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Abstract

The work presented in this thesis deals with the passive control of dynamics systems
subjected to harmonic and transient excitations using a Nonlinear Energy Sink (NES).
Several research aspects have been developed: design theory and experimental study of a
novel NES, efficient Targeted Energy Transfer (TET) of bistable NES and design criteria
for optimally tuned Vibro-Impact (VI) NES.

Firstly, a design criterion intended to provide optimal nonlinear stiffness is proposed.
Then a novel design of NES system yielding cubic nonlinearity with conical springs or
variable pitch springs and negative stiffness mechanism is developed.

Secondly, the experimental procedures for static and dynamic test are presented and
applied to validate the concept of NES system. Then a sensitivity analysis is performed
with respect to the pre-compressed length of springs.

Thirdly, the optimal design of the above device with negative stiffness (termed as
bistable NES) is studied. This type of NES is proved to work robustly for different types
of excitation, and experimental study of semi-active control are explored.

Finally, design criteria for optimally tuned VI NES are studied. Detailed analytical
calculations of clearance to control the vibration under different excitations are proposed.
A good correspondence between theoretical and experimental results is observed.

Keywords: Nonlinear energy sink, Targeted energy transfer, Cubic nonlinearity,
Vibro-impact, Conical spring, Variable pitch spring, Negative stiffness mechanism
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Résumé

Les travaux présentés dans cette thèse traitent du contrôle de systèmes dynamiques soumis
à des excitations harmoniques et transitoires en utilisant des absorbeurs de type Nonlinear
Energy Sink (NES). Plusieurs aspects ont été développés : la conception et la réalisation
d’un nouveau design pour le NES cubique, l’étude de la location et du transfert irréversible
d’énergie sur un NES bistable et le développement d’un critère de conception pour un NES
à Vibro-Impact (VI).

Dans un premier temps, un critère de conception est proposé pour le NES à raideur
cubique. Le design proposé est basé sur des ressorts coniques ou des ressorts à pas variable.
Un mécanisme à raideur négative est aussi introduit pour supprimer la partie linéaire et
avoir une raideur cubique pure.

Dans un deuxième temps, le concept du NES est validé expérimentalement par des
essais statiques et des essais dynamiques. Une analyse de sensibilité est aussi menée sur
la longueur des ressorts précontraints, elle dénote parfois un état bistable de l’oscillateur.

Ensuite, le NES bistable ainsi obtenu est étudié plus en détail. Ce type d’absorbeur
s’avère être très robuste pour différents types d’excitation. Des études expérimentales
sont aussi menées afin d’explorer le comportement dynamique.

Enfin, un critère de conception est proposé pour le NES à Vibro-Impact. Des calculs
analytiques détaillés sont proposés pour contrôler les vibrations sous différentes excita-
tions. L’étude expérimentale montre une bonne cohérence avec les résultats théoriques.

Keywords: Dynamique non linéaire, Nonlinear Energy Sink NES, Raideur cubique,
Vibro-impact, Ressort, Raideur négative
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General Introduction

With the faster, lighter and more sophisticated mechanical products designed nowadays,
vibration mitigation devices are required to be more rigorous than ever before. To ensure
the performance of the designed system, different types of vibration control methods
(e.g. smart structure, passive and active vibration absorber) have been exploited in
the recent decades. Among them, the Tuned Mass Damper (TMD), a linear absorber
with the passive control method, has been widely applied. When attached to a primary
system, this absorber can be tuned to suppress the dynamic vibration of the structure
and its amplitude at resonance condition. However, the combined system has two degrees
of freedom, which means that there are two natural frequencies corresponding to two
resonance peaks, making this absorber effective over only a narrow band of excitation
frequencies.

To overcome this limitation, an innovative nonlinear absorber named Nonlinear En-
ergy Sink (NES) has been proposed recently. This type of absorber is characterized by a
secondary mass strongly coupled via a nonlinear stiffness to the primary system that needs
to be protected. Because of the strong (non-linearizable) nonlinearity, irreversible Tar-
geted Energy Transfer (TET) from the main structure to the secondary mass is achieved,
enabling the NES to be effective in a broad band of frequencies. Mastering the nonlin-
earity is a key element for obtaining the optimum performance of a NES. Depending on
the type of nonlinearity, a NES can be classified as a cubic NES, a vibro-impact NES, a
piece-wise NES or a rotational NES. As far as the cubic NES is concerned, it has been
shown that this configuration is most effective at moderate–energy regimes. However,
this NES is sensitive to the excitation amplitude, and in practice, it is difficult to obtain
cubic nonlinearity without a linear part. Implementing a cubic nonlinearity element and
using some adaptive control methods (e.g. semi-active control) are still important issues
if the applications of NES are to be broadened.

As for Vibro-Impact (VI) NES, it is also worth to explore the semi-active control
method. This absorber is referred as a ball which is attached to a main structure and can
freely move inside its clearance. With consecutive impacts, the excessive energy can be
fast transferred and dissipated. In the context of TET, it is also found that the activation
of a VI NES is limited to a range of excitation amplitude of primary system. To increase
the range of effectiveness of vibration control, adopting multiples VI NESs with different
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clearances is an alternative way, yet the detailed calculation to choose the clearance is still
not clear. Thus, to obtain the optimal performance for a VI NES or multiple VI NESs and
lay the foundation for semi-active control, analytical calculation for the clearance needs
to be further studied.

From the above analysis, the following four questions are raised for the study of this
thesis:

• Under a given primary system specification, how to calculate the optimally nonlinear
stiffness for NES system and design this system with strongly cubic nonlinearity
without any linear part?

• Since high efficiency of a NES system is achieved only in relatively narrow ranges
of the external forcing amplitudes, is it possible to tune the designed NES work
robustly over a range of excitation?

• Bistable NES seems perform better than cubic NES, whether it is possible to es-
tablish an optimal design criterion for this NES and improve its robustness by
semi-active control method?

• Semi-active control may also be applied for VI NES, and its clearance is a key factor
to influence the TET efficiency, whether possible and how to obtain the optimal
clearance by analytical calculation?

As response to the above questions, the manuscript of this thesis is composed of five
chapters.

In the first chapter, a general background about the development of NES system
is presented. Firstly, the vibration control methods are introduced. Then, linear and
nonlinear vibration absorber are presented and compared. Thirdly, the determination
of nonlinear force characteristics is investigated. Fourthly, analysis tools of nonlinear
dynamics are introduced. Finally, theoretical development of NES system is presented
and examined from the view point of experiments and applications.

In the second chapter, a design criterion intended to provide the optimal nonlinear
stiffness of NES is firstly proposed. Then a novel design of NES system yielding cubic
nonlinearity without a linear part is developed. Key features of the system include: (i)
specifically sizing two nonlinear springs to provide the force polynomial components with
only linear and cubic terms; (ii) pre-compressing the two springs at the transition point to
produce smooth nonlinear force characteristics; (iii) adding a negative stiffness mechanism
to counterbalance the linear term. Finally, a small-sized NES system is developed.

The third chapter focuses on experimental studies, so as to validate the concept of
NES. Firstly, identification of the NES system is performed, including static tests and
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calculation of effective mass. Then dynamic experiments of the whole system embedded
on an electrodynamic shaker are studied. The results show that this type of NES can not
only output the expected nonlinear characteristics, but can also be tuned to work robustly
over a range of excitation. Finally, a sensitivity analysis is performed with respect to the
pre-compressed length of springs.

In the fourth chapter, efficient TET of bistable NES is studied. Firstly, an analytically
obtained SIM is used to explain the different response regimes. Secondly, asymptotic
analysis and Melnikov analysis are used to obtain the thresholds of different response
regimes at different energy levels, respectively. Thirdly, dynamical efficiencies of different
response regimes are compared, and design criterion for optimal response is proposed.
Finally, experimental study of semi-active control for tuning this NEE work robustly at
different types of excitation, is explored.

The fifth chapter is devoted to propose the design criteria for optimally tuned VI NES.
Firstly, dynamic modelling and bifurcation analysis around the SIM are studied. Secondly,
detailed analytical calculations of clearance to control the vibration under periodic and
transient excitation are proposed, respectively. Fourthly, the procedure extended in case
of multiple VI NESs in parallel is studied. Finally, experiments involving the primary
system with single VI NES and multiple VI NESs are performed, and the results confirm
the design criteria and prove the feasibility of semi-active control.

Finally, a conclusion is addressed. Then, future researches based on the work of this
thesis are presented.
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CHAPTER 1 Literature Review

The first chapter is dedicated to the presentation of a general background about
the development of NES system, and the framework of this thesis. Firstly, the
vibration control methods, such as passive, semi-active and active method, are
introduced. Then, linear and nonlinear vibration absorber (i.e., Tuned Mass
Damper and Nonlinear Energy Sink) are presented and compared. Thirdly, the
determination of nonlinear force characteristics is investigated, including non-
linear spring and variable stiffness mechanism. Fourthly, analysis tools of non-
linear dynamics are introduced. Fifthly, theoretical development of NES with
smooth nonlinearity and vibro-impact is presented to understand the difficulties
and unresolved issues. Finally, objective of this thesis is proposed.
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1.1 Vibration control method

1.1 Vibration control method

Mitigation of unwanted vibration has been an important issue in many fields of engineer-
ing. For civil structures, vibrating machinery, acoustical spaces or any other system that
experiences vibration (or resonance), energy needs to be fast absorbed and dissipated by a
vibration mitigation device, so as to avoid catastrophic failures. Different types of vibra-
tion control methods have been exploited in the recent decades [Soong and Costantinou,
2014 ; Fuller et al., 1996 ; Fisco and Adeli, 2011]. Among them, three main families of
control methods can be categorized as: passive control, semi-active active control and
active control (see Fig. 1.1). Detailed explanation is introduced as follows.

1m

1k 1c

2m

2k 2cef

1m

1k 1c

2m

2k 2cef

1m

1k 1c

afef

Actuator

Controller

(a) (b) (c)

Figure 1.1: Schematic of three vibration control methods: (a) passive control; (b) semi-
active control; (c) active control. Where fe is the force of excitation, and fa is the force
of actuator.

1.1.1 Passive control

Passive control involves the use of reactive or resistive devices that either load the trans-
mission path of the disturbing vibration or absorb vibration energy [Franchek et al.,
1996 ; Mead, 1999]. The traditional passive devices include vibration damper, shock ab-
sorbers and base isolation. Fig. 1.1(a) shows a simple form of passive vibration absorber,
where m1 is a mass emulating the primary structure, k1 is its mounting spring and c1 is
its viscous damping. The second mass m2 and the coupling spring k2 and damping c2

constitute the absorber system. The new system consisting of the primary structure and
absorber has two degrees of freedom and thus it has two natural frequency. If the natural
frequency of the absorber is tuned to the frequency of the external forcing, the steady
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state vibration amplitude of the main device can be controlled at a minimum value. In
order to achieve the small motion of the primary system, the energy delivered to the sys-
tem by the disturbing input must be absorbed by the absorber’s mass and stiffness. Thus
the resulting motion of absorber will be large [Mead, 1999]. From a control perspective,
these absorber acts like a controller that has a internal model of the disturbance, which
therefore cancels the effect of the disturbance. Owing to its economical cost and con-
venient maintenance, these kinds of absorbers (e.g. tuned mass damper) are commonly
used in vibration mitigation of building and related structure.

1.1.2 Semi-active control

The advantage of passive control device is that it offers protection for a structure without
the need to dramatically increase the size or complexity of the underlying structural
system. However, this device is only effective in a particular range of frequency. Outside
this frequency bandwidth, it can be ineffective and possibly make the structure’s response
worse. For example, the natural frequency of buildings can change with time. This is due
to changes in building use/occupancy that result in a variation of live load distribution
and in changes to non-structural elements [Alexander and Schilder, 2009]. To overcome
this problem, semi-active control is an alternative way. By adjusting stiffness and/or
damping properties in real-time (see Fig. 1.1(b)), correct tuning can be achieved, so as to
obtain an optimal dynamic performance [Dyke et al., 1996a]. Various semi-active devices
have been developed, such as variable orifice dampers [Kobori et al., 1993 ; Sack et al.,
1994], controllable friction braces [Dowdell and Cherry, 1994 ; Xu et al., 2001], controllable
friction isolators [Feng and Shinozuka, 1990 ; Feng et al., 1993], variable stiffness devices
[Kobori et al., 1993 ; Liu et al., 2008], and electrorheological (ER) dampers [Kamath
et al., 1996 ; Choi and Kim, 2000]. Another new device of magnetorheological (MR)
dampers is recently proposed, which use MR fluids to provide controllable dampers [Dyke
et al., 1998 ; Jansen and Dyke, 2000]. Compared with active and passive control systems,
semi-active control devices can offer highly reliable operation at a modest cost and do
not require hither-power supply, which are quite promising for the civil engineering and
vehicle suspension systems [Dyke et al., 1996b ; Yao et al., 2002].

1.1.3 Active control

Active vibration control is the active application of force in an equal and opposite fash-
ion to the forces imposed by external vibration. It achieves dynamic performance by
adding degrees of freedom to the system and controlling actuator forces depending on
feedback and feedforward real-time information of the system, which obtained from sen-
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sor [Preumont, 2011]. The vibrating mechanical system is presented in Fig. 1.1(c), which
consists of an actuator and a controller coupled to the primary system. Active actuators
can be hydraulic, pneumatic and other styles. With this application, a precision industrial
process can be maintained on a platform essentially vibration-free. Like the passive con-
trol method, it can loads the transmission path but achieves this loading through the use
of force actuators requiring external energy. Thus, the use of added large power or energy
can be distinguished for passive control and active control [Vasques and Rodrigues, 2006].
Active control of structure is also a multi-disciplinary field involving basic disciplines of
structural dynamics, fluid-structure coupling, acoustics, automatic control, and material
research, since it is increasing attempted to include the active control sensor and actuator
functions in the material. This results in intelligent structures. However, active control
systems require high-performance digital processors and bulky power amplifiers to drive
actuators, which are not suitable for many practical applications.

1.2 Linear and nonlinear vibration absorber

Depending on the force characteristics, the vibration absorber can be classified as linear
and nonlinear absorber. Among them, there exists two representative examples, as shown
in the following part.

1.2.1 Tuned mass damper

Tuned Mass Dampers (TMD) are passive damping devices that consist of a mass which
is connected to the primary system by a spring and a damper [Weber and Maślanka, 2012].
The classical design of a TMD is described by Den Hartog [Hartog, 1956] for minimum
displacement response of the target mode of the main structure. Due to simplicity of
TMD, these passive damping devices have been employed in huge variety of structures in
field of civil and mechanical engineering [Matta, 2011 ; QIN et al., 2009]. As the primary
system vibrates at the target resonance frequency to which the TMD was designed, the
efficiency of vibration reduction can be optimal. However, the primary structure may also
vibrate at other frequencies [Weber, 2014], due to:

(1) Forced vibrations: the disturbing force excites the primary structure at a frequency
that differs from the target resonance frequency;

(2) Other resonance frequencies: another resonance frequency of the primary structure
is excited than the resonance frequency that was used for the design of the TMD;

(3) Time-varying target resonance frequency due to environmental impacts: the res-
onance frequency of the target mode differs from the resonance frequency that was used
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for the design of the TMD due to temperature effects and/or life loads on the structure.
In all these cases de-tuning between the TMD properties and the modal parameters of

the primary structure is present that ends up in deteriorated vibration reduction efficiency
[Hazra et al., 2010 ; Occhiuzzi et al., 2008 ; Casado et al., 2007]. For this limitation,
a vast variety of controllable tuned mass damper has been developed, such as active
control [Chang and Soong, 1980] or semi-active control [Hrovat et al., 1983 ; Pinkaew
and Fujino, 2001] of TMD, and multiple TMDs [Yamaguchi and Harnpornchai, 1993 ; Li,
2000].

1.2.2 Nonlinear energy sink

To overcome the drawback of TMD, an innovative nonlinear absorber named Nonlinear
Energy Sink (NES) has been proposed recently [Vakakis and Gendelman, 2001]. This type
of absorber is characterized by a secondary mass strongly coupled via a nonlinear stiffness
to the primary system that needs to be protected. Because of the strong (non-linearizable)
nonlinearity, irreversible Targeted Energy Transfer (TET) from the main structure to the
secondary mass is achieved, enabling the NES to tune itself to the resonance frequency of
different linear systems [Lee et al., 2008].

Figure 1.2: Comparison of Frequency Response Function (FRF) between a TMD and a
NES [Gourdon et al., 2007]

Fig. 1.2 shows the comparison of Frequency Response Function (FRF) between a TMD
and a NES. As can be seen, the dotted line is the response of linear oscillator without
coupling any absorber. After attaching TMD, the large resonance peak is vanished, but
it still has two small resonance peaks, making this absorber only effective in a narrow
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band of natural frequency. By changing the absorber to NES, the resonance peak is
disappeared, and it can be found that the NES can be effective over a much broader
range of frequency than the TMD and does not suffer from the problem of amplification
just outside the target bandwidth.

Mastering the nonlinearity is a key element for obtaining the optimum performance
of a NES. Depending on the type of nonlinearity, a NES can be classified as a cubic
NES [Gourdon et al., 2007 ; Gourc et al., 2014], a vibro-impact (VI) NES [Gourc et al.,
2015a], a piecewise NES [Lamarque et al., 2011] or a rotational NES [Sigalov et al., 2012].
The detailed schematic for these types of NES is presented in Fig. 1.3.

Figure 1.3: Schematic of representation of different types of NES.

As far as the cubic NES is concerned, it has been shown that this configuration is
most effective at moderate–energy regimes [Vakakis et al., 2008]. This demonstration will
be presented in our study. However, in practice, it is difficult to obtain cubic nonlinearity
without a linear part. In our recent approaches, the essential cubic nonlinearity was mostly
achieved by adopting the construction of two linear springs with no pretension. Due to
self-geometric nonlinearity, the springs stretch in tension, thus creating the cubic force
[Gourdon et al., 2007 ; Gourc et al., 2014]. However, this classical type of device cannot
effectively profit from spring compression and extension, and the result is a large vertical
structure attached to the main system. Addition of a relatively weak nonlinear stiffness
existing at the beginning extension, leads to the whole cubic term being approximated to
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a linear term. Therefore, implementing a cubic nonlinearity element in practice is still an
important issue if the applications of NES are to be broadened.

1.3 Determination of nonlinear force characteristics

Nowadays, physical determination of the nonlinear force-displacement characteristics can
be performed by two common methods. One is direct using nonlinear springs, the other
method is to design a mechanism with variable stiffness. To understand the underlying
mechanism of their force characteristics, the linear springs are firstly introduced.

1.3.1 Linear spring

A spring is a system whose function is to become deformed under the action of a force or a
torque and then to restore the energy with the resumption of its initial form. A common
reference book related to spring design was written several decades ago by [Wahl, 1944], in
which the most common springs are cylindrical compression springs with constant pitch
and cylindrical wire and closed and ground ends. The force characteristics of a linear
spring is presented in Fig. 1.4, and detailed nomenclatures can be referred from [Paredes,
2013b]. Here, the design of a new spring involves the following considerations:

Figure 1.4: Force characteristics of a linear spring

• Space into which the spring must fit and operate.
• Values of working forces and deflections.
• Accuracy and reliability needed.
• Tolerances and permissible variations in specifications.
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• Environmental conditions such as temperature, presence of a corrosive atmosphere.
• Cost and qualities needed.

The designers use these parameters to select a material and specify suitable values
for the wire size, the number of coils, the coil diameter and the free length, type of ends
and the spring rate needed to satisfy working force deflection requirements [Gopinath
and Mayuram, 2006 ; Bentley et al., 2015]. The primary design constraints are that the
wire size should be commercially available for the objective stiffness and that the stress
at the solid length be no longer greater than the torsional yield strength [Trabelsi et al.,
2015]. Further functioning of the spring should be stable. To explain this, several design
procedures for helical cylindrical spring are introduced as follows.

1.3.1.1 Stiffness of helical spring

A small spring segment with length dl is presented in Fig. 1.5. As the spring is acted
upon by a force F , the spring segment is consequently subjected by torsion with a torque
T = F × D

2 . Where D is the mean diameter of spring.

        
dl 

d 

ds 

D/2 

Figure 1.5: Schematic of a small spring segment with length dl. It is acted upon by an
axial force F .

Then a small rotational angle dθ is produced, which is given by:

dθ = T × dl
ḠIp

=
FD

2 × dl
Ḡ× πd4

32
= 16FDdl

Ḡπd4
(1.1)

Where
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Ip = the polar moment of inertia of the spring wile

= πd4

32 , d = the diameter of spring wire

Ḡ = torsion modulus for the material of spring wire

(1.2)

The axial deflection of spring segment is calculated by:

ds = dθ × D

2 (1.3)

The entire active length of the spring wire is

l = Length of one coil× No. of active coils = πD × na
na = the number of active coils

(1.4)

Substituting Eq. (1.1) to Eq. (1.3), and integrating Eq. (1.3) for the entire length of
the spring wire, the total deflection of spring can be obtained.

s =
∫ naπD

0

D

2 ×
16FD
Ḡπd4

dl = F × 8naD3

Ḡd4
(1.5)

Thus the stiffness of helical spring is expressed as:

k = F

s
= Ḡd4

8naD3 (1.6)

1.3.1.2 Stresses in the helical spring wire

The cut sections of the spring, subjected to the compressive load is presented in Fig. 1.6.
The broken arrows show the shear stresses (τT ) arising due to the torsion T and solid
arrows show the shear stresses (τF ) due to the force F .

Tτ
Fτ

Figure 1.6: The cut sections of the spring. Where the broken arrows show the shear
stresses (τT ), solid arrows show the shear stresses (τF ).

It is observed that for both tensile load as well as compressive load on the spring,
maximum shear stress (τF + τT ) always occurs at the inner side of the spring. Hence,
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failure of the compression spring, in the form of crake, is always initiated from the inner
radius of the spring.

The shear stress in the spring wire due to torsion (T )is

τT = T × r
Ip

=
FD

2 ×
d
2

πd4

32
= 8FD

πd3 (1.7)

Average shear stress in the spring wire due to force F is

τF = F
πd2

4
= 4F
πd2 (1.8)

Therefore, maximum shear stress the spring wire is

τmax = τT + τF = 8FD
πd3 + 4F

πd2 = 8FD
πd3 (1 + 1

2C ) (1.9)

Where C = D
d
is called the spring index.

1.3.1.3 Stability of the spring (buckling)

In case of compression springs, it is always necessary to check its protection against
side deflection (buckling) [Trabelsi, 2014]. The check is performed by comparison of the
maximum working deformation of the spring with the permitted deformation. The length
below which the phenomenon appears is called critical buckling length LK .

A compression spring must be dimensioned so that it does not buckle laterally during
its use. By using the spring with lengths higher than LK , there is no problem of buckling.
The length below which the phenomenon appears is called critical buckling length LK .
A compression spring must be dimensioned so that it does not buckle laterally during
its use. The critical length of buckling LK depends on the spring geometry (L0/D) and
of the type of supports of the spring. LK is thus independent of the theoretically ac-
ceptable maximum stress in the spring body [Paredes, 2000]. European standards (NF
EN13906-1) count 5 support cases (see Fig. 1.7). Each one of them is associated with
a different value of the sitting factor ν. Here, types of bearing from left to right side show:

• 1 Fixed - free ends
• 2 Pinned - pinned ends
• 3 Clamped - clamped ends with lateral restraint
• 4 Clamped - pinned ends
• 5 Clamped - clamped ends without lateral restraint

Critical length LK can be given starting from the abacus of Fig. 1.8 or starting from
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Figure 1.7: Types of bearing with respective bearing coefficients for axially loaded com-
pression springs.

the following formulation (European standards):

Figure 1.8: Theoretical buckling limits of helical compression springs.

If µL0/D < π

√
2µ+ 1
µ+ 2 , then LK = 0 (no risk of buckling)

Else LK = L0

1− µ+ 1
2µ+ 1

1−
√

1− 2µ+ 1
µ+ 2 ( πD

νL0
)2


with µ = E

2Ḡ
− 1 (Poisson’s ratio)

(1.10)
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From above equation, it can be observed that the value of the permitted deformation
is determined empirically for the given slenderness ratio of the spring L0/D and the type
of seating of the spring. Generally, the risk of possible side deflection increases with an
increasing value of the slenderness ratio and increasing value of the working compression
of the spring [Hoff, 1954]. The manner of seating of the spring has a significant effect on
its possible side deflection. The springs for which it is not possible to ensure buckling
strength must be maintained in a boring or by an axis. But a friction then occurs and
reduce the fatigue resistance.

1.3.2 Nonlinear spring

A nonlinear spring has a defined nonlinear load-displacement function, which is also equiv-
alent to its strain energy absorption rate [Jutte and Kota, 2008]. As each nonlinear spring
application requires a unique load-displacement function, spring configurations must be
tailored for each application. The nonlinear behavior of a nonlinear spring occurs when
the number of active coils decreases or increases with varying compression. It can be
achieved by:

• 1 Varying the mean diameter
• 2 Varying the pitch
• 3 Varying the coil diameter

Among them, the third case is hard to realize by the current production process, thus
engineers usually choose the first two methods in practice. Besides, there also exits piece-
wise springs [Chicurel-Uziel, 2001], special sized beam segments [Wang et al., 2017] and
other type shapes [Touzé and Thomas, 2006], which can produce piecewise and nonlinear
stiffness, respectively. Various applications of nonlinear springs can be found in vibration
absorbers, robotic joints, bandpass filters, and crash-worthiness structures [Malher et al.,
2017].

