending on whether there is
a vertex x such that v2, x and v3 appear consecutively around u.

• There is a vertex x such that v3, x and v4 appear consecutively around u.
W.l.o.g. the neighbors of u are, clockwise, v1, x1, v2, x2, v3, x3, v4, x4. Since v2 is an
E2-neighbor of u and d(x1) = 8, we have d(x2) = 6 and there is a vertex y of de-
gree 6 such that (x2, v2, y) is a face. We name the edges according to Figure 3.19a.
By minimality, we colorG\{a, . . . , s}. Without loss of generality, we consider the
worst case, i.e. |n̂| = |ô| = |p̂| = |q̂| = 2, |ŝ| = 3, |b̂| = |f̂ | = |ĥ| = |̂i| = |ĵ| = |k̂| = 4,
|m̂| = |r̂| = 5, |d̂| = |ê| = |ĝ| = |l̂| = 7, and |â| = |ĉ| = 9. Note that the edges k
and s are not incident. Since |k̂|+ |ŝ| > |r̂|, there exists α ∈ (k̂ ∩ ŝ) ∪ ((k̂ ∪ ŝ) \ r̂).
We color k and s in α if possible, in an arbitrary color otherwise. We can delete
successively r, l and m. We color q. Note that the edges p and j are not incident.
Since |p̂| + |ĵ| > |̂i|, there exists β ∈ (p̂ ∩ ĵ) ∪ ((p̂ ∪ ĵ) \ î). Thus we color p and j
in β if possible, in an arbitrary color otherwise. We delete successively i, a, c, e,
g, d, h, b, f , n and o.

• There is no vertex x such that v2, x and v3 appear consecutively around u.
W.l.o.g. the neighbors of u are, clockwise, v1, x1, v3, x2, v2, x3, v4, x4, with d(x2) ≥
d(x3). We consider two cases depending on whether d(x2) = 6.

– d(x2) = 6.
W.l.o.g., since v2 is an E2-vertex, there is a vertex y of degree 6 or 7 such
that (y, v2, x3) is a face. We name the edges according to Figure 3.19b. By
minimality, we color G \ {a, . . . , s}. W.l.o.g., we consider the worst case, i.e.
|k̂| = |p̂| = |q̂| = |ŝ| = 2, |b̂| = |ĥ| = |̂i| = |ĵ| = |l̂| = |r̂| = 4, |ô| = 5,
|d̂| = |m̂| = 6, |ĉ| = |f̂ | = |ĝ| = |n̂| = 7, and |â| = |ê| = 9.
Note that the edges r and l cannot be incident. Since |r̂| + |l̂| > |m̂|, there
exists α ∈ (r̂∩ l̂)∪((r̂∪ l̂)\m̂). We color r and l in α if possible, in an arbitrary
color otherwise. We can delete successively m, n and o. We color q, s and k
successively. Note that p and j cannot be incident. Since |p̂|+ |ĵ| > |̂i|, there
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exists β ∈ (p̂ ∩ ĵ) ∪ ((p̂ ∪ ĵ) \ î). Thus we color p and j in β if possible, in an
arbitrary color otherwise. We delete successively i, a, e, g, f , c, d, h and b.

– d(x2) ≥ 7.
Since v2 is an E2-vertex, we have d(x3) = 6 and there is a vertex y of de-
gree 6 such that (y, v2, x3) is a triangle. We name the edges according to
Figure 3.19c. By minimality, we color G \ {a, . . . , s}. Without loss of gen-
erality, we consider the worst case, i.e. |k̂| = |l̂| = |p̂| = |q̂| = 2, |ŝ| = 3,
|b̂| = |d̂| = |ĥ| = |̂i| = |ĵ| = |m̂| = 4, |ô| = |r̂| = 5, |ĉ| = |f̂ | = |ĝ| = |n̂| = 7,
and |â| = |ê| = 9. Note that sinceG is a simple graph, the edges s andm can-
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Figure 3.19: Notations of Claim 7

not be incident. Since |ŝ|+|m̂| > |r̂|, there exists α ∈ (ŝ∩m̂)∪((ŝ∪m̂)\ r̂). We
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color m and s in α if possible, in an arbitrary color otherwise. We can delete
successively r, n and o. We color successively q, l and k. Note that p and j
cannot be incident. Since |p̂|+ |ĵ| > |̂i|, there exists β ∈ (p̂ ∩ ĵ) ∪ ((p̂ ∪ ĵ) \ î).
Thus we color p and j in β if possible, in an arbitrary color otherwise. We
delete successively i, a, e, f , g, c, h, b and d.

Claim 8. G cannot contain (C8).

Proof. Not that since G is simple and d(y) 6= d(v), all the vertices named here are
distinct. We name the edges according to Figure 3.20. By minimality, we color G \
{a, . . . , f}. Without loss of generality, we consider the worst case, i.e. |â| = |d̂| = |f̂ | =
2, |ĉ| = |ê| = 3 and |b̂| = 4.
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Figure 3.20: Notations of Claim 8

We consider two cases depending on whether f̂ = d̂.

• f̂ 6= d̂. We color f in a color that does not belong to d̂. We apply Lemma 3.18 on
(a, b, c, d, e).

• f̂ = d̂. We color e and c in a color that does not belong to f̂ . We color successively
a, b, f and d.

Claim 9. G cannot contain (C9).

Proof. Note that by Claim 1, {v1, v2, v3} forms a stable set. We consider two cases de-
pending on whether there are two weak neighborsw1 andw2 of uwith d(w1) = d(w2) =
4 and a vertex x, such that (w1, x, u) and (w2, x, u) are faces.

• There are two weak neighbors w1 and w2 of u with d(w1) = d(w2) = 4 and a vertex x,
such that (w1, x, u) and (w2, x, u) are faces.
We assume w.l.o.g. that the neighborhood of u is, clockwise, y1, v1, x, v2, y2, v3

and z. We are in one of the following three cases: either d(z) ≤ 7, or d(y2) ≤ 7, or
d(z) = d(y2) = 8.
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– d(z) ≤ 7.
We name the edges according to Figure 3.21a. By minimality, we color G \
{a, . . . , o}. Without loss of generality, we consider the worst case, i.e. |̂i| =

|l̂| = |n̂| = |ô| = 2, |â| = |ĥ| = 3, |ĉ| = |ê| = |ĝ| = |ĵ| = |k̂| = |m̂| = 4, |f̂ | = 7
and |b̂| = |d̂| = 9. We first prove the following.

1. We can color a, c, e, f, g, h, i, j, k, l,m, n and o in such a way that b̂ 6= d̂ if
|b̂| = |d̂| = 1.

Proof. Let B = b̂ and D = d̂. If b̂ = d̂, then we consider α ∈ î, and color i in
α. If b̂ 6= d̂, then we consider α ∈ d̂ \ b̂, and color i arbitrarily. We remove
color α from k̂, l̂ and m̂. We color l. We consider two cases depending on
whether m̂ = n̂.

∗ n̂ 6= m̂.
Then we color m in a color that does not belong to n̂. We color k. Since
|ĥ|+ |ĉ| > |â|, there exists β ∈ (ĥ ∩ ĉ) ∪ ((ĥ ∪ ĉ) \ â). We color h and c in
β if possible. We color successively j, and h or c if not colored already.
We apply Lemma 3.18 on (a, g, o, n, e). We color f .
∗ n̂ = m̂.

Since |â|+ |ô| > |ĝ|, there exists β ∈ (â ∩ ô) ∪ ((â ∪ ô) \ ĝ). If β ∈ ê \ m̂ or
β 6∈ â, we color e and o in β if possible, in an arbitrary color otherwise
(6∈ m̂ in the case of e). We color n,m and k. We delete g, and we apply
Lemma 1.7 on (h, j, c, a). If β 6∈ ê \ m̂ and β ∈ â, we color a and o in β
if possible, in an arbitrary color otherwise. Note that a is colored in β,
and that β does not belong to ê or belongs to m̂, in which case one of
{m,n} will be colored in β. We color successively n,m, k, h, j, c, and e.
We color g, and f .

Assume |b̂| = |d̂| = 1. Then the colors of the edges incident to b are all
different and belong to B. We consider two cases depending on whether
B = D.

∗ B = D. Since i is colored in α, no edge in {a, c, e, g} is colored in α, and
α ∈ D. By construction, none of {k, l,m} is colored in α. Thus α ∈ d̂

and α 6∈ b̂, so b̂ 6= d̂.
∗ B 6= D. Since α 6∈ B, no edge in {a, c, e, g} is colored in α. By con-

struction, none of {k, l,m} is colored in α. Thus α ∈ d̂ and α 6∈ b̂, so
b̂ 6= d̂.

♦

By (1), we color a, c, e, f, g, h, i, j, k, l,m, n and o in such a way that b̂ 6= d̂ if
|b̂| = |d̂| = 1. We color b and d.

– d(y2) ≤ 7.
We name the edges according to Figure 3.21b. By minimality, we color G \
{a, . . . ,m}. Without loss of generality, we consider the worst case, i.e. |ĝ| =
|̂i| = |l̂| = 2, |â| = |ĥ| = 3, |ĉ| = |ê| = |ĵ| = |k̂| = |m̂| = 4, |f̂ | = 5 and
|b̂| = |d̂| = 9. We first prove the following.
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2. We can color a, c, e, f, g, h, i, j, k, l and m in such a way that, afterwards, b̂ 6= d̂

if |b̂| = |d̂| = 1.

Proof. If b̂ = d̂, then we consider α ∈ l̂, and color l in α. If b̂ 6= d̂, then we
consider α ∈ b̂ \ d̂, and color l arbitrarily. We remove color α from ĥ, î and ĵ.
We color successively i, h, j, a, g, c, k, e,m and f . By the same analysis as in
the previous case, b̂ 6= d̂ if |b̂| = |d̂| = 1. ♦

By (2), we color a, c, e, f, g, h, i, j, k, l and m in such a way that b̂ 6= d̂ if |b̂| =

|d̂| = 1. We color b and d.

– d(z) = d(y2) = 8.
Then either v3 is a weak neighbor of u of degree 4, or v3 is a weak neighbor
of u of degree 5 adjacent to a vertex of degree 6. We will deal with the two
cases at once. We consider that v3 is of degree 5 in both cases, by adding
a neighbor of degree 6 to v3 if it is of degree 4: a proper coloring of this
graph will yield a proper coloring of the initial graph. We name the edges
according to Figure 3.21b.
By minimality, we color G \ {a, . . . , q}. Without loss of generality, we con-
sider the worst case, i.e. |̂i| = |l̂| = |p̂| = 2, |â| = |ĝ| = |ĥ| = |ô| = 3,
|ĉ| = |ê| = |ĵ| = |k̂| = |m̂| = |n̂| = |q̂| = 4 and |b̂| = |d̂| = |f̂ | = 9. We first
prove the following.

3. We can color a, c, e, f, g, h, i, j, k, l,m, n, o, p and q in such a way that, after-
wards, b̂ 6= d̂ if |b̂| = |d̂| = 1.

Proof. If b̂ = d̂, then we consider α ∈ l̂, and color i in α. If b̂ 6= d̂, then we
consider α ∈ d̂ \ b̂, and color i arbitrarily. We remove color α from k̂, l̂ and
m̂.
We color l. Since |ĝ| + |p̂| > |ô|, there exists β ∈ (ĝ ∩ p̂) ∪ ((ĝ ∪ p̂) \ ô). We
color g and p in β if possible, in an arbitrary color otherwise. We color m so
that ê 6= â if |â| = |ê| = 2, which is possible as |m̂| ≥ 2. We color k, and we
apply Lemma 3.18 on (e, a, h, j, c). We color n, o, q and f .
By the same analysis as in the two previous cases, we have b̂ 6= d̂ if |b̂| =

|d̂| = 1. ♦

By (3), we color a, c, e, f, g, h, i, j, k, l,m, n, o, p and q in such a way that b̂ 6= d̂

if |b̂| = |d̂| = 1. We color b and d.

• There are no two weak neighbors w1 and w2 of u with d(w1) = d(w2) = 4 for which there
exists a vertex x such that (w1, x, u) and (w2, x, u) are faces.
Then v3 must be a vertex of degree 5. W.l.o.g., the neighborhood of u is, clock-
wise, y1, v1, y2, v3, y3, v2, y4. We consider two cases depending on whether
d(y2) = d(y3) = 8.

– d(y2) ≤ 7 or d(y3) ≤ 7.
Consider w.l.o.g. that d(y2) ≤ 7. We name the edges according to
Figure 3.21d. By minimality, we color G \ {a, . . . , o}. Without loss
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of generality, we consider the worst case, i.e. |̂i| = |l̂| = |n̂| = 2,
|â| = |ĝ| = |ĥ| = |k̂| = |ô| = 3, |ê| = |m̂| = 4, |ĉ| = |ĵ| = 5, |d̂| = 7 and
|b̂| = |f̂ | = 9.

Note that the edges k and h are not incident. Since |k̂|+ |ĥ| > |ĵ|, there exists
α ∈ (k̂ ∩ ĥ) ∪ ((k̂ ∪ ĥ) \ ĵ). We color k and h in α if possible, in an arbitrary
color otherwise. We can delete successively j, b, i, f , d and c. We color a, l
and n. We apply Lemma 1.7 on (e,m, o, g).

– d(y2) = d(y3) = 8.
Then v3 must be a weak neighbor of degree 5 whose two other neighbors
are of degree 6 and 7, respectively. We name the edges according to Fig-
ure 3.21e. By minimality, we color G \ {a, . . . , q}. Without loss of generality,
we consider the worst case, i.e. |̂i| = |n̂| = 2, |â| = |ĝ| = |ĥ| = |ô| = |q̂| = 3,
|ĉ| = |ê| = |ĵ| = |k̂| = |l̂| = |m̂| = |p̂| = 4, and |b̂| = |d̂| = |f̂ | = 9. We first
prove the following.

4. We can color a, c, e, f, g, h, i, j, k, l,m, n, o, p and q in such a way that, after-
wards, b̂ 6= f̂ if |b̂| = |f̂ | = 1.

Proof. If b̂ = f̂ , then we consider α ∈ n̂, and color n in α. If b̂ 6= f̂ , then
we consider α ∈ b̂ \ d̂, and color n arbitrarily. We remove color α from ĥ, î
and ĵ. We color successively i, h, j, k, c, a, g, e, o,m, l, q, p and d. By the same
analysis as in the previous cases, we have b̂ 6= f̂ if |b̂| = |f̂ | = 1. ♦

By (4), we color a, c, e, f, g, h, i, j, k, l,m, n, o, p and q in such a way that b̂ 6= f̂

if |b̂| = |f̂ | = 1. We color b and f .

Claim 10. G cannot contain (C10).

Proof. We consider two cases depending on whether v2 and u have a common neighbor
of degree 6.

• Vertices v2 and u have a common neighbor y of degree 6.
By definition of an S3-neighbor, vertex v2 has two other neighbors of degree 7 and
6, respectively. We name the edges according to Figure 3.22a. Since the graph is
simple, there is no 1 ≤ i ≤ 3 such that the edges e and ci are incident.

By minimality, we color G\{a, b1, b2, c1, c2, c3, d, e}. Without loss of generality, we
consider the worst case, i.e. |b̂1| = |ĉ1| = |ê| = 2, |b̂2| = |ĉ2| = 3, |ĉ3| = 4, |d̂| = 5,
and |â| = 6.

Since |ê| + |ĉ3| > |d̂|, there exists α ∈ (ê ∩ ĉ3) ∪ ((ê ∪ ĉ3) \ d̂). If α ∈ ĉ3, let i be the
minimum integer such that α ∈ ĉi. If α 6∈ ĉ3, then α ∈ ê \ (d̂ ∪ ĉ3), let i be 1. We
color e and ci in α if possible, in an arbitrary color otherwise (by choice of i, if ci
is not colored in α then i = 1). We delete d. If i 6= 3, edge c3 is not colored and we
delete it. Then, if i 6= 2, edge c2 is not colored, and either i = 3 and c3 is colored in
α (which was not an available color for c2 by choice of i), or i = 1 and c3 has been
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Figure 3.21: Notations of Claim 9
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deleted; In both cases, we can delete c2. Then, if i 6= 1, edge c1 is not colored, and
the edges c2 and c3 are deleted or colored in α (which was not an available color
for c1 by choice of i), so we can delete c1. We delete successively a, b2, b1.

• Vertices v2 and u have no common neighbor of degree 6.
Then, by definition of an S3-vertex, the neighborhood of v2 is, clockwise,
(u, y1, z1, z2, y2), with d(y1) = d(y2) = 7 and d(z1) = d(z2) = 6. We name the
edges according to Figure 3.22b. By minimality, we color G \ {a, . . . , k}. With-
out loss of generality, we consider the worst case, i.e. |f̂ | = |ĝ| = |ĥ| = |ĵ| = 2,
|̂i| = |k̂| = 3, |b̂| = |ê| = 5, and |â| = |ĉ| = |d̂| = 6. We first prove the following.
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Figure 3.22: Notations of Claim 10

1. We can color f, g, h, i, j and k in such a way that, afterwards, ĉ 6= d̂ if |ĉ| = |d̂| = 4.

Proof. We consider two cases depending on whether ĉ = d̂.

– ĉ = d̂. We apply Lemma 1.7 on (f, g, h, j) by considering that f and j are
incident so they receive different colors. We color i and k. The new con-
straints of c are i and h, and the new constraints of d are i and j. Since h and
j receive distinct colors, we have |ĉ| ≥ 5 or |d̂| ≥ 5 or ĉ 6= d̂.

– ĉ 6= d̂. Let α ∈ ĉ, 6∈ d̂. We color h in a color other than α. We color g, f, j, i
and k successively. Thus, either |d̂| ≥ 5 or α ∈ ĉ so ĉ 6= d̂.

♦

By (1), we color f, g, h, i, j and k in such a way that ĉ 6= d̂ if |ĉ| = |d̂| = 4. We color
a, b and e. Either |ĉ| ≥ 2 (resp. |d̂| ≥ 2), and we color d and c (resp. c and d). Or
|ĉ| = |d̂| = 1 and ĉ 6= d̂, we color d and c independently.
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Claim 11. G cannot contain (C11).

Proof. We name the edges according to Figure 3.23. By minimality, we color G \
{a, . . . , e}. Without loss of generality, we consider the worst case, i.e. |d̂| = |ê| = 2,
|â| = |ĉ| = 3 and |b̂| = 4. We consider two cases depending on whether ê ⊂ b̂.

5u 6 w

6
v

6
x

a d

ec

b

Figure 3.23: Notations of Claim 11

• ê 6⊂ b̂. Then we color e in a color that does not belong to b̂. We can delete
successively b, a, c and d.

• ê ⊂ b̂. Then, since |ĉ| + |d̂| > |b̂| and d̂ ⊂ b̂, there exists α ∈ (ĉ ∩ d̂) ∪ ((ĉ ∪ d̂) \ b̂).
We color c and d in α if possible, in an arbitrary color otherwise. Note that since
ê ⊂ b̂, we have |ê| ≥ 1 in both cases. We delete successively b, e and a.

Lemma 3.20 holds by Claims 1 to 11.

Discharging rules

We design discharging rules R1, R2, . . ., R11 (see Figure 3.24):

For any face f of degree at least 4,

• Rule R1 is when d(f) = 4 and f is incident to a vertex v of degree d(v) ≤ 5. Then
f gives 1 to v.

• Rule R2 is when d(f) ≥ 5 and f is incident to a vertex v of degree d(v) ≤ 5. Then
f gives 2 to v.

For any vertex u of degree at least 7,

• Rule R3 is when u has a weak neighbor v of degree 3. Then u gives 1 to v.

• Rule R4 is when u has a semi-weak neighbor v of degree 3. Then u gives 1
2

to v.

• Rule R5 is when u has a weak neighbor v of degree 4. Then u gives 1
2

to v.
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For any vertex u of degree 8,

• Rule R6 is when u has an E2-neighbor v. Then u gives 1
2

to v.

• Rule R7 is when u has an E3-neighbor v. Then u gives 1
3

to v.

• Rule R8 is when u has an E4-neighbor v. Then u gives 1
4

to v.

For any vertex u of degree 7,

• Rule R9 is when u has an S2-neighbor v. Then u gives 1
2

to v.

• Rule R10 is when u has an S3-neighbor v. Then u gives 1
3

to v.

• Rule R11 is when u has an S4-neighbor v. Then u gives 1
4

to v.

5− vf
1
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5− vf
2
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7+u 3 v weak

1

R3

7+u 3 v weak

1
2

R4

7+u 4 v weak

1
2

R5

8u v E2

1
2

R6

8u v E3

1
3

R7

8u v E4

1
4

R8

7u v S2

1
2

R9

7u v S3

1
3

R10

7u v S4
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Figure 3.24: Discharging rules.

Note that according to these rules, only vertices of degree at most 5 receive weight,
and only faces of degree at least 4 and vertices of degree at least 7 give weight. Note
that the notation Ei and Si corresponds to the fact that a vertex u gives a weight of 1

i

to every Ei- or Si-neighbor.

