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RESUME 
 

Le but principal de cette étude était d'évaluer et de mieux comprendre l'impact de la vitesse 

superficielle de gaz et des propriétés de boues activées (BA), sur leur comportement 

rhéologique et le transfert de l'oxygène dans des bioréacteurs. 

Tout d'abord, la rhéologie des BA a été évaluée à l'aide d'un rhéomètre tubulaire, conçu et 

construit dans ce travail. Des mesures rhéologiques ont été effectuées avec des BA provenant de 

cinq stations d'épuration (STEP) et avec des concentrations en MES comprises entre 2.3 et 10.2 g 

L-1. Selon ces résultats, la rhéologie des BA est significativement déterminée par la concentration 

en matière en suspension (MES) mais d'autres caractéristiques liées à leur origine, tel que la 

taille, la cohésion et la densité du floc, peuvent aussi influencer la viscosité apparente des boues. 

Basé sur les rheogrames expérimentaux, le modèle rhéologique issu de cette étude est comparé 

à des modèles rhéologiques existants.  

Deuxièmement, le transfert d'oxygène a été évalué dans une colonne à bulles (Hc=4.4 m, Dc=0.29 

m) installée dans deux STEP: une installation classique et un bioréacteur à membrane. La 

colonne, alternativement équipée d'un diffuseur fines ou grosses bulles (FB, GB), a été alimentée 

en continu avec des BA extraites du réacteur d'aération, ou de la boucle de recirculation ou du 

réacteur membranaire. Pour des MES comprises entre 3.0 et 10.4 g L-1, le coefficient kLa a été 

plus faible dans les BA que dans l'eau propre et encore réduit avec une augmentation des MES. 

Cette diminution est en partie attribuable à la réduction observée de la rétention de gaz (εG), 

associée à une augmentation de la viscosité apparente des boues, celle-ci entrainant une 

réduction de l'aire interfaciale spécifique (a) due à la coalescence de bulles et à la formation de 

bulles plus grosses. Aussi, la concentration des tensioactifs non ioniques, a montré un effet 

négatif sur le coefficient kLa lors des tests d'oxygénation effectués en aération FB et faibles 

concentrations en MES. Cet impact n'a pas été observé dans des conditions d'aération GB, ce qui 

a été expliqué par le taux de renouvellement d’interface plus élevé généré par ces dernières. 

Enfin, le taux de cisaillement moyen exercé par l'essaim de bulles dans la colonne pendant les 

tests d’oxygénation a été théoriquement évalué compte tenu des conditions d’opération. Par la 

suite, des corrélations empiriques ont été construites en utilisant des nombres adimensionnels 

et expriment le coefficient kLa en fonction de la vitesse superficielle de gaz et la viscosité 

apparente, tout en considérant sa dépendance du taux de cisaillement. Enfin, le facteur alpha est 

défini comme une loi de puissance décroissante en fonction de la viscosité apparente, pour des 

systèmes à faible chargé.  

Mots-clés: boues activées, rhéologie, rhéomètres tubulaire, transfert d'oxygène, colonne à bulles, 
hydrodynamique.  



 

  



 

ABSTRACT 
 

The main purpose of this study was to evaluate and better understand the impact of superficial 

gas velocity and activated sludge properties, on activated sludge rheology and oxygen transfer in 

bioreactors.   

First of all, activated sludge rheology was evaluated using a tubular rheometer, designed and 

constructed in this work. Rheological measurements were performed with activated sludge from 

five different wastewater treatment plants and with MLSS concentrations between 2.3 and  

10.2 g L-1. Results showed that although the sludge rheology is significantly defined by the MLSS 

concentration, other sludge characteristics related to the sludge origin, such as such as floc size, 

floc cohesiveness and floc density also influence the sludge apparent viscosity. Existing 

rheological models were evaluated on the set of obtained experimental flow curves.  

Besides, the oxygen transfer is evaluated in a bubble column (Hc=4.4, Dc=0.29 m) installed in 

two different wastewater treatment plants: a conventional activated sludge plant (CAS) and a 

membrane bioreactor (MBR). The column, alternatively equipped with a fine or a coarse bubble 

diffuser (FB, CB), was continuously fed with activated sludge extracted either from the aeration 

tank, the recirculation loop or the membrane reactor. With MLSS concentrations from 3.0 to  

10.4 g L-1, the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient was lower in activated sludge than in clean water and still reduced 

with an increase of the MLSS concentration. This reduction is partially attributed to the 

observed reduction of gas holdup (𝜀𝜀𝐺𝐺), associated with an increase in the sludge apparent 

viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎), which leads to a reduction of the specific interfacial area (𝑎𝑎) due to bubble 

coalescence and the formation of larger bubbles. Besides, the concentration of non-ionic 

surfactants, exhibited a negative effect on the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient for the oxygenation tests 

performed under FB aeration conditions and low MLSS concentration. This impact was not 

observed under CB aeration conditions, which was explained by the higher renewal rates 

generated by coarse bubbles.  

Finally, the mean shear rate exerted by the bubble swarm in the column during the oxygen 

transfer tests was theoretically evaluated considering the operating conditions. Subsequently, 

empirical correlations were constructed using dimensionless numbers and express the oxygen 

transfer coefficient as a function of the superficial gas velocity and the apparent viscosity, 

considering its shear rate dependence. Finally, alpha factor is defined as a power law decreasing 

function of the apparent viscosity, for low loaded activated sludge systems.  

Keywords: Activated sludge, non-Newtonien fluid, rheology, tubular rheometer, oxygen transfer, 

hydrodynamics, bubble column. 
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NOTATION 
 

Latin Letters 

𝑎𝑎 Specific interfacial area  (m2 m-3) 

𝐴𝐴 Gas-liquid interfacial area  (m2) 

𝐶𝐶 Dissolved oxygen concentration in activated sludge  (kg L-1) 

𝐶𝐶𝐶𝐶′ Dissolved oxygen saturation concentration in activated sludge  (kg L-1) 

𝐶𝐶𝐷𝐷 Bubble drag coefficient  (-) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 Soluble /total Chemical Oxygen Demand  (mg L-1) , (g L-1) 

𝑑𝑑𝑏𝑏𝑠𝑠 Bubble Sauter diameter  (m) 

𝑑𝑑𝑑𝑑 Bubble diameter  (m) 

𝐶𝐶 Capillary tube diameter  (m) 

𝐶𝐶3/2 Mean surface floc diameter (𝜇𝜇m) 

𝐶𝐶4/3 Mean volume floc diameter (𝜇𝜇m) 

𝐶𝐶50 Median floc diameter (𝜇𝜇m) 

𝐶𝐶𝐶𝐶 Column diameter (m) 

𝐶𝐶𝑂𝑂2 Oxygen diffusion coefficient  (m2 s-1) 

𝐹𝐹𝐹𝐹𝐹𝐹 Floc cohesion index (-) 

𝐹𝐹𝐹𝐹 Froude number (-) 

𝑔𝑔 Standard gravity constant (m s-2) 

𝐺𝐺 Bubble slip velocity (m s-1) 

𝐺𝐺𝑎𝑎 Galileo number (-) 

HFV Hydrostatic floc volume (mL L-1) 

𝐻𝐻𝐹𝐹 H, column height (m) 

𝐻𝐻𝐻𝐻 Henry’s law constant (-) 

𝐽𝐽 Mass flux per surface unit (kg s-1 m-2) 

𝑘𝑘𝐺𝐺 , 𝑘𝑘𝐿𝐿 Gas-side (G) / liquid-side (L) mass transfer coefficient (m h-1) 

𝑘𝑘𝐿𝐿𝑎𝑎 Volumetric oxygen transfer coefficient  (h-1) 

𝑘𝑘𝐿𝐿𝑎𝑎′ Volumetric oxygen transfer coefficient in activated sludge (h-1) 

𝑘𝑘𝐿𝐿𝑎𝑎20 Volumetric oxygen transfer coefficient at 20°C (h-1) 

𝐾𝐾𝐺𝐺 , 𝐾𝐾𝐿𝐿 Gas-side (G) / liquid-side (L) global mass transfer coefficient (m h-1) 

𝐾𝐾 Consistency index (Pa sn) 

MLSS Mixed liquor suspended solids (g L-1) 

MLVSS Mixed liquor volatile suspended solids (g L-1) 
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𝑛𝑛 Flow index (-) 

𝑁𝑁𝑇𝑇  Transfer number (-) 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 Oxygen transfer efficiency (-) 

∆𝑃𝑃 Pressure loss in the capillary tube (Pa) 

∆𝑃𝑃/𝐿𝐿 Longitudinal pressure loss in the capillary tube (Pa m-1) 

Q Flow rate in the capillary tube (m3 h-1) 

𝑄𝑄𝑖𝑖  Inlet airflow rate (m3 h-1) 

𝑄𝑄𝑒𝑒 Outlet airflow rate (m3 h-1) 

R Capillary tube ratio  (m) 

Re Reynolds number (-) 

𝐶𝐶 Surface renewal rate (s-1) 

S Reactor`s cross section  (m2) 

𝑆𝑆𝐹𝐹 Schmidt number (-) 

𝑆𝑆𝑆𝑆𝑀𝑀 Stanton mass transfer number (-) 

𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂 Standard oxygen transfer efficiency (-) 

𝑆𝑆 Time (s) 

𝑆𝑆𝐶𝐶  Gas-liquid contact time at the interface  (s) 

SVI Sludge volume index (mL g-1) 

𝑂𝑂 Temperature (°C) 

𝑈𝑈𝑏𝑏 Bubble rise velocity  (m s-1) 

𝑈𝑈𝐺𝐺 , 𝑈𝑈𝐿𝐿  Superficial gas (G) /liquid (L) velocity  (m s-1) 

V Aerated volume reactor (m3) 

𝑦𝑦𝐶𝐶𝑂𝑂2,𝑒𝑒 Carbon dioxide molar fraction at the outlet air flow (-) 

𝑦𝑦𝐶𝐶𝑂𝑂2,𝑖𝑖 Carbon dioxide molar fraction at the inlet air flow (-) 

𝑦𝑦𝑒𝑒 Oxygen molar fraction at the outlet air flow (-) 

𝑦𝑦𝑖𝑖  Oxygen molar fraction at the inlet air flow (-) 

𝑦𝑦𝑤𝑤,𝑖𝑖 Water vapor molar fraction at the inlet air flow (-) 

𝑦𝑦𝑤𝑤,𝑒𝑒 Water vapor molar fraction at the outlet air flow (-) 
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Greek letters 

 

𝛼𝛼 Alpha factor (-) 

𝛽𝛽 Activated Sludge correction coefficient for oxygen saturation 
concentration 

(-) 

𝜀𝜀𝐺𝐺 Overall gas hold-up  (%) 

�̇�𝛾 Shear rate  (s-1) 

𝜇𝜇 Dynamic viscosity (Pa.s) 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 Apparent viscosity  (Pa.s) 

𝜇𝜇∞ Limit viscosity (Pa.s) 

𝜃𝜃 𝑘𝑘𝐿𝐿𝑎𝑎 temperature correction factor  (-) 

𝜌𝜌𝐺𝐺 , 𝜌𝜌𝐿𝐿  Gas density, Liquid density (kg m-3) 

𝜌𝜌𝑀𝑀𝐿𝐿 Density of the mixed liquor  (kg m-3) 

𝜎𝜎 Static surface tension (mN m-1) 

𝜏𝜏 Shear stress  (Pa) 

𝜏𝜏𝑦𝑦 Yield shear stress  (Pa) 

χ Bubble eccentricity (-) 



 

 



 

 

INTRODUCTION 
 

Context and objectives 

Sustainable management of water resources is a priority concern for the international 

community. Environmental regulations issued by the different nations seek to minimize the 

impact of domestic and industrial disposals on aquatic environments. Due to its efficiency, 

relatively simple operation and low cost, activated sludge (AS) is the most widely used process 

for wastewater treatment (Hreiz et al., 2015). In France, close to 80% of the pollution load in 

wastewater is treated using this technology. However, the energy expenditure related to the air 

supply and dispersion, required to perform the biological process, can represent up to 70% of 

the total electrical consumption in the treatment facilities (Descoins et al., 2012). A fine 

understanding on how the different dimensional and operational parameters impact the 

aeration efficiency of the system is part of the process optimization.  

Studies performed in clean water have shown that the aeration efficiency depends on design 

parameters such as the reactors geometry and the characteristics of the aeration system (type, 

layout and depth) as well as on the operating conditions such as superficial gas velocity or liquid 

circulation velocity (Gillot et al. 2005). In order to precise the impact of these variables on 

hydrodynamics and aeration efficiency in aeration tanks, computational fluid mechanics (CFD) 

tools have been used to develop modelling protocols to simulate two-phases flows and oxygen 

transfer in clean water (Cockx et al., 2001, Vermande, 2005, Fayolle et al., 2007).  

Under process conditions, the aeration efficiency is always lower compared to its value in clean 

water (Henkel, 2010). In order to optimise the aeration systems and to adapt the developed CFD 

models to process conditions, the influence of AS characteristics (rheology, solid content, 

particle size, physico-chemical properties, etc.) on hydrodynamics and oxygen transfer needs to 

be further evaluated.  

Concerning the soluble phase, measurements carried out in clean water and in clean water with 

different additives have demonstrated that soluble substances such as surfactants (even at small 

concentrations i.e. 1 mg L-1), salts and glucose interfere with oxygen transfer through different 

mechanisms, impacting bubble coalescence, surface tension and oxygen diffusivity (Wagner and 

Pöpel 1996; Gillot et al. 2000; Rosso et al. 2006; Germain et al. (2007); Hebrard et al. 2009; 

Jamnongwong et al. 2010). For Rosso et al. (2005), Gillot and Héduit (2008) and Henkel (2010), 

the negative impact of the soluble substances on oxygen transfer is reduced at higher sludge 

retention time (SRT > 15 days) due to a more advanced removal or sorption of soluble 

substances such as surfactants.  
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Several investigations performed on AS systems have highlighted that increasing the MLSS 

(mixed liquor suspended solids) concentration (in the range of 2 to 30 g L-1) reduces the 

volumetric mass transfer coefficient (Cornel et al., 2003; Krampe and Krauth 2003; Jin et al., 

2006; Germain et al., 2007; Henkel et al. 2009). The presence of solids (biological flocs and 

particulate material) firstly represents an obstacle for the oxygen transfer at the gas-liquid 

interface (steric effect, Mena et al. 2005).  In addition, the MLSS concentration has been 

identified to play a determining role in the rheological behaviour of activated sludge 

(Rosenberger et al. 2002; Tixier et al. 2003; Mori et al. 2006; Yang et al. 2009), which in turns is 

a key property governing the bioreactor hydrodynamics and consequently impacting the 

volumetric oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎). Viscosity can affect the bubble’s size at detachment 

(Kulkarni and Joshi 2005) or their rising velocity and the bubble coalescence phenomena (Mena 

et al. 2005). As activated sludge is a non-Newtonian fluid (Seyssiecq et al. 2003; Ratkovich et al. 

2013), its apparent viscosity depends on the shear rate, which can be exerted by the stirring 

system and by the air injection. No study has until now evaluated, on the same type of activated 

sludge, the relationship between the AS physico-chemical properties, its dynamic rheological 

behaviour, the airflow rate and oxygen transfer. In this context, the main purpose of the PhD was 

to evaluate the influence of two key parameters of aerated bioreactors (sludge properties and 

superficial gas velocity) on AS rheological behaviour, hydrodynamics (mean shear rate) and on 

the volumetric oxygen transfer coefficient. Three research tracks were followed to reach this 

objective: 

1. Studying and modelling the rheological behaviour of AS. Given the data dispersion 

between the different proposed rheological models in literature, rheological 

measurements were performed to evaluate the AS rheology. AS from different treatment 

plants have been considered and several AS properties (MLSS content, floc size, floc 

cohesiveness and soluble COD, cations, surface tension, sludge volume index) were 

determined. To perform the rheological measurements, a tubular rheometer adapted to 

the sludge characteristics was designed and constructed and a dedicated experimental 

protocol was developed. 

 

2. Studying the impact of operating conditions (airflow rate and bubble diffuser type) and 

activated sludge properties on oxygen transfer. A bubble column with a liquid depth 

equivalent to full-scale aeration tanks and fed continuously with AS, was installed on two 

wastewater treatment plants (WWTPs): a conventional AS plant and a membrane 

bioreactor (MBR). MLSS concentrations were varied depending on the sampling location 

of the sludge (aeration tank, recirculation loop, membrane reactor). This column was 
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alternatively equipped with a fine bubble and a coarse bubble diffuser. Oxygen transfer 

coefficients and overall gas hold-ups measurements were performed at different 

aeration rates. In parallel, the sludge physicochemical properties – including rheological 

behaviour - were determined in order to evaluate their impact on oxygen transfer. 

 

3. Confronting AS rheology and oxygen transfer results. A dynamic representation of the 

apparent viscosity in the aerated reactor has been introduced by estimating the shear 

rate prevailing in the bubble column considering the hydrodynamic conditions 

(superficial gas and liquid velocities, overall gas-hold-up) and AS rheology (function of 

the AS properties) during the oxygen transfer tests.  

 

Outline of the document 

The PhD thesis consists of 6 chapters that are briefly described below.  

Chapter 1 proposes a literature review related to the two main subjects of the PhD thesis: 

oxygen transfer and rheological behaviour of activated sludge. Mechanisms involved in both 

processes are first presented, and activated sludge properties that may influence them are then 

analysed. 

Experimental material and methods used in this work are presented in Chapter 2. In particular, 

the conception and design of the employed rheometer is described, as well as the bubble column 

(Dc=0.29 m, Hc=4.4 m) that has been used to characterise oxygen transfer on site. The 

measurement methods, including the principles of the rheological measurements with a tubular 

rheometer and oxygen transfer characterisation are also described. 

The use of the tubular rheometer has required to develop and adapt a methodology to 

characterize the rheological behaviour of activated sludge. This methodology is described in 

Chapter 3. The uncertainty of the measurement is first assessed, and the implementation of the 

apparatus is described, especially the conditions allowing to reach a given accuracy.  

In Chapter 4 are presented the results of the experimental rheological study performed to 

investigate the rheology of activated sludge samples issued from five different wastewater 

treatment plants. The AS rheological behaviour is first evaluated by analysing the shape of 

experimental rheograms. Subsequently, the relationship between the mentioned 

physicochemical properties of AS and its rheological behaviour is studied. Finally, a rheological 

model is issued based on the experimental rheograms and the impacting parameters. 
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Chapter 5 is dedicated to the analysis of oxygen transfer results in clean water and activated 

sludge obtained in the bubble column mentioned above and the influence of AS physicochemical 

properties, superficial gas velocity and bubble diffuser type on those results. 

Results of the rheological measurements are confronted to oxygen transfer characteristics in 

Chapter 6. The apparent viscosity, integrating the shear-thinning behaviour of activated sludge 

rheology, is especially investigated and shown to be the key parameter to interpret the impact of 

operating conditions (as MLSS concentration and superficial gas velocity) on oxygen transfer 

efficiency in the bubble column. 
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This literature review begins with an introduction of the activated sludge process. The two main 

subjects of this work are then addressed: oxygen transfer and rheology. First the oxygen transfer 

principles and characteristics parameters are identified. After a quick review of the design and 

operational parameters that affect the oxygen transfer in clean water, a literature analysis on the 

activated sludge properties and constituents that impact the oxygen transfer is presented.  In a 

second part, after introducing the rheology principles, the rheological models used to represent 

the activated sludge non-Newtonian behaviour are then presented. The activated sludge 

properties that may influence the rheological behaviour are then examined. 

I.1 Activated sludge (AS) process 

The activated sludge process, developed 100 years ago, is a biological wastewater treatment 

allowing the removal of the suspended and soluble major pollutants of wastewater (organic 

matter, nitrogen and phosphorus). A simplified conventional activated sludge wastewater 

treatment (CAS) is depicted on Figure I.1. 

Prior to the biological treatment, the raw wastewater follows a series of pretreatments in order 

to eliminate coarse solids, sand and grease by means of screening, settling, and flotation 

procedures respectively.   

The pretreated wastewater is then sent to the bioreactor where it will be mixed with a culture of 

suspended and flocculated microorganisms capable of assimilating the soluble carbonaceous, 

nitrogenous and phosphorus pollution. The resulting mixed liquor is called activated sludge. 

Because the biodegradation requires dissolved oxygen, the bioreactor includes an aeration 

system. As the bioassimilation proceeds, the biomass population grows and the interstitial water 

is cleared out of its major pollutants. Finally, to separate the interstitial water from the biological 

aggregates, the activated sludge is sent to a clarifier. Then the suspended solids settle and are 

partially recycled to the bioreactor in order to maintain a constant biomass concentration while 

the treated water exits the clarifier by overflow. The excess sludge is sent to sludge treatment. 

The residence time of the biomass in the system, also called the mean cell residence time or the 

sludge age, ranges from 10 to 30 days in systems designed to fully treat nitrogen components.  

With adequate operating conditions, the conventional activated sludge process (CAS) has the 

capacity of removing more than 90% of suspended solids, 75% of the organic matter, 70% of the 

nitrogenous pollution and 80% of the phosphorous pollution contained in the raw wastewater 

using metallic salts addition (Elskens, 2010). 
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Figure I.1 Schematic of a conventional activated sludge process 

 
Instead of separating the biological aggregates from the treated water using a settling step in the 

clarifier, an alternative process that incorporates a filtration step was introduced in the late 

1960’s. This process is known as membrane bioreactor (MBR). The filtration step is performed 

by means of submerged membrane modules that are incorporated in the aeration tank or in 

separate basins and designed with large filtration surfaces in order to reach high permeate 

flows. The use of fine pore membranes (0.05 and 0.4 𝜇𝜇m) guarantees an effluent with better 

quality than the conventional process through the complete removal of suspended solids. 

Additionally, this configuration allows to increase the biomass concentration therefore reducing 

the volume of the biological tanks.  

I.1.1 Aeration systems 

Different technologies have been developed in order to supply oxygen for the biological demand 

in the bioreactors. These systems can be classified in 3 categories as follows: 

- Mechanical surface aerators such as rotating impellers or brush rotors.  These devices 

enlarge the gas-liquid interface by shearing the liquid surface and projecting liquid 

droplets into the air. Simultaneously, air bubbles are introduced into the mixed liquor.  

 

- Jet aerators: these systems pump out the activated sludge and mixed it with pressurized 

air before reintroducing it into the reactor through a high velocity jet stream.   

 

- Air injection systems: these devices supply air through gas diffusers installed at the 

bottom of the reactor. Depending on the orifice diameter, these systems produce fine 

(~3mm), medium (~4-6mm) or coarse bubbles.   

Pretreated 
wastewater

activated sludge
Bioreactor

Treated water

Excess sludge
(for treatment)

sludge recirculation loop

Wastewater

Clarifier

Pretreatments
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Because of the high performance of the air injection systems in terms of the transferred oxygen 

per amount of energy consumed (aeration efficiency), especially for the fine bubbles diffusers, 

the use of these systems in the wastewater treatment plants1 have been extended since the 90’s. 

Despite of a better energy performance of the air injection systems, the energy expenditure of 

the aeration stage can represent up to 70% of the energy consumption in the treatment plant 

(Fayolle et al., 2010). In order to reduce this energy expenditure, it is necessary to evaluate the 

performance of the aeration system in relation to the activated sludge characteristics. This 

requires the determination of the amount of transferred oxygen and hence to understand the 

gas-liquid mass transfer principles. These are presented in the following paragraphs.  

 

I.2 Principles of gas-liquid mass transfer 

In a system where the concentration of species is spatially heterogeneous, the molecules species 

migrate spontaneously to minimize the concentration differences. This mass flux phenomena, 

driven by a concentration gradient, is known as the diffusional mass transfer and is described by 

the Fick's first law. According to this principle, in a system with species A and B, the mass flux of 

A (𝐽𝐽𝐴𝐴) diffusing in the direction 𝑧𝑧, is related to the concentration gradient of A by means of a 

proportionality constant called the molecular diffusion coefficient.  The first Fick’s law is written 

as: 

𝐽𝐽𝐴𝐴 = −𝐶𝐶𝐴𝐴𝐴𝐴
𝜕𝜕𝐶𝐶𝐴𝐴
𝜕𝜕𝑧𝑧

 I.1 

with  

𝐽𝐽𝐴𝐴  mass flux of A (kg s-1 m-2) 

𝐶𝐶𝐴𝐴𝐴𝐴  diffusion coefficient of A into B (m2 s-1) 

𝜕𝜕𝐶𝐶𝐴𝐴/𝜕𝜕𝑧𝑧  concentration gradient of A in the direction 𝑧𝑧 (kg m-4)  

 

Assuming that the diffusion of the component A is unidirectional and carried out through a 

stationary film of thickness 𝐻𝐻 where the concentration gradient is ∆𝐶𝐶𝐴𝐴, the A mass flux is written 

as:  

                                                             
1 Nowadays also called water resource recovery facilities (WRRF). 
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𝐽𝐽𝐴𝐴 =
𝐶𝐶𝐴𝐴𝐴𝐴
𝐻𝐻
∆𝐶𝐶𝐴𝐴 I.2 

 

 

A transfer coefficient (𝑘𝑘) is introduced as a characterization of the film diffusivity in relation to 

the film thickness:  

𝐽𝐽𝐴𝐴 =
𝐶𝐶𝐴𝐴𝐴𝐴
𝐻𝐻
∆𝐶𝐶 = 𝑘𝑘∆𝐶𝐶 I.3 

    

In the study of gas-liquid mass transfer it is assumed that both phases are separated by an 

interface and that diffusional mass transfer occurs inside a gas and a liquid film with thickness e 

developed at each side of the interface. This representation of the gas-liquid diffusional mass 

transfer corresponds to the double film model (Lewis et Whitman, 1924). It considers the 

following assumptions: 

- The gas and the liquid films are characterized by the transfer coefficients 𝑘𝑘𝐺𝐺  and 𝑘𝑘𝐿𝐿 

respectively;  

- At the gas-liquid interface, concentrations are in equilibrium according to the Henry’s 

law; 

- Concentrations outside the films are homogenous; 

The double film model is represented in Figure I.2. 

 

Figure I.2. Double film model (adapted from Roustan, 2003) 

 

In the double film model, the solute mass transfer from a gas phase to a liquid phase is carried 

out following three steps:  

- The solute diffuses through the gas film and reaches the gas-liquid interface 

interface
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- The gas is absorbed and solubilises into the liquid and a thermodynamic equilibrium is 

established. 

- The solute gas diffuses through the liquid film until it reaches the liquid phase 

homogenous concentration. 

 

In the gas film, the solute molar flux (𝐽𝐽°) is written as: 

𝐽𝐽° = 𝑘𝑘𝐺𝐺(𝐶𝐶𝐺𝐺 − 𝐶𝐶𝐺𝐺𝑖𝑖) I.4 

 

and in the liquid film, the solute molar flux is: 

𝐽𝐽° = 𝑘𝑘𝐿𝐿(𝐶𝐶𝐿𝐿𝑖𝑖 − 𝐶𝐶𝐿𝐿) I.5 

 

with 

𝑘𝑘𝐺𝐺  gas-side mass transfer coefficient (m s-1) 

𝑘𝑘𝐿𝐿 liquid-side mass transfer coefficient (m s-1) 

𝐶𝐶𝐺𝐺  solute molar concentration in the homogenous gas phase (mol m-3) 

𝐶𝐶𝐺𝐺𝑖𝑖 gas-side molar concentration at the interface (mol m-3) 

𝐶𝐶𝐿𝐿𝑖𝑖 liquid-side molar concentration at the interface (mol m-3) 

𝐶𝐶𝐿𝐿 solute molar concentration in the homogenous liquid phase (mol m-3) 

 

Because of the experimental difficulty to access the solute concentrations 𝐶𝐶𝐺𝐺𝑖𝑖 and 𝐶𝐶𝐿𝐿𝑖𝑖 at the 

interface, global mass transfer coefficients for the gas and liquid phase in equilibrium, according 

to the Henry’s law (𝐶𝐶𝐺𝐺𝐺𝐺 = 𝐻𝐻𝐻𝐻.𝐶𝐶𝐿𝐿𝐺𝐺), are introduced. The molar flux of transferred solute is 

respectively written as:  

 

𝐽𝐽° = 𝐾𝐾𝐺𝐺(𝐶𝐶𝐺𝐺 − 𝐶𝐶𝐺𝐺𝐺𝐺) I.6 

 

 

𝐽𝐽° = 𝐾𝐾𝐿𝐿(𝐶𝐶𝐿𝐿𝐺𝐺 − 𝐶𝐶𝐿𝐿) I.7 
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with 

𝐾𝐾𝐺𝐺  gas-side global mass transfer coefficient (m s-1) 

𝐾𝐾𝐿𝐿 liquid-side global mass transfer coefficient (m s-1) 

𝐶𝐶𝐺𝐺𝐺𝐺 solute molar concentration in the gas phase in equilibrium with 𝐶𝐶𝐿𝐿 (mol m-3) 

𝐶𝐶𝐿𝐿𝐺𝐺 solute molar saturation concentration in the liquid phase in equilibrium with 𝐶𝐶𝐺𝐺  (mol m-3) 

 

Each layer in the double film represents a resistance to mass transfer. With the equilibrium 

condition at the interface (𝐶𝐶𝐺𝐺𝐺𝐺 = 𝐻𝐻𝐻𝐻.𝐶𝐶𝐿𝐿𝐺𝐺), the global resistance to mass transfer in the gas and 

the liquid phase are written as: 

1
𝐾𝐾𝐺𝐺

=
1
𝑘𝑘𝐺𝐺

+
𝐻𝐻𝑒𝑒
𝑘𝑘𝐿𝐿

 I.8 

 

1
𝐾𝐾𝐿𝐿

=
1
𝑘𝑘𝐿𝐿

+
1

𝐻𝐻𝐻𝐻 ∙ 𝑘𝑘𝐺𝐺
 I.9 

 with  

He Henry’s law constant  

1/𝐾𝐾𝐺𝐺  global resistance to mass transfer in the gas film (s m-1) 

1/𝐾𝐾𝐿𝐿 global resistance in the liquid film (s m-1) 

  

If the component solubility in the liquid phase is low, the Henry constant (𝐻𝐻𝐻𝐻) is very high. Then   

the gas-liquid mass transfer is conditioned by the resistance to mass transfer of the liquid film. 

Thus, the gas-liquid molar flux is written as: 

 

𝐽𝐽 = 𝐾𝐾𝐿𝐿(𝐶𝐶𝐿𝐿𝐺𝐺 − 𝐶𝐶𝐿𝐿) = 𝑘𝑘𝐿𝐿(𝐶𝐶𝐿𝐿𝐺𝐺 − 𝐶𝐶𝐿𝐿) I.10 

 

I.2.1 The volumetric oxygen transfer coefficient (kLa) 

The determination of oxygen transfer is based on the first Fick's law and the double film model. 

Because the oxygen solubility in water is low, the mass flow of transferred oxygen is expressed 

as: 
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𝐹𝐹 = 𝐽𝐽𝐴𝐴 = 𝑘𝑘𝐿𝐿𝐴𝐴 (𝐶𝐶𝐶𝐶 − 𝐶𝐶) I.11 

with 

𝐹𝐹 mass flow of transferred oxygen (kg h-1) 

𝐴𝐴 gas-liquid interfacial area (m2) 

𝐶𝐶𝐶𝐶 dissolved oxygen saturation concentration (kg m-3) 

𝐶𝐶 dissolved oxygen concentration in the liquid phase (kg m-3) 

 

The concept of specific interfacial area is introduced to express the interfacial area per unit of 

aerated volume (𝑎𝑎 = 𝐴𝐴/𝑉𝑉). The mass flow of transferred oxygen is expressed as follows: 

 

𝐹𝐹 = 𝑘𝑘𝐿𝐿𝑎𝑎 (𝐶𝐶𝐶𝐶 − 𝐶𝐶)𝑉𝑉 I.12 

with 

𝑘𝑘𝐿𝐿𝑎𝑎 volumetric oxygen transfer coefficient (h-1) 

𝑉𝑉 aerated volume (m3) 

 

The mass flow of transferred oxygen is therefore expressed as the product of the volumetric 

oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) by the gradient concentration (𝐶𝐶𝐶𝐶 − 𝐶𝐶).  𝑘𝑘𝐿𝐿𝑎𝑎 depends on the 

liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿) and the specific interfacial area (𝑎𝑎). The dissolved 

oxygen saturation concentration (𝐶𝐶𝐶𝐶) is a function of the atmospheric and hydrostatic pressure 

and liquid characteristics (including temperature, salts concentration…).  

I.2.2 The liquid-side mass transfer coefficient (kL) 

According to the film model, the liquid-side mass transfer coefficient is the ratio of the diffusivity 

coefficient of the liquid film to the film thickness 𝐻𝐻 (𝐶𝐶𝐴𝐴𝐴𝐴 𝐻𝐻⁄ ). The practical difficulty of using this 

model is the determination of the thickness of the liquid film. Other theoretical models have 

therefore been proposed to estimate the liquid-side mass transfer coefficient (𝑘𝑘𝐿𝐿). These are 

presented in Table I.1 for two different intervals of bubble size. Above 2.5 mm of diameter, 

bubbles are considered to have a mobile and renewable interface which favors the oxygen 

transfer. On the contrary, for rising bubbles with a diameter lower than 2.5 mm, the bubble 

interface is considered a rigid surface that is scarcely renewable. 
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Table I.1. Correlations for estimating the liquid-side mass transfer coefficient (𝒌𝒌𝑳𝑳) for different size of bubbles 

Model Equation 

Bubble 
size 

interval 
(mm) 

Higbie model 
(1935) 

𝑘𝑘𝐿𝐿 = 2� 𝐷𝐷
𝜋𝜋∙𝑡𝑡𝑐𝑐

                  

                               
𝑆𝑆𝑐𝑐 = 𝑑𝑑𝑏𝑏

𝐺𝐺
     

I.13 
 
                                                     
I.14                       

 
𝐶𝐶   diffusivity coefficient (m2 s-1) 
𝑆𝑆𝑐𝑐   contact time (s) 
 
 
𝑑𝑑𝑏𝑏   bubble diameter (m) 
𝐺𝐺     bubble slip velocity (m s-1) 

 
 

db>2.5 
Danckwerts 

(1951) 𝑘𝑘𝐿𝐿 = √𝐶𝐶 ∙ 𝐶𝐶                                                            I.15 
 

𝐶𝐶     surface renewal rate (s-1) 

Calderbank 
and Moo-

Young 
(1961) 

𝑘𝑘𝐿𝐿 = 0.42 �(𝜌𝜌𝐿𝐿−𝜌𝜌𝐺𝐺)𝜇𝜇𝐿𝐿𝑔𝑔
𝜌𝜌𝐿𝐿2

�
1/3

𝑆𝑆𝐹𝐹−1/2             I.16 
𝜌𝜌𝐿𝐿    liquid density (kg m-3) 
𝜌𝜌𝐺𝐺     gas density (kg m-3) 
𝜇𝜇𝐿𝐿    liquid viscosity (Pa s) 
𝑆𝑆𝐹𝐹    Schmidt number (𝑆𝑆𝐹𝐹 = 𝜇𝜇𝐿𝐿/(𝜌𝜌𝐿𝐿𝐶𝐶)) 
𝐶𝐶     solute diffusivity in the liquid      
         media (m2 s-1) 
 

𝑘𝑘𝐿𝐿
𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖𝑑𝑑 = 0.31 �𝑔𝑔𝜇𝜇𝐿𝐿

𝜌𝜌𝐿𝐿
�
1/3

𝑆𝑆𝐹𝐹−2/3             I.17 

db<2 

Frössling 
(1938) 

𝑘𝑘𝐿𝐿
𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖𝑑𝑑 = 𝐷𝐷

𝑑𝑑𝑏𝑏
(2 + 0.6𝑅𝑅𝐻𝐻1/2𝑆𝑆𝐹𝐹1/3)        I.18 

𝑅𝑅𝐻𝐻   bubble Reynolds number      
         (𝑅𝑅𝐻𝐻 = 𝑈𝑈𝑏𝑏𝑑𝑑𝑏𝑏𝜌𝜌𝐿𝐿/𝜇𝜇𝐿𝐿) 
𝑆𝑆𝐹𝐹   Schmidt number (𝑆𝑆𝐹𝐹 = 𝜇𝜇𝐿𝐿/(𝜌𝜌𝐿𝐿𝐶𝐶)) 
𝑈𝑈𝑏𝑏   bubble rise velocity (m s-1) 
 

 

The Higbie model (Equation I.13), considers that the diffusional oxygen transfer in the liquid 

film occurs when liquid elements (eddies) reach the gas-liquid interface and during a short 

contact time (𝑆𝑆𝑐𝑐), attains the concentration equilibrium with the interface. Subsequently the 

liquid element is replaced by another one that will stay at the interface during the same previous 

contact time (𝑆𝑆𝑐𝑐). For a gas bubble rising freely in a liquid volume, the contact time is equivalent 

to the time that the bubble takes to cross a distance equal to its diameter.  

The Danckwerts model, also called surface renewal model, considers that the contact time at the 

interface is probably not the same for all liquid elements arriving at the gas-liquid interface. The 

concept of surface renewal rate (s) is then introduced and the 𝑘𝑘𝐿𝐿 coefficient is expressed as 

shown in Equation I.15. 

Calderbank and Moo-Young (1961) proposed two empirical correlations for 𝑘𝑘𝐿𝐿 expressed as a 

function of the liquid properties and diffusivity, one for bubbles with mobile interfaces 

(Equation I.16) and other one for bubbles with rigid interfaces (Equation I.17). 

The Frössling empirical model (1938) (Equation I.18), is used for bubbles with a diameter lower 

than 2×10-3 m, which are considered to have a rigid interface. It considers the bubble rise 

velocity and the liquid properties through the Reynolds and Schmidt numbers respectively. 
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I.2.3 Specific interfacial area (a) 

For spherical bubbles, the specific interfacial area is a function of the bubble diameter and the 

gas hold-up (𝜀𝜀𝐺𝐺): 

 

𝑎𝑎 =
6
𝑑𝑑𝑏𝑏𝑠𝑠

∙
𝜀𝜀𝐺𝐺

(1 − 𝜀𝜀𝐺𝐺)
 I.19 

 

where the bubble Sauter diameter (𝑑𝑑𝑏𝑏𝑠𝑠) is the weighed bubble’s diameter considering the 

population bubble size distribution, defined by: 

 

𝑑𝑑𝑏𝑏𝑠𝑠 =
∑ 𝑛𝑛𝐹𝐹𝑖𝑖 ∙ 𝑑𝑑𝑑𝑑𝐹𝐹3

∑ 𝑛𝑛𝐹𝐹𝑖𝑖 ∙ 𝑑𝑑𝑑𝑑𝐹𝐹2
 I.20 

with  

𝑑𝑑𝑏𝑏𝑠𝑠 bubble Sauter diameter (m) 

𝑑𝑑𝑑𝑑𝐹𝐹 bubble diameter (m) 

𝑛𝑛𝐹𝐹 number of bubbles with diameter 𝑑𝑑𝑑𝑑𝐹𝐹 

 

For ellipsoidal bubbles with a major axis (A) and a minor axis (b), a bubble equivalent diameter 

is introduced as follows (Roustan, 2003): 

 

𝑑𝑑𝑑𝑑 = (𝐴𝐴2𝑑𝑑)1/3 I.21 

 

It corresponds to the diameter of an ellipsoidal bubble having the same volume of a spherical 

bubble. 

The gas hold-up (𝜀𝜀𝐺𝐺) is the gas fraction in the aerated volume, defined as: 

 

𝜀𝜀𝐺𝐺 =
𝑉𝑉𝐺𝐺
𝑉𝑉𝑇𝑇

=
𝑉𝑉𝐺𝐺

𝑉𝑉𝐺𝐺 + 𝑉𝑉𝐿𝐿
 I.22 

with 
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𝑉𝑉𝐺𝐺 the volume occupied by the gas phase (m3) 

𝑉𝑉𝑇𝑇 the aerated volume (m3) 

𝑉𝑉𝐿𝐿 the volume occupied by the liquid phase (m3) 

 

Considering that for a given bubble volume, ellipsoidal shaped-bubbles have a higher specific 

interfacial area (𝑎𝑎) than spherical bubbles, a correction factor (𝑓𝑓𝐾𝐾) is defined to consider the 

effect of bubble shape on the interfacial area, as follows (Cockx, 1997):  

 

𝑎𝑎 =
6
𝑑𝑑𝑏𝑏𝑠𝑠

∙
𝜀𝜀𝐺𝐺

(1 − 𝜀𝜀𝐺𝐺)
∙ 𝑓𝑓𝐾𝐾 I.23 

 

where the correction factor (𝑓𝑓𝐾𝐾) is defined as a function of the bubble eccentricity (χ) which is 

the ratio of the major axe to the minor axe:  

 

𝑓𝑓𝐾𝐾 =
1

2χ1 3⁄ �χ +
ln (χ + �χ2 − 1

�χ2 − 1
� I.24 

 

For bubbles with an eccentricity below 1.66, the shape effect on the interfacial surface is lower 

than 5% (Fayolle, 2006). 

  

 

Conclusions  

 

− The correlation used to estimate the flow of transferred oxygen is based on the Fick’s 

law and the double film model. Because of the low oxygen solubility in water, the 

resistance to oxygen transfer is located in the liquid film. The flow of transferred oxygen 

depends basically on two parameters: the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎), and the 

dissolved oxygen concentration gradient (𝐶𝐶𝐶𝐶 − 𝐶𝐶).  The oxygen transfer coefficient 

(𝑘𝑘𝐿𝐿𝑎𝑎) is defined by the liquid-side mass transfer coefficient (𝑘𝑘𝐿𝐿) and the specific 

interfacial area (𝑎𝑎) which are also function of the oxygen diffusivity in the liquid, bubble 

size and shape, bubble rise velocity and gas hold-up.  
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I.2.4 Gas-liquid dispersions 

Understanding the flow conditions of a gas-liquid dispersion is a prerequisite in order to 

evaluate its influence on oxygen transfer phenomena. 

I.2.4.1 Gas and liquid velocities 

The superficial gas and liquid velocities (𝑈𝑈𝐺𝐺  and 𝑈𝑈𝐿𝐿), represent the gas and liquid flow rate per 

unit of reactor cross section (𝑆𝑆). They are of practical use in order to compare the operating 

conditions for basins of different geometries and are written as follows: 

 

𝑈𝑈𝐺𝐺 =
𝑄𝑄𝐺𝐺
𝑆𝑆

 I.25 

 

𝑈𝑈𝐿𝐿 =
𝑄𝑄𝐿𝐿
𝑆𝑆

 I.26 

with  

𝑈𝑈𝐺𝐺  superficial gas velocity (m s-1) 

𝑄𝑄𝐺𝐺  gas flow rate (m3 s-1) 

𝑈𝑈𝐿𝐿  superficial liquid velocity (m s-1) 

𝑄𝑄𝐿𝐿 liquid flow rate (m3 s-1) 

𝑆𝑆 reactor’s cross section (m2) 

 

In the reactor section, the gas and the liquid phases flow through effective sections: 𝜀𝜀𝐺𝐺𝑆𝑆 and 𝜀𝜀𝐿𝐿𝑆𝑆, 

for gas and liquid respectively. The gas and liquid flow rate through these effective surfaces is 

actually equivalent to the average bubble rise velocity and liquid velocities:  

 

𝑈𝑈𝑏𝑏 =
𝑈𝑈𝐺𝐺
𝜀𝜀𝐺𝐺

 

 
I.27 

 

𝑈𝑈𝑙𝑙 =
𝑈𝑈𝐿𝐿
𝜀𝜀𝐿𝐿

 I.28 
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with  

𝑈𝑈𝑏𝑏 average bubble rise velocity (m s-1) 

𝜀𝜀𝐺𝐺  overall gas hold-up (-) 

𝑈𝑈𝑙𝑙  average liquid velocity (m s-1) 

𝜀𝜀𝐿𝐿 overall liquid hold-up (-) 

 

The relative bubble rise velocity compared to the liquid velocity is characterized by the slip 

velocity which is defined as: 

 

𝐺𝐺 = 𝑈𝑈𝑏𝑏 − 𝑈𝑈𝑙𝑙 =
𝑈𝑈𝐺𝐺
𝜀𝜀𝐺𝐺

−
𝑈𝑈𝐿𝐿

(1 − 𝜀𝜀𝐺𝐺)
 I.29 

 

I.2.4.2 Homogenous and heterogeneous regime  

Bubble flow regime in bubble columns is characterized by the gas-liquid distribution on the 

column section. The bubble flow regimes are well described by Zahradník et al. (1997) and Mena 

et al. (2005). At low gas velocities and with gas diffusers with small orifices the homogeneous 

flow regime takes place: the interaction between bubbles is small (bubble coalescence and 

break-up are insignificant), the bubble size distribution is narrow, and the gas hold-up is 

uniformly distributed in the column section (HoR in Figure I.3 (a)). At higher gas flow rates or 

with diffusers with large orifices the heterogeneous flow regime occurs: bubble coalescence 

takes place and consequently larger bubbles appear in the dispersion. The bubble size 

distribution is wider and the gas hold-up profile in the column section is parabolic with a 

maximum value at the centre (HeR in Figure I.3 (a)). A transitional regime occurs between the 

homogenous and heterogeneous regimes. It is characterized by the beginning and complete 

development of liquid circulation patterns in the bubble bed. Affected by the liquid circulation, 

bubble rise faster and the gas hold-up stops increasing with the superficial gas velocity and 

declines. Subsequently when the heterogeneous regime is established at higher gas flow rates, 

the liquid circulation patterns are reduced and the gas hold-up increases again with the 

superficial gas velocity though with a less pronounced slope. The typical evolution of the gas 

hold-up with the superficial gas velocity is shown in Figure I.3 (b).   
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Figure I.3. (a) Representation of homogenous (HeR) and heterogeneous regimes (HeR) in bubble columns;  
 (b) Typical evolution of the gas hold-up with the gas flow rate in the flow regimes.  (Zahradník et al., 1997, 

Mena et al., 2005)  

 

I.2.4.2.1 Factors affecting the bubble regime  

The study of Zahradník et al. (1997) summarized some parameters affecting the formation and 

stability of bubbling regimes. Design parameters such as distributor type and geometry; reactor 

geometry as well as system properties such as the electrolytes content and viscosity were 

studied. The main results are described in the following paragraphs. 

I.2.4.2.1.1 Diameter orifice and reactor geometry 

To study the distributor influence on bubble regime, 8 different perforated plates (orifices 

diameters between 10mm and 100µm) were used in an air-water system. It was observed that 

for orifice diameters bigger than 1.6mm, the homogeneous bubbling regime could not be 

generated. For orifice diameters smaller than 1mm the flow regime and the maximum gas hold-

up presented an increased stability. The results have also shown that for all gas diffusers the 

fully heterogeneous bubbling regime is developed at a superficial gas velocity higher than 

0.125m s-1.  Concerning the influence of the reactor geometry, it was observed that decreasing 

the ratio of the liquid height to the column diameter (H/D) significantly increases the gas hold-

up for all distributors, thus accentuating the homogeneous bubbling regime. On the contrary, at 

high gas flow rates in the heterogeneous regime, the gas hold-up was independent on the ratio 

(H/D). 

I.2.4.2.1.2 Dissolved electrolytes and liquid viscosity  

In aqueous solutions of electrolytes (NaCl, KCl, MgSO4, KI) Zahradník et al. (1997) observed that 

the heterogeneous regime was reached at a higher superficial gas velocities compared to the air-
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water system. The authors attributed this result to the hindrance of coalescence due to the salt 

concentration (from 0.036 up to 0.38 mol L-1). On the other hand, the influence of the liquid 

viscosity was evaluated using saccharose solutions. It was observed that at a given gas flow rate, 

an increment in the fluid viscosity related to an increase in the saccharose concentration, led to a 

gas hold-up reduction due to an enhancement of bubble coalescence. The cause-effect link 

between fluid viscosity and bubble coalescence is explained by Stewart (1995) as follows: an 

increase in the liquid viscosity reduces the turbulence in the wake of individual rising bubbles 

and as a consequence neighbour bubbles are drawn into other bubble’s wake thus facilitating 

bubble collision and eventually coalescence. 

I.2.4.3 Bubble size 

The volume of the bubble at the detachment stage in a quiescent liquid results from the 

equilibrium between the lifting forces of buoyancy and gas momentum and the restraining 

forces of surface tension, drag and inertia (Gaddis and Vogelpohl, 1986). From a force balance, 

the authors proposed a generalized equation to estimate the bubble size of isolated spherical 

bubbles in a quiescent and infinite media. The obtained correlation is written as follows: 

𝑑𝑑𝑏𝑏 = ��
6𝑑𝑑𝑜𝑜𝜎𝜎
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According to this correlation, the bubble size is governed by design and operating parameters 

such as gas flow rate through the nozzle (𝑄𝑄𝐺𝐺𝐺𝐺), orifice diameter (𝑑𝑑𝑜𝑜) and physicochemical 

properties such as liquid viscosity (𝜇𝜇𝐿𝐿), density (𝜌𝜌𝐿𝐿) and surface tension (𝜎𝜎). The authors 

observed that this theoretical correlation reproduces adequately some experimental data 

available in the literature for air-water, air-glycerol and air-glucose systems (deviation within 

±10%).   

Besides, Jamialahmadi et al. (2001) studied the effect of these different variables on the size of a 

bubble formed through a single orifice in distilled water and solutions of distilled water with 

methanol, ethanol, propanol, isopropanol, glycerol and potassium chloride. The authors 

observed that the surface tension and the orifice diameter were the main variables affecting the 

bubble size, though the impact of superficial gas velocity and liquid viscosity was also significant. 

The authors defined the bubble size as: 
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𝑑𝑑𝑏𝑏 = 𝑓𝑓(𝑑𝑑𝑜𝑜,𝑈𝑈𝐺𝐺 ,𝜌𝜌𝐿𝐿 ,𝜇𝜇𝐿𝐿 ,𝜎𝜎,𝑔𝑔) I.31 

 

Using 900 experimental data gathered from various studies, the mentioned authors proposed 

the following empirical correlation in terms of the dimensionless numbers to predict the bubble 

size at formation: 

 

𝑑𝑑𝑏𝑏
𝑑𝑑𝑜𝑜
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9.261𝐹𝐹𝐹𝐹0.36

𝐺𝐺𝑎𝑎0.39 + 2.147𝐹𝐹𝐹𝐹0.51�
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I.32 

 

with  

𝑑𝑑𝑏𝑏 bubble diameter (m) 

𝑑𝑑𝑜𝑜 orifice diameter(m) 

𝐵𝐵𝑑𝑑𝑜𝑜 Bond number in terms of orifice (𝐵𝐵𝑑𝑑𝑜𝑜 = 𝜌𝜌𝐿𝐿𝑔𝑔𝑑𝑑𝑜𝑜
2/𝜎𝜎) 

𝐹𝐹𝐹𝐹 Froude number (𝐹𝐹𝐹𝐹 = 𝑈𝑈𝐺𝐺𝐺𝐺2/(𝑑𝑑𝑜𝑜𝑔𝑔)) 

𝐺𝐺𝑎𝑎 Galileo number (𝐺𝐺𝑎𝑎 = 𝜌𝜌𝐿𝐿2𝑑𝑑𝑜𝑜
3𝑔𝑔/𝜇𝜇𝐿𝐿2) 

𝑈𝑈𝐺𝐺𝐺𝐺 superficial gas velocity through the nozzle section (m2) 

 

The use of this correlation allowed the authors to reproduce the experimental results with an 

absolute mean average error of 3.2% (Jamialahmadi et al., 2001). 

The two presented correlations predict similar values of bubble diameter at formation in respect 

to the gas flow rate and clean water properties (see Figure I.4a).  Both correlations predict a 

similar impact of the liquid properties such as surface tension and dynamic viscosity in the 

bubble diameter (only values predicted with the Jamialahmadi et al., 2001, correlation are 

presented in Figure I.4b). The effect of the liquid surface tension appears to be more significant 

at low gas flow rates. At a superficial gas velocity (𝑈𝑈𝐺𝐺𝐺𝐺) of 1.3 m s-1 reducing the liquid surface 

tension by 7% (from 72.8 down to 68.0 mN m-1) would result in a bubble diameter decrease of 

1.7 % (from 3.57 down to 3.51 mm). On the contrary, the impact of viscosity on bubble diameter 

appears to increase with the gas flow rate and is less significant compared to the one of surface 

tension. Increasing up to 5 times the dynamic viscosity (from 1 up to 5 mPa.s) at a superficial gas 

velocity (𝑈𝑈𝐺𝐺𝐺𝐺) of 1.3 m s-1 would result in an increase of bubble diameter by 2.5% (from 3.57 up 

to 3.63 mm). 
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Figure I.4. Estimated diameter for spherical isolated bubbles at the detachment stage for different gas flow rates 
(expressed in terms of the superficial gas velocity through the nozzle section(UGn) using the *Jamialahmadi et al. 

(2001) correlation for an orifice diameter of 0.7 mm and different liquid properties:  (a) µ=1 mPa.s, ρ=998 kg m-3, 
surface tension (σ) from 68.0 to 72.8 mN m-1; (b) σ=72.8 mN m-1, ρ=998 kg m-3, dynamic viscosity (µ) from 1 to 10 
mPa.s. In Figure (a) the bubble diameter predicted with the correlation from Gaddis and Vogelpohl (1986) is also 
shown for the same diameter orifice (0.7 mm) and water properties (µ=1 mPa.s, ρ=998 kg m-3, σ=72.8 mN m-1).   

 

I.2.4.4 Bubble terminal velocity 

The bubble terminal velocity refers to the velocity that would have an isolated bubble in an 

infinite motionless media. It can be estimated theoretically from a balance of forces acting on the 

rising bubble (buoyancy, gravity, drag, added mass, lift, Basset). Because the density of the liquid 

phase is high compared to the gas phase, the bubble terminal velocity (𝑈𝑈𝑏𝑏0) can be written as:  

 

𝑈𝑈𝑏𝑏0 = �
4𝑔𝑔𝑑𝑑𝑏𝑏
3𝐶𝐶𝐷𝐷

 I.33 

with 

𝑈𝑈𝑏𝑏0  bubble terminal velocity (m s-1) 

𝑔𝑔 gravity constant (m s-2) 

𝑑𝑑𝑏𝑏 bubble diameter (m) 

𝐶𝐶𝐷𝐷 bubble drag coefficient (-) 

 

The terminal bubble velocity is an increasing function of the bubble diameter (𝑑𝑑𝑏𝑏) and decreases 

with the increase of the bubble drag coefficient (𝐶𝐶𝐷𝐷). Several empirical correlations have been 
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proposed to estimate the drag coefficient (Harmathy, 1960; Wallis, 1969; Clift et al., 1978; Ishii 

and Zuber, 1979; Johansen and Boysan, 1988; Karamanev, 1994). They define it as a function of 

liquid properties such as density and surface tension, or as a function of the Eötvos number (Eo) 

or the Reynolds number (Re) which depend also on bubble diameter and the viscosity.   

An estimation of the bubble terminal velocity in clean water can be obtained as a function of the 

bubble equivalent diameter from the diagram established by Clift et al. (1978) (Figure I.5).   

 

 

Figure I.5. Bubble terminal velocity in clean water (20°C) and contaminated water as a function of the bubble 
equivalent diameter (from Clift et al., 1978). 

 

For bubbles rising in clean water with an equivalent diameter between 3 and 7 mm, which is the 

range of bubble size observed in full scale aeration tanks using fine bubble diffusers (Fayolle, 

2006), the terminal velocity would be of approximately 0.23 m s-1.   

Because of an increase of the drag coefficient, the bubble terminal velocity in contaminated 

water is lower than on clean water (Kulkarni and Joshi, 2005). For the same range of bubble 

equivalent diameter (3-7 mm), the bubble terminal velocity may be reduced down to 

approximately 0.18 m s-1. 