One common example of such nonlinear springs is conical spring. During the com-
pression, the first biggest coil starts gradually to bottom, causing a gradually stiffening
of the spring. Conical springs are cone shaped compression springs designed to provide a
near constant spring rate and a solid height lower than a normal spring [Paredes and Ro-
driguez, 2009]. Fig. 1.9 shows the dynamical behavior of a conical spring with a constant
pitch, which shows a two-phase compression in relation to their load length characteris-
tics. The first phase is linear with a straight slope, as with a basic cylindrical spring, and
the second phase is nonlinear at the end of compression. Detailed analytical law to fully
describe the linear and nonlinear load length curve of this conical spring can be referred
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Figure 1.9: Deflection curve and successive coil arrangements according to compression
phases [Rodriguez et al., 2006].

from [Rodriguez, 2006].
According to the initial geometry, the coil arrangements of conical spring can be

classified as two types: nontelescoping and telescoping, as shown in Fig. 1.10. For the
second geometry, the spring can be able to fully telescope, inducing a solid length equal
to the wire diameter. It uses a very little space at maximum compression while storing
as much energy as cylindrical springs, which make it be useful to lower a primary system
(the center of mass is lowered) which improves its performance. Another advantage is
that it offers more lateral stability and less tendency to buckle than cylindrical helical
springs [Patil et al., 2014 ; Pati et al., 2015].

For a given conical shape and a given number of coils, the properties of the spring
can evolve significantly depending on the way the coils are distributed along the conical
profile. Recently, conical telescoping springs with nonconstant pitch was proposed, and
the accuracy of its theoretical formulas was verified by experimental tests [Paredes, 2013a].
Different kinds of engineering applications with conical springs can be found, such as
engine valves, railway and automotive suspension systems or as a buffer for an elevator
[Den boer, 2009].

Another common example of nonlinear springs is variable pitch spring. Unlike the
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� f�n� =
64P�r�n��3

Gd4 dn �6�

where r�n�= 1
2 �D1+ �D2−D1�n /na� is the local mean coil radius

described in Fig. 3.
Moreover, the elementary deflection at solid/ground corre-

sponds to the maximum geometrical elementary deflection de-
scribed in Table 1 and can be calculated as follows �whether the
spring telescopes or not�

�s =
La − LS

na
dn �7�

where

LS = �max�0,�nad�2 − �D2 − D1

2
�2	
1/2

�8�

5.3 Determination of “Transition Point” T and “Maxi-
mum Point” C. PT is the load for which the largest active coil
�D2� reaches its maximum elementary deflection �s. So at transi-
tion point T, this can be written

� f�na� = �s

Thus

64PT�D2/2�3

Gd4 =
La − LS

na

So

PT =
Gd4�La − LS�

8D2
3na

�9�

Once PT is known, length at transition is directly deduced from
Eq. �4�:

LT = L0 − PT/k �10�

On the conical spring load-length curve, the maximum point C
defines the ultimate compression state of the spring. PC is the load
for which the smallest active coil �D1� reaches its maximum el-
ementary deflection �s. So, analogically with the transition point
above, this can be written

Fig. 3 Distribution of active coils, at any step of the nonlinear phase

Table 1 Lengths La and LS, and associated phases of compression

1354 / Vol. 128, NOVEMBER 2006 Transactions of the ASME
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Figure 1.10: Distribution of active coils for nontelescoping (left) and telescoping (right)
conical spring, at any step of the nonlinear phase [Rodriguez et al., 2006].

regular compression springs that are designed to have a linear spring rate, variable pitch
spring can have multiple rates or, while the springs is compressing, they can have a
progressively increasing or decreasing spring rate, by varying the pitch, or the center
distance between the coils. By lessening the amount of active energy absorbing coils as
they become inactive and no longer absorb energy during compression, because some of
the coils close up faster than the others, the spring in turn becomes stiffer and the rate
increase [Stanleyspring, 2011]. As the springs offer flexibility and will change based on
the load balance, many race cars and motorcycles use variable pitch springs to allow for
better handling as well as shock absorbers [Pullbarspring, 2017 ; Simcoespring, 2010].

However, these kinds of nonlinear springs (conical and variable pitch spring) have
a linear phase for its force characteristics, and in its nonlinear phase, it also has the
component of linear term. Thus it is difficult to directly use the conical springs or variable
pitch springs to generate pure cubic nonlinearity for NES system.

1.3.3 Variable stiffness mechanism

To achieve the nonlinear force characteristics, a particular structure or mechanism whose
stiffness can be varied was recently proposed. According to [Van Ham et al., 2009],
variable-stiffness techniques can be classified as: (1) changing the elastic modulus of a
structure; (2) altering the geometry of an elastic mechanism. The first approach can be
realized by thermal or electromagnetic stimulation. This approach is scalable but limited
to specific materials such as shape memory alloys, magneto-rheological fluids, elastomers,
and piezoelectric materials [Wu and Lan, 2014]. Thus, the second approach is commonly
adopted for engineering applications.

The structural type of second approach is based on altering the flexural rigidity,
whereas the mechanical type is based on altering the moment arm length or force trans-
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mission angle. The common method is to combine a positive-stiffness element and a
negative-stiffness element to form variable stiffness. While the positive stiffness can be
readily achieved using a compression spring, the negative stiffness may be achieved us-
ing magnets [Liu and Liu, 2006 ; Xu et al., 2013] or spring mechanisms [Kovacic et al.,
2008 ; Huang et al., 2014]. Various types of negative-stiffness spring mechanisms can be
found in [Alabuzhev and Rivin, 1989].

kn knkp

m main motion

Figure 1.11: Variable stiffness mechanism with horizontal compression spring type

kp

m
knkn

main motion

Figure 1.12: Variable stiffness mechanism with oblique extension spring type

Among them, there exists three representative mechanisms: (1) horizontal-spring type;
(2) oblique-spring type; (3) buckled-beam type [Lan et al., 2014]. The first type adopts
two horizontal springs (see Fig. 1.11), which are connected to the load through sliders and
inclined links. This technique has been applied in designing vibration isolator to support
a vehicle seat [Le and Ahn, 2011]. The second type shown in Fig. 1.12 directly uses two
oblique springs connected to the load to obtain negative stiffness. This idea has been
adopted to design the isolators with quasi-zero stiffness [Carrella et al., 2007].

The third types takes advantage of the snap-through behavior of beams or structures,
so as to obtain the negative stiffness. For this mehod, Wu and Lan [Wu and Lan, 2014]
proposed a linear variable stiffness mechanism with preloaded curved beams. Sönmez
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and Tutum [Sönmez and Tutum, 2008] introduced a compliant bistable mechanism with
flexible beams. Chen and Lan [Chen and Lan, 2012] designed an adjustable constant
force mechanism for adaptive end effector operations. Stanton et al. [Stanton et al., 2010]
developed a piezoelectric cantilever with a permanent magnet for the energy harvesting
system.

Figure 1.13: Variable stiffness device of semi-active TMD [Nagarajaiah and Varadarajan,
2005].

Nowadays, utilizing the variable stiffness mechanism to realize the semi-active control
of vibration absorber has also been implemented. Fig. 1.13 shows a variable stiffness
device of semi-active TMD. It consists of four spring elements arranged in a plane rhom-
bus configuration, with pivot joints at the vertices [Nagarajaiah and Varadarajan, 2005].
A linear electromechanical actuator reconfigures the aspect ratio of the rhombus con-
figuration. Where the aspect ratio can be changed between the fully closed and open
configurations, so as to produce maximum and minimum stiffness, respectively.

As can be seen, the majority of previous work on variable stiffness focuses on techniques
of altering the geometry of elastic mechanisms. For these mechanisms, a key issue to be
satisfied for a NES is that the linear part of the force-displacement characteristics should
be very small, so as to ensure that the NES can adapt itself to the frequency of any
primary system.
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1.4 Analysis tools of nonlinear dynamics

To understand the nonlinear behavior of NES, several analysis tools of nonlinear dynamics
are presented here. These techniques will be further explored in this thesis, particularly
around the efficiency of Targeted Energy Transfer (TET), so as to guide the design of
NES system.

1.4.1 Perturbation methods

Perturbation methods are aimed at finding approximate analytic solutions to problems
whose exact analytic solutions can not be found. There are many perturbation techniques
to calculate periodic solutions of a nonlinear system, such as the methods of averaging,
of harmonic balance and of multiple-scales [Nayfeh and Mook, 2008]. In essence, they are
fundamentally equivalent to each other. Their application is restricted to the assumption
of weak non-linearity. In this way, the derived analytical solutions of the non-linear system
lie close to those of the corresponding linearized system. The method of averaging is the
procedure of replacing a vector field by its average (over time or an angular variable)
with the goal to obtain asymptotic approximations to the original system, so as to obtain
periodic solutions.

The harmonic balance method is frequently used for the dynamic analysis of nonlinear
systems as an efficient alternative to expensive time-marching techniques. This technique
assumes that the response of nonlinear system is periodic and approximates it by means of
a finite Fourier series. Compared to the other perturbation methods, it has the advantage
of capable application to strongly nonlinear system [Lee et al., 2008]. Recently, harmonic
balance method has also been applied to illustrate the frequency–energy dependence of
the Nolinear Normal Models (NNMs). Fig. 1.14 shows the Frequency Energy Plot (FEP)
of a linear system and a nonlinear system by harmonic balance method. An NNM motion
is represented by a point in the FEP, which is drawn at a frequency corresponding to
the minimal period of the periodic motion and at an energy equal to the conserved total
energy during the motion. A branch, represented by a solid line, is a family of NNM
motions possessing the same qualitative features (e.g. the in-phase NNM motions of a
2DOF system). The backbone of the plot is formed by two branched, which represent
in-phase (S11+) and out-of-phase (S11−) synchronous NNMs. The letter S refers to
symmetric periodic solutions for which the displacements and velocities of the system at
half period are equal but with an opposite sign to those at time t = 0. Unlike the linear
normal mode, the FEP of Fig. 1.14 (b) clearly shows that the nonlinear modal parameters
have a strong dependence on the total energy in the system [Kerschen et al., 2009].

The methods of multiple-scales (MMS) is realized by introducing fast-scale and slow-
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which, according to Eqs. (7) and (8), demonstrates the frequency–energy dependence of NNM motions.
An appropriate graphical depiction of the NNMs is key to their exploitation. The usual representation in the literature is

to plot the motion amplitude at a particular DOF as a function of frequency. Due to the frequency–energy dependence, we
believe that the representation of NNMs in a frequency– energy plot (FEP) is particularly convenient [33,40]. An NNM motion
is represented by a point in the FEP, which is drawn at a frequency corresponding to the minimal period of the periodic
motion and at an energy equal to the conserved total energy during the motion. A branch, represented by a solid line, is a
family of NNM motions possessing the same qualitative features (e.g., the in-phase NNM motions of a 2DOF system).
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(b)

Figure 1.14: Frequency energy plot of (a) linear system and (b) nonlinear system by
harmonic balance method [Kerschen et al., 2009].

scale variables for an independent variable, and subsequently treating these variables,
fast and slow, as if they are independent [Nayfeh, 2011]. In the solution process, the
resulting additional freedom is used to remove (unwanted) secular terms. The latter puts
constraints on the approximate solution, which are called solvability conditions. The
MMS technique is widely used together with the method of complexification [Manevitch,
2001] in the field of nonlinear dynamics.

Compared to the harmonic balance method, MMS can be applied to the study of
transient dynamic behavior and is suitable for understanding nonlinear TET phenomena.
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Besides, it can also be used in symbolic manipulation programs, which is essential for
application to complex nonlinear systems. Thus, in this thesis, MMS is the preferred
alternative to obtain the analytical solution for NES system.

1.4.2 Stability and bifurcation analysis

Based on the perturbation methods, the periodic solutions of the nonlinear system can
be obtained. To determine the existence of solutions like fixed points and periodic orbits
[Touzé et al., 2002], stability can be analyzed by the following three ways: (1) direct
numerical integration of equations of motion; (2) computing their Floquet multipliers; (3)
studying the topological structure of numerical Poincaré maps [Lee et al., 2008]. In order
to understand transitions that occur in the damped dynamics, or to enhance robustness
of instability suppression by means of passive TETs, bifurcation can then be studied.

A bifurcation occurs when a small smooth change made to the parameter values of a
system (e.g. control parameters or other induced parameters such as the total energy of
the system) causes a sudden ’qualitative’ or topological change in its behavior. Many kind
of bifurcations have been studied over the past decades, including saddle node bifurcation,
Hopf bifurcations, homoclinic bifurcations and so on [Kuznetsov, 2013]. These work will
be constructed in our thesis, so as to obtain the optimal response and guide the design of
NES system.

1.4.3 Time-frequency analysis

To understand the strongly nonlinear dynamics governing TET, it is essential to analysis
the variation of frequency with time. The main techniques of time-frequency analysis
include: (1) Wavelet Transforms (WT); (2) Empirical Mode Decomposition (EMD); (3)
Hilbert-Transform(HT) [Lee et al., 2008]. WT can be regarded as the ’dynamic’ extension
of the ’static’ Fourier Transform (FT), by means that instead of decomposing a time series
in the frequency domain using cosine and sine trigonometric functions, in the WT alter-
native families of orthogonal functions are employed which are localized in frequency and
time. Here, small time intervals are considered for high frequency components, whereas
the size of the interval is increased for lower frequency components thereby providing
better time and frequency resolutions than the corresponding fast FTs [Vakakis et al.,
2008].

EMD is a method for decomposing a signal. With this method, the complex data set
can be decomposed into a finite and often small number of components. These components
form a complete and nearly orthogonal basis for the original signal, which are described
as intrinsic mode functions (IMFs) [Huang et al., 1998]. After applying the EMD analysis

PhD Thesis-Donghai QIU - 23 -



1.5 Theoretical development of the NES

to the time series, the extracted IMFs are Hilbert-transformed in order to compute their
approximate transient amplitudes and phases. The technique combining EMD and HT is
also called Hilbert Huang Transform (HHT), in which the instantaneous frequency and
Hilbert spectrum can be obtained, making it practicable for analyzing the nonstationary
and nonlinear time series data [Huang, 2014].

By adopting the above methods, a multi-scale separation of the time series in terms of
the oscillating components can be analyzed. The nonlinear resonance interactions can be
identified, so as to observe the nonlinear energy exchanges (i.e. TET) between the NES
and the primary system.

1.5 Theoretical development of the NES

During the investigation of NES, the energy pumping phenomenon (i.e. TET) is initially
studied for the NES with cubic nonlinearity, and then it is generalized to other NES
types (with smooth or unsmooth nonlinearity) [Lamarque et al., 2017]. To understand
the concept of TET, difficulties and unresolved issues, theoretical development of the
NES system is presented. In these works, the topological structure of Slow Invariant
Manifold (SIM) is commonly used to predict the response of NES (see Fig. 1.15). Where
the vertical and horizontal axis represent the motion amplitude (translational or angular
displacement) of primary system and corresponding NES, respectively.

1.5.1 NES with smooth nonlinearity

Substantial theoretical experimental work has been achieved to verify the performance of
NES under transient and periodic excitation [Gourc et al., 2014 ; Li et al., 2017d ; Vau-
rigaud et al., 2011 ; Gendelman and Alloni, 2015 ; Gendelman et al., 2008 ; Lamarque
and Savadkoohi, 2015]. Fig. 1.15(a) is the SIM structure of NES with cubic nonlinear-
ity. The interaction between stable and unstable branch corresponds well to the strongly
modulated response (SMR), which exhibits more efficient performance than the other
steady-state response [Starosvetsky and Gendelman, 2008b]. However, the energy thresh-
old corresponding to SMR is normally narrow, making the NES sensitive to the excitation
amplitude and thus restricting its use in engineering applications.

Recent works seeking to improve the robustness of excitation have observed that the
bistable NES (with negative linear and cubic nonlinear coupling) shows significant ad-
vantages with respect to energy pumping efficiency [Johnson et al., 2013 ; Gourdon and
Lamarque, 2005 ; Savadkoohi et al., 2011 ; Harne et al., 2013 ; Mohammad A, 2014 ; Habib
and Romeo, 2017 ; Harne and Wang, 2013]. This NES, with negative stiffness and nonlin-
ear stiffness components, has nonzero displacement relative to the linear oscillator (LO)
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Figure 1.15: Different types of the topological structure of SIM: (a) cubic NES [Gourc
et al., 2014]; (b) piecewise NES [Lamarque et al., 2011]; (c) VI NES [Gourc et al., 2015a];
(d) rotational NES [Gendelman and Alloni, 2015].

away from the NES equilibrium positions [Mohammad A, 2014]. This leads to strong
suppression of the vibration amplitude of the LO in the first cycle of oscillation for a
wide range of initial input energies induced in the linear structure. The analytical and
numerical aspects of the transient dynamics of bistable NES are explored in [Manevitch
et al., 2014] and [Romeo et al., 2015b], respectively. With the Limiting Phase Trajecto-
ries (LPTs) and Poincare section, dynamic mechanisms depending on different types of
impulse input are proposed: for high energy levels, strongly modulated oscillation occurs
and the dynamics are governed by fundamental (1:1) and superharmonic (1:3) resonances;
for low energy levels, chaotic cross-well oscillations of the nonlinear attachment together
with subharmonic resonances lead to strong energy exchanges between the two oscillators.
In [Romeo et al., 2015a], Lyapunov characteristic exponents and Melnikov analysis are
adopted to identify the region where chaotic cross-well oscillations exist as low-intensity
impulse applied to the LO. The experimental aspect of a system consisting of a Bernouli-
Euler beam coupled to a continuous bistable NES is developed in [Fang et al., 2017] and
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shows that this NES can achieve efficient TET under a wide-range of impacts. In [Mattei
et al., 2016], a system of two coupled cantilever beams coupled to a bistable light attach-
ment is tested and proves that this NES has better efficiency in frequency than existing
passive devices.

1.5.2 Vibro-impact NES

Vibrating systems with clearance between the moving parts are frequently encountered in
engineering fields, such as linkages, gear trains, pinned connections and joints. Impacts
occur when the vibration amplitude of some parts are greater than the clearance, leading
to high energy being transferred and dissipated in a transient manner. This phenomenon
is attractive for vibration control, and a corresponding device termed as impact damper
is developed [Lieber and Jensen, 1945]. Over the past decades, impact damper and
its dynamics as a typical vibro-impact system have been extensively studied [Ibrahim,
2009 ; Babitsky, 2013 ; Afsharfard, 2016], and it has been demonstrated that in a range
of frequencies, impact damper could have a better efficiency than classical damper. With
this advantage, various applications of impact damper can be found in turbine blades,
machine tools and tall flexible structures [Dimentberg and Iourtchenko, 2004 ; Afsharfard
and Farshidianfar, 2013 ; Zhang and Angeles, 2005].

Recently, impact damper has been re-examined from the viewpoint of Targeted Energy
Transfer (TET) [Lee et al., 2008 ; Vakakis et al., 2008], and is refered as Vibro-Impact
(VI) Nonlinear Energy Sink (NES) [Nucera et al., 2007 ; Karayannis et al., 2008]. The
mechanism of TET is revealed from the analytical study of underlying Hamiltonian sys-
tem [Lee et al., 2009], and it is observed that some special orbits in frequency energy
plot are responsible for the irreversible energy transfer from a primary system to an at-
tached VI NES. Inspired by the study of TET, a method of multiple scales originally
used for NES with cubic nonlinearity is improved to explain the transient TET process
for vibrating system with a VI NES [Gendelman, 2012 ; Gendelman and Alloni, 2015]. A
Slow Invariant Manifold (SIM) describing all possible fixed points and possible variation
routes is obtained [Gourc et al., 2015b ; Pennisi and Stephan, 2017]. As a consequence,
transient response and unsteady response (e.g. chaotic strongly modulated response) are
well explained around the position of the fixed points [Gourc et al., 2015a ; Gendelman
and Alloni, 2016].

The bifurcation, route to chaos and dynamics of the response regimes are further
analyzed around SIM in [Li et al., 2017c], and it shows that the impulse strength is
related to TET during the transient resonance capture. In [Li et al., 2017d], efficiency
comparison of different response regimes around SIM is performed, and the response with
two symmetrical impacts per cycle is proved to be the most efficient. Based on this idea,
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a design procedure is proposed, and the essence behind it is similar to the case of NES
with cubic nonlinearity [Nguyen and Pernot, 2012]. For periodic excitation, the objective
is to tune the response at the boundary between two symmetrical impacts per cycle and
Strongly Modulated Response (SMR). For transient excitation, the target is to make the
free response start at the regime with two impacts per cycle and ensure that its duration
is as long as possible. In [Li et al., 2017a], this optimal mechanism is extented for a linear
system coupled with two VI NES in parallel, and the efficiency is demonstrated by the
experiments.

1.5.3 Experiments and applications

(a) (b)

Main motion

Main motion

Figure 1.16: Experimental setup for NES with cubic nonlinearity: (a) a single NES [Gourc
et al., 2014]; (b) two parallel NESs [Savadkoohi et al., 2012].

Targeted Energy Transfer mechanisms and the feasibility of NES in different exper-
iments have been analyzed in detail by [Gendelman, 2011 ; Ahmadabadi and Khadem,
2013 ; Luo et al., 2014 ; Luo et al., 2013 ; Wang et al., 2015 ; Lamarque and Savad-
koohi, 2014]. In these approaches, the essential cubic nonlinearity was mostly achieved
by adopting a construction of two linear springs with no pretension (e.g. a beam [Kani
et al., 2016], a piano wire [McFarland et al., 2005], a membrane [Mariani et al., 2011]
and helical springs [Gourc et al., 2014]). The classical experimental setup for NES with
cubic nonlinearity is presented in Fig. 1.16(a), and the second setup of two parallel NESs
(see Fig. 1.16(b)) is aimed to improve the robustness for different kinds of excitation.
The disadvantage of this type of device is that it cannot effectively profit from spring
compression and extension, and the result is a large vertical structure attached to the
main system. Addition of a relatively weak nonlinear stiffness existing at the beginning
extension, leads to the whole cubic term being approximated to a linear term. Therefore,
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implementing a cubic nonlinearity element in practice is still an important issue if the
applications of NES are to be broadened.

Various applications of NES with smooth nonlinearity have been developed to control
the system under resonance condition, or its instability and limit cycle. For example, cu-
bic NES (membrane type) in the domain of accoustic has been studied and its efficiency
has been demonstrated by the experiment [Bellet et al., 2010]. Continuous structures
attached to NES system have been studied, such as the supported beam [Georgiades
et al., 2007 ; Avramov and Gendelman, 2010], tension-compression bar [Georgiades et al.,
2007 ; Tsakirtzis et al., 2007] and plate [Georgiades and Vakakis, 2009]. The applica-
tions to the problem of seismic protection of frame structures is also effective [Nucera
et al., 2008], and other infrastructural systems such as towers, bridges, and so forth will
likely benefit from this technology. Another practical application of NES concerns passive
suppression of aero-elastic instabilities in rigid in-flow wings, which has experimentally
demonstrated in [Lee et al., 2007].

nonlinearity, but with a significant difference. In the case of NES with cubic stiffness, these cycles correspond to jumps
between the two stable branches of the SIM [20], while in this case they correspond to successive synchronization and
escapes of the synchronized regimes.

4.2.2. Limit of the passive control of chatter
When the value of σ is increased, the unstable fixed point located on the right branch of the SIM comes down along this

branch as seen in Fig. 6(a) for σ ¼ 4:6. If during the relaxation cycle, when the slow flow jump to the stable branch of the
SIM, the landing point is above the saddle point, the slow flow will be repelled to higher amplitude and the system is no
more controlled. The result of numerical integration, presented in Fig. 6(b), illustrates the theoretical prediction; after two
relaxation cycle, the slow flow jumps back to the stable branch of the SIM in the vicinity of the saddle point and the
amplitude of the oscillations growth. In addition, it can be observed on the numerical integration that when the amplitude
of the oscillations growth sufficiently, the oscillation becomes unsymmetric (around t¼400), which is in agreement with
the stability analysis of the SIM.

5. Experimental analysis

In order to validate experimentally the efficiency of a vibro-impact NES to passively controlling the chatter instability in
turning, an experimental setup has been built.

5.1. Experimental setup

The trials have been realized on a Cazeneuve lathe (CT210) and the full experimental setup is depicted in Fig. 7. The
machining operations have been carried out on a 40 mm diameter, XC38 steel bar hold in the mandrel and the tail-stock.
The cutting tool is a 250 mm long boring bar which has been softened in one direction close to the tool holder to favour the
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Fig. 7. Experimental setup. (a) Global view, (b) detailed view of the boring bar with the embedded vibro-impact NES.

E. Gourc et al. / Journal of Sound and Vibration 355 (2015) 392–406 401

Figure 1.17: Experimental setup for chatter control in turning: (a) global view; (b)
detailed view of the VI NES [Gourc et al., 2015b].

About the application of VI NES, the potential benefit of a VI NES to passively con-
trol chatter instability in a turning process has been studied in [Gourc et al., 2015b]. The
system is composed of a flexible lathe tool on which a NES is embedded, as shown in
Fig. 1.17. The results shows that with the addition of VI NES, there exists a significant
vibration mitigation of the tool (see Fig. 1.18). In [Li et al., 2017b], an activation charac-
teristic generalized from linear systems to nonlinear systems has been studied. It shows
that the activation characteristic is independent of frequency, so that the application of a
VI NES for a nonlinear system can be simplified to the optimal design of a linear system.
In [Viguié and Kerschen, 2009], this kind of design characteristic is explored for a non-
linear vibration absorber, but in a general way. The basic philosophy of this design can
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In order to check whether the activation level fit the theoretical prediction and to estimate the coefficient of restitution,
the vibro-impact NES alone has been embedded on an electrodynamic shaker. In effect, this configuration corresponds to an
harmonically forced vibro-impact oscillator as in Eq. (29). So, it is possible to identify experimentally the stable branch of the
SIM, which is very interesting for the sizing procedure. A base displacement at frequency 99.4 Hz, which correspond to the
chatter frequency, is imposed to the vibro-impact NES and the successive impacts of the free mass on the cover are
identified using accelerometers. Raw signals of two measurements are presented in Fig. 10. It is observed that in Fig. 10(a),
for a¼ 7:66� 10�5, that the vibro-impact NES exhibits two symmetric impacts per cycle, that is, the time between two
consecutive impacts is the same, while in Fig. 10(b), for a¼ 1:81� 10�4, there is still two impacts per cycle, but the time
between two consecutive impacts differ, indicating asymmetric response.