Lemma 3.21. A planar graph G with ∆(G) ≤ 8 that does not contain Configurations (C1) to
(C11) is a stable set.
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Proof. We can assume without loss of generality that G is connected (if it is not, we
simply consider a connected component of G, as it satisfies the same hypothesis).
Assume by contradiction that G is not a single vertex. Thus G is connected and
contains at least one edge. According to Configuration (C1), every vertex x of G
satisfies d(x) ≥ 3. We consider a planar embedding of G.
We attribute to each vertex u a weight of d(u) − 6, and to each face a weight of
2d(f) − 6. We apply discharging rules R1, R2, . . ., R11. We show that all the faces and
vertices have a weight of at least 0 in the end.

Note that the degree of a face is the number of vertices on its boundary, while
walking through a facial walk (i.e. some vertices are counted with multiplicity). The
discharging rules on the faces also apply with multiplicity: R1 and R2 apply to each
vertex of degree at most 5 incident to f as many times as it appears on the boundary
of f .

Let f be a face in G. By Configuration (C1), no two vertices of degree at most 5 are
adjacent. Thus f is incident to at most bd(f)

2
c vertices of degree ≤ 5. We consider four

cases depending on d(f).

1. d(f) = 3. Then f has an initial weight of 0 and gives nothing, so it has a final
weight of at least 0.

2. d(f) = 4. Face f is incident to at most 2 vertices of degree ≤ 5. So f has an initial
weight of 2 and gives at most two times 1 according to R1. Thus f has a final
weight of at least 2− 2× 1 ≥ 0.

3. d(f) = 5. Face f is incident to at most 2 vertices of degree ≤ 5. So f has an initial
weight of 4 and gives at most two times 2 according to R2. Thus f has a final
weight of at least 4− 2× 2 ≥ 0.

4. d(f) ≥ 6. Face f is incident to at most bd(f)
2
c ≤ d(f)

2
vertices of degree ≤ 5. So f

has an initial weight of 2 × d(f) − 6 and gives at most d(f)
2

times 2 according to
R2. Thus f has a final weight of at least 2× d(f)− 6− 2× d(f)

2
= d(f)− 6 ≥ 0.

So all the faces have a final weight of at least 0 after application of the discharging
rules. Let us now prove that the same holds for the vertices.

Let x be a vertex of G. We consider different cases corresponding to the value of
d(x).

1. d(x) = 3. Vertex x has an initial weight of −3. We show that it receives at least 3,
thus has a non-negative final weight. By Configuration (C1), the three neighbors
of x are of degree 8. We consider four cases depending on the degrees of the
three faces f1, f2 and f3 incident to x. We assume d(f1) ≥ d(f2) ≥ d(f3). Let u1, u2

and u3 be the three neighbors of u, where for every i ∈ {1, 2, 3}, the edge (x, ui)
belongs to fi−1 and fi (subscripts taken modulo 3).

a) d(f1) ≥ 5 and d(f2) ≥ 4.
So x receives 2 from f1 by R2, and at least 1 from f2 by R1 or R2.
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b) d(f1) = d(f2) = d(f3) = 4.
So x receives 1 from each fi by R1.

c) d(f1) = d(f2) = 4 and d(f3) = 3.
So x receives 1 from both f1 and f2 byR1. Besides, x is a semi-weak neighbor
of u1 and u3, so x receives 1

2
from u1 and u2 by R4.

d) d(f1) ≥ 5 and d(f2) = d(f3) = 3.
So x receives 2 from f1 byR2. Vertex x is a weak neighbor of u3, so x receives
1 from u3 by R3.

e) d(f1) = 4, and d(f2) = d(f3) = 3.
So x receives 1 from f1 by R1. Besides, x is a weak neighbor of u3 and a
semi-weak neighbor of u1 and u2, so x receives 1 from u3 by R3, and 1

2
from

both u1 and u2 by R4.

f) d(f1) = d(f2) = d(f3) = 3.
Then x is a weak neighbor of u1, u2 and u3, so x receives 1 from u1, u2 and
u3 by R3.

2. d(x) = 4. Vertex x has an initial weight of −2. We show that it receives at least 2,
thus has a non-negative final weight. By Configuration (C1), the four neighbors
u1, u2, u3 and u4 of x are of degree at least 7. We consider three cases depending
on how many triangles are incident to x.

a) Vertex x is incident to at most 2 triangles.
Then x is incident to at least two faces f1 and f2 with d(f1), d(f2) ≥ 4. So x
receives at least 1 from both f1 and f2 by R1 or R2.

b) Vertex x is incident to exactly 3 triangles (x, u1, u2), (x, u2, u3) and (x, u3, u4).
Then x is incident to a face f1 with d(f1) ≥ 4. So x receives at least 1 from f1

by R1 or R2. Besides, x is a weak neighbor of u2 and u3, so x receives 1
2

from
both u2 and u3 by R5.

c) Vertex x is incident to 4 triangles.
Then x is a weak neighbor of u1, u2, u3 and u4, so x receives 1

2
from u1, u2, u3

and u4 by R5.

3. d(x) = 5. Vertex x has an initial weight of −1. We show that it receives at least 1,
thus has a non-negative final weight. By Configuration (C1), the five consecutive
neighbors u1, u2, u3, u4 and u5 of x are of degree at least 6.

In the case where x is incident to a face f with d(f) ≥ 4, vertex x receives at
least 1 from f by R1 or R2. So we can assume that x is incident to five triangles
(x, u1, u2), (x, u2, u3), (x, u3, u4), (x, u4, u5) and (x, u5, u1). We consider four cases
depending on the number of vertices of degree 6 incident to x.

a) Vertex x has at least three neighbors of degree 6.
By Configuration (C11), they cannot appear consecutively around x, so they
are exactly three. Without loss of generality, we assume d(u1) = d(u2) =
d(u4) = 6, hence d(u3), d(u5) ≥ 7. Then x is an E2- or S2-neighbor of u3 and
u5, so it receives 1

2
from both u3 and u5 by R6 or R9.
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b) Vertex x has exactly two neighbors of degree 6.
We consider two cases depending on whether these vertices of degree 6
appear consecutively around x.

i. Vertex x has two consecutive neighbors of degree 6.
We can assume w.l.o.g. that d(u1) = d(u2) = 6, and that d(u3) ≥ d(u5).
We consider three cases depending on d(u3) and d(u5).
A. d(u3) = d(u5) = 8.

Then x is an E2-neighbor of u3 and u5, so x receives 1
2

from both u3

and u5 by R6.
B. d(u3) = 8, d(u5) = 7.

Then x is an E2-neighbor of u3, an S3- or S4-neighbor of u5 (depend-
ing on the degree of u4), and an S4- or E3-neighbor of u4, so x re-
ceives 1

2
from u3 by R6, and at least 1

4
from both u4 and u5 by R7, R10

or R11.
C. d(u3) = d(u5) = 7.

Then x is an S3-neighbor of u3 and u5, and an S3- or E3-neighbor of
u4, so x receives 1

3
from u3, u4 and u5 by R7 or R10.

ii. Vertex x has no two consecutive neighbors of degree 6.
We can assume without loss of generality that d(u1) = d(u4) = 6 and
that d(u2) ≥ d(u3). We consider two cases depending on d(u3).
A. d(u3) = 8.

Then d(u2) = 8. Vertex x is an E3- or S2-neighbor of u5, and an E3-
neighbor of u2 and u3, so x receives at least 1

3
from u2, u3 and u5 by

R7 or R9.
B. d(u3) = 7.

Then x is an E2- or S2-neighbor of u5, and an S3-, S4- or E3-neighbor
of u2 and u3, so x receives 1

2
from u5 by R6 or R9, and at least 1

4
from

u2 and u3 by R7, R10 or R11.

c) Vertex x has exactly one neighbor of degree 6.
We can assume without loss of generality that d(u1) = 6, and d(u2) ≥ d(u5)
or d(u3) ≥ d(u4) if d(u2) = d(u5). We consider three cases depending on
d(u5) and d(u3).

i. d(u5) = 8 and d(u3) = d(u4).
Then x is an E3-neighbor of u2 and u5, so it receives 1

3
from both by R7.

Besides, since d(u3) = d(u4), vertex x is an S4- or E4-neighbor of u3 and
u4, so it receives 1

4
from both by R8 or R11.

ii. d(u5) = 8 and d(u3) 6= d(u4).
Then d(u2) = d(u3) = 8 and d(u4) = 7. Vertex x is an E3-neighbor of u2,
u3 and u5, so it receives 1

3
from each by R7.

iii. d(u5) = 7.
Then vertex x is an E3-, E4- or S4-neighbor of every ui for i ∈ {2, 3, 4, 5},
so it receives at least 1

4
from each by R7, R8 or R11.

d) Vertex x has no neighbor of degree 6.
We consider three cases depending on the degrees of the ui’s.
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i. Vertex x has at least 4 neighbors of degree 8.
Then x is an E3- or E4-neighbor of each of them, so it receives at least 1

4

from each by R7 or R8.
ii. Vertex x has two consecutive neighbors of degree 7.

We consider w.l.o.g. that d(u1) = d(u2) = 7. Then x is an S4-neighbor of
u1 and u2, so it receives at least 1

4
from each by R11. Vertex x is also an

S4- or E3-neighbor of u3 and u5, so it receives at least 1
4

from each by R7

or R11.
iii. Vertex x has at most 3 neighbors of degree 8, and has no two consecutive neigh-

bors of degree 7.
Since x is only adjacent to vertices of degree 7 or 8, we consider w.l.o.g.
that d(u1) = d(u3) = 7, and d(u2) = d(u4) = d(u5) = 8. Then x is an
E3-neighbor of u2, u4 and u5, so it receives 1

3
from each by R7.

4. d(x) = 6. Vertex x has an initial weight of 0, gives nothing away, and has a final
weight of at least 0.

5. d(x) = 7. Vertex x has an initial weight of 1. We show that it gives at most 1, thus
has a non-negative final weight. By Configuration (C1), the neighbors of x have
degree at least 4, and x has at most 3 weak neighbors of degree at most 5. We
consider four cases depending on the weak neighbors of x.

a) Vertex x has an S2-neighbor v.
Let v, w1, w2, w3, w4, w5 and w6 be the consecutive neighbors of x. By defi-
nition of an S2-neighbor, d(w1) = d(w6) = 6. By Configuration (C8), if w2

(resp. w5) is a weak neighbor of x, then d(w2) > 5 (resp. d(w5) > 5). Assume
w.l.o.g. that d(w3) ≥ d(w4). Then by Configuration (C1), if w3 and w4 are
adjacent then d(w3) > 5. Thus x has at most two weak neighbors of degree
at most 5: v and possibly w4. Besides, d(v), d(w4) > 3. By Rules R5, R9, R10

and R11, vertex x gives at most 1
2

to each.
b) Vertex x has at least two weak neighbors of degree 4.

By Configuration (C9), x is adjacent to no other weak neighbor of degree
4, and no S2, S3 or S4-neighbor. Thus x gives 1

2
to each of the two weak

neighbors of degree 4 by R5.
c) Vertex x has exactly one weak neighbor v of degree 4 and no S2-neighbor.

If x has an S3-neighbor v2, then by Configuration (C10), it has no other neigh-
bor of degree at most 5. Thus x gives 1

2
to v by R5, 1

3
to v2 by R10.

If x has no S3-neighbor, then x has at most two other weak neighbors v1 and
v2 of degree at most 5, which are of degree 5 by assumption. So x gives 1

2
to

v by R5, 1
4

to v1 and v2 by R11.
d) Vertex x has no weak neighbor of degree 4, and no S2-neighbor.

Vertex x has at most three weak neighbors v1, v2 and v3 of degree at most 5,
which are of degree 5 by assumption. So x gives at most 1

3
to each by R10 or

R11.

6. d(x) = 8. Vertex x has an initial weight of 2. We show that it gives at most 2, thus
has a non-negative final weight. By Configurations (C1) and (C2), vertex x has at
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most 4 neighbors that are either semi-weak with degree 3 or weak with degree
at most 5. We consider eight cases depending on the neighborhood of x.

a) Vertex x has at least two weak neighbors v1 and v2 of degree 3.
Then by Configuration (C3), vertex x has exactly two neighbors of degree at
most 5. Thus x gives 1 to v1 and v2 by R3.

b) Vertex x has exactly one weak neighbor v1 of degree 3, and at least one semi-weak
neighbor v2 of degree 3.
Then by Configuration (C4), vertex x has at most one other neighbor v3 of
degree at most 5. By assumption, vertex v3 is not a weak neighbor of x of
degree 3, so x gives at most 1

2
to v3 by R4, R5, R6, R7 or R8. Vertex x gives 1

to v1 by R3, and 1
2

to v2 by R4.
c) Vertex x has exactly one weak neighbor v1 of degree 3, no semi-weak neighbor of

degree 3, and at least two weak neighbors v2 and v3 of degree 4.
Then, by Configuration (C5), vertex x has no other weak neighbor of degree
at most 5. By assumption, it has no semi-weak neighbor of degree 3. So x
gives 1 to v1 by R3, 1

2
to v2 and v3 by R5.

d) Vertex x has exactly one weak neighbor v1 of degree 3, no semi-weak neighbor of de-
gree 3, exactly one weak neighbor v2 of degree 4, and at least oneE2- orE3-neighbor
v3.
By definition of E2- and E3-neighbor, vertices x and v3 have a common
neighbor v4 of degree at most 7, which by Configuration (C1) has degree
6 or 7. Then, by Configuration (C6), vertex x has no other neighbor of de-
gree at most 5. So x gives 1 to v1 by R3, 1

2
to v2 by R5, at most 1

2
to v3 by R6

or R7.
e) Vertex x has exactly one weak neighbor v1 of degree 3, no semi-weak neighbor of

degree 3, exactly one weak neighbor v2 of degree 4, and no E2- or E3-neighbor.
Then x has at most two other weak neighbors v3 and v4 of degree at most 5,
which are by assumption E4-neighbors. So x gives 1 to v1 by R3, 1

2
to v2 by

R5, 1
4

to v3 and v4 by R8.
f) Vertex x has exactly one weak neighbor v1 of degree 3, no semi-weak neighbor of

degree 3, no weak neighbor v2 of degree 4, and at least an E2-neighbor v2.
Then by Configuration (C7), vertex x has at most one other weak neighbor
v3 of degree at most 5, which is by assumption of degree 5. So x gives 1 to
v1 by R3, at most 1

2
to v2 and v3 by R6, R7 or R8.

g) Vertex x has exactly one weak neighbor v1 of degree 3, no weak neighbor v2 of degree
4, no semi-weak neighbor of degree 3, and no E2-neighbor.
Then x has at most three other weak neighbors v2, v3 and v4 of degree at
most 5, which are by assumption of degree 5. Vertex x has no E2-neighbor,
so they are E3 or E4-neighbors of x. So x gives 1 to v1 by R3, at most 1

3
to v2,

v3 and v4 by R7 or R8.
h) Vertex x has no weak neighbor of degree 3.

Then x has at most four neighbors v1, v2, v3 and v4 of degree at most 5 that
are either weak with degree at least 4 or semi-weak with degree 3. So x
gives at most 1

2
to each by R4, R5, R6, R7 or R8.
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Consequently, after application of the discharging rules, every vertex and every
face ofG has a non-negative weight, 6|E|−6|V |−6|F | = (2|E|−6|V |)+(4|E|−6|F |) =∑

v∈V (d(v)− 6) +
∑

f∈F (2d(f)− 6) ≥ 0, a contradiction to Euler’s Formula.

Conclusion

Proof of Theorem 3.13
Let G be a minimal planar graph with ∆(G) ≤ 8 such that G is not 9-edge-

choosable. By Lemma 3.20, graph G cannot contain (C1) to (C11). Lemma 3.21 implies
that G is a stable set, thus 9-edge-choosable, a contradiction. �
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Chapter 4

Square coloring

In this chapter we consider the problem of square coloring. This is based on joint works with
Benjamin Lévêque and Alexandre Pinlou [BLP14a, BLP14b, BLP14c], and with Nicolas Bous-
quet [BB14a].

4.1 An overview of square coloring
Square coloring is a subcase of vertex coloring, as square coloring a graph G is equiv-
alent to coloring its square G2. Contrary to what happens with line graphs, we cannot
characterize squares in terms of forbidden subgraphs. There is no forbidden induced
subgraph in the class of square graphs. Indeed, consider any graph H . Take an edge
subdivision H ′ of H . Its square H ′2 belongs by definition to the class of square graphs,
and contains H as an induced subgraph. Beside, the path on three vertices is not a
square graph. In particular, the class of square graphs is not closed under induced
subgraphs.

However, a conjecture similar to Conjecture 3.2 was still formulated in the case of
square graphs.

Conjecture 4.1 ([KW01]). Every graph G satisfies χ(G2) = χ`(G
2).

This turns out not to be the case: not only is the equality not always true, but the
difference can be arbitrarily large [KP14b], even in the case of bipartite graphs [KP14a].
Zhu asked whether this could not be satisfied at least for higher powers of graphs, but
it is, again, not true.

Theorem 4.2 ([KKP13, KPRY14]). There exists c > 0, such that for any k ∈ N∗, there is a
graph family (Gn,k)n∈N with χ`(Gk

n,k) ≥ c · log(χ(Gk
n,k)) · χ(Gk

n,k) and unbounded χ`(Gk
n,k).

This leads to another question, about the relative size of the gap.

Question 4.3 ([KPRY14]). Is it true that, for every k ≥ 2, we have χ`(Gk) = o(χ(Gk)2) for
every G?

Kosar et al. further ask in [KPRY14] whether, for every k ≥ 2, there exists ck such
that χ`(Gk) ≤ ck · log(χ(Gk)) ·χ(Gk), and whether the dependency in k can be dropped
(i.e. ck replaced with c). The fact that χ`(Gk) is bounded with a function of χ(Gk)
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follows from comparing each with ∆(G) (Remember that no such function exists for
k = 1 by Theorem 1.5). We now detail how χ`(G

k) and χ(Gk) relate with ∆(G) for each
k ≥ 2.

Let u be a vertex of degree ∆(G). Now, in G2 we have a clique N(u) ∪ {u} of
size ∆(G) + 1. It then follows that χ(G2) ≥ ∆(G) + 1. For every k ≥ 2, we have
χ(Gk) ≥ χ(G2). However, we cannot in general provide a better lower bound than
∆(G) + 1 even for very large k. We can observe this by considering stars, though no
larger connected graph would achieve it. On the other side, we can note that G2 has
maximum degree at most ∆(G)2 = ∆(G)+∆(G)× (∆(G)−1). More generally, it holds
that Gk has maximum degree at most Dk,∆(G), with

Da,b = b×
a∑
i=1

(b− 1)i−1

(note that D2,∆(G) = ∆(G)2). These maxima are reached e.g. for a tree with a root u,
every vertex at distance less than k from u of degree ∆(G), and every vertex at distance
k from u of degree 1. In Gk, the vertex u is adjacent to all the other vertices in the tree,
and is therefore of degree Dk,∆(G).

From Theorem 1.4, we can derive that Gk can be colored with Dk,∆(G) colors unless
Gk is a clique on Dk,∆(G) + 1 vertices or an odd cycle. Note that a connected square
graph on at least three vertices contains a triangle: this is obviously still true for higher
powers. Consequently, Gk cannot be an odd cycle other than a triangle. Let us now
consider the case when it is a clique on Dk,∆(G) + 1 vertices.

For Gk to be a clique, the graph G must have diameter at most k. A d-regular graph
with diameter at most k cannot have more thanDk,d+1 vertices. Furthermore, a graph
G of diameter at most k with a vertex of degree at most ∆(G)− 1 must have less than
Dk,∆(G) + 1 vertices. Therefore, it all boils down to the existence of d-regular graphs of
diameter k with Dk,d + 1 vertices. Such a graph is called a Moore graph. Moore graphs
have been extensively studied, see most notably [MŠ05] for a full survey. In particular,
we know that Moore graphs can only exist for specific values of (k, d). Namely when
k = 1 (all cliques are regular graphs of diameter 1), d = 2 (all cycles are 2-regular
graphs) or k = 2 and d ∈ {3, 7, 57} (the Moore graph for (2, 3) is the famous Petersen
graph) [HS60]. In fact, we do not know whether there actually is a Moore graph for
(2, 57). However, for each couple (k, d), we know there cannot be two corresponding
Moore graphs.

We from now on restrict the study to graphs with maximum degree at least 3, and
to k ≥ 2. In other words, we rule out paths and cycles. It follows from the previous
observations that Gk is Dk,∆(G)-colorable unless k = 2 and G is a Moore graph.

Cranston and Kim [CK08] were the first to question the optimality of that upper
bound.

Conjecture 4.4 ([CK08]). Every graphGwith ∆(G) ≥ 3 satisfies χ(G2) ≤ ∆(G)2−1 unless
G is a Moore graph.

They proved Conjecture 4.4 for ∆ = 3, namely that the square of every subcubic
graph is 8-colorable, except for the Petersen graph whose square requires 10 colors.
The bound of 8 is optimal since the Petersen graph minus an edge requires 8 colors.

