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This work studies some of the most relevant problems in the direction of navigation and control presented in a particular class of mini-aircraft. One of the main objectives is to build a lightweight and easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a complete mission from take-o⁄ to the following waypoints and complete the mission with an autonomous landing within a delimitated area using a graphical interface in a computer.

The Trajectory Generation It is the part that tells the drone where it must travel and are generated by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory generation in 2D and we have extended it to the 3D trajectory generation.

A path following strategy developed using the Lyapunov approach is presented to pilot a xed wing drone across the desired path. The key concept behind the tracking controller is the reduction of the distance between the center of mass of the aircraft p and the point q on the path to zero, as well as the angle between the velocity vector and the vector tangent to the path.

In order to test the techniques developed during the thesis a customized C # .Net application was developed called MAV3DSim (Multi-Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write operation from / to the simulation engine from which we could receive all emulated sensor information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation engine, the computation of the control law and the visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground station type of application, where all variables of the vehicle s state vector can be represented on the same screen.

The experimental platform functions as a test bed for the control law prototyping. The platform consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI mini-computer which to the implementation of the generation and trajectory tracking.

The complete system is capable of performing an autonomous take-o⁄and landing, through waypoints. This is accomplished by using each of the strategies developed during the thesis. We have a strategy for take-o⁄ and landing, which is generated by the naviga on part that is the trajectory generator. Once we have generated the path, it is used by the trajectory tracking strategy and with that we have landing and take-o⁄ autonomously.

III

Resume

Une stratégie de suivi de trajectoire développée en utilisant l' approche de Lyapunov, est présenté pour piloter un drone à voilure …xe à travers tout le chemin désiré. Le concept clé derrière le contrôleur de suivi de trajectoire s'appuie sur la réduction de la distance entre le centre de masse de l'avion p et le point sur la trajectoire q à zéro, ainsi que l'angle entre le vecteur vitesse et la tangente à la trajectoire.

A…n de tester les techniques mises au point au cours de la thèse une application C# .Net personnalisée a été développé nommé MAV3DSim (Multi-Aerial Vehicle 3D Simulator). Le MAV3DSim permet une opération de lecture/écriture de/vers le moteur de simulation à partir de laquelle nous pourrions recevoir toutes les informations de capteurs émulés et envoyés par le simulateur. Le MAV3DSim est constitué de trois éléments principaux, le moteur de simulation, le calcul de la loi de commande et l'interface de visualisation. Le moteur de simulation est en charge de l'intégration numérique des équations dynamique du drone, ici nous pouvons choisir entre un quadrirotor ou un drone d'aile …xe pour l'utiliser dans la simulation. L'interface de visualisation ressemble à un type d'application de la station au sol, où toutes les variables du vecteur d'état du drone peut être représenté sur le même écran.

La plate-forme expérimentale qui fonctionne comme un banc d'essai pour la loi de commande prototypage. Le plate-forme est constitué d'un avion de aile …xe avec un PX4 qui a la fonctionne d'autopilote ainsi qu'un mini-ordinateur Raspberry PI qui à la implémentation de la génération et suivi de trajectoire.

Le système complet est capable d'e¤ectuer un décollage et d'atterrissage autonome, à travers des points de suivi. Ceci est accompli en utilisant chacune des stratégies développées au cours de la thèse. Nous avons une stratégie pour le décollage et l'atterrissage, ce qui est généré par la partie de navigation qui est le générateur de trajectoire. Une fois que nous avons généré le chemin, il est utilisé par la stratégie de suivi de trajectoire et avec ce que nous avons l'atterrissage et le décollage autonome.

UAV Overview

Much e¤ort is currently spent on the research and production of unmanned vehicles, particularly those related to Unmanned Aerial Vehicles (UAV) as they have certain advantages over piloted or remotely controlled vehicles and they are preferred over piloted aircrafts due to low cost of the UAV, therefore the UAV can be expandable. Also they have the ability to accomplish dangerous missions in hazardous environments that can not be done by piloted aircraft. This fact keeps the pilot and crew out of harm's way during potentially dangerous missions while also allowing the aircraft to be made smaller and avoid all the hardware necessary to sustain on-board life support.

Nowadays there are several companies that produce ready-made UAV systems with well developed ground station software that are made for commercial use. One of the companies that has this pro…le is The UAS Europe [START_REF]The uas europe, agriculture, research and surveillance drones[END_REF] that provide UAV for agricultural, research and surveillance purposes. UAS Europe provides a wide range of professional Ground Control Station (GCS) which allow the operator to handle all the tasks related to ‡ying the UAV. They have their own ‡ight control system which allows fully autonomous ‡ights, from take-o¤ to mission landing. The drawback of this solution is the cost. Usually a large fund is required in order to acquire a complete system , such as the UAS Europe system.

However with the recent increase in development of UAV development, there are now powerful enough devices yet at an a¤ordable cost. Drone Deploy [START_REF] Dronedeploy | Dronedeploy, the complete mapping experience[END_REF] o¤ers an easy to use software to handle ‡ight planning and communications with the UAV. The complete software solution handles ‡ight planning, manual download of the data and post-processing. Although they are focused on a solution for 3D mapping and the use of quadrotors to take the image since they have better stationary stabilization than the …xed wing aircraft. In addition, another company is Botlink [START_REF] Botlink | Botlink, a cloud-based drone[END_REF]. Botlink provides a cloud-based platform which features a fully automated UAV with manual ‡ying from any smart phone or tablet. Similar platforms can be found o¤ering a variety of solutions with di¤erent features.

Another area that increase its interest over the last few years is the control methods used for UAVs. There is a vast research conducted around UAVs, the primary focus relies on the theoretical background that is required to set up and ‡y a UAV. The control methods and planning techniques are the most common subjects of interest.

In the literature there are several control methods developed for the stabilization and maneuvering of the aircraft. Among the most famous methods are the Linear Quadratic Control (LQR), which is applied to longitudinal dynamics of the UAV in [START_REF] Chingiz | Lqr controller with kalman estimator applied to uav longitudinal dynamics[END_REF] and [START_REF] Li | Research on longitudinal control algorithm for ‡ying wing uav based on lqr technology[END_REF], the Model Predictive Control (MPC) implemented in [START_REF] Gavilan | An iterative model predictive control algorithm for uav guidance[END_REF] as an an iterative scheme to solve the nonlinear optimization problem, also a nonlinear model predictive control is used to design a high-level controller for a …xed wing UAV in [START_REF] Kang | Linear tracking for a …xed-wing uav using nonlinear model predictive control[END_REF] and in [START_REF] Kahn | Adaptive control for small …xed-wing unmanned air vehicles[END_REF].the adaptive control methods based on the approximation of the dynamic inversion. Despite the superior performance of these methods, not many are implemented in real applications. One of the reasons is the computational cost of the implemented methods. Hence the commonly used and most implemented methods is Proportional-Integral-Derivative (PID) controller, due to its low complexity and computational cost and the adequate performance as in [START_REF] Beard | Autonomous vehicle technologies for small …xed-wing uavs[END_REF].

Path planning is wideley documented in ground robotics and manipulators systems. However the …eld of robotics has extended to the airborne, with the Unmanned Aerial Vehicles.

There are numerous references to UAV guidance laws reported in the literature, an integrated approach is described in [START_REF] Kaminer | Trajectory tracking for autonomous vehicles: An integrated approach to guidance and control[END_REF], a navigation system designed to track straight lines between waypoints is described in [START_REF] Niculescu | Lateral track control law for aerosonde uav[END_REF]. A recent innovation is the use of vector …elds, where a velocity vector …eld is speci…ed over space and the vehicles are commanded to follow these velocity vectors [START_REF] Liang | Combined vector …eld approach for planar curved path following with …xed-wing uavs[END_REF].

Stability for tracking straight lines, circular arcs, and circular paths is shown in [START_REF] Rhee | A tight path following algorithm of an uas based on pid control[END_REF].

Motivation

The main motivation of this work is to reduce the risk for humans in dangerous environments, which is commonly encountered in missions performed by the piloted aircrafts. The pilot will be secure far from the danger and the UAV will provide with the information needed to carry on with the assigned mission.

In the case of emergency situations such as natural disasters, …nding potential survivors requiring medical attention is of major importance. Such missions require high navigation precision and long operation times -this is tedious for human pilots. UAV systems can be planned to autonomously execute complete missions from takeo¤ to landing. In this way, video footage of every square meter of a devastated area can be collected or even medicines, food, water, etc. can be delivered to a temporarily non-accessible person.

The use of UAVs and speci…cally the …xed wing UAV could help to solve this kind of problems. However time is crucial, so there is a need for a fast deploying UAV and also with a fully autonomous mission the operator will be able to monitor the information provided by the aircraft instead of control it manually or semi-autonomously.

One of the advantages of the autonomous take-o¤ and landing systems is the elimination of the human error in the equation. Human error is responsible for roughly 60% of the UAV accidents during operation, and surprisedly 50% of the incidents are during the take-o¤ and landing procedure [START_REF] Arrabito | Human factors issues for controlling uninhabited aerial vehicles[END_REF]. By eliminating the operator from manually controlling the aircraft during take-o¤ and landing procedures and replace them with an autonomous system will greatly increase safety during operations.

Scope of Work

This thesis presents work for the creation and implementation of a low cost, autonomous aircraft.

The aircraft is capable of performing a fully autonomous mission, from the take-o¤ to landing, passing through designated waypoints. This is done with the use of di¤erent control techniques and path generation algorithms. These algorithms were tested on an experimental platform.

To test the functionality of the developed algorithms a simulation environment is created to test the performance of the controllers before its implementation in the experimental platform.

Thesis Overview

Each of the following chapters provides a unique contribution to the overall goal of the autonomous take-o¤ and landing system, which are summarized below.

Chapter 2 A full nonlinear dynamic model is derived for the general case of the …xed wing UAV. The chapter provides several reference systems and rotation with respect to the di¤erent axes present in the dynamic model of the …xed wing aircraft.

Chapter 3 In order to test the controllers developed and the path generation algorithms, a simulation platform is needed, which is the …rst test of the method developed. After that an experimental platform is needed. This chapter provides a detailed description of the simulation and experimental platforms developed during the PhD.

Chapter 4 This chapter contains the preliminary results dealing with the path generation and control in two dimensions. The path generation and the nonlinear lyapunov-based controller developed is fully tested in the simulation and experimental platforms described in Chapter 3.

Chapter 5 In this chapter the extended work to the three dimensional space is presented. The 2D path generation and control are extended to handle the third dimension, again both are tested on the simulation platform.

Chapter 6

The …nal contribution of this thesis, the autonomous take-o¤ and landing algorithm, which uses the previous 3D path generation and the 3D path-following controller.

Chapter 7 This chapter presents some concluding remarks of the technique developed in this thesis, Future work is also addressed in this chapter.

Chapter 2

Mathematical Model

The basis of the analysis, simulation and control of an aircraft relies on the mathematical model of the vehicle. The movement of an aircraft can be seen as a rigid body and is described by six nonlinear second order di¤erential equations and while numerous reference systems are used in aerospace applications, we limited to four reference systems: Inertial Geodesic, Earth-Centered Earth-Fixed, North-East-Down and Body systems.

Frame Reference Systems and Rotations

This section describes the various reference systems in which a vehicle can be represented in space. Also in this section the rotations that can be applied to a vehicle are presented, they are also introduced the Euler angles and the rotation matrix. The coordinate systems are a representation in space and help us to know the position of an object, depending on the selected coordinate system can be a position vector, said vector position is de…ned as the vector whose origin point O as end point P, see Figure 2-1, i.e., the vector applied from the origin O having as components the Cartesian coordinates x; y; z; the point P.

Coordinates Systems

In navigation and control of an aircraft there are several frameworks or coordinate systems used during the analysis and design of control systems [START_REF] Stevens | Aircraft Control and Simulation[END_REF]. In the navigation of an air vehicle at least two coordinate systems are needed. One to represent the orientation of the body and the other one for the representation of the position of the vehicle.

Inertial Reference Frame

In an inertial frame the Newton's laws of motion are applied. Then any coordinated frame …xed to the Earth's surface is an inertial reference frame. We de…ne the reference frame as

F E (O E ; X E ; Y E ; Z E ) :
The origin O E of the reference frame can be placed arbitrarily to suit the particularly needs of what we need to do. The frame axes can point in any direction in a perpendicular way to follow the rule of the right hand frame [START_REF] Fleming | Magnets and Electric Currents[END_REF].

Geodesic Reference Frame

The geodesic reference frame is widely used in GPS-based navigation systems. In Figure 2-1 we can observe that the reference frame place a point P g close to the Earth's surface in terms of longitude, latitude and height or altitude, which are indicated by ( ; ; h). The longitude measures the rotational angle between the prime meridian and the measured point P g and it has a range from 180 to 180 . The latitude measures the angle between the equatorial plane and the normal of the reference ellipsoid that passes through the measured point. The height is the local vertical distance between the measured point and the reference ellipsoid. The coordinate vectors that are expressed in the geodetic reference frame are expressed with a g subscript

Earth-Centered Earth-Fixed Frame

The ECEF frame rotates with the earth around its spin axis and the …xed point on the earth has a …xed set of coordinates. The origin O e of the ECEF frame is located at the center of the earth, the z-axis Z e is along the spin axis of the earth and points towards the north pole, the x-axis X e intersects the sphere of the earth at 0 latitude and 0 longitude, …nally the y-axis Y e is orthogonal to the z-and x-axes following the right-hand rule.

Any coordinate vector expressed in the ECEF frame are denoted with a subscripts e as follows: 

North-East-Down Coordinate System

The north east down (N ED) frame is also known as a local tangent plane (LT P ) :It is a coordinate frame …xed on any arbitrary point on earth's surface. Based on the WGS84 episode model [START_REF]World geodetic system 1984[END_REF], the origin and axis are de…ned as follow:

The origin O n is arbitrarily …xed to a point on the earth's surface.