The theoretical and experimental SIM are depicted in Fig. 11. Where the green circles correspond to the experimental
measurements, the continuous pink line denotes the experimentally identified activation level and the dashed pink line
indicates the amplitude at which first asymmetric solution has been observed. The value of the coefficient of restitution of
impact has been estimated by fitting the experimental results with the theoretical expression of the SIM given in Eq. (36);
which gives R¼0.6. Effectively, using coefficient of restitution from the literature for a plane-ball, steel-steel contact which is
around 0.95 yields to erroneous results.

The experimentally identified activation level is slightly higher than the theoretical predictions, which is certainly due to
the simplified model of the behavior of the free mass of the vibro-impact NES which do not capture its complex dynamics.
The results are however in satisfactory agreement, and asymmetric solutions have also been observed, consistently with
theoretical predictions.

5.4. Passive control of chatter with a vibro-impact NES

In order to analyze experimentally the efficiency of the vibro-impact NES to mitigate chatter instability on turning
process, trials with the vibro-impact NES embedded on the lathe tool on the unstable zone have been carried out. Two trials
with and without vibro-impact NES are depicted in Fig. 12 for s¼ 1800 rpm and p¼ 0:1 mm (ψ ¼ 0:12 and Ω¼ 0:307).

It is observed that the presence of the vibro-impact NES changes drastically the behavior of the system. For the trial
without vibro-impact NES, a constant high amplitude was measured whereas for the trial with vibro-impact NES,
modulated response with moderate amplitude is observed. The measured modulated response is very similar to the analog
relaxation cycle described theoretically. The successive impacts of the ball of the vibro-impact NES were clearly audible,
however, the ambient noise due to machining operation did not allow us to measure the impact of the free-mass of the
vibro-impact NES with the accelerometer. This behavior is however very promising, since a reduction of almost 50 percent
on the vibration amplitude is observed.

6. Conclusions

This paper investigated the possibility of controlling the chatter instability, which may occur during machining
operations, using a NES. Due to practical reasons, a vibro-impact type NES was preferred to the classic NES with cubic
stiffness.

The coupled system has been analyzed using the method of multiple scales. At the first order of approximation, the
expression of the SIM has been obtained. The stability analysis of its different branches was also performed. At the next
order of approximation, the fixed points of the system are obtained at the intersection of the slow and super-slow invariant
manifolds.
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Fig. 12. Comparison of the behavior during unstable machining operation without and with vibro-impact NES for s¼ 1800 rpm and p¼ 0:1 mm (ψ ¼ 0:12
and Ω¼ 0:307).
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Figure 1.18: Comparison of the behavior during unstable machining operation without
and with VI NES [Gourc et al., 2015b].

be reflected by the response regime with two impacts per cycle of systems coupled with
VI NES. However, for both the linear and nonlinear system, the activation of VI NES is
limited to a range of excitation. This means that a fixed clearance will only be effective
in a displacement amplitude range of a primary system. To improve the robustness, using
multiple VI NES is an alternative way, and the feasibility is proved in the case of multiple
NES with cubic nonlinearity [Boroson et al., 2017 ; Vaurigaud et al., 2011]. In [Li et al.,
2017a], two VI NESs with a medium clearance and a small clearance are proposed to
be optimal for a given excitation, and experimental result demonstrates the efficiency.
However, the detailed analytical calculation for the optimal clearance of VI VINES is still
not clear, and the design criterion from a single VI NES to multiple VI NESs needs to be
further studied.

1.6 Objective and work of this thesis

From the literature review, it can be found that high Targeted Energy Transfer (TET)
efficiency of a Nonlinear Energy Sink (NES) is only achieved in a relatively narrow range
of external forcing amplitude. Thus, it is practicable to establish a design criterion to
provide the optimally tuned nonlinear stiffness for efficient TET. Besides, implementing
cubic nonlinearity elements in practice is still an important issue if the application of NES
is to be broadened. Whether it should be possible to combine the advantage of nonlin-
ear springs and variable stiffness mechanisms, so as to obtain strongly cubic nonlinearity
without any linear part for the NES system. For this, a generalized methodology for
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designing a novel NES with the proposed components will be studied. About the robust-
ness for a range of excitation, it has revealed that an appropriately designed bistable NES
can be more efficient than a cubic NES. However, the optimal design criterion of bistable
NES is not clear and needs to be further studied, and semi-active control method for this
type of NES can also be investigated. As for Vibro-Impact (VI) NES, it is also worth
to explore this semi-active control method: by adjusting the clearance, VI NES can be
tuned to work robustly with its best performance. With this in mind, design theory and
experimental study of a novel NES, efficient TET of bistable NES and design criteria for
optimally tuned VI NES will be studied in this thesis. The chapters of this thesis are
organized as follows:

In the second chapter, a design criterion intended to find optimal nonlinear stiffness
of a NES absorber under a given primary system specification is firstly proposed. Then a
novel design of NES system yielding cubic nonlinearity without a linear part is developed.
To this end, two kinds of nonlinear springs (i.e. variable pitch spring and conical spring)
are specially sized to provide the strong nonlinearity. To eliminate the linear stiffness,
the configuration of a negative stiffness mechanism is implemented. Finally, a small-sized
NES system is developed.

The third chapter focuses on experimental studies, so as to validate the concept of
NES. Firstly, identification of the NES system is performed, including static tests and
calculation of effective mass. Then dynamic experiments of the whole system embedded on
an electrodynamic shaker are studied. The comparison of frequency response function of
primary system with and without NES is explored, and the energy pumping phenomenon
is observed. Finally, a sensitivity analysis is performed with respect to the pre-compressed
length of springs.

In the fourth chapter, the efficiency of the above device with negative stiffness (termed
as bistable NES) is studied. Firstly, a slow invariant manifold (SIM)is obtained and is
applied to predict four typical response regimes. Through their efficiency comparison, it is
observed that the bistable NES can be efficient and robust in a broad-range of excitation
amplitude. With the Hilbert transform and wavelet transform, TET with transient or
permanent 1:1 resonance is found to be responsible for the effectiveness of such strongly
modulated response and 1:1 resonance. Finally, an optimal design criterion and semi-
active control method are proposed to guide the application of this type of NES.

The fifth chapter deals with the design criteria for optimally tuned VI NES. Firstly,
the existing analytical and numerical results are briefly introduced. Secondly, detailed
analytical calculations of clearance to control the vibration under periodic and transient
excitation are proposed, respectively. Thirdly, the procedure extended in case of multiple
VI NESs in parallel is studied. Finally, experiments involving the primary system with
single VI NES and multiple VI NESs are performed, The results show that the design
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criteria can not only predict the efficient TET at resonance frequency, but can also achieve
an optimal performance in a range of frequencies. Furthermore, it can be straightforward
for the application of multiple VI NESs and semi-active control.

Finally, a conclusion is addressed. Then, future researches based on the work of this
thesis are presented.
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CHAPTER 2 Tuned NES with
nonlinear spring: design
theory

This chapter is devoted to the study of a Nonlinear Energy Sink (NES) intended to
attenuate vibration induced in a harmonically forced linear oscillator (LO) and
working under the principle of Targeted Energy Transfer (TET). The purpose
motivated by practical considerations is to establish a design criterion that first
ensures that the NES absorber is activated and second provides the optimally
nonlinear stiffness for efficient TET under a given primary system specification.
Then a novel NES design yielding cubic nonlinearity without a linear part is
exploited. To this end, two kinds of springs (i.e. variable pitch spring and conical
spring) are specially sized to provide the nonlinearity. To eliminate the linear
stiffness, the concept of a negative stiffness mechanism is implemented by two
cylindrical compression springs. A small-sized NES system is finally developed.

Abstract

Contents
2.1 Design criterion for cubic NES . . . . . . . . . . . . . . . . . . 33
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2.1 Design criterion for cubic NES

To establish a design criterion of cubic NES, dynamic modeling and analytical treatment
are studied in this section. The first objective is to ensure that the NES absorber is
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activated under a given primary system specification, and the second is to provide the
optimally tuned nonlinear stiffness for efficient TET.

2.1.1 Dynamic modeling

The dynamic modeling presented here is based on references [Gendelman et al., 2008 ; Gourc
et al., 2014 ; Gourc, 2013]. The system of a harmonically excited linear oscillator (LO)
strongly coupled with a cubic NES is illustrated in Fig. 2.1. The objective here is to apply
the asymptotic method used in the above papers to obtain a possible design optimization
criterion, and thus find the best parameters of the NES. The equations of motion are as
follows:

1
m

2
m

NESLO

1
k

1
c

2
k

2
c

x yex

Figure 2.1: Schematic of a harmonically excited LO coupled with a NES

m1ẍ+ k1x1 + c1ẋ+ c2 (ẋ− ẏ) + k2 (x− y)3 = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2 (y − x)3 = 0
(2.1)

where x, m1, c1, k1 and y, m2, c2, k2 are the displacement, mass, damping and stiffness
of the LO and the cubic NES respectively. The imposed harmonic displacement xe is
expressed as: xe = G cos(ωt).

Substituting k1 = m1ω
2
0, t = τ/ω0 and ω = Ωω0 to equations (2.1):

ẍ+ x+ c1

m1ω0
ẋ+ c2

m1ω0
(ẋ− ẏ) + k2

m1ω2
0
(x− y)3 = Gcos(Ωτ)− c1Ω

m1ω0
Gsin(Ωτ)

m2

m1
ÿ + c2

m1ω0
(ẏ − ẋ) + k2

m1ω2
0
(y − x)3 = 0

(2.2)

Then introducing c1 = λ1m2ω0, c2 = λ2m2ω0 and k2 = m2ω
2
0K to Eqs. (2.2):

ẍ+ x+ λ1m2

m1
ẋ+ λ2m2

m1
(ẋ− ẏ) + Km2

m1
(x− y)3 = Gcos(Ωτ)− λ1m2Ω

m1
Gsin(Ωτ)

m2

m1
ÿ + λ2m2

m1
(ẏ − ẋ) + Km2

m1
(y − x)3 = 0

(2.3)
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Substituting m2/m1 = ε and G = εF to Eqs. (2.3):

ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)3 = εF cos Ωτ − ε2Fλ1Ωsin(Ωτ)

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)3 = 0
(2.4)

where the term containing ε2 is so small that it can be eliminated. The system of equa-
tions (2.1) can be finally reduced to the dimensionless form:

ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)3 = εF cos Ωτ

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)3 = 0
(2.5)

where the term containing ε2 is so small that can be eliminated. The corresponding
physical parameters are expressed as follows:

ε = m2

m1
, ω0

2 = k1

m1
, K = k2

m2ω02 , λ1 = c1

m2ω0
,

λ2 = c2

m2ω0
, F = G

ε
, Ω = ω

ω0
, τ = ω0t

(2.6)

The dots denote differentiation with respect to dimensionless time τ . New variables
representing the displacement of the center of mass and the internal displacement of the
cubic NES are introduced as follows:

v = x+ εy, w = x− y (2.7)

Substituting Eqs. (2.7) into Eqs. (2.5):

v̈ + ελ1
v̇ + εẇ

1 + ε
+ v + εw

1 + ε
= εF cos Ωτ

ẅ + ελ1
v̇ + εẇ

1 + ε
+ v + εw

1 + ε
+ λ2 (1 + ε) ẇ +K (1 + ε)w3 = εF cos Ωt (2.8)

The system is studied in the vicinity of the 1:1 resonance, where both the LO and
the NES execute the time-periodic oscillations with identical frequency Ω. To obtain the
analytical periodic solution, two new complex variables are introduced:

φ1e
iΩτ = v̇ + iΩv, φ2e

iΩτ = ẇ + iΩw (2.9)

Substituting Eqs. (2.9) into Eqs. (2.8) and keeping only the secular term containing
eiΩτ yields the following slowly modulated system:
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φ̇1 + iΩ
2 φ1 + ελ1(φ1 + εφ2)

2(1 + ε) − i(φ1 + εφ2)
2Ω(1 + ε) −

εF

2 = 0

φ̇2 + iΩ
2 φ2 + ελ1(φ1 + εφ2)

2(1 + ε) − i (φ1 + εφ2)
2Ω(1 + ε) + λ2(1 + ε)φ2

2 − 3iK (1 + ε)φ2
2φ̄2

8Ω3 − εF

2 = 0

(2.10)
In the context of energy pumping, the mass ratio ε is taken to be small (≈ 1%). In

this case, Eq. (2.10) can be analysed by a perturbation method with respect to this small
parameter. For this purpose, the method of multiple scales [Vakakis et al., 2008 ; Nayfeh,
2011] is introduced in the following form:

φi = φi(τ0, τ1,+ . . .), d

dτ
= ∂

∂τ0
+ ε

∂

∂τ1
+ . . .

τk = εkτ, k = 0, 1, . . .
(2.11)

Substituting Eqs. (2.11) into Eqs. (2.10) and equating coefficients of ε0 gives:

∂

∂τ0
φ1 = 0

∂

∂τ0
φ2 + λ2

2 φ2 + i

2 (φ2 − ϕ1)− 3iK
8 φ2

2 |φ2| = 0 (2.12)

Then we introduce the new variables as follows:

φ1(τ1) = N1e
iθ1 , φ2(τ1) = N2e

iθ2 (2.13)

With this change of variables in Eqs. (2.12), a topological structure of slow invariant
manifold (SIM) is obtained in the following form:

N2
10 = (1 + λ2

2)N2
20 −

3K
2 N4

20 + 9K2

16 N6
20 (2.14)

where N10, N20 correspond to the amplitude of LO and NES in slow time scale, respec-
tively. The two extrema of SIM are described as:

N2,i = 2
3

√
(2±

√
1− 3λ2

2)/K i = 1, 2 (2.15)

According to [Starosvetsky and Gendelman, 2008b], the SIM structure admits two
extrema (N21 and N22) and can be divided into two stable branches and one unstable
branch (see Fig. 2.2), where the unstable branch of the SIM is mainly responsible for
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the possible occurrence of energy pumping and may give rise to the strongly modulated
response (SMR).
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Figure 2.2: SIM structure: two solide blue lines represent the stable branch and a blue
dashed line means the unstable branch.

2.1.2 Analytical treatment

To illustrate this mechanism, a strongly modulated response and its corresponding wavelet
transform are presented in Fig. 2.3. A quasi-periodic response with slow variation of the
amplitudes of both oscillators is observed.

v CWT with Time vs Frequency

f
=
f 0

 

 

0 5 10

1

0

2

4

6
x 10

-3

w CWT with Time vs Frequency

f
=
f 0

 

 

0 5 10

1

0

2

4

6
x 10

-3

0 2 4 6 8 10

-10

0

10

v
(m

m
)

1 2 3

0 2 4 6 8 10

-20

0

20

w
(m

m
)

t (s)t (s)

(a) (b)

Figure 2.3: Cubic NES under periodic forcing with parameters K = 2400, λ1 = 0.8,
λ2 = 0.2, ε = 0.015, G = 0.3mm and initial conditions x0 = 0, ẋ0 = 0, y0 = 0 and ẏ0 = 0.
(a) time-displacement of LO and NES; (b) wavelet transform of LO and NES. The states
of 1, 2 and 3 represent the regime of nonlinear beating, transient resonance capture and
escape from resonance capture, respectively.
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In this regime, the procedure of energy pumping can be classified as follows:
(1) Nonlinear beating, where a small amplitude of NES corresponds to the growth of

LO amplitude;
(2) Transient resonance capture, with the frequency component of 1:1 resonance (see

Fig. 2.3(b)), in this case large targeted energy is extracted and dissipated by NES, leading
to a fast decrease of the LO amplitude;

(3) Escape from resonance capture, in which the NES crosses the bifurcation and is
quickly attracted to the low branch of SIM (see Fig. 2.4), which leads to a jump down for
the energy of the NES.
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Figure 2.4: SIM structure (blue line) and the transient projection motion of SMR (red
line). The states 1, 2 and 3 represent the regime of nonlinear beating, transient resonance
capture and escape from resonance capture, respectively.

This SMR regime demonstrates the irreversible targeted energy transfer from LO to
NES [Starosvetsky and Gendelman, 2008b], which suppresses energy more efficiently than
a steady state response.

With these two extrema of SIM (N21 and N22) located at the boundary of SMR and
stable periodic response, the excitation threshold of the SMR can be obtained and written
as:

Gic =
εN2,i(9λ1K

2N4
2,i − 24λ1KN

2
2,i + 16(λ1 + λ2 + λ1λ

2
2))

4
√

9K2N4
2,i − 24KN2

2,i + 16 + 16λ2
2

(2.16)

The detailed description of Eq. (2.14) and Eq. (2.16) are given in [Gendelman et al.,
2008 ; Gourc et al., 2014]. When the excitation amplitude is with the interval [G1c, G2c],
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Chapter 2 : Tuned NES with nonlinear spring: design theory

SMR can be produced. Yet this is not sufficient to ensure the activation of SMR regimes;
another interacting factor is the excitation frequency. To explain its influence, the stability
of the frequency response function (FRF) is analyzed. Here, a detuning parameter σ
representing the nearness of the excitation frequency ω to the reduced natural frequency
of the LO is introduced:

Ω = 1 + εσ (2.17)

The fixed points of the FRF correspond to the periodic solutions of the system. Under
the 1:1 resonance hypothesis, the solutions of fixed points can be obtained by equating
the derivatives of Eq. (2.10) in the following form:

φ̇1 = φ̇2 = 0 ⇒ φ1(τ) = φ10, φ2(τ) = φ20 (2.18)

By introducing Eq. (2.18) into Eq. (2.10), a system of complex algebraic equations is
obtained. After several algebraic operations, the system is deduced as:



α3Z
3
20 + α2Z

2
20 + α1Z20 + α0 = 0, Z20 = |φ20|2

φ10 =

iεφ20

(1 + ε) (1 + εσ)−
ε2λ1φ20

1 + ε
+εF+iε2λ1F (1+εσ)

i(1+εσ)+
ελ1

1 + ε
−

i

(1 + ε) (1 + εσ)

(2.19)

where coefficients αi depend on the system parameters and excitation parameters. The
first equation of Eq. (2.19) is a cubic polynomial that can be resolved analytically, so as
to obtain the fixed points. To determine the stability, small perturbations are introduced
as follows:

φ1 = φ10 + ρ1, φ2 = φ20 + ρ2 (2.20)

By substituting Eq. (2.20) into Eq. (2.10), the linearization model with the Jacobian
matrix is obtained: 

ρ̇1

ρ̇2

¯̇ρ1

¯̇ρ2

 =


M11 εM21 0 0
M22 M22 0 M24

0 0 M̄11 εM̄21

0 M̄24 M̄21 M̄22




ρ1

ρ2

ρ̄1

ρ̄2

 (2.21)

where
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

M11 = −i(1 + ε)
2 − ελ1

2(1 + ε) + i

2(1 + ε)(1 + εσ)
M21 = − ελ1

2(1 + ε) + i

2(1 + ε)(1 + εσ)

M22 = 3i(1 + ε)Kφ20φ̄20

4(1 + εσ)3 − λ2(1 + ε)
2 + iε

2(1 + ε)(1 + εσ)
−i(1 + εσ)

2 − ε2λ1

2(1 + ε)
M24 = 3i(1 + ε)Kφ2

20
8(1 + εσ)3

(2.22)

By computing the root of the polynomial characteristic equation, the stability of the
fixed points is deduced. If a real root crosses the left-half complex plane, the fixed point is
unstable. Fig. 2.5 compares the FRF between the system with a cubic NES and without a
NES. The maximum amplitude of the axial displacement of the primary system is plotted
on the vertical axis as a function of the amplitude G and frequency σ of the excitation.
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Figure 2.5: Frequency response function (FRF) of LO with cubic NES (points) and with-
out NES (thin line) in different types of excitation: (a) G = 0.08mm; (b) G = 0.13mm;
(c) G = 0.18mm; (d) G = 0.23mm. The blue points and the red crosses represent stable
and unstable fixed points respectively.

With the addition of a NES, the normal model of the LO becomes nonlinear and varies
for different types of energy input. When the energy is low and not sufficient to activate
the NES, the resonance peak of the LO does not vanish completely (see curve a). For a
relatively higher excitation, as shown in curves b and c, the energy pumping of the NES
is activated in the unstable area. SMR regimes are possibly produced. As the excitation
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Chapter 2 : Tuned NES with nonlinear spring: design theory

amplitude is increased still further to G = 0.23mm (see curve d), the band of frequency
for SMR becomes larger. However a high amplitude detached resonance tongue appears
on the left of the main backbone branch, which reduces the efficiency of the control and
can be dangerous for the system.

2.1.3 Criterion for efficient energy pumping

From the FRF analysis, the aim of a design criterion should be first to ensure that energy
pumping of the NES absorber is activated and second to avoid the resonance tongue
under a given primary system. For this, the effect of nonlinear stiffness K and excitation
G is analyzed. The maximum amplitude of the FRF is calculated and presented in
Fig. 2.6(a). As the nonlinear stiffness is larger, the resonance tongue occurs more easily
at low excitation. In Fig. 2.6(b), as the excitation is fixed, an optimal nonlinear stiffness
located at the critical resonance tongue position can be found, where the amplitude of the
LO is minimum. In Fig. 2.6(c), as the nonlinear stiffness is fixed, the maximum amplitude
of the LO will not be larger than the value at this critical point. Thus, the critical position
for the appearance of the resonance tongue is studied.
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Figure 2.6: Maximum amplitude of LO with the variation of (a) nonlinear stiffness and
excitation amplitude; (b) nonlinear stiffness; (c) excitation amplitude. Each point is
extracted from the maximum amplitude of FRF.

Fig. 2.7 shows the multiplicity of the periodic solution of the system in Eq. (2.19).
Where the boundary separating single and triple solutions corresponds to the saddle-node
bifurcation, G1c and G2c represent the threshold of the SMR, Gsn represents the boundary
where three periodic solutions occur in the left of the main resonance frequency. When
the excitation is inside the zone [G1c, Gsn], no resonance tongue occurs and the SMR is
probably produced. Therefore, once the parameters of the NES are fixed, the value of Gsn
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can be determined as the maximum amplitude of excitation, so as to avoid the occurrence
of a resonance tongue.
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Figure 2.7: Evolution of the multiplicity of periodic solutions for the system with param-
eters K = 3000, λ1 = 0.6, λ2 = 0.3, ε = 0.01.

In Fig. 2.8, the critical excitation amplitudes are presented as a function of the non-
linear stiffness.
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Figure 2.8: Critical excitation amplitude as a function of the nonlinear stiffness, λ1 = 0.6,
λ2 = 0.3, ε = 0.01.

As can be seen, the width of the SMR zone decreases as nonlinear stiffness increases.
The characteristic points a, b, c and d atK = 3000 show good agreement with the behavior
of the system in Fig. 2.5, which demonstrates that the critical amplitudes of excitation
can predict the response regimes well at different excitations.

Based on the above discussion, for a given primary system, the optimal design for a
NES system is dependent on the maximum amplitude of excitation. The design parameter
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should be chosen to avoid a detached resonance tongue in the vicinity of the natural
frequency and allow strongly modulated response at the same time. An illustration for
choosing the tuned parameters of a cubic NES is given in Table 2.1, here the mass ratio,
stiffness and damping of the LO, and the damping of the NES are fixed. The corresponding
tuned parameters of nonlinear stiffness K are listed for different maximum amplitudes of
excitation (using the Gsn curve of Fig. 2.8). With this value, the amplitude of the LO
is minimum and no resonance tongue exists in a range of frequencies. The next section
presents the design of a tuned NES with the proposed design criterion.

Table 2.1: Parameters of the tuned NES

Reduced parameters
ε 1% λ1 0.6
λ2 0.3 K Ksn

K as a function of G
G (mm) K G (mm) K

0.291 1500 0.205 3000
0.252 2000 0.191 3500
0.226 2500 0.178 4000

2.2 Design theory of NES system

This section aims to propose a generalized methodology for designing a novel NES with
pure cubic nonlinearity. To this end, a generic model of the NES system providing strong
nonlinearity is firstly introduced. Then, to eliminate the linear stiffness, the concept of
a negative stiffness mechanism is implemented by two cylindrical compression springs.
Finally, design parametrizations of two kind of nonlinear springs are implemented.

2.2.1 Generalized methodology of NES

The generic model of the NES system developed in this section is presented in Fig. 2.9(a).
It consists of a nonlinear characteristic part and a negative stiffness mechanism. The
negative stiffness mechanism is created by two linear springs hinged together at one end
with the mass of the NES, while the other ends, subjected to two equivalent preloads P ,
are allowed to rotate freely in frictionless horizontal channels.

As the two linear springs are subjected only to horizontal forces, their force on the
axial spring is zero. From the equilibrium position, an external force (i.e. F ) is applied
to generate an upward displacement (i.e. u) of the output link. Within an operating
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Figure 2.9: (a) Schematic of NES system with negative stiffness mechanism and nonlinear
spring; (b) restoring force with respect to the compressing length.

region of the linear spring, the stiffness curve depends on the preload p. The three
F -u curves in Fig. 2.9(b) denote the NES system with different lateral preloads. The
corresponding force-displacement curves of the two horizontal springs and the vertical
spring are presented in Fig. 2.10 (b) and (d), respectively. From the curve with no preload,
a positive preload decreases the linear stiffness, whereas a negative preload increases it.
As can be seen from Fig. 2.9(b), the force characteristic of case p < 0 is almost dominated
by its component of linear stiffness (i.e. the thin black line). Thus, to obtain strong
(non-linearizable) nonlinearity, the negative stiffness mechanism with p > 0 is adopted.

2.2.2 Eliminating linear stiffness by negative stiffness mecha-
nism

A detailed realization of the NES system is presented in Fig. 2.11, where the negative
stiffness mechanism is implemented by two cylindrical compression springs having free
length l0. After pre-compressing to the length l (see Fig. 2.11(a)), the force-displacement
relation with the Taylor expansion is expressed as:

fp = 2k lp
l
· u− k (l + lp)

l3
· u3 (2.23)

For the axial direction, the nonlinear characteristic part is realized by two nonlinear
springs (i.g. conical spring or variable pitch spring). Unlike ordinary compression springs,
conical springs or variable pitch springs are designed to have a nonlinear spring rate.
These springs can have multiple rates or a progressively increasing spring rate as the
spring compresses. Since the diameter or pitch is varied, some of the coils close up faster
than the rest and become ‘inactive’, meaning that they no longer absorb the compressive
energy resulting from applied forces. When the amount of active energy absorbing coils
is reduced, the spring becomes stiffer and the rate increases.
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Figure 2.10: Schematic of the sub-system and the correspongding force-displacement
curves, with respect to the compressing length: (a)(b) negative stiffness mechanism; (c)(d)
nonlinear spring.

