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Abstract 

This work  studies  some  of  the most  relevant  problems  in  the  direction  of  navigation  and  control 

presented in a particular class of mini‐aircraft. One of the main objectives is to build a lightweight and 

easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a 

complete  mission  from  take‐o⁄  to  the  following  waypoints  and  complete  the  mission  with  an 

autonomous landing within a delimitated area using a graphical interface in a computer. 

The Trajectory Generation It is the part that tells the drone where it must travel and are generated 

by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory 

generation in 2D and we have extended it to the 3D trajectory generation. 

A path following strategy developed using the Lyapunov approach is presented to pilot a 

xed wing drone across  the desired path. The key  concept behind  the  tracking  controller  is  the 

reduction of the distance between the center of mass of the aircraft p and the point q on the path to 

zero, as well as the angle between the velocity vector and the vector tangent to the path. 

In order to test the techniques developed during the thesis a customized C # .Net application was 

developed called MAV3DSim (Multi‐Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write 

operation  from  /  to  the  simulation  engine  from  which  we  could  receive  all  emulated  sensor 

information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation 

engine, the computation of the control law and the visualization interface. The simulation engine is in 

charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a 

quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground 

station type of application, where all variables of the vehicle s state vector can be represented on the 

same screen. 

The experimental platform functions as a test bed for the control law prototyping. The platform 

consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI 

mini‐computer which to the implementation of the generation and trajectory tracking. 

The  complete  system  is  capable  of  performing  an  autonomous  take‐o⁄and  landing,  through 

waypoints. This is accomplished by using each of the strategies developed during the thesis. We have 

a strategy  for  take‐o⁄ and  landing, which  is generated by the navigaƟon part  that  is  the trajectory 

generator. Once we have generated the path, it is used by the trajectory tracking strategy and with 

that we have landing and take‐o⁄ autonomously. 
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Resume

Une stratégie de suivi de trajectoire développée en utilisant l�approche de Lyapunov, est
présenté pour piloter un drone à voilure �xe à travers tout le chemin désiré. Le concept clé
derrière le contrôleur de suivi de trajectoire s�appuie sur la réduction de la distance entre le
centre de masse de l�avion p et le point sur la trajectoire q à zéro, ainsi que l�angle entre le
vecteur vitesse et la tangente à la trajectoire.

A�n de tester les techniques mises au point au cours de la thèse une application C# .Net
personnalisée a été développé nommé MAV3DSim (Multi-Aerial Vehicle 3D Simulator). Le
MAV3DSim permet une opération de lecture/écriture de/vers le moteur de simulation à partir
de laquelle nous pourrions recevoir toutes les informations de capteurs émulés et envoyés par le
simulateur. Le MAV3DSim est constitué de trois éléments principaux, le moteur de simulation,
le calcul de la loi de commande et l�interface de visualisation. Le moteur de simulation est en
charge de l�intégration numérique des équations dynamique du drone, ici nous pouvons choisir
entre un quadrirotor ou un drone d�aile �xe pour l�utiliser dans la simulation. L�interface de
visualisation ressemble à un type d�application de la station au sol, où toutes les variables du
vecteur d�état du drone peut être représenté sur le même écran.

La plate-forme expérimentale qui fonctionne comme un banc d�essai pour la loi de commande
prototypage. Le plate-forme est constitué d�un avion de aile �xe avec un PX4 qui a la fonctionne
d�autopilote ainsi qu�un mini-ordinateur Raspberry PI qui à la implémentation de la génération
et suivi de trajectoire.

Le système complet est capable d�e¤ectuer un décollage et d�atterrissage autonome, à travers
des points de suivi. Ceci est accompli en utilisant chacune des stratégies développées au cours
de la thèse. Nous avons une stratégie pour le décollage et l�atterrissage, ce qui est généré par
la partie de navigation qui est le générateur de trajectoire. Une fois que nous avons généré le
chemin, il est utilisé par la stratégie de suivi de trajectoire et avec ce que nous avons l�atterrissage
et le décollage autonome.

Thesis Supervisor: Rogelio LOZANO
Title: DR CNRS, Heudiasyc, UTC

Thesis Supervisor: Sergio SALAZAR
Title: UMI LAFMIA, CINVESTAV

IV

Ce travail étudie certains des problèmes les plus pertinents dans le sens de la navigation et 
contrôle présentés dans une classe particulière de mini-véhicules aériens. L�un des principaux 
objectifs c�est à réaliser un véhicule léger et facile à déployer dans un court laps de temps, un 
véhicule sans pilote drone capable de suivre une mission complète, du décollage aux points de 
cheminement suivants et de terminer la mission avec un atterrissage autonomes à l�intérieur 
d�une zone délimitée en utilisant une interface graphique dans un ordinateur ou une tablette.

La génération de trajectoire Il est la partie qui dit le drone où il doit voyager et sont génères
par un algorithme intégré sur le drone. Le résultat classique de Dubins est utilisé comme base
pour la génération de trajectoire en 2D et nous avons étendu à la génération de trajectoire 3D.
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Chapter 1

Introduction

1.1 UAV Overview

Much e¤ort is currently spent on the research and production of unmanned vehicles, particularly

those related to Unmanned Aerial Vehicles (UAV) as they have certain advantages over piloted

or remotely controlled vehicles and they are preferred over piloted aircrafts due to low cost

of the UAV, therefore the UAV can be expandable. Also they have the ability to accomplish

dangerous missions in hazardous environments that can not be done by piloted aircraft. This

fact keeps the pilot and crew out of harm�s way during potentially dangerous missions while

also allowing the aircraft to be made smaller and avoid all the hardware necessary to sustain

on-board life support.

Nowadays there are several companies that produce ready-made UAV systems with well

developed ground station software that are made for commercial use. One of the companies

that has this pro�le is The UAS Europe [72] that provide UAV for agricultural, research and

surveillance purposes. UAS Europe provides a wide range of professional Ground Control

Station (GCS) which allow the operator to handle all the tasks related to �ying the UAV. They

have their own �ight control system which allows fully autonomous �ights, from take-o¤ to

mission landing. The drawback of this solution is the cost. Usually a large fund is required in

order to acquire a complete system , such as the UAS Europe system.

However with the recent increase in development of UAV development, there are now power-

ful enough devices yet at an a¤ordable cost. Drone Deploy [18] o¤ers an easy to use software

1



to handle �ight planning and communications with the UAV. The complete software solution

handles �ight planning, manual download of the data and post-processing. Although they are

focused on a solution for 3D mapping and the use of quadrotors to take the image since they

have better stationary stabilization than the �xed wing aircraft. In addition, another company

is Botlink [71]. Botlink provides a cloud-based platform which features a fully automated UAV

with manual �ying from any smart phone or tablet. Similar platforms can be found o¤ering a

variety of solutions with di¤erent features.

Another area that increase its interest over the last few years is the control methods used

for UAVs. There is a vast research conducted around UAVs, the primary focus relies on the

theoretical background that is required to set up and �y a UAV. The control methods and

planning techniques are the most common subjects of interest.

In the literature there are several control methods developed for the stabilization and man-

euvering of the aircraft. Among the most famous methods are the Linear Quadratic Control

(LQR), which is applied to longitudinal dynamics of the UAV in [7] and [47], the Model Pre-

dictive Control (MPC) implemented in [26] as an an iterative scheme to solve the nonlinear

optimization problem, also a nonlinear model predictive control is used to design a high-level

controller for a �xed wing UAV in [40] and in [38].the adaptive control methods based on the

approximation of the dynamic inversion. Despite the superior performance of these methods,

not many are implemented in real applications. One of the reasons is the computational cost

of the implemented methods. Hence the commonly used and most implemented methods is

Proportional-Integral-Derivative (PID) controller, due to its low complexity and computational

cost and the adequate performance as in [3].

Path planning is wideley documented in ground robotics and manipulators systems. How-

ever the �eld of robotics has extended to the airborne, with the Unmanned Aerial Vehicles.

There are numerous references to UAV guidance laws reported in the literature, an integrated

approach is described in [39], a navigation system designed to track straight lines between way-

points is described in [62]. A recent innovation is the use of vector �elds, where a velocity vector

�eld is speci�ed over space and the vehicles are commanded to follow these velocity vectors [48].

Stability for tracking straight lines, circular arcs, and circular paths is shown in [29].
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1.2 Motivation

The main motivation of this work is to reduce the risk for humans in dangerous environments,

which is commonly encountered in missions performed by the piloted aircrafts. The pilot will

be secure far from the danger and the UAV will provide with the information needed to carry

on with the assigned mission.

In the case of emergency situations such as natural disasters, �nding potential survivors

requiring medical attention is of major importance. Such missions require high navigation

precision and long operation times -this is tedious for human pilots. UAV systems can be

planned to autonomously execute complete missions from takeo¤ to landing. In this way, video

footage of every square meter of a devastated area can be collected or even medicines, food,

water, etc. can be delivered to a temporarily non-accessible person.

The use of UAVs and speci�cally the �xed wing UAV could help to solve this kind of

problems. However time is crucial, so there is a need for a fast deploying UAV and also with a

fully autonomous mission the operator will be able to monitor the information provided by the

aircraft instead of control it manually or semi-autonomously.

One of the advantages of the autonomous take-o¤ and landing systems is the elimination

of the human error in the equation. Human error is responsible for roughly 60% of the UAV

accidents during operation, and surprisedly 50% of the incidents are during the take-o¤ and

landing procedure [2]. By eliminating the operator from manually controlling the aircraft during

take-o¤ and landing procedures and replace them with an autonomous system will greatly

increase safety during operations.

1.2.1 Scope of Work

This thesis presents work for the creation and implementation of a low cost, autonomous aircraft.

The aircraft is capable of performing a fully autonomous mission, from the take-o¤ to landing,

passing through designated waypoints. This is done with the use of di¤erent control techniques

and path generation algorithms. These algorithms were tested on an experimental platform.

To test the functionality of the developed algorithms a simulation environment is created to

test the performance of the controllers before its implementation in the experimental platform.
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1.3 Thesis Overview

Each of the following chapters provides a unique contribution to the overall goal of the autonom-

ous take-o¤ and landing system, which are summarized below.

Chapter 2 A full nonlinear dynamic model is derived for the general case of the �xed wing

UAV. The chapter provides several reference systems and rotation with respect to the

di¤erent axes present in the dynamic model of the �xed wing aircraft.

Chapter 3 In order to test the controllers developed and the path generation algorithms, a

simulation platform is needed, which is the �rst test of the method developed. After that

an experimental platform is needed. This chapter provides a detailed description of the

simulation and experimental platforms developed during the PhD.

Chapter 4 This chapter contains the preliminary results dealing with the path generation

and control in two dimensions. The path generation and the nonlinear lyapunov-based

controller developed is fully tested in the simulation and experimental platforms described

in Chapter 3.

Chapter 5 In this chapter the extended work to the three dimensional space is presented. The

2D path generation and control are extended to handle the third dimension, again both

are tested on the simulation platform.

Chapter 6 The �nal contribution of this thesis, the autonomous take-o¤ and landing al-

gorithm, which uses the previous 3D path generation and the 3D path-following controller.

Chapter 7 This chapter presents some concluding remarks of the technique developed in this

thesis, Future work is also addressed in this chapter.
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Chapter 2

Mathematical Model

The basis of the analysis, simulation and control of an aircraft relies on the mathematical model

of the vehicle. The movement of an aircraft can be seen as a rigid body and is described by six

nonlinear second order di¤erential equations and while numerous reference systems are used in

aerospace applications, we limited to four reference systems: Inertial Geodesic, Earth-Centered

Earth-Fixed, North-East-Down and Body systems.

2.1 Frame Reference Systems and Rotations

This section describes the various reference systems in which a vehicle can be represented in

space. Also in this section the rotations that can be applied to a vehicle are presented, they

are also introduced the Euler angles and the rotation matrix. The coordinate systems are a

representation in space and help us to know the position of an object, depending on the selected

coordinate system can be a position vector, said vector position is de�ned as the vector whose

origin point O as end point P, see Figure 2-1, i.e., the vector applied from the origin O having

as components the Cartesian coordinates x; y; z; the point P.

2.1.1 Coordinates Systems

In navigation and control of an aircraft there are several frameworks or coordinate systems used

during the analysis and design of control systems[68]. In the navigation of an air vehicle at

least two coordinate systems are needed. One to represent the orientation of the body and the
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other one for the representation of the position of the vehicle.

2.1.2 Inertial Reference Frame

In an inertial frame the Newton�s laws of motion are applied. Then any coordinated frame

�xed to the Earth�s surface is an inertial reference frame. We de�ne the reference frame as

FE (OE ; XE ; YE ; ZE) : The origin OE of the reference frame can be placed arbitrarily to suit

the particularly needs of what we need to do. The frame axes can point in any direction in a

perpendicular way to follow the rule of the right hand frame [23].

2.1.3 Geodesic Reference Frame

The geodesic reference frame is widely used in GPS-based navigation systems. In Figure 2-1

we can observe that the reference frame place a point Pg close to the Earth�s surface in terms

of longitude, latitude and height or altitude, which are indicated by (�; � ; h). The longitude

� measures the rotational angle between the prime meridian and the measured point Pg and

it has a range from �180� to 180�. The latitude measures the angle between the equatorial

plane and the normal of the reference ellipsoid that passes through the measured point. The

height is the local vertical distance between the measured point and the reference ellipsoid. The

coordinate vectors that are expressed in the geodetic reference frame are expressed with a g

subscript

2.1.4 Earth-Centered Earth-Fixed Frame

The ECEF frame rotates with the earth around its spin axis and the �xed point on the earth

has a �xed set of coordinates. The origin Oe of the ECEF frame is located at the center of the

earth, the z-axis Ze is along the spin axis of the earth and points towards the north pole, the

x-axis Xe intersects the sphere of the earth at 0� latitude and 0� longitude, �nally the y-axis

Ye is orthogonal to the z- and x-axes following the right-hand rule.

Any coordinate vector expressed in the ECEF frame are denoted with a subscripts e as

follows:
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Figure 2-1: Geodesic reference frame

Pe =

0BBB@
26664
xe

ye

ze

37775
1CCCA (2.1)

2.1.5 North-East-Down Coordinate System

The north east down (NED) frame is also known as a local tangent plane (LTP ) :It is a

coordinate frame �xed on any arbitrary point on earth�s surface. Based on the WGS84 episode

model[59], the origin and axis are de�ned as follow:

� The origin On is arbitrarily �xed to a point on the earth�s surface.

� The x-axis Xn points toward the ellipsoid north.

� The y-axis Yn points toward the ellipsoid east.

� The z-axis Zn points downward along the ellipsoid normal in order to comply with the

right-hand rule.

Coordinate vectors expressed in the NED system are denoted with a subscript n. The

position and velocity vectors are de�ned as follows
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Pn =

26664
xn

yn

zn

37775

Vn =

26664
un

vn

wn

37775
During the �ight test we normally select the origin of this coordinate system as the aircraft�s

takeo¤ point. We use h = �z to denote the actual height of the unmanned system.

The vehicle-carried vertical axis system [19] has its origin at the center of gravity of the

vehicle. The Xv axis points toward the ellipsoid north, the Yv axis ward the ellipsoid east, and

the Zv axis points downward . This axis system is obtained by a translation of the (NED)

coordinate system to the vehicle center of gravity. The attitude of the aircraft (heading, pitch,

and bank angles) is described in terms of the orientation of the aircraft body axes with respect

to the vehicle-carried vertical axes.

2.1.6 Body Frame

The body frame is not an inertial system and it is �xed to the moving vehicle. The orientation

of the body coordinate axes is de�ned as follow

� The origin Ob is located an the center of gravity (CG) of the �ying vehicle.