96



Cranston and Rabern [CR13] later solved it for every ∆(G) ≥ 4, thus settling Conjec-
ture 4.4. However, there is no reason why it should be true for squares and not for
higher powers, as conjectured by Miao and Fan [MF12].

Conjecture 4.5 ([MF12]). For every k ≥ 2, every graph G with ∆(G) ≥ 3 satisfies χ(Gk) ≤
Dk,∆(G) − 1 unless k = 2 and G is one of the corresponding Moore graphs.

Conjecture 4.5 is already known to be true for k = 2, and we prove this for k ≥ 3
with a short argument, thus settling Conjecture 4.5.

Theorem 4.6. For every k ≥ 3, every graph G with ∆(G) ≥ 3 satisfies χ(Gk) ≤ Dk,∆(G)− 1.

The strategy is to provide a good order on the vertices and conclude with a greedy
coloring on it. The idea is very roughly as follows. If there is a short cycle (shorter
than 2k), then any vertex on it has relatively few neighbors in Gk, and we can order
the vertices by decreasing distance to two given adjacent vertices on the cycle. If there
are two intersecting cycles of length 2k, we can conclude similarly by considering two
vertices, one on the intersection and the other a neighbor of the former on one cycle.
Then, if the graph has diameter at least k + 1, we consider two vertices at distance
k+1, find another pair of respective neighbors also at distance k+1 of each other, give
each of the two pairs the same color, and conclude again by considering two internal
vertices of a (k + 1)-path between the initial two vertices. Finally, if the graph has
diameter at most k, theory related to Moore graphs guarantees us that it has at most
Dk,∆(G) − 1 vertices [Dam73], hence the conclusion. Even though the above argument
does skip a few details, the actual proof, which is presented in Section 4.2 is not much
more involved. This, combined with the fact that the proof for k = 2 is a lot deeper,
leads us to believe that the bound of Theorem 4.6 is probably not the optimal bound
for higher powers. A reasonable first step toward improving the upper bound would
be to try to gain one more color per additional graph power, as follows.

Conjecture 4.7. For every k ≥ 2, the kth power of every graphGwith ∆(G) ≥ 3 is (Dk,∆(G)+
1− k)-colorable except for a finite set of graphs.

All the upper bounds presented here still hold in the case of list coloring. After
looking at the upper bound to χ(Gk), we now study the lower bound, and more pre-
cisely sufficient conditions for it to be reached. As mentioned earlier, we cannot get
any interesting lower bound on the chromatic number of kth powers of graphs for
k ≥ 3. Therefore, we now restrict the study to squares. We know that the square of ev-
ery graph G requires at least ∆(G) + 1 colors. We are looking for sufficient conditions
for G2 to be (∆(G) + 1)-colorable.

A first direction is to look into planar graphs with sufficiently large girth:

Conjecture 4.8 ([WL03]). There exists an integer M such that every planar graph G such
that g(G) ≥ 5 and ∆(G) ≥M satisfies χ2(G) = ∆(G) +1.

Conjecture 4.8 was proved in [BGI+04, BIN04, DKNŠ08, DKNŠ09] to be true for
g(G) ≥ 7 and false for g(G) ∈ {5, 6}. More precisely, the following is known.

Theorem 4.9 ([BGI+04, Iva10]). .
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(1) [BGI+04] There exist planar graphs G with g(G) = 6 such that χ2(G) > ∆(G) + 1 for
arbitrarily large ∆(G).

(2) [Iva10] Every planar graph with g(G) ≥ 7 and ∆(G) ≥ 16 satisfies χ2(G) = ∆(G) + 1.

Theorem 4.9 is in fact still true in the case of list coloring. This is immediate in the
case of (1), and (2) was proved in that setting. Conjecture 4.8 is completely solved, but
we can try to obtain stronger statements. We know from Lemma 1.3 (see Chapter 1 for
greater details) that every planar graph G with g(G) ≥ 6 (resp. 7) satisfies mad(G) < 3
(resp. 14

5
). Therefore, proving, for example, that every graph G with mad(G) < 14

5

and sufficiently large ∆(G) satisfies χ2
`(G) = ∆(G) + 1 would be a generalization of

Theorem 4.9.(2). Thanks to the fact that the maximum average degree is a real value,
we can also ask for the exact threshold.

Question 4.10. What is the supremum M such that any graph G with mad(G) < M and
large enough ∆(G) (depending only on mad(G)) satisfies χ2

` = ∆(G) + 1?

We know thatM ≤ 3 from the family of graphs of Theorem 4.9.(1). Another witness
family, also introduced in [BGI+04], is presented in Figure 4.1 (note that g = 5 so it is
not an alternative family for Theorem 4.9.(1)).

1

2

p

Figure 4.1: A graph Gp with ∆(Gp) = p, mad(Gp) = 3− 5
2p+1

and χ2(Gp) = ∆(Gp) + 2.

The question of the value of M is also, indirectly, a question of whether the pla-
narity and/or the girth truly are decisive for square coloring. In other words, can we
at least match what is already known for planar graphs, i.e. obtain M ≥ 14

5
with M

being a maximum when M = 14
5

? If we can, the exact value of M (M = 14
5

being a
maximum, or 14

5
< M ≤ 3) would also yield extra information as to the case of planar

graphs with given girth. Interestingly, we can obtain M = 3. In a way, this means that
Conjecture 4.8 for g(G) = 6 is only barely false.

Theorem 4.11. For any small enough ε > 0, every graph G with mad(G) < 3 − ε and
∆(G) ≥ 3

ε2
satisfies χ2

`(G) = ∆(G) + 1.

The idea of the proof, which is fully presented in Section 4.3 is relatively simple,
building on the elegant proof of Borodin Kostochka Woodall [BKW97] already men-
tioned in Chapters 1 and 3. It therefore relies on a global discharging argument. After
reducing simple configurations in a minimal counter-example, we identify a global
structure whose reduction can be boiled down to a list edge coloring problem. When
this structure is too dense, the corresponding list edge coloring problem can be tack-
led with Theorem 1.10. We then apply local discharging rules, and note that only el-
ements of the structure may still have deficient weight afterwards. We then conclude
as in [BKW97] using a global discharging rule that compensates for it.
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Now that Question 4.10 is solved, we can ask about possible generalizations of it,
e.g. ask what happens when we allow an additional constant number of colors. A
similar question was already asked in the setting of planar graphs [WL03], and we
generalize it here.

Question 4.12. What is the supremum N such that any graph G with mad(G) < N and
large enough ∆(G) (depending only on mad(G)) satisfies χ2

`(G) = ∆(G) +O(1)?

Again, we can precisely answer that question, with N = 4.

Theorem 4.13. For any small enough ε > 0, every graph G with mad(G) < 4 − ε satisfies
χ2
`(G) ≤ ∆(G) + 40

ε
.

To prove Theorem 4.13, we use a very short local discharging argument, with two
forbidden configurations and two reduction rules, as presented in Section 4.4. Note
that we did not make use of a lower bound on ∆(G), which would probably strengthen
the conclusion but was unnecessary for this purely theoretical result that N ≥ 4. It
holds that N ≤ 4 due to a family of graphs called Shannon’s triangle (see Figure 4.2),
where each graph Gp has mad(Gp) < 4 and requires almost 3∆(Gp)

2
colors. Note that

this family of graphs happens to be planar of girth 4, which proves the result to be
tight even in the case of planar graphs with a lower bound on the girth.

v1 w1

u1

w2

wp

v2

vp
u2

up

Figure 4.2: A graph Gp with ∆(Gp) = 2p− 1, mad(Gp) = 4− 10
3p+1

and χ2(G) = 3p− 2.

As a sidenote, we can also wonder about the exact progression of the mad supre-
mum for an increasing number of additional colors. More formally, what is, for any
C ≥ 2, the supremum M(C) such that any graph G with mad(G) < M(C) and suffi-
ciently large ∆(G) (depending only on mad(G)) satisfies χ2

`(G) ≤ ∆(G) +C?
We know that M(1) = M = 3, and that limC→∞M(C) = N = 4. Charpen-

tier [Cha14] generalized the family of graphs presented in Figure 4.1 to obtain for
each C a family of graphs which are of maximum average degree less than 4C+2

C+1
, of

increasing maximum degree, and whose square requires ∆+C+1 colors to be colored
(see Figure 4.3). Consequently, for every C, we have M(C) ≤ 4C+2

C+1
. For C = 2, this

gives an upper-bound of 10
3

, which is incidently also the upper-bound on the mad of
planar graphs with girth at least 5.

This result, and the fact that 4C+2
C+1

equals M(C) when C = 1 and when C tends to
infinite, raise the following question.
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u

v1w1

x

vpwC

v2w2

Figure 4.3: For p ≥ C, a graph Gp,C with ∆(Gp,C) = p + 1, mad(Gp,C) = (2C+1)(2p+1)+1
(C+1)(p+1)+1

and χ2(Gp,C) = p+ C + 2.

Question 4.14. Is it true that M(C) = 4C+2
C+1

for any C ≥ 1?

We believe that the proof of Theorem 4.11 could be adapted to answer positively
to Question 4.14 for other small values of C, but it would of course be more exciting to
search for a more general answer (i.e. a proof or counter-example for any large enough
C).

Now, what can we say about the lower-bounds on ∆(G)? For any p ∈ N∗, the square
of the cycle C3p+1 requires at least 4 colors. Therefore, without lower bounds on ∆(G),
even in the case of planar graphs with extremely large girth, we cannot immediately
reach the conclusion that ∆(G) + 1 colors are enough. We can then try to find, for
every appropriate pair (g, C) (resp. (m,C)), the best possible d such that every planar
graph with girth at least g (resp. every graph with mad smaller than m) and ∆ at least
d satisfies χ2

`(G) ≤ ∆(G)+C. For C = 1, the best results proved in the setting of planar
graphs are as follows.

Theorem 4.15 ([Iva10]). If G is a planar graph, then χ2
`(G) = ∆(G) +1 in each of the

following cases:
(1) ∆(G) ≥ 5 and g(G) ≥ 12

(2) ∆(G) ≥ 6 and g(G) ≥ 10

(3) ∆(G) ≥ 10 and g(G) ≥ 8

(4) ∆(G) ≥ 16 and g(G) ≥ 7

In the setting of general graphs with an upper-bound on the maximum average
degree, we prove the following.

Theorem 4.16. For any graph G, χ2
`(G) = ∆(G) +1 in each of the following cases:

(1) ∆(G) ≥ 5 and mad(G) < 12
5

(2) ∆(G) ≥ 6 and mad(G) < 5
2

(3) ∆(G) ≥ 8 and mad(G) < 18
7

We prove this using a global discharging argument along a tree-like structure (see
Section 4.5). Independently, Cranston and Skrekovski [CŠ14] proved a more general
version of Theorem 4.16 through very similar arguments.
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Theorem 4.17 ([CŠ14]). If G is a graph with ∆(G) ≥ 6 and mad(G) < 2 + 4∆(G)−8
5∆(G)+2

, then
χ2
`(G) = ∆(G) + 1.

They also prove that conclusion for ∆(G) = 5 and mad(G) < 70
29

[CŠ14], which
strengthens Theorem 4.16.

Note that Theorem 4.17 matches Theorem 4.16 for ∆(G) ∈ {6, 8}, while the upper-
bound on mad(G) tends to 14

5
when ∆(G) is large.

These theorems, once transposed to planar graphs with a lower-bound on the girth,
yields the following.

Corollary 4.18. If G is a planar graph, then χ2
`(G) = ∆(G) +1 in each of the following cases:

(1) ∆(G) ≥ 5 and g(G) ≥ 12

(2) ∆(G) ≥ 6 and g(G) ≥ 10

(3) ∆(G) ≥ 8 and g(G) ≥ 9

(4) ∆(G) ≥ 14 and g(G) ≥ 8

Corollary 4.18 matches Theorem 4.15 for g(G) ≥ 12, 10 and improves it for g(G) ≥
9. However, the bounds for g(G) ∈ {7, 8} are yet to be matched.

As to larger values of C, we can in particular ask about the first missing case when
C = 1, i.e. planar graphs with girth at least 6. Bu and Zhu [BZ12] proved that, with no
constraint on ∆(G), we can prove that C = 5 is enough (i.e. every planar graph G with
g(G) ≥ 6 satisfies χ2

`(G) ≤ ∆(G) + 5). In the specific case of C = 2, it was first proved
that ∆(G) ≥ 8821 was enough [DKNŠ08], which was later improved to ∆(G) ≥ 24 in
the case of list square coloring [BI09b, BI09c] and ∆(G) ≥ 18 in the case of standard
square coloring [BI09a]. We strengthen this as follows.

Theorem 4.19. Every graph G with mad(G) < 3 and ∆(G) ≥ 17 satisfies χ2
` ≤ ∆(G) + 1.

Despite the fact that Theorem 4.19 is purely incremental, the proof, as presented
in Section 4.6 is somewhat interesting from a technical point of view. Indeed, it re-
lies on a global discharging argument which does not simply use the degeneracy of
some structure (usually a forest). The structure we consider is a special kind of cactus
where each edge may have multiplicity 1 or 2. Instead of using the fact that cacti are
2-degenerate, thus 4-degenerate when we take multiplicity into account, we use the
special properties of our cactus to show that it contains in fact at most twice as many
edges as it does vertices. In the proofs where degeneracy is crucial, the decisive color-
ing result behind the global structure are usually either Lemma 1.7 that even cycles are
2-choosable or more generally Theorem 1.10. Here, the decisive coloring result behind
our cactus is Lemma 1.8 (see Chapter 1). This is to our knowledge the first occurence
of it, and it might be useful for other problems.

In the setting of planar graphs with no restriction on the girth, the ultimate goal
is the following long-standing conjecture, which we know to be, if true, optimal, as
Wegner [Weg77] provided graphs that show the bounds to be tight for every value of
∆(G).

Conjecture 4.20 ([Weg77]). If G is a planar graph, then:

• χ2(G) ≤ 7 if ∆(G) = 3

• χ2(G) ≤ ∆(G) +5 if 4 ≤ ∆(G) ≤ 7
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• χ2(G) ≤ b3 ∆(G)
2
c+ 1 if ∆(G) ≥ 8

From the previouly mentioned result of Bu and Zhu [BZ12], it follows that Conjec-
ture 4.20 holds when we assume the girth to be at least 6. However, in the general set-
ting, the conjecture is widely open for every value of ∆(G). Similarly as Conjecture 3.2,
we know at least that the order of magnitude is correct, i.e. χ2(G) ≤ b3 ∆(G)

2
c+ o(∆(G))

for large ∆(G) [HHMR07].
The results in this chapter seem to support the idea that it is relevant to try to relax

the planarity hypothesis when studying the 2-distance colorability of sparse graphs,
despite the fact that some bounds are yet to be matched. However, one might note
that none of them deal with planar graphs as a whole. This is no surprise considering
that Wegner’s conjecture quickly appears to be false when relaxing the hypothesis to
graphs with mad < 6 or even ≤ 14

5
. Simple examples of this, presented by Cranston

and Kim [CK08], are the Petersen graph, which is 3-regular and whose square requires
10 colors, or the Petersen graph minus an edge, whose mad is lowered to 14

5
but whose

square still needs 8 colors. Note also that the Petersen graph has girth 5, which means
that planarity is the decisive information here.

We even believe that the relaxation from planar graphs with bounded girth to
graphs with bounded maximum average degree might in fact be relevant only for
planar graph with girth at least 6. A strong evidence for this would perhaps be to
prove the following conjecture from Dvořák, Král, Nejedlý and Škrekovski [DKNŠ08].

Conjecture 4.21. [DKNŠ08] Every planar graph G with girth at least 5 and sufficiently large
∆(G) satisfies χ2(G) ≤ ∆(G) + 2.

We know from the family of graphs in Figure 4.3 that no such theorem for graphs
with mad < 10

3
can hold. Therefore, if Conjecture 4.21 holds, then we have an example

of a result on planar graphs with girth 5 whose relaxation to graphs with bounded
maximum average degree is false. Actually, even in the case of planar graphs with
large girth, it might be that a difference appears when these theorems are improved to
their optimal values, which are yet to be determined. We have no reason yet to believe
that Conjecture 4.1 could not partially hold here.

Question 4.22. Does there exist p ≥ 5, d ∈ N and f : N → N, such that every planar
graph G with g(G) ≥ p and ∆(G) ≥ d satisfies χ2(G) ≤ f(∆(G)), but some do not satisfy
χ2
`(G) ≤ f(∆(G))?

Question 4.23. Does there exist m ≤ 10
3

, d ∈ N and f : N → N, such that every graph
G with mad(G) < m and ∆(G) ≥ d satisfies χ2(G) ≤ f(∆(G)), but some do not satisfy
χ2
`(G) ≤ f(∆(G))?

4.2 A Brooks-like theorem on powers of graphs
In this section, we prove Theorem 4.6 that for every k ≥ 3, every graph G with ∆(G) ≥
3 satisfies χ(Gk) ≤ Dk,∆(G) − 1.

Let k ≥ 3. Let G be a graph, of maximum degree ∆ ≥ 3. Let M = Dk,∆. We prove
that Gk is M − 1 colorable. Note that M ≥ 21 as ∆ ≥ 3.
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We will need the following lemma, which is essentially an easy adaptation of ex-
isting results [CK08, MF12].

Lemma 4.24. If G satisfies any of the following:

1. G contains a vertex of degree smaller than ∆.

2. G contains a cycle shorter than 2k.

3. G contains two intersecting cycles of length 2k.

4. diam(G) ≤ k.

Then Gk is (M − 1)-choosable.

Proof. In each of the first three cases, the proof consists in a greedy coloring relative to
a well-chosen order on the vertices, and nothing else.

• Assume G contains a vertex v with d(v) ≤ ∆ − 1. Since G is connected, the dis-
tance to v is well-defined. Order the vertices by decreasing order to v, breaking
ties arbitrarily. Proceed with a greedy algorithm on the ordering. Every vertex
x at distance at least two from v has at least two neighbors which are not con-
straints (indeed the vertices on a shortest path from x to v are considered after
the vertex x in the order), so x can be colored. For every vertex w which is a
neighbor of v, since k ≥ 2, the degree of w in Gk is at most M − 1. Moreover,
the vertex v is considered after the vertex w in the order, so the vertex w can be
colored. Since k ≥ 2, ∆ ≥ 3 and d(v) ≤ ∆ − 1, the degree of v in Gk is at most
M −∆ < M − 1, so v is also colored.

• AssumeG contains a cycleC of length at most 2k−1. Let v andw be two adjacent
vertices on C. Since C is of length at most 2k − 1, the degree of v and w in Gk is
less than M − 1. Then we greedily color the vertices by decreasing distance to
{v, w} (breaking ties arbitrarily) and ending with v and w.

• Assume G contains a vertex v belonging to two cycles of length 2k. Let w be a
neighbor of v on one cycle of length 2k. Vertex v has degree at most M − 2 in Gk,
and w at most M − 1. Then we greedily color the vertices by decreasing distance
to {v, w} (breaking ties arbitrarily and ending with w and then v).

• Assume diam(G) ≤ k. Then G contains at most M+1 vertices, and Gk is a clique.
The graph G contains at most M − 1 vertices [Dam73], and is thus (M − 1)-
choosable.

The result follows.

By Lemma 4.24 we can assume from now on that G is ∆-regular, with g(G) ≥ 2k
(i.e. the length of a shortest cycle is at least 2k), that the cycles of length 2k in G are
disjoint, and that diam(G) ≥ k + 1.

Lemma 4.25. The graph G contains two vertices x1 and y1 at distance k + 1 from each other,
with two neighbors x2, y2 (respectively) at distance at least k + 1 from each other.
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Proof. Since diam(G) ≥ k + 1, G contains two vertices x1 and y1 at distance k + 1 from
each other. Let us prove that x1 has a neighbor x2 and y1 a neighbor y2 such that x2

and y2 are at distance at least k + 1 from each other. Assume for contradiction that
each of the ∆ neighbors of x1 are at distance at most k from each of the ∆ neighbors
of y1. Let z be a neighbor of x1. Only ∆ − 1 neighbors of z can be part of a path of
length at most k between z and a neighbor of y1, as x1 is itself at distance at least k
from all the neighbors of y1. Therefore there is a neighbor z′ of z that belongs to two
paths of length at most k between z and two different neighbors of y1. Since y1 is at
distance at least k from all the neighbors of x1, it does not belong to these two paths
and this yields a cycle C of length at most 2k containing y1. The cycle C is actually
of length 2k and contains z′, as z′ is the endpoint of two different paths of length at
most k to y1 and there is no cycle of length less than 2k by assumption. Consequently,
y1 and z′ are diametrically opposite on C. Let w be another neighbor of x1. By the
same argument, a neighbor w′ of w belongs to a cycle C ′ of length 2k that contains
y1, and w′ is diametrically opposite to y1 in C ′. Then C and C ′ intersect on y1, which
by Lemma 4.24 implies that C and C ′ are actually the same cycle. Thus w′ and z′ are
actually the same vertex. Now, (w′, w, x1, z) is a cycle of length 4, a contradiction to
Lemma 4.24 and the fact that k ≥ 3.