To benefit from the nonlinear performance of the nonlinear spring, a symmetrical con-
necting type of spring is proposed, as shown in Fig. 2.11(b). However, this configuration
has a linear stiffness part that is hard to eliminate. To obtain the cubic nonlinearity of
the NES system, the objective function of the nonlinear spring is defined as:

F =

k0 · u (u ≤ st)

a3(u− st)3 + a1(u− st) + Pt (u > st)
(2.24)

where k0 is the stiffness of the linear phase, a3 is the expected cubic value, a1 is the spring
rate after the group in linear phase is fully compressed to the ground block, Pt and st

represent the force and displacement of the transition point, respectively.

To skip the linear phase, a method of pre-compressing spring at the transition point
is adopted. By changing the initial origin point, the behaviors of two nonlinear springs
can belong one to the linear and one to the nonlinear regime simultaneously.

By combining the two spring curves, a composed stiffness curve is obtained and the
force relation is:

fK = (a1 + k0) · u+ a3 · u3 (2.25)

PhD Thesis-Donghai QIU - 45 -



2.2 Design theory of NES system

f

k k

0l

l
pl

u

F

P
(a) (b)

(c)

tS

Figure 2.11: Detailed realization of NES system: (a) negative stiffness mechanism; (b)
conical spring; (c) the composed system.

Obviously, the new curve is smooth and no longer piecewise (see Fig. 2.12). By adding
the force of two nonlinear springs (i.e. fK) to the force of the negative stiffness mechanism
(i.e. fp), the composed force of the NES system is obtained:

(a) (b)

u

F

u

F

Figure 2.12: Force characteristics of two nonlinear springs (green and blue): (a) at original
length; (b) pre-compressed at the transition point. The red curve represents the composed
force.

F = (a1 + k0 − 2k lp
l

) · u+ (a3 + k
(l + lp)
l3

) · u3 (2.26)

As can be seen from Eq. (2.26), if a1 + k0 = 2klp/l, the linear component can be
counterbalanced by the negative stiffness mechanism. In this case, only the pure cubic
term of the equation will be left, and its coefficient will be larger with the addition of two
linear springs.
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2.2.3 Producing strong nonlinearity by nonlinear springs

To obtain strong nonlineaity, the design theory of nonlinear springs is proposed in this
subsection. The objective here is to generate the force characteristics curve of Eq. (2.24).
To this end, design parametrization of two kinds of nonlinear springs is studied. The first
one is a conical spring with a constant pitch, and the second one is a cylindrical spring
with variable pitch (termed as variable pitch spring).

2.2.3.1 Conical spring

Due to its self-nonlinearity, a conical spring has the advantage of providing variable spring
rates and varying natural frequencies. For this work, two conical springs with a constant
pitch and a constant coil diameter were adopted. The detailed design of the conical springs
has been achieved in [Rodriguez et al., 2006 ; Paredes, 2013a] so that the springs do not
buckle at large deflections [Patil et al., 2014]. Considering the strong nonlinearity and
lower installation height, the shape of conical spring with large cone angle was used [Qiu
et al., 2017].

The force characteristic of a conical spring with a constant pitch can be separated into
a linear and a nonlinear part. To distinguish the two phases, three particular points are
introduced, as shown in Fig. 2.13: point O corresponds to the spring free state, point T is
the transition point where the nonlinear behavior starts, and point C represents the state
of maximum compression.
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Figure 2.13: Force characteristic of conical spring , T represents the transition point
between linear and nonlinear phase.

In the linear phase (from point O to point T), the largest coil is free to deflect like the
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other coils, so the force-displacement relation is linear and the stiffness is expressed as:

R = Gd4

2na(D2
1 +D2

2)(D1 +D2) (2.27)

In the nonlinear regime (from point T to point C), the first elementary part of the
largest coil has reached its maximum physical deflection. It starts to be a non-active
element of the spring. During the second compression regime, the number of active coils
decreases continuously, leading to a gradual increase of the spring stiffness. The force-
displacement (F -u) relation can be described by:

u(F ) = 2FD4
1na

Gd4(D2 −D1) [(1 + (D2
D1
− 1) · nf

na
)4 − 1] + (La − Ls)(1−

nf
na

) (2.28)

where d, na, nf , La, Ls, G represent the wire diameter, number of active coils, number of
free coils, initial active length, solid length of active coils and shear modulus of elasticity,
respectively, and D1 and D2 represent the mean diameter of the smallest and largest coils.
A detailed description of Eq. (2.27) and Eq. (2.28) can be found in [Rodriguez et al., 2006].

To benefit from the nonlinear performance of the conical spring, a symmetrical con-
necting type of spring is proposed, as shown in Fig. 2.14(a). However, this configuration
has the piecewise stiffness of a linear and a nonlinear part. To skip the linear phase, a
method of pre-compressing the spring at the transition point is proposed, as shown in
Fig. 2.14(b).

(a)                   (b) 

          

 

Figure 2.14: State of two conical springs: (a) at original length; (b)) pre-compressed at
the transition point.

To analyze the internal polynomial components of composed force (see Fig. 2.12), the
method of polynomial fitting is used, and the new force-displacement relation is written
as:

F = b1u+ b2u
2 + b3u

3 +O(u4) (2.29)
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Because of the superposition of linear and nonlinear parts, the linear term of Eq. (2.29)
is hard to eliminate, yet it is possible to make the value of the square term b2u

2 small.
For this, optimization of conical spring is introduced, and the optimization model can be
expressed as follows:

• Minimize:
the absolute values of square coefficient |b2|

• Variable:
the mean diameter of smallest coil D1

the mean diameter of largest coil D2

the free length of conical spring L
the wire diameter of spring d
the number of active coils na

•Constraints:
the cubic coefficient b3min < b3 < b3max

the linear stiffness b1min < b1 < b1max

the transition point smin < st < smax

the buckling condition 0 < Lf/D < 2.6
the spring index 5 < Di/d < 25, i = 1, 2

After optimizing the parameters of the conical spring (where the mean diameters D1

and D2 are the main factors to determine the nonlinearity), two groups of conical spring
are obtained and the designed parameters are presented in Table 2.2.

Table 2.2: Designed parameters of two groups of conical spring

Designed parameters
d (mm) D1(mm) D2 (mm) na Lf (mm) Ḡ

spring #1 2.2 12 50 8 70 7.929× 1010

spring #2 1.7 12 40 16 105 7× 1010

Force characteristics

F =
k0 · u (u ≤ st)
a3(u− st)3 + a2(u− st)2 + a1(u− st) + Pt (u > st)
k0 (N/m) a1 (N/m) a2 (N/m2) a3 (N/m3) st (mm)

spring #1 708 836 −1.94× 103 1.95× 106 21.5
spring #2 201 300 −6.67× 103 5.01× 105 28

The polynomial components of sprins #1 are presented in Fig. 2.15. It can be observed
that the curve of the cubic and linear terms is close to the original curve F (u), which
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means that the contribution of the square term was small enough to be almost neglected.
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Figure 2.15: Polynomial components of the two optimized conical springs

2.2.3.2 Variable pitch spring

Since the stiffness of a variable pitch spring is piecewise, producing a smooth and nonlinear
curve like that of a conical spring is hard. Here, a method using special coordinate points
to fit the required stiffness curve is adopted. Depending on the method of curve fitting, two
types of shape providing the polynomial components with only linear and cubic terms are
proposed: (1) each coil having a different pitch; (2) each group of coils having a different
pitch (see Fig. 2.16).
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Figure 2.16: Two types of shape for variable pitch spring: (a) each coil with a different
pitch; (b) each group of coils with a different pitch.
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The detailed force characteristics of the two types are presented in Fig. 2.17. For
the first type, each coil is set with a different pitch. As one coil is fully compressed and
becomes “inactive”, a transition point occurs and the spring rate increases considerably.
By fitting the transition points on the objective function curve, the pitch of each coil can
be calculated. However, the positions of these transition points cannot be selected, which
leads to the last pitch being exceptionally large. As can be seen from Fig. 2.17(a), the
last part is hard to fit on the objective function.
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Figure 2.17: Force characteristics of variable pitch spring: (a) each coil with a different
pitch; (b) each group of coils with a different pitch.

To overcome this limitation, the second type is adopted. Here, we allow some coils
(usually the number is not an integer) to have the same pitch, which leads to several
groups of ordinal linear springs being generated. By defining the transition points of the
piecewise curve averagely on the nonlinear part, the stiffness in each piece will correspond
well to the required value (see Fig. 2.17(b)). In this method, the number of transition
points determines the number of groups possessing the same pitch. Then the number of
active coils can be expressed by using the common formula:

na = Ḡd4

8D3 · k0
(2.30)

where D, d and Ḡ represent the mean diameter of the coils, the wire diameter and shear
modulus of elasticity, respectively. k0 is the initial stiffness when all coils are active, as
proposed in Eq. (2.24). Defining the total deflection length of the spring as lf (lf > 2st),
and the number of spring groups in nonlinear regime as n, the interval of each part in the
nonlinear phase is obtained:

∆ = lf − st
n

(2.31)

Within the interval of each part of the curve, the displacement and the force of each
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transition point are given by:

ui = st + i ·∆, i = 1..n

Fi = a3i
3 ·∆3 + a1i ·∆ + Pt

(2.32)

Then the detailed expression of each stiffness k1...kn yields:

ki = Fi − Fi−1

ui − ui−1
= a3(3i2 − 3i+ 1) ·∆2 + a1 (2.33)

As the stiffness is held at ki, the remaining active coils ni and the number of coils in
each spring group n̄i can be obtained:

ni = Ḡd4

8D3 · ki
, n̄i = ni−1 − ni (2.34)

Once the number of coils in each group has been obtained, the corresponding pitch
can be calculated. When the force reaches the transition point between the linear and
nonlinear parts, the first group of coils is fully compressed and its corresponding pitch is:

t0 = st
n

+ d (2.35)

When the force reaches the ith transition point of the nonlinear regime, the ith group
of coils is fully compressed and its corresponding pitch is given by:

ti = ui − ui−1

n̄i
+ ti−1 = ∆

n̄i
+ ti−1, i = 1..n (2.36)

By adding the length of each spring group to that of the closed ends, the free length
of the variable pitch spring is obtained:

Lf =
na∑
i=1
niti + 1.5 · d (2.37)

Here, it is important to highlight that the free length should satisfy the condition:
λ = Lf/D ≤ 2.6, so that the variable pitch spring will not buckle as the NES mass moves
in a large displacement.

To illustrate the detailed realization of a NES system, an example of the design of a
variable pitch spring is presented in Table 2.3. The objective parameters are given, and
the force-displacement equation of the variable pitch spring corresponds to Eq. (2.24),
of which the force at the transition point is given by Pt = k0st. We can note that the
displacement of the transition point (i.e. st) determines the maximum amplitude of the
NES mass. The number of spring groups in the nonlinear regime (i.e. n) controls the
accuracy of the curve fitting. The variable pitch characteristics are detailed in a dedicated
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Table 2.3: Parameters of the variable pitch spring

Objective parameters
k0 160 N/m a1 165 N/m
a3 2.3× 105 N/m3 st 35 mm

Designed parameters
D 40 mm d 2 mm
G 7× 104 Mpa n 7
Lf 105.6 mm na 13.7

Pitch parameters
n̄i ti (mm) αi (o) ki (N/m) ui (mm)
1 4.56 2.08 160 35

2.65 5.01 2.28 173 40.75
2.96 5.59 2.55 218 46.5
2.17 6.40 2.92 309 52.25
1.42 7.57 3.45 446 58
0.93 9.23 4.20 629 63.75
0.62 11.48 5.22 857 69.5
1.93 14.45 6.56 1131 75.25

table as follows. The columns from left to right show the number of coils, the pitch, the
helix angle, the stiffness and the displacement of the corresponding transition point.

As can be seen, the pitch and helix angle of each spring group increase monotonously,
meaning that the pitch distribution has an ascending order. To facilitate the manufactur-
ing process, the final pitch distribution is split to symmetrical shape, as shown in Fig. 2.18.
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Figure 2.18: Symmetrical type of pitch distribution for the spring
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2.2 Design theory of NES system

With this distribution, the number of spring groups is increased but the stiffness curve
keeps the same shape.

2.2.3.3 Linear spring and designed NES system

According to the design theory of two kinds of nonlinear springs, it can be observed that
the design parameters of conical spring are mainly obtained by optimization, while the
design parameters of variable pitch spring are directly obtained by analytical calculation.
For the linear spring, the design theory is relatively well known so that only the main
procedures will be presented in this subsection.

According to Eq. (2.26), the stiffness of linear spring can be obtained once the nonlinear
spring is determined:

k = (a1 + k0) l
lp

(2.38)

Free length Compressed length Compressed solid

0l
l

sl

d

p

F

F

pl

Figure 2.19: Compression spring for negative stiffness mechanism

Where lp is the pre-compressed length, and l is the spring length after compressing,
as shown in Fig. 2.19. The free length l0 is the length of spring in the free or unloaded
condition, which can be expressed as

l0 = na · p+ 1.5 · d (2.39)

Depending on the requirement of the size of negative stiffness mechanism, the com-
pressed length l0 can be determined. Then, the pre-compressed lp can be obtained, with
the ratio of two spring set as lp/l0 ≈ 0.5. With with two lengths, the stiffness of lin-
ear spring can be calculated with Eq. (2.38), and the free length can be obtained with
l0 = l+ lp. Considering the buckling condition and spring index, the constraints are given
as:
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the buckling condition l0/D < 2.6
the spring index 5 < D/d < 20

the pre-compressed length lp ≤ l0 − ls = l0 − (na + 1.5)d

With the above constraints, the active coils na and mean diameter D can be obtained
with the following formula:

na = Gd4

8kD3
(2.40)

To summarize, the process of linear spring can be generalized as l → lp → l0 → k →
D → d→ na. More detailed verification of the designed spring (e.g. stress and buckling)
can be referred from the software of Advanced Spring Design.

Based on the proposed methods, a small-sized NES system providing strongly non-
linear stiffness was designed and the assembly drawing is presented in Fig. 2.20. The
component parts are spherical plain bearings, a linear guide, two nonlinear springs, two
linear springs and a NES mass. It is important to highlight that the distance between
each spring and the NES mass is adjustable so that a suitable force shape can be reached.

Figure 2.20: Assembly of NES system. x and y correspond to the displacement of LO
and NES respectively.

2.3 Conclusion

In this chapter, the design theory of a tuned NES attached to a harmonically forced
linear oscillator is investigated. Firstly, a design criterion intended to find the tuned
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parameter of nonlinear stiffness for a given primary system specification is proposed. The
aim of this criterion is to avoid the detached resonance tongue in the vicinity of the
resonance frequency and allow SMR at the same time. To this end, a combined method
with slow invariant manifold (SIM), threshold of SMR and stability of the fixed points
is studied theoretically. Frequency response functions (FRF) are calculated when the
different parameters (i.e. amplitude and frequency of excitation, nonlinear stiffness) are
varied and explain the behavior of the NES well. As a result, an optimal nonlinear stiffness
is obtained, so as to tune the NES be activated and produce the efficient TET.

Secondly, a physical configuration of the NES system for obtaining strongly cubic non-
linearity is introduced. Key features of the structure include: (i) specifically sizing two
nonlinear springs to provide the force polynomial components with only linear and cubic
terms; (ii) pre-compressing the two springs at the transition point to produce smooth non-
linear force characteristics; (iii) adding a negative stiffness mechanism to counterbalance
the linear term. To generate the nonlinear springs (i.e. variable pitch springs and conical
springs), design parametrization and optimization are implemented, respectively. Finally,
a special sized NES system is developed, in which the distance between each spring and
the NES mass is adjustable so that a suitable force shape can be reached. In the next
chapter, experimental validation of the designed NES system will be studied.
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CHAPTER 3 Tuned NES with
nonlinear spring:
experimental study

This chapter is devoted to the experiment study of tuned nonlinear energy sink.
Firstly, to validate the concept, identification of the NES system is performed,
which contains the part static test of force characteristics, and detailed calculation
of effective NES mass. Then experiments on the whole system embedded on an
electrodynamic shaker are studied. The results show that this type of NES can not
only output the expected nonlinear characteristics, but can also be tuned to work
robustly over a range of excitation, thus making it practical for the application of
passive vibration control. Finally, to avoid the generation of resonance tongue, a
sensitivity analysis is performed with respect to the pre-compressed length of the
springs.

Abstract

Contents
3.1 Identification of the NES system . . . . . . . . . . . . . . . . . 57

3.1.1 Static test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 Identification of the NES system

To validate the concept, identification of the NES system is studied in this section. For
this, static test for two kinds of nonlinear springs and corresponding NES system is
implemented, and the results are compared to that of theoretical model. Then detailed
calculation of effective NES masss is explored.
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3.1 Identification of the NES system

3.1.1 Static test

3.1.1.1 Conical spring

Based on the design parameters of Table 2.2, two groups of conical spring were manu-
factured, and its force characteristics test were executed by a Spring Test 1 test bench
from Andilog, Vitrolles, France (see Fig. 3.1). The force gauge had a 500 N capacity with
0.1% accuracy and 0.04 N resolution. The handle enabled a stroke of 2mm per revolu-
tion. The displacement transducer with digital display had a resolution of 0.01 mm. The
axial stiffness of the test bench was taken into account to correct the lengths and reach
a precision of 0.02 mm [Paredes, 2016]. The test results of two groups of conical springs
are presented in Fig. 3.2 and Fig. 3.3, respectively. As expected, correspondence is good
between the experimental results and the theoretical curve.

the closed end, at the back of the tip contact point, which
increased the deflection of the spring as a whole and illustrated
once again that it was not correct to consider the entire closed end
as inactive.

Moreover, it is interesting to note that European standards
related to compression springs [19] do not distinguish between na

and nf but recommend exploiting two active coils as a minimum.
Thus, we see that the common formula tends to overestimate

the spring rate and that the spring rate tends to be nonconstant, so
it could be interesting to evaluate the accuracy of both the com-
mon formula and the one proposed by Vogt. Moreover, the spring
rate tends to evolve during loading. Consequently, some spring
manufacturers, such as the Lee Spring Company, suggest that the
free length should be considered only as an approximate value, to
be adjusted during manufacturing when necessary [15]. So, it
could be interesting to investigate whether an additional correc-
tion of the free length could give more accurate results, as illus-
trated in Fig. 2.

As far as we are aware, no study has been performed to evaluate
the accuracy of the common analytical load–length relation for
compression springs, and the correction of the spring rate [17] has
been evaluated using very few springs that do not cover the range
of the design parameter usually exploited by designers. Therefore,
in Sec. 2, we propose an experimental study that tends to cover
the design space and that deals with springs with closed and
ground ends. The accuracy of the common formulae will thus be
evaluated. Then, as proposed by Vogt, a spring rate correction
will be defined in order to improve the accuracy. Finally, a combi-
nation of spring rate correction and free length correction will be
proposed for even better accuracy. The same study, but concern-
ing compression springs with closed ends that are not ground, is
presented in Sec. 3, and conclusions are drawn in Sec. 4.

2 Study on Compression Springs With Closed and

Ground Ends

2.1 Experimental Study. The experimental study was
intended to cover a large part of the design space. Thus, springs
with 2, 5, 10, and 13 free coils were evaluated (2 is considered as
a minimum by European standards and 13 appears to be a maxi-
mum to avoid buckling). For each given number of coils, three
spring indexes were tested (low: c¼ 5, medium: c¼ 8, and high:
c¼ 16). As in Ref. [17], three specimens were tested for each
configuration.

To avoid the influence of variations in the mechanical proper-
ties of the wire material, all the springs were made from the same
wire by a spring manufacturer that works with the aeronautical
and aerospace industries, in order to reach the highest standards.

Finally, 4� 3� 3¼ 36 springs made from the same wire
(d¼ 1.8 mm in stainless steel 1.4310) were tested. Table 1 gives
the detailed geometry of the springs tested.

Each spring was tested on a Spring Test 1 test bench from
Andilog, Vitrolles, France [20] (see Fig. 3). The force gauge had a
500 N capacity with 0.1% accuracy and 0.04 N resolution. The
handle enabled a stroke of 2 mm per revolution. The displacement
transducer with digital display had a resolution of 0.01 mm. The
axial stiffness of the test bench was taken into account to correct
the lengths and reach a precision of 0.02 mm.

2.2 Evaluation of the Accuracy of Common Formulae. In
order to evaluate the accuracy of the common analytical formulae
for the spring rate and the free length, the following strategy was
followed. The idea was to have a designer-oriented study. So, for
each spring tested, the individual error, e, between analytical for-
mulae and experimental results was calculated as the sum of the
relative errors on loads at two points covering the usual operating
range of the spring: one at 25% of the potential travel and the
other at 75% of the potential travel as illustrated in Fig. 4

L1 ¼ L0 � 0:25ðL0 � LcÞ (4)

L2 ¼ L0 � 0:75ðL0 � LcÞ (5)

e ¼
����P1e � P1

P1e

����þ
����P2e � P2

P2e

���� (6)

The results presented in Fig. 5 show the average individual errors
for the three springs tested for each configuration.

The results clearly show that the accuracy of the common for-
mulae can be considered as quite good when five free coils are

Fig. 2 Experimental and analytical load–length relations for
compression springs

Table 1 Details of the compression springs with closed and
ground ends

Ref. d (mm) D (mm) nf L0 (mm)

CG1 1.8 9 2 8.7
CG2 1.8 9 5 17.7
CG3 1.8 9 10 32.7
CG4 1.8 9 13 32.7
CG5 1.8 14.4 2 12.3
CG6 1.8 14.4 5 26.7
CG7 1.8 14.4 10 50.7
CG8 1.8 14.4 13 50.7
CG9 1.8 28.8 2 21.9
CG10 1.8 28.8 5 50.7
CG11 1.8 28.8 10 98.7
CG12 1.8 28.8 13 98.7

Fig. 3 Details of the experimental setup and measuring
system

021404-2 / Vol. 138, FEBRUARY 2016 Transactions of the ASME
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Figure 3.1: Details of the experimental setup and measuring system

In Fig. 3.4, an installed NES system with linear springs of small mean diameter and
first group of conical spring is illustrated. It can be found, the linear spring has a tendency
to buckle when the deflection reaches the anticipated length.

According to [Wahl, 1944], the behaviour of buckling can be characterized by using two
dimensionless parameters, critical length and critical deflection. Where critical deflection
is defined as the ratio of deflection lp to the free length l0, the critical length is the ratio
of free length l0 to mean coil diameter D. The critical deflection is a function of critical
length and has to be below a certain limit. As the connection of the spring is hinged-
hinged adjustment, the corresponding critical deflection is smaller than that of fixed-fixed
type. To increase critical deflection, decreasing the critical length is a feasible way. By
decreasing the free length and increasing the mean coil diameter, the ratio of l0/D can
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Figure 3.2: First group of conical spring and the corresponding force characteristics
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Figure 3.3: Second group of conical spring and the corresponding force characteristics

be decreased. A new system with large mean diameter of linear spring is presented in
Fig. 3.5, where the buckling of spring is eliminated.

Fig. 3.6 shows the force-displacement relation of the NES with first group of conical
springs. Detailed information of experimental setup is introduced in the following section.
As can be seen, the experimental curve and the theoretical cubic curve corresponded
well. Thus it can be concluded that combining conical springs and a negative stiffness
mechanism is a feasible way to produce pure cubic nonlinearity. To enable the anticipated
nonlinearity to be obtained, enough pre-compressed length should be reserved in both
the variable pitch and the linear springs. Moreover, buckling of the negative stiffness
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3.1 Identification of the NES system

Buckling

Figure 3.4: NES system with linear springs of small mean diameter

Figure 3.5: NES system with linear springs of large mean diameter

mechanism should not be neglected during the design procedure.

3.1.1.2 Variable pitch spring

Based on the design parameters of Table 2.3, the variable pitch spring was manufactured,
and its force characteristics test were executed, as shown in Fig. 3.7.

With this spring, a NES system providing strongly nonlinear stiffness was designed,
the components of which were spherical plain bearings, a linear guide, two variable pitch
springs, two linear springs and a NES mass. It is important to highlight that the distance
between each spring and the NES mass was adjustable so that a suitable force shape could
be reached.

Details of the NES experimental setup and the measuring equipment are presented in
Fig. 3.8. The NES mass was held by a ring so that it could be connected to the internal
load cell of the force gauge. With this experimental setup, the force could be measured
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Figure 3.6: Force-displacement relation of the designed NES

Figure 3.7: Manufactured variable pitch spring and measuring equipment

by turning the handle to control the deflection of spring.
Fig. 3.9 (a) and (b) show the force characteristics of the designed spring and the NES

system. Detailed comparison of parameters between the design and test is presented in
Table 3.1. As can be seen, the manufactured spring curves and designed piecewise curve
correspond to the objective curve well. The experimental curve of the NES system is close
to the objective cubic curve.

Thus it can be concluded that the design theory of variable pitch spring is efficient
to produce the anticipated nonlinearity for the NES system. Combining variable pitch
springs and a negative stiffness mechanism is a feasible way to generate pure cubic non-
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3.1 Identification of the NES system

Figure 3.8: Details of the NES experimental setup and measuring system

Table 3.1: Comparison of parameters between design and test

Variable pitch spring

F =
k0 · u (u ≤ st)
a3(u− st)3 + a1(u− st) + Pt (u > st)

k0 (N/m) a1 (N/m) a3 (N/m3) st (mm)
design 160 165 2.3× 105 35
test 160 218 1.9× 105 35

NES system
F = b0 + b1u+ b2u

2 + b3u
3

b0 (N/m) b1(N/m) b2 (N/m2 ) b3 (N/m3)
design 0 0 0 4× 105

test 0 62 161 3.7× 105

linearity.