In a homogenous bubble swarm the bubble rise velocity is also function of the gas hold-up. At 

low gas hold-up values (<4.8%) with minimal interactions between bubbles, the rise velocities in 
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the bubble swarm would be higher compared to an isolated bubble because some bubbles enter 

into the wake of other rising bubbles, consequently reducing radial movements and the bubbles 

drag (Henkel, 2010; Bouche et al., 2012).  

However, increasing the gas hold-up would promote the bubble interactions and leads to an 

increase of the bubble drag coefficient, which counteracts the effect previously mentioned. 

Riboux et al. (2010) and Colombet et al. (2011) observed the reduction of the bubble velocity 

(𝑈𝑈𝑏𝑏) with the increase of the overall gas hold-up (𝜀𝜀𝐺𝐺) for a bubble swarm in filtered tap water 

and described it as follows: 

 

𝑈𝑈𝑏𝑏 = 𝑈𝑈𝑏𝑏0(1 − 𝜀𝜀𝐺𝐺0.49) I.34 

with  

𝑈𝑈𝑏𝑏0  rise velocity of an isolated bubble (m s-1) 

In the study of Colombet et al. (2011), the experimental value for the terminal velocity (𝑈𝑈𝑏𝑏0) was 

0.32 m s-1 for bubbles with a diameter of 2.1 mm in a range of gas hold-up from 0.45% up to 

16.5%.  

 

 

Conclusions  

 

− Characteristics of the gas phase such as bubble size, rise velocity, gas hold-up and flow 

regime are dependent on design, configuration and operation variables as well as on the 

liquid properties such as density, surface tension and viscosity. Thus, the oxygen 

transfer characteristic parameters (𝑘𝑘𝐿𝐿 and 𝑎𝑎) depend on the multiple mentioned 

variables.    

 

 

I.2.5 Design and operation parameters affecting oxygen transfer in clean water 

Several research works have evaluated how design and operating parameters influence the 

oxygen transfer in clean water. The main results (principally obtained in full scale stirred 

reactors) are summarized in the next paragraphs. 
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I.2.5.1 Gas diffusers density and distribution 

The gas diffuser density refers to the fraction of the reactor cross sectional area that is covered 

with membrane diffusers.  

Impact on 𝑘𝑘𝐿𝐿𝑎𝑎: Oxygen transfer increases for higher gas diffuser densities (Wagner and Pöpel, 

1998) and well distributed diffusers on the reactor surface (ASCE, 1992). 

Mechanisms: The rising bubble swarm induces an uprising liquid circulation flow associated to 

drag and buoyancy forces. If the density of gas diffusers is low or gas diffusers are unevenly 

distributed on the reactor surface, the liquid goes down preferentially in the non-aerated 

surfaces consequently generating vertical liquid recirculation flows, called ‘spiral flows’ that end 

up reducing the gas hold-up and oxygen transfer (Gillot, 1997; Capela, 1999; Fayolle, 2006).  

I.2.5.2 Gas diffuser type 

Impact on 𝑘𝑘𝐿𝐿𝑎𝑎: The oxygen transfer depends on the installed diffuser type: perforated plate, 

sintered glass porous plate; perforated flexible membrane (Bouaifi et al., 2001). 

Mechanisms: The gas diffuser type determines the bubble size and bubble regime and 

consequently the gas-hold-up, the interfacial area (𝑎𝑎) and also the liquid-side transfer coefficient 

(𝑘𝑘𝐿𝐿).  

I.2.5.3 Submergence of diffusers 

Impact on 𝑘𝑘𝐿𝐿𝑎𝑎: The increase of the liquid height above the gas diffusers leads to a reduction of 

oxygen transfer (Pöpel and Wagner, 1996; Gillot et al., 2005). 

Mechanisms: For a given gas flow rate, an increase in the liquid height promotes the 

development of vertical liquid circulation patterns which lead to a reduction of the gas hold-up. 

I.2.5.4 Superficial gas velocity 

Impact on 𝑘𝑘𝐿𝐿𝑎𝑎: The superficial gas velocity is positively correlated with the oxygen transfer 

coefficient (Bouaifi et al., 2001; Gillot et al., 2005). 

Mechanisms: Primarily an increase of the gas hold-up and consequently of the interfacial area 

(Bouaifi et al., 2001). The oxygen transfer is higher despite an increase of the bubble size and a 

reduction of the liquid-side transfer coefficient (Colombet et al., 2011). It must be underlined 
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that the oxygen transfer efficiency (the ratio of transferred oxygen to supplied oxygen) is 

reduced with an increase in the superficial gas velocity.  The reason for this reduction is that 

increasing the superficial gas velocity induces large-scale liquid circulations (spiral flows) that 

result in lower gas hold-up (Gillot, 1997; Capela, 1999; Fayolle, 2006). 

I.2.5.5 Liquid circulation velocity 

Some wastewater treatment reactors have a geometrical configuration in which a horizontal 

liquid circulation is induced by means of slow speed submerged impellers (loop reactors).  The 

resulting horizontal liquid velocity has an effect on oxygen transfer.   

Impact on 𝑘𝑘𝐿𝐿𝑎𝑎: The application of a horizontal velocity induces an increase in oxygen transfer 

(Déronzier et al., 1996; Gillot et al., 2000; Gillot and Héduit, 2000). 

Mechanisms: The liquid circulation velocity neutralizes the ‘spiral flows’ (Czarnota and Hahn, 

1995), leading to an extended gas hold-up and consequently an expanded interfacial area. 

According, to Fayolle (2006) the liquid circulation reduces slightly the bubble diameter (-10%) 

but is not enough to explain the whole augmentation of the interfacial area. 

I.2.6 Oxygen transfer in activated sludge 

Activated sludge is a complex fluid composed of biological aggregates or flocs and interstitial 

water.  For classical activated sludge and MBR sludge, the water content can range from 98.5 to 

99.8 w%. Biological aggregates are a heterogeneous mixture of microbial colonies, colloids, 

organic fibers and particles, inorganic compounds embedded in a network of extracellular 

polymeric substances (EPS) of biological origin such as proteins, humic acids, polysaccharides, 

DNA and nucleic acids (Sheng et al., 2008; Wilen, 2008). Interstitial water is composed by 

soluble organic matter, soluble N and P species, soluble EPS, surfactants and salts. The 

physicochemical properties of the continuous and dispersed phases define the size of the 

biological aggregates. Also, because biological flocs are actually shear sensitive, the 

hydrodynamic conditions associated to the reactor configuration determine the flocculation-

breakup equilibrium and consequently the floc size (Spicer et al., 1998; Biggs and Lant, 2000; 

Bouyer et al., 2001; Wilén et al., 2003; Jin and Lant, 2004; Bouyer et al., 2005; Coufort et al., 

2008). 

The diverse components of activated sludge and the associated properties have an impact on 

oxygen transfer.  Under the same design and operating conditions, the oxygen transfer capacity 
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is lower in activated sludge than in clean water. This oxygen transfer depletion is characterised 

by the alpha factor (𝛼𝛼) defined as:  

𝛼𝛼 =
𝑘𝑘𝐿𝐿𝑎𝑎′
𝑘𝑘𝐿𝐿𝑎𝑎

 I.35 

 

with 

𝑘𝑘𝐿𝐿𝑎𝑎′  oxygen transfer coefficient in polluted water (h-1) 

𝑘𝑘𝐿𝐿𝑎𝑎 oxygen transfer coefficient clean water (h-1) 

 

The magnitude of this reduction is conditioned on how the oxygen transfer characteristic 

parameters (𝐶𝐶𝑠𝑠, 𝑘𝑘𝐿𝐿 and 𝑎𝑎) are impacted by the various components and properties of activated 

sludge.   

I.2.6.1 Dissolved oxygen saturation concentration in activated sludge (Cs’) 

The dissolved oxygen saturation concentration in activated sludge (𝐶𝐶𝐶𝐶′) is considered to be 

slightly lower compared to the value in clean water (𝐶𝐶𝐶𝐶). Under the same operating conditions, 

this reduction is characterized by means of a coefficient noted 𝛽𝛽 as follows: 

 

𝐶𝐶𝐶𝐶′ = 𝛽𝛽𝐶𝐶𝐶𝐶 I.36 

 

The value of the coefficient 𝛽𝛽 ranges between 0.95 and 0.99 depending on the nature of the 

wastewater influent. A value of 𝛽𝛽=0.99 is classically used for domestic activated sludge (ASCE, 

1996). 

The  similarity of the 𝐶𝐶𝐶𝐶 values in clean water and activated sludge has been recently confirmed 

by Jimenez (2013) who measured the dissolved oxygen saturation concentration of activated 

sludge interstitial water and did not observed any variation compared to clean water, within the 

margin of experimental error (±2%). 
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I.2.6.2 Activated sludge properties affecting the oxygen transfer coefficient (kLa’)  

Activated sludge impact on oxygen transfer results from the multiple effects that the complex 

floc-interstitial water can produce on the variables defining the liquid mass transfer coefficient 

(𝑘𝑘𝐿𝐿) and the interfacial area (𝑎𝑎) such as bubble, size, bubble rising velocity, oxygen diffusion 

coefficient and gas hold-up.  

Several research works have sought to establish what factors determine the decline of oxygen 

transfer coefficient in activated sludge (𝑘𝑘𝐿𝐿𝑎𝑎’). To better understand the occurring phenomena, 

the literature results concerning the effects of the solid fraction and the effects of the soluble 

fraction have been analysed separately. Subsequently, the literature results concerning the 

influence of global properties of activated sludge, such as the solid residence time (SRT) and the 

apparent viscosity, on 𝑘𝑘𝐿𝐿𝑎𝑎` is also investigated.   

I.2.6.2.1 Solid fraction  

Out from the context of the activated sludge process, the effect of solids on oxygen transfer has 

been studied by several authors (Banisi et al., 1995; Freitas and Texeira, 2001; Yang et al., 2001; 

Dhaouadi et al., 2006; Littlejohns and Daugulis, 2007; Mena et al., 2011). Whether the solids 

produce a decline or a rise of oxygen transfer seems to depend on the solid characteristics such 

as size, density, hydrophobicity and concentration. Mena et al. (2005) have listed the ways in 

which solids may affect the flow regime in a bubble column. This list provides a perspective of 

how activated sludge suspended solids may affect the oxygen transfer.  

− Steric effect: Solids occupy a volume around the bubble leading to a decline of the gas-

liquid interface area available for oxygen transfer. 

 

− Buoyancy: If the suspended solids have a different density compared to the liquid phase, 

solids can change the density of the suspension and consequently modify the bubbles 

rising velocity and the gas hold-up by affecting the buoyancy force acting on the bubbles. 

 

− Viscosity: Solids induce an increase in the suspension viscosity. This increment leads to 

three overlapping effects (i) the bubble coalescence is favored and consequently the 

bubble size and bubble rising velocity increase (Mena et al., 2005), (ii) at the bubble 

formation stage in non-Newtonian fluids, the bubble growth time is extended with the 

increasing viscosity due to higher viscoelastic stresses exerted on the bubble and 

consequently bubble size is increased (Kulkarni and Joshi, 2005), (iii) the velocity of the 

rising bubbles is reduced in viscous liquids due to a higher bubble drag coefficient (Mena 
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et al., 2005). By affecting the bubble size, rise velocity and the gas hold-up, the viscosity 

impacts the interfacial area (𝑎𝑎) and the liquid-side transfer coefficient (𝑘𝑘𝐿𝐿).  

 

− Surface hydrophobicity: Depending on their affinity for the gas and liquid medium, solids 

will tend or not to concentrate near the gas-liquid interface and consequently affect the 

available surface for mass transfer as well as the bubbles drag coefficient. The bubble 

hydrophobicity would condition the steric effect previously mentioned. For Mena et al. 

(2011), hydrophobic solid particles are adsorbed at the gas-liquid interface and play a 

negative role in the mass transfer. This effect would become important when the solid 

particles are small compared to the bubble size.   

 

− Bubble rising velocity: Apart from the viscosity effect that can slow down the rising 

bubbles, solids can also collide with the rising bubbles and consequently affect their 

trajectory and rising velocity to end up affecting the gas hold-up (Mena et al., 2005).  

 

− Bubble coalescence: As mentioned above, this effect is promoted by the presence of 

solids in association with the increase of viscosity. However, according to Khare and 

Joshi (1990) small solid particles (𝜇𝜇m) can be adsorbed at the bubble surface (if particles 

have a surface affinity for the gas-liquid interface) and hinder the bubble coalescence to 

end up affecting the bubble size, the gas hold-up and the interfacial area. 

 

I.2.6.2.1.1 Activated sludge suspended solids 

In activated sludge several works have studied the impact of the MLSS (mixed liquor suspended 

solids) concentration on oxygen transfer. Unanimously, the increase in the MLSS concentration 

is correlated with the decline of the oxygen transfer and consequently the alpha factor (Cornel et 

al., 2003; Krampe and Krauth, 2003; Jin et al., 2006; Germain et al., 2007; Henkel et al., 2009; 

Mineta et al., 2011; Racault et al., 2011). However when results from different research works 

are compared, the dispersed data makes evident that the oxygen transfer decline compared to 

clean water is not only determined by the MLSS concentrations (Figure I.6).  
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Figure I.6. Alpha factor for different sludge MLSS concentration. Results obtained by different works in MBR. (Image 
from Henkel et al., 2009). MBR: membrane bioreactor. ‘washed’: activated sludge with clean water replacing 

interstitial water. 

 

To understand the impact of the MLSS concentration on oxygen transfer, Jin et al. (2006) and 

Mineta et al. (2011) measured the overall gas hold-up in aeration batch tests in an airlift and a 

bubble column respectively. Overall gas hold-up measurements were based on the 

determination of the liquid global height corresponding to aerated and non-aerated conditions. 

For gas fractions ranging from 2 to 15% and from 0.5 to 2% respectively and a MLSS 

concentration ranging from 2 g L-1 to 8 g L-1 both  authors observed a decrease in the gas hold-up 

with the MLSS concentration. Furthermore Mineta et al. (2011) observed a lower gas hold-up in 

clean water compared to activated sludge. These studies associated the impact of MLSS 

concentration on gas hold-up to the effects of viscosity on the the bubble regime. 

Considering MLVSS (mixed liquor volatile suspended solids) concentration instead of MLSS 

concentration, Henkel et al. (2009) showed that the latter is also correlated with the alpha factor 

but in contrast to the MLSS concentration, the impact of the MLVSS concentration on the alpha 

factor seems to be independent of the sludge origin (Figure I.7).  

Activated sludge (greywater )

Activated sludge

Activated sludge (washed)

Henkel, 2009
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Figure I.7. Alpha factor for different sludge MVLSS concentration. Results from different works (Figure from Henkel 
et al., 2009). ‘washed’: activated sludge with clean water replacing interstitial water.  

 

Given the fact that the MLVSS concentration accounts primarily for the sludge biomass which is 

mainly composed of water (bound water), Henkel et al. (2009) hypothesizes that the MLVSS 

concentration is better correlated with the volume occupied by the floc than the MLSS 

concentration. Subsequently, the link between the floc volume and the impact on the oxygen 

transfer would be explained in relation to the steric effect: the floc volume would be a key 

parameter conditioning the free water available at the bubble surface for an undisturbed oxygen 

transfer. To establish the correlation between the floc volume and the MVLSS concentration, this 

author poured 1L of activated sample in a graduated tube, measured the settled volume of flocs 

after 30 minutes and measured also the corresponding MVLSS concentration. Independently of 

the type of effluent (greywater or wastewater), a good correlation was observed between the 

floc volume and the MLVSS concentration, especially at low suspended solids concentration  

(<6 g L-1 MVLSS).  

In this context, the author introduced the hydrostatic floc volume (HFV) as a sludge property 

closely related to the MVLSS concentration and potentially characterizing the oxygen transfer 

and alpha factor decline.  The HFV corresponds in practice to the volume of settled suspended 

solids during 48 h in a graduated cylinder of 1L. The volume of water above the volume of 

settled solids would represent the available ‘free water’ at the bubble surface for the oxygen 

transfer, while the settled volume would be related to the flocs bound water (in cells and EPS). 

The 48h settling time was fixed in agreement to measurements results showing that beyond that 

lapse of time, no evolution of the floc volume is observed.  

Activated sludge (greywater )

Activated sludge

Activated sludge (washed)

Henkel, 2009
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According to Figure I.7, the MLVSS concentration determines the oxygen transfer decline in 

activated sludge. In order to examine the extent of the proposed correlation between these two 

variables (alpha and MVLSS concentration), other oxygen transfer data available in the 

literature, obtained by means of a mass balance method (Racault et al., 2009), were plotted 

together with the correlation obtained by Henkel (2010) (see Figure I.8).  It appears, after this 

comparison, that the oxygen transfer decline in activated sludge compared to clean water is not 

only influenced by the MVLSS concentration, and other sludge properties play a role in this 

impact. 

 

Figure I.8. Decrease of alpha factor with the increase of the MVLSS concentration according to two different models: 
Henkel (2010) and Racault et al. (2011).  

 

I.2.6.2.1.2 Floc size 

Similarly to the influence of the floc volume on the oxygen transfer proposed by Henkel (2010), 

the floc size is a sludge property that could be related to the oxygen transfer depletion. Only the 

study carried out by Germain et al. (2007) has evaluated the effect of this property on oxygen 

transfer. For 10 activated sludge samples drawn from 7 different wastewater treatment plants 

(all membrane bioreactors), results showed that the mass median diameter (MMD), in a range 

from 33 to 90 𝜇𝜇m, measured by laser diffraction (Malvern Mastersizer 2000), does not have an 

influence on the oxygen transfer coefficient.  

I.2.6.2.1.3 Bound Extracellular Polymeric Substances (EPS)  

EPS are a complex mixture of polymers excreted by the microorganisms, lysis and hydrolysis 

products, and adsorbed organic matter from the wastewater (Wilén et al., 2003). They constitute 

the major organic fraction of activated sludge (Frølund et al., 1996). Bound EPS refer to the 
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fraction of EPS that is part of the biological flocs. Their concentration on activated sludge is of 

the order of 100 milligrams per gram of MVLSS (Domínguez et al., 2010). Their composition, in 

decreasing order, is fractioned in proteins, humic acids, polysaccharides and DNA (Wilén et al., 

2003). It is known that these substances play a major role in the conformation of biological flocs 

and can determine the floc structural properties. For instance Urbain et al. (1993) and Jin et al. 

(2003) found that, for several sludge origins, the floc-extracted EPS concentration correlates 

positively with poor settleability. For Mikkelsen and Keiding (2002) who studied the relation of 

the floc-extracted EPS content with the flocculation and shear sensitivity for various sludge 

types, the EPS fraction stabilises the floc structure via polymer entanglement, affecting the 

hydrophobicity and surface charge.  

Results from the mentioned studies let infer that floc properties such as floc volume, size or 

hydrophobicity are related to the EPS content.  Because these floc characteristics may impact the 

oxygen transfer, it seems of interest to determine the relation between the EPS fraction and the 

oxygen transfer coefficient.   

For eight MBR samples from different activated sludge plants, the study of Germain et al. (2007) 

observed that the polysaccahrides EPS content is positively correlated to an increase of the 𝑘𝑘𝐿𝐿𝑎𝑎’ 

coefficient while the protein EPS fraction had a negligible impact. To explain this result the 

authors hypothesized that the EPS polysaccharides content increased the floc size and porosity 

and thus oxygen diffusivity.  

The difficulty of studying the impact of bound EPS on oxygen transfer lies on the lack of a 

normalized protocol for the measurement of these components, particularly regarding the 

extraction method before chemical analysis.  For instance, Domínguez et al. (2010) observed 

that depending on the applied extraction method (resin, thermal, formaldehyde, formaldehyde + 

sonication) analysis results of the EPS content could even be multiplied by 6.  
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Conclusions on the impact of the solid fraction on oxygen transfer 

 

− The different works studying the impact of the solid fraction on oxygen transfer in 

activated sludge mainly concerned the MLSS concentration. Unanimously an oxygen 

transfer decline is observed with an increase in MLSS.  It is however observed that for 

activated sludge with the same MLSS concentration but from different origins, the 

measured oxygen transfer decline compared to clean water is not necessarily the same. 

This means that other sludge physicochemical properties also play a role on that oxygen 

transfer depletion. 

− It can be inferred from the literature review that other properties associated to the solid 

fraction such as the suspension viscosity can be of importance in the oxygen transfer. In 

relation to the steric effect, the floc volume, conditioned on hydrophobicity, could be 

linked to the decrease of the oxygen transfer. The MVLSS concentration is presented as 

being closely related to the floc volume and as a sludge property better characterizing 

the oxygen transfer decline compared to the MLSS concentration. However, a 

comparison with recent literature results shows that the impact of the MVLSS on 

oxygen transfer is also dependent on the sludge origin. 

− The EPS concentration appears to play an important role on the floc properties and 

structure and consequently on oxygen transfer. However the lack of a normalized 

protocol for the measurement of these components seems to be an obstacle for their 

determination.  
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I.2.6.2.2 Soluble substances  

I.2.6.2.2.1 Surfactants  

Surfactants presence in activated sludge is primarily due to the domestic use of detergents.  

Their average concentration in raw wastewater ranges between 7 and 15 mg L-1 (Wagner and 

Pöpel, 1996) and after biodegradation their concentration in conventional activated sludge is 

close to 2 mg L-1. The particular structure of these species comprises a hydrophilic group linked 

to a hydrophobic group (amphiphilicity) and provides these molecules with the capacity of 

diffusing in polar fluids and adsorb to hydrophobic interfaces. The accumulation of surfactants 

at the interface leads to the reduction of the interfacial tension. Figure I.9 illustrates the 

surfactant arrangement at a bubble-water interface. The hydrophobic group, in general a 

hydrocarbon chain with an aromatic or lineal group, is conventionally represented by a ‘tail’. The 

polar group is a functional group such as carboxylate (-COO-), sulfonate (-SO3-), etc, and are 

schematized as a ‘head’. 

 

Figure I.9. Schematic of surfactants arrangement at a water-bubble interface. 

 

Depending on the charge of the polar group, surfactants are classified in anionic, non-ionic, 

cationic or amphoteric (two ionic groups +\-) 

The effect of surfactants on oxygen transfer has been widely studied in clean water with added 

surfactants. Several works having characterized this reduction with the alpha factor are 

presented in Table I.2.  
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Table I.2. Literature results of alpha factor in clean water with added surfactant.  

Author Surfactant 
type Surfactant name Concentration 

range (mg L-1) 
Alpha 
factor Experimental setup 

Wagner et al. 
(1996) 

Anionic AT1 
2.5 – 7.5 

0.8 - 0.72 50L column; 0.52 m 
height; FB. Anionic AT2 0.77 - 0.67 

Non Ionic NT1 0.75 - 0.65 

Gillot (1997) 
Anionic SDS 

1 
0.98 400 L oxidation ditch, 0.5 

m water height, FB. Anionic SLS 0.97 
Non Ionic ELA 0.82 

Capela (1999) 

Anionic SDS 

1 

1 - 1.02 200 L column, water 
height between 1.55 - 3 m, 

FB. 

Non Ionic ELA 

0.82 - 0.64 

0.47 - 0.81 

Three real sites from 
volumes of 265, 643 et 489 
m3, water height between 

2.5 and 6 m, FB 

Painmanakul et 
al. (2008) 

Anionic SLS 50-1900 0.79-0.49 

0.4 m height column; 0,05 
m diameter, isolated 

bubbles generated with 
single orifice of 0.29 - 0,48 

mm  

Non Ionic 

Fatty alcohol 
benzyl 

ammonium 
bromide 

C12/C18, 10 EO, 
n-butyl end 

caped 

86-3500 0.45-0.44 

Cationic 

lauryl dimethyl 
benzyl 

ammonium 
bromide 

110-2000 0.4-0.40 

FB: fine bubbles aeration 

Even at very low concentrations (1mg L-1), surfactants can impact the oxygen transfer and this 

effect is in most cases negative if not equal. Independently of the surface tension of the 

surfactant solution (associated to the surface concentration), the magnitude of this influence is 

related to the surfactant molecule. Two different surfactant solutions that have the same surface 

tension may not produce the same effect on oxygen transfer. According to Rosso et al. (2006), 

the impact on oxygen transfer is conditioned by the surfactants diffusivity through the liquid 

film which is related to their molecular weight: light molecules migrate faster than heavy 

molecules and consequently their impact on oxygen transfer would be more significant.  

To explore the different mechanisms involved in the surfactant`s impact on oxygen transfer, 

several studies have evaluated separately the effect of surfactants on the liquid-side oxygen 

transfer coefficient (𝑘𝑘𝐿𝐿) and on the interfacial area (𝑎𝑎) (Wagner and Pöpel, 1996; Capela, 1999; 

Gillot et al., 2000; Vasconcelos et al., 2003; Rosso et al., 2006; Sardeing et al., 2006; Painmanakul 

and Hébrard, 2008; Hebrard et al., 2009; Jamnongwong et al., 2010). The results have provided 

significant comprehension elements on the mechanisms at the origin of the surfactant’s impact 

on oxygen transfer. The following overlapping effects have been proposed when surfactants 

accumulate at the bubble surface:  

- Surfactants reduce both the surface tension and bubble coalescence and consequently 

the bubble size diminishes leading to an increment of the interfacial area (𝑎𝑎).  
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Simultaneously, smaller bubbles have lower rise velocity thus favouring the gas hold-up 

(𝜀𝜀𝐺𝐺) and the interfacial area (𝑎𝑎). 

- Adsorbed surfactants increase the bubbles drag coefficient and slow down the rising 

bubbles which ends-up with an increment of the gas hold-up (𝜀𝜀𝐺𝐺) and interfacial area 

(𝑎𝑎). In contrast, for a constant bubble size, the reduction of the rising velocity leads to a 

reduction of the liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿), according to the Higbie’s 

model. 

- The oxygen diffusivity into the liquid is hindered and consequently the liquid-side 

oxygen transfer coefficient decreases (𝑘𝑘𝐿𝐿).  

 

Whether the oxygen transfer decreases or remains constant in the presence of surfactants 

depends on how important is the increase of the interfacial area (𝑎𝑎) compared to the reduction 

of the liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿).  

Vasconcelos et al. (2003) and Sardeing et al. (2006) found that in presence of surfactants 

(anionic, cationic, and non-ionic) the liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿) lies between the 

theoretical values for bubbles with mobile (Higbie, 1935; Calderbank and Moo Young, 1961) and 

rigid interface (Frössling, 1938).  

On the other hand, before the adsorbed surfactants have an effect on oxygen transfer, these 

substances need first to adsorb to the bubble surface. Under this approach, by means of dynamic 

surface tension measurements (DST) some studies have evaluated the correlation of surfactant’s 

adsorption kinetics with oxygen transfer (Masutani and Stenstrom, 1991; Capela, 1999; Rosso et 

al., 2006). In fact, surfactants with low adsorption kinetics would take longer to adsorb and 

saturate the bubble surface and consequently their effect on oxygen transfer would be 

significant only if the gas-liquid contact time is higher than the adsorption time (e.g. reactors 

with important liquid height). The results from Capela (1999) showed first that different 

surfactants with an equal concentration (10 mg L-1) have different adsorption times (1 minute 

for a non-ionic surfactant versus a few seconds for an anionic surfactant).  Subsequently, the 

relatively high adsorption time of the mentioned non-ionic surfactant, helped the author to 

explain why the oxygen transfer decreased when increasing the liquid height of a bubble column 

filled with clean water added with non ionic surfactants (1 mg L-1). When increasing the liquid 

height, surfactants with low adsorption kinetics have enough time to adsorb to the bubble 

surface and affect the oxygen transfer.   
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In activated sludge the impact of anionic surfactants has been studied by Henkel (2010) in two 

membrane bioreactors fed with synthetic greywater. Even for very high surfactants 

concentrations in the wastewater influent (between 62 and 70 mg L-1), and for solids retention 

times (SRTs) ranging between 12 and 80 days, surfactants concentration in the activated sludge 

remained very low (0.3 mg L-1). According to this author, these concentrations were too low to 

observe an effect on oxygen transfer. Activated sludge in membrane bioreactor (MBR) has 

higher solids retention time (SRT) and higher biomass concentration compared to conventional 

activated sludge systems (CAS). As a result, the degradation of soluble pollution is more 

complete in MBR systems than in CAS. Consequently the surfactants concentration in 

conventional activated sludge is probably higher than in MBRs and the impact of surfactants on 

oxygen transfer might not be insignificant.  

I.2.6.2.2.2 Electrolytes 

Several studies performed in clean water with added salts have shown that these components 

have a positive effect on oxygen transfer (Alves et al., 2004; Painmanakul and Hébrard, 2008; 

Jamnongwong et al., 2010). Because the liquid-side transfer coefficient (𝑘𝑘𝐿𝐿) decreases or 

remains constant in the presence of salts, the enhancement of oxygen transfer can be attributed 

to a significant increase of the interfacial area (a). However, because these studies are limited to 

the use of Na2SO4 (42.6 g L-1) and NaCl (1.2-100.0 g L-1) respectively, the mechanisms at the 

origin of this impact are not completely elucidated for the salt species. In fact, the inhibition of 

bubble coalescence is often the first evoked mechanism to explain the oxygen transfer increase: 

(i) by means of a smaller bubble size the interfacial area (𝑎𝑎) is extended and (ii) because small 

bubbles have lower rising velocities, the gas hold-up (𝜀𝜀𝐺𝐺) is expanded. However, the study of 

Craig (2004) has shown that certain anion-cation combinations do not interfere with bubble 

coalescence and correlates this effect with the ionic strength of the dissolved salts. Besides, the 

work from Quinn et al. (2014) performed with five different dissolved salts provides significant 

insights on other mechanisms in which electrolytes can affect the oxygen transfer. This author 

showed that isolated rising bubbles (~2.3 mm) become more spherical as the salt concentration 

increased, the resulting bubble shape being dependent of the solute type and concentration. 

Furthermore, it was observed that regardless of the dissolved salt and concentration, the bubble 

shape seems to determine the bubble rising velocity (Figure I.10) 
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Figure I.10. Relationship between the bubble rise velocity and aspect ratio (the inverse of eccentricity) for water and 
five different dissolved salts (0.005 M – 2.0 M) (Quinn et al., 2014) 

 

 

In activated sludge the effect of dissolved salts on oxygen transfer is not reported in the 

literature. In activated sludge the electrical conductivity, an indication of the content of 

dissolved salts, is classically near to 1000 𝜇𝜇S cm-1 (~1 g L-1). This value is almost twice the clean 

tap water conductivity (~550 𝜇𝜇S cm-1) but inferior to the fixed value of 1500 𝜇𝜇S cm-1 above 

which the oxygen transfer measurements in clean water must be performed to avoid the impact 

of dissolved salts in oxygen transfer (NF EN 12255-15:2004).  This suggests that the content of 

dissolved salts in activated sludge is not significant enough to have a significant impact on 

oxygen transfer. 

I.2.6.2.2.3 Activated sludge interstitial water 

Jimenez (2013) studied the impact of soluble substances contained in activated sludge 

interstitial water on oxygen transfer. By means of an optical technique for flow and 

concentration visualization (FLIP), the author measured several characteristic variables 

affecting oxygen transfer of an isolated bubble (~1mm) rising in clean water and in three 

different activated sludge interstitial waters sampled from: (i) the aerated basin, (ii) the sludge 

recirculation loop and (iii) the wastewater influent.  The results showed a decrease in the 

oxygen transfer for the three interstitial waters compared to clean water (𝛼𝛼 factor equal to 0.52, 

0.39 and 0.21 respectively). This oxygen transfer reduction was due to the observed liquid-side 

transfer coefficient (𝑘𝑘𝐿𝐿) depletion associated to the decrease of surface tension, eccentricity and 

bubble rising velocity. Indeed, other variables such as bubble diameter, diffusion coefficient, 

liquid density and viscosity as well as the interfacial area (𝑎𝑎), were not significantly different 

from one experiment to the other. In activated sludge interstitial water, other mechanisms than 
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the reduction of the diffusivity, would prevail to explain the value of the liquid-side oxygen 

transfer coefficient (𝑘𝑘𝐿𝐿) but remain not understood: the formation of a surfactants barrier on the 

gas liquid interface that would inhibit locally the mobility of oxygen molecules in a thin layer 

around the bubble.  

 

Conclusions on the impact of dissolved substances on oxygen transfer 

 

− In clean water the dissolved substances such as surfactants and electrolytes even at low 

concentrations have generally a negative impact on oxygen transfer. Dissolved 

substances in the interstitial water of activated sludge seem to impact negatively the 

oxygen transfer coefficient. Because the presence of dissolved substances increases or 

do not modify the interfacial area (𝑎𝑎), it is the decline of the liquid-side transfer 

coefficient (𝑘𝑘𝐿𝐿) that explains the depletion of the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎). 

However, in activated sludge, surfactants and electrolytes seem to have a non significant 

impact on oxygen transfer because of their low concentrations. Nevertheless, results 

available on the literature on this aspect are rare and further examination is required. 

 

 

I.2.6.2.3 Solids retention time (SRT) 

Increasing the solids retention time enhances the degree of biodegradation of the substances 

impacting negatively the oxygen transfer, principally the surfactants. Therefore a positive 

correlation between the SRT (also called mean residence time , MCRT) and oxygen transfer has 

been observed in the literature (Rosso et al., 2005; Gillot and Héduit, 2008; Henkel, 

2010)(Figure I.11). However, these authors have observed that for different types of activated 

sludge, the SRT do not fully explain the decrease of the oxygen transfer coefficient (the alpha 

value):  a given SRT value may correspond to different alpha values (Figure I.11). 
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Figure I.11. Alpha factor for different solids retention time (SRT) obtained by different authors (from Gillot and 
Héduit, 2008).  

 

Therefore other parameters have to be considered in order to upgrade the estimation of the 

alpha factor. Rosso et al. (2005) coupled the gas flow rate with the SRT but still observed an 

important dispersion of the data in respect to the alpha value (R2=0.52). Having observed that 

the reactor’s liquid height above the gas diffusers had a negative effect on the oxygen transfer in 

activated sludge, Gillot and Héduit (2008) have introduced the bubble Equivalent Contact Time 

(ECT) in order to improve the estimation of the alpha factor. This variable would take into 

account the fact that bubbles having a longer contact time with the liquid phase are longer 

exposed to the surfactants absorption at their surface thus leading to an increment in the oxygen 

transfer depletion. Coupling the SRT with an estimation of the bubble Equivalent Contact Time 

(a function of the gas flow rate and diffuser submergence), the authors predicted the alpha 

factor for 14 full-scale wastewater treatment plants operated under extended aeration. Despite 

the satisfactory modelled results, some assumptions such as a non-significant effect of the 

activated sludge on bubble size (𝑑𝑑𝑏𝑏) and the liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿) may 

require further exploration. 

Besides, having observed that the MLVSS (mixed liquor volatile suspended solids) concentration 

is well correlated with the oxygen transfer decrease in activated sludge (cf. I.2.6.2.1.1) the work 

from Henkel (2010) coupled the effect of the MLVSS on oxygen transfer with the effect of SRT. 

The proposed empirical correlation to predict the alpha factor (𝛼𝛼) is presented in Equation I.37 

and illustrated in the Figure I.12.  

 

𝛼𝛼 = 0.51 − 0.062 ×𝑀𝑀𝐿𝐿𝑉𝑉𝑆𝑆𝑆𝑆 + 0.019 × 𝑆𝑆𝑅𝑅𝑂𝑂     ±0.114 I.37 

 

SRT (days)
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Despite the interest of this model, the impact of activated sludge on the hydrodynamic 

conditions on oxygen transfer remained unexplored. 

 

 

Figure I.12. Alpha factor for different sludge MLVSS concentration and the SRT according to the correlation proposed 
by Henkel (2010).  

 

I.2.6.2.4 Activated sludge apparent viscosity 

Viscosity influences the hydrodynamic conditions of the gas-liquid dispersion. As previously 

mentioned (cf. I.2.6.2.1), viscosity can impact the bubble size at formation, promote the bubble 

coalescence and reduce the bubble rising velocity. These multiple effects end up affecting the 

oxygen transfer characteristics parameters 𝑎𝑎 and 𝑘𝑘𝐿𝐿.  Apart from the context of activated sludge, 

several works carried out with Newtonian and non-Newtonian fluids have observed that an 

increase of viscosity leads to a decrease in oxygen transfer (Henzler, 1980; Schumpe and 

Deckwer, 1987; Chisti and Moo-Young, 1989; Shi et al., 1990; Al-Masry, 1999; Kawase and 

Kumagai, 1991; Cerri et al., 2008; Thomasi et al., 2010).  According to the review completed by 

Seyssiecq et al. (2003), the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) in non-Newtonian suspensions 

decreases as a power law with the increment of apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎) as follows: 

 

𝑘𝑘𝐿𝐿𝑎𝑎 ∝ 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−𝐶𝐶   with 0.25 < C < 0.84 I.38 

 

The large range of values of the empirical constant C indicates that the apparent viscosity is not 

the solely factor that explain the variability of 𝑘𝑘𝐿𝐿𝑎𝑎 is quite variable. The viscosity effect is not 

only related to the physicochemical properties of the aerated suspension but also to the design 
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and operating conditions that can affect the gas-liquid flow regime such as diffuser type, reactor 

geometry, superficial gas velocity, etc. 

In activated sludge, Krampe and Krauth (2003) have evaluated the effect of sludge apparent 

viscosity on oxygen transfer in a bubble column. The authors measured the oxygen transfer 

coefficient in activated sludge with a MLSS concentration range from 8 to 28 g L-1 (obtained by 

diluting the sludge samples) and studied the sludge rheological behaviour. Knowing that based 

on the bubble size and rising velocity previous works had estimated a shear rate of 40 s-1 in the 

aerated reactor, these authors correlated the apparent viscosity at 40 s-1 (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,40) to the oxygen 

transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎). Independently of the two types of used diffusers (fine bubbles diffuser 

and injector for compressed air) the results showed an oxygen transfer depletion with the 

increase in apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,40). The alpha factor (𝛼𝛼) was written as follows: 

 

𝛼𝛼 =  𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,40
−0.456   I.39 

 

Despite a high data scattering at the lowest apparent viscosity values, these results highlighted 

the significant impact of the sludge apparent viscosity on oxygen transfer. According to the 

authors, apparent viscosity relates more distinctly to the alpha factor than to the MLSS 

concentration. However this correlation is limited to a shear rate of 40 s-1 and although it 

considers the sludge viscosity, it does not take into account the specific sludge rheological 

behaviour. 

From these results, two aspects appear of interest in order to better evaluate the correlation 

between the oxygen transfer and the sludge apparent viscosity: (i) determining the range of 

shear rate prevailing in aerated bioreactors and (ii) considering the specific activated sludge 

rheology. 

 

I.2.6.2.4.1 Correlations predicting the oxygen transfer coefficient as a function of viscosity 

The impact of viscosity (and apparent viscosity) on oxygen transfer has appeared to be 

significant and many authors have included it in empirical correlations to predict the oxygen 

transfer in different reactors configurations.  These equations are summarized in the review of 

Garcia-Ochoa and Gomez (2009).  For instance, in stirred reactors the oxygen transfer coefficient 



Chapter I. Literature review 

64 
 

(𝑘𝑘𝐿𝐿𝑎𝑎) is written as a function of the superficial gas velocity (𝑈𝑈𝐺𝐺), viscosity (𝜇𝜇) or apparent 

viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎) and aeration specific power input (𝑃𝑃/𝑉𝑉):  

 

𝑘𝑘𝐿𝐿𝑎𝑎 = 𝐴𝐴 ∙ 𝑈𝑈𝐺𝐺𝐴𝐴 ∙ 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶 ∙ (𝑃𝑃/𝑉𝑉)𝐷𝐷 I.40 

 

where A, B, C and D are empirical constants and the power input (𝑃𝑃/𝑉𝑉) depends on the tank 

geometry, the stirrer type and geometry and the stirring rate.  

In bubble columns the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) can be written as: 

 

 𝑘𝑘𝐿𝐿𝑎𝑎 = 𝐴𝐴 ∙ 𝑈𝑈𝐺𝐺𝐴𝐴 ∙ 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶  I.41 

 

The constants (𝐴𝐴 , 𝐵𝐵, 𝐶𝐶, etc) of these empirical correlations have been studied for Newtonian 

fluids such as water, glycerol, electrolytes solution as well as for non-Newtonian fluids such as 

xanthan gum, CMC (carboxymethyl cellulose), PAA (polyacrylamide) and in some cases 

biological broth (Gabelle et al., 2012). For non-Newtonian fluids, the impact of apparent 

viscosity requires the estimation of the average shear rate related to the superficial gas velocity 

in the aerated bioreactor as well as the fluid rheological behaviour. In the domain of activated 

sludge the empirical constants of this type of correlation are not available in the literature. 
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Conclusions on the impact of activated sludge on oxygen transfer 
 

− The suspended solids fraction appears to be the main parameter responsible for the 

oxygen transfer decrease in activated sludge compared to clean water. Multiple effects 

seem to be behind this impact. An increase in the suspended solid concentration 

modifies the hydrodynamic conditions by producing an increase in the suspended 

viscosity. Hence the bubble coalescence and gas phase characteristics such as bubble 

size, rise velocity and gas hold-up are affected. In association with the steric effect, the 

floc volume and size are sludge properties that may also explain the oxygen transfer 

reduction in activated sludge.    

− Although it has been observed that the interstitial water of activated sludge has a lower 

liquid-side transfer coefficient than clean water, the impact of soluble substances such 

as surfactants and dissolved salts on oxygen transfer in activated sludge still requires 

further exploration since the literature results are scarce and not conclusive. 

− Nevertheless, from the results that show a positive correlation between the alpha factor 

and the solids retention time (SRT) it can be inferred that the surfactants have an effect 

on oxygen transfer. Analytical and empirical correlations have been proposed to predict 

the alpha factor as a function of the SRT coupled with the equivalent contact time (ECT) 

or with the mixed volatile liquor suspended solids (MVLSS). However these do not 

consider the potential effects of activated sludge on the gas-liquid dispersion and the 

hydrodynamic conditions. 

− Besides, a few works have correlated the oxygen transfer reduction to the increase in 

sludge apparent viscosity determined at fixed shear rate (40s-1). For a better evaluation 

of apparent viscosity on oxygen transfer it would be necessary to estimate the shear 

rate prevailing in the aerated bioreactor considering the hydrodynamic conditions such 

as gas velocities and liquid properties (e.g. sludge rheology).  

− Finally, empirical equations correlating the oxygen transfer to the apparent viscosity 

associated to the hydrodynamic conditions (in terms of superficial gas velocity) and the 

fluid rheology are proposed in the literature for Newtonian and non-Newtonian fluids, 

but not in the field of activated sludge. 
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I.3 Rheology principles 

Rheology studies the flow and deformation of matter under the application of a shear force. 

From the ancient Greek rheo (𝜌𝜌𝜀𝜀́𝜔𝜔) which means flow, the concept of rheology was introduced 

by Bingham in 1928 to establish a discipline regrouping knowledge from material science and 

fluid mechanics and allowing to evaluate problems related to the flow of plastic materials and 

non-Newtonian fluids.  

I.3.1 Laminar shear flow 

The rheological study of a fluid is performed by developing a laminar shear flow. This implies 

the following assumptions: 

1. The material is composed of adjacent layers of infinitely thin thickness. 

2. This flow produces a relative slip between the various layers. 

3. There is no transfer of matter between the various layers. 

 

When the laminar shear flow takes place, frictional forces tangential to the layers surface (dS) 

are exerted at the interfaces of the successive layers. These forces, shown in Figure I.13, called 

elementary shear forces (dF), tend to slow down the neighbour layers moving faster and to 

accelerate those moving at lower velocities. 

 

Figure I.13. Shear forces exerted on two adjacent layers in a laminar shear flow 

 

The ratio of the shear force to the unit surface is called shear stress (τ). 

𝑑𝑑𝜏𝜏 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝐺𝐺

   or   𝜏𝜏 = 𝑑𝑑
𝐺𝐺

   (Pa) I.42 

  

The infinitesimal displacement 𝑑𝑑𝑑𝑑 of a layer with thickness 𝑑𝑑𝑧𝑧 with respect to a neighbor layer is 

named shear or deformation (𝛾𝛾).  

𝑑𝑑𝛾𝛾 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

 I.43 

  

The shear velocity, the derivative of shear with respect to time, is called shear rate (�̇�𝛾). 

dz

dS dF

dx

-dF
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�̇�𝛾 =
𝑑𝑑𝛾𝛾
𝑑𝑑𝑆𝑆

 (s-1) I.44 

 

According to the Newton’s law (1687), the shear stress (𝜏𝜏) is proportional to the shear rate (�̇�𝛾) 

by means of a proportionally constant initially referred as ‘the lack of slipperiness of the fluid 

elements’ and today known as the dynamic viscosity (𝜇𝜇). The Newton’s law is expressed as:  

 

𝜏𝜏 = 𝜇𝜇�̇�𝛾 I.45 

 

I.3.2 Rheological measurements 

The primary objective of a rheological study consists in determining how the shear stress 

evolves with the exerted shear rate or vice versa.  

When performing rheological measurements, the following assumptions must be considered: 

• The flow regime is laminar 

• The flow is steady 

• The fluid is incompressible 

• The system is isothermal 

• Wall slip is negligible 

• Edge effects are negligible 

 

I.3.2.1 Rheometers 

To perform rheological measurements, two types of rheometers are implemented to develop the 

laminar shear flow: tubular rheometers (Figure I.14) and rotational rheometers. The different 

geometries induce various shear ranges and are more or less adapted to the fluid characteristics 

such as viscosity, settleability, sample availability and particle size.  

In the tubular rheometer, the shear flow is generated by applying a pressure on the fluid entering 

into a capillary. The shear stress is determined under the assumption that the pressure drop 

(∆𝑃𝑃) of a fluid flowing inside a tube of radius R and length L, is only due to friction.  
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Figure I.14. Tubular rheometer 

 

 

As in a tube the velocity profile is a function of the radius (r), the shear rate and shear stress are 

calculated at the tube’s wall (�̇�𝛾𝑤𝑤,𝜏𝜏𝑤𝑤) where the shear rate is maximum. By determining the 

longitudinal pressure loss (∆𝑃𝑃/𝐿𝐿) associated to the fluid flow rate (Q) in a tube of a given 

geometry (L,R), the shear stress (𝜏𝜏𝑤𝑤), shear rate (�̇�𝛾𝑤𝑤) and dynamic viscosity (𝜇𝜇) are estimated 

according to the Poiseuille’s law, with the equations indicated in Table I.3 for Newtonian fluids.   

In rotational rheometers, the fluid is placed in the gap between a mobile and an immobile surface 

such as concentric cylinders, plate-plate surfaces and cone-plate surfaces. The laminar shear 

flow is generated as the mobile surface rotates at a given angular velocity (w) associated to a 

torque (M). Figure I.15 illustrates the different geometries used in rotational rheometers.  

 

Figure I.15. Geometries of rotational rheometers: a. Concentric cylinder, b. Plate-plate, c. Cone-plate. 

 

 

The equations to estimate the shear stress, shear rate and dynamic viscosity in capillary and 

rotational geometries are presented in Table I.3 (for Newtonian fluids).  
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Table I.3. Equations to calculate the shear rate, shear stress and dynamic viscosity in capillary and rotational 
rheometers. 

Rheometer Shear rate (�̇�𝛾) Shear stress (𝜏𝜏) Viscosity (𝜇𝜇) 

Tubular    

Rotational 

Concentric 
cylinder 

   

Plate-Plate    

Cone -Plate    

 

 

Rheometer with concentric cylinders geometry are known as the reference apparatus in most of 

the cases studying rheology of fluid materials (Mori et al., 2007).  In this type of geometry, 

having a higher cylinder surface implies the generation of lower shear stresses. Consequently, 

the implementation of a geometry with a double concentric cylinder is privileged when a low 

range of shear stress is required (as for low viscosity fluids). The advantages and drawbacks of 

using the tubular and the rotational rheometers are listed in Table I.4.  

 

Table I.4. Advantages and drawbacks of tubular and rotational rheometers (Dupuis, 2008; Ratkovich et al., 2013). 

 Tubular Rotational 
Advantages Mechanically simple. 

Good precision. 
On line testing. 
Large range of shear is applicable (with 
additional tubes) 
Well established corrections.  
Low cost. 

Low shear range is applicable: Yield stress 
is easily determined 
Time dependant effects can be measured 
(i.e. thixotropy) 
Small volume sample required. 
Widely used, commercially available. 
 

Disadvantages Large volume sample required 
Difficulty to reach the lowest values of 
shear stress. 
Cannot measure time effects (i.e. 
viscoplasticity, thixotropy). 

Centrifugal forces can cause changes on 
concentration gradient in the measuring 
gap. 
Settling may cause sample heterogeneity 
and therefore measurement errors. 
Expensive. 
Plate-plate and cone-plate geometries are 
not adapted to low viscosity fluids. 

 

When the fluid under study contains solid particles or aggregates it is recommended to consider 

that particle size should be significantly lower than the space between the two surfaces (Dupuis, 

2008) in order to avoid a system blockage and allow the particles to be dragged with the fluid.  

This is important especially for plate-plate and cone-plate geometries for which the gap between 

the two surfaces is very small (between 1 mm and 10 𝜇𝜇m). Concerning the settling capacity of 
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some suspensions, geometries with small volumes are best adapted in order to avoid sample 

heterogeneity during the measurements.  At the same time, small geometries may induce wall 

slip effects (Ratkovich et al., 2013). 

Besides, because rheology principles are based on a laminar flow, it is important to survey the 

flow conditions in the rheometer in order to avoid turbulences or vortices that may induce to 

measurement errors.  

In concentric cylinder geometries (Couette geometry), the critical Reynolds number (𝑅𝑅𝐻𝐻𝑐𝑐), below 

which the flow would still be laminar is a function of the mean radius between the rotor and the 

stator (𝑅𝑅�) and the gap length (𝐻𝐻) as follows: 

𝑅𝑅𝐻𝐻𝑐𝑐 = 41.3�
𝑅𝑅�
𝐻𝐻

 I.46 

 

And the Reynolds number is determined by the angular velocity (𝑤𝑤), the rotor radius (𝑅𝑅𝑖𝑖), the 

gap length (𝐻𝐻) and the fluid density (𝜌𝜌𝐿𝐿) and viscosity (𝜇𝜇𝐿𝐿) as follows: 

 

𝑅𝑅𝐻𝐻𝑐𝑐 =
𝐻𝐻𝑅𝑅𝑖𝑖𝑤𝑤𝜌𝜌𝐿𝐿
𝜇𝜇𝐿𝐿

 I.47 

 

In capillary rheometers a laminar flow is considered to occur at a Reynolds number below 

approximately 2000. In a capillary tube the Reynolds number is function of the fluid velocity (𝑈𝑈), 

tube diameter (𝐶𝐶), and fluid density (𝜌𝜌𝐿𝐿) and viscosity (𝜇𝜇𝐿𝐿) as follows: 

 

𝑅𝑅𝐻𝐻 =
𝐶𝐶𝑈𝑈𝜌𝜌𝐿𝐿
𝜇𝜇𝐿𝐿

 I.48 

 

I.3.3 Rheological behaviours 

Fluids can exhibit different behaviours according to the way in which the shear stress (𝜏𝜏) 

evolves with the shear rate (�̇�𝛾). These rheological behaviours are represented in the rheogram 

or flow curve in Figure I.16 (𝜏𝜏 vs. �̇�𝛾).  
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Figure I.16. Representation of different rheological behaviours in a rheogram. 

 

When the correlation between the shear stress and the shear rate is linear, the fluid is said to 

exhibit a Newtonian behaviour which means that the dynamic viscosity, the slope of the flow 

curve, is independent on the exerted shear rate. Pure liquids such as water, solvents, glycerol, 

benzene, etc, are generally Newtonian (Dupuis, 2008). 

I.3.3.1 Non-Newtonian fluids  

For fluids that exhibit a non-Newtonian behaviour, the shear stress does not follow a linear 

trend in respect to the shear rate. Viscosity is then a function of the exerted shear and the term 

apparent viscosity is introduced to refer to the viscosity of a fluid associated to a given shear rate. 

The non-Newtonian behaviours are listed in the following paragraphs. 

I.3.3.1.1 Shear-thinning  

When the increment of the shear rate (�̇�𝛾) leads to a reduction of the apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎), 

the fluid is said to exhibit a shear-thinning behaviour. This is generally explained by the fact the 

structural units composing these fluids (particles, aggregates, etc) are rearranged and stratified 

in the flow when submitted to a higher shear stress and consequently the fluid circulation is 

easier. At high shear rates the apparent viscosity becomes almost constant and is no longer 

dependent on the shear rate; this is called the limit viscosity (𝜇𝜇∞). 

I.3.3.1.2 Shear-thickening  

When the apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎) increases with the increase of shear rate (�̇�𝛾), the fluid is said 

to exhibit a shear-thickening behaviour. This behaviour is rare and occurs in concentrated 

slurries when the increment of the shear rate leads to the formation of clusters that rigidify the 
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suspension structure. If the suspension is composed by associative polymers, an increase in 

shear forces favours the polymer interactions resulting in a more solid structure.  

I.3.3.1.3 Viscoplasticity  

For some non-Newtonian fluids, generally suspensions having strong interparticle forces (Van-

Der-Waals forces), it is necessary to overcome a threshold shear stress in order to disrupt these 

forces and induce flow. Below this shear stress, referred as yield stress (𝜏𝜏𝑦𝑦), the suspension 

behaves as a solid and flow does not occur.  This initial solid behaviour is commonly explained 

by the presence of an interconnected three-dimensional network of suspended aggregates 

(Seyssiecq et al., 2003).   

The experimental identification of a shear stress requires the performance of rheological 

measurements at very low shear rates and with high precision instruments. In the practice it 

may be difficult to determine the yield stress (𝜏𝜏𝑦𝑦) because it is required to apply a shear stress 

that increases uniformly and exceeds the yield stress by a small amount. To circumvent this 

technical barrier, the yield stress is often estimated by extrapolating the experimental rheogram 

to the ordinate (Seyssiecq et al., 2003) as illustrated in Figure I.17. 

 

 
Figure I.17. Typical flow curve of a viscoplastic fluid and estimated yield stress from the extrapolation of 

experimental data. 

 

I.3.3.1.4 Thixotropy 

In addition to the rheological behaviours explained up to this point, some non-Newtonians fluids 

may exhibit a rheological behaviour that is time-dependant. In fact, different values of shear 

stress (and viscosity) can be measured under the same exerted shear rate and an undetermined 

time is required to reach stationary measurements. This phenomenon indicates that the 

suspension structure continues to change and respond to the exerted shear rate even when the 

latter has already been modified or stopped (hysteresis). If the apparent viscosity decreases or 

log τ

τy

log γ
.

experimental
extrapolation
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increases with the duration of the exerted shear rate, the fluids are either called thixotropic or 

antithixotropic respectively. After a certain motionless period, suspensions would recover their 

initial structure (Tixier, 2003; Dupuis, 2008). 

Typical identification of this time-dependant behaviour in a flow curve consists first in 

submitting the suspension to successive increasing levels of shear stress. Subsequently the shear 

stress is continuously decreased down to the initial point. For a thixotropic fluid the increasing 

flow curve is over the decreasing rheogram. The Figure I.18 represents the typical thixotropic 

behaviour in a flow curve.   

 

Figure I.18. Representation of a thixotropic behaviour in a rheogram.  

 

I.3.3.1.5 Viscoelasticity 

Similarly to thixotropic fluids, viscoelastic fluids exhibit also a time-dependant behaviour. 