We now describe an algorithm to list color Gk. Let L be a list assignment of M − 1
colors to each vertex.

At any step of the algorithm, the number of constraints of a vertex v is the number
of colors in L(v) that appear on (already colored) vertices at distance at most k from v
in G. Similarly, the number of constraints implied on a vertex v by a set S of vertices
is the number of colors in L(v) that appear on vertices of S. Note that the number of
constraints on a vertex v is bounded by its degree in Gk, and that this upper bound is
lowered by 1 if two neighbors of v in Gk have the same color or if a neighbor of v in Gk

either is not colored or its color does not belong to L(v).
We consider four vertices x1, x2, y1 and y2 obtained from Lemma 4.25. Let P be

a path of length k + 1 between x1 and y1. Note that by definition of x2, y2, at most
one of them is on P . Let v be a vertex at distance at least two on P from both x1

and y1 (such a vertex exists since P has length at least 4), and let w be a neighbor of
v on P distinct from x2 and y2. Observe that v is at distance at most k from all of
x1, x2, y1, y2 and w is at distance at most k from x1, y1. Our goal is to find an ordering
of the vertices of G such that every vertex that is considered for coloring has at most
M − 2 constraints. The order we choose is x1, y1, x2, y2, followed by all other vertices
in decreasing distance to {v, w} (the distance to a set is the minimum of the distance
to an element of the set). Ties are broken arbitrarily, with the exception that we ensure
that the order ends with w and then v. The algorithm is as follows: we choose a good
coloring (described below) of {x1, y1, x2, y2}, then proceed with a greedy algorithm on
the rest of the ordering.

Let us first prove that every vertex u /∈ {x1, x2, y1, y2, v, w} is colored at the end of
the coloring algorithm (whatever choices we made for x1, x2, y1, y2). Let us prove that
u has at most M − 2 constraints, i.e. u can be colored since |L(u)| = M − 1:

• If u is at distance at most k from both v and w, then both v and w are adjacent to
u in Gk. Since they are after u in the order, the result holds.
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• If u is at distance at least k + 1 from v or w, let Q be a shortest path from u to
{v, w}. Assume w.l.o.g. that Q is a shortest path from u to v. Let z1, z2 and z3 be
the three vertices consecutive to u in Q. These vertices exist since d(u, v) > k ≥ 3.
If {z1, z2, z3} ∩ {x1, x2, y1, y2} has size at most one, then at least two of {z1, z2, z3}
are after u in the order, hence the result.
Otherwise, at least two of {z1, z2, z3} are in {x1, x2, y1, y2}. Since d(x1, y1) = k + 1,
if x1 ∈ {z1, z2, z3} then none of y1, y2 is in this set. The same holds for x2.
We may assume w.l.o.g. that the intersection is exactly x1, x2. Let w1 be a neigh-
bor of z2 distinct from z1 and z3. Note that w1 is neither y1 nor y2. Moreover
d(w1, v) < d(u, v) since Q is a shortest path. So w1 appears after u in the order
and d(w1, u) ≤ k. Two vertices at distance at most three from u are after u in the
order, so u has at most |M | − 2 constraints.

Now, let us argue that there is a coloring of {x1, x2, y1, y2} that ensures that v and w
will be colored.

In standard vertex coloring (i.e. without involving lists), we set x1 and y1 to color
1, and x2 and y2 to color 2: then vertices v and w each have at most M − 2 colors
appearing on their neighborhood in Gk. So they each have at most M − 2 constraints
and then both v and w are colored at the end of the greedy coloring.

Since we are considering list coloring, the procedure is slightly more complicated,
though the idea remains the same. We want to make sure that the coloring of {x1, y1}
implies at most one constraint on both v and w, and the coloring of {x2, y2} implies
at most one constraint on v. Thus when we consider w, it has one less constraint by
{x1, y1} and one less by v (since w is before v in the order), and then v has two less
constraints by {x1, y1, x2, y2}.

If L(x1)∩L(y1) 6= ∅, we color both x1 and y1 with the same color. If L(x1)∩L(y1) = ∅,
assume that one of x1 and y1 can be colored with a color that belongs neither toL(v) nor
to L(w): then we color it accordingly, and the other is then colored arbitrarily. Assume
now that it is not the case, i.e. L(x1)∩L(y1) = ∅ and L(x1)∪L(y1) ⊆ L(v)∪L(w). Then
L(x1) ∪ L(y1) = L(v) ∪ L(w), and we color one of x1 and y1 with a color that does not
belong to L(v) and the other with a color that does not belong to L(w). Note that in all
cases, the colors of {x1, y1} imply at most one constraint on each of v and w.

The vertices x2 and y2 are colored similarly. If |L(x2) ∩ L(y2)| ≥ 3, we color both x2

and y2 with the same color that differs from the colors used on x1 and y1. If |L(x2) ∩
L(y2)| ≤ 2 and there is a color in L(x2) ∪ L(y2) that does not belong to L(v) nor is used
on x1 and y1, then we color x2 or y2 accordingly and color the other arbitrarily (in a
color other than those of x1 and y1). Assume now that we are in the remaining case, i.e.
|L(x2)∩L(y2)| ≤ 2 and L(x2)∪L(y2) ⊆ L(v). This is impossible since |L(x2)∪L(y2)| ≥
2 × |L(v)| − 2 > |L(v)|. In all possible cases, the colors of {x2, y2} imply at most one
constraint on v.

This completes the proof of Theorem 4.6.
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4.3 The threshold for (∆ + 1)-coloring squares of sparse
graphs is 3

In this section, we prove Theorem 4.11 that there exists a function f such that for any
ε > 0, every graph G with mad(G) < 3− ε and ∆(G) ≥ f(ε) satisfies χ2

`(G) = ∆(G) + 1.
In the following, we try to simplify the proof rather than improve the function f .

For technical reasons, we will have to consider ε ≤ 1
20

. For ε > 1
20

, it suffices to
set f(ε) = f( 1

20
). Indeed, if ε > 1

20
, then for every graph with mad(G) < 3 − ε and

∆(G) ≥ f(ε), we have in particular mad(G) < 3 − 1
20

and ∆(G) ≥ f( 1
20

), thus the
conclusion holds. From now on, we consider ε ≤ 1

20
.

Let f : ε 7→ 3
ε2

. Assume by contradiction that there exists a constant 1
20
≥ ε > 0 and

a graph Γ with mad(Γ) < 3− ε and ∆(Γ) ≥ f(ε) that satisfies χ2
`(Γ) > ∆(Γ) + 1. There

is a minimal subgraph G of Γ such that χ2
`(G) > ∆(Γ) + 1, in the sense that the square

of every proper subgraph of G is list (∆(Γ) + 1)-colorable. For k = ∆(Γ), the graph G
satisfies ∆(G) ≤ k and χ2

`(G) > k + 1, while the square of all its proper subgraphs are
list (k + 1)-colorable. We aim at proving that mad(G) ≥ 3 − ε, a contradiction to the
fact that G is a subgraph of Γ with mad(Γ) < 3− ε.

Let M = 6
ε
. Note that since ε ≤ 1

20
, we have k = ∆(Γ) ≥ f(ε) = 3

ε2
≥ 18

ε
= 3×M .

Forbidden Configurations

We define configurations (C1) to (C3) (see Figure 4.4).

• (C1) is a vertex u of degree 0 or 1.

• (C2) is a vertex w1 of degree at most k − 1 that is 2-linked (through w1-u1-u2-w2)
to a vertex w2 of degree at most k − 2.

• (C3) is a vertex uwith 3 ≤ d(u) ≤M that is 1-linked (through u-vi-wi) to (d(u)−2)
vertices (wi)1≤i≤d(u)−2 of degree at most M , and such that the sum of the degrees
of its two other neighbors x and y is at most k −M + 2.

1− u

(C1)

(k − 1)− w1

u1

u2

(k − 2)−
w2

(C2)

u
x

y

v1

M−
w1

vd(u)−2

M−

wd(u)−2

d(x) + d(y) ≤ k −M + 2

3 ≤ d(u) ≤M

(C3)

Figure 4.4: Forbidden configurations for Theorem 4.11.

Lemma 4.26. Graph G cannot contain any of Configurations (C1) to (C3).
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Proof. We assumeG contains a configuration, apply the minimality to color a subgraph
of G, and prove this coloring can be extended to the whole graph, a contradiction.

Claim 1. G cannot contain (C1).

Proof. Using the minimality of G, we color G \ {u}. Since ∆(G) ≤ k, and d(u) ≤ 1,
vertex u has at most k constraints. There are k+ 1 colors, so the coloring of G \ {u} can
be extended to G.

Claim 2. G cannot contain (C2).

Proof. Using the minimality of G, we color G \ {u1, u2}. The vertex u1 has at most
|{w2}| + d(w1) ≤ 1 + (k − 1) ≤ k constraints. Hence we can color u1. Then u2 has at
most |{w1, u1}|+ d(w2) ≤ 2 + (k − 2) ≤ k constraints, so we can extend the coloring of
G \ {u1, u2} to G.

Claim 3. G cannot contain (C3).

Proof. Using the minimality of G, we color G \ {v1, · · · , vd(u)−2}. We did not delete
u in order to obtain a coloring where x and y receive different colors, but u might
have the same color as some wi, so it needs to be recolored. The vertex u has at most
M − 2 + d(x) + d(y) ≤ k constraints, hence we can recolor u. Then every vi has at most
M +M ≤ k constraints, so we can extend the coloring of G \ {v1, · · · , vd(u)−2} to G.

This concludes the proof of Lemma 4.26.

Global structure

We define three sets V1, V2 and T that will outline some global structure onG. We build
step-by-step the set V1 as follows.

Any vertex u of degree at most M − 1 belongs to V1 if it has d(u) − 1 neighbors
v1, . . . , vd(u)−1 of degree 2 whose other neighbors w1, . . . , wd(u)−1 are of degree at most
M − 1, and at most one of {w1, . . . , wd(u)−1} does not belong to V1.

Thus, at first, the only vertices in V1 are those of degree 2 which are adjacent to a
vertex of degree 2 whose other neighbor is of degree at most M − 1. Note that the
set is well-defined as a vertex that satisfies at some point the requirements to be in
V1 will always satisfy them, and the order in which vertices are declared to be in V1

has absolutely no influence on the set V1 as it is when no more vertex can be added
(equivalently, when all the vertices satisfying the requirements are already in V1).

As for V2, any vertex u of degree at most M − 1 belongs to V2 if it has d(u) − 1
neighbors v1, . . . , vd(u)−1 of degree 2 whose other neighborsw1, . . . , wd(u)−1 are of degree
at most M − 1, and all of {w1, . . . , wd(u)−1} belong to V1. Note that V2 is a subset of V1.

We define T as the set of vertices of degree 2 whose both neighbors are in V1. See
Figure 4.5 for examples of vertices in V1, V2 or T . In the figures, we denote by a label
V1 (resp. V2, T ) the fact that a vertex belongs to V1 (resp. V2, T ). Similarly, we denote
by a label V 1 a vertex that does not belong to V1. Since V2 ⊂ V1, we omit the label V1

on vertices labelled V2.

Lemma 4.27. The vertices of V1 satisfy the following:
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(M − 1)−

V1

V2

T

V2

V2

T

V2

T

V2 V1

T

V 1

3+

T

V2

T

V1

3+

Figure 4.5: Examples of vertices in V1, V2 or T .

• Every vertex of V1 has exactly one neighbor of degree at least k −M .

• The set V1 is a stable set.

• The sets V1 and T are disjoint.

Proof. Assume by contradiction that a vertex u of V1 has no neighbor of degree at least
k −M . Then u is adjacent to d(u) − 1 vertices v1, . . . , vd(u)−1 of degree 2 whose other
neighbors are of degree at most M − 1, and to another vertex w of degree at most
k −M − 1. We consider two cases depending on whether d(u) = 2.

• If d(u) = 2, then the other neighbor of v1 is a vertex of degree at mostM−1 ≤ k−1
that is 2-linked to w, which is a vertex of degree at most k −M − 1 ≤ k − 2. By
Claim 2 in Lemma 4.26, Configuration (C2) is not contained inG, a contradiction.

• If d(u) ≥ 3, then u is a vertex with 3 ≤ d(u) ≤M−1 ≤M that is 1-linked (through
vi, for 1 ≤ i ≤ d(u) − 2) to d(u) − 2 vertices of degree at most M − 1 ≤ M , and
such that the sum of the degrees of its two other neighbors w and vd(u)−1 is at
most k −M − 1 + 2 ≤ k −M + 2. By Claim 3 in Lemma 4.26, Configuration (C3)
is not contained in G, a contradiction.

Therefore every vertex u of V1 has a neighbor of degree at least k−M . By definition of
V1, all the other neighbors of u are of degree 2. Thus u has a unique neighbor of degree
at most k −M .

Since k ≥ 2M then k − M > M − 1 and vertex u has no neighbor v of degree
3 ≤ d(v) ≤ M − 1. Consequently, two vertices u, v of V1 that are adjacent must both
be of degree 2. By definition of V1, the other neighbors of u and v must be of degree at
mostM−1, a contradiction. It follows that V1 is a stable set inG and thus T∩V1 = ∅.

Any connected component C of G[V1 ∪ T ] is a weak component of G if every vertex
belongs to V2 or T (in other words, if no vertex of C belongs to V1 and not to V2).
The only apparent weak components on Figure 4.5 are encircled. The strength of a
component of G[V1 ∪ T ] is the number of vertices of V1 it contains. Let Cw be the set of
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weak components of G of strength less than 1
ε
. Let Sw be the set of vertices of V2 that

belong to an element of Cw. Let U be the set of vertices of degree at least k −M with a
neighbor in Sw.

Lemma 4.28. The graph G satisfies |Cw| ≤ 1
ε
× |{v ∈ V | dG(v) ≥ k −M}|.

Proof. Assume by contradiction that |Cw| > 1
ε
× |{v ∈ V | d(v) ≥ k −M}|.

Recall that by Lemma 4.27, every vertex of Sw ⊆ V1 has a unique neighbor in U . Let
D be the bipartite multigraph whose vertex set is V (D) = U ∪Cw, and whose edge set
is in bijection with Sw: for every element v ∈ Sw, we add an edge (u,w), where u is the
element of U adjacent to v and w is the element of Cw to which v belongs.

For A = {v ∈ V | d(v) ≥ k −M}, B = Cw and α = 1
ε
, we have |B| > α|A|. So by

Lemma 2.11, there is a subset C ′w of Cw such that, for U ′ the neighbors of C ′w in U , the
subgraph D′ induced in D by C ′w ∪ U ′ satisfies ∀u ∈ U ′, dD′(u) ≥ 1

ε
.

Let S ′w (resp. T ′) be the set of vertices of Sw (resp. T ) that belong to an element of
C ′w.

We color by minimality G \ (S ′w ∪ T ′). Note that every vertex v of S ′w, belonging to
V2, is adjacent to exactly one vertex u of degree at least k −M , and that all its other
neighbors v1, . . . , vd(u)−1 are vertices of T whose other neighbors w1, . . . , wd(u)−1 are in
V1. Since the element C of C ′w ⊆ Cw to which v belongs is a connected component of
G[V1 ∪ T ], all the vi’s and wi’s belong to C ∈ C ′w. Consequently, for every i, we have
vi ∈ T ′ and wi ∈ S ′w. Thus v has at most k + 1− dD′(u) constraints, hence v has at least
dD′(u) colors available. To color the vertices of S ′w, it is sufficient to list-color the edges
of D′, where every edge is assigned the same list of colors as the vertex of S ′w it is in
bijection with.

By definition of Cw and since C ′w ⊆ Cw, every element of C ′w contains at most 1
ε

vertices of V2, so it has degree at most 1
ε

in D thus in D′. Moreover, every vertex of U ′

has degree at least 1
ε

in D′. Thus for every edge (u, v) of D′, with u ∈ U and v ∈ C ′w, we
have max(dD′(u), dD′(v)) = dD′(u). So D′ is a bipartite multigraph whose every edge
has a list assignment of size at least max(dD′(u), dD′(v)). We apply Theorem 1.10 to
color the vertices of S ′w.

It then remains to color the vertices of T ′. These are vertices of degree 2 whose
both neighbors are in S ′w. But all the vertices of S ′w are of degree at most M . So the
vertices of T ′ have at most 2×M ≤ k constraints, and we can color the vertices of T ′,
a contradiction.

Discharging rules

We introduce four discharging rules R1, R2, R3 and Rg (’g’ stands for ’global’), as fol-
lows (see Figure 4.6). We will use them in the case where the initial weight of a vertex
v is d(v) − 3 + ε. The weight of a subset of vertices is the sum of the weights of the
vertices it contains. During the discharging process, a subset of vertices (here, a weak
component) may receive some charge: the question of which vertices in that subset
actually receive this charge is of no importance. Indeed, we later consider only the
weight of the component, and do not care for the details inside.

Here each connected component of G[T ∪ V1] (and in particular each weak compo-
nent of G) behaves as a single entity. For any vertex x,
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• Rule R1 is when d(x) = 2 and its two neighbors a and b are such that d(a) = 2
and d(b) ≥M , and the other neighbor c of a is not in V1. Then x gives ε

2
to a.

• Rule R2 is when 3 ≤ d(x) ≤ M − 1 and x 6∈ V1. If x has a neighbor a of degree 2
whose other neighbor is y,

– Rule R2.1 is when d(y) = 2. Then x gives 1− 3ε
2

to a.

– Rule R2.2 is when 3 ≤ d(y) < M . If y 6∈ V1, then x gives 1−ε
2

to a. If y ∈ V1,
then x gives 1− ε to a.

• Rule R3 is when M ≤ d(x). Then x gives 1− ε
2

to each of its neighbors.

• Rule Rg states that every vertex of degree at least k −M gives an additional 1
ε

to
an initially empty common pot, and every weak component of G of strength less
than 1

ε
receives 1 from this pot.

M+

b

x

a

c
V 1

ε
2

R1

3+

(M−1)−

x

V 1

a

y

1− 3ε
2

R2.1

3+

(M−1)−

x

V 1

a

3+

(M−1)−

y

V 1

1−ε
2

3+

(M−1)−

x

V 1

a

3+

(M−1)−

y

V1

1− ε

R2.2

M+

x

1− ε
2

R3

Figure 4.6: Discharging rules R1, R2, and R3 for Theorem 4.11.

We use these discharging rules to prove the following lemma:

Lemma 4.29. Graph G satisfies mad(G) ≥ 3− ε.

Proof. We attribute to each vertex v a weight equal to d(v)−3+ε, and apply discharging
rulesR1,R2,R3 andRg. We show that all the vertices ofG\(T∪V1) have a non-negative
weight in the end, and that each connected component of G[T ∪V1] has a non-negative
total weight.

By Lemma 4.28, the common pot has a non-negative value, and Rule Rg is valid.
Let x be a vertex of G \ (T ∪ V1). By Configuration (C1), we have d(x) ≥ 2.
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1. d(x) = 2.
The vertex x has an initial weight of −1 + ε. We prove that it receives at least
1 − ε. Let u1 and u2 be its two neighbors. We consider two cases depending on
whether one of them is of degree at least M .

a) d(u1) ≥M or d(u2) ≥M .
Consider w.l.o.g. that d(u1) ≥ M . By R3, vertex u1 gives 1 − ε

2
to x. The

vertex x gives at most ε
2

to u2 by R1. So x receives at least 1− ε.
b) d(u1) < M and d(u2) < M .

Assume that u1 or u2 is of degree 2. Consider w.l.o.g. that d(u1) = 2. Then
u1 belongs to V1 by definition, and the other neighbor of u1 is of degree at
least M . Since u1 ∈ V1 and x 6∈ T , then u2 6∈ V1 and we have M ≥ d(u2) ≥ 3.
By R1 and R2.1, vertex u1 gives ε

2
to x, and u2 gives 1− 3ε

2
. So x receives 1− ε

and gives no weight away. If both u1 and u2 have degree at least three, then
since x 6∈ T , at most one of u1 and u2 is in V1 and R2.2 applies. So vertices u1

and u2 give a total of 1− ε to x, and x gives no weight away.

2. 3 ≤ d(x) ≤M − 1.
The vertex x has an initial weight of d(x) − 3 + ε ≥ ε. Let u1, . . . , uq denote its
neighbors of degree 2 whose other neighbor is of degree at most M − 1, where
u1, . . . , up denote its neighbors of degree 2 whose other neighbor belongs to V1

(note that p may be equal to 0 when x has no such neighbor, and that q may be
equal to p). We consider two cases depending on q.

a) q ≤ d(x)− 3.
Then x gives at most (d(x)− 3)× (1− ε) ≤ d(x)− 3 + ε by R2.

b) q ≥ d(x)− 2.
Then, by Configuration (C3), vertex x has a neighbor v with d(v) ≥ k−M+2

2
≥

M (recall that k ≥ 3 ×M ). By Rule R3, vertex x receives 1 − ε
2

from v. We
consider two cases depending on p.

i. p ≤ d(x)− 3. By Rule R2, x gives at most (d(x)− 3)× (1− ε) + 2× 1−ε
2
≤

d(x)− 3 + ε+ (1− ε
2
).

ii. p ≥ d(x)−2. Since x 6∈ V1, we have p = q = d(x)−2. By Rule R2, x gives
at most (d(x)− 2)× (1− ε) ≤ d(x)− 3 + ε+ (1− ε

2
).

