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L’objectif de cette thèse a été axé sur le développement des systèmes capable de répondre 

à des stimuli externes, basés sur des unités photochromiques. Au cours des dernières 

décennies, d’énormes progrès ont été effectués quant à la réalisation des systèmes 

synthétiques contenant des interrupteurs moléculaires contrôlables à distance, 

notamment en utilisant préférentiellement la lumière comme stimulus. Le but d’une telle 

quête est d’augmenter la complexité des dispositifs et des machines moléculaires 

synthétiques, dans l’objectif ultime d’imiter les processus naturels.[1] Par ailleurs, du point 

de vue technologique, il est très attractif d’obtenir des matériaux ou des complexes host-

guest capables de modifier leurs propriétés macroscopiques (par ex. changement de 

morphologie, ou capture/relargage d’un guest) ou de stocker des informations utilisant 

des photons comme stimulus. Les familles d’unités photochromiques employées les plus 

souvent comprennent les azobenzènes, les diaryléthènes et les spiropyranes, qui 

typiquement sont des interrupteurs moléculaires binaires, modulables par irradiation 

lumineuse entre deux états (méta) stable. Afin d’amplifier l’effet via le changement des 

propriétés physicochimiques de tels interrupteurs moléculaires, il est généralement 

convenable de les combiner avec d’autres unités fonctionnelles, soit moléculaires ou bien 

avec des nanomatériaux. Ce faisant, il a été démontré qu’il est possible d’obtenir des 

dispositifs électroniques de mémoire,[2] ou d'observer des propriétés émergentes dans des 

systèmes hybrides plasmoniques-moléculaires[3] avec des stimuli lumineux. Avec l’objectif 

de développer des dispositifs et des machines artificiels de plus en plus complexes, un 

intérêt croissant est consacré à la réalisation de systèmes comprenant de multiples 

interrupteurs moléculaires dont le comportement est indépendant de l’état des unités 

voisines.[4] La synthèse d'unités multi-photochromiques présente un intérêt particulier, 

car en principe il pourrait permettre de réaliser un système commutable entre 2n états (où 

n est égal au nombre de photochromes actifs, s’ils sont différenciables). En vue de la 
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réalisation de cette thèse, des nouveaux systèmes multi-photochromiques, où hybrides 

photochrome/nanomatériaux contenant des fragments azobenzène, diaryléthène ou 

spiropyrane ont été réalisés et étudiés. 

 

La première partie du travail expérimental effectué dans ce cadre porte sur l’étude de 

nouveaux dérivés photochromiques à base d’azobenzènes contenant jusqu’à trois 

interrupteurs dans la même molécule. Les composés ont été réalisés en collaboration avec 

le groupe du Prof. M. Mayor (Karlsruher Institut für Technologie), synthétisés par J. 

Santoro and Dr. M. Valášek. De telles molécules ont été réalisées comme composants de 

base pour la génération de matériaux sensibles à la lumière, utilisables pour le stockage, 

tels que des polymères de coordination et des réseaux moléculaires covalents 2D et 3D, 

pour ainsi étudier leur auto-assemblage dans des réseaux formés via des liaisons 

hydrogène.[5] 

 

 

Figure 1. Isomérisation du tris(azobenzène) 1. 

 

Les édifices moléculaires étudiés ici sont constitués de noyaux « star-shaped » rigides, leur 

géométrie étant dictée par la présence d’une squelette aromatique et par des unités 

photochromiques se ramifiant à partir d’un cycle benzène central 1,3,5-trisubstitué. Un tel 

motif de substitution places les bras réciproquement en position méta, abaissant ainsi la 

conjugaison de ces systèmes multi-chromophoriques. Ce projet est motivé par l’étude du 

multi-photochromisme de tels systèmes, de ce fait une caractérisation détaillée des 

multiples états isomériques a été effectuée. Le multi-photochromisme du dérivé 

tris(azobenzène) 1 a été étudié par comparaison avec des composés bis(azobenzène) et 

mono(azobenzène) présentant une géométrie et une rigidité similaire, en utilisant 

plusieurs techniques analytiques, comprenant la séparation par chromatographie de 
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chaque état et leur caractérisation par spectrométrie de masse à mobilité ionique. Les 

composés modèles bis(azobenzène) et mono(azobenzène) ont été réalisés en substituant 

progressivement le groupe diazene-1,2-diyl par des unités ethyn-1,2-diyl, donnant ainsi des 

branches similaires en géométrie et dimension, mais non photosensibles. L’auto-

assemblage du dérivé tris(azobenzène) 1 en réseaux bidimensionnels a été étudié par 

microscopie à effet tunnel (STM), corroborée par la modélisation moléculaire (cette 

dernière a été effectuée en collaboration avec le groupe du Prof. J. Cornil, Université de 

Mons). L’exploration de l’auto-assemblage dynamique de tels systèmes en architectures 

supramoléculaires ordonnées a permis d’identifier des motifs résultant de multiples 

isomères, démontrant ainsi que le multi-photochromisme est conservé lorsque les 

molécules sont confinées en deux dimensions. 

 

 

Figure 2. Images STM de 1 enregistrées à l’interface entre un substrat de graphite (HOPG) et une solution (c = 
10 µM) de 1 en acide 1- heptanoïque. À gauche, pas de rayonnement lumineux. Centre, irradiation in-situ avec 
lumière UV à l'état photostationnaire (PSS, λmax = 367 nm). À droite, irradiation ultérieure in-situ avec lumière 
visible (PSS, λmax = 451 nm). 

 

Le deuxième système étudié dans ce travail est basé sur des systèmes contenant plusieurs 

diaryléthènes. Les édifices moléculaires présentés ici sont basés sur une architecture de 

type dyade contenant un noyau fluorescent et symétrique constitué par une porphyrine et 

quatre diaryléthènes. Ces diaryléthènes sont, plus précisément, des dithyénylethènes 

pontés par un groupement perfluorocyclopentène (DTE) dans sa périphérie. Les composés 

décrits ci-dessus ont été designés et synthétisés par l’équipe de Prof. J. Weiss (Université 

de Strasbourg), par Dr. T. Biellmann. Ces systèmes ont été conçus pour exploiter la 

porphyrine centrale à la fois comme échafaudage symétrique pour les photochromes ainsi 

que pour ses propriétés photophysiques attractives. Les unités DTE employés sont 
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connectées à la position méta d’un noyau de tétraphénylporphyrine : une telle connectivité 

a été choisie non seulement pour empêcher la formation d’atropoisomères, mais surtout 

pour découpler électroniquement les interrupteurs moléculaires afin de conserver leur 

photoréactivité. Quatre porphyrines tétra-substituées par unités DTE 2 ont été étudiées, 

la base libre et les complexes de Zn(II), Ni(II) et Co(II). La conversion photochimique 

efficace et réversible des quatre dérivés du système 2 a été démontrée par spectroscopie 

d’absorption UV-Vis et 1H-RMN (cette dernière a été faite en collaboration avec l’équipe 

de Prof. V. Guerchais, Université de Rennes I). Il est intéressant de noter que la base libre 

et le complexe de zinc ayant toutes les unités DTE sous forme ouverte présente des 

propriétés photophysiques similaires à celles de leurs analogues non photochromiques : la 

tétraphénylporphyrine base libre et le complexe de zinc. A l’inverse, la conversion 

photochimique déclenchée par les UV des unités DTE en leurs isomères fermés 

correspondant apporte une annihilation presque complète de l’émission initiale des 

fluorophores. 

 

 

Figure 3. a) Formule de structure des dérivés de porphyrine 2 tétra-substitués avec unités DTE étudiés. M = 
H2, Zn(II) montrent une émission commutable réversible. b) Schéma simplifié de l'extinction des émissions 
par transfert d'énergie vers l'isomère fermé de l’unité DTE. Gauche, DTE-ouvert : fluorescence ON. Droite, 
DTE-fermé : fluorescence OFF. 

 

La luminescence peut être commuté dans un état ON et un état OFF de façon réversible 

sur plusieurs cycles d’irradiation, tant en solution que dans les couches minces dopées par 

2, ce qui nous a permis de démontrer que ces composés pouvaient être utilisés comme 

colorants fluorescents photo-réinscriptibles. Il est important de souligner que la detection 

de la fluorescence de ces composés peut être effectuée sans modifier l’état des 

commutateurs modulant la fluorescence. Le contraste élevé obtenu dans la modulation de 
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fluorescence est dû à la présence d'un grand nombre (à savoir quatre) d’interrupteurs 

autour du noyau émissif. 

 Dans le dernier chapitre expérimental, l'accent a été mis sur les systèmes hybrides 

constitués de jonctions de spiropyranes photosensibles avec des nanoparticules 

plasmoniques, à savoir des nanorods d'or (AuNR). Une telle combinaison a été choisie afin 

d'étudier la variation des propriétés optiques des nanoparticules anisotropes et de vérifier 

un éventuel effet sur la stabilité de la dispersion colloïdale lors de l'isomérisation de l'unité 

photochromique. Les interrupteurs moléculaires utilisés ici ont été immobilisés sur la 

surface des AuNR en exploitant la chimie des thiols. Le dérivé de spiropyrane ponté par le 

dodécanethiol utilisé dans cette étude a été synthétisé dans le groupe du Prof. S. Hecht 

(Humboldt-Universität zu Berlin), par J. Boelke et B. Zyska. Les unités spiropyranes ont été 

choisies suite à la variation importante de leur moment dipolaire lors de l’isomérisation 

de la forme spiropyrane (SP) vers l’isomère mérocyanine (MC).[6] L'une des propriétés les 

plus attrayantes des AuNR est liée à leurs propriétés optiques: possédant non seulement 

une bande de résonance plasmonique de surface (SPR) dans la gamme de la lumière visible 

(λ ≈ 520 nm) commune à tous les colloïdes d'or, ils sont également caractérisés par un 

second mode SPR aux énergies inférieures (nommé longitudinal SPR, LSPR). Ce dernier 

est généralement une bande fine et intense, et sa longueur d'onde maximale peut être 

ajustée du visible au proche infrarouge du spectre électromagnétique en faisant varier le 

rapport entre la longueur et le diamètre des nanoparticules anisotropes. Les propriétés 

spectrales des nanoparticules plasmoniques sont très sensibles à la variation de leur 

environnement diélectrique, en particulier celles présentant des propriétés anisotropes 

telles que AuNR.[7] Nous avons utilisé des méthodes présentes dans la littérature pour 

synthétiser des dispersions colloïdales d'AuNR stabilisées par des tensioactifs avec 

différents rapports longueur et diamètre, sélectionnés sur la base du recouvrement 

spectral de leur mode LSPR avec la bande d'absorption de la forme MC à anneau ouvert 

de l’unité photochromique. Cela a été fait afin de vérifier l’apparition de propriétés 

émergentes sur le système hybride réalisé en couplant les AuNR au photochrome une fois 

immobilisé sur ses surfaces. Les interrupteurs moléculaires à terminaison thiol ont 

également été utilisés dans le but de stabiliser la dispersion colloïdale dans des solvants 

organiques. 
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Figure 4. Représentation schématique de l'isomérisation du dérivé de spiropyrane à terminaison thiolate 3. 

 

La fonctionnalisation des nanoparticules anisotropes (AuNR) a été réalisée en substituant 

le tensioactif stabilisant le colloïde après sa synthèse avec la chemisorption du thiol 

fonctionnel à la surface des AuNR, en veillant particulièrement à éviter la variation de la 

morphologie des nanoparticules après cette étape. Le photochromisme des systèmes 

hybrides a été étudié en dispersion colloïdale par spectroscopie d’absorption UV-Vis, où 

aucune agrégation évidente du colloïde induite par la lumière n'était évidente. Néanmoins, 

une variation évidente dans les spectres d’extinction dépendante de la longueur d’onde du 

mode LSPR et du recouvrement spectrale avec MC a été observée lors d'une irradiation 

UV. Afin de mieux caractériser notre système hybride et d’obtenir une compréhension 

plus détaillée du comportement de l’unité photochromique une fois immobilisée sur les 

nanoparticules plasmoniques, nous avons réalisé une étude spectroscopique sur les 

particules sur support solide par diffusion de la lumière en champ sombre et par 

spectroscopie Raman, en collaboration avec Prof. H. Uji-i and Dr. S. Toyouchi (Katholieke 

Universiteit Leuven). L’isomérisation du SP sur AuNR a pu être étudiée grâce aux grands 

facteurs d’amplification Raman présentés par ces nanomatériaux, suivant l’empreinte 

vibrationnelle de SP et MC par surface-enhanced Raman scattering (SERS). Néanmoins, les 

preuves spectroscopiques obtenues montrent que le thiol photochromique n'est pas 

capable de s’isomériser lorsqu'il est immobilisé à la surface du colloïde d'or, étant alors 

uniquement présent sous la forme MC (photochromisme négatif). Nous attribuons cette 

défaillance à la fois à la très faible distance de l’interrupteur moléculaire à la surface des 

nanoparticules et à leur encombrement dans la monocouche auto-assemblée, cette 

dernière conduisant très probablement à la stabilisation de la forme MC. 

 

Dans le but de développer de nouveaux systèmes sensibles aux stimuli, nous avons 

présenté ici trois exemples de systèmes optiquement commutables basés sur des blocs 

photochromiques. L'ingénierie de dispositifs constitués par la combinaison de 

commutateurs moléculaires avec des unités fonctionnelles organiques et des 
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nanostructures est très attractive, car elle permet de contrôler à distance une propriété 

physico-chimique sélectionnée, sans accumulation de déchets. Dans ce cadre, nous avons 

utilisé ici trois familles différentes d’unités photochromiques, en fonction de la propriété 

du système que nous voulions faire varier par des stimuli optiques. 

Dans le premier cas, l’azobenzène était l’unité de choix, après son changement de 

forme important lors de la conversion de l’isomère E en isomère Z déclenché par la lumière 

ultraviolette. En intégrant de multiples unités azobenzéniques dans des édifices 

moléculaires pseudo-planaires en forme d'étoile, nous avons montré qu'il est possible de 

réaliser des molécules rigides relativement petites ayant des unités photochromiques 

efficaces et totalement indépendantes en les connectant simplement en position méta sur 

un noyau benzénique trisubstitué. Ces molécules présentent à l'état photostationnaire de 

multiples isomères, du fait de la présence de trois commutateurs au maximum dans la 

même structure, chaque espèce étant isolée et entièrement caractérisée par 

chromatographie liquide et spectrométrie de masse à mobilité ionique. Ces systèmes sont 

capables de subir de grands réarrangements géométriques lors de la photoisomérisation, 

preuve corroborée par microscopie à effet tunnel, ce qui prouve que l’assemblage de 

différents isomères (générés par des stimuli lumineux) à l’interface solide-liquide produit 

des assemblages cristallins 2D à liaisons hydrogène avec une morphologie sensiblement 

différente. Nous prévoyons que de tels composés multi-azobenzéniques pourraient être 

utilisés à l'avenir comme éléments constitutifs des matériaux host-guest ou metal-organic 

frameworks contrôlables par des stimuli lumineux. 

Dans un second exemple, des commutateurs photochromiques de type 

dithiényléthène (DTE) ont été utilisés pour déclencher l'émission d'un fluorophore 

organique. Cela a été possible en exploitant l’important changement survenant sur le 

système π-électronique lors de l'isomérisation entre la forme ouverte et la forme fermée 

du DTE, accompagnée de l'altération de ses niveaux électroniques. De cette manière, le 

noyau émissif, à savoir la base libre ou la tétraphénylporphyrine de zinc (II), n’est pas 

perturbé lorsque les unités DTE résident dans la forme ouverte. A l’inverse, le transfert 

d’énergie se produit en présence de la forme fermée, résultant en l’annihilation de la 

fluorescence. La dyade formée par le noyau porphyrine lié par liaisons covalentes à quatre 

unités DTE a montré une modulation réversible de son émission par irradiation 

ultraviolette et visible, affichant un contraste particulièrement élevé dû à la présence de 

plusieurs agents capables d’annihiler l’émission autour du cœur émissif lorsque les unités 
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DTE sont commutées en la forme fermée. La possibilité de moduler la fluorescence et de 

la détecter à des longueurs d’ondes très distinctes, même lorsqu’ils sont dispersés dans 

une matrice polymère et déposés en tant que films minces, rends de tels dérivés 

particulièrement intéressants pour leurs applications dans le stockage de mémoire optique 

et l'imagerie par microscopie à fluorescence. 

Comme dernier exemple, un dérivé de spiropyrane a été utilisé comme unité 

photosensible en raison de la variation considérable du moment dipolaire électrique de 

ses deux isomères: le spiropyrane et la mérocyanine. Un tel interrupteur moléculaire activé 

par la lumière a été combiné avec des nanoparticules d’or anisotropes (nanorods d’or, 

AuNR), exploitant la correspondance de leurs bandes de résonance plasmoniques de 

surface et la grande sensibilité de ces dernières à la variation de leur milieu diélectrique. 

Différents AuNR avec des proportions variables ont été utilisés afin d'étudier l'effet du 

recouvrement spectral entre les spectres d'absorption et d'émission des mérocyanines et 

les bandes de résonance de plasmon de surface des nanomatériaux. En induisant 

l'isomérisation de l’interrupteur moléculaire dans les dispersions colloïdales AuNR en 

liquide, nous avons visualisé une grande variation du spectre d'extinction des colloïdes, 

dépendante de la longueur d’onde du mode LSPR et du recouvrement spectrale avec le 

photoswitch. Néanmoins, l’utilisation de la technique SERS a montré que l’isomérisation 

du commutateur moléculaire n’était pas possible à la surface des nanomatériaux, ce qui 

montre à quel point la réalisation de systèmes hybrides capables de répondre à des stimuli 

lumineux est difficile. 
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The work described within the present thesis is centred on the development of stimuli-

responsive systems based on photochromic units. During the course of the last decades, 

enormous progress has been made in the realisation of remotely addressable, switchable 

synthetic systems, with a special interest in using light as an input. The scope of such a 

quest is to obtain molecular devices and machines of increasing complexity with the 

ultimate goal of mimicking natural processes.[1] Moreover, from the technological point of 

view it is highly appealing to obtain materials or host-guest complexes capable of varying 

their macroscopic properties (e.g. morphology change, guest uptake/release), or to store 

information using photons as a remote control. The most widely employed families of 

photochromic compounds include azobenzene, diarylethenes and spiropyran derivatives, 

and typically are binary switches, being interconvertible between two states with a 

photochemical reaction. In order to exploit and/or to amplify the effect of different 

physicochemical properties of such molecular switches, it is generally suitable to combine 

them with other molecular functional units, or alternatively with nanomaterials. By doing 

so, it has been shown possible to obtain photoswitchable memory devices,[2] or to observe 

emerging properties in hybrid plasmonic-molecular systems.[3] With the aim of developing 

increasingly complex artificial devices and machines, growing interest is currently being 

devoted to the development of molecular, and/or hybrid systems including multiple and 

independent responsive units.[4] The synthesis of multi-photochromic units is of particular 

interest, since in principle it could allow to realise a system that is switchable between 2n 

states (where n equals to the number of the active photochromes, if they are 

distinguishable). The work conducted towards the realisation of this thesis has been 

focussed on the study and development of novel photoswitchable systems containing 

either azobenzene, diarylethene, or spiropyran moieties. 
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The first part of the experimental work performed here lies on the study of novel 

azobenzene-based photochromic derivatives containing up to three switches within the 

same molecular backbone. The compounds were realised in collaboration with the group 

of Prof. M. Mayor (Karlsruhe Institute of Technology), synthesised by J. Santoro and Dr. 

M. Valášek. Such molecules were realised as promising building blocks for the generation 

of light-responsive materials, such as 2D and 3D metal-organic materials and covalent-

organic frameworks, as well as to study their self-assembly in hydrogen-bonded 

networks.[5] The molecular scaffolds studied here consist of rigid star-shaped cores, being 

their geometry dictated by the presence of an aromatic backbone and by the photochromic 

units branching from a central, 1,3,5-trisubstituted benzene ring. Such a substitution 

pattern results in the arms being reciprocally in meta- position, thus lowering the 

conjugation of the multi-chromophoric systems. We were interested in studying such 

systems for their multi-photochromism, therefore we performed an in-depth 

characterisation of their multiple isomeric states. 

 

 

Figure 1. Isomerisation of tris(azobenzene) 1 

 

A detailed study over the multi-photochromism of the tris(azobenzene) derivative 1 by 

comparison with bis(azobenzene) and mono(azobenzene) compounds showing similar 

geometry and rigidity has been performed with multiple analytical techniques. The model 

bis(azobenzene) and mono(azobenzene) compounds were realised by progressively 

substituting the diazene-1,2-diyl groups with ethyn-1,2-diyl units, thus yielding similar, yet 

non-photoresponsive branches. The self-assembly of the tris(azobenzene) in 2D networks 

has been studied by scanning tunnelling microscopy (STM), corroborated by molecular 

modelling (the latter in collaboration with the group of Prof. J. Cornil, Université de 

Mons). The exploration of the dynamic self-assembly of such systems into ordered 
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supramolecular architectures allowed to identify patterns resulting from multiple isomers, 

thereby demonstrating that the multi-photochromism is retained when the molecules are 

confined in two-dimensions. 

 

 

Figure 2. STM images of 1 recorded at the interface between an HOPG substrate and a 10 µM solution of 1 in 
1-heptanoic acid. Left, no light irradiation. Centre, in-situ UV light irradiation to the photostationary state 
(PSS, λmax = 367 nm). Right, subsequent in-situ visible light irradiation (PSS, λmax = 451 nm). 

 

The second system explored throughout this work is based on multi diarylethene-

containing systems. The derivatives presented here are based on a dyad architecture 

containing a fluorescent porphyrin core and four diarylethene, and specifically 

perfluorocyclopentene-bridged dithienylethene photoswitches (DTE) on its periphery. 

The photochromic tetra-substituted porphyrins were designed and synthesised in the 

group of Prof. J. Weiss (Université de Strasbourg), realised by Dr. T. Biellmann. Such a 

system was conceived to exploit the central porphyrin unit both as a symmetrical scaffold 

for the photochromes and for its appealing photophysical properties (e.g. fluorescence). 

The dithienylethene (DTE) units employed are connected at the meta-position of a 

tetraphenylporphyrin core: such a connectivity pattern has been chosen not only to 

prevent the formation of atropoisomers, but most importantly to electronically decouple 

the switches in order to retain their photoreactivity.  
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Figure 3. a) Structure formula of the tetra-DTE-substituted porphyrin derivatives 2 studied. M = H2, Zn(II) 
show reversibly switchable emission. b) Simplified scheme of the emission quenching by energy transfer to 
the closed DTE isomer. Left, open-DTE: fluorescence ON. Right, closed-DTE: fluorescence OFF. 

 

Four tetra(dithienylethene)-substituted porphyrins 2 were studied, being the free base, 

and the Zn(II), Ni(II) and Co(II) complexes. The effective and reversible photochemical 

conversion of the four derivatives of the system reported here was studied by UV-Vis 

absorption and emission spectroscopy and 1H-NMR (the latter in collaboration with the 

group of Prof. V. Guerchais, Université de Rennes I). Interestingly, the free base and the 

zinc complex having all the DTE units in the open form display analogous photophysical 

properties to their non-photochromic analogues free base- and zinc tetraphenylporphyrin. 

Conversely, UV-triggered photochemical conversion of the DTE units to their 

corresponding closed isomer(s) results in almost complete quenching of the original 

emission of the aforementioned compounds. The luminescence showed to be reversibly 

on- and off-switched over several irradiation cycles both in solution and in dye-doped 

polystyrene thin films, allowing us to demonstrate that such compounds could be used as 

photo-rewritable fluorescent dyes, which fluorescence read-out could be performed 

without altering the state of the switches modulating the fluorescence. The high contrast 

obtained in the fluorescence modulation is due by the presence of a high amount (i.e. four) 

of photoswitches around the emissive core. 

In the last experimental chapter, the focus has been shifted from multi-photochromic 

molecules towards hybrid systems made up by joining spiropyran photoswitches with 

plasmonic nanoparticles, namely gold nanorods (AuNR). Such a combination has been 

chosen in order to study the variation of the optical properties of the anisotropic 

nanoparticles and to verify an eventual effect on the stability of the colloidal dispersion 

upon isomerisation of the photochromic unit. The photoswitches used here have been 

grafted on the surface of AuNR by exploiting thiol chemistry. The dodecanethiol-bridged 
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spiropyran derivative 3 used in this study was synthesised in the group of Prof. S. Hecht 

(Humboldt University, Berlin) by Jan Boelke and Björn Zyska. Spiropyran photochromes 

were chosen following the notably large variation of their molecular dipole moment upon 

isomerisation from the spiropyran (SP) form to the merocyanine (MC) isomer.[6] One of 

the most appealing properties of AuNR is related to their optical properties: alongside with 

the surface plasmon resonance band (SPR) in the visible light range (λ ≈ 520 nm) common 

to all gold colloids, they are characterised by a second SPR mode at lower energies (named 

longitudinal SPR, LSPR). The latter is commonly a sharp, intense band, and its maximum 

wavelength can be tuned from the visible to the near-infrared range of the electromagnetic 

spectrum by varying the aspect ratio of the anisotropic nanoparticles. 

 

 

Figure 4. Schematic representation of the isomerisation of thiolate-terminated spiropyran derivative 3. 

 

The spectral properties of plasmonic nanoparticles are highly sensitive towards the 

variation of their dielectric environment, and especially the ones presenting anisotropic 

properties such as AuNR.[7] We have employed well-established literature methods to 

synthesise surfactant-stabilised colloidal dispersions of AuNR with different aspect ratio, 

which were selected on the basis of the spectral overlap of their LSPR mode with the 

absorption band of the open-ring MC form of our photochromic unit. This was done in 

order to verify the appearance of emerging properties on the hybrid system realised by 

coupling AuNR with the photochrome once grafted on its surface. The thiol-terminated 

photoswitches were used also with the purpose of stabilising the colloidal dispersion in 

organic solvents. Functionalisation of the aforementioned anisotropic nanoparticles was 

performed by substituting the surfactant stabilising the as-synthesised colloid upon 

chemisorption of the functional thiol on the surface of AuNR, with particular care in 

avoiding variation of nanoparticle morphology subsequent to this step. Photochromism 

of the hybrid systems was studied in colloidal dispersion by UV-Vis absorption 

spectroscopy, where no evident light driven aggregation of the colloid was evident, though 

clear plasmon-dependent variation of the extinction spectra was seen occurring upon UV 



 

[XIV] 
 

irradiation. In an attempt to further characterise our hybrid system and to obtain a more 

detailed understanding on the behaviour of the photochromic unit grafted on the 

plasmonic nanoparticles, we have performed a spectroscopic study on the solid-supported 

particles by dark field light scattering and Raman spectroscopy, in collaboration with Prof. 

H. Uji-i and Dr. S. Toyouchi (Katholieke Universiteit Leuven). Isomerisation of the 

photochromic unit grafted on AuNR could be studied taking advantage of the large Raman 

enhancement factors presented by such nanomaterials, thus by tracking the vibrational 

fingerprint of SP and MC using the surface-enhanced Raman scattering (SERS) technique. 

Nevertheless, the spectroscopic evidence obtained shows that the photochromic thiol is 

not capable of isomerising when immobilised on the surface of the gold colloid, being 

present only in the MC form (negative photochromism). We impute this failure both in 

the vicinity of the photoswitch to the nanoparticles surface, and to their crowding in the 

self-assembled monolayer, the latter most likely leading to the stabilisation of the open-

ring MC form. 

 

With the objective of developing novel stimuli-responsive systems, we have presented 

here three examples of optically switchable systems based on photochromic building 

blocks. The engineering of devices made up by the combination of photoswitches with 

molecular functional units and nanostructures is highly appealing since it gives the 

possibility of remotely controlling a selected physicochemical property in a reversible 

fashion without the build-up of waste products. In this framework, we have utilised here 

three different families of photochromic units, according to the property of the system we 

wanted to be varied by optical stimuli.  

In the first case, azobenzene was the unit of choice, following its large shape change 

occurring upon conversion from the E to the Z isomer triggered by ultraviolet light. Upon 

embedding multiple azobenzene units within rigid, pseudo-planar star-shaped molecular 

scaffolds we have shown that it is possible to realise relatively small rigid molecules having 

efficient, fully independent photochromic units by simply connecting them in meta- 

position on a central trisubstituted benzene ring. Such molecules present at the 

photostationary state multiple isomers, due to the presence of up to three switches within 

the same structure, being each species isolated and fully characterised by means of liquid 

chromatography and ion-mobility mass spectrometry. The star-shaped systems are 
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capable to undergo large geometrical rearrangements upon photoisomerisation, evidence 

which was given also by scanning tunnelling microscopy, evidencing that the assembly of 

different (light-generated) isomers at the solid-liquid interface between graphite and their 

solutions gave yield to hydrogen bonded 2D crystalline assemblies with notably different 

morphology. We envision that such multi-azobenzene compounds could be employed in 

the future as building blocks for light-triggered host-guest systems or metal-organic 

frameworks. 

In a successive example, photochromic dithienylethene (DTE) switches were 

employed to gate the emission of an organic fluorophore. This was made possible by 

exploiting the large change occurring on the π-electronic system upon isomerisation 

between the open- and the closed-form of DTE accompanied by the alteration of its 

electronic levels. In such a way, the emissive core, namely free base or zinc (II) 

tetraphenylporphyrin, is not perturbed when the DTE unit(s) reside in the open form, 

while energy transfer occurs from the excited state of the fluorophore to the DTE in the 

closed form. The dyad formed by the porphyrin core covalently linked to four DTE units 

showed reversible modulation of its emission upon ultraviolet and visible light irradiation, 

displaying notably high contrast due by the presence of multiple quenchers around the 

emissive core when the DTE units are switched to the closed form. The possibility of 

switching the system and detecting its fluorescence at very distinct wavelengths together 

with its capability of being converted between the on- and off-forms also when dispersed 

in a polymeric matrix and deposited as thin films makes such derivatives particularly 

appealing for their application in all-optical memory storage and fluorescence microscopy 

imaging. 

As last example, a spiropyran derivative was employed as photoswitchable unit owing 

to the considerable variation of the electrical dipole moment of its two isomers: the bulky 

spiropyran, and the planar, conjugated merocyanine. Such a light-activated switch was 

combined with anisotropic gold nanoparticles (gold nanorods, AuNR), exploiting the 

tunability of their surface plasmon resonance bands and the high sensitivity of the latter 

towards the variation of their dielectric medium. Different AuNR with varying aspect ratio 

were employed, in order to study the effect of the spectral overlap between the absorption 

and emission spectra of merocyanine and the surface plasmon resonance bands of the 

nanomaterial. Upon inducing the isomerisation of the switch in AuNR colloidal 

dispersions in liquid, we could visualise a large, plasmon wavelength-dependent variation 
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of the colloid extinction spectrum. Nevertheless, the use of SERS technique showed that 

isomerisation of the photoswitch could not be attained on the nanomaterial surface, thus 

enlightening how challenging is the realisation of hybrid systems capable of responding 

to light stimuli. 
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The realisation of architectures capable of responding to external stimuli attracts great scientific 

interest, with the ultimate goal of building-up materials whose macroscopic properties could be 

remotely controlled. On this regard, Nature and more specifically the biological world represents 

probably the first and most important source of inspiration for the research in this field. Living 

cells are the greatest example of complex machines known, being capable of performing a vast 

variety of different functions with high spatial and temporal control, as a result of external 

stimuli. Tremendous efforts in chemical research and nanoscience have been made in order to 

employ the concepts given by biology and biochemistry, mastering the abilities of synthetic 

chemistry in combination with supramolecular concepts to obtain self-assembled, or self-

organised systems that can perform functions whose complexity is still not even comparable to 

their natural counterparts.  

Within the broad scientific community that includes synthetic and supramolecular 

chemistry, soft matter nanoscience and materials science, the field aimed at engineering 

synthetic molecular (and supramolecular) systems capable of responding to external stimuli is 

extremely active and in rapid expansion.[1, 8] Recently, these efforts have also been recognised by 

awarding to Sauvage, Stoddart and Feringa the 2016 Nobel Prize for chemistry, for their 

pioneering work aimed at the realisation of synthetic molecular machines and devices.[9]  

Stimuli-responsive molecular and supramolecular systems are species capable of changing 

their conformation as a consequence of an external trigger, and such a conformational change 

has an impact on their overall properties.[10] From such definition, it is of fundamental 

importance to distinguish between the different types of “machines” that can arise from these 

synthetic systems. On the one hand, switches as a result of the change in their atomic 

connectivity and conformation can be used to tune the overall properties of the system studied, 

analogously as their macroscopic counterpart. However, any work performed upon switching 

from one state to another will be lost while returning to the original conditions. On the contrary, 

more complex devices such as motors are capable of performing mechanical work at the end of 

their cycle, as the movement generated by their conformational changes is directional.[8c] Thus, 

molecular motors take advantage of random thermal fluctuations (Brownian motion) to realise 
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directional motions through ratcheting mechanisms such as energy-[11] and information 

ratchets.[12] In this regard, motors and Brownian ratchets are more complex entities which take 

advantage of the molecular movement produced by a switch, but enabling to control the 

directionality of the motion generated at the molecular level. Artificial molecular motors are just 

one – yet probably the most visionary – example on how molecules and supramolecules can be 

employed as sophisticated nanomachines which can be controlled with external inputs.  

The whole supramolecular chemistry is based on the concepts of self-assembly and self-

organisation occurring between building blocks which are encoded with a wealth of chemical 

information (e.g. molecular conformation, atom connectivity, functional groups allowing 

intermolecular interactions, to name a few).[13] Though generally the self-assembly processes 

approach a condition of thermodynamic equilibrium where the most stable species is formed, 

thus reaching the global energy minimum of the potential energy surface describing the system. 

On the contrary, Nature, and in particular living systems are constituted by complex assemblies 

that, upon consumption of chemical fuel, reside out of this potential energy well, hence they are 

in an out-of-equilibrium state. Recently, the realisation of synthetic supramolecular systems 

which can be driven far away from chemical equilibrium conditions is being embraced as a major 

challenge by several research groups.[14] Chemical systems are pushed away from 

thermodynamic equilibrium via the supply of energy, achieved with external stimuli (e.g. 

light),[15] or chemical fuels. In this context, switches are also of paramount importance, as they 

often constitute the molecular building blocks that allow to externally control and drive the 

system out of the global energy minimum in kinetically trapped, or alternatively far-from-

equilibrium conditions.   

Switches are not only the principal building block for the construction of nanomachines and 

increasingly complex, life-inspired systems, but can also be employed in a plethora of 

applications in materials science and optoelectronics. For instance, there is a constantly growing 

amount of reports showing that nowadays it is possible to realise smart materials whose 

macroscopic properties (e.g. shape) could be changed by external stimuli, thus enabling to make 

macroscopic actuators also capable of performing mechanical work.[16] Moreover, the 

combination of switches with (organic) semiconductors enabled to realise sophisticated devices 

capable of e.g. storing information, as optically reconfigurable memory elements.[2, 17] Switches 

have shown their importance also in the development of efficient fluorescent probes,[18] to 

perform controlled drug delivery,[19] and to remotely control chemical reactions.[20] 

With the aim of developing artificial chemical systems of increasing complexity, one of the 

hardest challenges still open to date consists in the integration of multiple and independent 

responsive units within a single molecular system. Chemical, electrochemical or photochemical 

switches, are typically systems which, analogously as their macroscopic counterpart, can exist 

into two states showing remarkably different properties, and their interconversion is externally 

governed. Switches are therefore binary objects, nonetheless the integration of multiple 

switchable units within the same molecule could allow to obtain a system capable to switch 

between a higher number of states, thus to break the traditional 0/1 barrier in a single object. 

This in principle could amount up to 2n, where n equals to the number of binary switches, if 

each is distinguishable. Among various inputs, the use of photons has been regarded as one of 
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the most promising for technological applications thanks to the possibility of being remotely 

exploited with high spatiotemporal resolution, without build-up of waste products.[21]  

Photoswitchable nanoarchitectures based on photochromic compounds constitute an extremely 

appealing substrate for the development of remotely controllable dynamic materials. Light 

represents the stimulus of choice due to its non-invasive character. This work is aimed at the 

development and the study of novel systems containing multiple photochromic components 

kept together by different scaffolds. Such studies have been performed in order to establish 

whether the integration of several switchable components enables the observation of emerging 

properties that could not be attained by employing only the single parts. This includes the 

presence of multiple states, thus going beyond their dual functionality, or to increase the 

contrast in the photoresponse of the system. In this framework, photochromic units coming 

from the three main classes of photoswitches available, being azobenzene, diarylethene, and 

spiropyran have been combined in multiphotochromic arrays by covalently binding the 

functional fragments to a specific “scaffold”. One among the greatest challenges to obtain fully 

working multiphotochromic systems relies on the choice of a suitable bridge between the 

switches, which at the same time should ensure acceptable switching performance of the single 

components, but also allowing the appearance of emerging properties. In fact, in the present 

work the term “scaffold” has a very broad definition, as for the bridging unit between the 

switches different objects having heterogeneous nature and dimensions have been used, ranging 

from simple 1,3,5-trisubstituted benzene connectors, to tetraphenylporphyrins, and even to 

anisotropic gold nanoparticles.  

The first multiphotochromic system tackled in this work at Chapter 4 consists of a 

multi(azobenzene) derivative, containing up to three switches within the same molecular 

backbone. Here the use of a simple 1,3,5-trisubstituted benzene ring to bridge the chromophores 

granted full photochromism of the system, with the observation of multiple states as the product 

of the isomerisation of each light-activated unit, but at the same time providing the molecular 

rigidity needed in order to employ azobenzenes as molecular actuators. Building upon the 

widely studied surface-confined self-assembly behaviour of aromatic carboxylic acids, we have 

studied the dynamic self-assembly of our multi-azobenzene system in 2D supramolecular 

networks, and have also been able to identify multiple isomeric states by scanning tunnelling 

microscopy. In the second project, reported in Chapter 5, a tetra(diarylethene) system 

represented the focus of our investigation, where a tetraphenylporphyrin moiety was used as 

scaffold, by tethering the photochromes to its periphery. The use of such architecture provided 

a photoswitchable fluorophore which highly contrasted photoresponse was due to the presence 

of multiple surrounding switches capable of gating its emission. The last experimental work 

described here at Chapter 6 consists of a hybrid system obtained by combining a photochromic 

spiropyran derivative with anisotropic gold nanoparticles, and specifically gold nanorods. In this 

framework, the introduction of the concept of multiphotochromism for such an example falls 
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on a different length scale, and does not refer to each photochrome in a single molecule, as the 

photoswitches are not distinguishable from one another being present in large number on the 

gold nanorods (particles with dimensions ranging between 20 – 130 nm), but can be intended 

from the anisotropic character of the colloid. Gold nanorods are distinguished by the presence 

of two surfaces with different curvature radius, being the apex and the longitudinal face; thanks 

to the facile tunability of their synthetic method allowing to obtain nanorods in a wide range of 

different dimensions, thus having different ratio between the area of the longitudinal faces vs. 

the one of the apices. In this way the use of photochromic units that are highly sensitive to their 

local environment (e.g. spiropyrans) could result in the observation of a distinct photoresponse 

related to the presence of photoswitches tethered to the different faces of the anisotropic gold 

colloid. 

 

This thesis is organised as follows: 

 Chapter 2 offers a brief description of the theoretical background of this work, including 

the materials employed; 

 Chapter 3 provides an overview over the central techniques employed for the 

experimental work reported here; 

 Chapter 4 describes our investigations on the star-shaped multi(azobenzene) 

compounds, focussed at studying their multi-photochromism and the dynamic surface-

confined self-assembly of the tris(azobenzene) derivative; 

 Chapter 5 is focussed on a reversibly switchable fluorophore-diarylethene system 

composed of a tetraphenylporphyrin emissive core and four diarylethene units allowing 

to control its emission in highly contrasted fashion; 

 Chapter 6 deals with the covalent functionalisation of gold nanorods with spiropyran 

photochromic derivatives and the study of the photochromism of the hybrid system 

upon varying the nanorods aspect ratio; 

 Chapter 7 provides a summary of the presented work, together the outlooks for its future 

development. 
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Phototriggered phenomena are ubiquitous in Nature, being the most notable examples 

photosynthesis, vision, phototropism and phototaxis. On the other hand, organic 

photochromism, being the reversible phenomenon of conversion between two forms of a 

chromophore under light stimuli is known since slightly more than a century. The first examples 

of photochromic reactions were suggested nearly at the end of the nineteenth century, and first 

described as phototropism,[22] but the term photochromism was first used by Hirshberg in 

1950.[23] Such a name derives from the combination of the Greek words used to define light and 

colour, referring to the phenomenon of reversible colour change obtained from light irradiation. 

One among the first class of photochromic molecules being discovered was the spiropyrans, by 

Fischer and Hirshberg, in 1952.[24] Soon after, Hirshberg’s idea of “photochemical erasable 

memory”[25] literally kickstarted active research in this field. Nowadays, the definition of 

photochromism does not refer only to compounds capable of reversible light-induced colour 

change: it probably represents the most studied and versatile method to introduce nanoscale 

optical manipulations into systems going from the molecular scale to the macroscopic level. The 

switching between different states induced by light is determined by the interconversion to a 

different isomer of the photochromic compound. This event is accompanied by distinct changes 

in the physicochemical properties of such states, which range from the variation of the 

absorption spectra, energy of excited states and molecular orbitals, shape, luminescence, 

refractive index, dielectric constant, electron delocalisation, electrical conductance, molecular 

dipole moment, solubility, to name a few. 

For any system undergoing a reversible photochemical reaction, upon continuous 

irradiation at a specific wavelength a steady state is reached when the two components (reagent 

and product) absorb the excitation light and are converted into their respective form. This 
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situation is called photostationary state (PSS) and its formation is an intrinsic characteristic of 

any photochromic compound. The PSS composition depends on the quantum yields of the 

forward and backward reactions together with the absorption of the two isomers at the 

irradiation wavelength. The PSS, together with the fatigue resistance, constitutes the main figure 

of merit to evaluate the performance of a photochromic system. 

Several different classes of organic compounds giving rise to photochromism have been 

developed on the basis of a number of reversible photochemical reactions. Organic 

photochromism takes advantage of molecules that upon light irradiation typically give rise to 

pericyclic reactions, E-Z isomerisation of double bonds, hydrogen transfer, or also homolytic 

bond cleavage. In the case of pericyclic reactions, several classes of photochromes, such as 

diarylethenes, spiropyrans and spirooxazines, furyl fulgides and fulgimides give rise to 6π-

electrocyclisations, while polycyclic hydrocarbons such as anthracene and helianthrene give rise 

to [4+4] and [4+2] cycloadditions. Isomerisation over double bonds represents the main 

photoinduced phenomenon for azobenzenes, imines and hydrazones, and stilbenes, together 

with the naturally occurring retinal. On the other hand, the less common anils are characterised 

by photoinduced hydrogen transfer reactions, and triarylimidazole dimers undergo homolytic 

bond cleavage. 

 

Figure 1. Most common classes of photochromic compounds classified according to their photochemical reactions. 

Photochromic compounds have been applied in various fields of natural sciences, as they 

allowed to achieve remotely controlled functionalities with the use of photons in a reversible 
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fashion. This could be achieved by coupling them with other chemical functionalities, or 

alternatively with luminophores, and even with biological systems, to name a few. In the next 

sections the most common families of photoswitches will be briefly treated, highlighting few 

examples of their applications related to the present work.  

 

 
 

Azobenzene consists of two phenyl rings bridged by a central diazene N=N moiety, being 

structurally similar to stilbene, the latter not containing heteroatoms. Such compounds may 

undergo isomerisation around the central double bond, thus can be present in the two E and Z 

isomers. For unsubstituted azobenzene, the energetic barrier for the E – Z isomerisation in the 

ground state is relatively high – it thus results that the E isomer does not convert to Z, while the 

opposite occurs being the latter isomer less thermodynamically stable. The thermal Z → E 

conversion is generally a slow reaction, but its activation barrier may be drastically lowered when 

the Z isomer is in its radical anion form.[26] The high energetic barrier for the isomerisation in 

the ground state can be circumvented by populating the excited state of both forms with the 

absorption of UV-visible light. The photochromism of both stilbene and azobenzene organic 

compounds is thus based on the E-Z photoisomerisation of their central double bond. For the 

sake of simplicity, from now on we will discuss only about azobenzene derivatives, as they 

represent the focus of part of this work. Azobenzene derivatives are yellow-orange coloured, and 

have long been known and used as industrial dyes. Their characteristic colour is due to the 

presence of two absorption bands in both E and Z isomers: the π-π* in the ultraviolet range, and 

the n-π* lying in the visible range, the latter with low intensity being symmetry forbidden.  

Absorption of light through the π-π* and n-π* transitions leads to the population of S2 and 

S1 excited states, respectively. The variation in the absorption spectra of the two isomers is 

generally limited, since the differences in electron delocalisation between the two forms are 

small. Both isomers show overlapping spectra, with a change in the respective intensity of the 

two: the π-π* is weaker, but the n-π* is more intense for the Z isomer. The irradiation of 

azobenzene in either of the two transitions can lead to the E-Z isomerisation in the two 

directions, depending on the wavelength of the light used: due to the aforementioned absorption 

spectral differences, irradiation with light of a wavelength centred on the π-π* transition leads 

to a photostationary state more rich of the Z-isomer, while the opposite situation is achieved by 

irradiating on the n-π* band. The occurrence of similar absorption spectra is the main reason for 

the invisibility of the colour change by naked eye (but also because the main variations occur in 

the ultraviolet range), nevertheless the spectral overlap also results in the formation of 

photostationary states rich of both isomers, thus preventing the quantitative formation of one 

by light irradiation. On the contrary, a situation in which ~ 100 % of one form (the E-isomer) is 

present can be achieved only by thermal conversion, following the thermodynamic stability of 

the E form. The thermal Z → E isomerisation for unsubstituted azobenzene in homogeneous 

solution has an activation barrier of ~ 95 kJ mol-1, thus is typically a rather slow process (thermal 

half-life in the order of tens of hours, at 25 °C).  
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Figure 2. a) Schematic picture of the E – Z isomerisation of azobenzene derivatives. b) UV-Vis absorption spectra of 
azobenzene E and Z isomers in acetonitrile, adapted from Ref.[27] 

Despite being widely studied, the mechanism of the apparently simple photoisomerisation 

reaction occurring on azobenzene is still subject of controversy. This is also due to the 

particularly short-lived character of the excited states of azobenzene (sub-picosecond 

timescale), and the complex mechanism for such reaction, following multiple possible pathways. 

This is evident from the fact that both E and Z azobenzene isomers undergo isomerisation 

following either S1 ← S0 and S2 ← S0 excitation, nevertheless the sum of the quantum yields for 

the two processes (ΦE→Z and ΦZ→E) does not equal unity. Moreover, isomerisation occurs upon 

violation of Kasha’s rule, as the quantum yield obtained upon excitation to the S1 state is larger 

if compared to the same obtained upon exciting the molecule on S2.[28] The quantum yield also 

depends on a number of external factors, such as solvent polarity and temperature. Several 

mechanisms of isomerisation over the central double bond on the diazo moiety have been 

proposed, being rotation, inversion, concerted inversion, and inversion-assisted rotation. The 

photoisomerisation thus can follow multiple pathways, depending on the external conditions, 

and the substitution pattern of the photochromic unit. For unsubstituted azobenzene in 

solution at room temperature for instance, isomerisation following π-π* excitation shows ΦE→Z 

= 0.11 and ΦZ→E = 0.44 in n-hexane, while ΦE→Z = 0.15 and ΦZ→E = 0.35 in acetonitrile. For n-π* 

excitation instead, ΦE→Z = 0.25 and ΦZ→E = 0.56 in n-hexane, while ΦE→Z = 0.31 and ΦZ→E = 0.46.[29] 

This suggests that viscosity and polarity may have an influence on the reaction mechanism. 

Moreover, upon embedding azobenzene in solid matrix, the isomerisation quantum yield shows 

a significant decrease. It is also important to state that azobenzene show no- or very low 

emission from their excited states, unless upon blocking the isomerisation (e.g. in solid at low 

temperature). 

The general considerations mentioned above are valid for unsubstituted azobenzene, 

nevertheless such properties could largely change upon modifying its molecular backbone. The 

substitution pattern on the phenyl rings influences the electronic properties and the steric 

hindrance of the product, thus resulting in shifts in the position of the absorption bands, varying 

quantum yields, and importantly variation of the stability of the Z isomer with respect to the E, 

together with a modification of the activation energy barrier for the thermal isomerisation. 

Generally speaking, the introduction of substituents that do not have strong electronic 

influences (by mesomeric effect) do not substantially modify the properties of such compounds 

if compared to azobenzene derivatives. Therefore, the addition of alkyl, aryl, halide, carbonyl, 

amide, nitrile, ester and carboxylate groups, or nitro, 3-amino or 3-alkoxy moieties on the phenyl 

rings leads to azobenzenes having similar properties to the unsubstituted molecule. Thus, 
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excluding significant steric hindrance lowering the stability of Z isomer, their absorption bands, 

thermal isomerisation rate, as well as the quantum yields for photoisomerisation do not change 

substantially. On the contrary, addition of amino or hydroxyl groups in 2 or 4 position results 

in noticeable red shifts of the π-π* transition which overlaps with the n-π* (the entity of the red-

shift depends on the degree of substitution on the aromatic backbone). Typically, also an 

increase of the photoisomerisation quantum yield occurs, which is also accompanied by a 

significant increase of the thermal isomerisation rate. The latter is induced by electron donating 

substituents, as they contribute in increasing the electron density of the π* orbital, thus 

decreasing the energy barrier for such reaction.[30] Azobenzenes substituted in 2 and 4 position 

with hydroxyl groups are a peculiar example, as the presence of such moiety enables 

tautomerisation to the correspondant azohydrazone. The formation of strong hydrogen bonds 

in the E form, being intramolecular (for 2-hydroxy substitution), or intermolecular through 

dimerisation (for 4-hydroxy groups) results in largely increasing the rate for Z → E thermal 

isomerisation, occurring in the millisecond – second range.[31] Another important class of 

compounds is represented by the so-called push-pull azobenzenes: in such derivatives the two 

phenyl rings are substituted in 4 and 4’ position with a strong electron donor and an electron 

acceptor group. This results in strongly lowering the energy of the π-π* transition, which 

becomes nearly degenerate in energy with n-π*, both occurring in the visible region. This usually 

occurs in addition with the appearance of charge-transfer bands arising from the electron 

transfer between electron-rich and electron-poor groups (e.g. anilino and nitro groups), also 

causing strong solvatochromism of such compounds. Push-pull azobenzenes are strongly 

coloured and have been widely used in industry as dyes. Such compounds are characterised by 

extremely fast thermal isomerisation rates due to the asymmetric electron distribution on the 

aromatic backbone: usually delocalisation of the electron lone pair of the electron-rich group 

leads to the formation of stable resonance structures in which the central double bond is 

ruptured, thus facilitating the rotation around it.[28]  

Recently, a few breakthrough works over the synthesis of novel azobenzene derivatives have 

appeared in the literature. Following the aforementioned considerations about substitution on 

the azobenzene backbone, it is evident how the addition of groups having strong electronic 

effects (mostly electron donors) in ortho and para position on the phenyl rings allows for shifting 

the absorption spectra of the two isomers to the visible light range. The latter however is also 

accompanied with an increase of the thermal isomerisation rate, in most cases undesirable for 

the application of azobenzene-based switches as molecular actuators. The possibility of 

switching such compounds avoiding ultraviolet light is extremely appealing for using 

azobenzene-based switches in biological and materials sciences applications. It has been 

recently found that upon modifying the azobenzene backbone it is possible to obtain a split in 

the wavelength of the n-π* bands of the E and Z isomers, resulting in transitions no longer 

overlapping, together with the stabilisation of the Z isomer. This allows both to address the two 

isomers with different wavelengths in the visible range, and to slow down the thermal Z → E 

reaction, thus to overcome the two main drawbacks from which azobenzene-based compounds 

suffer. Such function could be implemented following two main strategies: either by inducing a 

distortion on the typically planar E form, resulting in affecting the energy of its π and π* 

molecular orbitals, or by influencing the energy level of the n orbitals, but without changing the 

conformation of the E isomer. In all cases, the substituents are anchored in 2-position (ortho 

substitution) with respect to the diazo moiety.[32] Distortion of the planarity of the E azobenzene 
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was accomplished by either inducing a strain bridging the two phenyl rings with a short linker 

(e.g. an ethylene bridge, Figure 3a),[33] or by introducing four methoxyl groups in ortho position, 

resulting in their repulsive interaction (Figure 3b).[34] In alternative, another important example 

of azobenzene compounds switchable with visible light and showing high photochromic 

performance (high E-Z photoconversion, slow rate for thermal Z-E reaction) was introduced by 

Bléger et al.: this class of compounds consists of azobenzenes substituted in the four ortho 

positions with fluorine atoms (Figure 3c).[32] Such compounds show the aforementioned 

characteristics without displaying noticeable distortion of the planarity of the E isomer, thus 

making them highly promising for their application as molecular actuators.  

 

Figure 3. Azobenzenes modified in ortho-positions that show two-way isomerisation with visible light. a) Phenyl rings 
covalently bridged by ethylene linker, 5,6- dihydrodibenzo[c,g][1,2]diazocine, reported by Siewertsen et al.[33] b) Four 
ortho-methoxy substituents on the two phenyls, reported by Beharry et al.[34] c) ortho-Fluoroazobenzenes, reported 
by Bléger et al.[32] 

Azobenzene is undoubtedly the most widely studied and applied class of photochromic 

compounds, mentioned in several thousands of publications and research reports, and their 

application in materials chemistry, or in biochemical research has been reviewed multiple 

times.[35] Although the change in the electronic properties between the E and Z isomers of 

azobenzene are limited, the isomerisation between the two is characterised by large 

conformational rearrangements, inducing significant changes over the free volume of the 

molecule. The E isomer is characterised by a nearly planar shape, while the Z has a more bulky 

character, as the isomer assumes a non-planar, kinked conformation. For azobenzene, electron 

diffraction data indicated that the two phenyl rings are tilted by about ~ 35° in the gas phase.[28] 

This conformational rearrangement thus also leads to a decrease in the end-to-end distance of 

the molecule.[36] Together with the shape, another substantial difference between the two 

isomers is represented by their polarity: upon conversion from the E to the Z isomer, their dipole 

moment goes from nearly zero, to about 3 Debye (such a change in polarity allowed for the first 

separation of the two isomers by Hartley, in 1937).[37] The aforementioned appealing properties, 

alongside with its photochemical robustness, and the ease of its chemical synthesis[35b, 36] explain 

the celebrity of azobenzene-based compounds among the known photoswitches, as they are 

particularly suitable as molecular-scale actuators. In order to exploit and/or amplify the shape 

variation of the switch to a greater length scale, it is vital to embed such unit in a 

conformationally rigid (macro)molecular scaffold.[38] Towards this end, typically a viable 

strategy consists of including them into rigid aromatic structures. However, such a solution 

could potentially prevent full, or even partial photochromism of the system, since electron 

delocalisation lowers the energy of the first excited state(s) precluding the access to the 

photoreaction pathway.[39] We will highlight here few notable examples of the use of azobenzene 

as light-activated switch.  
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One among the first and best known examples of azobenzene-based small-molecule actuator 

was given by the pioneering work of Shinkai et al., in the 1980s, with the realisation of various 

crown ether derivatives bearing such light-triggered moiety.[40] An example that later became 

known as molecular tweezers. The working principle of the azacrown ethers and related 

compounds realised by the same researchers was based on the change in conformation of the 

molecule upon photoisomerisation: such a change results in the modification of the affinity of 

the macrocycles towards alkali metal and other organic cations, thus allowing to control the 

extraction of ions in organic solvents with the use of light. Since then, azobenzene has been 

extensively used to realise molecular devices which mechanical motion could be externally 

controlled, with various size and shapes, sometimes resembling macroscopic objects, such as 

the so-called molecular scissors, reported by Aida and coworkers in 2003.[41] In such a peculiar 

photoresponsive compound, an azobenzene unit is used to induce a phototriggered contracting-

elongating motion, which is translated to a ferrocene moiety, acting as interlocking unit, but at 

the same time allowing for the free rotation of its cyclopentadienyl units, into an open-close 

motion of its termini, the “blades”.  