However these suspensions exhibit additionally an elastic behaviour explained by the ability to 

store part of the mechanical energy supplied to the fluid as elastic energy in inter-particle bonds 

for instance (Seyssiecq et al., 2003).  Consequently when shear stress is reduced to zero, these 

suspensions retrieve a fraction of the stored energy and a partial elastic recovery is observed. In 

contrast to this behaviour, for only viscous fluids the deformation energy is entirely dissipated 

as heat (Dupuis, 2008). For the characterization of viscoelastic fluids, dynamic methods are 

implemented and other variables such as the storage modulus (𝐺𝐺′) and loss modulus (𝐺𝐺′′) 

associated with the stored energy and the dissipated energy as heat, are introduced. Further 

details of this more complex characterization can be found in Dupuis (2008). 

I.3.4 Activated sludge rheology 

Activated sludge suspensions have been largely described as non-Newtonian fluids with a shear-

thinning behaviour: their viscosity decreases with an increment of the shear rate (Forster, 1982, 

τ

γ
.
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1983; Sutapa, 1996; Rosenberger et al., 2002; Seyssiecq et al., 2003; Tixier et al., 2003; Laera et 

al., 2007; Seyssiecq et al., 2008; Khongnakorn et al., 2009; Xia et al., 2009; Yang et al., 2009; 

Ratkovich et al., 2013; Forster, 2002; Jin et al., 2006; Mori et al., 2006). Besides, depending on 

the suspended solids concentration, activated sludge can exhibit viscoplastic behaviour 

(presence of a yield stress). According to Forster (2002), the yield stress is negligible for 

activated sludge with suspended solids concentrations below 11 g L-1.  

I.3.4.1 Activated sludge thixotropy 

Some activated sludge can exhibit thixotropic behaviour. The study carried out by Tixier et al. 

(2003) showed that this behaviour is associated to the presence of filamentous bacteria. This 

authors performed rheological measurements with a rotational rheometer and a double gap 

coaxial cylindrical geometry, on two different activated sludge samples with the same 

suspended solids concentration (5.5 g L-1) but different in the level of proliferation of 

filamentous bacteria: “high” versus “low”. The resulting rheograms, presented in Figure I.19, 

show that both activated sludge samples manifested thixotropy, though the sample with high 

proliferation of filamentous bacteria (F1) showed a more significant hysteresis area.  

 

Figure I.19. Flow curve for two types of filamentous activated sludge. F1: Excessive filamentous sludgesignificant 
hysteresis; F2 : Low-filamentous sludge. Rheometer: rotational with double gap coaxial cylindrical geometry. (from 

Tixier et al., 2003) 

 

Besides, the obtained flow curves, either in the increasing or the decreasing ramp of shear rate, 

did not exhibit a steady trend, the irregularity being more pronounced for the most filamentous 

sample. 

Since the rheology of these suspensions depends on the previously exerted shear rate, the 

rheological behaviour of such systems seems difficult to capture. Consequently, when 
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performing rheological measurements with fluids exhibiting this behaviour, it is recommended 

to maintain a constant shear until a steady value of apparent viscosity is reached (Forster, 

2002). Alternatively, uniform protocols including pre-shear phases at high shear rates are 

usually implemented. This allows obtaining a similar internal structure before the rheological 

characterization (Seyssiecq et al., 2003). 

I.3.4.2 Activated sludge rheology modelling 

The activated sludge rheological behaviour is represented using classical non-Newtonian laws.  

In the absence of a yield shear stress (non plastic fluids), the rheological behaviour can be 

modelled using the Ostwald (1925)-de Waele (1923) equation that integrates the consistency 

index (𝐾𝐾) and the flow index (𝑛𝑛) to correlate the shear stress (𝜏𝜏) to the shear rate (�̇�𝛾) in a power 

low as follows: 

𝜏𝜏 = 𝐾𝐾�̇�𝛾𝐺𝐺 I.49 

 

The consistency index (𝐾𝐾) is proportional to the sludge apparent viscosity.  As activated sludge 

is a shear-thinning fluid, the index flow (𝑛𝑛) should be lower than 1.   

The Sisko model integrates the infinite shear rate viscosity (𝜇𝜇∞) which corresponds to the 

plateau viscosity obtained at very high shear rates. The Sisko model is written as:  

 

𝜏𝜏 = 𝜇𝜇∞�̇�𝛾 + 𝐾𝐾�̇�𝛾𝐺𝐺 I.50 

 

The viscoplastic behaviour can be represented with the Herschel-Bulkley model which integrates 

the yield stress (𝜏𝜏𝑦𝑦) to the Ostwald-de Waele equation as follows: 

 

𝜏𝜏 = 𝜏𝜏𝑦𝑦 + 𝐾𝐾�̇�𝛾𝐺𝐺 I.51 

 

If the flow index in the Herschel-Bulkley model (Equation I.51) is equal to the unit (𝑛𝑛=1), the 

model is called the Bingham model.  Also, the Casson equation is used to represent the activated 

sludge viscoplastic behaviour as follows: 

 



Chapter I. Literature review 

76 
 

√𝜏𝜏 = �𝜏𝜏𝑦𝑦 + �𝐾𝐾�̇�𝛾 I.52 

 

Although the Ostwald-de Waele and the Herschel-Bulkley models seem to be the most 

commonly used for activated sludge in the literature, Xia et al. (2009) showed that the model 

best fitting the rheological behaviour of activated sludge depends on the range of the considered 

shear rate. This is in agreement with Baudez et al. (2004) who additionally underline that 

rheological models should be used to represent the sludge behaviour only in the range of the 

shear rate and shear stress in which rheological measurements have been performed.   

In this context, if the rheological measurements are performed in a low range of shear rate and a 

yield stress (𝜏𝜏𝑦𝑦) is observed, viscoplastic models (Herschel Bulkley, Bingham, Casson) are 

convenient. Instead, if the applied range of shear rate range is high and the infinite shear rate 

viscosity (𝜇𝜇∞) is identified, the Sisko model is more adapted. If the range of the applied shear 

rate is intermediate and neither the yield stress (𝜏𝜏𝑦𝑦) nor the infinite shear rate viscosity (𝜇𝜇∞) are 

determined, the Ostwald-de Waele model seems to be appropriate.  

Regarding the modelling practices, Ratkovich et al. (2013) highlighted the importance of 

avoiding model “overparameterization”, which refers to models including more rheological 

parameters than necessary to describe the experimental rheological data. Instead of 

representing the true underlying relation between the rheological parameters and the 

rheological behaviour, overparameterization could lead to over fit the data. Consequently some 

rheological parameters could become “unidentifiable” or in other words they could lose their 

power of representing the experimental data thus leading to models with less prediction 

capacity.   

Table I.5 and Table I.6 present a summary of the rheological parameters (𝜏𝜏𝑦𝑦,𝐾𝐾,𝑛𝑛, 𝜇𝜇∞) obtained 

in literature studies from the modelling of the activated sludge rheological behaviour under 

different experimental conditions. These tables show that for the same activated sludge sample, 

the rheological behaviour can be represented with shear-thinning or viscoplastic models and 

obtain in general satisfactory determination coefficients (R2>0.95). Comparison between the 

values of rheological parameters presented in theses tables must consider that the sludge 

characteristics (MLSS, COD, etc) and measurement conditions and protocols (rheometer 

geometry, °C, range of shear stress (𝜏𝜏), range of shear rate (�̇�𝛾), …) may determine the rheological 

results as described in the next paragraphs. 
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Table I.5. Literature results for the Ostwald-de Waele rheological model parameters (K and n) determined under 
different conditions: temperature, shear rate, geometry, air flow rate and with activated sludge having different 

characteristics (MLSS, EPS, SRT, soluble COD) 

Author 
T  

(°C) 

Studied parameter 
Rheological model parameters  

Ostwald-de Waele or power law 

MLSS  

(g L-1) 

SRT  

(days) 
�̇�𝛾 (s-1) Geometry 

Air flow 

rate(L h-1) 

K  

(x 10-3Pa.s) 
n R2 

Laera et al. 

(200L7) 
20 

3.7 20 

0-800 CC - 

7.66 0.856 0.99 

6.1 40 5.81 0.886 0.97 

7.9 60 9.16 0.823 0.95 

9.4 80 5.24 0.782 0.97 

22.9 1200 91.71 0.608 0.99 

Seyssiecq et 

al.  

(2008) 

20 

10.0 

 0-200 HRI 0 

341 0.154 

0.92- 

0.99 

15.0 2081 0.192 

18.0 5411 0.142 

24.0 6432 0.114 

28.0 11578 0.107 

35.0 13395 0.114 

Yang et al.  

(2009) 
5-35 

2.7 

30 1-1000 
Cone 

plate 

 

- 

 

9 0.729 0.99 

5.1 34 0.579 0.96 

7.4 57 0.557 0.98 

10.2 150 0.486 0.98 

16.0 1259 0.249 0.89 

Rosenberger 

et al. (2002) 
21 

10-

40.0 
 5-2200 DCC 

 

𝐾𝐾 = 1.9𝐻𝐻(𝑀𝑀𝐿𝐿𝐺𝐺𝐺𝐺0.43)* 

𝑛𝑛 = 1 − 0.22𝑀𝑀𝐿𝐿𝑆𝑆𝑆𝑆0.37 
 

CC: concentric cylinder; HRI: helicoidal ribbon impeller; DCC: double gap concentric cylinder. *Correlation for 
domestic activated sludge 
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Table I.6. Literature results for viscoplastic rheological model parameters (𝝉𝝉𝒚𝒚, K and n) determined from different experimental configurations: temperature, shear rate, geometry 
and with activated sludge having different characteristics (MLSS, EPS, SRT, soluble COD).  

Author 
T  

(°C) 

Studied parameter 
Parameters for Plastic Fluids rheological models 

Bingham Casson Herschel-Bulkley 

MLSS  
(g L-1) 

EPS  
(mg 

gMLSS-1) 

Soluble 
COD   

(mg L-1) 

Activated 
sludge age 

(days) 

𝜏𝜏 
 (Pa) �̇�𝛾 (s-1) Geometry 𝜏𝜏𝑦𝑦 (x 

10-3Pa) 

K  
(x 10-

3Pa.s) 
R2 K  

(x 10-3Pa.s) 
𝜏𝜏𝑦𝑦 

(Pa) 
R2 𝜏𝜏𝑦𝑦 (x 10-3Pa) 

K  
(x 10-

3Pa.s) 
n R2 

Laera et al. 

(2007) 
20 

3.7 

- - 

20 

- 3-1312 CC 

141 2.54 0.98 - - - - - - - 

6.1 40 81 2.39 0.98 - - - - - - - 

7.9 60 125 2.73 0.95 - - - - - - - 

9.4 80 226 3.25 0.95 - - - - - - - 

22.9 1200 737 6.26 0.99 - - - - - - - 

Mori et al. 

(2007) 

 

20 

43 
 

 

 

- 

 

 

 

- - - 0-1000 

CC 

- - - - - - 12230 1524.6 0.312 n.a 

15 - - - - - - 120 163.5 0.525 n.a 

4 - - - - - - 50 8.9 0.775 n.a 

43 

HRI 

- - - - - - 35000 593.3 0.598 n.a 

15 - - - - - - 1000 8.4 0.966 n.a 

4 - - - - - - 90 4.7 0.964 n.a 

15 
DCC 

- - - - - - 310 161.5 0.516 n.a 

4 - - - - - - 20 14.1 0.734 n.a 

20 
43 

  

1.1 
- - - 0-1000 CC 

- - - - - - 12000 1500 0.3 n.a 

0.45* - - - - - - 10000 1300 0.7 n.a 

Yang et al. 

(2009) 

5-

35 

2.74  

 

- 

 

 

- 

 

30 

 

 

 

- 

 

 

1-1000 
Cone-

plate 

89 1.5 0.99 34.7 21.3 0.99 - 1.9 0.97 0.99 

5.08 236 2 0.99 36.7 91.8 0.99 - 2.8 0.951 0.99 

7.43 406 2.7 0.99 42 167 0.99 - 5.2 0.915 0.99 

10.22 887 4 0.99 48.6 433 0.99 - 11.1 0.869 0.99 

16 2096 8.6 0.97 62 1484 0.99 - 108.4 0.62 0.99 

Khongnakorn 
et al. (2010) 

21.5 
4.5-15 - 

- 
+/- 120 

550-900 
- 

- 

0-185 

- 

- 

- 
CC 

- - - - - - 100-700 10-60 1-0.8 n.a 

2.5-6.2 - - - - - - 1000-5000 25-150 1-0.8 n.a 

CC: concentric cylinder; HRI: Helicoidal Ribbon Impeller; DCC: double gap concentric cylinder. (*measurement of EPS after 4 days of substrate absence). 
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Conclusions on activated sludge rheological behaviour and modelling 

 

− Activated sludge is a non-Newtonian fluid with a shear-thinning behaviour. A 

viscoplastic behaviour can be observed for sludge with high MLSS concentrations (ca. 

11 g L-1 according to Forster, 2002).   

− Rheological models integrating two or three rheological parameters are proposed in the 

literature to describe the sludge rheological behaviour. A literature review highlights 

the importance of avoiding model “overparameterization” in which parameters become 

unidentifiable and models lose their prediction capability. 
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I.3.4.3 Sensitivity of activated sludge rheology to measurement conditions 

I.3.4.3.1 Influence of temperature on activated sludge apparent viscosity 

To express the decrease of activated sludge viscosity with an increase in temperature (𝑂𝑂), Yang 

et al. (2009) have obtained the empirical correlation presented in Table I.7 (Equation I.53). This 

relationship was obtained with suspended solids concentration ranging from 0 to 18.7 g L-1.  

For the case of pasty sludge (15% of dry matter) Dieudé-Fauvel et al. (2009), modelled the 

decrease of apparent viscosity with temperature, using a version of the Vogel-Fulcher-Tammann 

(VTF) correlation, shown in Table I.7 (Equation I.54), with the empirical parameters a=0.95; 

𝑑𝑑=90.6; 𝑂𝑂𝑇𝑇=244 K; and 𝐹𝐹=10.5 (R²=0.98).   

 

Table I.7. Empirical correlations expressing the decrease of activated sludge apparent viscosity with an increment of 
temperature. 

CC: Coaxial cylinders 

With the correlation proposed by Yang et al. (2009), the sludge apparent viscosity decreases by 

13.3% when temperature rises from 10 to 20°C, while with the one proposed by Dieudé-Fauvel 

et al. (2009) the reduction of the apparent viscosity is of 18.0%. 

These results indicate a non-negligible influence of temperature on sludge apparent viscosity. 

Consequently, rheological measurements need to be performed at constant temperature and 

results need to specify this parameter. 

I.3.4.3.2 Influence of rheometer geometry on rheology results 

Using three different geometries of rotational rheometers (HRI, CC and DCC) to evaluate the 

rheology of two sludge samples with 4 and 15 g L-1 of MLSS concentration, Mori et al. (2007) 

obtained diverging rheograms. Moreover, using the same rotational rheometer geometry (CC) 

but different space between cylinders (1 mm and 1.25 mm), Ratkovich et al. (2013) presented 

also diverging rheograms obtained for two sludge samples with 5.93 g L-1 and 11.86 g L-1 of 

MLSS concentration (Figure I.20).  The authors attributed these disparities to (i) the generation 

Correlation Temperature 
range (°C) Solid content Shear rate  

(s-1) 
Rheometer 
geometry Author 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 ∝
1.0024 𝑂𝑂−0.206       
 
with  T(°C) 

I.53 5 - 35 MLSS between 
0 and 18.7 g L-1 100 CC Yang et al.  

(2009) 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎
= a ∙ e�

b
T−To

� + c 
 
with  T(K) 

I.54 4 - 35 15% dry 
matter 100 CC Dieudé-Fauvel et 

al. (2009) 
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of different flow patterns that lead to the onset of vortices and turbulence at different shear 

rates and to (ii) a different shear repartition in the measurement volume (cf. I.3.2.1). 

 

 

Figure I.20 Comparison between rheograms obtained for two sludge samples (5.93 g L-1 and 11.86  g L-1 of MLSS 
concentration) using a rotational rheometer with concentric cylinders (CC) but with different gap size (1 mm and 1.25 

mm). Figure from Ratkovich et al. (2013). 

 

These results highlight that special attention needs to be paid while performing rheological 

measurements in order to keep the required laminar conditions. Likewise, they underline the 

need of an adequate rheometer geometry in order to assure the homogenous distribution of 

shear in the measurement volume.  

 

 

Conclusions on sensitivity of sludge rheology results on measurement conditions 

 

− Rheology results are sensitive to temperature, and may diverge with the use of different 

rheometer geometries. During rheological measurements with activated sludge, it is 

necessary to keep a constant temperature, to control adequate flow conditions (laminar 

flow) and to use a suitable rheometer geometry in order to homogenously distribute 

shear into the measurement volume. Likewise, the rheometer geometry must be 

adapted to the fluid characteristics such as viscosity, particle size and settleability. 
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I.3.4.4 Activated sludge properties affecting the rheological behaviour 

The viscosity of a suspension depends on the viscosity of the continuous phase, the 

characteristics of the dispersed phase such as particles shape, size, concentration and 

interaction between particles as well as on temperature and the exerted shear rate or shear 

stress (Dupuis, 2008). This is the case for activated sludge; its rheological behaviour results from 

the impact of multiple constituents that depend not only on the origin of raw wastewater but 

also on the operating conditions. Several works have tried to identify the link between activated 

sludge characteristics and its rheological behaviour. The main results found in the literature are 

analysed in the following paragraphs. 

I.3.4.4.1 Solid fraction 

For Newtonian fluids with low solids concentration, viscosity (µ) is an increasing function of the 

volume occupied by the solid fraction, in conformity with the Einstein equation written as 

follows: 

𝜇𝜇 = 𝜇𝜇𝑜𝑜(1 + 2.5∅s)              I.55 

 

with 

𝜇𝜇𝑜𝑜 fluid viscosity without particles  

∅s solids volumetric fraction 

 

According with this equation, an increment of the solid volume fraction from 0 to 10% implies 

an increase of 25% in the fluid viscosity fluid. This correlation highlights the importance of the 

solid fraction on the viscosity of a suspension.  

I.3.4.4.1.1 Mixed liquor suspended solids (MLSS) 

In activated sludge, several rheology studies have evaluated the impact of the MLSS 

concentration on the sludge rheological behaviour (Sutapa, 1996; Lotito et al., 1997; Mikkelsen, 

2001; Rosenberger et al., 2002; Tixier et al., 2003; Jin et al., 2006; Mori et al., 2006; Seyssiecq et 

al., 2008; Xia et al., 2009; Yang et al., 2009).  It must be highlighted that with the exception of a 

few studies (Rosenberger et al., 2002; Khongnakorn et al., 2009; Xia et al., 2009) the different 

MLSS concentrations result from centrifugation, sedimentation or filtration (100 𝜇𝜇m) protocols 

as well as dilution with supernatant.  The effect of these procedures on the original sludge 

nature and the subsequent rheological results is unknown and neglected. However all these 
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studies have shown an increase of the sludge apparent viscosity as a result of an increment in 

the MLSS concentration. According to Mikkelsen (2001), with an increment of the solid content, 

the particle interaction frequency increases rapidly and leads to the formation of a network of 

particles that opposes to the flow of the suspension. The Figure I.21 represents the results 

obtained by Yang et al. (2009) for the evolution of sludge apparent viscosity with the shear rate 

for MLSS concentrations comprised between 2.7 and 16.0 g L-1.  

 

 

Figure I.21. Sludge apparent viscosity as a function of the shear rate for different MLSS concentrations (between 2.7 
and 16.0 g L-1) (log-log scale).  Measurements with a rotational rheometer, cone plate geometry.  Sludge samples from 

the same origin and concentrated by settling. Figure from Yang et al. (2009). 

 

Tixier et al. (2003) conducted rheological measurements varying the MLSS concentration (from 

0 to 20 g L-1) for four samples of activated sludge from different WWTPs and investigated the 

impact of MLSS on the infinite shear rate viscosity (𝜇𝜇∞), which is the apparent viscosity 

measured at very high shear rates. The results showed that, the most concentrated sludge did 

not necessarily exhibit the highest value of limit viscosity (𝜇𝜇∞). Similar results on apparent 

viscosity were found Baudez et al. (2004) on pasty sewage sludge from different wastewater 

treatment plants and with solid volume content between 11.0 and 12.6 % (Figure I.22). This 

suggests that other sludge properties different to MLSS concentration also influence the 

apparent viscosity and play a role on sludge rheology.   
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Figure I.22. Rheogram (log-log scale) of pasty sewage sludge from different natures and with solid volume content 
(∅𝒗𝒗) between 11.0 et 12,6%. Measurements with a rotational rheometer and a cylinder concentric geometry.  Baudez 

et al. (2004). 

 

I.3.4.4.1.1.1 Correlation between sludge MLSS concentration and rheological parameters  

Several authors have evaluated the correlation between the MLSS concentration with the 

parameters of the rheological shear-thinning models (Table I.5) and viscoplastic models (Table 

I.6). Most of the data available refers to the Ostwald-de Waele equation and it is thus possible for 

this model to compare the results between different studies. Figure I.23 illustrates the Ostwald-

de Waele rheological parameters (𝐾𝐾 and 𝑛𝑛) as a function of the sludge MLSS concentration.  

 

Figure I.23. Ostwald-de Waele rheological parameters as a function of the activated sludge MLSS concentration, 
obtained by 4 different studies at 20-21°C using different rotational geometries and domestic sludge: (a) consistency 

index, 𝑲𝑲 and (b) flow index, 𝒏𝒏.  
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Two main general trends can be observed with the increase of the MLSS concentration: an 

increase of the consistency index (𝐾𝐾) and a reduction of the flow index (𝑛𝑛). While some data 

overlap (Rosenberger et al., 2002; Yang et al., 2009), others are more dispersed. Judging only 

from similar data, the sludge rheological behaviour seems to be strongly defined by the MLSS 

concentration, regardless of the origin of the sample. However if all data are considered, it seems 

that the rheological behaviour is also influenced by another activated sludge property related to 

the origin of the sample.  Nevertheless, it should be reminded that some authors have shown 

that the rheological results can be influenced by the rheometer geometry (cf. I.3.4.3.2). The 

authors concerned by the comparison presented in Figure I.23, obtained these results using 

rotational rheometers but with different geometries (CC, HRI, cone plat and DCC; cf. Table I.5).  

Additionally, it should be noted that the presented data were not obtained within the same 

range of shear rate and MLSS concentration. It is difficult to establish whether the data 

scattering observed in Figure I.23 for the various authors, is due to the effect of using distinct 

geometries, to the different range of shear rate and MLSS concentration in which they were 

obtained, or to the possibility that MLSS concentration is not the only sludge property 

characterizing its rheology for activated sludge from different origins. 

 

I.3.4.4.1.2 Effect of the MLSS concentration on the yield stress 

Published results on the impact of MLSS on the yield stress (Sutapa, 1996; Forster, 2002; Mori et 

al., 2007; Khongnakorn et al., 2009; Yang et al., 2009) showed that there is a rapid increase of 

the yield stress with the suspended solids concentration. This increase is explained by the fact 

that a higher number of particles present in the suspension require a higher shear stress to 

disrupt their interaction and to induce flow. Figure I.24 shows the increase of the yield stress 

with the increase of suspended solids concentration observed in the work of Forster (2002). As 

previously mentioned, this author states that below a MLSS concentration of 11 g L-1, the yield 

stress is negligible.  
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Figure I.24. Yield stress as a function of the MLSS for pasty sewage sludges. Sludge concentrated by centrifugation. 
Rotational rheometer. Forster (2002).  

 

I.3.4.4.2 Extra cellular Polymeric Substances (EPS) 

As mentioned in I.2.6.2.1.3 the EPS constitute the major organic fraction of activated sludge. 

These substances are bound to the biomass in biological flocs and their composition includes 

proteins, humic acids, polysaccharides, DNA and nucleic acids. They play an important role in 

the floc structure and contribute to develop a polymeric network through chemical bonds 

between macromolecular chains (Mikkelsen and Keiding, 2002). Because the EPS partially 

define the floc structure, some authors have evaluated the impact of these substances on the 

sludge apparent viscosity. 

Rosenberger et al. (2002), studied the influence of bound EPS (proteins and polysaccharides, 

extraction with an ion exchange resin) on the rheology of activated sludge from 9 different MBR 

(including domestic and industrial sludge). The authors observed that industrial activated 

sludge had, in average, higher ratio of EPS content to MLVSS content than domestic sludge (ca. 

145 mg EPS/g MVLSS versus ca. 60 mg EPS/g MVLSS respectively). According to these authors, 

this difference in the EPS content would explain why for a given shear rate and MLSS 

concentration, the apparent viscosity of industrial sludge was generally higher than the one 

measured for domestic sludge.   

Besides, Mori et al. (2007) has assessed the impact of bound EPS on the rheology of pasty sludge 

with a MLSS concentration of 43 g L-1. The activated sludge was subjected to a period of 

starvation of 4 days. Before and after this period the ratio of bound EPS content to MLSS content 

was measured (bound EPS extraction by sonication) and the sludge rheological behaviour was 

studied.  After four days, the ratio of bound EPS/MLSS (mg L-1) was divided by two (bound EPS 
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released during starvation) and the apparent viscosity decreased (𝜏𝜏𝑦𝑦 and 𝐾𝐾 were reduced while 

𝑛𝑛 was increased). To explain these results, the authors hypothesized that a reduction of the EPS 

content induced a reduction of the cohesion forces in the flocs and consequently the structure of 

the suspension is less rigid and less viscous. It should be noted that in this study, the evolution of 

the rheological behaviour with the EPS concentration was observed only in two different 

conditions (before and after the starving period), which is not sufficient to state a conclusive 

trend between EPS and sludge rheological behaviour.  

However, the observations made by these two mentioned studies coincide in affirming that the 

EPS content has an increasing effect on apparent viscosity. 

 

I.3.4.4.3 Cations 

The impact of added cations on sludge rheology was evaluated by Forster (1982). This author 

measured the apparent viscosity (320 s-1) of several activated sludge samples with different 

NaCl concentrations (from 0 to 24 g L-1) and the MLSS concentration was kept constant. The 

results of this study showed that the sludge apparent viscosity decreased and seemed to reach a 

limit value when the salinity (ionic strength) of the sludge increases. The same author (Forster, 

1983) also added copper, zinc and calcium ions (up to 50 mg M2+ L-1) to the sludge samples in 

order to evaluate the impact of other cations on the activated sludge apparent viscosity. He 

observed a decrease in the sludge apparent viscosity (320 s-1) with the addition of the metal ions 

to the activated sludge samples.  

A similar influence of cations on apparent viscosity was found in the work of Tixier (2003) who 

added NaCl and CaCl2 (from 0 up to 10 and 20 g L-1 respectively) on three activated sludge 

samples from different wastewater treatment plants and with MLSS concentration of 10 g L-1. 

Likewise, Dieudé-Fauvel et al. (2009) observed that adding KCl (from 0 up to 22% of dry matter) 

to pasty sludge, led to a reduction of apparent viscosity. 

According to these studies, the added cations modify the structure of polymers at the floc surface 

and lead to the reduction of the sludge viscosity. The phenomenon explanation is given as 

follows: an increase in the ionic strength modifies the thickness of the double electric layer of 

sludge aggregates and consequently the biological flocs become more compact and their cross 

sectional area exposed to the fluid decreases which ends up facilitating the sludge flow and 

reducing the sludge viscosity. 
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I.3.4.4.4 Soluble organic matter  

Khongnakorn et al. (2009) studied the influence of the soluble organic matter, measured as 

soluble COD (chemical oxygen demand), on the sludge rheology. Activated sludge samples were 

taken from a 50 L pilot MBR in which the MLSS concentration was stabilized around 6.2 g L-1 by 

means of continuous sludge extraction. The soluble COD evolved from about 500 to 1000 mg L-1 

thanks to an increase of the feeding synthetic substrate. The experimental rheograms were 

modeled with the Herschel-Bulkley equation. It was observed that an increase in the soluble 

COD concentration produces an increase of the apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎), the yield stress (𝜏𝜏𝑦𝑦) 

and the consistency index (𝐾𝐾) as well as to a decrease in flow index (𝑛𝑛) (Table I.6).   

To explain these results the authors argued that the measurement of soluble COD accounts for 

soluble EPS that are likely to create linkages between the flocs, thus rigidifying the sludge 

structure.   

I.3.4.4.5 Solids Retention Time (SRT) 

The impact of the solids residence time on the sludge rheology was studied by Laera et al. 

(2007). The authors conducted rheological tests on sludge samples taken from a pilot membrane 

bioreactor (6L) at sludge age from 20 to complete retention time (~1200 days) and MLSS 

concentrations between 3.7 and 22.9 g L-1 respectively.  The experimental rheograms were 

modelled with the Ostwald and Bingham equations (Table I.5 and Table I.6).  The rheological 

parameters of these models seemed to follow two different tendencies with the increase of the 

MLSS concentrations and the SRT.  First, from 20 to 40 days, the sludge apparent viscosity 

decreased and the non-Newtonian character was reduced despite an increase of the MLSS 

concentration from 3.7 to 6.1 g L-1. Subsequently, from 60 to 1200 days, the apparent viscosity 

increased and the shear-thinning behaviour was accentuated simultaneously with the increase 

of the MLSS concentration from 7.9 to 22.9 g L-1. 

To explain this double trend, the authors argued that under 40 days, soluble and colloidal 

substances accumulated in the bioreactor and the observed rheological behaviour results from 

the influence of both the suspended solids concentration and the highly concentrated soluble 

substances, the latter leading to the reduction of sludge apparent viscosity. Subsequently, for 

SRT above 60 days, the biomass concentration increases and because of substrate 

biocompetition the soluble substances are significantly reduced. Then, the rheological behaviour 

would be mainly defined by the concentration of suspended solids.   
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Although soluble and colloidal substances were not characterized in this study, these results 

suggest that the SRT, associated to the presence of soluble matter and colloids, participates in 

the definition of the sludge rheological behaviour. 

 

Conclusions on the effect of activated sludge properties on its rheological behaviour 

 

− For activated sludge from the same origin, the rheological behaviour seems to be mainly 

determined by the MLSS concentration, regardless of the implemented protocol to 

obtain the different suspended solids concentrations (settling, filtration, dilution, etc). 

An increase in the MLSS concentration leads to an augmentation of apparent viscosity 

and yield stress. 

 

− For activated sludge from different origins, results are not conclusive and the 

rheological behaviour may not only be determined by the MLSS concentration, but other 

sludge properties associated to the sludge origin may also have an influence on it.  

 

− Results from some studies have shown that for a given MLSS concentration, a higher 

content of bound EPS, or higher soluble DCO in activated sludge has an increasing effect 

on the apparent viscosity. Besides, other studies have observed that higher cations 

concentrations or higher solids retention time (associated to lower soluble DCO 

concentrations) have a reducing effect on apparent viscosity. 

 

− The effect of mixed liquor volatile suspended solids on the sludge rheology is not 

specified in the literature since it is evident that this characteristic related to the MLSS 

concentration is also correlated to the sludge rheology. However, since the volume 

occupied by the solid fraction seems to have a significant effect on viscosity (Equation 

I.55) and because the MVLSS concentration appears to have a close correlation with the 

volume occupied by the biological flocs (HFV, Henkel, 2010), it would be of interest to 

study the influence of the MLVSS concentration (as well as HFV) on the activated sludge 

rheological behaviour.  

− In the context of activated sludge, no studies have been published concerning the 

influence of this parameter on rheology. However, since the floc size is related to the 

volume occupied by the solid fraction, it can be supposed that this sludge characteristic 

influence the sludge viscosity and it would be of interest to study the effect of floc size 

on the rheology of activated sludge.  
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I.3.5 Shear rate in aerated bioreactors 

Because activated sludge is a non-Newtonian fluid, its viscosity depends on the exerted shear 

stress or shear rate. In bioreactors, suspensions are sheared by the swarm of rising fine bubbles 

and/or by the stirring system. However, the measurement of local shear rate is complex because 

it is based on the fluid velocity profile throughout the bioreactor (Shi et al., 1990). Several works 

have established empirical and theoretical correlations to estimate the average shear rate (�̇�𝛾𝑎𝑎𝑎𝑎) 

in bioreactors with Newtonian and non-Newtonian fluids (Table I.8). In all correlations the 

average shear rate is an increasing function of the superficial gas velocity (𝑈𝑈𝐺𝐺).  

Nishikawa et al. (1977) proposed an equation deduced from experimental measurements of heat 

transfer. Since the oxygen transfer takes place through the bubbles interfacial area, some 

authors deduced a correlation from the measurements of the oxygen transfer coefficient 

(Henzler, 1980; Schumpe and Deckwer, 1987).  

Kawase and Kumagai (1991) and Sanchez Pérez et al. (2006) followed a theoretical approach  

based on the concept of the aeration specific power input and proposed a correlation in which 

the shear rate depends on the fluid rheological properties (expressed as the Ostwald 

parameters, 𝐾𝐾 and 𝑛𝑛).   

More recently, Cerri et al. (2008) and Thomasi et al. (2010) followed the oxygen transfer 

approach and included also the Ostwald rheological parameters. However this correlation is not 

applicable for Newtonian fluids (𝑛𝑛=1).  

For the airlift reactors, the proposed correlations (Chisti and Moo-Young, 1989; Al-Masry, 1999; 

Shi et al., 1990) may also include geometry factors such as the ratio of the riser section to the 

downcomer section (𝐴𝐴𝑅𝑅/𝐴𝐴𝐷𝐷) and of the liquid height (h).   

 

 

 

 

 

 

 



Chapter I. Litterature review 

 

91 
 

Table I.8. Literature correlations to estimate the average shear rate (�̇�𝜸𝐚𝐚𝐚𝐚) in aerated reactors. 

Author Correlation 
Range of superficial 

gas velocity 
Reactor 

type 
Fluid 
type 

Model
type 

Nishikawa 
et al. 

(1977) 
�̇�𝛾av = 5000U𝐺𝐺   0.04 <U𝐺𝐺< 0.1 m s-1 BC N, NN E 

Henzler 
(1980) �̇�𝛾av = 1500U𝐺𝐺  0.040 <U𝐺𝐺< 0.1 m s-1 

0.38 <n< 0.82 BC N, NN E 

Schumpe 
and 

Deckwer 
(1987) 

�̇�𝛾av = 2800U𝐺𝐺  0.02 <U𝐺𝐺< 0.2 m s-1 BC N, NN  
E 

Chisti and 
Moo-Young 

(1989) 
�̇�𝛾av = 5000 �1 +

𝐴𝐴𝐷𝐷
𝐴𝐴𝑅𝑅
�U𝐺𝐺𝑅𝑅  AL N, NN E 

Shi et al, 
(1990) �̇�𝛾av = 14800U𝐺𝐺𝑅𝑅

2 − 351U𝐺𝐺𝑅𝑅 + 3.26  AL N, NN E 

Al-Masry 
(1999) �̇�𝛾av = 3.36(1 − U𝐺𝐺𝑅𝑅)−32.56 �1 +

𝐴𝐴𝐷𝐷
𝐴𝐴𝑅𝑅
�
0.89

ℎ0.44 

0.0018<U𝐺𝐺<0.07 m 
s-1 

0.11<𝐴𝐴𝐷𝐷/𝐴𝐴𝑅𝑅<1 
1.4<h<6 m 

AL  E 

Kawase 
and 

Kumagai 
(1991) 

�̇�𝛾av = (10.3𝑛𝑛−0.63)1/(𝐺𝐺+1) �
U𝐺𝐺𝜌𝜌𝐿𝐿𝑔𝑔
𝐾𝐾

�
1/(𝐺𝐺+1)

  BC NN E, T 

Henzler 
and 

Kauling 
(1985); 
Sanchez 

Pérez et al. 
(2006) 

 �̇�𝛾av = �𝑈𝑈𝐺𝐺𝜌𝜌𝐿𝐿𝑔𝑔
𝐾𝐾

�
1/(𝐺𝐺+1)

  BC  T 

Cerri et al. 
(2008) 

�̇�𝛾av

= �1.641 × 10−3U𝐺𝐺𝑅𝑅
−0.386𝐾𝐾−0.213�1/(𝐺𝐺−1) 

U𝐺𝐺𝑅𝑅<0.05 m s-1 AL 
AL 

NN 
E 

�̇�𝛾av = �4.495 × 10−2U𝐺𝐺𝑅𝑅
0.743𝐾𝐾−0.288�1/(𝐺𝐺−1) U𝐺𝐺𝑅𝑅>0.05 m s-1 E 

Thomasi et 
al. (2010) 

�̇�𝛾av = �7.38 × 10−3U𝐺𝐺
0.11𝐾𝐾−0.389�1/(𝐺𝐺−1)  BC NN E 

U𝐺𝐺𝑅𝑅 : Superficial gas velocity in the riser section; 𝐴𝐴𝑅𝑅 : riser section ; 𝐴𝐴𝐷𝐷: downcomer section; h: liquid height, K and n: 
Ostwald rheological parameters; 𝜌𝜌𝐿𝐿: liquid density. BC: bubble column; AL: Airlift reactor. N: Newtonian Fluid; NN: 
Non-Newtonian Fluid. T: theoretical Equation; E: Empirical equation. 

 

Using some of the Equations presented in Table I.8, an estimation of the average shear rate at 

different superficial gas velocities is shown in Figure I.25 for clean water and for an activated 

sludge at MLSS concentration of 5.0 g L-1. Superficial gas velocities values correspond to the 

range of applied gas flow rates in aeration basins according to Gillot et al. (2005). To consider 

activated sludge rheology, the Ostwald-de Waele rheological parameters proposed by Yang et al. 

(2009) are used.  
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Figure I.25. Estimated average shear rate (�̇�𝛄𝐚𝐚𝐚𝐚) as a function of the superficial gas velocity (𝐔𝐔𝐆𝐆) in a bubble column 
according to some correlations available in the literature in two different aerated media: (a) clean water (𝐊𝐊=0.001 

Pa.sn, 𝐧𝐧=1) and (b) activated sludge with Ostwald rheological parameters obtained from Yang et al. (2009) (𝐊𝐊=0.034 
Pa.sn, 𝐧𝐧=0.579, MLSS=5.1 g L-1). 

 

As some of the proposed correlations do not consider the fluid viscosity or rheological 

behaviour, they lead to the estimation of the same average shear rate in water and in activated 

sludge. For the equations that consider the fluid rheology, the estimated average shear decreases 

with the increase of viscosity. A significant dispersion is however observed between the 

estimated shear rate values for a given superficial gas velocity, the values obtained with the 

equation of Kawase and Kumagai (1991) being particularly isolated. 

 

 

Conclusions on the estimated shear rate 

 

− Since activated sludge is a non-Newtonian fluid, determining its apparent viscosity in a 

bioreactor requires the estimation of the average shear rate prevailing in the dispersion. 

Several empirical and theoretical correlations are available to determine the shear rate. 

For the simplest equations, it is basically an increasing function of the superficial gas 

velocity. Other equations include geometrical aspects and some others integrate the 

fluid rheological behaviour (in the form of the Ostwald-de Waele parameters). For 

activated sludge with a MLSS concentration of 5.0 g L-1, and in a range of superficial gas 

velocities up to 10x10-3 m s-1 the proposed correlations let estimate in a bubble column 

a range of shear rate between approximately 0 and 1000 s-1. 
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I.4 Conclusions on the literature review and work positioning 

The effect of the MLSS concentration on activated sludge has been widely studied and identified 

as the main property related to the oxygen transfer depletion in activated sludge in comparison 

to clean water. However a significant dispersion is observed between the different published 

results and consequently the MLSS concentration is not sufficient to explain the variability of 

observed oxygen transfer results in the presence of activated sludge. 

Sludge apparent viscosity, floc volume (HFV) and solids retention time (SRT) are suggested to be 

also associated to the oxygen transfer depletion and some correlations are proposed in order to 

describe their influence on oxygen transfer. However the proposed correlations in literature do 

not consider the impact of the activated sludge rheological behaviour on oxygen transfer, thus 

the effects of activated sludge on the hydrodynamic conditions and the bubble regime are 

overlooked. In that context, the main purpose of this work is to evaluate the impact of the sludge 

rheological behaviour and other physicochemical properties on oxygen transfer. 

To that aim, an initial objective consists in studying and modelling the activated sludge 

rheological behaviour and its dependence on sludge properties. Since the rheological models 

proposed in the literature are not convergent, samples from different wastewater treatment 

plants will be considered in order to determine if the sludge rheology is only defined by the 

MLSS concentration or if it also influenced by other more intrinsic sludge characteristics, such as 

soluble DCO, salts, floc volume and floc size. The performance of the rheological measurements 

requires the use of a rheometer geometry adapted to the activated sludge characteristics 

(viscosity, settleability and particle size). Likewise a dedicated experimental protocol needs to 

be implemented in order to obtain valid rheological measurements.  

Subsequently, a second objective consists in assessing the impact of sludge properties on oxygen 

transfer by means of oxygen transfer tests in clean water and in the presence of activated sludge. 

Similarly to the rheology study, considering activated sludge from different origins will help to 

elucidate the role played by MLSS concentration and sludge properties on oxygen transfer. The 

determination of gas phase characteristics such as bubble size and gas hold-up will contribute to 

analysis and comprehend the effect of sludge properties on bubble regime.  

Finally a third objective consists in correlating the oxygen transfer results to the sludge 

rheological behaviour. Previously, it will be necessary to estimate the shear rate prevailing in the 

aerated bioreactor associated to the hydrodynamic conditions. 
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II.1 Oxygen transfer in clean water and with activated sludge 

II.1.1 Experimental setup: Bubble column and aeration system 

The oxygen transfer measurements were performed in a cylindrical column of 4.5 m height and 

0.29 m diameter made of PMMA. A schematic of the bubble column is shown in Figure II.1. 

 
Figure II.1. Schematic of the bubble column used to measure the oxygen transfer in clean water and with activated 

sludge. 

 

The liquid phase was aerated by means of two rotary vane compressors (BUSCH) supplying air 

through a gas diffuser installed at the bottom of the column. Two types of diffusers were used:  

• Fine bubble diffuser: a flexible fine perforated EPDM membrane with pore sizes of 

0.7×10-3 m (Figure II.2). The perforated surface is 345.8 cm2 and the pore density is 20 

pores per cm2. 

 

Figure II.2 Fine bubble diffuser used in the oxygen transfer tests 

 

• Coarse bubble diffuser: a PVC elbow with an orifice of 4 mm in diameter (Figure II.3).  

 

air flow 
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Figure II.3 Coarse bubble diffuser used in the oxygen transfer tests 

 

The injected airflow rate was measured using a volumetric gas meter (Dresser) and a 

chronometer. Airflow rate measurements consisted of counting up the air volume passing 

through the gas meter during three minutes. The airflow temperature and pressure were 

measured using a thermometer and a manometer (KIMO) adapted to the air line. The gas flow 

rate (𝑄𝑄𝑇𝑇,𝑃𝑃) measured at a given temperature (𝑂𝑂) and pressure (𝑃𝑃), was reported at normal 

conditions of temperature and pressure (𝑂𝑂𝑜𝑜=0°C and 𝑃𝑃𝑜𝑜=1013 hPa) using the following equation: 

 

𝑄𝑄𝑇𝑇𝑜𝑜,𝑃𝑃𝑜𝑜 = 𝑄𝑄𝑇𝑇,𝑃𝑃
𝑂𝑂𝑜𝑜
𝑂𝑂
𝑃𝑃
𝑃𝑃𝑜𝑜

 II.1 

 

where 𝑄𝑄𝑇𝑇𝑜𝑜,𝑃𝑃𝑜𝑜 is the air flow rate at standard conditions. 

The airflow rate (𝑄𝑄𝑇𝑇𝑜𝑜,𝑃𝑃𝑜𝑜) ranged between 0.13×10-3 and 0.36×10-3 m3 s-1. The superficial air 

velocity (𝑈𝑈𝐺𝐺), the ratio of the air flow rate to the column cross-sectional area, ranged between 

1.9×10-3 and 5.5×10-3 m s-1 which is an interval of superficial gas velocities found in full scale 

aeration tanks (Gillot et al., 2005). 
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II.1.2 Measurements of oxygen transfer coefficient in clean water (kLa) 

II.1.2.1 Reoxygenation method - Principles 

Oxygen transfer measurements in clean water were performed according to the standard 

reoxygenation method (NF-EN-12255-15, 2004). This method consists of following under 

stable flow conditions the time evolution of the dissolved oxygen concentration in the liquid 

media, as it increases from an initial low concentration close to zero up to the saturation 

concentration.  

The time evolution of the dissolved oxygen concentration in the bubble column, considered as a 

completely mixed reactor, is written according to the 1st Fick’s law as follows: 

 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑆𝑆

= 𝑘𝑘𝐿𝐿𝑎𝑎(𝐶𝐶𝐶𝐶 − 𝐶𝐶) II.2 

where 

𝑆𝑆 time (h) 

𝐶𝐶 dissolved oxygen concentration at instant t (mg L-1) 

𝐶𝐶𝐶𝐶 dissolved oxygen saturation concentration during the aeration test (mg L-1) 

𝑘𝑘𝐿𝐿𝑎𝑎  volumetric oxygen transfer coefficient at the test conditions of temperature and pressure 
(h-1) 

 

The integrated form of Equation II.2 is written as follows:  

 

𝐶𝐶(𝑆𝑆) = Cs − (Cs − 𝐶𝐶𝑇𝑇) ∙ 𝐻𝐻−𝑘𝑘𝐿𝐿a∙𝑡𝑡 II.3 

where, 

𝐶𝐶𝑇𝑇  dissolved oxygen concentration at instant t=0 (mg L-1) 

 

 



Chapter II. Materials and Methods 

 

100 
 

II.1.2.2 Measurement protocol 

The reoxygenation tests were carried out in an experimental hall.  The column was first filled 

with tap water up to a height of 4.42 m above the gas diffuser (fine or coarse bubble). Air was 

then injected into the column at a constant superficial gas velocity within the specified range 

during at least 90 minutes in order to obtain the dissolved oxygen saturation concentration. The 

dissolved oxygen concentration in the liquid media was measured using three stirred 

electrochemical sensors (YSI) submerged at three different heights in the aerated volume 

(Figure II.1). These oxygen probes were previously calibrated by following two main steps: (i) 

adjusting the probes zero concentration value by submerging them in a sodium sulfite 

concentrated solution and (ii) adjusting the probes saturation concentration value by 

submerging them in a two-hours previously aerated and stirred tap water volume (50L) at a 

given liquid temperature and atmospheric pressure. 

The temperature and conductivity of the liquid media were measured using a sensor (WTW) 

submerged at middle height in the column.  The dissolved oxygen concentrations, the liquid 

temperature and conductivity were recorded on a time step of five seconds using a data 

acquisition system (Yokogawa). 

When the dissolved oxygen saturation concentration was reached, the clean water dissolved 

oxygen concentration was reduced to zero by adding 150 mg of sodium sulfite (𝑁𝑁𝑎𝑎2𝑆𝑆𝐶𝐶3) and 3 

mg of cobalt chloride (𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶2) per liter. The sodium sulfite reacts with the dissolved oxygen 

according to: 

𝑁𝑁𝑎𝑎2𝑆𝑆𝐶𝐶3 +
1
2
𝐶𝐶2

𝐶𝐶𝑜𝑜𝐶𝐶𝑙𝑙2�⎯⎯� 𝑁𝑁𝑎𝑎2𝑆𝑆𝐶𝐶4 

 

Figure II.4 illustrates an example of the variation of the dissolved oxygen concentration for the 

three oxygen probes during a reoxygenation test in the bubble column. 
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Figure II.4. Dissolved oxygen concentration during a reoxygenation test in the bubble column for the three 
submerged oxygen probes. 

 

 

𝑘𝑘𝐿𝐿𝑎𝑎, 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝑇𝑇 were estimated by adjusting the model in Equation II.3 to the experimental data 

using the nonlinear least squares method. 

For a given reoxygenation test, the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) is the arithmetic average 

value calculated for the three submerged oxygen probes. The precision of the reoxygenation 

method is estimated to be 4% (Duchène, 1995).  

The volumetric oxygen transfer coefficients measured at the temperature T (𝑘𝑘𝐿𝐿𝑎𝑎𝑇𝑇), are 

converted to 20°C (𝑘𝑘𝐿𝐿𝑎𝑎20) using the following temperature correction (ASCE, 1996): 

 

𝑘𝑘𝐿𝐿𝑎𝑎20 = 𝑘𝑘𝐿𝐿𝑎𝑎𝑇𝑇 ∙ 𝜃𝜃(20−𝑇𝑇) with 𝜃𝜃 = 1.024 II.4 

  

II.1.3 Measurements of oxygen transfer coefficient in activated sludge (kLa’)  

II.1.3.1 Off-Gas method - Principles  

In activated sludge, the oxygen transfer coefficient was measured according to the off-gas 

method (Redmon et al., 1983; Capela et al., 2004). In this method the mass of transferred 

oxygen is measured by means of a gas-phase mass balance over the aerated volume and the 

measurement of the oxygen transfer efficiency (𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐).   
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The mass flow of transferred oxygen is expressed as follows (Figure II.5):  

 

𝐹𝐹𝑂𝑂2(𝑔𝑔)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑂𝑂2(𝑔𝑔)𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑂𝑂2(𝑔𝑔)𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡  II.5 

 

 
Figure II.5. Schematic of the gas-phase mass balance in the aerated volume 

 

The development of the terms in Equation II.5 gives:  

 

𝑄𝑄𝑖𝑖𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑄𝑄𝑒𝑒𝜌𝜌𝑒𝑒𝑦𝑦e =  𝑘𝑘𝐿𝐿𝑎𝑎′(𝐶𝐶𝐶𝐶′ − 𝐶𝐶)𝑉𝑉  II.6 

 

with 

𝑄𝑄𝑖𝑖  inlet air flow rate (m3 h-1)  

𝜌𝜌𝑖𝑖 air density at the inlet air flow (kg m-3) 

𝑦𝑦𝑖𝑖  oxygen volume fraction at the inlet air flow (-) 

𝑄𝑄𝑒𝑒 outlet air flow rate (m3 h-1) 

𝜌𝜌𝑒𝑒 air density at the outlet air flow (kg m-3) 

𝑦𝑦𝑒𝑒  oxygen volume fraction at the outlet air flow (-) 

𝑘𝑘𝐿𝐿𝑎𝑎′ oxygen transfer coefficient in activated sludge (h-1) 

𝐶𝐶𝐶𝐶′ dissolved oxygen saturation concentration in activated sludge (kg m-3) 

𝐶𝐶 dissolved oxygen concentration in activated sludge (kg m-3) 

V aerated volume (m3) 

 

Fo2(g) inlet

Fo2(g)

transferred

Fo2(g) outlet
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The oxygen transfer efficiency at the test conditions (𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐) is defined as the ratio of the mass 

flow of transferred oxygen to the mass flow of injected oxygen: 

 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 =
𝐹𝐹𝑂𝑂2(𝑔𝑔)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑂𝑂2(𝑔𝑔)𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐹𝐹𝑂𝑂2(𝑔𝑔) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 II.7 

 

The oxygen transfer efficiency (𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐) can be expressed in terms of the molar fractions of the 

different gases contained in the air flow assuming that the inert gases (such as N2, Ar, Ne, He) do 

not affect the oxygen transfer and that denitrification is negligible (ASCE, 1996):  

 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 =

𝑦𝑦𝑖𝑖
1−𝑦𝑦𝑖𝑖+𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖+𝑦𝑦𝑤𝑤,𝑖𝑖

− 𝑦𝑦𝑖𝑖
1−𝑦𝑦𝑖𝑖+𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖+𝑦𝑦𝑤𝑤,𝑖𝑖

𝑦𝑦𝑖𝑖
1−𝑦𝑦𝑖𝑖+𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖+𝑦𝑦𝑤𝑤,𝑖𝑖

 II.8 

where 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 oxygen transfer efficiency at the test conditions of temperature T and pressure P (-). 

𝑦𝑦𝑖𝑖  oxygen molar fraction at the inlet air flow (-). 

𝑦𝑦𝑒𝑒 oxygen molar fraction at the outlet air flow (-). 

𝑦𝑦𝐶𝐶𝑂𝑂2,𝑖𝑖 carbon dioxide molar fraction at the inlet air flow (-). 

𝑦𝑦𝐶𝐶𝑂𝑂2,𝑒𝑒 carbon dioxide molar fraction at the outlet air flow (-). 

𝑦𝑦𝑤𝑤,𝑖𝑖 water vapor molar fraction at the inlet air flow (-). 

𝑦𝑦𝑤𝑤,𝑒𝑒 water vapor molar fraction at the outlet air flow (-). 

 

The measurement of the oxygen transfer efficiency (𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐) is simplified if the water vapor and 

carbon dioxide are removed from the analysed gas, through an absorption device. The OTEc can 

be expressed as follows: 

 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 = 1 −
𝑦𝑦𝑒𝑒′(1 − 𝑦𝑦𝑖𝑖′)
𝑦𝑦𝑖𝑖′(1 − 𝑦𝑦𝑒𝑒′)

 II.9 

 

where 
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𝑦𝑦𝑖𝑖′ oxygen molar fraction at the inlet air flow free of water vapor and carbon dioxide (-). 

𝑦𝑦𝑒𝑒′ oxygen molar fraction at the outlet air flow free of water vapor and carbon dioxide (-). 

 

The oxygen transfer efficiency at standard conditions (20°C, 1013 hPa) is written as follows: 

 

𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 = 𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 ∙ 𝜃𝜃(20−𝑇𝑇) 𝐶𝐶𝐶𝐶′, 𝐶𝐶
(𝐶𝐶𝐶𝐶′ − 𝐶𝐶)

 II.10 

where 

𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 standard oxygen transfer efficiency (-)  

𝜃𝜃 temperature correction coefficient (𝜃𝜃 = 1.024)  

𝐶𝐶𝐶𝐶′, 𝐶𝐶 dissolved oxygen saturation concentration in activated sludge at standard conditions 

(20°C, 1013 hPa , and hydrostatic overpressure ΔP) (mg L-1) 

𝐶𝐶𝐶𝐶′ dissolved oxygen saturation concentration in activated sludge at measurement 

conditions (liquid temperature T, atmospheric pressure P and hydrostatic overpressure 

ΔP) (mg L-1) 

𝐶𝐶 dissolved oxygen concentration in activated sludge at measurement conditions (mg L-1) 

 

The standard oxygen transfer coefficient in activated sludge at 20°C (𝑘𝑘𝐿𝐿𝑎𝑎′20) is deduced from the 

measured oxygen transfer efficient at standard conditions (𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐) and the oxygen mass flow in 

the supplied air flow (𝐹𝐹𝐶𝐶2(𝑔𝑔)𝑖𝑖𝐺𝐺𝑙𝑙𝑒𝑒𝑡𝑡). 

 

𝑘𝑘𝐿𝐿𝑎𝑎′20 =
𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 ∙ 𝐹𝐹𝐶𝐶2(𝑔𝑔)𝑖𝑖𝐺𝐺𝑙𝑙𝑒𝑒𝑡𝑡

𝐶𝐶𝐶𝐶′𝐶𝐶 ∙ 𝑉𝑉
=
𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 ∙ 𝑄𝑄𝑖𝑖𝜌𝜌𝑎𝑎𝑖𝑖𝑟𝑟𝑦𝑦𝑖𝑖

𝐶𝐶𝐶𝐶′𝐶𝐶 ∙ 𝑉𝑉
 II.11 

with  

𝑘𝑘𝐿𝐿𝑎𝑎′20 oxygen transfer coefficient in activated sludge at 20°C (h-1) 

𝑆𝑆𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 standard oxygen transfer efficiency at the standard conditions (20°C, 1013 hPa) (-) 

𝑄𝑄𝑖𝑖  inlet air flow rate (m3 h-1)  

𝜌𝜌𝑖𝑖 air density at the inlet air flow (kg m-3) 

𝑦𝑦𝑖𝑖  oxygen molar fraction at the inlet air flow (𝑦𝑦𝑖𝑖=0.2095) 



Chapter II. Materials and Methods 

 

105 
 

𝐶𝐶𝐶𝐶′, 𝐶𝐶 dissolved oxygen saturation concentration in activated sludge at measurement 

conditions (liquid temperature T, atmospheric pressure P and hydrostatic overpressure 

ΔP) (kg m-3) 

𝑉𝑉 aerated volume (m3) 

 

It is recommended to perform the oxygen transfer measurements at dissolved oxygen 

concentrations 0.5 times lower than the 𝐶𝐶𝐶𝐶′ concentration in order to reduce the experimental 

error. A dissolved oxygen concentration higher than 1 mg L-1 is also advised in order to consider 

that denitrification is negligible.  