3. M ≤ d(x) ≤ k −M − 1.
By RuleR3, vertex x gives at most d(x)×(1− ε

2
). SinceM = 6

ε
, we have d(x)× ε

2
≥

3 ≥ 3− ε, so x has a non-negative final weight.

4. k −M ≤ d(x).
By Rules R3 and Rg, vertex x gives at most 1

ε
+d(x)× (1− ε

2
). Since k ≥ 3

ε2
, M = 6

ε

and ε ≤ 1
20

, we have d(x)× ε
2
≥ ( 3

ε2
− 6

ε
)× ε

2
= 3

2ε
− 3 ≥ 1

ε
+ 10− 3 ≥ 1

ε
+ 3− ε, so

x has a non-negative final weight.

Therefore, every vertex of G \ (T ∪ V1) has a non-negative final weight. It remains
to consider vertices of G[T ∪ V1]. Let C be a connected component of G[T ∪ V1]. Let s
be the strength of C. Note that s ≥ 1.
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If s = 1, then C consists of a single vertex u of degree 2 in G and that is adjacent to
a vertex v of degree at least k −M and 1-linked to a vertex w of degree less than M .
Thus, by R1 and R3, vertex u has an initial weight of −1 + ε, receives 1− ε

2
from v, and

gives ε
2

to its neighbor of degree 2: its final weight is 0. We assume from now on that
s ≥ 2.

No vertex of C gives weight. Indeed, a vertex of C can only send charge according
to R1 since all the other rules are for vertices of degree at least M or vertices of degree
at least 3 but not in V1. If a vertex x of C sends some charge according to R1, then
d(x) = 2 and its two neighbors a and b are such that d(b) ≥M and d(a) = 2, where the
other neighbor c of a is not in V1. Since d(b) ≥M , we have b 6∈ V1 and x 6∈ T , so x ∈ V1.
Then, since V1 is a stable set by Lemma 4.27, we have a 6∈ V1, and s = 1, a contradiction
with our assumption.

We denote by N(C) the set of vertices that do not belong to C but are adjacent to
a vertex in C. Since every vertex in C ∩ V1 has a neighbor of degree at least k −M
(thus not in C), and the vertices in C ∩ V1 that are not in V2 have a neighbor of degree
2 < k −M that is not in C, we have

∑
v∈V1∩C dN(C)(v) ≥ s+ |C ∩ (V1 \ V2)|. Also, every

vertex u in C ∩ V1 receives 1 − ε
2

from its neighbor of degree at least k −M . Thus the
weight W of C (without taking Rg into account) is as follows.

W ≥
∑
v∈C

(d(v)− 3 + ε) + s× (1− ε

2
)

≥
∑

v∈T∩C

(d(v)− 3 + ε) +
∑

v∈V1∩C

(d(v)− 3 + ε) + s× (1− ε

2
)

≥
∑

v∈T∩C

(−1 + ε) +
∑

v∈V1∩C

dC(v) +
∑

v∈V1∩C

dN(C)(v) +
∑

v∈V1∩C

(−3 + ε) + s× (1− ε

2
)

≥
∑

v∈T∩C

(−1 + ε) +
∑

v∈V1∩C

dC(v) + (s+ |C ∩ (V1 \ V2)|) + s× (−3 + ε) + s× (1− ε

2
)

Remember that the vertex set of C is the union of V1 ∩ C and T ∩ C, which are sta-
ble sets. Also, the two neighbors of a vertex in T belong to C, so

∑
v∈V1∩C dC(v) =∑

v∈T∩C dC(v) = 2|T ∩ C|. Since C is a connected component, we have |T ∩ C| ≥
|V ∩ C| − 1 = s− 1. Then,

W ≥ |T ∩ C| × (−1 + ε) + 2|T ∩ C|+ |N(C) \ U |+ s× (−1 +
ε

2
)

≥ (−1− ε+
3εs

2
) + |N(C) \ U |

We consider three cases depending on whether C is weak and s < 1
ε
.

1. C is a weak component of G and s < 1
ε
.

By Rg, component C receives an extra weight of 1. Thus, its final weight is 1 +
W ≥ 1 + (−1− ε+ 3εs

2
) = −ε+ 3εs

2
> 0.

2. C is a weak component of G and s ≥ 1
ε
.

Then the final weight of C is W ≥ −1− ε+ 3εs
2
≥ −1− ε+ 3ε

2×ε ≥ 0.
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3. C is not a weak component of G.
There is at least a vertex v in (V1 ∩ C) \ V2. Then the final weight of C is W ≥
(−1− ε+ 3εs

2
) + 1 ≥ 0.

Consequently, after application of the discharging rules, every vertex v of G \ {V1 ∪
T} has a non-negative final weight, and every connected component C of G[V1 ∪ T ]
has a non-negative final total weight, meaning that

∑
v∈G(d(v)− 3 + ε) ≥ 0. Therefore,

mad(G) ≥ 3− ε. This completes the proof of Lemma 4.29, and thus of Theorem 4.11.

4.4 The threshold for (∆ +O(1))-coloring squares of
sparse graphs is 4

In this section, we prove Theorem 4.13 that there exists a function h such that for any
ε > 0, every graph G with mad(G) < 4− ε satisfies χ2

`(G) ≤ ∆(G) + h(ε).
Let 1 > ε > 0, let M = 8

ε
− 2, and h(ε) = 5M − 6.

Note that M − (4− ε) = M × (1− ε
2
), and that h(ε) ≥ 2M + 3.

Again, we choose to present a simple proof despite the fact that it means the func-
tion h is probably not as good as possible. However it is still optimal up to a constant
factor as the graph family presented in Figure 4.2 shows that it could not be less
than 2

ε
. Indeed, the family (Gp)p∈N∗ satisfies χ2

`(Gp) ≥ χ2(Gp) ≥ 3p = ∆(Gp)+ 2
4−mad(Gp)

.

We prove by contradiction that every graph G with mad(G) < 4 − ε admits a
2-distance (∆(G) +h(ε))-list-coloring.

We call weak a vertex of degree 2 or 3 that has at most one neighbor of degree M+.
In the figures, the label ’w’ means the vertex is weak.

Forbidden Configurations

We define Configurations (C1) and (C2) (see Figure 4.7). Configuration (C1) is a vertex
u of degree 1. Configuration (C2) is a vertex u of degree M− that has a weak neighbor
x, and at most 3 neighbors of degree 4+, among which at most one is of degree M+.

1
u

(C1)
w
x

M−
u

3−

(C2)
3−

M−

M−

Figure 4.7: Forbidden configurations for Theorem 4.13.
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Lemma 4.30. If G is a minimal graph such that G admits no list 2-distance (∆(G) + h(ε))-
coloring, then G cannot contain Configurations (C1) nor (C2).

Proof. (C1) We color G \ {u} using the minimality of G. Vertex u has at most ∆(G)
constraints, so there is a free color for u, a contradiction.

(C2) We remove the (u, x) edge, and use the minimality of G to color the resulting
graph. We recolor u (at most ∆(G) +2M + 3(M − 3) + 2 = ∆(G) +5M − 7 con-
straints), and x (at most ∆(G) +M + M constraints), so we can transform the
coloring of G \ {(u, x)} into a coloring of G.

Discharging rules

Let R1, R2 be two discharging rules (see Figure 4.8). Discharging rule R1 states that a
vertex of degree at least M gives 1 − ε

2
to each of its neighbors. Discharging rule R2

states that a vertex of degree less than M gives 1− ε
2

to each of its weak neighbors.

M+R1 :

1− ε
2

(M − 1)−R2 : w

1− ε
2

Figure 4.8: Discharging rules R1, R2 for Theorem 4.13.

We use these discharging rules to prove the following lemma.

Lemma 4.31. A graphG that does not contain Configurations (C1) or (C2) satisfies mad(G) ≥
4− ε.

Proof. We attribute to each vertex a weight equal to its degree, and apply the two
discharging rules R1, R2. We show that each vertex of G has a weight of at least 4 − ε
at the end of the discharging.

Let u be a vertex of G. Since Configuration (C1) is forbidden, we have d(u) ≥ 2. We
make a case analysis whether u gives some wieght away or not.

• u gives some weight away.

– If d(u) ≥ M , (R1) is applied, and by definition of M , vertex u gives 1 − ε
2

to
each of its neighbors and still has a weight of at least 4− ε.

– If d(u) < M , (R2) is applied and u has a weak neighbor x. Since (C2) is
forbidden, u is in one of these two situations:

∗ u has at least two neighbors of degree M+. According to R1, they each
give 1 − ε

2
to u. Then u has at most d − 2 weak neighbors, and d(u) −

(4− ε) + 2(1− ε
2
) ≥ (d(u)− 2)(1− ε

2
), so u has a weight of at least 4− ε

after application of the discharging rules.
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∗ u has at least four neighbors of degree 4+. So u has at most d − 4 weak
neighbors, and d(u)− (4− ε) ≥ (d(u)− 4)(1− ε

2
), hence u has a weight

of at least 4− ε after application of the discharging rules.

• u gives no weight away.

– d(u) ≥ 4. Then u still has a weight of at least 4 − ε after application of the
discharging rules.

– u is a weak vertex. Then, according to (C2), it can’t be adjacent to another
weak vertex, so it gives nothing away and receives 1 − ε

2
from each of its

neighbors. After application of the discharging rules, it has a weight at least
2 + 2× (1− ε

2
) = 4− ε

– d(u) ≤ 3 and u is not weak. Then, u has at least two neighbors of degree at
least M , so u receives at least 2× (1− ε

2
). It had initially a weight of at least

2 and gave nothing away, meaning that it has a weight of at least 4− ε after
application of the discharging rules.

Consequently, after application of the discharging rules, every vertex in G has
a weight of at least 4 − ε after application of the discharging rules, meaning that∑

v∈V d(v) ≥
∑

v∈V (4− ε). Therefore, mad(G) ≥ 4− ε.

Conclusion

Proof of Theorem 4.13
We prove by contradiction that ∀1 > ε > 0, every graph G with mad(G) < 4 − ε

satisfies χ2
`(G) ≤ ∆(G) +h(ε). Let G be a minimal graph with mad(G) < 4 − ε that

does not admit a list 2-distance (∆(G) + h(ε))-coloring. Graph G is also a minimal
graph that does not admit a list 2-distance ∆(G) + h(ε)-coloring. By Lemma 4.30, G
cannot contain Configurations (C1) nor (C2). Lemma 4.31 implies that mad(G) ≥ 4− ε,
a contradiction. �

4.5 (∆ + 1)-coloring squares of very sparse graphs

We prove Theorem 4.16 that every graphGwith ∆(G) ≥ 5 (resp. 6, 8) and mad(G) < 12
5

(resp. 5
2
, 18

7
) satisfies χ2

`(G) = ∆(G) +1.

Let k be a constant integer, k ≥ 5.

Forbidden Configurations

We define configurations (C1) to (C8) (see Figure 4.9).

• (C1) is a vertex u of degree 0 or 1.
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• (C2) is a vertex w1 of degree at most k − 1 that is 2-linked (through a path w1 −
v1 − v2 − w2) to a vertex w2 of degree at most k − 2.

• (C3) is a vertex u of degree 3 that is 1-linked (through a path u − v1 − w1) to a
vertex w1 of degree at most k−2, 1-linked (through a path u−v2−w2) to a vertex
w2 of degree at most k − 3, and whose third neighbour v3 is of degree at most
k − 2.

• (C4) is a set of vertices {ai}0≤i≤p−1, p ≥ 3, such that ∀i (i taken modulo p), ai is
3-linked (through a path ai − b2i − ci − b2i+1 − ai+1) to ai+1.

• (C5) is a vertex u of degree 3 that is 1-linked (through two paths u− v1 − w1 and
u − v2 − w2) to two vertices w1 and w2 of degree at most k − 2, and whose third
neighbour v3 is of degree at most k − 4.

• (C6) is a vertex u of degree 4 that is 2-linked (through two paths u− v1 − w1 − x1

and u−v2−w2−x2) to two vertices x1 et x2, 1-linked (through a path u−v3−w3)
to a vertex w3 of degree at most k−2, and whose fourth neighbour v4 is of degree
at most k − 3.

• (C7) is a vertex u of degree 3 that is 2-linked (through a path u− v1 − w1 − x1) to
a vertex x1, and such that the sum of the degrees of its two other neighbours is
at most k − 1.

• (C8) is a vertex u of degree 5 that is 2-linked (through a path u − vi − wi − xi,
i ∈ {1, 2, .., 5}) to five vertices x1,..,x5.

Lemma 4.32. If G is a minimal graph such that ∆(G) ≤ k and G admits no list 2-distance
(k + 1)-coloring, and if i ≤ k, then G cannot contain Configuration (Ci).

Proof. We assume G contains the configuration, apply the minimality to color a sub-
graph of G, and prove this coloring can be extended to the whole graph, a contradic-
tion.

Claim 1. G cannot contain (C1)

Proof. Using the minimality of G, we color G \ {u}. Since ∆(G) ≤ k, and d(u) ≤ 1,
vertex u has at most k constraints. There are k+ 1 colors, so the coloring of G \ {u} can
be extended to G.

Claim 2. G cannot contain (C2)

Proof. Using the minimality of G, we color G \ {v1, v2}. Vertex v1 has at most |{w2}| +
d(w1) ≤ 1 + (k − 1) ≤ k constraints. Hence we can color v1. Then v2 has at most
|{w1, v1}| + d(w2) ≤ 2 + (k − 2) ≤ k constraints, so we can extend the coloring of
G \ {v1, v2} to G.

Claim 3. G cannot contain (C3)
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Figure 4.9: Forbidden configurations for Theorem 4.16.

Proof. Using the minimality of G, we color G \ {u, v1, v2}. Vertex u has at most k − 2 +
1 + 1 ≤ k constraints. Hence we can color u. Then we colour v1 (at most k − 2 + 2 ≤ k
constraints), and v2 (at most k − 3 + 3 ≤ k constraints), so we can extend the coloring
of G \ {u, v1, v2} to G.

Claim 4. G cannot contain (C4)

Proof. Using the minimality of G, we color G \ {b1, . . . , b2p−1, c1, . . . , cp}. For every j, bj
has at most k − 2 constraints, hence it has at least 2 colors available. So coloring the
set {b1, . . . , b2p−1} is equivalent to list 2-coloring an even cycle. Then every ci has at
most 4 ≤ k constraints, so we can extend the coloring of G \ {b1, . . . , b2p−1, c1, . . . , cp} to
G.

Claim 5. G cannot contain (C5)

Proof. Using the minimality of G, we color G \ {u, v1, v2}. We can color successively v1

(at most k−2 + 1 ≤ k constraints), v2 (at most k−2 + 2 ≤ k constraints), and u (at most
k − 4 + 2 + 2 ≤ k constraints), so we can extend the coloring of G \ {u, v1, v2} to G.
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Claim 6. If k ≥ 6, G cannot contain (C6)

Proof. Using the minimality of G, we color G \ {u, v1, v2, v3}. Vertex u has at most
k − 3 + 1 + 1 + 1 ≤ k constraints. Hence we can color u. Then we colour v3 (at
most k − 2 + 2 ≤ k constraints), v2 (at most 5 ≤ k constraints) and v2 (at most 6 ≤ k
constraints), so we can extend the coloring of G \ {u, v1, v2} to G.

Claim 7. If k ≥ 7, G cannot contain (C7)

Proof. Using the minimality of G, we color G\{v1}. We recolor u (at most k−1+1 ≤ k
constraints), then we color v1 (at most 5 ≤ k constraints), so we can transform the
coloring of G \ {v1} into a coloring of G.

Claim 8. If k ≥ 8, G cannot contain (C8)

Proof. Using the minimality of G, we color G \ {u, v1, v2, v3, v4, v5}. We color vertices
u, v1, v2, v3, v4, v5 (each has at most 7 constraints), so we can extend the coloring of
G \ {u, v1, v2, v3, v4, v5} to G.

This concludes the proof of Lemma 4.32.

Discharging rules

Let α, β (1 > β ≥ α > 0), M (k − 1 ≥ M ≥ 3) be parameters that we will assign later.
Let R1, R2, R3 and Rg be four discharging rules (see Figure 4.10): for any vertex x of
degree at least 3,

• Rule R1 is when 3 ≤ d(x) ≤M .

– If x has a neighbor a of degree 2 whose other neighbor is y,

∗ Rule R1.1 is when d(y) = 2. Then x gives 2α− β to a.
∗ Rule R1.2 is when 3 ≤ d(y) ≤M . Then x gives α

2
to a.

– RuleR1.3 is when d(x) ≥ 4 and x has a neighbour a of degree 3. Then x gives
2(β − α) to a.

• Rule R2 is when M < d(x) < k − 1. Then x gives α to each of its neighbors.

• Rule R3 is when k − 1 ≤ d(x). Let a be a neighbor of x.

– Rule R3.1 is when d(a) = 2. Then, for y the other neighbor of a, x gives α to
a and β − α to y.

– Rule R3.2 is when d(a) ≥ 3. Then x gives β to a.

• Rule Rg states that every vertex of degree k gives an additional 3α − 2β to a
common pot, and every vertex of degree 2 which is adjacent to two vertices of
degree 2 receives 3α− 2β from this pot.

We use these discharging rules to prove the following lemma:
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Rule 1: 3 ≤ d(x) ≤M

3 ≤ d(y) ≤M
R1.2

d(y) = 2

R1.1

d(a) = 3

R1.3

x

a

3+ M−y

α
2

x

a

y

z

2α− β
x

a
2(β − α)

Rule 2:
M < d(x) < k − 1

R2

x

a
α

Rule 3: k − 1 ≤ d(x)

d(a) ≥ 3

R3.2

d(a) = 2

R3.1

x

3+a
β

x

a

y

β − α
α

Figure 4.10: Discharging rules R1, R2, and R3 for Theorem 4.16.

Lemma 4.33. A graph G with ∆(G) ≤ k that does not contain Configuration (Ci) for i ≤ k
satisfies mad(G) ≥ 2 + α, where α = 2

5
if k = 5, 1

2
if 7 ≥ k ≥ 6, 4

7
if k ≥ 8.

Proof. If k ≤ 7, we choose M = k − 2 and β = α. If k ≥ 8, we choose M = k − 3 and
β = α + 1

21
.

We attribute to each vertex a weight equal to its degree, and apply discharging
rules R1, R2, R3 and Rg. We show that all the vertices have a weight of at least 2 +α in
the end.

Since (C4) is forbidden, if we consider the structure A induced in G by the paths
a1, . . . , a5 where d(a2) = d(a3) = d(a4) = 2 ((C2) implies that d(a1) = d(a5) = k), A is a
forest. This means that in G, there are less vertices of degree 2 adjacent to two vertices
of degree 2 than vertices of degree k: hence Rule Rg is valid.

• There are no vertices of degree 0 or 1.

• Let s be a maximal path of vertices of degree 2 (maximal in the sense that it does
not admit a vertex of degree 2 as a neighbor; every vertex of degree 2 belongs
to such a path as Configuration (C2) is forbidden). According to the discharging
rules, a vertex of degree 2 never gives away weight. We prove that it receives at
least α. There are three cases depending on the size of s (s can’t be of size greater
than 3 due to Configuration (C2)):

– |s| = 1. Let a be the only vertex in s.

∗ a has a neighbor x of degree at least M + 1: then it receives at least α
from it, according to Rule R2 or R3.
∗ a has two neighbors x1 and x2 of degree at most M : then it receives α

2

from each, according to Rule R1.2.

– |s| = 2. Let a and b be the vertices of s, and x (resp. y) the other neighbor of
a (resp. b), with d(x) ≥ d(y). Due to Configuration (C2), d(x) ≥ k − 1. Then
a receives α from x (Rule R3.1), and b receives β − α from x (Rule R3.1), and
at least 2α− β from y (Rules R1.1, R2 and R3.1).
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– |s| = 3. Due to Configuration (C2), for a2 − a3 − a4 the vertices of s and a1

(resp. a5) the other neighbor of a2 (resp. a4), d(a1) = d(a5) = k. Then Rules
R3.1 and Rg apply: a2 (resp. a4) receives α from a1 (resp. a5), and a3 receives
β − α from a1 and a5, and 3α− 2β from Rg.

• Let x be a vertex with d(x) = 3. We prove that x loses a weight of at most 1− α.