3.1.2 Effective mass

The NES system can be divided in several parts: a part attached to the primary system,
a NES part and the springs. The NES part includes the mass of the sliding part, the
spherical plain bearing, and the support base of the linear and conical springs. For
dynamic calculations, as the NES mass (ma) is very small, the inertia of the springs is
not negligible and has to be considered.

To a rough approximation, considering the spring as a beam and neglecting axial
inertia, the kinetic energy of the NES mass and the linear spring is written as follows:
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Figure 3.9: Force-displacement relation of the designed spring (a) and NES system (b)

TNES =
∫ l0

0 ρs(
x

l0
ẏ)2dx+ 1

2m2ẏ
2 (3.1)

where ρs = ms/l0 is the mass density of the spring. Thus the effective mass of a linear
spring is calculated:

m̂s = ms/3 (3.2)

For the conical spring, the effective mass of m̂c can be expressed as [Yamamoto, 1999]:

m̂c = 2mc

1
10(1− β10)− 1

3β
4(1− β6) + 1

2β
8(1− β2)

(1− β4)2(1− β2) , β = D2

D1

(3.3)

Thus, the total effective mass of the NES for dynamic equations is obtained:
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3.2 Dynamic test under periodic excitation

m2 = ma + 2m̂s + 2m̂c (3.4)

3.2 Dynamic test under periodic excitation

The aim of dynamic test under periodic excitation is to obtain the nonlinear frequency
response function of the system around the 1:1 resonance, so as to verify the energy
pumping phenomenon and the efficiency of the designed NES. Here, two kinds of primary
system under excitation around G = 0.25 mm are adopted for the experiments. The
stiffness of first device is provided by two leaf springs (see Fig. 3.10), which is much
stronger that the second one generated from four tension springs. According to Table 2.1,
as the system is excited at G = 0.25 mm, the reduced parameter of nonlinear stiffness
should be set around the value of 2000. For this, the #1 conical spring is adopted for
the first primary system (with leaf springs), and the variable pitch spring is used for the
second primary system (with tension springs).

3.2.1 NES system with conical spring

The experimental setup for NES with #1 conical springs is presented in Fig. 3.10, which
consists of an LO with an embedded NES. For the LO, a weakly nonlinear behavior exists
but does not affect the purpose of the tests.

The frequency response function of LO obtained with the sweeping frequency test is
presented in Fig. 3.11, where the thick blue and the thin red lines represent the response
of the LO with and without NES, respectively. It can be seen that the original peak of
the FRF has vanished and the detached resonance tongue no longer exists. The RMS
value of LO amplitude is obviously decreased with the vibration mitigation of the NES.

In the response of the LO, the dynamical flow for different values of the frequency might
be attracted either to a smooth zone, or alternatively, to a number of discontinuities (range
of non-monotonicity). The former corresponds to the steady state response; the latter
corresponds to the unstable fixed points, where a Strongly Modulated Response (SMR)
occurs. A detailed view of the SMR is presented in Fig. 3.12. Where the displacements
of the LO increase and decrease alternately with the cyclical activation and deactivation
of the NES. In this process, targeted energy transfer (TET) occurs and the energy is
irreversibly dissipated from the LO to the NES. Thus it can be concluded that this NES
with conical springs can also produce energy pumping and is efficient to protect the
primary system in a large band of resonance frequencies.
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(a)

(b)

Shaker

NES

LO

Laser

Accelerometer

Figure 3.10: Experimental setup: (a) global view of the system and (b) detailed view of
LO and NES

3.2.2 NES system with variable pitch spring

To verify the efficiency of the designed NES with variable pitch springs, an experimental
study to obtain the nonlinear frequency response function of the system around the 1:1
resonance was also performed. The experimental setup is presented in Fig. 3.13.

This setup consisted of a linear oscillator (LO), with an embedded NES. The whole
system was fixed on a 10 kN electrodynamic shaker. The displacement of the LO and NES,
and the acceleration of the shaker were measured by two contactless laser displacement
sensors and an accelerometer, respectively. The raw signals were recorded using a digital
oscilloscope and a bandpass filter was applied to correct biases and suppress high frequency
noise. The parameters of the experimental setup are given in Table 3.2.

The frequency response functions (FRF) under excitation with G = 0.25 mm and
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Figure 3.11: Frequency response curve of LO with (blue) and without (red) the designed
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Figure 3.12: Strongly Modulated Response of LO (blue) and NES (green)

G = 0.40 mm are illustrated in Fig. 3.14 (a) and (b), respectively, where the thick blue
and the thin red lines represent the response of the LO with and without the NES, x is
the amplitude of LO, and A is the displacement of response under time history. It can
be seen that the original peak of FRF has vanished, and the RMS value of LO amplitude
is obviously decreased with vibration mitigation by the NES. As the excitation increases
further, the maximum amplitude of the LO remains at the same value (5.3 mm). This
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electrodynamic shaker
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force transducer

pre-compressed variable pitch spring
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Figure 3.13: Experimental setup: (a) global scheme of the system and (b) detailed view
of LO and NES.

Table 3.2: Parameters of the experiment

Physical Parameters
m1 5.5 kg m2 0.1 kg
k1 1.15× 104 N/m k2 4× 105 N/m3

c1 3 Ns/m c2 0.4 Ns/m
Reduced Parameters

ε 1.8% λ2 0.088
λ1 0.66 K 1913

result is contrary to that for the traditional linear absorber, the tuned mass damper
(TMD), where the maximum amplitude of the LO is proportional to the amplitude of
excitation. Beside, an interesting phenomenon is observed: as the excitation amplitude
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Figure 3.14: Experimental results: (a) frequency response curve of LO with (blue) and
without (red) designed NES, G = 0.25 mm; (b) frequency response curve of LO with
(blue) and without (red) designed NES, G = 0.40 mm; (c) detailed view of response of
LO under frequency sweep test with G = 0.25 mm; (d) Strongly Modulated Response of
LO (blue) and NES (green) with G = 0.25 mm, σ = 0.

becomes higher, the impact of variable pitch spring is produced when the spring is at the
solid length, and the efficiency of TET is enhanced. Thus, a further study of NES with
combined nonlinearity (i.e. impact and cubic nonlinearity) may be useful here.

The time-displacement response of a frequency sweep test under G = 0.25 mm is
presented in Fig. 3.14(c). It shows that the unsmooth blue curve in Fig. 3.14(a) corre-
sponds to the unstable fixed points, where a strongly modulated response (SMR) occurs.
A detailed view of the SMR is presented in Fig. 3.14(d), where the displacements of the
LO increase and decrease alternately with the cyclical activation and deactivation of the
NES. In this process, targeted energy transfer (TET) occurs and the energy is irreversibly
dissipated from the LO to the NES. Thus it can be concluded that this type of NES can
produce energy pumping and is efficient to protect the primary system in a large band of
frequencies. Moreover, it performs well in terms of controlling the maximum amplitude
of the LO for different types of excitation.
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3.3 Sensitivity analysis

From the static test, it is found that adjusting the pre-compressed length is easy to
change the force characteristics of designed NES system, and correspondingly the results
of dynamic test are also influenced. Thus, a sensitivity analysis of NES system is addressed
in this section, considering the precision of the installation and quantifying the uncertainty
[Opgenoord et al., 2016].

The performance of the NES relies on the given primary system specification, which
is presented in Table 3.3. Here, the stiffness of primary system is larger than the previous
two systems for dynamic test, so that a much larger cubic nonlinearity is adopted for the
NES system.

Table 3.3: Parameters of the designed NES

Tuned parameters
G 0.205mm K 3000

System parameters
m1 5 kg m2 50 g
k1 1× 105N/m k2 3× 106N/m3

c1 4Ns/m c2 2Ns/m
Anticipated parameters

S̄t 24.8mm l̄p 11.9mm
b0 0N b1 0N/m
b2 −4.4N/m2 b3 2.97× 106N/m3

Here, the maximum excitation amplitude is fixed as G = 0.205mm, and the system
parameters are related to the reduced parameters of Table 2.1. Thus the tuned parameter
of nonlinear stiffness can de determined as K = 3000, with the physical value of k2 = 3×
106 N/m3. To obtain this value, both the conical springs and the cylindrical compression
springs need to be pre-compressed to the anticipated lengths, with S̄t = 24.8 mm and
l̄p = 11.9 mm. However, it is hard to control the coefficients a0, a1, a2 and a3 at the
anticipated value since differences exist in practice. To analyze their influence, differences
of the adjustment length for conical and linear springs were selected as the variables,
defined as γi and ηi, respectively (see Fig. 3.15). Then the real adjustment lengths are:

St,i = S̄t,i + γi, lp,i = l̄p,i + ηi, i = 1, 2 (3.5)

Thus, the system of equations (2.5) can be written in the following form:
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1

2
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Figure 3.15: Differences of the adjustment length for conical springs (γi) and linear springs
(ηi)

ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εζ · f(x− y) = εF cos Ωτ

εÿ + ελ2 (ẏ − ẋ)− εζ · f(x− y) = 0
(3.6)

where the corresponding parameters are expressed as:

f(x− y) = a0 + a1(x− y) + a2(x− y)2 + a3(x− y)3

ζ = 1/(m2ω
2
0)

(3.7)

Based on Eq. (3.6), a sensitivity analysis for the stiffness of the NES is summarized
in Table 3.4, where the variables γi and ηi are selected in the interval [−1, 1]mm, the
objective xm is extracted from the maximum amplitude of the LO in the numerical FRF.
As can be seen, in the vicinity of the frequency of the resonance, no resonance tongue
occurs, and all the maximum amplitudes of the LO are smaller than 12mm. In comparison
with the maximum amplitude of the LO without NES (36.2mm), the amplitude of the
LO is decreased by more than 67% with the help of NES.

Another factor that needs to be considered is the damping of the NES. With the varia-
tion of the adjustment lengths, this value could also be changed. A sensitivity analysis for
the NES damping is presented in Table 3.5, where the stiffness of the NES is fixed and the
damping c2 is selected in the variation interval [−15, 15]%. The maximum amplitudes of
LO are close to each other, which means that the NES is not sensitive to small differences
of damping.

Three particular examples of Table 3.4 were extracted and the corresponding nonlinear
force versus the response of LO and NES were calculated. The results are presented
in Fig. 3.16, where positive stiffness, negative stiffness and unsymmetrical stiffness are
observed, according to the example. In Fig. 3.16 (a) and (d), as the pre-compressed
lengths ηi are smaller than the anticipated value, the stiffness curve is no longer pure
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Table 3.4: Sensitivity analysis for the stiffness of NES

Adjustment parameters (mm)
γ1 γ2 η1 η2 xm γ1 γ2 η1 η2 xm
0 0 0 0 9.7 1 1 0 0 9.1
0 0 1 0 10.5 1 1 1 0 9.8
0 0 -1 0 9.0 1 1 -1 0 8.4
0 0 1 1 11.2 1 1 1 1 10.5
0 0 -1 -1 8.3 1 1 -1 -1 7.7
1 0 0 0 9.2 -1 -1 0 0 10.3
1 0 1 0 10.0 -1 -1 1 0 11.0
1 0 -1 0 8.5 -1 -1 -1 0 9.5
1 0 1 1 10.7 -1 -1 1 1 11.9
1 0 -1 -1 7.9 -1 -1 -1 -1 8.8
-1 0 0 0 9.8 1 -1 0 0 9.1
-1 0 1 0 10.6 1 -1 1 0 9.9
-1 0 -1 0 9.1 1 -1 -1 0 8.5
-1 0 1 1 11.4 1 -1 1 1 10.6
-1 0 -1 -1 8.4 1 -1 -1 -1 7.9

Table 3.5: Sensitivity analysis for the damping of NES

Adjustment parameters
c2 (Ns/m) 1.7 1.8 1.9 2.0 2.1 2.2 2.3
xm (mm) 9.5 9.6 9.7 9.7 9.8 9.8 9.9

cubic and a positive linear stiffness is produced. It is interesting to observe that the
amplitude of the LO is lower here than in the other cases, which indicates that adding a
small positive stiffness may help with vibration mitigation under a certain excitation.

In Fig. 3.16 (b) and (e), the force curve has two stable equilibria and one unstable
equilibrium. Between the two stable equilibria, the stiffness is negative and a bistable
NES is obtained. In this case, the amplitude of the LO is increased, and the range of
excitation amplitude for efficient TET is broader [Romeo et al., 2015b]. This suggests
that, as the springs of this prototype are fixed for engineering applications, adjusting the
pre-compressed length would provide an alternative way to increase the band in which
excitation amplitude is robust. In Fig. 3.16 (c) and (f), the equilibrium of the force curve
is no longer located at the center but shifts to the left. Although the stiffness curve is
unsymmetrical, the energy pumping between NES and LO is still activated, leading to
a significant decrease of the amplitude of the LO. Therefore, this type of NES can work
robustly with differences in the adjustment lengths.
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Figure 3.16: The nonlinear NES force versus the response of LO and NES with G =
0.205mm, σ = −0.2: (a)(d) positive linear stiffness, γ1 = γ2 = 1, η1 = η2 = −1; (b)(e)
negative linear stiffness, γ1 = γ2 = −1, η1 = η2 = 1; (c)(f) unsymmetrical stiffness, γ1 = 1,
γ2 = −1, η1 = η2 = 0.

3.4 Conclusion

In this chapter, experiment study of tuned nonlinear energy sink is preformed, so as
to validate the concept. Firstly, identification of the NES system and calculation of
effective mass are implemented. The results of force characteristics show that both the
variable pitch spring and conical spring can produce strong nonlinearity, and a good
correlation between the theoretical and the experimental results are observed. Thus it
can be concluded that combining nonlinear springs and a negative stiffness mechanism is
a feasible way to produce pure cubic nonlinearity. To enable the anticipated nonlinearity
to be obtained, enough pre-compressed length should be reserved in both the nonlinear
and the linear springs.

Secondly, experiments for the whole system embedded on an electrodynamic shaker
are studied. The results show that the designed NESs are efficient to protect the primary
system in a large band of frequencies. Moreover, it performs well in terms of controlling the
maximum amplitude of the LO for different types of excitation, thus making it practical
for the application of passive vibration control. For the NES with variable pitch spring,
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an interesting phenomenon is observed: as the excitation amplitude becomes higher, the
impact of variable pitch spring is produced, and the efficiency of TET is enhanced. To
understand the efficiency of NES with impact nonlinearity, detailed theoretical study will
be presented in the fifth chapter.

Finally, a sensitivity analysis is performed with respect to the adjustment differences
of the springs. With the variation of adjustment length, NES with positive stiffness,
negative stiffness and unsymmetrical stiffness are generated, which lays the foundation
that: as the springs of this prototype are fixed for engineering applications, adjusting the
pre-compressed length could provide an alternative way to increase the band in which
excitation amplitude is robust. In the next chapter, detailed analysis of bistable NES
(with negative stiffness) and semi-active control of this device will be studied.
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CHAPTER 4 Efficient targeted
energy transfer of
bistable NES

This chapter is dedicated to the optimal design of a bistable NES for the vibration
control of a periodically excited linear oscillator. This system with negative linear
and cubic nonlinear coupling is analytically studied with the method of multiple
scales. As a result, a slow invariant manifold is obtained and is applied to pre-
dict four typical response regimes at different energy levels. Moreover, asymptotic
analysis and Melnikov analysis are respectively used to obtain the thresholds of
these typical responses. Through their efficiency comparison, it is observed that
the bistable NES can be efficient and robust in a broad-range of excitation ampli-
tude. With the Hilbert transform and wavelet transform, Targeted energy transfer
with transient or permanent 1:1 resonance is found to be responsible for the ef-
fectiveness of such responses as strongly modulated response and 1:1 resonance.
Finally, an optimal design criterion and a corresponding parameter configuration
are proposed to guide the semi-active control and application of this type of NES.
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4.1 Theoretical Development

From the literature review, it reveals that an appropriately designed bistable NES may
be more efficient than the NES with cubic nonlinearity [Johnson et al., 2013 ; Harne
et al., 2013 ; Mohammad A, 2014 ; Habib and Romeo, 2017]. However, recent stud-
ies have mainly focused on the transient dynamics between a conservative system with
impulsively excited LO and a NES. The efficiency of each response regime and its corre-
sponding threshold under periodic excitation are uncertain, so the optimal design criterion
of bistable NES needs to be further studied. With this in mind, the main objective of this
chapter is first to study the efficiency of different response regimes and then to establish
the relation of optimization for different excitation conditions. To this end, theoretical
development a 2 DOF system comprising a harmonically excited LO strongly coupled to
a bistable NES is investigated in the first section.

4.1.1 Modelling and analytical treatment

The system of a harmonically excited linear oscillator (LO) with a bistable NES is illus-
trated in Fig. 4.1, and the equations of motion are as follows:

1m 2m

NESLO

1k

1c

3k

2k

2c

x yex

Figure 4.1: Schematic of the 2 DOF system comprising a LO and a bistable NES

m1ẍ+ k1x+ c1ẋ+ c2 (ẋ− ẏ) + k2 (x− y)3 + k3(x− y) = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2 (y − x)3 + k3(y − x) = 0
(4.1)

where x, m1, c1, k1 and y, m2, c2, k2, k3 are the displacement, mass, damping and stiffness
of the LO and the bistable NES respectively. The imposed harmonic displacement xe is
expressed as: xe = G cos(ωt).

After rescaling, the system of equation (4.1) can be reduced to the dimensionless form:

ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)3 + εδ(x− y) = εF cos Ωτ

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)3 + εδ(y − x) = 0
(4.2)
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where the term containing ε2 is small and can be neglected. The corresponding physical
parameters are expressed as follows:

ε = m2

m1
, ω0

2 = k1

m1
, K = k2

m2ω02 , δ = k3

m2ω02 ,

λ1 = c1

m2ω0
, λ2 = c2

m2ω0
, F = G

ε
, Ω = ω

ω0
, τ = ω0t

(4.3)

The dots denote differentiation with respect to dimensionless time τ . New variables
representing the displacement of the centre of mass and the internal displacement of the
bistable NES are introduced:

v = x+ εy, w = x− y (4.4)

Substituting Eqs. (4.4) into Eqs. (4.2):

v̈ + ελ1
v̇ + εẇ

1 + ε
+ v + εw

1 + ε
= εF cos Ωτ

ẅ + ελ1
v̇ + εẇ

1 + ε
+ v + εw

1 + ε
+ λ2 (1 + ε) ẇ +K (1 + ε)w3 + δ(1 + ε)w = εF cos Ωt (4.5)

The system is studied in the vicinity of the 1:1 resonance, where both the LO and
the NES execute time-periodic oscillations with identical frequency Ω. To obtain the
analytical periodic solution, two new complex variables are introduced:

φ1e
iΩτ = v̇ + iΩv, φ2e

iΩτ = ẇ + iΩw (4.6)

Substituting Eqs. (4.6) into Eqs. (4.5) and keeping only the secular term containing
eiΩτ yields the following slowly modulated system:

φ̇1 + iΩ
2 φ1 + ελ1(φ1 + εφ2)

2(1 + ε) − i(φ1 + εφ2)
2Ω(1 + ε) −

εF

2 = 0

φ̇2 + iΩ
2 φ2 + ελ1(φ1 + εφ2)

2(1 + ε) − i (φ1 + εφ2)
2Ω(1 + ε) + λ2(1 + ε)φ2

2

− 3iK (1 + ε)φ2
2φ̄2

8Ω3 − εF

2 −
iφ2δ(1 + ε)

2Ω = 0

(4.7)

Substituting Eq. (2.17) and Eqs. (2.11) into Eqs. (4.7) and equating coefficients of ε0

and ε1 gives:

Order ε0:
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d

dτ0
φ1 = 0

d

dτ0
φ2 + 1

2 i(φ2 − φ1) + 1
2 φ2λ2 −

3
8 iKφ2

2φ̄2 −
1
2 iδ φ2 = 0

(4.8)

Order ε1:

d

dτ1
φ1 + 1

2λ1 φ1 + 1
2 i (φ1 − φ2) + iσ φ1 −

1
2 F = 0

d

dτ1
φ2 + 1

2 λ1 φ1 + 1
2φ2λ2 + 1

2iσ (φ1 + φ2) + 1
2i (φ1 − φ2)

− 3
8 iK (1− 3σ)φ2

2φ̄2 −
1
2 F + 1

2iδ (σ − 1)φ2 = 0

(4.9)

By changing of variables of Eqs. (2.13)in Eqs. (4.8), the expression for a slow invariant
manifold (SIM) is obtained:

Z1 = λ2
2Z2 + (δ − 1)2Z2 + 3K

2 (δ − 1)Z2
2 + 9K2

16 Z2
3

Z1 = N1
2, Z2 = N2

2
(4.10)

By taking the derivative of the right-hand side with respect to Z2, the multiplicity of
solutions can be studied. After resolution, the singular values of Z2 are calculated:

Z2i =
4
(

2(1− δ)±
√

(1− δ)2 − 3λ2
2

)
9K

(4.11)

In Eq. (4.11), the existence of two roots and a pair of saddle-node bifurcations needs
to satisfy the condition:

δ < 1−
√

3λ2 (4.12)

If δ is greater than this critical value, the SIM is monotonous. Otherwise, the SIM
admits extrema and can be divided into two stable branches and one unstable branch.

An illustration of a SIM with different values of δ is given in Fig. 4.2. When the value
of δ decreases, the topological shape of the SIM becomes larger and the unstable branch
is shifted towards the right up direction. For a cubic NES as δ = 0, the unstable branch of
SIM is mainly responsible for the possible occurrence of energy pumping and it may give
rise to the strongly modulated response (SMR) [Gendelman et al., 2008]. For a bistable
NES as δ < 0, the relation between the unstable branch and the SMR is uncertain. So
in the next section, the response regimes and the corresponding SIM positions will be
discussed.
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Figure 4.2: The SIM structure with different value of δ. The solid line represents the
stable branch, and the dotted line the unstable branch.

4.1.2 Response regimes

The parameters identified on the simulation setup and used for the calculations are given in
Tab. 4.1. The corresponding force-displacement relation of a bistable NES is presented in
Fig. 4.3, where the curve has two stable equilibria and an unstable equilibrium. The region
of negative stiffness is located between the two stable equilibrium points. In this area, the
dynamic transition is rapid and sweeps out a large stroke, thus including viscous damping
that can provide high levels of energy dissipation. If these parameters are transferred to
the double-well restoring force potential, four different response regimes are obtained, as
shown in Fig. 4.4, which illustrates that, with different levels of input energy, the dynamic
response of a bistable NES can be classified as (a) intra-well oscillation, (b) chaotic inter-
well oscillation, (c) strongly modulated response and (d) stable periodic response.

To demonstrate these regimes, the time-displacement response of the LO and NES,
and the projection of motion of the system into SIM are presented in Fig. 4.5, in the first
and second column, respectively. Where the simulation model is described by Fig. 2.1
under periodic excitation, the transient modulus of the LO and NES are calculated by
Z1 =

∣∣∣(v̇ + iΩv)e−iΩτ
∣∣∣2 and Z2 =

∣∣∣(ẇ + iΩw)e−iΩτ
∣∣∣2. As a result, the following response

regimes will occur consecutively with increasing excitation amplitude:
(a) Intra-well oscillation with G = 0.06 mm. In this case, the NES exhibits a small

amplitude response of oscillation about one of the stable equilibria (the dashed line).
Owing to the asymmetric of amplitude of the NES, the projection in the SIM structure is
a cyclic motion around the stable equilibrium, and the location is far away from the first

PhD Thesis-Donghai QIU - 79 -



4.1 Theoretical Development

Table 4.1: Parameters of bistable NES

Physical Parameters
m1 5 kg k1 11.4× 103N/m
m2 50 g k2 2× 105N/m3

c1 4Ns/m k3 −50N/m
c2 0.4Ns/m

Reduced Parameters
ε 1% λ1 1.67
K 1742 λ2 0.167
δ −0.44
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Figure 4.3: The force displacement relation of a bistable NES: the two side points represent
the two stable equilibria, and the middle point represents the unstable equilibrium

stable branch of the SIM;
(b) As the excitation amplitude G increases to 0.1 mm, chaotic alternating in-well

and cross-well oscillations are observed, the two stable equilibria of which are indicated
by two horizontal dashed lines in the time response plots and by the vertical dashed line
in the SIM plots. Taking the dashed line as a reference, it illustrates that the amplitude of
cross-well oscillations is close to the value of stable equilibrium. With the characteristics
of irregular in both duration and occurrence, the transient trajectory in SIM is chaotic
and not repeatable;

(c) For a relatively higher level of excitation amplitude G = 0.42 mm, a quasi-periodic
regime with slow variation of the amplitudes of both oscillators is observed. For the LO,
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Figure 4.4: Responses at different levels of energy: a intra-well oscillation; b chaotic
inter-well oscillation; c strongly modulated response; d stable periodic response

the amplitude increases and decreases repeatedly in a regular fashion. The amplitude of
the bistable NES can be roughly classified into two regimes: a small region (chaotic and
growing envelope) corresponding to the increase of the LO amplitude, and a large region
(relatively stable envelope) corresponding to the decrease of the LO amplitude. This
alternating regime of strongly modulated response (SMR) produces the jump phenomenon
in SIM. However, unlike the cubic NES, the hypothetical “jump” of bistable NES does
not start from the first singular point, which means that the first stable branch of SIM
can not predict the threshold of targeted energy transfer;

(d) As the excitation amplitude is increased still further to G = 0.55 mm, both the
LO and NES show a stable periodic response, the amplitudes of which are symmetrical.
This means that 1:1 resonance of LO and NES is produced. The corresponding right
sub-figure shows that the steady projected motion focuses on the second stable branch of
the SIM, and it has been demonstrated in [Starosvetsky and Gendelman, 2008b] that this
projection can be represented by a fixed point of the SIM.

