Real-time processing of data streams emanating from sensors is becoming a common task in industrial scenarios. In an Internet of Things (IoT) context, data are emitted from heterogeneous stream sources, i.e., coming from different domains and data models. This requires that IoT applications efficiently handle data integration mechanisms. The processing of RDF data streams hence became an important research field. This trend enables a wide range of innovative applications where the real-time and reasoning aspects are pervasive. The key implementation goal of such application consists in efficiently handling massive incoming data streams and supporting advanced data analytics services like anomaly detection.

However, a modern RSP engine has to address volume and velocity characteristics encountered in the Big Data era. In an on-going industrial project, we found out that a 24/7 available stream processing engine usually faces massive data volume, dynamically changing data structure and workload characteristics. These facts impact 9.5. Conclusion . . . . . .

the engine's performance and reliability. To address these issues, we propose Strider, a hybrid adaptive distributed RDF Stream Processing engine that optimizes logical query plan according to the state of data streams. Strider has been designed to guarantee important industrial properties such as scalability, high availability, faulttolerant, high throughput and acceptable latency. These guarantees are obtained by designing the engine's architecture with state-of-the-art Apache components such as Spark and Kafka.

Moreover, an increasing number of processing jobs executed over RSP engines are requiring reasoning mechanisms. It usually comes at the cost of finding a trade-off between data throughput, latency and the computational cost of expressive inferences.

Therefore, we extend Strider to support real-time RDFS+ (i.e., RDFS + sameAs) reasoning capability. We combine Strider with a query rewriting approach for SPARQL that benefits from an intelligent encoding of knowledge base. The system is evaluated along different dimensions and over multiple datasets to emphasize its performance.

Finally, we have stepped further to exploratory RDF stream reasoning with a fragment of Answer Set Programming. This part of our research work is mainly motivated by the fact that more and more streaming applications require more expressive and complex reasoning tasks. The main challenge is to cope with the large volume and high-velocity dimensions in a scalable and inference-enabled manner.

Recent efforts in this area still missing the aspect of system scalability for stream reasoning. Thus, we aim to explore the ability of modern distributed computing frameworks to process highly expressive knowledge inference queries over Big Data streams. To do so, we consider queries expressed as a positive fragment of LARS (a temporal logic framework based on Answer Set Programming) and propose solutions to process such queries, based on the two main execution models adopted by major parallel and distributed execution frameworks: Bulk Synchronous Parallel (BSP) and Record-at-A-Time (RAT). We implement our solution named BigSR and conduct a series of evaluations. Our experiments show that BigSR achieves high throughput beyond million-triples per second using a rather small cluster of machines.

Résumé de Thèse

Le traitement en temps réel des flux de données émanant des capteurs est devenu une tâche courante dans de nombreux scénarios industriels. Dans le contexte de l'Internet des objets (IoT), les données sont émises par des sources de flux hétérogènes, c'est-à-dire provenant de domaines et de modèles de données différents. Cela impose aux applications de l'IoT de gérer efficacement l'intégration de données à partir de ressources diverses. Le traitement des flux RDF est dès lors devenu un domaine de recherche important. Cette démarche basé sur des technologies du Web Sémantique supporte actuellement de nombreuses applications innovantes où les notions de temps réel et de raisonnement sont prépondérantes. La recherche présentée dans ce manuscript s'attaque à ce type d'application. En particulier, elle a pour objectif de gérer efficacement les flux de données massifs entrants et à avoir des services avancés d'analyse de données, e.g., la détection d'anomalie. Under this trend, the service of Internet of Things (IoT) is gaining in popularity.

Real-time processing of data streams emanating from sensors is becoming a common task in industrial scenarios. Such applications usually require low latency and high throughput. Moreover, integrating these information sources, deriving valuable information and knowledge from data stream also enable a new wide range of realtime applications. To achieve this, the RDF data model could be applied and provides two major advantages: supporting data integration and reasoning over the represented data and knowledge. In 2006, W3C Semantic Sensor Network Incubator Group first introduced the semantic annotation to data stream [START_REF] Whitehouse | Semantic streams: A framework for composable semantic interpretation of sensor data[END_REF]. The idea is to make data stream available based on the Linked Data principles [START_REF]Linked data[END_REF]:

• Use URIs as names for things

• Use HTTP URIs for name lookup

• Use URI to provide useful information

• Include links to other URIs for discovering more things.

The advantage of such a data stream model would be simplifying the data integration from heterogeneous data sources. I.e., , it does not only connect different sources of streaming data, but also provides an easy way to bridge data stream and static data.

In a traditional relational database setting, a regular way to handle such a request is done by converting the input data stream into a certain relation and then to execute an ad hoc query. Since data conversion and disk-based storage could be quite costly, this approach normally assumes that the data does not change frequently. Moreover, it does not meet the real-time aspect.

On the other hand, Data Stream Management Systems (DSMS) might be a better choice. However, existing DSMS mainly focuses on relational data stream processing.

For heterogeneous data stream integration, DSMS potentially bring an expensive overhead for data transformation. Moreover, due to the schema-free nature of RDF data, the data structure of input data stream is not predictable in general. I.e.,

, in real world scenarios, we are frequently facing dynamically changing data and workload characteristics, e.g., a sensor could emit different types of messages based on the user requests. These changes impact the execution performance of continuous queries executed over data streams and the stability of the system.

In addition, the scenarios like [START_REF] Gyrard | Sensorbased linked open rules (S-LOR): an automated rule discovery approach for iot applications and its use in smart cities[END_REF][START_REF] Eiter | Detecting mobility patterns using spatial query answering over streams[END_REF][START_REF] Alaya | FRAMESELF: an ontology-based framework for the self-management of machine-to-machine systems[END_REF][START_REF] Ush-Shamszaman | Toward a smart society through semantic virtual-object enabled real-time management framework in the social internet of things[END_REF][START_REF] Kamilaris | A web of things based eco-system for urban computing -towards smarter cities[END_REF][START_REF] Ush-Shamszaman | On the need for applications aware adaptive middleware in real-time RDF data analysis (short paper)[END_REF][START_REF] Patel | On using the intelligent edge for iot analytics[END_REF] require the streaming service to have reasoning capabilities for advanced data analytics. An inference service generally produces, preferably in a sound and complet manner, implicit data from explicit data and knowledge. Such a service is usually costly on a computation point of view and not natively supported by standard data management systems, e.g.,

RDBMS.

In the last decade, the RDF stream processing (RSP) /reasoning community has contributed to the effort of tackling the above mentioned issues. Most of work either ignore the fact that the amount of data could be massive, or the ability of reasoning over RDF data stream. A common way to cope with performance issue or system scalability is to adopt a distributed approach. However, using distributed techniques for RDF stream processing/reasoning is still an emerging trend. In this thesis, we tackle the above-mentioned issues by developing a scalable, high performance stream processing system for real-time RDF stream processing and reasoning.

As the first step of our work, we start by investigating the related work of RDF stream processing and reasoning. In particular, we mainly concentrate on the state of the art for RSP benchmarks. A deep insight into RSP benchmark design gives us a preliminary view of basic conceptions and system design. After that, we shift to distributed stream processing over RDF data stream. For this part, our work covers distributed stream processing and SPARQL query optimization. Our approach aims at designing an adaptive, scalable, high performance RSP engine in distributed settings, namely, Strider. Then, we extend Strider to support online inference, i.e., RDFS and RDFS extended with sameAs. Finally, we proposed BigSR, a technical demonstrator for expressive real-time RDF stream reasoning. The main goal of BigSR is to verify the feasibility of applying modern Big Data techniques for real-time expressive and complex RDF stream reasoning (e.g., temporal Datalog and Answer Set Programming).

Use Case

This thesis is partially sponsored by the French national environmental project, Waves FUI # 17 [START_REF]Waves fui 17[END_REF]. The initial motivation of Waves is awareness of water as a finite resource. Waves aims to reduce water losses and provides an efficient solution for industrial water resource management. A robust water management system should be able to monitor water production and consummation for various regions, provides data analytic services like anomaly detection in real-time.

In the Waves context, we are processing data streams emanating from sensors distributed over the potable water distribution network of a resource management international company. For France alone, this company distributes water to over 12 million clients through a network of more than 100.000 kilometers equipped with thousands (and growing) sensors. Our system's main objective is to automatically detect anomalies, e.g., water leaks, from analyzed data streams. Obviously, the promptness and accuracy of our anomaly discoveries potentially impacts ecological (loss of cleaned up water) as well as economical (price of clients' consumed water) aspects.

In Waves scenarios, real-time data streams are emitted from various sensors located in France. The sensor observation covers water flow, temperature and chlorine level, etc. Each type of sensors provides its proper data format (i.e., CSV -Comma-Separated Values) of observation. We build an ontology for data conversion from relational CSV data to RDF data. Moreover, this ontology is also served as the input of our knowledge base for reasoning tasks. E.g., , some representative use cases in Waves are returning the difference of water flow in each sector for every 5 seconds ? Which sector has potential water leak anomaly in last 15 minutes, and which category of this leak belongs to? Efficiently handling such requirements is recognized as a difficult problem for DSMS, but it opens up many interesting topics for stream processing/reasoning and query optimization.

We regard Waves as the cornerstone of this thesis, and the results of this thesis also play an essential role for Waves. Note that even though Waves is originally motivated by the use case of water resource management, its final goal is to provide a platform for general RDF stream processing and reasoning in IoT context.

Contributions

The main contributions of this thesis are:

Survey of RSP performance evaluations

We conduct a survey and experiments to give an insight and comparisons of RSP engine. Based on existing RSP benchmark, we have proposed some new metrics RSP engine performance evaluation.

Hybrid Adaptive Distributed RDF Stream Processing engine.

We design a production-ready RSP engine for large scale RDF data streams processing which is based on the state-of-the-art distributed computing frameworks. Strider integrates two forms of adaptation. In the first one, for each execution of a continuous query, the system decides, based on incoming stream volumes, to use either a query compile-time (rule-based) or query run-time (cost-based) optimization approach.

The second one concerns the run-time approach and decides when the query plan is optimized (either at the previous query window or at the current one). An evaluation of Strider over real-world and synthetic data sets is provided.

2.3.3.

Massive RDF stream reasoning (RDF++ and sameAs) in the cloud.

We extend Strider to support reasoning services over RDFS plus the sameAs property with an intelligent knowledge base encoding and query rewriting techniques. It thus minimizes the reasoning cost, and guarantee high throughput and acceptable latency.

2.3.4. BigSR: An empirical study for real-time expressive RDF stream reasoning on modern Big Data platforms.

We build a connection between recent theoretical work on RDF stream reasoning to state of the art Big Data technologies (e.g., Apache Spark). We also try to combine stream reasoning (with complex temporal logics and recursion) with distributed computing. Then, we implement a reusable prototype to support a positive fragment of the LARS framework on two distributed systems, namely Apache Spark and Apache Flink. We also identify the pros and cons of BSP (Bulk Synchrounous Parallel) and RAT (Recort At a Time) for different scenarios, respectively. Finally, we conduct a series of evaluation and experimentation on various datasets, and through our experiments, we highlight an interesting inference expressiveness and scalability trade-off.

Publications

The related publications of this thesis are listed as follows:

• 

Thesis Outline

Background Knowledge

This chapter provides the background concepts for RDF, SPARQL and stream processing. In 3.1, we provide the fundamentals of RDF and SPARQL query processing. In Section 3.2, we discuss available techniques for the physical storage of RDF data. For semantic web knowledge base and reasoning in Section 3.3, we introduce the basic concepts of knowledge base, ontology and reasoning techniques.

After that, Section 3.4 presents the relevant notations about data stream models, the semantics of continuous query and the execution mechanisms of stream processing engine. Finally, Section 3.6 summarizes the main features of existing distributed stream processing engines.

RDF and SPARQL

Data on the Web is frequently represented using RDF, a schema-free graph data From graph theory aspect, the model of RDF triple can be considered as a directed edge e starts from vertex s to vertex o, and e is labeled by p. Hence, a set of triples

tt 1 , ...t n u form a directed graph G. Figure G 1 shows the RDF graph G 1 , where G 1 "
tpA, cityname, Bq, pA, isCapitalOf, Cq, pC, countryname, Dq, pA, hasP opulation, Bqu.