� The x-axis Xb points forward through the nose of the aircraft lying in the symmetric plane

of the vehicle

� The y-axis Yb points to the right of the x-axis, on the right side of the vehicle.

� The z-axis Zb points downward to comply with right-hand rule.
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Coordinate vectors expressed in the body frame are appended with a subscript b. We can

de�ne the NED velocity vector as

Vb =

26664
u

v

w

37775 (2.2)

Figure 2-2: Body coordinate system

2.1.7 Wind and Stability Axes

In the case that the XB axis of the body frame pitch with angle of attack �; then the

body axis frame is referred to as Stability Frame FS(OS ; XS ; YS ; ZS) as shown in Figure

2-3. Stability frame generates the aerodynamic forces, and thus reducing the aerodynamic

model to its simplest form. Whenever the Body Frame faces a wind, it is going to yaw into

the wind with Angle of Sideslip �. Then the body axis frame is referred to as Wind Frame

FW (OW ; XW ; YW ; ZW ). The wind frame axes de�nition is illustrated in Figure 2-3. The angle

of side-slip 13 and angle of attack a de�ne the orientation of the wind axes with respect to the

body axes.
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Figure 2-3: Wind and stability axes

The de�nition of the velocities of the body axis are

u = V cos� cos� (2.3)

v = V sin� (2.4)

w = V sin� cos� (2.5)

The velocity V , angle of attack � and the angle of side slip � can be expressed in terms of

the velocities of the body axis

V = jVbj =
�
u2 + v2 + w2

� 1
2 (2.6)

� = tan�1
w

u
(2.7)

� = sin�1
v

V
(2.8)
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2.1.8 Euler Rotations

The Euler angles[20] are used to describe the orientation of a rigid body in a 3-dimensional

Euclidean space, Figure.2.1.8 . There are several conventions for Euler angles, depending on

the axes about which the rotations are carried out, but the most common de�nitions is given

by Euler angles (�; �;  ) as follow

� Yaw angle, denoted by  , is the angle from the vehicle-carried NED X-axis to the projected

vector of the body X-axis on the X � Y plane of the vehicle-carried NED frame. The

right-handed rotation is about the vehicle-carried NED Z-axis.

� Pitch angle, denoted by � , is the angle from the X-axis of the once-rotated intermediate

frame to the body frame X-axis. The right-handed rotation is about the Y-axis of the

once-rotated intermediate frame

� Roll angle, denoted by �, is the angle from the Y-axis (or Z-axis) of the twice rotated

intermediate frame to that of the body frame.
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The three relative rotation matrices are respectively given by

R =

26664
cos sin 0

� sin cos 0

0 0 1

37775 (2.9)

R� =

26664
cos � 0 � sin �

0 1 0

sin � 0 cos �

37775 (2.10)

R� =

26664
1 0 0

0 cos� sin�

0 � sin� cos�

37775 (2.11)

The kinematic relationships between the NED and body frames are used in the �ight dy-

namics modeling and automatic control. For translational kinematics, we have

Vb = RbnVn

where Rbn is the rotation matrix from the NED frame to the body frame and is given by

Rbn =

26664
cos � cos cos � sin � sin �

sin� sin � cos� cos� sin sin� sin � sin + cos� cos sin� cos �

cos� sin � cos cos� sin � sin � sin� cos cos� cos �

37775 (2.12)

In rotational kinematics we focus on the velocity vector !bb=n; which describes the rotation

of the vehicle NED frame with respect to the body frame. Following the sequence of the Euler
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angles, the velocity vector can be expressed as

!bb=n =

26664
p

q

r

37775 =
26664
_�

0

0

37775+R�
26664
0

_�

r

37775+R�
26664
0

0

_ 

37775

= S

26664
_�

_�

_ 

37775 (2.13)

where p; q; r are the standard symbols for the components of !bb=n: S was derived by [50]

from the total angular velocity and is given by

S =

26664
1 0 � sin �

0 cos� sin � cos �

0 � sin� cos� cos �

37775 (2.14)

2.2 Mathematical Model

The nonlinear state equations for the aircraft problem can be seen as a state vector x composed

of four 3� 1 sub-vectors which represents the aircraft rotational velocity, translational velocity,

the vehicle attitude and vehicle position:

x =
h
xT1 xT2 xT3 xT4

i
(2.15)

where

x1 =
h
p q r

iT
x2 =

h
V � �

iT
x3 =

h
� �  

iT
x4 =

h
x y h

iT
with x1; is the rotational velocity, x2; is the translational velocity, x3 the vehicle attitude and x4
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the vehicle position. The vehicle rotational and translational velocity are de�ned within the

aircraft body and -�xed axis systems.

The rotational acceleration terms in the x vector are derived from the moment equation

M =
d

dt
H (2.16)

where M is the total moment on the vehicle and H is the total angular momentum of the

vehicle. The total angular momentum can be replaced with the product of the inertia tensor I

and the rotational velocity vector 
; thus for the angular momentum we obtain

H =I
 (2.17)

The inertia tensor is assumed to be constant with time. Equation 2.16 can be expanded to

M =
�

�t
(I
) +
� (I
) (2.18)

where �
�t is the time derivative operator in a moving reference frame.

The de�nition of the total moment of the vehicle in 2.16 follow:

M =

26664
P
LP
MP
N

37775 =
26664
L+ LT

M +MT

N +NT

37775 (2.19)

with L;M and M being the aerodynamic total moments about the x; y and z body axes,

and LT ;MT and NT the sums of all actuator-induced moments.

I =

26664
Ix �Ixy �Ixz
�Ixy Iy �Iyz
�Ixz �Iyz Iz

37775 (2.20)

where Ix; Iy and Iz are the moments of inertia about the Xb; Yb and Zb body axes and Ixy; Ixz
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and Iyz are the products of inertia in the x� y; x� z and y � z, respectively; and


 = x1 =
h
p q r

iT
(2.21)

where p; q; and r are the rotational rates about the Xb; Yb and Zb. We can rewrite equation

2.18 as
�

�t

 = I�1 (M�
� I
) (2.22)

This is the vector sub-function for the rotational acceleration. Using 2.22 and 2.21 we know

that
�

�t

 =

h
_p _q _r

iT
When the symmetry plane is the x� z plane we have

Ixy = Iyz = 0

and the only term outside the main diagonal left is Izx. Then the inertia tensor I is given by

I =

26664
Ixx 0 �Ixz
0 Iyy 0

�Ixz 0 Izz

37775
Expanding equation 2.18 to a set of scalar equations

L = _pIxx + qr (Izz � Iyy)� ( _r + pq) Ixz (2.23)

M = _qIyy + pr (Ixx � Izz)�
�
r2 + p2

�
Ixz (2.24)

N = _rIzz + pq (Iyy � Ixx)� ( _p� qr) Ixz (2.25)

From equation 2.22 the inverse of the inertia tensor I�1 is given by

I�1 =
1

IxxIzz � I2xz

26664
Izz 0 Ixz

0
�
IxxIzz � I2xz

�
I�1yy 0

Ixz 0 Ixx

37775 (2.26)
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Rearranging terms the equation 2.24 can be written as a vector function

26664
_p

_q

_r

37775 =
26664

(C1r + C2p) q

C7rp+ C6
�
r2 � p2

�
(C8p+ C9r) q

37775+
26664
C3 0 C4

0 C5 0

C4 0 C10

37775
26664
P
LP
MP
N

37775 (2.27)

where

C0 =
�
IxxIzz � I2xz

��1
C1 = C0

�
(Iyy � Izz) Izz � I2xz

�
C2 = C0Ixz (Ixx � Iyy + Izz)

C3 = C0Izz

C4 = C0Ixz

C5 = I�1yy

C6 = C5Ixz

C7 = C5 (Izz � Ixx)

C8 = C0
�
(Ixx � Iyy) Ixx + I2xz

�
C9 = C0Ixz (Iyy � Izy � Ixx)

C10 = C0Ixx

and �nally we can see 2.27 in scalar form as follows

_p = (C1r + C2p) q + C3
P
L+ C4

P
N (2.28)

_q = C7rp+ C6
�
r2 � p2

�
+ C5

P
M (2.29)

_r = (C8p+ C9r) q + C4
P
L+ C10

P
N (2.30)

The inertia moments are usually considered as constant for simulation purposes and the

variations of mass and center of gravity are not considered.
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2.2.1 Translational acceleration

Derivation of the translational acceleration is based on the force equation

F =
d

dt
(mV) (2.31)

where F is the total force acting on the vehicle and m is the vehicle mass, which is considered

as constant. Equation 2.31 can be expanded as

F =m

�
d

dt
V + ! �V

�
(2.32)

and taking the following de�nition of F and V

F =
h
Fx Fy Fz

iT
(2.33)

where Fx; Fy; and Fz are the sum of aerodynamic, gravitational and forces ejerced by the motor

engine in the body axis Xb; Yb and Zb, and using 2.2 we can rearrange the terms in equation

2.32 we obtain the expression for the translational acceleration

d

dt
Vb=

1

m
F� ! �Vb (2.34)

_Vb=

26664
_u

_v

_w

37775 =
26664
Fx
m + rv � qw
Fy
m + pw � ru
Fz
m + qu� pv

37775 (2.35)

where

Fx = XT +Xa +Xg (2.36)

Fy = YT + Ya + Yg (2.37)

Fz = ZT + Za + Zg (2.38)

where the subindex T means the force generated by the propulsion system, subindex a means

that they are aerodynamic forces and subindex g means they are forces produced due to the
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earth gravity

The forces produced by the propulsion system is generated by the motor engine and is

de�ned as

XT = Tt

YT = 0

ZT = 0

The aerodynamic forces of the body axis can be written in terms of the lift L, drag D and

side force Y forces as follows

Fa = ST�Fw =

26664
cos� 0 sin�

0 1 0

� sin� 0 cos�

37775
26664
�D

Y

�L

37775

Xa = �D cos�+ L sin� (2.39)

Ya = Y (2.40)

Za = �D sin�� L cos� (2.41)

The gravitational forces Xg; Yg; Zg can be expressed as

Xg = �mg sin � (2.42)

Yg = mg sin� cos � (2.43)

Zg = mg cos� cos � (2.44)

2.2.2 Attitude Rates

This transformation from earth-�xed to body axes can be expressed by the equation


 = S

�
d

dt
E

�
(2.45)
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where E is the attitude vector whose components are the Euler angles de�ned in 2.1.8

E =
h
� �  

iT
(2.46)

premultyplying both sides of the equation (2.45) by S�1 and rearranging the terms the

terms of the equation we get the equation for the attitude rates

d

dt
E =S�1


where

S�1 =
1

cos �

26664
cos � sin � sin� sin � cos�

0 cos � cos� � cos � sin�

0 sin� cos�

37775 (2.47)

which can be expanded into the scalar equations

_� = p+ q sin� tan � + r cos� tan � (2.48)

_� = q cos�� r sin� (2.49)

_ = q sin� sec � + r cos� sec � (2.50)

2.2.3 Earth-relative velocity

The matrix Rbn that transforms earth axis system vectors into the body axis system is de�ned

by equation (2.12) as

Rbn =

26664
cos � cos cos � sin � sin �

sin� sin � cos� cos� sin sin� sin � sin + cos� cos sin� cos �

cos� sin � cos cos� sin � sin � sin� cos cos� cos �

37775 (2.51)

The relationship between earth-relative velocities and body axis velocities is expressed by

V =Rbn

�
d

dt
R

�
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where R is the earth axis system vector de�ning the location of the vehicle

R =
h
x y z

iT
with z = �h

The equation for the earth-relative velocity can be formulated as

d

dt
R =R�1nbV (2.52)

these velocities are expressed in terms of body axis velocities. Using equation (2.52) and

the de�nitions for the body axis velocities in equations (2.3) to (2.5) allow us to de�ne the

earth-relative velocities to be expressed in terms of V; �; � :

_h = V (cos� cos� sin � � sin� sin� cos � � sin� cos� cos� cos �) (2.53)

_x = V

0@ cos� cos� cos � cos + sin� (sin� sin � cos � cos� sin )

+ sin� cos� (cos� sin � cos + sin� sin )

1A (2.54)

_y = V

0@ cos� cos� cos � sin + sin� (cos� cos + sin� sin � sin )

+ sin� cos� (cos� sin � sin � sin� cos )

1A (2.55)

2.2.4 Force Coe¢ cients and Aerodynamic Moments

The aerodynamic forces and moments that act on the aircraft are the result of multiple factors

and the impact of the same varies depending on the �ight conditions as well as change from

one vehicle to another. In general, these forces and moments are nonlinear functions dependent

mainly on Mach number, angle of attack �, lateral slip angle �, altitude, rotational velocities

and de�ections of control surfaces.

The forces and moments are related to the force and coe¢ cients and the dimensionless

moments by means of the equations of forces

D = �qSCD

L = �qSCL

Y = �qSCY
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and the moment equations

�L = �qSbCl

M = �qS�cCm

N = �qSbCn

where

�q = dynamic pressure

S = wing reference area

b = wing span

�c = geometric mean wing length

and the dynamic pressure �q is modeled as follows

�q =
1

2
�V 2t

and the aerodynamic coe¢ cients are

CD = CD (CL) + �CD (�e) + �CD (�) + �CD (M)

CL = CL (�; Tc) + �CL (�e) + �CL (M)

CY = CY (�) + �CY (�r)

Cl = Cl (�) + �Cl (�a) + �Cl (�r) +
b

2VT

�
Clpp+ Clrr

�
Cm = Cm (CL; Tc) + �Cm (�e) + �Cm (M) +

�c

2VT

�
Cmqq + Cm� _�

�
Cn = Cn (�) + �Cn (�r) + �Cn (�a) +

b

2VT

�
Cnpp+ Cnrr

�
While the various dimensionless coe¢ cients CD, CY ; CL Cl; Cm; Cn depend mainly on

the aerodynamics of the angles �, � and depend less on others variables. It can be seen the

dependence on the change of velocity of the aerodynamic angles velocities and the dependence

of the components p, q and r of the angular velocity of the aircraft�s center of gravity. The
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Figure 2-4: Geodetic, ECEF and ENU coordinates frames

coe¢ cients are also dependent on the control surfaces, otherwise the vehicle could not be con-

trolled. Aerodynamic coe¢ cients are dependent on other factors such as thrust level and e¤ects

due to proximity to the ground.

2.2.5 Coordinates Transformation

The geodetic coordinate system is used in many �elds, such as: navigation, surveying and

cartography, in order to de�ne the position of an object on the Earth�s surface we use a set

of three values called geodetic coordinates [22]. However, the geodetic coordinates lack of an

intuitive understanding of distance, unlike other coordinate systems as the local East, North,

Up (ENU) Cartesian coordinate system. The local ENU coordinates are formed from a plane

tangent to the Earth�s surface �xed to a speci�c location and it is known as a Local Tangent

Plane (LTP). By convention the east axis is labeled x, the north y and the up z. The three

di¤erent coordinate systems are represented in the Figure 2-4.
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Geodetic to ECEF coordinates

Here we introduce the equations to convert geodetic coordinates measurements to Local Tangent

Plane coordinates. The method used passes through the Earth-Centered, Earth-Fixed (ECEF)

rectangular coordinate system on the way to the Local Tangent Plane.

Geodetic coordinates (latitude � , longitude � , height h) can be converted into ECEF

coordinates using the following relationships:

X = (N (�) + h) cos � cos�

Y = (N (�) + h) cos � sin� (2.56)

Z =
�
N (�)

�
1� e2

�
+ h

�
sin �

where

N(�) =
ap

1� e2 sin2 �

The semi-major axis and the �rst numerical eccentricity of the ellipsoid are represented by a

and e, respectively, the numeric value of this constants can be found in the de�nition of the

World Geodetic System 1984 [59]. N(�) is the distance from the surface to the to the Z-axis

along the ellipsoid normal.