Knowing the variation mechanism of the response regimes, it would be interesting
to investigate the efficiency of each regime and the corresponding threshold for periodic
excitation so as to guide the design of a bistable NES. When the input energy is high, as
shown in Fig. 4.4, there is a threshold that fixes whether SMR (c) or the stable periodic
response (d) is obtained. By comparing the two SIM projections of Fig. 4.5, a critical
fixed point located at the lowest point of the second stable branch can be found, and
its position can be used to evaluate the type of response regime. For the low level of
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Figure 4.5: Time-displacement response of LO and bistable NES, and the motion of the
system projected into SIM (a) intra-well oscillation with G = 0.06 mm (b) chaotic inter-
well oscillation with G = 0.1 mm (c) strongly modulated response with G = 0.42 mm (d)
stable periodic response with G = 0.55 mm
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energy, the state of the bistable NES can be imagined as a ball moving in the ’double-
well’ structure, the dynamic response of which is restricted to oscillations confined to one
stable state corresponding to response (a). When sufficient energy is input to elevate
the state beyond the hilltop, the second response (b) alternating in-well and cross-well
oscillation is produced. In physical terms, this hilltop analogy can be defined as a force
threshold or critical load. Based on the above analysis, the threshold and the efficiency
of each regime will be studied further in the following sections.

4.2 Study of threshold at different levels of energy

To predict the occurrence of intra-well oscillation or chaotic inter-well oscillation, and the
transition between SMR and stable periodic response, asymptotic analysis and Melnikov
analysis are respectively studied in this section.

4.2.1 Asymptotic analysis for high energy level

To obtain the threshold at high energy level, asymptotic analysis will continue to be used
so as to analyse the bifurcations of the SMR regime. The fixed point corresponding to
periodic responses is described in Eqs. (4.8), and we assume the solution on the stable
branch to be Φ(τ1) = limτ0→∞ φ2(τ0, τ1). By introducing this expression and Eqs. (4.8)
into the first equation of Eqs. (4.9), the asymptotic stability of the points of the stable
branch with respect to time scale τ1 is studied in the following form:

d
dτ1

Φ(1− iλ2 − δ − 3
2KΦΦ̄)− d

dτ1
Φ̄3

4KΦ2 − 3
8iKΦ2Φ̄(1− iλ1 + 2σ)

+1
2Φ(2iσ + λ1 + λ2 − σλ1 − iδ + 2σλ2 − 2iσδ − iλ1λ2)− 1

2F = 0
(4.13)

By transferring Φ(τ1) into polar coordinates, the expression governing the evolution
of amplitude N2 and the phase angle θ2 are obtained:

∂N2

∂τ1
= f2(N2, θ2)

g(N2) ,
∂θ2

∂τ1
= f1(N2, θ2)

g(N2) (4.14)

where
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

f1 = −54K2N2
4σ − 27K2N2

4 − 96KN2
2δ σ − 24KN2

2λ1 λ2 + 36FKN2 sin θ2

−48KN2
2δ + 96σKN2

2 + 12KN2
2 − 32 δ2σ − 32λ2

2σ − 16 δ2 + 64σ δ

−16λ2
2 + 16 δ − 32σ + 1

N2
(16Fδ sin θ2 + 16F cos θ2λ2 − 16F sin θ2)

f2 = −9K2N2
5λ1 − 24KN2

3δ λ1 + 24λ1KN2
3 − 12FKN2

2 cos θ2 − 16N2δ
2λ1

−16N2λ1 λ2
2 + 16F sin θ2λ2 − 16Fδ cos θ2 + 32λ1 δ N2 + 16F cos θ2

−16λ1N2 − 16N2λ2

g = 54K2N2
4 + 96KN2

2δ − 96KN2
2 + 32λ2

2 + 32(δ − 1)2

(4.15)

In [Starosvetsky and Gendelman, 2008b], it is shown that Eq. (4.14) has two kinds of
fixed point. The first is referred to as an ordinary fixed point. It is located at the branch
of SIM and satisfies the condition f1 = f2 = 0 and g 6= 0. The others correspond to the
folded singularities. In this case the derivative of Eq. (4.10) is related to the third equation
of Eqs. (4.15), so it can be found that g = 0. Based on this, the system f1 = f2 = 0 will
be discussed and is rewritten in the following matrix form:

α1 α2

β1 β2

sin θ2

cos θ2

 =
η1

η2

 (4.16)

where



α1 = 1
N2

(36FKN2
2 − 16F + 16Fδ), α2 = 16Fλ2

N2

β1 = 16λ2F, β2 = −12FKN2
2 + 16F − 16Fδ

η1 = 54K2N2
4σ + 27K2N2

4 + 96KN2
2δ σ + 24KN2

2λ1 λ2

+48KN2
2δ − 96σKN2

2 − 12KN2
2 + 32 δ2σ + 32λ2

2σ

+16 δ2 − 64σ δ + 16λ2
2 − 16 δ + 32σ

η2 = 9K2N2
5λ1 + 24KN2

3δ λ1 − 24λ1KN2
3 + 16N2δ

2λ1

+16N2λ1 λ2
2 − 32λ1 δ N2 + 16λ1N2 + 16N2λ2

(4.17)

By solving Eq. (4.16), the phase angle of ordinary points θ2 can be obtained as the
determinant does not vanish. For the folded singularities Zic, it is observed that det(A) =
8F 2g/N = 0, which means that, when f2 = 0 is eliminated, the condition f1 = 0 can be
automatically satisfied by Eq. (4.16). Thus we can study the expression of f2 only:
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√
β2

1 + β2
2 cos(θ2 − γ) = η2, γ = arctan(β1

β2
) (4.18)

Then θ2 can be deduced as:

θ2 = arctan(β1

β2
) + arccos( η2√

β2
1 + β2

2

) (4.19)

Based on this, the critical condition of the excitation amplitude for the existence of
the folded singularities is:

∣∣∣∣∣∣ η2√
β2

1 + β2
2

∣∣∣∣∣∣ = 1 (4.20)

Thus the threshold of SMR is calculated as:

Gic = ε
N2i

4
F1

F2
(4.21)

where

F1 = 9K2N2i
4λ1 + 24KN2i

2δ λ1 − 24KN2i
2λ1 + 16 δ2λ1

+ 16λ1 λ2
2 − 32 δ λ1 + 16λ1 + 16λ2

F2 = (9K2N2i
4 + 24KN2i

2δ − 24KN2i
2 + 16λ2

2 + 16( δ2 − 1)2) 1
2

(4.22)

4.2.2 Melnikov analysis for low energy level

The criterion of excitation amplitude to produce SMR at high level of energy having been
detected, the next objective is to predict the ignition area of chaotic response at low level
of energy. For this, Melnikov analysis is introduced. It is a function that can measure
the distance between the stable and unstable manifolds for a saddle of the perturbed
system [Wiggins, 2003 ; Guckenheimer and Holmes, 2013]. The dynamical system is
written as:

ż = f(z) + εg(z, t); z =
u1

u2

 ∈ R2 (4.23)

where f(z) is a Hamiltonian vector field on R2 and εg(z, t) is a small perturbation which
does not need to be Hamiltonian itself. To fit this function, the second equation of the
system of equations (4.2) is equivalent to:
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ẅ + λ2ẇ +Kw3 + δw = ẍ (4.24)

Then we define that

λ2 = ελ̂2, ẍ = εx̂ (4.25)

Substituting Eq. (4.25) into Eq. (4.24) and transferring it into the form of Eq. (4.23),
the expression can be written as:

u̇1 = u2

u̇2 = −δu1 −Ku3
1 + ε(x̂− λ̂2u2)

(4.26)

For ε = 0, Eq. (4.26) has two centres at (u1, u2) = (±
√

(−δ/K), 0) and a hyperbolic
saddle at(u1, u2) = (0, 0), the Hamiltonian of the system is:

H(u1, u2) = u2
2

2 + δ
u2

1
2 +K

u4
1

4 (4.27)

where the potential function can be written as:

U(u1) = δ
u2

1
2 +K

u4
1

4 (4.28)

The corresponding curve is presented in Fig. 4.6(a). It shows that, when the energy
has the local maximum at u1 = 0, a global homoclinic bifurcation will be produced, which
implies a transition from intra-well oscillation to inter-well oscillation.

The unperturbed homoclinic orbits that connect the saddle point of the potential
energy curve are given by:

q0
+(τ) = (R · sech(Sτ),−RS · sech(Sτ) tanh(Sτ))

q0
−(τ) = −q0

+(τ)
(4.29)

where S = ±
√
−δ and R =

√
−2δ/K. Additionally, two homoclinic orbits based at

q0
± = (±R, 0) are presented in Fig. 4.6(b). Its function as the pseudo-separatrix for the
occurance of chaotic motion will be discussed later.

According to the Melnikov function, the distance between stable and unstable mani-
folds is given by M(τ0):
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Figure 4.6: (a) Potential energy and (b) Hamilton phase plane: pseudo-separatrix

M(τ0) =
∫ ∞
−∞

f(q0(τ)) ∧ g(q0(τ), τ + τ0)dτ (4.30)

The ∧ operator is the wedge product of f(q0(τ)) and g(q0(τ), τ + τ0). To present the
computation of M(τ0) for q0

+(τ), f and g are written as:

f(q0(τ)) =
 −RS · sech(Sτ)tanh(Sτ)
−δR · sech(Sτ)−KR3 · sech3(τ)

 (4.31)

g(q0(τ, τ + τ0)) =
 0
x̂− λ̂2RS · sech(Sτ)tanh(Sτ)

 (4.32)

Thus,

M(τ0) = −RS
∫ ∞
−∞

sech(Sτ)tanh(Sτ)x̂(τ + τ0)dτ

−R2Sλ̂2

∫ ∞
−∞

S · sech2(Sτ)tanh2(Sτ)dτ︸ ︷︷ ︸
=[ tanh2

3 ]+∞−∞=2/3

(4.33)

Yielding

M(τ0) = −RS
∫ ∞
−∞

sech(Sτ)tanh(Sτ)x̂(τ + τ0)dτ − 2R2Sλ̂2

3
(4.34)

As the energy of excitation decreases, the response of the NES will change from aperi-
odic alternating cross-well and intra-well oscillation to intra-well oscillation. During this
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process, the phase trajectory will pass the pseudo-separatrix, the amplitude of LO will
tend to be stable, and pass through the critical maximum value N0c. To obtain this value,
we suppose that the periodic response of x̂ is written as:

x̂ = Âcos(Ωτ + φ) (4.35)

Substituting Eq. (4.35) into Eq. (4.34), and using the theorem that trigonometric
functions are even or odd since cos(Ω(τ + τ0) + φ) = cos(Ωτ0 + φ)cos(Ωτ) − sin(Ωτ0 +
φ)sin(Ωτ), M(τ0) can be expressed as:

M(τ0) = −
∫ ∞
−∞

sech(Sτ)tanh(Sτ)sin(Ω
S
Sτ)dSτ ×RÂsin(Ωτ0 + φ)− 2R2Sλ̂2

3
(4.36)

With the method of residues, the integral term can be calculated as:

M(τ0) = −RÂπΩ
S

sin(Ωτ0 + φ)sech(πΩ
2S )− 2R2Sλ̂2

3 (4.37)

According to Eq. (4.25), Â = −N1Ω2/ε. By substituting this equation to Eq. (4.37),
M(τ0) finally becomes:

M(τ0) =
√

2
K

N1πΩ3

ε
sin(Ωτ0 + φ)sech( πΩ

2
√
−δ

)± 4δ
√
−δ

3K
λ2

ε
(4.38)

From Melnikov theory, the fact that M(τ0) has a zero solution means that the trans-
verse interaction between stable and unstable manifolds exists in the system, which leads
to the appearance of chaos. Then we can obtain the necessary condition for this chaos
interaction as:

N0c =
2
√

2(−δ) 3
2 cosh( πΩ

2
√
−δ )

3
√
KπΩ3

λ2 (4.39)

When N1 < N0c, the movement of the NES will enter one of the two wells. When the
excitation exceeds this value, inter-well motion will occur as a consequence of the homo-
clinic bifurcation. So there is an analytical border that indicates whether the response is
likely to chaos or not.

The effects of negative stiffness δ and cubic nonlinearity K on the Melnikov threshold
for homoclinic bifurcation are illustrated in Fig. 4.7, where the excitation frequency is
given by f = ω/2π. The curves shown represent a boundary with the upper domain
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Figure 4.7: The critical amplitude for the appearance of intra-well and chaotic oscillations
as a function of the excitation frequency, with the various values of (a) cubic nonlinearity
and (b) negative stiffness.

indicating the area for corresponding chaotic inter-well oscillation. From the perspective of
the LO amplitude in Fig. 4.7(a), we can find that increasing the value of cubic nonlinearity
will result in a decreased amplitude threshold for homoclinic bifurcation. In Fig. 4.7(b), an
increase in the negative stiffness δ leads to a shift of the stationary point (∂N0c/∂f = 0)
toward a higher frequency, which means that, if a system has resonance in the high
frequency range, using higher negative stiffness is an easier way to obtain a low amplitude
threshold.

4.3 Dynamical efficiency and design criterion

To guide the application of bistable NES under harmonic excitation, the efficiency of
different response regimes is compared and their underlying TET is firstly studied in this
section. Then, an optimal design criterion of bistable NES and a corresponding parameter
configuration are proposed.

4.3.1 Efficiency of bistable NES and cubic NES

Since the thresholds have been deduced for each level of energy, the corresponding dy-
namical efficiency will be discussed in this section. For a better understanding of the
performance of a bistable NES, Fig. 4.8 and Fig. 4.9 provide a comparison between a
cubic NES and a bistable NES for the energy dissipation ratio and the amplitude of the
LO. The energy dissipated by the LO and the NES in the time interval (τ0, τ) is:
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Figure 4.8: Efficiency of cubic NES (a) energy dissipation ratio of NES and (b) amplitude
of the LO. Ae represents the mean amplitude, and Am the maximum amplitude

ELO(τ) =
∫ τ

τ0
ελ1ẋ

2dτ

ENES(τ) =
∫ τ

τ0
ελ2(ẋ− ẏ)2dτ

(4.40)

Therefore, the energy dissipation ratio of the NES (i.e. the efficiency) can be defined
as:

rNES = ENES

ELO + ENES
× 100% (4.41)

For the cubic NES in Fig. 4.8, the areas a, c and d respectively represent the fixed
point, SMR and fixed point in the SIM structure. Where Ae is the mean amplitude
(i.e. average value of the slowly varying envelopes), Am is the maximum amplitude (i.e.
maximum value of the slowly varying envelopes). When the input energy is too low to
activate the energy pumping of the cubic NES, the efficiency is poor, and the amplitude
of LO increases linearly with the excitation amplitude. As the input increases to the
range [G1, G2], the difference between the mean amplitude and the maximum amplitude
is distinguished for SMR, in which the amplitude of NES is no longer stable. When the
excitation amplitude passes the threshold G2 and makes the NES work in area d, an
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optimal point Dm is observed where Ae and Am are the same at the minimum value,
and the efficiency ratio of the NES is maximum, almost 74% of the targeted energy is
dissipated by the cubic NES.

For bistable NES in Fig. 4.9, the areas a, b, c and d represent four different regimes:
intra-well oscillation, chaotic inter-well oscillation, SMR and stable periodic response,
respectively, where the points A, B, C and D correspond to the excitations G = 0.06
mm, G = 0.1 mm, G = 0.42 mm and G = 0.55 mm that we observed previously. Unlike
the cubic NES, as the input energy is low, the bistable NES shows high efficiency, even it
works in the intra-well oscillation area with small displacement, it can produce a higher
dynamical performance. For relatively higher levels of excitation in area b, this regime of
chaotic response is observed to have low efficiency of energy dissipation. Comparing the
excitation threshold of SMR to that of the cubic NES, as given in Tab. 4.2, shows that the
amplitude band [G1c,G2c] is broader once the contribution of negative stiffness is added.
Moreover, owing to the higher speed and larger stroke swept in the dynamic transition of
negative stiffness area, the efficiency of the bistable NES will be higher than that of the
cubic NES. An interesting point is that the threshold of G1c is close to the corresponding
value G1 of cubic NES. A further study of the theoretical aspects may be useful here. For
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area d, there is a minimum amplitude Dm, where the LO amplitude starts to increase and
the efficiency of NES decreases with the growth of excitation amplitude. By comparing
the threshold of G2c = 0.42 mm to the calculation result of Eq. (4.21) that equals 0.422
mm, it can be demonstrated that these two solutions correspond with each other well. So
in the following section, the analytical solution of G2c can be used to predict the location
of Dm.

Table 4.2: Excitation threshold

bistable NES cubic NES
G1c G2c G0c G1 G2

0.21mm 0.42mm 0.08mm 0.22mm 0.36mm

Here, it is important to emphasize that at the condition of “monochromatic” external
excitation (ω/ω0 ≈ 1), the TMD performs better than the cubic NES or bistable NES.
The configuration of the primary system coupled either to the TMD or the NES can
be obtained by setting k2 to zero or non-zero value in Eqs. (4.1), respectively. The
main expected advantage of the NES were observed when it was applied to linear multi-
dof systems (with remote frequencies), as demonstrated in [Starosvetsky and Gendelman,
2008a]. Owing to its self-tuning property, energy pumping may be excited in the vicinity of
each natural frequency (under periodic excitation), thus providing a substantial reduction
of energy for the main structure as compared to the TMD case (which may be tuned to
a single frequency only). Additionally, the NES can be effective over a much broader
range of frequencies than the TMD and does not suffer from the problem of amplification
just outside the target bandwidth [Gourdon et al., 2007], thus making it preferable for
various engineering applications when the primary system is subject to harmonic forcing
in a wide range of excitation frequencies.

4.3.2 Detailed analysis of each regime

To further explain the efficiency and verify the thresholds proposed in previous methods,
the pseudo-separatrix mentioned above, the Hilbert transform and wavelet transform are
introduced to discuss the detailed dynamics in the following subsection.

4.3.2.1 Intra-well oscillation

In Fig. 4.9, the threshold G0c exists between areas a and b, when the LO excited at this
value, the corresponding oscillation amplitude Ac obtained is close to the dashed line
N0c calculated by Eq. (4.39), so it proves that the numerical result coincides with the
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Figure 4.10: Response corresponding to point A (a) time-displacement response (b) pro-
jection in SIM structure (c) working range in the force-displacement relation (d) phase
trajectory of NES

analytical prediction. When the energy is lower than G0c, as shown in Fig. 4.10(b), the
cyclic projection in the SIM structure is under the dashed line N0c, which corresponds
to Fig. 4.10(d) where the phase trajectory is inner the pseudo-separatrix. The red curve
in Fig. 4.10(c) shows that the bistable NES works around the stable equilibrium on the
force-displacement curve.

Due to the asymmetricity of the force-displacement curve, the two sides of the am-
plitude of NES presented in Fig. 4.10(a) are also asymmetric. Since the initial nonlinear
stiffness around the stable equilibrium is far larger than that of cubic NES, which is close
to zero, the bistable NES can produce nonlinear beating even under a small excitation.
Therefore, the bistable NES can have a high efficiency ratio with low energy input.

4.3.2.2 Chaotic inter-well oscillation

As the excitation amplitude increases to the range of response b, the working force-
displacement range of the NES becomes large and starts to pass the two stable equilibria.
It is observed that the dynamic trajectory escapes from one potential well to the other,
achieving a global snap-through motion. The chaotic behaviour in this regime is identified
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in [Romeo et al., 2015a], where the Lyapunov characteristic exponents are calculated and
the values of exponents are found to be positive. In Fig. 4.11(b), the chaotic projection
in the SIM structure is above the dashed line N0c, which means that enough energy is
supplied so to overcome the potential barrier: the hilltop of Fig. 4.4. With reference of
the pseudo-separatrix, the outer, inner and crossing transient trajectories on the phase
diagram are observed consecutively in Fig. 4.11(d). These three regimes correspond re-
spectively to the steady transition motion between two stable equilibria, the transition
motion captured by a stable equilibrium and the subharmonic nonlinear beating.
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ẇ
(m

/
s)

(d)

Figure 4.11: Response corresponding to point B (a) time-displacement response (b) pro-
jection in SIM structure (c) working range in the force-displacement relation (d) phase
trajectory of NES

In Fig. 4.9, it is interesting to note the existence of a particular response at point B1,
where the energy dissipation ratio is the lowest. Fig. 4.12 shows the corresponding time-
displacement response and the phase trajectory. It can been seen that this response is
no longer chaotic and shows periodic performance. By introducing the wavelet transform
method, the frequency components of the LO and bistable NES are obtained, which
illustrates that the transition point represents a resonance capture with the frequency
of 1:3 subharmonic. With the increase of input energy, the periodic performance will
disappear while the component of 1:3 subharmonic response will hold for the following
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Figure 4.12: Response corresponding to point B1 (a) time-displacement response (b) phase
trajectory of NES (c) wavelet transform: 1:3 subharmonic resonance. Where the natural
frequency of LO (f0) is given by f0 = 2π/ω0.

response.

4.3.2.3 Strongly modulated response

To illustrate the global performance of the SMR, three specified responses with the ex-
citation amplitude of 0.21 mm, 0.25 mm and 0.42 mm are calculated and presented in
Fig. 4.13, where the first and the last corresponding points are located at the two thresh-
olds of SMR. In these responses, three different TET mechanisms of bistable NES are
observed and classified as:

1. Fundamental TET (1:1 resonance capture);
2. Subharmonic resonance capture TET;
3. TET initiated by nonlinear beating.

The first column of Fig. 4.13 shows the time displacement response of the LO and
bistable NES, the second column shows the corresponding instantaneous amplitude and
frequency. To illustrate the basic underlying dynamic mechanism of bistable NES, the
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Figure 4.13: SMR response in the first column, and the corresponding instantaneous
amplitude and frequency in the second column, for different types of energy: (a) input
G = 0.21 mm, corresponding to point C1; (b) input G = 0.25 mm, corresponding to
point C2; (c) input G = 0.42 mm, corresponding to point C. Where the instantaneous
amplitude of w is inferred from the leading (first) IMF, the instantaneous frequency of
bistable NES is defined as f , and the natural frequency of LO is defined as f0.
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Figure 4.14: Wavelet transform for different type of energy: (a) input G = 0.21mm
corresponding to point C1; (b) input G = 0.25mm corresponding to point C2; (c) input
G = 0.42mm corresponding to point C
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empirical mode decomposition (EMD) applied to decomposition of nonlinear and nonsta-
tionary signals is adopted [Huang et al., 1998]. With this method, a collection of intrinsic
mode functions (IMFs) is obtained. Then Hilbert Transform is used to calculate the in-
stantaneous frequency and amplitude. Fig. 4.14 illustrates the frequency components of
the LO and bistable NES with the wavelet transform method. By combing these two
figures, it can be found that: as the instantaneous frequency of leading (first) IMF of the
bitable NES is concentrated on the natural frequency of the LO (i.e. the area of ellipses),
the fundamental TET takes place and the dynamics is captured in the domain of attrac-
tion of 1:1 resonant manifold. This area is additionally demonstrated by the red zone of
bistable NES in Fig. 4.14. It is also represented the in phase NNM manifold S11+ in
the Frequency Energy Plot (FEP) [Kerschen et al., 2007]. At this regime, large targeted
energy is extracted and dissipated by bistable NES, leading to a fast decrease of the LO
amplitude.

When the LO amplitude decreases to a certain value, the dynamics transfers to the
subharmonic resonance capture TET, where the contribution of 1:3 subharmonic reso-
nance response is observed. Owing to its low energy dissipation ratio and the continuous
energy input, the LO amplitude starts to increase, and the duration of this transition is
small, resulting in a fast resonance escape to the last regime: TET initiated by nonlinear
beating. In this regime, three different response components are observed: a) Funda-
mental nonlinear beating, occurs in the motion that captured by a stable equilibrium, b)
Subharmonic nonlinear beating, c) Nonlinear beating that occurs in the steady transition
motions between two stable equilibria.

From Fig. 4.14, it can be found that the contribution of each regime is related to the
input of excitation energy. When the input G is 0.21 mm, the interval of fundamental
TET is small and the nonlinear beating regime plays a large prolonged part in the process.
When G = 0.25 mm, the duration of the fundamental TET regime starts to increase with
the decrease of TET initiated by nonlinear beating. As the input reaches the maximum of
0.42 mm, the fundamental TET makes the largest contribution to the process while the
transition of subharmonic TET and TET initiated by nonlinear beating are decreased to
a narrow zone. In this case, the chaotic aspect almost disappears, and the 1:1 resonance
is the strongest, making the NES transfer a relatively high amount of energy in a finite
time interval.

4.3.3 Optimal design criterion

As shown in Fig. 4.9, the optimal working point (Dm) is located at the lowest value of
the second stable branch of the SIM, in which the efficiency reaches its maximal value.
In this case, there exist 1:1 resonance between bistable NES and LO. The comparison of
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SIM structure between cubic NES and bistable NES can be found in Fig. 4.2, which shows
that, after the addition of the negative stiffness part, the location of optimal point Dm

shifts to right, and the corresponding excitation amplitude becomes higher. For this, it is
suggested that, if the primary system is excited at a fixed periodic loading, the objective
of the optimal design should be to adjust the parameters of NES so as to make it work
at the location Dm. By introducing Eq. (4.21), the excitation amplitude at this point is
calculated with the nonlinear stiffness K and negative stiffness δ, as shown in Fig. 4.15.
Here, it can be observed that, adjusting these two variables K and δ is feasible to control
the value of G2c in a certain range, so as to ensure the response of NES located at its
optimal point.
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Figure 4.15: Controlling the optimal working point of NES by adjusting the nonlinear
stiffness K and negative stiffness δ

For this, a configuration to achieve the negative stiffness and the cubic nonlinearity is
proposed. Where the pure cubic nonlinearity is obtained by means of two transverse linear
springs with no pretension in their vertical direction [Gourdon et al., 2007], the essentially
negative stiffness component is produced by adopting the method of pre-compressing two
springs at initial position [Mohammad A, 2014], so as to achieve the bistable geometry. In
this structure, an amount of potential energy is pre-stored and the two stable equilibria
are obtained when both springs are in the unstretched state. The corresponding force
displacement relationship based on Taylor expansion is given by:

f(w) = −2k lp
l0
w + k

lp + l0
l30

w3 (4.42)
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In this equation, the value of cubic nonlinearity K is related to the stiffness of spring
k and the free length l0, where the influence of pre-compressed length lp is so small that
it can be neglected. For the negative nonlinearity δ, it mainly depends on the value of
the pre-compressed length lp since the two springs are installed. As the two springs of a
cubic NES are fixed for engineering applications, adjusting the pre-compressed length lp
would provide an alternative way to increase the band in which excitation amplitude is
robust. By obtaining the anticipated negative stiffness, the NES can be adjusted to work
at the optimal point with its best performance.