 

Figure 4. Early examples of light-activated molecular actuators. a) Photoresponsive azacrown ether.[40c] b) Molecular 
tweezers.[40a, 40b] c) Molecular scissors.[41] 

In the aforementioned examples nevertheless, the azobenzene unit has been used only as a 

molecular switch, as its conformational rearrangements do not occur in a directional fashion. In 

order to realise artificial molecular motors capable to undergo unidirectional movements it is 

thus necessary to embed the azobenzene functional unit into more complex systems. In more 

recent work, azobenzene was also employed to realise molecular machines capable of 

performing directed molecular movements out of equilibrium conditions through energy and 

information ratcheting mechanisms. One example was given by Credi and colleagues, upon 

realising a pseudorotaxane containing an azobenzene unit embedded into a non-symmetric 

molecular axle (Figure 5).[42] The latter consists of three functional units, being the switch, an 

ammonium binding site for the macrocycle, and a bulky cyclopentyl pseudo-stopper. Where 

instead the macrocyclic ring is made by a 2,3-dinaphtho[24]crown-8 ether. In order for the 

threading-dethreading to occur through the pseudo-stopper positioned at one extremity of the 

axle, a relatively high activation energy barrier has to be overcome. In such a way, threading of 

the two components occurs through the azobenzene extremity residing in the E form. The 

working principle of such a system is based on the conformational change of the switch, allowing 

for the threading of the macrocycle through the molecular axle when the azobenzene resides in 

its E form, but destabilisation of the pseudorotaxane is induced by the isomerisation to the Z 

form. The isomerisation of the azobenzene unit in the Z form constitutes a high steric barrier 
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for the ring threading-dethreading through such extremity, and also destabilises the complex, 

thus resulting in dethreading of the macrocycle through the pseudo-stopper extremity. Being 

that the reversible E-Z isomerisation is induced in both ways by the same photons under steady 

irradiation (due to the overlap of the absorption spectra of the two isomers), the system can 

perform such a directionally controlled molecular motion in a repetitive fashion, being fuelled 

by light.   

 

Figure 5. Light-driven supramolecular “pump” enabling the unidirectional threading-dethreading of a pseudorotaxane 
through the photoisomerisation of an azobenzene unit embedded in its axle. a) Structure formula of 2,3-
dinaphtho[24]crown-8 ether. b) Structure formula of the molecular axle comprising an azobenzene unit at one end, 
a central ammonium moiety as recognition site for the crown ether macrocycle, and a methylcyclopentyl pseudo-
stopper. c) Schematic picture of the light-powered directional threading-dethreading of the pseudorotaxane. d) 
Simplified potential energy diagram (free energy vs. ring-axle position) showing the working principle. Reproduced 
from Ref.[42] 

Going from molecular-scale structural rearrangements to larger length scales, the isomerisation 

of azobenzene units can be exploited to induce conformational changes into larger objects. For 

instance, azobenzenes have been widely exploited to photocontrol the structure and function of 

biomolecules.[35b] Moreover, the modification of ion channels in neuronal cells with the use of 

such photoswitch has also proven the possibility of photo-controlling their activity.[43]  

Azobenzene-based photochromic compounds have also been used to decorate the surface 

of nanoparticles of various nature, with the goal of imparting them light-responsive properties. 

The earliest and perhaps most notable examples are represented by noble metal, and especially 

gold nanoparticles. In most cases, the isomerisation of azobenzene is used to induce the 

nanoparticles to self-assemble, or aggregate in a reversible fashion.[44] In several reports, Klajn 

et al. reported reversible assembly (clustering) and disassembly of gold nanoparticles based on 

the large difference in dipole moment shown by the E and Z form of the photoswitch tethered 

to their surface. Being in all cases the higher molecular dipole moment of the Z form the cause 

of the emergence of dipole-dipole interactions, the latter driving the nanoparticles clustering. 

In an interesting research report, the dynamic assembly of nanoparticle aggregates has been 

achieved into well-ordered three-dimensional superstructures, either reversibly, or irreversibly 

(Figure 6a-b). This was made possible by judiciously playing with the concentration of 

azobenzene dithiol ligands on the surface of gold nanoparticles (diameter ≈ 5.6 nm) weakly 

bound with dodecylamine, thus on the interplay between dipole-dipole interactions and the 

formation of covalent bonds between the thiols bridging multiple nanoparticles.[45] In another 

example instead, gold nanoparticles with the same diameter were again functionalised with 
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mixed monolayers of dodecylamine and an (11-mercaptoundecanoxy)azobenzene, this time 

containing only one thiol functional group (Figure 6c-e). The nanoparticles in solution 

presented a reversible aggregation forming metastable supraspherical aggregates upon UV 

irradiation, causing also a red shift of the surface plasmon resonance band of the gold colloid. 

Interestingly, the nanoparticles could be dispersed in syndiotactic poly(methylmethacrylate) 

organogels and showed the same behaviour. The as-obtained films showed a bright colour which 

could be changed by UV light, thus demonstrating that such nanoparticles could be used as 

metastable inks for the realisation of self-erasable, rewritable materials.[46] 

 

Figure 6. Gold nanoparticle aggregation can be controlled with light stimuli by functionalising their surface with 
azobenzene-containing stabilisers. a) Ordered supercrystals formed of gold nanoparticles can be obtained using 
mixed monolayers of 4,4’-bis(11-mercaptoundecanoxy)azobenzene and octadecylamine upon UV light irradiation. 
The reversibility of the formation of the ordered aggregates can be tuned by changing the concentration of the dithiol. 
b) At low dithiol surface concentration, aggregation/disgregation is reversible. SEM micrograph of a reversible crystal 
(scale bar 100 nm). If the dithiol concentration is increased, UV light irradiation leads to the irreversible formation of 
crystals. c, d) Gold nanoparticles functionalised with mixed monolayers of (11-mercaptoundecanoxy)azobenzene and 
octadecylamine form reversible, metastable spherical aggregates, also in organogel films (scale bar for the TEM images 
100 nm). e) Images can be written into self-erasable nanoparticle-containing films by structured UV irradiation. 
Images reproduced from Ref.[45-46] 

On the other hand, azobenzene shape variation makes it one of the principal candidates for the 

realisation of host-guest systems which guest uptake or release could be triggered with the use 

of light. In this regard, several works focussing on the synthesis of metal-organic materials going 

from coordination cages to metal-organic frameworks which cavity volume/hydrophobicity 

could be tuned by taking advantage of the different conformation of the two azobenzene E and 

Z isomers have been reported. This strategy opens great possibilities for their application in 

materials science. Metal-organic materials are discrete assemblies building up on the 

directionality of metal-ligand coordination using transition metal cations and organic ligands as 

building blocks: based on their geometry and connectivity, a vast library of nanostructures with 

different dimensionality could be made, going from “0D” polyhedra and coordination cages to 

three-dimensional coordination networks. The use of rigid organic building blocks enables to 
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realise discrete self-assembled systems possessing internal cavities that can be used to store 

small molecules, or also to perform catalysis in confined space. Metal-organic coordination cages 

for instance, could be used to store organic guest molecules due to hydrophobic interactions. In 

an example reported by Fujita and coworkers, spherical complexes with M12L24 stoichiometry 

showed to spontaneously self-assemble in solution, where M = Pd2+, and L corresponds to a 

pyridine-based bent bridging ligand with attached an azobenzene pending group. Such a 

functional group allowed to obtain a supramolecular cavity containing 24 endohedral 

azobenzene groups. Upon mixing the complex with a hydrophobic guest (pyrene, or pyrene 

carboxaldehyde) in CH3CN : H2O = 1 : 1 mixture, it was shown that the former was capable of 

undergoing guest uptake occurring by hydrophobic interaction when azobenzene was residing 

in the E form, due to the low dipole moment of such isomer. UV light irradiation switching the 

endohedral azobenzene pendant groups to Z resulted in the release of pyrene guest, due to the 

lower affinity of the cavity for the latter. The system moreover showed to work in reversible 

fashion.[47] 

 

Figure 7. Self-assembled coordination cage containing 24 endohedral azobenzene units. a) Complex forming with 
M12L24 stoichiometry. b) The complex is able to uptake a hydrophobic guest in polar media (CH3CN : H2O = 1 : 1) due 
to the hydrophobic character of the cavity with the azobenzene units residing in E form. Upon UV irradiation, the 
guest is released (polar character of Z azobenzene), the system shows reversible behaviour upon thermal conversion 
of the pending group to the original E form. Reproduced from Ref.[47] 

Going from 0D metal-organic polyhedra to 3D networks, metal-organic frameworks constitute 

an important class of crystalline materials that have been widely studied in the last decade, 

thanks to their structural and functional tunability. The principal interest of metal-organic 

frameworks (MOFs) is the possibility of building porous crystalline materials which internal 

cavities have uniform diameter and present extremely high internal surface areas, thus making 

them very promising for practical applications e.g. gas storage, separation/purification, or 

heterogeneous catalysis, to name a few. In the last few years some advances have been made in 

the realisation of photoswitchable metal-organic frameworks, enabling to photocontrol the 

aforementioned functionalities.[48] In this regard, the embedment of azobenzene within such 

porous materials represents a particularly promising route to induce structural modifications in 

the crystalline structure with light stimuli. This has proven possible following different 

strategies: in an early example reported by Yanai et al., azobenzene has been included as a guest 

in a [Zn2(terephthalate)2(triethylenediamine)]n flexible porous coordination polymer, the latter 

not intrinsically photoresponsive.[49] In such example, the researchers demonstrated that the 

pore structure of the host material was efficiently deformed by the E-Z photo- and thermal 

isomerisation of the photochromic moiety: such drastic structural transformations showed to 

efficiently switch the adsorption behaviour towards guests, such as gaseous nitrogen. Going 
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further in this field, more complex examples of photoswitchable MOFs were given by including 

azobenzene as a pending group in the MOF structural units – the organic linkers. In such a way, 

the photoswitch can expose its extremity in the internal side of the cavity, in a similar fashion 

to what reported earlier for the coordination cage by Fujita and colleagues (Figure 7). Park et al. 

reported the first example of MOF including azobenzene in such fashion: a zinc carboxylate 

framework was made using 2-(phenyldiazenyl)terephthalate, which showed light-, and thermal 

induced reversible CO2 adsorption behaviour.[50] The as-obtained material showed no disruption 

of the structural features upon repeated cycles, also due to the fact that azobenzene is included 

in the rigid organic framework and is free of moving inside the cavities of the material, thus 

potentially avoiding the fatigue that azobenzene photochromes could encounter when external 

constraints are applied. In another similar example, Brown et al. were able to realise a non-

interpenetrated MOF containing azobenzene pending groups. The structure is based on the 

known MOF-74, with Mg nodes: such materials typically show porous structures having wide 

hexagonal monodimensional channels. In this example, the azobenzene pending groups in the 

channels determined a significant variation of the pore apertures, going from ca. 8.3 Å in the E 

form to ca. 10.3 Å in the Z.[51] Such large pores enabled to undergo reversible phototriggered 

guest release also for larger molecules, which was demonstrated with the luminescent dye 

propidium iodide. To date however, the MOF showing the largest photoinduced structural 

transformation was reported by Lyndon et al.[52] The researchers were able to synthesise a metal-

organic framework including the photochromic units directly in the backbone of the material. 

The photoswitchable triply interpenetrated MOF [Zn(AzDC)(4,4’-BPE)0.5] was realised using 

two different photoswitches as “pillars” of the porous coordination polymer, being azobenzene-

4,4’-dicarboxylate (AzDC), and 1,2-bis(4-pyridyl)ethylene (4,4’-BPE). The effect resulting from 

light irradiation of this material is an apparent “squeezing”, thus the framework upon shrinking 

is able of immediately expelling the guest molecules included inside the cavities. It is also 

interesting to note that the crystalline habit of such material appears to be stable upon 

irradiation, probably due to the triple interpenetration of the network. 

 

Figure 8. Examples of metal-organic frameworks (MOFs) including azobenzene switches allowing for photoactivated 
guest uptake/release. a) Azobenzene is included as guest in a porous coordination polymer not intrinsically 
photoresponsive. Conformational variation of the guest enables to induce a structural modification of the crystalline 
habit of the material. b, c) Azobenzene is included as pending group inside the MOF cavities, its E-Z isomerisation 
modifies the cavity volume. d) Photochromic units used as pillars of MOF crystals, inducing a light-triggered 
shrinkage of the network. Images reproduced from: a) Ref.[49] b) Ref.[50] c) Ref.[51] d) Ref.[52] 
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Importantly, azobenzene as molecular actuator could also be employed to tune the macroscopic 

properties of liquid crystalline materials: transduction of the molecular-scale movement given 

by the photoswitch to macroscopic motions is made possible by embedding the actuator in 

materials that show at the same time crystalline order and fluidic mobility. In the most notable 

examples, azobenzene photoswitches were used to induce macroscopic movements in liquid 

crystalline polymer films with the use of light, thus potentially enabling their use for the 

realisation of novel biomedical devices, soft robotics and morphing structures.[53] In a striking 

example reported by Ikeda and co-workers in 2003 for instance, the researchers showed the 

possibility of obtaining thin films of an azobenzene containing liquid-crystalline polymer that 

could be bent over a chosen direction using linearly polarised light.[54] Since then, several efforts 

have been devoted to obtaining systems that could achieve more complex motions, such as 

converting light-driven molecular events into work by their macroscopic movements, or also 

showing fast oscillatory behaviour. Recently, Iamsaard et al. designed a photoresponsive, 

azobenzene-containing liquid crystal having twist-nematic molecular organisation due to the 

inclusion of chiral dopants. Due to the twist in the liquid crystal, together with the film 

processing, they made possible to obtain macroscopic springs, loaded with the photoresponsive 

units. The photoisomerisation of the azobenzene showed to be amplified in a twisting motion 

associated to a local increase of disorder in the liquid crystal accompanied with anisotropic 

deformations. Hence, the as-obtained springs were capable to undergo complex movements 

such as winding, unwinding and helix inversion upon irradiation with UV light, and could be 

used to move macroscopic objects, therefore to perform mechanical work.[16c] In a more recent 

example, Gelebart et al. showed a striking photoactive liquid crystalline polymer system capable 

of performing wave-like oscillating movements fuelled by light energy upon including in the 

polymeric material azobenzene derivatives with fast Z → E thermal isomerisation rate. Such 

photoactive films were realised by playing with the alignment of the liquid crystalline polymer, 

fabricated in splay-aligned configuration, having homeotropic alignment on one side, and planar 

alignment on the other, thus providing the largest shape deformation possible on the films due 

to expansion and shrinkage on the two sides. Upon giving energy by constant UV irradiation, it 

was found that such films were capable of undergoing fast (in the ms – s range) millimetre-scale 

oscillatory movements, induced by the azobenzene photo- and thermal isomerisation occurring 

in the two verses. Interestingly, it was found that the oscillatory, wave-like movement of the 

films occurring when attaching their ends to a substrate was caused by its self-shadowing, 

generating feedback driving the waves. Remarkably, such a wave propagation could be used to 

move a self-propelled walking device powered by light, highlighting its potential application in 

light-driven locomotion and photomechanical energy harvesting.[16b] 
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Figure 9. Embedding azobenzene in liquid crystalline polymeric films allows to realise macroscopic photoactuators 
performing complex motion, also doing mechanical work fuelled by light. a) Liquid crystalline polymer springs display 
winding, unwinding and helix inversion upon UV irradiation, depending on their initial shape and geometry. b) 
Schematic representation of the disorder induced in the nematic phase upon E → Z photoisomerisation. c) 
Photoactive liquid crystalline films undergoing continuous wave-like motions. Comparison between simulation (left), 
and experimental (right, black and white) data for planar-up and homeotropic-up films undergoing oscillating 
movements. d) Schematic representation of the system: the direction of the wave propagation depends on the 
direction of the film alignment. Figures a) and b) were reproduced from Ref.[16c], while c) and d) from Ref.[16b] 

 

 

 

Among the vast class of photochromic molecules able to undergo reversible isomerisation 

between at least two states with photons of different wavelength, diarylethenes represent an 

important category for several reasons, and most importantly they feature thermal stability of 

both the forms accessible with light stimuli. Analogously as other categories of photoswitches, 

the two states accessible are characterised by drastically different physicochemical properties, 

allowing their use for engineering stimuli-responsive materials whose properties could be 

remotely controlled. Diarylethenes are characterised by a reversible photochemical 6π-

electrocyclisation and –cycloreversion reaction occurring between the ring-open 1,3,5-

hexatriene and the ring-closed 1,3-cyclohexadiene isomer. The reaction occurs according to the 

Woodward-Hoffmann principles of orbital symmetry conservation, therefore in disrotatory 

fashion when performed thermally, while in a conrotatory manner by photochemical 

excitation.[55] The thermal cyclisation normally has an endoergonic character since the 1,3,5-

hexatriene core has a tricyclic structure, thus it occurs only photochemically. Being that typically 

the antiparallel and parallel conformer of the open isomer are energetically similar and their 

interconversion occurs in thermal equilibrium in solution, only a fraction (half) of the molecules 

in the open form can undergo the conrotatory photochemical cyclisation after excitation, thus 

resulting in a theoretical maximum quantum yield of 0.5 for the photocyclisation reaction 
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(Figure 10). Typically, quantum yields for ring-closure are in the range 0.1 – 0.5,[55] but may be 

higher in case there is an energetic preference for the antiparallel conformation in the ground 

state.[56] Since the large activation energy barrier for the thermal cyclisation and cycloreversion 

reactions of most diarylethenes, both their isomers are stable even at high temperatures.[55] 

 

Figure 10. a) Scheme for the photochemical isomerisation of a prototype DAE. The reaction occurs by conrotatory 
cyclisation, therefore only from the antiparallel conformer. b) UV-Vis absorption spectra of the prototype DAE (c = 
2.4 x 10-5 M in hexane): dashed line, ring-open isomer; dotted line, photostationary state obtained by UV (313 nm) 
irradiation; black line, ring-closed isomer. Figure b) was adapted from Ref.[57] 

In such bi-stable organic compounds, the two isomers have dissimilar atom connectivity, hence 

they present a (small) change in conformation upon photoisomerisation. The most important 

difference between the open and the closed form concerns their conjugation: in case of the open-

ring structure, conjugation is localised on the heteroaromatic rings, while in the closed isomer 

π-conjugation delocalises electrons over the whole backbone of the molecule, resulting in a 

lower HOMO-LUMO gap compared to its open counterpart. The first and most notable shift in 

the properties of the two isomers is their different absorption spectra. Typically, the open form 

of DAEs presents a strong absorption in the ultraviolet range of the electromagnetic spectrum 

(Figure 10), emerging from the presence of the two electronically decoupled, cross-conjugated 

heteroaromatic moieties. Upon photoisomerisation following UV light irradiation, a broad 

absorption band in the visible range is formed, related to the ring-closed DAE. The latter 

presenting its π-electrons delocalised over the whole molecular backbone. Due to the fact that 

both the isomers absorb in the ultraviolet range, generally a photostationary state (PSS) is 

formed, which composition depends on the reciprocal quantum yields of the forward and back 

reactions. Nevertheless, the most common diarylethene derivatives present a much lower 

quantum yield for the cycloreversion reaction, in most cases implying PSS with conversions to 

the ring-closed form above 90 %. On the contrary, upon visible light irradiation of the closed 

form, quantitative conversion to the open-ring isomer is observed, since the latter does not 

absorb at such wavelength. 

Diarylethenes have seen their birth in the late 1980s upon serendipitous discovery by Irie 

and co-workers, whom soon recognised 1,2-dihetarylethenes as appealing thermally stable 

photochromes.[58] Since then, the group started to systematically develop the design of what 
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nowadays became one of the most employed photochromic units.[55, 59] A large corpus of research 

has been devoted to the discovery of the general structure-property relationships of this class of 

compounds: reviewing it does not constitute the focus of the present work, therefore only brief 

considerations over the most used structural units that show affinity with the work performed 

here will be given.  

The term “diarylethene” is a general definition for stilbene derivatives, valid for all systems 

comprising two (hetero)aromatic rings bridged by an ethylene moiety. In general, it is useful to 

replace the ethylene unit with a cyclic moiety to avoid the E → Z isomerisation of the central 

double bond, which would hamper the desired photocyclisation reaction, representing a 

competitive excited state deactivation pathway. In principle, any cyclic structure possessing a 

double bond may be used as a bridge between the two hetaryl rings of a diarylethene. In this 

regard, the most used cyclic “bridging” units are the cyclopentene, perfluorocyclopentene, 

maleimide and maleic anhydride. Among them, undoubtedly the most widely employed is the 

perfluorocyclopentene bridge, since it typically allows to obtain both high switching efficiencies 

and acceptable photochemical stability. 

Concerning the two rings providing the two double bonds of the 1,3,5-hexatriene unit, as 

previously mentioned the use of cyclic aromatic units ensures the endoergonic nature of the 

disrotatory cyclisation reaction, thus preventing the thermal pathway (thermal stability of both 

isomers). Together with this, it also gives rise to a π-electronic system which shows absorption 

in the near-UV range at reasonable wavelengths and with high extinction coefficients. The use 

of two 5-membered heteroaromatic rings with low stabilisation energy (such as furan or 

thiophene) generally allows the photochemical reaction to be reversible, and the two isomers to 

be thermally stable.[60] A variety of diarylethene derivatives having different hetaryl structures 

has been synthesised; however, furan and thiophene are by and large the most commonly used 

units, and especially the latter. Furthermore, the mode of connection between the 

heteroaromatic rings and the bridge strongly impacts the photochemical properties of DAEs. In 

case thiophene rings are used, if the connection with the bridging unit is made at the β-position 

of the hetaryl ring, the resulting diarylethene is called “normal type”, while the ones with the 

hetaryl units connected at the α-position are named “inverse type”. From now on we will refer 

to “normal type” diarylethene derivatives possessing thiophene hetaryl units, which will be 

called dithienylethene (DTE) photochromes.  

Substituents of the heteroaromatic rings are also of crucial importance to establish the 

behaviour of DTEs. The substitution at the reactive carbon atoms (i.e. the two at which 

cyclisation occurs) is necessary to avoid irreversible oxidation of the ring-closed form resulting 

in subsequent aromatisation and formation of phenantrene analogues. This is therefore the 

principal reason for the presence of methyl groups in such position on the hetaryl rings. Other 

substituents could be used at those positions, nevertheless employing more bulky groups could 

result in the weakening of the C-C bond resulting from their steric hindrance, thus sometimes 

inducing (mostly) unwanted thermal reversibility to the closed isomer.[61] The use of substituents 

with an electron-donating character at those positions (e.g. methoxy groups) stabilises the 

closed-ring isomer, resulting in lower cycloreversion quantum yields.[62] On the contrary, the 

use of electron withdrawing moieties such as cyano groups favours the photochemical ring-

opening reaction.[63] Also the substitution on the periphery of the heteroaromatic units could 

strongly impact the photochemical properties of DTEs. Concerning the latter, a large variety of 
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substituents has been used in the literature. As a general consideration, two different behaviours 

may be described. In first instance, the presence of strong electron accepting groups results in a 

general decrease of the thermal stability of the ring-closed form.[64] Conversely, the use of 

substituents leading to an enlargement of the π-conjugation of the ring-closed isomer yields a 

bathochromic shift of the absorption spectra of both forms. This on the one hand could 

potentially lead to the operation of DTEs with only visible light,[65] but on the other hand results 

in the stabilisation of the closed form, thus decreasing its cycloreversion quantum yield up to 

almost zero. In most cases however, it is desirable to decrease the quantum yield of the 

cycloreversion reaction, in order to obtain photostationary states showing a nearly quantitative 

conversion, which explains the reason why most DTEs present phenyl substituents on the 

periphery of the hetaryl rings. Substituents in such positions are also of fundamental importance 

as they provide anchoring points for implementing specific chemical functionalities to the 

photoswitches. 

The mechanism of photoisomerisation of DTE derivatives has been thoroughly studied in 

the past decades, giving nowadays a detailed picture of their excited state properties.[59] 

Generally, upon excitation of the open-ring isomer, the closed form is generated within few 

picoseconds. This evidence, together with the temperature independence of the cyclisation 

quantum yield and the lifetime of the open-ring form, demonstrates the absence of barriers 

through the reaction pathway. Therefore, as previously mentioned, the quantum yield for the 

ring-closure reaction essentially depends only on the ratio between the antiparallel and parallel 

conformer in the ground state, as a conformational rearrangement cannot occur within the short 

lifetime of the excited state. Another consequence of the short lifetime of the excited state of the 

open-ring isomer is the substantial absence of radiative deactivation for such form. On the 

contrary, the photochemical ring-opening reaction is usually characterised by a much lower 

quantum yield compared to the cyclisation. This has been explained by observing that the 

depopulation of the excited state of the closed-ring isomer occurs through multiple pathways, 

including competitive non-radiative deactivation. In the case of the closed ring isomer 

moreover, the lifetime of the excited state as well as the cycloreversion quantum yield showed 

to be strongly temperature- and excitation wavelength-dependent, thus indicating the presence 

of an activation barrier on the potential energy surface of the excited state. Altogether with the 

widely investigated reaction pathway involving the singlet excited state of DTEs, such 

photochromic compounds were also found to undergo cyclisation through the triplet excited 

state. This could be induced for instance by the presence of heavy metal atom complexes, by 

excitation of their MLCT band, intersystem crossing and subsequent triplet energy transfer.[66] 

Population of the triplet state of the open-DTE could also be induced by intersystem crossing of 

the DTE itself,[66d] or by inter-[67] or intramolecular[68] sensitisation with an organic sensitiser. 

The triplet sensitisation pathway represents a very promising route towards the photoswitching 

of diarylethene derivatives, as, in alternative to the singlet photochemistry, it may be induced 

by irradiation with visible light, thus allowing to control the reactivity of DTEs in both ways 

avoiding ultraviolet light. 
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Among all, undoubtedly the most basic function that can be controlled by light stimuli, and falls 

directly under the definition of photochromism lies on the reversible change in colour occurring 

in such materials. DTE derivatives upon photoswitching from the ring-open to the ring-closed 

form undergo an alteration of their electronic energy levels resulting in a shift of their 

photophysical and redox properties.  Alongside with the simple photochromism (open-DTE 

absorbs in the ultraviolet, while closed-DTE absorbs in the visible range of the electromagnetic 

spectrum, with a band that could be tuned between ~400 nm and ~700 nm depending on the 

molecular structure and its substitution pattern), DTEs could be used to perform a number of 

different functions according to the properties of their two states (i.e. different conformation 

and flexibility, delocalisation over the π-backbone, energy of the HOMO and LUMO molecular 

orbitals, energy of the excited states). Thanks to the superior photochromic properties of DTEs, 

such class of molecules is regarded as one of the most promising candidates for the construction 

of smart systems with remote-controllable functions, and wide academic interest has been 

dedicated to them in the last two decades.[55, 59] Generally, the strategies used to exploit DTEs 

and transduce their photochromism to a remotely controllable function fall within two main 

categories, the first based on their shape modulation, while the second is built upon the different 

electronic properties of the two stable forms. The former is however less employed, as the 

changes in shape and flexibility of the ring-open (o-DTE) and ring-closed (c-DTE) isomers is 

limited, compared to other photochromic units (e.g. azobenzene, vide supra). 

 Concerning the changes in molecular shape undergoing between o-DTE and c-DTE, the 

relatively limited conformational rearrangement occurring between the two forms remarkably 

allows DTEs to isomerise also within single crystals. In some cases, the mechanical stress 

experienced by the crystal can be translated to morphological changes of the crystalline habit, 

thus resulting in its shrinking, or bending. In such framework therefore, also DTE single crystals 

have been envisioned as potential photoactuators capable of converting light energy into 

mechanical work.[16a, 69] 

 

Figure 11. Single crystals of diarylethene derivatives may undergo photoinduced macroscopic shape variations. a) 
Diarylethene derivatives employed to make two-component mixed crystals, and their photochromism. b) Reversible 
bending (curling) of the rodlike two-component mixed crystal upon irradiation with UV light from the two sides. c) 
Gearwheel rotation operated by the rodlike crystal used as actuator, upon alternate illumination with UV and Vis 
light. Reproduced from Ref.[69b] 
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The variation in molecular flexibility between the open-ring and the ring-closed isomers has also 

shown to be applicable for the realisation of photoswitchable supramolecular systems. On the 

one hand, in the open-ring isomer the hetaryl fragments may rotate around the single bonds 

connecting them to the bridge, thus resulting in an equilibrium between the parallel and 

antiparallel conformer, meanwhile on the other hand the ring-closed form presents a planar 

shape, with a stiff character. Such a profound conformational change has been used to optically 

modulate the self-assembly of supramolecular systems in solution[70] and also on surfaces.[71] 

However, we will highlight here only few examples about supramolecular assemblies of 

diarylethenes on surfaces, being more relevant for the scope of the present work. The self-

assembly on surfaces is also of particular interest, as the geometrical restrictions induced by 2D 

confinement could lead to the formation of chiral structures from achiral components, and this 

was shown also with achiral dithienylethene derivatives.[72] Concerning this, dithienylethenes 

(DTEs) have shown to be important systems for the study of the complex dynamics of surface-

confined molecular self-assembly: in multiple experimental works performed by scanning 

tunnelling microscopy (STM) at the graphite-liquid interface, DTE derivatives have shown the 

possibility of giving rise to photoresponsive 2D self-assembled structures,[71] potentially allowing 

to tune the properties of the surface with light stimuli.[73] Interestingly, upon playing with the 

molecular design, Matsuda and coworkers showed that by tailoring the intermolecular 

interactions, the formation of surface-confined self-assemblies could occur following a 

cooperative behaviour. In such example, an “inverse type” DTE was used owning pending amide 

groups, together with long side alkyl chains (Figure 12). 

 

Figure 12. Cooperative 2D-confined self-assembly at the graphite-solution interface of “inverse type” DTE in the ring-
open isomer, the system shows reversible ordering formation/disappearance upon in-situ irradiation. Left, Structure 
formula of the “inverse type” DTE in the open-ring isomer. Right, a) STM image of the ordering of the open-ring form. 
b) High resolution image. c) Molecular model of the assembly, showing the hydrogen bond network (green stripes). 
d) Concentration dependence of the fractional coverage of the open isomer. The red curve shows the best-fit curve 
for the theoretical model simulation assuming a cooperative behaviour. The dashed line denotes the simulation 
assuming an isodesmic model. Reproduced from Ref.[71b] 

This substitution pattern allows the formation of stable self-assemblies at the graphite-solution 

interface due to the formation of intermolecular hydrogen bonding together with van der Waals 
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interactions between the surface and the long side alkyl chains. Interestingly, the assemblies 

formed by the open-ring isomer were seen to abruptly disappear upon in-situ irradiation, sign 

of the fact that the closed isomer was not capable to self-assemble in such conditions due to its 

conformation. Moreover, the abrupt formation/disruption of the surface-confined 

supramolecular structure upon varying the open-DTE concentration was seen related to the 

occurrence of cooperative aggregation on the surface. The emergence of the latter was 

demonstrated by studying the surface coverage upon varying the concentration of the open-DTE 

derivative and reproducing the experimental data with a model based on Langmuir-type 

adsorption, introducing two ordering formation processes with different equilibrium constants 

for nucleation and elongation (Figure 12).[71b] 

 

Figure 13. Surface-confined self-assemblies of a “normal type” DTE isomers visualised by STM at the HOPG-1-
phenyloctane solution interface. Top, structure formulae; middle, STM images of monolayers of DTE; bottom, 
molecular packing models obtained from molecular mechanics simulations, with magnified structures (inset). a) 
Open-ring DTE isomer; b) closed-ring DTE isomer; c) annulated polycyclic DTE by-product. Reproduced from Ref.[71a] 

Immediately after, Bonacchi et al. reported for the first time the interconversion between the 

self-assemblies of multiple states of DTE-based switches, evidencing submolecularly resolved 

patterns of a “normal type” DTE derivative in both the ring-open, ring-closed isomers, but also 

visualising the formation of the irreversible by-product of DTE cyclisation reaction by STM at 

the graphite-liquid interface. The interconversion between the assemblies formed by the 

different isomers was obtained by either in-situ and ex-situ irradiation. In such work, it was also 

shown that the annulated by-product shows a competitive adsorption behaviour with the 

closed-ring reversible isomer: it thus resulted that the self-assemblies of the former are 

thermodynamically preferred.  
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In further works reported by the group of Matsuda with “inverse type” DTEs, the researchers 

found that the self-assembly processes followed isodesmic or cooperative adsorption depending 

on the use of sidegroups allowing for weak or strong intermolecular interactions, respectively.[71d] 

Further works done in the same group were based on the STM investigation on the self-assembly 

of “normal type” DTE derivatives at the graphite-solution interface. The researchers could, 

analogously as reported by Bonacchi et al., demonstrate that the formation of self-assembled 

surface-confined structures occurred for both the open, and closed-ring isomers, together with 

the irreversible by-product of the photochemical reaction. A quantitative analysis on the 

cooperativity of the formation of 2D assemblies of the three isomers showed that such an 

ordering phenomenon occurred alternatively with isodesmic, or highly cooperative processes 

depending on the shape of each. Moreover, also a mixing-induced cooperativity was visualised, 

as the presence of the isomer showing cooperative assembly together with the one assembling 

following an isodesmic model induced cooperativity into the formation of molecular ordering 

of the latter.[71e] Additionally, in a more recent work done by the same group, it was found that 

the racemic mixtures of (chiral) closed-ring DTE isomers were capable of forming molecular 

orderings with different 2D chirality, the latter being the result of the relatively small structural 

differences of the enantiomers.[71g] The precise control of cooperativity in surface-confined self-

assembly represents an important instrument for gaining a deeper understanding over the 

complex phenomenon of molecular ordering on solid surfaces.  

As previously mentioned, the isomerisation of DTE yields profound changes over the π-

electronic system of the molecule, resulting in the variation of its molecular orbitals energy, 

together with the shift in energy of the ground and excited states of the two isomers. Such 

differences are responsible for the high interest that has been devoted in the last two decades 

towards the development of highly efficient and fatigue-resistant switches for their applications 

in opto-electronic devices,[2, 17, 74] smart materials,[75] or also for gating chemical reactions.[20, 76] 

Especially, the thermodynamic stability of the two isomers of DTE makes such photoswitches 

particularly promising for their application in the field of optical memories,[2, 55, 59] since the 

information written with a light stimulus can be retained. 

Another interesting aspect regarding the modification of the π-electronic backbone 

following isomerisation concerns the possibility to reversibly couple or decouple electronically 

the two extremities of the switch. This strategy could be applied on the one hand to optically 

gate chemical reactions, by coupling electron donor or electron withdrawing substituent groups 

with other chemical functionalities present on the DTE. Recently it was demonstrated that the 

reactivity or the catalytic activity of certain functional groups can be modulated with light.[20, 76-

77] The variation of the electronic delocalisation over the molecular backbone was also applied 

for completely different purposes (e.g. in molecular electronics), as DTEs could be used as 

photoactivated molecular junctions. This is based on the principle that the two isomers present 

different electrical conductance, thus can be used as switchable bridges for molecular junctions, 

being sandwiched between nano-scaled metallic conductors such as nanoparticle networks,[78] 

or covalently bonded between graphene sheets, to name a few.[74a] 

Furthermore, as stated previously, the different structure of the π-backbone of the two 

isomers implies a shift in the energy of HOMO and LUMO molecular orbitals together with their 

energy levels. This could be employed to gate energy- or electron transfer phenomena within 

molecular or supramolecular architectures. In such a way, these photoswitches work as light-
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triggered modulators, able to quench a selected excited state located on a chemical species close 

in space only when the switch resides in one of its two stable forms (usually the c-DTE following 

its reduced energy gap). This strategy has been used for instance to control photoinduced 

electron-transfer reactions on complex multicomponent systems,[79] or to quench the excited 

states of triplet sensitisers,[80], but above all it has been widely employed to modulate the light 

emission of luminophores connected to the photochromic switch (vide infra).[59] The latter 

strategy opened the doors to the application of DTEs in in highly attractive research fields such 

as all-optical information storage[81] and superresolution optical microscopy.[82] Importantly, 

DTEs have been widely employed to build light-controllable organic electronic devices, in 

combination with organic semiconductors.[2, 74b] The shift in energy of their HOMO and LUMO 

molecular orbitals for instance allowed for optically tuning the charge trapping in organic 

semiconductors, thus enabling to make organic thin film transistors (OTFTs) which could work 

as optically rewritable memory elements.[2, 17a] 

 

 

Spiropyran is a peculiar class of photoswitches, whose photochemical behaviour is also 

characterised by a pericyclic reaction. Spiropyrans, and closely related spirooxazines are capable 

to undergo a reversible photochemical cleavage of the C-O bond in the closed-ring spiropyran 

form to yield a ring-open form called merocyanine. Such a molecule consists of an indoline and 

a chromene moiety bound through a spiro junction and oriented perpendicularly to one another. 

A vast number of spiropyran and spirooxazine derivatives have been synthesised and studied 

since the discovery of such family of compounds. Among all, the most widely employed is the 

so-called nitrospiropyran, being a spiropyran derivative possessing a nitro group as substituent 

in 4-position with respect to the oxygen atom of the chromene moiety. The presence of such an 

electron withdrawing group enables to stabilise the ring-open form. From now on, we will 

therefore refer to spiropyrans as both the isomers of nitrospiropyran derivatives. The primary 

difference between the two isomers, analogously as all other photochromic compounds is the 

difference in their absorption spectra, following the changes over their π-electronic system 

occurring upon isomerisation. The mechanism of 1,6-electrocyclisation constitutes the basis of 

the photo- and thermochromic behaviour of such class of molecules, capable of converting 

between a colourless spirocyclic isomer to a deeply coloured merocyanine.[83] Contrarily from 

DTE switches, the reactions allowing for the interconversion between the ring-closed, colourless 

spiropyran (SP) and the ring-open merocyanine (MC) form could occur either thermally, at the 

ground state, or by deactivation of an electronically excited state following a photochemical 

pathway. In both cases, the rate-controlling stage of the isomerisation reaction is the cleavage 

of the C-O bond in the 2H-pyran ring, and is stabilised by following Z-E isomerisation around 

the spiro- and pyran-bridging double bonds. It thus follows that the MC form may exist as 

several E/Z isomers obtained by rotation around those. Nevertheless, due to the low thermal 

stability of the conformation obtained with the central Z double bond, only the form(s) showing 
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the central double bond in E are observed at room temperature, and in most cases the thermally 

most stable isomer is the so-called TTC form (Figure 14).[84] 

 

Figure 14. Simplified mechanism of photochemical (left) and thermal (right) isomerisation pathways for spiropyran 
derivatives.  

In nonpolar solvent solution, spiropyran derivatives exist in the ring-closed isomer, nevertheless 

thermal ring-opening reaction could occur by increasing the polarity of the environment. Such 

thermal equilibrium does not depend only on polarity, but also on the solution concentration, 

as MC form has strong tendency to aggregation (by forming either H- and J-aggregates) resulting 

in its stabilisation. Thus, it is important to state that the isomerisation reaction occurs in thermal 

equilibrium conditions, which position strongly depends on the external conditions, which is a 

factor that should be kept in mind when employing such photochrome for specific applications 

(e.g. when anchoring it to a surface). The ring-closed SP isomer presents two most intense 

transitions in the ultraviolet range, being the one located at λmax ≈ 270 – 300 nm relative to the 

π-π* transition of the indoline moiety, while the one occurring at λmax ≈ 320 – 350 nm 

corresponding to the chromene unit.[85] Importantly, the ring-opening reaction could also occur 

by means of photochemical stimuli, upon UV irradiation of the SP isomer (λ = 365 nm). Ring-

opening occurring by either heterolytic C-O bond cleavage, or as 6π electrocyclic reaction, lead 

to the zwitterionic or quinoidal MC forms, respectively, being the two resonance structures. The 

relative contribution of the two resonance forms depends on the environment, as non-polar 

media would stabilise the quinoidal form, and vice versa would occur in polar media. The MC 

has a planar structure, characterised by an extended π-conjugated system. It thus results 

intensely coloured, since its broad absorption band in the visible spectrum, located at λmax ≈ 550 

– 600 in non-polar environment. Following from the presence of the two resonance structures, 

the MC isomer presents a strong solvatochromism: in apolar media, the stabilisation of the 

quinoidal structure results in a decrease of the energy gap between the ground and excited 

states, resulting in a batochromic shift of its absorption band, phenomenon named negative 

solvatochromism.[85] Additionally, the merocyanine form on the contrary of the ring-closed 

spiropyran presents a strong emission band upon its excitation in the visible range, with a 

maximum located at λmax ≈ 650 nm. 
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The first step of the photochromic reaction in spiropyran derivatives involves the cleavage 

of the C-O bond upon deactivation of the excited state. For nitrospiropyrans, the ring-opening 

through C-O bond cleavage occurs in the triplet excited state.[83] Electronic excitation is followed 

by intersystem crossing to a short lived triplet state of the ring-closed isomer SP; the bond 

cleavage is followed by the formation of the “perpendicular”, Z merocyanine form (Figure 14, 

centre) in the triplet state, in equilibrium with the triplet of the E isomer. At this stage, de-

excitation occurs by quenching of the triplet state with molecular oxygen, followed by the 

thermal equilibria for the isomerisation around the double bonds of the MC to obtain the most 

stable TTC isomer. The presence of the nitro- group on nitrospiropyrans has important effects 

on their photochromism (together with the stabilisation of the MC in the ground state) as it 

both enhances the quantum yield for the SP → MC reaction (0.7 – 0.9 in apolar solvents[83]), 

increasing the quantum yield of intersystem crossing. The latter nevertheless could be a 

detrimental factor for the durability of the photochrome, as the quenching of the triplet excited 

state in non-deaerated solution results in the generation of singlet molecular oxygen, and thus 

degradation of the photochromes via oxidation.  

 

Figure 15. a) Schematic picture of the thermal and photochemical isomerisation of nitrospiropyrans, including 
acidochromism. b) UV-Vis absorption spectra of the prototype nitrospiropyran 1’,3’,3’-trimethyl-6-
nitrospiro[chromene-2,2’-indoline] in acetonitrile (c = 2.3 x 10-4 M). Grey trace, no irradiation. Purple trace, UV PSS 
(λ = 365 nm). Yellow trace, addition of 20 eq. of HCl. Figure b) reproduced from Ref.[85] 

Such a photoswitch is highly appealing because of the markedly different physicochemical 

properties of the two isomers. Most importantly, the formation of a charge-separated species in 

the MC is the reason for its interesting large variation of molecular dipole moment upon 

photoisomerisation from the ring-closed neutral spiropyran (SP) form to the open, metastable 

zwitterionic isomer merocyanine (MC).[86] It has been shown that the molecular dipole moment 

of SP lies in the range of µ ≈ 4 - 6 D, while for the MC this is largely increased to µ ≈ 14 - 18 D. 

Moreover, upon isomerisation such molecule shows consistent conformational changes, as SP 

displays a more bulky character if compared to the planar, rigid MC. As previously said, the 

merocyanine isomer, on the contrary of its ring-closed isomer is also conjugated, therefore 

planar, intensely coloured (λmax ≈ 550-600 nm) and fluorescent (λem, max ≈ 650 nm). The open 

merocyanine form is nevertheless metastable and shows fast thermal cycloreversion reaction to 

the closed form when in diluted solution at room temperature (in apolar solvents). Moreover, 

such peculiar photochromic architecture is not only sensitive towards photochemical stimuli, as 

the merocyanine isomer is also significantly more basic than SP. Protonation of MC results in 
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the formation of its conjugated acid MCH+, which has a distinctive absorption spectrum, 

different from SP and MC, having a band located at λmax ≈ 400 nm. Protonation of the hydroxyl 

group of the open merocyanine form leads to its stabilisation, resulting in strong 

acidochromism.[84] For nitrospiropyran derivatives, the MCH+ has a rather acidic character, with 

a pKa ≈ 2.25, being the phenoxide anion stabilised by the 4-nitro group.[85] Finally, the 

merocyanine form has also higher affinity towards different chemical species such as other 

zwitterions and metal cations.[85] Following these large variations in the physicochemical 

properties of SP and MC, together with their responsiveness to multiple stimuli (i.e. 

photochromism, thermochromism, acidochromism, solvatochromism), nitrospiropyrans have 

been widely applied to realise stimuli-responsive materials.[53, 85] 

 

 

Spiropyran-based photochromic units have been widely used to control the stability of colloidal 

dispersions upon decorating nanoparticles on their surface with monolayers containing such 

switch.[87] This is typically achieved thanks to the dissimilar physicochemical properties of the 

two isomers SP and MC. The non-polar character of the ring-closed SP isomer is in contrast with 

the highly polar, open-ring MC form. The reversible dispersion-flocculation phenomenon on the 

one hand is due to the fact that the SP form stabilises the dispersion in apolar solvents, while on 

the other hand the MC isomer in such environment has a strong tendency to associate into 

aggregates with a stack-like arrangement, the latter driven by dipole-dipole and π-π stacking 

interactions. In apolar solvents, without addition of acid excess the thermodynamically stable 

SP form can be photochemically converted to MC by ultraviolet irradiation (λ ≈ 365 nm), while 

the reverse ring-closure reaction is promoted by visible light (λ > 500 nm). Notably, due to the 

known large two-photon cross section of SP and MC,[88] the photochromic reactions can also be 

driven by two-photon excitation in the vis-NIR range.[87c] Spiropyrans could also be used to 

trigger the assembly/disassembly of gold nanoparticles that were not grafted with such 

photoswitch. In an example reported by Kundu et al.,[89] non-photoresponsive gold 

nanoparticles functionalised with ligands exposing COOH moieties were dispersed in methanol 

with the presence of strong acids. It was found that upon addition of spiropyran and subsequent 

formation of protonated merocyanine form, the event was followed by nanoparticle aggregation. 

Such molecule allowed to control by light stimuli the release of H+ in solution, event which was 

followed by reversible dispersion/aggregation of the colloid. Analogously, this was obtained also 

in PEG gels and their films showed to be reversibly photorewritable. 

In few literature examples, plasmonic systems have been combined with spiropyran-based 

photochromes, and the appearance of exciton-plasmon coupling effects was observed upon 

inducing the SP → MC isomerisation,[3b, 90] in some cases also in the ultrastrong coupling 

regime.[3a] 
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Figure 16. a) Schematic picture of the light-driven reversible (dis)assembly of COOH-functionalised AuNPs by 
photoacid effect. b) UV-Vis absorption spectra and photographs of: red, AuNPs dispersions in MeOH, showing the 
characteristic surface plasmon resonance band of the gold colloid; yellow, aggregated AuNP precipitate, absorption 
band related to MCH+. c) Photographs of disappearing images with time, obtained by structural illumination of a PEG 
gel containing AuNPs and spiropyran derivative. Reproduced from Ref.[89] 
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Recently, with the aim of increasing the complexity of the molecular-scale events attainable with 

synthetic molecular systems, an increasing interest has been devoted to the integration of more 

than one photochromic unit within one single molecule, or more broadly speaking “object”. Such 

strategy is seen highly appealing since it could potentially enable to obtain a system switchable 

between 2n states, where n is equal to the number of distinguishable photochromic units, in 

contrast to a simple photochromic compound, which is typically a binary “on/off” switch, thus 

it could allow to outrun the typical bistability of standard molecular switches.[91] The aims of 

such a challenge are multiple: firstly, it results obvious to understand how a system containing 

multiple and fully functional switching units would return a more highly contrasted 

photoresponse as a result of the conversion between the initial A to the B form of each switch. 

This system will be conceptually analogous to its traditional single-switch counterpart if the 

various photoproducts are not distinguishable from one another, nevertheless showing more 

promising properties from the applicative point of view, as the contrast between the initial state 

and the one obtained in photostationary conditions would be increased. Secondly, as previously 

mentioned, a multiphotochromic switch could also allow its conversion from an initial A state, 

to an ensemble of several B, C, D, etc. photoproducts, thus, if the latter are distinguishable as 

they show remarkably different properties, this approach could provide access to more states, 

therefore to more complex phenomena in comparison with a simple photoswitch. Going further, 

in certain cases the interaction between the photochromic units will result in the appearance of 

emerging properties that are not shown by the single photoswitches, thus providing a synergistic 

effect between the photochromes as, for instance, in a biphotochromic molecule comprising two 

units that can be converted each between an A to a B state, the interaction between the B units 

will result in the occurrence of a C state.[92] Ultimately, undoubtedly the most highly appealing 

challenge in the development of multiphotochromic architectures consists in the inclusion of 

(individually addressable) switches with different nature within the same compound, in order 

to realise a functional system which could be selectively switched between multiple states in 

orthogonal fashion, thus with a wavelength-selective control.[4a, 93] 

Conceptually speaking, the idea of combining multiple photoswitches in intermolecular 

fashion may appear a simple operation, nevertheless its practical realisation is complicated by 

several factors. Realising multi-photochromic systems in which all the possible isomeric states 

are individually addressable showed to be a challenging task, since the successful isomerisation 

of the photochromic units could be hampered by several factors, e.g. energy transfer between 

the different subunits, or electron delocalisation on the whole molecular backbone. Therefore, 

in recent years several theoretical and experimental studies have been performed in order to 

rationalise the optical properties of multiphotochromic systems, and to determine the main 

structural parameters determining their photochromic performance, with the aim to realise 

“intelligent” architectures, featuring each single unit being “aware” of the state of the others, 

thus to obtain supramolecular systems which properties do not only correspond to the sum of 

each part. Among these, the role of the bridging unit between the photoswitches has been 

regarded as of main importance, and in particular a reduction of the electronic communication 
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between the switches, but also their spatial separation were seen fundamental to preserve their 

photochromism.[39, 91, 94]  

 

Figure 17. a) Sketch of a binary photoswitch. b) Simplified scheme of multi-photochromic system.[91b] 

Central importance in the properties and performance of multi-photochromic systems is 

undoubtedly held by the linker between the functional units, as this determines the entity of the 

through-bond, and trough-space interaction between them. Two simple -yet prototypical- 

examples of systems containing multiple photoswitches highlighting the importance of their 

chemical connection were given recently by Credi et al.[39a] and Hecht et al.[39b] with 

bis(azobenzene) derivatives. Those systems showed that in order to retain good photochromic 

performance it is crucial to decouple electronically the switches, as in the opposite case the 

extended π-conjugation would lead to a dramatic decrease photoreactivity of the systems, 

demonstrated by both low photoisomerisation quantum yields and fraction of photoproduct at 

the photostationary state(s). 

 

Figure 18. a) Bis(azobenzene) compound realised by connecting the chromophores in 1,3-position on a central 
benzene ring, showing electronic decoupling of the photochromic units, the UV-Vis absorption spectral variation 
highlights the independent behaviour of each switch by the appearance of isosbestic points and a large conversion at 
the PSS. b) Bis(azobenzene) characterised by 1,4-substitution pattern. The conjugation between yields limited 
photochromic performance. Reproduced from Ref.[39a] 

 

Figure 19. Bis(azobenzene) derivatives obtained by increasing the dihedral angle (Φ) of the central covalent bond 
connecting the photochromic units. a) Φ ≈ 37 °, showing partial electronic delocalisation over the π-electronic 
backbone, yielding limited photochromism. b) Φ ≈ 90 °, forced by the sterical hindrance of the α-methyl substituents 
with respect to the connecting bond; electronic decoupling results in good photochromic performance, with ca. 95 % 
of the Z,Z isomer at the PSS. Reproduced from Ref.[39b] 
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In principle, the synthesis of fully functional molecular and supramolecular systems integrating 

more than one photochromic unit within the same backbone should allow to individually 

address each state by irradiation with light at different wavelength, if the isomers of each 

photochrome have distinct spectral features (multicolour photochromism). Nevertheless, the 

development of orthogonally-responsive systems is still in an embryonal phase.[4, 93] Conversely, 

if all the photochromes in the molecular backbone are equivalent, one could obtain as a result a 

more highly contrasted photoresponse.[95] The implementation of multiple switches in the same 

covalent scaffold showed to be a not trivial task, since in order to guarantee the photoactivity of 

all units, interchromophore interactions such as conjugation or energy transfer must be 

avoided.[91a, 94] So far, the main achievements in the field have been made towards the synthesis 

of multiphotochromic units bearing equivalent photochromes, not individually addressable. 

However, the inclusion of multiple photochromic units within the same compound has shown 

to be useful to increase the contrast in the overall photoresponse of the system, thus making 

such molecular devices more appealing for their application in the field of optical memories and 

photoactivated fluorescent switches. We already discussed on how multi-photochromic systems 

are sensitive to electronic delocalisation in π-conjugated system, being the presence of the latter 

detrimental to the desired photoisomerisation reaction. This is particularly delicate for systems 

containing multiple diarylethene (DTE) units,[96] as complete closure is usually inhibited by the 

occurrence of intramolecular energy transfer between o-DTE and c-DTE fragments, thus 

preventing full conversion to all-closed state.[91] Indeed, the choice of a suitable bridging unit 

between the switches is key towards the realisation of systems showing suitably large 

conversions.[97] Photochromism is generally prevented when the switches are embedded into a 

large π-conjugated system, following the emergence of low-lying excited state manifolds which 

usually do not lead to the photoreaction pathway. Multi-DTE systems have been extensively 

investigated,[91a] by examining the role of bridges of various nature, including for instance 

alkynyl,[98] arenyl,[97] or silyl[99] moieties and metal complexes[100] as spacers. 
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On-surface self-assembly is an intriguing phenomenon involving the physi- or chemisorption of 

molecular species on solid surfaces: key for the formation of structures presenting order on the 

molecular scale is the reversibility of the interaction between the adsorbate and the surface 

involved. This adsorption process takes advantage of supramolecular chemistry and 

intermolecular interactions allowing to form 2D crystalline monolayer structures under 

chemical equilibrium conditions (or in a kinetically trapped state), which topology is the result 

of a subtle balance between a large number of factors, being intermolecular interactions and 

molecule-substrate adsorption of first and foremost importance. 

In recent years, scanning tunnelling microscopy (STM) has been widely used as a powerful 

tool to study molecular systems, following its unparalleled ability to achieve sub-molecular scale 

resolution in real space. The assembly of suitably designed molecular species into periodically 

ordered structures on the surface of an electrically conductive, crystalline substrate has been 

investigated by STM either in ultrahigh vacuum (UHV) conditions, or at the interface between 

the substrate and a solution.[101] The latter experimental technique literally allowed to visualise 

the phenomenon of molecular self-assembly driven by noncovalent interactions.[102] Recently, 

also several examples of covalently bonded bidimensional structures such as covalent-organic 

frameworks (COFs), or 2D polymers were widely investigated with such technique.[103] Especially 

STM at the solid-liquid interface allowed to achieve a detailed insight into the phenomenon of 

molecular self-assembly on crystalline substrates such as Au(111), or on the basal plane of highly 

ordered pyrolytic graphite (HOPG). Such an experimental technique, allowing to investigate the 

formation of 2D crystalline assemblies (residing on global or local minima of the Gibbs free 

energy landscape) at the interface between the substrate and the supernatant solution literally 

enables to visualise supramolecular chemistry at surfaces, and is of particular interest for the 

study of host-guest, or stimuli responsive systems.[71a, 71b, 71e, 104]  

 

Figure 20. a) Scheme of the experimental set-up for performing STM at the graphite (HOPG)-liquid interface. b) 
Schematic picture of the chemical equilibria occurring in homogeneous phase and at the various interfaces. Picture 
a) and b) reprinted from Ref.[105] and Ref.[106], respectively.  