ECEF to Local Tangent coordinates

A local reference point is needed to perform a coordinate transformation from ECEF to the

local ENU coordinates. The launching site position will serve as the local reference point. If

the launching site is at (�0; �0; h0) in geodetic coordinates, then using the previous coordinate

transformation we obtain (X0; Y0; Z0), the launching site expressed in ECEF coordinates. The

aircraft location is de�ned as (�; � ; h); we use the same coordinate transformation to obtain

(X;Y; Z), the aircraft position expressed in ECEF coordinates. The vector pointing from the

launching site to the aircraft in the ENU coordinate system is computed as follows
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26664
x

y

z

37775 = R
26664
X �X0
Y � Y0
Z � Z0

37775 (2.57)

where

R =

26664
� sin�0 cos�0 0

� sin �0 cos�0 � sin �0 sin�0 cos �0

cos �0 cos�0 cos �0 sin�0 sin �0

37775
The World Geodetic System of 1984 (WGS84)[59] comprises a standard coordinate system

and is one of the most used coordinate system used on GPS devices and we will use the

coordinate transformations de�ned in this section to express the position of the airplane in the

local ENU tangent plane which is suitable for the mathematical model and control purposes.
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Chapter 3

Simulation and Experimental

Platform

There is an enormous variety of UAV applications and the greate interest around them has

produced a new industry in the productions of drones. There are di¤erent groups involved in

the development of UAV products, from actuators, sensors to complete autopilots especially

developed for the UAV, this includes the software for the autopilot, and we can �nd the solutions

as open or closed source.

Few work has been done on development of complete model-based UAV simulators. For ex-

ample, a real-time simulation of a quadrotor is presented in [31], where the real-time simulation

was performed in MATLAB/Simulink by means of the xPC Target, in which a pair of host PC

and two PC targets were used. In [66] a commercial �ight simulator has been used as the simu-

lation engine for the quadrotor Pelican from Asc. Technologies; this represents a disadvantage

due to the fact that the source code is not available for review and/or modi�cation.

For several decades, simulation and implementation has been bridged through the use of

Hardware In the Loop Simulation (HIL). HIL simulation combines a simulated system with

physical hardware. For example, a software simulation of the system plant is augmented with

actuators and sensors from the designed system. HILS systems have facilitated the development

in numerous �elds, including automotive engineering [28], [32], aerospace [36], power systems

[49] and robotics [13].
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In this chapter we present the simulation and experimental platform for UAVs. The sim-

ulation platform named MAV3DSim (Multi-Aerial Vehicle 3D Simulator), which is capable of

simulating realistic scenarios by using elaborated versions of UAV mathematical models. The

MAV3DSim simulator allows the user to test controllers before being implemented on the UAV

platform; in this manner, the control engineer can design controllers by taking simpli�ed math-

ematical models and then test such controllers on the complete model provided by the simulator.

On the other hand, the MAV3DSim simulator has several characteristics which improves its

e¢ ciency, such as the ability of tuning gains online and the visualization of any variable in-

volved in the system, also it has the possibility to export all the acquired data to a MATLAB

compatible format for plotting and further analysis.

The use of small UAV�s are specially appealing because of the variety of inexpensive com-

ponents for building and repairing the UAV. This chapter describes the equipment used in the

development of the experimental platform.

3.1 MAV3DSim Simulator

The top-level requirements to support a �ight test of the low-cost UAV were identi�ed as:

1. Test all custom developed software extensively : guidance, navigation and control al-

gorithms.

2. Test onboard computer hardware, operating system implementation, and software execu-

tion in real-time.

3. Rehearse all procedures and �ight test plans.

4. Rehearse control failure and implement mechanisms to gain manual control of the aircraft

in the case of control failure.

5. Use it in �ight test location as a ground control station(GCS) with the experimental

platform.

In order to satisfy this requirements we developed a custom simulation platform that can

be used for development and test of new control and guidance algorithms. The MAV3DSim
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simulator is a custom application developed in the Microsoft�s C# .Net programming language.

The MAV3DSim can collect all the simulated sensor data from the simulation engine and use

this as input for the controllers. The sensor data is in a standard protocol named MAVLink[70],

this protocol sends sensor data as well as control commands, sensor data such as the inertial

accelerations, rotational velocities, GPS position, airspeed and attitude of the simulated vehicle

and control commands like the angular de�ection of the control surface of an airplane and the

speed of the main rotor. The MAV3DSim could work as a pure simulation platform, as presented

in [33], but we now have extended its functionality to perform Hardware In the Loop (HIL)

simulations; using the very same protocol we can communicate to the embedded hardware:

the Pixhawk autopilot [14]. Once the simulator collects the data from the simulation engine

it will send it to the Pixhawk autopilot and it will process it as if it is the data collected

from the physical sensors (inertial measurement unit, GPS, airspeed, barometer, etc. ), then

the autopilot will compute the control and send it back to the simulation engine as shown in

Figure.3.1.

MAV3DSim Hardware in the loop block diagram.

The MAV3DSim hardware in the loop simulator consists of three main components, the

simulator engine, the Pixhawk autopilot and the data visualization interface. The simulation
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engine is in charge of the numeric integration of the dynamic equations of the UAV, here we can

choose between a �xed wing UAV and a quadrotor for use it in the simulation. The input of

the simulation engine is the Pixhawk autopilot�s output and using this information it computes

the new vehicle state and sends it back to the autopilot as sensor data. The autopilot has

implemented a variety of controllers, in our case it receives the current state of the vehicle as an

input, then calculates the controller output and sends it to the simulation engine as de�ection

command for the control surfaces. The data visualization interface looks like a GCS type of

application, where all the variables of the state vector of the UAV can be represented in di¤erent

ways, and with the addition of a 3D visualization of the attitude and position of the UAV in a

3D scenario.

It is worth mentioning that the MAV3DSim has the facility to implement and test new

controllers, as showed in our previous work[33], were two di¤erent types of controllers were

successfully implemented on the simulator using two di¤erent types of UAVs, a �xed wing

and a quadcopter. These controllers should be programmed directly in the source code of the

simulator, there are already implemented mechanisms to execute di¤erent controllers and the

addition of new ones should not be any problem.

Mathematical Model

In this section we present the mathematical model used by the simulation engine for the airplane

and the quadrotor.

These equations are derived and fully described in [53], this reference was found inside the

source code of the CRRCSim simulator and we have validated its correct implementation by

comparing the programmed source code with the equations described in the NASA report [53].

For any aircraft in the simulation engine, the state vector x is a 13�1 vector representing

the vehicle location, the inertial velocity, the vehicle attitude and the vehicle rotational velocity.

The rotational and inertial velocities are referenced in the body frame while the attitude and

vehicle location are referenced to an inertial frame.
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Translational Equations

_� =
VN
R

_� =
VE

R cos�
(3.1)

_R = �VD

where � is the latitude and � is the longitude. R is the distance from center of the earth

to the vehicle. The time di¤erential inertial velocity vector [VN ; VE ; VD] is computed using the

following equations

_VN =
FN
m
+
VNVD � V 2E tan�

R

_VE =
FE
m
+
VEVD + VNVE tan�

R
(3.2)

_VD =
FD + FG

m
� V 2N + V

2
E

R

where FN ; FE and FD are the components of the applied force vector on the vehicles center

of gravity and FG is the force of gravity.

Attitude equations in quaternions

26666664
_q0

_q1

_q2

_q3

37777775 =
26666664
0 �p �q �r

p 0 r �q

q �r 0 p

r q �p 0

37777775

26666664
q0

q1

q2

q3

37777775 (3.3)

These equations represent the time derivative of the rotation expressed in quaternions, and

to obtain an equivalent representation of the angle from the quaternion expressed in the Euler

angles(�; �;  ) we have the following relations
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tan� =
2(q2q3 + q0q1)

q20 � q21 � q22 + q23
sin � = �2(q1q3 � q0q2) (3.4)

tan =
2(q1q2 + q0q3)

q20 + q
2
1 � q22 � q23

The rotational velocity dynamic are presented in the following equations

26664
_p

_q

_r

37775 =
26664

(C1r + C2p) q

C7rp+ C6
�
r2 � p2

�
(C8p+ C9r) q

37775+
26664
C3 0 C4

0 C5 0

C4 0 C10

37775
26664
L

M

N

37775 (3.5)

where

C0 =
�
IxxIzz � I2xz

��1
C1 = C0

�
(Iyy � Izz) Izz � I2xz

�
C2 = C0Ixz (Ixx � Iyy + Izz)

C3 = C0Izz

C4 = C0Ixz

C5 = I�1yy

C6 = C5Ixz

C7 = C5 (Izz � Ixx)

C8 = C0
�
(Ixx � Iyy) Ixx + I2xz

�
C9 = C0Ixz (Iyy � Izy � Ixx)

C10 = C0Ixx

and Ixx, Iyy, and Izz are the moments of inertia about the x; y, and z body axes, respectively,

and Ixy , Ixz, and Iyz are the products of inertia in the x�y, x�z, and y�z body axis planes,

respectively. L, M , and N being the aerodynamic total moments about the x, y, and z body
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axes.

The �xed-wing and the quadrotor use the same mathematical model, the only di¤erence is

in the computation of the forces [FN ; FE ; FD] and moments [L;M;N ], the �xed-wing moments

and forces mainly depends on the aerodynamic coe¢ cients and the de�ection of the control

surfaces and the quadrotor dynamics depends on the moments and forces generated by the

rotors.

The input of the simulator is the de�ection of the ailerons, in the case of the �xed-wing

aircraft, and it a¤ects directly the forces [FN ; FE ; FD] and moments [L;M;N ] applied in the

simulation.

3.1.1 Graphic User Interface

A very important feature is the display of the state vector x delivered by the simulator. We

will explain next the di¤erent visualization options that the MAV3DSim includes.

Map

One of the main visualization is the map, which can locate the aircraft in some point on

the Earth and it is provided by Google Maps, using the displayed map we can visualize the

position of the aircraft and also the path generated by the aircraft. Another feature of the map

visualization is that we can add a desired or reference path along with waypoints for trajectory

tracking as seen in Figure. 3.1.1.
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Map visualization of the UAV desired and actual trayectory.

3D View

A 3D view is also available in the simulator, and it is useful for the 3D representation of the

simulated aircraft attitude, it can be seen as a vintage point where a pilot at the ground could

be standing or also with a close-up for a better visualization of the aircraft�s attitude. The 3D

view is provided by the CRRCSim simulator engine, Figure 3.1.1.

3D view is provided by the CRRCSim simulator engine
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Avionics instruments

Avionics instruments like those used in commercial aircraft are used to display some of the

state variables of the aircraft:

� Altimeter: Indicates the altitude relative to a reference level at which the aircraft is �ying.

� Attitude indicator: Shows the position of the longitudinal and transversal aircraft axes

with respect to the natural horizon, this is obtained by reading the roll and pitch angles.

� Heading indicator: Displays the aircraft heading with respect to magnetic north.

� Airspeed indicator: Gives the aircraft speed relative to the surrounding air.

� Vertical speed indicator: Displays the vertical speed of the airplane, going down towards

the center of the Earth is negative velocity and going up is positive.

Those avionics instruments are depicted in Figure. 3-1

Figure 3-1: Avionic instruments in the MAV3DSim.
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Plain data visualization

There are several ways to visualize plain data obtained from the simulator and the controls

obtained from the Pixhawk, a simple way is a raw data panel which shows the instant data

from either sources. A more useful visualization is provided by the plot of the data with respect

to time, which shows the changes of the any variable w.r.t. time. An alternative way is to

export this data as a Comma Separated Value (CSV) format for further analysis.

Gain tuning

Gain tuning is a time consuming task and to reduce the time of the gain tuning it has the

possibility to change the gains online and to see the e¤ect of the new gains in the simulation.

Each slide can be set to a speci�c gain and the range can be set as needed, depicted in Figure

3.1.1.

Integrated tool to set the gains of the developed controllers.

3.2 Airframe

We decide to use commercially available airframes as the cost in time and e¤ort of designing

a �xed wing airplane is too high. Therefore we use airframes already tested and which are

guaranteed to �y. We test a total of 3 airframes and they will be described below.
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3.2.1 Bixler

The �rst airframe was the HobbyKingTM BixlerTM , an in-expensive platform which is made of

Expanded PolyOle�n (EPO) foam and is very easy to repair after an inevitable crash. It is a

small platform with a wingspan of 1.4m and a length of 0.925 and a total wing area of 26dm2.

The motor used in this airframe is a 2620-1900kv Brushless Outrunner drived by an electrical

speed controller of 20 amps and it uses 4 9g standard servos to move the control surfaces aileron,

elevator and rudder. As it is a small airframe it cant carry a lot of payload and a small battery

of 2200mAh and 3s Li-Po battery was used.
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3.2.2 FPV-Raptor

The FPV-Raptor from Lanyu Hobby frame has a blow moulded fuselage which uses Nylon

and is virtually indestructible, it can handle very well hard landings and crashes. The �ying

surfaces are all made from tough EPO foam which are durable and easy to repair. It has a 1.6

m. wingspan and a total length from nose to tail of 1.044m, for the propulsion systems it has

a 2812 1400Kv brushless motor and the actuators for the control surfaces are 4 9g standard

servos. The total weight is 950g and the battery used with this airframe is a 4000mAh Li-Po

Battery. Under the canopy it has a more than enough space for mounting batteries and all the

external electronics, such as autopilot and on-board computer.
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3.2.3 Penguin

The �nal airframe used as a development platform is a Finwing Penguin. The Penguin is a

�ying aircraft specially designed for First Person View(FPV) �ights, this means it can carry the

necessary payload for the autopilot and external sensors needed. It is made of EPO with wood

reinforcement in the fuselage and carbon �ber tube reinforcement in the wings. The model has

a wingspan of 1.72m and measuring 1.230m from nose to tail, the total wing area is 36dm2.

This model is powered by a brushless motor M2815 driving a 15" � 8" propeller drived by an

electronic speed controller (ESC) of 60 Amps. The control surfaces aileron and elevator are

drived by a 17g servo and the rudder used a 9g servo. The battery used with this airframe is

a Li-Po 14.8V with 4 cells and 5000mAh. The total weight of the airframe is 0.98kg including

motors and servos but not including battery and extra equipment. This airframe is capable of

carrying a heavy payload of max. 1000g, the payload has to include the battery and external

electronics, such as the autopilot and navigation hardware.

39



3.3 Flight Controller Unit

There are a variety of �ight controller units available which o¤er the ability to connect multiple

sensors and process the information to control the aircraft. Among these there is a smaller

selection that would be suitable for small-sized UAVs. In order to properly choose the adequate

solution, existing units had to be evaluated. Existing units examined are separated into com-

mercially made closed-source and open-source products. It should be noted that this is not

a comprehensive study of autopilots systems but rather provides a general survey of what is

available.

From the whole range of commercially available autopilot solutions, we choose to examine

two types: closed-source and open-source. Closed-source commercial autopilots comparison

include the Cloud Cap Piccolo II[10], MicroPilot MP2128g[56] and Lockheed Martin Kestrel

Flight Systems Autopilot v2.4[52]; these closed-source autopilots have been in the market for

many years and they also appear referenced in literature: Cloud Cap Piccolo II [73][45][17],

MicroPilot MP2128g [11][51] and Kestrel [46]. The speci�cations for these autopilots are given

in Table 3.1. The open-source autopilots examined includes the Paparazzi Lisa, 3D Robotics

APM 2.6, and Pixhawk Autopilot; we can also �nd these open-source autopilots in literature:

Paparazzi Lisa, 3D Robotics APM 2.6 and Pixhawk The speci�cations for these units are given

in Table 3.2.