4.4 Semi-active control of NES

According to the results of optimal design criterion, semi-active control of the NES is
studied in this section. A scheme to realize NES with different kinds of linear stiffness is
presented in Fig. 4.16. By controlling initial state (compression or extension) of springs,
NES with positive stiffness, pure cubic nonlinearity and negative stiffness can be gener-
ated, respectively.

2m

0l0l

2m
0zPre -compressed

Equilibrium
position

pl

NES with pure
cubic nonlinearity 

Unstreched
spring

NES with negative 
stiffness

Unstreched
spring

0l

2m
Pre -streched

NES with positive 
stiffness

Pre-streched
spring

Figure 4.16: NES with different kinds of linear stiffness, with respect to the state (com-
pression or extensiton) of springs.

Based on this idea, NES system with second group of conical springs is adopted for the
experiment of semi-active control. Unlike the scheme of Fig. 4.16, this NES system has
two conical springs in translational direction and two linear springs in lateral direction,
and all these four springs are pre-compressed at the initial state. The experimental setup
is presented in Fig. 4.17, and detailed information of measurement can be referred from
chapter 3.2. Based on the idea of Fig. 4.16, differences (i.e. η1 and η2) of adjustment
length of negative stiffness mechanism is set as the variables for semi-active control (see
Fig. 3.15).
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Semi-active control
NES

LO

Figure 4.17: NES system with second group of conical springs: experiment for semi-active
control
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Figure 4.18: Force characteristics of NES system with respect to compressing length: (a)
NES with positive stiffness, η1 = η2 = −1.5 mm; (b) NES with pure cubic nonlinearity
η1 = η2 = 0 mm; (c) NES with negative stiffness η1 = η2 = 3 mm. The red dashed line is
the objective curve of pure cubic nonlinearity, the blue solid line is the measured curve.

The static force applied on the NES mass is measured with variation of η1 and η2, as
shown in Fig. 4.18. Three particular examples of NES with positive stiffness, pure cubic
nonlinearity and negative stiffness are observed, respectively. Where the red dashed line
is the objective curve of pure cubic nonlinearity, the blue solid line is the measured curve.
Owing to the elastic hysteresis of NES with negative stiffness, the unloading process
is adopted for the measurement. As can be seen, the force characteristics of designed
NES system corresponds to the objective curve of pure cubic nonlinearity, and a slight
adjustment of pre-compressed may cause NES with different kind of nonlinearity. For
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the three configurations, the coefficients of linear and cubic nonlinearity are identified in
Table 4.3. It can be observed that the type of NES with negative stiffness has the largest
cubic term.

Table 4.3: Experimental stiffness coefficients

F = k3x+ k2x
3

Param Fig. 4.18(a) Fig. 4.18(b) Fig. 4.18(c)
k3 (N/m) 139 43 −106
k2 (N/m3) 6.35× 105 6.09× 105 7.51× 105

Fig. 4.19 shows the time history of displacement of LO at a fixed frequency excitation
around natural frequency. Three different types of response are obtained. At the excita-
tion amplitude G = 0.5 mm, NES with pure cubic nonlinearity performs optimally, since
its fixed point is located at lowest point of SIM (i.e. Dm). For the NES with positive
stiffness, its fixed point is located at a higher position of second stable branch of SIM,
and the amplitude is also larger than that of NES with pure cubic nonlinearity. While for
the NES with negative stiffness(bistable NES), the fixed point is unstable and the system
still works at the excitation range of strongly modulated response, which indirectly reflect
that bistable NES has a shift towards higher excitation amplitude of the optimal working
point.
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Figure 4.19: Time history of displacement of the LO with different kinds of NES, G =
0.5 mm.
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Then the band of excitation frequency is enlarged around the natural frequency of
LO. The objective here is to study the influence of adjustment length (η1 and η2) on the
response regimes and their efficiency. Three groups of frequency response function (FRF)
with different excitation amplitude (G) are tested, and detailed view of time displacement
of LO under frequency sweep test is also presented, as shown in Fig. 4.20-4.22.
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Figure 4.20: (a) Frequency response curve of LO with semi-active control of the NES, at
low energy excitation G = 0.20 mm, and detailed view of time displacement of LO under
frequency sweep test for NES with positive stiffness (b), pure cubic nonlinearity (c) and
negative stiffness (d).

As the LO is is excited at low energy level G = 0.20 mm, the amplitude of NES with
positive stiffness is lower than the other two NESs (see Fig. 4.20). As the excitation
is increased to a moderate energy G = 0.35 mm, all the three NESs perform strongly
modulated response at the frequency band around natural frequency, while the amplitude
of LO attached to NES with pure cubic nonlinearity is lower than the other two NESs
(see Fig. 4.21). For a relatively high level of excitation amplitude G = 0.45 mm (see
Fig. 4.22), both the reponses of LO attached to NES with positive stiffness and pure
cubic nonlinearity have the resonance tongue at the left side of natural frequency (more
detailed information of resonance tongue can be found in Fig. 2.5). While for NES with
negative stiffness, the high amplitude detached resonance is significantly attenuated, and
its average amplitude of LO is lower than other two NESs. Thus it can be concluded that
adjusting the pre-compressed length of negative stiffness mechanism is feasibly to make
NES work robustly and efficiently for different types of excitations. Particularly, at higher
energy excitation, adding an extra negative stiffness to produce a bistable NES is helpful
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Figure 4.21: (a) Frequency response curve of LO with semi-active control of the NES, at
moderate energy excitation G = 0.35 mm, and detailed view of time displacement of LO
under frequency sweep test for NES with positive stiffness (b), pure cubic nonlinearity (c)
and negative stiffness (d).
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Figure 4.22: (a) Frequency response curve of LO with semi-active control of the NES, at
high energy excitation G = 0.45 mm, and detailed view of time displacement of LO under
frequency sweep test for NES with positive stiffness (b), pure cubic nonlinearity (c) and
negative stiffness (d).

to avoid a high dangerous amplitude detached resonance curves being generated.
Consequently, semi-active control of the NES is capable of attenuating the structural
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response significantly and robustly with the additional benefit over the pure cubic NES
of not producing resonance tongue at high level of excitation amplitude, which make
it suitable for various engineering applications when the primary system is subject to
harmonic forcing in a broad range of excitation.

4.5 Conclusion

In this chapter, the dynamic response of a 2 degrees of freedom system comprising a
harmonically excited Linear Oscillator (LO) strongly coupled to a bistable NES is inves-
tigated. An analytically obtained Slow Invariant Manifold (SIM) is used to explain the
different response regimes. Unlike cubic NES, bistable NES only follows the second stable
branch of the SIM. Asymptotic analysis and Melnikov analysis are respectively used to ob-
tain the thresholds of different response regimes at different energy levels. These analytical
solutions are verified in numerical simulation, which correctly predicts the occurrence of
intra-well oscillation or chaotic inter-well oscillation, and the transition between Strongly
Modulated Response (SMR) and stable periodic response.

The efficiency of different response regimes is studied and demonstrates that a bistable
NES working in the first regime with intra-well oscillation can transfer the targeted energy
with a relatively high efficiency, but the chaotic inter-well response dissipates energy with
low efficiency. For this regime, a point with 1:3 subharmonic resonance captures exists
where its efficiency is the lowest. This result is contrary to the traditional idea that 1:3
subharmonic resonance may result in a strong energy exchange and dissipation under
periodic excitation. About the band of excitation amplitude with the occurrence of SMR,
it becomes broader with the addition of negative stiffness, and the efficiency of bistable
NES in this band is larger than that of cubic NES. With the Hilbert transform and wavelet
transform, three different Targeted Energy Transfer (TET) mechanisms are observed and
it shows that 1:1 resonance is mainly responsible for the efficient TET.

Finally, an optimal point located at the boundary between the SMR and stable periodic
response is found, at which the efficiency of NES is largest and the amplitude of LO is
smallest. Based on this, an optimal design criterion and the corresponding configuration
are proposed, and experiments for semi-active control of NES are also explored. By
adjusting the pre-compressed length of spring, the NES can be tuned to robustly work at
its best performance for a range of excitation. Furthermore, it is worth to explore that
this tuned method may also be applied to vibro-impact NES: by adjusting its clearance,
the TET efficiency may be tuned at an optimal value. In the next chapter, detailed design
criteria for optimally tuned vibro-impact NES will be discussed.
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CHAPTER 5 Design criteria for
optimally tuned
vibro-impact NES

This chapter is devoted to propose the design criteria for optimally tuned Vibro-
Impact (VI) NES to control the vibration under periodic and transient excitation.
To this end, a generalized dimensionless model of a 2 degrees of freedom system
comprising a harmonically excited linear oscillator strongly coupled to a VI NES
is investigated. Bifurcation analysis and efficiency of Targeted Energy Transfer
(TET) around the Slow Invariant Manifold (SIM) are studied with the variation
of clearance. As a result, the optimal clearances for periodic and transient exci-
tation are calculated from two transition points of the SIM, respectively. Then
the procedure is extended in case of multiple VI NESs in parallel to the Linear
Oscillator (LO). Two principles of additivity and separate activities of VI NESs
are verified theoretically. Finally, experiments involving the whole system for
periodic and transient excitation are performed.
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5.1 Asymptotic analysis of a single VI-NES

5.1 Asymptotic analysis of a single VI-NES

This chapter presented here is referred from Ref. [Li, 2016], in which efficiency comparison
of response regimes, activation mechanism of VI NES and dynamics of two VI NESs in
parallel have been studied in detail. However, the optimal values of clearance in Ref. [Li,
2016] is obtained by trial and errors. If the primary system and the excitation are changed,
the clearance will no longer be optimal. For two VI NESs in parallel, it is proposed that VI
NES with a medium clearance and a small clearance can be optimal for a given excitation.
Yet, the design criterion from a single VI NES to multiple VI NESs and its corresponding
calculation are still not clear. Thus, to obtain the optimal performance for a VI NES or
multiple VI NESs and lay the foundation for semi-active control, analytical calculation
for the clearance needs to be further studied. To this end, asymptotic analysis of a single
VI NES is firstly studied in this section.

5.1.1 Dynamical modeling

The dynamic modeling presented here is based on Refs. [Li, 2016 ; Gourc, 2013]. The
system of a harmonically excited linear oscillator (LO) attached with a VI NES is illus-
trated in Fig. 5.1. The objective here is to apply the asymptotic method used in the
above papers to deduce the generalized dimensionless model, so as to obtain the optimal
design criteria of VI NES for any targeted primary system.

1k

1c

x y= sin( )ex G t

m
b

M

b

LO

Figure 5.1: Schematic of the dynamic system: a harmonically excited LO coupled with a
VI NES

The system is excited by the base, and the equations of motion between impacts are
described as follows:

Mẍ+ c1ẋ+ k1x = k1xe + c1ẋe

mÿ = 0, ∀ |x− y| < b
(5.1)
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where x, M , c1 and k1 are the displacement, mass, damping and stiffness of the LO
respectively. y andm are the displacement and mass of VI NES. b represents the clearance
that can be adjusted by the length of cavity. The imposed harmonic displacement xe is
expressed as:

xe = Gcos(ωt) (5.2)

After rescaling, the system of equation (5.1) can be reduced to the dimensionless form:

Ẍ + ελẊ +X = εF sin Ωτ + ε2λFΩ cos Ωτ

εŸ = 0, ∀ |X − Y | < 1
(5.3)

where the variables of the displacements are dimensioned by:

x = Xb, y = Y b (5.4)

The corresponding physical parameters are expressed as follows:

ε = m

M
, ω0

2 = k1

M
, τ = ω0t, λ = c1

mω0
, Ω = ω

ω0
, F = G

εb
(5.5)

When |X−Y | = 1, an impact occurs. The state of the system after impact is obtained
using the simplified shock theory and the condition of total momentum conservation:

X+ = X−, Y + = Y −

Ẋ+ + εẎ + = Ẋ− + εẎ −

Ẋ+ − Ẏ + = −r
(
Ẋ− − Ẏ −

)
, for |X − Y | = 1

(5.6)

where r is the restitution coefficient and the superscripts + and− denote time immediately
after and before impact. Two new variables representing the displacement of the center
of mass and the internal displacement of the VI NES are introduced (both of them are
dimensionless):

V = X + εY, W = X − Y (5.7)

Substituting Eq. (5.7) into Eqs. (5.6) and (5.3), the equation between impacts in
barycentric coordinate is given as:

V̈ + ελ
V̇ + εẆ

1 + ε
+ V + εW

1 + ε
= εF sin Ωτ

Ẅ + ελ
V̇ + εẆ

1 + ε
+ V + εW

1 + ε
= εF sin Ωτ, ∀|W | < 1

(5.8)

where the term containing ε2 is very small, and can be neglected. The impact condition
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(5.6) can be rewritten as:

V + = V −, W+ = W−,

V̇ + = V̇ −, Ẇ+ = −rẆ−, for |W | = 1
(5.9)

Then multiple scales are introduced in the following form:

V (τ ; ε) = V0(τ0, τ1, . . .) + εV1(τ0, τ1, . . .) + . . .

W (τ ; ε) = W0(τ0, τ1, . . .) + εW1(τ0, τ1, . . .) + . . .

τk = εkτ, k = 0, 1, . . .

(5.10)

The system is studied in the vicinity of the 1:1 resonance, where both the LO and
the VI NES execute time periodic oscillations with identical frequency. Thus, a detuning
parameter σ representing the nearness of the forcing frequency Ω to the reduced natural
frequency of the LO is introduced:

Ω = 1 + εσ (5.11)

Substituting Eqs. (5.10) and (5.11) into Eqs. (5.8) and (5.9), then equating coefficients
of like power of ε gives:

Order ε0:

D2
0V0 + V0 = 0

D2
0W0 + V0 = 0, ∀|W0| < 1

(5.12)

V +
0 = V −0 , W+

0 = W−
0 , for|W0| = 1

D0V
+

0 = D0V
−

0 , D0W
+
0 = −rD0W

−
0

(5.13)

Order ε1:

D2
0V1 + V1 = −2D0D1V0 − λD0V0 −W0 + V0 + F sin (τ0 + στ1)

D2
0W1 + V1 = −2D0D1V0 − λD0V0 −W0 + V0 + F sin (τ0 + στ1)

∀|W0| < 1

(5.14)

where D0 represents partial derivative with respect to time τ0. From the first equation of
system (5.12), the solution of V0 (in slow time scale) can be deduced as follows:

V0 = A(τ1) sin (τ0 + θ(τ1)) (5.15)

where A(τ1) and θ(τ1) represent the amplitude and phase of the LO, respectively. For
W0 (in slow time scale), Eq. (5.12) and (5.13) represent a harmonically forced impact
oscillator with symmetric barrier. Under the assumption of 1 : 1 resonance, its solution
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can be searched in the following form:

W0 = A(τ1) sin (τ0 + θ(τ1)) + 2
π
C(τ1)Π (τ0 + η(τ1)) (5.16)

where C(τ1) and η(τ1) represent the amplitude and phase of VI NES, respectively. Π(z)
is a non-smooth saw tooth function [Pilipchuk, 2015], its folded function is expressed as
follows:

Π(z) = arcsin(sin z), M(z) = dΠ
dz

= sgn(cos z) (5.17)

As can be observed from Eq. (5.16) and (5.17), impact occurs at τ0 = π/2 − η + jπ

with j = 0, 1, 2, . . . Substituting the above equations to the impact condition Eq. (5.13),
it yields:

cos (η − θ) = 1− C
A

, sin (η − θ) = 2CΓ
πA

(5.18)

where Γ = (1 − r)/(1 + r). By combining the above two equations with trigonometric
identity, the expression for a Slow Invariant Manifold (SIM) is obtained:

A2 = (1− C)2 + 4C2Γ2

π2 (5.19)

5.1.2 Analytical treatment of Slow Invariant Manifold (SIM)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

C

A

T1

T2

Figure 5.2: SIM of VI NES: on the stable branch in blue line and two unstable branches
in green line with two transition point T1 and T2. ε = 0.68%, λ = 1.91

An illustration of the SIM is presented in Fig. 5.2. Unlike cubic NES, the topological
structure of SIM is composed of two branches. It can be observed that the left side of
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branch is unstable, only a part of the right side is stable (between the point T1 and T2).
The stability of the SIM can be evaluated by direct numerical integration of Eq. (5.12)
and (5.13).

Depending on the different positions of the fixed point in SIM [Li et al., 2017c], five
types of response regimes are obtained: (1) chaos with no duration of two impacts per
cycle, where no fixed point occurs and the energy is low and not sufficient to activate the
energy pumping; (2) chaos by intermittency, i.e., Strongly Modulated Response (SMR),
with the fixed point located at the left unstable branch of the SIM; (3) two symmetric
impacts per cycle, while the fixed point is located at the stable branch; (4) two asymmetric
impacts per cycle, the fixed point starts to pass the transition point T2 and stays on the
right unstable branch; (5) chaos with infinite number of impact per cycle, i.e., the regime
with more than two impacts per cycle, where the fixed point stays higher than the above
cases.

Knowing the variation mechanism of the response regimes, it would be interesting
to investigate the efficiency of each regime and the corresponding threshold for periodic
excitation so as to guide the design of VI NES. In [Li et al., 2017d], it is demonstrated
that the boundary between response with permanent two impacts per cycle and that with
intermittent two impact cycle (SMR) is optimal, and the critical point is located at the
extreme T1 of the SIM. By vanishing the derivative of the right hand side of Eq. (5.19) to
zero, its expression can be obtained as follows:

C1 = π2

π2 + 4Γ2 , A2
1 = 4Γ2

π2 + 4Γ2 (5.20)

Here the values C1 corresponds to the minimum amplitude of the LO, where 1:1
Targeted Energy Transfer (TET) is allowed. However, the precise analytical calculation
of the cavity length (i.e., b) to ensure response at the critical point is still not clear. For
this, bifurcations of the system at the next order of approximation is analyzed.

5.1.3 Bifurcation analysis

By introducing Eq. (5.15) and (5.16) into the first equation of system (5.14) and elimi-
nating the secular term, the asymptotic stability of the fixed points at the stable branch
with respect to time scale τ1 is studied in the following form:

D1A = F

2 sin(στ1 − θ)−
4C
π2 sin (η − θ)− λC

2
D1θ = − F

2A cos (στ1 − θ) + 4
π2A

B cos (η − θ)
(5.21)

Substituting Eqs. (5.18) into Eq. (5.21) and introducing ρ = στ1 − θ, the expressions
governing the evolution of the amplitude A and the phase ρ are obtained:
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∂A

∂τ1
= f1(A, ρ)

g(A) ,
∂ρ

∂τ1
= f2(A, ρ)

g(A) (5.22)

where

f1 = Fπ3(1− A) sin (ρ) + 2FA Γ π2 cos (ρ)

− 4 Γ2πA2λ− 16 A2Γ− π3λ(A− 1)2
(5.23)

f2 = −2FΓπ sin (ρ)− Fπ2 cos (ρ) + 8 Γ2Aσ

+ 2 π2Aσ + 2 Γπ λ− 2 π2σ + 8 A
(5.24)

g = 8 Γ2A + 2 π2A− 2π2 (5.25)

By equating the derivative of the right-hand side of Eq. (5.22) to zero, two kinds of
fixed point are calculated. The first is referred to as an ordinary fixed point located at the
stable branch of SIM, and it also satisfies the condition f1 = f2 = 0 and g 6= 0. The other
corresponds to the folded singularity (i.e., T1). In this case the derivative of Eq. (5.19) is
related to Eq. (5.25), so it can be found that g = 0. Based on this, the system f1 = f2 = 0
will be discussed and is rewritten in the following matrix form:

α11 α12

α21 α22

 sin ρ
cos ρ

 =
β1

β2

 (5.26)

where



α11 = Fπ3(1− A), α12 = 2FAπ2Γ,

α21 = −2FπΓ, α22 = −Fπ2

β1 = 4 Γ2πA2λ+ 16 A2Γ + π3λ(A− 1)2

β2 = −8 Γ2Aσ − 2π2Aσ − 2 Γπ λ+ 2 π2σ − 8 A

(5.27)

By solving Eq. (5.26) for sin ρ and cos ρ, ordinary fixed points can be obtained by
assuming that the determinant does not vanish. For the folded singularity, it is observed
that det(α) = F 2π3g/2 = 0, which means that, when eliminating f2 and g, the condition
f1 = 0 can be automatically satisfied by Eq. (5.26). Thus the expression of f2 = 0 can be
studied in the following form:

√
α2

21 + α2
22 · cos(ρ− δ) = β2, δ = arctan(α21

α22
) (5.28)

Then the phase ρ can be deduced as:
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ρ = arctan(α21

α22
) + arccos( β2√

α2
21 + α2

22

) (5.29)

According to Eq. (5.29), the critical condition of the excitation amplitude for the
existence of the folded singularity is obtained:

∣∣∣∣∣∣ β2√
α2

21 + α2
22

∣∣∣∣∣∣ = 1 (5.30)

Thus the threshold of the SMR is calculated as:

Fc = 2(4 A1 Γ2σ + A1 π
2σ + Γ π λ− π2σ + 4 A1 )

π
√

4 Γ2 + π2
(5.31)

Substituting Eq. (5.20) to Eq. (5.31), the threshold can be expressed in a convenient
form:

Fc = 2(4 Γ3λ+ Γ π2λ+ 4 π)
(4 Γ2 + π2)3/2 (5.32)

Here, it is noted that the variable Fc is a dimensionless variable of excitation, which
is only dependent on the intrinsic properties of the LO and NES (i.e., the damping of the
LO and the restitution coefficient).

5.2 Criteria for efficient targeted energy transfer

This section aims to propose the analytical calculation of optimal clearance for a single
VI NES. To this end, the obtained results in above section are used to provide the design
criteria for periodic excitation and transient excitation, respectively.

5.2.1 Optimal design criterion for periodic excitation

Based on the above analysis, the optimal design of VI NES is to make the target dis-
placement amplitude of the LO locate at T1 of the corresponding SIM under periodic
excitation. For this, the cavity length b is chosen as the design parameter, and the objec-
tive is to obtain its optimal value so as to produce the efficient TET for different types
of excitation. According to Eq. (5.5), the relation between the cavity length and the
amplitude of excitation can be written as:

b = G

εF
(5.33)
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By introducing Eq. (5.32) into Eq. (5.33), the critical value of the cavity length is
obtained as:

bc = G (4 Γ2 + π2)3/2

2ε(4 Γ3λ+ Γ π2λ+ 4 π)
(5.34)
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Figure 5.3: Time-displacement response of LO and VI NES, and the motion of the system
projected into the SIM: (a) SMR with b > bc; (b) steady state response with b < bc.

To demonstrate the critical function of bc, two response regimes with different cavity
length are illustrated in Fig. 5.3. The time-displacement response of the LO and VI NES,
and the projection of motion of the system into the SIM are presented in the first and
second column, respectively. As the cavity length is set as b > bc, a strongly modulated
response and its flow jump on the SIM are observed. In this case, the response acts
through successive synchronization between the LO and the VI NES. When the VI NES
is not synchronized, the amplitude of the LO grows. Under a certain circumstance, the
VI NES enters into the 1:1 resonance capture with the LO, making the amplitude of the
LO decrease fast by successive impacts until it decays at the transition point T1. As the
cavity length is set as b < bc, a steady state response with two symmetric impacts per
cycle is observed. As can be seen, after a short transient, the flow is rapidly attracted to
the red fixed point.
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Figure 5.4: TET efficiency explained by the amplitude of LO with the variation of clear-
ance b: Ae represents the mean amplitude, and Am the maximum amplitude.

The variation law of TET efficiency with different lengths of cavity b under a fixed
periodic excitation is presented in Fig. 5.4, where Ae and Am represent the mean and
the maximum amplitude of the LO, respectively. The above two examples are illustrated
by b1 and b2. As can be seen, when the clearance equals bc, the amplitude of the LO is
minimum. Thus the calculation of bc can be used to provide the highest TET efficiency
for the NES system.

5.2.2 Optimal design criterion for transient excitation

For the transient excitation, there does not exist SMR, the response regime transits contin-
uously from one type to another type with the decrease of the master energy. If the initial
master energy is still set arround the transition point T1, the NES system will rapidly pass
the 1:1 resonance capture and enter the chaos with no duration of two impacts per cycle.
In this case, the VI NES is only activated in a very short time, resulting in a low energy
dissipation ratio being produced. In [Li et al., 2017d], it demonstrates that the efficiency
of TET should not only be high at the beginning but also last as long as possible. So
in this paper, the transition point T2 between the response with two symmetric and two
asymmetric impacts per cycle is proposed to be the position of the initial master energy.
The analytical value of T2 can be obtained from Fig. 5.2, with A2 = 0.6. Based on this
idea, the tuned parameter of the clearance b can be calculated in the following form:

bt = xm
A2

, xm =
√

(x2
0 + ẋ2

0
ω2

0
) (5.35)

Where the xm represents the initial master energy, x0 and ẋ0 represents the initial position
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and velocity of the LO, respectively.
To demonstrate the criterion, three cases with different clearances are calculated under

the condition: G = 0, ẋ0 = 0 and x0 = 30 mm. The tuned parameters are given in
Table 5.1 and the optimal value bt is obtained by Eq. (5.35). Where x1 and x2 represent
the amplitude of the LO at the transition point T1 and T2, tx=15 and tx=5 represent the
time duration when the amplitude of the LO decreases to 15mm and 5mm, respectively.