The x-axis X n points toward the ellipsoid north.

The y-axis Y n points toward the ellipsoid east.

The z-axis Z n points downward along the ellipsoid normal in order to comply with the right-hand rule.

Coordinate vectors expressed in the NED system are denoted with a subscript n. The position and velocity vectors are de…ned as follows

P n = 2 6 6 6 4
x n y n z n 3 7 7 7 5

V n = 2 6 6 6 4 u n v n w n 3 7 7 7 5 
During the ‡ight test we normally select the origin of this coordinate system as the aircraft's takeo¤ point. We use h = z to denote the actual height of the unmanned system.

The vehicle-carried vertical axis system [START_REF] Etkin | Dynamics of Flight: Stability and Control[END_REF] has its origin at the center of gravity of the vehicle. The X v axis points toward the ellipsoid north, the Y v axis ward the ellipsoid east, and the Z v axis points downward . This axis system is obtained by a translation of the (N ED)

coordinate system to the vehicle center of gravity. The attitude of the aircraft (heading, pitch, and bank angles) is described in terms of the orientation of the aircraft body axes with respect to the vehicle-carried vertical axes.

Body Frame

The body frame is not an inertial system and it is …xed to the moving vehicle. The orientation of the body coordinate axes is de…ned as follow

The origin O b is located an the center of gravity (CG) of the ‡ying vehicle. The de…nition of the velocities of the body axis are

u = V cos cos (2.3) v = V sin (2.4) w = V sin cos (2.5)
The velocity V , angle of attack and the angle of side slip can be expressed in terms of the velocities of the body axis

V = jV b j = u 2 + v 2 + w 2 1 2 (2.6) = tan 1 w u (2.7) = sin 1 v V (2.8)

Euler Rotations

The Euler angles [START_REF] Euler | [END_REF] are used to describe the orientation of a rigid body in a 3-dimensional Euclidean space, Figure. The kinematic relationships between the NED and body frames are used in the ‡ight dynamics modeling and automatic control. For translational kinematics, we have

V b = R b n V n
where R b n is the rotation matrix from the NED frame to the body frame and is given by In rotational kinematics we focus on the velocity vector ! b b=n ; which describes the rotation of the vehicle NED frame with respect to the body frame. Following the sequence of the Euler angles, the velocity vector can be expressed as 

R b n = 2 
! b b=n = 2 

Mathematical Model

The nonlinear state equations for the aircraft problem can be seen as a state vector x composed of four 3 1 sub-vectors which represents the aircraft rotational velocity, translational velocity, the vehicle attitude and vehicle position:

x = h x T 1 x T 2 x T 3 x T 4 i (2.15) 
where

x 1 = h p q r i T x 2 = h V i T x 3 = h i T x 4 = h x y h i T
with x 1 ; is the rotational velocity, x 2 ; is the translational velocity, x 3 the vehicle attitude and x 4 the vehicle position. The vehicle rotational and translational velocity are de…ned within the aircraft body and -…xed axis systems.

The rotational acceleration terms in the x vector are derived from the moment equation

M = d dt H (2.16)
where M is the total moment on the vehicle and H is the total angular momentum of the vehicle. The total angular momentum can be replaced with the product of the inertia tensor I and the rotational velocity vector ; thus for the angular momentum we obtain

H =I (2.17)
The inertia tensor is assumed to be constant with time. Equation 2.16 can be expanded to

M = t (I ) + (I ) (2.18)
where t is the time derivative operator in a moving reference frame.

The de…nition of the total moment of the vehicle in 2.16 follow: and I yz are the products of inertia in the x y; x z and y z, respectively; and

M = 2 
= x 1 = h p q r i T (2.21)
where p; q; and r are the rotational rates about the X b ; Y b and Z b . We can rewrite equation 2.18 as

t = I 1 (M I ) (2.22)
This is the vector sub-function for the rotational acceleration. Using 2.22 and 2.21 we know that

t = h _ p _ q _ r i T
When the symmetry plane is the x z plane we have

I xy = I yz = 0
and the only term outside the main diagonal left is I zx . Then the inertia tensor I is given by where 

I = 2 
C 0 = I xx I zz I 2 xz 1 C 1 = C 0 (I yy I zz ) I zz I 2 xz C 2 = C 0 I xz (I xx I yy + I zz ) C 3 = C 0 I zz C 4 = C 0 I xz C 5 = I 1 yy C 6 = C 5 I xz
_ p = (C 1 r + C 2 p) q + C 3 P L + C 4 P N (2.28) _ q = C 7 rp + C 6 r 2 p 2 + C 5 P M (2.29) _ r = (C 8 p + C 9 r) q + C 4 P L + C 10 P N (2.30)
The inertia moments are usually considered as constant for simulation purposes and the variations of mass and center of gravity are not considered.

Translational acceleration

Derivation of the translational acceleration is based on the force equation

F = d dt (mV) (2.31)
where F is the total force acting on the vehicle and m is the vehicle mass, which is considered as constant. Equation 2.31 can be expanded as

F =m d dt V + ! V (2.32)
and taking the following de…nition of F and

V F = h F x F y F z i T (2.33)
where F x ; F y ; and F z are the sum of aerodynamic, gravitational and forces ejerced by the motor engine in the body axis X b ; Y b and Z b , and using 2.2 we can rearrange the terms in equation 2.32 we obtain the expression for the translational acceleration where

d dt V b = 1 m F ! V b (2.34) _ V b = 2 6 6 6 4 _ u _ v _ w 3 
F x = X T + X a + X g (2.36) F y = Y T + Y a + Y g (2.
37)

F z = Z T + Z a + Z g (2.38)
where the subindex T means the force generated by the propulsion system, subindex a means that they are aerodynamic forces and subindex g means they are forces produced due to the earth gravity

The forces produced by the propulsion system is generated by the motor engine and is de…ned as

X T = T t Y T = 0 Z T = 0
The aerodynamic forces of the body axis can be written in terms of the lift L, drag D and side force Y forces as follows 

F a = S T F w = 2 
Y a = Y (2.40) Z a = D sin L cos (2.41)
The gravitational forces X g ; Y g ; Z g can be expressed as which can be expanded into the scalar equations

X g = mg sin (2.
_ = p + q sin tan + r cos tan (2.48) 
_ = q cos r sin (2.49) _ = q sin sec + r cos sec (2.50)

Earth-relative velocity

The matrix R b n that transforms earth axis system vectors into the body axis system is de…ned by equation (2.12) as The relationship between earth-relative velocities and body axis velocities is expressed by

R b n = 2 
V =R b n d dt R
where R is the earth axis system vector de…ning the location of the vehicle

R = h x y z i T with z = h
The equation for the earth-relative velocity can be formulated as 

d dt R =R 1 nb V (2.

Force Coe¢ cients and Aerodynamic Moments

The aerodynamic forces and moments that act on the aircraft are the result of multiple factors and the impact of the same varies depending on the ‡ight conditions as well as change from one vehicle to another. In general, these forces and moments are nonlinear functions dependent mainly on Mach number, angle of attack , lateral slip angle , altitude, rotational velocities and de ‡ections of control surfaces.

The forces and moments are related to the force and coe¢ cients and the dimensionless moments by means of the equations of forces and the dynamic pressure q is modeled as follows

D = qSC D L = qSC L Y = qSC Y
q = 1 2 V 2 t
and the aerodynamic coe¢ cients are

C D = C D (C L ) + C D ( e ) + C D ( ) + C D (M ) C L = C L ( ; T c ) + C L ( e ) + C L (M ) C Y = C Y ( ) + C Y ( r ) C l = C l ( ) + C l ( a ) + C l ( r ) + b 2V T C lp p + C lr r C m = C m (C L ; T c ) + C m ( e ) + C m (M ) + c 2V T C mq q + C m _ C n = C n ( ) + C n ( r ) + C n ( a ) + b 2V T C np p + C nr r
While the various dimensionless coe¢ cients C D , C Y ; C L C l ; C m; C n depend mainly on the aerodynamics of the angles , and depend less on others variables. It can be seen the dependence on the change of velocity of the aerodynamic angles velocities and the dependence of the components p, q and r of the angular velocity of the aircraft's center of gravity. The 

Coordinates Transformation

The geodetic coordinate system is used in many …elds, such as: navigation, surveying and cartography, in order to de…ne the position of an object on the Earth's surface we use a set of three values called geodetic coordinates [START_REF] Farrel | The Global Positioning System and Inertial Navigation[END_REF]. However, the geodetic coordinates lack of an intuitive understanding of distance, unlike other coordinate systems as the local East, North, Up (ENU) Cartesian coordinate system. The local ENU coordinates are formed from a plane tangent to the Earth's surface …xed to a speci…c location and it is known as a Local Tangent Plane (LTP). By convention the east axis is labeled x, the north y and the up z. The three di¤erent coordinate systems are represented in the Figure 234.

Geodetic to ECEF coordinates

Here we introduce the equations to convert geodetic coordinates measurements to Local Tangent Plane coordinates. The method used passes through the Earth-Centered, Earth-Fixed (ECEF) rectangular coordinate system on the way to the Local Tangent Plane.

Geodetic coordinates (latitude , longitude , height h) can be converted into ECEF coordinates using the following relationships:

X = (N ( ) + h) cos cos Y = (N ( ) + h) cos sin (2.56) Z = N ( ) 1 e 2 + h sin where N ( ) = a p 1 e 2 sin 2
The semi-major axis and the …rst numerical eccentricity of the ellipsoid are represented by a and e, respectively, the numeric value of this constants can be found in the de…nition of the World Geodetic System 1984 [START_REF]World geodetic system 1984[END_REF]. N ( ) is the distance from the surface to the to the Z-axis along the ellipsoid normal.

ECEF to Local Tangent coordinates

A local reference point is needed to perform a coordinate transformation from ECEF to the local ENU coordinates. The launching site position will serve as the local reference point. If the launching site is at ( 0 ; 0 ; h 0 ) in geodetic coordinates, then using the previous coordinate transformation we obtain (X 0 ; Y 0 ; Z 0 ), the launching site expressed in ECEF coordinates. The aircraft location is de…ned as ( ; ; h); we use the same coordinate transformation to obtain (X; Y; Z), the aircraft position expressed in ECEF coordinates. The vector pointing from the launching site to the aircraft in the ENU coordinate system is computed as follows The World Geodetic System of 1984 (WGS84) [START_REF]World geodetic system 1984[END_REF] comprises a standard coordinate system and is one of the most used coordinate system used on GPS devices and we will use the coordinate transformations de…ned in this section to express the position of the airplane in the local ENU tangent plane which is suitable for the mathematical model and control purposes.

Chapter 3 Simulation and Experimental Platform

There is an enormous variety of UAV applications and the greate interest around them has produced a new industry in the productions of drones. There are di¤erent groups involved in the development of UAV products, from actuators, sensors to complete autopilots especially developed for the UAV, this includes the software for the autopilot, and we can …nd the solutions as open or closed source.

Few work has been done on development of complete model-based UAV simulators. For example, a real-time simulation of a quadrotor is presented in [START_REF] Putro | Real-time simulation of autonomous quadrotor[END_REF], where the real-time simulation was performed in MATLAB/Simulink by means of the xPC Target, in which a pair of host PC and two PC targets were used. In [START_REF] Sampaio | Fvms: A novel sil approach on the evaluation of controllers for autonomous mav[END_REF] a commercial ‡ight simulator has been used as the simulation engine for the quadrotor Pelican from Asc. Technologies; this represents a disadvantage due to the fact that the source code is not available for review and/or modi…cation.

For several decades, simulation and implementation has been bridged through the use of Hardware In the Loop Simulation (HIL). HIL simulation combines a simulated system with physical hardware. For example, a software simulation of the system plant is augmented with actuators and sensors from the designed system. HILS systems have facilitated the development in numerous …elds, including automotive engineering [START_REF]Hardware-in-the-loop simulation as a standard approach for the development, customization, and production test of ecu's[END_REF], [START_REF] Isermann | Hardware-in-the-loop simulation for the design and testing of engine-control systems[END_REF], aerospace [START_REF] Johnson | Use of ‡ight simulation to complement ‡ight testing of low-cost uav's[END_REF], power systems [START_REF] Liu | A novel approach to power quality assessment: real time hardwarein-the-loop test bed[END_REF] and robotics [START_REF] Carufel | Control strategies for hardware-in-theloop simulation of ‡exible space robots[END_REF].

In this chapter we present the simulation and experimental platform for UAVs. The simulation platform named MAV3DSim (Multi-Aerial Vehicle 3D Simulator), which is capable of simulating realistic scenarios by using elaborated versions of UAV mathematical models. The MAV3DSim simulator allows the user to test controllers before being implemented on the UAV platform; in this manner, the control engineer can design controllers by taking simpli…ed mathematical models and then test such controllers on the complete model provided by the simulator.

On the other hand, the MAV3DSim simulator has several characteristics which improves its e¢ ciency, such as the ability of tuning gains online and the visualization of any variable involved in the system, also it has the possibility to export all the acquired data to a MATLAB compatible format for plotting and further analysis.

The use of small UAV's are specially appealing because of the variety of inexpensive components for building and repairing the UAV. This chapter describes the equipment used in the development of the experimental platform.

MAV3DSim Simulator

The top-level requirements to support a ‡ight test of the low-cost UAV were identi…ed as:

1. Test all custom developed software extensively : guidance, navigation and control algorithms.

2. Test onboard computer hardware, operating system implementation, and software execution in real-time.

3. Rehearse all procedures and ‡ight test plans.

4.

Rehearse control failure and implement mechanisms to gain manual control of the aircraft in the case of control failure.

5. Use it in ‡ight test location as a ground control station(GCS) with the experimental platform.

In order to satisfy this requirements we developed a custom simulation platform that can be used for development and test of new control and guidance algorithms. The MAV3DSim simulator is a custom application developed in the Microsoft's C# .Net programming language.