In the past years, numerous studies have been performed on the self-assembly of rigid aromatic 

carboxylic acids in two-dimensional crystalline structures, with the use of STM at the interface 

between graphite and their solutions.[5b, 107] The study of simple di- and tricarboxylic acids such 

as isophthalic, terephthalic and trimesic acid showed their propensity to form periodic 
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structures held together by noncovalent supramolecular interactions such as hydrogen bonding. 

Taking advantage of the directionality of such noncovalent interaction, the self-assembled 

structure morphology was seen to depend on the reciprocal position of the carboxyl groups on 

the molecular backbone, and the integration of an increasing number of carboxyl moieties was 

seen to lead to their bidimensional assembly into lattices with intriguing complexity and 

symmetry features.  

 

Figure 21. a) Structure formulae of isophthalic, terephthalic and trimesic acid. b) Isophthalic acid monolayer on 
HOPG, showing the characteristic zigzag arrangement, due to the presence of hydrogen bonds. bottom, STM 
topography; top, molecular mechanics simulation. c) Terephthalic acid monolayer on HOPG, showing hydrogen 
bonded linear chains. bottom, STM topography; top, molecular mechanics simulation. d) Trimesic acid monolayer on 
HOPG, forming hydrogen bonded hexagonal networks, bottom, STM topography; top, molecular mechanics 
simulation. Figure b-d) taken from Ref.[107a] and Ref.[5b], respectively. 

Trimesic acid (1,3,5-tricarboxylic acid) represents the most prototypical and widely studied 

example of C3-symmetric building block for the construction of H-bonded supramolecular 

networks. Several studies performed with STM either in UHV and at the solid-liquid interface 

showed its tendency to form hexagonal honeycomb structures, which symmetry is of great 

interest for the realisation of nanoporous networks.[108] Lackinger et al. studied the self-assembly 

of C3-symmetric carboxylic acids on HOPG (using heptanoic, octanoic or nonanoic acid as 

solvents) with increasingly large aromatic cores, showing that it was possible to obtain large area 

crystalline domains of hexagonally packed molecules with progressively larger “cavities”, 

compared to trimesic acid. The experiments showed that the main intermolecular interaction 

allowing the formation of such monolayers was the formation of 2-fold cyclic O-H···O hydrogen 

bonds between the terminal carboxylic acid moieties.[5b] The geometry of such ideal hydrogen 

bonding pattern yields the strongest possible intermolecular interaction between two carboxylic 

acid moieties.  
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Figure 22. C3 symmetric aromatic tricarboxylic acids giving rise to isostructural networks at the graphite-nonanoic 
acid solution interface. The formation of hexagonal structures is due to the intermolecular interactions dominated by 
hydrogen bonding (formation of carboxylic acid dimers). a) top, Trimesic acid structure formula; centre, STM 
topograph with superimposed model of the molecular arrangement. b) top, Structure formula of 1,3,5-
benzenetribenzoic acid; centre, STM topograph with superimposed model of the molecular arrangement. c) top, 
Structure formula of 1,3,5-tri(4-carboxyphenylethynyl)-2,4,6-trimethylbenzene; centre, STM topograph with 
superimposed model of the molecular arrangement. Reproduced from Ref.[5b] 

Nonetheless, the driving force for the formation of such self-assembled supramolecular systems 

on the surface of crystalline substrates is the result of a complex interplay between anisotropic 

intermolecular interactions (e.g. hydrogen bonds), and isotropic van der Waals forces between 

the molecule and the substrate, together with the contribute of solvation, since the crystalline 

monolayer is in thermodynamic equilibrium with the supernatant solution (or alternatively in a 

kinetically trapped state).[109] Following the known tendency in Nature to avoid energetically 

unfavourable voids when forming crystalline structures, the question if the aforementioned 

nanoporous 2D honeycomb geometry could be retained upon further increase of the building 

block size arose.[110] Further experimental work corroborated by molecular mechanics 

simulations done on the larger carboxylic acid 1,3,5,-tris[4’-carboxy(1,1’-biphenyl-4-yl)]benzene 

(TCBPB) showed the occurrence of three polymorphs in the 2D crystalline packing on HOPG, 

with the exclusion of the aforementioned, “ideal” hexagonal, honeycomb lattice (Figure 23). The 

appearance of multiple hydrogen bonding patterns included the observation of weaker C-H···O 

hydrogen bonds together with simple O-H···O ones. The experimental evidence was explained 

by in silico estimation of the thermodynamics of the self-assembly of TCBPB on graphite, 

showing that the “ideal” honeycomb shaped pattern was less thermodynamically stable 

compared to the polymorphs experimentally visualised. The studies evidenced that the 

molecule-substrate interaction for the formation of the densely packed monolayers 

experimentally shown has a larger contribution in the overall adsorption free energy compared 
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to the stabilisation followed by forming the “ideal” 2-fold cyclic O-H···O hydrogen bonds 

between the terminal carboxylic acid moieties.  

 

Figure 23. Top, structure formula of 1,3,5,-tris[4’-carboxy(1,1’-biphenyl-4-yl)]benzene (TCBPB). Middle, STM 
topography of the TCBPB monolayers at the HOPG-heptanoic acid solution interface. Bottom, molecular packing 
models. a) Oblique-I polymorph. b) Displaced chickenwire polymorph. c) Oblique-II polymorph. Adapted from 
Ref.[110] 

Investigation on the isomerisation of azobenzene with STM has always been an appealing task 

for surface scientists,[111] nevertheless visualisation of the Z isomer at the solid-liquid interface 

between graphite and its solution showed to be particularly challenging following its non-planar, 

kinked geometry, which yields unfavourable van der Waals interactions with the underlying 

surface.[112] Therefore, the use of several artifices such as suitable functional groups, or system 

geometries allowing the self-assembly of both E and Z isomers on graphite have demonstrated 

to be effective, but sometimes making their visualisation a cumbersome task.[73, 112] In a first 

example, De Feyter et al. studied the dynamic assembly of an azobenzene-containing 

photochromic molecule characterised by the presence of long alkyl chains and an isophthalic 

acid unit 5-[ω-(4′-dodecyloxy-4-azobenzenexy)dodecyloxy]isophthalic acid. The studies 

showed that it was possible to obtain monolayers containing the Z isomer of the molecule with 

codeposition of solvent molecules only by ex-situ irradiation, also highlighting the lower 

stabilities of such domains with respect to the regions containing monolayers of the E isomer.[113] 

Interestingly, Shen et al. succeeded in demonstrating the isomerisation of a photochromic 

system containing multiple azobenzene units in the same molecular backbone by observing the 

transition between various isomeric forms of photoswitchable macrocyles with STM at the solid-
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liquid interface (Figure 24). The photoswitchable architecture consisted of a flexible macrocyclic 

architecture containing four azobenzene units, which isomerisation led to large conformational 

rearrangements. In such examples, a host-guest complex made by a four azobenzene-containing 

flexible macrocycle and 1,3,5-tris(10-Carboxydecyloxy)-benzene (TCDB) showed to form large 

area, self-assembled 2D crystalline domains at the interface between HOPG and their solution 

in heptanoic acid. UV-light irradiation of the aforementioned co-assemblies positively led to the 

observation of various domains with different morphology, demonstrating that the 

photoinduced conformational change of the macrocycle was effective in modifying the order of 

the system, moreover further studies were performed with the use of a guest, showing the 

possibility to perform a light-induced guest release.[114] In a few recent examples, De Feyter and 

colleagues demonstrated that alkoxylated dehydrobenzo[12]annulene derivatives constitute 

excellent molecular building blocks to realise two-dimensional porous patterns at the liquid-

solid interface, which could be used to perform host-guest chemistry in two-dimensional 

space.[104b] They discovered that appending azobenzene moieties to such structures could enable 

to reversibly modify the size of the nanopores of the network, allowing to release co-adsorbed 

guest molecules.[73] 

 

Figure 24. a) Structure formulae of tetra-azobenzene macrocycle and 1,3,5-tris(10-Carboxydecyloxy)-benzene (TCDB) 
giving rise to co-adsorption in host-guest complexes. b) Molecular models of the conformational isomers, together 
with the photoisomers observed by STM. c) STM topographs at the HOPG-heptanoic acid solution interface and 
attributed molecular models of the bi-component system, which morphology is modified by photoisomerisation of 
the tetra-azobenzene macrocycle. Adapted from Ref.[114a] 
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Attaining optically-triggered modulation of the luminescence of a molecule or metal complex in 

reversible fashion is extremely appealing for their application as all-optical memory elements,[81b, 

81c, 81e] or as photoswitchable probes in superresolution microscopy.[115] Since in this field the main 

emissive derivatives emit by means of fluorescence, we will from now on only focus on the latter 

phenomenon. Diarylethenes in this context represent the ideal photoswitchable unit, thanks to 

their high fatigue resistance and thermal stability of the two forms, allowing to perform several 

switching cycles and to retain the information written by light stimuli. Fluorescent 

photoswitchable molecules may be generally classified in two main classes: inherently 

fluorescent switches, having one of the two states showing emissive properties, or 

(supra)molecular systems consisting of a fluorophore coupled with a photochromic unit capable 

of quenching the fluorophore emission in one of its two states. Although inherently fluorescent 

switches, and especially diarylethenes, result convenient thanks to their simple synthesis and 

high contrast between the two states, their main drawback consists on the fact that the emission 

process is in competition with the photochromic reaction. Thus, a practical approach to 

overcome the latter problem consists in the combination of bright fluorophores and 

photochromes in the same molecular backbone. The most common strategy lies on the use of 

fluorophores in combination with diarylethenes: the emission quenching of the former could be 

obtained by either Förster resonance energy transfer (FRET), or photo-induced electron transfer. 

Modulation of the absorption properties or the oxidation/reduction potentials of the 

diarylethene unit upon its isomerisation are the cause for the emission switching.[116] For such 

application, high contrast between the ON- and OFF-states, reversibility and cyclability are 

factors of crucial importance.  

 

Figure 25. Schematic illustration of a photoswitchable dye realised by coupling a fluorophore with a photochromic 
unit. Reprinted from Ref.[117] 

The latter properties depend primarily on the chemical robustness of the photoswitch towards 

side reactions and/or decomposition, together with the resistance of the emissive unit towards 

bleaching. The use of DTE photochromes in such case is highly promising, seen their superior 

fatigue resistance with respect to other classes of photochromic compounds. Conversely, 

achieving high contrast in the modulation of the emission of a luminophore is generally 

complicated by two main factors: non-quantitative conversion of the photochromic unit(s) upon 
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achieving the photostationary state (PSS), and low (or generally below unit) quantum efficiency 

of the luminescence quenching process. These two drawbacks could be overcome with a 

conceptually simple strategy: increasing the amount of switchable (quencher) units surrounding 

the luminophore. Pioneering work was done by the group of Irie, with the design of an 

anthracene emissive core surrounded by two DTE residues:[118] such a compound showed a 

remarkable difference between the fluorescence emission quantum yield of the all-open-DTE 

form (Φfl = 0.83) and the isolated closed-DTE form (Φfl < 0.001), nevertheless the latter was 

obtained by purification and the photoproduct was assigned to the form with only one ring-

closed DTE unit. Moreover, the contrast showed to be low at the photostationary state following 

the low conversion to the closed-DTE form. The appearance of such a low conversion was 

ascribed to the inclusion of the photochromic units in the extended π-conjugated system. 

Another conjugated multi-DTE-fluorophore was reported by the group of Müllen, also in such 

case leading to low contrast due to limited photochromism of DTEs.[119] Notably, a promising 

multi-DTE system enabling to achieve an excellent ON-OFF contrast upon switching the 

photochromes at the photostationary state was recently reported by Li et al., in which they 

realised a dyad composed by a perylenemonoimide fluorophore bearing up to three DTEs 

attached via a non-conjugated linker.[95a] In such work, three perylenemonoimide (PMI) dyes 

were synthesised, bearing either one, two or three DTE units, and their photophysical and 

photochromic properties were compared. The presence of up to three photochromes in the open 

form showed the absence of any perturbation of the original emission of the fluorophore, while 

in the derivative bearing three DTE units, closure of the latter induced an extremely high 

fluorescence quenching ratio, compared to the bis- and mono(DTE) derivatives. Such excellent 

properties allowed to realise all-optical transistors and to use the dye for super-resolution 

fluorescence imaging. This system, thanks to the robustness and large fluorescence quantum 

yield of the emissive core, together with the presence of several, non-electronically interacting 

DTEs successfully showed that with such a simple strategy it is possible to achieve switchable 

fluorophores with extremely high ON/OFF ratio.  

 

Figure 26. Perylenemonoimide (PMI) derivatives modified with up to three DTEs. Adapted from Ref.[95a] 
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In the realm of nanoscience and nanotechnology, the field of nanomaterials engineering, and 

especially the synthetic methods enabling the generation of tailored structures with bottom-up 

approaches hold a position of primary importance, since they allow us to bridge the gap between 

molecular chemistry and bulk solids. Materials that have dimensions in the range of tens of 

nanometres show the appearance of exotic properties if compared to their macroscopic 

counterparts, and such properties strongly depend on the size, shape, structure and composition 

of the nanomaterial.[120] Those peculiarities emerging from nanoscale confinement and surface 

effects drove in the last decades a tremendous interest in the development of synthetic strategies 

enabling to tailor nanomaterials with a high control over their size, shape and composition. The 

enormous growth of such field allowed not only to reach a wide knowledge over the synthesis 

of a vast library of nanomaterials, but also to unravel the complex physics resulting from e.g. the 

electron confinement by nanocrystals with low dimensionality.[121] Although the use of gold and 

silver colloids is widespread since the antiquity for the fabrication of stained glass and ceramics, 

the early discoveries done by Faraday,[122] and later Mie and Zsigmondy,[123] opened the way to 

this extremely appealing field. Nowadays, noble metal nanoparticles, and especially gold 

nanoparticles represent the most widely studied and applied example of nanomaterial fabricated 

with bottom-up approaches, being such field still active, particularly towards the synthesis of 

novel nanocrystals having unparalleled shape, size and properties. Noble metal nanoparticles 

bearing plasmonic properties, thanks to their ability to concentrate the electromagnetic field of 

light into their immediate surroundings, are currently investigated and already applied in a 

broad spectrum of technological fields,[124] such as nanomedicine and diagnostics,[125] energy 

harvesting and photovoltaic devices[126] and plasmonic metamaterials,[127] to name a few. 

 

Figure 27. Schematic representation of the interaction of polarised electromagnetic radiation with noble metal (gold) 
nanospheres. The incident oscillating electric field (E) propagating along a direction (K) induces a coherent oscillation 
of the conduction band electrons with respect to the metallic core. The resulting dipolar oscillation is resonant with 
the incoming electromagnetic radiation at a specific frequency depending of particle size and shape. For gold 
nanospheres with diameter lower than 20 nm this corresponds to light in the visible range (λ ≈ 520 nm). Reproduced 
from Ref.[128]  

The main reason for the wide interest that has been devoted to noble metal nanoparticles lies 

on the localised surface plasmon resonance (SPR) effect which these nanostructures are subject 

to. The SPR has origin upon the excitation of the coherent motion of the surface conduction 

band electrons of a nanoparticle by an incident electromagnetic field. Classically, the electrical 

field of an incoming light wave induces polarisation of the electrons with respect to the largely 

heavier ionic core of the nanocrystal (with spherical shape). This results in a net charge variation 

at the surface of the nanoparticle which acts as restoring force, thus, in the simplest case 
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returning an in-phase oscillating motion of the electrons. Their optical properties (extinction) 

originate from the absorption (and scattering) of the incident radiation when the frequency of 

its electromagnetic field is in resonance with the coherent oscillation of the conduction band 

electrons.[120a] The frequency and linewidth of the SPR depends on the dielectric function of the 

metal, as well as the on the dielectric environment, together with the size and shape of the 

nanocrystal. For nanospheres this effect can be theoretically described by Mie theory, providing 

an analytical description of the SPR in terms of a multipole expansion; for nanospheres with a 

diameter below one tenth the excitation light wavelength (d ≤ 20 nm), only the dipole term has 

to be taken into account, leading to the following expression for the extinction cross section (σ):  

𝜎 =  
18 𝜋 𝑉 𝜀𝑚

3
2

𝜆
 

𝜀2

(𝜀1+2𝜀𝑚)2+𝜀2
2           (2.1) 

where V is the nanoparticle volume, λ the wavelength, εm the dielectric constant of the medium, 

and ε1 + iε2 is the complex dielectric function of the metal. The resonance condition is met when 

ε1 = -2εm, which occurs in the visible for gold and silver nanospheres.[129] In the dipolar 

approximation, the SPR has no dependence on the diameter of the nanosphere, but only on the 

dielectric functions of the dielectric medium and the metal. However, these conditions do not 

apply for larger nanospheres, as the contribution from higher multipoles becomes important; in 

such case, a red shift and broadening of the SPR is evident. The SPR broadening is due to the 

different peak wavelengths of higher order multipoles together with the radiative damping of 

the resonance related to the increase of the scattering cross section. 

The bottom-up synthesis of noble metal nanoparticles as nanocrystals is accomplished by 

means of colloidal chemistry routes, and their surface passivation is crucial for stabilising the 

nanomaterial, thus to prevent their aggregation and the subsequent loss of nanometre-scale 

structural features. The use of a specific capping agent for the highly reactive faces of the 

nanoparticles is key for any synthetic method, since in most cases the nanometre-sized colloid 

is produced by reduction of a metal salt precursor: the choice of a specific stabiliser will play a 

fundamental role in the nucleation and growth of the nanocrystals, the latter phenomena 

determining the final shape and dimension of the colloid. For gold nanoparticles for instance, 

citrate has been one of the most popular stabilising agents, acting also as the reducing agent for 

gold (III) salts in the so-called Turkevich method, the latter being still widely employed for the 

synthesis of 20-150 nm spherical gold nanoparticles bearing a (physisorbed) loose ligand 

shell.[130] Concerning stabilisers not forming covalent bonds with the metal atoms, surfactants 

are also widely used, as the reduction of the metal salts within a micellar microenvironment 

would act as a template yielding nanocrystals with peculiar morphology (vide infra). Over the 

past years countless examples of noble metal nanoparticles functionalisation with various 

ligands have been reported.[121, 131] Various binding moieties have been used to graft organic 

ligands to the metal nanoparticles, with the dual purpose of stabilising the nanometre-sized 

colloid and imparting to it novel functionalities.[121] After the breakthrough reported by Brust et 

al., among the ligands used to stabilise the metallic nanocrystals, the most frequently used has 

been the thiol group.[132] The use of thiol moiety is motivated by its high affinity towards the 

formation of covalent bonds with noble metals. Moreover, thiol chemistry and its reactivity 

towards gold is well-established.[133] The use of thiol-based stabilising agents thus enables to give 

a specific chemical functionality to the gold nanocrystals. 
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Recently, increasing interest has been focussed on anisotropic nanoparticles, being the 

presence of asymmetric axes the origin of additional physicochemical properties. Among them, 

perhaps the most appealing characteristics reside on the peculiar optical response of such 

materials (e.g. multiple localised surface plasmon resonances),[128] but also in their catalytic 

activity.[134] One other reason is the possibility of obtaining their self-assembly, or self-

organisation into highly ordered supercrystals made of aligned particles due to their peculiar 

shape.[135] The high tunability of the localised surface plasmon resonance bands in the whole 

visible spectrum makes gold and silver nanorods highly appealing for their use as optical 

antennas. The highly concentrated electromagnetic field in the immediate surroundings of the 

nanocrystals can lead to the enhancement of several phenomena such as excitation, radiative 

emission, two-photon absorption, Raman scattering, to name a few. Especially the latter has 

been widely exploited for sensing applications, due to the Surface-Enhanced Raman Scattering 

effect (SERS), allowing the detection even of single molecules in their proximity.[136] As optical 

antennas, generally gold and silver nanorods have the highest performances, nevertheless more 

attention has been focussed on the former. On the other hand, silver nanostructures show the 

highest enhancement factors, though such materials are more prone to oxidation. 

 

Figure 28. Schematic representation of the interaction of polarised electromagnetic radiation with noble metal (gold) 
nanorods. Gold nanorods show two SPR bands, being the strong longitudinal SPR band (LSPR) corresponding to the 
electron oscillation along the long axis, and a weaker transverse band (TSPR) corresponding to the electron movement 
along the short axis. b) Visual appearance of colloidal dispersions of gold nanorods of increasing aspect ratio. c) 
Normalised extinction spectra of gold nanorods: as the aspect ratio increases, the corresponding LSPR band is red-
shifted. Figure a), b), c) adapted from Ref.[128, 137] respectively. 

Gold nanorods are among the most widely studied nanoparticles presenting surface plasmon 

resonance properties. Such peculiar gold colloids in most cases are cylindrical nanostructures, 

with diameters in the 10 – 20 nm range, and 20 – 150 nm length. The main reason for their broad 

scientific interest lies on the fact that the wavelength and intensity of their spectral features can 

be tuned over a wide range of the visible and near-infrared spectrum by varying their 

dimensions. They display peculiar extinction spectra, showing the presence of two bands 
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corresponding to the localised surface plasmon resonance along their length, called longitudinal 

SPR (LSPR), and across their diameter, called transverse SPR (TSPR). Their extinction spectra 

cannot be analytically described by Mie theory, though qualitatively can be approximated with 

Gans theory, an extension of the Mie theory for spheroidal nanoparticles. Gans theory allows to 

account for a depolarisation factor along each axis of the spheroid: upon increasing the aspect 

ratio, the longitudinal surface plasmon resonance mode along the semimajor axis of the spheroid 

red shifts, and the transverse along the semiminor axis blue shifts. Nevertheless, the 

approximations made by Gans theory are valid only in limited cases, leading to only qualitative 

agreement. In order to accurately calculate the LSPR and TSPR band positions, it is necessary to 

use numerical methods such as discrete dipole approximation (DDA). The latter method 

represents the nanoparticle as a cubic array of polarisable points and calculates the extinction 

cross sections basing on the induced dipoles.[138] The energy of the TSPR does not depend on 

particle size and aspect ratio, and similarly to spherical gold nanoparticles with radius between 

10-20 nm it occurs around λ ≈ 520 nm wavelength. On the contrary, the longitudinal surface 

plasmon resonance band (LSPR) occurs at lower energy, and red shifts upon increasing the 

aspect ratio of the rod-shaped particle. The SPR features of gold nanorods strongly depend also 

on their shape, hence their description must take into account the morphology of the endcap, 

as structures having flat ends, or “dumbbell” shaped endcaps typically display large shifts if 

compared to the ones having hemispherical extremities.[129] For the sake of clarity, in the present 

work we will discuss only about cylindrical AuNR having hemispherical endcaps.  

Another interesting feature of metallic nanostructures is the sensitivity of their SPR to the 

dielectric environment. As stated previously, the surface plasmon resonance is originated by 

coherent oscillations of the surface conduction electrons coupled with an external optical field 

at the interface between metal and dielectric. Surface plasmon resonances are thus highly 

sensitive towards variations of the local refractive index in the close proximity of the metal-

dielectric interfaces, and a change in the refractive index is associated to a shift of the peak 

position in the extinction (or scattering) spectrum of the nanostructure. Such a phenomenon 

renders the structures supporting SPR an important building block for optical sensing, as they 

can be used to detect even small refractive index changes: nowadays, sensors based on SPR are 

widely studied and employed also in commercial applications for the detection of chemical and 

biological species.[139] The localised surface plasmon resonance features of silver and gold 

nanoparticles in the visible-NIR spectrum generally undergo a red-shift upon increasing the 

refractive index of the surrounding medium, and such tight dependence is the basis of localised 

plasmon resonance spectroscopy.[140] It has also been shown that anisotropic gold 

nanostructures (such as nanorods) show a higher refractive index sensitivity compared to 

spherical gold nanoparticles.[7, 141] 
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The scope of the present chapter is to give an overview on the experimental techniques used for 

the characterisation of the systems based on photochromic compounds developed in this thesis. 

At the end of the chapter the synthetic methodology used for synthesising the single-crystalline 

gold nanorods (AuNR) employed in Chapter 6 will be also discussed. A brief introduction over 

the theoretical concepts underlying the methods used will be given, together with the 

explanation on the instrumental configurations, while at the end of each section details on the 

experimental conditions employed will be indicated. Firstly, the chapter will focus on a general 

overview over molecular spectroscopy, starting from electronic spectroscopy: steady state 

absorption and emission, and time-resolved emission. The methods used to determine 

photoreaction and photoluminescence quantum yields will be also discussed. Subsequently, 

vibrational spectroscopy, especially Raman spectroscopy will be briefly addressed, with 

particular attention on surface enhanced Raman scattering (SERS). Furthermore, the focus will 

be moved towards mass spectrometry, describing ion-mobility mass spectrometry. Then, the 

microscopy techniques employed in the present work will be discussed: scanning electron 

microscopy and scanning tunnelling microscopy, with particular attention on the latter, as it 

represents one of the principal techniques used for our investigations. 

 

Photochromic derivatives are molecular building blocks which upon reversible 

isomerisation are accompanied by a change in their absorption and emission spectra, resulting 

from an alteration of the chromophore system. Such isomerisation is induced in at least one 

direction by electromagnetic radiation (ultraviolet or visible light).[142] The various isomeric 

forms of such compounds are characterised by different molecular conformations, atom 

connectivity and π-conjugation, thus leading to the variation of their main physicochemical 

properties, such as shape, molecular flexibility, dipole moment and energy of their ground and 
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excited states. Therefore, electronic spectroscopy represents the primary tool to investigate the 

outcome of the photo- and thermal reactions characterising this class of compounds.  

In virtue of the wave-particle duality, electromagnetic radiation can be regarded not only as 

radiant energy propagating in space as a sinusoidal wave (according to Maxwell’s theory), but 

also as a stream of photons, quanta of energy depending on the frequency of the electromagnetic 

wave associated, following the  equation E = h ν. Following from the same principle, any 

microscopic physical system exists in multiple quantised energy levels: a transition between such 

levels is allowed only by applying quanta of energy corresponding to the energetic difference 

between such states. Atoms and molecules can indeed be regarded as microscopic systems 

whose energy levels are quantised, and the interaction of photons or electromagnetic radiation 

with those could result in their transition to a higher energy state (excited state). For molecular 

systems, thanks to the fact that the motions of electrons and nuclei occur on different timescales 

following from their difference in mass, transitions involving electronic or nuclear coordinates 

will require vastly different energy to occur. Therefore, the absorption of photons having suitable 

energy will result in the promotion of a given molecule to a rotationally, vibrationally or 

electronically excited state. Upon absorption of a photon with energy (hν) falling typically in the 

ultraviolet or visible range of the electromagnetic spectrum, a given molecular system (A) is 

promoted to an electronically excited state (*A), reaction which can be indicated in the general 

form A + hν → *A. A molecular system in the electronically excited state (*A) in virtue of its 

excess energy has distinctive properties and has to be regarded as a different chemical species 

in comparison to the same in the ground state (A). A molecule upon interaction with a photon 

can give rise to a number of unimolecular processes which, in case they do not lead to chemical 

modification of its structure, can be indicated as photophysical processes, and can be 

approximately schematised with the so-called Perrin-Jablonski diagram (Figure 29). 

 

Figure 29. Top, Simplified state diagram (Perrin-Jablonski diagram) indicating molecular states and photophysical 
processes occurring on a typical organic molecule. The radiative transitions are indicated with full arrows, while 
radiationless transitions with wavy arrows. Bottom, General scheme indicating the position and shape of the 
corresponding electronic absorption and emission spectra. Reproduced from Ref.[143]  
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Light absorption typically occurs when one photon of suitable energy interacts with one 

molecule, with a timescale of ~10-15 s; since the vast majority of organic molecules have a closed 

shell electron configuration, their ground state is a singlet, and is indicated as S0. Because of the 

orthogonality of spin wavefunctions, any transition occurring from states with different spin 

multiplicity is spin-forbidden, therefore absorption of light with suitable energy will lead to the 

population of a singlet excited state (S1, …, n*). According to the Franck-Condon principle, 

electronic excitation is a fast (≈ 10-16 – 10-15 s) vertical process, following from the fact that 

electronic motion occurs on a much faster timescale if compared to the nuclei. Henceforth, if 

the vertical excitation leads to a vibrationally “hot” excited state *S1, …, n, a relaxation over the 

nuclear coordinates will occur, leading to the zero vibrational level of such excited state. The 

latter process is called vibrational relaxation (≈ 10-12 – 10-10 s), and since deactivation of 

electronically excited states occurs on longer timescales, with good approximation one could 

state that all relevant photophysical and photochemical processes occur from thermally 

equilibrated excited states. 

From electronically excited states, intramolecular deactivation to the ground state could 

occur following three principal (unimolecular) mechanisms: radiationless deactivation, radiative 

deactivation, or alternatively by undergoing chemical reactions. In the former two cases, the 

compound will be restored in its initial state, while on the latter the product will be a different 

(meta)stable chemical species. A radiationless deactivation occurs without emission of 

electromagnetic radiation: the overall mechanism is the result of a two-step process, being the 

former an isoenergetic conversion from the (vibrationally ground) electronically excited state to 

a vibrationally “hot” lower energy electronic state. The latter consists of the vibrational 

relaxation to the resulting zero vibrational level of such state. The radiationless deactivation 

itself only consists of the horizontal, isoenergetic process, while the vibrational relaxation is its 

consequence. The probability of such transition is given by Fermi’s Golden Rule and depends on 

the overlap between the vibrational component of the wavefunctions of the two states, hence it 

will be case-dependent, but generally decreases exponentially with the energy gap between the 

two electronic states (energy gap law). A radiationless deactivation could occur not only between 

states of the same spin multiplicity (internal conversion, IC, ≈ 10-11 – 10-9 s), but also resulting in 

the population of a state with different spin multiplicity (intersystem crossing, ISC, ≈ 10-10 – 10-8 

s). The latter phenomenon is spin-forbidden, therefore has low probability to occur, nevertheless 

especially in systems containing heavy atoms the spin selection rule is overcame by spin-orbit 

coupling. Radiative deactivation on the contrary will result in the population of the ground state 

with the emission of photons. In the case of spontaneous emission, it will occur with the emission 

of one photon *A → A + hν. Radiative deactivation could occur between states with the same, or 

also different spin multiplicity. In the former case, which on common organic molecules will 

occur from a singlet excited state to the (singlet) ground state is called fluorescence. While, in 

case the spin multiplicity is varied upon transition, it is called phosphorescence. It is important 

to note that such phenomena occur on largely different timescales: fluorescence is a spin-allowed 

transition hence a typically fast process (excited state lifetime τ ≈ 10-10 – 10-7 s), while on the 

contrary phosphorescence is spin-forbidden resulting in the emission occurring on longer 

timescales (τ ≈ 10-6 – 1 s). The energy difference between the lowest energy absorption band and 

the emission is called Stokes shift and is due to vibrational relaxation to the vibrationally ground 

states of the electronic levels involved in the transition. In the vast majority of cases, the 
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aforementioned radiative processes are the result of the deactivation of the lowest electronic 

excited state of a given multiplicity (Kasha’s rule), as direct consequence of the energy gap 

law.[144] This concept is valid also for most of chemical reactions occurring from excited states; it 

follows the fact that usually the high-lying electronic excited states have lower difference in 

energy compared to the gap between the lowest excited and the ground state, hence internal 

conversion occurs on faster timescale than their radiative deactivation to the ground state. 

It is important to point out that all the aforementioned processes are unimolecular, hence 

they follow first order kinetic laws. One therefore can define the rate of each deactivation 

process (kj), and supposing that the deactivation of an excited state is the result of three 

processes in competition, being radiationless deactivation (knr), radiative deactivation (kem) and 

photoreaction (kr) for instance, the lifetime of the excited state *A is indicated as follows: 

𝜏( 𝐴∗ ) =  
1

𝑘𝑛𝑟+ 𝑘𝑒𝑚+ 𝑘𝑟
= 

1

∑ 𝑘𝑗𝑗
              (3.1) 

Each photophysical and photochemical process characterised by a rate constant ki, being the 

result of the competition between several phenomena could be characterised by its efficiency 

(ηi): 

𝜂𝑖 = 
𝑘𝑖

∑ 𝑘𝑗𝑗
= 𝑘𝑖 𝜏( 𝐴∗ )             (3.2) 

The quantum yield Φi of a given photophysical of photochemical process equals to the ratio 

of the number of molecules undergoing such process divided by the numbers of photons 

absorbed by the reactant. Hence, if the process of interest follows from the deactivation of 

excited state *A (with efficiency ηi), and such level is populated by subsequent processes, each 

one with efficiency ηj, the quantum yield is defined by: 

𝜙𝑖 = ∏ 𝜂𝑛𝑛               (3.3) 

where ηn represent the efficiency of each step involved in the process.[145] 

Deactivation of the electronic excited state of one chemical species (*A) in fluid solution 

could occur not only following unimolecular pathways, but also by collisions with other 

chemical species, called quenchers. In such a way, the deactivation follows a second order kinetic 

law, depending on the concentration of the quencher (B). The reaction results in a transfer of 

excitation energy or of electrons to the second chemical species: in the first case (3.4), the 

product of the reaction will be the quencher in an electronically excited state, while in the 

second case it will result in the reciprocal oxidation and reduction of the two species (3.5 and 

3.6). 

𝐴∗ + 𝐵 → 𝐴 + 𝐵∗              (3.4) 

𝐴∗ + 𝐵 → 𝐴+ + 𝐵−             (3.5) 

𝐴∗ + 𝐵 → 𝐴− + 𝐵+             (3.6) 

If one defines τ0 as the lifetime of the excited state of the species *A in absence of quencher, as 

eq. 3.1: 

𝜏0 = 
1

𝑘𝑛𝑟+ 𝑘𝑒𝑚+ 𝑘𝑟
             (3.1) 
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The lifetime τ of species *A in presence of quencher B will then correspond to: 

𝜏 =  
1

𝑘𝑛𝑟+ 𝑘𝑒𝑚+ 𝑘𝑟+ 𝑘𝑞[𝐵]
            (3.7) 

where kq is the quenching rate constant. Dividing the two latter equations will give the Stern-

Volmer equation (3.8): 

𝜏0

𝜏
= 1 + 𝑘𝑞𝜏0[𝐵]             (3.8) 

By looking at the latter equation, a first observation becomes evident: since such bimolecular 

process is limited by diffusion in solution (collisional deactivation), the rate constant for 

quenching can have a maximum value of kq ≈ 10-10 M-1 s-1. Also, in solution conditions, the 

concentration of the quencher is most likely lower than [B] ≈ 10-2 M, hence it follows that in 

order to observe collisional deactivation, the excited state lifetime must be long-lived (τ ≥ 10-9 

s). 

The advancement of science in the field of synthetic and supramolecular chemistry recently 

led to the realisation of complex multicomponent systems made up of multiple functional units 

kept together by covalent, or non-covalent interactions. Also multi-chromophoric species 

including several photoactive moieties within the same covalent backbone can be regarded as 

supramolecular species, if each chromophore retains the same photophysical properties of the 

isolated species. Hence, if their excited states are localised on the single components and not on 

the overall molecular backbone.[145] In such case, in multicomponent systems, energy and 

electron transfer can occur as intramolecular processes, following first order kinetics, without 

being limited by diffusion in solution. 

 

As mentioned in the previous paragraphs, absorption of a photon with suitable energy in the 

ultraviolet and visible region of the electromagnetic spectrum will result in the promotion of 

such molecule to an electronically excited state. It follows that upon irradiation with a 

continuous spectrum of electromagnetic radiation comprised between 190 – 1100 nm, one could 

observe the attenuation of light at the wavelengths associated to the energy of the main 

electronic transitions occurring on the substance analysed. The transmittance (T) will be given 

by the ratio between the incident light (I0) and the transmitted light (I) passing through a 

sample: 

𝑇 = 𝐼/𝐼0              (3.9) 

while the absorbance: 

𝐴 =  −𝑙𝑜𝑔10 𝑇                       (3.10) 
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Therefore, absorbance could be measured using a double beam spectrophotometer, by 

measuring at each wavelength the intensity difference of monochromatic light between the 

analysis beam (I) and the reference beam (I0). In the case of measurements in solution, the 

sample and reference (the latter usually consisting of pure solvent) solutions are contained 

within matched optically transparent and chemically inert vessels (quartz cuvettes). 

 

Figure 30. Simplified instrumental scheme of a double beam spectrophotometer. 

Considering a thin layer of solution with thickness dx containing n absorbing molecules per unit 

volume, and each chromophore having a certain absorption cross-section σ, the variation of light 

intensity dI absorbed through dx is given by the relationship: 

𝑑𝐼

𝑑𝑥
=  𝐼𝜎𝑛             (3.11) 

Upon integration of the rearranged equation applying the boundary conditions: I = I0 at x = 0, 

one obtains the Beer-Lambert law: 

𝐴 = −𝑙𝑜𝑔
𝐼

𝐼0
=  휀 𝑐 𝑙           (3.12) 

where ε is the molar extinction coefficient expressed in L mol-1 cm-1, c is the concentration 

expressed in mol L-1 and l is the optical path length, expressed in cm. Here it is important to note 

that such relationship is a limit law: the absorbance varies linearly with the analyte 

concentration only in the case of highly dilute, homogeneous solutions. Moreover, such linear 

variation could not be respected also in case of aggregation of the analyte, or its association with 

other chemical species. Light scattering must also be taken into account in case of non-

homogeneous dispersions, since could lead to the observation of artifacts: the optical density 

relative to this phenomenon is proportional to 1/λ4, according to Rayleigh scattering. 

The instruments employed to perform the work described here were a Jasco V-670 and a 

Jasco V-650 spectrophotometers. Both the instruments are double beam, single monochromator 

spectrophotometers equipped with two light sources, deuterium (λ ≈ 190-380 nm) and halogen 

(λ ≈ 380 - ~2000 nm) lamps. The Jasco V-670 is equipped with two detectors, being one a 

photomultiplier tube (PMT) for measurements in the UV-Vis range (λ ≈ 190-850 nm), and a 

Peltier-cooled PbS detector allowing to perform measurements in the NIR range (λ ≈ 850-~2000 

nm). The Jasco V-650 is analogous, but not equipped with the NIR detector, hence allowing only 

measurements in the UV-Vis range. For temperature-dependent measurements, the latter 

instrument was used, equipped with a custom-built Peltier thermostatted cuvette holder 
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(ThorLabs). The UV-Vis-NIR Jasco V-670 spectrophotometer was used to characterise the 

anisotropic gold nanocrystals described in chapter 6. While, for the remaining experimental 

work the Jasco V-650 was employed, situated in a dark room equipped with safe red lights in 

order to exclude external light irradiation as a source of error in our measurements on 

photochromic compounds. In all cases, spectroscopy grade solvents (Uvasol, Merck), in matched 

quartz cuvettes (Suprasil – Hellma) were used for the measurements. 

 

 

As previously evidenced, depopulation of an electronically excited state could occur through a 

radiative pathway, hence leading to the luminescence of the chemical species under 

investigation. The spectral distribution of the light emitted throughout such process could be 

examined by steady-state emission spectroscopy, using a common laboratory equipment such 

as a spectrofluorimeter. An emission spectrum is collected by measuring the wavelength 

distribution of the emitted light from a sample upon excitation at a single wavelength, while an 

excitation spectrum can be collected by monitoring the emitted light at fixed wavelength while 

sweeping the wavelength of the excitation light. In standard spectrofluorometric measurements 

in solution, the emitted radiation is collected at right-angle geometry, hence at 90° from the 

excitation beam in order to minimise the amount of light coming from the latter reaching the 

detector. On the contrary of absorbance, a physical quantity which can be expressed in an 

absolute scale, light intensity measured by a fluorimeter is an observable which depends on 

several instrumental factors and on the sample properties, therefore it must be expressed in 

arbitrary units, and/or on a relative scale in case of experiments performed in comparable 

conditions. Luminescence intensity depends on the instrument used and on its configuration: 

the first cause of this instrumental factor is the non-constant intensity of the excitation light 

over the whole electromagnetic spectrum. This comes from both the fact that the lamp used has 

a peculiar spectral output due to its nature (Xe discharge lamp), and that for a monochromator 

light transmission efficiency is wavelength-dependent: such defect could be overcome by 

measuring the intensity of light coming out from the excitation monochromator with a reference 

detector. Moreover, the apparent overall luminescence intensity measured is influenced by the 

wavelength-dependent response of the detector, which could be subtracted knowing its 

response curve. Numerous artifacts could also come from the light-sample interaction and the 

configuration of the latter with respect to the incident and emitted light beams. These include 

for instance the appearance of spurious bands in the excitation and emission spectra not coming 

from the luminescence of the substance examined, and could be due by several phenomena, 

such as elastic light scattering (Rayleigh- or Tyndall scattering, with the latter especially visible 

in non-perfectly homogeneous samples), Raman scattering (mostly from the solvent in solution 

measurements), or higher-order harmonic bands, intrinsic defect of the monochromators based 

on diffraction gratings (the latter could be overcome using suitable cut-off filters). It must also 

be stated that emission (and excitation) spectra could be distorted by re-absorption of the 

emitted light, especially in case luminophore has low Stokes shift. Moreover, light intensity 

could be also decreased by a geometric factor, due by the fact that the emitted light is collected 

at the centre of a spectrofluorometric cuvette, hence the excitation light could be fully absorbed 
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prior to reach the centre of the cell. Both these two issues enlighten the importance of working 

at low analyte concentration for quantitative measurements. 

 

Figure 31. Internal layout and scheme illustrating the T-configuration of a modular fluorimeter Fluorolog FL3-22 

(Horiba Jobin-Yvon) (Copyright www.horiba.com). 

In the present work, steady-state emission measurements have been performed on the tetra-

DTE porphyrins studied in chapter 5. For such purpose, two different spectrofluorometers have 

been used: an Agilent Cary Eclipse and a Horiba Jobin Yvon Fluorolog FL3-22. The Agilent Cary 

Eclipse is equipped with a 80 Hz pulsed xenon arc excitation lamp, single excitation and 

emission monochromators and a Hamamatsu R928 photomultiplier tube (PMT). The Horiba 

Jobin Yvon Fluorolog FL3-22 instead has a 450 W Xe arc excitation lamp, double excitation and 

emission monochromators and a PPD picosecond single photon counting detector (Horiba). 

The latter instrument gives also the possibility to measure corrected spectra in ratio mode. 

Routine measurements were performed on the Cary Eclipse, while higher resolution spectra with 

the latter, especially in case of samples displaying high absorbance at the emission wavelength. 

The studies were performed in spectroscopy grade solvents, using 1 cm or 3 mm optical path 

length Suprasil quartz cuvettes (Hellma), at low concentration, to keep the absorbance at the 

excitation wavelength lower than 0.1 in order to avoid reabsorption of the emitted light. 

 

 

 

The quantum yield of a radiative decay process (Φem) occurring from a luminescent compound 

is defined as the ratio between the number of emitted photons from such process and the 

number of absorbed photons by the luminophore. From an experimental point of view, the 

absolute determination of the photons emitted from an emissive species is not feasible with 

standard laboratory instruments, as already discussed. Among the possible sources of error in 
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the quantification of the amount of photons emitted, one could include polarization effects, 

refractive index effects, reabsorption and reemission effects, internal reflection effects, and the 

spectral sensitivity of the detection system.[146] A number of procedures to determine 

photoluminescence quantum yields have been developed, which rely on absolute, or relative 

methods. Among the absolute methods for instance, the Vavilov,[147] and the Weber and Teale[148] 

are based on the calibration of the excitation light using a solid scatterer, or a dispersion of it in 

liquid. Also photothermal methods are available,[149] detecting the amount of energy that is lost 

by non-radiative deactivation of a luminophore, nevertheless they generally require the 

assumption that no photochemical reaction occurs as part of the nonradiative processes. 

Another important and easily applied method consists in the use of integrating spheres for 

evaluating absolute photoluminescence quantum yields. The use of such set-up allows to collect 

all the emitted photons from a sample and to easily relate them with the number of absorbed 

photons. In such a way, the effects of polarization, scattering and different refractive index at 

the interfaces are ruled out.[150] Nevertheless, the use of such absolute methods involves 

complicated data treatment, and/or non-common experimental setups. On the contrary, the 

most commonly used and simple method to determine photoluminescence quantum yields in 

solution consists in the comparison with standard luminophores having known quantum yield 

(relative method). Such experiments are performed with the use of a common 

spectrophotometer and a fluorimeter. The emission quantum yield (Φem) is determined by 

comparing the integrated emission spectrum (over the whole wavelength range) of the sample 

with the same of a reference compound taken under identical experimental conditions: 

𝛷𝑒𝑚 = 𝛷𝑒𝑚,𝑅  
𝑆

𝑆𝑅
 
𝐴𝑅

𝐴
 
𝑛2

𝑛𝑅
2            (3.13) 

where 𝛷𝑒𝑚,𝑅 is the emission quantum yield of the reference compound, S the integrated 

emission intensity of the sample, SR the integrated emission intensity of the reference 

compound, A the absorbance of the sample at the excitation wavelength, AR the absorbance of 

the reference at the excitation wavelength, n and nR are respectively the refractive indices of the 

solvents used for the sample and the reference.  

It should be stated that in this expression it is assumed that the sample and reference are 

excited at the same wavelength, and the measured quantum yield obtained is only as accurate 

as the certainty of the quantum yield of the fluorescence standard. Moreover, the concentration 

of the solutions used must be kept low, with an absorbance of the excitation light lower than 0.1 

(or better 0.05) in order to minimise the inner filter effects. 

Within the present work, luminescence quantum yields have been measured on the tetra-

DTE porphyrins described in chapter 5, in order to evaluate the extent of their fluorescence 

switching. For this purpose, the measurements were carried out by comparison with a standard 

compound with known quantum yield. Free base tetraphenylporphyrin (H2TPP, Sigma–Aldrich) 

in toluene was used, which has ΦR = 0.10.[151] The measurements were performed upon excitation 

of the tetra-DTE porphyrin derivatives at the isosbestic points (429 and 430 nm, respectively) 

of their absorption spectra upon DTE isomerization, in order to rule out any change in the 

absorption of the excitation light. Concentration was kept low, in order to have Aλexc < 0.05. 
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In case of radiative deactivation of an electronic excited state, the temporal characteristics of the 

emission from such state could be measured by time-resolved techniques, thus recording the 

emission intensity as a function of time. By doing so, it is possible to determine the decay of the 

excited state population, therefore the lifetime of an excited state. By defining an excited species 

*A, the decay of the concentration of such species can be described as: 

𝑑[ 𝐴∗ ]

𝑑𝑡
= (𝑘𝑛𝑟 + 𝑘𝑒𝑚 + 𝑘𝑟)[ 𝐴]∗          (3.14) 

When observing the light emitted by a luminophore, the intensity of radiation is measured 

over time, the latter being proportional to the concentration of the excited species: 

𝐼(𝑡) =  𝐼0 𝑒
−
𝑡

𝜏             (3.15) 

where 𝐼0 is the intensity at time 0, the lifetime 𝜏 the inverse of the total decay rate according to 

eq. 3.1. Hence the lifetime of an emissive excited state can be calculated from the slope of a plot 

of log 𝐼(𝑡) vs. 𝑡. 

Several methods to perform such experiments exist, including single flash, gated sampling, 

single photon counting and phase shift, being among them the most universal and commonly 

used the single photon counting technique. The principle of such methodology, commonly 

called time correlated single photon counting (TCSPC) relies on the fact that emission of a single 

photon from an assembly of luminophores is a random process: from repeated, periodic 

excitation of their luminescence and the possibility of detecting and precisely timing single 

photons coming from the sample it is possible to reconstruct the time-profile (or waveform) of 

the decay of its emission. In other words, each photon emitted from the sample is collected and 

labelled as the time difference between its arrival and the excitation pulse: a wide number of 

similar events is collected and binned in the same way, thus building a histogram that would 

have the same shape of a time decay curve of light emission observed after an infinitely short 

excitation light pulse. This occurs if one condition applies: a lower amount of emitted photons 

must be detected per excitation pulse, in other words if the probability of recording more than 

one photon per cycle is low. 

 

Figure 32. Scheme of the electronics in a TCSPC instrumental set-up: Laser indicates the pulsed excitation source, S 
the sample, CFD states for constant function discriminator, TAC time-amplitude converter, PGA programmable gain 
amplifier, ADC analog-to-digital converter, WD window discriminator. Reproduced from ref. [152]. 
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Each measurement cycle starts with a short excitation pulse, which is split into the excitation 

light sent to the sample and a signal sent to the electronics, specifically to a constant function 

discriminator (CFD), a device allowing to time precisely the event. Such signal is interpreted as 

start event (t0) by a time-to-amplitude converter (TAC). A second (stop) signal at time t is 

collected by detection of a single photon emitted by the sample, and analogously passed through 

a CFD for its timing. The TAC module generates a voltage linearly proportional to the time 

elapsed between the excitation t0 and the emission t events. Such voltage is then amplified by a 

programmable gain amplifier (PGA, if needed) and converted to a numerical value by an analog-

to-digital converter (ADC). In the electronics, also a window discriminator (WD) is present, 

allowing to discard the events giving rise to voltages outside of a given range, in order to reduce 

false readings. The single photon emitted from the sample is therefore converted to a digital Δt 

value: such electronics therefore act as a “stopwatch” for single photon events. Those are then 

digitally processed as channels of a histogram reporting the number of events occurred, each at 

their time delay: upon repeating such cycle a large amount of times with a pulsed source, it is 

possible to reconstruct the luminescence time decay as a statistical time distribution.  

In order to perform correctly TCSPC measurements, it is of crucial importance to limit the 

amount of emitted photons reaching the detector, and specifically to detect less than one photon 

per excitation pulse (typically 1-10 photons per 100 excitation pulses). This requirement is 

originated from the capability of the available electronic systems to record only the first photon 

emitted per each cycle. On the contrary, in case the amount of photons per excitation cycle is 

greater than one, such system would record only the first photons reaching the detector (most 

likely event), thus underestimating the events occurring on a longer timescale. The resulting 

histogram would be distorted to shorter times, by an effect called pulse pile-up. Another crucial 

factor to take into account about these measurements is the instrument response function (IRF), 

being the response of the instrument to a sample with zero lifetime. The latter is intrinsic to the 

fast timing electronics and the instrument detector, and also influenced by the pulsewidth of 

the excitation source. The IRF could be measured by monitoring the excitation light, 

substituting a highly scattering dispersion (usually colloidal silica) to the luminescent sample, 

and must be convoluted with the luminescence decay in order to correctly fit the lifetime data. 

The quality of the fit made on the experimental data is assessed by visual inspection of the 

deviations between the calculated and measured values, weighted by the standard deviations of 

each measurement. For a good fit the deviations are random, thus indicating that the only 

difference is given by random error. For multi-exponential decays, it is commonly assumed that 

the intensity decay over time corresponds as the sum of monoexponential decays: 

𝐼(𝑡) =  ∑ 𝑎𝑖
𝑖=1
𝑛 𝑒

−
𝑡

𝜏𝑖            (3.16) 

where 𝜏𝑖 are the lifetime values, and 𝑎𝑖 the amplitude of each component at t0, the latter are 

commonly expressed as percentage (and discarded when below 3%). 

Within the present work, TCSPC measurements were performed in chapter 5 to measure the 

excited state lifetime of tetra-DTE porphyrins. The experiments were made on a Horiba Jobin 

Yvon Fluorolog FL3-22 fluorometer equipped with a FluoroHub A+TCSPC controller and a PPD 

picosecond single photon counting detector. Excitation was performed using NanoLED LED 

light sources (pulse width ≤ 1.3 ns), using λexc = 590 nm and λexc = 560 nm. The excitation pulse 



 

[56] 
 

profile was deconvoluted by measuring the instrument response function using a scattering 

dispersion of colloidal silica (Ludox, Sigma–Aldrich) in water. 

 

 

 

 

Various light sources were used to perform stepwise irradiation of the compounds and materials 

characterised within the present work. In all solution studies, the experiments were performed 

in a dark room to avoid interference with environmental light. The solutions contained within 

standard 10x10 mm, 3 mL quartz cuvettes were thoroughly stirred to guarantee homogeneous 

irradiation. A manual shutter was used to control the irradiation time. The light sources used 

were selected according to their emission spectra for each photochromic moiety. For the study 

of azobenzene derivatives reported in chapter 4, ultraviolet and visible light irradiation was 

performed with optical fibre-coupled LEDs (ThorLabs): for UV light λmax = 367 nm, FWHM = 9 

nm, for Vis light λmax = 454 nm, FWHM = 20 nm, equipped with collimating lenses to ensure a 

parallel orientation of the emitted light. In case of diarylethene derivatives, UV irradiation was 

performed with either: 312 nm mercury vapour lamp (λmax = 312 nm, FWHM ≈ 40 nm, Herolab 

GmbH), 315 nm LED (λmax = 315 nm, FWHM = 10 nm, Roithner GmbH), while Vis light irradiation 

was performed either with a 150 W halogen lamp and a green filter (λmax = 530 nm, FWHM = 

80 nm, Edmund Optics), or an optical fibre-coupled LED (λmax = 550 nm, FWHM = 30 nm 

ThorLabs). Conversely, for spiropyran derivatives, the λmax = 367 nm and λmax = 550 nm optical 

fibre-coupled LEDs discussed previously were used. 

In case of in-situ irradiation while performing scanning tunnelling microscopy on the 

azobenzene derivatives reported in chapter 4, the aforementioned LEDs (ThorLabs) were used: 

for UV light λmax = 367 nm, FWHM = 9 nm, for Vis light λmax = 454 nm, FWHM = 20 nm, by 

directly placing the terminus of an optical fibre at ~ 1.5 cm from the substrate covered with a 

solution of the photochromic moieties. Light irradiation was also performed on solid-supported 

samples: in the case of tetra-DTE porphyrins described in chapter 5, the compounds were 

deposited as thin films on glass substrates upon blending with high molecular weight 

polystyrene and spin-coating. Light irradiation was then performed using the 312 nm mercury 

lamp and 150 W halogen lamp with green filter previously described. Alternatively, in order to 

record positive and negative fluorescent patterns, structured illumination was accomplished 

using a confocal laser scanning microscope (Zeiss LSM 710 confocal microscope system, 10x 

magnification objective). For ultraviolet irradiation, a UV continuous wave (CW) laser was used 

(λ = 355 nm). For visible irradiation, we could not accomplish the experiments with a green laser 

due to instrumental limitations, but the λ = 405 nm CW laser showed to be effective as Vis light 

source for switching the diarylethene derivatives. For studying the photoswitching of spiropyran 

derivatives coating gold nanorods by means of surface enhanced Raman scattering (SERS) 

described in chapter 6, a dispersion of the gold nanocrystals was deposited on glass slides by 

drop-casting prior to their analysis with a custom-built confocal Raman microscope set-up. The 
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measurements were performed in the laboratory of Prof. H. Uji-I (Katholieke Universitat 

Leuven), in collaboration with Dr. S. Toyouchi. UV-light irradiation on the samples was 

performed upon irradiation of the whole sample with a λmax = 367 nm LED (ThorLabs). 