From our example, we see that the nature of schema-free gives RDF a flexible way to represent the knowledge. E.g., , it is easy to add more triples that describes A, or associate A to other entities. Such schema-less nature facilitates the data integration from heterogeneous resources.

We now recall the definitions given in [START_REF] Arenas | On the semantics of SPARQL[END_REF]. Assume that V is an infinite set of variables and that it is disjoint with I, B and L. SPARQL is the W3C declarative query language recommendation for the RDF format. We can recursively define a The semantics of SPARQL query is defined by mapping. A mapping µ is a partial function µ : V Ñ IBL. dompµq is called the domain of µ. Two solution mappings µ 1 and µ 2 are compatible, µ 1 " µ 2 , if and only if @?v P dompµ 1 qXdompµ 2 q, µ 1 p?vq " µ 2 p?vq. The union of two compatible mappings µ 1 X µ 2 is also a mapping.

The answer to a triple pattern tp for graph G is a bag of mappings Ω tp " tµ | dompµq " varsptpq, µptpq P Gu. Most commonly used operators on sets of mappings, e.g., join(') and unionX can be described as follow:

Ω 1 ' Ω 2 " tµ 1 Y µ 2 | µ 1 P Ω 1 ^µ2 P Ω 2 ^µ1 " µ 2 u Ω 1 Y Ω 2 " tµ | µ 1 P Ω 1 _ µ 2 P Ω 2 u
As previously-defined, a basic graph pattern (BGP) bgp " ttp 1 , ..., tp k u is a set of triple patterns. We have Ω bgp " Ω tp 1 ' ...Ω tp k . Considering the given example in this section, bgp={(?s isCapitalOf ?c), (?c countryname ?n)}. Ω bgp " Ω tp 1 ' Ω tp 2 .

In addition to BGP operator, SPARQL contains other operators like OPTIONAL and FILTER. Define the semantics of graph pattern expressions as function rr.ss D .

rr.ss D takes a graph pattern expression P (i.e., triple pattern or BGP pattern), an RDF dataset D and G an RDF graph in D as parameters and returns a set of mappings. The evaluation of graph pattern P is defined as follow:

P is a BGP, rrP ss D G " rrP ss G P " pP 1 AN D P 2 q, rrP ss D G " rrP 1 ss D G ' rrP 2 ss D G P " pP 1 OP T ION AL P 2 q, rrP ss D G " rrP 1 ss D G ' rrP 2 ss D G P " pP 1 U N ION P 2 q, rrP ss D G " rrP 1 ss D G Y rrP 2 ss D G
For a given mapping µ and a built-in condition R, we say µ satisfies R, denoted by µ ( R. The filter expression pP F ILT ER Rq, we have rrpP F ILT ER Rqss D G " tµ P rrP ss D G | µ ( Ru. Undirected Connected Graph. We now introduce the notion of Undirected Connected Graph (UCG) [START_REF] Stocker | Sparql basic graph pattern optimization using selectivity estimation[END_REF].

A graph g P G, where g is represented as an ordered pair g :" pV, Eq. V is the distinct set of triple patterns and E is the distinct set of triple pattern pairs. V and E correspond to the set of vertices and the set of edges in g, respectively. We call the subject, predicate and object are components of triple pattern. A triple pattern pair with a shared component refers to the join relation between two triple patterns. E.g., , the ordered pair e = ((?s isCapitalOf ?c), (?c countryname ?n)) means the relation obtained by the binary join of (?s isCapitalOf ?c) and (?c countryname ?n) on variable c.

Here, we use a more complex query for a better illustration. Let us consider query Q 1 with a BGP operator bgp 1 " ttp ?s isCapitalOf ?o1.

(tp 2 ) ?s cityname ?o2. pQ 1 q (tp 3 ) ?s hasPopulation ?o3.

(tp 4 ) ?o1 countryname ?o4. } The representation of BGP operator in UCG fashion helps us to construct the logical plan used in query execution, more details will be given in Chapter 7.

Storage of RDF Data

Before we shift the discussion of RDF stream model, we briefly cover the available approaches to store static RDF data. Compared to RDF stream processing engine, the development of RDF storage system is more mature. Some optimization technique such as data indexing and query optimization are widely-used in recent RDF stores.

A deep insight into these systems gives us some clues to design our own RDF stream processing engines.

In general, RDF data storage can be categorized by either centralized or distributed. Moreover, based on these two categories, the storage can be distinguished by either relational database (i.e., SQL) or non-relational database (i.e., NoSQL, graph database).

Centralized RDF store. The famous centralized RDF systems like Jena [START_REF] Carroll | Jena: Implementing the semantic web recommendations[END_REF],

Sesame [START_REF] Broekstra | Sesame: A generic architecture for storing and querying RDF and RDF schema[END_REF], Virtuoso [START_REF] Erling | Virtuoso: RDF support in a native RDBMS[END_REF], RDF-3X [START_REF] Neumann | x-rdf-3x: Fast querying, high update rates, and consistency for RDF databases[END_REF], RDFox [START_REF] Motik | Parallel materialisation of datalog programs in centralised, main-memory RDF systems[END_REF] use RDBMS as the foundation of data storage. Since domain of relational database has been well developed since 1970, storing or querying RDF data over relational database can benefit from the mature technique (e.g., vertical partitioning [], indexing and compression) of RDBMS.

E.g., , Hexasotre creates six indexes consist the permutations of subject, predicate and object in RDF triple. In RDF-3X and RDFox generate a set of indexes for all triple permutations, which leads a total of 15 distinct indexes for fast data access.

In additionally, RDFox encodes each RDF triple in 12 bytes integer which enables billions triples to be stored in main memory. Distributed RDF store. To enhance the system scalability, distributed approach is gaining more and more attention for the implementation of RDF data store. Most of distributed RDF stores possess shared nothing architecture. According to the summary in [START_REF] Schätzle | S2rdf: Rdf querying with sparql on spark[END_REF], we introduce the distributed RDF stores in three categories:

• Standalone distributed RDF stores are primarily dedicated and optimized for RDF data processing. E.g., , RDF-Trinity [START_REF] Zeng | A distributed graph engine for web scale rdf data[END_REF] relies on the main system architecture of Trinity [START_REF] Shao | Trinity: a distributed graph engine on a memory cloud[END_REF]. Trinity generates the query plan through its proxy and delivers to all the Trinity machine. Each Trinity machine holds a partition of data, and performs the query execution of the subplan of the original query.

The query evaluation in the Trinity cluster is coordinated by the proxy. Besides, RDF-Trinity models RDF data in key-value, adjacent list format. The query evaluation is done by exploring the RDF graph from one RDF node to another.

TriAD [START_REF] Gurajada | Triad: A distributed shared-nothing rdf engine based on asynchronous message passing[END_REF] uses Message Passing Interface for asynchronous query evaluation in distributed environment. It accelerates the distributed join execution through fully parallel, asynchronous message passing.

• Federation. The federation-based RDF stores use centralized RDF stores for subquery evaluation. Based on that, they add a layer of communication and scheduling to coordinate the query evaluation in the cluster. Partout [START_REF] Galárraga | Partout: A distributed engine for efficient rdf processing[END_REF] and DREAM [START_REF] Hammoud | Dream: Distributed rdf engine with adaptive query planner and minimal communication[END_REF] are two representative systems in this category. Partout and DREAM use RDF-3X to support the computation of the SPARQL query fragment. In addition, DREAM replicates a copy of the whole input dataset to avoid cluster shuffling.

• Built on top of Big Data framework. The systems in this category, [START_REF] Kim | From SPARQL to mapreduce: The journey using a nested triplegroup algebra[END_REF], [START_REF] Maali | Syrql: A dataflow language for large scale processing of RDF data[END_REF], [START_REF] Schätzle | Pigsparql: A SPARQL query processing baseline for big data[END_REF], [START_REF] Ravindra | Optimization of complex SPARQL analytical queries[END_REF], [START_REF] Schätzle | S2X: graphparallel querying of RDF with graphx[END_REF], [START_REF] Schätzle | S2rdf: Rdf querying with sparql on spark[END_REF] e.g., are built on top of available Big Data computing framework like Hadoop [START_REF] Shvachko | The hadoop distributed file system[END_REF] or Spark [START_REF] Zaharia | Resilient distributed datasets: A faulttolerant abstraction for in-memory cluster computing[END_REF]. [START_REF] Kim | From SPARQL to mapreduce: The journey using a nested triplegroup algebra[END_REF], [START_REF] Maali | Syrql: A dataflow language for large scale processing of RDF data[END_REF], [START_REF] Ravindra | Optimization of complex SPARQL analytical queries[END_REF] 

Semantic Web Knowledge Base (KB) and Reasoning

One important aspect that differentiates RDF from other non-relational data structure, is the ability to reason over the represented information through knowledge bases. The knowledge is derived from a set of ontology, which is usually expressed by RDF Schema (RDFS) [START_REF] Group | RDF Schema 1.1[END_REF] or Web Ontology Language (OWL) [START_REF] Group | Web Ontology Language[END_REF] fragments.

An ontology formalizes the description of classification networks and dedicates the structure of knowledge for various domains. We consider that a KB consists of an ontology, aka Terminological Box (Tbox), and a fact base, aka Assertional Box (Abox). The least expressive ontology language of the Semantic Web is RDFS. It allows to describe groups of related re-sources (concepts) and their relationships (proper-ties). RDFS entailment can be computed using 14 rules. But practical inferences can be computed with a subset of them. The one we are using is ρ df which has been defined and theoretically investigated in [START_REF] Muñoz | Minimal deductive systems for RDF[END_REF]. In a nutshell, ρdf considers inferences using rdfs:subClassOf, rdfs:subPropertyOf as well as rdfs:range and rdfs:domain properties. An RDF property is defined as a relation between subject and object resources.

RDFS allows to describe this relation in terms of the classes of resources to which they apply by specifying the class of the subject (i.e., the domain) and the class of the object (i.e., the range) of the corresponding predicate. The corresponding rdfs:range and rdfs:domain properties allow to state that respectively the subject and the object of a given rdf:Property should be an instance of a given rdfs:Class.

The property rdfs:subClassOf is used to state that a given class (i.e., rdfs:Class) is a subclass of another class. Similarly, using the rdfs:subPropertyOf property , one can state that any pair of resources (i.e., subject and object) related by a given property is also related by another property. E.g., , Figure 3.3 visualizes a fragment of LUBM [START_REF] Guo | Lubm: A benchmark for owl knowledge base systems[END_REF] ontology, Other ontology languages, OWL and its fragments, of the Semantic Web stack extend RDFS expressiveness, e.g., by supporting properties such as sameAs or owl:TransitiveProperty. Note that we mainly concentrate RDFS and owl:sameAs in this thesis.

There are two main approaches used to support inferences in KBs. The first approach consists in materializing all derivable triples before evaluating any queries.

It implies a possibly long loading time due to running reasoning services during a data preprocessing phase. This generally drastically increases the size of the buffered data and imposes specific dynamic inference strategies when data is updated. Besides, data materialization also potentially increases the complexity for query evaluation (e.g., ., longer processing to scan the input data structure). These behaviors can seriously impact query performance. The second approach consists in reformulating each submitted query into an ex-tended one including semantic relationships from the ontologies. Thus, query rewriting avoids costly data preprocessing, storage extension and complex update strategies but induces slow query response times since all the reasoning tasks are part of a complex query preprocessing step.

In a streaming context, due to the possibly long life-time of continuous queries, the cost of query rewriting can be amortized. On the other hand, materialization tasks have to be performed on each incoming streams, possibly on rather similar sets of data, which implies a high processing cost, i.e., lower throughput and higher latency. More details will be given in Chapter 8.

Stream Model and Continuous Query Processing

In this section, we formalize the basic conceptions of RDF Stream Processing (RSP),

i.e., the RDF stream model and the query semantics in a continuous context.

RDF Stream Model

A temporal annotation of a single RDF triple can be either time-point-based [START_REF] Gutiérrez | Introducing time into RDF[END_REF] or time-interval-based [START_REF] Lopes | Anql: Sparqling up annotated RDFS[END_REF]. Intuitively, time-point-based seems to be more redundant that time-interval-based.