The MAV3DSim can collect all the simulated sensor data from the simulation engine and use this as input for the controllers. The sensor data is in a standard protocol named MAVLink [START_REF] Team | Mavlink micro air vehicle communication protocol[END_REF],

this protocol sends sensor data as well as control commands, sensor data such as the inertial accelerations, rotational velocities, GPS position, airspeed and attitude of the simulated vehicle and control commands like the angular de ‡ection of the control surface of an airplane and the speed of the main rotor. The MAV3DSim could work as a pure simulation platform, as presented in [START_REF] Israel Lugo-Cárdenas | The mav3dsim: A simulation platform for research, education and validation of uav controllers[END_REF], but we now have extended its functionality to perform Hardware In the Loop (HIL) simulations; using the very same protocol we can communicate to the embedded hardware:

the Pixhawk autopilot [START_REF] Dev-Team | Pixhawk[END_REF]. Once the simulator collects the data from the simulation engine it will send it to the Pixhawk autopilot and it will process it as if it is the data collected from the physical sensors (inertial measurement unit, GPS, airspeed, barometer, etc. ), then the autopilot will compute the control and send it back to the simulation engine as shown in The MAV3DSim hardware in the loop simulator consists of three main components, the simulator engine, the Pixhawk autopilot and the data visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the UAV, here we can choose between a …xed wing UAV and a quadrotor for use it in the simulation. The input of the simulation engine is the Pixhawk autopilot's output and using this information it computes the new vehicle state and sends it back to the autopilot as sensor data. The autopilot has implemented a variety of controllers, in our case it receives the current state of the vehicle as an input, then calculates the controller output and sends it to the simulation engine as de ‡ection command for the control surfaces. The data visualization interface looks like a GCS type of application, where all the variables of the state vector of the UAV can be represented in di¤erent ways, and with the addition of a 3D visualization of the attitude and position of the UAV in a 3D scenario.

It is worth mentioning that the MAV3DSim has the facility to implement and test new controllers, as showed in our previous work [START_REF] Israel Lugo-Cárdenas | The mav3dsim: A simulation platform for research, education and validation of uav controllers[END_REF], were two di¤erent types of controllers were successfully implemented on the simulator using two di¤erent types of UAVs, a …xed wing and a quadcopter. These controllers should be programmed directly in the source code of the simulator, there are already implemented mechanisms to execute di¤erent controllers and the addition of new ones should not be any problem.

Mathematical Model

In this section we present the mathematical model used by the simulation engine for the airplane and the quadrotor.

These equations are derived and fully described in [START_REF] Mcfarland | A standard kinematic model for ‡ight simulation at nasa-ames[END_REF], this reference was found inside the source code of the CRRCSim simulator and we have validated its correct implementation by comparing the programmed source code with the equations described in the NASA report [START_REF] Mcfarland | A standard kinematic model for ‡ight simulation at nasa-ames[END_REF].

For any aircraft in the simulation engine, the state vector x is a 13 1 vector representing the vehicle location, the inertial velocity, the vehicle attitude and the vehicle rotational velocity.

The rotational and inertial velocities are referenced in the body frame while the attitude and vehicle location are referenced to an inertial frame.

Translational Equations

_ = V N R _ = V E R cos (3.1) _ R = V D
where is the latitude and is the longitude. R is the distance from center of the earth to the vehicle. The time di¤erential inertial velocity vector [V N ; V E ; V D ] is computed using the following equations

_ V N = F N m + V N V D V 2 E tan R _ V E = F E m + V E V D + V N V E tan R (3.2) _ V D = F D + F G m V 2 N + V 2 E R
where F N ; F E and F D are the components of the applied force vector on the vehicles center of gravity and F G is the force of gravity.

Attitude equations in quaternions 

2 6 6 6 6 6 6 4 _ q 0 _ q 1 _ q 2 _ q 3 3 
q 0 q 1 q 2 q 3 3 7 7 7 7 7 7 5 (3.3) 
These equations represent the time derivative of the rotation expressed in quaternions, and to obtain an equivalent representation of the angle from the quaternion expressed in the Euler angles( ; ; ) we have the following relations tan = 2(q 2 q 3 + q 0 q 1 ) q

2 0 q 2 1 q 2 2 + q 2 3 sin = 2(q 1 q 3 q 0 q 2 ) (3.4) tan = 2(q 1 q 2 + q 0 q 3 ) q 2 0 + q 2 1 q 2 2 q 2 3
The rotational velocity dynamic are presented in the following equations where 

2 6 6 6 4 _ p _ q _ r 3 7 7 7 5 = 2 6 6 6 4 
(C 1 r + C 2 p) q C 7 rp + C 6 r 2 p 2 (C 8 p + C 9 r) q 3 7 7 7 5 + 2 6 6 6 4 
C 3 0 C 4 0 C 5 0 C 4 0 C 10
C 0 = I xx I zz I 2 xz 1 C 1 = C 0 (I yy I zz ) I zz I 2 xz C 2 = C 0 I xz (I xx I yy + I zz ) C 3 = C 0 I zz C 4 = C 0 I xz C 5 = I 1 yy C 6 = C 5 I xz C 7 = C 5 (I zz I xx ) C 8 = C 0 (I xx I yy ) I xx + I 2 xz C 9 =

Graphic User Interface

A very important feature is the display of the state vector x delivered by the simulator. We will explain next the di¤erent visualization options that the MAV3DSim includes.

Map

One of the main visualization is the map, which can locate the aircraft in some point on the Earth and it is provided by Google Maps, using the displayed map we can visualize the position of the aircraft and also the path generated by the aircraft. Another feature of the map visualization is that we can add a desired or reference path along with waypoints for trajectory tracking as seen in Figure . 3.1.1.

Map visualization of the UAV desired and actual trayectory.

3D View

A 3D view is also available in the simulator, and it is useful for the 3D representation of the simulated aircraft attitude, it can be seen as a vintage point where a pilot at the ground could be standing or also with a close-up for a better visualization of the aircraft's attitude. The 3D view is provided by the CRRCSim simulator engine, Figure 3.1.1.

3D view is provided by the CRRCSim simulator engine

Avionics instruments

Avionics instruments like those used in commercial aircraft are used to display some of the state variables of the aircraft:

Altimeter: Indicates the altitude relative to a reference level at which the aircraft is ‡ying. 

Plain data visualization

There are several ways to visualize plain data obtained from the simulator and the controls obtained from the Pixhawk, a simple way is a raw data panel which shows the instant data from either sources. A more useful visualization is provided by the plot of the data with respect to time, which shows the changes of the any variable w.r.t. time. An alternative way is to export this data as a Comma Separated Value (CSV) format for further analysis.

Gain tuning

Gain tuning is a time consuming task and to reduce the time of the gain tuning it has the possibility to change the gains online and to see the e¤ect of the new gains in the simulation.

Each slide can be set to a speci…c gain and the range can be set as needed, depicted in Figure 3.1.1.

Integrated tool to set the gains of the developed controllers.

Airframe

We decide to use commercially available airframes as the cost in time and e¤ort of designing a …xed wing airplane is too high. Therefore we use airframes already tested and which are guaranteed to ‡y. We test a total of 3 airframes and they will be described below.

Bixler

The …rst airframe was the HobbyKing TM Bixler TM , an in-expensive platform which is made of Expanded PolyOle…n (EPO) foam and is very easy to repair after an inevitable crash. It is a small platform with a wingspan of 1.4m and a length of 0.925 and a total wing area of 26dm 2 .

The motor used in this airframe is a 2620-1900kv Brushless Outrunner drived by an electrical speed controller of 20 amps and it uses 4 9g standard servos to move the control surfaces aileron, elevator and rudder. As it is a small airframe it cant carry a lot of payload and a small battery of 2200mAh and 3s Li-Po battery was used.

FPV-Raptor

The FPV-Raptor from Lanyu Hobby frame has a blow moulded fuselage which uses Nylon and is virtually indestructible, it can handle very well hard landings and crashes. The ‡ying surfaces are all made from tough EPO foam which are durable and easy to repair. It has a 1.6 m. wingspan and a total length from nose to tail of 1.044m, for the propulsion systems it has a 2812 1400Kv brushless motor and the actuators for the control surfaces are 4 9g standard servos. The total weight is 950g and the battery used with this airframe is a 4000mAh Li-Po Battery. Under the canopy it has a more than enough space for mounting batteries and all the external electronics, such as autopilot and on-board computer.

Penguin

The …nal airframe used as a development platform is a Finwing Penguin. The Penguin is a ‡ying aircraft specially designed for First Person View(FPV) ‡ights, this means it can carry the necessary payload for the autopilot and external sensors needed. It is made of EPO with wood reinforcement in the fuselage and carbon …ber tube reinforcement in the wings. The model has a wingspan of 1.72m and measuring 1.230m from nose to tail, the total wing area is 36dm 2 .

This model is powered by a brushless motor M2815 driving a 15" 8" propeller drived by an electronic speed controller (ESC) of 60 Amps. The control surfaces aileron and elevator are drived by a 17g servo and the rudder used a 9g servo. The battery used with this airframe is a Li-Po 14.8V with 4 cells and 5000mAh. The total weight of the airframe is 0.98kg including motors and servos but not including battery and extra equipment. This airframe is capable of carrying a heavy payload of max. 1000g, the payload has to include the battery and external electronics, such as the autopilot and navigation hardware.

Flight Controller Unit

There are a variety of ‡ight controller units available which o¤er the ability to connect multiple sensors and process the information to control the aircraft. Among these there is a smaller selection that would be suitable for small-sized UAVs. In order to properly choose the adequate solution, existing units had to be evaluated. Existing units examined are separated into com- MicroPilot MP2128g [START_REF] Czarnomski | Bene…ts of autopilot integration for enhanced uas operations[END_REF][51] and Kestrel [START_REF] Li | Multiple uavs autonomous mission implementation on cots autopilots and experimental results[END_REF]. The speci…cations for these autopilots are given in Table 3 Paparazzi Lisa, 3D Robotics APM 2.6 and Pixhawk The speci…cations for these units are given in Table 3.2.

After the comparison of the autopilots available we choose for the main controller of the UAV the Pixhawk autopilot, which is a high-performance autopilot-on-module system. This autopilot-on-module o¤ers a complete open source ‡ight stack, which can be fully reviewed and modi…ed to ful…l our needs. It is suitable for …xed wing, multi rotors, helicopters and any other robotic platform. It has a wide range target which goes from the high-end researcher to the amateur enthusiast. In the following subsections we will review in detail the hardware and …rmware

Hardware

The heart of the autopilot board is the 32bit STM32F427 Cortex M4 core which runs at 168Mhz with 256 KB in RAM and 2MB of ‡ash memory with the addition of a STM32F103 for a fail-safe 

Firmware

The …rmware for the Pixhawk autopilot modules runs on top of the very e¢ cient small operating system called NuttX, which provides a POSIX-style environment for c++ programming (i.e. Experimental platform with the Pixhawk autopilot and used electronics.

Examples Usage of the MAV3DSim

The literature presents many examples where a simpli…ed model of the system to investigate a control algorithm [START_REF] Roberts | On the controllability of …xed-wing perching[END_REF][34] [START_REF] Cowling | A prototype of an autonomous controller for a quadrotor uav[END_REF]. This is a common practice that simpli…es the process of control design. However, in a lot of cases the controller must be validated on a real platform, which does not necessarily match the model. In few cases, the designer tests the controller on the complete system model, this is due to the di¢ culty to represent the behavior in any simulation software such as MATLAB SIMULINK.

Therefore, a simulating tool which can represent in an accurate manner the real system behavior is needed. In order to validate the simulation platform we are using the stable version of the PX4 ‡ight stack …rmware [START_REF]Px4 software stack[END_REF], which is the …rmware installed in the Pixhawk autopilot.

To this end, the operation of the MNAV3DSim simulator is showed by two examples: We use the implementation of the waypoint following of the PX4 stack …rmware. We use the MAV3DSim as a ground station when performing the same waypoint following on the experimental platform. 

L 1 Controller for Waypoint Following

This section describes the guidance law implemented on the PX4 Firmware for waypoint following, this guidance is fully presented and extensively analyzed in [START_REF] Park | A new nonlinear guidance logic for trajectory tracking[END_REF][63]. We will brie ‡y describe the guidance law and then we will continue with the implementation of the waypoints following in the PX4 Flight Stack.

The key idea behind this guidance law is that it generates a lateral acceleration commands to steer the velocity vector towards a desired point, chosen to be a speci…ed look-ahead distance along the desired path in front of the vehicle.

Analyzing the geometry shown on Figure 3-2, V is the UAV's horizontal velocity vector w.r.t the ground and C is the circular arc of radius R that lies tangent to the velocity vector and connects with the intersection with the desired L 1 vector's distance and the path, and the L 1 being a constant look-ahead distance vector from the UAV position to the path in the desired direction of travel. This L 1 vector is then divided by two into equal segments by the line bisecting the chord of the arc C. Then by trigonometry we know that: So the lateral acceleration a c required to follow the circular path C is given by:

jL 1 j 2 = R sin (3.6)
a c = jV j 2 R (3.7) 
Therefore the lateral acceleration command is determined by:

a c = 2 jV j 2 jL 1 j sin (3.8)
It is clear that the implementation of this control law only requires the selection of the jL 1 j distance and to determine sin , where is the angle from the velocity vector V to L 1 also referred as the line of sight angle.

For the UAV to actually track the desired trajectory, the lateral acceleration command a c computed in 3.8 must be converted to a bank angle command cmd using the following turn equation:

cmd = tan 1 a c g (3.9)
Now we discuss the implementation of the PX4 Stack Flight of the waypoint following strategy. This strategy consists in two parts, 1) the computation of a reference point L 1ref and

2) the computation of the acceleration command from eq. 3.8.

The computation of L 1ref depends primarily of the current location of the aircraft w.r.t. the path to follow. The path to follow is de…ned by a n number of waypoints that are su¢ ciently away from each other to ensure the aircraft is able to make a successful turn. If two waypoints are too close from each other they will be treated as a single waypoint and after reaching it, the aircraft will continue with the next waypoint. There are 3 di¤erent sections in which the aircraft could be located (Figure 3-3):

Region A: Is situated behind the waypoint, this usually occurs at the beginning of the mission and the reference point L 1ref will be the very …rst waypoint.