Conversely, visible light and two-photon NIR irradiation on the samples were performed with 

laser sources, focussing the beam on the sample using the microscope optics, through an 

objective lens (60x, N.A. 1.25 PlanFluor, Nikon). For visible light, a continuous wave (CW) λ = 

532 nm diode laser (Cobolt Samba TM 532nm) was used, while two-photon irradiation was 

accomplished with a Ti:sapphire laser tuned at λ = 780 nm and λ = 1040 nm, giving 120 fs 

(linearly polarised) pulses at 80 MHz repetition rate (Maitai SP, SpectraPhysics). The laser 

power was controlled by neutral density filters. 

 

 

Photochromic compounds are substances capable of undergoing reversible isomerisation 

between (at least) two states, being the reaction in at least one direction driven by light. In the 

most simple case, a photoswitch can be interconverted between A and B states using two 

photochemical stimuli, with the following reaction scheme: 

𝐴    𝐵
Φ𝐵𝐴
←   

Φ𝐴𝐵
→                (3.17) 

with each isomer having a specific absorption spectrum. For monochromatic irradiation, one 

can define 𝛷𝐴𝐵 or 𝛷𝐵𝐴 as photoisomerisation quantum yield in the two verses, respectively. The 

concentration of the two species will vary until a photostationary state (PSS) is reached, with 

the reciprocal concentration of A and B depending on their molar absorption coefficients at the 

irradiation wavelength 휀𝐴 and 휀𝐵, respectively: 

[𝐴]휀𝐴𝛷𝐴𝐵 = [𝐵]휀𝐵𝛷𝐵𝐴          (3.18) 

In general, the quantum yield of a photochemical reaction (Φr) can be defined as the ratio 

between the number of reactant R molecules consumed (or of product formed) divided by the 

amount of absorbed photons per unit time:  

𝜙𝑟 = − 
𝑑𝑛(𝑅)/𝑑𝑡

𝑞𝑎𝑏𝑠
           (3.19) 

where n(R) is the number of molecules of reactant consumed, and qabs the photon flux absorbed 

by R. 

A photoreaction quantum yield can thus be determined by monitoring the variation in 

concentration of the reactant or of the product over the irradiation time with (almost) 

monochromatic light. In the case of photochromic compounds, the reaction can be monitored 

by UV-Vis absorption spectroscopy, since their isomers absorb in different spectral ranges and 

one can operate at wavelengths at which the molar absorption coefficient of one species is 

negligible compared to the other.   

The quantum yield definition is expressed in differential terms, hence its integration is 

required to obtain such quantity.  
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The photon flux absorbed by R is a fraction of the incident photon flux, the latter obviously 

dependent on the irradiation source used. Supposing that the radiation is absorbed only by the 

species R, and that its molar absorption coefficient is constant over the whole irradiation 

wavelength range in case of non-monochromatic irradiation, one can express the decrease in 

light intensity (Iabs) with respect to the incident light (I0) through the optical path l via the 

Lambert-Beer law: 

𝐼𝑎𝑏𝑠 = 𝐼0 − 𝐼𝑙 = 𝐼0(1 − 10−𝐴)                    (3.20) 

where A is the absorbance of R at the irradiation wavelength. By defining the incident photon 

flux as qin, commonly expressed in Einstein min-1, and in virtue of eq. 3.12, one can define the 

absorbed photon flux as: 

𝑞𝑎𝑏𝑠 = 𝑞𝑖𝑛 (1 − 10−𝜀 [𝑅] 𝑙)           (3.21) 

with ε the molar absorption coefficient of R at the irradiation wavelength expressed in L mol-1 

cm-1, [R] the concentration of the reactant (mol L-1) and l the optical path (cm). 

It results: 

−
𝑑𝑛(𝑅)

𝑑𝑡
= 𝜙𝑟 𝑞𝑖𝑛 (1 − 10−𝜀 [𝑅] 𝑙)          (3.22) 

Following from the fact that the reactant concentration changes over irradiation time, also the 

absorbed photon flux varies, hence making exact integration of such differential equation not 

always feasible. Nevertheless, it is possible to work in suitable conditions allowing approximate 

solutions. The most used is called initial slope method, and is performed upon monitoring the 

reaction at low conversions (< 10 %), since in this case two simplifying assumptions can be made: 

the variation of absorbance at the irradiation wavelength is small and appears linear, hence the 

absorbed light fraction at each step of the photoirradiation (𝑓𝑎𝑏)𝑚 can be calculated using the 

following relation: 

(𝑓𝑎𝑏)𝑚 = 
(1− 10−𝐴0)+(1−10−𝐴𝑡)

2
          (3.23) 

where A0 and At correspond to the absorbance (at λirr) at instants t = 0 and t, respectively. 

Moreover, the amount of product P formed is small and its absorption can be neglected, being 

its absorption coefficient much smaller than the one of the reagent R (εP << εR): in such a way, 

the light-induced back reaction can be neglected. With such approximation, by supposing that 

at the beginning of the reaction only the reactant R is present, the equation is obtained: 

𝜙𝑟  ≈
([𝑅]0−[𝑅]𝑡)

𝑡
 

𝑉

𝑞𝑖𝑛 (𝑓𝑎𝑏)𝑚
          (3.24) 
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The molar incident photon flux, quantity which depends on the spectral irradiance of the light 

source used, can be measured by actinometry.[153] A chemical actinometer is realised with a 

reference compound undergoing an established photochemical reaction with known quantum 

yield: upon monitoring the concentration variation after repeated light irradiation one could 

obtain the desired quantity in the experimental conditions used. In most cases the latter is 

conveniently performed with UV-Vis absorption spectroscopy. Several standard substances are 

used as actinometers, depending on the spectral range of the irradiation source needed. The 

most widely used compounds for such practice are azobenzene (230 < λirr < 450 nm),[154] 

potassium ferrioxalate (220 < λirr < 550 nm)[155] and Aberchrome 670 (450 < λirr < 600 nm).[156]  

Throughout the experiments performed within this work, potassium ferrioxalate has been 

chosen as standard, since its high reliability in the wavelength range of our interest (230 < λirr < 

450 nm)[153] for measuring the E → Z and Z → E photoreaction quantum yields of the 

azobenzene-based compounds described in chapter 4. The so-called potassium ferrioxalate 

actinometer is based on the photoreduction of Potassium tris(oxalato)ferrate(III) trihydrate, 

[K3Fe(C2O4)3]·3H2O, following the reactions: 

𝐹𝑒(𝐶2𝑂4)3
3−  

ℎ𝜈
→  𝐹𝑒2+ + 𝐶2𝑂4

∙− + 2 𝐶2𝑂4
2−        (3.25) 

𝐹𝑒(𝐶2𝑂4)3
3− + 𝐶2𝑂4

∙−  → 𝐹𝑒2+ + 2 𝐶𝑂2 + 3 𝐶2𝑂4
2−        (3.26) 

Hence, it follows that from one mole of reactant, two moles of product, Fe2+ ions are produced. 

The evolution of the reaction is controlled upon adding a phenantroline buffer after the 

irradiation, thus monitoring the formation of the coloured complex 𝐹𝑒(𝑝ℎ𝑒𝑛)3
2+ (λmax = 510 nm, 

ε = 11100 L mol-1 cm-1): the photoreaction can be easily followed by UV-Vis absorption 

spectroscopy. The quantum yields for such reaction are available in the literature for a wide 

range of irradiation wavelengths, and for several experimental conditions. One particular 

advantage for the use of such technique is the little quantum yield variation for different 

irradiation wavelengths in the UV, thus enabling to measure with confidence the photon flux 

with non-monochromatic irradiation light. 

In our case, ferrioxalate actinometry was used in its “micro-version”, under conditions of 

total absorption, and for low conversions.[157] The common procedure involves the irradiation of 

multiple 2.5 mL samples [K3Fe(C2O4)3]·3H2O (0.15 M in 0.05 M H2SO4) in a cuvette for various 

time intervals, and subsequent addition of 0.417 mL of 1,10-phenantroline buffer (0.1 % w/w in 

0.5 M H2SO4, 1.6 M CH3COONa). Thus, by monitoring the absorbance variation at 510 nm (ΔA510 

nm), one can determine the incident photon flux (in Einstein min-1): 

𝑞𝑖𝑛 = 
∆𝐴510 𝑛𝑚

∆𝑡
 

𝑉

𝑙 𝜀510 𝑛𝑚 𝜙
          (3.27) 

where Δt is the irradiation time expressed in minutes, V is the final volume of the solution (L), l 

the optical path length of the cuvette (cm), ε510 nm is the extinction coefficient of the tris-

phenantroline complex (l mol-1 cm-1) and Φ the quantum yield at a given wavelength. We used 

Φ = 1.21 for irradiation at λmax ≈ 365 nm, while Φ = 1.12 for irradiation at λmax ≈ 450 nm. 
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Vibrational spectroscopy constitutes another principal investigation tool for the study of 

photochromic molecules, since it allows to access detailed chemical and structural information 

on the basis of their specific vibrational fingerprint. Therefore it could be used as an alternative 

method to probe the various isomers of photochromic derivatives, especially if those are located 

at interfaces (therefore no longer in the bulk), or their properties cannot be determined by 

conventional electronic spectroscopy. Among the available vibrational spectroscopy techniques, 

Raman spectroscopy is of particular interest, providing great chemical specificity and especially 

because in particular conditions thanks to the surface enhanced Raman scattering phenomenon 

(SERS), the Raman signals could be enhanced, therefore allowing to perform spectroscopic 

measurements up to the single molecule level. 

Raman spectroscopy allows to study the inelastic scattering of light. Such phenomenon is 

induced by excitation of matter with photons having an energy not necessarily leading to an 

electronic excitation of the compound involved. Such photons, often leading to a “virtual state”, 

and not to an electronically excited state induce a dipole in the molecule analysed, which yields 

inelastic scattering, hence the scattered light has a different energy than the incident photon 

used to produce the excitation. Stokes scattering occurs when the inelastically scattered photon 

has lower energy than the incident one, with the difference in energy corresponding to one or 

more quanta of vibrational energy, hence leaving such molecule in a vibrationally excited state. 

On the contrary, anti-Stokes scattering is observed when the scattered photon has higher energy 

than the exciting one in view of the fact that the molecule originally resided in a non-zero 

vibrational level prior to excitation. It follows that in equilibrium conditions the intensity of the 

anti-Stokes Raman bands depends on the population of the vibrationally excited states (given 

by Boltzmann distribution). 

 

Figure 33. Simplified energy diagram showing the transitions involved in Rayleigh, Raman and resonance Raman 
scattering. Reproduced from Ref. [158] 

In light of the brief description given above, it is simple to understand how the analysis of 

inelastically scattered light could give detailed chemical information, nevertheless such 

phenomenon normally has extremely low probability to occur. Several methods exist allowing 

to enhance the Raman scattering signal: by performing resonance Raman for instance, it is 

possible to achieve signal enhancements in the order of ~102 – 106.[159] However, thanks to the 

early discoveries made in the 1970s regarding the enhancement of Raman signal of molecules 



 

[61] 
 

adsorbed on rough coinage metal electrodes,[160] the field of surface enhanced Raman scattering 

(SERS) became widely studied, and nowadays is universally accepted as a powerful analytical 

technique allowing to obtain information down to the single molecule level.[158-159] The SERS 

effect is generally observed when the analyte is in proximity of nanostructured metal surfaces, 

and especially noble metal surfaces, being linked to the presence of localised surface plasmon 

resonance (SPR). The presence of SERS effect could give enhancements of several orders of 

magnitude to the Raman signal displayed by a molecule, and its source could be ascribed to two 

principal mechanisms: the electromagnetic enhancement (EM) and the chemical enhancement 

(CE). The first mechanism could be easily explained, since the intensity of Raman scattering (I) 

is directly proportional to the square of the induced molecular dipole moment (µind): 

𝐼 ∝ 𝜇𝑖𝑛𝑑
2            (3.28) 

while the latter is in turn the product of the Raman polarisability (α) and the magnitude of the 

incident electromagnetic field (E): 

𝜇𝑖𝑛𝑑 =  𝛼 𝐸            (3.29) 

If the molecule is in proximity of a nanostructured metal surface giving rise to LSPR, as a 

consequence of the excitation of the latter, in such regions the electromagnetic field is greatly 

enhanced, especially when the excitation light is in resonance with the LSPR band. This 

phenomenon could give rise to signal enhancements of up to ~1010, especially in hotspots made 

by the contacts of two or more metal nanoparticles.[158] The chemical enhancement mechanism 

instead, is of lower intensity (~10 – 102) and is thought to come from the modification of the 

Raman polarisability tensor resulting from the adsorption of the molecule(s), and also from 

charge transfer phenomena occurring between the molecule(s) and the substrate. The signal 

enhancement factor (EF) can be quantified as the ratio between the SERS signal and the normal 

Raman signal displayed by the analyte: 

𝐸𝐹 = 
𝐼𝑆𝐸𝑅𝑆/𝑁𝑆𝐸𝑅𝑆

𝐼/𝑁
           (3.30) 

where ISERS and I are the intensity of the SERS, and of the normal Raman signals, respectively, 

while NSERS and N the number of molecules giving rise to SERS and normal Raman, respectively. 

SERS could give rise to EF up to ~1014, allowing to obtain Raman spectra of single molecules. 

It is worth to mention that since the Raman scattering enhancement is originated by the 

excitation of LSPR modes on metal nanostructures, the latter could be obtained using a wide 

variety of noble metal structures having features with dimensions lower than the wavelength of 

visible light: not only metal nanoparticles could be used for this purpose, but also scanning probe 

microscopy (SPM) tips, for example. The use of the latter gave rise to the so-called tip-enhanced 

Raman spectroscopy (TERS), allowing to couple the power of SPM of performing sub-nanometer 

scale manipulation and imaging together with the possibility of obtaining spectroscopic 

information at the single- (or few-) molecule level.[158] 
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Figure 34. Simplified scheme of the experimental set up used for Raman spectroscopy in an inverted microscope, in 
epi-illumination geometry. Adapted from Ref.[140]  

The Raman (SERS) measurements reported within this work have been performed to investigate 

the isomerisation of spiropyran derivatives adsorbed on anisotropic gold nanocrystals 

(nanorods, AuNR) described in chapter 6. The experiments have been performed in 

collaboration with the group of Prof. H. Uji-I, by Dr. S. Toyouchi (Katholieke Universitat 

Leuven), using a custom-built Raman microscope setup. The samples were prepared by drop-

casting the spiropyran-coated AuNR dispersions in THF on previously cleaned glass microscope 

cover slides. The Raman spectroscopy setup was based on an inverted microscope (Nikon TiU) 

equipped with a piezoelectric stage (P517.3CL, Physik Instrument). AuNR aggregates were 

located by dark field illumination: white light from a halogen lamp was focussed on the sample 

through a dark field condenser (Nikon TI-DF, dry, N.A. 0.95-0.80). Laser excitation and 

collection of scattered light from the sample were performed using an objective lens (60x, N.A. 

1.25 PlanFluor, Nikon) and passed through a confocal pinhole (100 µm diameter). Spectra were 

recorded using a charge-coupled device (CCD) camera (DU920P, Andor) operated at -85 °C 

equipped with a spectrograph (iHR320, Horiba), dichroic mirrors and longpass optical filters 

were used in order to reject the excitation laser light. Excitation was performed either with a 

continuous wave (CW) 532 nm diode laser (Cobolt Samba TM 532nm), a CW 632.8 nm He-Ne 

laser (1145P, JDSU), or a CW 785 nm diode laser. The laser power was controlled by neutral 

density filters. 

 

 

 

As stated previously, in most cases the isomerisation of photochromic compounds is studied by 

means of electronic or vibrational spectroscopy, techniques allowing to give qualitative and 

quantitative information on the photoreaction progression and the PSSs. NMR spectroscopy is 

also a frequently used technique for this purpose. Nevertheless, all these techniques fail when 

the (multiple) states of a photochromic compound have the same spectroscopic signature, or 

are chemically equivalent. In case of photoswitchable derivatives undergoing large 

conformational rearrangements upon isomerisation (e.g. azobenzene), the use of techniques 

capable of distinguishing between isomers (or conformers) by their different shape in the gas 

phase such as ion-mobility mass spectrometry is achieving wider acceptance.[161] 
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The Ion-mobility technique combined with mass spectrometry represents nowadays a well-

established analytical tool, allowing to provide deep insight into molecular structure in the gas-

phase. Ion mobility was pioneered between the 1950s and 1960s,[162] and since then has 

experienced a tremendous growth, being nowadays present in several commercial instruments 

available on the market.[163]  Ion mobility mass spectrometry (IMMS) allows to separate mixtures 

of ions having the same mass over charge ratio (m/z) on the basis of their three-dimensional 

shape in the gas phase. With IMMS it is possible to experimentally determine the latter by 

monitoring the mobility of an ion under the influence of an external electric field, in presence 

of a gas with which the analyte experiences collisions. The shape resulting from the 

conformation of an ion in the gas phase is translated into an experimentally observable quantity 

called collisional cross section (CCS). Ion-mobility adds an extra “dimension” to mass 

spectrometry analysis, enabling to discriminate not only between ions with different mass and 

m/z but also on the basis of their physical shape. Commonly, in a mass spectrometer equipped 

for performing ion-mobility separation a drift cell filled with a buffer gas (He or N2) is fitted 

between the ionisation source and the mass analyser/detector. IMMS measures the time the ion 

takes to migrate through the drift cell in the presence of an electric field. Traditionally, in the 

first IM spectrometers available the drift cell was the so-called drift tube (DTIM), in which the 

applied electric field is homogeneous, by applying a constant potential gradient along the tube: 

in such conditions the CCS (Ω) can be directly determined on the basis of the fact that the 

number of low-energy collisions between an ion and the neutral buffer gas molecules (or ions) 

is proportional to the ion size. Hence, the experimentally measured drift time (td), is directly 

proportional to the CCS (Ω) via the Mason-Schamp equation:[164] 

Ω = 
√18𝜋
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𝑡𝐷 𝐸

𝐿
         (3.31) 

where z is the charge of the ion i having mass mI, e the elementary charge, kb the Boltzmann 

constant, T the temperature, P the pressure of the buffer gas with mass mN and density number 

N at standard temperature in the drift cell of length L. The reciprocal of the sum between the 

masses of the collision partners can be also expressed as the reduced mass (1/µ = 1/mI + 1/mN).  

 

Figure 35. Simplified scheme of the drift cell working principle in the two most common IMMS systems available. The 
cell is filled with a buffer gas, and the ions migrating under the influence of an external electric field experience 
collisions with the gas atoms (or molecules), hence they are separated according to their shape. Top, drift tube system 
(DTIM), a constant and homogeneous potential difference is applied through the focussing rings of the drift tube. 
Bottom, travelling wave system (TWIMMS), the ions are radiofrequency confined, and a direct current voltage wave 
travelling to the exit of the trap is applied. Reproduced from Ref. [164]  
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Nevertheless, on most modern commercially available IMMS mass spectrometers the ion 

mobility separation is based on a different technology, called travelling wave ion mobility 

(TWIMMS). Travelling wave cells are stacked ring ion guides enabling radiofrequency 

confinement of the ions, with in addition a direct current voltage wave travelling to the exit of 

the trap. Such systems typically allow to obtain a higher resolution separation than DTIM-based 

ones: like in DTIMMS, ions with higher mobility exit the TWIMMS cell earlier than ions with 

lower ones. However, analytical equations describing the ion movement are complicated to 

obtain because of the non-linearity of the electric field, and its variation in both time and space. 

In such instruments, the linear relationship between CCS (Ω) and the drift time (tD) is no longer 

valid, and current mathematical models substitute it with the non-linear relationship: 

Ω = 
√18𝜋
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 𝐴 𝑡𝐷

𝐵         (3.32) 

where A and B depend on instrumental parameters. For simplicity, the latter could be rewritten 

including all the experimental parameters in the factor A’: 

Ω = 
𝑧

√𝜇
 𝐴′ 𝑡𝐷

𝐵           (3.33) 

It is now evident that the CCS values could be obtained by first measuring A’ and B values 

through calibration with known analytes. The calibrant ions of known CCS must be used 

according their charge states and CCS ranges, being similar to the analyte.[165] 

In fact, for practical reasons the drift time (tD) is not directly measured, but rather the arrival 

time (tA), depending also of the transfer of the ion from the end of the drift cell to the detector 

(dead time, t0).  

𝑡𝐴 = 𝑡𝐷 + 𝑡0            (3.34) 

 

Figure 36. Scheme of the commercial TWIMMS system (Synapt G2-Si, Waters UK) employed for our studies. 
(Copyright www.waters.com)  
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IMMS measurements were performed within the present work to study the isomerisation of star-

shaped azobenzene systems described in chapter 4. The experiments were performed in 

collaboration with Q. Duez and Dr. J. De Winter in the group of Prof. P. Gerbaux (Université de 

Mons), on a Synapt G2-Si (Waters, UK). The instrument is equipped with a travelling wave ion-

mobility separation cell (TWIMMS), preceded and followed by an ion trap and a transfer cell 

respectively. In the three units, the electric field is varied by applying a DC voltage travelling 

wave, and in each the wave and amplitude are user-tunable (so-called Tri-wave setup). Trap and 

transfer cells are filled with argon, while the drift cell with nitrogen, and preceded with a RF-

only cell containing helium. The Tri-wave section is preceded by a quadrupole mass analyser, 

allowing to select the ions on the basis of their m/z if needed. A high resolution time-of-flight 

(TOF) mass spectrometer is finally employed. The instrument is equipped with an electrospray 

ionisation source (ESI), used in negative mode. Collisional cross section data were obtained 

through calibration using polyalanine as standard.[165-166] The IMMS measurements were either 

obtained by direct infusion of the analyte solution in the ESI source, or by previously separating 

the mixtures with an HPLC setup (Acquity UPLC, Waters UK). The solutions were injected into 

the HPLC and separated on a reversed phase column (Phenomenex, C18, 5 µm, 150 x 4 mm) by 

eluting solvent gradients of 95-5 % formic acid 0.1% (v/v) in water / 5-95 % acetonitrile. 

 

 

 

Scanning electron microscopy is one of the most widely used microscopy techniques following 

from its versatility: such method allows to perform microstructure morphology and chemical 

composition analyses on a wide variety of samples, spanning from inorganic materials to 

biological specimens. Electron microscopy allows to obtain morphological (and compositional) 

information with higher lateral resolution compared to optical microscopy, and follows from the 

use of electrons accelerated at high energies, which can be focussed beyond the diffraction limit 

of (visible) light. Image formation is related to the acquisition of signals resulting from the 

interaction between the electron beam and the specimen, and could be divided into two main 

categories, inelastic and elastic interactions. The basis of a scanning electron microscope is the 

use of a tightly focussed electron beam as a probe: by moving such probe on a raster on the 

sample and associating each point of the sample with a point on a screen, it is possible to 

reconstruct a topographic image of the specimen, without using image-forming lenses. 

In a SEM instrument, the electron beam is produced by an electron gun: multiple electron 

sources could be used for SEM, working on different electron emission phenomena, such as 

thermoionic emission, field emission, and Schottky emission. Traditionally, thermoionic sources 

are the most widely used, especially thanks to the low-cost and the low required working 

vacuum. Nevertheless, they provide several disadvantages, especially for high-resolution 

application, such as large electron energy spread, source size and low brightness. These defects 

are overcome with field-emission guns (FEG). A FEG source consists of a single crystal tungsten 

wire with sharp tip (curvature radius ~ 100 nm): electron emission is produced by applying a 

bias of few kilovolts between the tip and the first acceleration anode. Field emission occurs 
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through quantum tunnelling. FEG sources (also called cold-cathode electron guns) typically 

have two acceleration anodes to create an electron beam with small source size, e.g. 3-4 orders 

of magnitude lower than for a thermoionic gun. However, the “image” of the electron source 

must be demagnified in order to produce a narrow probe on the surface of the specimen. 

Multiple electron lenses are used to perform such task, and the specific design depends on the 

instrument configuration used. However, the simplest example could be schematised as follows: 

the divergent electron beam produced by the source is converged and collimated using an 

electromagnetic condenser lens, generally followed by an aperture below the focal point of the 

electron beam. The subsequently diverging beam is then focussed using objective lenses into the 

probe point at the specimen surface down to the required spot size (in the range of 1 – 100 nm). 

The spot size is chosen by varying the width of the aperture placed between the condenser and 

the focussing lenses. The electron spot, “probe” is then scanned on the sample using deflection 

coils within the electron optics of the system. The as-described part containing the electron 

optics of a SEM is usually called “electron column”, and is kept in ultra-high vacuum (P ≤ 10-7 

Pa), in order to avoid scattering of electrons by the air. 

 

Figure 37. Schematic diagram of a scanning electron microscope. CL stands for condenser lens, while OL for objective 
lens. Reproduced from Ref.[167] 

The specimen and the detectors are contained within a chamber which internal pressure could 

be varied depending on the sample nature and the desired resolution, spanning from high 

vacuum (P ≤ 10-4 Pa) up to atmospheric pressure. The latter is the so-called “environmental SEM” 

(ESEM), inevitably yielding to lower resolution imaging. ESEM is performed by saturating the 
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sample chamber with water vapour, used to allow the non-conducting sample to discharge. Such 

a technique could be utilised to image electrically insulating samples, or specimens which in 

virtue of their water content could not be kept in high vacuum (e.g. biological samples). 

The interaction between the high-energy “probe” electrons and the sample could result in 

multiple phenomena which could be divided into two major categories: elastic interactions and 

inelastic interactions. Elastic scattering is the result of the deflection of the incident electron by 

the atomic nuclei of the specimen, or by outer electrons with similar energy. The resulting 

scattered electrons are called backscattered electrons (BSE), have relatively high energy 

(negligible energy loss), and their total scattering angle is greater than 90°. BSEs can be 

generated by a single- or multiple scattering events, and the volume of their production 

generally increases with the accelerating voltage of the electron beam, while their production 

yield increases with the atomic number of the atom of the specimen. On the contrary, secondary 

electrons (SE) are yielded from inelastic scattering, being electrons ejected from the k-shell of 

the specimen atoms following collisions with the primary beam. The latter have commonly low 

energies (< 50 eV) and are typically generated close to the sample surface (5 – 50 nm).  

 

Figure 38. Schematic representation of the signals generated by electron-sample interaction in SEM. SE I are 
secondary electrons produced by a single scattering event (direct interaction between the analysis beam and sample), 
SE II are secondary electrons produced from multiple scattering events. BSE are backscattered electrons. Reproduced 
from Ref. [168] 

BSE and especially SE are the two most common signals used to perform topographic analyses. 

BSE could be collected by a detector placed normally to the surface following their high 

scattering angle, and typically solid state diodes placed close to the source electron beam are 

used for such purpose. Secondary electrons are produced with a higher angle distribution and 
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have lower energy: typically Everhart-Thornley detectors are used for such purpose. The latter 

consist of a scintillator surrounded by a Faraday cage, connected to a photomultiplier: thus, after 

being hit by an electron a light signal is produced, which is consequently transduced to an 

electrical signal. By selecting the voltage applied to the Faraday cage one could select the type 

of electrons entering the detector, being either the BSEs or the SEs. In summary, a SEM image 

consists of a false colour map which contrast is given by the intensity of the BSE or SE signal 

observed upon raster scanning of the sample, which is directly related to its morphology and 

composition. 

Within this thesis, scanning electron microscopy was employed to characterise the 

morphology of the gold nanorods (AuNR) described in chapter 6. All the measurements reported 

here were performed with a Quanta FEG 250 (FEI), equipped with a cold cathode field emission 

gun. Images were recorded on conductive samples prepared by drop-casting AuNR dispersions 

on p-doped silicon substrates, operating the microscope in high vacuum, using 2-3 nm spot size 

and 20-30 kV acceleration voltages. AuNR morphology and particle size statistics were 

determined using ImageJ software. 
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Scanning tunnelling microscopy, the firstborn among the scanning probe microscopies,[169] still 

represents today one of, or probably the most powerful yet inexpensive technique for obtaining 

topographic (and spectroscopic) information with sub-molecular scale resolution, in real space. 

Contrarily from other surface characterisation techniques based on diffraction of incident 

radiation, in suitable conditions STM allows to probe objects or structures not possessing 

translational symmetry, therefore enabling to visualise and manipulate also single molecules or 

disordered monolayers.[170] STM can be employed to image atomically flat crystals and physi- 

and chemisorbed monolayers on their surface under various environmental conditions, 

spanning from ultra-high vacuum to liquid and in a wide range of temperatures, thus making it 

a precious instrument to study molecular-scale phenomena such as self-assembly or even 

chemical reactivity in two dimensions.[102a, 171] 

 

Figure 39. Schematic representation of a STM setup. The heart of a scanning tunnelling microscope is the tip-sample 
tunnelling junction: a sharp metallic probe is kept at low distance (few Å) from a conducting sample, while applying 
an external bias between the two. A resulting current, function of the tip distance, position, bias and electronic 
structure of the sample can be used for imaging purposes. Mapping of the sample with sub-molecular scale resolution 
is accomplished by raster scanning over its surface using a piezoelectric actuator. The motion is controlled by 
feedback electronics. Reproduced from Ref.[172] 

The working principle of STM relies on the electron tunnelling effect occurring between an 

electrically conductive sample and a sharp, virtually monoatomic metallic tip as a probe. An 

STM can in fact probe the number of filled or unfilled energy states near to the Fermi level of tip 

and sample: rather than directly measuring the topography of a sample, it gives a surface with 

constant tunnelling probability. Electron tunnelling is observed upon applying a bias between 

tip and sample, by keeping their distance extremely short (few Å), thus resulting in an observable 

tunnelling current. Such current is a function of tip distance, position, bias applied and 

electronic structure of the sample, which could be expressed as its local density of states (LDOS). 

Such information could be used for imaging purposes, achievable by monitoring the tunnelling 
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current upon raster scanning the sample surface. The current measured point-by-point upon 

scanning could be used to reconstruct a contrast map of the electron density of the specimen.  

Piezoelectric ceramics undergo a geometric strain proportional to an applied electric field: 

such materials are used to build actuators which movement can be precisely controlled by 

applying an external voltage. Piezoelectric actuators having subnanometer range resolution are 

used to control the tip-sample position, while the scanning motion is governed by feedback 

electronics. STM imaging can be performed by scanning the sample with two operating modes: 

constant height mode, and constant current mode. In constant height mode, the line scan is 

performed by keeping the probe at a fixed height above the sample, recording the current 

measured at each point: the current signal thus represents the dataset employed to generate the 

image of the sample. Conversely, in constant current mode a line scan is accomplished upon 

setting a current setpoint to the feedback electronics controlling the scanner: the system in such 

case varies the tip-sample distance in order to keep the current value set unvaried. Thus, a map 

is reconstructed with the height of the tip recorded at each point of the raster scan. The constant 

height mode allows to perform faster scanning with usually higher lateral resolution, since it does 

not require the feedback loop to re-adjust the tip-sample distance at each point. Nevertheless, 

it has limited applicability: for instance, if the surface has features higher than the set scan 

height, the tip will crash, modifying its- (and the sample) geometry. Furthermore, on a practical 

point of view it is complicated to keep the vertical height of the tip stable against thermal drift 

and external vibrations: hence, it is normally not utilised in instruments working at room 

temperature and ambient pressure. 

 

Figure 40. Scheme of the scanning modes used for STM imaging. Reproduced from Ref.[172] 

The tunnelling effect is a purely quantum mechanical phenomenon: it occurs when electrons 

move through a barrier which could not be classically overcome. Electrons, in virtue of the wave-

matter duality can be considered as waves, and as such they have non-zero probability to tunnel 

through the gap if such barrier is thin enough. For tunnelling in vacuum through a 

unidimensional barrier (time-independent case), the phenomenon could be modelled by solving 

the stationary Schrödinger equation:  

(
ℏ2

2𝑚𝑒
Δ + V(r))Ψ = 𝐸 Ψ          (3.35) 
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where me is the electron mass, and V(r) is the potential describing the barrier with height Φ and 

width x, and E the energy of the electron. The exact solution can be found by expressing Ψ as 

plane waves for the three regions: 1, tip; 2, vacuum; 3, sample. 

Ψ1 = 𝑒𝑖𝑘𝑥 + 𝐴 𝑒−𝑖𝑘𝑥  

Ψ2 =  𝐵 𝑒𝑖𝜅𝑥 + 𝐶 𝑒−𝑖𝜅𝑥  

Ψ3 =  𝐷 𝑒𝑖𝑘𝑥  

with 𝑘 =  
√2𝑚𝑒𝐸

ℏ
 and 𝜅 =  

√2𝑚𝑒(Φ−𝐸)

ℏ
         (3.36) 

The A, B, C, D coefficients can be determined by setting equal the amplitude and first derivatives 

of the wavefunctions at the boundaries. The transmission coefficient (T) can then be defined by 

comparing the wavefunctions on both sides of the barrier (1 and 3): 

𝑇 = 
|Ψ1|

2

|Ψ3|
2 = 

𝐴2

𝐷2 = [(
𝑘2+ 𝜅2

2𝑘𝜅
)
2

sinh (𝜅𝑥)]
−1

        (3.37) 

The latter may be simplified by assuming a high barrier potential compared to the energy of the 

electron       Φ >> E, hence κx >> 1. 

𝑇 ≈  
16𝑘2𝜅2

(𝑘2+𝜅2)2
 𝑒−2𝜅𝑥           (3.38) 

The number of tunnelling electrons (the tunnelling current, I) is linearly proportional to the 

transmission coefficient T, which depends exponentially on the length of the barrier x: 

𝐼 ∝ 𝑇 ∝ 𝑒−2𝜅𝑥           (3.39) 

The latter relation clearly evidences the exponential dependency of the tunnelling current with 

the tip-sample distance, which is the reason, in first approximation, of the high vertical 

resolution of such scanning probe technique. 

However, a more realistic model taking account of the three-dimensionality of the system 

and the electronic structure of tip and sample exists, being introduced by Tersoff and Hamann 

in the 1980s.[173] Such model is derived from the treatment of the tunnelling effect through a 

three-dimensional barrier by the perturbative theory (Bardeen).[174] Describing the tip and the 

sample with the wavefunctions Ψµ and Ψν, respectively, and the tunnelling matrix Mµ,ν 

representing the overlap between them, the tunnelling current for a general geometry could be 

written with the following expression: 

𝐼 =  
2𝜋𝑒

ℏ
∑ 𝑓(𝐸𝜇)[1 − 𝑓(𝐸𝜈 + 𝑒𝑉)]|𝑀𝜇,𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝜈)𝜇,𝜈                  (3.40) 

where 𝑓(𝐸) is the Fermi-Dirac distribution function, 𝐸𝜇, 𝐸𝜈 the energies of the states of sample 

and tip, and 𝑉 the applied bias voltage. In the limit of low temperature and voltages, the term 

[1 − 𝑓(𝐸𝜈 + 𝑒𝑉)] can be approximated with a step function, leading to the approximated 

expression: 

𝐼 =  
2𝜋

ℏ
𝑒2𝑉∑ |𝑀𝜇,𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝐹)𝛿(𝐸𝜈 − 𝐸𝐹)𝜇,𝜈        (3.41) 

with 𝐸𝐹 being the Fermi energy of sample and tip. 
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The equation could be resolved by approximately describing the sample as a wavefunction 

parallel to its surface (Bloch’s theorem), which in vacuum decays exponentially on the 

perpendicular direction. The tip is modelled as spherical s-wavefunction at the point closest to 

the sample, while the rest is arbitrary. By assuming that the work function of tip and sample is 

equal, it is possible to obtain the following expression used to define the tunnelling current: 

𝐼 = 32 
𝜋2

ℏ𝑘4
𝑒2𝑉Φ2𝑅2𝑒2𝑘𝑅

1

𝑉𝑡𝑖𝑝
∑ |Ψ𝜈(𝑟0⃗⃗  ⃗)|

2
𝜇,𝜈 𝛿(𝐸𝜇 − 𝐸𝐹)𝛿(𝐸𝜈 − 𝐸𝐹)     (3.42) 

where 𝑘 is the inverse decay length for the wavefunctions in vacuum, as defined in (3.34), 𝑅 the 

tip radius, 𝑉𝑡𝑖𝑝 the normalisation volume of the tip, the centre of the tip is at 𝑟0⃗⃗  ⃗. 

The local density of states (LDOS) of tip (µ) and sample (ν) can also be defined: 

𝜌𝜇(𝐸) =  
1

𝑉𝑡𝑖𝑝 
∑ 𝛿(𝐸𝜇 − 𝐸𝐹)𝜇           (3.43) 

𝜌𝜈(𝐸, 𝑟 0) =  ∑ |Ψ𝜈(𝑟0⃗⃗  ⃗)|
2𝛿(𝐸𝜈 − 𝐸𝐹)𝜈          (3.44) 

Hence, the final expression for the tunnelling current becomes: 

𝐼 ∝  𝑉𝜌𝜇(𝐸)𝜌𝜈(𝐸, 𝑟 0)           (3.45) 

where 𝑉 is the applied bias voltage. Thus, the current depends on the LDOS of the sample at the 

position of the tip 𝑟0⃗⃗  ⃗ at the Fermi energy 𝐸𝐹, demonstrating that by STM it is the LDOS of the 

sample being imaged, rather than its topography. 

In case of molecular adsorbates located between the tip and the substrate, the tunnelling 

current is proportional to the density of states of the adsorbate/substrate system. The image 

contrast of the adsorbate depends on the perturbation it induces to the local density of states of 

the substrate, since the observed tunnelling current is the result of the overlap between the 

states of the two. It follows that the image obtained contains information on the symmetry of 

the molecular orbitals of the adsorbates, together with the location of their adsorption site on 

the substrate. Nevertheless, one has to keep in mind that the adsorbate electronic levels are 

pinned with respect to the substrate Fermi level: when a molecule is physisorbed on a surface, 

the energy of its molecular orbitals are shifted with respect to the case where there are no 

interactions. The same happens to the electronic states of the substrate, although this shift is 

lower.[175] This is to state that STM does not provide exact topographic information over the 

adsorbate layers on a substrate, but is the result of the hybridisation of the states of the two: 

therefore the broadening or the depletion of the electron density of a molecular adsorbate also 

depends on the adsorption mechanism (e.g. the electronic interaction between molecule and 

substrate). 

In order to perform STM imaging, it is necessary to use highly sharp metal tips, having a 

curvature radius lower than few tens of nanometers. Nearly the totality of the current measured 

in the tunnelling junction is transported through the tip apex (atom). This allows to obtain 

lateral resolutions of ~ 1 Å, together with the high vertical resolution mentioned previously. STM 

tips are fabricated by cutting or etching a metal wire, being tungsten (W), or a platinum-iridium 

alloy (Pt/Ir) the most commonly used. Tips are made by mechanically cutting the metal wire, or 

alternatively by electrochemical etching, the latter technique allowing to obtain sharper and 
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more uniform tip shapes. Electrochemical etching nevertheless yields probes covered by an 

oxide layer which removal is necessary for effective measurements, and is intrinsically slower 

than mechanical cutting. For measurements performed in air or in liquid Pt/Ir is the material of 

choice following its chemical stability. 

STM imaging can be performed in a vast variety of environmental conditions, spanning from 

ultra-high vacuum to liquids. One key condition that has to be respected is the minimisation of 

faradaic and capacitive currents, hence to work in a dielectric environment. This is obviously 

obtained in vacuum conditions, but for other media it is necessary to use e.g. liquids with low 

dielectric constant. For instance, to perform STM studies at the solid-liquid interface, low 

dielectric solvents such as 1-phenyloctane, n-tetradecane, 1-octanol, heptanoic-, octanoic- or 

nonanoic acid, and 1,2,4-trichlorobenzene (TCB) must be used. The other requirement for such 

solvents is their low volatility in order to avoid changes in solute concentration within the 

measurements timescale. On the other hand, when working in water, or high dielectric constant 

media, the use of an insulated tip and an additional electrode is necessary (reference electrode), 

such setup is called electrochemical STM, but will not be the object of our work. 

Within this thesis STM was used to study the self-assembly of tris(azobenzene) star-shaped 

scaffolds at the solid-liquid interface between heptanoic acid and highly ordered pyrolytic 

graphite (HOPG), described in chapter 4. Investigation on the self-assembly of the star-shaped 

molecules was performed by STM at ambient pressure and room temperature, using freshly 

cleaved highly ordered pyrolytic graphite (HOPG) as substrate. The experiments were 

performed using a Veeco Multimode III (Bruker) equipped with a STM head and a 1 µm-range 

piezoelectric scanner (A-Piezo, Veeco), working in constant current mode. STM tips were 

mechanically cut from a Pt/Ir (80 : 20) wire (0.25 mm diameter, Goodfellow). Self-assembly was 

studied at the solid-liquid interface between HOPG and a supernatant solution (1-heptanoic 

acid, Sigma Aldrich), by applying 4 µL of the latter on the substrate, after having checked the 

integrity of substrate and tip by visualising the graphite lattice. The raw STM data was processed 

using a dedicated image processing software (SPIP, Image Metrology), by means of flattening 

and subtraction of a 2-degree polynomial background. The images were corrected from drift by 

calibration with the underlying graphite lattice. Unit cell parameters were obtained by Fourier 

analysis. 
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Among the colloidal metal nanoparticles with nonspherical symmetry, gold nanorods (AuNR) 

probably represent the first and most successful example synthesised by a chemical bottom up 

approach.[128, 176] Due to their striking optical properties, a great deal of efforts has been spent in 

recent years to develop synthetic methods enabling to obtain AuNR with high yield and 

size/shape selectivity. Several routes have been proposed, going from top down approaches used 

to obtain nanostructures directly on surfaces, to several bottom up methods yielding colloidal 

dispersions of rod-shaped nanocrystals, all aiming to narrow size and aspect ratio distributions 

as principal target. The latter methods are usually preferable, since they allow to obtain the 

material in large amounts, following facile and inexpensive experimental strategies.  

 

Figure 41. TEM micrographs of samples taken from colloidal dispersions of CTAB-stabilised AuNRs synthesised by 
seed-mediated growth in water. Left, rods synthesised using sodium salicylate as additive, showing an average 
diameter of 14 ± 1 nm and 36 ± 3 nm length, reproduced from Ref.[177] Centre, rods synthesised using 5-bromosalicylic 
acid as additive, showing an average diameter of 22 ± 1 nm and 64 ± 5 nm length, reproduced from Ref.[177] Right, rods 
synthesised using sodium oleate as additive, showing an average diameter of 35 ± 2 nm and 125 ± 7 nm length, 
reproduced from Ref.[137b] All scale bars represent 100 nm. 

In all cases, the bottom up synthesis of gold colloids is performed by the reduction of Au(III) 

salts in presence of agents capable to stabilise the dispersion, method known since the 

pioneering work of Faraday first,[122] and later Zsigmondy.[123b] These early discoveries greatly 

boosted the research in such field, nevertheless processes allowing the realisation of anisotropic 

gold colloids did not appear before the 1990s.[178] The common idea is to use a template to direct 

the particle growth in a specific direction: first syntheses of gold rod-shaped particles were 

performed by electrochemical reduction of gold either in nanoporous materials,[179] or by using 

rod-inducing reverse micelles.[180] Among the bottom-up strategies, the seed-mediated growth 

is undoubtedly the most popular and widely applied, thanks to the facile and inexpensive 

experimental procedure, and its flexibility allowing to obtain high quality colloidal dispersions 

with a wide variety of size and aspect ratios. Although such method was first employed for the 

formation of anisometric gold colloids in 1989,[178] the AuNR seeded growth in colloidal 

dispersion was developed from the first experiments done by Jana et al. in 2001.[176] 
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Figure 42. Proposed mechanisms for the anisotropic growth of AuNRs. The presence of Ag(I) ions is fundamental for 
the growth of AuNRs, nevertheless their role is still under debate. Reproduced from Ref. [181] 

The AuNR seed-mediated growth is based on the reduction of Au(III) chloride within 

cetyltrimethylammonium bromide (CTAB) micelles by a weak reducing agent (usually ascorbic 

acid), catalysed by small “seed” spherical gold nanoparticles. The methods that are still used 

nowadays are based on a two-step process, consisting in the preparation of the seed 

nanospheres, and their addition to a growth solution where the rod-shaped particles are 

produced. The resulting particle shape is mainly due by the particular choice of CTAB as 

surfactant, since it is known to form bilayer, cylinder-shaped micelles in water, at suitable 

concentration,[182] but also to act as crystal face-specific capping agent, allowing the growth of 

nanocrystals on preferential crystal axes. The AuNR synthesis process is the result of a complex 

multi-step mechanism, and the exact reason for such anisotropic crystal growth is still being 

under debate, however a general picture is accepted and will be summarised here.[183] The seed 

nanoparticles consist of small diameter gold nanospheres (≤ 5 nm) prepared by the reduction of 

tetrachloroauric acid HAuCl4 with a strong reductant (most commonly sodium borohydride, 

NaBH4), in presence of CTAB as stabiliser. Particular care has to be taken in consuming all the 

reductant used in this step prior to add the seed to the growth solution. The reason for this 

precaution comes from the fact that perhaps the most important aspect of the seeded growth 

method is the use of a weak reducing agent. The latter must not be able to reduce the gold ions 

to Au(0) in absence of the seed particles, which surface act as catalyst, otherwise no anisotropic 

growth would occur. The use of CTAB is also fundamental for two main reasons: the bromide 

counterions exchange the chloride ones in the tetrachloroaurate AuCl4
- anion, yielding to the 

complex AuBr4
-, and the latter forms ion pairs with the tetraalkylammonium cationic head of 

the surfactant CTA+. Both the ligand exchange and the formation of the ion pairs lead to a shift 

of the gold ions redox potential (cathodic shift).[184] In such conditions, in the growth solution 

the following equilibrium reaction is pushed towards the comproportionation: 

𝐴𝑢3+ + 2 𝐴𝑢0  ⇌ 3 𝐴𝑢+          (3.46) 

resulting in Au(I) being the most stable oxidation state in the growth solution. As previously 

mentioned, particular care has to be taken in order to use a reducing agent enabling to perform 

the reaction only in presence of the seed spherical nanoparticles. Upon addition of the 
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reductant, which most commonly is ascorbic acid, all the Au(III) ions are reduced to Au(I), but 

the reduction does not proceed until the addition of the seed. In case the reductant used is 

ascorbic acid, another important precaution must be taken in order to control the pH, following 

its pH-dependent reduction potential. The pH can be varied in order to modulate the growth, 

but must be kept under pH ~ 9, otherwise in basic conditions the ascorbic acid will be high 

enough to reduce Au(I) into Au(0) even in the absence of seeds. Once the seed nanoparticles 

are added to the growth solution, slow AuNR growth takes place, process which requires several 

hours to reach its completion. The temperature is generally kept slightly above room 

temperature (30 °C): high enough in order to guarantee complete CTAB solubility, but at the 

same time avoiding high temperatures is desirable, since it allows to slow down the reduction, 

hence achieving a narrower size distribution. 

In order to successfully synthesise single crystal AuNRs, also the use as silver ions (Ag+, 

usually as AgNO3) in the growth solution is required. The role of Ag+ ions in AuNR seeded 

growth is still not clear, since three mechanisms of its action have been postulated, but no 

experimental agreement was found yet. As indicated in Figure 42,[181] silver ions could have 

multiple roles: in one case, the metal could form the complex Ag[BrCTA]2, which could act as a 

side-specific capping agent by blocking the growth on the longitudinal axis, thus allowing Au(I) 

reduction only on the ends. Another hypothesis stands on the fact that Ag+ modifies the shape 

of the micelle, the latter acting as a soft template for anisotropic growth. Alternatively, another 

proposed mechanism consists on the underpotential deposition of Ag(0) as monolayer on the 

short crystal facets. Although not clearly explained yet, it has been shown that the presence of 

silver ions is necessary for the synthesis of single crystal AuNRs.  

Importantly, also the use of additives, or co-surfactants for fine tuning the AuNR aspect ratio 

and their monodispersity has to be mentioned.[137b, 177] As a general mechanism, it has been 

proposed that such additives intercalate in the CTAB micelle bilayer modifying its shape, or 

resulting in an increase of its stiffness, thus varying the template for AuNR growth. In such 

context, the most successful compounds used were on the one hand small aromatic additives, 

derivatives of salicylic acid, while on the other hand sodium oleate was used as long-chain co-

surfactant.    

In the present context, AuNRs have been synthesised as CTAB-stabilised colloidal 

dispersions in water. The anisotropic nanoparticles were used as a starting material in order to 

study their surface functionalisation with photochromic thiols described in chapter 6. Single 

crystalline AuNRs with different size and aspect ratio have been synthesised following the 

procedures reported by Murray et al. Utilising sodium salicylate, 5-bromodsalycilic acid,[177] or 

sodium oleate[137b] respectively we were able to obtain good quality AuNR colloidal dispersions 

with increasing aspect ratio. Following from the satisfying size and shape distributions shown 

by the colloidal dispersions obtained, no further shape-selective purification step e.g. by 

centrifugation,[185] or depletion forces[186] was needed. The as-synthesised AuNR colloidal 

dispersions could be directly stored in the dark at room temperature, and showed excellent 

stability over long periods of time. 

 



 

[77] 
 

 

 

Figure 43. Schematic representation of the ligand exchange. AuNR are synthesised as colloidal dispersions in water, 
stabilised by bilayer micelles of the cationic surfactant CTAB: the latter is removed by chemisorption of organic thiols 
as monolayers on the AuNR surface.  

Surface functionalisation of AuNRs colloidal dispersions synthesised by seed mediated growth 

methods is a fundamental step for their application, going from biology to materials 

chemistry.[187] As-synthesised single crystal AuNRs are stabilised in water by micelles formed by 

a double layer of the cationic surfactant CTAB, which is not chemically bound to the surface of 

the gold colloid. Although adding chemical functionalities through electrostatic interactions 

between the bilayer cationic micelle and negatively charged polyelectrolytes (layer-by-layer 

approach – LbL) was proposed as a viable strategy,[188] covalent functionalisation is the most 

widely employed method for tuning AuNR properties. In case of stabilisation by CTAB micelles, 

the stabiliser is not surface-bound, thus it is in constant dynamic exchange between the solution 

and the AuNR surface. CTAB acts as surface-capping agent in water, when its concentration is 

highly above the critical micellar concentration (CMC ≈ 0.9 – 1.0 mM). If these two conditions 

are not satisfied (e.g. different solvents, low surfactant concentration) irreversible aggregation 

occurs, resulting in the loss of the original nanocrystal shape and dimensions. On the other 

hand, covalent functionalisation by chemisorption of the nanocrystals surface with chemical 

groups having high affinity for coinage metals allows, at least in principle, to stabilise the 

nanocrystals preventing their irreversible aggregation in a variety of different environments, 

without the need of working in presence of high surfactant concentrations. Chemisorption is 

attained by exploiting the widely known affinity of thiols for gold and noble metals in general. 

Thiolate-terminated organic molecules form self-assembled monolayers (SAM) on metallic 

surfaces upon chemisorption and subsequent re-organisation to form highly ordered one-

molecule-thick layers passivating the metal.[133] In case of spherical gold nanoparticles, 

consolidated and widely employed methods for their direct synthesis as thiol-stabilised colloidal 

dispersions are available,[132a] nevertheless this is not the case for anisotropic structures such as 

gold nanorods. The synthesis of thiolate-functionalised AuNRs therefore requires to replace the 

surface-capping CTAB with organic thiol monolayers as a further preparation step. 

Several efforts have been made in the past to develop reliable strategies for the exchange 

reaction of CTAB with organic thiols, avoiding any morphological variation of the nanocrystal 

habit. Such strategy relies on the exposure of the nanocrystals to highly affine thiols upon 

disruption of the original CTAB micelle coating, thus exposing their highly reactive facets 

towards Au-S bond formation. To date many attempts have been performed following literature, 
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by either phase transfer methods, allowing the functionalisation at the interface between 

aqueous and organic phases[189] or in a one-phase approach, by addition of the thiol in a (water 

miscible) solvent to a CTAB-stabilised AuNR dispersion in water, allowing micelle break-up.[187b] 

The latter, most frequently used, is based on the assumption that polar, water miscible solvents 

such as ethanol (or THF) affect the critical micellar concentration of cetyltrimethylammonium 

bromide surfactant, used as stabiliser for the nanoparticles.[187b] As a result, adding ethanol to a 

water-CTAB dispersion of colloidal nanocrystals would lead to the disruption of the micelle and 

consequent irreversible aggregation and precipitation of the particles, if the process is performed 

in absence of a ligand able to stabilise them. On the contrary, using a concentrated solution of 

the desired organic thiol would lead to AuNR stabilisation following the formation of a SAM on 

their surface. 

For the work described within this thesis, CTAB-stabilised AuNRs with different aspect ratio 

have been functionalised with a photochromic organothiol derivative, as described in chapter 6. 

Control experiments have also been performed with commercial, non-photochromic thiols 

having alkyl chains with similar length. The procedure used, adapted from methods in the 

literature,[187a, 187b] involved multiple centrifugation rounds of the as-synthesised AuNR 

dispersions in order to reduce the CTAB concentration to the minimum amount required for 

keeping the dispersion stable. In all cases, centrifugal precipitation of AuNRs is performed twice, 

upon discarding the surnatant and re-suspending the precipitate in water. The final AuNR 

dispersion in water, ten times more concentrated than the initial suspension, is flash-added to 

a thoroughly stirred solution (5 mM) of the desired thiol in either ethanol or THF, depending 

its solubility. Thiol oxidation by reaction with atmospheric oxygen is avoided upon degassing 

the mixture and working under inert gas atmosphere. The mixture is allowed stirring for at least 

24 hours at room temperature. The product is finally purified from traces of unreacted thiol, 

residual CTAB, additives and metal salts by multiple centrifugation cycles initially with 1 : 1 = 

H2O : THF mixtures, and later with pure organic solvent until the surnatant reaches a clear, 

colourless aspect. 
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The main focus of the work described within the present chapter lies on the study of novel 

azobenzene-based photochromic derivatives containing up to three switches within the same 

molecular backbone. Such molecules were realised as promising building blocks for the 

generation of light-responsive materials, such as 2D and 3D metal-organic materials and 

covalent-organic frameworks, as well as to study their self-assembly in hydrogen-bonded 

networks.[5, 110, 190] The molecular scaffolds studied here consist of rigid, star-shaped cores, being 

their geometry dictated by the presence of an aromatic backbone and by the photochromic units 

branching from a central, 1,3,5-trisubstituted benzene ring. Such a substitution pattern results 

in the arms being reciprocally in meta- position, thus lowering the conjugation of the multi-

chromophoric systems. A detailed study over the multi-photochromism of the tris(azobenzene) 

derivative has been performed with multiple analytical techniques, by comparison with 

bis(azobenzene) and mono(azobenzene) model compounds. The latter two were designed by 

progressively substituting the diazene-1,2-diyl groups with ethyn-1,2-diyl units, thus yielding 

similar, yet non-photoresponsive branches. The self-assembly of our tris(azobenzene) derivative 

in 2D networks on graphite surface has been studied by scanning tunnelling microscopy, 

corroborated by molecular modelling. The exploration of the dynamic self-assembly of such 

systems into ordered supramolecular architectures allowed to identify patterns resulting from 

multiple isomers, thereby demonstrating that the multi-photochromism is retained when the 

molecules are confined in two-dimensions. 