Using time interval to assign the temporal annotation could be more expressive than using a single time-point, since a certain time-point is a special case of the time interval. Moreover, system like ETALIS [START_REF] Anicic | Stream reasoning and complex event processing in ETALIS[END_REF], EP-SPARQL [START_REF] Anicic | EP-SPARQL: a unified language for event processing and stream reasoning[END_REF] use time interval to handle complex event processing. However, time-point-based has an advantage for the applications like data-driven, reactive and low latency system. It allows data stream to be generated instantaneously. Instead of buffering and waiting the expiration of the time interval, the system can process the incoming data stream as soon as possible. In the above-mentioned example, for time-interval-based approach, the computing layer should wait until time point 12 is expired. On the other hand, time-point-based approach allows the system to continuously generate the result at each time point 10, 11, 12.

Continuous SPARQL Query Processing

To continuously process SPARQL query over RDF data stream, the first step is to extend standard SPARQL language to continuous and temporal annotation.

CQL [START_REF] Arasu | CQL: A language for continuous queries over streams and relations[END_REF] pioneers the stream processing over relational data stream. In C-SPARQL, the system identifies each data stream by an associated, unique IRI.

The IRI signifies where the stream source comes from. Notably, C-SPARQL implements Rstream as the R2S operator.

Execution Semantics for Stream Processing

To simply the further explanations in following chapters, we brief the main internal execution models of streaming system in this section. In SECRET [START_REF] Botan | SECRET: A model for analysis of the execution semantics of stream processing systems[END_REF], authors formalize the execution mechanism of stream processing engines. The evaluation over input data stream can be regarded as a loop:

T ick Ñ Report Ñ Content Ñ Scope
Tick refers to what drives a stream processing engine to take action on input data stream. Report defines the temporal conditions that the elements in the window are visible or not (for query evaluation and result reporting). Content captures the elements of input stream that are satisfied the given temporal condition of the window. Finally, Scope maps an application time value to a time interval which the input query should be evaluated. In this section, we mainly discus Tick model in SECRET.

Tick is a part of streaming engine's internal execution model. It basically indicates the system how to react or how to perform an action when the window state change.

Considering an input data stream S and a continuous query Q, there are three fashion that system ticks:

• Data-Driven. The system eagerly triggers the evaluation of Q when the arrival of new item in S is detected. CQELS [START_REF] Phuoc | A native and adaptive approach for unified processing of linked streams and linked data[END_REF], another famous RSP engine possesses this mechanism for the implementation. CQELS immediately launches the query execution when a new triple is arrived.

• Time-Driven. Where a the update frequency of time-based window triggers a query execution. E.g., , a parameterized C-SPARQL time-based window RANGE 10s STEP 5s triggers the query execution for every 5 seconds over the elements of the last 10 seconds.

• Batch-Driven. The new batch of data stream arrival, or the update frequency of time-based window triggers a query execution. In particular, Time-Driven can be regarded as a special case of Bath-Driven.

3.5. Datalog and Answer Set Programming (ASP)

Foundations of Datalog/ASP

A Datalog program is a finite set of rules. A rule is an expression of the form

R 1 pu 1 q Ð R 2 pu 2 q, ..., R n pu n q prq
Where, R 1 , ..., R n are relation names and u 1 , ..., u n are terms which can be constants, variables or functions. Each expression R i pu i q, i ě is called an atom, and the relation name R i is the predicate of R i pu i q.

We call the expression R 1 pu 1 q is the head of r, and R 2 pu 2 q, ..., R n pu n q form the body of r. T pX, Y q Ð RpX, Y q pr 1 q T pX, Zq Ð RpX, Y q, T pY, Zq pr 2 q P 1 consists of two rules r 1 , r 2 . r 1 is an exit rule which is used for the initialization of the recursion. Relation R is an extensional relation which represents the edge of the graph. r 1 derives T fat from each R fact. We call rule r 2 is a recursive rule since relation T appears in both the head and the body of rules. Program P 1 outputs relation T pX, Y q as the result, where @x P X, @y P Y , it exists at least one path from

x to y.

Answer Set Programming (ASP) can be regarded as an extension of Datalog. In addition to the fragment of Datalog program, an ASP program also supports the logical operators like term of function symbols and disjunction of atoms. A complete introduction to ASP can be found here [START_REF] Eiter | Answer set programming: A primer[END_REF].

LARS Framework for RDF Streams

In this section, we mainly introduce LARS [START_REF] Beck | LARS: A logic-based framework for analyzing reasoning over streams[END_REF], a theoretical framework for temporal Datalog/ASP evaluation.

Assume an atom set A " A I Y A E , where A I is a set of intensional atoms and A E is a set of extensional atoms disjoint from A I . In the rest part of this chapter, a term starting with a capital letter refers to a variable, otherwise it is a constant.

Definition 1 (Stream).

A stream is a pair S " pT, vq, where T is a timeline interval in N, and v : N Ñ 2 A E is an evaluation function such that vptq " H for t P NzT .

A stream S 1 " pT, v 1 q is a sub-stream of S " pT, vq, if T 1 Ď T , and v 1 pt 1 q Ď vpt 1 q for all t 1 P T 1 .

The vocabulary of RDF contains three disjoint sets of symbols: IRIs I, blank nodes B and RDF literals L. An RDF term is an element of C " I Y B Y L, and and RDF triple is an element of C ˆI ˆC. By convention, an RDF triple ps, p, oq can be also written as a fact spoq, if p " rdf:type, or pps, oq, otherwise. An RDF graph is a finite set of RDF triples. Then, an RDF stream is a stream restricting A E to the set of all RDF triples, i.e., at each time points, vptq evaluates to an RDF graph.

Definition 2 (RDF Stream). A RDF stream is a stream S " pT, vq such that vptq Ď C ˆI ˆC for every t P T .

Definition 3 (Window function).

A window function w takes a stream S " pT, vq as input and returns a sub-stream S 1 , where S 1 " pT 1 , v 1 q. where T 1 Ď T , @t 1 P T 1 , v 1 pt 1 q Ď vpt 1 q. S 1 selects the most recent atoms in the n time points. Definition 4 (Time-based Window). Consider a stream S " pT, vq, T " rt min , t max s and a pair pl, dq P N Y t8u. A time-based window w ι pS, t, l, dq returns the sub-stream S 1 of S that contains all the elements of the last l time units, and w slides with step size d.

LARS distinguishes two types of streams -S and S ‹ . S represents the currently considered window S, and S ‹ is called fixed input stream. To meet the real-time feature, we consider that S as the type of input stream, i.e., we do not assume that the system is capable of loading the stream S " pT, vq, T " rt min , t max s from t min to t max directly. The semantics of LARS programs is given by the notion of answer stream. For a positive LARS program, its answer stream is unique.

Distributed Stream Processing Engines (DSPEs)

A stream processing engine can be either self-contained or built on top of an existing framework. For the purpose of high performance, consistency, fault tolerance and easy-to-use, Instead of building a streaming service from scratch, we use available distributed stream processing framework as the computing layer. Such systems are better designed and operated upon when implemented on top of robust, state-ofthe-art engines. This section lists the recent Distributed Stream Processing Engines (DSPEs) of general use cases.

Some engineering concepts for DSPEs. Before we introduce the DSPEs, we first illustrate some related engineering concepts:

• Streaming Models in DSPEs. At the physical level, a computation model in DSPEs has two principle classes: Bulk Synchronous Parallel (BSP) and Record-at-a-time (RAT) [START_REF] Venkataraman | Drizzle: Fast and adaptable stream processing at scale[END_REF]. Recall the definitions given in previous parts of this section, a stream processing engine uses the concept of Tick to drive the system in taking actions over input streams, i.e., Data-Driven, Time-Driven and Batch-Driven. In general, the physical BSP is associated to Time-Driven and/or Batch-Driven models. E.g., Spark Streaming and Google DataFlow with FlumeJava [START_REF] Akidau | The dataflow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing[END_REF] adopt this approach by creating a micro-batch of a certain duration T . That is data are accumulated and processed through the entire Directed Acyclic Graph (DAG) within each batch. The RAT model is usually associated to the logical Data-Driven model (although Time-Driven and Batch-Driven are possible) and prominent examples are Storm [START_REF] Toshniwal | Storm@twitter[END_REF] and Flink [START_REF] Carbone | Apache flink TM : Stream and batch processing in a single engine[END_REF]. The RAT/Data-Driven model provides lower latency than BSP/Time-Driven/Batch-Driven model for typical computation. On the other hand, the RAT model requires state maintenance for all operators with record-level-granularity. This behavior obstructs system throughput and brings much higher latencies when recovering after a system failure [START_REF] Venkataraman | Drizzle: Fast and adaptable stream processing at scale[END_REF]. For complex tasks involving lots of aggregations and iterations, the RAT model could be less efficient, since it introduces and an overhead for the launch of frequent tasks. A more detailed comparison between BSP on Spark and RAT on Flink will be given in Chapter 9.

• Message Delivery Guarantee. A stream processing engine can be abstracted as producer-consumer model. Producer generates data stream continuously, and consumer receives input data stream and performs the next computations. (1) If the consumer always receives at least once the message from producer (i.e., duplicated message delivery may exist), we say that the engine enables to guarantee at-least-once semantic. [START_REF]Linked data[END_REF] If the consumer at most receives once the message from producer (i.e., message may be lost during the transmission), we say that engine has at-most-once semantic. (3) If the consumer always receives one and only once the message from producer, we thus say that the engine possesses exactly-once semantic.

• Backpressure. When the consumer is unable to process the messages delivered from the producer, the data will be accumulated in consumer's buffer or causes memory leak in the consumer. Worse, the operations of downstream services may also be affected. Backpressure is thus a mechanism which is designed to contend this over-pressure. If input stream is too fast to be consumed, the consumer will send a notification to the producer to slow down the stream generation.

We now use Table 3.1 to summarize the main differences of above-mentioned DSPEs. Spout is the vertex with in-degree equals to 0 in Storm's topology, it represents the data stream source which emit tuple to downstream operators. Bolt consumes data from upstream operators and emits the evaluated results to downstream operators.

Storm

Once the topology of a streaming application is defined, Storm is able to handle the distributed of tasks to computing nodes in the cluster (Figure 3.4).

Spark & Spark Streaming Spark is a MapReduce-like cluster-computing framework that proposes a parallelized fault-tolerant collection of elements called Resilient Distributed Dataset (RDD) [START_REF] Zaharia | Resilient distributed datasets: A faulttolerant abstraction for in-memory cluster computing[END_REF]. An RDD is divided into multiple partitions across different cluster nodes such that operations can be performed in parallel. Spark enables parallel computations on unreliable machines and automatically handles locality-aware scheduling, fault-tolerant and load balancing tasks. The computation is described as a DAG of operators and is partitioned into different stages. 

Related Work

RDF stream processing was introduced [START_REF] Barbieri | Continuous queries and real-time analysis of social semantic data with c-sparql[END_REF] in order to bridge the gap between stream and RDF data processing. The two main consensus motivations of materializing data stream as RDF graph nodes are: (i) facilitate data integration from heterogeneous stream sources; (ii) enable stream reasoning for advanced data analytic. The design and benchmarking of a RDF Stream Processing (cf. Section 3.4.1) system can be quite challenging:

• The stream processing model does not have a uniform paradigm so far. Normally, a streaming system usually possesses its own streaming model and query language. This makes it difficult to design a streaming system, since no uniform standards can be followed. Besides, benchmark across systems should consider the diversity of execution mechanism between different streaming system.

• Due to fast generation rates and schema free natures of RDF data streams, a continuous SPARQL query usually involves intensive join tasks which may rapidly become a performance bottleneck, thus requiring dedicated optimization technique.

• Compared to continuous SPARQL query processing, RDF stream reasoning involves more complexity to support real-time inference, e.g., query rewriting, data materialization, recursion and fine-grained timestamp manipulation.

In this chapter, we present how recent contributions address above-mentioned challenges, the presentation is organized as follow: Section 4.1 gives an overview of existing RSP benchmarks. Section 4.2 showcases the implementations of the most-known RSP engines. Finally, Section 4.3 gives a survey of state-of-the-art systems that are tailored for enhancing reasoning ability and language expressiveness over RDF data stream.