Region B: Here the aircraft is in between of the two waypoints so the reference point L 1ref

is placed over the path with an angle, so it does not enter the path perpendicularly.

Region C: In this region we can directly apply the computation of the L 1ref on the path at a L 1 distance ahead of the aircraft.

Using the map interface provided by the MAV3DSim we can choose the waypoints, select the proper altitude for the waypoints and …nally save them into the Pixhawk's ‡ash memory.

The experiment begins …rst with a manual control of the aircraft to perform a take-o¤ and gain enough altitude to initiate the waypoint following logic, we can change at a semiautonomous or assisted control using the radio control switches, after the aircraft gained gain enough altitude we activate the L 1 waypoint following with the radio control and let the aircraft follows each waypoint, we can at all time recover the manual control of the autopilot with the radio control. In this case the experiment is …nished with a manual landing. A video of the working simulator can be seen in https://youtu.be/swrO97xFV2w

MAV3DSim as a Ground Control Station

When performing tests on the ‡ying …eld, it is important to know the current state of the vehicle. To that end, we could use the MAV3DSim as a Ground Control Station (GCS), as it communicates with the Pixhawk autopilot via the MAVLink protocol using a wireless link and it has all the avionics instruments and the 2D map display to know the position, orientation and velocity of the vehicle at all times.

We perform the very same experiment described in the previous section but in the experimental platform described in Section 3.2, using the very same waypoints and the same location and as in the simulation case we start with the manual take-o¤ and continue with the waypoint following to …nish the mission with a manual landing. A video of the experiment on the …eld could be seen in https://youtu.be/gxhkDxKoG0U. 

Mathematical model

The Dubins aircraft model is described by the subsequent equations:

_ x = V t cos (4.1) _ y = V t sin (4.2) _ = !
in which x and y denotes the inertial position of the aircraft, is the heading angle, ! is the heading rate, is the roll angle, V t is the airspeed, i.e. the speed of an aircraft relative to the surrounding air. The velocity of the aircraft is held constant by a velocity-hold system. Since the simpli…ed model is a function of x; y; also an altitude-hold controller is needed for the simulation performed on the simulation platform MAV3DSim described in the previous chapter.

Also, we assume no sideslip at a banked-turn maneuver.

The heading rate ! is induced by the roll angle of the airplane as

! = g V t tan (4.3)
where g is the gravity acceleration. The roll angle is considered bounded under the following condition j j max (4.4)

Assuming a coordinated turn, and given the boundedness of the roll angle the minimum turn radius that the aircraft can ‡y is given by

= V 2 t g tan ( max ) (4.5)
In this kinematic model the position of the airplane can be represented by p(x; y; ) with 

CR i CR f RSR CR i CL f RSL CL i CL f LSL CL i CR f LSR CR i = (x Ri ; y Ri ) = (x i + cos i ; y i sin i ) CL i = (x Li ; y Li ) = (x i cos i ; y i + sin i ) CR f = (x Rf ; y Rf ) = x f + cos f ; y f sin f CL f = (x Lf ; y Lf ) = x f cos f ; y f + sin f
The Dubins paths are chosen by comparing the distance between the center of the circles segments.

Dubins path RSR

The initial and …nal con…guration (p i ; i ) and (p f ; f ),respectively, are given w.r.t. an inertial frame (Local ENU frame). The RSR is generated by a clockwise rotation from the initial position describing an arc of radius and center CR i with coordinates (x Ri ; y Ri ) until the aircraft heading achieves an angle of degrees. Then it follows a straight line segment d, …nally it continues with a turn to the right describing an arc of radius and center in CR f with coordinates (x Rf ; y Rf ) until the plane arrives to the …nal heading f as seen in Figue 4.2.

The path generator algorithm produce an array of points p n

The angle is the angle of the straight line segment d which is measured from the vertical y axis and computed as follows

= 2 tan 1 y Rf y Ri x Rf x Ri (4.6)
The length d of the straight line segment d equals the distance CR i CR f between the center of the circles CR i and CR f and is computed as

d = q (x Rf x Ri ) 2 + (y Rf y Ri ) 2 (4.7)
The path generator algorithm produce an array of n points p n which starts in p 0 = p i and ends in p n = p f .

The coordinates of the n th point p n of the arc segments are obtained by rotating the initial point p i clockwise around CR i as a center The length of the straight line segment d is computed with the distance l from the segment CR i CL f and the radius as

p n = 2 4 x n y n 3 5 = 2 4 x Ri + sin ( n ) y Ri + cos ( n ) 3 
d = p l 2 4 2 (4.14)
The coordinates of the n th point p n of the arc segments are obtained by rotating the initial point p i clockwise around CR i as a center using (4.8), see Figure 4.2.1a.

Each point in the straight line segment is computed by incrementing the previous point p n 1 in a given d in direction of the angle as in (4.9) 

Algorithm 2 Generate Dubin path RSL n = 1; p 0 = p i n = 0 = 2 tan 1 y Lf y Ri x Lf x Ri = tan 1 2 d = + 2 while n do p n :x = x Ri + sin( n );

Dubins path LSL

The LSL case is very similar to the RSR but with the turns to the left instead of right and it occurs when the smallest distance between the circles (see The angle measured from the vertical y axis is

= 2 tan 1 y Lf y Li x Lf x Li (4.15)
The length of the segment d equals the distance CL i CL f and it is computed as

d = q (x Lf x Li ) 2 + (y Lf y Li ) 2 (4.16)
The coordinates of the n th point p n of the arc segments are obtained by rotating the initial point p i counterclockwise around the CL i as a center, as follows

p n = 2 4 x n y n 3 5 = 2 4 x Li + sin ( n ) y Li + cos ( n ) 3 5 (4.17)
where n starts at zero and is incremented each time by until it reach the angle .

Each point in the straight line segment is computed by incrementing the previous point p n 1 in d in the same direction as using equation (4.9). The last curved segment is a turn to the left and the segment coordinates are computed as follows

p n = 2 4 x n y n 3 5 = 2 4 x Lf + sin ( n ) y Lf + cos ( n ) 3 5 (4.18)

Dubins path LSR

According to Table 4.1 the Dubins path LSR is when the shortest distance is the one between the circles CL i and CR f . The …rst segment of this path is a left turn which generated with a counter-clockwise rotation from the initial position p i describing an arc of radius with center in CL i = (x Li ; y Li ) until the airplane reach the heading , then it follows a straight line segment of length d and it …nish with a right turn described by the arc of the circle of radius with center in CR f = (x Rf ; y Rf ) and it will turn until it achieve the angle f as depicted in Figure where n starts at zero and is incremented each time by until it reach the angle .

Each point in the straight line segment is computed by incrementing the previous point p n 1 in d in the same direction as using equation (4.9). The last curved segment is a turn to the right and the segment coordinates are computed as follows

p n = 2 4 x n y n 3 5 = 2 4 x Rf + sin ( n ) y Rf + cos ( n ) 3 5 (4.22)
The inertial position of the aircraft is de…ned by p = [x y] T in the inertial reference frame I. For the purpose of following the given path, we de…ne the inertial vector error d I = p q(s) expressed in F, which will be minimized in order to track the path. Such error vector d I has been decomposed into its components e s and e d , corresponding to the error in the x-axis of the frame F and the error in the y-axis of the frame F, respectively as it is shown in Figure 4.3.

From the Figure 4.3, we can see that the tangent vector to the path at q(s) is parallel to

x-axis of the frame F. The angle f is measured from the inertial frame to the tangent vector of q(s).

Considering an arbitrary point q on the path, and let

R = 0 @ cos ( f ) sin ( f ) sin ( f ) cos ( f ) 1 A (4.23)
the rotation matrix from F to I, parameterized locally by f . Thus, the error d I expressed in the Serret-Frenet frame is given by

d F = 2 4 es ed 3 5 = R T d I = R T (p q (s)) (4.24)
Furthermore, we de…ne the yaw angle error as

~ = f (4.25)
The angle f can be computed by using the information provided by the geometric path and its …rst derivative with respect to the parameter t, as follows f = arctan

y 0 s x 0 s (4.26)
where x 0 s = dxs dt , y 0 s = dys dt . To obtain the error state dynamic equations suitable for control purposes, we must compute the time derivative of (4.24) and (4.25). By di¤erentiating (4.24), it follows that

_ d SF = R T ( _ p _ q (s)) + _ R T (p q (s)) (4.27) = R T ( _ p _ q (s)) + S _ f R T (p q (s))
where S( _ ) is given by

S( ) = 0 @ 0 _ f _ f 0 1 A (4.28)
From (4.1), the time derivative of p and q(s) can be represented as follows

_ p = R( ) 0 @ V 0 1 A (4.29) _ q = R 0 @ _ s 0 1 A (4.30)
The time derivative of (4.25) results in

_ ~ = ! _ f (4.31)
with

_ f = k(s) _ s (4.32)
where

d f dt = k(s)
is the path curvature. The path curvature is expressed as a function of the path coordinates (x s (t); y s (t)) and its …rst and second derivatives with respect to the parameter t, i.e. x 0 s = dxs dt , y 0 s = dys dt . Thus, the path curvature 

d f dt = k(s) is given by k = jy 00 s x 0 s y 0 s x 00 s j (x 0 s 2 + y 0 s 2 ) 3=2 ( 
e d = V t sin ~ k (s) e s _ s = ! k (s) _ s

Path following controller

In this section we present a nonlinear path following control strategy. Such control strategy is done in two steps. The …rst step yields a kinematic controller by adopting the yaw rate ! from 4.1 as a virtual control input. The second step addresses the vehicle dynamics in order to obtain the control law for the input variable . Such control law relies on the kinematic controller previously derived.

Kinematic Controller Design

Following a similar approach as in [START_REF] Lapierre | Nonlinear path-following control of an auv[END_REF], we introduce a desired approach angle parameterized by k > 0 as In order to study the control law for the system (4. 

(e d ) =
! = k !1 ~ (e d )
where k s , k 

Simulation Example

Simulations were done on a complete simulation platform, the MAV3DSim(Multi-Aerial Vehicle 3D Simulator) provides a complete 6 degrees of freedom (DoF) computer model of …xed wing aircraft. The MAV3DSim software layers are described brie ‡y in this section. The application scenario is in the use of the path generation and path-following algorithms to command a desired path to the …xed wing UAV. The results from the simulation are presented at the end of this section.

MAV3DSim Simulation Platform

The MAV3DSim is a custom C# .Net based application and implements a complete 6DoF nonlinear model. It has a 3D representation to visualize the position and orientation of the plane, also, it has the capability to load maps directly from Google Maps servers and set the launching site on any location on Earth. The trajectory generated by the plane can be seen on the map, this map is the tangential plane to the Earth.

The data generated by the simulator is coded in the same manner as the common sensors,i.e.

it send data emulating an inertial measurement unit(IMU) sending inertial gyroscope, accelerometer and magnetometer, a GPS radio in the latitude/longitude format, altitude and airspeed.

It can receive commands to move the control surfaces aileron elevators, rudder, and the thrust of the …xed-wing UAV. The position provided by the simulator is in a standard geodetic WGS84 Latitude( ), Longitude( ) and Height(h), and we will use the transformation to the local tangent ENU described in Section 2.2.5. 

Experimental ‡ight

During search and surveillance mission it is sometimes required that the aircraft ‡y through a n (n 3) number of waypoints in a given order. We will be using the path generation described in 4.2 and the kinematic controller described in 4.4, and we have the following assumptions for the experimental ‡ight

The airspeed V t of the vehicle is assumed to be constant through the mission. We use a well tuned PID controller to maintain the airspeed constant.

The aircraft has a bound on its maximum turn rate and minimum turn radius.

Due to the nonholonomic nature of the vehicle it is not possible to pass through all waypoints and at same time ‡y over all portions of the straight lines between the waypoints, thus, our main priority is to pass through the exact point of the waypoints.

The waypoints have a separation not greater than 50m, this is due to the battery limitation of the aircraft, which give us a ‡ight time of 30 minutes.

First consider n waypoints denoted by w 1 ; w 2 ; :::; w n : The assumption is that initially the aircraft is in an arbitrary position, using the path generation algorithm it creates a path from the current position and orientation to the …rst waypoint with …nal angle equal to the angle formed by the line between the …rst two waypoints. As the experimental aircraft position is obtained via GPS all the computation should be using the (latitud; longitude) for the position of the aircraft, so the waypoints have the following structure The experiment is depicted in Figure 4-2. We start the experiment with a manual take-o¤ from the take o¤ site to some point near the …rst waypoint and until we reach the reference altitude of 100m . After arriving to the desired altitude we initiate the path generation strategy.

w n = 2 
The path generator takes as an input the current position and heading of the aircraft and generates an initial path to the …rst way point, the green line in the picture, then it will continue generating the path for all the remaining waypoints, in the picture it is the black line.

From the Figure 4-3 we can observe the performance of the controller, as there is still a small error in the following of the path, we consider the performance of the system is acceptable. At the beginning of the experiment we enter the …rst curve with more velocity that the calculated for the minimum turn radius and therefore the aircraft step out the path for a moment, once the airspeed is regulated to the correct value the aircraft follow the path without issues. Figure 4-4 show the computed controllers for the roll , pitch and the virtual particle velocity _ s, the red lines is the moment of transition from one waypoint to the other. In the Figure 4-5 we can verify that the errors tend asymptotically to zero, each time the aircraft arrives toward a new waypoint the error is increased but rapidly compensated. Finally in …gures 4-6 and 4-7 we can see the altitude and airspeed vs the setpoint to verify that it remains regulated by the PID controller implemented. The virtual tarjet following, also known as look-ahead approach, the guidance control is designed to track a virtual particle moving along the desired path, which is ahead of the vehicle. Di¤erent concepts are taking in the design process of these type of methods, such as the pure pursuit guidance [START_REF] Morales | Pure-pursuit reactive path tracking for nonholonomic mobile robots with a 2d laser scanner[END_REF], line-of-sight guidance [START_REF] Ambrosino | Path generation and tracking in 3-d for uavs[END_REF], proportional navigation guidance [START_REF] Wit | Vector pursuit path tracking for autonomous ground vehicles[END_REF],trajectory shaping guidance [START_REF] Ratnoo | Path following using trajectory shaping guidance[END_REF].