– If x is adjacent to a vertex of degree 2 whose other neighbour is also of
degree 2.
∗ x has no other neighbour of degree 2 whose other neighbour is of de-

gree at most M . Then, according to Rule R1.1, it gives 2α − β, which is
less than 1−α if k ≤ 7, as α = β ≤ 1

2
. If k ≥ 8, then according to Config-

uration (C7), x has a neighbour of degree at least 4, hence R1.3, R2 or R3

applies and x receives at least 2(β − α), and 1 − α + 2(β − α) ≥ 2α − β
when α = 4

7
and β = 4

7
+ 1

21
.

∗ x has a second neighbour of degree 2 whose other neighbour is of de-
gree at most M . Then, according to Configuration (C3), the third neigh-
bour of x is of degree at least k−1. Then, x receives at least β (RuleR3.2),
gives at most 2×(2α−β) (RulesR1.1 andR1.2), and 1−α+β ≥ 2×(2α−β).

– If x is adjacent to two vertices of degree 2 whose other neighbor is of degree
at least 3 and at most M , then we have three cases:
∗ k = 5, α = 2

5
. Vertex x gives at most 3× α

2
(Rule R1.2), but 1− α ≥ 3× α

2

as α = 2
5
.

∗ 7 ≥ k ≥ 6, α = 1
2
. According to Configuration (C5), the third neighbour

of x is of degree at least 3, so, according to RuleR1.2, x gives 2× α
2
≤ 1−α

as α = 1
2
.

∗ k ≥ 8, α = 4
7
. Then M = k − 3. According to Configuration (C3), the

third neighbor of x is of degree at least k − 1, hence x receives β (Rule
R3.2) and gives at most 2× α

2
(Rule R1.2) away, so it loses nothing.

– If x is adjacent to exactly one vertex of degree 2 whose other neighbor y is
of degree at least 3 and at most 13, then x gives at most α

2
(Rule R1.2), which

is possible as 1− α ≥ α
2

.
– If x is adjacent to no vertex of degree 2 whose other neighbor is of degree at

most 13, then it gives nothing away.

• Let x be a vertex with d(x) = 4, in the case where 4 ≤ M . Then k ≥ 6 and α ≥ 1
2
.

We are in one of the following two cases.

– If x is 2-linked to two vertices, and 1-linked to a vertex of degree at most
M , then, according to Configuration (C6), its other neighbour y is of degree
at least k − 2. According to Rules R1.1 and R1.2, x gives nothing to y, and
gives at most 2α − β to its other three neighbours. If k ≤ 7 and α ≤ 1

2
, on

the whole x gives at most 3(2α − β) ≤ 2 − α. If k ≥ 8, M = k − 3, hence x
receives at least α from y, and 3(2α− β) ≤ 2− α + α.

– If not, according to R1, x gives at most 3× α
2

+ 2α− β or 2× (2α− β) + 2×
(2β − 2α), and in both cases, it has a weight of at least 2 + α at the end.
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• Let x be a vertex with d(x) = 5, in the case where 5 ≤ M . Then k ≥ 7. If k = 7
and α = 1

2
, then it gives at most 5 × (2α − β) ≤ 3 − α. If k ≥ 8 and α = 4

7
,

Configuration (C8) states that x cannot be 2-linked to 5 vertices, hence it gives at
most 4× (2α− β) + α

2
≤ 3− α.

• Let x be a vertex with 6 ≤ d(x) ≤M . It gives at most d(x)× (2α−β) away, which
means it has at least a weight of 2 + α at the end since d(x) ≥ 6.

• Let x be a vertex with M < d(x) < k − 1. It gives at most d(x) × α away (R2),
which means it has at least a weight of 2 + α at the end since d(x) > M .

• Let x be a vertex with k−1 ≤ d(x) < k. It gives at most d(x)×β away (R3), which
means it has at least a weight of 2 + α in the end since d(x) ≥ k − 1.

• Let x be a vertex with d(x) = k. It gives at most d(x)× β + 3α− 2β away (R3 and
Rg), which means it has at least a weight of 2 + α in the end since d(x) = k.

Consequently, after application of the discharging rules, every vertex v of G has a
weight of at least 2 + α, meaning that

∑
v∈G d(v) ≥

∑
v∈G(2 + α). Therefore, mad(G) ≥

2 + α.

Conclusion

Proof of Theorem 4.16
We prove by contradiction that ∀k ≥ 5, every graph G with ∆(G) ≤ k and

mad(G) < 2 +α, where α = 2
5

if k = 5, 1
2

if 7 ≥ k ≥ 6, 4
7

if k ≥ 8, satisfies χ2
`(G) ≤ k+ 1.

Let G be a minimal graph such that ∆(G) ≤ k, mad(G) < 2 + α and G does not admit
a list 2-distance (k + 1)-coloring. Graph G is also a minimal graph such that ∆(G) ≤ k
and G does not admit a list 2-distance (k + 1)-coloring (all its proper subgraphs sat-
isfy ∆ ≤ k and mad < 2 + α, so they admit a list 2-distance (k + 1)-coloring). By
Lemma 4.32, graph G cannot contain Configuration (Ci) if i ≤ k. Lemma 4.33 implies
that mad(G) ≥ 2 + α, a contradiction. �

4.6 (∆ + 2)-coloring squares of sparse graphs
In this section we prove Theorem 4.19 that a graph G with ∆(G) ≥ 17 and mad(G) < 3
satisfies χ2

`(G) ≤ ∆(G) + 2.

Notation and Terminology

A vertex x is weak when it is of degree 3 and is 1-linked to two vertices of degree at
most 14, or twice 1-linked to a vertex of degree at most 14 (see Figure 4.11). A weak
vertex is represented with a w label inside (w if it is not weak).

A vertex x is support when it is either (see Figure 4.12):

Type (S1): a vertex of degree 2 adjacent to another vertex of degree 2;
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x

14−14−

Figure 4.11: A weak vertex x.

u x a b

Type (S1)

u x a c d

7−
b

Type (S2)

u x c d e

a

14−b

f

14− g

Type (S3)

Figure 4.12: Support vertices x.

Type (S2): a vertex of degree 2 that is adjacent to a vertex of degree 3 which is adjacent
to another vertex of degree 2 and to a vertex of degree at most 7;

Type (S3): a weak vertex 1-linked to another weak vertex.

A vertex is positive when it is of degree at least 4 and is adjacent to a support vertex.
A vertex u is locked if it has two neighbors v1 and v2, where v1 and v2 are both 1-linked
to the same two vertices w1 and w2 that have a common neighbor, and d(v1) = d(v2) =
d(w1) = d(w2) = 3 (see Figure 4.13). This configuration is called a lock.

u

v1 w1

x

v2 w2

Figure 4.13: A locked vertex u.

Forbidden Configurations

Here, k is a constant integer at least 17 and G is a minimal graph such that ∆(G) ≤ k
and G admits no 2-distance (k + 2)-list-coloring.

We define configurations (C1) to (C11) (see Figures 4.14, 4.15 and 4.16). Note that
configurations similar to Configurations (C1), (C2) and (C4) already existed in the lit-
terature, for example in [DKNŠ08].

• (C1) is a vertex u with d(u) ≤ 1
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• (C2) is a vertex u with d(u) = 2 that has two neighbors v, w and u is 1-linked
through v to a vertex of degree at most k − 1.

• (C3) is a vertex uwith d(u) = 3 that has three neighbors v, w, xwith d(w)+d(x) ≤
k − 1, and u is 1-linked through v to a vertex of degree at most k − 1.

• (C4) is a vertex uwith d(u) = 3 that has three neighbors v, w, xwith d(w)+d(x) ≤
k − 1, and v has exactly three neighbors u, y, z with d(z) ≤ 7 and d(y) = 2.

• (C5) is a vertex u with d(u) = 3 that has three neighbors v, w, x with d(x) ≤ k − 1
and u is 1-linked through v (resp. through w) to a vertex of degree at most 14.
(Note that u is a weak vertex.)

• (C6) is a vertex u with d(u) = 4 that has four neighbors v, w, x, y with d(w) ≤ 7,
d(x) ≤ 3, d(y) ≤ 3, and u is 1-linked through v to a vertex of degree at most 14.

• (C7) is a vertex uwith d(u) = 4 that has four neighbors v, w, x, y with d(x)+d(y) ≤
k − 1 and u is 1-linked through v (resp. through w) to a vertex of degree at most
14.

• (C8) is a vertex u with d(u) = 5 that has five neighbors v, w, x, y, z with d(w) ≤ 7,
d(x) ≤ 3, d(y) ≤ 3, d(z) = 2, and u is 1-linked through v to a vertex of degree at
most 7.

• (C9) is a vertex u with d(u) = 6 that has six neighbors v, w, x, y, z, t with d(w) ≤ 7,
d(x) ≤ 3, d(y) ≤ 3, d(z) = 2, d(t) = 2, and u is 1-linked through v to a vertex of
degree at most 7.

• (C10) is a vertex uwith d(u) = 7 that has seven neighbors v, w1, . . . , w6 with d(v) ≤
7 and u is 1-linked through wi, 1 ≤ i ≤ 6, to a vertex of degree at most 3.

• (C11) is a vertex uwith d(u) = k that has three neighbors v, w, xwith x is a support
vertex, v, w are both 1-linked to a same vertex y of degree 3, and v (resp. w) is
1-linked to a vertex of degree at most 14 distinct from y. (Note that v, w are weak
vertices.)

Lemma 4.34. G does not contain Configurations (C1) to (C11).

Proof. Given a partial 2-distance list-coloring ofG, a constraint of a vertex u is any color
appearing on a vertex at distance at most 2 from u in G.

Notation refers to Figures 4.14, 4.15 and 4.16.

Claim 1. G does not contain (C1).

Proof. Suppose by contradiction that G contains (C1). Using the minimality of G, we
color G \ {u}. Since ∆(G) ≤ k, and d(u) ≤ 1, vertex u has at most k constraints (one
for its neighbor and at most k − 1 for the vertices at distance 2 from u). There are
k + 2 colors available in the list of u, so the coloring of G \ {u} can be extended to G, a
contradiction.

Claim 2. G does not contain (C2).
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1− u

(C1)

(k − 1)−
x

v

u
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d(x) + d(w)

≤ k − 1

(k − 1)−
v

u

x

w

(C3)

y

v
u

x

w 7− z

d(x) + d(w)

≤ k − 1

(C4)

14−

v
u

(k − 1)−
x

w

14−

(C5)

Figure 4.14: Forbidden configurations (C1) to (C5).

Proof. Suppose by contradiction that G contains (C2). Using the minimality of G, we
color G \ {u, v}. Vertex u has at most k + 1 constraints. Hence we can color u. Then v
has at most k − 1 + 2 = k + 1 constraints. Hence we can color v. So we can extend the
coloring to G, a contradiction.

Claim 3. G does not contain (C3).

Proof. Suppose by contradiction that G contains (C3). Using the minimality of G, we
color G \ {v}. Because of u, vertices w and x have different colors. We discolor u.
Vertex v has at most k − 1 + 2 = k + 1 constraints. Hence we can color v. Vertex u has
at most d(w) + d(x) + 2 ≤ k + 1 constraints. Hence we can color u. So we can extend
the coloring to G, a contradiction.

Claim 4. G does not contain (C4).

Proof. Suppose by contradiction that G contains (C4). Let e be the edge uv. Using
the minimality of G, we color G \ {e}. We discolor u and v. Vertex u has at most
d(w) + d(x) + 2 ≤ k + 1 constraints. Hence we can color u. Vertex v has at most
7 + 3 + 2 ≤ k + 1 constraints. Hence we can color v. So we can extend the coloring to
G, a contradiction.

Claim 5. G does not contain (C5).

Proof. Suppose by contradiction that G contains (C5). Using the minimality of G, we
color G \ {u, v, w}. Vertex u has at most k − 1 + 2 = k + 1 constraints. Hence we can
color u. Vertices v and w have at most 14 + 3 ≤ k + 1 constraints respectively. Hence
we can color v and w. So we can extend the coloring to G, a contradiction.

Claim 6. G does not contain (C6).
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x

3−y
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Figure 4.15: Forbidden configurations (C6) to (C9).

Proof. Suppose by contradiction that G contains (C6). Using the minimality of G, we
color G \ {v}. We discolor u. Vertex v has at most 14 + 3 ≤ k+ 1 constraints. Hence we
can color v. Vertex u has at most 2 + 3 + 3 + 7 ≤ k + 1 constraints. Hence we can color
u. So we can extend the coloring to G, a contradiction.

Claim 7. G does not contain (C7).

Proof. Suppose by contradiction that G contains (C7). Using the minimality of G, we
color G\{v, w}. We discolor u. Vertex u has at most d(x) +d(y) + 2 ≤ k+ 1 constraints.
Hence we can color u. Vertices v and w have at most 14 + 4 ≤ k + 1 constraints
respectively. Hence we can color v and w. So we can extend the coloring to G, a
contradiction.

Claim 8. G does not contain (C8).

Proof. Suppose by contradiction that G contains (C8). Using the minimality of G, we
color G \ {v}. We discolor u. Vertex u has at most 7 + 3 + 3 + 2 + 1 ≤ k + 1 constraints.
Hence we can color u. Vertex v has at most 7 + 5 ≤ k + 1 constraints. Hence we can
color v. So we can extend the coloring to G, a contradiction.

Claim 9. G does not contain (C9).

Proof. Suppose by contradiction that G contains (C9). Using the minimality of G, we
colorG\{v}. We discolor u. Vertex u has at most 7+3+3+2+2+1 ≤ k+1 constraints.
Hence we can color u. Vertex v has at most 7 + 6 ≤ k + 1 constraints. Hence we can
color v. So we can extend the coloring to G, a contradiction.

Claim 10. G does not contain (C10).
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z3support
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Figure 4.16: Forbidden configurations (C10) and (C11).

Proof. Suppose by contradiction that G contains (C10). Using the minimality of G, we
color G \ {u,w1, . . . , w6}. Vertex u has at most 7 + 6 ≤ k + 1 constraints. Hence we
can color v. Each vertex wi has at most 3 + 7 ≤ k + 1 constraints. Hence we can color
w1, ..., w6. So we can extend the coloring to G, a contradiction.

Claim 11. G does not contain (C11).

Proof. Suppose by contradiction that G contains (C11). Since x is a support vertex, and
u is of degree k, it is of Type (S1), (S2) or (S3) of support vertices with the notation of
Figure 4.12. Note that some vertices may coincide between Figure 4.12 and Figure 4.16.

We define a set of vertices A as follows:

A =


{a} if x is of Type (S1)
{a, c} if x is of Type (S2)
{a, c} if x is of Type (S3)

Using the minimality of G, we color G \ ({v, w, x, y, z1, . . . , z4} ∪ A). If x is of Type
(S1) (resp. (S2)), a (resp. c) has at most k+1 constraints. Hence we can color a (resp. c).
For the three types (Si), x has at most k − 3 + 1 + 2 = k constraints, thus it has at least
2 available colors. Vertex y has at most k constraints, thus it has at least 2 available
colors. Both v and w have at most k − 3 + 1 + 1 ≤ k − 1 constraints, so they have at
least 3 available colors in their list.

We now explain how to color v, w, x, y (other uncolored vertices will be colored
later). Suppose x and y can be assigned the same color, then both v and w have at least
2 available colors and thus can be colored.

Suppose the lists of available colors of x and y are disjoint. We color v with a color
not appearing in the list of x. Then we color y that has k + 1 constraints. (Vertex x has
still at least 2 available colors.) Then we color w that has k + 1 constraints and finally
x.

Now we assume that we cannot assign the same color to x and y and that their lists
of available colors are not disjoint. This means that x and y are either adjacent or have
a common neighbor. So some vertices coincide between Figure 4.12 and Figure 4.16.
The different cases where x and y are either adjacent or have a common neighbor are
the following:

(S1) – b = y
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(S2) – b = y

– a = y and w.l.o.g b = z2, c = z3 and d = w.

(S3) – b = y

– d = y, and w.l.o.g. f = z2, g = v and e = z3.

In all these cases, y has at most 1 constraint. So we can color x, v, w, y, in this order
as they all have at most k + 1 constraints when they are colored.

If x is of Type (S2) (resp. (S3)), vertex a (resp vertices a, c) has at most 11 constraints
(resp. 17, 6), so we can color them. The vertices zi have at most 17 ≤ k + 1, so we can
color them. Thus the coloring have been extended to G, a contradiction.

Structure of support vertices

Let H(G) be the subgraph of G induced by the edges incident to at least a support
vertex. We prove several properties of support vertices and of the graph H(G).

Lemma 4.35. Each positive vertex is of degree k and each support vertex is adjacent to exactly
one positive vertex.

Proof. By Lemma 4.34, G does not contain Configurations (C2), (C3) and (C5). So a
support vertex is adjacent to a vertex of degree k (Configurations (C2), (C3) and (C5)
correspond respectively to support vertices of Type (S1), (S2) and (S3)). By definition,
a support vertex has at most one neighbor of degree at least 4, thus it is adjacent to
exactly one vertex of degree at least 4 and this vertex has in fact degree k. So all the
positive vertices are of degree k and a support vertex is adjacent to exactly one positive
vertex.

Lemma 4.36. Each cycle of H(G) with an odd number of support vertices contains a subpath
s1v1s2v2s3 where s1, s2, s3 are support vertices of type (S3) and v1, v2 are vertices of degree 2.

Proof. Let C be a cycle of H(G) with an odd number of support vertices. Cycle C does
not contain just one support vertex, as all its edges have to be adjacent to a support
vertex (there is no loop or multiple edge in H(G)). So C contains at least three support
vertices.

Suppose that C contains no positive vertices. Then it contains no support vertices
of type (S1) or (S2) as such vertices are of degree 2, so all their neighbors would be
on C, and they are adjacent to a positive vertex by Lemma 4.35. So C contains only
support vertices of type (S3). Let s1, s2, s3 be three support vertices of C appearing
consecutively along C. A support vertex of Type (S3) is of degree 3, adjacent to two
vertices of degree 2 and to a positive vertex. So the neighbors of si on C are vertices
of degree 2 that are not support vertices. As H(G) contains only edges incident to
support vertices, there exist v1, v2 of degree 2 such that s1v1s2v2s3 is a subpath of C.

Suppose now that C contains some positive vertices. Let p1, . . . , p` be the set of pos-
itive vertices of C appearing in this order along C while walking in a chosen direction
(subscripts are understood modulo `). Let Qi, 1 ≤ i ≤ `, be the subpath of C between
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pi and pi+1 (in the same chosen direction along C). (Note that if ` = 1, then Q1 = C is
not really a subpath.) As C contains an odd number of support vertices, there exists i
such that Qi contains an odd number of support vertices. If Qi contains just one sup-
port vertex v, then Qi has length 2, since H(G) contains only edges incident to support
vertices. So v is adjacent to two different positive vertices (or has a multiple edge if
` = 1), a contradiction to Lemma 4.35. So Qi contains at least 3 support vertices. Let
s1, s2, s3 be three support vertices of Qi appearing consecutively along Qi.

If one of the si is of Type (S1), let x be such a vertex. With the notation of Figure 4.12,
vertex x is of degree 2, so its two neighbors u, a are on C, with u a positive vertex and
a a support vertex of Type (S1). Then vertex a is of degree 2 so its neighbor b distinct
from x is also on C. Vertex b is positive so Qi is the path u, x, a, b and contains just two
support vertices, a contradiction.

If one of the si is of Type (S2), let x be such a vertex. With the notation of Figure 4.12,
vertex x is of degree 2, so its two neighbors u, a are on C, with u a positive vertex and a
a vertex of degree 3. Vertex a is not adjacent to vertices of degree k so by Lemma 4.35,
it is not a support vertex. Let c′ be the neighbor of a on C that is distinct from x. As
all the edges of H(G) are incident to support vertices, c′ is a support vertex. Since c′

is adjacent to a vertex of degree 3 it is a support vertex of Type (S2) and can play the
role of c of Figure 4.12. Then c is of degree 2 and its neighbor on C distinct from a is a
positive vertex d. So Qi is the path u, x, a, c, d and contains just two support vertices, a
contradiction.

So s1, s2, s3 are all of Type (S3). A support vertex of Type (S3) is of degree 3, adjacent
to two vertices of degree 2 and to a positive vertex. So the neighbors of s2 on C are
vertices v1, v2 of degree 2 that are not support vertices. As H(G) contains only edges
incident to support vertices, we can assume w.l.o.g. that s1v1s2v2s3 is a subpath of
C.

Lemma 4.37. H(G) does not contain a 2-connected subgraph of size at least three with exactly
two support vertices.

Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size
≥ 3 that has exactly two support vertices S = {s1, s2}. We color by minimality G\ (S ∪
{v ∈ NG(S)|dG(v) ≤ 3}). (Note that by Lemma 4.35, the set {v ∈ NG(S)|dG(v) ≤ 3}
corresponds to vertex a of Figure 4.12 if the support vertex is of Type (S1) or (S2) and
to vertices a, c if the support vertex is of Type (S3).)

We first show how to color S. For that purpose we consider three cases correspond-
ing to the type of s1.