RSP Benchmarks

Linear Road [START_REF] Arasu | Linear road: A stream data management benchmark[END_REF] is one of the earliest benchmark for stream processing system.

It is the first benchmark which formalizes the performance metrics, evaluation methodologies and infrastructure of DSMSs. Linear Road simulates a context of expressway toll system in a city: the city contains expressways, vehicle will be charged with tolls based on the traffic congestion and accident occurrence. The benchmark generates both dynamic data (e.g., vehicle positions, accident information, etc.)

and static data (e.g., vehicle information, toll system, etc.). Instead of interlinking dynamic data and static data, Linear Road separates them into two independent parts, and the benchmark considers query latency and maximum query load as two primary performance metrics for DSMSs.

SRBench [START_REF] Zhang | Srbench: A streaming RDF/SPARQL benchmark[END_REF] 

RSP Systems

We divide the introduction of RSP systems into two parts: centralized and distributed design. This section starts with a summary of the most popular centralized RSP engines, then a quick introduction of distributed RSP engines will also be given. The BlackBox approach delegates the query processing to existing systems (e.g., SPARQL engine), and achieves continuously SPARQL query processing by adding a modular for data flow management. An intuitive advantage of BlackBox is that it requires less efforts for implementation. However, the defects are: (1) each subcomponent has its own required data structure, therefore, data conversions between different sub-components are expensive. E.g., , based on our experience, C-SPARQL could spend 40% of query execution time to convert the output of ESPER to the input of Jena. (2) Using SPARQL endpoint for query processing may suffer from poor performance. Since standard SPARQL engine is tailored for querying static RDF data, some negligible overheads for static data processing becomes critical in streaming context, e.g., engine initialization, data pre-processing.

Different from BlackBox approach, WhiteBox relies less on available systems and has more control of data access for different sub-components. It thus increases the difficulty of implementation. On the contrary, WhiteBox approach makes it possible to internally optimize the data processing in each sub-component. This is very import to improve the system performance and scalability.

In the rest of this section, we provide an extensive discussion on the state-of-the-art RSP systems. Esper buffers input data stream and delivers it to a SPARQL engine. After that, the SPARQL engine triggers the query execution periodically and output the query results.

C-SPARQL

CQELS

CQELS is developed in WhiteBox fashion to have a low-level data access. CQELS is the first RSP system which emphasizes the optimization of continuous SPARQL query processing. 

Distributed RSP systems

Distributed RDF stream processing is still an emerging area. Current implementation of distributed RSP engines still stays in the scientific stage for the purpose of technical demonstration. In this section, we introduce two distributed RSP systems: CQLES-Cloud and Katts. CQELS-Cloud. The centralized CQELS engine uses single thread for query evaluation (cf. Section 7.3 for more details). Consequently, CQELS does not scale up by adding more computing resources. To tackle this issue, and to cope with the use case that incoming data stream is massive, a distributed version of CQLES is proposed, namely CQLES-Cloud [START_REF] Phuoc | Elastic and scalable processing of linked stream data in the cloud[END_REF]. CQELS-Cloud is the first RSP system which mainly focuses on the engine elasticity and scalability. The whole system is based on Apache Storm. Firstly, CQELS-Cloud compresses the incoming RDF streams by dictionary encoding in order to reduce the data size and the communication in the computing cluster. Instead of evaluating the continuous SPARQL query in a centralized, blocking way, CQELS-Cloud maps query logical plan into Storm topology for parallel query evaluation. Practically, CQLES-Cloud inherits the main spirit of optimization techniques in CQLES, e.g., dictionary encoding, multi-way hash joins.

Katts is another distributed RSP engine based on Storm. To reduce the network communication in Storm cluster, Katts [START_REF] Fischer | Scalable linked data stream processing via network-aware workload scheduling[END_REF] uses METIS [START_REF] Lab | Serial Graph Partitioning and Fill-reducing Matrix Ordering[END_REF] to optimize the partitioning of Storm topology. The implementation of Katts [START_REF] Fischer | Scalable linked data stream processing via network-aware workload scheduling[END_REF] is relatively primitive, it is more or less a platform for algorithm testing but not an RSP engine. The main goal of Katts' design is to verify the efficiency of graph partitioning algorithm for cluster communication reduction.

Datalog, Answer Set Programming, and RDF Stream Reasoning

To obtain more power of expressiveness for RSP, a natural way is to add the reasoning capability to existing RSP engine. In [START_REF] Valle | A first step towards stream reasoning[END_REF], motivated by IoT use cases of smart city, the authors first proposes the study to combine reasoning techniques with data streams. Although the original idea of RDF stream reasoning is proposed since a decade, the development of reasoning over RDF stream is still in its infancy.

Systems like C-SPARQL or StriderR [START_REF] Ren | Strider r : Massive and distributed RDF graph stream reasoning[END_REF] allow reasoning of RDFS++ and owl:sameAs over RDF streams, however, they still have limit expressiveness on temporal logical operators, e.g., the combination or even nesting of window operators. Moreover, the support of recursion is also missing. In this section, we consider related work in the context of RDF stream reasoning and Datalog engines. RDF Stream Reasoner. TrOWL 1 [START_REF] Thomas | TrOWL: Tractable OWL 2 Reasoning Infrastructure[END_REF][START_REF] Pan | Tractable approximate deduction for OWL[END_REF] is one of the first system which pioneers RDF stream reasoning. The stream reasoner in TrOW is based on a truth maintenance system. TrOWL is thus capable to approximately compute and maintain the justification of inferred results on-the-fly. TrOWL provides justifications for atomic concept subsumption, atomic class assertion and atomic object property assertion.

The goal of the open source ELK reasoner [START_REF] Kazakov | The incredible elk[END_REF] is to support the OWL 2 EL profile.

It is part of the ConDOR project 2 which investigates novel "consequence driven" reasoning procedures. Even though ELK is not originally tailored for RDF stream reasoning, we consider that LiteMat could rely on ELK's TBox classification facilities.

However, once LiteMat's encoding are performed, we do not need rely on any other reasoners, e.g., [START_REF] Thomas | TrOWL: Tractable OWL 2 Reasoning Infrastructure[END_REF][START_REF] Glimm | Optimising ontology classification[END_REF].

Both StreamRule [START_REF] Mileo | Streamrule: A nonmonotonic stream reasoning system for the semantic web[END_REF] and its recent parallelized (single machine but multi- Laser [START_REF] Bazoobandi | Expressive stream reasoning with laser[END_REF] and Ticker [START_REF] Beck | Ticker: A system for incremental asp-based stream reasoning[END_REF] are both stream processing systems based on the LARS framework but do not concentrate on scalability. Ticker concentrates on incremental model maintenance and sacrifices performance by relying on an external ASP engine (Clingo). Laser also proposes an incremental model based on time interval annotations which can prevent unnecessary re-computations. Although Laser claims to represent a trade-off between expressiveness and data throughput, it cannot scale the way BigSR enables to. This is mainly due to Laser's inability to distribute stream processing.

[77] is one of the most recent work concentrating on RDF stream reasoning with a distributed approach. The paper aims to check the result consistency with massive, complex RDF data stream. The authors propose two approaches to achieve this goal:

(1) to computes the closure of Negative Inclusions (NIs) of DL-Lite ontologies, then Other Datalog Solvers. Logiblox [START_REF] Aref | Design and implementation of the logicblox system[END_REF] is a single-machine commercial transactional and analytical system. Its query language, namely LogiQL [START_REF] Green | Logiql: A declarative language for enterprise applications[END_REF], is a unified and declarative query language based on Datalog equipped with incremental maintenance. RDFox [START_REF] Motik | Parallel materialisation of datalog programs in centralised, main-memory RDF systems[END_REF] is a centralized, main-memory RDF store with support for parallel Datalog reasoning and incremental materialization maintenance. None of these systems consider stream processing.

Myria [START_REF] Wang | Asynchronous and fault-tolerant recursive datalog evaluation in shared-nothing engines[END_REF] and BigDatalog [START_REF] Shkapsky | Big data analytics with datalog queries on spark[END_REF] are both distributed datalog engines that perform on shared-nothing architectures. The former is implemented on its parallel processing framework and interacts with PostgreSQL [START_REF] Stonebraker | The design of postgres[END_REF] databases for write and read operations.

Much of the effort in the datalog engine of Myria has been concentrated on distributing rule processing in a fault-tolerant manner. BigDatalog implements a parallel semi-Naïve datalog evaluation on top of Spark. Neither Myria nor BigDatalog support stream processing.

RSP Performance Evaluation

Introduction

This chapter starts by introducing the general approaches for RSP benchmarking.

The main goals of this chapter are: (i) to get familiar with the architectures and the execution mechanisms of existing RSP systems; (ii) and to identify the proper performance metrics for the design of RSP benchmarks. This chapter can be considered as the cornerstone for the rest of our works, i.e., design, implement and evaluate our native RSP engines for scalable RDF stream processing in a distributed setting.

This chapter consists of 4 sections. In Section 5.2, we first choose C-SPARQL and CQELS, two well-know RSP systems as our evaluation baseline. We discuss about the execution mechanisms on C-SPARQL and CQELS, which illustrate the connections between different execution mechanisms to the corresponding evaluation approaches.

Then, we introduce a deeper insight of available RSP benchmark by briefly covering their the pros and cons. In Section 5.3, we present our own infrastructure which includes data stream generator, continuous SPARQL queries and performance metrics monitoring for the experiments. After that, Section 5.4 gives the experiments results with some formal discussions. Finally, we conclude the work of this chapter in Section 5.5.

C-SPARQL, CQELS and RSP Benchmarks

In this section, we first recall some basic features of C-SPARQL, CQELS, and the involved RSP benchmarks for performance evaluation. C-SPARQL and CQELS represent, at the time of writing this thesis, certainly the two most popular RSP engines. Each of the mature engines proposes its own continuous query language extensions to query time-annotated triples, and employs a specific RSP mechanism. Since C-SPARQL and CQELS are two centralized RSP systems, to simplify the discussion, we distinguish two kinds of RSP mechanisms in this section, i.e., time-driven and data-driven for C-SPARQL and CQELS, respectively. The time-driven mechanism periodically executes SPARQL queries within a time-based or triple-based window. Whereas, the data-driven mechanism executes SPARQL queries immediately after the arrival of new data streams.

Other RSP benchmarks, such as SRBench, CSRBench and YABench are not considered performance evaluations. They are thus not in the scope of the discussion for this chapter. As introduced in 4.1, although LSBench and CityBench cover performance evaluation, they still miss some important performance metrics for the evaluation baselines, e.g., stream rate, window size, and proper measurement of memory usage.

Note that we do not propose a new benchmark for RSP engines. This chapter aims to deeply understand the performance of C-SPARQL and CQELS, which also helps us to design our own RSP engines.

Evaluation Plan

In our experiments, we resolved to use our own data generator for two main reasons: first, to be able to control the size of the generated data streams and, second, to control the data content in order to check the results correctness. In particular, we use both streaming and static data related to the Waves' use case, i.e., , the domain of water resource management. The logical data model is presented in Figure 5.1. The dynamic data describes sensors observations and their metadata, e.g., the message, the observation and the assigned tags. A message basically contains an observation, and we set a fixed number of tags (hasTag predicate) for each observation. For each 50 flow observations, we include a chlorine observation. The static data provide detailed information about each sensor, namely the label, the manufacturer ID, and the sector ID to which it belongs to in the potable water network.

We define a set of queries

Q " tQ 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 u of increasing complexity,
where Q 1 , ..., Q 5 operate over streaming data, and Q 6 integrates static data as background knowledge. These queries involve different SPARQL operators (e.g., FILTER, UNION, etc.) and are sorted in ascending order based on the execution complexity (e.g., complex queries involve more query operators). Only the time-based window is addressed in all these queries. As for the last query Q 6 , we compare the behavior of RSP engines when varying the size of static data. Details and pseudo code of the predefined queries are available on Github1 . They can be summarized as • Q 1 : Which observation involves chlorine value?

• Q 2 : How many tags are assigned to each chlorine observation?

• Q 3 : Which observation ID has an identification ending with "00" or "50"?

• Q 4 : Which chlorine observation possesses three tags?

• Q 5 : Which observation has an identification that ends with "00" or "10" and how many tags assigned to this observation?