Finally in recent years a new method has been developed using the virtual target following approach, the nonlinear path following guidance law [START_REF] Deyst | Lyapunov stability of a nonlinear guidance law for uavs[END_REF]. The strengths of this method are the simplicity of the guidance command and that it enables tight tracking of curved paths by anticipating the upcoming desired path and wind e¤ect compensation.

3D Dubins path

One of the classical paths for aircraft maneuvers is the circular helix, whose projection on the x y plane is a circle. The path can also be seen as a path on the surface of a cylinder.

An important property of this trajectory is that the ration of curvature and torsion remains constant. The cylinder is used as the most logical extension of the circle to the 3D space, as depicted in the Figure 5-1, in which the same rotation is executed and at the same time a change in the altitude is performed.

Figure 5-1: The cylinder is considered as the 3D extension of the circle.

The previous condition of constant altitude is relaxed so that the initial and …nal position does not lie on the same plane. The controller also needs to take this into consideration and to introduce the altitude as a new state in the model used to develop the previous controller.

The design of the Dubins path is shown on Section 4.2, the Dubins path has two circular segments and a straight line segment, and all the three segments are in the same x y plane, thus it is easy to …nd the common tangent to the initial and …nal position. A similar approach but extended to the 3D case is developed to compute the 3D Dubins path.

In As in the 2D case the …rst step is to choose the type of Dubins path. We have the initial and …nal con…guration de…ned as follows

c i (p i ; i ) (5.1) 
c f p f ; f (5.2) 
where p i = [x i ; y i ; z i ] is the initial position of the path and p f (x f ; y f ; z f ) is the …nal position of the path, both are expressed in an inertial frame, the initial heading angle i and the …nal heading is f :There are 8 possible selections for the 3D Dubins paths, from the di¤erence in altitude we can choose if it is a downwards or upwards maneuver. We choose the shorteest path by comparing the proyection of the circles of the top an bottom of the cylinders on the same X Y plane, as in Figure 5-4. The smallest distance between the center of the circles gives us the shortest Dubin path according to Table 5.1.

Based on the initial and …nal con…guration c i and c f and the minimal radius from (4.5), the center of the top and bottom circles of the cylinder are computed as follows 

CR i = (x Ri ; y Ri ; z Ri ) = (x i + cos i ; y i sin i ; z i ) CL i = (x Li ; y Li ; z Ri ) = (x i cos i ; y i + sin i ; z i ) CR f = (x Rf ; y Rf ; z Ri ) = x f + cos f ; y f sin f ; z f CL f = (x Lf ; y Lf ; z Ri ) = x f cos f ; y f + sin f ; z f

3D Dubins Path Generation

In this section the classical result of Dubins is extended to the 3D case. The initial and …nal con…guration (p i ; i ) and p f ; f ,respectively, are given w.r.t. an inertial frame (Local ENU frame). The general procedure for the 3D Dubins paths is to divide the path in three segments as follows 1. The …rst segment 1 starts from the initial con…guration c i (p i ; i ) and begin a turn clockwise or counter.clockwise describing an arc of radious and center in CR i or CL i until the heading angle is equal to the angle , this will turn the aircraft into the correct direction to follow a straight line to the tangent of the second circunference, as depicted in 3. The third segment 3 is again an arc of radious and center in CR f or CL f : The initial heading angle of the path is ; as it remains constant in the previous path, then it will change from to the …nal heading angle f : The elevation path will remain constant as in the prevous segment, in order to arrive at the desired altitude, see Figure 5-5.c.

CR i CR f if z i > z f ! RSRD if z i < z f ! RSRU CR i CL f if z i > z f ! RSLD if z i < z f ! RSLU CL i CL f if z i > z f ! LSLD if z i < z f ! LSLU CL i CR f if z i > z f ! LSRD if z i < z f ! LSRU

3D Dubins RSRU=P and LSLU=P

In th cases of 3D Dubins path RSRU; RSRD; LSLU and LSLD the angle and and distance d needed to generate the path are computed in a similar manner. The angle is the angle of the straight line segment d which is measured from the vertical y axis. Depending on the turn to the left or a turn to the right, we use the angle = R when it is a turn to the right and the angle = L when it is a turn to the left. The visual representation of these angles can be seen in Figure 5-6 and they are computed as follows

R = 2 tan 1 y Rf y Ri x Rf x Ri (5.3) 
L = 2 tan 1 y Lf y Li x Lf x Li (5.4) 
The length d, the straight line segment 2 , is equal to the distance between the center of the circles CR i and CR f ; or CL i and CL f ; depending on whether is a turn to the left or a turn to the right. In this case we also have a di¤erence if it is a turn to the left or a turn to the right, we use the distance d = d R if the path is a RSRU or RSRD type, and d = d L if the path is a LSLU or LSLD type, these distance are computed as follows

d R = q (x Rf x Ri ) 2 + (y Rf y Ri ) 2 + (z Rf z Ri ) 2 (5.5) 
d L = q (x Lf x Li ) 2 + (y Lf y Li ) 2 + (z Lf z Li ) 2 (5.6) 
The previously de…ned distance d is needed to compute the elevation path , we also need to compute the traveled distance in the 1 and 3 segments, de…ned as d 1 and d 2 : The total distance is the sum of the three distace d; d 1 ; d 2 . The diference in altitude is also needed for the computation of the angle : All the needed values are computed as follow

d 1 = j { j 2 (5.7) 
d 2 = f 2 (5.8) 
d T = d + d 1 + d 2 (5.9) h = jz i z f j (5.10)
Finally the angle is computd as follows

= tan 1 h d T (5.11) 
Figure 5-6: 3D Path generation, turn to the left and turn to the right.

3D Dubins RSLU/P and LSRU/P

In the cases of 3D Dubins path RSLU, RSLP, LSRU and LSRP again we have the need of computing the angle and and distance d. The angle is computed as in the previous section, but that is not the case for the computation of the angle and the distance d. As depicted in Figure 5-7 we have introduce two new angles and an extra measurment of distance.

The angle is the angle between the segment joining the center of the circles CR i and CL f or circle and the segment d. The distance l is the distance between the two circles forming the path. We start with the computation of the angle as follows

= + 2 (5.
12)

The length of the straight line segment d is computed with the following equation, we use the distance d = d RL if the path is a RSLU or RSLD type, and d = d LR if the path is a LSRU or LSRD type, the these distance are computed as follows

d RL = q l 2 + 4 + (z Lf z Ri ) 2 (5.13) 
d LR = q l 2 + 4 + (z Rf z Li ) 2 (5.14) 
We use the angle = RL if the path is a RSLU or RSLD type, and = LR if the path is a LSRU or LSRD type. We compute these angles as follows

RL = 2 tan 1 y Lf y Ri x Lf x Ri (5.15) LR = 2 tan 1 y Rf y Li x Rf x Li (5.16)
The angle is computed as follows = tan 1 2 d (5.17)

Finally we use the distance l = l RL if the path is a RSLU or RSLD and l = l LR if the path is a LSRU or LSRD type. is computed as follow

l RL = q (x Rf x Li ) 2 + (y Rf y Li ) 2 + (z Rf z Li ) 2 (5.18) l LR = q (x Lf x Ri ) 2 + (y Lf y Ri ) 2 + (z Lf z Ri ) 2 (5.19)
The 3D path generator algorithm produces an array of n points p n which starts at p 0 = p i where p is the last point of the 1 segment. This path will continue where the straight line segment to conect the two cylinders anf complete the path.

The output of the 3D path generation algorithm can be seen in Figure 5-8 

Control Strategy

This section provides a rigorous kinematic formulation for the problem of steering the aircraft along a desired path.

Aircraft Kinematic Model

The Dubins aircraft was …rst introduced in [START_REF] Chitsaz | Time-optimal paths for a dubins airplane[END_REF]. We have built upon this model to increase accuracy in modeling the aircraft kinematics and to be more consistent with the commonly used aircraft models. Our model works under the assumption that the autopilot is well tuned, this means that the airspeed, ‡ight-path angle and bank angles states converge with desired response to their commanded values. The following kinematic model describes the motion of the UAV:

_ x = V cos cos (5.22) _ y = V sin cos _ z = V sin _ = !
where x; y and z denote the inertial position of the aircraft in a 3D inertial frame. is the heading angle, ! is the heading angular rate, is the pitch angle, V is the airspeed of the aircraft which remains constant.

If we consider coordinated turn conditions, then we have the sideslip angle equal to zero, the model for the heading angle, as in [START_REF]Pilot's handbook of aeronautical knowledge[END_REF], is given by,

_ = g V tan (5. 23 
)
where g is the magnitude of gravity at sea level, is the roll angle, and _ is the heading angular rate.

The state and control vectors of the above model are described respectively as: 

Problem Statement

The key idea behind the path-following controller relies on reducing two expressions to zero:

The distance d between the aircrafts center of mass p and the point q on the path and the angle between the airspeed vector and the vector tangent to the trajectory.

As depicted in Figure . 5-9, using a moving particle s along the trajectory at a velocity _ s.

Considering a frame attached to the virtual particle, the so called Serret Frame denoted by S.

We use _ s as a control input.

The angle and distance will become in the coordinates of the error space.

Error dynamics

Consider the 3D curve represented by smooth functions parameterized by t: Thus (x S (t) ; y S (t) ; z S (t))

represent the virtual particle coordinates The inertial position of the aircraft is de…ned by p = h x y z i T in the inertial reference frame I: To follow the given trajectory we de…ne the inertial vector error d I = p q (s) expressed in I; which will be minimized in order to track the desired trajectory. Note that the tangent vector coincides with the x-axis of the Serret frame S, now consider the rotation of the vector tangent to the path in the z and y axis w.r.t the inertial frame I by the angles S and S ; respectively. The angles S and S can be obtained, as in [START_REF] Neto | A path planning algorithm for uavs with limited climb angle[END_REF], from the parameterized curve as To obtain the error state dynamic equations, we must compute the time derivative of (5.28) and (5.29). By di¤erentiating (5.28) we obtain:

S =
_ d S = _ R S (p q) + R S ( _ p _ q) (5.30) = ! S R S (p q) + R S ( _ p _ q)
where The time derivative of (5.29) and using (5.23) results in

! S = 2 
_ e = _ _ S = g V tan _ S with _ S = _ s _ S = _ s
where d s dt = is the path curvature. The path curvature is expressed as a function of the trajectory coordinates (x (t) ; y (t)) and its …rst and second derivatives w.r. 

Controller Design

In this section we present a nonlinear guidance controller to follow a desired path. We design the controller for the guidance using the error kinematic model (5.35). As we are considering that the aircraft is equipped with an autopilot unit and it is well tuned we use directly the desired pitch angle c and the desired roll angle c . We also introduce a virtual controller in the form of the velocity _ s of the virtual particle which moves along the desired trajectory to stabilize all the error signals e x ; e y ; e z ; e to zero. The control objective can be archived using which steer the aircraft in the correct direction, i.e., turn left when the aircraft is on the right side of the path, and turn right in the opposite situation. We note that the approach rate can be controlled by the adjustment of the parameter k .

The time derivative of (5.36) along the trajectory of (5.35) 

_ V = e x (V

Simulation

Simulations were done on the complete simulation platform, the MAV3DSim, fully described in chapter 3.1. Figure 5-10 shows the MAV3DSim graphic user interface. In order to show the controller performance, we have chosen the following scenario: The 3D reference path has been chosen as

q x = R cos (s=R)
q y = R sin (s=R) (5.47)

q h = bs=R + 200
where R = 200m is the rotation radius, s is the archlenght of the curve, the reference path has an initial altitude of 200m. Using (5.47) we can now compute the curvature of the path using (5.34) as

= jy 00 S x 0 S y 0 S x 00 S j x 02 S + y 02 S 3=2 = 1 R (5.48)
The constant velocity of the UAV was set to 10m=s. The MAV3DSim simulator provides a full set of utilities for online gain tuning, with which we arrive to the following set of parameters for the guidance controller: k x = 0:1; k y = 0:05; k z = 0:05; a = 4 ; k = 0:1: The MAV3DSim is a complete simulation environment and the simulation starts with the vehicle in land, we start the simulation and manually take-o¤ the aircraft to reach some altitude and then activate the path-following controller to follow the reference path. Autonomous Take-o¤ and Landing A large number of UAVs do not have the capability of performing autonomous take-o¤ and landings and usually a human pilot is in charge of these phases of the mission. In the landing phase there are some other technics used to recover the UAV, besides manual landing, there is also the use of a parachute [START_REF] Wyllie | Parachute recovery for UAV systems[END_REF], which is particularly suited to recover UAVs in unprepared terrain. A net-catcher is also used to recover the UAV [START_REF] Crowther | Perched landing and takeo¤ for …xed wing uavs[END_REF], which are specially used where there is no access to conventional runways such as from the back of ships, within urban areas or in the …eld. There exists also a study on how to catch the …xed wing UAV with a suspended net between a group of multirotors [START_REF] Moe | Autonomous landing of Fixed-Wing UAV in net suspended by Multirotor UAVs[END_REF]. Whenever a runway is available it is prefered to use an autonomous take-o¤ and landing system, to minimize the human error and save time and e¤ort in maneuvering the aircraft to a manual landing. This chapter describes the proposed approach for solving the autonomous take-o¤ and landing problem. Starting with a background review of the traditional take-o¤ and landing procedure. In order to perform a take-o¤ and landing we need to be able to control the airspeed of the vehicle. The 3D path generation described in Section 5.2 is used but extended to add a desired velocity term in the generated path. The same 3D controller is used altogether with the PID velocity controller used to regulate the velocity of the aircraft.