II.1.3.2 Experimental setup for oxygen transfer measurements with activated 

sludge 

Oxygen transfer measurements with activated sludge were performed on site. The bubble 

column was installed in the wastewater treatment plants of two different municipalities located 

in Ile de France:  Marolles/Saint Vrain (conventional activated sludge plant, later called CAS) and 

Briis-sous-Forges (membrane bioreactor, later called MBR). These facilities are designed to treat 

the domestic effluents of 22 000 and 17 000 population equivalents (PE), respectively and are 

operated under extended aeration, food to mass ratio (F/M) < 0.1 kg BOD5 (kg VSS)-1 d-1). The 

influent load of these wastewater treatment plants during the measurement period (2012 and 

2013) is presented in Table II.1. Some of the design characteristics as well as the removal 

efficiency of these two plants are presented in APPENDIX 1.  

Table II.1. Average influent load in the wastewater treatment plants where the oxygen transfer tests were performed 
with activated sludge in the bubble column. 

Influent Load Units 
CAS 

Saint Vrain 
(2012) 

MBR 
Briis-sous-Forges 

(2013) 
Flow rate m³/d 2853 2870 

Mixed liquor suspended 
solids (MLSS) kg/d 793 617 

Biochemical oxygen 
demand (BOD) kg/d 564 455 

Chemical oxygen demand 
(COD) kg/d 1490 1175 

Total Kjehdal nitrogen TKN kg/d 165 142.3 
Total Phosporus (TP) kg/d 18 17.5 

CAS: Conventional activated sludge; MBR: Membrane bioreactor 

Activated sludge was continuously pumped out either from the aeration tank, the sludge 

recirculation loop or the membrane reactor, using a helical rotor pump (Seepex) and fed into the 
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column at its bottom (see Figure II.6). The open reactor configuration in respect to the gas and 

also to the liquid phase, was implemented in order to maintain relatively constant 

characteristics of the mixed liquor during oxygen transfer measurements. The liquid flow rate 

was measured at the outlet of the column using a scale and a chronometer. The superficial liquid 

velocity (𝑈𝑈𝐿𝐿) in the column was maintained low and constant for a given aeration test and 

ranged between 2.7×10-3 and 4.5×10-3 m s-1. The superficial gas velocity varied in the range 

previously specified in II.1.1. At a height of 4.42 m above the diffuser, the sludge flow left the 

column by overflow. 

 

 

Figure II.6. Schematic of the bubble column installed on site for the oxygen transfer measurements in activated 
sludge. 

 

Similarly to the oxygen transfer measurements in clean water, the dissolved oxygen 

concentration in activated sludge was measured using three stirred electrochemical sensors 

(YSI) previously calibrated and submerged at three different heights in the aerated volume.  The 

temperature and conductivity of the mixed liquor were also measured using a sensor (WTW) 

submerged at middle height in the column.  

 

II.1.3.2.1 Gas-phase oxygen analysis - OTEC measurement 

The measurement of the oxygen transfer efficiency at the test conditions (𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐) is made 

through the use of a gas-phase oxygen analyser. Oxygen partial pressure is measured in the  

ambient air (the injected air) and in the off-gas exiting the liquid surface of the column. A plastic 
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bucket is placed upside down on the liquid surface in order to confine the off-gas on the top of 

the column and avoid a mixture of the off-gas with the ambient air. Both the confined off-gas and 

the ambient air are drawn into an oxygen analyser by means of a diaphragm vacuum pump (Cole 

Parmer).  

II.1.3.2.1.1 Gas-phase oxygen analysis instrument 

In the gas-phase oxygen analysis unit, the oxygen partial pressure of ambient air and off-gas 

stream is measured with an electrochemical gas-phase oxygen sensor (Teledyne Analytical 

Instruments – Class E2). The analyser response for an oxygen flow is a voltage output 

proportional to the oxygen partial pressure (and concentration), respectively noted Ii and Ie.  

With a constant air flow pressure in the measurement unit, the oxygen transfer efficiency at the 

test conditions (OTEc) can be estimated using the following equation :   

 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 =
𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑒𝑒
𝐼𝐼𝑒𝑒 − 𝑦𝑦𝑖𝑖′𝐼𝐼𝑒𝑒

 II.12 

where 

𝐼𝐼𝑖𝑖 sensor response for the ambient (injected) air flow (mV) 

𝐼𝐼𝑒𝑒 sensor response for the off-gas air flow (mV) 

𝑦𝑦𝑖𝑖′ oxygen molar fraction of the injected air flow free of water vapor and carbon dioxide 

(𝑦𝑦𝑖𝑖′=0.2095) 

More specific details of the protocol concerning the OTEC measurement with the gas-phase 

analyser instrument are described in APPENDIX 2. 

 

II.1.3.2.2 Dissolved oxygen saturation concentration in activated sludge 

The dissolved oxygen saturation concentration at the test conditions (𝐶𝐶𝐶𝐶′) of liquid temperature 

(𝑂𝑂), ambient pressure (𝑃𝑃) and hydrostatic overpressure (∆𝑃𝑃) is estimated from the dissolved 

oxygen saturation concentration at the same test conditions in clean water (𝐶𝐶𝐶𝐶) according to: 

 

𝐶𝐶𝐶𝐶′ = 𝛽𝛽 ∙ 𝐶𝐶𝐶𝐶 II.13 
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Where 𝛽𝛽 is the saturation concentration correction factor (𝛽𝛽 = 0.99 for domestic wastewater, 

ASCE, 1996) as previously mentioned in I.2.6.1. 

In clean water the dissolved oxygen saturation concentration at the test conditions of liquid 

temperature (𝑂𝑂), ambient pressure (𝑃𝑃) and hydrostatic overpressure (∆𝑃𝑃) is deduced from the 

dissolved oxygen concentration at standard conditions and hydrostatic overpressure (𝐶𝐶𝐶𝐶, 𝐶𝐶) 

according to the following relation: 

 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶(𝑃𝑃+∆𝑃𝑃,𝑇𝑇) = 𝐶𝐶𝐶𝐶, 𝐶𝐶 ∙ �
𝐶𝐶𝐶𝐶, 𝐶𝐶(𝑃𝑃𝑜𝑜,𝑇𝑇)

𝐶𝐶𝐶𝐶, 𝐶𝐶(𝑃𝑃𝑜𝑜,𝑇𝑇𝑜𝑜)
� ∙ �

𝑃𝑃
𝑃𝑃𝑜𝑜
� II.14 

  

where 

𝐶𝐶𝐶𝐶(𝑃𝑃+∆𝑃𝑃,𝑇𝑇) dissolved oxygen saturation concentration in clean water at measurement 

conditions (liquid temperature 𝑂𝑂, atmospheric pressure 𝑃𝑃 and hydrostatic 

overpressure (∆𝑃𝑃) (mg L-1) 

𝐶𝐶𝐶𝐶, 𝐶𝐶  dissolved oxygen saturation concentration in clean water at standard conditions 

20°C, 1013 hPa , and hydrostatic overpressure (∆𝑃𝑃) (mg L-1) 

𝐶𝐶𝐶𝐶, 𝐶𝐶(𝑃𝑃𝑜𝑜,𝑇𝑇) dissolved oxygen saturation concentration in clean water at standard conditions 

of ambient pressure (𝑃𝑃𝑜𝑜=1013 hPa) and test conditions of liquid temperature (𝑂𝑂) 

(mg L-1) 

𝐶𝐶𝐶𝐶, 𝐶𝐶(𝑃𝑃𝑜𝑜,𝑇𝑇𝑜𝑜)  dissolved oxygen saturation concentration in clean water at standard conditions 

(20°C, 1013 hPa) (mg L-1)  

II.1.3.3 Off-gas measurement protocol 

Once the bubble column was filled with activated sludge, the superficial gas and liquid velocities 

were fixed and measurements started under steady state conditions. Dissolved oxygen 

concentration, liquid temperature as well as the gas-phase oxygen partial pressure were 

measured and registered continuously with a time step of five seconds using a data acquisition 

system (Yokogawa).  During measurements, the oxygen content in the off-gas stream and the 

ambient air is analysed sequentially during three minutes and three replicates are made for each 

flow conditions. The oxygen transfer experiments were performed at different superficial gas 

velocities, using alternatively the two gas diffusers and for different sludge sampling points 
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(aeration basin, recirculation loop, membrane reactor) in order to use the full range of MLSS 

concentration available on each site.  

II.1.3.4 Validation of the off-gas method with the reoxygenation method in clean 

water 

In order to validate the off-gas protocol and results, it was decided to perform oxygen transfer 

tests in the bubble column using clean water and to compare the results with those obtained 

with the reoxygenation method.  The Figure II.7 illustrates the experimental evolutions of 

oxygen transfer (𝑘𝑘𝐿𝐿𝑎𝑎20) with superficial gas velocity (𝑈𝑈𝐺𝐺) obtained with the two methods.  

 

Figure II.7. Results of the oxygen transfer measurements performed in clean water with two different methods: 
Reoxygenation and Off-gas. 

 

To evaluate whether the oxygen transfer results were dependant on the measuring method 

(Reoxygenation and Off-gas), an analysis of covariance (ANCOVA) was carried out using the 

open source statistics software R according to the method proposed by Cornillon et al. (2012). 

The method consisted in evaluating if the slope of the function kLa20=f(UG) was dependant on 

the implemented configurations. The details of the method are described in APPENDIX 3.   

With a significance level of 5% (p<0.05), the results showed that the slope of the function 

kLa20=f(UG) is independent on the measuring method (APPENDIX 3.).  
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II.1.4 Hydrodynamic characterization of the bubble column 

Hydrodynamic characteristics of the gas-liquid dispersion in the bubble column such as the 

overall gas hold-up and the bubble size as well as the residence time distribution were 

determined.  The followed methods are described in the next paragraphs.  

II.1.4.1 Measurements of the overall gas hold-up (εG) 

The overall gas hold-up in the bubble column was measured in clean water and in activated 

sludge simultaneously with the oxygen transfer measurements. The measurements consisted in 

determining the ratio of the column height occupied by the gas volume to the one occupied by 

the gas-liquid mixture. These heights were indirectly determined through the measurement of 

the hydrostatic pressure at two different liquid heights in the bubble column under aerated and 

non aerated conditions.   

Two hydrostatic pressure sensors (Endress Hauser) were submerged in the aerated volume at 

constant depths of 0 and 4.1 m above the gas sparger (Figure II.1) and connected to a data 

acquisition system. When the column was filled with activated sludge or with clean water, the 

pressure difference between the two sensors was measured and recorded with air supply 

(during the oxygen transfer tests) and without air supply. Pressure values were averaged 

simultaneously with the oxygen transfer measurements. 

As 𝜌𝜌𝑎𝑎𝑖𝑖𝑟𝑟 ≪ 𝜌𝜌𝑒𝑒𝑎𝑎𝑒𝑒 ≈ 𝜌𝜌𝑠𝑠𝑙𝑙𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒, the overall gas hold-up can be estimated using the following equation: 

 

𝜀𝜀𝐺𝐺  (%) = �1 −
∆𝑃𝑃𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑎𝑎𝑖𝑖𝑟𝑟

∆𝑃𝑃𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑒𝑒𝑡𝑡 𝑎𝑎𝑖𝑖𝑟𝑟
� × 100 II.15 

 

The derivation of Equation II.15 is presented in APPENDIX 4. 

II.1.4.1.1.1 Relative error of the gas hold-up measurement 

The measurement of the overall gas hold-up by means of the hydrostatic pressure has been 

validated by comparison to results obtained by the level difference method performed with a 

float level sensor (Endress Hauser) which provides an absolute measurement uncertainty of  

±0.04% (Fayolle, 2006).  Table II.2 and Figure II.8 present the results of this comparison.  
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Table II.2. Relative error of the overall gas hold-up measurements obtained with the pressure probes compared to 
the one obtained with the float level sensor. 

Overall gas hold-up (𝜺𝜺𝑮𝑮) Relative 
difference 

(%) 
Pressure 
probes 

Float 
sensor 

(%) (%) 
0.24 0.21 14.33 
0.67 0.65 3.31 
1.33 1.25 5.80 
2.07 2.02 2.13 
4.02 3.86 4.02 

 

 

Figure II.8. Comparison of the gas hold-up (𝜺𝜺𝑮𝑮) measured with the float level sensor and pressure probes.  

 

The measurement relative error decreases as the gas hold-up values increases. For low gas hold-

up values of about 0.2% the relative error is 14% while for higher values between 0.6 and 4%, 

the relative error varies between 2 and 6%.  

II.1.4.1.1.2 Temperature effect on the overall gas-hold-up 

The gas hold-up measurements carried out simultaneously with the oxygen transfer tests, were 

performed at different temperatures ranging from 9 to 27°C. It was then required to evaluate the 

temperature effect on the overall gas hold-up in order to correct the results obtained at a 

temperature T to a standard temperature (e.g. 20°C) at which all results were comparable. To 

this aim, the effect of temperature on overall gas hold-up was studied by means of aeration test 

performed in the bubble column with clean water at a mean temperature of 10, 16 and 22°C and 

using the fine bubble diffuser. 
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The obtained results and the proposed correction will be presented in Chapter V in the gas hold-

up section related to the clean water experiments (IV.2.1).  

 

II.1.4.1.2 Bubble size distribution  

To measure the bubble size distribution, photographic images were taken from the outside of 

the column at a height of 1m above the gas diffuser. The camera was focused on a piece of graph 

paper fixed on the column wall. This focus allowed seeing clearly the bubbles rising next to the 

column wall. Two spotlights were placed in the back of the column and white sheets were fixed 

on the column, in front of the spotlights, in order to uniformly diffuse the light through the 

column. The inside and outside of bubbles become brighter compared to their contour and 

bubbles appear as black rings as shown in Figure II.9. 

 

 

Figure II.9. Photography of fine bubbles captured at the wall of the column 

 

The captured images allowed determining the bubble eccentricity (χ) which is the ratio of the 

bubble major axe (A) to the minor axe (b). The equivalent diameter of bubbles, defined by the 

Equation I.21 (𝑑𝑑𝑑𝑑 = (𝐴𝐴2𝑑𝑑)1/3), was estimated and a histogram of its distribution was obtained. 

The Sauter diameter (𝑑𝑑𝑑𝑑𝐶𝐶) was deduced from the distribution of the equivalent diameter using 

(Equation I.20). 

The bubble size was determined at three superficial gas velocities within a range from 1x10-3 to 

5x10-3 m s-1. For a given gas flow rate, the bubble size was determined from at least 100 bubbles. 

This number is the minimal bubbles quantity that allows measuring the bubbles size with an 

error lower than 3% in respect to the average Sauter diameter (Fayolle et al., 2010). 
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The bubbles size and shape were determined only for the fine bubble system, because in the 

case of bubbles generated with the coarse bubble diffuser, the bubbles rising near to the wall 

were very different (much smaller) from those rising through the central axis of the column. 

Consequently, determining the bubble size by means of images of bubbles rising near the wall 

was not representative of the bubble population and would underestimate the actual mean 

bubble size. 

In activated sludge, because of the opacity of the mixed liquor, only the bubbles rising very close 

to the wall could be detected and not enough bubbles could be captured to obtain a 

representative mean value.  

The photographic images were takes using a Canon Powershot G6 camera. The captured images 

were processesed using the ImageJ software. For lighting, 2 spotslights of 1000W were used. 

 

II.1.4.1.3 Residence time distribution in the aerated column 

Oxygen transfer tests in activated sludge were performed with liquid co-current circulation 

through the bubble column. In order to evaluate the flow characteristics in the reactor under this 

configuration, a study of the reactor’s residence time distribution (RTD) was carried out using 

tap water and the fine bubble diffuser.   

The liquid was directed into the column at the bottom with the use of a helical rotor pump and 

exited the top of the column by overflow (at 4.2 m above the gas diffuser). The estimation of the 

RTD consisted first in injecting a rapid pulse of a concentrated inert tracer at the nearest point of 

the liquid inlet and subsequently measuring and recording the concentration of this tracer with 

time at the reactor’s outlet.   

The tracer was a saline solution of 260 g NaCl L-1 and volume 0.05 L. The evolution of the salt 

concentration was measured using a conductivity meter installed at the outlet of the column and 

connected to a data acquisition (Yokogawa). A calibration curve relating the dissolved NaCl 

concentration with the conductivity had been previously obtained in the laboratory.  

The RTD was studied under three different superficial liquid velocities (0.8x10-3 m s-1 < 𝑈𝑈𝐿𝐿  

<4.5x10-3 m s-1) at a constant superficial gas velocity (𝑈𝑈𝐺𝐺≈4.4x10-3 m s-1). Three superficial gas 

velocities (2.0x10-3 m s-1 < 𝑈𝑈𝐺𝐺  <4.3x10-3 m s-1) were also tested at a constant liquid flow rate 

(𝑈𝑈𝐿𝐿≈4.5x10-3 m s-1)  
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The experimental evolutions of concentration with time are presented in Figure II.10 in terms of 

the dimensionless residence time distribution, 𝑂𝑂(𝜃𝜃), which is the ratio of the salt concentration 

at an instant 𝑆𝑆 to the initial salt concentration (𝑂𝑂(𝜃𝜃) = 𝐶𝐶/𝐶𝐶𝑇𝑇), and in terms of the dimensionless 

time which is the ratio of the time 𝑆𝑆 to the mean residence time (𝜃𝜃 = 𝑆𝑆/𝑆𝑆𝑚𝑚𝑒𝑒𝑎𝑎𝐺𝐺).  

 

Figure II.10. RTD in the bubble column: Evolution of the normalized concentration 𝑬𝑬(𝜽𝜽) with normalized time (θ). (a) 
𝐔𝐔𝐆𝐆 fixed (≈4.4×10-3 m s-1) and three liquid superficial velocities (b) 𝐔𝐔𝐋𝐋 fixed (≈4.5×10-3 m s-1) and three superficial gas 

velocities. C: concentration at a time t. Co: initial concentration. tmean: mean residence time. 

 

The observed concentrations describe a reactor with flow characteristics close to a completely 

mixed reactor. The dimensionless residence time distribution, 𝑂𝑂(𝜃𝜃), was modelled representing 

the reactor volume (V) as a number of 𝐽𝐽 reactors of volume  𝑉𝑉/𝐽𝐽  in cascade. This model is 

written as follows (Roustan, 2003): 

 

𝑂𝑂(𝜃𝜃) =
𝐽𝐽𝐽𝐽

(𝐽𝐽 − 1)
𝜃𝜃(𝐽𝐽−1)𝐻𝐻−𝐽𝐽𝐽𝐽 II.16 

 

where 

𝑂𝑂(𝜃𝜃) dimensionless residence time distribution  

𝜃𝜃 dimensionless time (t/tmean) 

𝐽𝐽 number of reactors 

tmean mean residence time 

 

The obtained results of the tracing experiments are summarized in Table II.3. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6

E(
θ

)=
C/

Co

θ = (t/tmean)

UG= 4,3 mm/s

UG= 3,1 mm/s

UG= 2 mm/s

(b) UG (m s-1)

4.3 x 10-3

3.1 x 10-3

2.0 x 10-3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6

E(
θ)

=C
/C

o

θ = (t/tmean)

UL= 4,5 mm/s

UL= 2,7 mm/s

UL= 0,8 mm/s

UL (m s-1)

4.5 x 10-3

2.7 x 10-3

0.8 x 10-3

(a)



Chapter II. Materials and Methods 

 

115 
 

Table II.3. Results of the tracing experiments with NaCl in the bubble column at three different gas and liquid 
superficial velocities. 

 UL  
(1x10-3 m s-1) 

UG  
(1x10-3 m s-1) 

Mean  
residence  

time (min) 
V/Q (min) J 

(reactors) 

UG 
fixed 

0.8 4.2 95.5 93.9 1 
2.7 4.6 24.8 27.9 2 
4.5 4.3 13.1 16.6 2 

UL  
fixed 

4.6 2.0 13.8 16.4 2 
4.5 3.1 15.9 16.7 2 
4.5 4.3 13.2 16.6 2 

 

The number of estimated reactors (𝐽𝐽) was in all cases equal or lower than 2. The bubble column 

with liquid circulation can then be considered as a completely mixed reactor.  

 

 

Conclusions on the setup of the oxygen transfer measurements 

 

− The oxygen transfer coefficient in clean water and activated sludge is measured in a 

bubble column using two types of bubble diffusers (FB and CB) in a range of superficial 

gas velocity between 2x10-3 and 5x10-3 m s-1. 

 

− In clean water, the oxygen transfer measurements are carried out by the Reoxygenation 

method. In activated sludge, the oxygen transfer coefficient is determined by the Off-gas 

method. The techniques are equivalent in clean water. 

 

− Oxygen transfer measurements with activated sludge are performed on site in two 

wastewater treatment plants: a conventional activated sludge system (CAS) and a 

membrane bioreactor process (MBR). 

 

− Simultaneously with the oxygen transfer measurements in clean water and activated 

sludge, the overall gas hold-up is also measured.  

 

− The bubble size distribution is determined in clean water with the fine bubble aerations 

system.  
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II.2 Activated sludge rheological measurements  

In order to study the rheological behaviour of activated sludge, a tubular rheometer was 

designed and constructed.  Tubular rheometers are known for being mechanically simple, 

allowing the application of a wide range of shear stress (between 10-2 and 107s-1) and the 

instrument configuration helps to avoid low MLSS concentration samples to settle during the 

measurements (Dupuis, 2008; Ratkovich et al., 2013).  

II.2.1 Construction of a tubular rheometer 

II.2.1.1 Rheometer specifications 

II.2.1.1.1 Characteristics of the evaluated material 

- Fluid: Activated sludge (AS) 

- MLSS concentration: Up to 15 g L-1 (in the case of MBR sludge). 

- Apparent viscosity: Depends on the exerted shear rate. At high shear rates of about 1000 

s-1, the apparent viscosity may reach values of up to 1.5mPa.s for a MLSS concentration of 

2.7 g L-1 and up to approximately 7mPa.s at a MLSS concentration of 15 g L-1.  At lower 

shear rates of about 40 s-1, this value may be up to approximately 50 mPa.s (Rosenberger 

et al., 2002; Yang et al., 2009).  

- Steady state floc size: Approximately 100 𝜇𝜇m at low shear rates (40 s-1). (Biggs and Lant, 

2000). 

 

II.2.1.1.2 Measurement range 

- Exerted shear rate: Up to 1000 s-1 which is the highest estimated average shear rate using 

the correlations available in the literature (cf. Figure I.25) associated with the superficial 

gas velocity existing in bioreactors (up to 10×10-3 m s-1).  

- In agreement with the rheological principles, rheological measurements must be 

performed in a laminar (Re<2000) and steady state flow regime. 

II.2.1.1.3 Other specifications 

- The instrument must allow monitoring the fluid temperature. 

- The instrument must be easy to transport in order to perform rheological measurements 

on site.   
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II.2.1.2 Principles of a rheological measurement with a tubular rheometer 

Before explaining the design work the measurement principles are exposed hereafter. In tubular 

rheometers, the rheological measurement consists in determining the pressure loss 

(∆𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2) associated to the liquid flow rate (𝑄𝑄) through a capillary tube of known length 

(𝐿𝐿) and diameter (D=2𝑅𝑅). Figure II.11 presents the variables involved in the measurement of a 

tubular rheometer.   

 

 

Figure II.11. Schematic of the measurement variables involved in a tubular rheometer.  

 

Since in a capillary tube the velocity profile (and the related shear rate) is a parabolic function of 

the radial distance to the axe, the apparent viscosity of a non-Newtonian fluid is radius 

dependant. For that reason it is agreed to calculate the shear rate (�̇�𝛾) and shear stress (𝜏𝜏) at the 

tube’s wall where the shear rate is maximum. For a Newtonian fluid, according to the Poiseuille’s 

law the shear rate and the shear stress in a tube are respectively written as follows (see 

APPENDIX 5  for the development of these equations):  

 

�̇�𝛾 =
4𝑄𝑄
𝜋𝜋𝑅𝑅3

 II.17 

 

 

𝜏𝜏 =
𝑅𝑅∆𝑃𝑃
2𝐿𝐿

 II.18 

 

The velocity profile of a non-Newtonian fluid circulating in a tube is also a function of the non-

Newtonian behaviour. Thus, the estimation of the shear rate requires the use of a correction to 

consider the impact of the sludge non-Newtonian character on the tubular rheological 

measurement. The corrected shear rate is then calculated by applying the Rabinowitsch-Mooney 

equation as follows (Dupuis, 2008): 

Q

L, D

P1 P2
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�̇�𝛾 =
4𝑄𝑄
𝜋𝜋𝑅𝑅3

�
3𝑛𝑛 + 1

4𝑛𝑛
� II.19 

 

where n corresponds to the index flow of the Ostwald-de Waele rheological model. It can be 

deduced from the slope of the experimental flow curves in log-log scale (log 𝜏𝜏 vs. log(4𝑄𝑄/𝜋𝜋𝑅𝑅3)). 

(see APPENDIX 5 for development of Rabinowitsch correction).  

 

II.2.1.3 Design of the tubular rheometer  

The constructed measurement device was inspired by the tubular rheometer used by Ndoye et 

al. (2013) for the rheological study of a whey protein suspension. Different tube geometries 

were implemented in order to have a large range of shear rate. Besides, the use of different 

geometries allows the verification of the non-slip hypothesis at the tube’s wall, verifying that no 

discrepancy was observed between the flow curves obtained with different diameters (Dubus, 

1994).  

As can be seen in Equation II.19, a small reduction of the radius (𝑅𝑅) implies a significant increase 

of the exerted shear rate (�̇�𝛾). Thus, for a given applied flow rate (𝑄𝑄), the use of tubes with 

different radius (𝑅𝑅) allows the application of a wide range of shear rate.  

Based on the presented equations and the device specifications, the design work consisted in 

following two main steps: 

1. The flow rate (𝑄𝑄) through the capillary tube was defined (with Equation II.19) in relation 

to the tubes radius (𝑅𝑅) in order to achieve the specifications of the range of shear rate (�̇�𝛾) 

within the limit fluid velocity (Re<2000) and considering the floc size as well as the 

commercial availability of tubes radius. 

 

2. The tubes length (𝐿𝐿) was defined as follows: first, the applied shear stress in the tubes 

was estimated with the Newton’s law in relation to the specifications of the range of 

viscosity and shear rate (𝜇𝜇 = 𝜏𝜏/�̇�𝛾).  Then the tubes length was defined using Equation 

II.18 based on the measurement range and accuracy of the differential pressure 

instruments commercially available.  It was also considered that the pressure loss 

measurement in the tube should be placed as far as possible from the tube’s edges in 
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order to avoid extremities convective effects that disrupt the flow development in the 

measurement length (edge effects, Dupuis, 2008). 

II.2.1.4 Description of the constructed tubular rheometer 

The rheometer is composed of four PMMA transparent tubes of 4, 7, 12 and 14 mm of diameter. 

Two piezometric rings, separated by a given length (L = 0.4, 0.8, 1 and 1 m respectively), were 

located on each tube in order to measure the differential pressure between the two 

measurement points (ΔP). The piezometric rings are separated from the tubes extremities by a 

distance of 0.6, 0.4, 0.3 and 0.3 m respectively for the four tubes. The manufacturing of the 

piezometric rings as well as their adaption to the tubes was carried out by an exterior contractor 

(s.a.r.l. STIM).  

The sludge is pumped into the tubes using a helical rotor pump characterised by a pulseless and 

low shear flow (PCM – Moineau Technology).  The liquid flow rate (Q) in the tubes ranges a 

value between 5 and 50 L h-1 that is measured by weighing the sludge flux at the outlet of the 

tubes using scales connected to a PC. The pressure loss (ΔP) associated to the flow rate is 

measured using micromanometers with a piezoresistive sensor (KIMO MP200). These are 

provided with two interchangeable measurement modules attaining various ranges of 

differential pressure (up to 500 Pa and 2500 Pa) with different accuracies. Depending on the 

fluid viscosity and the tubes geometry the modules are used alternatively. The sludge 

temperature is measured at the tubes outlet using a PT100 thermometer.  

Figure II.12 and Figure II.13 show a schematic and a picture of the constructed tubular 

rheometer. 
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Figure II.12. Schematic of the constructed tubular rheometer. 

 

 

 

 
Figure II.13. Picture of the constructed tubular rheometer. 
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An image of one of the pressure capture points is shown in Figure II.14. 

 

 

Figure II.14. Illustration of a piezometric ring adapted to one of the rheometer tubes. 

 

 

The determination of the instrument accuracy and the developed methodology to characterise 

the rheological behaviour of activated sludge is presented in Chapter III. 

 

 

Conclusions on the construction of a tubular rheometer for activated sludge 

 

− A tubular rheometer adapted to the sludge characteristics (floc size, settleability, 

viscosity) has been designed and constructed in order to study the rheological 

behaviour of AS. Its design with four tube geometries allows applying a shear rate range 

from approximately 50 up to 1000 s-1 which according to the literature review would 

correspond to the range of shear rate exerted by the bubbles in aerated reactors in 

accordance to the applied superficial gas velocities (UG). 
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II.2.2 Rheological behaviour of activated sludges from different plants 

Rheological measurements were performed with activated sludges grab samples taken from the 

wastewater treatment plants (WWTPs) of five different municipalities located in the Ile de 

France Region, two of them are membrane bioreactor processes (MBR) and the others are 

conventional activated sludge (CAS) systems (Table II.4) 

Table II.4. Wastewater treatment plants from where the activated sludge was sampled for the study of the rheological 
behaviour. 

WWTP PE Activated sludge process 
Marolles/Saint Vrain 22 000  CAS 

Briis-sous-Forges 20 000  MBR 
Etampes 55 000  CAS 

Ollainville 66 667  MBR 
Etrechy 10 000  CAS 

PE: population equivalent; CAS: Conventional activated sludge; MBR: membrane bioreactor. 

 

The sludge was sampled from the aerated bioreactor and/or the recirculation loop and/or the 

membrane bioreactor in order to obtain different concentrations. 

II.2.3 Activated sludge rheology and oxygen transfer measurements on site  

Simultaneously to the oxygen transfer measurements in activated sludge previously described in 

paragraph §II.1.3, some rheological measurements were also performed on site. Basically, the 

rheological experiments on site were carried out following the same protocol defined in the 

laboratory but the sludge was pumped into the tubular rheometer from the column outflow 

without any intermediate stirred reservoir. Hence the sludge temperature in the tubular 

rheometer corresponded approximately to the temperature in the bubble column and in the 

aeration basin. The schematic of the experimental setup installed on site that included the 

oxygen transfer and rheological measurements is presented in Figure II.15. 
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Figure II.15.Representation of the experimental setup installed two wastewater treatment plants: bubble column and 
tubular rheometer.  

 

 

II.2.4 Temperature effect on the activated sludge rheological behaviour 

Rheological measurements with activated sludge were then performed on two different 

locations: (i) on the laboratory and (ii) on site. While the rheological measurements performed 

in the laboratory were carried out at a controlled temperature of 20°C, the on-site 

measurements were performed without temperature control and the sludge temperature 

corresponded basically to the mixed liquor temperature in the aeration basin (as described in 

the paragraph here above). In order to extrapolate the results obtained on site at different 

temperatures to 20°C, the effect of temperature on activated sludge rheology was evaluated. 

Rheological measurements were thus performed inside a room with a temperature controlled at 

three different levels (10, 15 and 20°C) with the same activated sludge. After the sample 

reception at the laboratory, the volume was divided in three equivalent samples. Before starting 

the rheological measurements, the resulting three volumes were refrigerated if needed or left in 

a constant temperature room with gentle stirring and aeration. 

The results from this study are presented in the next chapter concerning the setting up of the 

rheological characterization (cf. III.4). 
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II.3 Physicochemical characterisation of activated sludge  

Table II.5 presents the physicochemical properties of activated sludge that were characterised in 

relation to the measurements of oxygen transfer coefficient and the study of the sludge 

rheological behaviour.  The median floc diameter (D50), the floc cohesion index (FCi) and the 

pH, were only evaluated for samples concerning the rheological measurements. 

 

Table II.5. Characterized physicochemical activated sludge properties 

Sample Property Symbols 
and units Method 

Activated 
sludge 

samples 

Mixed liquor 
suspended solids MLSS (g L-1) 

Standard: NF T 90-105-2. 250 mL 
sample  15 min centrifugation  
drying at 110°C during 12h at least. 

Mixed liquor volatile 
suspended solids MLVSS (g L-1) 

Standard. 250 mL sample   
centrifugation  drying at 550°C 

during 2 h at least. 

Total chemical oxygen 
demand Total COD (mg L-1) 

250 mL sample homogenisation 
with Ultraturrax (1 minute)  

Hach Lange cuvette tests: LCK 514. 
Hydrostatic Floc 
Volume (Henkel, 

2010) 
HFV (mL L-1) 

1L sample  settling in a 
graduated glass tube at 4°C during 

24-48hreading of settled volume. 

Floc median diameter D50 (𝜇𝜇m) Granulometrie Mastersizer 3000 
(Laser diffraction) 

Floc Cohesion index FCi (-) Granulometrie Mastersizer 3000 
(Laser diffraction) 

pH pH pH probe 

Density 𝜌𝜌 (kg m-3) weighing of a 50 mL graduated 
flask filled with activated sludge 

Sludge Volume Index SVI (mL g-1) 
1L sample  30 minutes settling in 
a laboratory tube calculation of 
ratio to the MLSS concentration. 

Filtered 
activated 

sludge 
sample 

(250 mL 
sample 
filtration at 2 
𝝁𝝁m  100 
mL filtration 
at 0.45 𝝁𝝁m) 

Soluble chemical 
oxygen demand Soluble COD Hach Lange cuvette tests: LCK 314 

Surfactants (anionic, 
cationic, non-ionic) 

S-A; S-C; S-NI  
(mg L-1) 

Hach Lange cuvette tests: LCK 332, 
LCK 333, LCK 331. 

Static surface tension 𝜎𝜎 (mN m-1) Ring tensiometer LAUDA 

Calcium, Magnesium, 
Sodium, Potasium 

Ca++, Mg++, Na+, K+ 
(mg L-1) Ionic chromatography (Dionex) 

   

II.3.1.1.1 Floc mean diameter (D50) 

The floc granulometry was studied by means of a particle size analyser that uses the laser 

diffraction technique (Mastersizer 3000, Malvern) to determine the size distribution in a range 

of particle size from 0.01 𝜇𝜇m up to to 3500 𝜇𝜇m. 
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II.3.1.1.1.1 Measurement principle  

The laser diffraction technique consists in the emission of a laser beam through a sample with 

dispersed particles. Depending on the size on the encountered particle, the incident light 

scatters at different angles (see Figure II.16.a). Measuring the angular scattered intensity allows 

the particle size calculation based on the Mie light scattering theory. In the measurement unit, 

the intensity of the scattered light is measured by means of light detectors located at different 

angles around the dispersed particles in order to create a pattern of light scattering for the 

particles. Two laser beams with different wave lengths (blue: 477 nm; red: 633 nm) are 

sequentially emitted in order to enlarge the range of detected particle size (Figure II.16b). 

 

Figure II.16. (a) Incident laser beam on particles with different size and scattering angle. (b) Representation of light 
detectors and laser beams (blue and red) in the measurement unit. (Images adapted from Malvern). 

 

The light scattering technique assumes the following hypothesis: 

- The light is not absorbed by the continuous phase  

- Particles concentration is low  

- The particles are spherical 

- The studied suspension is homogenous 

Considering that some particles are non-spherical, an equivalent diameter is calculated. It 

corresponds to the diameter of a sphere that occupies a volume equivalent to the particle 

volume.  

II.3.1.1.1.2 Protocol description 

The particle analyzer is provided with an external stirring module that has two main functions: 

keeping a homogenous suspension and driving the sample into the measurement area. As 

activated sludges are shear sensitive, the stirring speed influences the floc granulometry. Hence, 

to measure the floc size, the stirring speed was fixed to 500 rpm which is the minimum stirring 

speed provided by the external module. Parallel studies carried out in the laboratory with a 

standard cuve, not presented in this work, showed that 500 rpm corresponds to a shear rate in 

an interval between 120 and 300 s-1. The analysed sample corresponded to an activated sludge 
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sample diluted to approximately 0.1 g L-1 of MLSS concentration using sludge supernatant 

obtained from a filtration step at 2µm. The degree of this dilution is defined in order to carry out 

the measurements within the range of obscuration of 10-20% recommended by the 

manufacturer for avoiding particle superposition and ensuring correct results. Before examining 

the diluted sample, the internal measurement area is rinsed and a “blank” sample of distilled 

water is analysed in order to set a scattered light pattern of a particle-less media. The activated 

sludge refraction index was defined as 1.596, according to previous works with this type of 

material (Stricot, 2008). The experimental setup for the particle size analysis is represented in 

Figure II.17. 

 

Figure II.17. Schematization of the experimental setup for the particle size analysis using the granulometer. 

 

Connected to a PC, the granulometer provides an instantaneous volume distribution of the floc 

equivalent diameter which evolves up to the moment when the aggregation-rupture equilibrium 

is established. Then, the median floc diameter (D50) is obtained from the stable volume size 

distribution. The mean surface and mean volume diameters, respectively D3/2 and D4/3, are as 

well obtained from the stable size distribution. 

II.3.1.1.2 Floc Cohesion index (FCi) 

The floc cohesion index characterizes the floc resistance to fragmentation when submitted to 

shearing conditions (Wilen et al., 2003).  Its measurement consists in determining the relative 

variation of the equilibrium median floc size when measured at two different shearing 

conditions. Therefore, to estimate the floc cohesion index, the same protocol previously 

described was implemented but the stirring speed in the granulometer external module was set 

to 2000 rpm after having earlier set it to 500 rpm. The speed of 2000 rpm corresponded to an 

intermediate stirring speed within the applicable range of the provided external stirring module. 

This speed corresponds to a shear rate higher than 1000 s-1 in accordance to the previously 

granulometer
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mentioned parallel study (not shown in this work) carried out in the laboratory with a standard 

cuve. The floc cohesion index was then calculated as follows:  

 

𝐹𝐹𝐶𝐶𝐹𝐹 = 1 − �
D50500rpm − D502000rpm

D50500rpm
� II.20 

 

The more the sludge cohesion index (𝐹𝐹𝐶𝐶𝐹𝐹) is close to 1, the more the sludge floc is resistant to 

shear. The typical evolution of the median floc diameter under two different shear conditions is 

presented in Figure II.17a. The change in the volume floc size distribution after two different 

shear conditions is presented in Figure II.18b. 

 

Figure II.18. (a) Median floc diameter under two different shear conditions: 500rpm 2000 rpm  500 rpm. (b) 
Volume floc size distribution at two different shear conditions: 2000 rpm and 500 rpm. 

 

II.4 Statistical analysis 

In order to examine the link between the activated sludge physico-chemical properties, its 

rheological behaviour (apparent viscosity) and oxygen transfer coefficient (kLa), results were 

studied by means of an univariate linear regression analysis. Despite the fact that the correlation 

between some variables may not be linear, this simple method allows identifying major 

correlations (Wilen et al., 2003; Gardener 2012). The Pearson’s linear correlation coefficient (r) 

was calculated to identify how strongly a given independent variable impacts the standard 

deviation of the response variable. It ranges between -1 and +1, where -1 indicates a perfect 

negative correlation, +1 indicates a perfect positive correlation and 0 means the absence of 

association. Correlations are considered statistically significant if the p-value is lower than 0.001 

(p<0.001). The statistical computing was performed using the software environment R. 
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In order to study the rheological behaviour of activated sludge, a tubular rheometer adapted to 

the sludge characteristics (floc size, settleability, viscosity) was designed and constructed. It is 

composed of four tubes of different diameter (4, 7, 12 and 14 mm) and the applied shear rate 

can range from approximately 50 up to 1000 s-1 (cf. specifications in § II.2.1.4). This chapter 

develops the methodology to use this apparatus in order to characterize the rheological 

behaviour of activated sludge. The uncertainty of the measurement is first assessed, and the 

implementation of the apparatus is described, especially the conditions allowing to reach a given 

accuracy.  

III.1 Rheometer measurement uncertainty 

III.1.1 Theoretical measurement uncertainty  

The theoretical measurement uncertainty was computed considering the accuracy and tolerance 

of the involved instruments and tubes using the partial derivatives method. This allowed 

establishing the measurement conditions (𝑄𝑄, �̇�𝛾, 𝑅𝑅) in which the tubular rheometer gives results 

with a sufficient accuracy. The instruments accuracy and the tubes tolerance as well as the 

procedure for the calculation of uncertainties are presented in APPENDIX 6. 

Figure III.1 presents, for a fluid with the same viscosity of water (𝜇𝜇=1 mPa.s), the estimated 

measurement uncertainty (±%) related to the viscosity of the fluid, as a function of the shear 

rate for each tube geometry. The different tube geometries are referenced as D4, D7, D12 and 

D14 in relation to their diameter length (in millimetres).  The data presented in these figures are 

also shown in detail in APPENDIX 6 in a table format. 
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 Figure III.1. Estimated measurement uncertainty (±%) related to the viscosity of the fluid as a function of the applied 
shear rate (�̇�𝜸) for each tube geometry and for a fluid with the same viscosity of clean water (𝝁𝝁=1 mPa.s). 

 

The measurement uncertainty increases with a decrease in the shear rate because the measured 

differential pressure decreases with the liquid flow rate and approaches the manometers 

accuracy (∼1Pa). At the same time, the manometers provide better accuracy at lower differential 

pressures (see Appendix table 4). That explains the trend break observed for the geometry D7: 

the decrease of the shear rate and the pressure loss leads to a reduction of the measurement 

uncertainty.  

According to the estimated uncertainty values, for fluids with the same viscosity as water, 

rheological measurements must be performed in the tubes referenced as D4, D7 and D12 and 

above a shear rate of 70 s-1, in order to obtain uncertainties lower than 10%. In order to 

maintain a laminar flow (Re<2000), high flow rates (�̇�𝛾>370s-1) must be avoided with the tube 

D7. 

Figure III.2 and Figure III.3 present the estimated uncertainties for fluid viscosities 1.5 and 7 

times the water viscosity. These values correspond approximately to an average value of the 

lowest apparent viscosity (limit viscosities) found in the literature (Tixier et al., 2003 and Yang 

et al., 2009) for activated sludge with MLSS concentrations typical for conventional activated 

sludge and MBR sludge (between 2 and 15 g L-1).  

0

20

40

60

80

100

120

0 500 1000

m
ea

su
re

m
en

t  
un

ce
rt

ai
nt

y 
 (%

)

shear rate (s-1)

D4 D7

D12 D14

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500

m
ea

su
re

m
en

t u
nc

er
ta

in
ty

   
(%

)

shear rate (s-1)

D4 D7

D12 D14

Re>2000



Chapter III. Setting up the rheological characterization of activated sludge 

 
 

133 
 

 

Figure III.2. Estimated  measurement uncertainty (±%) related to the viscosity of the fluid as a function of the applied 
shear rate (�̇�𝜸) for each tube geometry and for a fluid with a viscosity 1.5 times water dynamic viscosity. 

 

 

The instrument uncertainty is reduced with the increase of the fluid viscosity because the 

pressure loss becomes higher in respect to the accuracy provided by the manometers (∼1Pa). 

For a fluid with a viscosity 1.5 times the water dynamic viscosity the use of the tubes D4, D7 and 

D12 at shear rates above 50 s-1 provides measurement uncertainties lower than 10%. 

 

 

Figure III.3. Estimated measurement uncertainty (±%) related to the viscosity of the fluid as a function of the applied 
shear rate (�̇�𝜸) for each tube geometry and for a fluid with a viscosity 7 times the water dynamic viscosity.  
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The apparatus uncertainty is reduced with the increase of the fluid viscosity because the 

pressure loss becomes higher in respect to the accuracy provided by the manometers (∼1Pa). 

For a fluid with a viscosity 1.5 times the water dynamic viscosity the use of the tubes D4, D7 and 

D12 at shear rates above 50 s-1  provides measurement uncertainties lower than 10%. 

For fluids with a viscosity 7 times the water dynamic viscosity, the four tubes (D4, D7, D12 and 

D14) can be used in a wide range of shear rates to reach an uncertainty lower than 10%. At 

shear rates above 50 s-1, the estimated uncertainty is lower than 6.5%. 

III.1.2 Experimental error with tap water  

Rheological measurements were carried out with tap water in order to estimate the 

experimental error with a fluid model which represents the lower viscosity that can be found in 

activated sludge. Measurements were performed using three diameters (D4, D7, D12) and on the 

range of flow rates where measurement uncertainties have been estimated to be lower than 

10%.  

Rheological measurements were performed in five steps as follows: 

1. Fixing a flow rate with the pump  

2. Waiting 30 seconds to reach a steady state flow  

3. Measuring the differential pressure (∆𝑃𝑃), flow rate (𝑄𝑄) and temperature during 2 

minutes and computing the average values. Two minutes were fixed as the time assuring 

to reach a representative average value.  

4. Stopping the fluid flow 

5. Measuring the differential pressure in motionless conditions (∆𝑃𝑃𝑜𝑜) during 1.5 minutes 

and computing the average values. 

As shown in Table III.1, the experimental relative error is lower than ±10% with an average of 

5% by comparison with the dynamic viscosity of water at the measurement temperature (Kestin 

et al., 1978). 
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Table III.1. Experimental error on tap water dynamic viscosity obtained with three diameters (D4, D7, D12). 

Tube T (°C) Shear stress 
𝜏𝜏 (Pa) 

Shear rate 
�̇�𝛾 (s-1) 

Experimental 
viscosity 
𝜇𝜇 (Pa.s) 

Theoretical 
viscosity* 

(Pa.s) 

Relative 
error (%) 

Reynolds 
number 

 19 1.1 1000.8 1.1E-03 1.0E-03 -3.7 1946 
 21 0.9 910.2 1.0E-03 9.9E-04 -4.0 1834 
 19 0.9 871.2 1.1E-03 1.0E-03 -1.8 1685 

D4 21 0.8 798.7 1.0E-03 9.9E-04 -3.1 1612 
 19 0.8 794.7 1.0E-03 1.0E-03 -1.1 1537 
 20 0.8 778.3 1.1E-03 9.9E-04 -8.7 1564 
 20 0.6 563.6 1.0E-03 1.0E-03 -1.9 1130 
 20 0.3 361.5 9.4E-04 1.0E-03 5.5 723 
 20 0.3 293.9 9.5E-04 1.0E-03 4.7 588 
 21 0.2 241.5 1.0E-03 9.9E-04 -1.2 1490 
 21 0.2 218.4 1.0E-03 9.8E-04 -2.6 1356 
 21 0.2 196.6 9.5E-04 9.9E-04 3.7 1220 

D7 21 0.2 172.0 9.4E-04 9.9E-04 4.6 1062 
 21 0.1 151.9 9.4E-04 9.9E-04 4.8 940 
 20 0.1 110.1 1.1E-03 1.0E-03 -6.8 676 
 21 0.1 72.8 1.0E-03 9.9E-04 -4.0 450 
 21 0.1 57.8 1.1E-03 9.8E-04 -7.0 360 

D12 
20 0.1 80.4 1.0E-03 1.0E-03 -2.3 1432 
20 0.1 73.3 1.1E-03 1.0E-03 -9.8 1433 
21 0.07 80.17 9.1E-04 9.85E-04 8.0 1321 

* Kestin et al. (1978). 

 

The experimental flow curves obtained for tap water with the tubes D4, D7 and D12 are 

presented in Figure III.4.  

 

Figure III.4. Experimental rheograms obtained for tap water at an average temperature of 20°C. Dotted line: 
theoretical values at 20°C. 
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The obtained rheograms with the three different tubes overlap which indicates that no 

corrections related to wall slip or convective effects at the tube’s ends are required, even if the 

Reynolds numbers are relatively high questioning the fact that the flow is laminar.  

 

 

 

Conclusions on the constructed rheometer 

 

− The constructed tubular rheometer to study the rheological behaviour of activated 

sludge within a shear rate range of approximately 50 up to 1000 s-1. 

 

− The measurement uncertainty has been determined by means of the partial derivative 

method considering the accuracy of the involved instruments. These results allowed 

establishing an abacus that presents the measurement relative uncertainty as a function 

of the viscosity of the fluid, the tube geometry and the flow rate (hence shear rate). The 

measurement uncertainty is reduced as: (i) the fluid viscosity is increased, (ii) the flow 

rate is increased and (iii) the tube diameter is reduced. 

 

− Using tap water in the adequate conditions (shear rate, laminar regime and tube 

geometry), the experimental relative error on water dynamic viscosity provided by the 

tubular rheometer is estimated to be lower than ±10% with an average of 5%. As 

showed in the established abacus, the use of a more viscous fluid leads to a reduction of 

the measurement uncertainty.   

 

 

  



Chapter III. Setting up the rheological characterization of activated sludge 

 
 

137 
 

III.2 Rheological measurements with activated sludge 

III.2.1 Setting up a rheological measurement with activated sludge 

With activated sludge, rheological measurements in the laboratory were performed under the 

configuration shown in Figure III.5. 

 
 

Figure III.5. Laboratory configuration for the rheological measurements with activated sludge. 

 

Defining a measurement protocol for studying the rheological behaviour of activated sludge in 

the laboratory consisted in answering the following questions: 

- What volume of activated sludge is necessary to perform a rheological measurement? 

- What is the impact on the rheological behaviour of recycling the same sample of 

activated sludge several times in the rheometer? This question arises in relation to the 

thixotropic behaviour of some activated sludge reported in the literature (Seyssiecq et 

al., 2003; Tixier, 2003). Since the rheological behaviour of a thixotropic sample is a 

function of the shear previously exerted on the suspension, an extended shearing of a 

thixotropic sample will result in a different flow curve compared to the one obtained 

with a less sheared sample. 

- What is the impact of the stirring speed in the feeding reservoir on the measurement 

results? 

- What is the impact of storage on rheology results?  

The measurements performed in order to answer these questions and the related results are 

presented in the following paragraphs. These tests were carried out with activated sludge 

sampled from the aerated bioreactor (or the recirculation loop) of the Marolles/Saint Vrain 

wastewater treatment plant (see Table II.4 and APPENDIX 1 for characteristics of the Saint Vrain 

wastewater treatment plant). Samples transportation time was about 1h and the rheological 

measurements were performed within 10h after sampling. At reception in the laboratory, 
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samples were slightly aerated and gently stirred and introduced in the measurement room 

controlled at a temperature of 20°C. Measurements started when the activated sludge sample 

reached a constant temperature. 

To evaluate the impact of the system configuration on the obtained rheograms, a covariance 

analysis (ANCOVA) was performed according to the method proposed by Cornillon et al. (2012) 

using the statistics software R. The method, described in detail in APPENDIX II.3, consisted in 

evaluating if the slopes and intercepts of the obtained flow curves were dependent on the 

implemented configurations.    

III.2.1.1 Sample volume  

Two modes to introduce the activated sludge into the apparatus were tested: 

(i) The sample passed through the system only once. A volume of 40 L was necessary. 

(ii) A smaller sample of 10 L was recycled several times in the system.  

The obtained flow curves for the same activated sludge sample are shown in Figure III.6.  

 

Figure III.6. Rheograms obtained with the same activated sludge sample under two different feeding modes (i) one 
only passage through the system and (ii) recycled sludge through the system. Bars of error represent ± 5%. Tube 

geometry: D7. MLSS concentration: 3.4 g L-1. 

 

With a significance level of 5% (p<0.05), the results of the ANCOVA analysis, showed that the 

resulting rheogram is statistically independent of the mode of supplying the activated sludge to 

the apparatus. Thus several passages through the system (4 times) do not impact the observed 
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rheological behaviour compared to only one passage through the system. The configuration 

using a recirculation of the sample is retained since it is simpler on a logistic point of view. 

Besides, no thixotropic behaviour was observed, although it was not possible to differentiate 

whether the absence of a thixotropic behaviour is related to the instrument configuration or to 

the properties of the sample itself.  

 

III.2.1.2  Stirring speed in the feeding reservoir 

Three flow curves were obtained consecutively with the same activated sludge sample but 

different stirring speeds in the feeding tank: 40, 80, 120 rpm (Figure III.7). The lowest speed (40 

rpm) corresponds to the minimum speed required to avoid settling and to maintain a 

homogenous sample.  Above 120 rpm the formation of a vortex was observed.  

 

Figure III.7. Rheograms obtained with the same activated sludge sample and three different stirring speeds in the 
feeding reservoir. Bars of error correspond to ± 5%. Tube geometry: D7.  

 

With a significance level of 5% (p<0.05), the results of the ANCOVA analysis showed that the 

resulting rheograms are statistically independent of the stirring speed in the feeding tank. An 

intermediate speed of 80 rpm was therefore adopted. 
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III.2.1.3  Sample storage 

Rheological measurements were performed during three consecutive days with the same 

activated sludge. At reception in the laboratory, the sample was divided into three equivalent 

volumes, one was used for the first rheological measurement on the sampling day (Day zero). 

The remaining two volumes were stored in a refrigerated room at 4°C with gentle stirring and 

aeration. These two samples were used to carry out rheological measurements a day after 

sampling (D+1) and two days after sampling (D+2).  The obtained rheograms are presented in 

Figure III.8.  

 

Figure III.8. Rheograms obtained for the same activated sludge with different storage time after sampling. Bars of 
error represent ±5%. Tube geometry: D7. MLSS concentration: 4.3 g L-1. 

 

With a significance level of 5% (p<0.05), the results of the ANCOVA analysis, showed that the 

resulting rheograms are statistically not affected by the sample storage time within Day zero and 

D+2. Though in this study the rheological measurements were performed on the same sampling 

day, this information is useful for upcoming studies.  
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Conclusions on the setup of rheological measurement with activated sludge 

 

− The volume of sludge sample in the feeding reservoir is defined to 10L. The sample 

passes through the measurement system approximately 4 times. 

 

− The stirring speed in the feeding reservoir is fixed to an intermediate value of 80 rpm; 

this stirring speed maintains a homogenous sample and avoid settling. 

 

− Rheological measurements could be performed within two days after collection.   

 

 

III.2.2 Applying the Rabinowitsch-Mooney correction   

In order to consider the impact of the non-Newtonian character on the rheological 

measurements performed with the tubular rheometer, the Rabinowitsch-Mooney equation was 

applied to correct the experimental shear rate at the wall according to Equation III.1 (referenced 

in APPENDIX II.5). 

�̇�𝛾 =
4𝑄𝑄
𝜋𝜋𝑅𝑅3

�
3𝑛𝑛 + 1

4𝑛𝑛
� III.1 

 

The correction factor �3𝐺𝐺+1
4𝐺𝐺

� becomes more significant as the shear-thinning behaviour 

accentuates and n decreases from 1 (Figure III.9a). For n values between 1 and 0.82, the impact 

of the rheological behaviour on the shear rate can be considered as negligible (<5%). On the 

contrary, for suspensions with a more pronounced shear-thinning behaviour, for instance n=0.5, 

the use of this correction avoid underestimating the applied shear rate by 25%. A visual example 

of how the Rabinowitsch correction impacts the experimental flow curves obtained with 

activated sludge with two different MLSS concentrations (4.0 and 7.9 g L-1) is shown in Figure 

III.9b. It can be observed that the correction is more significant for the flow curve with the 

lowest flow index (n=0.49).  
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Figure III.9. (a) Evolution of the Rabinowitsch-Mooney correction factor with n (flow index in the Ostwald equation). 
(b) Experimental and corrected flow curves obtained for activated sludge with two different MLSS concentrations (4.0 

and 7.9 g L-1). Results at 20°C.Tube geometries: D7 and D12. 