• Q 6 : What is the sector, manufacturer, and assigned label of each chlorine observation?

Performance metrics

Let us denote the input parameters by X={stream rate, number of triples, window size, number of streams, static data size}, and the set of output metrics by Y ={execution time, memory consumption}. We next detail each of these parameters.

-X: (1) stream rate. The time-driven mechanism consists in executing periodically the query with a frequency step specified in the query. This frequency, specified in STEP clause, can be time-based (e.g., every 10 seconds) or tuple-based (e.g., every 10 triples). The query is periodically performed over the most recent items. The keyword RANGE defines the size of these temporary items. Just like the frequency step, the window size can be time or tuple-based. In case of time-based window, the execution time and memory consumption are closely dependent on stream rate.

Increasing the stream rate makes the engines, such as C-SPARQL, process more data for each execution. The frequency step indicates the interval between two successive executions of the same query. Therefore, input stream rate should not exceed the engine's processing capacity, otherwise the system has to store an always growing amount of data.

Example has already been given in related work. -X: (2) number of triples.

The stream rate is not an appropriate factor to be considered for the data-driven mechanism because the query execution and the data injection are performed in parallel. In another words, it is not feasible to precisely control the input stream rate.

In this context, we need to once feed the system with a fixed number of triples, and that is why we define an additional parameter called number of triples N . A bigger N generates a smaller error rate, but N should remain under a given threshold to respect the processing limitations of the RSP engines. E.g., in CQELS, based on our experience, if N is too large, the query evaluation will be blocked or the system even get crashed. Such a behavior signifies that the data flow management is not well designed in CQELS, in fact it seems that an important feature likes back pressure is still missing.

-X: (3) window size. We use window size as a performance metric for RSP engines. Note that the window size (RANGE) is closely related to the volume of the queried triples for each execution of the query. According to our preliminary experiments, the window size has marginal impact on the performance of CQELS.

Thus, we do not consider this metric when evaluating CQELS.

-X: (4) number of streams, [START_REF] Alaya | FRAMESELF: an ontology-based framework for the self-management of machine-to-machine systems[END_REF] 

Experiments

All experiments are performed on a laptop equipped with Intel Core i5 quad-core processor (2.70 GHz), 8GB RAM, the maximum heap size is set to 2 GB, running Windows 7, Java version JDK/JRE 1.8. The formal evaluation is done after a 1-to-2-minutes warm-up period with relatively low stream rate.

Time-driven: C-SPARQL

We conducted our experiments over C-SPARQL by testing the previously defined queries. We measure the average value of twenty iterations for query execution time and memory consumption. In Figure 5.2 (a), one can see that the five curves exhibit approximately a linear trend (up to a given threshold concerning the stream rate). For each query, the linear trend can be maintained only when the stream rate is under a given threshold.

For all five queries, C-SPARQL normally operates when its execution time is smaller than one second, which is also the query preset STEP value. Let us denote by Rate max ptriples{sq the maximum stream rate that can be accepted by C-SPARQL for a given query. Rate max represents the maximum number of triples that can be processed per unit time. Table 5.1 shows the Rate max for each query.

Query

Q 1 Q 2 Q 3 Q 4 Q 5
Rate max (triples/s) « 55000 « 40000 « 25000 « 16000 `« 16000 In some cases, queries require data from multiple streams. In Since the Java Virtual Machine executes the GC lazily (in order to leave the maximum available CPU resources to the application), using the maximum memory allocated during execution is not an appropriate way to measure the memory consumption. Practically, the processing of a simple query, while allocating far For query Q 6 , memory peak varies marginally while increasing static data size, but the minimum consumed memory is directly impacted. One possible explanation is that C-SPARQL produces additional objects to process static data, and keeps these objects as long-term in memory.

Data-driven: CQELS

This section focuses on the performance evaluation of CQELS. The variant parameters are number of triples, number of streams, and static data size. Q 4 and Q 5 are not included in this evaluation since CQELS does not support the timestamp function (i.e., function that performs basic temporal filtering on the streamed triples).

Execution Time Since CQELS uses a so-called probing sequence (for multi-way hash joins) to support its query evaluation, getting the running time for each query execution is not experimentally feasible. Thus, we evaluate the global execution time of N triples for CQELS. More precisely, we keep the same strategy as LSBench, i.e. should also be controlled within a certain range to prevent the engine from crashing (c.f. "Memory Consumption" part of CQELS). Queries Q 1 , Q 2 , Q 3 contain chain patterns (join occurs on subject-object position) that select chlorine observation:

{T 1 : ?observation ex:observeChlorine ?chlorineObs . T 2 : ?chlorineObs ex:hasTag ?tag . }. Pattern T 1 returns all results by matching the predicate "observeChlorine", then T 2 filters among all selected observations in T 1 those which have been assigned tags. In Figure 5.5 (a), note that there is no significant difference between Q 2 and Q 3 .

Based on Q 2 , the query Q 3 adds a "FILTER" operator to restrict that preselected observations which have an ID ending by "00" or "50". This additional filter in Q 3 slightly influences the engine performance, which lets suggest that CQELS is very efficient at processing "FILTER" operator. As the dotted line Q 1 1 , it represents Q 1 without the pattern T 2 . Its corresponding execution time is reduced to one-six times compared with Q 1 . Indeed, the pattern T 2 plays a key role in term of execution time.

Without T 2 , CQELS will return the results immediately if T 1 is verified, but pattern T 2 makes the engine wait till T 2 is verified.

CQELS supports queries with multi-streams. It allows to assign the triple patterns which are only relative to the corresponding stream source. CQELS requires that the associated stream source (i.e., URI) for each triple pattern must be explicitly indicated.

This property gives the engine some advantages to process complex queries. Each triple just needs to be verified in its attached stream source. However, C-SPARQL has to repeat verification on all presenting streams for the whole query syntax, and this behavior leads to a waste of computing resources. Due to data-driven mechanism, serious mismatches occur in output for a multi-streams query, especially when the query requests synchronization among the triples. Asynchronous streams are illustrated in our GitHub2 .

Suppose that we have two streams, S 1 and S 2 , sent sequentially (due to the datadriven approach adopted by CQELS) into the engine. If the window size defined on S 1 is not large enough, ?observation in pattern T 2 will not be matched with ?observation in T 1 . This problem can be solved by defining a larger window size in T 1 with a small number of streams. In our experiments, we carry out the multi-streams test by constructing two streams on Q 1 , Q 2 and Q 3 . For Q 1 , with two streams, CQELS spent approximately 26s to process p2ˆq 10 5 triples, that is just 30% more than the single stream case. To conclude, CQELS gains some advantages in term of execution time to process queries with multi-streams. However, the output may also be influenced by the asynchronous behavior in multi-stream context. Note that C-SPARQL does not suffer from the streams synchronization since it follows batch-oriented approach.

In Figure 5.5 (b), the curve gives the total execution time(s) for 1.260.000 triples.

The execution time for N triples slightly changes while increasing the size of Static Data from 10MB to 50MB. The result shows that CQELS is efficient for processing static data of a large size.

Memory Consumption As we directly send N triples into the system at once, CQELS's memory consumption does not behave as C-SPARQL (which follows a periodic pattern). Generally, the memory consumption on CQELS keeps growing by increasing the number N of triples. As mentioned in the previous section, N should not exceed a given threshold. If N is very large, the memory consumption will reach its limit. In this situation, latency on query execution will increase substantially.

Furthermore, since serious mismatch occurs on multi-streams query, X = Number of Stream is not considered as a metric for memory consumption. We evaluate the peak of memory consumption (MC) during query execution. The trend increases over time, where M C reaches the peak just before the end of query execution. The consumed memory keeps growing to the limited heap size, i.e. the GC could clear the unused objects in a timely manner. This behavior is possibly caused by the built-dictionary for URI encoding [START_REF] Phuoc | A native and adaptive approach for unified processing of linked streams and linked data[END_REF]. 

Result Discussion & Conclusion

As we generate different streaming modes for time-driven (C-SPARQL) and datadriven (CQELS) engines, the memory consumption is not comparable between them.

This section mainly derives a discussion on query execution time based on observed results. It is about a simple comparison between C-SPARQL and CQELS.

It is not obvious to compare the performance of different RSP engines, since each of them has a specific execution strategy. According to [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF] and our experiments, we list the following conditions to support a fair cross-engines performance comparison:

(i) the engine results should be correct, at least comparable [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF]. We remind that the untypical behavior of C-SPARQL occurs when the incoming stream rate exceeds the threshold. Even if the engine still produces results, it is meaningless to measure the execution time; (ii) The execution time for different RSP engines should associate the same workload. As C-SPARQL uses a batch mechanism, it is easy to control the workload of the window operator. However, the data-driven eager mechanism practically makes infeasible the workload control. Therefore, we choose t " T N , the average execution time per triple to support our comparison. T is the total execution time for N triples. Note that t marginally changes when varying the metrics defined in section 5.3.1; (iii) The engine warming up is also recommended. We inject the "warming up" stream (with a relatively low stream rate) into the system before the formal evaluation. 

Average execution time per triple (millisecond

) RSP engine Q 1 Q 2 Q 3 Q 6 (50MB
) of Q 1 , Q 2 , Q 3 and Q 6 .
Table 5.2 shows that C-SPARQL outperforms CQELS when dealing with queries

Q 1 , Q 2 and Q 3 .
This can be explained by the chain query pattern existing in Q 1 , Q 2 and Q 3 , which forces CQELS to repeat the verification on matching condition for the whole window. This behavior significantly hinder the engine performance. For Q 6 , CQELS is almost 27 times faster than C-SPARQL. It shows its high efficiency to process queries with static data.

Finally, we summarize our experiment over three aspects:

• 1) Functionality support. Since C-SPARQL uses the Sesame/Jena APIs during query processing, it supports most of the SPARQL 1.1 grammar. In contrast, as CQELS is implemented in a native way, it supports less operations than C-SPARQL, e.g., timestamp function, property path, etc.

• 2) Output correctness. As mentioned in section 5.4.2, CQELS suffers from a serious output mismatch in the multi-stream context. This is due to the eager execution mechanism and asynchronous streams. C-SPARQL behaves normally with multi-stream queries since it is characterized by a time-driven mechanism. As a matter of fact, real use cases often require concurrency of join from different stream sources. In this context, C-SPARQL takes the advantages of correctness and completeness of output results.

• 3) Performance. C-SPARQL shows stability with complex queries. However, in practical applications, input stream rate should be controlled at a low level to guarantee C-SPARQL's output correctness. Besides, C-SPARQL has scalability problem when dealing with static data. CQELS takes advantage from its dictionary encoding technique and dynamic routing policy, and thus, is efficient for simple queries and is scalable with static data. Based on the experience of this work, we have accumulated a lot of experience for RSP engine performance evaluation. Since the benchmark for distributed RSP engine is still missing, we refer to Yahoo's benchmark. Yahoo's DSPE benchmark omits the impact fact like window size, number of streams, stream rate, etc. And the memory consumption is also not in the scope of the consideration, since this metric is practically difficult to measure in a precise way. In the rest part of this thesis, all the experiments based on Yahoo's benchmark, i.e., we regard system throughput and latency as the main performance metrics. Be aware that the reason why we abandoned existing RSP performance benchmarking systems [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF][START_REF] Ali | Citybench: A configurable benchmark to evaluate RSP engines using smart city datasets[END_REF] is that, none of them is tailored for massive data stream. This limitation is contrary to our original intention of using distributed stream processing framework to cope with massive RDF stream.

Yahoo

6. Strider Architecture CQELSCloud and Katts, the logical query plan is determined at compile time. Such a behavior can hardly promise long-term efficiency and reliability, since there is no single query plan that is always optimal for a given query.

In this chapter, we provide a high-level view of Strider's architecture, the core stream management component of the Waves project. Strider is not just a tailored RDF stream processing engine for IoT usage purpose, but also aims to handle general use cases for RDF stream processing.

The key implementation goal of Strider consists in efficiently handling massive incoming data streams and supporting advanced data analytics services like anomaly detection. Strider has been designed to guarantee important industrial properties such as scalability, high availability, fault-tolerant, high throughput and acceptable latency. These guarantees are obtained by designing the engine's architecture with state-of-the-art Apache components such as Spark and Kafka. To cope with the above-stated problems, Strider comes with a capability of optimizing logical query plan according to the state of data streams.