• s1 is of Type (S1). Then s1 is of degree 2, has a positive neighbor u and a support
neighbor a of Type (S1). As s1 is of degree 2, both its neighbors are in C. So a is
a support vertex of C, thus a = s2. Let v be the neighbor of s2 of degree k. Since
C contains no other support vertex and is 2-connected, we must have u = v.
Then u has two neighbors s1, s2 that are not colored, so s1 and s2 have at most k
constraints, and we can color them.

• s1 is of Type (S2). Then s1 is of degree 2, has a positive neighbor u and another
neighbor a of degree 3. Vertex a is not a support vertex by Lemma 4.35 since
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it has no neighbor of degree k. As s1 is of degree 2, all its neighbors are in C.
Vertices u and a are in C that is 2-connected so they have at least two neighbors
in C. Since they are not support vertices, all their neighbors in C are support
vertices. So both u and a are adjacent to s2. Vertex s2 is support, it is adjacent to a
that is of degree 3, so s2 is of Type (S2). Then u is of degree k, has two neighbors
s1, s2 that are not colored, so s1 and s2 have at most k constraints, and we can
color them.

• s1 is of Type (S3). Then s1 is of degree 3, has a positive neighbor u and two other
neighborsw,w′ of degree 2. Verticesw,w′ are not support vertices by Lemma 4.35
since they have no neighbor of degree k. As s1 is of degree 3, two of u,w,w′ are
in C. Let Y be the neighbors of s1 in C. We can assume by symmetry that either
{v, w} ⊆ Y or {w,w′} ⊆ Y . Vertices of Y are in C that is 2-connected so they
have at least two neighbors in C. Since they are not support vertices, all their
neighbors in C are support vertices. So all the vertices of Y are adjacent to s2.
Vertex s2 is a support vertex, it is adjacent to w that is non support and of degree
2, so s2 is of Type (S3). In both cases ({v, w} ⊆ Y or {w,w′} ⊆ Y ), vertices s1 and
s2 have at most k constraints, and we can color them.

Every vertex of {v ∈ NG(S)|dG(v) ≤ 3} has at most 17 constraints, hence we can
extend the coloring to the whole graph, a contradiction.

Lemma 4.38. Every 2-connected subgraph of H(G) that contains exactly three support ver-
tices is a cycle.

Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size
≥ 3 that has exactly three support vertices S = {s1, s2, s3} and that is not a cycle.

Suppose by contradiction that C contains no cycle C ′ with S ⊆ C ′ ⊆ C. As C is 2-
connected, by Menger’s Theorem there exist two internally vertex-disjoint paths Q,Q′

between s1, s2. Let C ′′ be the cycle Q ∪ Q′. By assumption C ′′ does not contain s3. So
it contains just two support vertices, a contradiction to Lemma 4.37. So C contains a
cycle C ′ with S ⊆ C ′ ⊆ C.

By Lemma 4.36, cycle C ′ contains a subpath x1v1x2v2x3 where x1, x2, x3 are support
vertices of Type (S3) and v1, v2 are vertices of degree 2. AsC contains just three support
vertices, we have S = {x1, x2, x3}. Vertices x1, x3 are support vertices of Type (S3), they
are of degree 3 and only adjacent to positive vertices and to vertices of degree 2 so they
are not adjacent. The graph H(G) contains only edges incident to support vertices, so
there exists a vertex y of C ′ adjacent to x1, x3, and x1v1x2v2x3y is the cycle C ′. If C ′ has
some chords in H(G), then H(G) contains a cycle with two support vertices only, a
contradiction to Lemma 4.37. So C ′ is an induced cycle of H(G) and so C ′ has strictly
less vertices than C. Let y′ be a vertex of C distinct from x1, v1, x2, v2, x3, y. Vertex y′

is not a support vertex, C is 2-connected and H(G) contains only edges incident to
support vertices, so y′ is adjacent to at least two vertices in S. Then H(G) contains a
cycle with two support vertices only, a contradiction to Lemma 4.37.

Lemma 4.39. Every 2-connected subgraph of H(G) of size at least three is either a cycle with
an odd number of support vertices or a subgraph of a lock of H(G).
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Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size
≥ 3 that is not a cycle with an odd number of support vertices nor a subgraph of a lock
of H(G). Let S = {s1, . . . , sp} be the support vertices of C. By Lemma 4.37, p ≥ 3. Let
S be the graph with V (S) = S where there is an edge between si and sj if and only if
they are adjacent or have a common neighbor in G.

Claim 12. S is not a clique of size at least four.

Proof. Suppose, by contradiction that S is a clique with p ≥ 4.
Given a support vertex x, we say that a support vertex x′, distinct from x, satisfies

the property Px if it is either adjacent to x in G or has a non-positive common neighbor
with x in G. At most two vertices can satisfy Px (vertex a of Figure 4.12 if x is of Type
(S1), vertices b, c if x is of Type (S2), vertices b, d if x is of Type (S3)). Note that if x′

satisfies Px, then x satisfies Px′ .
We claim that there exist two support vertices in S that do not have a positive

common neighbor in G. Suppose by contradiction, that every pair of vertices of S has
a positive common neighbor. By Lemma 4.35, every support vertex has at most one
positive neighbor, so all the vertices of S are adjacent to the same positive vertex v. As
C is 2-connected, there is a path Q in C \ {v} between s1, s2. Let si be the first support
vertex, distinct from s1, appearing along Q while starting from s1 (maybe i = 2 if
there is no support vertex in the interior of Q). Let Q′ be the subpath of Q between
s1 and si (maybe Q = Q′). Then Q′ ∪ {v} forms a 2-connected subgraph of size ≥ 3
with exactly two support vertices, a contradiction to Lemma 4.37. So there exist two
support vertices x, x′ in S that do not have a positive common neighbor in G. Since
S is a clique, vertices x, x′ are adjacent or have a common non-positive neighbor, so x
satisfies Px′ (and x′ satisfies Px).

Suppose there exists a support vertex y ∈ S that does not satisfy Px nor Px′ . Since S
is a clique, vertex y has a common positive neighbor z with x and z′with x′. Since x and
x′ have no positive common neighbor, z and z′ are distinct. Thus y has two positive
neighbors, a contradiction. So every vertex of S \ {x, x′} satisfies either Px or Px′ . If
two vertices y, y′ of S \ {x, x′} satisfy Px, then at least three vertices, x′, y, y′ satisfy Px,
a contradiction. So there is at most one vertex of S \ {x, x′} satisfying Px and similarly
at most one satisfying Px′ . So p ≤ 4 and we can assume, w.l.o.g., that S = {x, x′, y, y′},
where vertex y satisfies Px and not Px′ and vertex y′ satisfies Px′ and not Px. Thus x has
a common positive neighbor z with y′ and x′ has a common positive neighbor z′ with
y. Since x, x′ do not have a common positive neighbor, z and z′ are distinct. Vertices
y, y′ have at most one positive neighbor, thus, they do not have a common positive
neighbor. Since S is a clique, y satisfies Py′ . Let (y1, y2, y3, y4) = (x, x′, y′, y) (subscript
are understood modulo 4).

Suppose there exists i ∈ {1, 2, 3, 4} such that yi, yi+1 are adjacent in G. Two support
vertices can be adjacent only if they are of Type (S1). So yi, yi+1 are of Type (S1) and
of degree two. Then yi is only adjacent to yi+1 and to a positive vertex in {z, z′}. If yi
is adjacent to yi−1, then yi−1 = yi+1, a contradiction. If yi is not adjacent to yi−1, then
yi+1 is a common neighbor of yi and yi−1. Since yi+1 is of degree two and has a positive
neighbor, yi = yi−1, a contradiction. So yi, yi+1 are not adjacent in G for any 1 ≤ i ≤ 4.
Let wi be a non-positive common neighbor of yi, yi+1.
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Suppose there exists i ∈ {1, 2, 3, 4} such that d(yi) = 2. Then wi = wi−1. So
{yi−1, yi, yi+1} ⊆ N(wi), and wi is not positive, so d(wi) = 3. Two support vertices
can have a common neighbor of degree 3 only if they are both of degree two (Type
(S2)). So d(yi−1) = d(yi) = d(yi+1) = 2. Since yi+1 is of degree two and has a positive
neighbor, wi = wi+1, so yi+2 ∈ N(wi), a contradiction. So d(yi) ≥ 3 for any 1 ≤ i ≤ 4.

Then all the yi are of Type (S3), they are of degree three and their non-positive
neighbors are of degree two. Thus d(wi) = 2 for any 1 ≤ i ≤ 4. So
y1, . . . , y4, w1, . . . , w4, z, z

′ induce a lock. So all the edges incident to S = {y1, . . . , y4} =
{s1, . . . , s4} belong to a lock, contradicting the definition of C.

By Lemma 4.37, the graph S is not an edge. If S is a triangle, then C contains
exactly three support vertices and, by Lemma 4.38, it is a cycle with an odd number of
support vertices, a contradiction. So S is not a triangle. By Claim 12, S is not a clique
of size at least 4. So finally, S is not a clique.

Suppose, by contradiction, that S is an odd cycle with ≥ 5 vertices. Then C is a
2-connected graph that is not a cycle, so it contains a vertex v with at least 3 neighbors
in C. If v is not a support vertex, then it has at least 3 support neighbors in C that
form a triangle in S, a contradiction. So v is a support vertex. Then either v has three
neighbors in S, a contradiction to S being a cycle, or C contains a cycle with two
support vertices, a contradiction to Lemma 4.37. So S is not an odd cycle.

Suppose, by contradiction, that S is not 2-connected. Then there exist three support
vertices s, s′, s′′ of S such that s′, s′′ appears in two different connected components of
S \ {s}. As C is 2-connected, there exists a path Q between s′, s′′ in C \ {s}. This path
Q is composed only of edges incident to support vertices so in S \ {s} it corresponds
to a path between s′, s′′, a contradiction. So S is 2-connected.

We now consider the graph G, we color by minimality G\ (S ∪{v ∈ NG(S)|dG(v) ≤
3}). We show how to color S. In the three Types (Sj), the number of constraints on
a support vertex si of Type (Sj) is at most k + 2 minus the number of its neighbors
in S. So the number of available colors of a support vertex is at least its degree in
S. Now Lemma 1.8 can be applied to S, which is not a clique, not an odd cycle and
2-connected. So we can color S. Every vertex of {v ∈ NG(S)|dG(v) ≤ 3} has at most 17
constraints, hence we can extend the coloring to the whole graph, a contradiction.

Lemma 4.40. Every connected component of H(G) is either a cactus where each cycle has an
odd number of support vertices or a lock.

Proof. All the edges of a lock are incident to support vertices of type (S3) so all the
edges of a lock ofG appear inH(G). The only vertices of a lock that can have neighbors
outside a lock are locked vertices (vertices u and x on Figure 4.13). By Lemma 4.34,
graphG does not contain Configuration (C11), so a locked vertex is incident to only two
support vertices, the two support vertices of a lock. A lock is a connected component
of H(G).

Let C be a connected components of H(G) that is not a lock. By Lemma 4.39, each
2-connected subgraph of C is a cycle with an odd number of support vertices. So C is
a cactus where each cycle of C has an odd number of support vertices.
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Figure 4.17: Discharging rules R1.i, R2, R3, and R4

Discharging rules

A negative vertex is a support vertex of type (S1) or (S2) or a vertex of degree 2 adjacent
to two support vertices of type (S3). In this case we say that the negative vertex is of
type (N1), (N2) or (N3) respectively.

Each vertex has an initial weight (later defined). The discharging rules R1.1, R1.2,
R1.3, R1.4, R1.5, R2, R3, R4 and Rg (see Figure 4.17) defined below explain how vertices
will receive and/or give weight. We also use a so-called common pot which is empty
at the beginning, receives weight from some vertices and gives weight to some others.
For any vertex x of degree at least 3,

• Rule R1 is when 3 ≤ d(x) ≤ 7, and x is 1-linked (with a path x− a− y) to a vertex
y.

– Rule R1.1 is when x is weak with d(y) ≤ 7. Then x gives 2
5

to a.

– Rule R1.2 is when x is not weak and y is weak. Then x gives 3
5

to a

– Rule R1.3 is when x and y are not weak, with d(y) ≤ 7. Then x gives 1
2

to a.

– Rule R1.4 is when 8 ≤ d(y) ≤ 14. Then x gives 3
8

to a.

– Rule R1.5 is when 15 ≤ d(y) and a is not negative. Then x gives 1
5

to a.

• Rule R2 is when 3 ≤ d(x) ≤ 7 and x is adjacent to a vertex u of degree 3 that is
adjacent to a vertex of degree 2 and a vertex of degree at most 7. Then x gives 1

10

to u.

• Rule R3 is when 8 ≤ d(x) ≤ 14. Then x gives 5
8

to each of its neighbors.

• Rule R4 is when 15 ≤ d(x). Then x gives 4
5

to each of its neighbors.

• Rule Rg states that each positive vertex gives 2
5

to a common pot, and that each
negative vertex receives 1

5
from the common pot.

Lemma 4.41. The common pot has non-negative value after applying Rg.
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Proof. Given a set of vertices X , let n(X) be its number of negative vertices and p(X)
its number of positive vertices. To prove that the common pot has positive value after
applying Rg, we show that each connected component C of H(G) satisfies p(C) ≥⌈
n(C)

2

⌉
.

Let C be a connected component of H(G). By Lemma 4.40, C is either a cactus
where each cycle has an odd number of support vertices or a lock. If C is a lock, then
n(C) = 4 and p(C) = 2, so we are done. So we can assume that C is a cactus where
each cycle has an odd number of support vertices.

Claim 13. Every connected subgraph C ′ of C, whose pendant vertices are positive vertices,
whose support vertices are adjacent to their positive neighbor in C ′ and whose negative vertices
of Type (N3) are adjacent to their two neighbors in C ′, satisfies p(C ′) ≥

⌈
n(C′)

2

⌉
.

Proof. Suppose by contradiction that this is false. Let C ′ be a connected subgraph
of C of minimum number of vertices, whose pendant vertices are positive vertices,
whose support vertices are adjacent to their positive neighbor in C ′, and such that
p(C ′) <

⌈
n(C′)

2

⌉
. The graph C ′ is a connected subgraph of a cactus so it is also a cactus.

Suppose first that C ′ contains a pendant vertex u. Let x be the neighbor of the
positive vertex u in C ′. As H(G) contains only edges incident to support vertices, x is
a support vertex. So it is not positive and thus is not a pendant vertex of C ′. So x has at
least two neighbors in C ′. We consider different cases according to the Type of x and
its number of neighbors in C ′.

• x is of Type (S1). Then let a be the neighbor of x distinct from u. We have a ∈ C ′
and a is a support vertex of Type (S1). The positive neighbor b of a is in C ′ by
assumption. Let C ′′ be the graph C ′ \ {u, x, a}. We have n(C ′′) = n(C ′) − 2 and
p(C ′′) = p(C ′) − 1. The graph C ′′ is a connected subgraph of C since u, x, a is
a subpath of C ′ where u is pendant and x, a are of degree 2. All the pendant
vertices of C ′′ are positive since the only new possible pendant vertex is b. All
the support vertices of C ′′ are adjacent to their positive neighbor in C ′′ since the
only positive vertex that has been removed is u and its support neighbor x has
also been removed. All the negative vertices of Type (N3) are adjacent to their
two neighbors in C ′ as no support vertex of Type (S3) has been removed. So by
minimality, we have p(C ′′) ≥

⌈
n(C′′)

2

⌉
, and so p(C ′) = p(C ′′) + 1 ≥

⌈
n(C′′)+2

2

⌉
=⌈

n(C′)
2

⌉
.

• x is of Type (S2). Then let a be the neighbor of x distinct from u. We have a ∈ C ′
and a is of degree 3. Let b, c be the neighbors of a distinct from x. Since a is not
positive, it is not a pendant vertex of C ′, so at least one of b, c is in C ′. We assume
w.l.o.g. that c is in C ′. As H(G) contains only edges incident to support vertices,
vertex c is a support vertex of Type (S2). We consider two cases depending on
whether a has its three neighbors in C ′ or not.

If b ∈ C ′, then let C ′′ be the graph C ′ \ {u, x}. We have n(C ′′) = n(C ′) − 1 and
p(C ′′) = p(C ′)−1. The graphC ′′ is a connected subgraph ofC, all its pendant ver-
tices are positive, all its support vertices are adjacent to their positive neighbor
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in C ′′ and all negative vertices of Type (N3) are adjacent to their two neighbors in
C ′. So by minimality, we have p(C ′′) ≥

⌈
n(C′′)

2

⌉
, and so p(C ′) ≥

⌈
n(C′)

2

⌉
.

If b /∈ C ′, then let C ′′ be the graph C ′ \ {u, x, a, c}. We have n(C ′′) = n(C ′) −
2 and p(C ′′) = p(C ′) − 1. The graph C ′′ is a connected subgraph of C, all its
pendant vertices are positive, all its support vertices are adjacent to their positive
neighbor in C ′′ and all its negative vertices of Type (N3) are adjacent to their two
neighbors in C ′. So by minimality, we have p(C ′′) ≥

⌈
n(C′′)

2

⌉
, and so p(C ′) ≥⌈

n(C′)
2

⌉
.

• x is of Type (S3) and has two neighbors in C ′. Then let c be the neighbor of x distinct
from u that is in C ′. Vertex c is of degree 2, it is not positive, so its neighbor
d, distinct from x, is in C ′. As H(G) contains only edges incident to support
vertices and c is not a support vertex, vertex d is a support vertex and so of Type
(S3). Let e, f be the neighbors of d distinct from c where e is a positive vertex
and f is a vertex of degree 2. Vertex e is the positive neighbor of d so it is in
C ′ by assumption. We consider two cases corresponding to whether d has its
three neighbors in C ′ or not. If f ∈ C ′, then let C ′′ be the graph C ′ \ {u, x, c}. If
f /∈ C ′, then let C ′′ be the graph C ′ \ {u, x, c, d}. In both cases, we have n(C ′′) =
n(C ′) − 1 and p(C ′′) = p(C ′) − 1. The graph C ′′ is a connected subgraph of C,
all its pendant vertices are positive, all its support vertices are adjacent to their
positive neighbor in C ′′ and all its negative vertices of Type (N3) are adjacent to
their two neighbors in C ′. So by minimality, we have p(C ′′) ≥

⌈
n(C′′)

2

⌉
, and so

p(C ′) ≥
⌈
n(C′)

2

⌉
.

• x is of Type (S3) and has three neighbors in C ′. Then let a, c be the neighbors of x
distinct from u. We have a, c in C ′. Vertex a (resp. c) is of degree 2, it is not
positive, so its neighbor b (resp. d) is in C ′. As H(G) contains only edges incident
to support vertices and a and c are not support vertices, vertices b and d are
support vertices and thus of Type (S3). The positive neighbor h of b (resp. e of
d) is in C ′, by assumption. We consider several cases corresponding to whether
b and d have their three neighbors in C ′ or not. If b and d both have their three
neighbors inC ′, then letC ′′ be the graphC ′\{u, x, c, a}. If b has its three neighbors
in C ′ but not d, then let C ′′ be the graph C ′ \ {u, x, c, a, d}. If d has its three
neighbors in C ′ but not b, then let C ′′ be the graph C ′ \ {u, x, c, a, b}. If none of b
and d has its three neighbors in C ′, then let C ′′ be the graph C ′ \{u, x, c, a, b, d}. In
the four cases we have n(C ′′) = n(C ′)− 2 and p(C ′′) = p(C ′)− 1. The graph C ′′ is
not necessarily connected but it is composed of one or two connected subgraphs
of C whose all pendant vertices are positive, all support vertices are adjacent to
their positive neighbor inC ′′ and all its negative vertices of Type (N3) are adjacent
to their two neighbors in C ′. So by minimality (on each component of C ′′), we
have p(C ′′) ≥

⌈
n(C′′)

2

⌉
, and so p(C ′) ≥

⌈
n(C′)

2

⌉
.

Now we can assume that C ′ contains no pendant vertex. Suppose that C ′ is a single
vertex v. Then v is not support as all support vertices have their positive neighbor in
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C ′ and v is not negative of Type (N3) as negative vertices of Type (N3) have their two
neighbors in C ′. So v is not negative and p(C ′) ≥

⌈
n(C′)

2

⌉
= 0. Now we can assume

that C ′ is not a single vertex. The graph C ′ is a cactus, not a single vertex, contains
no pendant vertex, so it contains a cycle C ′′, of size ≥ 3, such that C ′′′ = C ′ \ C ′′ is
connected (note that we may have C ′ = C ′′ and C ′′′ empty). Cycle C ′′ is a cycle of C so
it has an odd number of support vertices by Lemma 4.40. Let S be the set of support
vertices of C ′′, with s = |S|. By Lemma 4.36, cycle C ′′ contains a subpath s1v1s2v2s3

where s1, s2, s3 are support vertices of Type (S3) and v1, v2 are vertices of degree 2. By
assumption, the positive vertex z that is adjacent to s2 is in C ′. It is not in C ′′ as there
is no chord in C ′′. So the only vertex of C ′′ that has some neighbors in C ′ \ C ′′ is s2. So
all the positive vertices that are adjacent to S \ {s2} are vertices of C ′ and thus of C ′′.
A positive vertex of C ′′ has at most two support neighbors in C ′′ so p(C ′′) ≥

⌈
s−1

2

⌉
. A

support vertex of Type (S1) or (S2) is a negative vertex of Type (N1) or (N2). A negative
vertex of Type (N3) of C ′′ is of degree 2 and so has its two neighbors on C ′′ and this two
neighbors are support vertices of Type (S3). So the number of negative vertices of C ′′

is at most the number of support vertices of C ′′ and strictly less if C ′′ contains a vertex
of Type (N3). Vertex v1 is of Type (N3), so s > n(C ′′) and so p(C ′′) ≥

⌈
s−1

2

⌉
≥
⌈
n(C′′)

2

⌉
.