 

The Rabinowitsch-Mooney correction was applied to all experimental flow curves obtained 

independently of the estimated value of the flow index (n). 

III.3 Comparing the flow curves obtained with the tubes of different 

diameter   

In the present study, the rheological behaviour of activated sludge was studied in a range of 

shear rate between 50 and 400 s-1. This range of shear rate was defined according to the shear 

rate values estimated using the equations presented in Table I.8 and the superficial gas velocities 

applied in the bubble column implemented to perform the measurements of the oxygen transfer 

coefficient (cf. II.1.1). To attain this measurement range, two tube geometries were used: D7 and 

D12.   

Rheological measurements performed with activated sludge using the different tubes showed 

that the obtained rheograms overlapped (Figure III.10). The applied correction (Rabinowitsch-

Mooney equation) for non-Newtonian fluids is adequate and no other corrections seem to be 

required in relation to wall-slip or convective effects at the tube’s extremities.  
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Figure III.10. Experimental rheograms for AS with different MLSS concentrations and obtained with different tubes 
diameters (D7 and D12). Results at 20°C. 

 

III.4 Temperature effect on the rheological behaviour of activated sludge 

The influence of temperature on sludge rheological behaviour was evaluated according to the 

protocol mentioned in the previous chapter in paragraph § II.2.7. 

Figure III.11 shows the obtained rheograms and the evolution of the apparent viscosity with the 

shear rate at three different temperatures (10, 15 and 20°C) for an activated sludge sample from 

Saint Vrain WWTP and with MLSS concentration of 5.3 g L-1.  
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Figure III.11. (a) Experimental rheograms and (b) apparent viscosity evolution with the applied shear rate obtained 
for the same activated sludge at 10, 15 and 20°C. Tube geometry: D7. MLSS concentration: 5.3 g L-1.  

 

The apparent viscosity, the slope of flow curves (shear stress vs. shear rate), decreases with the 

increase of temperature.  When the temperature rises from 10 to 20°C, the apparent viscosity at 

a given shear rate is reduced by 24.5% on average which is close to the decrease of water 

dynamic viscosity (23.3%) within the same range of temperature (Kestin et al., 1978).  

From the observed rheograms, an empirical correlation to extrapolate the activated sludge flow 

curves to a temperature of 20°C was obtained. In analogy to the Arrhenius equation, the 

correlation is written as: 

 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−𝐴𝐴𝐺𝐺(20°𝐶𝐶)

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−𝐴𝐴𝐺𝐺(𝑇𝑇°𝐶𝐶)
= 𝐴𝐴 𝐻𝐻𝑑𝑑𝑒𝑒�

𝐵𝐵
𝑇𝑇+273.15� III.2 

 

where A and B are empirical coefficients. Their values (A=169.6 and B=-1531.4 K-1) were 

deduced by minimizing the sum of squared residuals between the experimental values and the 

estimated values using Equation III.2. In Figure III.12, the experimental rheogram and apparent 

viscosity obtained at 20°C are compared to the rheograms and apparent viscosity obtained at 

10°C and 15°C converted to 20°C using Equation III.2. 
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Figure III.12. (a) Experimental rheogram and (b) apparent viscosity at 20°C compared with results obtained at 10°C 
and 15°C converted to 20°C using Equation III.2.  

 

The effect of temperature on sludge apparent viscosity estimated with the proposed correlation 

is higher than the one reported by Yang et al. (2009) for activated sludge with MLSS 

concentrations up to 18.7 g L-1 and Dieudé-Fauvel et al. (2009) for pasty sludge with 15 % of dry 

matter. From their proposed correlations, a temperature increase from 10 to 20°C leads to a 

decrease of apparent viscosity of 13.3% and 18.0% respectively. Instead, similarly to the present 

work, the study from Lopez et al. (2015), using industrial and domestic MBR AS with MLSS 

concentrations between 5 and 20 g L-1, showed a decrease of 22.6% in sludge apparent viscosity 

when the temperature rises from 10 to 20°C. 

In the present work, the sludge MLSS concentration ranges from 2.3 up to 10.2 g L-1 which 

corresponds to a minimum water content of 98.9 w%. Given that the temperature effect 

observed on sludge apparent viscosity is similar to the one of temperature on water dynamic 

viscosity, it is assumed that the proposed correlation is also valid for all the activated sludge 

samples examined in this study.  

The use of this correlation allowed extrapolating the rheological results obtained on site at a 

given ambient temperature T (between 9 and 27°C) to a temperature of 20°C.  
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Conclusions on the setup of rheological measurement with activated sludge 

 

 

−  The experimental rheograms of activated sludge are corrected using the Rabinowitsch 

– Mooney equation which considered the impact of the sludge non-Newtonian character 

on the shear rate.   

 

− The rheograms obtained using two different tube geometries showed that the 

rheograms overlapped suggesting that other corrections related to wall-slip or 

convective effects at the tube’s extremities were not necessary.  

 

− The impact of temperature on activated sludge appeared to be similar to the one on 

water dynamic viscosity. In order to account for this impact, a correlation was proposed 

and assumed to be valid in the range of the studied MLSS concentrations (from 2.3 up to 

10.2 g L-1) to correct the results to 20°C.  
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This chapter presents the results of experiments performed to investigate the rheology of 

activated sludge (AS) samples issued from five wastewater treatment plants (WWTPs). The AS 

rheological behaviour is first evaluated by analysing the obtained rheograms. In order to better 

interpret the results, some physicochemical properties of the different activated sludge samples 

are analysed and their correlation to the activated sludge rheology is studied. The 

physicochemical measurements characterise the particulate fraction (MLSS, MLVSS, HFV), the 

soluble fraction (soluble COD, surfactants and cations concentrations, surface tension) and other 

properties such as pH, SVI, floc size and floc cohesion index (FCi). Subsequently, the ability of 

some rheological models to describe each of the experimental rheograms is evaluated and 

analysed. Finally, based on the set of experimental data and the sludge properties that define its 

rheological behaviour, a rheological model is proposed and validated.  

IV.1 Experimental conditions 

All experiments were performed with the tubular rheometer presented in the second chapter in 

§ II.2.1.4. The shear stress was examined in the shear rate range from 50 to 400 s-1.  The 

activated sludge samples were collected from five wastewater treatments plants with a sludge 

retention time between 10 and 20 day (see table II.5 for WWTP characteristics). For each 

studied wastewater treatment plant, the sludge was sampled either from the aeration tank and 

the recirculation loop or from the membrane reactor (in the case of membrane bioreactors). The 

measurements were performed in two different conditions as previously mentioned in 

paragraph II.2.6 and II.2.7: (i) in the laboratory at a controlled temperature (20 °C) and (ii) on 

site at the temperature of the sampled sludge. The physicochemical properties of studied sludge 

samples were determined on the day of sampling. The samples were analysed without dilution 

or dewatering in order to avoid modifications of their physicochemical characteristics. 

Laboratory measurements were completed within 6 hours after sampling.  

Table IV.1 and Table IV.2 present the two measurement series as well as some of their general 

characteristics: origin, operating conditions, sampling point and MLSS concentration.  
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Table IV.1. Origin, operating conditions, sampling point and MLSS concentration of sludge samples used for the 
experimental rheological study in the laboratory (T=20°C). 

WWTP Type Sampling 
point 

[MLSS] 
(g/L) 

Saint Vrain CAS AR 2.8 
RL 4.6 

Briis-sous-
Forges MBR 

AR 4.0 
MR 7.9 
MR 10.2 

Etrechy CAS AR 2.3 
RL 4.6 

Etampes CAS AR 5.5 
RL 8.0 

Ollainville MBR MR 2.7 
AR 6.2 

Where: CAS: Conventional Activated sludge; MBR: membrane bioreactor; AR: Aerated reactor; RL: Recirculation loop; 
MR: membrane reactor.  

On site measurements were performed on two different WWTPs: Saint Vrain and Briis-sous-

Forges. 

Table IV.2. Origin, operating conditions, sampling point and MLSS concentration of activated sludge used for the 
experimental rheological study on site at temperature T. 

WWTP Type Sampling 
point 

[MLSS] 
(g/L) T (°C) 

Saint Vrain CAS 

AR 3.0 13 
AR 4.5 9 
AR 5.0 11 
RL 8.5 10 
RL 8.6 11 

Briis-sous 
Forges MBR AR 6.1 25 

MR 6.4 24 
Where: CAS: Conventional Activated sludge; MBR: membrane bioreactor; AR: Aerated reactor; RL: Recirculation loop; 
MR: membrane reactor.  
 

IV.2 Characterisation of the rheological behaviour 

The rheograms and the apparent viscosity versus the shear rate obtained in the laboratory with 

the activated sludge samples from five different municipal wastewater treatment plants (cf. 

Table IV.1) are presented in Figure IV.1. During these experiments, MLSS concentrations ranged 

from 2.3 to 10.2 g L-1. 
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Figure IV.1 (a) Rheograms and (b) apparent viscosity versus shear rate for activated sludge from 5 different 

wastewater treatment plants at different MLSS concentrations. Etrechy (circles), Briis-sous-Forges (diamonds), 
Etampes (triangles), Saint Vrain (squares), Ollainville (x,+). Measurements performed in the laboratory (T=20°C). 

(Error bars=±5%, cf. III.1.2) 

 

In contrast to clean water, the slope of the rheograms (Figure IV.1 a), which corresponds to the 

apparent viscosity, is a function of the applied shear rate. Figure IV.1 b shows that the sludge 

apparent viscosity is reduced as the shear rate increases. The slope reduction with the increase 

of the shear rate is higher as the MLSS concentration increases.  

For each rheogram, the apparent viscosity of a given sample depends on the applied shear rate 

(in the range of 50 to 400 s-1) and on the MLSS concentration. At the highest applied shear rate 

(400 s-1), the apparent viscosity equals 1.3 mPa.s for the sample with 2.3 g L-1 of MLSS 

concentration and is up to 3.4 times higher (4.4 mPa.s) for the sample with 10.2 g L-1 of MLSS 

concentration. These viscosity values are higher than clear water dynamic viscosity. At the 

lowest applied shear rate (50 s-1), the effect of MLSS concentration on apparent viscosity is more 

pronounced: the apparent viscosity of the sample with 10.2 g L-1 of MLSS is up to 9.5 times 

higher (15.7 mPa.s) the apparent viscosity of the sample with 2.3 g L-1 (1.7 mPa.s). 

Figure IV.2 presents the rheograms and the apparent viscosity versus shear rate obtained during 

the on-site measurements. Results are expressed at 20 °C using Equation III.2. 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 100 200 300 400 500

sh
ea

r s
tr

es
s (

Pa
)

shear rate (s-1)

2.3 2.7 2.8 4.0 4.6 4.6 5.5 6.2 7.9 8.0 10.2 clean water

(a)

MLSS 
(g/L)

MLSS (g/L)

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500

ap
pa

re
nt

 v
is

co
si

ty
 (1

0-3
Pa

.s)

shear rate (s-1)

(b)



Chapter IV. Rheological behaviour of activated sludge from different origins 

 

152 
 

 

Figure IV.2 (a) Rheograms and (b) apparent viscosity versus shear rate for activated sludge from 2 different the 
wastewater treatment plants at different MLSS concentrations. Briis-sous-Forges (circles), Saint Vrain (other marks). 

Measurements performed on site at temperature T and corrected to 20°C. (Error bars=±5%, cf. III.1.2) 

 

Sludge samples from the same plant and showing similar MLSS concentrations give similar 

rheograms. For instance, overlapping trends are observed for the MLSS concentrations at 4.5 

and 5.0 g L-1, 8.5 and 8.6 g L-1 for samples from Saint Vrain, and at MLSS concentrations of 6.1 

and 6.4 g L-1 for samples from Briis-sous-Forges.  

When considering activated sludge samples from different origins, the correlation between 

MLSS concentration and sludge rheological behaviour shows more dispersion. In fact, in that 

case, some samples exhibit similar trends despite their different MLSS concentration. For 

example, in Figure IV.1, rheograms obtained with sludge at 5.5 and 6.2 g MLSS L-1 (from Etampes 

and Ollainville respectively) present similar trends. Other sludge samples with similar MLSS 

concentrations do not exhibit exactly the same trend. For instance rheograms obtained with 

sludge at 7.9 and 8.0 g MLSS L-1 (from Briis and Etampes respectively) present slightly different 

rheograms (beyond the error bars).   
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Analysis 

The observed effect of the shear rate on the activated sludge apparent viscosity is representative 

of a non-Newtonian fluid and confirms the shear-thinning behaviour reported in the literature 

by several authors (Seyssiecq et al., 2003; Mori et al., 2006; Yang et al., 2009; Ratkovich et al., 

2013). According to Dupuis (2012), the shear-thinning behaviour is typical of suspensions with 

deformable particles (such as activated sludge flocs) which could be explained by the fact that 

these tend to line up on the streamlines when the shear rate is increased thus resulting in lower 

resistance to flow (hence reduction of apparent viscosity). Biological flocs arrangement in the 

streamlines would occur rapidly under the application of the lowest shear rates and further 

increments in shear would barely continue to modify the sludge flow structure and have a 

decreasing influence on apparent viscosity. It is interesting to note that even though the studied 

activated sludge samples are mainly composed of water (from 98.98 to 99.77 w%), the activated 

sludge apparent viscosity can be at least 30% higher and up to 4.4 times higher than the water 

dynamic viscosity, even at the highest applied shear rates. This underlines the potential that the 

MLSS fraction has to impact the activated sludge apparent viscosity.  

The observed relationship between apparent viscosity and MLSS concentration at a given shear 

rate and for a given sample origin, also previously underlined by various authors (cf. 

§I.3.4.4.1.1), can be explained by the fact that interactions between particles are intensified 

when the MLSS concentration increases and this would tend to create a cluster of particles that 

opposes the suspension’s flow (Mikkelsen, 2001). When rheograms of samples from different 

origins are compared and some disparities appear, concerning the correlation between MLSS 

content and sludge rheology, it can be suggested that in fact, the organisation of the particles 

network is not only defined or controlled by shear rate and MLSS content, but other properties, 

specific of the sludge origin, have an impact and therefore modify the sludge rheological 

behaviour. In addition to the contribution of MLSS, the effect of the different activated sludge 

components and properties on the observed rheological behaviours will be further investigated 

in paragraph IV.3. 
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Conclusions on the rheological behaviour of the studied activated sludge samples 

 

− A tubular rheometer was used to experimentally study the rheological behaviour of 

activated sludge from five different WWTPs and with MLSS concentrations comprised 

between 2.3 and 10.2 g L-1. 

− The sludge apparent viscosity depends on the applied shear rate and the MLSS 

concentration. In addition to the contribution of MLSS, other sludge properties seem to 

influence the observed rheograms. 

 

IV.3 Impact of activated sludge physicochemical properties on rheological 

behaviour 

The values of apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎) at shear rates of 50 and 400 s-1 (the lowest and upper 

limits of the applied shear rates) and the related measured activated sludge properties, are 

presented in Table IV.3 organized by increasing value of MLSS concentration for the five 

different sludge origins (laboratory and on-site samples). For each MLSS concentration, the 

apparent viscosities values were calculated using the rheological model that best reproduced the 

corresponding experimental rheogram in terms of the lowest RSS value according to the results 

presented in the Table IV.8 in the following section (IV.4.1)2.  

Linear correlation coefficients (Pearson coefficients, r) between the apparent viscosity at shear 

rate of 50 and 400 s-1 and the different sludge properties are shown respectively in Table IV.4 

and   

                                                             
2 Due to experimental issues, the shear rate range for Etampes WWTP and MLSS = 8.0 g L-1 was  
[120 – 400] s-1 and the apparent viscosity at shear rate of 50 s-1 was not determined for this condition. 
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Table IV.5. It must be highlighted that the Pearson coefficients assume a linear correlation 

between the studied variables and consequently other types of relationship remained 

unobserved. Consequently, they must be regarded as a tool for identifying a link between two 

variables but further explorations must be carried out in order to determine the type of the 

relationship. All samples were collected on WWTPs with a sludge age comprised between 10 

and 20 days. 
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Table IV.3. Characteristics of activated sludge sampled from different wastewater treatment plants and used in the rheological study.  

MLSS g/L 2.3 2.7 2.8 3.0 4.0 4.5 4.6 4.6 5.0 5.5 6.1 6.2 6.4 7.9 8.0 8.5 8.6 10.2 

 µapp 50 s-1 mPa.s 1.7 2.4 2.0 1.6 3.5 3.4 2.6 3.2 3.1 5.3 5.8 5.0 6.0 10.2 nd 8.2 8.6 15.7 

µapp 400 s-1 mPa.s 1.3 1.4 1.3 1.3 1.7 1.8 1.7 1.6 1.7 2.3 2.4 2.3 2.5 3.5 3.3 3.1 2.9 4.4 

MLVSS g/L 1.6 1.8 1.8 2.2 2.6 3.1 2.9 3.2 3.3 3.8 4.1 nd 4.4 5.3 5.6 5.7 5.9 7.1 

HFV mL/L 145 180 175 180 240 280 230 265 285 295 nd 300 465 420 485 400 400 690 

CODt mg/L 2400 3020 2480 3588 4400 4340 4970 6440 5464 5253 6200 5540 6730 8500 7653 8350 8820 1211
0 

SVI mL/g 100 110 109 94 162* 101 102 115 147 136 165* 139 133* 177* 147 104 117 145* 

CODs mg/L 31.8 22.9 19.9 24.2 25.8 25.4 31.2 27.0 29.3 28.1 35.3 23.5 32.3 29.3 31.6 26.0 22.4 nd 

S.an mg/L 0.7 0.5 0.6 0.4 1.0 0.9 0.4 0.3 0.9 0.4 0.5 0.4 1.3 0.8 0.4 0.8 0.9 1.7 

S.cat mg/L 2.0 <0.2 <0.2 <0.2 0.2 0.2 0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.4 0.2 0.3 0.3 0.3 

S.ni mg/L 0.2 0.3 <0.2 <0.2 <0.2 <0.2 <0.2 0.5 <0.2 <0.2 0.3 0.2 0.4 1.2 0.3 <0.2 <0.2 1.1 

surfactants mg/L 2.9 0.7 0.6 0.4 1.3 1.2 0.9 0.8 0.9 0.4 0.8 0.6 1.8 2.4 1.0 1.1 1.2 3.1 

Surface 
tension 
(𝟐𝟐𝟐𝟐∘𝐂𝐂) 

mN/m 72.2 73.0 72.1 72.6 71.8 72.2 72.1 72.5 72.5 72.7 72.5 72.7 72.4 72.5 72.3 72.4 72.2 68.8 

pH (-) 8.1 7.8 8.2 nd nd nd 7.8 8.0 nd 7.7 nd 7.9 nd nd 7.8 nd nd 7.9 

AS Density   kg/m3 nd nd 997 999 999 1000 nd nd 1003 1000 991 nd 999 1000 1000 1001 1002 1000 

Na+ mg/L 99.2 84.5 59.4 nd 54.1 47.2 94.2 74.6 34.8 83.0 12.8 86.3 60.2 10.3 83.2 68.0 37.4 70.0 

K+ mg/L 28.8 24.7 20.2 nd 17.4 13.8 30.2 24.2 10.5 21.4 4.5 23.8 22.0 3.9 25.5 22.2 11.9 33.6 

Ca++ mg/L 116.9 136.1 177.0 nd 103.4 144.1 108.8 154.6 83.3 124.5 28.1 138.6 124.3 19.0 129.6 152.0 97.0 135.1 

Mg++ mg/L 13.4 11.5 19.7 nd 7.6 17.3 14.1 18.0 10.7 6.9 1.7 11.0 8.7 1.5 7.3 23.6 12.3 12.3 

cations mg/L 258.2 256.8 276.3 nd 182.5 222.4 247.3 271.4 139.4 235.8 47.1 259.7 215.2 34.7 245.6 265.9 158.6 251.0 

D50500 µm 101.0 111.0 119.0 nd nd nd 82.6 118.0 nd 92.2 nd 106.0 nd 86.6 89.7 nd nd 80.5 

D502000 µm 56.5 66.1 101.0 nd nd nd 54.9 92.5 nd 57.8 nd 61.4 nd 40.1 49.6 nd nd 35.2 

FCi (-) 0.55 0.60 0.85 nd nd nd 0.66 0.78 nd 0.63 nd 0.58 nd 0.48 0.55 nd nd 0.44 

WWTP Etrec. Ollainv. Saint 
V. Saint V. Briis Saint 

V. Etrec. Saint 
V. 

Saint 
V. Etamp. Briis Ollainv. Briis Briis Etamp. Saint 

V. 
Saint 

V. Briis 

Sampled from AR MR AR AR AR AR RL RL AR AR AR AR AR MR RL RL RL MR 

Date dd/mm/yy 6/8/13 5/8/13 26/6/13 16/11/12 14/8/13 13/2/13 8/8/13 12/7/13 6/2/13 10/7/13 19/7/13 15/7/13 18/7/13 16/8/13 11/7/13 8/2/13 15/2/13 9/7/13 

Performed at LAB LAB LAB ON SITE LAB ON SITE LAB LAB ON 
SITE LAB ON SITE LAB ON SITE LAB LAB ON 

SITE ON SITE LAB 

Results at 20ºC / AR=aerated reactor; RL= recycling loop; MR=membrane reactor / nd : not determined / *Floating aggregates observed / Values of D50 and FCi indicated in italic type are only estimated 
values (due to unsteadiness of D50). These values will not be considered in the following. 
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Table IV.4 Correlation Pearson coefficients (r) between the activated sludge characteristics including the apparent viscosity (𝝁𝝁𝒂𝒂𝒂𝒂𝒂𝒂) estimated at a shear rates of 50 s-1. 

 
µapp 
50 s-1 

p-value MLSS MLVSS HFV CODt SVI CODs S.an S.cat S.ni surfact. 
𝜎𝜎 
@ 

 20∘C 
pH AS  

Density Na+ K+ Ca++ Mg++ cations D50.500 D50.2000 Fci 

µapp 
50 s-1 

1.00                       

MLSS 0.93 4E-08 1.00                     

MLVSS 0.94 4E-08 1.00 1.00                    

HFV 0.95 2E-08 0.93 0.94 1.00                   

CODt 0.94 1E-08 0.96 0.97 0.94 1.00                  

SVI 0.47 0.0598 0.45 0.43 0.50 0.44 1.00                 

CODs 0.13 0.6373 0.21 0.24 0.36 0.24 0.40 1.00                

S.an 0.67 0.0035 0.47 0.49 0.65 0.53 0.24 0.07 1.00               

S.cat -0.07 0.8002 -0.17 -0.16 -0.17 -0.16 -0.24 0.30 0.08 1.00              

S.ni 0.69 0.0022 0.49 0.50 0.62 0.61 0.51 0.31 0.40 0.06 1.00             

surfact. 0.57 0.0167 0.35 0.37 0.49 0.43 0.22 0.40 0.70 0.64 0.66 1.00            

𝝈𝝈@(𝟐𝟐𝟐𝟐∘𝐂𝐂) -0.68 0.0029 -0.47 -0.49 -0.64 -0.58 -0.15 -0.05 -0.73 -0.13 -0.48 -0.63 1.00           

pH -0.23 0.5822 -0.41 -0.40 -0.31 -0.33 -0.45 -0.34 0.14 0.35 0.00 0.29 -0.10 1.00          

AS Density 0.15 0.6371 0.24 0.25 0.26 0.25 -0.24 -0.37 0.28 0.38 -0.06 0.18 -0.07 -0.93 1.00         

Na+ -0.31 0.2428 -0.29 -0.29 -0.25 -0.28 -0.57 -0.10 -0.27 0.32 -0.24 -0.05 -0.05 -0.37 0.31 1.00        

K+ -0.02 0.9429 -0.08 -0.06 0.08 -0.02 -0.50 -0.08 0.04 0.28 0.00 0.18 -0.40 -0.12 0.26 0.92 1.00       

Ca++ -0.24 0.3809 -0.22 -0.21 -0.15 -0.22 -0.69 -0.55 -0.04 -0.08 -0.34 -0.22 -0.13 0.61 0.29 0.69 0.70 1.00      

Mg++ -0.20 0.4560 -0.17 -0.17 -0.24 -0.15 -0.83 -0.52 -0.01 0.09 -0.38 -0.13 -0.09 0.80 0.34 0.41 0.45 0.79 1.00     

cations -0.26 0.3332 -0.25 -0.24 -0.19 -0.24 -0.71 -0.40 -0.11 0.11 -0.31 -0.13 -0.14 0.85 0.32 0.88 0.87 0.95 0.72 1.00    

D50-500 -0.73 0.2685 -0.60 -0.64 -0.64 -0.41 -0.70 -0.55 -0.64 -0.14 -0.44 -0.45 0.31 0.50 - 0.49 0.53 0.73 0.93 0.67 1.00   

D50-2000 -0.62 0.3808 -0.48 -0.47 -0.46 -0.22 -0.63 -0.42 -0.71 -0.26 -0.34 -0.51 0.22 0.35 - 0.40 0.48 0.72 0.90 0.63 0.96 1.00  

Fci -0.55 0.4526 -0.38 -0.36 -0.34 -0.10 -0.56 -0.37 -0.75 -0.33 -0.28 -0.55 0.20 0.23 - 0.35 0.44 0.70 0.85 0.59 0.90 0.99 1.00 

 𝜎𝜎@(20∘C) : static surface tension at 20∘C 
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Table IV.5 Correlation Pearson coefficients (r) and corresponding p-value between apparent viscosity estimated (𝝁𝝁𝒂𝒂𝒂𝒂𝒂𝒂) at a shear rate of 400 s-1 and activated sludge characteristics. 

 
µapp 

400 s-1 
p-value 

µapp 
400 s-1 

1.00  

MLSS 0.96 3E-10 

MLVSS 0.96 5E-10 

HFV 0.95 6E-9 

CODt 0.94 9E-9 

SVI 0.51 0.0315 

CODs 0.27 0.2922 

S.an 0.52 0.0277 

S.cat -0.08 0.7511 

S.ni 0.64 0.0041 

surfact. 0.49 0.0393 

𝝈𝝈@(𝟐𝟐𝟐𝟐∘𝐂𝐂) -0.56 0.0155 

pH -0.37 0.3247 

AS Density 0.16 0.5947 

Na+ -0.25 0.3365 

K+ -0.01 0.9640 

Ca++ -0.24 0.3512 

Mg++ -0.27 0.3037 

cations -0.25 0.3424 

D50-500 -0.80 0.1033 

D50-2000 -0.68 0.2019 

Fci -0.59 0.2943 
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IV.3.1 Correlation between physicochemical characteristics of interstitial liquid 

and apparent viscosity 

Regarding the soluble fraction, the soluble COD concentration varied between 19.9 and 35.3 mg 

L-1 with an average value of 27 mg L-1 for the different MLSS concentrations. The highest total 

surfactant concentration was 3.1 mg L-1, being in general the anionic type the most concentrated 

surfactant (<1.7 mg L-1). The surface tensions were very close to the values of clean water except 

for one sample that exhibited a surface tension of 68 mN m-1 which is also the sample with the 

highest surfactants concentration and highest MLSS concentration (10.2 g L-1). The most 

concentrated cations were sodium and calcium (in average 99.2 and 177 mg L-1, respectively) 

and in average, AS from all WWTPs presented similar concentrations of analysed cations (from 

222 up to 253 mg L-1) except for the AS from Briis-sous-Forges that presented an average of 

analysed of 146 mg L-1 (due to low concentrations measured for two samples [MLSS = 6.1 and 

7.9 g.L-1], the average for the three others samples is 216 mg.L-1). The measured sludge density 

and pH values remained quite constant for the different samples with average values of 999 kg 

m-3 and 7.9 respectively. 

For these mentioned concentrations and properties, no correlation was observed with respect to 

the apparent viscosity despite the fact that some Pearson correlation coefficients (r) showed 

some significance (in respect to 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 at 50s-1), such as non-ionic surfactants concentration and 

surface tension (respectively r=0.69 and r=-0.68 with p-values ~0.002). 

 

IV.3.2 Correlation between physicochemical characteristics of particulate phase 

and the sludge apparent viscosity 

IV.3.2.1 Impact of mixed liquor suspended solid concentration on apparent 

viscosity 

Figure IV.3 presents the correlation between the MLSS concentration and the apparent viscosity 

at shear rates of 50 and 400s-1 for AS samples from all five wastewater treatment plants 

(Etampes, Olainville, Etrechy, Saint Vrain and Briis-sous-Forges) and obtained at the laboratory 

and on site. The error bars consider an error of 10% based on the experimental and the 

modelling error. 



Chapter IV. Rheological behaviour of activated sludge from different origins 

 

160 
 

    

Figure IV.3. Apparent viscosity of municipal activated sludge from different wastewater treatment plants at shear 
rates of (a) 50 and (b) 400 s-1 versus the MLSS concentration. Laboratory and on-site results reported at 𝟐𝟐𝟐𝟐∘𝐂𝐂. Error 

bars=±10%. 

 

For Briis and Saint Vrain WWTPs, for which measurements were performed in laboratory and 

on-site, no difference is observed between laboratory and on-site results. Therefore, in the 

following, these will not be distinguished. 

For each studied WWTP, the apparent viscosity follows an exponential curve with an increment 

in the MLSS concentration. Even though the activated sludge samples come from different 

WWTPs, the sludge apparent viscosity appears to be significantly determined by the MLSS 

content. These tendencies confirm the observation of paragraph IV.2 on the impact of the MLSS 

concentration on AS rheology. This dependency is confirmed by the statistical analysis (cf. Table 

IV.4 and Table IV.5) where apparent viscosity exhibited a strong correlation with the MLSS 

concentration with Pearson correlation coefficients of r=0.93 and r=0.96 for 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 at 50 and 400 

s-1 respectively (p-values << 0.001). 

Although the apparent viscosity is mainly controlled by MLSS concentration, some data 

dispersion is observed, highlighting that other sludge properties, intrinsic to the sludge origin, 

may have an incidence when defining the AS rheology. For the two represented shear rates (50 

and 400 s-1), the results of the sludge samples from the Briis-sous-Forges and Etampes WWTPs 

are systematically above the overall trend obtained for the three other sludge origins. The 

average difference between these two trends is +32% and +15% for shear rate of 50 and 400 s-1 

respectively. 
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Different sludge properties closely correlated to the MLSS concentration such as the MLVSS 

concentration, the hydrostatic floc fraction (HFV)3 and the total COD concentration, exhibit also 

a strong linear correlation with the apparent viscosity (r=0.95, p-value<0.001). Since the 

rheology of suspensions is conventionally referred as a function of the solids volumetric fraction 

(Baudez et al., 2004, Dupuis, 2102), it is of particular interest to evaluate the correlation 

between the apparent viscosity and the hydrostatic floc volume (HFV), which is a direct 

measurement of the volume occupied by the compressed solids. Because of the simple 

measurement protocol (cf. II.3) and the close relation that exhibits with the apparent viscosity 

(r=0.95), the hydrostatic floc volume (HFV) appears as an interesting property to evaluate the 

sludge apparent viscosity. It must be however highlighted that this characteristic could not 

systematically be estimated thoroughly because in some cases, not all flocs settled but remained 

floating due to degasification in the samples which implied a lack of accuracy in determining the 

volume occupied by the flocs. Moreover, the methodology employed for HFV determination 

could be criticized because of its measurement protocol in static operating conditions while HFV 

must be considered as shear rate dependant as developed in the following. 

 

IV.3.2.2 Impact of other physicochemical characteristics of the particulate phase 

on apparent viscosity: Introducing the floc structure as an impacting 

parameter 

Apart from the sludge properties related to the suspended solids, the other evaluated sludge 

characteristics showed less significant linear correlations with the apparent viscosity (r<0.80). 

In general, all samples exhibited adequate settling properties except for the sludge from Briis-

sous-Forges which exhibited poor settling properties (SVI>155 mg L-1) and floating aggregates. 

IV.3.2.2.1 Introducing the floc structure to explain rheological data dispersion 

The median floc size determined at 500 rpm (D50-500rpm) and at 2000 rpm (D50-2000 rpm) as well 

as the Floc cohesion index exhibit slight correlations with the apparent viscosity (0.55<r<0.80). 

However, the particle size is not sufficient to relate physical characteristics of the floc to the 

rheological behaviour of the sludge. Table IV.6 presents some information about the particle size 

but also the characteristics of the size distribution of the studied sludge sample. 

                                                             
3 The hydrostatic floc volume (HFV) corresponds to the settled volume of an activated sludge sample (1L) in a 
graduated glass tube of 1 L after 24/48 hours of settling (Henkel 2010). 
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The D10, D50 and D90 are presented in Table IV.6 to provide some characteristics of the floc size 

distribution for each sludge sample. For all studied sludge, these three parameters decrease with 

an increase in the stirring speed of the experimental apparatus showing the shear dependence of 

the floc size. The distribution’s width (𝑫𝑫𝟗𝟗𝟐𝟐−𝑫𝑫𝟏𝟏𝟐𝟐
𝑫𝑫𝟓𝟓𝟐𝟐

) increases with an increment in the stirring speed. 

This increase is higher for Briis-sous-Forges, Etampes and Etrechy WWTPs than for other sludge 

origin, highlighting a heterogeneous break-up of the floc, due to a heterogeneous floc structure, 

with an increase in average shear rate. 

 

Table IV.6 Characteristics of the floc size distribution for the studied WWTPs. The values indicated in the table 
correspond to the retained samples indicated in Table IV.3. 

WWTP Stirring 
speed (rpm) 

D10 
(µm) 

D50 
(µm) 

D90 
(µm) 

𝑫𝑫𝟗𝟗𝟐𝟐 − 𝑫𝑫𝟏𝟏𝟐𝟐

𝑫𝑫𝟓𝟓𝟐𝟐
 

(-) 

D3/2 
(µm) 

D4/3 
(µm) 

FCiD4/3 
(-) 

Saint Vrain 
500 43.1 118 281 2.02 73.2 147 

0.80 
2000 30.4 92.5 224 2.09 55 118 

Ollainville 
500 37.1 106 246 1.97 63.6 133 

0.82 
2000 20.8 61.4 148 2.07 28.9 109 

Etrechy 
500 32.5 101 235 2.00 60.9 129 

0.75 
2000 17.4 56.5 165 2.61 36.4 96.4 

Etampes 
500 25.3 89.7 219 2.16 50.2 115 

0.60 
2000 14.6 49.6 136 2.45 29.6 69.4 

Briis 
500 23.3 86.6 229 2.38 49.6 118 

0.53 
2000 13.5 40.1 133 2.98 26.9 62.6 

D50 is the diameter below which lies half of the population (the median). Similarly, 90 percent of the distribution lies 

below diameter D90, and 10 percent of the population lies below diameter D10. D3/2 and D4/3 are respectively the 

surface and volume mean diameters of the flocs. FCiD4/3 is the floc cohesion index calculated using D4/3 values. 

 

The mean volume diameter (D4/3) is determined using the floc size distribution for all studied 

sludge. This mean volume is characteristic of the floc size constituting the bulk of the sludge 

sample and of the mean volume occupied by the floc. 
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Figure IV.4. Mean volume floc diameter (D4/3) for each studied sludge and stirring speed. 

 

The mean volume floc diameter ranges within 115 and 147 µm for a stirring speed of 500 rpm 

and ranges from 63 to 118 µm for a stirring speed 2000 rpm. For a fixed stirring speed, the 

volume mean diameter is dependant of the sludge origin. The highest mean volume floc 

diameters are measured for Saint Vrain WWTP sample, and the lowest ones are obtained for 

Etampes and Briis-sous-Forges (Figure IV.4). 

The floc cohesion index based on the mean volume diameter is presented in Table IV.6. The Floc 

cohesion index (FciD4/3) varies between 0.53 and 0.82, being the highest values for AS from 

Ollainville and the lower values for the AS from Briis-sous-Forges. After intensive shearing 

conditions (2000 rpm), the floc diameter of the sludge from Briis-sous-Forges is reduced by 

more than 50% in relation to the diameter measured at lower shear conditions (500 rpm). 

Activated sludge from different origins would have distinct floc cohesion indexes because 

different operating conditions (organic load, dissolved oxygen, sludge retention time) induce the 

production of different EPS concentrations and types by the microorganisms (Mikkelsen and 

Keiding, 2002; Jin et al., 2003; Wilen et al., 2003). 

This floc cohesion index provides some indication about the complex floc structure and the 

internal connection (strong and loose bonds) within the floc. The biological flocs have a multi-

scale structure, with a loosely packed global structure and a compactly packed local structure 

(Chu and Lee, 2004). When the flocs are submitted to an increment in shear rate, some of the 

loose bonds are broken, inducing a decrease in mean volume floc size. The strength of the 

loosely bonds depends on the sludge origin and the conditions in which the floc have been 

constituted. 
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In parallel to the present study, microscopic observations of activated sludge samples from four 

out five WWTPs (Saint-Vrain, Ollainville, Briis-sous-Forges and Etampes) were performed with 

the aim of evaluating the flocs structure. The obtained images show that the flocs structure from 

Saint Vrain and Ollainville is irregular, compact and dense (Figure IV.5) and those from Briis-

sous-Forges and Etampes are irregular, diffuse and loose (Figure IV.6). These two results could 

characterize the floc structure and its density.  

 

 

 

Figure IV.5. Microscopic images of activated sludge flocs from Saint Vrain (A) and Ollainville (B) 
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Figure IV.6. Microscopic images of activated sludge flocs from Briis-sous-Forges (A) and Etampes (B). 

 

As highlighted by the microscopic observation, the AS having exhibited the highest floc cohesion 

index, Saint-Vrain or Ollainville, have also a denser floc structure. On the contrary, AS from Briis-

sous-Forges and Etampes contain loose flocs with an easily breakable internal connection, which 

is linked to the obtained low floc cohesion index. 

Analysis 

According to these results, the floc structure is heterogeneous and depends on the sludge origin. 

This difference in floc structure could have an impact on the rheological characteristics of the 

sludge.  

For a given MLSS concentration, the floc size and density define the total volume occupied by the 

floc. For a same quantity of material, looser flocs (i.e. with a lower density) will induce a higher 

total volume of the solid phase at the micro-scale. As the total volume occupied by the solid 

phase increases, the floc interaction frequency (by collision or friction) increases too, inducing 

higher viscosity at the meso-scale.  



Chapter IV. Rheological behaviour of activated sludge from different origins 

 

166 
 

This hypothesis could explain the different apparent viscosity trends observed for Briis-sous-

Forges/Etampes and other sludge origins (Figure IV.3). Etampes and Briis-sous-Forges sludge 

structure is close in terms of mean volume floc diameter (respectively 115 and 118µm for 500 

rpm and 69.4 and 62.6µm for 2000 rpm) and floc cohesion index (0.60 and 0.53). For the two 

different stirring velocities, the mean volume floc diameter and floc cohesiveness measured for 

these two sludge samples is lower than for sludge from Saint Vrain/Ollainville/Etrechy (D4/3[500 

rpm] from 129 to 148 µm; D4/3_[2000 rpm] from 96.4 to 118 µm; FCiD[4/3] from 0.75 to 0.82), traducing 

denser structures for these latter samples, confirmed by microscopic observation. This 

difference in floc structure between these two groups of samples is translated in terms of 

apparent viscosity, with higher viscosity for looser floc structure as observed in (Figure IV.3). 

Denser floc with higher cohesiveness such as for Saint-Vrain/Etrechy/Ollainville WWTPs could 

have a different response under shearing conditions due to higher particle deformability. The 

more cohesive flocs would modify their shape under shearing instead of breaking up and 

reducing the floc diameter (the more cohesive flocs are in fact the ones with the larger 

diameters). According to Dupuis (2012), the shear-thinning character of suspensions is 

accentuated as the rigidity of the particles is reduced and particles deformability increases: 

deformable (and cohesive) particles tend to line up on the streamlines with an increment of the 

shear rate as previously mentioned which leads to lower resistance to flow and reduce viscosity 

in consequence (shear-thinning behaviour). 

Finally, the release of EPS and SMP (soluble microbial products) from the flocs to the interstitial 

liquid during floc breakage induced by a shear rate increase could have an impact on the 

apparent viscosity of the sludge sample. However, the order of magnitude of the impact of such 

substances on the sludge rheology evolution at the meso-scale needs to be evaluated. 

Considering the impact of these sludge characteristics on rheological behaviour, in addition to 

the MLSS concentration, could improve the understanding as well as the prediction tools 

developed in respect to activated sludge rheology. However, a better evaluation of the floc 

density and the parameters affecting it is needed to link the apparent viscosity to the floc 

structure. 

IV.3.2.2.2 Critical consideration with regards to rheological experiments for AS and its 

impact on floc structure 

The concept of the influence of floc structure on the sludge rheological behaviour, discussed in 

the previous paragraphs, could be very useful in order to define good experimental practice for 

rheological characterisation of activated sludge. 
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Figure IV.7, presented by Ratkovich et al. (2013), compares the evolution of apparent viscosity 

obtained with a given activated sludge sample (MLSS = 5.7 g L-1) under two different 

experimental procedures (two different shear rate ramps): (i) from 1 s-1 to 1000 s-1 and back to 

1 s-1 and (ii) from 1 s-1 to 100 s-1 and back to 1 s-1. For these two sequences, the apparent 

viscosity decreases with increasing shear rate and increases when shear rate is back to 1 s-1. 

However, a different hysteresis is observed for each of the two sequences, with lower values of 

apparent viscosity obtained when shear rate decreased than when shear rate was incremented.  

Moreover, while the apparent viscosity values obtained with the increasing shear rate ramps 

overlap, those obtained with the decreasing shear rate ramps are not equivalent. 

 
Figure IV.7. Apparent viscosity measured under two different shear rate ramps (i) 110001 s-1 and (ii) 11001 

s-1) with the same MBR AS sample (MLSS 5.7 g L-1) and same rotational rheometer (Anton Paar rheometer type 
MCR101 with double gap cylinder (0.5 mm gap size) and air bearing) (Data: Osnabrück University of Applied 

Sciences) – Extracted from Ratkovich et al. (2013).  

 

Analysis 

As observed on Figure IV.8, the floc size is shear rate dependent. A rapid decrease in the floc size 

is observed for an increase in the shear rate (related to the stirring speed). On the contrary, 

flocculation is a longer process; a period of about 30 minutes is required to reach the floc initial 

size after reducing the shear rate.  

increasing
shear rate

decreasing
shear rate
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Figure IV.8. Median floc equivalent diameter under two different shear conditions: 500rpm 2000 rpm  500 rpm. 

 

The hysteresis phenomenon observed in Figure IV.7 indicates that the history of experienced 

shear has an impact on activated sludge apparent viscosity. Since the impact of increasing shear 

rate on floc size reduction is almost immediate, each measurement point obtained during the 

increasing ramp could be considered as adequate because the AS floc structure reaches rapidly 

steady state conditions. That explains why both trends obtained under the two increasing shear 

rate ramps are similar: the AS has the same MLSS concentration and has attained the same 

stable floc structure (linked to a same shear rate). 

On the contrary, when the shear rate is reduced, the obtained trend is different compared to the  

other shear rate decreasing ramp and compared to the increasing shear rate ramp. Considering 

the impact of shear on the floc structure and the time lapse of the floc aggregation/breakage 

dynamics, these different trends could be attributed to the difference in the floc structuration at 

the micro-scale. Between the two shear decreasing ramps, the main difference is the shear rate 

applied initially (respectively 1000 and 100 s-1). As the floc aggregation is a slow process, the 

floc size is different between the two rheograms during the increasing shear rate ramp. For a 

same shear rate, the floc size is lower when the initial shear rate is 1000 s-1 instead of 100 s-1. 

Since the floc structure is heterogeneous, it could be considered that the loose bonds are first 

impacted during the floc breakage, inducing an overall denser floc structure in the sample. 

Thereby, the total volume occupied by the floc decreases. Moreover, for a given sludge type, 

lower floc size could induce a better floc arrangement in the streamlines resulting in lower 

resistance to flow and a decrease in apparent viscosity at the meso-scale. 

Such experimental observation could be explained by determining the “granulometric signature” 

of the activated sludge (by measuring the floc size evolution for a shear rate range) with an 

appropriate methodology. Introducing such floc size characteristics, and its shear rate 
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dependence, would lead to a dynamic model of the activated sludge rheology with variable 

apparent viscosity for a shear rate, related to the historic shear rate of the sludge. 

In the context of good experimental practice, rheological measurements must be performed with 

increasing shear rate ramps to measure the apparent viscosity of the activated sludge with the 

“real” floc structure linked to the shear rate. In addition, pre-treatment of the sample must be 

performed carefully in order to avoid an impact on the floc structure that could induce 

experimental errors. 
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Conclusions on the impact of sludge properties on its rheological behaviour 

 

− The rheological behaviour of activated sludge is strongly determined by the sludge 

MLSS concentration, even for sludge samples that have different origins. 

 

− However the correlation between sludge MLSS concentration and apparent viscosity 

exhibits some data dispersion beyond the estimated uncertainty (±10%) in particular at 

low shear rates (50 s-1). Specially, AS from Briis-sous-Forges and Etampes, exhibited 

systematically higher values of apparent viscosity compared to AS from the other three 

WWTPs. It is suggested that other sludge property contributes, together with MLSS 

concentration, to define the sludge rheological behaviour.  

 

− The sludge properties closely related to the MLSS concentration such as MVLSS, total 

COD, hydrostatic floc volume (HFV) showed a strong correlation with the sludge 

apparent viscosity. Among these, the MLSS concentration exhibited the best correlation 

with apparent viscosity following an exponential curve. 

 

− The AS rheological behaviour is also defined by floc characteristics such as size, 

cohesiveness and density. These properties, related to the sludge origin and history, 

could explain the different trends of apparent viscosity as a function of the MLSS 

concentration for sludge from different WWTPs. Related to the floc size and density for 

a given MLSS concentration, the floc structuring and the total volume occupied by the 

solid phase have an impact on the flocs interaction hence differentiating the AS 

rheological characteristics. This AS rheology dependence on physical characteristics of 

the floc is also useful to explain the rheogram dependence to measurement conditions, 

as observed in literature, related to the shear dependence of the floc size. 
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IV.4 Modelling the rheological behaviour of activated sludge 

IV.4.1 Evaluation of existing models 

Several models have been proposed in literature to represent AS rheology. The main ones, 

described in § I.3.4.2 and represented in Figure I.16, are reported in Table IV.7.  

 

Table IV.7. Rheological equations mainly used in literature to represent AS rheological behaviour. 

Model Expression Number of 
parameters 

Ostwald-de Waele 𝜏𝜏 = 𝐾𝐾 ∙ �̇�𝛾𝐺𝐺 2 
Bingham 𝜏𝜏 = 𝜏𝜏𝑦𝑦 + 𝐾𝐾 ∙ �̇�𝛾 2 

Casson √𝜏𝜏 = �𝜏𝜏𝑦𝑦 + �𝜇𝜇∞�̇�𝛾 2 

Herschel-Bulkley 𝜏𝜏 = 𝜏𝜏𝑦𝑦 + 𝐾𝐾 ∙ �̇�𝛾𝐺𝐺 3 
Sisko 𝜏𝜏 = 𝐾𝐾 ∙ �̇�𝛾𝐺𝐺 + 𝜇𝜇∞�̇�𝛾 3 

 

 

Each of these models was adjusted to the experimental rheograms by minimizing the sum of 

squared residuals (RSS) between the experimental data and the modelled data. A colour-based 

evaluation was used to depict the results (Table IV.8) in terms of sum of squared residuals per 

number of experimental points per rheogram (RSS/N). For each rheogram, underlined and bold 

type values indicate the model providing the less adequate and the best adjustments 

respectively. The bottom line in Table IV.8 corresponds to the sum of the RSS for the five 

different models. 
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Table IV.8. Residual sum of squares (RSS) obtained after adjusting the rheological models to the each one of the 
experimental rheograms. 

WWTP MLSS 
(g/L) Ostwald Bingham Casson Herschel- 

Bulkey Sisko 

Etrechy 2.3 1.73E-05 8.12E-06 1.16E-05 8.12E-06 8.12E-06 
Ollainville 2.7 8.03E-05 1.23E-05 3.48E-05 1.23E-05 5.43E-05 
Saint Vrain 2.8 5.09E-05 2.33E-05 3.07E-05 2.33E-05 2.33E-05 
Saint Vrain 3.0 2.20E-05 2.14E-05 2.10E-05 2.06E-05 2.10E-05 

Briis 4.0 4.00E-05 1.11E-04 7.94E-06 8.47E-06 1.69E-05 
Saint Vrain 4.5 1.41E-04 3.58E-05 6.44E-05 3.58E-05 3.58E-05 
Saint Vrain 4.6 5.05E-05 1.65E-04 7.56E-05 4.87E-05 5.01E-05 

Etrechy 4.6 1.48E-04 5.30E-05 9.15E-05 5.30E-05 6.04E-05 
Saint Vrain 5.0 2.52E-05 7.56E-05 2.71E-05 1.96E-05 2.02E-05 

Etampes 5.5 2.56E-04 1.10E-04 1.18E-04 1.10E-04 1.10E-04 
Briis 6.1 1.28E-04 2.91E-04 9.77E-05 8.07E-05 8.26E-05 

Ollainville 6.2 1.03E-04 2.20E-04 9.97E-05 1.03E-04 1.03E-04 
Briis 6.4 1.66E-04 3.88E-04 1.53E-04 1.33E-04 1.22E-04 
Briis 7.9 1.36E-04 9.38E-04 2.55E-04 1.05E-04 1.16E-04 

Etampes* 8.0 2.78E-05 3.41E-04 1.23E-04 2.78E-05 2.78E-05 
Saint Vrain 8.5 5.26E-04 5.55E-04 3.45E-04 3.52E-04 3.40E-04 
Saint Vrain 8.6 4.31E-04 1.17E-03 6.28E-04 4.29E-04 4.31E-04 

Briis 10.2 2.08E-03 6.24E-04 2.76E-03 6.20E-04 6.21E-04 
Σ RSS/N 4.42E-03 5.15E-03 4.95E-03 2.19E-03 2.24E-03 

* For this sample, rheological measurements were performed in a shear rate range between 120 and 400 s-1. 
 

Independently on the MLSS concentration, the Herschel-Bulkley and Sisko models provide more 

frequently than the two-parameter models the best adjustment to the experimental rheograms. 

The lowest values of the Σ RSS/N are in fact obtained with the use of these two equations.  

Obviously, models with two theological parameters (Ostwald-de Waele, Bingham and Casson) 

provide higher RSS values than 3-parameter models. Among these 2-parameter models, the 

Ostwald model provides the best adjustment considering the group of rheograms (lowest Σ 

RSS/N), though it is only once the best fit and seven times the poorest adjustment for each of the 

flow curves (mostly MLSS < 5.0 g L-1). On the contrary, the Bingham model proposes the best fits 

for six rheograms (all with MLSS < 5.5 g L-1) and is mainly the poorest fit for rheograms obtained 

for sludge with MLSS > 5.5 g L-1.  Besides, the Casson model provides twice the best fit, and only 

once the poorest adjustment. 

In addition, model fits seem to be generally better when the MLSS concentrations are below 5.0 

g L-1.  
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Table IV.9 presents the minimal and maximal relative error as well as the average relative error 

obtained after adjusting each of the mentioned rheological models to each of the experimental 

flow curves. 

Table IV.9. Interval of relative error (%) and average error (%) obtained after adjusting the rheological models to the 
each of the experimental rheograms. Samples are listed according to a MLSS concentration increasing order. 

WWTP MLSS 
(g/l) 

Ostwald Bingham Casson Herschel - Bulkley Sisko 

Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. 
Etrechy 2.3 0.1 7.4 1.8 0.1 3.6 1.1 0.0 5.4 1.4 0.1 3.6 1.1 0.1 3.6 1.1 

Ollainville 2.7 0.5 5.6 3.3 0.0 3.1 1.1 0.3 3.3 1.9 0.0 3.1 1.2 0.4 4.1 2.6 
Saint Vrain 2.8 0.1 11.7 3.3 0.0 6.3 2.2 0.2 7.9 2.7 0.0 6.3 2.2 0.0 6.3 2.2 
Saint Vrain 3 0.1 9.1 2.5 0.1 6.9 2.4 0.2 7.9 2.5 0.2 7.7 2.5 0.2 7.7 2.5 

Briis 4 0.3 5.0 1.6 0.5 5.0 2.8 0.1 1.8 0.7 0.0 1.6 0.7 0.0 2.7 1.1 
Saint Vrain 4.5 0.3 9.3 3.5 0.0 6.1 1.4 0.1 6.1 2.2 0.0 6.1 1.4 0.0 6.1 1.4 
Saint Vrain 4.6 0.1 2.9 1.6 0.4 7.7 2.7 0.0 3.3 1.5 0.2 2.5 1.4 0.2 2.7 1.5 

Etrechy 4.6 0.0 10.8 3.9 0.2 5.9 2.0 0.2 8.2 2.9 0.2 5.9 2.0 0.1 6.4 2.2 
Saint Vrain 5 0.0 8.1 1.4 0.3 7.4 2.5 0.0 5.6 1.6 0.2 5.2 1.4 0.3 5.8 1.4 

Etampes 5.5 0.0 9.3 2.6 0.1 3.1 1.2 0.4 4.5 1.6 0.1 3.1 1.2 0.2 3.2 1.2 
Briis 6.1 0.4 3.8 1.8 1.1 7.1 2.8 0.1 0.0 1.1 0.1 2.5 0.8 0.0 2.6 0.9 

Ollainville 6.2 0.0 5.1 1.9 0.1 4.3 1.9 0.0 2.5 1.2 0.1 5.1 1.9 0.0 5.1 1.9 
Briis 6.4 0.4 2.6 1.4 0.1 10.5 3.1 0.4 4.9 1.8 0.0 2.1 1.4 0.1 2.1 1.3 
Briis 7.9 0.1 4.2 1.2 0.2 11.1 3.1 0.2 6.9 1.6 0.0 3.7 1.1 0.1 3.8 1.1 

Etampes 8 0.3 0.8 0.5 0.0 4.1 1.8 0.3 2.3 1.1 0.3 0.8 0.5 0.3 0.9 0.5 
Saint Vrain 8.5 0.5 5.9 2.9 1.4 7.4 3.4 0.3 5.4 2.3 0.2 5.5 2.4 0.3 5.3 2.3 
Saint Vrain 8.6 0.2 8.2 2.6 0.1 10.9 3.8 0.3 7.0 2.9 0.3 7.7 2.6 0.2 8.2 2.6 

Briis 10.2 0.5 9.0 3.5 0.7 4.1 1.9 0.2 9.4 3.8 0.2 4.1 1.8 0.1 4.2 1.8 
 

For a given rheogram, the maximal relative error obtained with the models that generally 

provided the best adjustment to the experimental rheograms, the Herschel-Bulkley and Sisko 

equations, can reach 7.7% and 8.2%, respectively, and the average relative error provided by 

these two models is in all cases lower than 2.6%. Concerning the Ostwald-de Waele, Bingham 

and Casson models, their adjustement to a given rheogram results in a maximal relative error of 

11.7%, 11.1%  and 9.4% respectively, and the obtained average error is always lower than 3.9%. 