In Section 6.2, we detail the principal components of Strider and its properly defined grammar for continuous SPARQL query processing.

6.2. System Architecture 6.2.1. Syntax Listing 6.2 introduces a running example that we will use throughout this chapter and Chapter 7. The example corresponds to a query encountered in the Waves project, i.e., query Q 8 continuously processes the messages of various types of sensor observations. The semantic of this query can be interpreted as: return all the observation ID of each sensor which measures water flow, temperature, and chlorine level.

We introduce new lexical rules for continuous SPARQL queries which are tailored to a micro-batch approach. The query syntax we use in Strider is defined as follow: ? o1 rdf : type cuahsi : flow ( tp4 ) .

StreamingClause ::" 'Streaming 1 p'W indow 1 |'Slide 1 |'Batch 1 q W indow ::" pSlidingW indowq T imeunit ::" p'M inutes 1 |'Seconds 1 |'M illiseconds 1 q RegisterClause ::" 'Register 1 p'QueryId 1 |'Sparql 1 q STREAMING { WINDOW [
? o2 rdf : type cuahsi : temperature ( tp5 ) .

? o3 rdf : type cuahsi : chlorine ( tp6 ) . }] } Listing 6.1: Strider's query example (Q 8 )

The Current implementation of Strider covers the most commonly used operator of SPARQL 1.1, we list all supported operators as follow:

• Query types: Select, Construct, Ask The REGISTER clause is used to register standard SPARQL queries. Each query is identified by an identifier. The system allows to register several queries simultaneously in a thread pool. This is the motivation of thread pool: Thus by sharing the same application context and cluster resources, Strider launches all registered continuous SPARQL queries asynchronously by different threads.

Note that we do not expose the stream URI for the users as the other RSP engines do. Based on our experience, we find that exposing such parameters to the users increases the difficulties of system deployment and tuning. Such inconvenience may not be significant for a centralized system since the system setup is far less complicated. This layer emits messages for the streaming layer which executes registered queries.

Architecture Overview

The sensor's metadata are converted into RDF events for data integration purposes.

We use Kafka to design the system's data flow management. Kafka is connected 

RDF to RDBMS Mapping

We now briefly cover the mapping from RDF to RDBMS in Strider. In general, to enable SPARQL query processing on Spark, Strider:

• parses a query with Jena ARQ and obtains a query algebra tree in the Parsing layer.

• reconstructs the algebra tree into a new Abstract Syntax Tree (AST) based on the Visitor model.

• pushes obtained AST into the algebra Optimization layer.

• traverses the AST, binds the SPARQL operators to the corresponding Spark SQL relational operators for query evaluation.

Converting RDF data into a relational database model is a common way for RDF data management. The advantage of this approach is to benefit from mature techniques developed in RDBMS systems for RDF data processing. Figure 7.1 gives a SPARQL query example and its translation in SQL (considering that all triples are stored in a single RDBMS table denoted database) in Listing 6.2. The first trigger layer decides whether the query processing adopts a static or an adaptive approach. Once the system moves to adaptive query processing, the second trigger layer determines whether backward (B-AQP) and forward (F-AQP) should be applied in AQP. They mainly differ on when, i.e., at the previous or current window, the query plan is computed.

Before providing a detailed explanation, we briefly present the interactions between the main components of the query optimizer. In general, the system will first estimate the size of the input stream in the trigger layer. If the data size is considered small (the default threshold of data volume is empirically set at 100 megabytes. However, this parameter depends on query complexity and cluster resources.), Strider will takte the already-calculated static query plan since there will be no performance gain by triggering the adaptive optimization. When the adaptive optimization is triggered, the system will decide whether backward or forward for adaptive query processing.

Strider's optimizer is tailored for Basic Graph Pattern (BGP) reconstruction at run-time. The system thus varies the optimal join ordering of triple patterns based on the collected statistics. Fundamentally, both static and adaptive optimizations are processed using a graph G U " pV, Eq, denoted Undirected Connected Graph (UCG) [START_REF] Stocker | Sparql basic graph pattern optimization using selectivity estimation[END_REF] where vertices represent triple patterns and edges symbolize joins between triple patterns. Naturally, for a given query q and its query graph

G Q pqq, G U pqq Ď G Q pqq.
A UCG showcases the structure of a BGP and the join possibilities among its triple patterns. That query representation is considered to be more expressive [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF] than the classical RDF query graph. The weight of UCG's vertices and edges correspond to the selectivity of triple patterns and join, respectively. Once the weights of an UCG are initialized, the query planner automatically generates an optimal logical plan and triggers a query execution.

Strider's static optimization retains the philosophy of [START_REF] Tsialiamanis | Heuristics-based query optimisation for sparql[END_REF]. Basically, static optimization implies a heuristics-based query optimization. It ignores data statistics and leads to a static query planner. In this case, unpredictable changes in data stream structures may incur a bad query plan. The static optimization layer aims at giving a basic performance guarantee. The predefined heuristic rules set empirically assign the weights for UCG vertices and edges. Next, the query planner determines the shortest traversal path in the current UCG and generates the logical plan for query execution. The obtained logical plan represents the query execution pipeline which is permanently kept by the system.

The Trigger layer supports the transition between the stages of static optimization and adaptive optimization. In a nutshell, that layer is dedicated to notify the system whether it is necessary to proceed an adaptive optimization. Our adaptation strategy requires collecting statistical information and generating an execution logical plan.

The overhead coming with such actions is not negligible in a distributed environment.

The Strider prototype provides a set of straightforward trigger rules, i.e., the adaptive algebra optimization is triggered by a configurable workload threshold. The threshold refers to two factors: (1) the input number of RDF events/triples; (2) the fraction of the estimated input data size and the allocated executors' heap memory.

Query plan generation

This section explains how we collect statistics and construct query plan. Then, we

give an insight into the AQP optimization, which is essentially a cardinality-based optimization.

Both compile-time (static) and run-time (adaptive) query plan generation are base on UCG. Once an input query is initialized, we parse the query and reconstruct its corresponding UCG graph. This step is done only once per query, i.e. at query compiled time. The system computes σptp i q asynchronously for each i and temporally caches the corresponding results (R σ ptp i q) in memory. Cardptp i q, i.e., the cardinality of R σ ptp i q, is computed by a Spark count action. Thence, we can directly assign the weight of vertices in G U pQq. Note that the estimation of Cardptp i q is exact.

Once all vertices are set up, the system predicts the weight of edges (i.e., joined patterns) in G U pqq. We categorize two types of joins (edges): (i) star join, includes two sub-types, i.e., star join without bounded object and star join with bounded object; (ii) non-star join. To estimate the cardinality of join patterns, we make a Algorithm 1 UCG weight initialization Input : query q, G U pqq " pV, Eq Ď G Q pqq, current buffered window w n Output : G U pqq with weight-assigned while Dv unvisited P V do mark v as visited, R σ pvq Ð compute (v) buffer (v, R σ pvq) ^v.weight Ð Cardpvq end while De unvisited P E do mark e as visited if (D star join S J ) ^e X S J ‰ H then locate each S J P G U pqq foreach @e S P S J do mark e S as visited e S .weight Ð getStarJoinWeightpS J , e S .verticesq end end else e.weight Ð getNonStarJoinWeightpS J q; end

B-AQP & F-AQP

We propose a dual AQP strategy, namely, backward (B-AQP) and forward (F-AQP). B/F-AQP depict two philosophies for AQP, Figure 7.7 roughly illustrates how B/F-AQP switching is decided at run-time, i.e., this is the responsibility of the Decision Maker component. Generally, B-AQP and F-AQP are using similar techniques for query plan generation. Compared to F-AQP, B-AQP delays the process for query plan generation.

Our B-AQP strategy is inspired by [START_REF] Venkataraman | Drizzle: Fast and adaptable stream processing at scale[END_REF]'s pre-scheduling. Backward implies gathering, feeding back the statistics to the optimizer on the current window, then the optimizer constructs the query plan for the next window. That is the system computes the query plan p n`1 of a window w n`1 using the statistics of a previous window w n . Strider possesses a time-driven execution mechanism, the query execution is triggered periodically with a fixed update frequency s (i.e., sliding window size).

Between two consecutive window w n and w n`1 , there is a computing barrier to reconstruct the query plan for w n`1 based on the collected statistics from a previous window w n . Suppose the query execution of w n consumes a time t n (e.g., in seconds), then for all t n ă s, the idle duration δ n " s ´tn allows to re-optimize the query plan.

But δ n should be larger than a configurable threshold . For δ n ă , the system may not have enough time to (i) collect the statistic information of w n and (ii) to construct a query plan for w n`1 . This potentially expresses a change of incoming steams and a degradation of query execution performance. Hence, the system decides to switch to the F-AQP approach. F-AQP applies a Dynamic Programming strategy to find the optimal logical query plan for the current window w n . The main purpose of F-AQP is to adjust the system state as soon as possible. The engine executes a query, collects statistics and computes the logical query plan simultaneously. Here, the statistics are obtained by counting intermediate query results, which causes data shuffling and DAG interruption, i.e., the system has to temporally cut the query execution pipeline. In Spark, such suspending operation is called an action, which immediately triggers a job submission in Spark application. However, frequent job submission may bring some side effects. The rationale is, for a master-slave based distributed computing framework (e.g., Spark, Storm) uses a master node (i.e., driver) to schedule jobs. The driver locally computes and optimizes each submitted DAG and returns the control messages to each worker node for parallel processing. Although the "count" action itself is not expensive, the induced side effects (e.g., driver job-scheduling/submission, communication of control message between driver and workers) will potentially impact the system's stability. For instance, based on our experience, F-AQP's frequent job submission and intermediate data persistence/unpersistence put a great pressure on the JVM's Garbage Collector (GC), e.g., untypical GC pauses are observed from time to time in our experiment.

Decision Maker. Through experimentations of different Strider configurations, we understood the complementarity of both the B-AQP and F-AQP approaches.

Real performance gains can be obtained by switching from one approach to another. This is mainly due to their properties which are summarized as below:

• B-AQP. For B-AQP, no overhead of dynamic programming for run-time query plan generation is involved. However, B-AQP generate approximate optimal query plan through previously-collected statistic, which could be inaccurate for query plan generation.

• F-AQP. For F-AQP, the system takes extra overhead to collect statistics and generate query execution plan at run-time. This overhead can not be ignored, however, it obtains the precise statistic information for query plan generation.

We designed a decision maker to automatically select the most adapted strategy for each query execution. The decision maker takes into account two parameters: a configurable switching threshold P s0, 1r; γ n " tn s , the fraction of query execution time t over windowing update frequency s. For the query execution at w n , if γ n ă , the system updates the query plan from p n to p n`1 for the next execution. Otherwise, the system recomputes p n`1 by DP at w n`1 (see Algorithm 2). We empirically set " 0.7 by default. The decision maker plays a key role for maintaining the stability of the system's performance. Our experiment (Sec. 7.3.2) shows that, the combination of F/B-AQP Algorithm 2 B-AQP and F-AQP Switching in Decision Maker Input : query q, switching threshold , sliding window W " tw n u nPN , update frequency s of W foreach w n P W do t n Ð getRuntime { execute (q) } // executionTime λ n Ð getAdaptiveStrategy ( ,t n ,s) // adaptiveStrategy if λ n == Backward then update query plan p n of q at w n p n`1 Ð update (p n ) end if λ n == Forward then Recompute p n`1 at w n`1 ; end through decision maker is able to prevent the sudden performance declining during a long running time.

Experiments

Strider is written in Scala, the code source can be found here1 . To enable SPARQL query processing on Spark, Strider parses a query with Jena ARQ and obtains a query algebra tree in the Parsing layer. The system reconstructs the algebra tree into a new Abstract Syntax Tree (AST) based on the Visitor model. Basically, the AST represents the logical plan of a query execution. Once the AST is created, it is pushed into the algebra Optimization layer. By traversing the AST, we bind the SPARQL operators to the corresponding Spark SQL relational operators for query evaluation.