 

 

Azobenzene represents the most well studied class of photochromic compounds: its celebrity is 

mainly due by the large conformational rearrangements occurring upon its isomerisation, 

                                                           
1 Large parts of this section have been, or will be published: - Galanti, A.; Diez-Cabanes, V.; Santoro, J.; 
Valášek, M.; Minoia, A.; Mayor, M.; Cornil, J.; Samorì, P. Electronic Decoupling in C3-Symmetrical Light-
Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. J. Am. Chem. Soc., 2018, 
140, 16062-16070; - Galanti, A.; Santoro, J.; Mannancherry, R.; Duez, Q.; Diez-Cabanes, V.; Valášek, M; De 
Winter, J.; Cornil, J; Gerbaux, P.; Mayor, M.; Samorì, P. in preparation. 
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making azobenzene particularly suitable as molecular-scale actuators. In order to exploit and/or 

amplify the shape variation of the switch to a greater length scale, it is vital to embed such unit 

in a conformationally rigid molecular scaffold.[38] Towards this end, typically a viable strategy 

consists of including them into rigid aromatic structures. However, such a solution could 

potentially prevent full, or even partial photochromism of the system, since electron 

delocalisation lowers the energy of the first excited state(s) precluding the access to the 

photoreaction pathway.[39] Systematic research work was performed in order to find the ideal 

substitution pattern allowing the coexistence of structural rigidity and satisfying photoswitching 

extent: in this framework however, little was done on systems containing more than one 

photochromic unit.[191] It is worth pointing out that the electronic decoupling between the 

photochromes is indeed a necessary goal in order to preserve the photoactivity of 

multichromophoric systems.[38-39, 192] In particular, star-shaped multi-azobenzene systems were 

realised by mutual chromophore connection to non-planar,[191a, 193] or to quasi-planar[191b-d] cores. 

However, the isomerisation behaviour of the individual switches has been characterised only to 

a partial extent by means of 1H-NMR spectroscopy and in the case of mutual connection via a 

central amine linker the undesirable presence of electronic delocalisation between the 

chromophores was observed.[191a] 

Recent research reports brought our interest to C3-symmetrical aromatic systems, since as a 

result of their shape, rigidity and high planarity, they have been successfully exploited as organic 

ligands for supramolecular coordination complexes and metal-organic frameworks.[5a, 5c, 190, 194] 

On the other hand, the study of the self-assembly of rigid aromatic molecules in two-

dimensional crystalline structures with the use of STM at the interface between graphite and 

their solutions has been a hot topic for surface scientists in the last decade.[102a, 195] Such a 

technique enabled to visualise and to study in detail the subtle interplay between the 

noncovalent interactions giving rise to peculiar 2D crystalline assemblies in thermodynamic 

equilibrium with the supernatant solution.[196] Hydrogen bonding received particular interest, 

due to the directional character of such interaction. Trimesic acid (1,3,5-tricarboxylic acid) 

represents the most prototypical and widely studied example of C3-symmetric building block for 

the construction of H-bonded supramolecular networks, since its tendency to form hexagonal 

honeycomb structures, which symmetry is of great interest for the realisation of nanoporous 

networks.[108] Nevertheless, the study of increasingly larger C3-symmetrical building blocks 

showed that above a certain limit the “ideal” honeycomb shaped pattern was less 

thermodynamically stable compared to other polymorphs experimentally visualised.[110] This 

experimental evidence emerged from the fact that the driving force for the formation of such 

self-assembled supramolecular systems is the result of the enthalpic balance between 

anisotropic intermolecular interactions (e.g. hydrogen bonds), and isotropic van der Waals 

forces between the molecule and the substrate, together with the contribute of solvation, since 

the crystalline monolayer is in thermodynamic equilibrium with the solution overhead.[109] The 

study of even larger aromatic systems showing such symmetry, and the possibility to add a 

photoresponsive character to these assemblies further motivated our research.  

Investigation on the azobenzene-based switches by STM has always been an appealing task 

for surface scientists,[111, 197] albeit the visualisation of the Z isomer at the solid-liquid interface 

has always posed problems because of its non-planar, kinked geometry, which yields 

unfavourable van der Waals interactions with the underlying substrate surface.[112] Therefore, the 
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use of several artifices such as the decoration of the photoswitchable derivatives with ad-hoc 

functional groups, or molecular geometries enabling the self-assembly of both E and Z isomers 

on graphite have demonstrated to be effective, although sometimes making their visualisation a 

cumbersome task.[73, 112-113] Solid-liquid interface STM imaging of various isomers of a 

photochromic system containing multiple azobenzene units in the same molecular backbone 

was achieved by embedding the switches in a host-guest network.[114] Such a finding suggests 

that the isomerisation of multi-photochromic systems could be also monitored in mono-

component ultrathin films by attaining an exquisite control over the interplay between 

intermolecular and interfacial interactions via an ad-hoc molecular design. In this regard, a rigid 

scaffold possessing C3 symmetry around a central benzene core appears ideal to address the key 

question of electronic decoupling on the isomerization of multi(azobenzene) systems.  

 

Figure 44. Chemical structures of the compounds described within the present chapter.  

The photoswitches 1, 2 and 3 studied here were designed in order to include the following 

structural features: (i) a significant conformational rigidity determined by the use of aromatic 

units, (ii) a central 1,3,5-trisubstituted benzene ring, which dictates the peculiar geometry of this 

class of molecules; (iii) up to three azobenzene (azo) moieties which can respond to light stimuli; 

(iv) the carboxylic acid-terminated azobenzene arms to enable the use of intermolecular H-

bonding for controlling the self-assembly. The work described here is divided into two main 

parts.  

On the one hand, the attention has been focussed on the characterisation of the 

photochromic behaviour of tris(azobenzene) 1, in comparison with its bis(azo) and mono(azo) 

derivatives (2 and 3, respectively). As reference compounds we have also investigated the linear 

mono(azobenzene) molecule 4 and the commercially available 4-(phenylazo)benzoic acid 6. For 

the sake of comparison, also the non-photoresponsive derivative 5 exposing three ethyn-1,2-diyl 

arms has been examined. To gain a comprehensive insight, detailed investigation on the 
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photophysical properties and photoisomerisation quantum yields performed by UV-Vis 

absorption spectroscopy have been combined to high performance liquid chromatography 

(HPLC) and ion-mobility mass spectrometry (IMMS) to bestow information onto the 

photogenerated isomer mixtures. Both HPLC and IMMS were used to separate the four possible 

(E,E,E), (E,E,Z), (E,Z,Z) and (Z,Z,Z) isomers of 1 upon UV light irradiation. HPLC was employed 

to determine the composition of the photostationary states (PSS) and to probe the Z → E thermal 

isomerisation kinetics: by studying the temporal evolution of the isomer mixture we could 

directly prove the independent kinetic behaviour of each azobenzene unit embedded within the 

same molecular scaffold. Moreover, IMMS provided unambiguous evidence for the large 

difference in shape of the aforementioned isomers,[161, 198] as a result of their structural rigidity. 

Our investigation suggested that it is possible to realise relatively small rigid molecules having 

efficient, fully independent photochromic units by simply connecting them in meta- position on 

a central trisubstituted benzene ring. Upon E → Z isomerisation the various isomers of 

compounds 1-3 show different shape, as evidenced by the change in the collisional cross section 

(CCS) of their ions, a quantity that is directly correlated to the volume occupied by a molecule 

in the gas phase. These evidences given by ion mobility mass spectrometry represent also the 

first investigation conducted on a multi-photochromic compound with such technique. 

Furthermore, we could also show that the separated Z isomer(s) of 1 could be thermally 

converted to the thermodynamically stable all-(E) within the mass spectrometer by collisional 

heating in the gas phase. 

 

Figure 45. Schematic picture of the isomerisation of tris(azobenzene) 1. 

On the other hand, we have performed thorough investigation by means of STM on the 

molecular self-assembly of our tris(azobenzene) 1. The photoswitch 1 evidenced the formation 

of dynamic 2D crystalline assemblies on highly ordered pyrolytic graphite (HOPG). The 

experiments offered an in-depth insight into the responsive nature of the supramolecular 

assemblies of molecule 1 when in-situ irradiated with ultraviolet and visible light. The subtle 

interpretation of sub-molecularly resolved patterns was achieved with the aid of Molecular 

Mechanics/ Dynamics (MM/MD) simulations. In order to demonstrate that the dynamic self-

assembly upon light irradiation at different wavelengths is due to the isomerisation of the three 

azobenzene moieties, we have extended our study to an analogue molecule 5 in which the 

diazene-1,2-diyl groups have been substituted with ethyn-1,2-diyl units, thus suppressing the 

photochromic nature of the system. 
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All the experiments in solution were performed using air-equilibrated spectroscopy grade 

DMSO and THF (Merck Millipore). UV-Vis absorption spectra were recorded at room 

temperature with a Jasco V650 spectrophotometer, in matched quartz Suprasil cuvettes 

(Hellma) with 1.0 cm optical path. Ultraviolet and visible light irradiation was performed with 

optical fibre-coupled LEDs (ThorLabs): for UV light λmax = 367 nm, FWHM = 9 nm, for Vis light 

λmax = 454 nm, FWHM = 20 nm. All irradiation experiments were performed upon thorough 

stirring of the solution in a closed spectrophotometric cell. The number of incident photons (qp, 

in) were calculated by ferrioxalate actinometry.[153, 157] For λirr = 367 nm, qp, in = 2.0 x 10-7 Einstein 

min-1; for λirr = 454 nm, qp, in = 2.7 x 10-8 Einstein min-1. The E → Z isomerisation quantum yields 

(LED λirr = 367 nm) were determined upon monitoring the decrease in absorbance of the 

maximum π-π* absorption band of the (E)-azobenzene unit, starting from a non-irradiated 

solution of the compound in DMSO (1-3 c = 2.0 x 10-5 M, 4 c = 6.0 x 10-5 M, 6 c = 7.8 x 10-5 M) 

with a slight base excess (NaOH in H2O, 1-3 6.0 eq., 4, 6 2.0 eq.) to ensure their complete 

solubilisation. Vice versa, the Z → E isomerisation quantum yields (LED λirr = 454 nm) were 

determined upon monitoring the increase of the π-π* absorption band of the (E)-azobenzene 

unit starting from the UV photostationary state. The quantum yields were determined at low 

conversion by extrapolation at t = 0, and taking into account the fraction of light transmitted at 

the irradiation wavelength. The estimated error on the quantum yields is ± 10 %. In order to 

further validate our procedure, the UV-induced quantum yield for azobenzene E → Z 

isomerisation in acetonitrile solution was measured in our experimental conditions, and 

resulted equal to values found in the literature (Φ ≈ 0.14).[39a] 

The qualitative absorption spectra of the individual isomers of 1-3 were determined upon 

their separation via HPLC (Accela HPLC, reversed phase C18 Hypersil GOLD column, 50 × 2.1 

mm, 1.9 µm, - Thermo Fisher Scientific), elution by solvent gradients of 5 – 95 % CH3CN / 95 – 

5 % H2O with 0.1% (vol.) trifluoroacetic acid (pH ≈ 2), by injecting a pre-irradiated solution to 

the UV PSS (in DMSO). Separation of the isomers by chromatography was followed by checking 

their UV-Vis absorption spectra using the photodiode array detector, upon integration of the 

absorption spectra in the 200-650 nm wavelength range. The qualitative absorption spectra of 

the individual isomers of 1-3 were normalised at the wavelength of their UV isosbestic point 

determined by UV-Vis absorption spectroscopy of the mixture. 

Quantification of the isomeric composition of the UV (LED λirr = 367 nm) and Vis (LED λirr 

= 454 nm) photostationary states was performed in collaboration with Q. Duez, Dr. J. De Winter 

and Prof. P. Gerbaux (Université de Mons). It was accomplished via HPLC separation (Waters 

Acquity UPLC, reversed phase column Phenomenex, C18, 5 µm, 150 x 4 mm), elution by solvent 

gradients of 5 – 95 % CH3CN / 95 – 5 % H2O with 0.1% (vol.) formic acid, and detection of the 

compounds with a mass spectrometer (Synapt G2-Si, Waters) equipped with an ESI source 

(negative mode). In order to accurately quantify the isomeric composition of the mixtures, the 
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chromatograms were integrated over all the ionic species generated for each compound, thus 

each isomer fraction was calculated as the sum of the area of its chromatographic peak measured 

for each ionic species detected for the compound divided by the sum of all the peaks area 

measured in the same way. The above procedure was used in order to rule out the possible 

different ionisation efficiencies of the various isomers. 

 →

The thermal Z → E isomerisation for compounds 1-3 was followed via HPLC after bringing the 

mixture at the UV photostationary state (λirr = 365 ± 2 nm, high pressure Xe lamp, wavelength 

selected with a monochromator - FEI Polichrome V), by monitoring the isomer distribution over 

time upon continuous sampling of the solution (10 µL aliquots) kept at constant temperature 

(25, 30, 35, and 40 °C).The experiments have been performed thanks to a collaboration with R. 

Mannancherry and Prof. M. Mayor (University of Basel), whom are greatly acknowledged for 

data collection and treatment. A Shimadzu LC-20AD HPLC set-up equipped with a photodiode 

array UV/Vis detector (Shimadzu SPD-M20A VP, λ= 200-600 nm), a column oven Shimadzu 

CTO-20AC, and a reverse phase column BDS HYPERSIL C18, 5 µm, 250 x 3 mm; Thermo 

Scientific was used. Elution was performed with solvent gradients of 70 – 90 % CH3CN (+ 0.1% 

v HCOOH) / 30 – 10 % H2O (+ 0.1% v HCOOH). The chromatograms of 1-3 were integrated at 

the wavelength of their UV isosbestic point determined by UV-Vis absorption spectroscopy of 

the mixture.  

The thermal Z → E isomerisation for compound 4 was followed by UV-Vis absorption 

spectroscopy after bringing the mixture at the UV photostationary state (LED, λirr = 367 nm), by 

monitoring the increase in absorbance of the maximum π-π* absorption band of the (E)-

azobenzene unit over time keeping the solution at constant temperature (25, 30, 35, and 40 °C). 

The solution was maintained at constant temperature inside the spectrophotometer chamber 

using a custom-built Peltier set-up (Thorlabs). 

 

 

The experiments were performed in collaboration with Q. Duez and Dr. J. De Winter and Prof. 

P. Gerbaux (Université de Mons), whom are greatly acknowledged. The measurements were 

done on a hybrid quadrupole (Q)–traveling wave (T-wave) ion mobility (TWIMMS)–time-of-

flight (TOF) mass spectrometer (Synapt G2-Si, Waters, U.K.) equipped with an ESI source 

(negative mode). The sample solutions were injected in the instrument by either direct infusion, 

or by using a HPLC set-up (mentioned previously) to separate the isomers of 1 prior to analysis. 

Typical ion-source conditions were capillary voltage 3.1 kV, sampling cone 40 V, source offset 

80 V, source temperature 150 °C, and desolvation temperature 300 °C. This mass spectrometer 

was used for the recording of ESI full-scan mass spectra, and for the ion-mobility experiments. 

The trap and transfer cells were filled with argon, whereas the IMMS cell was filled with nitrogen. 
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A small RF-only cell filled with helium was fitted between the trap and the IMMS cell. Collisional 

energy may be applied to the trap (trap CE) and to the transfer (transfer CE) to fragment (or in 

the present case to “heat”) ions before and after ion-mobility separation. The energy-resolved 

collisional activation experiments were performed on single isomers of 1 by previously selecting 

them with HPLC. Mass-selected ions were subjected to collisions with increased kinetic energies 

in the trap cell and subsequently separated and analysed by IMMS. We worked at low trap CE 

in order to avoid collision-induced fragmentation of the ions. Collisional cross-section data were 

obtained by following a calibration protocol with polyalanine as a calibrant.[165-166] 

 

 

Investigation on the self-assembly of 1 and 5 was performed by STM at ambient pressure and 

room temperature, using freshly cleaved highly ordered pyrolytic graphite (HOPG) as substrate. 

The experiments were performed using a Veeco Multimode III (Bruker) equipped with a STM 

head and a 1 µm-range piezoelectric scanner (A-Piezo, Veeco), working in constant current 

mode. STM tips were mechanically cut from a Pt/Ir (80 : 20) wire (0.25 mm diameter, 

Goodfellow). Self-assembly was studied at the solid-liquid interface between HOPG and a 

supernatant solution (1-heptanoic acid, Sigma Aldrich), by applying 4 µL of the latter on the 

substrate, after having checked the integrity of substrate and tip by visualising the graphite 

lattice. The raw STM data was processed using a dedicated image processing software (SPIP, 

Image Metrology), by means of flattening and subtraction of a 2-degree polynomial background. 

The images were corrected from drift by calibration with the underlying graphite lattice. Unit 

cell parameters were obtained by Fourier analysis.  

STM experiments at the solid-liquid interface were performed at an initial c = 10 µM 

concentration of 1 (all-(E)-) prior to irradiation) and 5 solutions in 1-heptanoic acid, freshly 

prepared by dilution of a mother solution in THF. The use of lower concentrations did not lead 

to the observation of ordered structures, meanwhile increasing the concentration in most cases 

yielded fuzzy contrast, probably due to the formation of an additional disordered ad-layer on 

the crystalline (E,E,E)-1 monolayer. Also the use of different chain length fatty acids as solvent, 

such as 1-octanoic or 1-nonanoic acid did not lead to the observation of different crystalline 

structures of (E,E,E)-1, contrarily with what was displayed by smaller, C3-symmetric tricarboxylic 

acids.[108c]  

In order to verify whether the switching of 1 occurred when the molecules are adsorbed on 

the HOPG surface, we have also performed a qualitative study of the self-assembly of 1 at the 

solid-air interface (e.g. in absence of solution on the substrate). The samples showing continuous 

monolayers of (E,E,E)-1 with domains having areas of ~ 200 – 400 nm2 were prepared by spin-

coating. A freshly cleaved HOPG substrate was covered with a 50 µL drop of a (non-irradiated) 

~ 10-5 M solution of (E,E,E)-1 and spun for 30 s at 2000 rpm. The procedure was repeated twice, 

with the precaution of avoiding environmental light during the sample preparation. Scanning 

was performed without addition of liquids on the sample.  
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Ultraviolet and visible light irradiation experiments were performed in situ, by irradiating 

the solution on the substrate after having verified the supramolecular packing of 1 and 5 prior to 

light irradiation. The experimental set-up to perform UV (LED, λmax = 367 nm) and Vis (LED, 

λmax = 454 nm) irradiation involved the use of an optical fibre, which terminus was placed at ~ 

1.5 cm from the substrate. 

 

 

TD-DFT calculations were performed by V. Diez-Cabanez and Prof. J. Cornil at the Université 

de Mons, whom are greatly acknowledged. DFT calculations have been performed on the various 

isomers of 1-3, using the Gaussian 09 package. Geometry optimizations were carried out with 

the B3LYP functional and a 6-31G(d) basis set. Time-Dependent DFT (TD-DFT) calculations 

were performed to simulate the absorption spectra and assess the nature of the relevant 

electronic excited states, using the same functional and basis set, without consideration of the 

solvent effects. 

 

 

Molecular Mechanics/Dynamics (MM/MD) simulations were performed by V. Diez-Cabanez, 

Dr. A. Minoia and Prof. J. Cornil at the Université de Mons, whom are greatly acknowledged. 

The software employed was Materials Studio 7.0 package.[199] In order to have a good geometrical 

description of the four isomers of 1 adsorbed on graphite, geometries optimised by DFT were 

taken as benchmark. Following such methodology, the various isomers of 1 adsorbed on a finite 

graphene sheet were optimised at the ωB97XD/6-31G(d) level.[200] This functional was chosen 

based on its good description of the van der Waals interactions.[201] The resulting geometries 

were compared with those obtained by optimisation at the molecular MM level for the same 

system using the standard Dreiding force field.[202] In order to improve the agreement between 

the two sets of data, the force field description of the torsional profiles associated to the dihedral 

angles θ1 and θ2 (Figure 46) has been modified to match the dihedral scans obtained by DFT at 

the B3LYP/6-31G(d) level. Since the resulting geometries for the (Z)-azobenzene fragments after 

this modification show noticeable differences with the DFT structures, two harmonic restraints 

have been introduced: (i) one applied to the dihedral θ1 centred at 15° with a magnitude equal to 

k1 = 100 kcal/mol/rad2 and (ii) another applied to the H-H distance marked as d2 centred at 3.7 

Å with a magnitude of k2 = 25 kcal/mol/Å2. Doing so, the resulting geometry is similar to that 

obtained at DFT level. 
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Figure 46. Optimised (Z)-azobenzene fragment of 1 at the ωB97XD/6-31G(d) level together with the representation 

of the modified dihedral angles θ1 and θ2 and introduced restraints k1 and k2. 

An orthorhombic simulation box and Periodic Boundary Conditions (PBC) were used to depict 

the structural packing on the graphene substrate. The unit cell is formed by 144 molecules and 

the lateral dimensions were chosen in order to avoid interactions with their images by leaving a 

lateral vacuum of 30 Å. The graphene layer upon which the monolayers are modelled has been 

considered as an infinite rigid body to reduce the computational cost. The simulations have been 

conducted in vacuum and at T=100 K in the NVT ensemble (constant Number of particles, 

Volume, and Temperature). The Velocity Scale thermostat has been used to control the 

temperature. The atomic charges were calculated by the Gasteiger method.[203] This approach is 

validated by the fact that this method reproduces the same trends in the atomic charges 

compared to DFT calculations. Atom based summation method was used to describe the non-

bonded interactions with a cut-off distance of 12.5 Å. The resulting unit cell was first optimised 

at the molecular MM level. The optimised unit cell was then used as the starting point for a 

quenched simulation (MM/MD). The quenched run (MM/MD) was carried for 25 ps and frames 

were saved every fs. The geometries were extracted each 500 steps, dealing in a total of 50 

geometries per quench. The most stable geometry was taken as starting point for a new quench. 

This process has been repeated until the energy difference between the starting and the most 

stable geometry of the quench is low (< 5 kcal/mol). 

The adsorption energy (Eads) has been computed as the average adsorption energy of an 

individual 1 molecule on the graphite surface, following eq. 4.1: 

𝐸𝑎𝑑𝑠 =
𝐸𝑡𝑜𝑡−𝐸𝐺𝑟−𝐸𝟏

𝑛
           (4.1) 

with Etot the total energy of the system, EGr the energy of the graphite layer, E1 the energy of the 

monolayer of 1 and n the number of 1 molecules that form the assembly. In our case we have 

taken n = 24. The binding energy (BE) has been considered as the average interaction energy 

between the molecules 1 in the assembly following eq. 4.2: 

𝐵𝐸 =
𝐸𝟏− 𝐸𝑖

𝑛
𝑖=1

𝑛
            (4.2) 

with Ei the individual energy of the individual molecules that form the monolayer. As in the last 

case we considered a representative assembly made of 24 molecules. 
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With the exception of the commercial product 6, compounds 1-5 have been synthesised in the 

group of Prof. M. Mayor in Karlsruhe Institute of Technology (KIT), by J. Santoro and Dr. M. 

Valášek, whom are greatly acknowledged. A schematic picture of their syntheses is given here 

for illustrative purposes. The detailed description of the synthesis of 1 and 5 is reported 

elsewhere. In practice, the strategy used for the synthesis of the two key moieties present in 

compounds 1-5, being the photoresponsive diphenyldiazene- and the non-photochromic 

diphenylethynyl- moieties consists in using Mills reaction of aromatic amine with nitroso 

compound to generate the former, and a sequence of Sonogashira coupling and Miyaura 

borylation reactions for the latter. Both unsymmetrical derivatives 2-3 were stepwise assembled 

using Pd catalysed Suzuki cross-coupling protocol between a three-directional core (e.g. 1,3,5-

tribromobenzene) and the corresponding arm moieties.  A similar sequence of reactions was 

used for the preparation of the linear azobenzene derivative 4, made via Mills reaction of a 4-

nitrosobenzoate derivative with 4-aminobiphenyl, the latter made by Suzuki cross-coupling. 

 

Scheme 1. Synthesis scheme of 1. Reagents and conditions: (i) SiCl4, EtOH; (ii) Pd/C, N2H4
.H2O; (iii) Oxone®, CH2Cl2, 

H2O; (iv), AcOH, RT; (v) TFA, CH2Cl2.  

The synthetic strategy used for the preparation of star-shaped azobenzene (E,E,E)-1 is outlined 

in Scheme 1. The required C3- symmetric 1,3,5-tris(4’-aminophenyl)benzene 1.c was prepared in 

two reaction steps according to the published procedure, starting from the condensation of 4-
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nitroacetophenone to 1,3,5-tris(4’-nitrophenyl)benzene and its subsequent reduction.[204] Star-

shaped azobenzene 1.a was assembled via the Mills reaction from 1,3,5-tris(4’-

aminophenyl)benzene 1.c and corresponding tert-butyl-4-nitrosobenzoate 1.b, prepared by 

oxidation of tert-butyl-4-aminobenzoate with Oxone®. Final hydrolysis of tert-butyl ester 1.a was 

performed using trifluoroacetic acid (TFA) in dichloromethane. 

Star-shaped azobenzene derivatives 2 and 3 were obtained via palladium catalysed Suzuki cross-

coupling reaction of non–photoractive tolane arm (5.a) with the corresponding azobenzene 

moiety (2.b and 3.b). The synthetic strategy used for the preparation of tolane building block 

5.a is displayed in Scheme 2. Commercially available 4-iodobenzoic acid was esterified to the 

corresponding tert-butyl ester 5.e according to a published procedure.[205] Synthesis of the first 

building block started with 4-tert-butyl-iodobenzoate 5.e, which was coupled with an excess of 

trimethylsilylacetylene to afford trimethylsilyl protected derivative 5.d in quantitative yield. 

Subsequent cleavage of trimethylsilyl protecting group under basic conditions, using tert-BuOH 

as the solvent in order to avoid transesterification side reaction, provided 5.c quantitatively. 

Synthesis of tolane derivative 5.b was accomplished by Sonogashira coupling of derivative 5.c 

with 1-bromo-4-iodobenzene at low temperature to chemoselectively replace only iodo group. 

Subsequent Miyaura borylation of 5.b provided the desired pinacol boronic ester 5.a. 

 

Scheme 2. Synthesis of 5.a. Reagents and conditions: (i) SOCl2, DMF, 70 °C; KOtBu, THF, RT. (ii) 
trimethylsilylacetylene, Pd(PPh3)2Cl2, CuI, Et3N, RT. (iii) Cs2CO3, tert-BuOH, 45 °C. (iv) 1-bromo-4-iodobenzene, 
Pd(PPh3)Cl2, CuI, Et3N, 0 °C. (v) bis(pinacolato)diboron, AcOK, Pd(dppf)Cl2, dioxane, 90 °C. 

The synthetic pathway for the preparation of star-shaped di(azobenzene) derivative 2 is outlined 

in Scheme 3. 5'-Bromo-[1,1':3',1''-terphenyl]-4,4''-diamine core 2.c was obtained via a Suzuki 

cross-coupling reaction between the commercially available 1,3,5-tribromobenzene and 4-

aminophenylboronic acid pinacol ester. The photoresponsive building block 2.b was prepared 

via the Mills reaction of amino derivative 2.c with corresponding tert-butyl-4-nitrosobenzoate 

1.b (see above). With both building blocks 5.a and 2.b in hand, star-shaped tert-butyl ester 2.a 

was assembled via a Suzuki cross-coupling reaction. Final acid-catalyzed hydrolysis of tert-butyl 

ester 2.a provided the desired bis(azobenzene) 2. 
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Scheme 3. Synthetic strategy towards star-shaped bis(azobenzene) 2. Reagents and conditions: (i) Pd(PPh3)4, K2CO3, 
H2O, toluene, 95 °C; (ii) AcOH, RT; (iii) compound 5.a, Pd(dppf)Cl2, K2PO4, H2O, dioxane, 90 °C; (iv) CH2Cl2, TFA, 
RT; (v) CH2Cl2, Oxone®, H2O, RT. 

The synthetic strategy used for the preparation of 3 is shown in Scheme 4. 4-Amino-3’,5’-

dibromobiphenyl 3.c was obtained via a Suzuki cross-coupling reaction of the commercially 

available 1,3,5-tribromobenzene with 4-aminophenylboronic acid pinacol ester. The 

photoresponsive moiety in the building block 3.b was introduced via Mills reaction of 

intermediate 3.c and corresponding tert-butyl-4-nitrosobenzoate 1.b. With both building blocks 

5.a and 3.b in hand, tert-butyl ester 3.a was assembled via a Suzuki cross-coupling reaction. Final 

acid-catalyzed hydrolysis of tert-butyl ester 3.a provided the desired star-shaped 

mono(azobenzene) 3. 

 

Scheme 4. Synthetic strategy towards star-shaped mono(azobenzene) 3. Reagents and conditions: (i) Pd(PPh3)4, 
K2CO3, H2O, toluene, 95 °C; (ii) AcOH, RT; (iii) compound 5.a, Pd(dppf)Cl2, K2PO4, H2O, dioxane, 90 °C; (iv) CH2Cl2, 
TFA, RT. 
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The synthetic strategy used for the preparation of 4 is displayed in Scheme 5. The synthesis 

started with a Suzuki cross-coupling reaction of 4-bromoaniline and phenylboronic acid, which 

provided 4-aminobiphenyl 4.b. The photoresponsive derivative 4.a was assembled via Mills 

reaction of amine 4.b with corresponding tert-butyl-4-nitrosobenzoate 1.b. Final acid-catalysed 

hydrolysis of 4.a provided the desired azobenzene 4 quantitatively. 

 

Scheme 5. Synthetic strategy towards azobenzene derivative 4. Reagents and conditions: (i) Pd(PPh3)4, K2CO3, H2O, 
dioxane, 90 °C; (ii) compound 1.b, AcOH, RT; (iii) CH2Cl2, TFA, RT. 

The synthesis of 1,3,5-tris{4’[(4’’-carboxyphenyl)ethynyl]phenyl}benzene 5 is displayed in 

Scheme 6. This synthetic approach is based on the assembly of two building blocks 5.e and 5.g 

via a Sonogashira cross-coupling reaction. The synthesis of 1,3,5-tris[4´-

(ethynyl)phenyl]benzene 5.g, the first building block, started from the commercially available 

1,3,5-tris(4-bromophenyl)benzene, which was coupled with an excess of trimethylsilylacetylene 

to afford trimethylsilyl protected acetylene derivative 5.h. Subsequent cleavage of trimethylsilyl 

protecting group under basic conditions provided 5.g. tert-Butyl-4-iodobenzoate 5.e was 

synthesized according to a published procedure (see above).[205] With both building blocks 5.g 

and 5.e in hand, 1,3,5-tris{4′[4′′(tert-butoxycarbonyl)phenylethynyl]phenyl}benzene 5.f was 

assembled via a Sonogashira-type coupling reaction. 

 

Scheme 6. Synthetic scheme of 5. Reagents and conditions: (i) ethynyltrimethylsilane, Pd(PPh3)2Cl2, CuI, Et3N, 65°C; 
(ii) K2CO3, MeOH/THF, RT; (iii) 1. SOCl2, 70°C, 2. KOtBu, THF, RT; (iv) Pd(PPh3)2Cl2, CuI, Et3N, RT; (v) TFA, CH2Cl2. 
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In a first instance, the photophysical properties of compounds 1-6, and their switching in 

solution have been investigated by absorption spectroscopy in DMSO with the addition of a base 

excess to ensure their complete solubilisation. The solvent environment and the presence of a 

base to deprotonate the carboxylate moieties have been chosen according to preliminary 

experiments made on 1, enlightening its highest solubility in such conditions. 

 

The UV-Vis absorption spectra (Figure 47) of all-(E) tris(azobenzene) compound (1) and its star-

shaped bis(azo) (2) and mono(azo) (3) derivatives exhibit the two characteristic transitions 

related to azobenzene chromophores (Azo), consisting in a higher energy band due to the π-π* 

transition and a lower energy n-π* transition. For 1-3 the absorption maxima are located at ca. 

370 nm for the π-π* and ca. 455 nm for the n-π*. When compared to the linear, single Azo 

chromophore 4-[[4’-(4-phenyl)phenyl]diazenyl]benzoic acid 4, a slight (ca. 10 nm) 

bathochromic shift is observed, together with an intensity increase (if compared to the 

absorption spectrum of 4 reported in ε multiplied by a factor 3, Figure 47) and a partial 

broadening evidences that partial conjugation occurs between the arms of 1-3 despite the meta 

substitution, as previously reported on similar star-shaped systems.[206] Compounds 2-3 display 

one additional absorption band for a transition located in the UV region (ca. 320 nm). This can 

be ascribed to the 4-(phenylethynyl)-1,1'-biphenyl chromophore unit (PE), as shown by 

comparison with the C3-symmetrical non-photochromic derivative 5. Despite the occurrence of 

partial conjugation between the chromophores in our star-shaped systems cannot be neglected, 

an additive behaviour of the absorption spectra of the single chromophores is evident. This 

appears clear by observing the ε values of the most intense transitions of Azo and PE units (Table 

1), enlightening that the transitions are substantially localised on each chromophoric unit. 

Additionally, the maxima of Azo-centred transitions are constant between 1, 2 and 3. By 

comparison, the model single arm Azo chromophore 4 reveals that the λmax related to the π-π* 

transition is located at ca. 360 nm, largely red shifted if compared with the known position of 

the same band for azobenzene (ca. 315 nm[36a]) and 4-(phenylazo)benzoic acid 6 (ca. 335 nm). 

Such a red shift can therefore be attributed to the extension of the conjugated system including 

one additional phenyl unit in para-position with respect to the azobenzene moiety, rather than 

by inclusion of the Azo chromophore in the π-extended 1, 2, and 3 systems.  
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Figure 47. UV-Vis absorption spectra of all-(E)-1-4, (E)-6 and 5 in DMSO with base excess, no irradiation. Left, 
comparative absorption spectra of 1-5: (E,E,E)-1 (+6.0 eq. NaOH) full red line, (E,E)-2 (+6.0 eq. NaOH) full blue line, 
(E)-3 (+6.0 eq. NaOH) full green line, 5 (+6.0 eq. NaOH) full black line, (E)-4 (+2.0 eq. NaOH) multiplied by three 
black dashed line. Right, comparative absorption spectra of (E)-4 and (E)-6: (E)-4 (+2.0 eq. NaOH) full red line, (E)-6 
(+2.0 eq. NaOH) full black line. 

 

 

The photoisomerisation of compounds 1-4 and 6 was studied upon irradiation with UV (λmax = 

367 nm) and Vis (λmax = 451 nm). UV Irradiation of the aforementioned compounds in DMSO 

solution showed spectral variations typical for E → Z isomerisation of azobenzene derivatives 

(Figure 48-49), with a progressive decrease of the absorbance in the (E)-Azo π-π* region, 

accompanied by an increase of the absorbance in the higher energy UV region, together with 

the same variation in the visible range. Both the evidences are related to a decrease in 

concentration of the (E)-isomer(s) accompanied by an obvious increase of the (Z) ones upon 

reaching a photostationary state (UV – PSS). The initial spectral features were seen to recover 

partially upon subsequent Vis irradiation reaching another PSS (Vis – PSS), while complete 

recovery was encountered only by storing the solution in the dark over several days. It is crucial 

to note for all compounds, especially for tris(azobenzene) 1 and bis(azobenzene) 2, the presence 

of clear isosbestic points throughout both E → Z and Z → E photoconversions, which provide 

unambiguous evidence for the absence of inter-chromophore interactions. 

Preliminary experiments showed the impossibility of characterising the photochemical 

reaction by means of 1H-NMR, since no distinctive peaks related to the photoproducts appeared, 

in comparison to non-irradiated solutions. Conversely, the composition of UV – and Vis – PSS 

was characterised by HPLC: thanks to the known difference in molecular dipole moment 

between the E and Z isomers of azobenzenes, all the possible isomeric forms of 1-3 could be 

separated. Thus, the experiments could prove the formation of all the expected isomers for the 

multi-azobenzene compounds (qualitative absorption spectra in Figure 48-49 insets). 

Qualitative absorption spectra were obtained with the photodiode array spectrophotometer 

integrated in our HPLC setup (arbitrary units), and were normalised at the wavelength of the 

isosbestic point measured by UV-Vis (Figure 48, inset 315 nm for 1, Figure 49, insets 321 nm for 

2 and 322 nm for 3). 
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Table 1. Photochemical characterisation of compounds 1-6 in air-equilibrated DMSO (+ exc. NaOH) at 298 K. 

 
λ

max
 all-(E) isomer  [nm]           

(ε / 10
3
 [L mol

-1
 cm

-1
]) 

Φ 
E → Z

 (x 10
2
)

a
 Φ 

Z → E
 (x 10

2
)

b
 UV – PSS 

composition 

[%]
c
 

Vis – PSS 

composition 

[%]
c
 

 
π-π* PE π-π* Azo n-π* Azo Overall

d
 Single 

Azo
e
 

Overall
d
 Single 

Azo
e
 

1 - 370 (110) 455 (5.7) 3.3 8.8 28 77 

55 (Z,Z,Z) 

27 (E,Z,Z) 

13 (E,E,Z) 

5 (E,E,E) 

9 (Z,Z,Z) 

17 (E,Z,Z) 

30 (E,E,Z) 

44 (E,E,E) 

2 
320 

(65) 
370 (77) 455 (3.7) 4.5 9.5 47 98 

61 (Z,Z) 

29 (E,Z) 

10 (E,E) 

13 (Z,Z) 

32 (E,Z) 

55 (E,E) 

3 
320 

(100) 
370 (42) 455 (1.8) 9.1  100  73 (Z) 

27 (E) 

32 (Z) 

68 (E) 

5 
320 

(130) 
- - -  -    

            

4 - 360 (30) 455 (1.4) 9.6  88  ~ 99 (Z) 

1 (E) 
 

6 - 335 (21) 
450 

(0.8) 
11  70    

aUV π-π* irradiation, λirr = 367 nm (FWHM = 9 nm).  bVis n-π* irradiation, λirr = 454 nm (FWHM = 20 nm). 
cDetermined by HPLC-MS. dOverall isomerisation quantum yield, calculated using the ε of the compounds. 
eIsomerisation quantum yield of the single chromophore unit, calculated using the ε of mono(azobenzene) 

compound 4. 

 

 

Figure 48. UV-Vis spectral variation of the star-shaped compound 1 upon UV irradiation in DMSO with base excess: 
black line, no irradiation, red line UV PSS, blue dotted line Vis PSS. c = 2.0 x 10-5 M (+ 6.0 eq. NaOH) inset, absorption 
spectra of the single isomers recorded upon HPLC separation black line (E,E,E)-1 isomer, green line (E,E,Z)-1  isomer, 
light blue line (E,Z,Z)-1  isomer, dark blue line (Z,Z,Z)-1 isomer,  
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Figure 49. UV-Vis spectral variation of the star-shaped compounds 2-3 upon UV irradiation in DMSO with base 
excess: black line, no irradiation, red line UV PSS, blue dotted line Vis PSS. a) Compound 2, c = 2.0 x 10-5 M (+ 6.0 eq. 
NaOH) inset, black line (E,E)-2 isomer, green line (E,Z)-2 isomer, light blue line (Z,Z)-2 isomer, b) 3, c = 2.0 x 10-5 M 
(+ 6.0 eq. NaOH) inset, black line (E)-3 isomer, green line (Z)-3 isomer. 

The absorption spectra of single isomers obtained by HPLC are also nicely comparable with the 

simulated spectra by TD-DFT (Figure 53, courtesy of V. Diez-Cabanes, Université de Mons). 

Quantification of the composition of the photostationary state(s) was performed in 

collaboration with Q. Duez, Dr. J. De Winter and Prof. P. Gerbaux (Université de Mons) using a 

HPLC-MS set-up (Table 1, Figure 51-52). The mass spectrometer used employed an electrospray 

ionisation (ESI) source, and the instrument was set in negative mode (detecting anions), in order 

to measure the signal due by the anions produced by deprotonation of the carboxylate moieties 

present in 1-4. The chromatograms were integrated on all the anionic species generated by 

compounds 1-4, in order to rule out any effect related to differences in ionisation efficiency, thus 

to avoid systematic errors in the quantification of the isomeric composition of PSSs. It is worth 

noting that for both the tris(azobenzene) 1, and the bis(azobenzene) 2 derivatives it is possible 

to reach a (Z)-rich UV – PSS (95% and 90% overall Z content for 1 and 2, respectively), while for 

3 the UV PSS contains ca. 70 % of the (Z)-isomer (Table 1). For the linear model compound 4 

conversely, by irradiation at the wavelength used the isomerisation is quantitative (Z-content 

ca. 99 %).  

 

Figure 50. UV-Vis spectral variation of the linear azobenzene carboxylic acids 4 and 6 upon UV irradiation in DMSO 
with base excess: black line, no irradiation, red line UV PSS, blue dotted line Vis PSS. a) Compound 4, c = 6.0 x 10-5 M 
(+ 2.0 eq. NaOH). b) 4-phenylazo benzoic acid 6, c = 7.8 x 10-5 M (+ 2.0 eq. NaOH) 
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Figure 51. Isomeric composition of UV PSS (red line) and Vis PSS (blue line) for compound 1 determined by HPLC-
MS. Chromatograms integrated at [M-H+]- m/z = 749.2. Peak at 3 min 5 s retention time corresponds to (Z,Z,Z)-1, 3 
min 20 s (Z,Z,E)-1, 3 min 40 s (Z,E,E)-1, 4 min 30 s (E,E,E)-1. 

 

 

Figure 52. Isomeric composition of UV PSS (red line) and Vis PSS (blue line) determined by HPLC-MS. a) Compound 
2 chromatograms integrated at [M-H+]- m/z = 745.2. Peak at 3 min 20 s retention time corresponds to (Z,Z)-2, 3 min 
40 s (Z,E)-2, 4 min 30 s (E,E)-2. b) Compound 3 chromatograms integrated at [M-H+]- m/z = 741.2. Peak at 3 min 40 
s retention time corresponds to (Z)-3, 4 min 30 s (E)-3. 

 

 

Figure 53. Calculated UV-Vis absorption spectra of 1-3 by TD-DFT. a) Compound 1, black line, (E,E,E)-1, green line, 
(E,E,Z)-1, light blue line, (E,Z,Z)-1, blue line, (Z,Z,Z)-1. b) Compound 2, black line, (E,E)-2, green line, (E,Z)-2, light blue 
line, (Z,Z)-2. a) Compound 3, black line, (E)-3, green line, (Z)-3.  
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The efficiency of E → Z and Z → E photoreactions was estimated by evaluating their quantum 

yields (Φ). Isomerisation quantum yields were determined by monitoring the variation in 

concentration of the reactant (all-E- isomer) over the irradiation time by UV-Vis absorption 

spectroscopy, with the so-called initial slope method, and is performed upon following the 

reaction at low conversions (< 10 %). The values given in Table 1 and indicated as overall Φ were 

calculated by using the ε of each compound, therefore they refer to the quantum yield of 

isomerisation of all azobenzene units within each molecular scaffold, while the single Azo Φ 

values were calculated using the ε of the mono(azobenzene) “arm” 4, and provide a comparative 

estimation over the isomerisation quantum yield of the single photochrome.[207] Generally, it 

may be seen erroneous to utilise the ε of a different compound to calculate photoreaction 

quantum yields with this procedure: nevertheless, here the experiments were performed to 

extract a comparative parameter to evaluate the compounds characterised within this work. Such 

a procedure was seen particularly suitable with 1-3, following the additivity of the ε values of 

each chromophore (Table 1). Similar results could however be obtained by dividing the ε of the 

Azo chromophore by the number of azobenzenes contained within each molecule (e.g. dividing 

by three and by two the ε of 1 and 2 respectively). It is particularly interesting to benchmark the 

single Azo Φ of star-shaped compounds 1-3 with standard azobenzene derivatives, since it is 

generally known that conjugation between the chromophores drastically lowers the 

photoreaction efficiency.[39a] We will take azobenzene as benchmark, showing for E → Z 

isomerisation Φ ≈ 0.14 – 0.15 in polar solvents (λirr ≈ 345 nm):[39a, 153] compared to it, 4-

(phenylazo)benzoic acid 6 shows a slightly lower value (Φ ≈ 0.11), presumably due to the 

presence of the electron-withdrawing carboxyl moiety in para-position with respect to the 

chromophore, as reported in the literature.[207] Extension of the π-conjugated backbone in 4 is 

accompanied by an almost negligible reduction (Φ ≈ 0.10) of efficiency for the process, while 

interestingly for the star-shaped mono(azobenzene) derivative 3 Φ ≈ 0.09 and for both multi-

azobenzene scaffolds 2 and 1 the single Azo Φ exhibit the same value. Conversely, for Z → E 

photoreaction induced by Vis irradiation, the quantum yields result even higher than 

azobenzene (Φ ≈ 0.63, λirr ≈ 436 nm) itself.[208] However, the values obtained from these 

experiments are expected to display a higher uncertainty, since the concentration of the (E)- 

isomer(s) in the initial conditions (UV – PSS) was not zero.[209] The results showed here evidence 

that upon embedding azobenzene photochromes into such large, and at least partially π-

conjugated rigid backbones as 1-3, does not result in a sensible disruption of the photoreactivity 

of the system. The latter is a further evidence of the successful electronic disconnection provided 

by the meta- substitution pattern on the central benzene ring of our structures. 

Ultimately, in order to clearly demonstrate the photochemical robustness of compound 1, 

we have performed a test over 10 photoswitching cycles, which showed negligible degradation 

of its photochromic activity (Figure 54). Additionally, a blank experiment was performed in 

order to confirm the absence of photoreactivity of 5 by UV-Vis absorption spectroscopy (Figure 

55). 
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Figure 54. UV-Vis spectral variation of 1 upon multiple irradiation cycles. Plot of the absorbance variation over time, 
observed at λmax for π-π* absorption band of 1 (in DMSO, c = 5.0×10-6 M) upon irradiation with: red squares UV light 
(Pd ≈ 1.5 mW cm-2), blue squares Vis light (Pd ≈ 1.5 mW cm-2). 

 

Figure 55. UV-Vis spectra of 5 in DMSO (c = 1.0×10-5 M). a) no light irradiation. b) after 22 minutes UV irradiation 
(Pd ≈ 1.5 mW cm-2). c) after subsequent 19 minutes Vis irradiation (Pd ≈ 1.5 mW cm-2). 

 

 

 

 →

The Z → E thermal reaction for 1-3 was followed by HPLC in order to monitor the population of 

each isomer starting from the UV – PSS over time. This experimental procedure enabled us to 

further demonstrate that the single azobenzene units of compounds 1-2 are electronically 

decoupled from one another. In order to make a useful comparison, the thermal back-

isomerisation of 4 was studied by UV-Vis absorption spectroscopy. Multi-azobenzene 

compounds are known to undergo isomerisation from the all-(Z) to the all-(E) forms via the 

                                                           
2 Experiments performed by R. Mannancherry, Prof. M. Mayor (University of Basel).  



 

[100] 
 

mixed (Z,E) isomers, and the reaction mechanism could be treated as a consecutive and 

irreversible cascade reaction where isomerisation of the single azobenzene units is a first order 

process.[39b, 210] 

 

Figure 56. a) Time profiles at T = 40 °C for the thermal Z → E isomerisation of 1 starting from the photostationary 
state obtained upon irradiation at 365 nm in DMSO/CH3CN, monitored by HPLC by integrating the UV absorption 
at 290 nm. (Z,Z,Z)-1 (black squares), (Z,Z,E)-1 (red dots), (Z,E,E)-1 (blue triangle), (E,E,E)-1 (pink triangles). b) 
Chromatograms of 1 recorded upon heating at T = 40 °C at various time intervals: blue line recorded at PSS 365 nm, 
red line after 17 h, green line after 29 h, orange line after 55 h. 

 

Figure 57. a) Time profiles at T = 40 °C for the thermal Z → E isomerisation of 2 starting from the photostationary 
state obtained upon irradiation at 365 nm in DMSO/CH3CN, monitored by HPLC by integrating the UV absorption 
at 280 nm. (Z,Z)-2 (black squares), (Z,E)-2 (red dots), (E,E)-2 (blue triangles). b) Chromatograms recorded upon 
heating 2 at T = 40 °C at various time intervals: blue line recorded at PSS 365 nm, red line after 17 h, green line after 
29 h.  

 

Figure 58. a) Time profiles at T = 40 °C for the thermal Z → E isomerisation of 3 starting from the photostationary 
state obtained upon irradiation at 365 nm in DMSO/CH3CN, monitored by HPLC, by integrating the UV absorption 
at 285 nm. (Z)-3 (black squares), (E)-3 (red dots). Chromatograms recorded upon heating 3 at T = 40 °C at various 
time intervals: blue line recorded at PSS 365 nm, red line after 17 h, green line after 36 h. 
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Upon plotting the isomer fraction over time, we could fit the evolution curves with the kinetic 

equations presented here (eqs. 4.4, 4.5, 4.6), thus obtaining the reaction rates for each 

azobenzene unit (Table 2). Generally, the isomerisation [𝐴] → [𝐵] of an azobenzene unit can be 

described as a first order reaction (eq. 4.4), while the second and third [𝐵] → [𝐶] and [𝐶] → [𝐷] 

by assuming a pseudo-first order cascade process (equation 4.5 and 4.6): 

 

For tris(azobenzene) compound 1: 

[𝐴] = (Z,Z,Z)-1; [𝐵] = (Z,Z,E)-1; [𝐶] = (Z,E,E)-1; [𝐷] = (E,E,E)-1 

For bis(azo) compound 2: 

[𝐴] = (Z,Z)-2; [𝐵] = (Z,E)-2; [𝐶] = (E,E)-2; [𝐷] = 0 

For mono(azobenzene) compounds 3 and 4: 

[𝐴] = (Z); [𝐵] = (E); [𝐶] = 0; [𝐷] = 0. 

 

[𝐴]
𝑘1
→ [𝐵]

𝑘2
→ [𝐶]

𝑘3
→ [𝐷]            (4.3) 

 

[𝐴] = [𝐴]0 𝑒
−𝑘1𝑡             (4.4) 

[𝐵] =
[𝐴]0 𝑘1

𝑘2−𝑘1
 [𝑒−𝑘1𝑡 − 𝑒−𝑘2𝑡] + [𝐵]0 𝑒

−𝑘2𝑡          (4.5) 

[𝐶] =  [𝐴]0 𝑘1 𝑘2  [
𝑒−𝑘1𝑡

(𝑘2−𝑘1)(𝑘3−𝑘1)
− 

𝑒−𝑘2𝑡

(𝑘2−𝑘1)(𝑘3−𝑘2)
+ 

𝑒−𝑘3𝑡

(𝑘3−𝑘1)(𝑘3−𝑘2)
] + 

[𝐵]0 𝑘2

𝑘3−𝑘2
 [𝑒−𝑘2𝑡 − 𝑒−𝑘3𝑡] + [𝐶]0 𝑒

−𝑘3𝑡   (4.6) 

where 𝑘1, 𝑘2 and 𝑘3 are the isomerisation rates, [𝐴]0, [𝐵]0, [𝐶]0 and [𝐷]0 the initial 

concentrations, and 𝑡 the time. The experimental data together with their fitting can be found 

in Appendix I. 

The 𝑘𝑛 = 1,2,3 values can be used to determine the free Gibbs energy of isomerisation ∆𝐺𝑛(𝑇)
≠  

by rearranging the Eyring equation: 

∆𝐺𝑛(𝑇)
≠ = −𝑅𝑇𝑙𝑛 (

ℎ𝑘𝑛

𝑘𝐵𝑇
)           (4.7) 

where 𝑘𝑛 is the obtained kinetic rate constants, 𝑘𝐵 the Boltzmann constant (𝑘𝐵 = 1.380662 x 10-

23 J K-1), ℎ the Planck’s constant (ℎ = 6.626176 x 10-34 J s), 𝑅 the universal gas constant (𝑅 = 8.31446 

J K-1 mol-1) and 𝑇 the measured temperature. Finally, plotting ln(𝑘𝑛 = 1,2,3) vs. 1/𝑇 (Arrhenius 

plot) and ln(𝑘𝑛 = 1,2,3)/𝑇 vs. 1/𝑇 (Eyring plot) gives the activation energy parameters, by 

linearisation of Arrhenius (4.8) and Eyring (4.9) equations, respectively. 

𝑘𝑛 = 𝐴𝑒−
𝐸𝑎𝑛
𝑅𝑇              (4.8) 

𝑘𝑛 =
𝑘𝐵𝑇

ℎ
𝑒
−∆𝐻𝑛

≠+𝑇∆𝑆𝑛
≠

𝑅𝑇              (4.9) 
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Table 2. Rate constants for the thermal Z → E isomerisation of compounds 1-4.a. 

 298 K 303 K 308 K 313 K 

 |k1|, s-1 |k2|, s-1 k3, s-1 |k1|, s-1 |k2|, s-1 k3, s-1 |k1|, s-1 |k2|, s-1 k3, s-1 |k1|, s-1 |k2|, s-1 k3, s-1 

1 
3.8 x 

10-6 

3.7 x 

10-6 

3.9 x 

10-6 

5.9 x 

10-6 

6.3 x 

10-6 

7.5 x 

10-6 

1.1 x  

10-5 

1.2 x 

10-5 

1.3 x 

10-5 

2.1 x 

10-5 

2.2 x 

10-5 

2.3 x 

10-5 

2 - 
3.5 x 

10-6 

4.2 x 

10-6 
- 

7.4 x 

10-6 

7.2 x 

10-6 
- 

1.3 x 

10-5 

1.3 x 

10-5 
- 

2.1 X 

10-5 

2.4 x 

10-5 

3 - - 
5.4 x 

10-6 
- - 

7.0 x 

10-6 
- - 

1.3 x 

10-5 
- - 

2.2 x 

10-5 

4b - - 
1.1 x  

10-5 
- - 

1.8 x 

10-5 
- - 

3.6 x 

10-5 
- - 

6.0 x 

10-5 

aParameters with appendix x1 refer to (Z,Z,Z)-1 → (Z,Z,E)-1 isomerisation, while the ones with x2 to (Z,Z,E)-1 → (Z,E,E)-1 and (Z,Z)-

1 → (Z,E)-1 and x3 to (Z,E,E)-1 → (E,E,E)-1, (Z,E)-1 → (E,E)-1 and (Z)-3-4 → (E)-3-4. The normalised rate constants |k1| and |k2| 

were divided by three or two in order to account for the statistical character of the (Z,Z,Z)-1 → (Z,Z,E)-1, or (Z,Z,E)-1 → (Z,E,E)-1 

and (Z,Z)-1 → (Z,E)-1 isomerisations, respectively. bDetermined by UV-Vis absorption spectroscopy.  

 

Table 3. Kinetic data for the thermal Z → E isomerisation of compounds 1-4.a 

 kb, s-1 ∆𝑮≠ b, kJ mol-1 ∆𝐇≠ , kJ mol-1 ∆𝐒≠ , J mol-1 ∆𝐄𝒂
≠, kJ mol-1 

 |k1| |k2| k3 |∆𝑮𝟏
≠| |∆𝑮𝟐

≠| ∆𝑮𝟑
≠ |∆𝑯𝟏

≠| |∆𝑯2
≠| ∆𝑯3

≠ |∆𝐒𝟏
≠| |∆𝐒𝟐

≠| ∆𝐒𝟑
≠ |∆𝑬𝒂𝟏

≠ | |∆𝑬𝒂𝟐
≠ | ∆𝑬𝒂𝟑

≠  

1 
3.8 x 

10-6 

3.7 x 

10-6 

3.9 x 

10-6 
104 104 104 88 89 88 -55 -52 -52 90 91 91 

2 - 
3.5 x 

10-6 

4.2 x 

10-6 
- 104 104 - 90 88 - -48 -54 - 92 90 

3 - - 
5.4 x 

10-6 
- - 103 - - 74 - - -99 - - 76 

4c - - 
1.1 x 

10-5 
- - 102 - - 86 - - -52 - - 88 

aParameters with appendix x1 refer to (Z,Z,Z)-1 → (E,Z,Z)-1 isomerisation, while the ones with x2 to (E,Z,Z)-1 → (E,E,Z)-1 and (Z,Z)-

2 → (E,Z)-2 and x3 to (E,E,Z)-1 → (E,E,E)-1, (E,Z)-2 → (E,E)-2 and (Z)-3-4 → (E)-3-4. The normalised rate constants |k1| and |k2| 

were divided by three or two in order to account for the statistical character of the (Z,Z,Z)-1 → (E,Z,Z)-1, (E,Z,Z)-1 → (E,E,Z)-1 and 

(Z,Z)-2 → (E,Z)-2 isomerisations, respectively. bAt 298 K. cDetermined by UV-Vis absorption spectroscopy.  