Analysis 

The Herschel-Bulkley and Sisko equations are the models that best reproduce each of 

experimental rheograms which is logical as they integrate three parameters and provide 

therefore more degrees of freedom than the two-parameter models. However, for some 

experimental rheograms, the RSS value obtained with a two-parameter model is sometimes not 

different from the RSS value obtained with a three-parameter model. On the one hand, when the 

RSS value estimated using the Herschel-Bulkley equation equals the RSS value of the Bingham 

equation, the value of the Flow index (n) integrated by the Herschel-Bulkley models equals one 

and the two models become identical. On the other hand, when the RSS value obtained using the 

Sisko model equals the RSS value of the Ostwald model, the value of the Limit viscosity (𝜇𝜇∞) 

integrated by the Sisko model, is close to zero and the equations are no longer different. Same 

observations can be made when the Herschel-Bulkley and the Ostwald models are concerned by 

an equal RSS value; the value of the Yield stress (𝜏𝜏𝑦𝑦) introduced by the Herschel-Bukley is zero 
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and consequently converts to the Ostwald model. In these cases, only two rheological 

parameters appear to be necessary to model the experimental flow curves, 3-parameter models 

are over parameterized as stated by Ratkovich et al. (2013). This will be further analysed in the 

following section (IV.4.1.1). 

Besides, the capacity of the Ostwald-de Waele and the Bingham models to represent each of the 

experimental rheograms appears to be related to the sludge MLSS concentration. While the 

Ostwald model reproduce generally better the rheograms obtained with sludge at MLSS 

concentrations above 5.0 g L-1, the Bingham model reproduce generally better the experimental 

flow curves obtained with sludge at lower MLSS concentrations. This alternated better 

adjustment can be explained as follows: the Flow index (n) in the Ostwald equation allows the 

model to freely reproduce the curvature obtained in the experimental rheograms, which is 

especially pronounced for those obtained with sludge at MLSS concentration above 5.0 g L-1. 

Instead, the Bingham equation does not have the capacity to reproduce the observed curvature 

and the modelled rheograms separate from the experimental flow curves. At lower MLSS 

concentrations, the Ostwald equation forces the modelled rheograms to start at the origin since 

it does not integrate a Yield stress (𝜏𝜏𝑦𝑦), which results in deviating its trend from the 

experimental rheogram. Instead, because the Bingham model integrates this rheological 

parameter (𝜏𝜏𝑦𝑦), the modelled rheogram is able to follow more accurately the trend of the 

experimental rheogram. Additionally, the experimental rheograms obtained with sludge at MLSS 

concentrations below 5.0 g L-1 presented trends that appear more like straight lines which is 

convenient for the Bingham equation to reproduce them suitably. 

If the Casson model provides rarely either the best or the poorest fit to the experimental data, 

this appears to be reasonable as in fact this equation allows reproducing the main 

characteristics observed in the experimental rheograms presented above. First, it integrates the 

Yield stress (𝜏𝜏𝑦𝑦), which avoids introducing errors by forcing the model to initiate at the origin 

instead of starting from the abscissa when required. Second, the equation allows the modelled 

rheograms to reproduce the curvature observed specially for flow curves obtained at MLSS 

concentrations above 5.0 g L-1, even though the model fixes the curvature by integrating a 

constant exponent.  
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Conclusions  

− The ability of five different rheological equations to reproduce each of 18 experimental 

rheograms of activated sludge from five different WWTPs and with MLSS 

concentrations between 2.3 and 10.2 g L-1 was evaluated.  

− Logically, the three-parameter models provided generally a better adjustment to the 

experimental rheograms than the two-parameter models, although similar fits were 

occasionally obtained with the two types of model. 

− The suitability of the Ostwald and Bingham equations to model each of the experimental 

rheograms appears to be related to the MLSS concentration. The Ostwald equation is 

more adequate to reproduce the rheograms obtained with sludge at MLSS 

concentrations higher than 5.0 g L-1, the Bingham model is more suitable to reproduce 

the flow curves obtained with sludge at lower MLSS concentrations.  

 

 

IV.4.1.1 Correlation between rheological parameters and MLSS concentration 

Figure IV.9 presents the rheological parameters of the Ostwald-de Waele, Bingham, Casson, 

Herschel Bulkley and Sisko models, as a function of the MLSS concentration. These were 

obtained by adjusting each rheological equation to the 18 different experimental flow curves. 

For the Ostwald-de Waele and Bingham models (Figure IV.9 a and b respectively), the 

Consistency index (K) increases exponentially with the MLSS concentration. Similarly to the 

increase of the sludge apparent viscosity with an increment in the MLSS concentration, this 

trend is usually explained by an increase in the number of interaction between particles that 

consequently move less freely and exert more resistance to flow. Although the Consistency index 

(K) has the same physical meaning for both models, it is noted that their order of magnitude is 

not in the same range. The Flow index (n) of the Ostwald-de Waele equation is reduced 

exponentially as the MLSS content increases, thereby accentuating the shear-thinning character 

of the activated sludge. Concerning the Yield stress (τy) of the Bingham model, it increases in a 

power law trend with the MLSS concentration. This trend is explained by an augmentation in the 

particle interaction “at rest” (Baudez et al., 2004) with the increase in the particle content. Since 

the lowest applied shear rate in this study was 50 s-1, this rheological parameter, was not 
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measured experimentally. Hence, the mentioned Yield stress (τy) consists of an estimated value 

issued from the adjustment of the rheological equation to the experimental flow curves.  

 

 

 

 
Figure IV.9. Rheological parameters versus activated sludge MLSS concentration for the rheological equations of (a) 

Ostwald-de Waele, (b) Bingham, (c) Casson, (d) Herschel Bulkley and (e) Sisko. 

 

Although the rheological parameters from the Ostwald-de Waele and the Bingham models 

exhibit a close correlation with the sludge MLSS concentration, those from the Ostwald-de Waele 

model show slightly more dispersion.  
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Concerning the rheological parameters of the Casson model (Figure IV.9 c), the Yield stress (τy) 

presents a good correlation with the MLSS concentration. Similarly to the Yield stress of the 

Bingham model, it increases with the MLSS content following a power trend. On the contrary, the 

Limit viscosity (𝜇𝜇∞) exhibits a poor correlation with the sludge MLSS concentration and it is 

difficult to determine the parameter trend, putting into question a potential problem of 

identifiability. 

Concerning the Herschel-Bulkley and Sisko equations, their parameters appear to be weakly 

correlated to the sludge MLSS concentrations.  It is evident in these figures that considering a 

third parameter to reproduce the group of experimental results led to a significant increase of 

data scattering. A similar increase of data dispersion using the Herschel Bulkley equation was 

observed in the modelling work of activated sludge rheology presented by Rosenberger et al. 

(2006). As later stated by Ratkovich et al. (2013), this model over parameterization leads to hide 

the true underlying relation between the rheological parameters and the sludge properties. 

Indeed, the use of such over parameterized equations results in unidentifiable parameters since 

multiple sets of parameters may provide a suitable fit to the experimental data.  

In order to reduce the data dispersion of the Herschel-Bulkley rheological parameters observed 

in Figure IV.9 (d), a similar analysis to the one proposed by Baudez et al. (2004) was applied. 

The authors used the Herschel-Bulkley model to represent the rheological behaviour of sewage 

sludge, but fixed the Flow index (n) to a constant value.  For 48 sewage sludge samples from 6 

different wastewater treatment plants the authors estimated n to be around 0.45. 

In the present work, the Flow index (n) was then kept constant and the Herschel-Bulkley model 

was adjusted to each of the 18 experimental rheograms and the rheological parameters τy  and  

K were obtained. Parameter estimation led to a Flow index value of 0.96 to get the most 

significant reduction of the observed data scattering. The correlation between the rheological 

parameters of the Herschel-Bulkley model with a fixed Flow index (n=0.96) and the MLSS 

concentration is presented in Figure IV.10.  
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Figure IV.10. Rheological parameters of the Herschel-Bulkley equation (τy, K) versus activated sludge MLSS 
concentration. The Flow index (n) is a fixed valued (n=0.96). 

 

Keeping a constant Flow index (n), independent on the MLSS concentration in the Herschel-

Bulkley model, reduces significantly the data scattering observed in Figure IV.9 (d). However the 

obtained model is not significantly different from the Bingham model and therefore the latter, 

with only two rheological parameters, is preferred. 

 

 

Conclusions  

− The rheological parameters of the Ostwald-de Waele and Bingham are significantly 

governed by the MLSS concentration. Concerning the Casson model, only the Yield 

stress was closely correlated to the MLSS concentration. Instead, no clear trend was 

observed for the Limit viscosity and multiple values could correspond to a given MLSS 

concentration.  The Herschel-Bulkley and Sisko parameters presented a significant data 

scattering when expressed as a function of MLSS. This data dispersion indicated over- 

parameterized models that could be unable to reproduce experimental rheograms. 
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IV.4.1.2 Modelling experimental rheograms with MLSS concentration 

With the aim of obtaining a rheological model for the set of collected data, this section presents 

an evaluation of the Ostwald-de Waele and Bingham rheological equations in terms of their 

capacity to model a group of flow curves instead of each of the rheograms individually. These 

two models have been selected since they did not exhibit over-parameterization issues.  

The experimental flow curves of activated sludge samples studied in this work have been 

divided in two groups of rheograms in consistency to observations made in section IV.3.2.1 

where two diverging trends of apparent viscosity were observed for (i) Saint Vrain, Ollainville, 

Etrechy and (ii) Briis-sous-Forges, Etampes. The parameters of the Ostwald-de Waele and the 

Bingham equations were modeled as a function of the MLSS concentration for these two groups 

of rheograms. Different equations were tried. The selected ones are presented in Table IV.10. 

 

Table IV.10. Rheological parameters of the Ostwald-de Waele and the Bingham models as a function of the AS MLSS 
concentration considering two different sets of experimental rheograms : (i) Saint Vrain, Ollainville, Etrechy and (ii) 

Briis-sous-Forges and Etampes. 

  WWTP  

  
Saint Vrain, 

Ollainville, Etrechy 
Briis-sous-Forges, 

Etampes 
 

Model Equation form A B A B 
Eq. number  
(i)          (ii) 

Ostwald-
de Waele 

K(Pa. sn) = exp (A ∙ MLSSB) × 10−3 0.38 1.11 0.85 0.75 IV.1 IV.2 
n = 1 − A ∙  MLSSB 0.05 1.12 0.13 0.63 IV.3 IV.4 

Bingham 
τy(Pa) = A × 10−4 ∙ (MLSSB) 28.0 2.25 51.8 2.09 IV.5 IV.6 

K(Pa. s) = exp (A ∙ MLSSB) × 10−3 0.09 1.04 0.14 0.85 IV.7 IV.8 
 

The form of these equations has been guided by a suitable fit to the experimental data as well as 

to allow the calculation of dynamic water viscosity at 20°C (10-3 Pa.s) when the MLSS 

concentration is equal to zero. The form of the equations concerning the Ostwald-de Waele 

model, is also proposed by Rosenberger et al. (2002). 

To evaluate the fit of the proposed equations to the experimental data, the experimental 

rheograms were modelled using the Equations IV.1 to IV.8. Table IV.11 presents the values of the 

residual sum of squares per number of experimental points per rheogram (RSS/N) obtained for 

each flow curve (ordered by sludge MLSS concentration) and for the Ostwald-de Waele and 

Bingham equations. Values in bold type highlight the lowest RSS values. Also Table IV.12 

presents, the obtained minimal, maximal and average error of the modeled data in respect to the 

experimental rheograms.  
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Table IV.11. Residual sum of squares per number of experimental points (RSS/N) obtained with the equations of the 
modeled parameters (Equations IV.1 to IV.8) to estimate the two experimental sets of flow curves (i) and (ii). 

Samples are listed according to a MLSS concentration increasing order. 

(i) Saint Vrain, Ollainville, Etrechy    (ii) Briis-sous-Forges, Etampes 

WWTP MLSS 
(g/L) Ostwald Bingham    WWTP MLSS 

(g/L) Ostwald Bingham 

Etrechy 2.3 5.04E-05 2.42E-05    Briis 4.0 4.06E-04 4.76E-04 
Ollainville 2.7 4.03E-04 7.08E-04    Etampes 5.5 3.06E-04 1.26E-04 
Saint Vrain 2.8 1.19E-04 6.66E-05    Briis 6.1 4.19E-04 3.90E-04 
Saint Vrain 3.0 8.09E-04 4.36E-04    Briis 6.4 1.70E-03 1.30E-03 
Saint Vrain 4.5 2.83E-04 2.10E-04    Briis 7.9 5.69E-03 7.93E-03 
Saint Vrain 4.6 2.58E-04 3.90E-04    Etampes 8.0 2.81E-03 6.37E-04 
Etrechy 4.6 1.06E-03 8.48E-04    Briis 10.2 1.50E-02 1.32E-03 
Saint Vrain 5.0 2.27E-04 2.82E-04    Σ RSS/N 2.64E-02 1.22E-02 
Ollainville 6.2 2.88E-03 1.83E-03        
Saint Vrain 8.5 1.06E-03 7.87E-04        
Saint Vrain 8.6 5.28E-04 1.67E-03        

Σ RSS/N 7.67E-03 7.25E-03        
 

 

For the two groups of flow curves, the proposed Bingham model provides more often than the 

Ostwald-de Waele model the lowest RSS value and consequently the lowest sum of RSS/N values 

in both cases. In contrast to what had been previously observed in Table IV.8 in section IV.4.1, 

the adjustment quality obtained with the Ostwald-de Waele and the Bingham models do not 

seem to be dependent on the sludge MLSS concentrations.  

 

Table IV.12. Minimum, maximum and average error (%) obtained with the equations of the modeled rheological 
parameters (Table IV.10) to estimate the two sets of experimental flow curves: (i) Saint Vrain, Ollainville, Etrechy and 

(ii) Briis-sous-Forges, Etampes. Samples are listed according to a MLSS concentration increasing order. 

Saint Vrain (S.V), Ollainville (Oll.), Etrechy (Etr)   Briis-sous-Forges (BsF), Etampes (Eta.) 

W
W

TP
 

M
LS

S 
(g

/L
) Ostwald Bingham   

W
W

TP
 

M
LS

S 
(g

/L
) Ostwald Bingham 

Min Max Avg. Min Max Avg.   Min Max Avg. Min Max Avg. 

Etr. 2.3 0.3 7.7 2.9 0.7 6.9 2.3   BsF 4.0 0.9 6.7 3.9 0.7 7.9 3.2 
Oll. 2.7 1.9 19.5 9.3 5.0 21.4 12.4   Eta. 5.5 0.3 6.0 2.8 0.0 4.2 1.4 
SV 2.8 0.7 12.1 4.5 0.1 12.9 3.8   BsF 6.1 0.4 4.8 2.6 0.4 8.3 2.9 
SV 3.0 4.0 27.6 15.0 4.2 21.0 11.3   BsF 6.4 3.0 8.0 5.2 0.8 15.0 5.0 
SV 4.5 0.2 14.6 5.7 0.3 10.4 4.4   BsF 7.9 5.1 17.8 9.8 0.4 14.1 9.1 
SV 4.6 0.4 10.1 4.5 0.0 9.0 3.8   Eta. 8.0 2.1 11.4 6.0 0.1 7.9 2.4 

Etr. 4.6 1.6 20.6 11.0 2.1 18.5 11.3   BsF 10.2 0.2 14.0 9.0 0.1 5.7 2.3 
S.V 5.0 1.4 10.3 4.6 0.0 14.5 5.1   All rheogr. 0.2 17.8 6.0 0.0 15.0 4.2 
Oll. 6.2 4.4 11.4 8.1 0.2 10.2 5.7           
SV 8.5 0.1 7.9 3.5 0.2 11.9 4.4           
SV 8.6 0.0 8.5 2.8 0.1 8.2 3.7           

All rheogr. 0.0 27.6 6.4 0.0 21.4 6.0          
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The maximal experimental error with respect to the experimental rheograms was 27.6%, and 

was obtained with the Ostwald-de Waele equation. For this model, the average error with 

respect to a given flow curve varied from 2.8 to 15%. For the Bingham model the obtained 

relative error was generally lower, the maximal obtained error being 21.4% and the average 

error for a given rheogram varying between 1.4 and 12.4%. For the two sets of rheograms, (i) 

and (ii), the Ostwald-de Waele model provided an average error of 6.4 and 6.0% respectively, 

while the Bingham model provided an average error of 6.0 and 4.2% respectively.  

Figure IV.11 depicts the adjustment for six of the flow curves for which the highest errors were 

obtained (in red type in Table IV.12). 
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Figure IV.11. Experimental and predicted apparent viscosity as a function of the shear rate for the rheograms with 
the poorest fit in terms of relative error according to Table IV.12. Viscosity values are predicted with Ostwald-de 

Waele and Bingham models using Equations IV.1 to IV.8. 

 

The Figure IV.12 presents a comparison between the predicted values of apparent viscosity (at 

50 and 400 s-1) versus MLSS concentration using the proposed models of the Ostwald-de Waele 

and Bingham equations for the two sets of flow curves, (i) and (ii). 
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Figure IV.12. Experimental and predicted values of apparent viscosity (at 50 and 400 s-1) versus MLSS concentrations 
for the two sets of experimental rheograms, (i) SV, Oll. and Etr. and (ii) Briis and Eta., using the rheological models of 

(a) Ostwald-de Waele and (b) Bingham (using Equations IV.1 to IV.8).  

 

Visually both obtained models reproduce suitably the increase of the apparent viscosity with the 

MLSS concentration for the two sets of experimental rheograms, (i) and (ii). For the two models, 

a good agreement is observed between the modeled and the experimental data.  

The predicted values of shear stress estimated using the proposed models of the Ostwald-de 

Waele, and Bingham equations (Equations IV.1 to IV.8.) are compared in Figure IV.13 to the 

shear stress values issued from the experimental flow curves. No trend for under or 

overestimating the experimental values is observed. 

Although both models provide similar prediction of the experimental values, the Bingham 

equation appears to be slightly more suitable to reproduce the apparent viscosity of the studied 

activated sludge from the five different municipal wastewater treatment plants (lowest RSS/N, 

lowest average relative error and lowest maximal error).  
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(i) Comparison for the first set of experimental rheograms (Saint Vrain, Ollainville, Etrechy) 

 

(ii) Comparison for the second set of experimental rheograms (Briis-sous-Forges, Etampes) 

 

Figure IV.13. Comparison between experimental and predicted values of shear stress using the rheological models of 
Ostwald-de Waele and Bingham for the two sets of experimental rheograms, (i) and (ii), 

 (using Equations IV.1 to IV.8 presented in Table IV.10). 

 

IV.4.1.3 Comparison of the developed model with other studies 

Figure IV.14 presents the apparent viscosity of municipal activated sludge at three different 

shear rates (50, 200 and 400 s-1) according to the modeling results obtained in this work with 

the Bingham model, which provided the best fit to the experimental data for the two groups of 

experimental rheograms [(i) Eqs. IV.5 and IV.7; (ii) Eqs. IV.6 and IV.8], and different authors.  
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Figure IV.14.Apparent viscosity as a function of MLSS concentration at different shear rates (a) 50 s-1, (b) 200 s-1 and 
(c) 400 s-1 for best fit in this work ((i) Eqs. IV.5 and IV.7; (ii) Eqs. IV.6 and IV.8) and other studies. 

 

A significant dispersion between the different results is observed at the lowest shear rate         

(50 s-1) while at higher shear rates the difference between models is reduced and the results 

from different authors converge towards similar values. The data dispersion at low shear rates 

may have different explanations. First, the use of different rheometer geometries that induce 

different flow patterns leading to the onset of turbulence at distincts shear rates (cf. I.3.4.3.2). 

Also, at lower velocity gradients the instruments precision might be reduced due to a 

heterogeneous shear repartition in the sample volume due to sample settling during the 

measurements. Also at low shear rates the rheometers uncertainty is probably higher because 

the values of the measured variables approach the components accuracy. Finally, the influence 

on rheology of some sludge properties that structurally differentiate the sludge origin can be 

reduced with the increase of the shear rate.   

 

Conclusions  

 

− The rheological parameters of the Ostwald-de Waele and Bingham equations were 

modelled as a function of the MLSS concentration based on the 18 experimental flow 

curves. Since the group of experimental rheograms had previously exhibited diverging 

trends of apparent viscosity at a given shear rate for different MLSS concentrations, two 

groups of data were differentiated to perform this modelling work. 

− The issued models allow to estimate the experimental rheograms with similar quality. 

However the Bingham equation provided a slight better fit than the Ostwald-de Waele 

model (lowest RSS/N, lowest average error and lowest maximal relative error). The 

models goodness-of-fit did not appear to be related to the MLSS concentration.  
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IV.5 Conclusions 

Rheological measurements were performed with AS within the shear rates of 50 s-1 and 400 s-1 

using a tubular rheometer, designed and constructed in this work. The studied AS was sampled 

from five different wastewater treatment plants and MLSS concentrations varied between 2.3 

and 10.2 g L-1. First of all, evaluating and analysing the 18 obtained experimental rheograms 

allowed to: 

− Confirm the non-Newtonian fluid shear thinning behaviour of AS mentioned in the 

literature: Its apparent viscosity decreases with an increment of the shear rate. In this 

work, for AS with the highest evaluated MLSS concentration (10.2 g L-1), the apparent 

viscosity decreased from 15.7x10-3 to 4.4x10-3 Pa.s when the shear rate increased from 

50 to 400 s-1. For AS with the lowest studied MLSS concentration (2.3 g L-1), the apparent 

viscosity decreased from 1.7x10-3 to 1.3x10-3 Pa.s within the same shear rate interval. 

 

− Confirm that AS rheological behaviour is significantly determined by the MLSS 

concentration, as showed by other literature results, the apparent viscosity increasing 

exponentially with an increment of the MLSS concentration. In this study, the apparent 

viscosity at a shear rate of 50 s-1 can increase from 1.7x10-3 Pa.s up to 15.7x10-3 Pa.s 

when MLSS increases from 2.3 to 10.2 g L-1.  

Subsequently, other AS properties were also determined in order to evaluate if besides the MLSS 

concentration, the AS rheological behaviour is influenced by other AS properties. This evaluation 

of other AS properties showed that physical characteristics regarding the biological flocs such as 

size, cohesiveness, density and overall structure could explain why two AS samples having 

similar MLSS concentration but different origins exhibit different values of apparent viscosity. 

Concerning the modelling of the experimental rheograms, the ability of five known rheological 

models to describe each of the experimental rheograms was evaluated. Logically, three-

parameter models (Sisko and Herschel Bulkley) provided generally a better fit to the 

experimental flow curves than the two-parameters models (Ostwald-de Waele, Bingham, 

Casson). It was however highlighted that for some rheograms, only two rheological parameters 

were needed to describe with an equivalent suitability the experimental data. Moreover, 

representing the rheological parameters of the different studied rheological equations as a 

function of the MLSS concentration, highlighted that some parameters, in particular those 

integrating the 3-parameter models, as well as the Limit viscosity in the Casson model, lacked of 

identifiability. As a consequence, in order to avoid over-parameterised models with low 
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prediction capacity, the two-parameter models, in particular the Ostwald-de Waele and the 

Bingham equations, were preferred to continue the modelling work. 

The rheological parameters of the Ostwald-de Waele and the Bingham equations were modelled 

as a function of the MLSS concentration. To this aim, the group of experimental data was divided 

in two groups of flow curves in view of the two diverging trends observed when representing 

the AS apparent viscosity at a given shear rate for different MLSS concentrations.  For the two 

groups of rheograms, the two models provided similar adjustments to the experimental 

rheograms, although the Bingham equation provided slightly better results (lowest RSS/N, 

lowest average error, lowest maximal error).  

The apparent viscosity calculated with the Bingham models obtained in this work was different 

in comparison to other values predicted by different models available in the literature. This 

discrepancy, specially pronounced at low shear rates could be attributed to the use of different 

rheometer geometries, to sample settleability during measurements, to the reduction of the 

instruments accuracy and to the impact on rheology of some sludge properties that structurally 

differentiate the sludge origin and that can be reduced with the increase of the shear rate. 
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In this chapter, experimental results of oxygen transfer measurements performed in a bubble 

column are presented and analysed. The main objective of this section was to precise the impact 

of the gas diffuser type (fine bubble, coarse bubble) and activated sludge properties on mass 

transfer, both in clean water and in activated sludge conditions.  

The column (Dc=0.29 m, Hc = 4.4 m) was therefore equipped alternatively with a fine bubble 

and a coarse bubble diffuser. Clean water experiments were performed in the Irstea laboratory, 

whereas the experimental set-up was mounted on two full-scale plants - a conventional 

activated sludge system (CAS) and a membrane bioreactor (MBR) - for mixed liquor 

experiments.  In parallel to the oxygen transfer measurements, activated sludge properties were 

characterised. 

V.1 Experimental conditions 

All experiments were performed at a liquid level of 4.4 m in the column presented in paragraph 

II.1. Measurements consisted in clean water and sludge determination of the volumetric oxygen 

transfer coefficients and the gas hold-ups for different air flow rates, corresponding to 

superficial gas velocities comprised between 1.9 and 5.5 x 10-3 m s-1. Additionally, bubble size 

was determined in clean water for the fine bubble diffuser.  

To perform the on-site experiments with mixed liquor, measurements were carried out in an 

open reactor co-current configuration with respect to the gas and to the liquid phases. The 

superficial liquid velocity was kept low and constant for a given measurement and ranged 

between 2.5 x 10-3 and 4.6 x 10-3 m s-1.  Within the range of measured overall gas hold-up in this 

study (𝜀𝜀𝐺𝐺<1.6%), the interval of superficial liquid velocity corresponds to an average liquid 

velocity comprised between 0.003 m s-1 to 0.005 m s-1 (𝑈𝑈𝑙𝑙 = 𝑈𝑈𝐿𝐿/(1− 𝜀𝜀𝐺𝐺)). These values are very 

low compared to the measured average bubble rise velocity (Ub > 0.29 m s-1). Consequently it is 

considered that bubble rise velocity and overall gas hold-up are not significantly affected by the 

liquid velocity. This assumption is supported by the study presented by Moustiri et al. (2009) in 

a bubble column with clean water and a wider and higher range of gas and liquid flow rates 

(31.9 x 10-3 m s-1 < UG < 56.7 x 10-3 m s-1 ; 6.2 x 10-3 m s-1 < UL < 18.6 x 10-3 m s-1). Their results 

showed a negligible effect of liquid velocity on gas hold-up, bubble slip velocity and bubble size.  

During mixed liquor experiments, sludge was withdrawn from the aeration tank of the plant 

under study, or from the return sludge line, or from the membrane reactor, in order to 

investigate the impact of MLSS concentration on oxygen transfer parameters. 
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Experimental conditions during the measurements performed in the bubble column are 

summarized in Table V.1. 

Table V.1. Conditions during the experiments performed in the bubble column. 

Diffuser 
Sludge 
origin 

Liquid 
conditions 

MLSS 
(g/L) 

Temperature 
(°C) 

UG 
(10-3 m/s) 

UL 
(10-3 m/s) 

Measurements 
kLa εG db 

FB  Clean Water - 19.5 - 24.1 2.0 – 4.4 0 X X X 
CB  Clean Water - 21.6 - 27.0 2.2 – 4.3 0 X X  

FB 

CAS 
ML from AT 2.8 – 3.2 14.1 - 17.9 2.3 – 4.4 3.0 – 4.5 X X  
ML from RL 5.2 – 5.4 14.2 – 14.7 2.8 - 5.5 4.5 X X  
ML from RL 8.6 9.8 – 10.8 2.0 – 4.4 3.0 X X  

MBR 

ML from AT 6.1 20.3 - 20.8 2.0 – 4.8 4.1 X X  
ML from AT 6.8 19.8 – 19.9 2.2 – 4.0 4.0 X   
ML from MR 8.8 – 9.0 19.7 – 23.8 1.9 – 4.7 4.1 X   
ML from MR 9.9 22.2 – 22.8 2.3 – 4.5 3.1 X X  

CB 

CAS 
ML from AT 5.5 11.6 – 11.8 2.3 – 3.5 3.0 – 4.6 X   
ML from RL 8.5 10.1 - 10.2 2.5 – 3.1 3.1 X   
ML from RL 9.1 – 9.5 8.9 – 9.3 2.0 – 4.3 2.7 – 2.9 X X  

MBR 
ML from AT 6.4 20.3 - 20.4 2.2 - 4.4 4.0 X X  
ML from MR 8.6 20.2 - 22.0 2.2 - 4.3 2.5 X X  
ML from MR 10.4 20.6 – 20.8 2.1 – 4.3 3.8 X X  

ML: Mixed liquor; AT: Aeration tank; RL: Recirculation loop; MR: membrane reactor; kLa: Oxygen transfer coefficient; 
εG: Overall gas hold-up; db: Bubble size 

V.2 Preliminary measurements in clean water at different temperatures 

As seen in Table V.1, measurements have been performed within a temperature range from      

8.9°C to 27°C. If the impact of temperature on the oxygen transfer coefficient is well documented 

(cf. Equation II.4), this is not the case for its impact on the gas hold-up. A series of experiments 

was therefore performed in the bubble column in clean water in order to study the effect of 

temperature on the overall gas hold-up. 

V.2.1 Temperature effect on the overall gas hold-up  

V.2.1.1 Experimental results 

The overall gas hold-up (εG) obtained in the bubble column with clean water at a mean 

temperature of 10, 16 and 22°C using the fine bubble diffuser (FB) are presented in Figure V.1a.  
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Figure V.1. (a) Overall gas hold-up and (b) average bubble rise velocity (𝐔𝐔𝐛𝐛) obtained at a temperature of 10, 16 and 
22°C in clean water in the bubble column at different superficial gas velocities (𝐔𝐔𝐆𝐆) - FB diffuser. 

 

At a given superficial gas velocity, the gas hold-up is reduced with a decrease in the liquid 

temperature by a factor of 17% comparing 22 and 10°C. This gas hold-up reduction may be due 

to the effect of temperature on the bubble rise velocity (Ub), related to the influence of 

temperature on the liquid properties. To evaluate the impact of temperature on Ub, the average 

bubble rise velocity was determined from the experimental data of gas gold-up (εG) and 

superficial gas velocities (UG) using Eq. I.27 (Ub = UG/εG), as shown in Figure V.1b.  

When the water temperature is reduced from 22 down to 10°C, the bubble rise velocity is 

increased by 21%. For instance, at UG≈3x10-3 m s-1, Ub increases from 0.28 m s-1 up to 0.34 m s-1.  

The available literature data related to the effect of temperature on bubble rise velocity in clean 

water are scarce. In agreement with the present work, though for isolated bubbles, the work 

carried out by Leifer et al. (2000) in clean water showed that the rise velocity of bubbles with 

diameters comprised between 2.0 and 6.9 mm, increased with a temperature reduction within 

the studied range (0-40°C). The observed increment of the rise velocity became less significant 

as the bubble size increased. For bubbles with a diameter of 2 mm, the bubble rise velocity 

increased by approximately 26% (from 0.27 up to 0.34 m s-1) while for bubbles with a diameter 

of 4 mm the bubble rise velocity increased by approximately 10% (from 24.0 up to 26.5 m s-1). 

By means of video images, the authors noted that the impact of temperature on bubble rise 

velocity relates to the bubble size and oscillating rising trajectory. It was observed that for a 

given bubble size (db>2mm), the temperature reduction promotes the bubble horizontal 

oscillations. However the reasons at the origin of this impact remained unclear.  
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V.2.1.2 Influence of temperature on gas hold-up: potential mechanisms  

When the temperature changes, the water viscosity, density and surface tension are affected. 

The ways these properties may influence the bubble rise velocity and consequently the gas hold-

up, are exposed in the next paragraphs in an attempt to identify the phenomena at the origin of 

the temperature impact on the gas hold-up. 

Viscosity: A temperature decrease from 22 to 10°C increases the water dynamic viscosity by 

approximately 38% (Kestin et al. 1978). Three overlapping phenomena then impact the overall 

gas hold-up:  

(i) at a given gas flow rate, the bubble coalescence is promoted and the bubble size 

increases. In tap water, an increase in the bubble diameter leads to a slight increase 

in the bubble rise velocity as shown by Sardeing et al. (2006). Even in the 

homogenous regime (εG<20%, UG<40x10-3 m s-1) in which bubbles interactions are 

considered to be not significant, Zahradnik et al. (1997) showed that an increment in 

viscosity, from 1mPa s to 3mPa s, leads to the reduction of the overall gas hold-up 

due to the existence of drag forces that promote the bubble coalescence in the 

diffuser region.  

(ii) at a given gas flow rate, the bubble formation time is extended and consequently 

larger bubble are formed (Gaddis and Vogelpohl, 1986; Jamialahmadi et al., 2001; 

Kulkarni and Joshi, 2005). As a result, bubbles rise faster and the gas hold up is 

reduced.   

(iii) at a given bubble size, the bubble drag coefficient increases with an increase of the 

liquid viscosity, which leads to a reduction of the bubble rise velocities and enhances 

the overall gas hold-up.  

Density: On the other hand, when the water temperature drops from 22°C down to 10°C, the 

liquid density increases slightly by 0.2% (Lide, 2004). An increase in water density leads to an 

augmentation of buoyance forces and consequently of bubble rise velocity.  

Surface tension: When the temperature is reduced from 22 to 10°C the water surface tension is 

increased by 2.4% (Mezger, 1946). An increment in surface tension may lead to the following 

effects on bubble rise velocity: 

(i) At a given gas flow rate, the bubble size increases with an increment in surface 

tension (Kulkarni and Joshi, 2005; Gaddis and Vogelpohl, 1986). Consequently 

bubbles would rise faster thus reducing the gas hold-up.  



Chapter V. Measurement and interpretation of oxygen transfer parameters 

 

195 
 

(ii) For a given bubble size, the bubble eccentricity is increased with an increment in 

surface tension (Jimenez, 2013). According to Maldonado et al. (2013) and Quinn et 

al. (2014) when the bubble eccentricity is increased, bubbles exhibit more horizontal 

oscillations and rise faster than spherical bubbles. It is difficult to estimate how much 

an increase in surface tension affects the bubble eccentricity and thus the bubble rise 

velocity. However the link established by Maldonado et al. (2013) and Quinn et al. 

(2014) between the bubble eccentricity, horizontal oscillations of the rising bubbles 

and bubble rise velocity joins the results by Leifer et al. (2000) mentioned above, 

who observed that bubble rise velocity is positively correlated with bubble 

horizontal movements.  

Using the correlation proposed by Gaddis and Vogelpohl (1986) to predict the bubble size at 

formation from the liquid properties (cf. I.2.34), the impact of viscosity, density and surface 

tension on bubble size, associated to a temperature reduction, can be approximated. With a 

temperature drop from 22 to 10°C, the bubble diameter4 would be reduced by approximately 

0.1% (from 3.154 to 3.151 mm), the bubble size change due to the temperature increment can 

thus be considered to be negligible. As the temperature effect on liquid density and surface 

tension could be considered as negligible (respectively +0.2% and +2.4% for a temperature 

reduction from 22 to 10°C), the decrease in the overall gas hold-up could be attributed to the 

increase in dynamic liquid viscosity and associated impact on bubble coalescence and drag 

forces. 

                                                             
4 Estimated at a superficial gas velocity per nozzle section (Ugn) of 0.104 m s-1, which corresponds to 
4.2x10-3 m s-1 of superficial gas velocity (UG) using the fine bubble diffuser. 
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V.2.1.3 Conclusion on the effect of temperature on the overall gas hold-up  

- Several simultaneous counterbalancing effects take place behind the observed increase 

of the bubble rise velocity with the temperature reduction and the associated decrease 

of the overall gas hold-up. A global analysis of the mentioned mechanisms show that the 

prevailing phenomenon explaining the reduction of the overall gas hold-up with a 

temperature decrease is bubble coalescence promoted by the increase of the liquid 

viscosity associated to an increase of the interfacial drag forces between bubbles and 

the liquid phase.  

- In the present work, bubble size and eccentricity were determined only at 20°C and 

additional experiments at different temperatures are necessary to confirm the further 

evaluate the involved phenomena that could be at the origin of the increment of bubble 

rise velocity and gas hold-up reduction with a temperature decrease. Such experiments 

could help to understand the impact of viscosity change on gas phase characteristics 

and dynamics. 

 

V.2.2 Overall gas hold-up temperature correction 

A temperature correction equation has been computed using the results of aeration tests 

performed in the bubble column with clean water at a mean temperature of 9.9, 15.3 and 21.6°C 

and presented in Figure V.1a. The form of this equation has been chosen by analogy to the 

temperature correction formula used for the estimation of the kLa coefficient at 20°C (ASCE, 

1996).   

The empirical correlation for estimating the gas hold-up at 20°C with clean water in the bubble 

column is written as follows:  

εG20 = εGT ∙ θ′
(20−T)   V.1 

Where 

εG20 estimated gas hold-up at 20°C (%) 

εGT gas hold-up measured at a temperature T  (%) 

θ′ temperature correction factor for the overall gas hold-up (θ′ = 1.015) 
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The correction factor (θ′ = 1.015) was estimated by means of the least squares method and 

using the experimental data. Figure V.2 shows the overall gas hold-up obtained at 10.9, 15.3 and 

21.6°C (presented in Figure V.1a) and corrected to 20°C using Equation V.1. 

 

Figure V.2. Overall gas hold-up in clean water using the fine bubbles diffuser (FB) at different superficial gas 
velocities. Experimental data at 10, 16 and 22°C from Figure V.1a corrected to 20°C using Equation V.1. 

 

Assuming that temperature similarly affects the rise velocity of the coarse bubbles and fine 

bubbles, the presented temperature correction (Equation V.1) was also applied to convert the 

overall gas hold-up results obtained with the coarse bubble diffuser. As the effect of temperature 

on mixed liquor viscosity is similar to water, as observed in paragraph III.4, the same 

temperature correction was also applied to the overall gas hold-ups obtained in activated sludge 

with both types of diffusers.   

V.3 Impact of diffuser type of on oxygen transfer in clean water  

V.3.1 Oxygen transfer volumetric coefficients 

Volumetric oxygen transfer coefficients in clean water at 20°C (𝑘𝑘𝐿𝐿𝑎𝑎20) obtained at different 

superficial gas velocities (𝑈𝑈𝐺𝐺), using the fine bubble (FB) or the coarse bubble (CB) diffusers, are 

presented in Figure V.3. 
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Figure V.3. Oxygen transfer coefficient at 20°C (𝒌𝒌𝑳𝑳𝒂𝒂𝟐𝟐𝟐𝟐) at different superficial gas velocities (𝑼𝑼𝑮𝑮) in clean water 
obtained with two different gas diffusers: fine bubble (FB) and coarse bubble (CB).  

 

For both types of diffusers the oxygen transfer coefficient increases with an augmentation of the 

superficial gas velocities. At a given gas flow rate, the oxygen transfer coefficient is higher in the 

fine bubble system than in the coarse bubble system by at least a factor of 2.3. These evolutions 

are explained by the modification in characteristics of the gas/liquid dispersion as presented in 

the following. 

V.3.2 Characteristics of the gas/liquid dispersion 

V.3.2.1 Overall gas hold-up 

The gas hold-up (𝜀𝜀𝐺𝐺) at 20°C in clean water for the fine bubble (FB) and coarse bubble (CB) 

diffusers is presented in Figure V.4 at different superficial gas velocities (𝑈𝑈𝐺𝐺). For both types of 

diffusers, the gas hold-up increases with the increase in the superficial gas velocity.   
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Figure V.4. Gas hold-up (𝜺𝜺𝑮𝑮) at 20°C in clean water obtained with two different gas diffusers (FB and CB) at different 
superficial gas velocities (𝑼𝑼𝑮𝑮). 

 

Within the range of applied gas flow rate, the observed gas hold-up increases linearly with 𝑈𝑈𝐺𝐺  

from 0.7 to 1.5% for the fine bubble aeration system and from 0.5 to 1.1% for the coarse bubble 

diffuser. At a given superficial gas velocity, the gas hold-up obtained with the fine bubble diffuser 

is about 1.4 times higher than the one obtained with the coarse bubbles diffuser. This difference 

is explained by the difference in mean bubble size, which induces a higher bubble rise velocity 

for coarse bubble aeration than for fine bubble aeration. 

V.3.2.2 Bubble size, interfacial area and liquid-side volumetric coefficient  

The bubble size (in terms of the Sauter diameter, dbS) and bubble eccentricity obtained with the 

fine bubble diffuser at different superficial gas velocities are presented in Figure V.5. 
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Figure V.5. Bubbles Sauter mean diameter (dbS) and bubble eccentricity in clean water using the fine bubble (FB) 
diffuser at different superficial gas velocities. 

 

The bubble size increases from 2.2 to 3.6 mm with an increase in the superficial gas velocity (UG) 

from 1.2 to 4.6 m s-1. The effect of the airflow rate on bubble size is more significant at lower 

superficial gas velocities because the membrane stretches and the pore’s size become larger 

under the effect of the pressure associated to the airflow rate. Concerning the bubble’s shape, 

their eccentricity slightly increases from 1.4 up to 1.7 with the increase of the superficial gas 

velocity. 

Knowing the overall gas hold-up (εG) and the bubble Sauter diameter (dbS), the interfacial area 

(𝑎𝑎) was calculated for the fine bubble diffuser using Equation I.23. The calculated interfacial area 

is presented in Figure V.6. From the results of the oxygen transfer coefficient (Figure V.3) and 

the calculated interfacial area (a), an estimate of the liquid-side mass transfer coefficient (𝑘𝑘𝐿𝐿) 

was computed as follows: 𝑘𝑘𝐿𝐿 = 𝑘𝑘𝐿𝐿𝑎𝑎/𝑎𝑎 (see Figure V.6). 

As mentioned in Chapter II, the size and shape of bubbles generated by the coarse bubble 

diffuser could not be determined in this study because bubbles rising near the wall were not 

representative of the bubble population rising through the column. However, the liquid-side 

oxygen transfer coefficient (𝑘𝑘𝐿𝐿) could be estimated using the empirical correlation proposed by 

Calderbank and Moo-Young (1961) for a mobile interface (Equation I.16). Subsequently, the 

interfacial area (a) in the coarse bubble system was determined from 𝑘𝑘𝐿𝐿𝑎𝑎 results and the 

estimated 𝑘𝑘𝐿𝐿 values using Equation I.16 (𝑎𝑎 = 𝑘𝑘𝐿𝐿𝑎𝑎/𝑘𝑘𝐿𝐿). Results are also reported on Figure V.6. 
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Figure V.6. Estimated liquid-side oxygen transfer coefficient (𝒌𝒌𝑳𝑳) and interfacial area (a) as a function of the 
superficial gas velocity (𝐔𝐔𝐆𝐆) in clean water for the two diffusers (FB and CB). 

 

Within the range of the gas superficial velocity studied (1.9 – 4.5 x 10-3 m s-1), the liquid-side 

oxygen transfer coefficient (𝑘𝑘𝐿𝐿) for the fine bubble diffuser is almost constant. The power-law 

relationship between 𝑘𝑘𝐿𝐿𝑎𝑎20 and UG (Figure IV.3) is therefore due to the increase of the 

interfacial area (𝑎𝑎) with UG following also a power law. 

The coarse bubble aeration system induces a lower interfacial area, explained by the fact that 

coarse bubbles have higher rising velocities than fine bubbles because of their significantly 

larger size; consequently their residence time in the bubble column is shorter.  

V.3.3 Transfer number in clear water 

Transfer numbers (𝑁𝑁𝑇𝑇) are given as a function of the Reynolds numbers of the column 

(𝑅𝑅𝐻𝐻𝑐𝑐𝑜𝑜𝑙𝑙𝑒𝑒𝑚𝑚𝐺𝐺=
𝜌𝜌𝐿𝐿𝑈𝑈𝐺𝐺𝐷𝐷𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑐𝑐𝑖𝑖

𝜇𝜇𝐿𝐿
 ) in Figure V.7. This dimensionless group (𝑁𝑁𝑇𝑇 = 𝑘𝑘𝐿𝐿𝑎𝑎20

𝑈𝑈𝐺𝐺
� 𝜇𝜇𝐿𝐿2

𝜌𝜌𝐿𝐿2𝑔𝑔
�
1/3

) defined 

by Zlokarnik (1979) and Roustan (1996) has the same physical meaning as the specific standard 

oxygen transfer efficiency (SOTE in %) per meter of diffuser submergence for clean water 

operating conditions (Gillot et al. 2005).  
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Figure V.7. Transfer number at different column Reynolds number in clean water obtained with the two different gas 
diffusers (FB and CB) 

 

For a given Reynolds number, the transfer number is at least 2.3 times higher with fine bubbles 

than with coarse bubbles. Using a coarse bubble diffuser, the transfer numbers are independent 

of Re, which traduces the linear dependency of the oxygen transfer coefficient and the superficial 

gas velocity, as depicted in Figure V.3. For the fine bubble diffuser, 𝑁𝑁𝑇𝑇  is a decreasing function of 

Re, with a power law coefficient of -0.24. This evolution is related to the dependency of the 

bubble Sauter mean diameter to the superficial gas velocity, as depicted in Figure V.5 

In order to highlight this dependency, transfer numbers are reported in Figure V.8 as a function 

of the Sauter diameter. For coarse bubble, Sauter diameters have been estimated using the 

calculated interfacial area (𝑎𝑎) as dbS = 6 𝜀𝜀𝐺𝐺
(1−𝜀𝜀𝐺𝐺)𝑎𝑎

. Results obtained in a different bubble column 

equipped with a fine bubble diffuser synthesised by Gillot (2010) are also reported in this figure. 

Low dbS values in these results were obtained adding sodium sulfite to tap water. Other oxygen 

transfer results reported in this figure have been obtained for fine bubble systems by Fayolle et 

al. (2010, 2011) in full-scale stirred reactors. Reactors configurations and measurement 

conditions corresponding to those results are presented in Table V.2. 
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Figure V.8. Transfer number (𝑵𝑵𝑻𝑻) as a function of bubble Sauter diameter (𝒅𝒅𝒃𝒃𝒃𝒃). Results obtained in this study with 
fine and coarse bubbles and compared to previous works.  

 

Table V.2. Configuration of the reactors and measurement conditions for the results obtained with fine bubble 
diffusers and presented in Figure V.8. 

 Reactor characteristics 
𝑈𝑈𝐺𝐺  

(10-3 m/s) 

Nb. of 

stirrers 

FB gas 

diffuser type 
Variable conditions 

Gillot et al. 

(2010) 

Bubble column; 

D = 0.39m, H = 2.6 m. 
1.6 – 7.6 - 

Disc;  

(S=0.05 m2) 

𝑈𝑈𝐺𝐺  and concentration of 

sodium sulfite  

(0.2 – 17.3 g L-1) 

Fayolle et 

al. (2010) 

Annular loop reactor; 

Vol=1546 m3; H=5.91 m 
1.35 2 

Tube  - 
Annular loop reactor; 

Vol=1493 m3; H=5.45 m 
1.58 1 

Fayolle et 

al. (2011) 

(Ingwiller) Annular, 

Vol=2835 m3; H=5.4 m 
0.95 - 0.97 2 Tube  

UG and number of operating 

aeration grids (Trugny) Annular; 

 Vol=1569 m3; H=5.5 m 
0.35 – 0.86 2 Tube  

(Budapest) Folded plug 

flow; Vol=8368 m3; H=8.0 m 
1.18,  2.27 6 Disc 𝑈𝑈𝐺𝐺  

 

In clean water, in water with electrolytes and for reactors with different configurations (from 

pilot scale to full scale reactors), the transfer number (𝑁𝑁𝑇𝑇) seems to be determined by the Sauter 

diameter that fixes the surface mobility (and therefore 𝑘𝑘𝐿𝐿) and the interfacial area, by 
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controlling the overall gas hold-up. With an increase of the bubble Sauter diameter, the transfer 

number is reduced with a power law coefficient of -0.88. Results also clearly demonstrate the 

fact that the Transfer Number is an adequate scale-up factor for systems equipped with fine 

bubble diffusers. 

V.3.4 Conclusions  

- The diffuser type (FB or CB) induces different bubble diameters that explain the higher 

oxygen transfer coefficients obtained with fine bubbles in comparison to coarse bubble. 

The transfer number is moreover an adequate scale-up factor to represent the 

relationship between oxygen transfer parameters and the bubble Sauter diameter.  
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V.4 Oxygen transfer in activated sludge 

V.4.1 Oxygen transfer coefficients (FB and CB diffusers) 

The evolution of the oxygen transfer coefficient at 20°C with the superficial gas velocity (UG) for 

CAS (conventional activated sludge) and MBR (membrane bioreactor) mixed liquor at different 

MLSS concentrations is shown in Figure V.9 and Figure V.10 for the fine and the coarse bubble 

diffusers respectively. 

 

 

Figure V.9. Oxygen transfer coefficient at 20°C (kLa20) versus superficial gas velocity (UG) in clean water and (a) CAS 
and (b) MBR sludge at different MLSS concentrations with the fine bubble diffuser (FB).*Averaged MLSS 

concentration. 
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Figure V.10. Oxygen transfer coefficient at 20°C (kLa20) versus superficial gas velocity (UG) in clean water and (a) 
CAS and (b) MBR sludge at different MLSS concentrations with the coarse bubble diffuser (CB). *Averaged MLSS 

concentration. 

 

Similarly to results in clean water, the oxygen transfer coefficient is an increasing function of the 

superficial gas velocity, with both diffusers (FB and CB). For a given superficial gas velocity (UG), 

an increase in the MLSS concentration induces a decrease in 𝑘𝑘𝐿𝐿𝑎𝑎20 such as well described in 

literature data. This impact is similar whatever the origin of the sludge (CAS or MBR). 

V.4.1.1 Characteristics of the gas/liquid dispersion: overall Gas hold-up (FB and 

CB diffusers) 

The overall gas hold-up (εG) in clean water, CAS and MBR mixed liquor at different MLSS 

concentrations is shown in Figure V.11 for the two bubble diffusers.  
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Figure V.11. Overall gas hold-up (εG) at 20°C versus superficial gas velocity (UG) in clean water, CAS and MBR sludge 
at different MLSS concentrations. Results obtained with the fine bubble diffuser (FB) and the coarse bubble diffuser 

(CB). *Averaged MLSS concentration. 

 

For both systems, the overall gas hold-up in clean water and in mixed liquor increases linearly 

with the superficial gas velocity. 

At a given superficial gas velocity, the overall gas hold-up is higher in clean water compared to 

activated sludge. The order of magnitude of the gas hold-up reduction in activated sludge is 



Chapter V. Measurement and interpretation of oxygen transfer parameters 

 

208 
 

similar for both aeration systems (respectively 17% and 16% in average). This impact is 

equivalent within the studied ranges of the MLSS concentration ([3.0 – 9.9] g/L and [6.4 – 10.4] 

g/L for FB and CB respectively). 

From the results, the average rise velocity (Ub) in clean water and activated sludge can be 

estimated for the fine bubble and the coarse bubble diffusers using Equation I.27, despite the 

heterogeneous characteristics of the gas phase in terms of bubble size (confirmed by visual 

observations). In general, the estimated values, shown in Table V.3, suggest that bubbles rise 

faster in activated sludge than in clean water, which explains the gas hold-up reduction and 

partially the kLa depletion in activated sludge. 

 

Table V.3. Estimated average bubble rise velocity (Ub) in the bubble column for clean water and the two types of 
activated sludge (CAS and MBR) at 20°C using the fine bubble (FB) and the coarse bubble (CB) diffuser. (𝑼𝑼𝒃𝒃 = 𝑼𝑼𝑮𝑮 𝜺𝜺𝑮𝑮⁄ ) 

 
Fine Bubble diffuser 

MLSS (g/L) Ub (m/s) 
Clean 
water - 0.29 

CAS 

3.0 0.38 

5.3 0.35 

8.6 0.38 

MBR 
6.1 0.32 

9.9 0.38 
 

 
Coarse Bubble diffuser 

MLSS (g/L) Ub (m/s) 
Clean 
water - 0.41 

CAS 9.3 0.50 

MBR 
6.4 0.48 
8.6 0.45 

10.4 0.53 
 

 

The reduction of overall gas hold-up in the presence of activated sludge has also been reported 

by other authors in different operating conditions. Within a similar range of superficial gas 

velocity and gas hold-up comparable to the present work (0.6x10-3 m s-1 < 𝑈𝑈𝐺𝐺 R < 3.2x10-3 m s-1;  

0.5% < 𝜀𝜀𝐺𝐺 R < 2%), Mineta et al. (2011) observed the reduction of gas holdup in batch oxygenation 

tests performed in a bubble column filled with AS at MLSS concentrations ranging from 2 to  

8 g L-1 and gas hold-up between 0.5 and 2%. Additionally this author observed a decrease in the 

gas fraction with the increase in the MLSS concentration more important than in the present 

study. Besides, within a higher and a wider range of superficial gas velocity and gas hold-up 

compared to this study (15x10-3 m s-1 < 𝑈𝑈𝐺𝐺  < 150x10-3 m s-1; 2% < 𝜀𝜀𝐺𝐺  < 15%), Jin et al. (2006) 

observed in two configurations of airlift reactors (internal and external loop), that an increment 

of MLSS concentration from 2.0 up to 4.0 g L-1 resulted in a gas hold-up reduction. Fransolet et al. 

(2005) also observed a gas holdup decrease with an increment of xanthan concentration in non-

Newtonian shear-thinning xanthan aqueous solutions with concentrations from 1 to 5 g L-1 and 
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superficial gas velocities (𝑈𝑈𝐺𝐺) between 20x10-3 and 150x10-3 m s-1. However the effect on gas 

hold-up was less pronounced at higher xanthan concentrations (4 and 5 g L-1).  

The experimental evolutions measured during this study follow trends similar to literature data. 

These results highlight an impact of the non-Newtonian fluid, such as activated sludge, on the 

characteristics of the gas phase, resulting in an increase in the bubble rise velocity. Moreover, in 

the present study, an increase in the MLSS concentration does not induce a further impact on the 

overall gas hold-up in the bubble column, whatever the installed aeration system (FB or CB). 

This impact of sludge properties, such as the MLSS concentration, on oxygen transfer coefficient 

and gas hold-up are discussed in the following paragraphs. 

V.4.2 Impact of sludge properties on oxygen transfer parameters 

V.4.2.1 Statistical analysis of sludge properties on oxygen transfer 

Table V.4 and Table V.5 present some activated sludge properties that have been characterized 

in parallel to the oxygen transfer measurements with the FB and CB diffusers respectively. In 

order to establish the individual effect of sludge physicochemical properties on oxygen transfer 

coefficient, Table V.6 and Table V.7 present the Pearson linear correlation coefficients (r) 

between these properties and 𝑘𝑘𝐿𝐿𝑎𝑎20 (𝑈𝑈𝐺𝐺  = 3x10-3 m s-1) determined with the FB and CB diffusers 

as well as the corresponding p-values resulting from the statistical analysis. These latter two 

tables also present the Pearson coefficient between the sludge physiochemical properties to 

show their interdependency. 

V.4.2.1.1 Impact of the interstitial liquid characteristics on oxygen transfer 

It is known that the dissolved substances such as surfactants can also participate to the 

depletion of the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) by accumulating at the gas-liquid interface, (i) 

reducing the bubbles rise velocity (Alves et al. 2005; Sardeing et al. 2006) and/or (ii) hindering 

the oxygen diffusivity into the liquid (Rosso et al. 2006; Hebrard et al. 2009; Jamnongwong et al. 

2010) and consequently reducing the liquid-side oxygen transfer coefficient (𝑘𝑘𝐿𝐿). However, most 

of the properties and characteristics of the soluble phase determined in this study were poorly 

correlated with the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient, except for the experiments performed with the FB diffuser 

only, for which some properties such as the content of non-ionic surfactant or analysed cations 

presented significant Pearson coefficients and p-values (r>0.8; p-values<0.001). 
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The soluble COD concentration varied between 14.5 and 48.2 mg L-1 with a mean value of 25.5 

mg L-1 for CAS and 36.7 for MBR sludge. Sodium and calcium were the most concentrated cations 

with average values of 27.8 and 54.3 mg L-1 respectively.  

The sum of surfactant concentrations, always lower than 3.6 mg L-1, was in average higher for 

the MBR sludge than for CAS (1.8 vs. 0.9 mg L-1 respectively) and the most concentrated 

surfactant type was the anionic surfactant (2.9 g L-1). These low values could be related to the 

characteristics of studied wastewater treatment plants (extended aeration, low F/M ratio, SRT > 

15d) which enhance the biodegradation and adsorption of surfactants.  