We use a series of micro-benchmarks to measure the performance of Strider, including the system's adaptivity. We first focus on continuous SPARQL query processing with stable stream structure. I.e., , in the ideal case, incoming data streams maintain invariant structure, the proportion of variant types of RDF triples does not change over time. We next demonstrate the efficiency of Strider's AQP by feeding the system structurally unstable RDF streams, i.e., the structure of input stream varies over time. To that end, we first present the experimental setup and then provide results.

Experimental Setup

We test and deploy our engine on an Amazon EC2/EMR cluster of 9 computing nodes with resource management handled by Yarn. The system holds 3 nodes of m4.xlarge for data flow management (i.e., Kafka broker and Zookeeper [START_REF] Hunt | Zookeeper: Wait-free coordination for internet-scale systems[END_REF]). Each node has 4 CPU virtual cores of 2.4 GHz Intel Xeon E5-2676, 16 GB RAM and 750 MB/s bandwidth. We use Apache Spark 2.0.2, Scala 2.11.7 and Java 8 as baselines for our evaluation. The Spark (Streaming) cluster is configured with 6 nodes (1 master, 5 workers) of type c4.xlarge. Each one has 4 CPU virtual cores of 2.9 GHz Intel Xeon E5-2666, 7.5 GB RAM and 750 MB/s. The experiments of Strider on local mode, C-SPARQL and CQELS are all performed on a single instance of type c4.xlarge.

Datasets & Queries. We evaluated our system using two datasets that are built around real world streaming use cases: SRBench and Waves.

We have already introduced SRBench 

Q 1 to Q 9 2 .
The road map of our evaluation is designed as follow: (1) injection of structurally stable stream for experiment of Q 1 to Q 6 . Q 1 to Q 3 are tested by SRBench datasets.

Here, a comparison between Strider and the state of the art RSP systems e.g., C-SPARQL and CQELS are also provided. Then we perform Q 4 to Q 6 based on Waves dataset. (2) Injection of structurally unstable stream. We generate RDF streams by varying the proportion of different types of Kafka messages (i.e., sensor observations). For this part of the evaluation, queries Q 7 to Q 9 are considered.

In accordance with the discussion at the end of Chapter 5, we choose system throughput and query latency as two primary performance metrics. Be aware that, Throughput indicates how many data can be processed in a unit of time. Throughput is denoted as "triples per second" in our case. Latency means how long does the RSP engine consumes between the arrival of an input and the generation of its output.

We did not record the latency of C-SPARQL, CQELS and Strider in local mode for two reasons: (1) given the scalability limitation of C-SPARQL, we have to control input stream rate within a low level to ensure the engine can run normally [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF]. [START_REF]Linked data[END_REF] due to its design, based on a so-called eager execution mechanism and DStream R2S operator, the latency measure in CQELS is unfeasible [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF].

Performance tuning on Spark is quite difficult. Inappropriate cluster configuration may seriously hinder engine performance. So far we can only empirically configure Spark cluster and tune the cluster settings step by step. We briefly list some important performance settings based on our experience. First of all, we apply some basic optimization techniques. e.g., using Kryo serializer to reduce the time for task/data serialization. Besides, we generally considered adjustments of Spark configuration along three control factors to achieve better performance. The first factor is the size of micro-batch intervals. Smaller batch sizes can better meet real-time requirements. However, it also brings frequent job submissions and job scheduling. The performance of a BSP system like Spark is sensitive to the chosen size of batch intervals. The second factor is GC tuning. Set appropriately, the GC strategy (e.g., using Concurrent Mark-Sweep) and storage/shuffle fraction may efficiently reduce GC pressure. The third factor is the parallelism level. This includes the partition number of Kafka messages, the partition number of RDD for shuffling, and the upper/lower bound for concurrent job submissions, etc.. interruption [START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF][START_REF] Ren | On measuring performances of C-SPARQL and CQELS[END_REF]. Moreover, we have also observed that CQELS' performance is insensitive to the changing of computing resources. We tested CQELS on different EC2 instance types, i.e., with 2, 4 and 8 cores, and the results evaluation variations were negligible. with an increasing number of join tasks. In order to alleviate this effect, possible solutions are to enlarge the cluster scale or to choose a more powerful driver node.

Evaluation Result

(3) Strider does not support well high concurrent requests, although this is not at the moment one of our system design goals. E.g., some use cases demand to process a big amount of concurrent queries. Even through Strider allows to perform multiple queries asynchronously, it could be less efficient.

Conclusion

In The main goal amounts to producing sound and complete answers from a set of continuous queries. This problem is quite important for many Big data applications in domains such as science, finance, information technology, social networks and Internet of Things (IoT) in general. For instance, in the Waves project, we are dealing with "real-time" anomaly detection in large water distribution networks.

By working with domain experts, we found out that such detections can only be performed using reasoning services over data streams. Such inferences are performed over knowledge bases (KB) about the sensors used in water networks, e.g., sensor characteristics together with their measure types, locations, geographical profiles, events occurring nearby, etc..

Tackling this issue implies to find a trade-off between high data throughput and low latency on the one hand and reasoning over semantically annotated data streams on the other hand. This is notoriously hard and even though it is currently getting some attention, it still remains an open problem.

Existing RSP engines are either not scalable (i.e., they do not distribute data and/or processing) or do not support expressive reasoning services. The velocity aspect of Big Data implies the emergence of almost real time applications which are generally expressed via the processing of data streams. Alongside this frequent system design movement, cognitive aspects, such as the ability to reason about represented data and knowledge, are becoming prominent.

We present Strider R that addresses these two dimensions, i.e., it infers data necessary for the computation of sound and complete answer sets of continuous queries.

Our work deals with the hardest problems in designing such a system: guaranteeing high throughput and acceptable latency with reasoning services performed over expressive Knowledge Bases.

Strider R combines Strider RSP engine with a reasoning approach. As previously introduced in Chapter 7, Strider is capable of processing and adaptively optimizing continuous SPARQL queries. Nevertheless, it was not originally designed to perform inferences. Hence, a main goal of this work is to integrate stream reasoning services that can support the main RDFS inferences together with the owl:sameAs property (henceforth denoted sameAs).

Intuitively, this property enables to define aliases between RDF resources. This is frequently used when a domain's (meta) data is described in a collaborative way, i.e., a given object has been described with different identifiers (possibly by different persons) and are later reconciled by stating their equivalence. Reasoning with the sameAs property is motivated by the popularity of sameAs across many datasets, including several domains of the Linked Open Data (LOD). For instance, the sameAs constructor is frequently encountered to practically define or maintain ontologies. In [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF], the authors measured the frequency of sameAs triples in an important repository of LOD. That property was involved in more than 58 million triples over 1,202 unique domain names with the most popular domains being biology, e.g., Bio2rdf and Uniprot (respectively 26 and 6 million sameAs triples), and general domains e.g., DBpedia (4.3 million sameAs triples).

Moreover, the knowledge management of LOD, estimated to more than 100 billion triples, clearly amounts to big data issues. In our Waves running example, we also found out that, due to the cooperative ontology building, many sameAs triples were necessary to re-conciliate ontology designs. We discovered several of these situations in the context of the IoT Waves project. For instance, we found out that sensors or locations in water distribution networks could be given different identifiers.

These sameAs triples are generally persisted in RDF stores [START_REF] Curé | RDF Database Systems: Triples Storage and SPARQL Query Processing[END_REF] but data streams are providing dynamic data streams about these resources. Such metadata are needed to perform valuable inferences. In the Waves project, they correspond to the topology of the network, characteristics of the network's sensors, etc. We consider that the presence of static metadata can be generalized to many domains, e.g., life science, finance, social, cultural, and is hence important when designing a solution that reasons over their data streams. Strider R thus needs to reason over both static KBs, i.e., a set of facts together with some ontologies, and dynamic data streams, i.e., a set of facts which once annotated with ontology concepts and properties can be considered as an ephemeral extension of the KB fact base. Apart from sameAs inferences, the most prevalent reasoning services in a streaming context are related to ontology concept and property hierarchies. We are addressing these inferences tasks via a trade-off between the query rewriting and materialization approaches.

The main contributions of this chapter are:

• (i) to combine a scalable, production-ready RSP engine that supports reasoning services over RDFS plus the sameAs property.

• (ii) to minimize the reasoning cost, and thus to guarantee high throughput and acceptable latency.

• (iii) to propose a thorough evaluation of the system and thus to highlight its relevance.

The chapter is organized as follows. Section 8.2 provides an overview of the system's architecture. In Section 8.3, we detail a running example. Then Sections 8.4 and 8.5 provide reasoning approaches with respectively concept/property hierarchies and sameAs individuals. Section 8.6 evaluates Strider R and demonstrates its relevancy. Finally, we conclude this chapter in Section 8.7.

Strider R Overview

This section gives a high-level overview of the Strider R system. Its architecture has been designed to support the distribution the processing of RDF data streams and to provide guarantees on fault tolerance, high throughput and low latency. Moreover, Strider R aims to integrate efficient reasoning services into an optimized continuous query processing solution. Figure 8.1 also serves as a map to better outline our main contributions:

• The green arrows highlight the contributions about reasoning over concepts and properties presented in Section 8.4: generating hierarchies of concepts and properties (Section 8.4), concept and property encoding and the corresponding query rewriting method (Section 8.4.2).

• The yellow arrows highlight the contributions about reasoning over sameAs facts presented in Section 8.5: sameAs clique detection (Section 8.5.1) and two alternative methods (Sections 8.5.2 and 8.5.3) for sameAs encoding and query rewriting.

Running Example of Continuous Reasoning Query

In this section, we present a running example that will be used all along the remaining of the chapter. The data sets provided by our Waves use case partner are proprietary and we do not have the permission to distribute them. So a first issue concerns the selection of a benchmark/data sets which could support researchers and interested developers to replay our experimentation. Two characteristics prevent us from using well-established RSP benchmarks such as SRBnech, LSBench, and CityBench: their lack of support for the considered reasoning tasks and their inability to cope with massive RDF streams. We thus selected a benchmark with which the Semantic Web community is confident with, namely the Lehigh University Benchmark (henceforth LUBM) [START_REF] Guo | Lubm: A benchmark for owl knowledge base systems[END_REF], and extended it in two directions. First, we created a stream generator based on the triples contained in the LUBM Abox. Second, we extended the LUBM generator with the ability to create individuals related by the sameAs property.

Intuitively, novel individuals are generated and stated as being equivalent to some other LUBM individuals. This generator is configurable and one can decide how many sameAs cliques and how many individuals per clique are created.

The LUBM Tbox has not been extended and in Figure 8.2 we provide an extract of it. It contains a subset of the property hierarchy (i.e., memberOf, worksOf and headOf) as well as a subset of the concept hierarchy. We will emphasize in Section We have three cliques in this figure: (pDoc1, pDoc2, pDoc3), (pDoc4,pDoc5,pDoc6) and (pDoc7, pDoc8 and pDoc9). This example will be used in Section 8.5 when detailing inferences concerned with the sameAs property.

As shown in Q4, we have extended the standard SPARQL query language with some clauses for a continuous query processing (more details in Appendix B). 

Reasoning over concept and property hierarchies

In the following, we consider the approaches for reasoning over concept and property hierarchies. We first present the classical approach consisting in the standard query rewriting. Then, we present an extension of LiteMat reasoner, which compared to the standard approach, provides better performances in most queries.

In both approaches, encoding the elements of the Tbox, i.e., concept and property hierarchies, is needed upfront to any data stream processing. The KB Encoding component encodes concepts, properties and instances of registered static KBs. This aims to provide a more compact (i.e., replacing string-based IRIs or literals with integer identifiers) representation of the Tbox and Abox as well as supporting more efficient comparison operations. In the general case, each concept and property is mapped to an arbitrary unique integer identifier. We will emphasize that our LiteMat approach produces a semantic encoding scheme that supports important reasoning services. In the following, we consider inferences pertaining to the ρdf subset of RDFS (the sameAs property is considered in Sectio 8.5) and the input ontology is considered to be the union of (supposedly aligned) ontologies necessary to operate over one's application domain.