Traditional Takeo¤ and Landing

In order to solve the problem of autonomous take-o¤ and landing, it becomes a necesity to understand the standar procedure of manual take-o¤ and landing on a large scale aircraft, usually the procedure used by piloted aircrafs taking-o¤ and landing in civilian airports. Typically the entire " ‡ight" process begins with the aircraft accelerating to the runway, followed by the take-o¤ procedure, cruising to its objective or waypoints, and …nished by the landing at the destination site [START_REF] Sigworth | Mission analysis, covell avionics[END_REF], sa depicted in Figure 6-1. 

Traditional Aircraft Take-o¤ and Climb Phases

The take-o¤ phase of ‡ight consists in the aircraft become airborne. This is done by setting the motors to full throttle to achieve take-o¤ speed, which varies depending of air density, aircraft weight and airframe. The take-o¤ speed is relative to the motion of the air, a head wind will reduce the ground speed needed to take-o¤, as there is more air ‡owing through the wings generating more lift for the aircraft.

After the aircraft becomes airborne, it has to climb to a certain altitude before it can cruise at this altitude in a safe and economic way. A climb is carried out by increasing the lift of wings supporting the aircraft by increasing the angle of attack of the wings, by increasing the thrust of the engines to increase speed, by increasing the surface area or shape of the wing to produce greater lift, or by some combination of these techniques.

Traditional Aircraft Descent and Landing

The descent phase is when the aircraft decreases altitude. Descents are an essential component of an approach to landing. Other partial descents might be to avoid tra¢ c, poor ‡ight conditions , to enter warmer air, or to take advantage of wind direction of a di¤erent altitude.

Landing is the las part of a ‡ight. The aircraft lands at an airport on a …rm runway reducing its speed and descent rate. This speed reduction is accomplished by reducing thrust and generating more drag using ‡aps, landing gear or air brakes. Nowadays most commercial airports are equipped with an Instrument Landing System (ILS). The airport is equipped with several radio beacons placed on the runway for vertical and lateral guidance, Figure 6-2 shows the ILS indicator for vertical and lateral guidance.

Although the ILS are a good solution for the landing process, they are only found in airports and they are not available for operations wth UAVs. This chapter will focus on other alternatives for the autonomous take-o¤ and landing process. 

4D Path Generation

The 4D path generation has been studied in [START_REF] Bousson | 4d trajectory generation and tracking for waypoint-based aerial navigation[END_REF] and [START_REF] Butt | 4d trajectory generation for guidance module of a uav for a gate-to-gate ‡ight in presence of turbulence[END_REF], in both cases they generate a 4 state trajectory, a 3D point and the arrival time for that point, which gives the fourth dimension. In out problem we are no concern about the arrival time but rather the velocity of the aircraft in that speci…c point.

Following thee same approach as in the previous path generators, let us consider the initial and …nal con…guration to be described as a …ve dimensional state vector as follows

c i (p i ; i ; v i ) (6.1) c f p f ; f ; v f (6.2)
where p i = [x i ; y i ; z i ] is the initial position of the path and p f (x f ; y f ; z f ) is the …nal position of the path, both are expressed in an inertial frame, the initial heading angle i and the …nal heading is f and v i and v f are the initial and …nal desired velocity. As in the 3D version we still have 8 possible selection of the 3D Dubins paths and thee selection is made according to The path is parameterized by its arc length s; starting in s = 0 and …nalizing in s = d T .

The coordinates of the n th point p n of the 1 and 3 arc segments are obtained with the following equation where c = c i if it is the path 1 and c = c f if it is the path 3 : is the direction of rotation, = 1 for a turn to the left and = 1 for a turn to the right. The angle = i when it is 

v i + d T s (v f v i ) 3 
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the path 1 and = f when the path is 3 : v i and v f are the initial and …nal velocity. Now the path 2 , the straight line path, is generated using the following equation where p (s 1) is the last point of the 1 segment. This path will continue where the straight line segment to connect the two cylinders and complete the path.

v i + d T s (v f v i ) 3 

Take-o¤ and Landing Trajectory

There are several phases in the design of the take-o¤ and landing trajectory. The main idea is to design the trajectory for the full mission from take-o¤ passing through the following waypoints and …nishing in the landing. Using the 4D path generator described in the previous section, a trajectory trajectory suitable for take-o¤ and landing purposes can be designed, and using the nonlinear 3D path following to complete the entire mission of the aircraft. In Figure 6-3 a general description of the several phases of the complete mission is depicted. There are …ve Take-o¤ The take-o¤ sequence begins with the aircraft landed and with zero velocity, followed by the initial climb of the aircraft and maintaining a low altitude ‡ight.

Climb In this phase the aircraft is set a desired climb rate until it arrives to a desired altitude Waypoint following The waypoint following is the mission pre-programmed on the aircraft and it will pass through all the waypoints before the descent and landing phase.

Descent In the descent phase the aircraft will reduce its altitude and it will line up with the landing runway.

Landing In the landing phase the aircraft is already line up with the wunway and it will reduce its ground velocity in order to have a smooth touchdown to …nish the mission.

Take-o¤

A conventional runway can be divided into three main phases. The ground acceleration phase, the lift o¤ phase and the low altitude ‡ight phase. During the ground acceleration phase the aircraft is aligned with the centerline of the runway and accelerated until its velocity generates enough lift to guarantee a safe lift-o¤. Once the prede…ned lift-o¤ velocity is reached the aircraft enters the initial climb phase, in which the angle of attack is increased in order to change the climb rate and gain some altitude. The aircraft remains in the initial climb phase until a safe altitude is reached. At this point the take-o¤ is considered complete and the normal ‡ight of the mission can continue.

The design of the take-o¤ trajectory consist in four 4D waypoints to use them as an input in the 4D path generator. The …rst waypoint is the initial position of the aircraft, which is aligned with the runway. The initial velocity is sup to 5 m/s in order to get the aircraft to move through the runway. The second waypoint is placed forward, giving su¢ cient space to the aircraft to gain the lift-o¤ speed. The third waypoint is set up above the centerline of the runway with the desired altitude and maintaining the same airspeed as the previous waypoint.

The …nal waypoint allow the aircraft to stabilize in a low altitude ‡ight before continue with the waypoint following of the mission.

Figure 6-4: Thtake-o¤ phase.

Landing

Conventional landing can be divided into three main phases, which are the initial approach, …nal approach and touch down. During the initial approach the aircraft is aligned with the runway and an initial descent is conducted to decrease gradually the altitude. The next phase is the …nal approach phase in which the aircraft performs a …nal descent and also the airspeed is reduced to enter in a ‡are descent. Finally the aircraft enter the touch down phase in which the aircraft touches the ground and ceases all motion in the main motor.

In order to design the landing trajectory suited to use as input in the 4D path generation a total of seven 4D waypoints are used. The …rst waypoint is for the aircraft to approach from its current position to the runway. The second waypoint along with the …rst waypoint align the aircraft with the runway, a decrease in the airspeed is also conducted in this phase. The third waypoint performs a decrease in altitude and …nish the initial approach phase with the fourth waypoint which generates a stabilization in altitude for the aircraft. The …nal approach is with the waypoint 5, which de…nes a slow descent rate, which is called ‡are, and gently lands the aircraft by maintaining the airspeed of the aircraft just above the stall speed. Once the aircraft is landed in the touch down phase it will stop the engine to …nish all motion of the aircraft. 

Simulation Results

Simulations were done on the complete simulation platform, the MAV3DSim, fully described in chapter 3.1. Figure 5-10 shows the MAV3DSim graphic user interface. The companion computer is pre-loaded with the desired 3D waypoints and the desired velocity at the velocity.

The simulation starts with the aircraft in the ground, aiming to the take-o¤ runway, from this initial point and hading the take-o¤ sequence is designed by the 4D path generation described in 6.2. All the waypoints are generated with the assumption that the aircraft is carefully placed and aiming the runway. Once the take-o¤ sequence is completed it will continue with the path following, the same 4D path generation is used to generate the 4D path to pass through all the desired waypoints at the desired speed. The last waypoint is took as a landing waypoint.

The landing sequence designed in previous section is generated with the last waypoint to be the touch-down waypoint. Figure 6-6 shows th trajectory generated by the 4D path generator Conclusions and Future Work

In order to achieve that the UAV performs a complete mission, starting from the autonomous take-o¤ and followed by the pass-through all the prede…ned waypoints and …nishing with the autonomous landing, several research areas were studied, such as modeling, control, path following strategies, advanced simulation environments and embedded systems. In this chapter the concluding remarks and future development are discussed.

Simulation and Experimental Platform

A simulation platform is a powerful and necessary tool for the development and validation of different controllers. Here we presented a Hardware-in-the-Loop (HIL) simulator: The MAV3DSim that has proven to be a great candidate for the validation of di¤erent controllers on di¤erent UAV models Along with the MAV3DSim simulator, the experimental platform was presented for validating the hardware in the loop implementation by performing the same waypoint following experiment in both platforms using the same Pixhawk autopilot hardware.

In the future we will extend the MAV3DSim simulator for other type of aerial vehicles such as coaxial helicopters or hybrid con…gurations (airplane-quadrotor) and the MAV3DSim will serve as a test bed for validation of new controllers. It is important to mention that this software is not intended as an end user application but it could be used for professors as a test bed for students to try new controllers, also as the MAV3DSim has been developed using software from the open-source community, the source code of the simulator will be available in the Github account of the project (https://github.com/mav3dsim) once it reaches a stable version.

Path Generation

The presented study propose a framework for the path generation needed in order to complete a prede…ned task without human interaction. Dubins paths have been utilized as a tool to estimate the shortest path from the current aircraft position and orientation to aj given point provided by the user in the form of waypoints. Starting from the 2D case in which only position in 2D and orientation is considered, using a similar approach it was extended to the 3D case, adding the altitude of the aircraft to the path generation. In order to achieve the autonomous take-o¤ and landing the 4D path generation was needed. This case includes the velocity of the aircraft at the arrival point, not the arrival time which is commonly used in the 4D path generation.

The Dubins paths present a discontinuity in the thesis function of the curve. This discontinuity create the sense that the aircraft can change its turn rate instantaneously, which is obviously false. Further improvement involve the use of continuous curvature curves such as the clothoid path, which has the property that its curvature varies linearly over the path length. Another approach is to use the Pythagorean hodograph curve which are de…ned by polynomial curves which have hodographs that satisfy a Pythagorean condition which provides a continuous curvature.

Path following

In this thesis a nonlinear path-following kinematic controller for the …xed-wing aircraft based on a Lyapunov function candidate is presented. The controller performance was tested in the MAV3DSim simulation environment which has been proven to be an excellent test bed for UAV controllers development. The controller was designed using a kinematic model of the aircraft, but it was tested on a full 6DoF simulation environment with good performance. The error space dynamics presented in this paper can be used with other types of controller to follow the virtual target. The hardware in the loop simulation is an intermediate step between the pure simulation and the implementation on the experimental platform, and the next step is to implement this controller on a …xed-wing UAV experimental platform. Using the 3D path following presented in this paper we can design another level of autonomy and create a path generator to design new trajectories, this can also be used to perform an automatic take-o¤ and landing on the UAV.

Future work will addressed the inclusion of the aircrafts velocity in the kinematic model in order to obtain a complete 4D path following strategy designing all controllers at once. This will be tested on the simulation platform as well as with the experimental platform.

Autonomous Take-o¤ and Landing

The scope of this theses was to present a navigation and ‡ight control system designed to perform a fully autonomous operation of a small aircraft, including autonomous take-o¤ and landing as well as passing through prede…ned waypoints. The proposed solution relies on a path-following and velocity tracking controller synthesized using a simpli…ed aircraft kinematic model. The technique presented relies on a new error space that naturally describes the particular dynamic characteristics of the aircraft over a suitable ‡ight path. The e¤ectiveness of the new control law was fully tested in a simulation environment with the full nonlinear aircraft model, using the MAV3DSim. The quality of the results obtained clearly indicates that the methodology derived is suitable for the proposed application.

There is still room for improvement as it was mentioned in the previous sections, all of the components have future work in each of their areas. First of all it is necessary to take the step to test the strategy in the experimental platform, then develop the di¤erent improvements of the all the components that make possible the autonomous take-o¤ and landing of the unmanned aircraft.
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 23 Figure 2-3: Wind and stability axes
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 218 There are several conventions for Euler angles, depending on the axes about which the rotations are carried out, but the most common de…nitions is given by Euler angles ( ; ; ) as follow Yaw angle, denoted by , is the angle from the vehicle-carried NED X-axis to the projected vector of the body X-axis on the X Y plane of the vehicle-carried NED frame. The right-handed rotation is about the vehicle-carried NED Z-axis. Pitch angle, denoted by , is the angle from the X-axis of the once-rotated intermediate frame to the body frame X-axis. The right-handed rotation is about the Y-axis of the once-rotated intermediate frame Roll angle, denoted by , is the angle from the Y-axis (or Z-axis) of the twice rotated intermediate frame to that of the body frame. The three relative rotation matrices are respectively given by

  q; r are the standard symbols for the components of ! b b=n : S was derived by[START_REF] Maine | Application of parameter estimation to aircraft stability and control[END_REF] from the total angular velocity and is given by

  M and M being the aerodynamic total moments about the x; y and z body axes, and L T ; M T and N T the sums of all actuator-induced moments. I x ; I y and I z are the moments of inertia about the X b ; Y b and Z b body axes and I xy ; I xz

C 7 =C 8 = 2 xzC 9 =

 7829 C 5 (I zz I xx ) C 0 (I xx I yy ) I xx + I C 0 I xz (I yy I zy I xx ) C 10 = C 0 I xx and …nally we can see 2.27 in scalar form as follows

and the moment equations L

 equations = qSbC l M = qS cC m N = qSbC n where q = dynamic pressure S = wing reference area b = wing span c = geometric mean wing length
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 24 Figure 2-4: Geodetic, ECEF and ENU coordinates frames
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 31 Figure.3.1.