The impact of anionic surfactant addition to clean water on oxygen transfer has been observed 

by different authors (Painmanakul et al., 2005; Rosso et al., 2006) but for significantly higher 

concentrations (from 50 mg L-1) than those encountered in activated sludge reactors. Wagner 

and Popel (1996), Gillot et al. (2000) and Capela et al. (2002) measured the impact of different 

surfactant types and concentrations (from 1 to 7.5 mg L-1) on clean water oxygen transfer 

characteristic parameters. These studies highlight that for such concentrations, oxygen transfer 

is reduced by non-ionic surfactant addition (detected in the present study mostly in MBR sludge 

with three of the samples having a concentration higher than 1 mg L-1 and a maximal value of 1.9 

mg L-1) and is less or not influenced by anionic surfactant addition (which is the most 

concentrated surfactant type in the present study). According to our results, the concentration of 

non-ionic surfactant seems to have an impact on oxygen transfer coefficient for fine bubble 

aeration, as highlighted by the good correlation presented in Table V.6 (r=-0.8, p-value<0.001). 

On the contrary, no impact of any surfactant type has been detected on oxygen transfer 

coefficient for coarse bubble aeration (Table V.7; r=-0.47, p-value=0.2). This is attributable to the 

difference in gas-liquid interface characteristics between the bubbles generated by each aeration 

system: compared to fine bubbles, coarse bubbles generate higher interfacial velocities and 

higher renewal rates.  

Concerning the supernatant surface tension, a slight variation is observed for the different 

studied samples, with similar values to clean water ones (71.5 mN m-1<𝜎𝜎<72.5 mN m-1). 

In collaboration with the present work, Jimenez (2013) measured the liquid-side transfer 

coefficient (𝑘𝑘𝐿𝐿) of isolated bubbles (db≈1.2 mm) rising in filtered interstitial water sampled from 

the aeration basin and the recirculation loop of the Saint Vrain wastewater treatment plant 

(CAS) where some of the 𝑘𝑘𝐿𝐿𝑎𝑎 measurements of the present study were carried out. By means of 

planar laser-induced fluorescence (PLIF, Dietrich et al. (2015), Jimenez (2013) scrutinized the 

oxygen concentration in the wake of rising bubbles and observed that the liquid-side transfer 

coefficient in activated sludge interstitial water was almost 50% of the one measured in pure 
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water. In parallel, the author noted that the 𝑘𝑘𝐿𝐿 reduction was accompanied with a decrease of 

the bubble rise velocity (𝑈𝑈𝑏𝑏) and bubble eccentricity (χ) while the oxygen diffusivity coefficient 

remained equivalent to the one measured in clean water (1.85 – 2.02 x 10-9 m2 s-1 in AS 

interstitial liquid and 1.95 – 2.00 x 10-9 m2 s-1 in clean water). Given that these results were 

obtained with interstitial waters with similar qualities as the ones presented in the present work 

(Table V.4 and Table V.5), the study of Jimenez (2013) supposes that despite of the low 

concentrations of soluble substances measured in this study, their presence can lead to 

significant reductions of liquid-side transfer coefficients. However, it is not easy to extrapolate 

the mentioned results to those obtained in the present work, since under different 

hydrodynamic regimes, with the presence of a bubble swarm of fine bubbles (db≈3mm) or 

coarse bubbles and suspended solids inducing distinct shear conditions at the bubble interface, 

the liquid-side transfer coefficient may be affected differently. 

 



Chapter V. Measurement and interpretation of oxygen transfer parameters 

 

212 
 

 

Table V.4. Physicochemical characteristics of activated sludge samples (CAS and MBR) related to the oxygen transfer measurements performed with the fine bubble diffuser 

Diffuser type Fine bubbles (FB) 

WWRF CAS (Saint Vrain) MBR (Briis) 

MLSS g/L 3.1 3.2 2.8 3.0 5.4 5.2 5.3 8.6 6.1 6.8 8.8 9.0 9.9 

MLVSS g/L 2.2 2.3 2 2.1 3.9 3.7 3.7 5.9 4.1 4.6 6.0 6.1 6.7 

HFV mL/L 195 185 180 180 nd 250 240 400 nd 600* 800* 800* 745* 

CODt mg/L 3900 3468 3592 4138 5884 nd 5540 8820 6200 5310 8130 7890 9810 

SVI mL/g 94 93 97 94 93 100 95 117 165* 120 nd 102* 161* 

CODs mg/L 19.4 25.1 34.8 48.2 17.7 17.5 21.2 22.4 35.3 32 31.8 38 40.1 

S-A mg/L 0.4 0.4 0.5 0.5 0.4 0.3 0.4 0.9 0.5 1 0.5 1 0.8 

S-C mg/L <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.3 0.3 <0.2 0.3 0.4 <0.2 <0.2 

S-NI mg/L <0.2 <0.2 <0.2 <0.2 0.2 <0.2 <0.2 <0.2 0.3 0.3 <0.2 1.5 1.4 

Surfactants mg/L 0.4 0.4 0.5 0.5 0.6 0.3 0.7 1.2 0.8 1.6 0.9 2.5 2.2 
Surface tension 

(𝟐𝟐𝟐𝟐∘𝐂𝐂) mN/m 72.2 72.3 72.3 72.1 72.2 72.3 72.4 72.2 72.5 72.2 72.1 71.9 72.5 

AS Density kg/m3 1000 998 995 997 1000 996 1000 1002 1001 988 nd 985 1000 

Na+ mg/L nd 4 6.2 7.7 5.3 7.0 5.7 37.4 12.8 11.6 57.7 68.8 58.7 

K+ mg/L nd 1.9 2.9 2.3  1.9  2.7 2.2 11.9 4.5  3.9  19.6  21.6 20.7 

Ca++ mg/L nd 3.8 6.3 8.8 6.5 10.2 7.7 97 28.1 21.7 120.8 130.5 123.8 

Mg++ mg/L nd 0.4 0.6 0.8  0.4  0.6 0.5 12.3 1.7  1.3  8.3  8.2 8.4 
Analysed 

cations mg/L nd 10 15.9 19.7 11.8 17.2 16 158.6 47.1 33.3 178.5 199.3 211.6 

Date dd/mm/yy 18/10/12 19/10/12 30/10/12 15/11/12 20/11/12 21/11/12 21/11/12 15/02/13 19/07/13 10/07/13 22/07/13 11/07/13 01/08/13 

Liquid from AT AT AT AT RL RL RL RL AT AT MR MR MR 

AT=aeration tank; RL= recycling loop; MR=membrane reactor. nd : not determined.*Floating aggregates observed. WRRF: Water resource recovery facility or WWTP. 
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Table V.5. Physicochemical characteristics of activated sludge (CAS and MBR) related to the oxygen transfer measurements performed with the coarse bubble diffuser 

Diffuser type  Coarse bubbles 

WRRF  Saint Vrain (CAS)  MBR (Briis) 

MLSS g/L 5.5 5.5 5.5 8.5 9.1 9.5 6.4 8.6 10.4 

MLVSS g/L 3.7 3.7 3.7 5.7 6.4 6.8 4.4 5.8 7 

HFV mL/L 315 290 310 400 410 450 465 420* 465* 

CODt mg/L 5964 6252 6732 8350 8970 9184 6730 9620 10940 

SVI mL/g 109 103 100 104 105 105 133* 122* 144* 

CODs mg/L 14.5 23.3 22.3 26 34 30 32.3 38.4 45.5 

S-A mg/L <0.2 0.3 0.4 0.8 1.8 2.9 1.3 1.5 0.4 

S-C mg/L <0.2 0.3 <0.2 0.3 0.3 <0.2 <0.2 0.2 <0.2 

S-NI mg/L <0.2 <0.2 <0.2 <0.2 0.3 <0.2 0.4 1.9 0.4 

surfactants mg/L 0.0 0.6 0.4 1.1 2.4 2.9 1.8 3.6 0.8 
Surface tension 

(𝟐𝟐𝟐𝟐∘𝐂𝐂) mN/m 72.3 72.0 72.3 72.4 71.9 71.5 72.4 72.1 72.3 

AS Density kg/m3 1002 999 1000 1001 999 1004 999 989 1020 

Na+ mg/L 9.3 5.6 4.8 68 5 5.6 60.2 65.9 76 

K+ mg/L 3.1 2.1 1.8 22.2 1.5 1.4 22 22.8 23.5 

Ca++ mg/L 17.3 9 0.7 152 5.7 3.9 124.3 129.3 132.5 

Mg++ mg/L 1.5 0.9 7.3 23.6 0.6 0.5 8.7 8.6 8.5 
Analysed 

cations mg/L 31.2 17.6 14.6 265.8 12.9 11.4 215.2 226.5 240.5 

Date dd/mm/yy 09/01/13 10/01/13 11/01/13 08/02/13 24/01/13 23/01/13 18/07/13 12/07/13 16/07/13 

Mixed liquor from AT AT AT RL RL RL AT AR MR 

AT=aeration tank; RL= recycling loop; MR=membrane reactor. nd : not determined.*Floating aggregates observed. WRRF: Water resource recovery facility or WWTP. 



Chapter V. Measurement and interpretation of oxygen transfer parameters 

 

214 
 

Table V.6.Pearson linear correlation coefficients (r) and p-value between kLa20 (UG=3x10-3 m s-1) obtained with FB diffuser and the activated sludge physicochemical properties. The 
right side of the table presents the Pearson coefficients between the sludge properties to show their interdependency. 

 r p-value r 

 kLa20* MLSS MLVSS HFV CODt SVI AS 
Density CODs S-A S-C S-NI surfactants 

Surface 
tension 
(20∘C) 

Na+ K+ Ca++ Mg++ Analysed 
cations 

kLa20* 1.00                   
MLSS -0.97 2E-08 1.00                 

MLVSS -0.97 7E-08 1.00 1.00                
HFV -0.95 1E-05 0.90 0.89 1.00               

CODt -0.90 6E-05 0.96 0.97 0.81 1.00              
SVI -0.69 0.0122 0.60 0.58 0.70 0.60 1.00             

AS Density -0.24 0.4395 0.17 0.14 0.36 0.13 0.38 1.00            
CODs -0.65 0.0157 0.67 0.66 0.68 0.57 0.36 0.41 1.00           

S-A -0.40 0.1758 0.42 0.42 0.34 0.33 0.00 -0.16 0.28 1.00          
S-C -0.65 0.0162 0.64 0.63 0.71 0.60 0.46 0.45 0.63 -0.28 1.00         

S-NI -0.80 0.001 0.81 0.79 0.84 0.73 0.46 0.44 0.88 0.11 0.90 1.00        
surfactants 0.04 0.8876 -0.09 -0.10 -0.30 0.00 0.59 -0.13 -0.32 -0.13 -0.10 -0.22 1.00       

Surface 
tension (𝟐𝟐𝟐𝟐∘𝐂𝐂) 0.27 0.3983 -0.19 -0.18 -0.53 0.03 0.19 -0.34 -0.55 -0.03 -0.44 -0.52 0.64 1.00      

Na+ -0.82 0.001 0.87 0.86 0.90 0.85 0.39 0.34 0.60 0.20 0.71 0.80 -0.36 -0.31 1.00     
K+ -0.82 0.001 0.87 0.86 0.90 0.85 0.43 0.34 0.58 0.20 0.71 0.79 -0.31 -0.28 1.00 1.00    

Ca++ -0.84 0.0006 0.90 0.90 0.87 0.90 0.45 0.30 0.62 0.26 0.66 0.77 -0.31 -0.21 0.99 0.99 1.00   
Mg++ -0.73 0.0073 0.84 0.84 0.68 0.88 0.37 0.15 0.63 0.37 0.45 0.64 -0.27 0.00 0.87 0.86 0.93 1.00  

Analysed 
cations -0.83 0.0008 0.90 0.89 0.85 0.91 0.47 0.31 0.63 0.23 0.68 0.78 -0.26 -0.16 0.98 0.98 1.00 0.93 1.00 

*kLa20 at a superficial gas velocity of 3x10-3 m s-1.  
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Table V.7.Pearson linear correlation coefficients (r) and p-value between kLa20 (UG=3x10-3 m s-1) obtained with GB diffuser and the activated sludge physicochemical properties. 
The right side of the table presents the Pearson coefficients between the sludge properties to show their interdependency. 

 r p-value r 

 kLa20* MLSS MLVSS HFV CODt SVI AS 
Density CODs S-A S-C S-NI surfactants 

Surface 
tension 
(20∘C) 

Na+ K+ Ca++ Mg++ Analysed 
cations 

kLa20* 1.00                   
MLSS -0.99 5E-07 1.00                 

MLVSS -0.97 9E-06 1.00 1.00                
HFV -0.70 4E-02 0.78 0.79 1.00               

CODt -0.97 2E-05 0.96 0.94 0.72 1.00              
SVI -0.37 0.3288 0.39 0.34 0.66 0.47 1.00             

AS Density -0.77 0.0142 0.79 0.77 0.79 0.87 0.73 1.00            
CODs -0.44 0.236 0.55 0.62 0.61 0.44 -0.08 0.36 1.00           

S-A -0.18 0.6477 0.15 0.13 -0.15 0.10 -0.38 0.04 0.06 1.00          
S-C -0.27 0.4772 0.29 0.26 0.35 0.44 0.42 0.56 0.21 0.17 1.00         

S-NI -0.47 0.2009 0.56 0.60 0.62 0.55 0.12 0.55 0.86 0.24 0.67 1.00        
surfactants 0.31 0.4245 -0.35 -0.43 -0.13 -0.27 0.36 -0.09 -0.76 -0.09 0.03 -0.56 1.00       

Surface 
tension (𝟐𝟐𝟐𝟐∘𝐂𝐂) -0.45 0.2248 0.40 0.38 0.28 0.38 0.46 0.31 -0.22 -0.43 -0.45 -0.44 0.10 1.00      

Na+ -0.43 0.243 0.44 0.37 0.62 0.51 0.75 0.63 -0.10 0.04 0.50 0.19 0.54 0.19 1.00     
K+ -0.37 0.3253 0.39 0.32 0.61 0.45 0.74 0.60 -0.08 0.04 0.53 0.21 0.55 0.12 1.00 1.00    

Ca++ -0.38 0.3196 0.39 0.32 0.58 0.43 0.67 0.55 -0.09 0.11 0.48 0.19 0.56 0.11 0.99 0.99 1.00   
Mg++ -0.19 0.6214 0.18 0.12 0.23 0.18 0.15 0.13 -0.20 0.26 0.09 -0.07 0.61 0.01 0.72 0.72 0.78 1.00  

Analysed 
cations -0.39 0.3048 0.40 0.33 0.58 0.45 0.68 0.56 -0.10 0.09 0.47 0.18 0.56 0.13 0.99 0.99 1.00 0.79 1.00 

*kLa20 at a superficial gas velocity of 3x10-3 m s-1. 
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V.4.2.1.2 Impact of the solid phase characteristics on oxygen transfer 

According to Henkel (2010), the occupied volume of solid phase would represent an obstacle for 

the gas-liquid oxygen transfer and this impact would be characterized by the hydrostatic floc 

volume (HFV) and the mixed liquor suspended solids (MLVSS) (cf. I.2.6.2.1.1).  

The hydrostatic floc volume (HFV), closely related to the MLSS content (r>0.78), exhibited a 

significant linear correlation with 𝑘𝑘𝐿𝐿𝑎𝑎20 using the fine bubble system (r=-0.95, p-value<0.001). 

The correlation is less significant (r=-0.70, p-value<0.001) for the 𝑘𝑘𝐿𝐿𝑎𝑎20 values determined using 

the coarse bubble system. It must be noted that the measurement of this characteristic was 

occasionally less accurate since not all flocs settled but remained floating especially for the MBR 

sludge (Briis-sous-Forges) as previously commented in Chapter IV. In fact, the two types of 

studied sludge (CAS and MBR) differentiated on their settling properties, the MBR sludge (Briis-

sous-Forges) presenting almost systematically higher SVI (sludge volume index) values than the 

CAS (Saint Vrain).   

Other sludge properties closely related to the MLSS concentration, such as MLVSS and CODt, 

show a statistically significant impact on the oxygen transfer coefficient (r>0.90, p-value<0.001). 

For both aeration systems, the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎20) in activated sludge increases 

with the superficial gas velocity (𝑈𝑈𝐺𝐺), which can be explained by an increment in the gas-hold up 

(Figure V.11) and therefore a larger specific interfacial area (𝑎𝑎 = 6εG/db). At a given superficial 

gas velocity, 𝑘𝑘𝐿𝐿𝑎𝑎 is reduced with an increase in the MLSS concentration. These results confirm 

other literature data (Cornel et al., 2003; Krampe and Krauth, 2003; Jin et al., 2006; Germain et 

al., 2007; Henkel et al., 2009; Mineta et al., 2011; Racault et al. 2011). 

Moreover, similarly to the mentioned studies, it is also observed that the slopes characterizing 

the evolution of the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient with the superficial gas velocity (𝑈𝑈𝐺𝐺), evolve with the sludge 

MLSS concentration, being lower for higher MLSS concentrations. In addition, the MLSS 

concentration effect on the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient seems to be amplified in comparison to the effect on 

the gas hold-up. 

Three overlapping effects help to explain the observed impact of MLSS concentration on the 

overall gas hold-up and partially on oxygen transfer:  

(i) As the solid fraction rises, the activated sludge becomes more viscous and 

consequently the bubble coalescence is favoured which leads to an increase of 

bubble size and bubble rising velocity (Mena et al. 2005)  

(ii) At the bubble formation stage in a non-Newtonian fluid, the bubble growth time is 

extended with the increasing solids concentration due to higher viscoelastic stresses 
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exerted on the bubble and consequently bubble size is increased (Kulkarni and Joshi, 

2005). 

(iii) At a given bubble size, the velocity of the rising bubbles is reduced in viscous liquids 

due to a higher bubbles drag coefficient (Mena et al. 2005).  

As depicted on Figure V.11, the overall gas hold-up is impacted by the presence of sludge but not 

by its MLSS concentration in the range from 3.0 to 10.4 g L-1, despite the fact that viscosity is 

significantly increasing within this range (as highlighted in chapter IV). As viscosity increases, 

larger bubbles can be generated but may not necessarily rise faster because an increment in the 

bubble drag coefficient, associated to the increase in liquid viscosity, would actually extend the 

bubbles residence time in the liquid. 

As oxygen diffusivity and gas hold-ups in AS are not affected by the sludge physicochemical 

characteristics, the MLSS effect on oxygen transfer could be attributed to bubble size variations 

due to increase in bubble growth time and coalescence, inducing a decrease in interfacial area 

(a) and/or to a decrease in 𝑘𝑘𝐿𝐿 due to transport limitation, associated to the increase in liquid 

viscosity. 

V.4.3 Alpha factor 

From the oxygen transfer results in clean water and activated sludge (CAS and MBR) with the 

two types of diffusers (FB and CB), the alpha factors have been determined 

(𝛼𝛼 = 𝑘𝑘𝐿𝐿𝑎𝑎𝑠𝑠𝑙𝑙𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒 𝑘𝑘𝐿𝐿𝑎𝑎𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟⁄ ).   They are presented in Figure V.12 (FB) and Figure V.13 (CB) as a 

function of the superficial gas velocity for different MLSS concentrations. 
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V.4.3.1 Impact of operating conditions on alpha factor 

  

Figure V.12. Alpha factor versus superficial gas velocity (UG) obtained with activated sludge from CAS and MBR with 
different MLSS concentrations and using the fine bubble diffuser (FB). 

 

  

Figure V.13. Alpha factor versus superficial gas velocity (UG) obtained with activated sludge from CAS and MBR with 
different MLSS concentrations and using the coarse bubble diffuser (CB)  

 

The determined alpha factor ranges from 0.28 to 0.95, depending on the aeration system, the 

superficial gas velocity, MLSS concentrations and the sludge origin.  
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V.4.3.1.1 MLSS concentration 

Similarly to the results obtained for 𝑘𝑘𝐿𝐿𝑎𝑎, the alpha factor is reduced with an increase in the MLSS 

concentration. However, different trends are observed for fine and coarse bubble aeration, in 

particular for the effect of the superficial air velocity on alpha factor.  

V.4.3.1.2 Superficial air flow rate 

According to the Higbie model (cf. Equation I.13 in Table I.1) and the expression of the 

interfacial area (cf. I.2.3), the oxygen transfer coefficient for a single bubble can be expressed as: 

kLa = 2�
DO2.Ub

π.db
 

6. εG

db.(1-εG)
 V.2 

Where DO2 is the oxygen diffusion coefficient. 

By using the equation V.2, the alpha factor could be expressed as: 

α = kLaAS
kLaCW

 = A.�
Ub,AS
Ub,CW

db,CW
db,AS

εG,AS
εG,CW

db,CW
db,AS

(1-εG,CW)
(1-εG,AS)

   V.3 

Where AS and CW refer to activated sludge and clean water and A is a constant. 

For a fixed MLSS concentration, the bubble rise velocity (Ub) and the ratio ( εG,AS
εG,CW

 ) can be 

considered as independent of the superficial air velocity (as previously discussed in V.4.1.1). For 

such conditions and low overall gas hold-up (εG << 1), the alpha factor evolution with superficial 

air velocity is proportional to the ratio of average bubble size in clean water to average bubble 

size in activated sludge conditions, as expressed in equation V.4:  

 

alpha factor = 
kLaAS

kLaCW
∝�

db,CW

db,AS
�

3/2

  V.4 

 

This equation helps understanding the experimental variation of the alpha factor with the 

superficial air velocity for the different operation conditions.  

For coarse bubble aeration and a fixed MLSS concentration, the alpha factor remains constant 

independently of the superficial air velocity. As expressed in equation V.4, this may be linked to 

the equivalent relative evolution of average bubble size for clean water and activated sludge 

with the superficial air velocity, whatever the MLSS concentration.  
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For fine bubble aeration, the variation of the alpha factor with the superficial gas velocity seems 

to depend on the MLSS content: for low MLSS concentration (MLSS < 6.1 g/L-1), the alpha factor 

increases with an augmentation in the superficial air flow rate which could be explained by a 

reduction of the coalescence phenomena for activated sludge in comparison to clean water.  

Such reduction could be associated to the characteristics of the liquid phase able to induce a 

contamination of the gas-liquid interface. On the contrary, for higher MLSS concentration (MLSS 

> 6.8 g/L-1), the alpha factor remains constant or could decrease with an augmentation of the 

superficial air velocity. This decrease could be related to a higher increase in the average bubble 

size with superficial air velocity in presence of activated sludge than in clean water operating 

conditions. Such a higher increase could be explained by more important viscous effects that 

promote bubble coalescence. 

V.4.3.1.3 Sludge origin 

For bubble aeration, the sludge origin seems to have an impact on the order of magnitude of the 

alpha factor. Independently of the airflow rate and considering the same order of magnitude of 

MLSS concentration, the alpha factor for CAS is higher than for MBR. According to the measured 

physico-chemical characteristics and the previously presented statistical analysis, this difference 

could be mainly linked to the difference in the interstitial liquid characteristics in terms of non-

ionic surfactant concentration. Such difference is not observed for coarse bubble aeration 

system as highlighted in Figure V.14, with similar trends for CAS and MBR, indicating that the 

alpha factor for coarse bubble is not affected by the surfactant concentration, in the applied 

range of this study. Besides, Figure V.14 also indicates that the order of magnitude of the alpha 

factor and its variation with MLSS concentration is similar for fine and coarse bubble aeration 

for CAS sludge origin (with very low concentration of non-ionic surfactant). 



Chapter V. Measurement and interpretation of oxygen transfer parameters 

 

221 
 

 

Figure V.14. Alpha factor as a function of the MLSS concentration obtained with activated sludge from CAS and MBR 
and using the fine and the coarse bubbles diffuser, (FB) and (CB). Results at 𝑼𝑼𝑮𝑮 = 3.0 m s-1 

 

However it is commonly accepted that coarse bubble systems present higher alpha factors than 

fine bubble systems (Rosso et al., 2006) because the first generate turbulent regimes where 

bubbles have higher interfacial velocities and higher renewal rates that hinder surfactant 

accumulation at the bubble interface and are consequently less affected by soluble substances 

such as surfactants or organic soluble matter. On the opposite, fine bubbles have lower 

interfacial renewal rates and longer residence times in the liquid media which expose them to an 

extended accumulation of substances affecting oxygen transfer. Nevertheless, the literature 

related to this difference due to the aeration system refers to clean water with added substances 

usually highly concentrated (Rosso et al., 2005). In the present work, the concentration of non-

ionic surfactants in the interstitial liquid in CAS is very low to evaluate a different impact 

between the homogenous and turbulent heterogeneous regimes on the alpha factor. On the 

contrary, the non-ionic surfactants is repeatedly detected in MBR sludge, which explains the 

higher values of alpha factor for coarse bubble aeration than for fine bubble aeration for this 

sludge origin. 

V.4.3.2 MLSS concentration: A key parameter for alpha factor modelling? 

The MLSS concentration is usually the reference parameter to predict the alpha factor in the 

literature and identified as a key parameter governing the oxygen transfer coefficient in the 

present study. Figure V.15 presents the reduction of the alpha factor with the MLSS 
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concentration obtained by different authors and in this study; operating conditions for literature 

data are summarized in Table V.8. 

 

Figure V.15. Alpha factor as a function of the MLSS concentration for different types of activated sludge systems. 

 

While the results obtained in this work (CAS and BRM) follow similar trends compared to those 

obtained by Gillot et al. (2008) in municipal full-scale CAS, Mineta et al. (2011) with synthetically 

fed sludge samples, Racault et al. (2011) in municipal full-scale MBR and Krampe and Krauth 

(2003) with grab sludge samples from CAS, they also diverge from those obtained by Cornel et 

al. (2003) in municipal full-scale MBR, Germain et al. (2007) with grab samples from municipal 

and industrial MBR and Henkel (2011) with synthetically fed greywater MBR sludge. A 

significant data scattering is observed and it is evident that for sludge from different origins, the 

oxygen transfer depletion is not only defined by the MLSS concentration. 
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Table V.8. Configuration of the reactors and operating conditions for previous works with fine bubble diffusers and 
presented in Figure V.8. 

 Mixed liquor 
type 

Reactor characteristics and aeration 
system 

𝑘𝑘𝐿𝐿𝑎𝑎 
Determination method 

𝑈𝑈𝐺𝐺   
(1x10-3 m s-1) 

Cornel et 
al. 

(2003) 

Municipal 
activated 

sludge 

Two full-scale MBR: Submerged 
(CB+FB) and external (FB). 

Absorption;  
Off-gas - 

Krampe 
and 

Krouth 
(2003) 

Diluted grab 
samples from 

different 
WWTPs 

Round container (HL=3 m, D=0.8, 
VL=1.4 m3); FB and Injector Absorption - 

Germain 
et al. 
2007 

Grab samples 
from 7 MBR 
(domestic, 
industrial) 

Bubble column (HL=2.5 m, D=0.1 m, 
VL=0.02 m3); FB.  

Non-steady state. Batch 
tests configuration in 

respect to liquid. 

0.48 <𝑈𝑈𝐺𝐺  
<  4.17  

 

Gillot et 
al. 

(2008) 

Municipal 
activated 

sludge 

Different full-scale CAS.  
VL =250 - 10200 m3. 

FB diffusers. 

CW: Absorption 
AS: Off-gas; Desorption 

(H2O2) 

1.5 <𝑈𝑈𝐺𝐺  
<  6.4  

Henkel et 
al. 

(2009) 

Synthetic 
Greywater 

Influent 

Airlift MBR  
(HL=2.5 m, VL=2.6 m3; FB, CB); 

MBR (HL=1.25 m, VL=3.15 m3; FB, 
FB+CB).  

Desorption. Batch tests 
configuration in respect to 

liquid. 

0.55  <𝑈𝑈𝐺𝐺  
<  8.26  

 

Mineta et 
al. 

(2011) 

Synthetic 
influent.  

Bubble column (VL= 6L; D=0.096 m). 
FB diffuser 

Non-steady state. Batch 
tests configuration in 

respect to liquid. 

0.64  <𝑈𝑈𝐺𝐺  
<  3.2 

 
Racault 

et al. 
(2011) 

Domestic 
Sludge 

Full-scale MBR (HL=7 m, VL=1000 
m3) FB diffuser Mass Balance 8.15 <𝑈𝑈𝐺𝐺  

<  9.26 
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V.5 Conclusions 

- The oxygen transfer tests in the bubble column (with a liquid depth representative of 

full-scale aeration tanks and fed continuously) showed that for a given superficial gas 

velocity, the gas hold-up (𝜀𝜀𝐺𝐺) and oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎) are reduced in 

activated sludge compared to clean water. A further depletion of the 𝑘𝑘𝐿𝐿𝑎𝑎 coefficient was 

observed with an increase in the MLSS concentration and the magnitude of this impact 

was higher for the more concentrated sludge.  

 

- Since the decrease in the oxygen transfer coefficient with the increase in the MLSS 

concentration is more pronounced that the one observed for the overall gas hold-up, it 

is deduced that there are other mechanisms through which the suspended solids affect 

the oxygen transfer. It is suggested that the increase in apparent viscosity, associated to 

the solids concentration would promote the production of larger bubbles at the 

formation stage an through coalescence hence leading to a reduction of the specific 

interfacial area (𝑎𝑎). The experimental validation of this hypothesis for AS sludge 

operating conditions would be of great interest.  

 

- According to the statistical analysis, the oxygen transfer coefficient measured under fine 

bubble aeration is also influenced by the concentration of non-ionic surfactant, mainly 

detected in the MBR sludge. On the contrary, under coarse bubble aeration, the 

properties of interstitial liquid such as the concentration of soluble organic matter, 

surfactants and cations are not significantly correlated to the oxygen transfer. 

 

- Finally, the alpha factor varied between 0.28 and 0.95 depending on the MLSS 

concentration, the sludge origin, the superficial gas velocity and the diffuser type 

associated to the presence of non-ionic surfactant in the sludge interstitial liquid. 

 

- From the comparison of the obtained alpha factors to literature data, it is evident that 

the MLSS concentration is not the only sludge property defining its value. 
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In this last chapter, the variations of the oxygen transfer parameters are further interpreted with 

the help of the obtained rheological results. First, an estimation of the average shear rate and 

apparent viscosity in the bubble column is presented, considering the operating conditions 

(hydrodynamics and sludge properties) during the oxygen transfer tests. The relationship 

between the apparent viscosity and oxygen transfer parameters is then analysed. The obtained 

results in the bubble column, in terms of alpha factors, are finally compared to on-site data.  

VI.1 Apparent viscosity for the conditions prevailing in the bubble column  

VI.1.1  Rheological models 

The rheological study showed that the apparent viscosity (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎) of activated sludge can be 

modelled adequately using the Bingham equation written as follows:   

µapp=
τ
γ̇

=
τy

γ̇
+K VI.1 

where the apparent viscosity is a function of shear rate (�̇�𝛾) and the Bingham rheological 

parameters 𝜏𝜏𝑦𝑦 , the yield stress and K, the consistency index.   

These two parameters can be estimated as a function of the MLSS concentration (in g L-1) 

according to Equations VI.2 and VI.3: 

τy (Pa)=A x 10−4∙�MLSSB� VI.2 

K(Pa. s) = exp�C ∙ MLSSD� x 10−3 VI.3 

As concluded in chapter IV, the sludge MLSS concentration determines significantly the sludge 

rheological behaviour but other sludge properties, linked to the sludge origin (operating 

conditions, airflow rates, inflow quality, etc.) can have an effect on its rheology. In order to 

estimate the apparent viscosity of the sludge from each of the two studied sites for the operating 

conditions in the bubble column and to remove sources of error associated to viscosity 

modelling, a set of empirical constants A, B, C and D associated to Equations VI.2 and VI.3, is 

proposed for each of studied treatment plants (Briis-sous-Forges and Saint-Vrain). These sets 

are presented in Table VI.1. 
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Table VI.1. Empirical constants associated to the Bingham rheological parameters (𝝉𝝉𝒚𝒚 and K) for the CAS and MBR 
sludge using Equations VI.3 and VI.2. 

WWTP A B C D 
CAS (Saint Vrain ) 31.8  2.19 0.07 1.11 

MBR (Briis-sous-Forges) 59.2  2.03 0.14 0.87 

VI.1.2  Estimation of the average shear rate in the bubble column for the operating 

conditions 

Metz et al. (1979) defined the specific energy dissipation rate (P/V) necessary to maintain the 

flow of a viscous fluid as follows: 

P
V
=τ∙γ̇ VI.4 

According to Whalley and Davidson (1974), the specific energy in a bubble column, functioning 

in co-current configuration, results from the gas and the liquid phases. Assuming that the loss of 

kinetic energy due to the gas leaving the column and the gas friction at the column walls can be 

neglected, the specific energy can be expressed as follows: 

P
V

=(UG+UL)∙(ρL-ρG)∙(1-εG)∙g VI.5 

where 𝑈𝑈𝐺𝐺  is the superficial gas velocity (m s-1), UL the superficial liquid velocity (m s-1), ρL the 

liquid density (kg m-3), ρG the gas density (kg m-3), εG the overall gas hold-up (-) and g the 

standard gravity constant (m s-2). 

The specific dissipation rate defined in Equation VI.5 could be influenced by the gas diffuser type 

(fine or coarse bubbles) by considering the associated overall gas hold-up. However, for low gas 

hold-up such as in the experiments performed (εG << 1%), the specific dissipation rate is 

independent of the diffuser. This expression (Eq. VI.5) is equivalent to the one proposed by 

Henzler et al., (1985) and Sanchez-Perez et al. (2006) for no liquid circulation and low overall 

gas hold-up.  

Reorganizing Equations VI.1, VI.4 and VI.5 gives: 

K∙γ̇2+τy∙γ̇-(UG+UL)∙(ρL-ρG)∙(1-εG)∙g=0 VI.6 

Solving this quadratic function allows estimating the mean shear rate (�̇�𝛾) prevailing in the 

bubble column as a function of the sludge rheological properties (defined by the Bingham 



Chapter VI. Contribution of rheological measurements to g/L transfer interpretation 
 
 

229 
 

parameters 𝜏𝜏𝑦𝑦 and K), the gas and liquid superficial velocities (𝑈𝑈𝐺𝐺 ,𝑈𝑈𝐿𝐿) and the gas hold-up (𝜀𝜀𝐺𝐺) 

as follows: 

γ̇=
-τy+�τy

2+4∙K∙(UG+UL)∙(ρL-ρG)∙(1-εG)∙g

2∙K
 

VI.7 

 

Figure VI.1 and Figure VI.2 show the estimated average shear rate within the range of applied 

superficial gas velocities and AS MLSS concentrations studied in the bubble column using the 

fine and coarse bubble diffusers, respectively. 

 

Figure VI.1. Estimated average shear rate prevailing in the bubble column as a function of the superficial gas velocity 
and the MLSS concentration using the fine bubble diffuser. 

 

Figure VI.2. Estimated average shear rate prevailing in the bubble column as a function of the superficial gas velocity 
and the MLSS concentration using the coarse bubble diffusers. 
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For FB bubble aeration, a superficial gas velocity range of 1.9 x 10-3 m s-1 <𝑈𝑈𝐺𝐺< 5.5 x 10-3 m s-1 

and MLSS concentrations up to 10 g L-1, the estimated average shear rate ranges from 65 to  

243 s-1. For clean water and activated sludge, the estimated shear rate increases with the 

superficial gas velocity. It also tends to decrease with an augmentation of the MLSS 

concentration. However, the estimated shear rate is also an increasing function of the superficial 

liquid velocity (𝑈𝑈𝐿𝐿), as defined in equation VI.7. That explains why the highest mean exerted 

shear rate in the bubble column occurred for CAS at 3.0 g MLSS L-1 since experiments with this 

sludge were performed at the highest superficial liquid viscosity (in average 𝑈𝑈𝐿𝐿=4.1x10-3 m s-1). 

The shear rate trend estimated for clean water exhibits a different curvature compared to those 

estimated in the presence of activated sludge. This is explained by the fact that experiments in 

clean water were performed in batch configuration with respect to the liquid phase.  

The estimated average shear rates for the CB aeration system range from 65 to 205 s-1, which 

corresponds to the same order of magnitude of the estimated values for the FB system (Figure 

VI.1). Although the overall gas holdup obtained with the FB system is higher than the one 

obtained with the CB system, these overall gas holdup values are too small (εG < 1.6%) to have a 

significant impact on the estimated average shear rate. 

VI.1.3 Impact of the activated sludge apparent viscosity on the oxygen transfer 

coefficient 

Knowing the mean shear stress exerted by the air bubbles and the liquid velocity allows 

calculating the apparent viscosity of the mixed liquor in the bubble column associated to the 

measured superficial gas and liquid velocity (𝑈𝑈𝐺𝐺  and 𝑈𝑈𝐿𝐿), the gas hold-up (𝜀𝜀𝐺𝐺) and MLSS 

concentrations by using the Bingham model (Equation II.3) as well as the rheology experimental 

results (Equations VI.3 and VI.2). 

Figure VI.3 and Figure VI.14 show the variation of 𝑘𝑘𝐿𝐿𝑎𝑎20 with the apparent viscosity for the 

different MLSS concentrations and the two types of sludge and aeration systems in the bubble 

column.  
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Figure VI.3. Coefficient kLa20 vs. calculated apparent viscosity in the bubble column for different MLSS 
concentrations and two types of activated sludge - Fine bubble (FB) diffuser. 

  
Figure VI.4. Coefficient kLa20 vs. calculated apparent viscosity in the bubble column for different MLSS 

concentrations and two types of activated sludge - Coarse bubble (CB) diffuser. 

 

For the highest MLSS concentration and the lowest superficial gas velocity, the highest values of 

apparent viscosity are obtained, up to 13 times the water dynamic viscosity. Since for a given 

MLSS concentration different superficial gas velocities have been applied, different values of 

apparent viscosity are obtained. 
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VI.1.4 Modelling the oxygen transfer coefficient in AS considering its non-

Newtonian behaviour 

In order to improve the estimation of the oxygen transfer coefficient, empirical correlations 

based on key parameters and properties have been proposed. For the activated sludge process, 

these correlations consider for instance the coupled effect of solid retention time (SRT) and 

surface flow rate (Rosso et al. 2005), SRT and the bubbles contact time in the liquid phase (Gillot 

and Héduit 2008), SRT and the MLVSS concentration (Henkel 2010) or viscosity for a fixed 

applied shear rate (Wagner et al., 2002; Pittoors et al., 2014). Although these correlations clarify 

the influence of specific parameters on oxygen transfer, they do not take into account the shear-

thinning behaviour of the mixed liquor and the fact that the apparent viscosity is a function of 

experimental conditions (UG, UL, MLSS concentration). From the rheology and oxygen transfer 

experimental results obtained in this study, an empirical model that relates hydrodynamics, 

rheology (by considering the apparent viscosity and its dependence to the shear rate) and 

oxygen transfer in the bubble column was thus developed based on dimensional analysis.  

VI.1.4.1 Model development 

The chosen dimensionless numbers are the transfer number (NT), previously defined as a scale-

up factor for oxygen transfer (Capela et al., 2001; Gillot et al., 2005) and the column Reynolds 

number (ReC, ratio of inertial forces to viscous forces). The transfer number compares mass 

transfer through the gas/liquid interface to inertial forces, but also considers viscous and 

gravitational forces, which are the main variables of the studied system. These dimensionless 

numbers are defined as follows: 

NT=
kLa20

UG
�
µapp,ML

2

ρML
2  g

�

1
3�

 VI.8 

ReC=
UGDcρML

µapp, ML
 VI.9 

where UG is the superficial gas velocity (m s-1), 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝐿𝐿 is the mixed liquor apparent viscosity in 

the bubble column (Pa.s), ρML is the density of the mixed liquor (kg m-3) and Dc is the column 

diameter (m). 

The transfer number is expressed as a function of the column Reynolds number as follows: 
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NT= K1.ReColumn
K2  VI.10 

where K1 and K2 are numerical constants. 

The oxygen transfer coefficient can be written using Equations VI.8 to VI.10, which corresponds 

to the formalism proposed in the oxygen transfer review by Garcia-Ochoa and Gomez (2009): 

kLa20 = K'1. UG
(1+K2).µapp,ML

-K2- 23  VI.11 

However, in the present work, due to the model construction, the constant exponents associated 

to the variables UG and μapp, ML are both interrelated through the empirical constant value K2.  

In Equation VI.11,  K'1 represents all aspects related to the reactor configuration (geometry, 

diffuser type and distribution, etc) as well as the characteristics of the sludge properties 

impacting kLa20 that were not measured in these experiments. This correlation reflects that, for 

a given system, kLa20 is only controlled by the gas superficial velocity and the rheological 

properties of the AS. The derivation of the K1 and K2 is summarized in Figure VI.5 and described 

thereafter.  

 
Figure VI.5. Derivation of the empirical coefficients K1 and K2 in Equation VI.10. 

Experimental AS rheological 
behaviour 

μapp= f(γ̇,MLSS)
(𝜏𝜏𝑦𝑦 ,K) = f(MLSS)   Eqs. VI.1 to VI.3 

Range of gas velocity 
(UG) and MLSS from 

oxygen transfer tests 

Estimation of the mean shear rate in the 
bubble column 

γ̇=f(𝜏𝜏𝑦𝑦 , K, UG, UL, 𝜀𝜀𝐺𝐺) Equation VI.7 

μapp=
τ
γ̇

=
𝜏𝜏𝑦𝑦
γ̇

+K 

Calculation of mean apparent viscosity in the 
bubble column 

(Bingham equation) 

NT= K1.ReC
K2 

Calculation of K1 and K2 coefficients 

 (Least squares method) 
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VI.1.4.2 Transfer number and oxygen transfer coefficient models for fine and 

coarse bubble aeration 

Having estimated the mean apparent viscosity of the mixed liquor in the bubble column for the 

different oxygen transfer tests, the empirical constants K1 and K2 are computed by minimizing 

the weighted sum of squared residuals between the modelled transfer number and the one 

obtained using experimental data at a given superficial gas velocity (UG) and MLSS concentration 

for the two aeration systems. The resulting models are presented in Table VI.2. 

 

Table VI.2. Obtained models for Transfer number (NT) and oxygen transfer coefficient (kLa20). 
Fine and coarse bubble aeration. 

Fine bubble Coarse bubble 

𝑁𝑁𝑇𝑇 =  38.0 ×  10−5.𝑅𝑅𝐻𝐻𝐶𝐶−0.19 VI.12 𝑁𝑁𝑇𝑇 =  22.0 ×  10−5.𝑅𝑅𝐻𝐻𝐶𝐶−0.24 VI.13 

𝑘𝑘𝐿𝐿𝑎𝑎20  =  2.8 ×  10−2 .𝑈𝑈𝐺𝐺0.81. 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝐿𝐿
− 0.48  VI.14 𝑘𝑘𝐿𝐿𝑎𝑎20  =  1.2 ×  10−2 .𝑈𝑈𝐺𝐺0.76. 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝐿𝐿

− 0.43  VI.15 

 

With the coarse bubble diffuser, the impact of superficial gas velocity and apparent viscosity on 

kLa20 is slightly lower compared to the observed effect with the FB aeration system. 

For both aeration systems, a good agreement is observed between experimental and modelled 

transfer numbers and oxygen transfer coefficients (models allow to predict the values with a 

precision of +/- 15% in most cases) as presented in Figure VI.6 and Figure VI.7. 

 

Figure VI.6. Agreement between experimental and modelled transfer number, NT (a) and between experimental and 
modelled mass transfer coefficient (b) for the fine bubble diffuser (FB). 
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Figure VI.7. Agreement between experimental and modelled transfer number, NT (a) and between experimental and 
modelled mass transfer coefficient (b) for the coarse bubble diffuser (CB). 

 

For both aeration systems, the transfer number decreases with an increase in the column 

Reynolds number (Figure VI.8 and Figure VI.9). 

For fine bubble aeration, the experimental transfer number values are in the range 9.9 –  

26.3 x 10-5 and seem to increase with an increase in the MLSS concentration. The minimal values 

are obtained for clean water results (9.9 – 12.3 x 10-5) and are in the same order of magnitude 

than previous results obtained on full-scale aeration tanks with total floor coverage (Capela et 

al., 2001; Gillot et al., 2005). 

For the CB aeration system, the transfer number ranges from 4.0 x10-5 to 10x10-5. The order of 

magnitude of these values is lower than those obtained with FB aeration, highlighting the higher 

aeration efficiency. Similarly to FB aeration, the lower values are obtained for clean water 

results. 

Integrating inertial forces and physicochemical parameters of the liquid phase including viscous 

forces, the transfer number (NT) is an adequate scale-up factor and a tool for oxygen transfer 

modelling in aerated tanks. However, for various MLSS concentrations, the physical significance 

of this dimensionless number must not be considered as equivalent to transfer efficiency as for 

clean water conditions, because it lumps viscosity and velocity impacts. The use of other 

dimensionless number (mass transfer Stanton number) in the following helps to further analyse 

and interpret the effect of viscous forces on oxygen transfer efficiency. 
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Figure VI.8. Transfer number (NT) at different column Reynolds number (Rec) in clean water and activated sludge 
(CAS and MBR) obtained with the fine bubble diffuser (FB). 

 

Figure VI.9. Transfer number (NT) at different column Reynolds number (Rec) in clean water and activated sludge 
(CAS and MBR) obtained with the coarse bubble diffuser (CB). 

VI.1.5 Interpreting oxygen transfer results with the help of the apparent viscosity  

The modelled kL𝑎𝑎 variations (Eq. VI.14) with the superficial gas velocity for the different MLSS 

concentrations were drawn and compared to the experimental data. Figure VI.10 shows the 

agreement between the experimental and the fitted data for CAS and MBR, respectively (fine 

bubble aeration system). The same representation is given in Figure VI.11 for coarse bubble 

aeration. 

 

(CB) 

(FB) 
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Figure VI.10. Measured and calculated oxygen transfer coefficient (kLa20) as a function of the superficial gas velocity 
(UG) for (a) CAS and (b) MBR at different MLSS concentrations using the fine bubble diffuser (FB). Calculated kLa20 

coefficients (in dotted lines) are estimated by using Equation VI.14. 

 

Figure VI.11. Measured and calculated oxygen transfer coefficient (kLa20) as a function of the superficial gas velocity 
(UG) for (a) CAS and (b) MBR at different MLSS concentrations using the coarse bubble diffuser (CB). Calculated 

kLa20 coefficients (in dotted lines) are estimated by using Equation VI.15. 

 

The impact of MLSS concentration on oxygen transfer is mainly controlled by its effect on the 

mixed liquor apparent viscosity, considering the sludge shear-thinning behaviour and its 

variation with the aeration intensity (in relation to the exerted mean shear rate). Taking the 

effect into account allows to integrate the variations of gas-liquid flow characteristics with MLSS 

concentration in a mass transfer model. No extra parameter is needed to represent the 

variations of the mass transfer coefficient despite two origins of activated sludge (CAS and MBR, 
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with a low F/M ratio and SRT > 15 d) and resulted differences in physicochemical characteristics 

of the sludge.  

The transfer number (NT) can also be expressed as a combination of mass transfer Stanton 

number (StMR, ratio of total mass transfer rate to inertia forces which could be considered as 

equivalent to oxygen transfer efficiency) and Galileo number (Ga, ratio of gravity forces to 

viscous forces) as presented here below in Equations VI.16 to VI.18. 

NT= StM.Ga-1/3 VI.16 

StM = 
kLa20.Dc

UG
  VI.17 

Ga = 
g.DC

3.ρML
2

µapp,ML
2   VI.18 

 

The physical significance of Stanton number allows to dissociate mass transfer efficiency from 

viscous effect and physicochemical characteristics of the liquid phase and is preferred to 

transfer number for interpretation of AS rheology effect on gas-liquid mass transfer as 

previously discussed. The Froude number (Fr, ratio of inertial forces to gravitational forces) is 

also introduced for this interpretation (Equation VI.19). 

Fr = 
UG

2

g.DC
  VI.19 

where g is the standard gravity constant (m s-2). 

For interpreting the impact of AS sludge rheology on gas-liquid mass transfer, the Stanton 

number is presented as a function of the Galileo number in Figure VI.12 (a) and Figure VI.13(a) 

for FB and CB aeration systems, respectively. 
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Figure VI.12. Mass transfer Stanton number (StM) versus Galileo number, Ga (a) and Froude number, Fr (b) for clean 
water, CAS and MBR – Fine bubble aeration. 

 

Figure VI.13. Mass transfer Stanton number (StM) versus Galileo number, Ga (a) and Froude number, Fr (b) for clean 
water, CAS and MBR – Coarse bubble aeration. 

 

For fine bubble aeration system, the Stanton number is comprised between 0.17 and 0.76 with 

maximum values for clean water operating conditions (from 0.61 to 0.76) and minimum values 

for maximal MLSS concentration (from 0.17 to 0.23 for a MLSS concentration of 10 g L-1).  

For the coarse bubble aeration system, the Stanton number is comprised between 0.09 and 0.28 

with maximum values for clean water operating conditions (from 0.25 to 0.28) and minimum 

values for maximal MLSS concentration (from 0.091 to 0.098 for a MLSS concentration of  

10.4 g L-1).  

For both aeration systems, the Stanton number is strongly correlated to the Galileo number 

highlighting that the oxygen transfer efficiency is mainly governed by the AS viscous effects on 

gas-liquid dynamics in the bubble column, by controlling bubble size (at bubble formation but 
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also its evolution during bubble rise, due to coalescence and break-up) and rising velocity (in 

relation to drag forces). It also highlights that the apparent viscosity could be considered as the 

key parameter to interpret MLSS impact on oxygen transfer efficiency, by integrating the sludge 

shear-thinning behaviour. 

On Figure VI.12 (b) and Figure VI.13 (b), the Stanton number is also presented as a function of 

the Froude number, in order to compare the impact of the inertial forces (related to gas 

superficial velocity) to the impact of MLSS concentration (related to viscous forces evolution) on 

the mass transfer efficiency. As previously discussed, the mass transfer efficiency is mainly 

controlled by viscous effects (correlated to MLSS concentration and shear rate). 

For the fine bubble aeration, the Stanton number also appears to slightly decrease with an 

increase in the Froude number due to an increase in superficial gas velocity, which is more 

pronounced for clean water than for AS conditions. In clean water, this impact is mainly due to 

an increase in bubble size and related rising velocity. For AS operating conditions, the shear-

thinning behaviour induces a decrease of the mixed liquor apparent viscosity with an increase in 

gas superficial velocity, which could counterbalance the effect of superficial air velocity on 

bubble size in the bubble column filled with AS sludge. It could also explain the slighter impact 

(or the absence of impact in some cases) of superficial air velocity on oxygen transfer efficiency 

in AS operating conditions. 

On the contrary to results obtained with the FB system, the Stanton number for CB system, clean 

water and the different MLSS concentrations is independent on the Froude number which shows 

that the aeration efficiency for the coarse bubble system is not a function of the superficial gas 

velocity. 

VI.1.6 Alpha factor 

The impact of MLSS concentration on the alpha factor has been largely commented in the 

literature (Cornel et al., 2003; Jin et al., 2006; Germain et al., 2007; Gillot and Heduit 2008; 

Henkel et al., 2009; Mineta et al., 2011; Racault et al., 2011), although MLSS does not allow to 

explain the entire variability of α-values in all cases.  

The alpha factor calculated from the measurements performed in the bubble column on the two 

sites (CAS and MBR) is shown in Figure VI.14 as a function of the sludge apparent viscosity and 

for the two aeration systems (FB and CB).  
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Figure VI.14. Alpha factor as a function of the apparent viscosity. Results and correlations obtained on site (CAS and 
MBR plants) and the fine and coarse bubbles diffusers. 

 

The observed alpha factor values are highly correlated to the apparent viscosity. α-values 

obtained with CB aeration are slightly higher than the one obtained with FB aeration. The 

apparent viscosity has a similar impact on hydrodynamics of the gas phase in the bubble 

column; however the slight difference could be attributed to impact of physico-chemical 

characteristics of the interstitial liquid (including surfactant and/or dissolved salt 

concentration). In the present study, low loaded activated sludge systems have been studied 

(SRT > 15 d). Therefore the degree of treatment of the interstitial water is high. The differences 

in CB and FB bubble aeration system, in terms of surface renewal rate linked to the bubble size, 

do not seem to highly impact oxygen transfer results. This could be completely different if the 

component in the interstitial water were less degraded.   

For the FB aeration system, results are compared with other literature studies having 

determined the alpha factor with sludge of similar characteristics (domestic sludge from full-

scale plants, CAS, MBR). Since the mentioned studies have not evaluated the AS rheological 

behaviour, the AS apparent viscosity was estimated using a Bingham rheological model issued 

from the group of rheolological data obtained for the five treatment plants studied in Chapter 

IV5.  Literature results have been obtained for full coverage aeration systems, in order to be able 

to calculate the shear rate in the aeration tanks using Equation VI.7. Figure VI.15 presents the 

alpha values as a function of the apparent viscosity.  

                                                             
5 τy(Pa) = A × 10−4 ∙ (MLSSB) with A=29.8, B=2.3 and K(Pa. s) = exp (C ∙ MLSSD) × 10−3 with C=0.1, D=1.01. 
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Figure VI.15. Alpha factor as a function of the apparent viscosity. Results and correlation obtained in this study 

compared to other works performed in full-scale bioreactors.  

 

Despite a data scattering that could be due to the assumed rheological models and to the lack of 

information concerning the characteristics of the interstitial liquid, the apparent viscosity allows 

to express the impact of the MLSS concentration on the alpha factor, by integrating the shear-

thinning behaviour of the activated sludge together with the impact of the shear rate on oxygen 

transfer. 

Alpha factors obtained for fine bubble aeration systems installed in low loaded activated sludge 

plants can be estimated from the apparent sludge viscosity as follows: 

𝑎𝑎𝐶𝐶𝑒𝑒ℎ𝑎𝑎 𝑓𝑓𝑎𝑎𝐹𝐹𝑆𝑆𝑇𝑇𝐹𝐹 = 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−0.49    (R2=0.89) VI.20 
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VI.2 Conclusions  

- From the rheological experiments and the oxygen transfer coefficient measurements 

with the FB and the CB diffusers, a powerful model was developed, correlating kL𝑎𝑎 to 

the superficial gas velocity (UG) and the apparent viscosity, integrating the shear-

thinning rheological behaviour of AS. The originality of this correlation lies in the 

consideration of the impact of rheology and superficial gas velocity on the mean shear 

stress in the bubble column. This allowed a more accurate representation of the 

hydrodynamics in the bubble column and hence an adequate reproduction of the 

experimental oxygen transfer results for activated sludge.  

- The apparent viscosity, integrating the shear-thinning behaviour of activated sludge 

rheology, is the key parameter to interpret the impact of operating conditions (as MLSS 

concentration and superficial gas velocity) on oxygen transfer efficiency in the bubble 

column.  
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Aeration can represent up to 70% of the total electrical consumption in biological wastewater 

treatment plants. Optimising aeration systems is therefore required to reduce the energy 

expenditure, in addition to ensure a high level of treatment.  

Sludge rheology has been recognised for a long time as a factor that governs bubble size and 

thus oxygen transfer in subsurface aeration systems, although rheological parameters have not 

been taken into account directly in aeration models used to design and optimise aeration 

systems. The main purpose of this study was therefore to evaluate simultaneously the impact of 

activated sludge (AS) properties and superficial gas velocity on AS rheological behaviour, 

hydrodynamics and oxygen transfer, in order to propose aeration models that take into 

account those parameters. To this aim, measurements were performed with activated sludge 

samples from five full-scale wastewater plants treating domestic effluents. 