The activation energy parameters for the thermal isomerisation were determined by Eyring 

analysis (Table 3). The experimental data together with their fitting can be found in Appendix I. 

Thanks to such evidences we could prove that for our tris(azobenzene) system 1 the mechanism 

of the thermal reaction follows the expected pseudo-first order cascade reaction: (Z,Z,Z)-1 → 

(E,Z,Z)-1 → (E,E,Z)-1 → (E,E,E)-1. The bis(azobenzene) 2: (Z,Z)-2 → (E,Z)-2 → (E,E)-2 exhibits 

equivalent behaviour. For such cascade reactions, it is necessary to account for the statistical 

character of the first reaction(s), since the first isomerisation could occur on three equivalent 

azobenzene units for 1, and on two for molecule 2. In our case, the normalised rate constant |k1| 

for the (Z,Z,Z)-1 → (E,Z,Z)-1 reaction was divided by three. Thus, the normalised rate constant 

|k2| accounting for (E,Z,Z)-1 → (E,E,Z)-1 and (Z,Z)-2 → (E,Z)-2 reactions was divided by two. It 

is worth mentioning that, for both the tris(azobenzene) (1) and bis(azobenzene) (2) the thermal 

isomerisation rate constants are substantially analogous, thus indicating that the azobenzene 
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units do not influence one another, being electronically and geometrically decoupled and 

showing the absence of cooperative effects. Although geometrical decoupling was seen rather 

obvious, being the azobenzene units reciprocally connected by a central rigid benzene ring, 

complete electronic decoupling could not be postulated only on the basis of the electronic 

spectra of compounds 1-3 (see above). Those in fact enlighten the occurrence of partial (even 

though limited) π-conjugation between the azobenzene chromophores when embedded in the 

π-extended star-shaped system, if compared to 4. Indeed, the examination of the activation 

energy parameters for the thermal Z → E isomerization obtained under dark revealed that all 

the azobenzene units in compounds 1 and 2 display the same kinetic behaviour, while in the 

case of star-shaped mono(azobenzene) 3, a small but not substantial lowering of the activation 

free energy is visible. However, we impute experimental error being most likely the cause of such 

observation. Reference compound 4 instead shows slightly faster thermal isomerisation, if 

compared to the star-shaped compounds 1-3 (Table 3). The values are however within the same 

order of magnitude and are comparable with similar rigid azobenzene and bis(azobenzene) 

derivatives found in the literature. 13a Here it is visible how the mild electron-withdrawing 

character of the carboxylic group in para-position with respect to the azobenzene moiety does 

not sensibly lower the activation energy for the thermal isomerisation, as this is a known effect 

for stronger electron acceptor groups by mesomeric effect (e.g. nitro –NO2 or cyano –CN).[211] 

 
 
 

 

The conformational rigidity of compounds 1-3, combined with their satisfactory photochromism 

resulting from electronic decoupling of the switches grafted to the central benzene core 

motivated us to study their shape variation resulting from the E – Z isomerisation of their 

photochromic units. We used ion-mobility mass spectrometry (IMMS) to discriminate the 

different molecular configurations of the various isomers of 1-3, since this technique may help 

resolving mixtures of isomeric ions based only on the difference in their collisional cross section 

(CCS), a property which is directly related to their gaseous ions geometries.[161a] With such 

experimental technique, ions drift under the influence of an electric field and undergo collisions 

with a buffer gas. The ions drift time across the mobility cell is associated to the probability of 

collision with the buffer gas, hence to the ions CCS. Nevertheless, compared to the conventional 

methods, ionized species are mandatory for conducting IMMS experiments. For the present 

study, compounds 1-3 bearing carboxylic acid functional groups can be readily deprotonated 

upon Electrospray Ionization (ESI) in negative ion mode.  The mass spectra obtained upon ESI 

of our star-shaped azobenzene derivatives 1-3 present intense signals, with the most intense peak 

corresponding to the mono-deprotonated species: [1 -H+]- m/z = 749.2, [2 -H+]- m/z = 745.2 and 

[3 -H+]- m/z = 741.2 (Figure 59).  

                                                           
3 Experiments performed in collaboration with Q. Duez, Dr. J. De Winter, Prof. P. Gerbaux 

(Université de Mons) 
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Figure 59. ESI-MS (negative mode) analysis of solutions (10-5 M) of 1 (bottom), 2 (middle) and 3 (top) in THF. 

Multiply-charged ions are also detected but, for our discussion, we will only focus on the singly 

charged ions. When subjected to ion mobility, the singly charged ions, [1 -H+]-, [2 -H+]- and [3 -

H+]- from non-irradiated solutions, are all characterized by single Arrival Time Distributions 

(ATD) associated to the all-(E) species. Conversely, the analysis of UV light-irradiated solutions 

(UV – PSS) evidenced the appearance of additional ATD signals at lower drift times (Figure 60). 

The latter observation clearly enlightens that the UV-generated configurations present lower 

CCS compared to the less compact all-E isomers. Furthermore, it is worth mentioning that for 

each molecular photoswitch, the number of ATD signals detected after irradiation correspond 

to the number of different configurations, with four, three and two peaks being resolved for 

respectively 1, 2 and 3. The ATD are then used to calculate the experimental collisional cross 

section, i.e. CCS, by applying a calibration procedure (see Methods and Chapter 3, section 4). 

Again, the CCS values confirm that the E to Z isomerization induces the compaction of the ion 

structures with, for instance, CCS drastically decreasing from 269 to 187 Å2 when passing from 

the (E,E,E)-1 to the (Z,Z,Z)-1 configurations. Interestingly, as a reference experiment IMMS 

performed on UV-irradiated solutions of the reference linear azobenzene 4 did not lead to the 

observation of new peaks in the IMMS chromatograms, indicating that the large molecular shape 

rearrangement detectable with such technique is uniquely due to the their embedment into a 

large and rigid π-conjugated scaffold. 
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Figure 60. IMMS experiments on compounds 1-3 upon UV light irradiation in solution. Arrival time distributions 
(ATD) recorded for: a) tris-azobenzene 1, b) bis-azobenzene 2 and c) mono-azobenzene 3. Black line no light 
irradiation, red line UV PSS.  

Table 4. Experimental collisional cross section (CCS) values of the various isomers of 1-3 determined by IMMS. 

 CCS 

(Å
2
) 

 CCS 

(Å
2
) 

 CCS 

(Å
2
) 

(E,E,E)-1 269 (E,E)-2 273 (E)-3 277 

(E,E,Z)-1 237 (E,Z)-2 239 (Z)-3 241 

(E,Z,Z)-1 220 (Z,Z)-2 224   

(Z,Z,Z)-1 187     

IMMS was used also to monitor the stepwise photoisomerisation of 1: the technique was used to 

follow the light-induced process upon on-line irradiation of a DMSO solution with continuous 

infusion in the ESI source (Figure 61). The ATDs show the gradual appearance of the 

aforementioned photogenerated peaks relative to the (E,E,Z)-1, (E,Z,Z)-1 and (Z,Z,Z)-1,  until the 

UV – PSS is reached. Interestingly, upon integration of the peaks obtained for the four isomers 

at the UV – PSS we measured the following apparent isomeric ratio: 63 % (Z,Z,Z)-1, 30 % (E,Z,Z)-

1, 3 % (E,E,Z)-1, 4 % (E,E,E)-1. The comparison with the similar results obtained by HPLC-MS 

(Table 1) reveals that the mobility diagrams overestimate the amount of (Z,Z,Z)-1 with respect 

to the (E,E,Z)-1. The discrepancy between the IMS and HPLC-MS data (Table 1) comes from the 

fact that for the IMMS data we only monitor the singly charged ions that are merged with all 

differently charged states for the HPLC experiments.  

 

Figure 61. Photoisomerisation of 1 followed by IMMS. A solution of 1 was irradiated with UV light upon continuous 
IMMS separation. Left, temporal evolution of the IMMS traces. Right, isomer fraction over time determined by 
integration of the IMMS peaks. 
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Furthermore, we investigated the possibility to induce the in-flight Z → E isomerisation of 

azobenzene ions by collisional activation prior to their separation by ion-mobility.[161a] In this 

case, we employed an HPLC set-up to separate the four isomers prior to injection in the mass 

spectrometer and performed the aforementioned experiments on the isolated photogenerated Z 

isomers of 1. Such an experiment benefits from the great versatility of ion manipulations offered 

by the Waters Synapt G2-Si mass spectrometer. Indeed, after HPLC separation of the (Z,Z,Z)-1 

isomer and the preparation of the gas phase ions upon ESI(-), the molecular anions ([1 -H+]- at 

m/z 749.2) are mass-selected with the quadrupole mass selector. ). The ions are then subjected 

to collisional heating (collisional activation) in the trap cell prior to the ion mobility separation 

by  gradually increasing their kinetic energy (Figure 62). It is worth noting that we only used low 

voltages (Utr) to induce isomerization while avoiding ion decomposition. At low Utr (4 V), only 

the signature of the (Z,Z,Z)-1 ions is detected upon IMMS, demonstrating the successful isolation 

of the corresponding molecule by HPLC separation. This also reveals that no isomerisation is 

induced in source or in the ion transfer regions in our experimental conditions. 

 

Figure 62. Collisionally induced Z → E isomerisation of (Z,Z,Z)-1 ions. Left panel, 2D IMMS/HPLC traces of 1 irradiated 
with UV light (UV PSS) in DMSO solution (+ NaOH exc.) at different collision energies (Utr). Chromatograms 
integrated at [M-H+]- m/z = 749.2. Peak at 3 min 5 s retention time corresponds to (Z,Z,Z)-1, 3 min 20 s (Z,Z,E)-1, 3 
min 40 s (Z,E,E)-1, 4 min 30 s (E,E,E)-1. d) trace recorded at Utr = 4 V, c) trace recorded at Utr = 14 V, b) trace recorded 
at Utr = 18 V and a) trace recorded at Utr = 22 V showing the occurrence of thermal Z → E isomerisation. Right panel, 
IM traces plotted for the (HPLC) chromatographic peak at 3 min 5 s corresponding to (Z,Z,Z)-1. 

Upon progressive increase of the Utr, additional signals are detected upon IMMS and are of 

course related to the progressive appearance of the E isomers. Interestingly, the successive 

appearance of the (E,Z,Z)-1, (E,E,Z)-1 and finally (E,E,E)-1 isomers also reveals that the thermal 

isomerization of the (Z,Z,Z)-1 ions is a stepwise process. These experimental evidences suggest 

that upon collisional activation, in analogous fashion as heating, it is possible to increase the 

rate of the thermal Z → E isomerisation of azobenzenes, thus to generate the more 

thermodynamically stable E isomer(s) within the timescale of their residence in the Trap Cell 

(µs) prior to the ion mobility separation. 
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The compelling properties of our tris(azobenzene) photoswitch 1, including its rigidity, the large 

shape variation and the presence of carboxylic acid pendant groups enabling intermolecular H-

bonding motivated us to study by STM their self-assembly on graphite. Our experiments showed 

that 1 forms ordered monolayers; the assemblies in addition exhibited peculiar light response. 

We focussed most of our attentions to the study of the self-assembly at the solid-liquid interface, 

thus on the monolayers forming on graphite at the equilibrium with their overlying solution. 

We relied on the photoresponsive character of such assemblies after the thorough investigation 

performed on the photochemical properties of 1 in solution. Following from the high amount of 

photogenerated (Z)-isomers of 1 upon UV irradiation, we expected that such a variation of the 

solution composition would have led to the assembly of different isomers at the interface 

between graphite and the solution, as this is generally observed for photochromic derivatives.[71a, 

113] In order to fully understand the experimental data obtained by the STM experiments and to 

confirm the assignment of the molecular packings of the various isomers of 1, we have also 

simulated the assembly by Molecular Dynamics.4 Furthermore, blank experiments with the non-

photochromic derivative 5 were performed, proving the role of the isomerisation of azobenzenes 

in 1 towards the variation of the assembly. Nevertheless, the observation of a light-induced 

variation of the molecular assembly could not answer the question whether the isomerisation of 

1 could occur also when adsorbed on the graphite surface. In order to explore the 

aforementioned phenomenon, we performed additional qualitative STM experiments at the 

solid-air interface (e.g. without solution between the STM tip and the sample) by depositing 1 

using a standard spin-coating method. The films formed showed the appearance of ordered 

monolayers that retained a photoresponsive character, thus demonstrating that the 

photoisomerisation of 1 could occur also when this is adsorbed on graphite. 

Initially, we targeted at investigating the self-assembly of all-(E)-1 in the dark at the interface 

between its solution in 1-heptanoic acid (c = 10 µM) and highly ordered pyrolytic graphite 

(HOPG). Towards this end, to make sure that all three azobenzenes moieties of molecule 1 were 

in their all-(E) state, we applied to the surface a drop of a non-irradiated solution of 1, in order 

to benefit from the thermodynamic stability of (E)-azobenzene isomer. The STM images 

recorded in-situ display a tightly packed 2D crystalline lamellar structure consisting of (E,E,E)-1 

arranged in a zig-zag fashion (Figure 63, Figure 66a). The structure observed displays a unit cell: 

a = 4.1 ± 0.2 nm, b = 3.0 ± 0.3 nm, α = 41 ± 5 ° with an area A = 8.7 ± 0.3 nm2, each containing 

two molecules. A careful image analysis revealed the absence of polymorphs of such a crystalline 

packing, also upon varying the concentration of 1 solution used for the experiments: 10 µM was 

found to be the optimal value for attaining higher spatial resolution (for details see Methods). 

The total absence of the ideal “honeycomb network” H-bonded pattern which should arise from 

the formation of the intermolecular 2-fold cyclic O-H···O bonding between carboxylic groups is 

not surprising. This consideration comes from the large dimension of the rigid aromatic core of 

1, in line with the reported tendency of large C3-symmetric tricarboxylic acids to form more 

                                                           
4 The theoretical studies were performed by V. Diez-Cabanes, Dr. A. Minoia and J. Cornil (Université de 
Mons). 
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densely packed structures.[110] The reason for this evidence was explained by the higher 

adsorption energy contribution obtained by forming a more densely packed crystal with a non-

ideal H-bonding pattern compared to the corresponding “ideal” honeycomb structure expected 

from the generation of the two-fold H-bonding dimers, leading to a looser crystalline structure. 

In other words, the most prominent term driving the assembly is not associated to 

intermolecular interactions, but rather to the molecule--substrate adsorption energy per unit 

area, thus yielding the “tightest” assembly and not the “ideal” H-binding motif.[110] In order to 

confirm the assignment of the molecular packing given by experimental data, we simulated the 

assembly of (E,E,E)-1 by Molecular Dynamics (MD), which yielded an average unit cell: a = 4.3 

nm, b = 2.8 nm, α = 41 °, with two molecules per unit cell (Figure 66b). The result obtained by 

MD simulations matches very well the experimental values obtained by STM, therefore 

confirming the validity of our model. The azobenzene units in molecule 1 present a kink in the 

CNNC bond, it thus follows that upon the adsorption of 1 on the HOPG surface the resulting 

structures could show two isomers of the compound, together with the possibility of the 

emergence of their chirality. Nevertheless, from the images obtained, we could not attain the 

level of detail needed to neither assign unambiguously which specific isomer the crystalline 

domains belonged to, nor to comment about the chirality of the 2D structures. 

Interestingly, the in-situ photoirradiation of a solution of (E,E,E)-1 with ultraviolet light is 

generally accompanied with a loss of ordered crystalline packing, indicating a decrease in 

concentration of the (E,E,E)-1 isomer. The general disappearance of the initial packing was seen 

logical knowing the lower stability of the azobenzene Z-isomer when adsorbed on a surface, due 

to its non-planar geometry.[112] Surprisingly, in such a situation it was also possible to visualise 

domains of 1 displaying a periodical assembly (Figure 63). From our interpretation, each domain 

is composed by one isomer: (E,Z,Z)-1 and (E,E,Z)-1. 

 

Figure 63. STM images of 1 recorded at the interface between an HOPG substrate and a 10 µM solution of 1 in 1-
heptanoic acid. Left, no light irradiation (average tunnelling current (IT) = 30 pA, tip bias voltage (VT) = +800 mV). 
Centre, in-situ UV (λmax = 365 nm) light irradiation (IT = 30 pA, VT = +800 mV). Right, subsequent in-situ Vis (λmax = 
451 nm) light irradiation (IT = 20 pA, VT = +800 mV). 

As a blank experiment, the same study was also performed on the non-photochromic compound 

5, displaying a similar geometry to (E,E,E)-1, but having tolane moieties instead of azobenzenes 

in each of the three “arms”. Compound 5 was found to self-assemble in a crystalline structure 

with the same symmetry displayed by (E,E,E)-1 (Figure 64). Such structure is characterised by 

the following unit cell: a = 4.2 ± 0.2 nm, b = 2.9 ± 0.1 nm, α = 46 ± 1 ° with an area A = 8.8 ± 0.4 

nm2, each containing two molecules. The parameters are substantially unvaried when compared 
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with (E,E,E)-1, within experimental error. A blank test performed by irradiating 5 solutions in-

situ with both UV and visible light did not lead to any perceivable variation in the 

supramolecular packing. 

 

Figure 64. STM images of 5 at the solid-liquid interface between highly ordered pyrolytic graphite (HOPG) and a 5 (c 
= 10 µM solution in 1-heptanoic acid). a) IT = 20 pA, VT = +800 mV. b) IT = 20 pA, VT = +800 mV. Images recorded 
without irradiation. 

 

Figure 65. STM images of 5 at the solid/liquid interface between highly ordered pyrolytic graphite (HOPG) and a 5 (c 
= 10 µM) solution in 1-heptanoic acid. a) image obtained after 15 minutes in-situ UV irradiation, IT = 20 pA, VT = +800 
mV. b) image obtained after subsequent in-situ Vis irradiation for 15 minutes, IT = 20 pA, VT = +800 mV. 

As previously mentioned, upon in-situ UV- and Vis-irradiation of 1 it was possible to visualise 

ordered domains showing a different supramolecular packing compared to the situation seen 

without light irradiation (e.g. only (E,E,E)-1 isomer, see Figure 63). Namely, we could assign the 

composition of such ordered domains to the two isomers (E,E,Z)-1 and (E,Z,Z)-1, but we could 

not visualise (Z,Z,Z)-1. For (E,Z,Z)-1, the estimated unit cell parameters are the following: a = 7.6 

nm, b = 2.7 nm, α = 69 ° with an area A = 20 nm2, each containing four molecules (Figure 66c). 

Conversely, for (E,E,Z)-1 we estimate the following unit cell: a = 4.0 nm, b = 3.3 nm, α = 55 ° with 

an area A = 11 nm2, each containing two molecules (Figure 66e). Both assemblies display notably 

different geometry and unit cell parameters compared to (E,E,E)-1 and 5. Moreover, their 

stability appears lower compared to the one of the (E,E,E)-1, being evidenced by the smaller size 
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of the ordered domains, and the sometimes fuzzy contrast visible in the STM images. 

Interestingly it was not possible to visualise the formation of ordered domains formed by (Z,Z,Z)-

1; this observation can be ascribed to the non-planar conformation of the three (Z)-azobenzene 

units, lowering the energy of adsorption of the molecules on the basal plane of graphite and 

hence providing unfavourable geometry for stabilisation via H-bonding with neighbouring 

molecules. Upon subsequent visible light irradiation, a radical change in the supramolecular 

assembly was evidenced, yielding a scenario in which the only ordered domains monitored at 

the interface were those containing (E,E,Z)-1 (as mentioned above, Figure 63, Figure 66e). 

 

Figure 66. High resolution STM images of ordered domains of (a) (E,E,E)-1, (c) (E,Z,Z)-1, and (e) (E,E,Z)-1 self-
assembled at the HOPG-solution interface using 1-heptanoic acid as solvent. Supramolecular packing models 
obtained by MM/MD simulations for (b) (E,E,E)-1, (d) (E,Z,Z)-1, and (f) (E,E,Z)-1. The yellow rectangles indicate the 
formation of hydrogen bonded carboxylic acid dimers between (E)-azobenzene arms. Orange rectangles indicate 
hydrogen bonds between carboxylic moieties positioned on (Z)-azobenzene arms. Tunneling parameters: (a) average 
tunnelling current (IT) = 40 pA, tip bias voltage (VT) = +800 mV), (c) IT = 30 pA, VT = +800 mV, (e) IT = 20 pA, VT = 
+800 mV.  

It is striking to observe how the ordered domains of both the photoproducts (E,Z,Z)-1 and 

(E,E,Z)-1 show a less dense crystalline packing compared to (E,E,E)-1 and 5 (Figure 66, Table 5) 

which is in line with the larger stability in the STM imaging of the monolayers of the (E,E,E)-1. 

One explanation for this observation could come from the non-planar conformation of the Z-

isomer of the azobenzene units, resulting in less favourable molecule-substrate interactions 

compared to the E form. This lower stabilisation is balanced by the formation of stronger 

intermolecular hydrogen bonds, such as carboxylic acid dimers, as evidenced by the larger 

spacing between rows of (E,Z,Z)-1 and (E,E,Z)-1, compared to (E,E,E)-1. The formation of 

intermolecular carboxylic acid dimers between two (E)-azobenzene branches in the crystalline 

domains of (E,Z,Z)-1 and (E,E,Z)-1 is nicely supported by MM/MD simulations. For both (E,Z,Z)-

1 and (E,E,Z)-1, in order to interpret correctly the experimental data it was seen necessary to 
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perform the simulation over multiple different possible assemblies, following the complicated 

H-bonding pattern (Table 5, Figure 67). In this context, it is important to mention that the 

majority of the starting geometries used to model (E,Z,Z)-1 and (E,E,Z)-1 ended up in amorphous 

structures after the MM/MD run. Only a few of them presenting motion constrained by 

additional H-bonds showed a clear assembly pattern. In all cases, the H-bonding between two 

carboxylic groups takes place (yellow rectangles in Figure 66d, f, Figure 67), thus confirming its 

crucial role for the stabilisation of the supramolecular packing. In detail, the models adopted are 

composed as follows. For isomer (E,Z,Z)-1, the four molecules of the unit cell form two dimers 

connected by an hydrogen bond between carboxylic moieties on the (E) arm of the molecules 

(yellow rectangles, Figure 67c). The classification of the different models was done depending on 

the number and position of the hydrogen bonds formed between the (Z)-arms: (i) one hydrogen 

bond connects the two dimers (orange rectangles, Figure 67c I), (ii) two (Z)-arms form H-bonds 

connecting both sides of the dimers (orange rectangles, Figure 67c II), (iii) one extra hydrogen 

bond (green rectangles, Figure 67c III). Similarly, for (E,E,Z)-1, the two molecules in the unit cell 

form dimers connected by an hydrogen bond between carboxylic groups positioned on (E)-

azobenzene arms (yellow rectangles, Figure 67b). Three possible assemblies have been studied 

depending on the number of additional interactions between neighbouring molecules: (i) no 

hydrogen bonds connect the molecules, but the out-of-plane rings of the (Z) arms are interacting 

(π-π interactions), (ii) one additional hydrogen bond connecting the (Z) arms (orange rectangles 

in Figure 67b II), (iii) instead of forming H-bonds between the (Z)-arms, a hydrogen bond is 

formed between carboxylic groups in the remaining (E) arms.  

The need of considering also the occurrence of hydrogen bonds between carboxylic moieties 

positioned on (Z)-azobenzene arms in order to obtain a stable structure was surprising (orange 

rectangles in Figure 66d, Figure 67b, c). For (E,Z,Z)-1, the structure reproducing best the 

experimental pattern consists of model II (Table 5, Figure 66d, Figure 67c II), with the following 

parameters: a = 7.6  nm, b = 2.8  nm, α = 74 ° with an area A = 20 nm2, each containing four 

molecules. Regarding this isomer, it is important to point out that several types of assemblies 

were considered and analysed, but only the assemblies presenting H-bonds between (Z)-

azobenzene arms were able to form stable ordered assemblies, thus confirming the importance 

of these bonds in the stability of the assembly. For (E,E,Z)-1, the chosen model I yields an unit 

cell: a = 3.8 nm, b = 3.3 nm, α = 56 ° with an area A = 11 nm2, each containing two molecules. In 

this case, the computed structures highlight the presence of π-π interactions between two out-

of-plane phenyl rings of adjacent (E,E,Z)-1 molecules dominating over the formation of 

additional H-bonds (Figure 66f, Figure 67b I). 
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Table 5. Experimental and modelled unit cell parameters for 1 and 5, and estimated thermodynamic quantities 

 a [nm] b [nm] α [°] A [nm2] N 
H-

bonds 

Eads 

[kcal/mol] 

BE 

[kcal/mol] 

(E, E, E)-1 
experimental 

(4.1 ± 

0.2) 

(3.0 ± 

0.3) 
(41 ± 5) (8.7 ± 0.7) 

2 
   

theoretical 4.3 2.8 41 8.0 2 -101.91 -6.83 

5 experimental 
(4.2 ± 

0.2) 
(2.9 ± 0.1) (46 ± 1) (8.8 ± 0.4) 2    

(E, Z, Z)-1 

experimental (7.6) (2.7) (69) (20) 

4 

   

theoretical 

I 8.1 3.7 61 26 1.5 -80.50 -6.63 

II 7.6 2.8 74 20 2 -78.84 -10.13 

III 7.8 3.3 56 21 2.5 -78.59 -8.63 

(E, E, Z)-1 

experimental (4.0) (3.3) (55) (11) 

2 

   

theoretical 

I 3.8 3.3 56 11 1 -90.38 -8.87 

II 4 3.8 55 13 2 -89.96 -6.36 

III 5.5 3.2 50 13 2 -90.59 -7.83 

 

 

Figure 67. (a) Top view of the final structure of the MD simulations for (E,E,E)-1. (b) Top view of the final structure 
of the MD simulations for the model I (top), model II (centre) and model III (bottom) of (E,E,Z)-1. The yellow and 
orange rectangles show the (E)- and (Z)- H-bonds respectively. (c) Top view of the final structure of the MD 
simulations for the model I (top), model II (centre) and model III (bottom) of (E,Z,Z)-1. The yellow rectangles represent 
the (E)- H-bonds, the orange rectangles represent the (Z)- H-bonds which connect the vertical and horizontal rows 
and the green rectangles represent the (Z)- H-bonds which connect the molecules of the horizontal rows. 
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To obtain a more complete interpretation of our experimental findings, we casted down the 

different energies driving the 2D self-assemblies of (E,E,E)-1, (E,Z,Z)-1 and (E,E,Z)-1 on graphene. 

For this purpose, we have computed two parameters: adsorption energy (Eads) and binding 

energy (BE), giving us a hint on the strength of the molecule-substrate and intermolecular 

interactions, respectively (Table 5, see methods for details). From the data, it is clear that the 

structural packing of both (E,Z,Z)-1 and (E,E,Z)-1 gives rise to a lower Eads compared to (E,E,E)-1, 

due to the lower π-π and van der Waals interactions caused by the azobenzene units in the (Z)-

conformation. This result rationalises the fact that no self-assembly for (Z,Z,Z)-1 was observed 

at the experimental level. Conversely, for (E,E,Z)-1 and (E,Z,Z)-1 the larger BE values are related 

to the formation of a strong H-bonding network stabilising the supramolecular packing. The 

oppositive behaviour of Eads and BE when going from (E,E,E)-1 to its isomers validates our 

interpretation of the experimental molecular patterns visualised by STM. By and large, the 

computational insights confirm that the self-assembly of such large aromatic carboxylic acids is 

driven by a complicate interplay between intermolecular- and molecule/substrate- interactions. 

For the planar all-(E)-1 the geometry of the 2D crystalline assembly is governed by the 

thermodynamics of strong molecule/substrate interactions leading to a tightly packed unit cell. 

The photogenerated (Z)-isomers show less favourable molecule/substrate interactions due to 

their non-planar conformation; this is, however, compensated by more stable hydrogen bonding 

interactions between the carboxylic groups, and/or π-π interactions between adjacent out-of-

plane phenyl rings. The aforementioned intermolecular interactions allow the formation of 

stable supramolecular assemblies showing larger unit cells compared to all-(E)-1, which are 

particularly unusual in view of the known tendency of rigid carboxylic acids to form a dense 

crystal structure.[110] 

The finding of different isomers from the all-(E)-1 assembled at the solid-liquid interface 

could however not answer our question whether the photoswitch could undergo 

photoisomerisation when physisorbed on graphite. In order to cast further light onto whether 

the isomerization takes place or not on the basal plane of the surface, we have extended our 

study to the STM visualization of the isomerisation occurring in dry films, i.e. at the solid-air 

interface, of 1 physisorbed on the HOPG surface upon in-situ irradiation. 
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Figure 68. STM images of assemblies of 1 at the graphite-air interface, prepared by spin-coating of a c = 10 µM solution 
of (E,E,E)-1 in THF on a freshly cleaved HOPG substrate. a) left panel, no irradiation (IT = 20 pA, VT = + 700 mV). 
Right panel, image obtained after ~ 30 min in-situ irradiation at λmax = 367 nm, Pd ≈ 3 mW cm-2 (IT = 20 pA, VT = + 
700 mV). b) magnification of (E,E,E)-1, no irradiation (IT = 20 pA, VT = + 700 mV). c) Magnification of 1 after UV 
irradiation (IT = 20 pA, VT = + 700 mV). 

In order to perform STM imaging of dry films of 1, we set up a procedure enabling us to obtain 

monolayers showing ordered domains with areas of few hundreds nm2. Such procedure 

consisted in depositing 1 from a non-irradiated solution (c = 10 µM in THF) on a freshly cleaved 

HOPG substrate and the successive removal of solution and solvent excess by spinning on a 

spin-coater (details in Methods). The concentration used was seen optimal for obtaining ordered 

monolayers of 1 arranged face-on on the graphite surface: higher concentrations led to the 

observation of linear aggregates, probably consisting of 1 arranged edge-on, together with 

additional ad-layers not allowing to obtain the desired sub-molecular resolution, and the use of 

lower concentrations did not lead to the observation of organised molecular monolayers. The 

high affinity of the large aromatic core of 1 for the basal plane of HOPG made it possible to 

obtain a molecular adsorbate characterised by small crystalline regions alternated by un-coated 

substrate regions, thus yielding a sub-monolayer coverage. From semi-quantitative point of 

view, the unit cell of (E,E,E)-1 monitored by STM at the solid-liquid and at the solid-air interface 

are similar (Figure 68 and Figure 66a). Interestingly, upon performing in-situ irradiation of the 

sample with ultraviolet light, we could observe an evident variation of the original pattern 

visualised prior to light irradiation (Figure 68) as a result of the molecular isomerisation. In such 

a condition, thus in the absence of a medium capable of solvating 1, the adsorbates cannot desorb 
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from the graphite substrate. The striking variation of the inter-row spacing compared to the 

non-irradiated situation is the most evident consequence of the external stimulus given by UV 

light. It is however evident how the morphology of the patterns seen upon irradiation at the 

solid-liquid interface is different from what obtained in the latter experiments: in such a 

scenario, the molecules are not capable of desorbing from the surface upon isomerisation, thus 

to rearrange forming 2D crystalline domains, each formed by only one Z-isomer, as previously 

mentioned, and visible in Figure 63 and Figure 66c,e. In the photoswitching experiments 

performed on 1 at the graphite-air interface we could on the contrary observe the neighbouring 

molecules within the same row being most likely present in the same configuration, nevertheless 

the molecular configuration of the neighbouring rows seems to vary randomly in the ordered 

domains. Thus, failing to form regular crystalline domains containing one, single isomer (see 

Figure 68). In light of these experimental evidences, we believe that we can safely state that in 

the STM experiments performed at the solid-liquid interface, the change in the geometry of the 

supramolecular 2D assemblies is due to the competitive adsorption of (E,Z,Z)-1 and (E,E,Z)-1 

isomers, following the isomerisation of (E,E,E)-1 in solution. Even though we cannot neglect that 

the molecules can isomerise when adsorbed on the graphite surface, we envision that in such a 

case the result would be largely different. 
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In summary, a novel family of multi-azobenzene photoswitches made by connecting the 

individual photochromes to a central trisubstituted 1,3,5-benzene core has been developed and 

fully characterised. Such star-shaped systems consisting of conformationally rigid, pseudo-

planar scaffolds have been realised in order to explore the role of electronic decoupling in the 

isomerisation of the individual azobenzene units. The design of our tris-, bis- and 

mono(azobenzene) compounds limits the π-conjugation between the switches belonging to the 

same molecule, thus allowing their efficient isomerisation and the independent behaviour of 

each unit from the state of the neighbouring ones, but at the same time maintaining a high 

structural rigidity. An in-depth experimental insight has been gained by making use of different 

complementary techniques such as UV-Vis absorption spectroscopy, high performance liquid 

chromatography and advanced mass spectrometry methods as ion mobility. The additivity of 

the UV-Vis absorption spectra relative to the all-(E) isomer, together with the appearance of 

clear isosbestic points upon photoswitching of mono-, bis- and tris(azobenzene) compounds 

provided unambiguous evidence for an almost complete absence of electronic delocalisation 

between the chromophores. The latter allows a remarkably efficient photoswitching of all 

azobenzenes, as evidenced by their photoisomerisation quantum yields, not substantially 

different from the values showed by reference mono-azobenzenes. Moreover, all star-shaped 

compounds showed Z-rich UV photostationary states.  Ion mobility mass spectrometry was 

exploited for the first time to study multi-photochromic compounds revealing the occurrence 

of a large molecular shape change in such rigid star-shaped azobenzene derivatives. Moreover, 

STM investigation on the self-assembly of the tris(azobenzene) 1 at the graphite-solution 

interface revealed the formation of patterns of all-(E)-1. Upon in-situ irradiation with ultraviolet 

and visible light, variation of the supramolecular packing was seen occurring, resulting from the 

formation of crystalline assemblies of two different partially (Z)-isomers. For the first time it was 

possible to identify by STM the existence of multiple isomeric states of a multiphotochromic 

compound in single-component self-assembled networks with a high level of details. In addition, 

by performing qualitative STM imaging on dry films of 1 at the graphite-air interface and their 

subsequent in-situ UV irradiation, it was possible to verify that the switching occurs in such 

conditions also to the molecules physisorbed on the solid substrate. We believe that the present 

results could be of great value for further research on multiphotochromic systems, and could 

clarify the role of non-covalent interactions in the supramolecular self-assembly of similar 

systems. In view of their intrinsic molecular geometry and rigidity, we envision that the 

azobenzene-based compounds presented here could be employed in the future as building 

blocks of photo-responsive materials for various applications such as light-triggered host-guest 

systems, or optically-responsive metal-organic frameworks. 
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The work described within the present section is centred on novel multi diarylethene-containing 

systems. The derivatives presented here are based on a dyad architecture containing a 

fluorescent porphyrin core and four equivalent diarylethene, and specifically 

perfluorocyclopentene-bridged dithienylethene photoswitches on its periphery. Such a system 

was conceived to exploit the central porphyrin unit both as a symmetrical scaffold for the 

photochromes and for its appealing photophysical properties (e.g. fluorescence). The 

dithienylethene (DTE) units employed are connected at the meta-position of a 

tetraphenylporphyrin core: such a connectivity pattern has been chosen not only to prevent the 

formation of atropoisomers, but most importantly to electronically decouple the switches in 

order to retain their photoreactivity. Four tetra(dithienylethene)-substituted porphyrins were 

studied, being the free base, and the Zn(II), Ni(II) and Co(II) complexes. The effective and 

reversible photochemical conversion of the four derivatives was studied by UV-Vis absorption 

spectroscopy and 1H-NMR. Interestingly, the free base and the zinc complex having all the DTE 

units in the open form display analogous photophysical properties to their non-photochromic 

analogues free base- and zinc tetraphenylporphyrin. Conversely, UV-triggered photochemical 

conversion of the DTE units to their corresponding closed isomer(s) results in almost complete 

quenching of the original emission. The luminescence showed to be reversibly on- and off-

switched over several irradiation cycles both in solution and in dye-doped polystyrene thin films, 

allowing us to demonstrate that such compounds could be used as photo-rewritable fluorescent 

dyes. The high contrast obtained in the fluorescence modulation is due to the presence of a high 

amount (i.e. four) of photoswitches around the emissive core. 

 

 

As previously mentioned throughout this thesis, the development of stimuli-responsive 

molecular systems is still an extremely active area of research, aimed at e.g. the realisation of 

smart or adaptive materials, with the ultimate goal of studying and/or imitating the complex 

                                                           
5 Large parts of the work displayed within this chapter have been published: Biellmann, T.; Galanti, A.; 
Boixel, J.; Wytko, J. A.; Guerchais, V.; Samorì, P.; Weiss, J. Fluorescence Commutation and Surface 
Photopatterning with Porphyrin Tetradithienylethene Switches. Chem. Eur. J. 2018, 24 (7), 1631-1639. 
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processes occurring in natural systems. Photonic inputs represent the focus of our attention, 

thanks to the possibility of applying them remotely, with high spatiotemporal resolution. Among 

the vast class of photochromic molecules able to undergo a reversible isomerisation between at 

least two states with photons of different wavelength, diarylethenes represent an important 

category for several reasons, and most importantly they feature a thermal stability of both the 

forms accessible with light stimuli. Such an interesting characteristic makes such photoswitches 

particularly promising for their application in the field of optical memories,[2, 55, 59] since the 

information written with a light stimulus can be retained following the stability of the two 

diarylethene isomers towards thermal reactions occurring in the dark. The term “diarylethene” 

is a general definition for stilbene derivatives, valid for all systems comprising two 

(hetero)aromatic rings bridged by an ethylene moiety. In general, it is useful to replace the 

ethylene unit with a cyclic cyclopentene or cyclohexene moiety to avoid the E → Z isomerisation 

of the central double bond, which would hamper the desired photocyclisation reaction. 

Moreover, concerning the two aromatic rings, substitution with heteroaromatic five-membered 

rings with low stabilisation energy (such as furan or thiophene) generally allows the 

photochemical reaction to be reversible, and the two isomers to be thermally stable.[60] From 

now on we will therefore refer to these compounds as dithienylethene (DTE) photochromes. 

The most important difference between the open (o-DTE) and the closed (c-DTE) form concerns 

their conjugation: in case of the open-ring structure, conjugation is localised on the 

heteroaromatic rings, while in the closed isomer π-conjugation delocalises electrons over the 

whole backbone of the molecule, resulting in a lower HOMO-LUMO gap compared to its open 

counterpart. These changes, together with the shift in energy of the ground and excited states 

of the two isomers, are responsible for the resulting shift of their photophysical and redox 

properties. High interest that has been devoted in the last two decades towards the development 

of highly efficient and fatigue-resistant switches towards their applications in opto-electronic 

devices,[2, 17, 74] smart materials,[75] optically-driven gelators,[212] or also for gating chemical 

reactions.[20, 76] Above all it has been widely employed to modulate the light emission of 

luminophores connected to the photochromic switch.[59] The latter strategy opened the doors to 

the application of DTEs in in highly attractive research fields such as all-optical information 

storage[81] and superresolution optical microscopy.[82] 

As already discussed throughout this thesis, the development of multi-photochromic 

systems represents an extremely appealing goal from both the fundamental research and the 

applicative point of view. The realisation of multiphotochromic molecular systems is however a 

challenging task, as usually this leads to inhibition of the photochemical reaction(s) on all, or 

part of the switchable moieties residing within the same molecular scaffold. We already 

discussed on how multi-photochromic systems are sensitive and electronic delocalisation in π-

conjugated system, being the presence of the latter detrimental to the desired 

photoisomerisation reaction. This is particularly delicate for systems containing multiple 

diarylethene (DTE) units,[96] as complete closure is usually inhibited by the occurrence of 

intramolecular energy transfer between o-DTE and c-DTE fragments, thus preventing full 

conversion to all-closed state.[91] Indeed, the choice of a suitable bridging unit between the 

switches is key towards the realisation of systems showing suitably large conversions.[97] 

Photochromism is generally prevented when the switches are embedded into a large π-

conjugated system, following the emergence of low-lying excited state manifolds which usually 

do not lead to the photoreaction pathway. Multi-DTE systems have been extensively 
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investigated,[91a] by examining the role of bridges of various nature, including for instance 

alkynyl,[98] arenyl,[97] or silyl[99] moieties and metal complexes[100] as spacers. In contrast, 

porphyrins have been seldom used as scaffolds for systems containing multiple DTE units, 

despite multi-azobenzene systems have been realised with this strategy, not always leading to 

promising photoresponse.[213] Thus far, two examples of multi-DTE porphyrin-related 

compounds were reported, being a Sn(IV) porphyrin having two phenoxide-DTE moieties 

coordinated in axial positions,[214] and a tetraazaporphyrin derivative incorporated across the 

beta-positions of the four pyrrole moieties.[119] 

As previously mentioned, attaining optically-triggered modulation of the luminescence of a 

molecule or metal complex in a reversible fashion is extremely appealing for their application as 

all-optical memory elements, or as photoswitchable probes in superresolution microscopy. This 

is generally performed by coupling luminophores with diarylethenes: the emission quenching of 

the former could be obtained by either Förster resonance energy transfer (FRET), or photo-

induced electron transfer. Modulation of the absorption properties or the oxidation/reduction 

potentials of the diarylethene unit upon its isomerisation are the cause for the emission 

switching.[116] For such application, high contrast between the ON- and OFF-states, reversibility 

and cyclability are factors of crucial importance. Achieving high contrast in the modulation of 

the emission of a luminophore is generally complicated by two main factors: non-quantitative 

conversion of the photochromic unit(s) upon achieving the photostationary state (PSS), and low 

(or generally below unit) quantum efficiency of the luminescence quenching process. These two 

drawbacks could be overcome with a conceptually simple strategy: increasing the amount of 

switchable (quencher) units surrounding the luminophore.  

We have thus decided to follow such strategy, nevertheless relying on the combination of 

DTEs with porphyrins. By joining these two functional units, it has been already shown possible 

to modulate photoinduced intra- or intermolecular electron-,[79] energy-transfer,[215] or singlet 

oxygen generation,[80] for instance. Free-base porphyrin derivatives, together with some of their 

metal complexes (e.g. Zn(II)) present interesting photophysical properties,[216] and emit (mostly) 

by means of fluorescence in the red part of the visible light spectrum (~ 550 - 750 nm). In such 

region, the open isomer of DTE does not absorb light. In addition, porphyrin emission could be 

achieved by excitation on its Q-bands, in the red part of the visible spectrum (520 – 650 nm), 

but also at higher energy on the Soret band (~ 420 nm), in a region where none of the DTE 

isomers absorb light. Thus, it follows that the fluorescence readout could be performed at a 

wavelength not altering the state of the DTEs. Most importantly, the emission of free base and 

Zn(II) porphyrins occurs in the region of the visible spectrum where the ring-closed form of DTE 

absorbs light. Following such spectral overlap, it is simple to understand how the latter could 

work as efficient quencher for the emission of the aforementioned dye. Moreover, in light of the 

possibility to excite the porphyrin on the Soret band, hence at a largely different wavelength in 

comparison to their emission, they allow to detect the emitted light avoiding scattering from the 

excitation light, thus opening the door towards their application as “rewritable fluorescent 

photoinks.”  
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Figure 69. Structure formula of the tetra-DTE porphyrin 7 developed and synthesised by the group of Prof. J. Weiss, 
and used within the present study. 

With these premises, we worked in collaboration with the group of Prof. J. Weiss to characterise 

a novel derivative of tetraphenylporphyrin containing four DTE residues 7 (Figure 69). Such 

molecules were developed and synthesised by the group of Prof. J. Weiss, in particular by Dr. T. 

Biellmann and Dr. J. Wytko with the purpose of obtaining phototunable fluorescent compounds 

characterised by highly contrasted emission properties. The central tetraphenylporphyrin 

residue was used as symmetrical framework to support four DTE units: four derivatives were 

synthesised, i.e. the free base 7H2, and the metal complexes with Zn(II), Ni(II) and Co(II), named 

respectively 7Zn, 7Ni and 7Co, being 7H2, 7Zn and 7Ni characterised here. The DTE units 

employed in 7 are connected at the meta-position of a tetraphenylporphyrin core: such a 

connectivity pattern has been chosen not only to prevent the formation of atropoisomers, but 

most importantly to electronically decouple the switches in order to retain their photoreactivity. 

The photochromic behaviour of 7H2, 7Zn and 7Ni has been characterised by means of 1H-NMR 

spectroscopy and UV-Vis absorption spectroscopy, while unfortunately it was not possible to 

separate and characterise further the photogenerated isomer mixture by means of HPLC.  

 

Figure 70. Simplified scheme of the emission quenching by energy transfer to the closed DTE isomer. Left, open-DTE: 
fluorescence ON. Right, closed-DTE: fluorescence OFF. 

Notably, the free base and zinc derivatives 7H2 and 7Zn showed effective light-triggered 

commutation of their luminescence in solution, and also when dispersed in amorphous 

polymeric matrix and deposited as thin film on surfaces. Quenching of the original fluorescence 

emission intensity occurred by inducing the ring-closure reaction on the DTE units upon 
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ultraviolet (λ ≈ 312 nm) irradiation, situation which was reversed to the initial conditions by 

visible (490 ≤ λ ≤ 570 nm) light irradiation. Occurrence of such reversible behaviour also on the 

solid-supported samples allowed us to record fluorescent patterns by in-situ structured 

illumination, thus showing that the compounds studied here could be employed as 

photoactivable fluorescent inks. 

 

 

All the experiments in solution have been performed using air-equilibrated spectroscopy grade 

CH2Cl2 (Merck Millipore, Uvasol). UV-Vis absorption spectra were recorded at room 

temperature with a Jasco V-650 spectrophotometer, in matched quartz Suprasil cuvettes 

(Hellma), with 1.0 cm optical path length. Photoisomerisation studies were performed with a 

Herolab UV 6ML 312 nm lamp, at an incident power density Pd ≈ 3.0 mW cm-2 for DTE 

electrocyclisation reaction. Visible light irradiation was carried out using an Edmund Optics 

illuminator equipped with a 150 W halogen lamp and a green filter (λmax = 530 nm, FWHM = 80 

nm) at an incident power density Pd, 530 nm ≈ 57 mW cm-2, for DTE cycloreversion. During light 

irradiation, the solutions were always vigorously stirred. 

Quantification of the amount of photogenerated c-DTE isomer upon irradiation at the UV 

photostationary state was performed by the group of Prof. V. Guerchais (Université de Rennes 

I) by means of 1H-NMR (300 MHz) in CD2Cl2. Irradiation for 1H-NMR experiments was 

performed using a Rayonet® equipped with 300 nm lamps. 

All the photophysical studies concerning the (fluorescence) emission of 7H2 and 7Zn were 

performed in air-equilibrated spectroscopy-grade CH2Cl2, using 1 cm or 3 mm optical path 

length Suprasil cuvettes (Hellma). The shorter optical path ones were specifically used to 

measure emission spectral features in regions where strong reabsorption occurred (i.e. small 

Stokes shift), in order to avoid distortion of the emission spectra (e.g. for monitoring S0 ← S2 

emission of 7Zn). Fluorescence spectra of S0 ← S1 transition for 7H2 and 7Zn during the 

photoswitching cycles were recorded upon excitation at one isosbestic point of their spectral 

variation (i.e. 429 and 430 nm for 7H2 and 7Zn, respectively), in order to exclude variations of 

light absorbed. Except for time-resolved emission measurements, concentration was kept low (c 

≈ 5 x 10-7 M) in order to maintain the absorbance at the excitation wavelength below 0.1, thus 

avoiding reabsorption of the emitted light. Emission spectra were recorded on an Agilent Cary 

Eclipse and a Horiba Jobin Yvon Fluorolog FL3-22 fluorometers. Time-resolved measurements 

to determine the excited state lifetime of 7H2 and 7Zn were performed by time correlated single 

photon counting (TCSPC) with the aforementioned Horiba FL3-22 equipped with a FluoroHub 
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A+ TCSPC controller and a PPD picosecond single photon counting detector. Excitation was 

performed using NanoLED LED light sources (pulse width ≤ 1.3 ns), using λexc = 590 nm for 7H2 

and λexc = 560 nm for 7Zn. Following the short lifetime of 7Zn excited state, the excitation pulse 

was deconvoluted by measuring the instrument response function using a scattering dispersion 

of colloidal silica (Ludox, Sigma Aldrich) in water. Quantum yield measurements were 

performed for the S0 ← S1 deactivation of 7H2 and 7Zn by means of fluorescence, by comparison 

with a standard fluorophore with known quantum yield. On this purpose, free base 

tetraphenylporphyrin (H2TPP, Sigma Aldrich) in toluene was used as standard (ΦR = 0.10).[151] 

The measurements were performed in the dark, all-open-DTE form, and in the UV PSS, to 

compare emission intensity in the two states, upon excitation at the isosbestic points. 

Concentration was kept low enough to have Aλexc < 0.05. 

 

 

 

The experiments on the films deposited on solid were performed with 7H2. The compound was 

blended with high-molecular weight polystyrene (PS, average: 500 kDa, low polydispersity, 

standard for GPC, Sigma Aldrich) in 8 % w/w ratio. Solutions were made in CHCl3, c = 3.0 mg/mL 

(PS) and spin-casted on glass microscope cover slides. The substrates were washed prior to film 

deposition by rinsing with acetone, isopropanol and ethanol and blown dry under a stream of 

nitrogen, without any further surface treatment. The deposited films showed a uniform coverage 

and an average thickness of ca. 20 nm, characterised by optical microscopy and surface 

profilometry. UV-Vis absorption spectra of the glass-supported films were measured in 

transmission configuration on a Jasco V-650 with a solid sample holder, while the emission 

spectra were recorded on an Agilent Cary Eclipse fluorometer with a movable solid sample 

holder accessory, in right-angle excitation geometry.  

 

 

Patterning and imaging on the fluorescent films of 7H2 was performed by confocal laser scanning 

microscopy. The measurements were performed on a Zeiss LSM 710 confocal microscope system 

with a 10x magnification objective, with the help of Dr. Alessandro Aliprandi, whom is greatly 

acknowledged. Imaging was performed upon exciting the samples with a continuous wave laser 

at λexc = 405 nm, 1.7 s per frame, 0.3 % power. Emission of the assemblies was monitored in the 

λem = 414 - 721 nm range, using the lambda-mode option. The raw data recorded by means of the 

lambda-mode were processed using a linear unmixing tool option available in the ZEN 2011 

software package (Zeiss GmbH). In order to record positive and negative fluorescent patterns, 

structured illumination was accomplished using different laser sources. For ultraviolet 

irradiation, a UV continuous wave (CW) laser was used (λ = 355 nm), by scanning on the frame 

for 20 s. For visible irradiation, we could not accomplish the experiments with a green laser due 
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to instrumental limitations, but the same laser used for excitation (λ = 405nm CW laser) showed 

to be effective as Vis light source for switching the DTE derivatives, thus we used higher power 

(30%), while scanning for a longer period on the same frame (30 s). 

 

 

 

 

 

The compounds 7H2, 7Zn and 7Ni described within the present chapter were synthesised by Dr. 

T. Biellmann in the group of Prof. J. Weiss (Université de Strasbourg). Their detailed synthesis 

is described elsewhere,[95b] however a brief schematic picture of the synthetic methodology used 

to obtain the compounds will be given here, for illustrative purposes (Scheme 7). The free-base 

target compound 7H2 was obtained by Lewis acid-catalysed condensation of the aldehyde 7.a 

with pyrrole and subsequent oxidation with p-chloranil, as this is a standard route for obtaining 

symmetrical tetra-substituted porphyrins.[217] The unsymmetrically substituted, aldehyde-

terminated DTE derivative 7.a was synthesised from the 4-bromothiophene derivative 7.c 

bearing a protected aldehyde and the perfluorocyclopentene derivative 7.b, followed by 

deprotection of the aldehyde under acidic conditions. The tolyl-substituent at the other end of 

the DTE arms was chosen in order to ease the characterisation of the photochromism of 7 by 

means of 1H-NMR. The metalloporphyrin derivatives 7Zn and 7Ni were prepared by reacting 7H2 

with the corresponding metal salt: Zn(OAc)2 and Ni(acac)2, respectively. 

 

Scheme 7. Synthesis scheme of 7. Reagents and conditions: (i) nBuLi, -78 °C, THF; (ii) 7.b, -78 °C → R.T.; (iii) HCl; 
(iv) pyrrole, BF3, R.T., CH2Cl2; (v) p-chloranil; (vi) Zn(OAc)2, R.T., CHCl3; (vii) Ni(acac)2, chlorobenzene, reflux. 
Adapted from:[95b] 
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The 1H-NMR experiments have been performed in the group of Prof. V. Guerchais (Université 

de Rennes I) by Dr. T. Biellmann and Dr. J. Boixel, whom are greatly acknowledged. The 

measurements for 7H2, 7Zn and 7Ni without light irradiation enlightened the presence of a 

single peak for the beta-pyrrolic protons located at ca. 9 ppm, thus confirming the symmetry of 

the molecules. Typically, the (dark) 1H-NMR spectrum of 7H2 shows two singlets located at ca. 

7.46 and 7.18 ppm, assigned to the magnetically non-equivalent protons on the thienyl units 

present in the four DTE fragments residing in the open form (Figure 71), whereas the protons of 

the methyl groups (of the DTE moieties) appear as one broad signal at ca. 1.95 ppm (Figure 72). 

The 1H-NMR spectra of the metal complexes 7Zn and 7Ni display similar features (Figure 73 and 

Figure 74, respectively). 

The photochemical conversion of the DTE moieties in 7 was monitored by 1H-NMR, in order 

to quantify the amount of ring-closed isomer present at the PSS upon UV irradiation. Attempts 

of monitoring the reaction by isolating the single isomers in the mixture were also performed 

here by means of HPLC, nevertheless failing in resolving the mixture. Therefore, the quantity 

given here for the conversion to the closed isomer will most likely account for the mixture of 

different partially-closed-DTE isomers (e.g. o,o,o,c,; o,o,c,c, o,c,o,c; o,c,c,c; c,c,c,c) in which one, 

two, three or four DTE units are photocyclised. Upon irradiation of a CD2Cl2 solution of 7H2 at 

300 nm, the 1H NMR spectrum shows the characteristic upfield-shifted signals of the two thienyl 

protons of the closed DTEs at  6.85 and 6.65 ppm (Figure 71a), whereas the magnetically non-

equivalent methyl protons appear as two singlets shifted downfield, at  2.36 and 2.23 ppm, 

compared to the methyl proton of the open DTEs (Figure 72). The signals of the open-DTE units 

are still present at the PSS, but it is not possible to discriminate between those of the initial fully 

open species (e.g. when all four DTE units on 7 are in the open-state) and the photo-generated 

open-closed derivatives. Moreover, a new low field singlet at  8.85 ppm is attributed to the β-

pyrrolic protons of the photocyclised species.  