After the comparison of the autopilots available we choose for the main controller of the

UAV the Pixhawk autopilot, which is a high-performance autopilot-on-module system. This

autopilot-on-module o¤ers a complete open source �ight stack, which can be fully reviewed

and modi�ed to ful�l our needs. It is suitable for �xed wing, multi rotors, helicopters and any

other robotic platform. It has a wide range target which goes from the high-end researcher to

the amateur enthusiast. In the following subsections we will review in detail the hardware and

�rmware

3.3.1 Hardware

The heart of the autopilot board is the 32bit STM32F427 Cortex M4 core which runs at 168Mhz

with 256 KB in RAM and 2MB of �ash memory with the addition of a STM32F103 for a fail-safe
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Autopilot Cloud Cap Piccolo II MicroPilot MP2128g Kestrel Autopilot v2.4

Sensor

Inertial sensor 3-ax is,�10 g accelerom eter 3-

ax is �300 deg/s gyroscop e

3-ax is, �5 g accelerom eter 3-

ax is gyroscop e

3-ax is, �10 g accelerom eter 3-

ax is, �300 deg/s gyroscop e

Magnetometer Add-on supported Add-on supported 2-ax is and 3-axis

Altimeter (barometric) 30 cm resolution 30 cm resolution 25 cm resolution

Airspeed (pitot tube) up to 290 km/h up to 480 km/h 0-210 km/h

GPS 4 Hz 4 Hz 4 Hz

Digital I/O 16 8 12

Analog inputs 4x 10 B it 32x 24 b it at 5Hz 3x 12 bit

Other inputs CAN bus - 4-8 PWM signals, 4 Seria l p ort
(STD , SPI, I2C )

Data handling

Sampling rate 20 Hz 5-30 Hz 100 Hz

Local output LPT Seria l Seria l

Storage - 1 .5 MB on-b oard 512 kb on-b oard

RF link 40 km 4.8 km 25 km

Estimated cost $20,000+ $6,000+ $2,500+

Table 3.1: Closed-source commercially available autopilot comparison

Autopilot Cloud Cap Piccolo II MicroPilot MP2128g Kestrel Autopilot v2.4

Sensor

Inertial sensor 3-ax is,�10 g accelerom eter 3-
ax is �300 deg/s gyroscop e

3-ax is, �5 g accelerom eter 3-

ax is gyroscop e

3-ax is, �10 g accelerom eter

3-ax is, �300 deg/s gyro-

scop e

Magnetometer Add-on supported Add-on supported 2-ax is and 3-axis

Altimeter (barometric) 30 cm resolution 30 cm resolution 25 cm resolution

Airspeed (pitot tube) up to 290 km/h up to 480 km/h 0-210 km/h

GPS 4 Hz 4 Hz 4 Hz

Digital I/O 16 8 12

Analog inputs 4x 10 B it 32x 24 b it at 5Hz 3x 12 bit

Other inputs CAN bus - 4-8 PWM signals, 4 Seria l p ort
(STD , SPI, I2C )

Data handling

Sampling rate 20 Hz 5-30 Hz 100 Hz

Local output LPT Seria l Seria l

Storage - 1 .5 MB on-b oard 512 kb on-b oard

RF link 40 km 4.8 km 25 km

Estimated cost $20,000+ $6,000+ $2,500+

Table 3.2: Closed-source commercially available autopilot comparison
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system. The Pixhawk autopilot posses a variety of interfaces which make the system expandable

for additional sensors.

Some of the communication interfaces are listed below:

� 5x UART (serial ports), one high-power capable, 2x with HW �ow control.

� 2x CAN (one with internal 3.3V transceiver, one on expansion connector).

� PPM sum signal input.

� I2C.

� SPI.

� 3.3 and 6.6V ADC inputs.

� Internal microUSB port and external microUSB port extension.

As for the integrated sensors we have a ST Micro L3GD20H 16 bit gyroscope, a ST Mi-

cro LSM303D 14 bit accelerometer/magnetometer, a Invensense MPU 6000 3-axis accelero-

meter/gyroscope and a MEAS MS5611 barometer. Using the software provided by the PX4

Flight Stack we can use an implementation of an External Kalman Filter (EKF) to have an

estimation of the orientation and angular velocity of the aircraft. There are other sensors that

can be added to extend the capabilities of the Pixhawk autopilot such as optical sensor[14] to

calculate the optical �ow at 400 HZ, a 3DR uBlox LEA-6H GPS Receiver with a 5 Hz update

rate, a LIDAR-lite Range�nder for precision altitude up to 40-meter range with 1cm resolution,

to mention a few.

3.3.2 Firmware

The �rmware for the Pixhawk autopilot modules runs on top of the very e¢ cient small operating

system called NuttX, which provides a POSIX-style environment for c++ programming (i.e.

printf(), pthreads, /dev/ttyS1, open(), write(), poll(), ioctl(), etc).

The PX4 middleware runs on top of the operating system and provides device drivers and a

micro object request broker (uORB) for asynchronous communication between the individual
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tasks running on the autopilot. The PX4 �ight control stack is a custom, BSD licensed �ight

control stack, providing fully autonomous waypoint �ight for multicopter and �xed wing aircraft.

It uses a common codebase and common �ight management code. It follows a very �exible and

structured approach, which allows to run plane and multicopter controllers with the same

waypoint and safety state machine handling.

The PX4 Flight Stack has implemented �ight modes for di¤erent levels of autonomy in the

aircraft and are listed below:

� MANUAL: The pilot�s control inputs are passed directly to the output mixer.

� ALTCTL: When the roll, pitch and yaw inputs (RPY) are all centered (less than some

speci�ed deadband range) the aircraft will return to straight and level �ight and keep its

current altitude. It will drift with the wind.

� POSCTL: Neutral inputs give level, �ight and it will crab against the wind if needed to

maintain a straight line.

� AUTO_LOITER: The aircraft loiters around the current position at the current altitude

(or possibly slightly above the current altitude).

� AUTO_MISSION: The aircraft obeys the programmed mission sent by the ground control

station (GCS). If no mission received, aircraft will LOITER at current position instead.

� OFFBOARD: In this mode the position, velocity or attitude reference / target / setpoint

are provided by a companion computer connected via serial cable and MAVLink. The

o¤board setpoint can be provided by APIs like MAVROS.

The experimental platform including the Pixhawk autopilot and the external sensors can

be depicted in Figure 3.3.2.
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Experimental platform with the Pixhawk autopilot and used electronics.

3.4 Examples Usage of the MAV3DSim

The literature presents many examples where a simpli�ed model of the system to investigate a

control algorithm[37][34][30]. This is a common practice that simpli�es the process of control

design. However, in a lot of cases the controller must be validated on a real platform, which

does not necessarily match the model. In few cases, the designer tests the controller on the

complete system model, this is due to the di¢ culty to represent the behavior in any simulation

software such as MATLAB SIMULINK.

Therefore, a simulating tool which can represent in an accurate manner the real system

behavior is needed. In order to validate the simulation platform we are using the stable version

of the PX4 �ight stack �rmware[15], which is the �rmware installed in the Pixhawk autopilot.

To this end, the operation of the MNAV3DSim simulator is showed by two examples: We use the

implementation of the waypoint following of the PX4 stack �rmware. We use the MAV3DSim as

a ground station when performing the same waypoint following on the experimental platform.
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Figure 3-2: L1 guidance geometry.

3.4.1 L1 Controller for Waypoint Following

This section describes the guidance law implemented on the PX4 Firmware for waypoint fol-

lowing, this guidance is fully presented and extensively analyzed in [65][63]. We will brie�y

describe the guidance law and then we will continue with the implementation of the waypoints

following in the PX4 Flight Stack.

The key idea behind this guidance law is that it generates a lateral acceleration commands

to steer the velocity vector towards a desired point, chosen to be a speci�ed look-ahead distance

along the desired path in front of the vehicle.

Analyzing the geometry shown on Figure 3-2, V is the UAV�s horizontal velocity vector

w.r.t the ground and C is the circular arc of radius R that lies tangent to the velocity vector

and connects with the intersection with the desired L1 vector�s distance and the path, and

the L1 being a constant look-ahead distance vector from the UAV position to the path in the

desired direction of travel. This L1 vector is then divided by two into equal segments by the

line bisecting the chord of the arc C. Then by trigonometry we know that:

jL1j
2
= R sin � (3.6)
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Figure 3-3: L1 guidance regions accordingly to the position of the aircraft.

So the lateral acceleration ac required to follow the circular path C is given by:

ac =
jV j2

R
(3.7)

Therefore the lateral acceleration command is determined by:

ac = 2
jV j2

jL1j
sin � (3.8)

It is clear that the implementation of this control law only requires the selection of the jL1j

distance and to determine sin �, where � is the angle from the velocity vector V to L1 also

referred as the line of sight angle.

For the UAV to actually track the desired trajectory, the lateral acceleration command ac

computed in 3.8 must be converted to a bank angle command �cmd using the following turn

equation:

�cmd = tan
�1
�
ac
g

�
(3.9)

Now we discuss the implementation of the PX4 Stack Flight of the waypoint following

strategy. This strategy consists in two parts, 1) the computation of a reference point L1ref and

2) the computation of the acceleration command from eq. 3.8.

The computation of L1ref depends primarily of the current location of the aircraft w.r.t. the
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path to follow. The path to follow is de�ned by a n number of waypoints that are su¢ ciently

away from each other to ensure the aircraft is able to make a successful turn. If two waypoints

are too close from each other they will be treated as a single waypoint and after reaching it,

the aircraft will continue with the next waypoint. There are 3 di¤erent sections in which the

aircraft could be located (Figure 3-3):

� Region A: Is situated behind the waypoint, this usually occurs at the beginning of the

mission and the reference point L1ref will be the very �rst waypoint.

� Region B: Here the aircraft is in between of the two waypoints so the reference point L1ref
is placed over the path with an � angle, so it does not enter the path perpendicularly.

� Region C: In this region we can directly apply the computation of the L1ref on the path

at a L1 distance ahead of the aircraft.

Using the map interface provided by the MAV3DSim we can choose the waypoints, select

the proper altitude for the waypoints and �nally save them into the Pixhawk�s �ash memory.

The experiment begins �rst with a manual control of the aircraft to perform a take-o¤

and gain enough altitude to initiate the waypoint following logic, we can change at a semi-

autonomous or assisted control using the radio control switches, after the aircraft gained gain

enough altitude we activate the L1 waypoint following with the radio control and let the aircraft

follows each waypoint, we can at all time recover the manual control of the autopilot with the

radio control. In this case the experiment is �nished with a manual landing. A video of the

working simulator can be seen in https://youtu.be/swrO97xFV2w

3.4.2 MAV3DSim as a Ground Control Station

When performing tests on the �ying �eld, it is important to know the current state of the

vehicle. To that end, we could use the MAV3DSim as a Ground Control Station (GCS), as it

communicates with the Pixhawk autopilot via the MAVLink protocol using a wireless link and

it has all the avionics instruments and the 2D map display to know the position, orientation

and velocity of the vehicle at all times.

We perform the very same experiment described in the previous section but in the experi-

mental platform described in Section 3.2, using the very same waypoints and the same location
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Figure 3-4: Experimental platform vs simulation following the same waypoints.

and as in the simulation case we start with the manual take-o¤ and continue with the waypoint

following to �nish the mission with a manual landing. A video of the experiment on the �eld

could be seen in https://youtu.be/gxhkDxKoG0U.

Figure 3-4 shows the path followed in the simulation and the experimental platform. In both

cases we use the same waypoints and the same parameters and gains in the Pixhawk autopilot.

In Figure 3-5 the altitude of the simulator and the experimental platform are compared with

the setpoint designated for the di¤erent altitudes of the waypoints.

Figure 3-5: Altitude on the simulation platform and the experimental platform.
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Chapter 4

Path Generation and Control in 2D

In the case of path following control scenario, we must certainly decide the path to be followed

before the guidance logic uses it to generate the error and perform the corresponding control

logics. Usually the �rst step is to introduce several �xed points in space, i.e. waypoints, and

de�ne the desired path as the sum of straight lines that connect this waypoints. This approach,

simple as it is, sometimes will not ful�ll the demand of accuracy of the application because the

resulting path is no smooth enough. On the literature we can �nd a great variety of examples on

this issue, as well as other important factors that arise, regarding the performance in each case.

For some missions it is crucial to pass through the way point, for other mission it is important

that the vehicle converges and stays on the path, others are more concerned on �nding the

minimum path, and so on.

Dubins[44] showed that a car-like robot with initial prescribed heading can arrive to its �nal

position and heading, with exactly three paths segments which are either arcs of circles with

a minimal radius or straight lines segments. Reeds and Sheep [35] solve a similar problem in

which the vehicle can move forward as well as backward. Kavaraki and Svestka[41] use the

Probabilistic Road Map (PRM) method which explore all the possible paths within the space

surrounding the vehicle and �nally select the lowest cost route. Other planning techniques used

by Kuwata and Richards[42] are based on optimizations methods, such as Mixed Integer Linear

Programming or Model Predictive Control techniques. Mehta and Egerstedt[54] used optimal

control for constructing control programs from a given collection of motion primitives.

In this section we present a path generator for a �xed-wing UAV using a reduced kin-
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ematic version of the lateral dynamics of an airplane, with constant altitude and velocity. This

path generator uses the Dubins paths to generate the new path from the current position and

direction of the plane to the desired position and direction.

4.1 Mathematical model

The Dubins aircraft model is described by the subsequent equations:

_x = Vt cos (4.1)

_y = Vt sin (4.2)

_ = !

in which x and y denotes the inertial position of the aircraft,  is the heading angle, ! is the

heading rate, � is the roll angle, Vt is the airspeed, i.e. the speed of an aircraft relative to the

surrounding air. The velocity of the aircraft is held constant by a velocity-hold system. Since

the simpli�ed model is a function of x; y; � also an altitude-hold controller is needed for the

simulation performed on the simulation platform MAV3DSim described in the previous chapter.

Also, we assume no sideslip at a banked-turn maneuver.

The heading rate ! is induced by the roll angle of the airplane as

! =
g

Vt
tan� (4.3)

where g is the gravity acceleration. The roll angle is considered bounded under the following

condition

j�j � �max (4.4)

Assuming a coordinated turn, and given the boundedness of the roll angle � the minimum

turn radius � that the aircraft can �y is given by

� =
V 2t

g tan (�max)
(4.5)

In this kinematic model the position of the airplane can be represented by p(x; y;  ) with  
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measured from the y axis and (x; y) measured in the local ENU reference frame.

4.2 Path Generation in 2D

In this section, the classical result of Dubins[44] is used as a basis for path generation.

Dubins showed that the shortest path consist of exactly three path segments which are either

a) arcs of a minimal radius or b) straight lines. The four di¤erent con�gurations for the Dubins

paths which are composed by two curved segments and a straight line segment are arranged as

shown in Figure 4.2. The four cases of Dubins paths are LSL, LSR, RSR, RSL; in which L

stands for Left, R stands for Right and S for Straight.

The �rst step in determining the Dubins paths is to choose what type of path must be used.

We have the initial and �nal con�guration of the airplane, this is the initial position pi, the

initial heading  i the �nal position pf and the �nal heading  f and with every initial-�nal

con�guration we can generate the 4 types of Dubins paths,i.e. from the starting point it can

turn to the right or the left and arrive to the �nal point from the right or the left. We choose the

shortest path by comparing the distance between the center of the circles, see Figure 4.2. The

smallest distance between the center of the circles gives us the shortest Dubin path according

to the Table 4.1.

Based on the initial and �nal con�guration (pi;  i)and(pf ;  f ), respectively, and the minimal

turn radius � from (4.5), the center of each circle is computed as follows
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Table 4.1: Dubins path selection.