  C 0 I xz (I yy I zy I xx ) C 10 = C 0 I xx and I xx , I yy , and I zz are the moments of inertia about the x; y, and z body axes, respectively, and I xy , I x z, and I yz are the products of inertia in the x y, x z, and y z body axis planes, respectively. L, M , and N being the aerodynamic total moments about the x, y, and z body axes. The …xed-wing and the quadrotor use the same mathematical model, the only di¤erence is in the computation of the forces [F N ; F E ; F D ] and moments [L; M; N ], the …xed-wing moments and forces mainly depends on the aerodynamic coe¢ cients and the de ‡ection of the control surfaces and the quadrotor dynamics depends on the moments and forces generated by the rotors. The input of the simulator is the de ‡ection of the ailerons, in the case of the …xed-wing aircraft, and it a¤ects directly the forces [F N ; F E ; F D ] and moments [L; M; N ] applied in the simulation.
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 131 Figure 3-1: Avionic instruments in the MAV3DSim.

  x is, 1 0 g a c c e le ro m e te r 3a x is 3 0 0 d e g / s g y ro sc o p e 3 -a x is, 5 g a c c e le ro m e te r 3a x is g y ro sc o p e 3 -a x is, g a c c e le ro m e te r 3a x is, 3 0 0 d e g / s g y ro sc o p e Magnetometer A d d -o n su p p o rte d A d d -o n su p p o rte d 2 -a x is a n d -a x is Altimeter (barometric) 3 0 c m re so lu tio n 3 0 c m re so lu tio n 2 5 c m re so lu tio n Airspeed (pitot tube) u p to 2 9 0 k m / h u p to 4 8 0 k m / h 0 W M sig n a ls, 4 S e ria l p o rt (S T D , S P I, I2 C ) M B o n -b o a rd 5 1 2 k b o n -b o a rd

  3 -a x is, 10 g a c c e le ro m e te r 3a x is 300 d e g / s g y ro sc o p e 3 -a x is, 5 g a c c e le ro m e te r 3a x is g y ro sc o p e 3 -a x is, 10 g a c c e le ro m e te r 3 -a x is, 300 d e g / s g y rosc o p e Magnetometer A d d -o n su p p o rte d A d d -o n su p p o rte d 2 -a x is a n d -a x is Altimeter (barometric) 3 0 c m re so lu tio n 3 0 c m re so lu tio n 2 5 c m re so lu tio n Airspeed (pitot tube) u p to 2 9 0 k m / h u p to 4 8 0 k m / h 0 W M sig n a ls, 4 S e ria l p o rt (S T D , S P I, I2 C )

  printf(), pthreads, /dev/ttyS1, open(), write(), poll(), ioctl(), etc).The PX4 middleware runs on top of the operating system and provides device drivers and a micro object request broker (uORB) for asynchronous communication between the individual tasks running on the autopilot. The PX4 ‡ight control stack is a custom, BSD licensed ‡ight control stack, providing fully autonomous waypoint ‡ight for multicopter and …xed wing aircraft.It uses a common codebase and common ‡ight management code. It follows a very ‡exible and structured approach, which allows to run plane and multicopter controllers with the same waypoint and safety state machine handling. The PX4 Flight Stack has implemented ‡ight modes for di¤erent levels of autonomy in the aircraft and are listed below: MANUAL: The pilot's control inputs are passed directly to the output mixer. ALTCTL: When the roll, pitch and yaw inputs (RPY) are all centered (less than some speci…ed deadband range) the aircraft will return to straight and level ‡ight and keep its current altitude. It will drift with the wind. POSCTL: Neutral inputs give level, ‡ight and it will crab against the wind if needed to maintain a straight line. AUTO_LOITER: The aircraft loiters around the current position at the current altitude (or possibly slightly above the current altitude). AUTO_MISSION: The aircraft obeys the programmed mission sent by the ground control station (GCS). If no mission received, aircraft will LOITER at current position instead. OFFBOARD: In this mode the position, velocity or attitude reference / target / setpoint are provided by a companion computer connected via serial cable and MAVLink. The o¤board setpoint can be provided by APIs like MAVROS. The experimental platform including the Pixhawk autopilot and the external sensors can be depicted in Figure 3.3.2.
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 32 Figure 3-2: L 1 guidance geometry.
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 33 Figure 3-3: L 1 guidance regions accordingly to the position of the aircraft.
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 34 Figure 3-4: Experimental platform vs simulation following the same waypoints.

Figure 3 -

 3 Figure 3-4 shows the path followed in the simulation and the experimental platform. In both cases we use the same waypoints and the same parameters and gains in the Pixhawk autopilot. In Figure 3-5 the altitude of the simulator and the experimental platform are compared with the setpoint designated for the di¤erent altitudes of the waypoints.
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 35 Figure 3-5: Altitude on the simulation platform and the experimental platform.

4 x 5 58where

 45 p n :y = y Li + cos( n ) n = n + ; n = n + 1 end while d sum = 0 while d sum d do p n :x = p n 1 :x + d sin ; p n :y = p n 1 :y + d cos( )d sum = d sum + d; n = n + 1 end while while n f do p n :x = x Li + sin( n ); p n :y = y Li + cos( n ) n = n + ; n = n + 1 end whileThe elements p n of the …nal segment are computed by rotating the …nal point of the straight line clockwise around CL f as a center; see Figure4.2.1c. Lf + sin ( n ) y Lf + cos ( n )3 n starts in and each time is incremented by . This procedure is repeated until n = f ; see Figure4.2.1c.The complete path generation is summarized in algorithm 3
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 42 is CLiCLf . The LSL path is generated with a counterclockwise rotation from the initial position p i describing an arc of a circle of radius and center in CL i with coordinates (x Li ; y Li ) until the aircraft heading achieves an angle of degrees. Then it follows a straight line segment d and …nally it continues with the a turn to the left describing an arc of radius and center in CL f with coordinates (x Lf ; y Lf ) until the airplane achieves the …nal heading f , as depicted in Figure 4.2.3. Left-Straight-Left (LSL) Dubins path.

4. 2 . 4 . 1 y= cos 1 2 d= p l 2 4 2 ( 4 . 20 ) 4 x

 241224204 Left-Straight-Left (LSR) Dubins path. The computation of the angle is carried out by the triangle formed by the center of the circle CL i the midpoint of the segment d and the point of the circle tangent to the segment d Rf y Li x Rf x Li and The length of the straight line segment d is computed with the following equation d The coordinates of the n th point p n of the arc segments are obtained by rotating the initial point p i counterclockwise around the CL i as a center, as follows Li + sin ( n ) y Li + cos ( n )

a e 2k e d 1 e 2k e d + 1 ( 4 . 35 )

 1435 where 0 < a < =2. The sigmoid function (4.35) is bounded and di¤erentiable with respect to the error e d . It provides the desired relative course transition of the …xed-wing MAV to the path as a function of e d . Moreover, (4.35) satis…es the condition e d (e d ) 0 8e d . Such condition guides the MAV to the correct direction, i.e., turn left when the MAV is on the right side of the path, and turn right in the opposite situation.

2 s k ! 1 ~ (e d ) 2 +

 212 ! 1 are positive real numbers, in (4.37), yields _ V e d ; e s ; ~ = k s e V t e d (sin ( (e d ))) 0 To conclude convergence of the states (e s ; e d ; ~ )to zero, we state de LaSalle's Invariance Principle Theorem 1 LaSalle's Theorem Let O be a positively invariant set of system (16). Let O a set in which every solution starting in O converges to . Furthermore, let M be the largest invariant set contained in . Then, as t ! 1, every bounded solution starting in O converges to M. Proof. Convergence of the states (e s ; e d ; ~ ) to zero. The proof relies on Theorem 1. Consider the system (16) and the radially unbounded Lyapunov function candidate (4.36). Let us de…ne the compact set O as O = fV (e d ; e s ; ~ ) ag, where a 2 < + . De…ne the set as = f[e d e s ~ ] T 2 O : _ V (e d ; e s ; ~ ) = 0g (4.40) Equivalently, the expression _ V (e d ; e s ; ~ ) = 0 means that e s = e d = 0 and ~ = . Since is a function of the error e d , it is easy to verify that any point starting from is an invariant set. Hence, by LaSalle Theorem, every trajectory starting in O converges to 0 as t ! 1, i.e. lim t!1 e s = 0, lim t!1 e d = 0 and therefore lim t!1 ~ = (e d ) = 0.
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 41 Figure 4-1: Circular path generated to surround the missing person.

Algorithm 3

 3 the bearing angle b between two waypoints (w n 1 ; w n ) its done as follows y = sin (y n y n 1 ) cos (x n ) x = cos (x n 1 ) cos (x n ) cos (y n y n 1 ) b = tan 1 y x (4.42) Using the following algorithm we generate the path from the current position of the aircraft Generate waypoints path n =number of waypoints; i = 0 // Current waypoint b =GetBearing(waypoints[0],(waypoints[1]) ; Angle between waypoints Points = GeneratePath(CurrentPosition, CurrentHeading, waypoints[0], b ) ; Generate initial path to arrive the …rst waypoint while i n 2 do b1 =GetBearing(waypoints[i],(waypoints[i+1]) ; Angle between waypoints b2 =GetBearing(waypoints[i+1],(waypoints[i+2]) ; Angle between waypoints Points.Add(GeneratePath(waypoints[i], b2 ,waypoints[i+1], b2 =)) end while b =GetBearing(waypoints[n-1],(waypoints[n]) ; Angle between waypoints Points.Add(GeneratePath(waypoints[n-1], b ,waypoints[n], b =)); Last waypoint The experimental platform is equipped with an Pixhawk autopilot and a Raspberry Pi companion computer. The autopilot is in charge of the stabilization of the aircraft at the received command from the companion computer. The companion computer is in charge of the navigation/Path generation and the nonlinear control described in the previous section.
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 42 Figure 4-2: Generated path (in black) to pass through all the waypoints
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 43 Figure 4-3: Geneerated path to pass through all the waypoints.
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 4445 Figure 4-4: Control signals
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 46 Figure 4-6: Aircraft airspeed in blue vs airspeed setpoint.
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 47 Figure 4-7: Aircraft altitude vs altitude setpoint

  view of the change in altitude, there are eight possible cases for the Dubins path in 3D, LSLU; LSRU; RSRU; RSRLU; LSLD; LSRD; RSRD; RSRLD which L stands for Left, R stands for Right, S for Straight, U for upwards and D for Downwards. The downwards trajectories are depicted in Figure 5-2 and the Figure 5-3 shows the upwards movements.
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 5253 Figure 5-2: 3D Dubins paths, downwards trayectory

Figure 5 - 4 :

 54 Figure 5-4: Minimun distance on the proyection of the circles of the cylinder on the same plane.
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 55 Figure 5-5: The 3D Dubins paths generation.
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 52 Figure 5-5.a. Also the elevation angle of the path is selcted such as the overall vertical displacement results in the change of altitude between the initial and …nal position in altitude z i and z f , as seen in FIgure 5-5.d
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 57 Figure 5-7: 3D Dubins path RSL and LSR
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 58 Figure 5-8: Output of the 3D path generation.
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 59 Figure 5-9: 3D path following problem.

27 )

 27 The error d I expressed in the Serret frame is given by

From ( 5 .

 5 [START_REF] Farrel | The Global Positioning System and Inertial Navigation[END_REF], the time derivative of p and q can be expressed as
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 510 Figure 5-10: MAV3DSim simulation platform.

Figure 5 -Figure 5 - 11 :Figure 5 - 12 :

 5511512 Figure 5-11 shows the evolution of the reference in red line and the actual ‡ight path with the blue line. It can be seen that the initial position of the aircraft is di¤erent from the initial position of the path and the control laws can eliminate this initial o¤set and steer the UAV along the path with a smooth movement. Figure 5-12 shows the position and attitude errors which converges to zero in 10s approximately. The output controllers are shown in Figure.5-13,here we can notice that the virtual target converge to the constant velocity of the aircraft.
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 513 Figure 5-13: Commanded roll and pitch angles.
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 61 Figure 6-1: Traditional takeo¤ and landing
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 62 Figure 6-2: ILS guidance for landing.
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 63 Figure 6-3: Autonomous take-o¤ and landing phases.
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 65 Figure 6-5: The landing trajectory.
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 66 Figure 6-6: The trayectory generated by the 4D path generator and the aircraft.
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 67 Figure 6-7: The altitude setpoint vs currente aircraaft altitude.
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 6869 Figure 6-8: Commanded airspeed vs aircraft's airspeed

  

  

  

  

  

  

  

Table 3 .

 3 

	Autopilot	Cloud Cap Piccolo II	MicroPilot MP2128g	Kestrel Autopilot v2.4
	Sensor			
	Inertial sensor			

1: Closed-source commercially available autopilot comparison

Table 3 .

 3 2: Closed-source commercially available autopilot comparison system. The Pixhawk autopilot posses a variety of interfaces which make the system expandable for additional sensors.

	Some of the communication interfaces are listed below:
	5x UART (serial ports), one high-power capable, 2x with HW ‡ow control.
	2x CAN (one with internal 3.3V transceiver, one on expansion connector).
	PPM sum signal input.
	I2C.
	SPI.
	3.3 and 6.6V ADC inputs.

Internal microUSB port and external microUSB port extension.

As for the integrated sensors we have a ST Micro L3GD20H 16 bit gyroscope, a ST Micro LSM303D 14 bit accelerometer/magnetometer, a Invensense MPU 6000 3-axis accelerometer/gyroscope and a MEAS MS5611 barometer. Using the software provided by the PX4 Flight Stack we can use an implementation of an External Kalman Filter (EKF) to have an estimation of the orientation and angular velocity of the aircraft. There are other sensors that can be added to extend the capabilities of the Pixhawk autopilot such as optical sensor

[START_REF] Dev-Team | Pixhawk[END_REF] 

to calculate the optical ‡ow at 400 HZ, a 3DR uBlox LEA-6H GPS Receiver with a 5 Hz update rate, a LIDAR-lite Range…nder for precision altitude up to 40-meter range with 1cm resolution, to mention a few.