 

Figure 71. a) 1H-NMR spectra for the aromatic region of 7H2 (300 MHz, CD2Cl2). Black trace dark, no irradiation (all-
open DTE isomer). Red trace, UV PSS, irradiation at λ = 300 nm. b) Molecular structure indicating the protons 
responsible for the signals used for 1H-NMR characterisation. Adapted from:[95b] 
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Figure 72. 1H-NMR spectra for the aliphatic region of 7H2 (300 MHz, CD2Cl2). (i) No irradiation, (ii) 5 min. irradiation, 
(iii) UV PSS, irradiation at λ = 300 nm. Signals are labelled as indicated in Figure 71b. Adapted from:[95b] 

 

Figure 73. a) 1H-NMR spectra for the aromatic region of 7Zn (300 MHz, CD2Cl2). b) 1H-NMR spectra for the aliphatic 
region of 7Zn. (i) No irradiation, (ii) 5 min. irradiation, (iii) UV PSS, irradiation at λ = 300 nm. Signals are labelled as 
indicated in Figure 71b. Adapted from:[95b] 

 

Figure 74. a) 1H-NMR spectra for the aromatic region of 7Ni (300 MHz, CD2Cl2). b) 1H-NMR spectra for the aliphatic 
region of 7Ni. (i) No irradiation, (ii) 5 min. irradiation, (iii) UV PSS, irradiation at λ = 300 nm. Signals are labelled as 
indicated in Figure 71b. Adapted from:[95b] 

The percentage of ring-closing in the photostationary state was determined by 1H NMR 

spectroscopy (in CD2Cl2), by calculating the ratio of the integration between the thienyl signals 

of the closed DTE units and that of the -pyrrolic protons, both in the open and PSS states. The 
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photocyclisation conversion was estimated to be 62, 88, and 75% for compounds 7H2, 7Zn and 

7Ni respectively (Table 6). The higher conversion rate found for the metalled species could be 

explained by a ring-closure via the triplet state of open-DTE units, due to intersystem 

crossing.[218] Notably, the efficiency at which the porphyrin-DTE scaffolds 7 photocyclise 

contrasts the reported inhibition of photoisomerisation in several compounds in which 

porphyrins and the switching unit are linked by a phenyl spacer substituted in ortho-, or para 

position.[151, 213a, 219] The meta substitution pattern in our edifices appears to limit efficiently the 

electronic delocalisation in the molecular framework, thus allowing DTE isomerisation to a 

higher extent. 

  

 

In first instance, the photophysical properties of 7H2, 7Zn and 7Ni without irradiation (all-open 

DTE) were determined in CH2Cl2, in order to assess their similarities with the non-DTE-

containing tetraphenylporphyrin analogue (H2TPP),[216a] and the zinc tetraphenylporphyrin 

(ZnTPP).[216b] The electronic absorption spectra of each tetra-DTE porphyrin array show the 

typical features of the two chromophores, with a broad band in the UV region attributed to the 

π-π* transition localised on the open DTE fragments, in addition to the porphyrin’s 

characteristic Soret and Q bands in the visible region (Figure 75 and Table 6). Four Q bands are 

observed for the free base 7H2 at ca. 515, 550, 590 and 645 nm, while fewer (two or one) are 

visible for the metallated 7Zn and 7Ni, due to their fourfold symmetry.  

 

Figure 75. UV-Vis absorption spectra of 7 in CH2Cl2 in their all-open-DTE form, without irradiation. Black trace, 7H2, 
green trace, 7Zn, purple trace, 7Ni. Inset, magnification of Q-bands of 7H2, 7Zn, 7Ni. 

The steady state emission spectra of 7 and their time-resolved decay were measured at room 

temperature, in air-equilibrated CH2Cl2. The free base 7H2 and the zinc 7Zn porphyrin 

derivatives showed similar features to their non-photochromic analogues H2TPP and ZnTPP,[216] 

while 7Ni is non-luminescent, as expected from closed-shell diamagnetic complexes such as 

NiTPP. The emission spectrum of 7H2 displays two peaks, Q(0-0) and Q(0-1), respectively at 

650 and 717 nm (Figure 76a, Table 6), whereas the excitation spectrum (λem = 715 nm) shows the 
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same features as displayed by the absorption spectrum (Figure 76b). 7H2 displays a fluorescence 

quantum yield ΦF = 7.9 ± 0.3% in CH2Cl2 in the open form, which is in good agreement with the 

homologous, non-photochromic H2TPP, for which ΦF = 10% in toluene.[220] The lifetime for the 

radiative decay of S1 of 7H2 in the open form displays a monoexponential decay, with τ = 8.97 ± 

0.03 ns (λem = 650 nm, λexc = 590 nm, see Appendix II for TCSPC data), in agreement with 

literature values for H2TPP (τ = 12 ns in benzene).[216a]  

 

Figure 76. a) UV-Vis absorption (full line, red) and emission (λexc = 422 nm, dotted line, black) spectra of 7H2 in air-
equilibrated CH2Cl2, at room temperature. The transitions are indicated on the spectra (see Table 6). b) Excitation 
spectrum of 7H2 (λexc = 715 nm). 

Interestingly, the metallated compound 7Zn displays also radiative deactivation from S0 ← S2, 

with a maximum at 426 nm, as emission by violation of Kasha’s rule is a known feature for 

ZnTPP.[216b] In conjunction with the latter, the S0 ← S1 deactivation is the most intense feature, 

with two maxima at 597 and 646 nm for Q(0-0) and Q(0-1) respectively, similarly to ZnTPP (λem 

= 647 nm, see Figure 77a, Table 6).[216b] The same considerations made for the excitation 

spectrum of 7H2 are also valid for 7Zn (Figure 77b). In the open form, 7Zn displays a fluorescence 

quantum yield ΦF = 4.8 ± 0.2% (for the S0 ← S1 transition) in CH2Cl2 that is slightly higher, but 

still close to the homologous ZnTPP, showing ΦF = 3.3% in toluene.[220] For 7Zn in the open form, 

the lifetime of S0 ← S1 emission showed a monoexponential decay, with τ = 1.9 ± 0.1 ns (λem = 647 

nm, λexc = 560 nm, see Figure A II 3), in excellent agreement with literature values for ZnTPP (τ 

= 2.0 ns in benzene), while the S0 ← S2 deactivation was not measured, following its short 

timescale (~ 1.3 ps).[221] 
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Figure 77. a) UV-Vis absorption (full line, red) and emission (λexc = 400 nm, dotted line, black) spectra of 7Zn in air-
equilibrated CH2Cl2, at room temperature. The transitions are indicated on the spectra (see Table 6), the S0 ← S2 

deactivation is multiplied 8.6 times. b) Excitation spectrum of 7Zn (λexc = 647 nm). 

 

 

 

 

Photochromism of the tetra-DTE porphyrins 7H2, 7Zn and 7Ni was followed with UV-Vis 

absorption spectroscopy in dichloromethane and for the emissive 7H2, 7Zn the reversible 

fluorescence quenching was also studied by emission spectroscopy. The photophysical data of 

the four porphyrins in their initial open state and at the photostationary state (PSS, after 

irradiation at 312 nm) together with their conversions (at PSS) determined by 1H NMR are 

summarised in Table 6. Upon irradiation of a solution of 7H2, a broad band appeared in the 

visible region (500–700 nm), which is characteristic of the formation of closed DTE units (Figure 

78a, Table 6). Spectral changes were also observed in the UV part of the spectrum with a decrease 

of the absorption band at 290 nm and a concomitant increase of the absorption band around 

360 nm. In addition, the absorption maximum of the Soret band diminished. The presence of 

isosbestic points through the spectral variation evidences further the (high) extent of electronic 

decoupling between the DTE units, as in the opposite scenario each mixed open-closed isomer 

(e.g. o,o,o,c,; o,o,c,c, o,c,o,c; o,c,c,c; c,c,c,c) would have different absorption spectra, thus not 

leading to the observation of such spectral features.[222] The hypochromic feature evident on the 

Soret band was previously observed for related mono-DTE porphyrins and tentatively attributed 

to an effective electronic communication through a p-phenyl-acetylene linker.[219b] However, in 

the present work, the Soret band displays a broadening which can explain an apparent 

hypochromism in the absence of ground state electronic interactions, we nevertheless have no 

further experimental evidence to explain this observation. We expect that upon performing 

quantum-chemical modelling on these systems it would be possible to cast further light onto 
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the electron delocalisation in the various isomers of the DTE units. Similarly as on 7H2, the 

occurrence of DTE photocyclisation is visible also on both metal complexes 7Zn and 7Ni, with 

the appearance of a broad absorption band in the visible region (Figure 80a and Figure 82a, 

respectively). Also in this case, the presence of clear isosbestic points and a hypochromic feature 

on the Soret band are evident through the reaction.  

 

Figure 78. a) UV-Vis, and b) emission spectral variation upon irradiation of a solution of 7H2 (c = 5 x 10-7 M, air-
equilibrated CH2Cl2, r.t.) with UV light (λirr = 312 nm). Black full line, dark – no light irradiation; red full line, 
photostationary state reached upon 60 s irradiation (Pd = 3.0 mW cm-2). For emission spectra, excitation was 
performed at the isosbestic point (λexc = 429 nm). 

 

Figure 79. a) UV-Vis, and b) emission spectral variation upon irradiation of a solution of 7H2 (c = 5 x 10-7 M, air-
equilibrated CH2Cl2, r.t.) with Vis light (λirr = 530 nm). Red full line, UV photostationary state; blue dashed line, 
photostationary state reached upon 60 s irradiation (Pd = 57 mW cm-2).  For emission spectra, excitation was 
performed at the isosbestic point (λexc = 429 nm). 
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Figure 80. a) UV-Vis, and b) emission spectral variation upon irradiation of a solution of 7Zn (c = 5 x 10-7 M, air-
equilibrated CH2Cl2, r.t.) with UV light (λirr = 312 nm). Black full line, dark – no light irradiation; red full line, 
photostationary state reached upon 60 s irradiation (Pd = 3.0 mW cm-2). For emission spectra, excitation was 
performed at the isosbestic point (λexc = 430 nm). 

 

Figure 81. Emission spectral variation upon irradiation of a solution of 7Zn (c = 1.0 x 10-6 M, air-equilibrated CH2Cl2, 
r.t.) with UV light (λirr = 312 nm) displaying quenching of emission from both S2 and S1 states upon DTE closure. Black 
full line, dark – no light irradiation; red full line, photostationary state reached upon 90 s irradiation. For emission 
spectra, λexc = 400 nm. 

 

Figure 82. a) UV-Vis, and b) emission spectral variation upon irradiation of a solution of 7Zn (c = 5 x 10-7 M, air-
equilibrated CH2Cl2, r.t.) with Vis light (λirr = 530 nm). Red full line, UV photostationary state; blue dashed line, 
photostationary state reached upon 60 s irradiation (Pd = 57 mW cm-2).  For emission spectra, excitation was 
performed at the isosbestic point (λexc = 430 nm). 
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Figure 83. UV-Vis absorption spectral variation upon irradiation of a solution of 7Ni (c = 5 x 10-7 M, air-equilibrated 
CH2Cl2, r.t.) with a) UV light (λirr = 312 nm) black full line, dark – no light irradiation; red full line, photostationary 
state reached upon 60 s irradiation (Pd = 3.0 mW cm-2). b) Vis light (λirr = 530 nm). Red full line, UV photostationary 
state; blue dashed line, photostationary state reached upon 60 s irradiation (Pd = 57 mW cm-2). 

In all cases, the aforementioned photocyclisation processes are reversible. Upon irradiation with 

visible light (490 ≤ λ ≤ 570 nm), the original spectral features of 7H2, 7Zn and 7Ni are recovered, 

as evidenced by the disappearance of the broad band in the visible range ascribed to the c-DTE 

isomer(s), together with the recovery of the initial intensity of the Soret band, thus 

demonstrating the reversible photochromic behaviour of these compounds. However, especially 

for the metallated porphyrin 7Zn only a partial recovery of the initial absorption spectrum is 

evident already after the first isomerisation cycle (Figure 82a). We postulate a possible 

degradation mechanism occurring through the triplet state, following intersystem crossing due 

by the heavy atom effect, nevertheless further experimental evidence is needed to confirm this 

observation. 

As a direct consequence of the photochromism of the DTE units covalently linked to the 

porphyrin core, for both the fluorescent 7H2 and 7Zn a quenching of their emission was evident 

upon DTE closure triggered by UV light. Interestingly, the phenomenon was reversible, with the 

recovery of the original fluorescence upon visible (490 ≤ λ ≤ 570 nm) light irradiation, thus 

confirming the role of DTE units in the variation of the emission of 7H2 and 7Zn. The emission 

spectra (Figure 78b, 79b and Figure 80b, 82b) were recorded upon excitation of the fluorophore 

in non-deaerated solutions in CH2Cl2 at one isosbestic point of the absorption spectra (429 and 

430 nm for 7H2 and 7Zn, respectively) to rule out any variation of the emission spectra due to a 

change in the absorption of the excitation light upon DTE isomerisation. Nevertheless, 

experiments performed at different excitation wavelengths showed the same phenomenon. 

Quenching of the fluorescence of the emissive free base porphyrin 7H2 and the metallated 7Zn 

was seen upon DTE ring closure: in addition, for 7Zn, emission from S2 (λem = 426 nm) was 

efficiently quenched upon DTE closure by UV irradiation (Figure 81).  

In an attempt to get further insight into the nature of the emissive species, excited state 

lifetime measurements were also performed upon DTE switching after UV irradiation. Upon 

partial switching of 7H2 (short UV irradiation), the measurement showed a biexponential decay, 

with τ1 = 9 ± 2 ns, and τ2 = 7.7 ± 0.8 ns and relative amplitudes of 82% and 18%, respectively (see 

Figure A II 2). Upon further switching (longer UV irradiation), the signal intensity was too low 
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to perform meaningful measurements. From these results it seems evident that upon (short) 

irradiation a second species with shorter emission lifetime appears. This species could be a 

partially closed-DTE isomer that still emits light, but partial emission quenching is visible 

following its shorter lifetime. Upon increasing UV irradiation, the emission becomes so weak 

that no lifetime is measurable, which reflects a low concentration of the emissive species. 

Unfortunately, lifetime measurements on partially switched 7Zn were not performed because, 

due to instrumental limitations, the signal was too weak (non-optimal excitation wavelength 

and short lifetime) to be recorded. 

At the PSS, attained upon UV light (312 nm) irradiation, 7H2 and 7Zn displayed fluorescence 

quantum yields of ΦF = 0.05 ± 0.01% and ΦF = 0.04 ± 0.02%, respectively. The two results are 

comparable within experimental error. Here it is appropriate to state that the measurements 

were not performed on a single, isolated photoproduct, but most likely on a mixture of different, 

partially closed-DTE isomers. We assign the evidence of residual emission at the PSS (upon UV 

irradiation) to the presence of low concentrations of all-open and partially closed - but still 

emissive - isomers. This hypothesis, corroborated by the lifetime measurement on 7H2 upon 

partial switching (see above), is consistent with the low contrast in fluorescence intensity upon 

DTE photoswitching for similar reported compounds containing one or two DTE units.[214, 223] 

Overall, both compounds provided an excellent contrast between the emission spectra of the 

all-open and PSS states, mainly because of the presence of multiple quenchers around the 

fluorophore. 

 

Table 6. Photophysical properties of open-DTE and closed-DTE derivatives (at UV PSS) of 7H2, 7Zn and 7Ni together 
with their photocyclisation conversions. 

  λmax open form [nm] (ε x 10-3 [M-1 cm-1]) [a]  λmax 

closed 

form 

at PSS  

[nm] [b] 

λem open form [nm] [a] ΦF [%] [c] % 

Closed 

form 

at PSS 
[d] 

  DTE 
Soret 

(0-0) 

Qy       

(1-0) 

Qy    

(0-0) 

Qx     

(1-0) 

Qx    

(0-0) 
S2-S0 

S1 – S0 

Open 

form 
PSS Q 

(0-0) 

Q 

(0-1) 

7H2 
290 

(160) 

422 

(580) 

516 

(24) 

550 

(9.4) 

590 

(7.1) 

646 

(4.4) 

307, 

593 
 650 717 

7.9        

± 0.3 

0.05     

± 0.01 
62 

7Ni 
285 

(170) 

417 

(300) 

527 

(19) 

553 

(1.6) 
  

310, 

589 
      75 

7Zn 
287 

(190) 

423 

(780) 

549 

(28) 

586 

(4.2) 
  311, 592 426 597 646 

4.8        

± 0.2 

0.04      

± 0.02  
88 

[a]5 x 10-7 M in CH2Cl2, 298 K; [b]PSS attained under irradiation at λ = 312 nm. [c]ΦF fluorescence quantum yield for 

the S1 – S0 transition of 7H2 and 7Zn in the open form and at the PSS (irr. 312 nm) determined by comparison with 

standard free base tetraphenylporphyrin (H2TPP), for which ΦF,R = 0.10 in toluene.[220] [d]Determined by 1H NMR. 

 

Multiple DTE switching cycles were performed and fluorescence intensity was recorded to cast 

a light onto the reversibility and resistance to fatigue of 7H2 and 7Zn (Figure 84). The intensity 

at the maximum of the fluorescence band was recorded at each irradiation step, upon excitation 

at the isosbestic point, as described earlier. 7H2 showed a fairly satisfying reversibility, having 

recovered 85% of the initial emission intensity after 10 irradiation cycles in CH2Cl2, whereas 7Zn, 

after the same number of cycles, displayed only 40% of the initial emission intensity. The latter 
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is a clear indication of the lower photostability upon multiple irradiation cycles displayed by 7Zn 

compared to its free base analogue: such lower photostability was already evident from UV-Vis 

absorption, as discussed earlier. We hypothesise that the larger degradation showed by the 

metallated compound could occur via its triplet state, nevertheless such mechanism is still 

unknown and will be the subject of future investigations. 

 

Figure 84. Variation of the emission intensity of a) 7H2 and b) 7Zn upon DTE repeated isomerisation by UV irradiation 
(light grey area, 312 nm; t = 40 s, Pd = 3.0 mW cm-2) and subsequent ring-opening by visible irradiation (dark grey 
area, green bandpass filter λmax = 530 nm, FWHM = 80 nm; t = 90 s, Pd @530 nm = 57.0 mW cm-2) in CH2Cl2 (5.0 x 10-7 
M). Emission spectra were recorded in non-degassed CH2Cl2 solution (c = 5.0 x 10-7 M) upon excitation at 429 nm for 
7H2 and 430 nm for 7Zn; the emission intensity was taken at the maximum of the fluorescence band (650 nm for 7H2 

and 646 nm for 7Zn). 
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Following the higher reversibility showed upon repeated switching cycles on 7H2, together with 

its larger emission quantum yield in comparison with 7Zn, we decided to employ the tetra-DTE 

free base porphyrin as a photoswitchable dye. Fluorescence switching of 7H2 was also performed 

on thin films of a blend of 7H2 (8% w/w) and polystyrene (PS, average molecular weight = 500 

kDa) spin-coated on glass substrates. The film on glass displayed analogous absorption and 

emission features to those shown by 7H2 in its fully open form in CH2Cl2 solution (Figure 85a). 

Moreover, the photochromism of DTE, together with its photoswitchable fluorescence 

properties were retained, as observed in the emission spectra. 

 

Figure 85. a) Absorption (full line) and emission (dashed line) spectral variation of 7H2-doped polystyrene film (500 
kDa polystyrene, 8% w/w 7H2) spin-casted on glass upon DTE photocyclization by UV irradiation (312 nm; Pd = 3.0 
mW cm-2). Black line, pristine sample, no irradiation. Red line, 30 s UV irradiation. b) Variation of the emission 
intensity of 7H2 upon alternated UV irradiation (light grey area, 312 nm) and visible irradiation (dark grey area, green 
bandpass filter λmax = 530 nm, FWHM = 80 nm). For emission, λexc = 435 nm. 

To understand the reversible nature of 7H2 photochromic reaction also after its inclusion in 

an amorphous polymer matrix, multiple irradiation cycles were performed on a solid-supported 

sample. These showed the effective recovery of the initial emission intensity (Figure 85b), 

though a certain fatigue is evident after 10 cycles. Due to limitations of the experimental setup,6 

the data could only be used to show qualitatively that the photoswitching properties of 7H2 were 

retained when the latter was dispersed into an amorphous polymer matrix and deposited as a 

thin film on a solid substrate. Following the success in measuring the reversible fluorescence 

switching in films of 7H2 with PS, we investigated the use of such a blend as a photoink for 

rewritable fluorescence patterning of thin films on solid. 

                                                           
6 In the experimental set-up used, emission on thin films was measured with a standard right-angle 
excitation optical scheme. Conversely, to perform quantitative measurements, the use of an integrating 
sphere would be necessary. For details, see Ref.[224]  
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Figure 86. Confocal laser scanning microscope images taken on 7H2-doped polystyrene film (500 kDa polystyrene, 
8% w/w 7H2) spin-casted on glass. The film was selectively patterned upon subsequent UV or visible laser irradiation 
by scanning on three square-shaped areas and progressively decreasing the scan size. a) Vis light (405 nm laser, 3% 
power, 30 s), UV light (355 nm laser, 20 s) and Vis light. b) UV light, visible light and UV light.  Imaging was performed 
upon excitation of 7H2 at λexc = 405 nm (0.5% power, 1.7 s per frame), collecting emission 414 ≤ λem ≤ 721 nm light. 

After deposition of the blend described earlier, positive and negative fluorescent patterns were 

recorded by structured illumination using a confocal laser scanning microscope (Figure 86). The 

reversible photoactivated luminescence quenching was exploited to record multiple patterns, by 

scanning with a UV laser (355 nm, 20 s scan) to trigger DTE ring-closure, therefore turning off 

the emission (dark areas, Figure 86), or with a visible laser (405 nm, 30 s scan) to trigger DTE 

ring-opening and to restore the original emission of the free-base porphyrin (bright areas, Figure 

86). Based on the limitations of our instrumental set-up, the light source (visible laser, λ = 405 

nm) employed for writing was also used for the luminescence read-out of the recorded patterns. 

Nevertheless, for imaging purposes, the use of lower laser power and scanning time sufficed to 

preserve the written information. 

 

 

 

 

The efficient and reversible photoisomerisation observed in a family of novel tetra-

dithienylethene-substituted porphyrins demonstrates that a high density of functional 

switching units can be arranged around a porphyrin framework by covalent linkage via a meta-

phenyl spacer. The tetra-DTE-porphyrin arrays 7H2 and 7Zn displayed reversible luminescence 

switching properties, due to the quenching of the singlet emissive state of the luminophore by 

intramolecular energy transfer to the closed form of DTE. Upon DTE photoswitching, a nearly 

complete quenching of the porphyrin's fluorescence was attained, providing a highly contrasted 

readout of the switching event. In addition to their photoregulated fluorescence, the possibility 

to trigger the switch and detect the output at very distinct wavelengths renders these systems of 

interest for applications in optical devices. Moreover, the applicability of 7H2 as a photo-

rewritable fluorescent ink was demonstrated, opening perspectives towards its application in 

all-optical memory storage and fluorescence microscopy imaging. 
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While in the previous chapter the focus was on the grafting of multiple photochromic units to a 

molecular scaffold with the precision of molecular chemistry, in the present chapter the 

endeavour is addressed to use metallic nanostructures such as plasmonic gold nanocrystals as 

scaffolds on which spiropyran-based photoswitches are attached. Here we are interested in the 

use of anisotropic gold nanoparticles, namely gold nanorods (AuNR), principally for their 

appealing spectroscopic properties (e.g. multiple localised surface plasmon resonance bands). 

Spiropyran photochromes, and especially nitrospiropyran derivatives, were chosen following the 

notably large variation of their molecular dipole moment upon isomerisation from the 

spiropyran (SP) form to the merocyanine (MC) isomer. Such a combination has been made in 

order to study the variation of the optical properties of the anisotropic nanoparticles and to 

verify an eventual effect on the stability of the colloidal dispersion upon isomerisation of the 

photochromic unit. The spectral properties of plasmonic nanoparticles are highly sensitive 

towards the variation of their dielectric environment, and especially the ones having anisotropic 

properties such as AuNR. The latter, alongside with the surface plasmon resonance band (SPR) 

in the visible light range (λ ≈ 520 nm) common to all gold colloids, present a second SPR mode 

at lower energies (named longitudinal SPR, LSPR). LSPR is commonly a sharp, intense band, and 

its maximum wavelength can be tuned from the visible to the near-infrared range of the 

electromagnetic spectrum by varying the aspect ratio of the anisotropic nanoparticles. We have 

employed well-established literature methods to synthesise surfactant-stabilised colloidal 

dispersions of AuNR with different aspect ratio, which were selected on the basis of the spectral 

overlap of their LSPR mode with the absorption band of the open-ring MC form of our 

photochromic unit. This was done in order to verify the appearance of emerging properties on 

the hybrid system realised by coupling the LSPR feature of AuNR with the photochrome. The 

photoswitches used here have been grafted on the surface of AuNR by exploiting the well-

established thiol chemistry. Photochromism of the hybrid systems was studied in colloidal 

dispersion by UV-Vis absorption spectroscopy, where no evident light driven aggregation of the 

colloid was evident, though clear plasmon-dependent variation of the extinction spectra was 
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seen occurring upon UV irradiation. In an attempt to further characterise our hybrid system and 

to obtain a more detailed understanding on the behaviour of the photochromic unit grafted on 

the plasmonic nanoparticles, we have also performed a spectroscopic study on the solid-

supported particles by dark field light scattering and Raman spectroscopy. 

 

 

 

Several examples have been reported regarding the surface functionalisation of metallic 

nanocrystals with thiolate self-assembled monolayers bearing photochromic moieties, mainly 

focussing on the possibility of driving the aggregation/disgregation of clusters of nanoparticles 

with the use of light, attempts performed principally with azobenzene moieties and in some 

examples with spiropyrans.[4b, 19a, 44b, 46, 225] Most of the works reported to date however, were 

done on spherical nanoparticles, meanwhile only few examples were reported with gold 

nanorods (AuNR).[226] In a recent example found in the literature, Cao et al. reported on the 

functionalisation of AuNR with a nitrospiropyran derivative bearing a disulfide-terminated alkyl 

chain, nevertheless the light response showed by the material did not lead to a straightforward 

interpretation.[227] In an attempt to obtain a more clear comprehension of the behaviour of such 

peculiar system, and also to understand if any plasmon-related effects on the photoisomerisation 

of the surface-attached switch are present, we focussed our attention on a similar 

nitrospiropyran photochromic unit (Figure 87). Our main motivation for this work was therefore 

to use such a photochromic unit to drive the aggregation of anisotropic colloidal particles, being 

the presence of two axes in the nanocrystals, and the tendency to align upon their aggregation 

source of our main interest. Moreover, knowing the high sensitivity of the photochromism of 

the dye used towards its environment (e.g. polarity of the medium, electric field, aggregation), 

we were interested in exploring its properties when confined in self-assembled monolayers on 

the surface of AuNR.  

Gold nanorods are among the most widely studied nanoparticles presenting surface plasmon 

resonance properties, and the main reason lies on the fact that the wavelength and intensity of 

their spectral features can be tuned over a wide range of the visible and near-infrared spectrum 

by varying their dimensions. Moreover, one among the most interesting aspects of AuNRs 

resides on their morphological anisotropy, which lies on the presence of two different surfaces 

from the point of view of their curvature radius.[228] The latter motivated us to use a 

photochromic derivative which is highly sensitive towards its chemical environment, thus 

foreseeing to obtain two different responses due to the isomerisation of the spiropyran units 

immobilised in the two different surfaces of the nanorods, being the apices and the longitudinal 

side. In such a way, a system which can be tuned from an initial A state, to more than one 

different state(s) may be seen as multiphotochromic. 
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Figure 87. a) Structure formula of the nitrospiropyran derivative bearing a dodecanethiol moiety 8 used in this work 
(Synthesis: B. Zyska, J. Boelke, Prof. S. Hecht – Humboldt Universität zu Berlin). b) Schematic representation of the 
photochromism and acidochromism of nitrospiropyran derivatives, including acid-base equilibria. 

Another interesting feature of metallic nanostructures is the sensitivity of their SPR to the 

dielectric environment. The surface plasmon resonance is originated by coherent oscillations of 

the surface conduction electrons coupled with an external optical field at the interface between 

metal and dielectric. Surface plasmon resonances are thus highly sensitive towards variations of 

the local refractive index in the close proximity of the metal-dielectric interfaces, and a change 

in the refractive index is associated to a shift of the peak position in the extinction (or scattering) 

spectrum of the nanostructure. Such a phenomenon renders the structures supporting SPR an 

important group of optical sensors, as they can be used to detect even small refractive index 

changes: nowadays, sensors based on SPR are widely studied and employed also in commercial 

applications for the detection of chemical and biological species.[139] The localised surface 

plasmon resonance features of silver and gold nanoparticles in the visible-NIR spectrum 

generally undergo a red-shift upon increasing the refractive index of the surrounding medium, 

and such tight dependence is the basis of localised plasmon resonance spectroscopy.[140] It has 

also been shown that anisotropic gold nanostructures (such as nanorods) show a higher 

refractive index sensitivity compared to spherical gold nanoparticles.[7, 141] In this context, 

spiropyran-merocyanine photochromic units are of particular interest, as the SP → MC 

isomerisation is associated with a large variation of the refractive index.[229] Therefore, in this 

study we were also interested in exploring the occurrence of shifts in the extinction spectra of 

the SPR features related to AuNR upon switching the coating photochrome. In addition, such 

spectral shifts could also be related to exciton-plasmon coupling phenomena, the latter 

occurring when the molecular electronic absorption is in resonance with the SPR features of the 

plasmonic system. In few literature examples, plasmonic systems have been combined with 

spiropyran-based photochromes, and the appearance of exciton-plasmon coupling effects was 

observed upon inducing the SP → MC isomerisation,[3b, 90] in some cases also in the ultrastrong 

coupling regime.[3a] Being that such effect occurs when the plasmonic mode is in resonance with 

MC, a study upon varying the wavelength of the SPR could enlighten its occurrence, as a splitting 

in the SPR band would appear only in such case.  

We have chosen AuNR also for their facile and highly tuneable synthetic approach, allowing 

to obtain surfactant-stabilised colloidal dispersions of nanorods with a chosen aspect ratio, low 

monodispersity and in large amounts.[137b, 177] In such a way, no post-synthetic purification 
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methods (e.g. centrifugal fractionation)[185] are needed in order to obtain nanoparticles with the 

desired plasmonic properties. 

 

Figure 88. Schematic picture of dodecanethiol-bridged nitrospiropyran derivative 8 (n = 12) chemisorbed on AuNR, 
and its isomerisation. 

Here we are thus interested in the functionalisation of gold nanorods (AuNR) with the 

spiropyran derivative 8, via chemisorption of the latter with a thiol group, connected to the 

photochromic unit with an alkyl spacer consisting of a n-dodecyl chain (Synthesis: B. Zyska, J. 

Boelke, Prof. S. Hecht – Humboldt Universität zu Berlin). Although it is likely that the use of 

such alkyl spacer results in a too low chromophore-antenna distance to give rise to phenomena 

such as plasmon-enhanced fluorescence (on the contrary, quenching at short distances is 

expected),[136e]  we are interested to verify if any plasmon-related effect on the photochromism 

of 8 is present. Raman spectroscopy was used to study the photochromic unit by following the 

known vibrational spectra of SP and MC,[230] thanks to the occurrence of SERS effect on the 

AuNR functionalised with 8. In order to study the possible dependence of the SP-MC 

photochromism with the coupling with AuNR localised surface plasmon resonance bands, we 

performed several experiments on the functionalisation of AuNR with different aspect ratio. The 

latter allows to tune the longitudinal surface plasmon resonance band wavelength. In detail, we 

synthesised AuNR of three different aspect ratio, and subsequently functionalised them with 

self-assembled monolayers of 8. We followed the photochromism of the hybrid 8-AuNR by UV-

Vis-NIR extinction spectroscopy when dispersed in an organic solvent (THF). Characterisation 

of the material was also performed by Raman spectroscopy on solid-supported samples. 

 

 

Gold nanorods (AuNR) were synthesised in three different aspect ratio, using CTAB and 

aromatic additives, or cosurfactants to obtain the desired particle size. The AuNR with lower 

aspect ratio were obtained using small aromatic additives such as 5-bromosalicylic acid or 

sodium salicylate together with the surfactant CTAB as stabilising agents.[177] Meanwhile, the 

highest aspect ratio nanocrystals were obtained by using sodium oleate as co-surfactant together 

with CTAB as stabiliser.[137b] 
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The following chemicals were used for the synthesis of AuNR, in all cases commercially 

available, purchased from Sigma Aldrich and TCI Chemicals Europe and used as received. 

Hexadecyltrimethylammonium bromide (CTAB, > 98 %), silver nitrate (AgNO3, > 99 %), 

hydrogen tetrachloroaurate trihydrate (HAuCl4 ∙ 3 H2O, > 99.9 %), sodium borohydride (NaBH4, 

> 99 %) and hydrochloric acid (HCl, conc. 37 % w in H2O) were purchased from Sigma Aldrich. 

5-bromosalicylic acid (> 98 %), sodium salicylate (> 98 %), sodium oleate (> 97 %) and L-

ascorbic acid (> 99.5 %) were purchased from TCI Europe. Ultrapure water was used as a solvent 

(R = 18.2 MΩ cm). All the glassware and stirring bars used for the synthesis of AuNR and seed 

particles were previously washed with aqua regia, accurately rinsed and dried prior to their use. 

The seed solution consisting of CTAB-stabilised spherical gold nanoparticles with a diameter 

lower than 5 nm was freshly prepared with the same procedure for AuNR1, AuNR2 and AuNR3 

according to a reported procedure,[231] as follows: to 5 mL of a c = 0.5 mM solution of HAuCl4, 5 

mL of CTAB (c = 0.2 M) were added, upon stirring at room temperature. A freshly prepared c = 

6 mM solution of NaBH4 in water (1 mL) was flash-injected to the former mixture upon thorough 

stirring for 2 minutes at room temperature. After darkening to brown of the original yellow 

colour, the stirring was stopped. The solution is aged for 30 minutes to allow for complete 

decomposition of the eventual NaBH4 left, and used within the day. 

Colloidal dispersions of gold nanorods were synthesised as follows: 

- AuNR1: 4.5 g of CTAB and 0.4 g of sodium salicylate were stirred in 125 mL H2O at 50 

°C until dissolution occurred in a 500 mL Erlenmeyer flask. Subsequently, the mixture 

was allowed to reach 30 °C and the temperature stabilised using an oil bath. The mixture 

was additioned with 3.0 mL of AgNO3 (c = 4 mM) and left undisturbed for 15 minutes at 

30 °C. A 125 mL of c = 1 mM HAuCl4 was added upon slowly stirring for further 15 

minutes. Afterwards, 0.5 mL of L-ascorbic acid were added (c = 0.064 M) while 

vigorously stirred until the mixture became colourless (30 seconds), followed by the 

addition of 0.4 mL seed solution, stirring for further 30 seconds and subsequently 

stopped. The mixture was left undisturbed at 30 °C overnight, then allowed to room 

temperature. 

- AuNR2: 4.5 g of CTAB and 0.55 g of 5-bromosalicylic acid were stirred in 125 mL H2O at 

50 °C until dissolution occurred in a 500 mL Erlenmeyer flask. Subsequently, the mixture 

was allowed to reach 30 °C and the temperature stabilised using an oil bath. The mixture 

was additioned with 6.0 mL of AgNO3 (c = 4 mM) and left undisturbed for 15 minutes at 

30 °C. A 125 mL of c = 1 mM HAuCl4 was added upon slowly stirring for further 15 

minutes. Afterwards, 1.0 mL of L-ascorbic acid were added (c = 0.064 M) while 

vigorously stirred until the mixture became colourless (30 seconds), followed by the 

addition of 0.1 mL seed solution, stirring for further 30 seconds and subsequently 

stopped. The mixture was left undisturbed at 30 °C overnight, then allowed to room 

temperature. 

- AuNR3: 4.5 g of CTAB and 0.62 g of sodium oleate were stirred in 125 mL H2O at 50 °C 

until dissolution occurred in a 500 mL Erlenmeyer flask. Subsequently, the mixture was 

allowed to reach 30 °C and the temperature stabilised using an oil bath. The mixture was 

additioned with 12.0 mL of AgNO3 (c = 4 mM) and left undisturbed for 15 minutes at 30 

°C. A 125 mL of c = 1 mM HAuCl4 was added upon slowly stirring for further 90 minutes 
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until the mixture became colourless. 1.05 mL of HCl conc. were added and slowly stirred 

for 15 minutes. Afterwards, 0.625 mL of L-ascorbic acid were added (c = 0.064 M) while 

vigorously stirred (30 seconds), followed by the addition of 0.05 mL seed solution, 

stirring for further 30 seconds and subsequently stopped. The mixture was left 

undisturbed at 30 °C overnight, then allowed to room temperature. 

The as-prepared, surfactant AuNR colloidal dispersions in water were stored at room 

temperature without further purification, and showed excellent stability over long periods of 

time (> 6 months). 

 

 

 

Several different strategies have been reported in the literature to substitute the surfactant 

coating with thiol self-assembled monolayers, following the impossibility to directly synthesise 

AuNR stabilised with the desired thiol coating (unlike spherical gold nanoparticles, prepared 

with Brust-Schiffrin method).[187c] The procedure was adopted from Gentili et al.[187b] and Jiang 

et al.[232], and adapted to obtain the functionalisation of AuNR with our alkanethiols. The 

method consists in the disruption of the CTAB-based micelle coating the nanocrystals in 

presence of the desired thiol. The addition of polar, water miscible solvents such as ethanol or 

THF to the colloidal dispersion affects the critical micellar concentration of CTAB, resulting in 

the disruption of the micelle and consequent irreversible aggregation and precipitation of the 

particles, if the process is performed in absence of a ligand able to stabilise them. The use of a 

solution of thiols instead of the neat organic solvent yields the stabilisation of the colloid by 

chemisorption of the thiol. The procedure was established by performing tests with commercial 

thiols and standardised on the AuNR showing the largest aspect ratio, AuNR3. For such purpose, 

the following commercially available thiols were used: 1-undecanethiol, and 11-

mercaptoundecanoic acid. Subsequently, we applied the same procedure to functionalise 

AuNR1, AuNR2 and AuNR3 with the photochromic thiol 8. 

The commercially available 1-undecanethiol, and 11-mercaptoundecanoic acid thiols, 

together with tetrahydrofuran and ethanol were purchased from Sigma Aldrich and used as 

received. Nanoparticle functionalisation was performed under inert atmosphere to prevent thiol 

oxidation and subsequent formation of insoluble species (e.g. disulfides). Centrifugation is 

performed using Teflon high-speed centrifuge tubes suited for organic solvents (Nalgene).  

Prior to functionalisation, as-prepared colloidal dispersions of AuNR were purified by two 

rounds of centrifugation and resuspension in water in order to remove the excess surfactant. 

Typically, 10 mL of the as-prepared AuNR colloidal dispersion was centrifuged once for 20 

minutes at 8500 rpm (9300 x g) until complete precipitation, surnatant removal and 

resuspension in the same amount of ultrapure water. Another round of centrifugation and 

surnatant removal is performed, then the precipitate is suspended in 1 mL of H2O and slightly 

(~ 5 seconds) sonicated, in order to obtain a highly concentrated rod dispersion containing a 

low amount of detergent. The concentrate is thus injected in a previously degassed 5 mL solution 
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of thiol (c = 5 mM) in THF under inert atmosphere upon vigorous stirring at room temperature. 

The mixture is left stirring overnight under inert atmosphere. The mixture is then sonicated and 

transferred in Teflon centrifuge tubes. Purification is performed by multiple (five times) 

centrifugal precipitation rounds (8500 rpm, 20 minutes), and resuspension in fresh THF upon 

gentle sonication in order to remove the surfactant left and the excess of thiol not bound to the 

gold nanocrystals. At the end of the final purification, the nanoparticles were dispersed in 

different solvents according to the organic headgroup of the thiol used to stabilise them. 

Alkanethiol-functionalised AuNR3 were dispersed in different solvents depending on the 

polarity of the headgroup of the thiol used, being 11-mercaptoundecanoic acid-stabilised AuNR3 

dispersible in water (polar –COOH exposed on nanoparticle surface), while 1-undecanethiol-

stabilised AuNR3 dispersible in CHCl3 (apolar alkyl chain). In case of the photochromic thiol 8, 

AuNR were dispersible only in THF: few attempts of dispersing the nanoparticles in various 

solvents (H2O, methanol, ethanol, acetone, chloroform, toluene) led to irreversible aggregation. 

The as-made dispersions were stored at 4 °C.  

 

 

 

In order to prevent thiol oxidation upon storage, and for synthetic purposes, the photochromic 

derivative used here is synthesised as a thioacetate ester. The thioacetate-protected 

photochrome 8.a was obtained by B. Zyska and J. Boelke in the group of Prof. S. Hecht – 

Humboldt Universität zu Berlin), with adapted procedures from the literature.[225c] The product 

8.a was deprotected to yield 8 before nanoparticle functionalisation and used immediately, or 

stored under inert atmosphere. Cleavage of the thioacetate was performed by base hydrolysis of 

the ester, as displayed in Scheme 8. A preliminary attempt to perform ester cleavage on 8.a by 

using excess NH3 (30 % in H2O) as a base in THF was performed, but showed to be ineffective, 

thus the use of a stronger base was necessary to perform the reaction. 8 was obtained in high 

yield (80 – 90 %) by reacting 8.a with potassium tert-butoxide (KOtBu) in anhydrous 

tetrahydrofuran at room temperature. Formation of the desired product was evidenced by 1H-

NMR and mass spectrometry. By comparison with the 1H-NMR spectrum related to the starting 

material 8.a (Figure 89), formation of 8 was displayed by the disappearance of the singlet at 2.32 

ppm (Figure 90) related to the methyl protons of the acetyl protecting group, together with the 

upfield shift of the multiplet related to the protons of the methylene group of the alkyl chain in 

α-position with respect to the sulfur atom to 2.67 ppm (for 8.a occurs at 2.86 ppm). Analogously, 

mass spectra showed the appearance of a singly charged cationic species which m/z corresponds 

with the expected mass of the protonated molecular ion [8-H]+. 

The commercial starting materials and reagents were purchased from Sigma Aldrich and 

used without further purification. TLC was performed on Silica gel 60 F254 plates, spots were 

detected either by fluorescence quenching under UV light at 254 nm, together with the 

switching of the photochromic unit and consequent fluorescence of the merocyanine upon 

irradiation at 365 nm. Reactions carried out in anhydrous solvent (THF) were performed in 
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oven-dried glassware under inert atmosphere of nitrogen. Anhydrous THF stored under 

molecular sieves was purchased from Sigma Aldrich, and degassed prior to its use. 

 

Scheme 8. Thiol deprotection reaction. Reagents and conditions: (i) KOtBu, THF. 

1H-NMR of the starting material an product were recorded in CDCl3 on a Bruker Avance400 

(400 MHz) spectrometer at 25 °C and are reported in ppm using residual CHCl3 as the internal 

reference (7.26 ppm). Coupling constants J are reported in Hz, and the spectra were elaborated 

using the software MestReNova. Mass spectra were obtained with an ESI-Ion trap mass 

spectrometer (LCQ Fleet, Thermo Fisher) in positive mode, coupled with an HPLC system 

(Accela HPLC, reversed phase C18 Hypersil GOLD column, 50 × 2.1 mm, 1.9 µm, - Thermo Fisher 

Scientific), elution by solvent gradients of 5 – 95 % CH3CN / 95 – 5 % H2O with 0.1% (vol.) 

trifluoroacetic acid (pH ≈ 2).  

To a solution of KOtBu (19 mg, 0.17 mmol) in 20 mL THF, 7 mL of a solution of 8.a (73 mg, 

0.13 mmol) were added dropwise. The mixture was stirred for 3 h at room temperature till 

completion, checking reaction progress by TLC (cyclohexane/ethyl acetate = 7 : 3). Afterwards, 

solvent was evaporated in vacuo, the crude was dissolved in CH2Cl2 and washed multiple times 

with water and brine; HCl was added to the aqueous phase till neutral pH. The organic phase 

was dried on Na2SO4 and filtered, solvent was evaporated in vacuo, the desired product was 

obtained as a brown powder (58 mg, 86 %), and stored under inert atmosphere without further 

purification. Starting material 8.a (Rf = 0.76 cyclohexane/ethyl acetate = 7 : 3); 1H-NMR (400 

MHz, CDCl3) δ, ppm 8.02-7.99 (m, 2H), 7.20-7.16 (m, 1H), 7.09-7.07 (m, 1H), 6.90-6.84 (m, 2 

H), 6.75 (d, 1H, J = 8.8 Hz), 6.57 (d, 1H, J = 7.6 Hz), 5.87 (d, 1 H, J = 10.4 Hz), 3.20-3.08 (m, 2H), 

2.86 (t, 2H, J = 14.8 Hz), 2.32 (s, 3H), 1.55 (bs, 6H), 1.28-1.18 (m, 20H);  ESI-MS (+) m/z calcd. for 

C32H43N2O4S [M+H]+ 551.29, found 551.40. Product 8 (Rf = 0.82 cyclohexane/ethyl acetate = 7 : 

3); 1H-NMR (400 MHz, CDCl3) δ, ppm 8.02-7.99 (m, 2H), 7.20-7.16 (m, 1H), 7.09-7.07 (m, 1H), 

6.90-6.84 (m, 2 H), 6.75 (d, 1H, J = 8.4 Hz), 6.57 (d, 1H, J = 8 Hz), 5.87 (d, 1 H, J = 10.4 Hz), 3.19-

3.07 (m, 2H), 2.67 (t, 2H, J = 14.8 Hz), 1.68-1.62 (m, 4H), 1.36-1.33 (m, 4H), 1.28-1.18 (m, 16H);  

ESI-MS (+) m/z calcd. for C30H41N2O3S [M+H]+ 509.28, found 509.38.  
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Figure 89. 1H-NMR spectrum (400 MHz, CDCl3) of 8.a. 

 

Figure 90. 1H-NMR spectrum (400 MHz, CDCl3) of 8. 
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AuNR morphology and aspect ratio were characterised by means of UV-Vis-NIR extinction 

spectroscopy and scanning electron microscopy (SEM), after their synthesis and upon 

functionalisation with organothiols, in order to verify the absence of shape variation after the 

ligand exchange step. We did not experimentally establish the aggregation behaviour of AuNR 

in liquid with the use of dynamic light scattering (DLS). Given the non-spherical symmetry of 

the objects studied, interpretation of their diffusion behaviour is complicated by their 

anisotropic translational diffusion, together with the coupling of the latter with rotational 

Brownian motion, and the use of depolarised DLS, or multipolarisation DLS techniques is 

needed to characterise anisotropic colloids. Also, zeta potential measurements could be 

instrumental to study the variation in surface charge of the particles upon ligand exchange (and 

possibly subsequent to 8 SP → MC isomerisation), nevertheless the non-dispersibility of 8-

functionalised AuNR in H2O made the aforementioned measurement inaccessible. 

UV-Vis-NIR absorption spectra were recorded on a Jasco V-670 spectrophotometer 

equipped with two detectors: a photomultiplier tube (PMT, λ ≈ 190-850 nm), and a Peltier-

cooled PbS detector (λ ≈ 850-~2000 nm). UV-Vis-NIR extinction spectra of as-synthesised 

AuNR (CTAB-coated) were recorded in water, after one centrifugation round (8500 rpm, 20 

minutes), resuspension in water, and diluted ten times. The spectra were obtained using 

disposable polystyrene cuvettes, using ultrapure water as blank. Extinction spectra of thiol-

stabilised AuNR were recorded in quartz Suprasil cuvettes (Hellma), diluting in order to work 

at 0.5 – 0.6 absorbance at the SPR maximum, using spectroscopy grade solvents (Uvasol – Merck 

Millipore). Scanning electron microscopy was performed on a Quanta FEG 250 (FEI), equipped 

with a cold cathode field emission gun. Images were recorded on conductive samples prepared 

by drop-casting AuNR dispersions on conducting silicon (Si [100] p++doped) substrates, after 

washing the latter with acetone, isopropanol, ethanol and drying under a stream of nitrogen. 

The microscope was operated in high vacuum, using 2-3 nm spot size and 20-30 kV acceleration 

voltages. AuNR morphology and particle size statistics were determined using ImageJ software, 

by measuring diameter and length of over 100 AuNR per sample. 

 

UV-Vis absorption and emission spectra of 8.a in spiropyran (SP), merocyanine (MC) and 

protonated merocyanine (MC-H+) forms were recorded in air-equilibrated CHCl3
 at 5 °C, given 

the fast thermal MC -> SP cyclisation occurring in the dark. The photochemical measurements 

done on thiol-stabilised AuNR dispersed in liquid were performed at room temperature. All the 

measurements were done using a Jasco V-670 spectrophotometer and an Agilent Cary Eclipse 

fluorimeter in quartz Suprasil cuvettes (Hellma), and spectroscopy grade solvents. Ultraviolet 

and visible light irradiation were performed with optical fibre-coupled LEDs (ThorLabs): for UV 
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light λmax = 367 nm, FWHM = 9 nm, for Vis light λmax = 550 nm, FWHM = 30 nm, equipped with 

collimating lenses to ensure a parallel orientation of the emitted light. UV light was performed 

at an incident power density Pd ≈ 12.0 mW cm-2, while for Vis Pd ≈ 5.0 mW cm-2. Irradiation was 

performed upon thorough stirring of the dispersions. 

 

 

 

For studying the photoswitching of spiropyran derivative 8 coating gold nanorods by means of 

surface enhanced Raman scattering (SERS), a custom-built confocal Raman microscope set-up 

was used. The measurements were performed in the laboratory of Prof. H. Uji-I (Katholieke 

Universitat Leuven), in collaboration with Dr. S. Toyouchi. The samples were prepared by drop-

casting the spiropyran-coated AuNR dispersions in THF on previously cleaned glass microscope 

cover slides. The Raman spectroscopy setup was based on an inverted microscope (Nikon TiU) 

equipped with a piezoelectric stage (P517.3CL, Physik Instrument). AuNR aggregates were 

located by dark field illumination: white light from a halogen lamp was focussed on the sample 

through a dark field condenser (Nikon TI-DF, dry, N.A. 0.95-0.80). Laser excitation and 

collection of scattered light from the sample were performed using an objective lens (60x, N.A. 

1.25 PlanFluor, Nikon) and passed through a confocal pinhole (100 µm diameter). Spectra were 

recorded using a charge-coupled device (CCD) camera (DU920P, Andor) operated at -85 °C 

equipped with a spectrograph (iHR320, Horiba), dichroic mirrors and longpass optical filters 

were used in order to reject the excitation laser light. Excitation was performed either with a 

continuous wave (CW) 532 nm diode laser (Cobolt Samba TM 532nm), a CW 632.8 nm He-Ne 

laser (1145P, JDSU), or a CW 785 nm diode laser. The laser power was controlled by neutral 

density filters. Dark field light scattering was performed with the same instrumental setup. UV-

light irradiation on the samples was performed upon irradiation of the whole sample with a λmax 

= 367 nm LED (ThorLabs). Conversely, visible light and two-photon NIR irradiation on the 

samples were performed with laser sources, focussing the beam on the sample using the 

microscope optics, through an objective lens (60x, N.A. 1.25 PlanFluor, Nikon). For visible light, 

a continuous wave (CW) λ = 532 nm diode laser (Cobolt Samba TM 532nm) was used, while 

two-photon irradiation was accomplished with a Ti:sapphire laser tuned at λ = 780 nm and λ = 

1040 nm, giving 120 fs (linearly polarised) pulses at 80 MHz repetition rate (Maitai SP, 

SpectraPhysics). The laser power was controlled by neutral density filters. Further analysis of the 

Raman spectra involved manual baseline correction and normalization. 
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The thioacetate-protected nitrospiropyran derivative 8.a was characterised in solution prior to 

its deprotection and coupling to AuNR. The absorption spectra in chloroform show the typical 

features of the photochromic unit (Figure 91). The ring-closed spiropyran isomer (SP), stable 

form in the dark at neutral or basic pH, shows a broad absorption band in the UV region (λmax ≈ 

360 nm), while no absorption occurs in the visible region. In acidic conditions (excess 

trifluoroacetic acid, 10 equiv.), the thermodynamically stable species is the protonated 

merocyanine (MC-H+), which formation is evidenced by appearance of an absorption band 

located at ca. 450 nm. The spiropyran form is metastable in acidic environment, and is 

photogenerated by irradiation with visible light at 450 nm, while thermally converts to MC-H+ 

in the dark. The appearance of the latter compound could be reversibly triggered to SP upon 

addition of a base excess (NH3). Merocyanine (MC) instead, base form of MC-H+, displays a 

strong absorption band centred at ca. 585 nm and it is fluorescent, with an emission band 

located at ca. 650 nm, the large Stokes shift is a typical feature of such fluorophore. MC is 

generated photochemically by UV irradiation, (λmax ≈ 365 nm) of a SP solution, and shows fast 

cycloreversion (occurring in few minutes) to the ring-closed form SP. The MC → SP 

cycloreversion could be also induced by visible light irradiation (λmax ≈ 530 nm). Absorption and 

emission spectra in THF showed analogous features and maxima wavelength for the 

aforementioned transitions.  

 

Figure 91. UV-Vis absorption and emission spectra of 8.a in its (meta)stable isomeric forms (c = 2.0 x 10-5 M) in CHCl3. 
Black trace, absorption spectrum of ring-closed spiropyran form in neutral/basic conditions. Yellow trace, absorption 
spectrum of protonated merocyanine form, stable at acidic pH. Blue full line, absorption and blue dashed line emission 
spectra of merocyanine form, metastable at neutral/basic pH, photogenerated by irradiation of spiropyran with UV 
light.  
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Surfactant stabilised gold nanorods were synthesised in water by seed-mediated growth, a 

method first discovered by Murphy et al.[176, 233] A modified procedure taking advantage of the 

use of co-surfactants alongside with hexadecyltrimethylammonium bromide (CTAB) yielding 

higher size tunability and monodispersity, reported by Murray et al. was used.[137b, 177] For a 

detailed description of the synthetic mechanism, see Chapter 3, section 7. Three different aspect 

ratio AuNR were prepared. Rod-shaped particles with aspect ratio of: 2.0, 2.7 and 4.6 were 

obtained, all of them having a diameter of ca. 25 nm, with a length of ca. 50, 65 and 120 nm 

respectively (see Table 7, Figure 92-94). The AuNR with lower aspect ratio were obtained using 

small aromatic additives such as 5-bromosalicylic acid and sodium salicylate together with the 

surfactant cetyltrimethylammonium bromide (CTAB) as stabilising agents.[177] Meanwhile, the 

highest aspect ratio nanocrystals were obtained by using sodium oleate as co-surfactant together 

with CTAB as stabiliser.[137b] Their shape and dimension were characterised by SEM, upon drop-

casting a suspension of the surfactant-stabilised particles in water upon prior lowering of the 

surfactant concentration by centrifugal precipitation. The absorption spectra were measured in 

water for the as-synthesised, surfactant-stabilised colloid, and showed the classical two localised 

surface plasmon resonance (SPR) peaks for gold nanorods. Being the transverse SPR mode at ca. 

510-520 nm, and the intense longitudinal SPR mode, which energy is largely dependent on the 

aspect ratio of the rod, having maxima located respectively at ca. 605, 690 and 925 nm going 

form the shorter to the longer AuNRs (see Figure 95, Table 7). 

 

 

Figure 92. SEM micrographs of CTAB-stabilised AuNR1 drop-casted on Si substrates from a water dispersion.  
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Figure 93. SEM micrographs of CTAB-stabilised AuNR2 drop-casted on Si substrates from a water dispersion. 