Shortest distance Dubins Path

CRiCRf RSR

CRiCLf RSL

CLiCLf LSL

CLiCRf LSR

CRi = (xRi; yRi) = (xi + � cos i; yi � � sin i)

CLi = (xLi; yLi) = (xi � � cos i; yi + � sin i)

CRf = (xRf ; yRf ) =
�
xf + � cos f ; yf � � sin f

�
CLf = (xLf ; yLf ) =

�
xf � � cos f ; yf + � sin f

�

The Dubins paths are chosen by comparing the distance between the center of the circles

segments.

4.2.1 Dubins path RSR

The initial and �nal con�guration (pi;  i) and (pf ;  f ),respectively, are given w.r.t. an inertial

frame (Local ENU frame). The RSR is generated by a clockwise rotation from the initial

position describing an arc of radius � and center CRi with coordinates (xRi; yRi) until the
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aircraft heading achieves an angle of � degrees. Then it follows a straight line segment d, �nally

it continues with a turn to the right describing an arc of radius � and center in CRf with

coordinates (xRf ; yRf ) until the plane arrives to the �nal heading  f as seen in Figue 4.2.

The path generator algorithm produce an array of points pn

The angle � is the angle of the straight line segment d which is measured from the vertical

y axis and computed as follows

� =
�

2
� tan�1

�
yRf � yRi
xRf � xRi

�
(4.6)

The length �d of the straight line segment d equals the distance CRiCRf between the center

of the circles CRi and CRf and is computed as

d =

q
(xRf � xRi)2 + (yRf � yRi)2 (4.7)

The path generator algorithm produce an array of n points pn which starts in p0 = pi and

ends in pn = pf .

The coordinates of the n � th point pn of the arc segments are obtained by rotating the

initial point pi clockwise around CRi as a center

pn =

24xn
yn

35 =
24xRi + � sin ( n)
yRi + � cos ( n)

35 (4.8)
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where  n starts at  i and is incremented by given � each time. These procedure is repeated

until  n = �, see Figure 4.2.1a.

Each point in the straight line segment is computed by incrementing the previous point

pn�1 in a given �d in direction of the angle � as follows

pn =

24xn
yn

35 =
24xn�1 +�d sin (�)
yn�1 +�d cos (�)

35 (4.9)

The elements pn of the �nal segment are computed by rotating the �nal point of the straight

line clockwise around CRf as a center; see Figure 4.2.1c.

pn =

24xn
yn

35 =
24xRf + � sin ( n)
yRf + � cos ( n)

35 (4.10)

where  n starts in � and each time is incremented by � . This procedure is repeated until

 n =  f ; see Figure 4.2.1c.

The complete path generation is summarized in algorithm 1

Algorithm 1 Generate Dubin path RSR
n = 1; p0 = pi
 n = 0

� = �
2 � tan

�1
�
yRf�yRi
xRf�xRi

�
while  n � � do
pn:x = xRi + � sin( n); pn:y = yRi + � cos( n)
 n =  n +� ; n = n+ 1

end while
dsum = 0
while dsum � �d do
pn:x = pn�1:x+�d sin �; pn:y = pn�1:y +�d cos(�)
dsum = dsum +�d; n = n+ 1

end while
while  n �  f do
pn:x = xRi + � sin( n); pn:y = yRi + � cos( n)
 n =  n +� ; n = n+ 1

end while
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4.2.2 Dubins path RSL

This is the case where the closest circles are CRi and CLf , see Table 4.1. From the initial and

�nal con�guration, (pi;  i) (pf ;  f ) the RSL path is generated with a clockwise rotation from

the initial position pi describing an arc of circle of radius � with center CRi with coordinates

(xRi; yRi) until the heading aircraft achieves the angle �. Then it follows a straight line segment

d, �nally it will turn to the left describing an arc of radius � and center in CLf with coordinates

(xLf ; yLf ) until the aircraft reaches the �nal heading. See Figure 4.2.2.

Right-Straight-Left (RSL) Dubins path.

In this case the angle � is computed is computed aided by the triangle formed by the center

of the circle CRi the midpoint of the segment d and the point of the circle tangent to the

straight line d using the following formula

� = � � 
 + �

2
(4.11)

where � is the angle of the segment CRiCLi measured from the y axis as in Figure 4.2.3 and

is computed as follows

� =
�

2
� tan�1

�
yLf � yRi
xLf � xRi

�
(4.12)


 is the angle between the segment CRiCLf and the normal to the tangent point of circle

CRi and the segment d. 
 is computed as follows
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 = tan�1
�
2�

d

�
(4.13)

The length of the straight line segment d is computed with the distance l from the segment

CRiCLf and the radius � as

d =
p
l2 � 4�2 (4.14)

The coordinates of the n � th point pn of the arc segments are obtained by rotating the

initial point pi clockwise around CRi as a center using (4.8), see Figure 4.2.1a.

Each point in the straight line segment is computed by incrementing the previous point

pn�1 in a given �d in direction of the angle � as in (4.9)

Algorithm 2 Generate Dubin path RSL
n = 1; p0 = pi
 n = 0

� = �
2 � tan

�1
�
yLf�yRi
xLf�xRi

�

 = tan�1

�
2�
d

�
� = � � 
 + �

2
while  n � � do
pn:x = xRi + � sin( n); pn:y = yLi + � cos( n)
 n =  n +� ; n = n+ 1

end while
dsum = 0
while dsum � �d do
pn:x = pn�1:x+�d sin �; pn:y = pn�1:y +�d cos(�)
dsum = dsum +�d; n = n+ 1

end while
while  n �  f do
pn:x = xLi + � sin( n); pn:y = yLi + � cos( n)
 n =  n +� ; n = n+ 1

end while

The elements pn of the �nal segment are computed by rotating the �nal point of the straight

line clockwise around CLf as a center; see Figure 4.2.1c.

pn =

24xn
yn

35 =
24xLf + � sin ( n)
yLf + � cos ( n)

35
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where  n starts in � and each time is incremented by � . This procedure is repeated until

 n =  f ; see Figure 4.2.1c.

The complete path generation is summarized in algorithm 3

4.2.3 Dubins path LSL

The LSL case is very similar to the RSR but with the turns to the left instead of right and it

occurs when the smallest distance between the circles (see Figure 4.2) is CLiCLf . The LSL

path is generated with a counterclockwise rotation from the initial position pi describing an arc

of a circle of radius � and center in CLi with coordinates (xLi; yLi) until the aircraft heading

achieves an angle of � degrees. Then it follows a straight line segment d and �nally it continues

with the a turn to the left describing an arc of radius � and center in CLf with coordinates

(xLf ; yLf ) until the airplane achieves the �nal heading  f , as depicted in Figure 4.2.3.

Left-Straight-Left (LSL) Dubins path.

The angle � measured from the vertical y axis is

� =
�

2
� tan�1

�
yLf � yLi
xLf � xLi

�
(4.15)

The length of the segment d equals the distance CLiCLf and it is computed as

d =

q
(xLf � xLi)2 + (yLf � yLi)2 (4.16)
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The coordinates of the n � th point pn of the arc segments are obtained by rotating the

initial point pi counterclockwise around the CLi as a center, as follows

pn =

24xn
yn

35 =
24xLi + � sin ( n)
yLi + � cos ( n)

35 (4.17)

where  n starts at zero and is incremented each time by � until it reach the angle �.

Each point in the straight line segment is computed by incrementing the previous point

pn�1 in �d in the same direction as � using equation (4.9). The last curved segment is a turn

to the left and the segment coordinates are computed as follows

pn =

24xn
yn

35 =
24xLf + � sin ( n)
yLf + � cos ( n)

35 (4.18)

4.2.4 Dubins path LSR

According to Table 4.1 the Dubins path LSR is when the shortest distance is the one between

the circles CLi and CRf . The �rst segment of this path is a left turn which generated with a

counter-clockwise rotation from the initial position pi describing an arc of radius � with center

in CLi = (xLi; yLi) until the airplane reach the heading �, then it follows a straight line segment

of length d and it �nish with a right turn described by the arc of the circle of radius � with

center in CRf = (xRf ; yRf ) and it will turn until it achieve the angle  f as depicted in Figure

4.2.4.

Left-Straight-Left (LSR) Dubins path.
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The computation of the angle � is carried out by the triangle formed by the center of the

circle CLi the midpoint of the segment d and the point of the circle tangent to the segment d

using the following equation

� = � + 
 � �

2
(4.19)

where

� =
�

2
+ tan�1

�
yRf � yLi
xRf � xLi

�
and


 = cos�1
�
2�

d

�
The length of the straight line segment d is computed with the following equation

d =
p
l2 � 4�2 (4.20)

The coordinates of the n � th point pn of the arc segments are obtained by rotating the

initial point pi counterclockwise around the CLi as a center, as follows

pn =

24xn
yn

35 =
24xLi + � sin ( n)
yLi + � cos ( n)

35 (4.21)

where  n starts at zero and is incremented each time by � until it reach the angle �.

Each point in the straight line segment is computed by incrementing the previous point

pn�1 in �d in the same direction as � using equation (4.9). The last curved segment is a turn

to the right and the segment coordinates are computed as follows

pn =

24xn
yn

35 =
24xRf + � sin ( n)
yRf + � cos ( n)

35 (4.22)
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4.3 Problem Statement

In this section, the problem statement is introduced and a dynamic system suitable for control

purposes is formulated.

Path following control problem schema.

Considering Figure 4.3, the key idea behind the path-following controller relies on reducing

two expressions to zero: the �rst one is the distance between the aircraft�s center of mass p and

the the point q on the path, the second one is the angle between the airspeed vector and the

tangent to the path at q.

To accomplish these objectives, we introduce a virtual particle moving along the geometric

path at a velocity _s. Consider a frame attached to such particle, this frame plays the role of

a body axis of the virtual particle, and is the so called Serret-Frenet frame denoted by F [55].

It is worth noting that the particle velocity evolves according to a conveniently de�ned control

law _s, yielding an extra controller design parameter.

With this set-up in mind, the aforementioned angle and distance will become the coordinates

of the error space, where the control problem is stated and solved.

4.3.1 Error dynamics for the path-following controller

Consider that the 2-D geometric path is represented by smooth functions parameterized by t,

i.e. xs(t) and ys(t). Thus, (xs(t); ys(t)) represent the virtual particle coordinates.
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The inertial position of the aircraft is de�ned by p = [x y]T in the inertial reference frame

I. For the purpose of following the given path, we de�ne the inertial vector error dI = p� q(s)

expressed in F , which will be minimized in order to track the path. Such error vector dI has

been decomposed into its components es and ed, corresponding to the error in the x-axis of the

frame F and the error in the y-axis of the frame F , respectively as it is shown in Figure 4.3.

From the Figure 4.3, we can see that the tangent vector to the path at q(s) is parallel to

x-axis of the frame F . The angle  f is measured from the inertial frame to the tangent vector

of q(s).

Considering an arbitrary point q on the path, and let

R =

0@cos ( f ) � sin ( f )

sin ( f ) cos ( f )

1A (4.23)

the rotation matrix from F to I, parameterized locally by  f . Thus, the error dI expressed in

the Serret-Frenet frame is given by

dF =

24es
ed

35 = RTdI = RT (p� q (s)) (4.24)

Furthermore, we de�ne the yaw angle error as

~ =  �  f (4.25)

The angle  f can be computed by using the information provided by the geometric path

and its �rst derivative with respect to the parameter t, as follows

 f = arctan
y0s
x0s

(4.26)

where x0s =
dxs
dt , y

0
s =

dys
dt .

To obtain the error state dynamic equations suitable for control purposes, we must compute

the time derivative of (4.24) and (4.25). By di¤erentiating (4.24), it follows that
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_dSF = RT ( _p� _q (s)) + _RT (p� q (s)) (4.27)

= RT ( _p� _q (s)) + S
�
_ f

�
RT (p� q (s))

where S( _ ) is given by

S( ) =

0@ 0 � _ f
_ f 0

1A (4.28)

From (4.1), the time derivative of p and q(s) can be represented as follows

_p = R( )

0@V
0

1A (4.29)

_q = R

0@ _s
0

1A (4.30)

The time derivative of (4.25) results in

_~ = ! � _ f (4.31)

with

_ f = k(s) _s (4.32)

where
d f
dt = k(s) is the path curvature. The path curvature is expressed as a function of the

path coordinates (xs(t); ys(t)) and its �rst and second derivatives with respect to the parameter

t, i.e. x0s =
dxs
dt , y

0
s =

dys
dt . Thus, the path curvature

d f
dt = k(s) is given by

k =
jy00sx0s � y0sx00s j
(x0s

2 + y0s
2)3=2

(4.33)

Finally, by substituting (4.29) and (4.30) in (4.27) and using (4.31) we obtain the error

kinematic model suitable for the control purposes as
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_es = Vt cos ~ � (1� k (s) ed) _s (4.34)

ed = Vt sin ~ � k (s) es _s

 = ! � k (s) _s

4.4 Path following controller

In this section we present a nonlinear path following control strategy. Such control strategy

is done in two steps. The �rst step yields a kinematic controller by adopting the yaw rate !

from 4.1 as a virtual control input. The second step addresses the vehicle dynamics in order

to obtain the control law for the input variable �. Such control law relies on the kinematic

controller previously derived.

4.4.1 Kinematic Controller Design

Following a similar approach as in [43], we introduce a desired approach angle parameterized

by k� > 0 as

�(ed) = � a
e2k�ed � 1
e2k�ed + 1

(4.35)

where 0 <  a < �=2. The sigmoid function (4.35) is bounded and di¤erentiable with respect

to the error ed. It provides the desired relative course transition of the �xed-wing MAV to

the path as a function of ed. Moreover, (4.35) satis�es the condition ed�(ed) � 0 8ed. Such

condition guides the MAV to the correct direction, i.e., turn left when the MAV is on the right

side of the path, and turn right in the opposite situation.

In order to study the control law for the system (4.1), we propose a Lyapunov function

candidate given by

V (ed; es; ~ ) =
1

2
e2d +

1

2

�
~ � �(ed)

�2
+
1

2
e2s (4.36)

The time derivative of (4.36) along the trajectory of (4.1) is computed as follows
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_V (ed; es; ~ ) =
�
~ � �(ed)

�
(! + �) + (ed) (Vt sin (�(ed))) + (es)

�
Vt cos ~ � _s

�
(4.37)

where

� = �CC (s) _s� _� (ed)
�
Vt sin ~ � CC (s) es _s

�
+ (Vted)

�
sin � sin (� (ed))

~ � � (ed)

�

where the derivative with respect to edof (4.35) is

_�(ed) = �
4 ak�e

2k�ed

(e2k�ed + 1)2
(4.38)

Substituting the following kinematic control law

_s = Vt cos ~ + kses (4.39)

! = �� � k!1
�
~ � � (ed)

�
where ks, k!1 are positive real numbers, in (4.37), yields

_V
�
ed; es; ~ 

�
= �kse2s � k!1

�
~ � � (ed)

�2
+ Vted (sin (� (ed))) � 0

To conclude convergence of the states (es; ed; ~ )to zero, we state de LaSalle�s Invariance

Principle

Theorem 1 LaSalle�s Theorem

Let O be a positively invariant set of system (16). Let 
 � O a set in which every solution

starting in O converges to 
. Furthermore, let M be the largest invariant set contained in 
.

Then, as t!1, every bounded solution starting in O converges toM.

Proof. Convergence of the states (es; ed; ~ ) to zero.

The proof relies on Theorem 1. Consider the system (16) and the radially unbounded

Lyapunov function candidate (4.36). Let us de�ne the compact set O as O = fV (ed; es; ~ ) � ag,
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where a 2 <+. De�ne the set 
 as


 = f[ed es ~ ]
T 2 O : _V (ed; es; ~ ) = 0g (4.40)

Equivalently, the expression _V (ed; es; ~ ) = 0 means that es = ed = 0 and ~ = �. Since � is

a function of the error ed, it is easy to verify that any point starting from 
 is an invariant

set. Hence, by LaSalle Theorem, every trajectory starting in O converges to 0 as t ! 1, i.e.

limt!1 es = 0, limt!1 ed = 0 and therefore limt!1 ~ = �(ed) = 0.