Table 4 .

 4 1: Dubins path selection. Shortest distance Dubins Path

  This is the case where the closest circles are CR i and CL f , see Table4.1. From the initial and …nal con…guration, (p i ; i ) (p f ; f ) the RSL path is generated with a clockwise rotation from the initial position p i describing an arc of circle of radius with center CR i with coordinates (x Ri ; y Ri ) until the heading aircraft achieves the angle . Then it follows a straight line segment d, …nally it will turn to the left describing an arc of radius and center in CL f with coordinates (x Lf ; y Lf ) until the aircraft reaches the …nal heading. See Figure4.2.2.

	4.2.2 Dubins path RSL	
	= where is the angle of the segment CR i CL i measured from the y axis as in Figure 4.2.3 and + 2 (4.11) is computed as follows = 2 tan 1 y Lf y Ri x Lf x Ri (4.12) is the angle between the segment CR = tan 1 2 d (4.13)
	5	(4.8)

Right-Straight-Left (RSL) Dubins path.

In this case the angle is computed is computed aided by the triangle formed by the center of the circle CR i the midpoint of the segment d and the point of the circle tangent to the straight line d using the following formula i CL f and the normal to the tangent point of circle CR i and the segment d. is computed as follows

Table 5 .
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	1: 3D Dubins path selection.
	Shortest distance	Dubins Path

  Consider the rotation matrix R S from I to S and the rotation matrix R B from I to B:

				tan 1 y 0 S (t) x 0 S (t)	;	(5.24)
			S =	z 0 S (t) S (t) 2 + y 0 x 0 q S (t) 2	(5.25)
	where x 0 S = dx S (t) dt ; y 0 S =	dx yS (t) dt ; z 0 S = dz S (t) dt
			2
	R S =	cos S cos S cos S sin S 6 6 6 4 sin S cos S	sin S 0
			sin

S cos S sin S sin S cos S

  t. the parameter t;Using the previous error kinematics model we design a feedback control law for c , c and _ s such that all closed-loop signals are bounded and all the errors converge to zero.

	i.e x 0 S = dx S dt ; y 0 S = dy S dt . Thus the path curvature d S dt = is given by
					=	jy 00 S x 0 S x 02 S + y 02 y 0 S x 00 S j S 3=2	(5.34)
	Finally using (5.30) and substituting (5.31), (5.32) and (5.33) we obtain the error kinematics
	model suitable for control purposes
	_ e x =	_ se z	_ s cos S e y + V sin sin S + V cos cos S cos e	_ s
	_ e y =	_ se x cos S + _ se z sin S + V cos sin e	(5.35)
	_ e z =		_ se y sin S	_ se x + V cos sin S cos e	V sin cos S
	_ e =	g V	tan	_ s

  and a 2 0; 2 . The sigmoid function (5.37) is bounded and di¤erentiable w.r.t. the error e y : It provides the desired relative course transition of the aircraft to the path as a function of e y :; and satis…es the following condition e y sin ( (e y )) 0

	a Lyapunov function candidate given by							
	V =	1 2	e 2 x +	1 2	e 2 y +	1 2	e 2 z +	1 2	(e	(e y )) 2	(5.36)
	where (e y ) is a sigmoid function, as in our previous controller in Section 4.4, that introduce
	a desired approach angle as										
			(e y ) =		a	e 2k ey 1 e 2k ey + 1		(5.37)
	where k > 0										

  sin sin S + V cos cos S cos e Since is a function of the error e d , it is easy to verify that any point starting from is an invariant set. Hence, by LaSalle Theorem, every trajectory starting in O converges to 0 as t ! 1, and the following limits are true

	lim t!1 e x = 0				
	lim t!1 e y = 0				
	lim t!1 e z = 0				
	lim t!1 e = 0				
					_ s) +		(5.38)
	e y V cos sin e +		
	e z (V cos sin S cos e	V cos S sin ) +	
	(e	(e y ))	g V	tan	_ s _ (e y ) ( _ se x cos S + _ se z sin S + V cos sin e )
	Rearranging the terms of (5.38) we arrived to the expression	
	_ V = e x (	_ s) e z V sin cos S + V e y sin ( (e y )) + (e	(e y ))	g V	tan +	(5.39)

table 5 . 1 .

 51 The angles and distances needed to compute the 4D path generation are computed as in sections 5.2.1 and 5.2. The computed variables are summarized in Table6.1, where x RR =x Rf x Ri ; y RR = y Rf y Ri ; z RR = z Rf z Ri ; x LL = x Lf x Li ; y LL = y Lf y Li ; z LL = z Lf z Li ;x RL = x Lf x Ri ; y RL = y Lf y Ri ; z RL = z Lf z Ri ; x LR = x Rf x Li ; y LR = y Rf y Li ;

z LR = z Rf z Li :

Table 6 .

 6 

				1: 3D Dubins path generation variables.
	RSRU=D	LSLU=D	RSLU=SD	LSRU=D
	2	tan 1 y RR x RR	2	tan 1 y LL

Chapter 4

Path Generation and Control in 2D

In the case of path following control scenario, we must certainly decide the path to be followed before the guidance logic uses it to generate the error and perform the corresponding control logics. Usually the …rst step is to introduce several …xed points in space, i.e. waypoints, and de…ne the desired path as the sum of straight lines that connect this waypoints. This approach, simple as it is, sometimes will not ful…ll the demand of accuracy of the application because the resulting path is no smooth enough. On the literature we can …nd a great variety of examples on this issue, as well as other important factors that arise, regarding the performance in each case.

For some missions it is crucial to pass through the way point, for other mission it is important that the vehicle converges and stays on the path, others are more concerned on …nding the minimum path, and so on.

Dubins [START_REF] Dubins | On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents[END_REF] showed that a car-like robot with initial prescribed heading can arrive to its …nal position and heading, with exactly three paths segments which are either arcs of circles with a minimal radius or straight lines segments. Reeds and Sheep [START_REF] Reeds | Optimal paths for a car that goes both fordward and backward[END_REF] solve a similar problem in which the vehicle can move forward as well as backward. Kavaraki and Svestka [START_REF] Kavraki | Probabilistic roadmaps for path planning in high-dimensional con…guration spaces[END_REF] use the Probabilistic Road Map (PRM) method which explore all the possible paths within the space surrounding the vehicle and …nally select the lowest cost route. Other planning techniques used by Kuwata and Richards [START_REF] Kuwata | Decentralized robust receding horizon control for multi-vehicle guidance[END_REF] are based on optimizations methods, such as Mixed Integer Linear Programming or Model Predictive Control techniques. Mehta and Egerstedt [START_REF] Mehta | An optimal control approach to mode generation in hybrid systems[END_REF] used optimal control for constructing control programs from a given collection of motion primitives.

In this section we present a path generator for a …xed-wing UAV using a reduced kin-measured from the y axis and (x; y) measured in the local ENU reference frame.

Path Generation in 2D

In this section, the classical result of Dubins [START_REF] Dubins | On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents[END_REF] is used as a basis for path generation. We have the initial and …nal con…guration of the airplane, this is the initial position p i , the initial heading i the …nal position p f and the …nal heading f and with every initial-…nal con…guration we can generate the 4 types of Dubins paths,i.e. from the starting point it can turn to the right or the left and arrive to the …nal point from the right or the left. We choose the shortest path by comparing the distance between the center of the circles, see Based on the initial and …nal con…guration (p i ; i )and(p f ; f ), respectively, and the minimal turn radius from (4.5), the center of each circle is computed as follows where n starts at i and is incremented by given each time. These procedure is repeated

Each point in the straight line segment is computed by incrementing the previous point p n 1 in a given d in direction of the angle as follows

x n

x n 1 + d sin ( )

The elements p n of the …nal segment are computed by rotating the …nal point of the straight line clockwise around CR f as a center; see Figure 4.2.1c.

where n starts in and each time is incremented by . This procedure is repeated until

The complete path generation is summarized in algorithm 1

Problem Statement

In this section, the problem statement is introduced and a dynamic system suitable for control purposes is formulated.

Path following control problem schema.

Considering Figure 4.3, the key idea behind the path-following controller relies on reducing two expressions to zero: the …rst one is the distance between the aircraft's center of mass p and the the point q on the path, the second one is the angle between the airspeed vector and the tangent to the path at q.

To accomplish these objectives, we introduce a virtual particle moving along the geometric path at a velocity _ s. Consider a frame attached to such particle, this frame plays the role of a body axis of the virtual particle, and is the so called Serret-Frenet frame denoted by F [START_REF] Micaelli | Trajectory tracking for unicycle-type and two-steering-wheels mobile robots[END_REF].

It is worth noting that the particle velocity evolves according to a conveniently de…ned control law _ s, yielding an extra controller design parameter.

With this set-up in mind, the aforementioned angle and distance will become the coordinates of the error space, where the control problem is stated and solved.

Error dynamics for the path-following controller

Consider that the 2-D geometric path is represented by smooth functions parameterized by t, i.e. x s (t) and y s (t). Thus, (x s (t); y s (t)) represent the virtual particle coordinates.

The software layers, depicted in the Figure 4.5.1, are brie ‡y described as follows Communication scheme between the MAV3DSim and the CRRCSim.

Path Generator

This layer is in charge of the generation of paths using the Dubins path generation described in Section 4.2. It can generate new paths and maintain the old ones for later use. It is possible to interact online with the path generation and change the course of action of the aircraft in any time either by an autonomous action or by a human interaction. Once the path is fully generated, it is transmitted to the path-following strategy.

Path-Following Strategy

The path-following control described in section 4.4 is implemented in this layer. The path is stored in an array of n points of the form (x m ; y m ) starting with m = 0 then the path following strategy computes the errors es; ed; ~ from (4.24) and (4. [START_REF]Lyapunovguidancevector …elds forunmannedaircraftapplications[END_REF], with this information it computes control input ! and _ s from (4.39). The control ! is a desired heading rate and is induced into the aircraft dynamics through the roll angle using (4.3). The computed roll angle will be used by the low level autopilot

Low Level Autopilot

The role of low-level autopilot is to stabilize the aircraft in roll and pitch angles, maintain a constant altitude and airspeed by implementing a PD controller for each dynamic (roll, pitch, altitude and airspeed). The altitude and airspeed setpoints are manually introduced by a graphic user interface, the altitude controller outputs the pitch setpoint and the roll setpoint is obtained from the path following controller.

Aircraft Dynamics

This layer integrates the set of di¤erential equations representing the aircraft dynamics. The input of this layer are the inputs of the low level autopilot layer and the outputs are the data from the simulated sensors: GPS position, aircraft attitude, airspeed. The aircraft dynamics layer sends the outputs to the upper layers.

Simulation Scenario

The path generated to weep the search area.

We use the MAV3DSim simulation platform along with the Dubins path generator and the path-following strategy previously described to present a simulation scenario. The description of the scenario is as follows: A person is missing and is located somewhere in a known area.

The main task of the UAV is to …nd this person, so it will sweep this area in order to …nd the missing person. First we need to de…ne the search area as a rectangle with the aid of a user interface, then using the proposed path generator algorithm de…ne the a path for sweeping the rectangle area. The starting point of the path will be one of the corners of the rectangle and it selects the closest to the current position of the UAV as depicted in Figure 4.5.2. The UAV will travel along the path until it is su¢ ciently close to the lost person (red dot in Figure 4-1).

When the missing person is found a circular path is generated to surround the missing person.

The simulation can be seen in https://www.youtube.com/watch?v=_AUW8_g-jb0

Chapter 5

Path Following in 3D

Real-time operation of a UAV involve movement in a three dimensional space. Therefore it is of very importance to handle the problem of generation of three dimensional trajectories and to be able to follow them with the UAV. In this chapter we consider that the UAV is ‡ying in a three dimensional space. The path following is of great importance for the autonomous operations of the UAVs. In recent years the missions involving autonomous ‡ights of the UAV have become more and more complicated, therefore a precise 3D path-following strategy is required. In the literature there are several linear and nonlinear guidance methods. Most of them have been developed for two dimensional path-following, which can be classi…ed into three approaches;

the error kinematics based approach, the vector …eld based approach, and the virtual target following approach.

In the error kinematics approach, several nonlinear control techniques have been applied

for the regulation of the error state variables, where the error variables can be de…ned in many ways, including cross-track error [START_REF] Brezoescu | Lyapunov-based trajectory tracking controller for a …xed-wing unmanned aerial vehicle in the presence of wind[END_REF] [69], along-track error [START_REF] Zhao | Curved path following control for …xedwing unmanned aerial vehicles with control constraint[END_REF] [40] and vehicle heading error [START_REF] Beard | Autonomous vehicle technologies for small …xed-wing uavs[END_REF].

Once the dynamic model of the state variables is derived, a nonlinear control design method is applied to regulate the errors [START_REF] Cichella | Geometric 3d path-following control for a …xed-wing uav on so(3)[END_REF] [12].

In the vector …eld approach, a vector …eld is designed so that the vehicle converges to the desired path along the vector …eld [60] [25]. However the vector …eld can only de designed for some types of planar curves, such as a straight line or a circle [START_REF] Frew | Vector …eld path following for small unmanned air vehicles[END_REF], a sinusoidal path [START_REF] Gri¢ | Vector …eld approach for curved path following for miniature aerial vehicles[END_REF], etc.

Therefore the vector-…eld-based approach is not applicable to the general case of trajectories in a 3D space. The overall performance of the 4D path generation and the 3D path following strategy augmented by the airspeed PID controller is good enough to solve the take-o¤ and landing problem. A complete video of the simulation can be found in https://youtu.be/oAkRx2iSe6I