The graph C ′′′ is a connected subgraph of C whose all pendant vertices are positive,
all support vertices are adjacent to their positive neighbor in C ′′′ and all its negative
vertices of Type (N3) are adjacent to their two neighbors in C ′. So by minimality we
have p(C ′′′) ≥

⌈
n(C′′′)

2

⌉
. So finally, p(C ′) = p(C ′′) + p(C ′′′) ≥

⌈
n(C′′′)

2

⌉
+
⌈
n(C′′)

2

⌉
≥⌈

n(C′′)+n(C′′′)
2

⌉
=
⌈
n(C′)

2

⌉
.

Let C ′ be the graph obtained from C by removing all pendant vertices that are
not positive vertices. We claim that C ′ is a connected subgraph of C, whose pendant
vertices are positive vertices, whose support vertices have their positive neighbor in
C ′, whose negative vertices of Type (N3) are adjacent to their two neighbors in C ′

and such that n(C ′) = n(C). As C is connected and only pendant vertices have been
removed from C, the graph C ′ is also connected. All support and negative vertices
are of degree 2 or 3 and have all their incident edges in H(G) and thus in C, so there
is no pendant vertex of C that is a support or a negative vertex. So no support or
negative vertex has been removed from C and n(C ′) = n(C). A pendant vertex of
C that has been removed is not positive, not support, not negative but incident to a
support, so it is necessarily a degree 2 vertex a incident to a support vertex x of Type
(S3) (with notations of Figure 4.12). When a is removed from C, this does not create
any new pendant vertex as x has degree 2 after the removal. All pendant vertices
that are not positive are removed from C, no new pendant vertices are created, thus
in C all pendant vertices are positive. No positive vertex has been removed and each
support vertex is adjacent to its positive neighbor in H(G), so support vertices of C ′

are adjacent to their positive neighbor in C ′. No support vertex has been removed and
each negative vertex of Type (N3) is adjacent to its support neighbors of Type (S3) in
H(G), so negative vertices of Type (N3) of C ′ are adjacent to their two neighbors in
C ′. By Claim 13 applied to C ′, we have p(C ′) ≥

⌈
n(C′)

2

⌉
. So p(C) = p(C ′) ≥

⌈
n(C′)

2

⌉
=
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⌈
n(C)

2

⌉
and we are done.

We now use the discharging rules to prove the following:

Lemma 4.42. mad(G) ≥ 3.

Proof. We attribute to each vertex a weight equal to its degree, and apply discharging
rules R1, R2, R3, R4 and Rg. The common pot is empty at the beginning and, by
Lemma 4.41, it has non-negative value after applying Rg. We show that all the vertices
have a weight of at least 3 at the end.

Let u be a vertex of G. By Lemma 4.34, graph G does not contain Configurations
(C1) to (C11). According to Configuration (C1), we have d(u) ≥ 2. We now consider
different cases corresponding to the value of d(u).

1. d(u) = 2.

So u has an initial weight of 2 and gives nothing. We show that it receives at least
1, so it has a final weight of at least 3.

a) Assume u is adjacent to a vertex u2 of degree 2.
Then u is a negative vertex of Type (N1) and receives 1

5
from the common

pot by Rg. According to Configuration (C2), vertex u is adjacent to a vertex
v with d(v) = k. Since k ≥ 17, according to R4, vertex v gives 4

5
to u.

b) Assume both neighbors v1 and v2 of u are of degree at least 3.
Vertex u is not a negative vertex of Type (N1) since it has no neighbor of
degree 2.

i. u has two weak neighbors
Then u is a negative vertex of Type (N3). It receives 1

5
from the common

pot by Rg and 2
5

from each of its two neigbors by R1.1.
ii. u has one weak neighbor w and one non-weak neighbor v

A. 3 ≤ d(v) ≤ 7
Vertex u receives 3

5
from v by R1.2 and 2

5
from w by R1.1.

B. 8 ≤ d(v) ≤ 14
Vertex u receives 5

8
from v by R3 and 3

8
from w by R1.4.

C. 15 ≤ d(v)
Vertex w is weak and v has degree at least 15, so one can check that
u is not negative of Type (N1) or (N3). According to Configuration
(C3), it is not negative of Type (N2). So u is not negative and it re-
ceives 1

5
from w by R1.5 and 4

5
from v by R4.

iii. u has two non-weak neighbors v, v′

A. 3 ≤ d(v) ≤ 7 and 3 ≤ d(v′) ≤ 7
Vertex u receives 1

2
from each neighbor by R1.3.

B. 3 ≤ d(v) ≤ 7 and 8 ≤ d(v′) ≤ 14
Vertex u receives 5

8
from v′ by R3 and 3

8
from v by R1.4.
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C. 3 ≤ d(v) ≤ 7 and 15 ≤ d(v′)
If u is negative, it receives 1

5
from the common pot by Rg. If u is

non-negative, it receives 1
5

from v by R1.5. In both cases, it receives
4
5

from v′ by R4.
D. 8 ≤ d(v) and 8 ≤ d(v′)

Vertex u receives at least 5
8

from each neighbor by R3 or R4 .

2. d(u) = 3.
So u has an initial weight of 3. We show that it has a final weight of at least 3.

a) Assume u has three neighbors y1, y2 and y3 of degree 2.
Let zi, 1 ≤ i ≤ 3, be the neighbors of yi distinct from u. According to
Configuration (C3), d(z1) = d(z2) = d(z3) = k. So y1, y2 and y3 are negative
vertices of Type (N2). So no rule applies to u.

b) Assume u has exactly two neighbors y1 and y2 of degree 2.
Let zi, 1 ≤ i ≤ 2, be the neighbors of yi distinct from u. Let x be the third
neighbor of u, d(x) ≥ 3. According to Configuration (C3), we are in one of
the two following cases:

i. d(x) ≥ k − 2.
Vertex x gives 4

5
to u by R4 and u gives nothing to x.

A. Assume vertex u is weak.
Since u is weak, d(yi) ≤ 14, so vertex u gives at most 2

5
to each of

y1, y2 by R1.1 or R1.4.
B. Assume vertex u is not weak.

Then, w.l.o.g., d(z1) ≥ 15. So vertex u gives at most 1
5

to y1 by R1.5.
Vertex u gives at most 3

5
to y2 by R1.2, R1.3, R1.4 or R1.5.

ii. d(z1) = d(z2) = k.
A. d(x) ≤ 7.

According to Configuration (C4), vertex u gives nothing to x by R2.
Vertices y1 and y2 are negative (of Type (N2)) and u gives nothing to
y1, y2.

B. d(x) ≥ 8.
Vertex u gives 1

5
to y1 and y2 by R1.5. Vertex x gives at least 5

8
to u by

R3 or R4.

c) Assume u has exactly one neighbor y of degree 2
Let z be the neighbor of y distinct from u. Letw and x be the other neighbors
of u, where d(w) ≥ d(x) ≥ 3. We consider three cases according to the value
of d(w).

i. 15 ≤ d(w).
Then, vertex u gives at most 3

5
to y by R1.i, 1 ≤ i ≤ 5. Vertex u gives at

most 1
10

to x by R2. Vertex w gives 4
5

to u by R4.
ii. 8 ≤ d(w) ≤ 14.

According to Configuration (C4), vertex u gives nothing to x byR2. Ver-
tex u gives at most 3

5
to y by R1.i, 1 ≤ i ≤ 5. Vertex w gives 5

8
to u by

R3.
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iii. d(w) ≤ 7.
According to Configuration (C4), vertex u gives nothing to x and w by
R2. According to Configuration (C3), we have d(z) = k. Vertex u gives
1
5

to y by R1.5. Both w and x give 1
10

to u by R2.

d) Assume all the neighbors of u have degree at least 3 and at most 7.
According to Configuration (C4), vertex u gives nothing to its neighbors by
R2.

e) Assume u has no neighbor of degree 2 and at least a neighbor v of degree at least 8.
Vertex v gives at least 5

8
to u by R3 or R4. Vertex u gives at most 1

10
to each of

its other neighbors by R2.

3. d(u) = 4.
So u has an initial weight of 4. We show that it has a final weight of at least 3.

a) Assume u has at least three neighbors y1, y2 and y3 of degree 2
Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2) ≥
d(z3). Let x be the neighbor of u distinct from y1, y2 and y3. We consider
three cases depending on d(z2) and d(z3).

i. d(z2) ≤ 14.
According to Configuration (C7), we have d(x) ≥ k − 2. Vertex u gives
at most 3× 3

5
by R1.i, 1 ≤ i ≤ 5. Vertex x gives 4

5
to u by R4.

ii. d(z2) ≥ 15 and d(z3) ≤ 14.
According to Configuration (C6), we have d(x) ≥ 8. Vertex u gives at
most 1

5
to each of y1, y2 by R1.5. Vertex u gives at most 3

5
to y3 by R1.i.

iii. d(z3) ≥ 15.
Vertex u gives at most 1

5
to each of its neighbors by R1.5.

b) Assume u has exactly two neighbors y1 and y2 of degree 2
Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2).
Let w and x the neighbors of u distinct from y1, y2. We assume that d(w) ≥
d(x) ≥ 3. We consider two cases depending on d(z1).

i. d(z1) ≤ 14.
According to Configuration (C7), we have d(w) ≥ 9. Vertex u gives at
most 3

5
to each of y1, y2 by R1.i, and at most 1

10
to x by R2. Vertex x gives

at least 5
8

to u by R3 or R4.
ii. d(z1) ≥ 15.

Vertex u gives at most 1
5

to y1 by R1.6, at most 3
5

to y2 by R1.i, and at most
1
10

to each of w, x by R2.

c) Assume u has at most one neighbor of degree 2.
Vertex u gives at most 3× 1

10
by R2, and at most 3

5
by R1.i.

4. d(u) = 5.
So u has an initial weight of 5. We show that it has a final weight of at least 3.

a) Assume u has at least four neighbors y1, y2, y3 and y4 of degree 2
Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2) ≥
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d(z3) ≥ d(z4). Let x be the neighbor of u distinct from the yi’s. We consider
two cases depending on d(z4).

i. d(z4) ≤ 7.
According to Configuration (C8), we have d(x) ≥ 8. Vertex u gives at
most 3

5
to each of yi by R1.i. Vertex x gives at least 5

8
to u by R3 or R4.

ii. d(z4) ≥ 8.
Vertex u gives at most 5 × 3

8
on total its neighbors yi’s and x by R1.4 or

R1.5.

b) Assume u has at most three neighbors of degree 2.
Vertex u gives at most 3× 3

5
by R1.i, and at most 2× 1

10
by R2.

5. d(u) = 6.
So u has an initial weight of 6. We show that it has a final weight of at least 3.

a) Assume u has at least five neighbors y1, . . . , y5, of degree 2
Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ · · · ≥
d(z5). Let x be the neighbors of u distinct from yi’s. According to Configu-
ration (C9), we are in one of the following two cases.

i. d(z5) ≥ 8.
Vertex u gives at most 6× 3

8
on total to its neighbors by R1.4 or R1.5.

ii. d(x) ≥ 8.
Vertex u gives at most 5× 3

5
on total to the yi’s.

b) Assume u has at most four neighbors of degree 2.
Vertex u gives at most 4× 3

5
by R1.i, and at most 2× 1

10
by R2.

6. d(u) = 7.
So u has an initial weight of 7. We show that it has a final weight of at least 3.

a) Assume u has at least six neighbors of degree 2 adjacent to vertices of degree at most
3.
According to Configuration (C10), vertex u has a neighbor v of degree at
least 8. Vertex u gives at most 6× 3

5
by R1.i.

b) Assume u has at most five neighbors of degree 2 adjacent to vertices of degree at
most 3.
Vertex u gives at most 5× 3

5
by R1.i, and at most 2× 1

2
.

7. 8 ≤ d(u) ≤ 14.
Then Rule R3 applies to every neighbor of u, and d(u)− (d(u)× 5

8
) ≥ 3.

8. 15 ≤ d(u) < k.
Then Rule R4 applies to every neighbor of u, and d(u)− (d(u)× 4

5
) ≥ 3.

9. d(u) = k.
Then Rule R4 applies to every neighbor of u and Rg applies to u. We have k ≥ 17
so k − (k × 4

5
+ 2

5
) ≥ 3.
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Consequently, after application of the discharging rules, every vertex v of G has a
weight of at least 3, meaning that

∑
v∈G d(v) ≥

∑
v∈G 3 = 3|V |. Therefore, mad(G) ≥

3.

Finally, k is a constant integer greater than 17 and G is a minimal graph such that
∆(G) ≤ k and G admits no 2-distance (k + 2)-list-coloring. By Lemma 4.42, we have
mad(G) ≥ 3. So Theorem 4.19 is true.
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Chapter 5

Conclusion

In this thesis, we were interested in coloring results through discharging procedures.
We mainly worked on two problems: list edge coloring planar graphs, and list

square coloring sparse graphs. In the first problem, we proved most notably that pla-
nar graphs with maximum degree 8 are list edge 9-choosable, thus solving a 1990
question by Borodin. In the second problem, we most notably determined the exact
threshold on the maximum average degree of a graph that allows for its square to be
minimally choosable if the maximum degree is large enough, thus generalizing previ-
ous results on planar graphs. Along the way, we increased ever so slightly the fauna
around discharging methods, and now hope that they will grow and breed, thus be-
coming an ever more powerful species.

Many open questions were mentioned or raised throughout this work. We recall
some of our favorites here.

Conjecture 5.1. Every planar graph G with ∆(G) ≤ 11 is edge 11-choosable.

Conjecture 5.2. For every k ≥ 2, the kth power of every graphG is (Dk,∆(G)+1−k)-colorable
except for a finite set of graphs.

Question 5.3. Is it true that for every C ∈ N∗, and ε > 0, there exists some d such that every
graph G with mad(G) < 4C+2

C+1
− ε and ∆(G) ≥ d is square (∆(G) + C)-choosable?

We only mentioned above the tractable questions, i.e. those that seem within reach.
When removing that constraint, the conjecture which is arguably the most beautiful
within the scope of this thesis is the List Coloring Conjecture.

Conjecture 5.4 (List Coloring Conjecture). Every graph G satisfies χ′(G) = χ′`(G).

In this thesis, we sometimes sought extremal results, i.e. general results that do not
make any attempt at optimality, but merely try to probe for possible thresholds. Here,
given some coloring rules (square coloring, list edge coloring, AVD coloring...), an ex-
tremal result can be one of the kind "for which values ofm can you prove that the class
of graphs with maximum average degree less thanm, and large enough maximum de-
gree, is colorable with few colors?". In some situations, like for square coloring a graph
Gwith ∆(G)+1 colors, a small threshold appears, and the goal is then to determine its
exact value. In other situations (list edge coloring, AVD coloring), it appears that there
is no threshold. Even though the corresponding lower bound on the maximum degree
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may be quite provokingly large, its very existence already adds some perspective for
future research directions.

In the realm of discharging, there are many developments to look for. We hope
for more global discharging arguments backboned with an exotic sub-structure. We
hope for an efficient automatization of the discharging process, which would alleviate
the pains of both the authors and the readers in some technical analyses - as well
as immediately open a whole new world of possibilies. It might also be of interest
to look into the potential technique (a new discharging method recently introduced
by Kostochka and Yancey), or into future or existing applications of the discharging
method outside the coloring field.

Publications
This thesis was backboned with 7 publications [Bon13, BB14a, BLP14a, BLP14b,
BLP14c, BLP14d, BBH13], four of them published in international journals ([BB14a,
BLP14a, BLP14b, BLP14c]), one in minor revision for SIAM Journal of Discrete Math-
ematics ([Bon13]), one submitted ([BLP14d]), and one whose long version is in prepa-
ration but whose short version already appears in conference proceedings ([BBH13]).

However, during the preparation of this thesis, we worked on various other
projects, which we chose not to include in this manuscript. We shortly present be-
low the 7 resulting papers that are available online at this moment.

• About graph recoloring (given two k-colorings of a graph, can we slowly
transform one into the other by recoloring one vertex at a time and main-
taining a proper k-coloring?), we first proved with Johnson, Lignos, Patel and
Paulusma [BJL+14] that chordal graphs and similar classes could be recolored
in quadratic time as soon as the number of colors outnumbered the chromatic
number. With Bousquet [BB14b], we generalized this result in particular to
bounded treewidth graphs and distance-hereditary graphs. We also considered
together another reconfiguration problem, namely independent set reconfigura-
tion [BB14c], on the class of cographs. The corresponding proofs rely on good
decompositions of the considered graph classes.

• About a variant on AVD coloring where we consider sums instead of sets, we
proved with Przybyło [BP14] that planar graphs of sufficiently large maximum
degree were colorable with the minimum number of colors. The proof consists
in a discharging argument.

• About the Erdős-Hajnal Conjecture, we proved with Bousquet and
Thomassé [BBT14] that the class of graphs with no long induced cycle nor
long induced complement of a cycle is such that every graph inside contains a
large clique or a large stable set. The proof consists in a short argument using
external extraction theorems on the graph or its complement to obtain a large
stable set.

• About the structure of graphs with large chromatic number, we proved with
Charbit and Thomassé [BCT14] that graphs with no induced cycle of length 3k
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for any k have bounded chromatic number. The proof consists in a gradual de-
struction of a hypothetical graph with large chromatic number and no induced
cycle of length 0 mod 3.

• About FPT kernels, we proved with Kowalik [BK14] that planar Feedback Ver-
tex Set (how many vertices do we need to remove, for the graph to become a
forest?), when parameterized with the size of the solution (is removing k ver-
tices enough?), admits a 13k-kernel. A short version of this paper was accepted
to IPEC’2014. The proof consists in explicit reduction rules, whose efficiency is
proved through a region decomposition technique.
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[Erd59] P. Erdős, Graph theory and probability, Canad. J. Math 11, 34G38 (1959).
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Abstract

This thesis falls within graph theory, and deals more precisely with graph coloring
problems. In this thesis, we use and develop the discharging method, a counting
argument that makes strong advantage of the graph structure. This method is decisive
in the proof of the Four Color Theorem. We first give an illustrated overview of the
discharging tools that are used for this work: nice methods that we apply, and handy
tricks that we develop. In particular, we present the main ideas in a global discharging
argument. In the realm of list edge coloring, we most notably prove that the weak List
Coloring Conjecture is true for planar graphs of maximum degree 8 (i.e. that they
are edge 9-choosable), thus improving over a result of Borodin from 1990. We finally
present our results about square coloring, where the goal is to color the vertices in such
a way that two vertices that are adjacent or have a common neighbor receive different
colors. We look in particular into sufficient conditions on the density of a graph (i.e.
the maximum average degree of a subgraph) for its square to be colorable with few
colors.

Keywords Graphs, coloring, discharging method, planar, maximum average degree, list edge
coloring, square coloring

Résumé

Cette thèse s’inscrit dans le cadre de la théorie des graphes, et porte plus partic-
ulièrement sur des problèmes de coloration de graphes. Dans cette thèse, nous nous
intéressons à l’utilisation et au développement de la méthode de déchargement, un
argument de comptage qui exploite fortement la structure du graphe. Cette méth-
ode est décisive dans la preuve du Théorème des Quatre Couleurs. Nous donnons
d’abord une vue d’ensemble des outils de déchargement que nous utilisons dans ce
travail, entre les méthodes élégantes mises en application, et les astuces dévelop-
pées. Nous présentons en particulier l’idée essentielle d’une preuve par déchargement
global. Dans le cadre de la coloration d’arêtes par liste, nous résolvons la Conjecture
de Coloration par Liste faible dans le cas des graphes planaires de degré maximum
8, en prouvant qu’on peut colorier par liste les arêtes de ces derniers avec 9 couleurs
seulement. Ceci améliore un résultat de Borodin de 1990. Enfin, nous présentons nos
résultats dans le cadre de la coloration de carrés, où il s’agit de colorier les sommets
sans qu’il y ait deux sommets adjacents ou avec un voisin commun qui soient de la
même couleur. On s’intéresse en particulier à des conditions suffisantes sur la den-
sité du graphe (c-à-d le degré moyen maximum d’un sous-graphe) pour qu’on puisse
colorier son carré avec peu de couleurs.

Mots-clefs Graphes, coloration, méthode de déchargement, planaire, degré moyen maximum,
coloration d’arêtes par liste, coloration du carré
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