 

Rheological behaviour of activated sludge 

To characterise the rheological behaviour of activated sludge, a tubular rheometer was 

specifically designed and constructed in this work taking into account activated sludge 

characteristics (floc size, settleability, viscosity). The apparatus consists of 4 tubes with 

diameters comprised between 4 and 14 mm, that allow to impose a shear rate between 50 and 

400 s-1. Preliminary tests performed with tap water gave a relative error lower than ±10%, with 

an average value of 5%. A temperature correction was also developed and validated to compare 

results obtained on site under different temperature conditions (from 9°C to 27°C). 

Experimental rheograms obtained with activated sludge confirmed literature results: 

• Activated sludge is a non-Newtonian fluid exhibiting a shear thinning behaviour: the 

apparent viscosity is reduced with an increase in the shear rate.  

• Activated sludge rheological behaviour is significantly determined by the MLSS 

concentration, the apparent viscosity increasing exponentially with an increase in the 

MLSS concentration.  

In parallel to rheological measurements, AS properties comprising floc size, floc 

cohesiveness, soluble COD, surfactants and cations concentrations, surface tension and 

sludge volume index were determined in order to investigate their impact on the rheological 

behaviour. The obtained results showed that: 

• Viscosity not only depends on MLSS concentration, but also on the physical 

characteristics of the flocs (their size but also their structure defined by cohesiveness 
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and density). This may explain the difference in sludge rheological behaviour obtained 

with the different activated sludge samples in this study. For a given MLSS concentration, 

the floc structure and the total volume occupied by the solid phase (related to the floc 

size and density) have an impact on the floc interaction (collision or friction) in the 

dispersion, consequently differentiating the rheological characteristics.  

• Other AS properties related to the sludge interstitial water such as soluble COD, 

surfactants and cations concentrations or static surface tension were not shown to have 

an effect on AS rheological behaviour, in the range of concentrations measured in this 

study. 

 

Modelling experimental rheograms 

Measurements performed with an MLSS concentration comprised between 2.3 and 10.2 g.L-1 

show that:  

• Models with three parameters (Sisko and Herschel Bulkley) provide in general a better 

adjustment to individual experimental rheograms than two-parameter models (Ostwald-

de Waele, Bingham, Casson). However, for some rheograms, two-parameter models give 

similar goodness-of-fit as three-parameter models. Representing the different 

rheological parameters as a function of the MLSS concentration in addition highlights a 

potential lack of identifiability for the parameters of the Sisko, Herschel Bulkley and 

Casson equations. Consequently, to model the group of experimental rheograms, the 

two-parameter models, especially the Ostwald-de Waele and the Bingham equation, 

were preferred in order to avoid over-parameterisation that may lead to models with 

low prediction capacity.  

• When modelling the group of rheograms with one equation, experimental data was 

divided in two sets according to their different trends of apparent viscosity as a function 

of the MLSS concentration, which was related to the difference in floc characteristics 

(diameter, floc, structure). For the two sets of rheograms, the Bingham equation 

represents slightly better the experimental curves (lowest RSS/N, lowest average 

relative error). 

• Different aspects may explain the observed discrepancy between some rheological 

models proposed in the literature and the correlations proposed in this study as a 

function of the MLSS concentration, in particular at low shear rates. These are the use of 

different rheometer geometries more or less adapted to the sample characteristics 

(sludge settleability), the reduction of the instrument accuracy at low shear rates and the 
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influence of other AS properties on sludge rheology, different to MLSS concentration, 

that can be reduced with the increase of the shear rate. 

 

Oxygen transfer in a bubble column located on site 

In parallel to rheological measurements, the impact of superficial gas velocity (UG within  

1.9x10-3 and 5.5 x10-3 m s-1), gas diffuser type (FB and CB) and AS properties on oxygen transfer 

and overall gas hold-up was studied in the bubble column (Dc=0.29 m, Hc=4.4 m). The 

experimental set-up was installed on two wastewater treatment plants: a conventional AS plant 

(CAS) and a membrane bioreactor (MBR) treating domestic wastewater. The MLSS 

concentrations varied from 3.0 to 10.4 g L-1 thanks to different sludge sampling locations 

(aeration tank, recirculation loop, membrane reactor).  

Experimental results in clean water showed that: 

• The overall gas hold-up (εG) and the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎20) increase with an 

increase in the superficial gas velocity. Since the estimated liquid-side transfer 

coefficienf (𝑘𝑘𝐿𝐿) appeared to be independent on the superficial gas velocity, the increase 

in 𝑘𝑘𝐿𝐿𝑎𝑎20 is attributed to the enhancement of the interfacial area (𝑎𝑎). For a given airflow 

rate, the oxygen transfer coefficient was higher for the FB aeration system compared to 

the CB aeration system by at least a factor 2.3. This is attributed to the smaller bubble 

size obtained with the FB diffuser that results in higher overall gas hold-up (e.g. 1.6% 

versus 1.1% at 𝑈𝑈𝐺𝐺=4.5x10-3 m s-1) and interfacial area. 

• Expressing the results with dimensionless numbers such as the Transfer number (𝑁𝑁𝑇𝑇) 

and the column Reynolds number (𝑅𝑅𝐻𝐻𝑐𝑐𝑜𝑜𝑙𝑙𝑒𝑒𝑚𝑚𝐺𝐺) showed that for CB aeration, the aeration 

efficiency was independent on the superficial gas velocity traducing a linear dependence 

between the oxygen transfer coefficient and the airflow rate. For FB aeration, the 

aeration efficiency decreased in a power law trend with an increase in the superficial gas 

velocity. For this type of diffuser, this trend is related to the power law dependency of 

bubble size on superficial gas velocity. 

• Comparing the results with full-scale measurements clearly shows that the bubble 

Sauter diameter is the key parameter governing the transfer number in clean water. 

Measurements performed on site, while continuously feeding the column with activated sludge 

showed that: 

• For both aeration systems, the overall-gas hold-up and the oxygen transfer coefficient in 

AS increased with an increase in the superficial gas velocity. 𝑘𝑘𝐿𝐿𝑎𝑎20 values were however 
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lower compared to those obtained in clean water. For a given superficial gas velocity, the 

oxygen transfer coefficient decreases as the MLSS concentration increases. This 

reduction in oxygen transfer is partially attributed to the observed decrease in the 

overall gas hold-up in activated sludge compared to clean water conditions. The impact 

of suspended solids on the overall gas hold-up was explained by three counterbalancing 

phenomena induced by the increase of apparent viscosity: (i) promoted bubble 

coalescence, (ii) extended time of bubble formation and (iii) higher bubble drag 

coefficient. Increasing the MLSS concentration led to an augmentation of the apparent 

viscosity and larger bubbles may be generated but may not necessarily rise faster 

because the bubble drag coefficient is also higher. 

• Among the evaluated activated sludge characteristics, the concentration of non-ionic 

surfactants in the interstitial water, detected in AS from the MBR, was shown to be 

significantly correlated with the oxygen transfer coefficient in the case of fine bubble 

aeration and low MLSS concentration. This is explained by the different regimes 

generated by the fine (FB) and the coarse bubbles (CB), the latter having higher surface 

renewal rates and consequently reducing the impact of bubble contamination at the g/L 

interface. 

• Since the oxygen diffusivity and the overall gas hold-up in AS are not significantly 

impacted by the sludge properties, it is argued that the further impact of MLSS 

concentration on oxygen transfer coefficient is due to (i) variations in bubble size related 

to extended bubble growth time and promoted coalescence that induce a reduction of 

the interfacial area and/or (ii) to a decrease in the liquid-side transfer coefficient due to 

transport limitation.  

• For a given superficial gas velocity and diffuser type, the alpha factor is a decreasing 

function of the MLSS concentration. For the coarse bubble aeration, alpha factors 

appeared to be independent on the superficial gas velocity. For fine bubble aeration, the 

alpha factor trend with superficial gas velocity appeared to be a function of the MLSS 

content: for AS with low MLSS concentration (<6.1 g L-1), alpha factor increases with an 

augmentation of the superficial gas velocity and for higher MLSS concentrations, the 

alpha factor remained constant or was reduced with an increase in the superficial gas 

velocity. These different trends were attributed to the competitive effect of surfactants 

and MLSS concentration on bubble size evolution which depends on the aeration system.  

• For a given superficial gas velocity and MLSS concentration, the alpha factor values 

obtained for CAS with FB aeration were slightly lower than those obtained with CB 

aeration. This difference was attributed to the detected concentrations of non-ionic 
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surfactants and the fact that under CB aeration, the effect of bubble contamination at the 

g/L interface is reduced due to the previously mentioned higher surface renewal rates. 

 

Interpreting oxygen transfer parameters with the help of rheology 

The impact of AS properties and superficial gas velocity on the oxygen transfer parameters was 

finally further analysed with the help of rheological results. The apparent viscosity in the bubble 

column was therefore evaluated. To that aim, the average shear rate prevailing in the bubble 

column was first theoretically estimated considering the applied values of superficial gas and 

liquid velocities, the overall gas hold-up and the AS rheological behaviour (function of the MLSS 

concentration). For the studied operating conditions, the estimated shear rate ranged from 65 to 

243 s-1. An empirical model linking the measured oxygen transfer coefficient to the apparent 

viscosity was developed: 

 

𝑘𝑘𝐿𝐿𝑎𝑎20  = A   𝑈𝑈𝐺𝐺𝐴𝐴 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝐿𝐿
𝐶𝐶 with 

Diffuser 
type A B C 

FB 2.84x10-2 0.81 -0.48 
CB 1.24x10-2 0.76 -0.43 

 

This formula traduces that the oxygen transfer coefficient (𝑘𝑘𝐿𝐿𝑎𝑎20) is only determined by the 

superficial gas velocity (𝑈𝑈𝐺𝐺), the apparent viscosity of the mixed liquor (𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝐿𝐿) and the 

aeration system. The impact of the superficial gas velocity and the apparent viscosity on kLa is 

more significant for FB aeration than for CB aeration.  

The proposed correlation was also represented in terms of the dimensionless transfer number 

(𝑁𝑁𝑇𝑇) and column Reynolds number (𝑅𝑅𝐻𝐻𝑐𝑐𝑜𝑜𝑙𝑙𝑒𝑒𝑚𝑚𝐺𝐺) and further interpretation of the obtained 

variations was made by means of the Stanton transfer number (StM), the Galileo number (Ga) 

and the Froude number (Fr). This representation highlights that for the fine and the coarse 

bubble aeration systems, the aeration efficiency increases with a reduction of the sludge 

apparent viscosity. Also it showed that with CB aeration and for a given MLSS concentration, the 

aeration efficiency is independent on the superficial gas velocity, which traduces the linear 

dependency of oxygen transfer on the airflow rate. With FB aeration, the aeration efficiency for a 

given MLSS concentration appeared to decrease with an increase in the superficial gas velocity 

which relates to the effect of airflow rate on bubble diameter. 
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Finally, correlating the alpha factor with the apparent viscosity, and its dependence to the shear 

rate, reduced data scattering compared to the correlation between alpha factor and MLSS 

concentrations. For results obtained in the present study, alpha factor is a decreasing function of 

apparent viscosity with a power law coefficient of -0.48 and -0.42 for fine and coarse bubble 

aeration respectively.  

 

Perspectives 

The following perspectives have been identified to improve the understanding and the 

modelling of the rheological behaviour of activated sludge and the oxygen transfer in full-scale 

aeration tank: 

• Impact of solid phase characteristics on sludge rheology: Rheological measurements 

with AS from different origins and with equivalent MLSS concentration as well as 

simultaneous AS characterization including SVI and flocs properties (diameter, 

cohesiveness, structure) would help to confirm the significance of the these floc 

properties in defining the rheological behaviour of AS. Also, data about the floc density 

and size and its dependence on influent characteristics and process operating conditions 

(mixing, pumping, aeration, sludge age) would contribute to develop predictive models.  

• Estimation of average shear rate in aerated tanks: The average shear rate prevailing in 

the bubble column have to be evaluated experimentally under fine and coarse bubble 

aeration and confronted with the theoretically estimated average shear rate in the 

present work. It would be interesting to also experimentally determine the average 

shear rate in full-scale aerated bioreactors where shear is exerted by the rising bubbles 

and the stirring system. 

• Impact of non-Newtonian fluid on local characteristics of the gas phase in the bubble 

column: Characterising oxygen transfer parameters such as bubble size, bubble rise 

velocity and overall gas hold-up in a model translucent viscous media whose rheological 

behaviour is also evaluated would help to confront hypothesis made in the present work 

associated to the impact of apparent viscosity, in particular concerning an enhanced 

coalescence phenomena, an extended bubble growth time at formation stage and the 

increment of the bubble drag coefficient. 

• To integrate physicochemical characteristics of the liquid and solid phase of activated 

sludge in a same oxygen transfer model, a further evaluation of the impact of soluble 

substances on oxygen transfer coefficient in particular for the interest of treatment 

plants where the concentration of soluble substances in the aeration tank can reach 
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higher values than those measured in the present study. This could be performed by 

installing the experimental set-up near to a full-scale reactor with plug flow 

configuration and by performing oxygen transfer tests with AS alternatively sampled at 

different points along the reactor. Such experiments will help to evaluate the relative 

effect of viscosity and surfactants on oxygen transfer. 





 

 

Bibliography



 

 



Bibliography 
 
 

 

Al-Masry W. A. 1999. Effect of scale-up on average shear rates for aerated non-Newtonian liquids in 
external loop airlift reactors. Biotechnology and Bioengineering. 62. (4). pp. 494-498. 

Al-Masry W. A. and Chetty M. 1996. On the estimation of effective shear rate in external loop airlift 
reactors: non-Newtonian fluids. Resources, Conservation and Recycling. 18. (1-4). pp. 11-24. 

Alves S. S., Maia C. I. and Vasconcelos J. M. T. 2004. Gas-liquid mass transfer coefficient in stirred tanks 
interpreted through bubble contamination kinetics. Chemical Engineering and Processing: 
Process Intensification. 43. (7). pp. 823-830. 

Alves S. S., Orvalho S. P. and Vasconcelos J. M. T. 2005. Effect of bubble contamination on rise velocity and 
mass transfer. Chemical Engineering Science. 60. (1). pp. 1-9. 

Alves S. S., Vasconcelos J. M. T. and Orvalho S. P. 2006. Mass transfer to clean bubbles at low turbulent 
energy dissipation. Chemical Engineering Science. 61. (4). pp. 1334-1337. 

ASCE 1992. Standard Measurement of Oxygen Transfer in Clean Water. American Society of Civil 
Engineers  

ASCE 1996. Standard Guidelines for In-Process Oxygen Transfer Testing. American Society of Civil 
Engineers.  

Banisi S., Finch J. A., Laplante A. R. and Weber M. E. 1995. Effect of solid particles on gas holdup in flotation 
columns--II. Investigation of mechanisms of gas holdup reduction in presence of solids. Chemical 
Engineering Science. 50. (14). pp. 2335-2342. 

Baudez J.-C. (2008). La gestion des boues résiduaires: de l'étude de la matière molle à la valorisation de la 
matière organique. Montoldre. 

Baudez J.-C., Ayol A. and Coussot P. 2004. Practical determination of the rheological behavior of pasty 
biosolids. Journal of Environmental Management. 72. (3). pp. 181-188. 

Biggs C. A. and Lant P. A. 2000. Activated sludge flocculation: on-line determination of floc size and the 
effect of shear. Water Research. 34. (9). pp. 2542-2550. 

Bouaifi M., Hebrard G., Bastoul D. and Roustan M. 2001. A comparative study of gas hold-up, bubble size, 
interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. 
Chemical Engineering and Processing: Process Intensification. 40. (2). pp. 97-111. 

Bouche E., Roig V., Risso F. and Billet A.-M. 2012. Homogeneous swarm of high-Reynolds-number bubbles 
rising within a thin gap. Part 1. Bubble dynamics. Journal of Fluid Mechanics. 704. pp. 211-231. 

Bouyer D., Coufort C., Liné A. and Do-Quang Z. 2005. Experimental analysis of floc size distributions in a 1-
L jar under different hydrodynamics and physicochemical conditions. Journal of Colloid and 
Interface Science. 292. (2). pp. 413-428. 

Bouyer D., Line A., Cockx A. and Do-quang Z. 2001. Experimental Analysis of Floc Size Distribution and 
Hydrodynamics in a Jar-Test. Chemical Engineering Research and Design. 79. (8). pp. 1017-1024. 

Calderbank P. H. and Moo-Young M. B. 1961. The continuous phase heat and mass-transfer properties of 
dispersions. Chemical Engineering Science. 16. (1–2). pp. 39-54. 

Capela S. 1999.Influence des facteurs de conception et des conditions de fonctionnement  des stations 
d'épuration en boues activées sur le transfert d'oxygène. Thèse de Doctorat, Université Paris XII - 
Val de Marne, 158 p + annexes. 

Capela S., Gillot S. and Héduit A. 2004. Comparison of Oxygen-Transfer Measurement Methods Under 
Process Conditions. Water Environment Research. 76. (2). pp. 183-188. 

Cerecero Enriquez R. 2003.Etude des écoulements et des transferts thermiques lors de la fabrication d'un 
sorbet à l'échelle du pilote et du laboratoire. INA P-G, 161 p. + annexes. 

Cerri M. O., Futiwaki L., Jesus C. D. F., Cruz A. J. G. and Badino A. C. 2008. Average shear rate for non-
Newtonian fluids in a concentric-tube airlift bioreactor. Biochemical Engineering Journal. 39. (1). 
pp. 51-57. 

Chisti Y. and Moo-Young M. 1989. On the calculation of shear rate and apparent viscosity in airlift and 
bubble column bioreactors. Biotechnology and Bioengineering. 34. (11). pp. 1391-1392. 

Chu C.P., Lee D.J. 2004. Multiscale structures of biological flocs. Chemical Engineering Science. 59. (8–9) 
pp. 1875-1883. 

Clift R., Grace J. and Weber M. E. 1978. Bubbles, drops and particles. Academic Press, New York.  
Cockx A. 1997. Modélisation de contacteurs gaz/liquide : Application de la mécanique des fluides 

numériques aux airlifts. Thèse de Doctorat, INSA Tolouse, 165 p. + annexes. 
Cockx A., Do-Quang Z., Audic J. M., Liné A. and Roustan M. 2001. Global and local mass transfer coefficients 

in waste water treatment process by computational fluid dynamics. Chemical Engineering and 
Processing. 40. (2). pp. 187-194. 

Colombet D., Legendre D., Cockx A., Guiraud P., Risso F., Daniel C. and Galinat S. 2011. Experimental study 
of mass transfer in a dense bubble swarm. Chemical Engineering Science. 66. (14). pp. 3432-3440. 



Bibliography 
 
 

258 
 

Cornel P., Wagner M. and Krause S. 2003. Investigation of oxygen transfer rates in full scale membrane 
bioreactors. Water Science and Technology. 47. (11). pp. 313-319. 

Cornillon P.-A., Guyader A., Husson F., Jégou N., Josse J., Kloareg M., Matzner-Lober É. and Rouvière L. 
2012. Statistiques avec R (3ème édition). PRESSES UNIVERSITAIRES DE RENNES.  Pratique de la 
statistique. pp. 296. 

Coufort C., Dumas C., Bouyer D. and Liné A. 2008. Analysis of floc size distributions in a mixing tank. 
Chemical Engineering and Processing: Process Intensification. 47. (3). pp. 287-294. 

Craig V. S. J. 2004. Bubble coalescence and specific-ion effects. Current Opinion in Colloid &amp; Interface 
Science. 9. (1-2). pp. 178-184. 

Craig V. S. J. 2011. Do hydration forces play a role in thin film drainage and rupture observed in electrolyte 
solutions? Current Opinion in Colloid &amp; Interface Science. (0).  

CTGREF 1980. Les preformances des systèmes d'aération des procédés d'épuration: Méthodes de mesure 
et résultats.  

Czarnota Z. and Hahn T. 1995. Effect of horizontal flow on aeration. Document Flygt.  
Deckwer W.-D., Louisi Y., Zaidi A. and Ralek M. 1980. Hydrodynamic Properties of the Fischer-Tropsch 

Slurry Process. Industrial & Engineering Chemistry Process Design and Development. 19. (4). pp. 
699-708. 

Déronzier G., Gillot S., Duchene P. and Héduit A. 1996. Influence de la vitesse horizontale du fluide sur le 
transfert d'oxygène en fines bulles dans les bassins d'aération. Tribune de l'eau (5-6). pp. 91-97. 
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APPENDIX 1 

Some design characteristics and removal efficiency of the wastewater treatment plants of 

Marolles/Saint Vrain and Briis-sous-Forges. 

 

Appendix table 1. Design features of the Saint Vrain/Marolles and Briis-sous-Forges wastewater treatment plants. 

 Feature Units Saint Vrain 
 

Briis-sous-
Forges 

Aerated basin 
Geometry - Annular Rectangular 

Liquid Height m 5 5.5 
Liquid Volume m³ 4478 898.2 

Influent Load 
 

Flow rate m³/d 4300 4208 
Mixed liquor suspended 

solids (MLSS) kg/d 2540 1930 

Biochemical oxygen 
demand (BOD) kg/d 1320 1117 

Chemical oxygen demand 
(COD) kg/d 3640 2824 

Total Kjehdal nitrogen 
(TKN) kg/d 400 257 

Total Phosporus (TP) kg/d 76 40 
 

Appendix table 2. Removal efficiency (%) in the Saint Vrain/Marolles and Briis-sous-Forges wastewater treatment 
plants during the periods of the oxygen transfer measurements performed on site: 2012 and 2013 respectively. 

Parameter Saint Vrain 
(2012) 

Briis-sous-
Forges 
(2013) 

Mixed liquor suspended 
solids (MLSS) 98.2 98.8 

Biochemical oxygen 
demand (BOD) 97.9 98.1 

Chemical oxygen demand 
(COD) 94.6 96.2 

Total Kjeldahl nitrogen 
(TKN) 95.8 96.4 

Global nitrogen (GN) 92.9 82.8 
Total phosporus (TP) 96.0 92.8 
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APPENDIX 2 

Protocol description of the gas-phase oxygen analysis to estimate the 𝑶𝑶𝑻𝑻𝑬𝑬𝒄𝒄 

The ambient air and the off-gas flow are alternatively drawn into the oxygen analyser by means 

of a set of valves. For each of these air flows, the air flow rate is fixed to 1 L min-1 and air 

pressure of 20 hPa using two rotameters and two manometers installed in the analysis unit.   

Before oxygen analysis, the airflow passes through a column packed with silica gel crystals and 

sodium hydroxide pellets in order to remove the water vapour and carbon dioxide fractions 

respectively.  

The oxygen partial concentration in the airflow is measured with an electrochemical gas-phase 

oxygen transducer (Teledyne Analytical Instruments – Class E2). The analyser response for an 

oxygen flow is a voltage output proportional to the oxygen partial pressure (and concentration), 

respectively noted 𝐼𝐼𝑖𝑖 and 𝐼𝐼𝑒𝑒.  With a constant airflow pressure in the measurement unit, the 

following relation can be written: 

𝐼𝐼𝑖𝑖 𝑦𝑦𝑖𝑖′⁄ = 𝐼𝐼𝑒𝑒 𝑦𝑦𝑒𝑒′⁄  Ap. Eq. 1 

 

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 can be then estimated using Ap. Eq. 2:  

𝐶𝐶𝑂𝑂𝑂𝑂𝑐𝑐 = 1 −
𝑦𝑦𝑒𝑒′(1− 𝑦𝑦𝑖𝑖′)
𝑦𝑦𝑖𝑖′(1 − 𝑦𝑦𝑒𝑒′)

=
𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑒𝑒
𝐼𝐼𝑒𝑒 − 𝑦𝑦𝑖𝑖′𝐼𝐼𝑒𝑒

 Ap. Eq. 2 

 

where 

𝐼𝐼𝑖𝑖 sensor response for the ambient (injected) air flow (mV) 

𝐼𝐼𝑒𝑒 sensor response for the off-gas air flow (mV) 

𝑦𝑦𝑖𝑖′ oxygen molar fraction of the injected air flow free of water vapor and carbon dioxide 

(𝑦𝑦𝑖𝑖′=0.2095) 

The air tightness in the oxygen analysis unit is verified before usage drawing in an inert gas 

stream (nitrogen). The oxygen sensor response must then be near zero (±0.6%).  The linearity of 

the oxygen probe is also tested before use by drawing in the ambient air at two different airflow 

rates and measuring the respective sensor response air flow pressures. The ratio of the analyser 

response to the airflow pressure must remain constant (±0.4%) after the air flow rate variation, 

because the oxygen molar fraction do not depend on the airflow.    
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APPENDIX 3 

Analysis of Covariance (ANCOVA) using the statistics software R for comparing two linear 

regressions 

The analysis of covariance allowed analyzing the effect of independent variables (quantitative 

and qualitative) on a dependent variable Y. The analysis presented in this study is based on the 

method proposed by Cornillon et al. (2012). The analysis required considering only two 

independent variables: X (quantitative) and Z (qualitative), the latter considered in different 

modalities I. The relation between X and Y may be different for the different modalities I of the 

qualitative variable Z. 

In a simplified way, a linear regression is written for each of the modalities i as follows: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑋𝑋𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖  ;  𝐹𝐹 = 1, … , 𝐼𝐼 ;      𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  

Where 

𝛼𝛼𝑖𝑖 intercept of the linear model for the modality i 

𝑌𝑌𝑖𝑖  slope of the linear model for the modality i 

𝜀𝜀𝑖𝑖  model residual for the modality i 

 

In this analysis of covariance it is considered that all residuals (𝜀𝜀𝑖𝑖) have the same variance (𝜎𝜎2). 

By integrating an average intercept (𝛼𝛼) and an average slope (𝛾𝛾) to the linear regression, the 

model is written as: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛼𝛼𝑖𝑖 + (𝛾𝛾 + 𝛾𝛾𝑖𝑖)𝑋𝑋𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖  ;  𝐹𝐹 = 1, … , 𝐼𝐼 ;      𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  

To evaluate if the variable Z has an effect on the relation between Y and X, the analysis of 

covariance examines if the intercepts and slopes of different linear models can be considered as 

statistically equal. 

Using the experimental data, three models, represented in Figure Ap. 1 are written: 

1. A ‘complete’ model with two different slopes and two different intercepts (Figure Ap. 1a).   

2. A model with a ‘unique slope’ and two different intercepts (Figure Ap. 1b). 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖  ;  𝐹𝐹 = 1, … , 𝐼𝐼 ;      𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  

3. A model with a ‘unique intercept’ and two different slopes (Figure Ap. 1c) 
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𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛾𝛾𝑖𝑖𝑋𝑋𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖  ;  𝐹𝐹 = 1, … , 𝐼𝐼 ;      𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  

 

Figure Ap. 1. Representation of the written linear models for the analysis of covariance (from Cornillon et al., 2012) . 

 

The slopes and intercepts of the model 1 (complete) are respectively compared to the model of 

unique slope (model 2) and unique intercept (model 3) by means of an Anova analysis. 

In the software R, the three respective linear models (lm) are written as follows: 

> complete=lm(Y~-1+Z+Z:X,data=experimentaldata)  

> Uslope=lm(Y~-1+Z+X,data=experimentaldata) 

> Uintercept=lm(Y~Z:X,data=experimentaldata) 

The comparison between the models is written using the anova fonction: 

> anova(Uslope,complete) 

> anova(Uintercept,complete) 

For each of these two comparisons, the analysis results provide the degrees of freedom, the sum 

of squared residuals, the mean squared residuals, the statistical F value for the test and the 

critical probability (Pr(>F)) or p-value. If the latter is higher than the significance level (5%), the 

null hypothesis (Ho) is accepted. Consequently the slopes and the intercepts of the ‘complete’ 

model can be considered as equivalent to the ones of the respective models of unique slope and 

unique intercept. Hence it can be deduced that the modality I of the qualitative variable Z do not 

affect the relationship between the variables X and Y.  

The Appendix table 3 presents the p-values resulting from the analysis of covariance for 

different quantitative variables X and Y and different studied modalities (I) of qualitative 

variables Z.  

 

 

 

(a) (b) (c)
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Appendix table 3. Results of the analysis of covariance obtained for different quantitative variables X and Y and 
different studied modalities (I) of qualitative variables Z.  

X vs. Y 
Studied Modalities I 

of the variable Z 
Uslope 
p-value 

Uintercept 
p-value 

kLa vs. UG 
Reoxygenation method 

Off-gas method 
0.53 - 

Rheogram 
𝜏𝜏 vs. �̇�𝛾 

Large or small volume: 10L, 40L 0.17 0.34 
Agitation Speed: 40, 80, 120. 0.98 0.99 

Storage time: D0, D+1 or D+2 days. 0.29 0.59 

The shown p-values result from comparing the ‘complete’ model respectively with the Uslope and Uintercept model.  

 

Since the experimental function kLa=f(UG) must have an intercept equal to zero, the analysis of 

covariance did not include the creation of a linear model with a ‘unique intercept’ and for that 

reason no p-value is observed  in the column Uintercept in Appendix table 3 
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APPENDIX 4 

Development of the equation to estimate the gas hold-up in the bubble column by means 

of two hydrostatic pressure probes submerged at a constant depth at the top and the 

bottom of the aerated volume 

 

In a volume with constant cross-sectional area, the overall gas hold-up (𝜀𝜀𝐺𝐺) can be expressed in 

terms of the gas and liquid height as: 

 

𝜀𝜀𝐺𝐺 =
𝑉𝑉𝐺𝐺
𝑉𝑉𝑇𝑇

=
𝐻𝐻𝐺𝐺
𝐻𝐻𝑇𝑇

 Ap. Eq. 3 

with  

𝜀𝜀𝐺𝐺  overall gas hold-up (-) 

𝑉𝑉𝐺𝐺 gas volume (m3) 

𝑉𝑉𝑇𝑇 gas-liquid mixture volume (m3) 

𝐻𝐻𝐺𝐺  height occupied by the gas (m) 

𝐻𝐻𝑇𝑇 height occupied by the gas-liquid mixture (m) 

 

Under non-aerated conditions, the difference between the hydrostatic pressure of the two 

submerged probes corresponds to the pressure exerted by the liquid column: 

 

∆𝑃𝑃1 = 𝜌𝜌𝐿𝐿𝑔𝑔𝐻𝐻1𝐿𝐿 Ap. Eq. 4 

with  

∆𝑃𝑃1 hydrostatic pressure difference between the top and bottom pressure probes under non-

aerated conditions (Pa) 

𝜌𝜌𝐿𝐿 liquid density (kg m-3) 

𝑔𝑔 gravity (m s-2) 

𝐻𝐻1𝐿𝐿 liquid height between the two oxygen probes under non-aerated conditions (m) 
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Under aerated conditions, the difference between the hydrostatic pressure of the two 

submerged probes corresponds to the pressure exerted by the liquid and the gas column: 

∆𝑃𝑃2 = 𝑔𝑔(𝜌𝜌𝐿𝐿𝐻𝐻2𝐿𝐿 + 𝜌𝜌𝐺𝐺𝐻𝐻𝐺𝐺) Ap. Eq. 5 

with  

∆𝑃𝑃2 hydrostatic pressure difference between the top and bottom pressure probes under 

aerated conditions (Pa) 

𝜌𝜌𝐺𝐺  gas  density (kg m-3) 

𝑔𝑔 gravity (m s-2) 

𝐻𝐻2𝐿𝐿 liquid height between the two oxygen probes under aerated conditions (m) 

𝐻𝐻𝐺𝐺  gas height between the two oxygen probes under aerated conditions (m) 

 

The gas height (𝐻𝐻𝐺𝐺) corresponds to the difference in liquid height under non-aerated (𝐻𝐻1𝐿𝐿) and 

aerated conditions (𝐻𝐻2𝐿𝐿): 

𝐻𝐻𝐺𝐺 = 𝐻𝐻1𝐿𝐿 − 𝐻𝐻2𝐿𝐿 Ap. Eq. 6 

 

From the equations above defining ∆𝑃𝑃1, ∆𝑃𝑃2 and considering that 𝜌𝜌𝑎𝑎𝑖𝑖𝑟𝑟 ≪ 𝜌𝜌𝑒𝑒𝑎𝑎𝑒𝑒 ≈ 𝜌𝜌𝑠𝑠𝑙𝑙𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒 , the gas 

height (𝐻𝐻𝐺𝐺) can be estimated with:  

𝐻𝐻𝐺𝐺 =
∆𝑃𝑃1 − ∆𝑃𝑃2

𝑔𝑔𝜌𝜌𝐿𝐿
 Ap. Eq. 7 

 

The height of the gas-liquid mixture (𝐻𝐻𝑇𝑇) corresponds to the liquid height separating the two 

pressure probes (𝐻𝐻1𝐿𝐿) and can be obtained from Ap. Eq. 4.  The overall gas hold-up (𝜀𝜀𝐺𝐺), 

determined in the volume limited by the two pressure probes, can then be estimated with: 

𝜀𝜀𝐺𝐺  (−) = �1 −
∆𝑃𝑃2
∆𝑃𝑃1

� = �1 −
∆𝑃𝑃𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑎𝑎𝑖𝑖𝑟𝑟

∆𝑃𝑃𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑒𝑒𝑡𝑡 𝑎𝑎𝑖𝑖𝑟𝑟
� Ap. Eq. 8 
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APPENDIX 5 

Development of the equation to estimate the shear stress and the shear rate in a tubular 

section for Newtonian fluids 

a) Shear stress,  𝝉𝝉𝒓𝒓 , for a Newtonian fluid         

Hypothesis: 

− Fluid slip at the wall is zero (there is no wall slip) 

− The fluid is incompressible 

− The system is isothermal 

− There is no thixotropy 

The next figure shows the equilibrium of horizontal forces in an infinitesimal section of a tube:  

 

Figure Ap. 2. Schematic of equilibrium forces in an infinitesimal section of a tube 

With:  

𝐴𝐴           cross-sectional area 𝐴𝐴 = 𝜋𝜋𝐹𝐹2 Ap. Eq. 9 

𝑃𝑃𝑧𝑧          pressure at the outlet section of the capillary 𝑃𝑃𝑧𝑧 =
𝐹𝐹𝑧𝑧
𝐴𝐴

 Ap. Eq. 10 

𝑃𝑃𝑧𝑧+𝑑𝑑𝑧𝑧 pressure at the inlet section of the capillary 𝑃𝑃𝑧𝑧+𝑑𝑑𝑧𝑧 =
𝐹𝐹𝑧𝑧+𝑑𝑑𝑧𝑧
𝐴𝐴

 Ap. Eq. 11 

𝐹𝐹𝑧𝑧 pressure force at the outlet section of the capillary 𝐹𝐹𝑧𝑧 = Pz ∙ πr2 Ap. Eq. 12 

𝐹𝐹𝑧𝑧+𝑑𝑑𝑧𝑧 pressure force at the inlet section of the capillary 𝐹𝐹𝑧𝑧+𝑑𝑑𝑧𝑧 = Pz+dz ∙ πr2 Ap. Eq. 13 

𝐹𝐹𝐺𝐺 shear force at the tube wall 𝐹𝐹𝐶𝐶 = 𝜏𝜏(𝐹𝐹)2πr ∙ 𝑑𝑑𝑧𝑧 Ap. Eq. 14 

𝜏𝜏(𝐹𝐹)      shear stress at a radius 𝐹𝐹 𝜏𝜏(𝐹𝐹) =
𝐹𝐹𝑠𝑠
𝑆𝑆

 Ap. Eq. 15 

𝑆𝑆            surface layer 𝑆𝑆 = 2𝜋𝜋𝐹𝐹 ∙ 𝑑𝑑𝑧𝑧 Ap. Eq. 16 

 

The pressure force at the inlet section of the capillary tube tends to accelerate the flow. The 

equilibrium of forces is written as follows: 

𝐹𝐹𝑧𝑧 − 𝐹𝐹𝑧𝑧+𝑑𝑑𝑧𝑧 + 𝐹𝐹𝐶𝐶 = 0 Ap. Eq. 17 

Fz+dz

Pz+dz

zz+dz

Pz

Fz
Fs

A
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Replacing Eqautions from Ap. Eq. 12 to Ap. Eq. 14 in Ap. Eq. 17: 

Pz ∙ πr2 − Pz+dz ∙ πr2 + 𝜏𝜏(𝐹𝐹)2πr ∙ 𝑑𝑑𝑧𝑧 = 0 Ap. Eq. 18 

Pz − Pz+dz +
2𝜏𝜏(𝐹𝐹) ∙ 𝑑𝑑𝑧𝑧

r
= 0 Ap. Eq. 19 

 

Defining the pressure at the inlet as: 

Pz+dz = Pz +
dP
dz

dz Ap. Eq. 20 

 

And replacing the equation Ap. Eq. 20 in Ap. Eq. 21 it is possible to obtain 𝜏𝜏(𝐹𝐹) as follows: 

𝜏𝜏(𝐹𝐹) =
𝐹𝐹
2
∙

dP
dz

 Ap. Eq. 21 

 

Assuming a steady state flow, the shear stress 𝜏𝜏(𝐹𝐹) is constant in the direction z. Then, 

dP
dz

=
∆P
L

 Ap. Eq. 22 

 

With:  

∆P pressure loss in a tube between two points separated by a length L.  

 

Thus, the shear stress 𝜏𝜏(𝐹𝐹) can be expressed at the tube wall as 𝜏𝜏𝑤𝑤: 

𝜏𝜏𝑤𝑤 = 𝜏𝜏 =
𝐹𝐹
2
∙
∆P
L

 Ap. Eq. 23 

 

The shear stress 𝜏𝜏𝑤𝑤, is independent from the type of fluid considered. In a tube of known 

geometry, the 𝜏𝜏𝑤𝑤 applied, can be obtained by measuring the fluid pressures at different points of 

the tube length.  

b) Shear rate, �̇�𝜸, for a Newtonian fluid         

The shear, 𝛾𝛾, and the shear rate, �̇�𝛾, in a tube are defined by the following equations: 

 𝛾𝛾             Shear or deformation 𝛾𝛾 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

 Ap. Eq. 24 
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�̇�𝛾(𝐹𝐹)        Shear rate �̇�𝛾(𝐹𝐹) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧𝑑𝑑𝑆𝑆

=
𝑑𝑑𝑈𝑈
𝑑𝑑𝑧𝑧

 Ap. Eq. 25 

 

With: 

 𝑈𝑈 as the fluid velocity in the tube.   

 

When considering the flow (d𝑄𝑄) through an infinitesimal annular section of a capillary tube, 

with thickness 𝑑𝑑𝐹𝐹, placed at a distance 𝐹𝐹 from the tube axis, as shown in the figure below:  

 

Figure Ap. 3. Schematization of the flow in an annular section of a tube 

 

the shear rate in the annular section is written as: 

�̇�𝛾(𝐹𝐹) =
𝑑𝑑𝑈𝑈(𝐹𝐹)
𝑑𝑑𝐹𝐹

 Ap. Eq. 26 

 

And the flow rate, Q, in this annular section of the tube is defined as:  

𝑄𝑄 = 𝑆𝑆 ∙ 𝑈𝑈 Ap. Eq. 27 

𝑑𝑑𝑄𝑄 = (2πr ∙ dr)(𝑈𝑈(𝐹𝐹)) Ap. Eq. 28 

 

Thus, the total flow rate in the tube is: 

𝑄𝑄 = � (2πr ∙ dr)(𝑈𝑈(𝐹𝐹))
𝑅𝑅

0
 

Ap. Eq. 29 

 

The velocity in a tube is a decreasing parabolic function of the radial distance to the axe of the 

tube defined by:  

𝑈𝑈(𝐹𝐹) = 𝑈𝑈0 �1−
𝐹𝐹2

𝑅𝑅2�
 

Ap. Eq. 30 

 

dr

R rdQ 
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Thus, replacing the equation Ap. Eq. 30 in Ap. Eq. 29, it results:  

Q = 2π𝑈𝑈0 � r�1 −
𝐹𝐹2

𝑅𝑅2�
∙ dr

𝑅𝑅

0
 

Ap. Eq. 31 

 

Integrating the Equation Ap. Eq. 31 and developing for 𝑈𝑈0: 

𝑈𝑈0 =
2Q
π𝑅𝑅2

 Ap. Eq. 32 

 

Now, from Ap. Eq. 26, and deriving the equation Ap. Eq. 30, it results: 

�̇�𝛾(𝐹𝐹) =
𝑑𝑑𝑈𝑈(𝐹𝐹)
𝑑𝑑𝐹𝐹

= −
2𝑈𝑈0𝐹𝐹
𝑅𝑅2

 Ap. Eq. 33 

 

and replacing Ap. Eq. 32 in Ap. Eq. 33, it is possible to find the mathematical expression for the 

shear rate as a function of the tube radius as follows: 

�̇�𝛾(𝐹𝐹) = −
4Q𝐹𝐹
π𝑅𝑅4

 Ap. Eq. 34 

 

Because it is agreed to calculate the shear rate at the wall in a capillary tube (𝐹𝐹 = 𝑅𝑅), the 

equation defining  �̇�𝛾 is: 

�̇�𝛾𝑅𝑅 = �̇�𝛾 = −
4Q
π𝑅𝑅3

 Ap. Eq. 35 

 

c) Shear rate, �̇�𝜸, for a non-Newtonian fluid         

Given that for a non-Newtonian fluid the velocity profile results in a change of the viscosity with 

the radius of the tube in relation to the fluid Newtonian character, the approach to calculate the 

shear rate differs from the one applied for the Newtonian fluids, thus, integrating by parts the 

Eqaution Ap. Eq. 29, and assuming that there is no wall slip (𝑈𝑈(𝑅𝑅) = 0) : 

𝑄𝑄 = [πr2 ∙ 𝑈𝑈(𝐹𝐹)]|0𝑅𝑅 − 𝜋𝜋� r2
𝑑𝑑𝑈𝑈(𝐹𝐹)
𝑑𝑑𝐹𝐹

dr = −𝜋𝜋� r2�̇�𝛾 ∙ dr
𝑅𝑅

0

𝑅𝑅

0
 

Ap. Eq. 36 

 

Making a variable change 𝜏𝜏 = 𝑟𝑟
𝑅𝑅
∙ 𝜏𝜏𝑤𝑤  in the Equation Ap. Eq. 36, Q is then expressed by: 
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𝑄𝑄 = −𝜋𝜋� �̇�𝛾 �
Rτ
τw
�
2 R
τw

∙ dτ 
𝜏𝜏𝑤𝑤

0
 

Ap. Eq. 37 

τw3

R3
∙ 𝑄𝑄 = −𝜋𝜋� �̇�𝛾τ2 ∙ dτ 

𝜏𝜏𝑤𝑤

0
 

Ap. Eq. 38 

 

Deriving both sides of the Equation Ap. Eq. 38 in respect to τw, it results: 

τw3

R3
𝑑𝑑𝑄𝑄
𝑑𝑑τw

+ 𝑄𝑄
3τw2

R3
= −𝜋𝜋𝜏𝜏𝑤𝑤2�̇�𝛾𝑤𝑤 

Ap. Eq. 39 

 

With:  

�̇�𝛾𝑤𝑤      shear rate at the wall 

Thus, the shear rate at the wall, �̇�𝛾𝑤𝑤, can be expressed by: 

�̇�𝛾𝑤𝑤 = �̇�𝛾𝑅𝑅 = −
1
𝜋𝜋R3 �

3𝑄𝑄 + τw
𝑑𝑑𝑄𝑄
𝑑𝑑τw

� Ap. Eq. 40 

 

Replacing 𝑑𝑑𝑄𝑄 = 𝑄𝑄 ∙ 𝑑𝑑(𝐿𝐿𝑛𝑛 𝑄𝑄) and 𝑑𝑑τw = 𝜏𝜏 ∙ 𝑑𝑑(𝐿𝐿𝑛𝑛 𝜏𝜏) in the equation Ap. Eq. 40 and assuming that 

τw = 𝜏𝜏, it results: 

�̇�𝛾𝑤𝑤 = −
4Q
π𝑅𝑅3

�
3𝑛𝑛 + 1

4𝑛𝑛
� Ap. Eq. 41 

 

Where 𝑛𝑛 is the flow index in the Ostwald-de Waele rheological model. It can be estimated as: 

𝑛𝑛 =
𝑑𝑑(𝐿𝐿𝑛𝑛 𝜏𝜏) 
𝑑𝑑(𝐿𝐿𝑛𝑛 𝑄𝑄)  𝑇𝑇𝐹𝐹 

𝑑𝑑(𝐿𝐿𝑛𝑛 𝜏𝜏) 
𝑑𝑑(𝐿𝐿𝑛𝑛 4𝑄𝑄/𝜋𝜋𝑅𝑅3) Ap. Eq. 42 

 

The term  �𝟑𝟑𝒏𝒏+𝟏𝟏
𝟒𝟒𝒏𝒏

� is called the Rabinowitsch-Mooney correction.  

The equation Ap. Eq. 41, calls in the expression for the shear rate �̇�𝛾 found before in Ap. Eq. 35 for 

Newtonian fluids. Thereby, regardless of the fluid rheological behaviour, the shear rate can be 

determined by the measurement of the flow rate through the capillary tube.  
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APPENDIX 6 

Calculation of measurement uncertainty with respect to viscosity using the tubular 

rheometer by the method of partial derivatives  

The partial derivatives method to calculate the measurement uncertainty requires deriving the 

function that defines the studied variable in respect to each measured variable and to know the 

accuracy of the used instruments. The instruments accuracy and the tubes manufacturing 

tolerance are presented in Appendix table 4.  

Appendix table 4.Tubes manufacturing tolerance and instruments accuracy in the tubular rheometer 

Measured Variable Instrument Range Tolerance or Accuracy 
Radius (𝑅𝑅) Tube 4, 7, 12, 14 mm ±0.01 mm 
Length (𝐿𝐿) Tube 0.4, 0.8, 1.0, 1.0 m ±1 mm 

Weight (𝑊𝑊) Scale Up to 30 kg ±1g 

Differential 
Pressure (∆𝑃𝑃) Micromanometers 

Up to 500 Pa 
If ∆P<100 Pa0.2% ±0.8 Pa 
If ∆P>100 Pa0.2% ±1.5 Pa 

Up to 2500 Pa 0.2%±2Pa 

Density (𝜌𝜌) Correlation 
𝜌𝜌𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟=f(T) from 5 to 25°C ±0.03% 

Temperature (𝑂𝑂) Thermometer Up to 300°C ±1°C 
 

Density is considered in the calculation of uncertainty since measuring the flow rate (𝑄𝑄) with the 

use of a scale requires the determination of the fluid density. Sludge density is assumed to be 

equivalent to the water density (on the basis of laboratory measurements) which can be defined 

as a function of temperature as follows: 

 𝜌𝜌(𝑇𝑇) = −0.0038𝑂𝑂2 − 0.0477𝑂𝑂 + 1000.4465 Ap. Eq. 43 

 

The latter correlation provides the density values with an accuracy of ±0.03% in comparison 

with theoretical values (Lide, 2004). This error is then included in the uncertainty calculation. 

Besides, the uncertainty in the measurement of temperature induces an error on the estimation 

of the fluid density using Ap. Eq. 43. Consequently, the temperature accuracy is also included in 

the uncertainty calculation.  

The calculation of uncertainty was based on the viscosity equation for Newtonian fluids. 

According to the Poiseuille’s law the dynamic viscosity of a fluid in a tubular section can be 

determined as follows: 
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𝜇𝜇 =
𝑅𝑅4∆𝑃𝑃𝜋𝜋

8𝑄𝑄𝐿𝐿
 Ap. Eq. 44 

 

where 

𝜇𝜇     fluid viscosity (Pa.s) 

𝑅𝑅    tube radius (m) 

𝐿𝐿            tube length (m) 

∆𝑃𝑃    differential pressure between two points separated by a distance L  (Pa) 

𝑄𝑄   flow rate in the tube (m3 s-1) 

 

The density (𝜌𝜌) and temperature (𝑂𝑂) are introduced in the viscosity equation by replacing 

𝑄𝑄 = 𝑚𝑚/𝜌𝜌 and 𝜌𝜌(𝑇𝑇) in the equation Ap. Eq. 44. 

Thus, the measurement absolute uncertainty of the apparent viscosity (∆𝜇𝜇) is given by: 

∆𝜇𝜇 = 𝑘𝑘 �
𝑑𝑑𝜇𝜇
𝑑𝑑𝑅𝑅

∆𝑅𝑅 +
𝑑𝑑𝜇𝜇
𝑑𝑑𝐿𝐿

∆𝐿𝐿 +
𝑑𝑑𝜇𝜇
𝑑𝑑𝑊𝑊

∆𝑊𝑊 +
𝑑𝑑𝜇𝜇
𝑑𝑑∆𝑃𝑃

∆(∆𝑃𝑃) +
𝑑𝑑𝜇𝜇
𝑑𝑑𝜌𝜌

∆𝜌𝜌 +
𝑑𝑑𝜇𝜇
𝑑𝑑𝑂𝑂

∆𝑂𝑂� Ap. Eq. 45 

 

where 

𝑘𝑘 coverage factor for expanded uncertainty 

∆𝑅𝑅     tube radius manufacturing tolerance  

∆𝐿𝐿     tube length manufacturing tolerance  

∆𝑊𝑊     balance accuracy 

∆(∆𝑃𝑃)   manometer accuracy 

∆𝜌𝜌    density model accuracy 

∆𝑂𝑂    thermometer accuracy 

 

The respective derivates are given by the following equations: 

𝑑𝑑𝜇𝜇
𝑑𝑑𝑅𝑅

=
4𝑅𝑅3∆𝑃𝑃𝜋𝜋

8𝑄𝑄𝐿𝐿
 Ap. Eq. 46 

𝑑𝑑𝜇𝜇
𝑑𝑑𝐿𝐿

=
𝑅𝑅4∆𝑃𝑃𝜋𝜋
8𝑄𝑄𝐿𝐿2

 Ap. Eq. 47 
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𝑑𝑑𝜇𝜇
𝑑𝑑𝑊𝑊

=
𝑅𝑅4∆𝑃𝑃𝜋𝜋𝜌𝜌
8𝐿𝐿(𝑄𝑄𝜌𝜌)2 Ap. Eq. 48 

𝑑𝑑𝜇𝜇
𝑑𝑑∆𝑃𝑃

=
𝑅𝑅4𝜋𝜋
8𝐿𝐿𝑄𝑄

 Ap. Eq. 49 

𝑑𝑑𝜇𝜇
𝑑𝑑𝑂𝑂

=
𝑅𝑅4∆𝑃𝑃𝜋𝜋

8𝑚𝑚𝐿𝐿
(2 ∙ 0.0038𝑂𝑂 + 0.0477) Ap. Eq. 50 

𝑑𝑑𝜇𝜇
𝑑𝑑𝜌𝜌

=
𝑅𝑅4∆𝑃𝑃𝜋𝜋
8𝐿𝐿𝑄𝑄𝜌𝜌

 Ap. Eq. 51 

 

The uncertainty is computed for a given fluid viscosity (𝜇𝜇) at 20°C within the range of applied 

flow rates (𝑄𝑄) and shear rates (�̇�𝛾) in the different tube geometries (𝐿𝐿, 𝑅𝑅) and the associated 

differential pressure (∆𝑃𝑃).  The uncertainty is estimated within a confidence level of 95% (𝑘𝑘=2). 

For a fluid as viscous as water (𝜇𝜇=1mPa.s), the uncertainty of the viscosity (𝜇𝜇) measurement is 

presented in Appendix table 5 for different tube geometries, flow rates (𝑄𝑄) and shear rates (�̇�𝛾). 

When the flow conditions are not laminar (Re>2000), uncertainty values are not indicated 

(empty cells). 

Appendix table 5.  Estimated measurement uncertainty (±%) on viscosity for water (𝝁𝝁=1 mPa.s) for each tube in the 
range of applied shear rate (�̇�𝜸) and flow rate (𝑸𝑸). For the empty cells the flow is not laminar (Re>2000).  

 
Tube 

Q (L/h) 
5 10 15 20 25 30 35 40 45 50 

 

D4 
�̇�𝛾 221.0 442.1 663.1 884.2       

% uncertain. 7.8% 7.7% 7.1% 6.8%       

D7 
�̇�𝛾 41.2 82.5 123.7 165.0 206.2 247.5 288.7 330.0   

% uncertain. 12.5% 8.2% 6.8% 6.1% 5.7% 6.6% 6.2% 5.9%   

D12 
�̇�𝛾 8.2 16.4 24.6 32.7 40.9 49.1 57.3 65.5 73.7 81.9 

% uncertain. 61.6% 32.3% 22.5% 17.6% 14.7% 12.7% 11.3% 10.3% 9.5% 8.8% 

D14 
�̇�𝛾 5.2 10.3 15.5 20.6 25.8 30.9 36.1 41.2 46.4 51.6 

% uncertain. 111.4% 57.1% 39.0% 29.9% 24.5% 20.9% 18.3% 16.3% 14.8% 13.6% 

 

 

For fluids with a viscosity 1.5 times the water dynamic viscosity, the estimated uncertainty on 

the viscosity measurements is presented in Appendix table 6. 
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Appendix table 6. Estimated measurement uncertainty (±%) on viscosity for each tube in the range of applied shear 
rate (�̇�𝜸) and flow rate (𝑸𝑸) and for a fluid with a viscosity 1.5 times the water dynamic viscosity (for Newtonian 

fluids). For the empty cells the flow is not laminar (Re>2000).  

 

 
Tube 

Q (L/h) 
5 10 15 20 25 30 35 40 45 50 

 

D4 
�̇�𝛾 221.0 442.1 663.1 884.2 1105.2 1326.3     

% uncertain. 8.2% 7.1% 6.7% 6.7% 6.6% 6.5%     

D7 
�̇�𝛾 41.2 82.5 123.7 165.0 206.2 247.5 288.7 330.0 371.2 412.5 

% uncertain. 9.6% 6.8% 5.8% 6.6% 6.1% 5.7% 5.5% 5.3% 5.1% 5.0% 

D12 
�̇�𝛾 8.2 16.4 24.6 32.7 40.9 49.1 57.3 65.5 73.7 81.9 

% uncertain. 42.0% 22.5% 16.0% 12.7% 10.8% 9.5% 8.5% 7.8% 7.3% 6.8% 

D14 
�̇�𝛾 5.2 10.3 15.5 20.6 25.8 30.9 36.1 41.2 46.4 51.6 

% uncertain. 75.2% 39.0% 26.9% 20.9% 17.2% 14.8% 13.1% 11.8% 10.8% 10.0% 

 

For fluids with a viscosity 7 times the water dynamic viscosity, the estimated uncertainty on the 

viscosity measurements is presented in Appendix table 7.  

 

Appendix table 7. Estimated measurement uncertainty (±%) on viscosity for each tube in the range of applied shear 
rate (�̇�𝜸) and flow rate (𝑸𝑸) and for a fluid with a viscosity 7 times the water viscosity (for Newtonian fluids). For the 

empty cells the flow is not laminar (Re>2000).  

 
Tube 

Q (L/h) 
5 10 15 20 25 30 35 40 45 50 

 

D4 
�̇�𝛾 221.0 442.1 663.1 884.2 1105.2 1326.3 1547.3 1768.4 1989.4 2210.5 

% uncertain. 6.6% 6.3% 6.2% 6.1% 6.1% 6.1% 6.1% 6.0% 6.0% 6.0% 

D7 
�̇�𝛾 41.2 82.5 123.7 165.0 206.2 247.5 288.7 330.0 371.2 412.5 

% uncertain. 6.2% 5.1% 4.7% 4.5% 4.4% 4.3% 4.3% 4.2% 4.2% 4.2% 

D12 
�̇�𝛾 8.2 16.4 24.6 32.7 40.9 49.1 57.3 65.5 73.7 81.9 

% uncertain. 11.3% 7.1% 5.7% 5.0% 4.6% 5.6% 5.2% 4.9% 4.7% 4.5% 

D14 
�̇�𝛾 5.2 10.3 15.5 20.6 25.8 30.9 36.1 41.2 46.4 51.6 

% uncertain. 18.3% 10.5% 7.9% 6.6% 5.9% 5.3% 5.0% 4.7% 4.5% 5.7% 
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