4.5 Simulation Example

Simulations were done on a complete simulation platform, the MAV3DSim(Multi-Aerial Vehicle

3D Simulator) provides a complete 6 degrees of freedom (DoF) computer model of �xed wing

aircraft. The MAV3DSim software layers are described brie�y in this section. The application

scenario is in the use of the path generation and path-following algorithms to command a

desired path to the �xed wing UAV. The results from the simulation are presented at the end

of this section.

4.5.1 MAV3DSim Simulation Platform

The MAV3DSim is a custom C# .Net based application and implements a complete 6DoF

nonlinear model. It has a 3D representation to visualize the position and orientation of the

plane, also, it has the capability to load maps directly from Google Maps servers and set the

launching site on any location on Earth. The trajectory generated by the plane can be seen on

the map, this map is the tangential plane to the Earth.

The data generated by the simulator is coded in the same manner as the common sensors,i.e.

it send data emulating an inertial measurement unit(IMU) sending inertial gyroscope, accelero-

meter and magnetometer, a GPS radio in the latitude/longitude format, altitude and airspeed.

It can receive commands to move the control surfaces aileron elevators, rudder, and the thrust

of the �xed-wing UAV. The position provided by the simulator is in a standard geodetic WGS84

Latitude(�), Longitude(�) and Height(h), and we will use the transformation to the local tan-

gent ENU described in Section 2.2.5.
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The software layers, depicted in the Figure 4.5.1, are brie�y described as follows

Communication scheme between the MAV3DSim and the CRRCSim.

Path Generator

This layer is in charge of the generation of paths using the Dubins path generation described

in Section 4.2. It can generate new paths and maintain the old ones for later use. It is possible

to interact online with the path generation and change the course of action of the aircraft in

any time either by an autonomous action or by a human interaction. Once the path is fully

generated, it is transmitted to the path-following strategy.

Path-Following Strategy

The path-following control described in section 4.4 is implemented in this layer. The path is

stored in an array of n points of the form (xm; ym) starting with m = 0 then the path following

strategy computes the errors es; ed; ~ from (4.24) and (4.25), with this information it computes

control input ! and _s from (4.39). The control ! is a desired heading rate and is induced into

the aircraft dynamics through the roll angle using (4.3). The computed roll angle � will be

used by the low level autopilot

Low Level Autopilot

The role of low-level autopilot is to stabilize the aircraft in roll and pitch angles, maintain a

constant altitude and airspeed by implementing a PD controller for each dynamic (roll, pitch,

altitude and airspeed). The altitude and airspeed setpoints are manually introduced by a

graphic user interface, the altitude controller outputs the pitch setpoint and the roll setpoint is

obtained from the path following controller.
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Aircraft Dynamics

This layer integrates the set of di¤erential equations representing the aircraft dynamics. The

input of this layer are the inputs of the low level autopilot layer and the outputs are the data

from the simulated sensors: GPS position, aircraft attitude, airspeed. The aircraft dynamics

layer sends the outputs to the upper layers.

4.5.2 Simulation Scenario

The path generated to weep the search area.

We use the MAV3DSim simulation platform along with the Dubins path generator and the

path-following strategy previously described to present a simulation scenario. The description

of the scenario is as follows: A person is missing and is located somewhere in a known area.

The main task of the UAV is to �nd this person, so it will sweep this area in order to �nd the

missing person. First we need to de�ne the search area as a rectangle with the aid of a user

interface, then using the proposed path generator algorithm de�ne the a path for sweeping the

rectangle area. The starting point of the path will be one of the corners of the rectangle and

it selects the closest to the current position of the UAV as depicted in Figure 4.5.2. The UAV

will travel along the path until it is su¢ ciently close to the lost person (red dot in Figure 4-1).

When the missing person is found a circular path is generated to surround the missing person.

The simulation can be seen in https://www.youtube.com/watch?v=_AUW8_g-jb0
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Figure 4-1: Circular path generated to surround the missing person.

4.6 Experimental �ight

During search and surveillance mission it is sometimes required that the aircraft �y through a

n (n � 3) number of waypoints in a given order. We will be using the path generation described

in 4.2 and the kinematic controller described in 4.4, and we have the following assumptions for

the experimental �ight

� The airspeed Vt of the vehicle is assumed to be constant through the mission. We use a

well tuned PID controller to maintain the airspeed constant.

� The aircraft has a bound on its maximum turn rate and minimum turn radius.

� Due to the nonholonomic nature of the vehicle it is not possible to pass through all way-

points and at same time �y over all portions of the straight lines between the waypoints,

thus, our main priority is to pass through the exact point of the waypoints.

� The waypoints have a separation not greater than 50m, this is due to the battery limitation

of the aircraft, which give us a �ight time of 30 minutes.

First consider n waypoints denoted by w1; w2; :::; wn: The assumption is that initially the

aircraft is in an arbitrary position, using the path generation algorithm it creates a path from
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the current position and orientation to the �rst waypoint with �nal angle equal to the angle

formed by the line between the �rst two waypoints. As the experimental aircraft position is

obtained via GPS all the computation should be using the (latitud; longitude) for the position

of the aircraft, so the waypoints have the following structure

wn =

24xn
yn

35 (4.41)

The computation of the bearing angle �b between two waypoints (wn�1; wn) its done as

follows

y = sin (yn � yn�1) cos (xn)

x = cos (xn�1) cos (xn)� cos (yn � yn�1)

�b = tan�1
�y
x

�
(4.42)

Using the following algorithm we generate the path from the current position of the aircraft

Algorithm 3 Generate waypoints path

n =number of waypoints; i = 0 // Current waypoint
�b =GetBearing(waypoints[0],(waypoints[1]) ; Angle between waypoints
Points = GeneratePath(CurrentPosition, CurrentHeading, waypoints[0], �b) ; Generate initial
path to arrive the �rst waypoint
while i � n� 2 do
�b1 =GetBearing(waypoints[i],(waypoints[i+1]) ; Angle between waypoints
�b2 =GetBearing(waypoints[i+1],(waypoints[i+2]) ; Angle between waypoints
Points.Add(GeneratePath(waypoints[i],�b2,waypoints[i+1],�b2 =))

end while
�b =GetBearing(waypoints[n-1],(waypoints[n]) ; Angle between waypoints
Points.Add(GeneratePath(waypoints[n-1],�b,waypoints[n],�b =)); Last waypoint

The experimental platform is equipped with an Pixhawk autopilot and a Raspberry Pi

companion computer. The autopilot is in charge of the stabilization of the aircraft at the

received command from the companion computer. The companion computer is in charge of the

navigation/Path generation and the nonlinear control described in the previous section.
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Figure 4-2: Generated path (in black) to pass through all the waypoints

The experiment is depicted in Figure 4-2. We start the experiment with a manual take-o¤

from the take o¤ site to some point near the �rst waypoint and until we reach the reference

altitude of 100m . After arriving to the desired altitude we initiate the path generation strategy.

The path generator takes as an input the current position and heading of the aircraft and

generates an initial path to the �rst way point, the green line in the picture, then it will

continue generating the path for all the remaining waypoints, in the picture it is the black line.

From the Figure 4-3 we can observe the performance of the controller, as there is still a small

error in the following of the path, we consider the performance of the system is acceptable. At

the beginning of the experiment we enter the �rst curve with more velocity that the calculated

for the minimum turn radius and therefore the aircraft step out the path for a moment, once

the airspeed is regulated to the correct value the aircraft follow the path without issues. Figure

4-4 show the computed controllers for the roll �, pitch � and the virtual particle velocity _s, the

red lines is the moment of transition from one waypoint to the other. In the Figure 4-5 we can
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verify that the errors tend asymptotically to zero, each time the aircraft arrives toward a new

waypoint the error is increased but rapidly compensated. Finally in �gures 4-6 and 4-7 we can

see the altitude and airspeed vs the setpoint to verify that it remains regulated by the PID

controller implemented.

Figure 4-3: Geneerated path to pass through all the waypoints.
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Figure 4-4: Control signals

Figure 4-5: Position errors and angular error.
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Figure 4-6: Aircraft airspeed in blue vs airspeed setpoint.

Figure 4-7: Aircraft altitude vs altitude setpoint
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Chapter 5

Path Following in 3D

Real-time operation of a UAV involve movement in a three dimensional space. Therefore it is of

very importance to handle the problem of generation of three dimensional trajectories and to be

able to follow them with the UAV. In this chapter we consider that the UAV is �ying in a three

dimensional space. The path following is of great importance for the autonomous operations of

the UAVs. In recent years the missions involving autonomous �ights of the UAV have become

more and more complicated, therefore a precise 3D path-following strategy is required. In the

literature there are several linear and nonlinear guidance methods. Most of them have been

developed for two dimensional path-following, which can be classi�ed into three approaches;

the error kinematics based approach, the vector �eld based approach, and the virtual target

following approach.

In the error kinematics approach, several nonlinear control techniques have been applied

for the regulation of the error state variables, where the error variables can be de�ned in many

ways, including cross-track error[5] [69], along-track error[77] [40] and vehicle heading error[3].

Once the dynamic model of the state variables is derived, a nonlinear control design method is

applied to regulate the errors [9] [12].

In the vector �eld approach, a vector �eld is designed so that the vehicle converges to the

desired path along the vector �eld [60] [25]. However the vector �eld can only de designed for

some types of planar curves, such as a straight line or a circle[24], a sinusoidal path [27], etc.

Therefore the vector-�eld-based approach is not applicable to the general case of trajectories in

a 3D space.
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The virtual tarjet following, also known as look-ahead approach, the guidance control is

designed to track a virtual particle moving along the desired path, which is ahead of the

vehicle. Di¤erent concepts are taking in the design process of these type of methods, such

as the pure pursuit guidance [58], line-of-sight guidance [1], proportional navigation guidance

[74],trajectory shaping guidance [64].

Finally in recent years a new method has been developed using the virtual target following

approach, the nonlinear path following guidance law [16]. The strengths of this method are

the simplicity of the guidance command and that it enables tight tracking of curved paths by

anticipating the upcoming desired path and wind e¤ect compensation.

5.1 3D Dubins path

One of the classical paths for aircraft maneuvers is the circular helix, whose projection on the

x � y plane is a circle. The path can also be seen as a path on the surface of a cylinder.

An important property of this trajectory is that the ration of curvature and torsion remains

constant. The cylinder is used as the most logical extension of the circle to the 3D space, as

depicted in the Figure 5-1, in which the same rotation is executed and at the same time a

change in the altitude is performed.

Figure 5-1: The cylinder is considered as the 3D extension of the circle.

The previous condition of constant altitude is relaxed so that the initial and �nal position
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does not lie on the same plane. The controller also needs to take this into consideration and to

introduce the altitude as a new state in the model used to develop the previous controller.

The design of the Dubins path is shown on Section 4.2, the Dubins path has two circu-

lar segments and a straight line segment, and all the three segments are in the same x � y

plane, thus it is easy to �nd the common tangent to the initial and �nal position. A sim-

ilar approach but extended to the 3D case is developed to compute the 3D Dubins path.

In view of the change in altitude, there are eight possible cases for the Dubins path in 3D,

LSLU; LSRU; RSRU; RSRLU; LSLD; LSRD; RSRD; RSRLD which L stands for Left,

R stands for Right, S for Straight, U for upwards and D for Downwards. The downwards

trajectories are depicted in Figure 5-2 and the Figure 5-3 shows the upwards movements.

As in the 2D case the �rst step is to choose the type of Dubins path. We have the initial

and �nal con�guration de�ned as follows

ci (pi;  i) (5.1)

cf
�
pf ;  f

�
(5.2)

where pi = [xi; yi; zi] is the initial position of the path and pf (xf ; yf ; zf ) is the �nal position

of the path, both are expressed in an inertial frame, the initial heading angle  i and the �nal

heading is  f :There are 8 possible selections for the 3D Dubins paths, from the di¤erence in

altitude we can choose if it is a downwards or upwards maneuver. We choose the shorteest path

by comparing the proyection of the circles of the top an bottom of the cylinders on the same

X � Y plane, as in Figure 5-4. The smallest distance between the center of the circles gives us

the shortest Dubin path according to Table 5.1.

Based on the initial and �nal con�guration ci and cf and the minimal radius � from (4.5),

the center of the top and bottom circles of the cylinder are computed as follows

79



Figure 5-2: 3D Dubins paths, downwards trayectory

Figure 5-3: 3D Dubins paths, upwards trayectory

80



CRi = (xRi; yRi; zRi) = (xi + � cos i; yi � � sin i; zi)

CLi = (xLi; yLi; zRi) = (xi � � cos i; yi + � sin i; zi)

CRf = (xRf ; yRf ; zRi) =
�
xf + � cos f ; yf � � sin f ; zf

�
CLf = (xLf ; yLf ; zRi) =

�
xf � � cos f ; yf + � sin f ; zf

�

Figure 5-4: Minimun distance on the proyection of the circles of the cylinder on the same plane.

5.2 3D Dubins Path Generation

In this section the classical result of Dubins is extended to the 3D case. The initial and �nal

con�guration (pi;  i) and
�
pf ;  f

�
,respectively, are given w.r.t. an inertial frame (Local ENU

frame). The general procedure for the 3D Dubins paths is to divide the path � in three segments

as follows
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Table 5.1: 3D Dubins path selection.

Shortest distance Dubins Path

CRiCRf

�
if zi > zf ! RSRD

if zi < zf ! RSRU

CRiCLf

�
if zi > zf ! RSLD

if zi < zf ! RSLU

CLiCLf

�
if zi > zf ! LSLD

if zi < zf ! LSLU

CLiCRf

�
if zi > zf ! LSRD

if zi < zf ! LSRU

Figure 5-5: The 3D Dubins paths generation.

1. The �rst segment �1 starts from the initial con�guration ci (pi;  i) and begin a turn

clockwise or counter.clockwise describing an arc of radious � and center in CRi or CLi

until the heading angle  is equal to the angle �, this will turn the aircraft into the correct

direction to follow a straight line to the tangent of the second circunference, as depicted in

Figure 5-5.a. Also the elevation angle 
 of the path is selcted such as the overall vertical

displacement results in the change of altitude between the initial and �nal position in

altitude zi and zf , as seen in FIgure 5-5.d

2. The second segment �2 consists of a straight line path. The heading and elevation angle

of the path remains constant. This path will continue until it travels a distance d between
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the common tangents of the two circles, see Figure 5-5.b.

3. The third segment �3 is again an arc of radious � and center in CRf or CLf : The initial

heading angle of the path is �; as it remains constant in the previous path, then it will

change from � to the �nal heading angle  f : The elevation path 
 will remain constant

as in the prevous segment, in order to arrive at the desired altitude, see Figure 5-5.c.