 

Figure 94. SEM micrographs of CTAB-stabilised AuNR3 drop-casted on Si substrates from a water dispersion. 

 

Figure 95. UV-Vis-NIR extinction spectra of as-synthesised CTAB-stabilised AuNR water dispersions. The spectra are 
normalised with respect to the longitudinal surface plasmon resonance band (LSPR) maximum. Black trace, AuNR1. 
Red trace, AuNR2. Blue trace, AuNR3. 
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Table 7. Structural parameters and surface plasmon resonance wavelengths for the as-synthesised, surfactant-
stabilised AuNR (dispersed in H2O) used in the present study. 

 
d [nm] L [nm] Aspect ratio λmax TSPR [nm] λmax LSPR [nm] 

AuNR1 25 ± 5 50 ± 6 2.0 ± 0.5 524 605 

AuNR2 24 ± 5 64 ± 6 2.7 ± 0.6 514 690 

AuNR3 26 ± 3 119 ± 10 4.6 ± 0.7 510 925 

 

Prior to perform the functionalisation of AuNR with the photochromic thiol 8, preliminary 

studies on the ligand exchange with commercial thiols were made. On this purpose, we have 

used AuNR3, the nanoparticles with the highest aspect ratio, 1-undecanethiol and 11-

mercaptoundecanoic acid as ligands to replace CTAB. A detailed description of the procedure 

used can be found in Chapter 3, section 7.1, and above (see Methods). After their purification, 

the nanoparticles were dispersed in different solvents according to the headgroup of the thiol 

used to stabilise them: AuNR3 reacted with 1-undecanethiol were dispersed in apolar solvents 

(i.e. CHCl3), while in the case of 11-mercaptoundecanoic acid the colloid was stabilised in water 

(polar –COOH exposed on nanoparticle surface), and showed to be stable over long periods of 

time. UV-Vis-NIR extinction spectra show the typical two surface plasmon resonance bands of 

the rod-shaped gold colloid AuNR3, nevertheless, compared to the original CTAB-stabilised 

dispersion, severe broadening of the bands, increase of the light scattering at every wavelength 

and reduction of the intensity ratio between the two bands evidence the occurrence of partial 

nanorod aggregation (Figure 98). Moreover, it is visible how 1-undecanethiol-stabilised AuNR3 

(dispersed in CHCl3) seems to include larger aggregates, showing larger scattering intensity and 

broader SPR bands (including an additional peak at ca. 650 nm, see Figure 98). At first glance, 

one would suspect a partial loss of the characteristic shape and aspect ratio of the nanoparticles, 

compared to the as-synthesised ones. Nevertheless, investigation performed on both thiol-

functionalised AuNR3 by scanning electron microscopy confirmed the retaining of their original 

morphology and aspect ratio (cf. Figure 96-97, Table 8), therefore we can infer that the evidences 

of aggregation obtained in solution by optical spectroscopy are due to the formation of 

aggregates of particles retaining their original shape, thus leading to plasmon coupling of the 

nanorods with subsequent spectral broadening and batochromic shift of their SPR bands.  
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Figure 96. SEM micrographs of AuNR3 stabilised with 1-undecanethiol. Sample prepared by drop-casting a dispersion 
of AuNR in CHCl3 on Si substrates. 

 

Figure 97. SEM micrographs of AuNR3 stabilised with 11-mercaptoundecanoic acid. Sample prepared by drop-casting 
a dispersion of AuNR in H2O on Si substrates. 

 
Figure 98. UV-Vis-NIR extinction spectra of dispersions of AuNR3 functionalised with organic thiols. The spectra are 
normalised with respect to the longitudinal surface plasmon resonance band (LSPR) maximum. Red trace, AuNR3 
stabilised with 1-undecanethiol in CHCl3. Blue trace, AuNR3 stabilised with 11-mercaptoundecanoic acid in H2O. Black 
trace, for comparison, also CTAB-stabilised AuNR3 in H2O (as reported in Figure 95) is shown. 
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Table 8. Structural parameters and surface plasmon resonance wavelengths for AuNR3, stabilised with commercial 
thiols 1-undecanol and 11-mercaptoundecanoic acid (dispersed in CHCl3 and H2O, respectively). 

 
d [nm] L [nm] Aspect ratio λ

max
 TSPR 

[nm] 
λ

max
 LSPR 

[nm] 
1-undecanethiol 27 ± 3 120 ± 10 4.5 ± 0.6 520 930 
11-mercaptoundecanoic 
acid 29 ± 3 122 ± 10 4.2 ± 0.5 520 910 

Having verified the successful procedure for exchanging the original surfactant with alkanethiol 

monolayers without disrupting the original nanoparticle morphology, we applied the same 

ligand exchange strategy with the photochromic derivative 8, on AuNR1, AuNR2 and AuNR3. 

In all cases, 8-stabilised AuNR showed to be readily dispersed in THF, and showed to be stable 

over long periods of time. Analogously to the case of non-photochromic thiols, also upon using 

8 as stabiliser for AuNR we visualised a noticeable broadening, together with a bathochromic 

shift of the original spectral features of the gold colloid (Figure 102, Table 9). Nevertheless, 

nanoparticle size analysis performed by SEM showed also in this case that the original geometry 

and aspect ratio is retained for AuNR1, AuNR2 and AuNR3 (Figure 99-101, Table 9), as the values 

for diameter and length appear unchanged, within experimental error. 

 

Figure 99. SEM micrographs of AuNR1 stabilised with 8. Sample prepared by drop-casting a dispersion of AuNR in 
THF on Si substrates. 

 

Figure 100. SEM micrographs of AuNR2 stabilised with 8. Sample prepared by drop-casting a dispersion of AuNR in 
THF on Si substrates. 
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Figure 101. SEM micrographs of AuNR3 stabilised with 8. Sample prepared by drop-casting a dispersion of AuNR in 
THF on Si substrates. 

 

Figure 102. UV-Vis-NIR extinction spectra of dispersions of AuNR functionalised with 8 in THF. The spectra are 
normalised with respect to the longitudinal surface plasmon resonance band (LSPR) maximum. Black trace, AuNR1. 
Red trace, AuNR2. Blue trace, AuNR3. 

Table 9. Structural parameters and surface plasmon resonance wavelengths for AuNR functionalised with 
photochromic thiol 8 (dispersed in THF) used in the present study. 

 
d [nm] L [nm] Aspect ratio λmax TSPR [nm] λmax LSPR [nm] 

AuNR1 25 ± 4 50 ± 5 2.0 ± 0.4 555 747 

AuNR2 27 ± 4 70 ± 5 2.6 ± 0.4 555 770 

AuNR3 31 ± 4 122 ± 10 3.9 ± 0.6 520 950 

 

As a general consideration, when comparing our AuNR functionalisation attempts with the 

reports found in the literature, a broadening and red-shift of the original spectral features, 

together with a decrease in the intensity ratio between the LSPR and TSPR bands is often 
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observed in their UV-Vis-NIR extinction spectra.[187b, 226a] This evidence can be rationally 

explained by two main effects, in both cases caused by the removal of CTAB in the surroundings 

of the gold nanocrystals. In first instance, the dielectric environment of the nanoparticles is 

strongly affected by the exchange of the CTAB (which forms a cationic double layer in water), 

with an alkanethiol derivative showing a largely lower polar character (AuNR are often 

consequently dispersed in apolar organic solvents). Such spectral shifts result from the high 

refractive index sensitivity of AuNR, and especially of their LSPR band. Moreover, we cannot 

neglect the occurrence of partial aggregation in liquid upon substituting CTAB with the 

alkanethiol coating. This hypothesis seems reasonable, since the original stabilising agent, a 

double layer of cationic surfactant[234] – which favours strong electrostatic repulsion between the 

particles – is replaced by a monolayer of (neutral) thiols. Furthermore, and more importantly, 

the presence of organic impurities surrounding the gold colloids is always observed in the 

samples prepared by substituting CTAB with thiol derivatives (Figure 96-97, Figure 99-101). The 

nanoparticles in the SEM images appear embedded in an amorphous organic matrix which exact 

nature could not be characterised. It is likely that the presence of such organic layer wrapping 

the gold colloid is another reason of partial aggregation seen in solution. Unfortunately, we did 

not understand the origin of such unwanted component, and further purification steps did not 

show its disappearance. Unfortunately, due to the embedment of our AuNR into amorphous 

structures, we could not observe the formation of aligned, liquid crystalline assemblies of AuNRs 

(cf. Figure 92-94), typically occurring upon slow drying of liquid dispersions of such anisotropic 

nanoparticles. 

 

 

 

In order to verify the occurrence of any interaction between the plasmonic nanoparticles and 

the photochromic unit, and especially with the merocyanine (MC) isomer, absorbing in the 

visible range of the electromagnetic spectrum (500 – 650 nm), we performed a study with 

nanorods characterised by a different aspect ratio, thus leading to LSPR features at different 

wavelength. This results in different spectral overlap between MC and AuNR (Figure 103). 

Photoswitching of 8-functionalised AuNRs was followed by UV-Vis spectroscopy, upon 

irradiation of the THF dispersions with UV (365 nm) and Vis (530 nm) light. In addition, the 

eventual occurrence of MC-centred fluorescence was monitored by emission spectroscopy (λexc 

= 580 nm). The latter however was never observed, as expected from the too short distance of 

the alkyl spacer used to separate the fluorophore from the surface of the nanoparticles. 

Fluorescence enhancement effects are usually observed upon using dielectric spacers in the 

range of about 10-20 nm distance from the plasmonic surface: at lower distances the interaction 

between plasmonic nanoparticles and adjacent fluorophores typically results in a strong 

quenching of their emission.[136e] Furthermore, due to the dense character of self-assembled 

monolayers of thiols on gold, the distance between MC fluorophores on the AuNR surface is 

expected to be well below their Förster radius, thus quenching due by their vicinity is also 

expected. 
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Figure 103. Overlapped absorption and emission spectra of 8.a and extinction spectra of CTAB-stabilised AuNR used 
in the present work. Blue trace, filled area absorption, and red dashed line, filled area emission spectra (λexc = 580 nm) 
of MC in CHCl3. Extinction spectra of CTAB-stabilised AuNR1, AuNR2 and AuNR3 in H2O, purple, grey and brown 
line, respectively. 

In all cases, spectral variations that could be ascribed to the occurrence of SP – MC 

photochromism of 8 were visible, since the spectral changes obtained upon UV irradiation were 

(at least partially) reversible upon subsequent exposure to Vis light (Figure 104-106). In the case 

of 8-AuNR1, therefore the rods with lower aspect ratio and longitudinal SPR mode roughly 

resonant to the absorption peak of MC (Figure 103), a large variation of their optical properties 

was noticed, mainly with an increasing red shift in the longitudinal SPR mode upon increasing 

UV irradiation, until reaching a “photostationary state”. Such spectral variation was 

accompanied by a uniform decrease in intensity in the area between 350 and 600 nm. The 

aforementioned shifts were partially reversible upon Vis irradiation, therefore suggesting a 

contribution from the photochromic unit to the phenomenon observed (Figure 104). Although, 

the reversibility showed to be limited, and multiple switching cycles failed, thus enlightening 

the fatigue of 8 photochromism upon posing the switch in such conditions. It is not clear what 

is the reason for the spectral changes observed: regarding the wavelength shift, one could 

hypothesise its occurrence with the change in the dielectric properties of the environment of 

AuNRs (SP form is neutral, with a low dipole moment, while MC is zwitterionic, and has a large 

dipole moment).[140] Nevertheless, the same phenomenon is not observed in case of the AuNRs 

with higher aspect ratio, therefore weakening this assumption. Together with the wavelength 

shift, a general broadening and intensity change could be related to a partial 

clustering/precipitation of the colloid, it is nevertheless difficult to prove it certainly. Moreover, 

we could not assess any difference in the aggregation state of AuNR by SEM upon drop-casting 

a pre-UV-irradiated dispersion of the aforementioned nanoparticles.  
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Figure 104. UV-Vis-NIR extinction spectral variation of 8-stabilised AuNR1 dispersion in THF upon light irradiation. 
a) Black trace, dark. Red trace, 180 s UV light irradiation (λmax = 367 nm, Pd = 12 mW cm-2). b) Red trace, after 180 s 
UV irradiation, as in a). Blue trace, 420 s Vis irradiation (λmax = 530 nm, Pd = 5.0 mW cm-2). 

 

Figure 105. UV-Vis-NIR extinction spectral variation of 8-stabilised AuNR2 dispersion in THF upon light irradiation. 
a) Black trace, dark. Red trace, 60 s UV light irradiation (λmax = 367 nm, Pd = 12 mW cm-2). b) Red trace, after 60 s UV 
irradiation, as in a). Blue trace, 90 s Vis irradiation (λmax = 530 nm, Pd = 5.0 mW cm-2). 

 

Figure 106. UV-Vis-NIR extinction spectral variation of 8-stabilised AuNR3 dispersion in THF upon light irradiation. 
a) Black trace, dark. Red trace, 60 s UV light irradiation (λmax = 367 nm, Pd = 12 mW cm-2). b) Red trace, after 60 s UV 
irradiation, as in a). Blue trace, 90 s Vis irradiation (λmax = 530 nm, Pd = 5.0 mW cm-2). 
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In case of 8-AuNR2, a clearly visible spectral variation was again visible by UV irradiation, being 

(slightly) reversible after Vis light (Figure 105). In such case, a broadening of the transversal SPR 

mode and perhaps the occurrence of a band centred at ca. 600 nm is visible, together with a 

partial broadening of also the longitudinal SPR mode. Also in the present sample, broadening 

and wavelength shift of the bands could be ascribed both to a change in the dielectric constant 

of the nanorods surroundings and to partial aggregation, but the experimental evidence is far 

too little to enable the understanding of such phenomena. The occurrence of low reversibility 

and fatigue already on the first cycle was clearly evident also in this case. On the contrary, for 8-

AuNR3 a lower variation in the UV-Vis-NIR extinction spectra is visible, with a small decrease 

of the two SPR maxima and the increase of absorbance in the area around ca. 600 nm, 

reversibility upon Vis irradiation in this case is barely noticeable. No variation in the emission 

spectra vas measured upon photoswitching. For all 8-AuNRs, attempts of measuring an eventual 

acidochromism of 8 coating the particles were performed upon addition of increasing amounts 

of acid (trifluoroacetic acid), or base (NH3, or 1,8-Diazabicyclo[5.4.0]undec-7-ene) were made. 

Nevertheless, no unambiguous variation of the extinction spectra that could be ascribed to an 

acid-base equilibrium on 8 was noticed. 

 

Figure 107. UV-Vis-NIR extinction spectral variation of AuNR3 stabilised with 11-mercaptoundecanoic acid dispersion 
in H2O upon UV light irradiation. Black trace, dark. Red trace, 120 s UV light irradiation (λmax = 367 nm, Pd = 2.2 mW 
cm-2). 

Ultimately, in order to confirm the role of SP-MC isomerisation of the photochromic thiol 8 in 

the spectral variations seen here, a blank test was performed on AuNR3 functionalised with the 

non-photochromic thiol 11-mercaptoundecanoic acid. The latter colloid showed to be dispersible 

in water, and upon UV irradiation did not show any remarkable variation in the UV-Vis-NIR 

extinction spectra of the suspension (Figure 107). 

To resume, for AuNR functionalised with the nitrospiropyran derivative 8 we did not 

visualise any unambiguous evidence for the emergence of a reversible aggregation/clustering 

behaviour induced by the photo- or acidochromism of the responsive moiety anchored to their 

surface. Nevertheless, the light-induced variation of the SPR features of the colloid suggests that 

their photoresponse is dependent on the spectral overlap between the AuNR surface plasmon 

resonance bands and the absorption spectrum of the MC isomer of 8. 
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In order to obtain a deeper insight on the isomerisation of the photochromic thiol 8 on the 

surface of the aforementioned gold nanorods, we have performed spectroscopical studies on the 

8-AuNR supported on solid substrates. The experiments were performed in collaboration with 

Dr. S. Toyouchi, in the group of Prof. H. Uji-i (Katholieke Universiteit Leuven), whom are greatly 

acknowledged. 

In first instance, being puzzled by the light-induced spectral shifts shown by 8-AuNR 

colloidal dispersions in THF, we have performed an attempt to measure such spectral variations 

by dark-field light scattering. Such a technique, taking advantage of the strong light scattering 

shown by gold colloids in general, and particularly by gold nanorods, allows to measure the SPR 

features also on single particles supported on solid substrates. Our attempt was aimed to 

understand whether the spectral variations seen for the colloidal dispersions of 8-AuNR1 and 8-

AuNR2 are related to an aggregation process, or to a shift in the local refractive index due to the 

isomerisation of 8. Being AuNR supported on solid, the eventual aggregation could be safely 

excluded. Nevertheless, our attempts were unsuccessful, as, due to the formation of AuNR 

aggregates upon deposition on solid (see Figure 99-101), it was not possible to record 

reproducible scattering spectra on single AuNRs. This is also related to the impossibility of 

locating a single nanorod in the area imaged by the microscope objective, being the spots 

visualised by dark field optical microscopy diffraction limited, thus not allowing to locate single 

particles and to distinguish them from bundles and aggregates. The latter usually present strong 

spectral shifts due to plasmon-plasmon coupling.[235] 

Contrarily to dark field scattering spectroscopy, for doing which usually nanoparticle 

aggregation should be avoided, Raman spectroscopy, and especially surface-enhanced Raman 

spectroscopy (SERS) takes advantage of such phenomenon, as the hotspots formed by AuNR 

aggregates give rise to large enhancement factors due to the concentration of the 

electromagnetic field in such regions of space.[136b, 236] We have therefore undertaken studies by 

Raman spectroscopy on our 8-stabilised AuNR in order to obtain a more detailed understanding 

on the SP-MC isomerisation of the thiol when anchored on the nanoparticles, and if this reaction 

happens at all to the molecules that are confined on the plasmonic surface. This study could be 

performed thanks to the distinctive vibrational fingerprint of the two isomers of the 

photochromic unit, allowing to unambiguously assess about the presence of a specific isomer, 

thus to follow the SP-MC isomerisation also when such photochrome is chemisorbed on gold 

surfaces as self-assembled monolayers.[230] Beforehand, we carried out Raman measurements on 

crystalline powders of 8.a (without AuNR), without and with UV light irradiation (Figure 108). 
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Figure 108. Raman spectra (λ = 785 nm) recorded on powders of 8.a deposited on glass, before (black trace) and after 
(red trace) UV irradiation (30 s, λmax = 367 nm, Pd ≈ 5 mW cm-2). The most intense vibrational modes are indicated 
by numbers: in black, related to spiropyran (SP), in red, related to merocyanine (MC). 

The Raman spectrum taken on the powder of 8.a deposited on glass consists of few intense 

bands located at 1653, 1614, 1580, 1451, 1340, 1281, 1232 and 1092 cm-1, which could be related to 

the ring-closed spiropyran (SP) form, in excellent agreement with values reported in the 

literature for a similar nitrospiropyran derivative, substituted with an alkyl chain on the nitrogen 

atom of the indoline moiety.[230] We used especially the most intense at 1653, 1580, 1340 and 

1092 (marked in black in Figure 108) to monitor the presence of such isomer. Upon irradiation 

with UV light triggering the isomerisation of SP to the ring-open form merocyanine (MC), we 

could already by naked eye visualise a strong colour change to purple, plus the appearance of a 

bright red-orange fluorescence, both confirming the occurrence of the desired photochemical 

reaction, and at least partial conversion of SP to MC isomer. The Raman spectrum recorded on 

a UV-irradiated sample indeed shows the appearance of additional vibrational bands, and the 

most intense were located at 1596, 1524, 1468, 1372, 1299 and 1122 (marked in red in Figure 108), 

which is also in good agreement with reported values for the MC form.[230]  

Knowing the vibrational fingerprint of the two isomeric forms of the photochromic unit 

present on 8, we thus investigated our AuNR. The AuNR, analogously as for the dark field light 

scattering measurements, were deposited by drop-casting the THF dispersions on clean glass 

slides, and were located by dark field microscope imaging as bright, highly scattering spots. In 

order to make sure about the reproducibility of the Raman spectra recorded on the 8-

functionalised AuNR, we have measured them in multiple areas of the sample: in all cases, we 

observed the same Raman signals. Moreover, multiple excitation laser sources were used: 532, 

633 and 785 nm. The use of 633 and especially 785 nm excitation wavelength led to the highest 

signal/noise ratio on the Raman spectra. This evidence, together with the absence of Raman 

signals from the highest aspect ratio nanorods 8-AuNR3 suggests that resonant excitation with 

the LSPR band of AuNR is needed to obtain the large electromagnetic enhancement necessary 

to measure the Raman spectra of our surface-bound photochromes, though further 

experimental investigation would be needed to clearly demonstrate such hypothesis. 
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Figure 109. Raman (SERS) of 8-functionalised AuNR (λexc = 633 nm), taken without prior light irradiation. Stacked 
spectra taken on five different randomly chosen spots of the sample. a) 8-AuNR1. b) 8-AuNR2. In red, signals assigned 
to MC. In black, signals assigned to SP. 

 

Figure 110. Raman (SERS) of 8-functionalised AuNR (λexc = 785 nm), taken without prior light irradiation. Stacked 
spectra taken on five different randomly chosen spots of the sample. a) 8-AuNR1. b) 8-AuNR2. In red, signals assigned 
to MC. In black, signals assigned to SP. 

The spectra measured on 8-AuNR showed to be reproducible, and interestingly gave the 

same sets of signals for both 8-AuNR1 and 8-AuNR2 while, as previously mentioned, we could 

not measure any clearly distinguishable Raman signal on 8-AuNR3. Interestingly, on both 8-

AuNR1 and 8-AuNR2, the SERS spectra show the most intense bands at ~ 1595, 1524, 1468, ~ 

1370, ~ 1300 and 1122 cm-1 (marked in red in Figure 109-110). Such peaks correspond to the 

vibrational fingerprint of merocyanine unit, as discussed earlier (Figure 108); moreover, the 

spectroscopic fingerprint of SP at 1580, 1340 and 1090 cm-1 results barely distinguishable. These 

evidences suggest that in such conditions, upon grafting the nitrospiropyran photochromic unit 

on the AuNR surface as a self-assembled monolayer of 8, already in absence of external light 

irradiation switching the SP to MC isomer, the switch is present (almost) only in the latter form, 

thus the MC is the stable form in the dark in such conditions. Thus, the occurrence of such 

phenomenon could be the reason for the limited photochromism of our system. Nonetheless, 

we have performed some attempts to switch 8 on 8-AuNR1 by in-situ irradiating with multiple 
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light sources, thus to understand whether the former retains its photo- and acidochromism 

when immobilised on the plasmonic nanorods. For the purpose, we have used appropriate light 

sources to switch the photochromic unit in the two ways: SP → MC, and MC → SP by either 

standard one-photon excitation, and also by two-photon light pulses. The latter was attempted 

as spiropyran-merocyanine derivatives are known for possessing large two-photon cross 

sections,[87c, 237] in such case the possibility of being interconverted between their two forms by 

two-photon absorption in the near-infrared region is increase further by the enhancement of 

two-photon processes typically occurring on the surface of AuNR.[238] We thus envisioned our 

systems, 8-functionalised AuNR, as the ideal candidate for performing such experiments. 

 

Figure 111. Raman (SERS) spectra of 8-AuNR1 deposited on glass substrates (λexc = 633 nm) upon attempts to switch 
MC to SP form. a) 1-photon irradiation, λirr = 532 nm. Black trace, no irradiation. Grey trace, 10 s (1.5 OD filter). Blue 
trace, 30 s (1.5 OD filter). b) 2-photon irradiation (λirr = 1040 nm). Black trace, no irradiation. Blue trace, 60 s (0.08 
OD filter). 

 

Figure 112. Raman (SERS) spectra of 8-AuNR1 deposited on glass substrates (λexc = 633 nm) upon 2-photon λirr = 780 
nm irradiation. a) Black trace, no irradiation. Red trace, 12 s (low intensity, 2.5 OD filter). b) Black trace, no irradiation. 
Red trace, 10 s (0.9 OD filter). 

For our experiments, we have attempted to induce the MC → SP isomerisation by 1-photon 

irradiation, using a 532 nm low-intensity continuous wave laser, while 2-photon irradiation was 

performed addressing the sample with a 1040 nm femtosecond laser. In order to understand 

whether any changes to the Raman spectra could be induced by light irradiation, also the 

wavelengths inducing the reverse SP → MC reaction were used, i.e. 1-photon irradiation was 
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performed with 365 nm non-coherent light, while 2-photon irradiation was provided by 780 nm 

femtosecond pulsed laser. Unfortunately, none of these light sources could induce noticeable 

changes in the Raman spectra that could be ascribed to the isomerisation of the photochrome 

grafted on AuNR. As visible in Figure 111, upon shining visible, or NIR 2-photon light on the 8-

AuNR1 did not lead to the appearance of new Raman peaks related to the SP species: on the 

contrary, increasing light irradiation power only led to a loss of the vibrational features 

previously observed, as this could be imputed to the occurrence of the phototermal effect, 

leading to the degradation of the nanoparticle surface coating. Analogously, the use of 1- or 2-

photon light to drive the reverse (SP → MC) reaction did not lead to any changes in the 

vibrational spectra, except again an evident loss of the spectral features, symptom of the 

degradation of 8. Exposure of the samples to ammonia vapours was attempted, also with 

subsequent visible (532 nm) light irradiation, nevertheless further failure in observing variations 

of the aforementioned Raman features suggest the absence of acidochromism.  

With the experimental evidences obtained to date, we thus can safely state that the 

spiropyran-merocyanine isomerisation is completely hindered by the immobilisation of 8, 

tethered to the plasmonic nanoparticles surface. This loss of any photochromic and 

acidochromic properties could be related to multiple factors. On the one hand, the crowding 

due to the reciprocal vicinity of the chromophores when confined into self-assembled 

monolayers on the nanoparticles surface could lead to multiple chromophore-chromophore 

interactions, e.g. exciton coupling and formation of H- and J- aggregates, thus delocalising 

excitation energy and all together quenching the desired photochromic activity. On the other 

hand, also the vicinity of the photoactive unit to the surface of the nanomaterial due to the use 

of simple alkyl spacers could be another likely reason for the complete absence of 

photoswitching of 8, in such case possibly originated by the occurrence of nonradiative energy 

transfer to the surface plasmon resonance of AuNR.  

Conversely, the evidences gained here by means of Raman spectroscopy helped us to confirm 

what occurs, or more correctly does not occur on the surface of AuNR, yet from such experiments 

we could not obtain any answer regarding the extinction spectral shifts visualised upon 

irradiating with UV and visible light the 8-AuNR dispersions in THF (Figure 104-106). The SERS 

experiments allowed us to assess the spectroscopic fingerprint of the molecules located in the 

immediate surroundings of the plasmonic substrate, hence on the AuNR surface, but not what 

is situated farther away from it. It is likely that the shifts seen in the extinction spectra are related 

to photochromic species not immobilised on the nanoparticles surface. This hypothesis is 

coherent with the observation made by means of scanning electron microscopy about the 

embedment of AuNR into an amorphous matrix which nature yet remains unknown upon their 

functionalisation various thiols. It is thus likely that in such organic matrix that we did not 

succeed to remove upon purification, some photochromic units are still included, hence the 

light-triggered isomerisation of the latter would be the origin of the aforementioned spectral 

shifts.  

However, to date these remain only hypotheses which need further experimental evidences 

to be confirmed. In our opinion, one (conceptually) simple strategy to tackle part of these issues 

could be to vary, and specifically to increase the length of the dielectric spacer separating our 

plasmonic substrate to the photochrome. Increasing the distance between the two functional 

units could at least provide a strategy to prevent the quenching resulting from the interaction 
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with the plasmon resonance of the nanoparticles. Nonetheless, in order to successfully follow 

such strategy, modification of the chemistry used to graft the photochrome to the gold colloid 

would be required: alkanethiols are not suitable spacers to perform this task, as the length of the 

spacer needed for this purpose could range between 10-30 nm.[136e, 238] 

 

 

 

 

We have reported here about the realisation of hybrid nanomaterials obtained by the coupling 

of noble metal gold nanoparticles, i.e. gold nanorods (AuNR) to a nitrospiropyran photochromic 

derivative 8. The latter was employed as photoswitchable unit owing to the considerable 

variation of the electrical dipole moment of its two isomers: the bulky spiropyran, and the 

planar, conjugated merocyanine. Such a light-activated switch was combined with AuNR, 

exploiting the tunability of their surface plasmon resonance bands and the high sensitivity of 

the latter towards the variation of their dielectric medium. Different AuNR with varying aspect 

ratio were employed, in order to study the effect of the spectral overlap between the absorption 

and emission spectra of merocyanine and the surface plasmon resonance bands of the 

nanomaterial. The photoswitching of 8-AuNR colloidal dispersions in liquid led to the 

observation of an intriguing behaviour due to the (partially) reversible shift of their UV-Vis-NIR 

extinction spectra, as this appeared to be dependent on the surface plasmon resonance 

wavelength of the nanorods used. Nevertheless, the use of SERS technique showed that 

isomerisation of the photoswitch could not be attained on the nanomaterial surface, thus 

enlightening how challenging is the realisation of hybrid systems capable of responding to light 

stimuli. 
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In summary, the work performed within this thesis has been aimed at the characterisation of 

novel multichromophoric systems based on the inclusion of multiple photochromic units within 

single scaffolds, the latter scaling from molecular edifices to anisotropic nanoparticles, with a 

specific focus on the study of the emerging properties due to the combination of the various 

components. We have presented here three examples of systems switchable by optical stimuli, 

taking advantage of photochromic building blocks coming from the three most well-known 

main families of photoswitches available, being azobenzene, diarylethene and spiropyran, 

according to the property of the system that was desirable to modify by means of an optical 

input. 

In the first experimental chapter, a novel family of multi-azobenzene photoswitches has 

been discussed. Such compounds, presenting a star-shaped character and a rigid aromatic 

backbone, were realised in order to exploit them as molecular-scale actuators, the use of which 

allowed to give rise to 2D surface-confined self-assemblies whose topology could be controlled 

between multiple states by using different light stimuli. Here we have employed a 

conformationally rigid molecular scaffold design in order to maximise the conformational 

variation of the molecules upon their photoisomerisation. Knowing the presence of through-

bond and through-space interactions between the switches would have been the most likely 

source of quenching of their photochromic character, we have explored the role of the electronic 

decoupling between the units, potentially affecting their photochromic performances. The 

design of such systems, imposing the switches to branch out from a central trisubstituted 1,3,5-

benzene core was chosen in order to limit the π-conjugation between the photochromes 

belonging to the same molecule, thus allowing their efficient isomerisation and the independent 

behaviour of each unit from the state of the neighbouring ones, but at the same time maintaining 

a high structural rigidity. An in-depth experimental investigation was performed by employing 

complementary instrumental techniques, ranging from UV-Vis absorption spectroscopy to high 

performance liquid chromatography and even advanced mass spectrometry methods such as ion 

mobility to visualise all the possible isomers of the photochromic units. The additivity of the 

UV-Vis absorption spectra relative to the all-(E) isomer, together with the appearance of clear 

isosbestic points upon photoswitching of mono-, bis- and tris(azobenzene) compounds 

provided unambiguous evidence for an almost complete absence of electronic delocalisation 
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between the chromophores. The latter allowing for remarkably efficient photoswitching of all 

azobenzenes, as evidenced by their photoisomerisation quantum yields, not substantially 

different from the values showed by reference mono-azobenzenes. Moreover, all star-shaped 

compounds showed Z-rich UV photostationary states.  Ion mobility mass spectrometry was 

exploited for the first time to study multi-photochromic compounds revealing the occurrence 

of a large molecular shape change in such rigid star-shaped azobenzene derivatives. A detailed 

picture of the self-assembly of the tris(azobenzene) derivative to form surface-confined dynamic 

structures was also given by means of scanning tunnelling microscopy. For the first time it was 

possible to identify by STM the existence of multiple isomeric states of a multiphotochromic 

compound in single-component self-assembled networks with a high level of details. Thanks to 

this, our study enabled to gain an insight on the subtle interplay occurring between the non-

directional and directional intermolecular interactions playing a role in defining the structural 

topology of the surface-confined assemblies. In addition, by performing qualitative STM imaging 

on dry films of our tris(azobenzene) derivative at the graphite-air interface and their subsequent 

in-situ UV irradiation, it was possible to verify that the switching occurs in such conditions also 

to the molecules physisorbed on the solid substrate.  

We believe that the present results could be of great value for further research on 

multiphotochromic systems, and could clarify the role of non-covalent interactions in the 

supramolecular self-assembly of similar systems. Following the high potential of azobenzenes to 

be employed as light-powered molecular actuators, we envision that the compounds presented 

here could be excellent candidates for the realisation of phototriggered host-guest systems. For 

instance, metal-organic frameworks (MOFs) have long been regarded as the future materials for 

gas- and small-molecule storage following their precise structure and unrivalled internal surface 

area, together with the possibility to finely tune their functionalities. For the realisation of such 

materials, rigid, aromatic carboxylic acids represent one of the most used building blocks, and 

it was seen that molecules possessing C3 symmetry such as 1,3,5-benzenetribenzoic acid and 

similar derivatives were particularly suitable for realising MOFs showing extremely high porosity 

and specific surface area.[5c] Having verified the good photochromic performance of our rigid, 

C3-symmetric multi(azobenzene) scaffold, we thus foresee this as a perfect candidate for the 

making of novel MOFs which guest capture-release could be light-powered. In this context the 

use of light to induce the release of a guest trapped in the MOF cavities provides a low-energy 

consumption alternative for the controlled removal of the adsorbates which are usually hard to 

extract due to their stabilisation inside such confined space. 

 

In the second experimental chapter, we have discussed about the investigation of a 

photoswitchable fluorophore whose emission intensity could be tuned in highly contrasted 

fashion thanks to its multiphotochromic design. A family of tetraphenylporphyrins has been 

used as a fluorescent scaffold for four dithienylethene units by covalently linking the latter via 

meta-phenyl spacers. The use of such design based on four photoswitches arranged around a 

porphyrin framework showed that the original photochromic activity of the functional units was 

retained upon their inclusion within the large molecular framework. Moreover, the original 

photophysical properties of the fluorophore were retained when the photochromes were 

residing in their open-ring, UV-absorbing form. Upon UV light-activated ring closure of the 

diarylethene units, quenching of the porphyrin fluorescence was seen occurring by resonance 
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energy transfer, due to the large spectral overlap occurring between the fluorophore emission 

spectrum and the absorption of the ring-closed form of the photochrome. Upon DTE 

photoswitching, a nearly complete quenching of the porphyrin's fluorescence was attained, 

providing a highly contrasted readout of the switching event. In addition to their photoregulated 

fluorescence, the possibility to trigger the switch and detect the output at very distinct 

wavelengths renders these systems of interest for applications in optoelectronic memory 

devices. At last, we have also been able to demonstrate the applicability of our switchable dyes 

as photo-rewritable fluorescent ink, the latter opening perspectives towards its application in 

all-optical memory storage and fluorescence microscopy imaging. 

A vast corpus of research has been done towards the development of reversibly 

photoswitchable fluorophores, particularly for their tremendous potential in the field of 

optoelectronics and superresolution microscopy. On the one hand, despite the promising 

results, the path towards the realisation of convenient small-molecule synthetic probes and 

chemical markers for fluorescence microscopy is still long. The main challenges yet open to date 

are not only related to the chemical- and photostability of the fluorophores, together with the 

resistance to fatigue of the photoswitch, but also to the possibility of making such synthetic dyes 

water-soluble and to bind them to biomolecules, thus enabling their use for superresolution 

microscopy imaging on biological samples. Thus far, the successful examples of synthetic 

photochromic switches that were employed for such application are limited,[82b, 82c] hence there 

is still plenty of room for the synthesis and improvement of reversibly photoactivated 

fluorophores in order to allow their application in life sciences. On the other hand, concerning 

the potential use of photoswitchable dyes for optical information storage, a fundamental aspect 

that has been to date only partially faced concerns data retention and the possibility of 

performing non-destructive readout, thus to excite their fluorescence and to photoswitch its 

intensity with orthogonal stimuli. In fact, an intrinsic problem of the most widely used 

fluorophore-photoswitch dyad architectures used for this purpose consists on the fact that these 

systems undergo reversible emission quenching following an intramolecular energy transfer 

mechanism, and in most cases the excitation of the fluorophore also induces the switching 

reaction, thus resulting in destructive readout of the written information. So far, a few reports 

were provided concerning the solution of this problem, in some cases utilising an electron 

transfer mechanism to quench the fluorophore emission, avoiding the undesired photochromic 

reaction.[239] We thus believe that the synthetic challenge to obtain viable organic materials for 

all-optical information storage is still open towards their future improvement. 

 

In the last experimental chapter, we have extended our concept of “multiphotochromic 

system” to a different length scale. With such objective, we have employed photochromic units 

that are particularly sensitive to their local environment and chemisorbed them to nanoparticles 

presenting shape anisotropy. In such a way, the purpose was to expose the photochromes 

chemisorbed to surfaces with different properties (e.g. curvature radius) to different 

intermolecular interactions between neighbouring molecules. This was seen promising for the 

realisation of objects having multiple distinct photochromic responses, due to the presence of 

photoswitches tethered to the different faces of the anisotropic gold colloid. Hybrid 

nanomaterials were realised by coupling anisotropic noble metal gold nanoparticles, i.e. gold 

nanorods to a nitrospiropyran photochromic derivative. The latter was employed as 
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photoswitchable unit owing to the considerable variation of the electrical dipole moment of its 

two isomers: the bulky spiropyran, and the planar, conjugated merocyanine. The latter property 

was seen highly appealing for both tuning the nanoparticle aggregation, and also to perturb the 

surface plasmon resonance of the gold nanorods in a remotely controlled fashion, with the use 

of light. Different AuNR with varying aspect ratio were employed, in order to study the effect of 

the spectral overlap between the absorption spectra of the open-ring merocyanine isomer and 

the surface plasmon resonance bands of the nanomaterial. The photoswitching of colloidal 

dispersions in liquid led to the observation of an intriguing behaviour due to the (partially) 

reversible shift of their UV-Vis-NIR extinction spectra, as this appeared to be dependent on the 

surface plasmon resonance wavelength of the nanorods used. Nevertheless, the use of surface-

enhanced Raman scattering to monitor the state of the spiropyran-based switch showed that 

isomerisation of the photoswitch could not be attained on the nanomaterial surface, the latter 

being present only in the merocyanine form, thus enlightening how challenging is the realisation 

of hybrid systems capable of responding to light stimuli.  

We suggest that the origin of this limited photoactivity should be imputed to two main 

causes: the vicinity of the switch to the metallic surface, together with the reciprocal crowding 

of the neighbouring photochromes within the chemisorbed self-assembled monolayer on the 

nanoparticles surface. Despite the failure in obtaining a clear photoresponse in such hybrid 

systems, we believe that the inclusion of a photochromic remote control to nanomaterials that 

possess anisotropic character constitutes a challenge of great scientific interest. On the one 

hand, the shape anisotropy allows to access aggregation behaviours that cannot be obtained 

from objects possessing spherical symmetry. Photoswitches have already been used to control 

the aggregation of nanometre-scale colloids, nevertheless such light-controlled behaviour, 

except few examples, showed the formation of amorphous aggregates. We envision that the use 

of anisotropic building blocks which aggregation could be remotely and reversibly controlled 

would allow to obtain the on-demand formation of “supercrystals” possessing long-range order, 

thus with great potential for technological application. Additionally, gold nanorods represent an 

extremely interesting nanomaterial due to their tuneable plasmonic properties, together with 

the possibility of generating strong electromagnetic fields on their immediate surroundings, 

giving rise to the enhancement of a variety of optical processes, such as Raman scattering or 

light emission. Thus, the combination of a photochromic molecule presenting at the same time 

large dipole moment variation, together with an emission turn-on behaviour upon isomerisation 

motivated our initial research and opened questions that still remain unanswered. Further 

research aimed at the improvement of such system could be performed. We believe that upon 

resolving the two main issues hampering the photoreactivity of the spiropyrans used i.e. 

nanoparticle-switch and switch-switch vicinity could allow us to access the functionality desired. 

Thus, in order to successfully attain the required switching, a possible strategy would be to 

increase such distance and to “dilute” the switches on the nanoparticle surface. This task cannot 

evidently be performed by using alkanethiols as both grafting moieties and dielectric spacers. 

On the contrary, we believe that a promising strategy would be to use a core-shell architecture, 

thus to grow dielectric silica shells on the anisotropic colloid. This would allow to precisely 

control the photochrome-AuNR distance in the range of several nanometres needed for the 

purpose and also to tune the loading of the photochrome on the surface, thus preventing dye-

dye interactions in such environment.  
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All in all, nowadays a great deal of attention has been dedicated to the highly challenging 

goal of obtaining fully working multi-photochromic systems, and the basic requirements for 

their satisfying switching performance have been established. This wide interest stems from the 

possibility to use such advanced architectures to increase the complexity and functionality of 

synthetic, remotely controlled stimuli-responsive systems. However, most of the successful 

examples existing to date do not allow for their multi-addressability, as in most cases such 

architectures are formed by including in the same object multiple identical switches. On the 

contrary, the most appealing goal in the development of multi-photochromic architectures 

consists in the realisation of systems switchable between various, singly addressable states with 

wavelength-selective control. The latter is typically attained only with systems which undergo 

irreversible light activation, and only few reports are available regarding photoswitchable 

systems that can be reversibly modulated between multiple states with orthogonal stimuli.[4a, 93] 

We believe that there is still plenty of room for the development of multi stimuli-responsive 

architectures of which several technological fields could benefit, and envision this as the 

principal direction for the scientific research in the field within the next few years. 
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Figure A I 1. a) Thermal evolution of the isomers ratio (Z,Z,Z)-1 (black squares), (Z,Z,E)-1 (red dots), (Z,E,E)-1 (blue 
triangle), (E,E,E)-1 (pink triangle) followed at 25 °C by HPLC. The white dots show the amount of b) (Z,Z,Z)-1, c) 
(Z,Z,E)-1, and d) (Z,E,E)-1 versus heating time. The red solid line is the fit of the temporal evolution yielding the rate 
constants k1, k2 and k3 for each isomer according to Eq. 4.4-4.6. 
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Figure A I 2. a) Thermal evolution of the isomers ratio (Z,Z,Z)-1 (black squares), (Z,Z,E)-1 (red dots), (Z,E,E)-1 (blue 
triangle), (E,E,E)-1 (pink triangle) followed at 30 °C by HPLC. The white dots show the amount of b) (Z,Z,Z)-1, c) 
(Z,Z,E)-1, and d) (Z,E,E)-1 versus heating time. The red solid line is the fit of the temporal evolution yielding the rate 
constants k1, k2 and k3 for each isomer according to Eq. 4.4-4.6. 

 

Figure A I 3. a) Thermal evolution of the isomers ratio (Z,Z,Z)-1 (black squares), (Z,Z,E)-1 (red dots), (Z,E,E)-1 (blue 
triangle), (E,E,E)-1 (pink triangle) followed at 35 °C by HPLC. The white dots show the amount of b) (Z,Z,Z)-1, c) 
(Z,Z,E)-1, and d) (Z,E,E)-1 versus heating time. The red solid line is the fit of the temporal evolution yielding the rate 
constants k1, k2 and k3 for each isomer according to Eq. 4.4-4.6. 
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Figure A I 4. a) Thermal evolution of the isomers ratio (Z,Z,Z)-1 (black squares), (Z,Z,E)-1 (red dots), (Z,E,E)-1 (blue 
triangle), (E,E,E)-1 (pink triangle) followed at 40 °C by HPLC. The white dots show the amount of b) (Z,Z,Z)-1, c) 
(Z,Z,E)-1, and d) (Z,E,E)-1 versus heating time. The red solid line is the fit of the temporal evolution yielding the rate 
constants k1, k2 and k3 for each isomer according to Eq. 4.4-4.6. 

 

Figure A I 5. a) Thermal evolution of the isomers ratio (Z,Z)-2 (black squares), (Z,E)-2 (red dots), (E,E)-2 (blue triangle) 
followed at 25 °C by HPLC. The white dots show the amount of b) (Z,Z)-2, c) (Z,E)-2 versus heating time. The red 
solid line is the fit of the temporal evolution yielding the rate constants k1 and k2 for each isomer according to Eq. 4.4-
4.6. 
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Figure A I 6. a) Thermal evolution of the isomers ratio (Z,Z)-2 (black squares), (Z,E)-2 (red dots), (E,E)-2 (blue 
triangle) followed at 30 °C by HPLC. The white dots show the amount of b) (Z,Z)-2, c) (Z,E)-2 versus heating time. 
The red solid line is the fit of the temporal evolution yielding the rate constants k1 and k2 for each isomer according 
to Eq. 4.4-4.6. 

 

Figure A I 7. a) Thermal evolution of the isomers ratio (Z,Z)-2 (black squares), (Z,E)-2 (red dots), (E,E)-2 (blue triangle) 
followed at 35 °C by HPLC. The white dots show the amount of b) (Z,Z)-2, c) (Z,E)-2 versus heating time. The red 
solid line is the fit of the temporal evolution yielding the rate constants k1 and k2 for each isomer according to Eq. 4.4-
4.6. 
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Figure A I 8. a) Thermal evolution of the isomers ratio (Z,Z)-2 (black squares), (Z,E)-2 (red dots), (E,E)-2 (blue 
triangle) followed at 40 °C by HPLC. The white dots show the amount of b) (Z,Z)-2, c) (Z,E)-2 versus heating time. 
The red solid line is the fit of the temporal evolution yielding the rate constants k1 and k2 for each isomer according 
to Eq. 4.4-4.6. 

 

 

Figure A I 9. a) Thermal evolution of the isomers ratio (Z)-3 (black squares), (E)-3 (red dots) followed at 25 °C by 
HPLC. The white dots show the amount of b) (Z)-3 versus heating time. The red solid line is the fit of the temporal 
evolution yielding the rate constant k1 according to Eq. 4.4-4.6. 
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Figure A I 10. a) Thermal evolution of the isomers ratio (Z)-3 (black squares), (E)-3 (red dots) followed at 30 °C by 
HPLC. The white dots show the amount of b) (Z)-3 versus heating time. The red solid line is the fit of the temporal 
evolution yielding the rate constant k1 according to Eq. 4.4-4.6. 

 

Figure A I 11. a) Thermal evolution of the isomers ratio (Z)-3 (black squares), (E)-3 (red dots) followed at 35 °C by 
HPLC. The white dots show the amount of b) (Z)-3 versus heating time. The red solid line is the fit of the temporal 
evolution yielding the rate constant k1 according to Eq. 4.4-4.6. 

 

Figure A I 12. . a) Thermal evolution of the isomers ratio (Z)-3 (black squares), (E)-3 (red dots) followed at 40 °C by 
HPLC. The white dots show the amount of b) (Z)-3 versus heating time. The red solid line is the fit of the temporal 
evolution yielding the rate constant k1 according to Eq. 4.4-4.6. 
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Figure A I 13. Thermal Z → E isomerisation kinetics of 4 followed by UV-Vis absorption spectroscopy. The solution (c 
= 6.0 x 10-5 M in THF) was brought to the UV PSS, then the absorbance at λmax π-π* = 360 nm was monitored over time, 
at constant temperature. a) T = 298 K, b) T = 303 K, c) = 308 K, d) T = 313 K. 

 

Figure A I 14. Eyring plots for thermal a) (Z,Z,Z)-1 → (Z,Z,E)-1, b) (Z,Z,E)-1 → (Z,E,E)-1 and c) (Z,E,E)-1 → (E,E,E)-1 
isomerisations. 
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Figure A I 15. Arrhenius plots for thermal a) (Z,Z,Z)-1 → (Z,Z,E)-1, b) (Z,Z,E)-1 → (Z,E,E)-1 and c) (Z,E,E)-1 → (E,E,E)-
1 isomerisations. 

 

Figure A I 16. Eyring plots for thermal a) (Z,Z)-2 → (Z, E)-2 and b) (Z, E)-2 → (E,E)-2 isomerisations. 

 

Figure A I 17. Arrhenius plots for thermal a) (Z,Z)-2 → (Z, E)-2 and b) (Z, E)-2 → (E,E)-2 isomerisations.  
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Figure A I 18. a) Eyring and b) Arrhenius plots for thermal (Z)-3 → (E)-3 isomerisation. 

 

Figure A I 19. a) Eyring and b) Arrhenius plots for thermal (Z)-4 → (E)-4 isomerisation. 

  



 

[181] 
 



 

[182] 
 

 

Figure A II 1. TCSPC data for S1 – S0 radiative decay monitored at λem = 650 nm upon excitation at λexc = 590 nm of 
7H2 (dark, all-o-DTE state, no UV irradiation). 



 

[183] 
 

 

Figure A II 2. TCSPC data for S1 – S0 radiative decay monitored at λem = 650 nm upon excitation at λexc = 590 nm of 
7H2 (upon short UV irradiation at 312 nm). 
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Figure A II 3. TCSPC data for S1 – S0 radiative decay monitored at λem = 647 nm upon excitation at λexc = 560 nm of 
7Zn (dark, all-o-DTE state, no UV irradiation). 
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4,4'-BPE  1,2-bis(4-pyridyl)ethylene 

ADC   Analog-to-digital converter 

ATD   Arrival time distribution 

AuNP   Gold nanoparticle 

AuNR   Gold nanorod 

AzDC   Azobenzene-4,4’-dicarboxylate 

BSE   Backscattered electrons 

CCD   Charge-coupled device 

CCS   Collisional cross-section 

CE   Chemical enhancement 

CFD   Constant function discriminator 

CL   Condenser lens 

CMC   Critical micellar concentration 

COF   Covalent organic framework 

CTAB   Hexadecyltrimethylammonium bromide 

CW   Continuous-wave (laser) 

DAE   Diarylethene 

DDA   Discrete dipole approximation 

DFT   Density functional theory 

DLS   Dynamic light scattering 

DMSO   Dimethyl sulfoxide 

DTE   Dithienylethene 

DTIMMS  Drift tube ion-mobility mass spectrometry 

EF   Enhancement factor 

EM   Electromagnetic enhancement 

ESEM   Environmental scanning electron microscopy 

ESI   Electrospray ionisation 

FEG   Field emission gun 

FRET   Förster resonance energy transfer 

FWHM   Full width at half maximum 

H2TPP   Free-base tetraphenylporphyrin 

HOMO   Highest occupied molecular orbital 

HOPG   Highly ordered pyrolytic graphite 

HPLC   High performance liquid chromatography 

IM   Ion mobility 

IMMS   Ion mobility mass spectrometry 

IRF   Instrument response function 

KOtBu   Potassium tert-butoxide 

LbL   Layer-by-layer 

LDOS   Local density of states 

LED   Light emitting diode 

LSPR   Longitudinal surface plasmon resonance (mode or band) 

LUMO   Lowest unoccupied molecular orbital 

MC   Merocyanine 

MD   Molecular dynamics 

MLCT   Metal-to-ligand charge transfer 

MM   Molecular mechanics 

MOF   Metal organic framework 

MS   Mass spectrometry 
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NMR   Nuclear magnetic resonance 

OL   Objective lens 

OTFT   Organic thin film transistor 

PBC   Periodic boundary conditions 

PEG   Poly(ethylene glycol) 

PGA   Programmable gain amplifier 

phen   1,10-Phenantroline 

PMI   Perylenemonoimide 

PMT   Photomultiplier tube 

PPD   Picosecond photon detection (module) 

PSS   Photostationary state 

rt   Room temperature 

SAM   Self-assembled monolayer 

SE   Secondary electron 

SEM   Scanning electron microscopy 

SERS   Surface-enhanced Raman scattering 

SP   Spiropyran 

SPR   (Localised) Surface plasmon resonance 

STM   Scanning tunnelling microscopy 

TAC   Time-to-amplitude converter 

TCBPB   1,3,5-tris[4-carboxy(1,1’-biphenyl-4-yl)]benzene 

TCDB   1,3,5-tris(10-carboxydecyloxy)benzene 

TCSPC   Time correlated single photon counting 

TERS   Tip-enhanced Raman scattering 

TFA   Trifluoroacetic acid 

THF   Tetrahydrofuran 

TLC   Thin layer chromatography 

TOF   Time-of-flight 

TPP   Tetraphenylporphyrin 

TSPR   Transverse surface plasmon resonance (mode or band) 

TWIMMS  Travelling wave ion mobility mass spectrometry 

UHV   Ultrahigh vacuum 

UPLC   Ultra performance liquid chromatography 

WD   Window discriminator 

ZnTPP   Zinc tetraphenylporphyrin 
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Résumé 

L’objectif de cette thèse a été axé sur le développement des systèmes capable de répondre à des 
stimuli externes, basés sur des unités photochromiques. Le but d’une telle quête est d’augmenter la 
complexité des dispositifs et des machines moléculaires synthétiques. Avec l’objectif de développer 
des dispositifs et des machines artificiels plus complexes, nous avons réalisé de systèmes comprenant 
de multiples interrupteurs moléculaires. En vue de la réalisation de cette thèse, des nouveaux 
systèmes multi-photochromiques, où hybrides photochrome/nanomatériaux contenant des fragments 
azobenzène, diaryléthène ou spiropyrane ont été réalisés et étudiés. D’abord, on s’est focalisés sur 
des systèmes multi-azobenzènes capables de subir de grands réarrangements géométriques lors de 
la photoisomérisation, ils pourraient être utilisés à l'avenir comme éléments constitutifs des matériaux 
host-guest ou metal-organic frameworks contrôlables par des stimuli lumineux. Dans un second 
exemple, des commutateurs photochromiques de type dithiényléthène ont été utilisés pour déclencher 
l'émission d'une porphyrine. Cette dyade à montré une modulation réversible de son émission, 
affichant un contraste particulièrement élevé. Comme dernier exemple, un dérivé de spiropyrane a été 
combiné avec des nanoparticules d’or anisotropes. En induisant l'isomérisation de l’interrupteur 
moléculaire dans les dispersions colloïdales des nanorods d’or en liquide, nous avons visualisé une 
grande variation du spectre d'extinction des colloïdes, dépendante de la longueur d’onde du mode 
LSPR et du recouvrement spectrale avec le photoswitch. 

 

Mots-clés: multi-photochromic, in-situ photoswitching, interfaces, scanning tunnelling microscopy, self-
assembly, gold nanorods, fluorescence photoswitching 

 

Résumé en anglais 

The aim of this thesis has been to develop systems capable of responding to external stimuli, based 
on photochromic units. The goal of such a quest is to increase the complexity of devices and synthetic 
molecular machines. With the goal of developing more complex artificial devices and machines, we 
have realised systems containing multiple molecular switches. For the realisation of this thesis, new 
multi-photochromic systems, or photochromes/nanomaterials hybrids containing azobenzene, 
diarylethene or spiropyran moieties have been realised and studied. Firstly, we focused on multi-
azobenzene systems capable of undergoing large geometric rearrangements during 
photoisomerisation, as they may be used in the future as constituent elements of host-guest or metal-
organic frameworks controllable by luminous stimuli. In a second example, dithienylethene-type 
photochromic switches have been used to trigger the emission of a porphyrin. This dyad exhibited a 
reversible modulation of its emission, displaying a particularly highly contrasted response. As a final 
example, a spiropyran derivative has been combined with anisotropic gold nanoparticles. By inducing 
the isomerisation of the molecular switch in the AuNR colloidal liquid dispersions, we visualised a large 
variation of the colloid extinction spectrum, dependent on the LSPR mode wavelength and the spectral 
overlap with the photoswitch. 
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