Table 5.1: Three cases with different clearance under transient excitation

Tuned parameters
case b (mm) x1 (mm) x2 (mm) tx=15 (s) tx=5 (s)
< bt 20 3.1 12 1.8 3.7
= bt 50 7.8 30 1.3 2.6
> bt 80 11.8 48.2 1 3.3

Transient responses of the first and second case with b < bt and b = bt are respectively
presented in Fig. 5.5 (a) and (b). For the first case, four response regimes during the
whole process are observed. Detailed view of these regimes can be found in Fig. 5.6.
Firstly, the regime with three impacts per cycles is excited as shown in area a. Then the
response of two asymmetric impacts per cycles appears consecutively as demonstrated
in area b. When the amplitude of the system decreases to the transition point T2, the
flow starts to follow the fixed points on the stable branch, which means that the response
of two symmetric impacts per cycles with the 1:1 resonance capture is activated in area
c. When the amplitude of the system decays until reaching the transition point T1, the
system escapes from resonance capture, and the VI NES performs the chaotic motion, as
shown in area d.

For the second case, as the cavity length is set as b = bt, the master energy is directly
decreased from T2. Under a fast nonlinear beating, the system enters the 1:1 resonance
capture and the amplitude of the LO undergoes a higher decay ratio than the first case.
Meanwhile, with the increase of the clearance b, the SIM structure shifts to the upper
right side, and the band of the stable branch largely increases. For the third case, the
cavity length increases to b > bt, making the initial master energy escape T2 and approach
T1 more closely. As a result, its TET efficiency is large at the beginning period, as can
be seen from the comparison of tx=15 in Table 5.1. However, as the the amplitude of the
LO decreases to 5 mm, the TET efficiency of this case becomes low and the second case
performs the best in terms of energy dissipation for the whole process.

Thus it can be concluded that tuning the cavity length of VI NES at bt is a feasible way
to achieve a high TET efficiency under transient excitation. However, optimal efficiency
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Figure 5.5: Time-displacement response of LO and VI NES, and the motion of the system
projected into the SIM: (a) four response regimes with b < bt; (b) two response regimes
with b = bt.
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Figure 5.6: Four response regimes of VI NES: (a) three impacts per cycle; (b) two asym-
metric impacts per cycle; (c) two symmetric impacts per cycle; (d) chaos with no duration
of two impacts per cycle.

of TET is achieved only in the stable branch of the SIM (between T1 and T2), which means
that the VI NES is only effective in a certain range of the external forcing amplitude. For
the engineering application, the cavity length of VI NES is usually fixed. To improve the
robustness of VI NES for different types of excitation, tuning the clearances of multiple
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degree of freedom VI NESs in parallel is an alternative way. For this, the optimal design
of multiple VI-NESs is discussed in the next section.

5.3 Optimal design of multiple VI-NESs

In this section, academic model is updated by replacing single VI NES attachments with
a parallel configuration of n VI NESs, and a schematic of the dynamic system with n = 2
is illustrated in Fig. 5.7. Dynamic motion is consequently related to a set of n+1 ordinary
differential equations given by:

1k

1c

x 1y= sin( )ex G t

1m

2m

2y

1b

2b

M

1b

2b

LO

Figure 5.7: Schematic of the dynamic system: a harmonically excited LO coupled with
two VI NESs in parallel

Mẍ+ c1ẋ+ k1x = k1xe + c1ẋe

mÿ1 = 0, ∀ |x− yi| < b1

mÿi = 0, ∀ |x− yi| < bi, i = 2..n

(5.36)

System of (5.36) then can be rewritten as the dimensionless form:

Ẍ + ελẊ +X = εF sin Ωτ + ε2λFΩ cos Ωτ

εŸ1 = 0, ∀ |X − Y | < 1

εŸi = 0, ∀ |X − Y | < ∆i, i = 2..n

(5.37)

where the variables of the displacements are dimensioned by x = Xb1 and yi = Yib1. The
new physical parameters are expressed as follows:

ε = m1 +m2 + ..mn

M
, αi = mi

εM
, ω0

2 = k1

M
, τ = ω0t,

λ = c1

εMω0
, Ω = ω

ω0
, F = G

εb1
, ∆i = bi

b1

(5.38)
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In the same way, when |X − Yi| = ∆i, an impact occurs, it yields:

X+ = X−, Y +
i = Y −i

Ẋ+ + ε
n∑
i=1

αiẎi
+ = Ẋ− + ε

n∑
i=1

αiẎi
−

Ẋ+ − Ẏi
+ = −r

(
Ẋ− − Ẏi

−)
, Ẏj

+ = Ẏj
−
, (j 6= i)

(5.39)

Motions of the center of mass and internal displacement are introduced in the following
way:

V = X + ε
n∑
i=1

αiYi, Wi = X − Yi (5.40)

Then substituting Eq. (5.40) in Eqs. (5.39) and (5.38), it gives

V̈ + ελ
V̇ + ε

∑n
i=1 Ẇi

1 + ε
+ V + ε

∑n
i=1 Wi

1 + ε
= εF sin Ωτ

Ẅi + ελ
V̇ + ε

∑n
i=1 Ẇi

1 + ε
+ V + ε

∑n
i=1Wi

1 + ε
= εF sin Ωτ

∀|Wi| < ∆i

(5.41)

For this system, the impact condition (5.39) can be rewritten as:

V + = V −, W+
i = W−

i , V̇ + = V̇ −

if |W1| = 1 : Ẇ1
+ = −rẆ1

−
, Ẇ+

i = Ẇ−
i −

εα1(1 + r)
1 + εα1

Ẇ1
−
, (i 6= 1)

if |Wi| = ∆i : Ẇi
+ = −rẆi

−
, Ẇ+

j = Ẇ−
j −

εαi(1 + r)
1 + εαi

Ẇi
−
, (j 6= i)

(5.42)

Then multiple scales Eq. (5.10) and Eq. (5.11) are introduced in Eq. (5.42), system
approximated at order ε0 and order ε1is obtained:

Order ε0:

D2
0V0 + V0 = 0

D2
0Wi0 + V0 = 0, ∀|Wi0| < ∆i

(5.43)

V +
0 = V −0 , W+

0 = W−
0 , for|Wi0| = ∆i

D0V
+

0 = D0V
−

0 , D0W
+
i0 = −rD0W

−
i0

(5.44)

Order ε1:
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D2
0V1 + V1 = −2D0D1V0 − λD0V0 −

n∑
i=1

αiWi0 + V0 + F sin (τ0 + στ1)

D2
0Wi + V1 = −2D0D1V0 − λD0V0 −

n∑
i=1

αiWi0 + V0 + F sin (τ0 + στ1)

∀|Wi0| < 1, i = 2..n

(5.45)

With the same method used in Eq. (5.19), the SIM expression for multi VI NESs is
finally deduced as:

A2 = (1− C1)2 + 4C2
1Γ2

π2

A2 = (∆i − Ci)2 + 4C2
i Γ2

π2 , i = 2..n
(5.46)

Here it can be observed that each VI NES is dependent on the initial energy stored in
the primary system and their performance is decoupled. With the principle of additivity
and activities of VI NESs, the NESs efficiency is solely driven by intrinsic properties of
LO and their own individual characteristics. Referring to the issue of optimal design for a
single VI NES studied in section 5.2, it can be straightforward to extend optimal criteria
in the case of n-parallel VI NES by adjusting the two dimensionless variables ∆i and αi,
so as to ensure VI NESs be activated in a large band of excitation.

The transition point Ti1, which corresponds to the optimal activation energy of each
VI NES that allows 1:1 TET, is given by:

Ci1 = π2∆i

π2 + 4Γ2 , A2
i1 = 4Γ2∆2

i

π2 + 4Γ2 , i = 2..n (5.47)

Thus the multiple VI NES can be designed as the following rule: A2
11 < A2

21 < ... < A2
n1.

In this case, the activation energy of each VI NES is monotonously increased, making VI-
NESs work robustly in different types of energy.

5.4 Experimental validation

The objective of this section is to experimentally verify the optimal design criteria pro-
posed in the above sections. For periodic excitation, the focus is initially to verify the
periodic case at the resonance frequency and then to validate the results under a range
of frequency. As for transient excitation, tuned method for optimal efficiency is verified,
and two VI NESs in parallel are tested with the purpose of robustness improvement. The
detailed procedures are as follows.
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5.4.1 Periodic excitation

(a)

(b)

2 VI NES

LO

Laser

Accelerometer

Shaker

Figure 5.8: Experimental setup for periodic excitation:(a) global view of the configuration;
(b) detailed view of the VI NES

The experimental setup of periodic excitation is same as that in [Li, 2016] (see Fig. 5.8).
Where two clearances in parallel are used to decide whether a VI NES or two VI NESs are
attached to the LO. The whole system is embedded on a 10 kN electrodynamic shaker.
The raw signals are recorded using a digital oscilloscope and a bandpass filter is applied
to correct biases and suppress high frequency noise. The displacement of the LO as
well as the imposed displacement of the shaker are measured by two contactless laser
displacement sensors. The acceleration is measured by a accelerometer and the impacts
between LO and VI NES can be judged from sudden changes of the acceleration of the
LO. The parameters identified on the experimental setup and used for the calculation are
given in Table. 5.2.

With the variation of the clearance, three different responses of the LO under periodic
excitation G = 0.25 mm are obtained, as shown in Fig. 5.9(a-c). Where the excitation
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Table 5.2: Experimental parameters

Physical Parameters
M 4.7 kg c1 3.02 Ns/m
k1 1.147× 104 N/m m 32 g

Reduced Parameters
ε 0.68 % λ 1.91
f0 7.86 Hz r 0.6

frequency is fixed at the resonance frequency. As can be seen, the amplitude of the LO
with b = bc is smaller than the other two cases (i.e., steady state response with b < bc

and chaotic SMR with b > bc), since its fixed point is targeted at the transition point T1.
The optimal length of the cavity bc under different types of excitation is calculated by
Eq. (5.34) and presented in Fig. 5.9(d). It can be observed that the experimental points
are close to the theoretical values and almost locate in a line. The differences between the
theoretical and experimental values are mainly caused by the weakly nonlinear damping
of the LO. Thus it can be demonstrated that the analytical calculation bc is feasible to
predict the efficient TET at resonance frequency for different types of excitation.

For the system under a range of frequencies, if the optimal clearance is still chosen by
the value for resonance frequency, the responses of the other frequency points will not be
optimal and may result in SMR or irregular response without any duration of two impacts
per cycle. Therefore, there does not exist an optimal value of b for all frequencies. In [Li
et al., 2017d], it is suggested that the objective to control the amplitude of the LO for a
range of frequency can be simplified to that of resonance frequency. Thus the clearance
bc is continually used as the optimal value.

Based on the sweep frequency test, frequency response functions (FRF) with b < bc,
b = bc and b > bc are obtained and illustrated in Fig. 5.10(a). The detailed time-
displacement responses are presented in Fig. 5.10(b-c). As b < bc, the amplitude of LO is
decreased with the addition of VI NES, and a small resonance peak still exists in this case.
As b > bc, the resonance peak is vanished and a large band of SMR can be found. However,
the average amplitude of LO is still large in a range around the resonance frequency. As
b = bc, there exists a narrow range of frequency where SMR occurs. Although the VI
NES can not work at its optimal state for other frequency except resonance frequency, the
average amplitude of LO is smaller than the above two cases. Thus, the optimal design
for a range of frequency can directly use the analytical calculation of bc, so as to make VI
NES achieve a high TET efficiency for vibration mitigation.

For the above experimental configuration, the single VI NES case with the clearance
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Figure 5.9: Experimental results of single VI NES: response of the LO under periodic
excitation G = 0.25mm with (a) b = 25mm (< bc); (b) b = 34mm (= bc); (c) b = 45mm
(> bc) and (d) optimal length of the cavity bc under different types of excitation.

b = 34 and 23 mm has been observed optimal for the excitation with G = 0.25mm and
0.15mm, respectively. Consequently, the clearances of two VI NESs in parallel are selected
by these two values. The frequency response curves under G = 0.25 mm are recorded
for different combinations of b1 and b2 and are showed in Fig. 5.11(a). The detailed
time-displacement responses are presented in Fig. 5.11(b-c). As b1 = b2 = 34mm, the
amplitude of the LO around the resonance frequency is decreased. However, its maximum
amplitude shifts to the left side and still perform the same value (7.9 mm) with that of
single VI NES with b = 34 mm. As b1 = b2 = 23mm, the amplitudes of the LO in the
other frequencies are decreased. Yet there exists a small resonance peak at the resonance
frequency, since the clearance is not optimal for this excitation. As b1 = 23mm and
b2 = 34mm, the small resonance peak is vanished and the frequency range for response
with two impacts per cycle is increased. Although there still exist a narrow range of
frequency where SMR occurs, its maximum amplitude of the LO is decreased to 4.9 mm.
This value is far lower than the above two cases, which means that adding two VI NESs
with different clearance can perform a better TET efficiency and improve the robustness
in a range of resonance frequency.

Therefore, the design criteria for optimally tuned VI NES are summarized. If single
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Figure 5.10: Experimental results of single VI NES: (a) frequency response curve of the
LO with G = 0.25mm and detailed view of response of the LO under sweep frequency
test with (b) b = 25mm (< bc); (c) b = 34mm (= bc); (d) b = 45mm (> bc).

VI NES is applied, it is recommended that the clearance of VI NES should be optimized
at the point of resonance frequency. By using the calculation of Eq. (5.34), the maximum
amplitude of the LO can be controlled well at resonance condition (i.e., a single resonance
frequency or a range of frequency). In this case, semi-active control method can also be
realized: by adjusting the clearance, VI NES can be tuned to work robustly with its best
performance. If multiple VI NESs are adopted to improve the robustness, the objective
should be first to calculate the optimized clearance for the maximum excitation and then
to choose a smaller length of clearance for a lower level of energy. By making VI NESs
activated at different types of energy, a high TET efficiency can be obtained in a large
band of excitation.

5.4.2 Transient excitation

The experimental setup for transient excitation is presented in Fig. 5.12, and correspond-
ing parameters can be referred from Table. 5.2. Here, the initial displacement of LO is
obtained by stretching the string to a fixed position (x0 = 20mm). Once the string is
cut, both the LO and the VI NES start to vibrate, and the movement is recorded. The
displacement and acceleration of the LO are measured by a laser and an accelerometer,
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Figure 5.11: Experimental results of two VI NESs: (a) frequency response curve of the
LO with G = 0.25mm and detailed view of response of the LO under sweep frequency
test with (b) b1 = 23mm, b2 = 23mm; (c) b1 = 23mm, b2 = 34mm; (d) b1 = 34mm,
b2 = 34mm.

respectively. By varing the length of cavity, the transition of response regimes is observed
and the comparison of efficiency for different cavity lengths can be further studied.

Pre-stretched springs 

Figure 5.12: Experimental setup for transient excitation

The experimental results of single VI NES are presented in Fig. 5.13. As can be
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seen from Fig. 5.13(a), without VI NES, the vibration extinction of LO follows a natural
exponential decrease; while with VI NES, it follows two phases of quasi-linear decrement,
much faster than the exponential one, during which the displacement of LO decreases
fastly until it reaches a transition point (T1) and the decay rate after this point is obviously
lower than the previous one. An enlarged view of acceleration around this transition point
is showed in Fig. 5.13(b). As the sudden pulse of acceleration denotes an impact moment,
the transition between response regime of two symmetric impacts per cycle and chaos
with infinite number of impact per cycle can be clearly identified.
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Figure 5.13: Experimental results of single VI NES: (a) time history of the displacement;
(b) time history of the acceleration; (c) comparison of the displacement envelope with
different b.

Fig. 5.13(c) shows the comparison of the displacement envelope of LO attached to
single VI NES with different cavity lengths. As b = 10mm< bt, the master energy is
higher than that of transition point T2 (see Fig. 5.5), resulting in the decay rate being
relatively low. As b = 33mm= bt and b = 48mm> bt, both their responses start from
regime with two symmetric impacts per cycle, making the vibration extinction of LO
directly follow a quasi-linear decrease. In addition, it can be observed that the transition
point T1 with b = bt is lower than that with b > bt. Thus, tuning the cavity length at bt
is a feasible way to obtain an optimal TET efficiency during the whole vibration process.

The experimental results of two VI NESs are presented in Fig. 5.14. As the cavity
lengths of two VI NESs are set as two different values with b1 = 33mm and b2 = 10mm,
the vibration extinction of LO follows three quasi-linear decreases (see Fig. 5.14(a)). If
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Figure 5.14: Experimental results of two VI NESs: (a) time history of the displacement;
(b) time history of the acceleration; (c) comparison of the displacement envelope with
different b.

the amplitude of LO is higher than the transition point T1a, the first VI NES with a
large cavity length is activated with two impacts per cycle. If the amplitude of LO is
located in the range between T1a and T1b, the first VI NES escapes from the activation
and the second VI NES with a small clearance is activated with 1:1 resonance capture.
The principle of separate activation can also be found from the time history of acceleration
(see Fig. 5.14(b)). As can be seen, the impact strenth of VI NES is related to the cavity
length. The horizontal arrows show the two activations of two VI NESs with different
cavity lengths, and the vertical line illustrates the sudden change between them.

Fig. 5.14(c) shows the comparison of the displacement envelope of LO attached to two
VI NESs with different cavity lengths. With the addition of another ball, the three groups
of two VI NESs perform better than the case of single VI NES. As b1 = b2 = 10mm,
the decay rate of first decrease phase is slightly improved, while the displacement of
the transition point is almost the same as that of single VI NES with b = 10mm. As
b1 = b2 = 33mm, the decay rate of first decrease phase is optimal. However, the efficiency
at low energy level is not improved, and the decay rate is far lower than the other two
cases. As b1 = 33mm and b2 = 10mm, the decay rate of first decrease phase is close to
that of VI NESs with b1 = b2 = 33mm. At low energy level (the amplitude of LO is lower
than T1a), the decay rate performs optimal than the other two cases. Thus this groups of
VI NES can work robustly and efficiently for different kinds of transient excitation.

In summary, tuned method for transient excitation is verified. The analytical calcu-
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lation of Eq. (5.35) is demonstrated to predict the optimal clearance well. Moreover, the
principles of additivity and separate activities of multiple VI NESs are observed, and the
robustness of vibration control can be improved for a large band of transient excitation.

5.5 Conclusion

The ultimate goal of this chapter is to propose the design criteria for optimally tuned
Vibor-Impact (VI) NES to control the vibration under periodic and transient excitation.
To this end, a generalized dimensionless model of a 2 degrees of freedom system comprising
a harmonically excited LO strongly coupled to a VI NES is studied. An analytically
obtained Slow Invariant Manifold (SIM) is used to explain the different response regimes.
Where the transition point (i.e., T1) between the regime with two symmetrical impacts per
cycles and that of Strongly Modulated Response (SMR) is demonstrated to be optimal for
periodic excitation. Thereafter, a bifurcation analysis is carried out. Activation energy
threshold for targeted energy transfer is obtained and used to design an optimal criterion
for a single NES.

For transient excitation, the critical point (i.e., T2) between the regime with two
symmetrical impacts per cycles and two asymmetrical impacts per cycles is adopted to
calculate the optimal clearance, and it proves that tuning the initial master energy at this
point can achieve a high TET efficiency during the whole vibration process. Thirdly, the
procedure is extended in case of multiple VI NESs in parallel. Two principles of additivity
and separate activities of VI NESs are verified theoretically and experimentally.

Finally, experiments involving the whole system for periodic and transient excitation
are performed. The results show that the analytical calculation of the clearance can not
only predict the efficient TET at resonance frequency, but can also achieve an optimal
performance to protect the primary system in a range of frequency. Furthermore, the
design criteria for single VI NES can be straightforward for the application of multiple VI
NESs and semi-active control, so as to make VI NES work robustly under different types
of excitation.
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Conclusion and
Perspectives

The work of this thesis is dedicated to the passive control of dynamics systems subjected
to harmonic and transient excitations using a Nonlinear Energy Sink (NES). All studies,
no matter analytical, numerical or experimental, are tightly around the four questions
raised in the introduction. The response are almost positive as follows:

• The optimal nonlinear stiffness proposed for NES system is efficient to avoid the
detached resonance tongue and allows energy pumping at the same time.

• The designed NES can not only output the expected nonlinear characteristics, but
can also be tuned to work robustly over a range of excitation.

• Bistable NES can be efficient and robust in a broad-range of excitations, and its
optimal design criterion is practicable to guide the semi-active control method.

• The optimal clearance calculated for a Vibro-Impact (VI) NES can be straightfor-
ward for multiple VI NESs and semi-active control, so as to improve the robustness.

Developed around them, the work of this thesis is organized in five chapters. In the
first chapter, a general background and the state of art is introduced. The latter is
developed around two axes: NES with smooth nonlinearity and VI NES. The general
study results are presented for cubic NES. More importantly, its unresolved issues are
exposed, e.g., how to optimize the NES under a given primary system specification, and
how to implement a cubic nonlinearity element in practice without any linear part. As for
VI NES, its former study show the possibility of semi-active control of this NES but the
limitation results from the analytical calculation. With this in mind, design theory and
experimental study of a novel NES, efficient Targeted Energy Transfer (TET) of bistable
NES and design criteria for optimally tuned VI NES are studied in this thesis.

The second chapter is devoted to the design criterion and design theory of a novel
NES. To this end, a combined method with slow invariant manifold (SIM) and stability
of the fixed points is studied theoretically. Frequency response functions (FRF) are cal-
culated when the different parameters are varied and explain the behavior of the NES

PhD Thesis-Donghai QIU - 131 -



Conclusion

well. As a result, an optimal nonlinear stiffness is obtained, so as to tune the NES be
activated and produce the efficient TET. Then a novel design of NES system yielding
cubic nonlinearity without a linear part is developed. Key features of the system include:
(i) specifically sizing two nonlinear springs to provide the force polynomial components
with only linear and cubic terms; (ii) pre-compressing the two springs at the transition
point to produce smooth nonlinear force characteristics; (iii) adding a negative stiffness
mechanism to counterbalance the linear term. Finally, a special sized NES system is de-
veloped, in which the distance between each spring and the NES mass is adjustable so
that a suitable force shape can be reached.

In the third chapter, experimental study to validate the concept of NES is performed.
Firstly, identification and calculation of effective mass are implemented. The results
of force characteristics show that both the variable pitch spring and conical spring can
produce strong nonlinearity. Furthermore, combining nonlinear springs and a negative
stiffness mechanism is a feasible way to produce pure cubic nonlinearity. Then, dynamic
tests are carried out. The results show that the designed NESs are efficient to protect
the primary system in a large band of frequencies. Moreover, it performs well in terms of
controlling the maximum amplitude of the LO for different types of excitation. Finally,
a sensitivity analysis is performed with respect to the pre-compressed length. Different
kinds of NES (with positive stiffness, negative stiffness and unsymmetrical stiffness) are
generated, which lays the foundation that: as the springs of this device are fixed for
engineering applications, semi-active control of this NES may provide an alternative way
to increase the band in which excitation amplitude is efficient.

In the fourth chapter, efficient TET of bistable NES (with cubic and negative stiffness)
is investigated. An analytically obtained SIM is used to explain the different response
regimes. Asymptotic analysis and Melnikov analysis are respectively used to obtain the
thresholds of different response regimes. Then efficiency of different response regimes is
studied and demonstrates that with the addition of negative stiffness, the efficiency of
bistable NES in the band of Strongly Modulated Response (SMR), is larger than that of
cubic NES. Finally, an optimal point located at the boundary between the SMR and sta-
ble periodic response is found, at which the efficiency of NES is largest and the amplitude
of LO is smallest. Based on this, an optimal design criterion and the corresponding con-
figuration are proposed, and experiments for semi-active control of NES are also explored.
By adjusting the pre-compressed length of spring, the NES can be tuned to robustly work
at its best performance for a range of excitation.

The fifth chapter aims to propose the design criteria for optimally tuned VI NES to
control the vibration under periodic and transient excitation. Firstly, bifurcation analysis
and efficiency of TET around the SIM are studied with the variation of clearance. As
a result, the optimal clearances for periodic and transient excitation are calculated from

- 132 - PhD Thesis-Donghai QIU



Conclusion

two transition points of the SIM, respectively. Then the procedure is extended in case of
multiple VI NESs in parallel to the LO. Two principles of additivity and separate activities
of VI NESs are verified theoretically. Finally, experiments involving the primary system
with single VI NES and multiple VI NESs are performed. The results show that the
design criteria can not only predict the efficient TET at resonance frequency, but can
also achieve an optimal performance in a range of frequencies. Furthermore, it can be
straightforward for the application of multiple VI NESs and semi-active control, so as to
make VI NES work robustly under different types of excitation.

Following this work, several points of research can be envisaged:

• One NES

– The design parameters of conical spring are mainly obtained by optimization,
detailed analytical calculation for this spring (or even with variable pitch) can
be further studied.

– Negative stiffness mechanism with linear springs requires extra space in lateral
direction, using the magnetic components to replace such springs may be an
alternative way.

– Chaotic characteristic of bistable NES and VI NES should be further studied.
Especially, Lyapunov exponent can be calculated, so as guide the threshold of
each response regimes.

• Multiple NESs

– Using multiple NESs is feasible to enhance the TET efficiency, but additional
external degrees of freedom requires additional spaces for the NES. A general-
ized design theory considering this problem should be further studied.

– Since the activation of VI NES depends on its clearance, mass and restitution
coefficient, it is desirable to further study the combination of different VI NES
with these different parameters.

• Other NES

– The NES with combined nonlinearity (i.e. impact and cubic nonlinearity)
seems perform better than pure cubic NES, more theoretical development and
experimental validation can be further studied.

– The non-smooth NES (with piecewise stiffness springs) only needs the space
of translational direction, it is interesting to realize the mechanical design of
such springs and make the experimental comparison with other NES.
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– The optimal design criteria of bistable NES and VI NES is obtained under the
context of TET, it is reasonable to generalize the results to other NES or even
other absorbers.

• Application

– With the designed NES, other excitation such as random excitation to simulate
the seismic activity can be further studied .

– Application of the designed NES to the control of chatter, e.g., experimental
validations can be further studied.

– Using the designed NES or VI NES to semi-active control (with linear actuator)
the vibration of linear and nonlinear systems can be further studied.
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