3D Dubins RSRU=P and LSLU=P

In th cases of 3D Dubins path RSRU; RSRD; LSLU and LSLD the angle � and 
 and

distance d needed to generate the path are computed in a similar manner. The angle � is the

angle of the straight line segment d which is measured from the vertical y�axis. Depending on

the turn to the left or a turn to the right, we use the angle � = �R when it is a turn to the

right and the angle � = �L when it is a turn to the left. The visual representation of these

angles can be seen in Figure 5-6 and they are computed as follows

�R =
�

2
� tan�1

�
yRf � yRi
xRf � xRi

�
(5.3)

�L =
�

2
� tan�1

�
yLf � yLi
xLf � xLi

�
(5.4)

The length d, the straight line segment �2, is equal to the distance between the center of

the circles CRi and CRf ; or CLi and CLf ; depending on whether is a turn to the left or a

turn to the right. In this case we also have a di¤erence if it is a turn to the left or a turn to

the right, we use the distance d = dR if the path is a RSRU or RSRD type, and d = dL if the

path is a LSLU or LSLD type, these distance are computed as follows

dR =

q
(xRf � xRi)2 + (yRf � yRi)2 + (zRf � zRi)2 (5.5)

dL =

q
(xLf � xLi)2 + (yLf � yLi)2 + (zLf � zLi)2 (5.6)

The previously de�ned distance d is needed to compute the elevation path 
, we also need

to compute the traveled distance in the �1 and �3 segments, de�ned as d1 and d2: The total

distance is the sum of the three distace d; d1; d2 . The diference in altitude is also needed for
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the computation of the angle 
: All the needed values are computed as follow

d1 = j �{ � �j � 2� (5.7)

d2 =
����  f �� � 2� (5.8)

dT = d+ d1 + d2 (5.9)

h = jzi � zf j (5.10)

Finally the 
 angle is computd as follows


 = tan�1
�
h

dT

�
(5.11)

Figure 5-6: 3D Path generation, turn to the left and turn to the right.

5.2.1 3D Dubins RSLU/P and LSRU/P

In the cases of 3D Dubins path RSLU, RSLP, LSRU and LSRP again we have the need of

computing the angle � and 
 and distance d. The angle 
 is computed as in the previous

section, but that is not the case for the computation of the angle � and the distance d. As

depicted in Figure 5-7 we have introduce two new angles and an extra measurment of distance.

The angle � is the angle between the segment joining the center of the circles CRi and CLf or

84



CLi and CRf , depending on the path selection. The � angle is the angle between the segment

CRiCLf or CLiCRf , depending on the path selection, and the point of the tangent to the

circle and the segment d. The distance l is the distance between the two circles forming the

path. We start with the computation of the angle � as follows

� = � + �� �

2
(5.12)

The length of the straight line segment d is computed with the following equation, we use

the distance d = dRL if the path is a RSLU or RSLD type, and d = dLR if the path is a LSRU

or LSRD type, the these distance are computed as follows

dRL =

q
l2 + 4�+ (zLf � zRi)2 (5.13)

dLR =

q
l2 + 4�+ (zRf � zLi)2 (5.14)

We use the angle � = �RL if the path is a RSLU or RSLD type, and � = �LR if the path

is a LSRU or LSRD type. We compute these angles as follows

�RL =
�

2
� tan�1

�
yLf � yRi
xLf � xRi

�
(5.15)

�LR =
�

2
� tan�1

�
yRf � yLi
xRf � xLi

�
(5.16)

The � angle is computed as follows

� = tan�1
�
2�

d

�
(5.17)

Finally we use the distance l = lRL if the path is a RSLU or RSLD and l = lLR if the path

is a LSRU or LSRD type. is computed as follow

lRL =

q
(xRf � xLi)2 + (yRf � yLi)2 + (zRf � zLi)2 (5.18)

lLR =

q
(xLf � xRi)2 + (yLf � yRi)2 + (zLf � zRi)2 (5.19)

The 3D path generator algorithm produces an array of n points pn which starts at p0 = pi
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Figure 5-7: 3D Dubins path RSL and LSR

and ends in pn = pf : The � path is parameterized by its arc length s; starting in s = 0 and

�nalizing in s = dT : The coordinates of the n� th point pn of the �1 and �3 arc segments are

obtained with the following equation

p (s) = c+

26664
� cos (�s+  )

� sin (�s+  )

s� tan (
)

37775 (5.20)

where c = ci if it is the path �1 and c = ci if it is the path �3: � is the direction of rotation,

� = 1 for a turn to the left and � = �1 for a turn to the right. The angle  =  i when it is

the path �1 and  =  f when the path is �3:

Now the path �2, the straight line path, is generated using the following equation

p (s) = p+

26664
s cos ( )

s sin ( )

s tan (
)

37775 (5.21)

where p is the last point of the �1 segment. This path will continue where the straight line

segment to conect the two cylinders anf complete the � path.

The output of the 3D path generation algorithm can be seen in Figure 5-8
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Figure 5-8: Output of the 3D path generation.
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5.3 Control Strategy

This section provides a rigorous kinematic formulation for the problem of steering the aircraft

along a desired path.

5.3.1 Aircraft Kinematic Model

The Dubins aircraft was �rst introduced in [8]. We have built upon this model to increase

accuracy in modeling the aircraft kinematics and to be more consistent with the commonly

used aircraft models. Our model works under the assumption that the autopilot is well tuned,

this means that the airspeed, �ight-path angle and bank angles states converge with desired

response to their commanded values. The following kinematic model describes the motion of

the UAV:

_x = V cos cos � (5.22)

_y = V sin cos �

_z = �V sin �

_ = !

where x; y and z denote the inertial position of the aircraft in a 3D inertial frame.  is

the heading angle, ! is the heading angular rate, � is the pitch angle, V is the airspeed of the

aircraft which remains constant.

If we consider coordinated turn conditions, then we have the sideslip angle � equal to zero,

the model for the heading angle, as in [21], is given by,

_ =
g

V
tan� (5.23)

where g is the magnitude of gravity at sea level, � is the roll angle, and _ is the heading

angular rate.

The state and control vectors of the above model are described respectively as:
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Figure 5-9: 3D path following problem.

x =
h
x y z  

i
u =

h
�c �c

i
5.3.2 Problem Statement

The key idea behind the path-following controller relies on reducing two expressions to zero:

The distance d between the aircrafts center of mass p and the point q on the path and the angle

between the airspeed vector and the vector tangent to the trajectory.

As depicted in Figure. 5-9, using a moving particle s along the trajectory at a velocity _s.

Considering a frame attached to the virtual particle, the so called Serret Frame denoted by S.

We use _s as a control input.

The angle and distance will become in the coordinates of the error space.

5.3.3 Error dynamics

Consider the 3D curve represented by smooth functions parameterized by t: Thus (xS (t) ; yS (t) ; zS (t))

represent the virtual particle coordinates The inertial position of the aircraft is de�ned by
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p =
h
x y z

iT
in the inertial reference frame I: To follow the given trajectory we de�ne the

inertial vector error dI = p� q (s) expressed in I; which will be minimized in order to track the

desired trajectory. Note that the tangent vector coincides with the x-axis of the Serret frame

S, now consider the rotation of the vector tangent to the path in the z and y axis w.r.t the

inertial frame I by the angles  S and �S ; respectively. The angles  S and �S can be obtained,

as in [61], from the parameterized curve as

 S = tan�1
y0S (t)

x0S (t)
; (5.24)

�S =
z0S (t)q

x0S (t)
2 + y0S (t)

2
(5.25)

where x0S =
dxS(t)
dt ; y0S =

dxyS(t)
dt ; z0S =

dzS(t)
dt

Consider the rotation matrix RS from I to S and the rotation matrix RB from I to B:

RS =

26664
cos �S cos S cos �S sin S � sin �S
� sin S cos S 0

sin �S cos S sin �S sin S cos �S

37775 (5.26)

RB =

26664
cos � cos cos � sin � sin �

� sin cos 0

cos sin � sin � sin cos �

37775 (5.27)

The error dI expressed in the Serret frame is given by

dS =

26664
ex

ey

ez

37775 = RSd
I = RS (p� q) (5.28)

Furthermore we de�ne the yaw angle error as

e =  �  S (5.29)

To obtain the error state dynamic equations, we must compute the time derivative of (5.28)
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and (5.29). By di¤erentiating (5.28) we obtain:

_dS = _RS (p� q) +RS ( _p� _q) (5.30)

= !S �RS (p� q) +RS ( _p� _q)

where

!S =

26664
0

_�S

0

37775+
26664
cos �S 0 � sin �S
0 1 0

sin �S 0 cos �S

37775
26664
0

0

_ S

37775

=

26664
� _ S sin �S

_�S

_ S cos �S

37775 (5.31)

From (5.22), the time derivative of p and q can be expressed as

_p = RTB

26664
V

0

0

37775 (5.32)

_q = RTS

26664
_s

0

0

37775 (5.33)

The time derivative of (5.29) and using (5.23) results in

_e = _ � _ S

=
g

V
tan�� _ S
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with

_ S = � _s

_�S = � _s

where d s
dt = � is the path curvature. The path curvature is expressed as a function of the

trajectory coordinates (x (t) ; y (t)) and its �rst and second derivatives w.r.t. the parameter t;

i.e x0S =
dxS
dt ; y

0
S =

dyS
dt . Thus the path curvature

d S
dt = � is given by

� =
jy00Sx0S � y0Sx00S j�
x02S + y

02
S

�3=2 (5.34)

Finally using (5.30) and substituting (5.31), (5.32) and (5.33) we obtain the error kinematics

model suitable for control purposes

_ex = � _sez � � _s cos �Sey + V sin � sin �S + V cos � cos �S cos e � _s

_ey = � _sex cos �S + � _sez sin �S + V cos � sin e (5.35)

_ez = �� _sey sin �S � � _sex + V cos � sin �S cos e � V sin � cos �S

_e =
g

V
tan�� � _s

Using the previous error kinematics model we design a feedback control law for �c, �c and

_s such that all closed-loop signals are bounded and all the errors converge to zero.

5.3.4 Controller Design

In this section we present a nonlinear guidance controller to follow a desired path. We design

the controller for the guidance using the error kinematic model (5.35). As we are considering

that the aircraft is equipped with an autopilot unit and it is well tuned we use directly the

desired pitch angle �c and the desired roll angle �c. We also introduce a virtual controller in

the form of the velocity _s of the virtual particle which moves along the desired trajectory to

stabilize all the error signals ex; ey; ez; e to zero. The control objective can be archived using
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a Lyapunov function candidate given by

V =
1

2
e2x +

1

2
e2y +

1

2
e2z +

1

2
(e � � (ey))2 (5.36)

where � (ey) is a sigmoid function, as in our previous controller in Section 4.4, that introduce

a desired approach angle as

� (ey) = � a
e2k�ey � 1
e2k�ey + 1

(5.37)

where k� > 0 and  a 2
�
0; �2

�
. The sigmoid function (5.37) is bounded and di¤erentiable

w.r.t. the error ey: It provides the desired relative course transition of the aircraft to the path

as a function of ey:; and satis�es the following condition

ey sin (� (ey)) � 0

which steer the aircraft in the correct direction, i.e., turn left when the aircraft is on the

right side of the path, and turn right in the opposite situation. We note that the approach rate

can be controlled by the adjustment of the parameter k�.

The time derivative of (5.36) along the trajectory of (5.35)

_V = ex (V sin � sin �S + V cos � cos �S cos e � _s) + (5.38)

eyV cos � sin e +

ez (V cos � sin �S cos e � V cos �S sin �) +

(e � � (ey))
� g
V
tan�� � _s� _� (ey) (� _sex cos �S + � _sez sin �S + V cos � sin e )

�
Rearranging the terms of (5.38) we arrived to the expression

_V = ex (�� � _s)� ezV sin � cos �S + V ey sin (� (ey)) + (e � � (ey))
� g
V
tan�+ �

�
(5.39)
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where

� = V sin � sin �S + V cos � cos �S cos e (5.40)

� = �� _s� _� (ey) (� _sex cos �S + � _sez sin �S + V cos � sin e ) (5.41)

+V
ey cos � sin e + ey sin � (ey) + ez cos � sin �S cos e 

e � � (ey)

and substituting the following kinematic control law

_s = (�+ kxex) (5.42)

� = sin�1
�

kzez
V cos �S

�
(5.43)

� = tan�1
�
V

g
(�� � ky (e � � (ey)))

�
(5.44)

where kx; ky; kz are positive real numbers, in (5.39), yields

_V = �kxe2x � kze2z � ky (e � � (ey))
2 + V ey sin (� (ey)) � 0 (5.45)

To conclude convergence of the states ex; ey; ez; e to zero we use the LaSalle�s invariance

principle.

Theorem 2 LaSalle�s Theorem

Let O be a positively invariant set of system (5.35). Let 
 � O a set in which every solution

which starts in 
 remains in 
. Furthermore, let M be the largest invariant set contained in


. Then, as t!1, every bounded solution starting in O converges toM.

Proof: Convergence of the states (ex; ex; ez; e ) to zero.

The proof relies on Theorem 2. Consider the system (5.35) and the radially unbounded

Lyapunov function candidate (5.36). Let us de�ne the compact setO asO = fV (ex; ey; ez; e ) �

ag, where a 2 <+. De�ne the set 
 as


 = f[ex ey ez e ]
T 2 O : _V (ex; ey; ez; e ) = 0g (5.46)

Equivalently, the expression _V (ex; ey; ez; e ) = 0 means that ex = ey = ez = 0 and e = �(ey).

94



Since � is a function of the error ed, it is easy to verify that any point starting from 
 is an

invariant set. Hence, by LaSalle Theorem, every trajectory starting in O converges to 0 as

t!1, and the following limits are true

� limt!1 ex = 0

� limt!1 ey = 0

� limt!1 ez = 0

� limt!1 e = 0

5.4 Simulation

Simulations were done on the complete simulation platform, the MAV3DSim, fully described

in chapter 3.1. Figure 5-10 shows the MAV3DSim graphic user interface.

Figure 5-10: MAV3DSim simulation platform.

In order to show the controller performance, we have chosen the following scenario: The 3D

reference path has been chosen as
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qx = R cos (s=R)

qy = R sin (s=R) (5.47)

qh = bs=R+ 200

where R = 200m is the rotation radius, s is the archlenght of the curve, the reference path

has an initial altitude of 200m. Using (5.47) we can now compute the curvature of the path

using (5.34) as

� =
jy00Sx0S � y0Sx00S j�
x02S + y

02
S

�3=2 = 1

R
(5.48)

The constant velocity of the UAV was set to 10m=s. The MAV3DSim simulator provides a full

set of utilities for online gain tuning, with which we arrive to the following set of parameters

for the guidance controller: kx = 0:1; ky = 0:05; kz = 0:05;  a =
�
4 ; k� = 0:1: The MAV3DSim is

a complete simulation environment and the simulation starts with the vehicle in land, we start

the simulation and manually take-o¤ the aircraft to reach some altitude and then activate the

path-following controller to follow the reference path.

Figure 5-11 shows the evolution of the reference in red line and the actual �ight path with

the blue line. It can be seen that the initial position of the aircraft is di¤erent from the initial

position of the path and the control laws can eliminate this initial o¤set and steer the UAV

along the path with a smooth movement. Figure 5-12 shows the position and attitude errors

which converges to zero in 10s approximately. The output controllers are shown in Figure.5-13,

here we can notice that the virtual target converge to the constant velocity of the aircraft.
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Chapter 6

Autonomous Take-o¤ and Landing

A large number of UAVs do not have the capability of performing autonomous take-o¤ and

landings and usually a human pilot is in charge of these phases of the mission. In the landing

phase there are some other technics used to recover the UAV, besides manual landing, there

is also the use of a parachute[76], which is particularly suited to recover UAVs in unprepared

terrain. A net-catcher is also used to recover the UAV[75], which are specially used where there

is no access to conventional runways such as from the back of ships, within urban areas or in

the �eld. There exists also a study on how to catch the �xed wing UAV with a suspended net

between a group of multirotors [57]. Whenever a runway is available it is prefered to use an

autonomous take-o¤ and landing system, to minimize the human error and save time and e¤ort

in maneuvering the aircraft to a manual landing.

This chapter describes the proposed approach for solving the autonomous take-o¤ and land-

ing problem. Starting with a background review of the traditional take-o¤ and landing pro-

cedure. In order to perform a take-o¤ and landing we need to be able to control the airspeed

of the vehicle. The 3D path generation described in Section 5.2 is used but extended to add

a desired velocity term in the generated path. The same 3D controller is used altogether with

the PID velocity controller used to regulate the velocity of the aircraft.
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6.1 Traditional Takeo¤ and Landing

In order to solve the problem of autonomous take-o¤ and landing, it becomes a necesity to

understand the standar procedure of manual take-o¤ and landing on a large scale aircraft, usu-

ally the procedure used by piloted aircrafs taking-o¤ and landing in civilian airports. Typically

the entire ��ight�process begins with the aircraft accelerating to the runway, followed by the

take-o¤ procedure, cruising to its objective or waypoints, and �nished by the landing at the

destination site [67], sa depicted in Figure 6-1.

Figure 6-1: Traditional takeo¤ and landing

6.1.1 Traditional Aircraft Take-o¤ and Climb Phases

The take-o¤ phase of �ight consists in the aircraft become airborne. This is done by setting the

motors to full throttle to achieve take-o¤ speed, which varies depending of air density, aircraft

weight and airframe. The take-o¤ speed is relative to the motion of the air, a head wind will

reduce the ground speed needed to take-o¤, as there is more air �owing through the wings

generating more lift for the aircraft.

After the aircraft becomes airborne, it has to climb to a certain altitude before it can cruise

at this altitude in a safe and economic way. A climb is carried out by increasing the lift of

wings supporting the aircraft by increasing the angle of attack of the wings, by increasing the

thrust of the engines to increase speed, by increasing the surface area or shape of the wing to
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produce greater lift, or by some combination of these techniques.

6.1.2 Traditional Aircraft Descent and Landing

The descent phase is when the aircraft decreases altitude. Descents are an essential component

of an approach to landing. Other partial descents might be to avoid tra¢ c, poor �ight conditions

, to enter warmer air, or to take advantage of wind direction of a di¤erent altitude.

Landing is the las part of a �ight. The aircraft lands at an airport on a �rm runway

reducing its speed and descent rate. This speed reduction is accomplished by reducing thrust

and generating more drag using �aps, landing gear or air brakes. Nowadays most commercial

airports are equipped with an Instrument Landing System (ILS). The airport is equipped with

several radio beacons placed on the runway for vertical and lateral guidance, Figure 6-2 shows

the ILS indicator for vertical and lateral guidance.

Although the ILS are a good solution for the landing process, they are only found in airports

and they are not available for operations wth UAVs. This chapter will focus on other alternatives

for the autonomous take-o¤ and landing process.

Figure 6-2: ILS guidance for landing.
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6.2 4D Path Generation

The 4D path generation has been studied in [4] and [6], in both cases they generate a 4 state

trajectory, a 3D point and the arrival time for that point, which gives the fourth dimension. In

out problem we are no concern about the arrival time but rather the velocity of the aircraft in

that speci�c point.

Following thee same approach as in the previous path generators, let us consider the initial

and �nal con�guration to be described as a �ve dimensional state vector as follows

ci (pi;  i; vi) (6.1)

cf
�
pf ;  f ; vf

�
(6.2)

where pi = [xi; yi; zi] is the initial position of the path and pf (xf ; yf ; zf ) is the �nal position

of the path, both are expressed in an inertial frame, the initial heading angle  i and the �nal

heading is  f and vi and vf are the initial and �nal desired velocity. As in the 3D version we

still have 8 possible selection of the 3D Dubins paths and thee selection is made according to

table 5.1.

The angles and distances needed to compute the 4D path generation are computed as

in sections 5.2.1 and 5.2. The computed variables are summarized in Table 6.1, where xRR =

xRf�xRi; yRR = yRf�yRi; zRR = zRf�zRi; xLL = xLf�xLi; yLL = yLf�yLi; zLL = zLf�zLi;

xRL = xLf � xRi; yRL = yLf � yRi; zRL = zLf � zRi; xLR = xRf � xLi; yLR = yRf � yLi;

zLR = zRf � zLi:

The path � is parameterized by its arc length s; starting in s = 0 and �nalizing in s = dT .

The coordinates of the n � th point pn of the �1 and �3 arc segments are obtained with the

following equation

24p (s)
v (s)

35 =
24c
0

35+
26666664

� cos (�s+  )

� sin (�s+  )

s� tan (
)

vi +
dT
s
(vf � vi)

37777775 (6.3)

where c = ci if it is the path �1 and c = cf if it is the path �3: � is the direction of rotation,

� = 1 for a turn to the left and � = �1 for a turn to the right. The angle  =  i when it is
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Table 6.1: 3D Dubins path generation variables.
RSRU=D LSLU=D RSLU=SD LSRU=D

� �
2 � tan

�1
�
yRR
xRR

�
�
2 � tan

�1
�
yLL
xLL

�
� + �� �

2 � + �� �
2

d
q
x2RR + y

2
RR + z

2
RR

q
x2LL + y

2
LL + z

2
LL

q
l2 + 4�+ z2LR

q
l2 + 4�+ z2RL


 tan�1
�
h

dT

�
tan�1

�
h

dT

�
tan�1

�
h

dT

�
tan�1

�
h

dT

�
d1 j i � �j � 2� j i � �j � 2� j i � �j � 2� j i � �j � 2�
d2

����  f �� � 2� ����  f �� � 2� ����  f �� � 2� ����  f �� � 2�
dT d+ d1 + d2 d+ d1 + d2 d+ d1 + d2 d+ d1 + d2
h jzi � zf j jzi � zf j jzi � zf j jzi � zf j

� � � �
2 � tan

�1
�
yLR
xLR

�
�
2 � tan

�1
�
yRL
xRL

�
� � � tan�1

�
2�

d

�
tan�1

�
2�

d

�
l � �

q
x2LR + y

2
LR + z

2
LR

q
x2RL + y

2
RL + z

2
RL

the path �1 and  =  f when the path is �3: vi and vf are the initial and �nal velocity.

Now the path �2, the straight line path, is generated using the following equation

24p (s)
v (s)

35 =
24p (s� 1)

0

35+
26666664

s cos ( )

s sin ( )

s tan (
)

vi +
dT
s
(vf � vi)

37777775 (6.4)

where p (s� 1) is the last point of the �1 segment. This path will continue where the straight

line segment to connect the two cylinders and complete the � path.

6.3 Take-o¤ and Landing Trajectory

There are several phases in the design of the take-o¤ and landing trajectory. The main idea is to

design the trajectory for the full mission from take-o¤ passing through the following waypoints

and �nishing in the landing. Using the 4D path generator described in the previous section,

a trajectory trajectory suitable for take-o¤ and landing purposes can be designed, and using

the nonlinear 3D path following to complete the entire mission of the aircraft. In Figure 6-3

a general description of the several phases of the complete mission is depicted. There are �ve
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Figure 6-3: Autonomous take-o¤ and landing phases.

main phases:

Take-o¤ The take-o¤ sequence begins with the aircraft landed and with zero velocity, followed

by the initial climb of the aircraft and maintaining a low altitude �ight.

Climb In this phase the aircraft is set a desired climb rate until it arrives to a desired altitude

Waypoint following The waypoint following is the mission pre-programmed on the aircraft

and it will pass through all the waypoints before the descent and landing phase.

Descent In the descent phase the aircraft will reduce its altitude and it will line up with the

landing runway.

Landing In the landing phase the aircraft is already line up with the wunway and it will reduce

its ground velocity in order to have a smooth touchdown to �nish the mission.

6.3.1 Take-o¤

A conventional runway can be divided into three main phases. The ground acceleration phase,

the lift o¤ phase and the low altitude �ight phase. During the ground acceleration phase the

aircraft is aligned with the centerline of the runway and accelerated until its velocity generates

enough lift to guarantee a safe lift-o¤. Once the prede�ned lift-o¤ velocity is reached the aircraft

enters the initial climb phase, in which the angle of attack is increased in order to change the
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climb rate and gain some altitude. The aircraft remains in the initial climb phase until a safe

altitude is reached. At this point the take-o¤ is considered complete and the normal �ight of

the mission can continue.

The design of the take-o¤ trajectory consist in four 4D waypoints to use them as an input

in the 4D path generator. The �rst waypoint is the initial position of the aircraft, which is

aligned with the runway. The initial velocity is sup to 5 m/s in order to get the aircraft to

move through the runway. The second waypoint is placed forward, giving su¢ cient space to

the aircraft to gain the lift-o¤ speed. The third waypoint is set up above the centerline of the

runway with the desired altitude and maintaining the same airspeed as the previous waypoint.

The �nal waypoint allow the aircraft to stabilize in a low altitude �ight before continue with

the waypoint following of the mission.

Figure 6-4: Thtake-o¤ phase.

6.3.2 Landing

Conventional landing can be divided into three main phases, which are the initial approach,

�nal approach and touch down. During the initial approach the aircraft is aligned with the

runway and an initial descent is conducted to decrease gradually the altitude. The next phase

is the �nal approach phase in which the aircraft performs a �nal descent and also the airspeed

is reduced to enter in a �are descent. Finally the aircraft enter the touch down phase in which

the aircraft touches the ground and ceases all motion in the main motor.

In order to design the landing trajectory suited to use as input in the 4D path generation

a total of seven 4D waypoints are used. The �rst waypoint is for the aircraft to approach from
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its current position to the runway. The second waypoint along with the �rst waypoint align the

aircraft with the runway, a decrease in the airspeed is also conducted in this phase. The third

waypoint performs a decrease in altitude and �nish the initial approach phase with the fourth

waypoint which generates a stabilization in altitude for the aircraft. The �nal approach is with

the waypoint 5, which de�nes a slow descent rate, which is called �are, and gently lands the

aircraft by maintaining the airspeed of the aircraft just above the stall speed. Once the aircraft

is landed in the touch down phase it will stop the engine to �nish all motion of the aircraft.

Figure 6-5: The landing trajectory.

6.4 Simulation Results

Simulations were done on the complete simulation platform, the MAV3DSim, fully described

in chapter 3.1. Figure 5-10 shows the MAV3DSim graphic user interface. The companion

computer is pre-loaded with the desired 3D waypoints and the desired velocity at the velocity.

The simulation starts with the aircraft in the ground, aiming to the take-o¤runway, from this

initial point and hading the take-o¤ sequence is designed by the 4D path generation described

in 6.2. All the waypoints are generated with the assumption that the aircraft is carefully placed

and aiming the runway. Once the take-o¤ sequence is completed it will continue with the path

following, the same 4D path generation is used to generate the 4D path to pass through all

the desired waypoints at the desired speed. The last waypoint is took as a landing waypoint.

The landing sequence designed in previous section is generated with the last waypoint to be

the touch-down waypoint. Figure 6-6 shows th trajectory generated by the 4D path generator
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in red and the aircraft trajectory is in blue. The commanded altitude in red and the current

aircraft�s altitude in blue are shown in Figure 6-7. In Figure 6-8 the commanded airspeed in red

is compared with the aircraft airspeed in blue. Finally the errors in longitude/latitude/altitude

format and airspeed are depicted in Figure 6-9

The overall performance of the 4D path generation and the 3D path following strategy

augmented by the airspeed PID controller is good enough to solve the take-o¤ and landing

problem. A complete video of the simulation can be found in https://youtu.be/oAkRx2iSe6I
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Figure 6-6: The trayectory generated by the 4D path generator and the aircraft.

Figure 6-7: The altitude setpoint vs currente aircraaft altitude.
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Figure 6-8: Commanded airspeed vs aircraft�s airspeed

Figure 6-9: 3D position errors and airspeed error
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Chapter 7

Conclusions and Future Work

In order to achieve that the UAV performs a complete mission, starting from the autonomous

take-o¤ and followed by the pass-through all the prede�ned waypoints and �nishing with the

autonomous landing, several research areas were studied, such as modeling, control, path fol-

lowing strategies, advanced simulation environments and embedded systems. In this chapter

the concluding remarks and future development are discussed.

7.1 Simulation and Experimental Platform

A simulation platform is a powerful and necessary tool for the development and validation of dif-

ferent controllers. Here we presented a Hardware-in-the-Loop (HIL) simulator: The MAV3DSim

that has proven to be a great candidate for the validation of di¤erent controllers on di¤erent

UAV models Along with the MAV3DSim simulator, the experimental platform was presen-

ted for validating the hardware in the loop implementation by performing the same waypoint

following experiment in both platforms using the same Pixhawk autopilot hardware.

In the future we will extend the MAV3DSim simulator for other type of aerial vehicles such

as coaxial helicopters or hybrid con�gurations (airplane-quadrotor) and the MAV3DSim will

serve as a test bed for validation of new controllers. It is important to mention that this software

is not intended as an end user application but it could be used for professors as a test bed for

students to try new controllers, also as the MAV3DSim has been developed using software from

the open-source community, the source code of the simulator will be available in the Github
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account of the project (https://github.com/mav3dsim) once it reaches a stable version.

7.2 Path Generation

The presented study propose a framework for the path generation needed in order to complete

a prede�ned task without human interaction. Dubins paths have been utilized as a tool to

estimate the shortest path from the current aircraft position and orientation to aj given point

provided by the user in the form of waypoints. Starting from the 2D case in which only position

in 2D and orientation is considered, using a similar approach it was extended to the 3D case,

adding the altitude of the aircraft to the path generation. In order to achieve the autonomous

take-o¤ and landing the 4D path generation was needed. This case includes the velocity of

the aircraft at the arrival point, not the arrival time which is commonly used in the 4D path

generation.

The Dubins paths present a discontinuity in the thesis function of the curve. This dis-

continuity create the sense that the aircraft can change its turn rate instantaneously, which

is obviously false. Further improvement involve the use of continuous curvature curves such

as the clothoid path, which has the property that its curvature varies linearly over the path

length. Another approach is to use the Pythagorean hodograph curve which are de�ned by

polynomial curves which have hodographs that satisfy a Pythagorean condition which provides

a continuous curvature.

7.3 Path following

In this thesis a nonlinear path-following kinematic controller for the �xed-wing aircraft based

on a Lyapunov function candidate is presented. The controller performance was tested in the

MAV3DSim simulation environment which has been proven to be an excellent test bed for UAV

controllers development. The controller was designed using a kinematic model of the aircraft,

but it was tested on a full 6DoF simulation environment with good performance. The error

space dynamics presented in this paper can be used with other types of controller to follow

the virtual target. The hardware in the loop simulation is an intermediate step between the

pure simulation and the implementation on the experimental platform, and the next step is
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to implement this controller on a �xed-wing UAV experimental platform. Using the 3D path

following presented in this paper we can design another level of autonomy and create a path

generator to design new trajectories, this can also be used to perform an automatic take-o¤

and landing on the UAV.

Future work will addressed the inclusion of the aircrafts velocity in the kinematic model in

order to obtain a complete 4D path following strategy designing all controllers at once. This

will be tested on the simulation platform as well as with the experimental platform.

7.4 Autonomous Take-o¤ and Landing

The scope of this theses was to present a navigation and �ight control system designed to

perform a fully autonomous operation of a small aircraft, including autonomous take-o¤ and

landing as well as passing through prede�ned waypoints. The proposed solution relies on a

path-following and velocity tracking controller synthesized using a simpli�ed aircraft kinematic

model. The technique presented relies on a new error space that naturally describes the partic-

ular dynamic characteristics of the aircraft over a suitable �ight path. The e¤ectiveness of the

new control law was fully tested in a simulation environment with the full nonlinear aircraft

model, using the MAV3DSim. The quality of the results obtained clearly indicates that the

methodology derived is suitable for the proposed application.

There is still room for improvement as it was mentioned in the previous sections, all of the

components have future work in each of their areas. First of all it is necessary to take the step to

test the strategy in the experimental platform, then develop the di¤erent improvements of the

all the components that make possible the autonomous take-o¤ and landing of the unmanned

aircraft.
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