Standard rewriting: add UNION Clauses

The standard rewriting approach to perform inferences over concept and property hierarchies on SPARQL queries consists in a reformulation according to an analysis of the Tbox. Intuitively, for a query Q with BGP B. For all triples t P B, the system searches in the Tbox if the property (resp. concept) in t has sub-properties (resp.

sub-concepts). In the affirmative, a set of UNION clauses is appended to Q, thus producing a new query Q 1 . A new UNION clause contains a rewriting of B where the property (resp. concept) is replaced with a sub-property (resp. sub-concept).

A UNION clause will be added for each direct and indirect sub-properties ( resp.

sub-concepts) and their combinations if the BGP contains several of them.

In Listing 8.3, we provide an example of this rewriting for Q4 and the extract of the LUBM ontology (see Figure 8.2). We display only six (out of the twelve, three properties times four concepts) UNION clauses present in the rewriting. Note that for each UNION clause, two joins are required. This approach guarantees the completeness of the query result set but comes at the high cost of executing a potentially very large queries (due to an exponential increase of original query). Those constraints are not compatible with executions in a streaming environment. In the next section, we present a much more efficient approach.

LiteMat adapted to stream reasoning

In the following, we dedicate two subsections to our encoding scheme: one for the static KB and one for the streaming (dynamic) data. Then a rewriting dedicated to this encoding scheme is detailed.

Static encoding

Inferences drawn from properties such as rdfs:subClassOf and rdfs:subPropertyOf in Litemat, are addressed by attributing numerical identifiers to ontology terms, i.e., concepts and properties. Moreover, LiteMat also supports rdfs:domain and rdfs:range using a set of addittional data structures. The compression principle of this term encoding lies in the fact that subsumption relationships are represented within the encoding of each term. This is performed by prefixing the encoding of a term with the encoding of its direct parent (a workaround using an additional data structure is proposed to support multiple inheritance). The generation of the identifiers is performed at the bit level. More precisely, the concept (resp. property) encoding are performed in a top-down manner, i.e., starting from the top concept of the hierarchy (the classification is performed by a state-of-the-art reasoner, e.g.,

HermiT [START_REF] Glimm | Optimising ontology classification[END_REF], and hence supports all OWL2 logical concept subsumptions), such that the prefix of any given sub-concept (resp. sub-property) corresponds to its superconcept (resp. super-property). Intuitively, for the entity hierarchy (i.e., concept or property), we start from a top entity and assign it the value 1 (see the raw id of owl:Thing in Table 8.1) and process its N direct sub-entities. These sub-entities will be encoded over rlog 2 pN `1qs bits and their identifiers will be incremented by 1. This approach is performed recursively until all entities in the TBox are assigned an identifier. It is guaranteed at the end of this first phase that, for 2 entities A and B with B Ď A, the prefix of idB matches with the encoding idA.

Note that for the property hierarchy, a reasoner is not needed to access the direct sub-properties. Moreover, we distinguish between object and datatype properties by assigning different starting identifiers, respectively '01' and '10'. Finally, some RDF and OWL properties, e.g., rdf:type are assigned identifiers in the '00' range.

In a second step, to guarantee a total order among the identifiers of a given concept or property hierarchy, the lengths of these identifiers have to be normalized. This is performed by computing the size of the longest branch in each hierarchy and by encoding each identifier on this length of bits (i.e., filling '0' on the right most bit positions).

These normalized identifiers are stored as integer values in our dictionary. The characteristics of this encoding scheme ensures that from any concept (resp. property) element, all its direct and indirect sub-elements can be computed with only two bit shift operations and are comprised into a discrete interval of integer values, namely its lower and upper bound (resp. LB,UB). Table 8.1 presents the identifiers of Figure 8.2's LUBM concept hierarchy extract. The first step of the encoding generates raw ids (column 1). We can observe that the Faculty's prefix 110101 corresponds to the Employee's identifier, and his hence one of its direct sub-concept. Moreover, Employee is a direct sub-concept of Person and indirect sub-concept of owl:Thing. These raw ids are normalized to produce column 2 of Table 8.1. Finally, integer values contained in the id column are stored in the dictionary.

The encoding scheme of individuals of static KBs can take two forms. It depends on whether an individual is involved in a triple with a sameAs property or not. The encoding scheme for sameAs cliques is detailed in Section 8.5.1. For non-sameAs individuals, we apply a simple method which attributes a unique integer identifier (starting from 1) to each individual. In [START_REF] Curé | Litemat: A scalable, cost-efficient inference encoding scheme for large RDF graphs[END_REF], we provided an efficient distributed method to perform this encoding.

Dynamic partial encoding

In the previous section, we detailed the generation of dictionaries for the elements of static KBs, i.e., their concepts, properties and individuals. These maps are being used to encode, on the fly, incoming data streams. That is concept and property IRIs of a data stream are being replaced with their respective integer identifier. In practical use cases, some entries of data streams may not correspond to an entry in one of the dictionaries. For instance, due to their infinite nature, numerical values, e.g., sensor measures in the IoT, can not possibly all be stored in the individual dictionary. Other cases are possible where a stream emits a message where concepts and/or properties are not present in our dictionaries. Note that such situations prevent the system from performing any reasoning tasks upon the missing ontology elements.

When facing the absence of a dictionary entry, we are opting for a partial stream encoding. Intuitively, this means that we are not trying to create a new identifier on the fly but rather decide to leave the original data as is, i.e., as an IRI, literal or blank node. After some experimentations, we found out that this is good trade-off between maintaining ever growing, distributed dictionaries and favoring an increase of incoming data streams rate. We briefly summarize important advantages of the partial encoding of RDF streams:

(i) an efficient parallel encoding to meet real-time request; (ii) no extra overhead for dictionary generation.

Query rewriting: FILTER clauses and UDF

The query rewriting in Strider R is done in the Inference Layer. Intuitively, the system parses a given SPARQL query Q and rewrites it into Q'. This rewriting concerns inferences pertaining to concept and property hierarchies. For sameAs individuals, no specific rewriting is necessary due to our data streams encoding. Due to space limitations, we do not present the rewriting of SPARQL queries into Spark SQL Scala programs but the interested reader can find details on our github page.

In Section 8.4.2, we highlighted that to each concept and property corresponds to a unique integer identifier. Moreover, one characteristic of our encoding method guarantees that all sub-concept (resp. sub-property) identifiers of a given concept (resp. property) are included into an interval of integer values, denoted lower bound (LB) and upper bound (UB) of that ontology element.

We now concentrate on the query rewriting for concepts. In order to speed up the rewriting, we take advantage of the following context: since we are only considering that data streams are representing elements of the Abox, concepts are necessarily at the object position of a triple pattern and the property must be rdf:type. Intuitively, if a concept has at least one sub-concept then it is replaced in the triple pattern by a novel variable and a SPARQL FILTER clause is added to the query's BGP. That filter imposes that the new variable is included between the LB and UB values (which have been previously computed at encoding-time and stored in the dictionary) of that concept.

The overall approach is quite similar for the rewriting concerning the property hierarchy but no specific context applies, i.e., all triple patterns have to be considered.

For each triple pattern, we check whether the property has some sub-properties. If it is the case then the property is replaced by a new variable in the triple pattern and a SPARQL FILTER clause is introduced in the BGP. That filter clause restricts the new variable to be included in the LB and UB of that property.

As a concrete example of this rewriting, we are using query Q4 of our benchmark since it requires inferences over both the concept and property hierarchies.

The rewriting Q4' of Q4 contains two FILTER clauses, one for the Professor concept and one for the memberOf property (LB() and UB() functions respectively return the LB and UB of their parameter). Given p, the parameter submitted to LB and UB, these functions respectively return the identifier of p and an identifier computed using two bit shift operations on p. So, the computation of the UB function is quite fast. Note the introduction of the ?p and ?m variables, respectively replacing the Professor concept and memberOf property. The lower and upper bounds for ?p correspond to the identifier of the Professor and AssociateProfessor, respectively (equal to 6812 and 6814 in Table 8.1).

SELECT ? o ? n WHERE { ? x rdf : type ? p ; ? x ? m ? o ; ? x lubm : name ? n . FILTER (? p >= LB ( Professor ) && ?p < UB ( Professor ) ) . FILTER (? m >= LB ( memberOf ) && ?m < UB ( memberOf ) ) .} Listing 8.4: LiteMat query rewriting for query Q4 Finally, this rewriting is much more compact and efficient than the classical reformulation which would require twelve UNION clauses and twenty four joins 1 .

Reasoning with the sameAs property

This section concerns inferences performed in the presence of triples containing the sameAs property. In Section 8.5.1 a distributed, parallelized approach to encode sameAs cliques and a naive approach to materialize inferred triples are proposed. We emphasize that this approach is not adapted to a streaming context. Therefore, the challenge is to support sameAs reasoning efficiently while answering queries over streaming data. In Strider R , we address this challenge and propose two solutions.

The first one (Section 8.5.2) aims for efficiency, the second one (Section 8.5.3) aims to handle reasoning applied to a "provenance awareness" scenario which is not supported by the first solution.

SameAs clique encoding

Consider, in a KB, a set of sameAs triples that represents a graph denoted G sa . The nodes V of G sa are set of individuals (either at the subject or object position of a triple) of the sameAs triples. Let x P V denote such a node. For convenience, every node x P V is uniquely identified by an integer value Idpxq P r1, |V |s.

Let C be the set of connected components that partition G sa . Although a component may not be fully connected, it represents a sameAs clique because of the semantic equivalence (i.e., transitivity and symmetry) of the sameAs property. Let C i denote the connected component containing the node identified by i.

In Strider R , we assume that the sameAs triples are in the static KB. We detect the C i using a parallel algorithm to compute connected components [START_REF] Greiner | A comparison of parallel algorithms for connected components[END_REF].

The principle of that algorithm is to propagate through the graph a numeric value representing a component id, such that every connected component will end up with a component id assigned to its members. Initially, each node x is assigned with Idpxq. Then for each node x, the group that comprises x and its neighbors is considered and the minimum number among the group members is assigned to all the group members. The algorithm ends when no more update occurs at any group, i.e., for any group (or connected component) all the members share the same component id. About the computational cost of clique detection, note that it is computed in a distributed and parallel manner (using the 1 Rewriting available on our github page 106 GraphX library of the Apache Spark engine). Hence it is able to scale to very large static KBs.

Once the connected components are detected, we define the Clpxq mapping that associates the IRI of x with its clique id. Table 8.2 summarizes the notations used in this section.

Notation Description G sa

The sameAs graph of individuals Idpxq

The integer ID of individual x C i

The clique st. i is the minimal ID among the members Clpxq

The clique ID of individual x.

IRIpiq

The IRI of ID i (or set of IRIs if i is in a clique) S

The average size of a clique Table 8.2.: Notations used for sameAs reasoning

In order to reason over sameAs, an obvious solution is to materialize all inferences.

However that is not tractable because the number of inferred triples is far too high in general. Consider a triple t " px, p, yq where x (resp. y) belongs to the sameAs clique C x (resp. C y ). Let S be the average size of a clique. The number of triples inferred from t is 2ˆS 2 . Therefore, the number of triples inferred from the entire dataset D (of size |D| ) can grow up to 2 ˆ|D| ˆS2 in the worst case. For instance, from Figure 8.2 we obtain Figure 8.4(a) where all dashed edges correspond to a materialization of all inferences induced by sameAs explicit triples. We can easily witness the increase of represented triples. This naïve approach is generally not adopted in RDF database systems storing relatively static datasets due to its ineffectiveness. This is even more relevant in a dynamic, streaming context. First, it may not be feasible to generate all materialization within the time constraint of a window execution. Second, the execution of a continuous query over such stream sets would be inefficient.

Representative-based (RB) reasoning

Based on the detected cliques, the principle of the representative-based (RB) reasoning is to fuse the dataset such that all the individuals that belong to the same clique appear as a single (representative) individual. As a consequence, the fused graph implicitly carries the sameAs semantics. Then, a regular evaluation of any query on the fused graph is guaranteed to comply with the sameAs semantics. This approach has many advantages, especially in a data streaming context:

• (i)
The inferred graph is more compact without loss of information from the original graph.

• (ii) The dictionary data structure that implements Clpxq is light. The dictionary size equals to the size of G sa which is in practice very small compared to the number of triples to process in a streaming window. The computing overhead of encoding the input stream is negligible.

• (iii) Clique updates (e.g., removing or adding an individual from a clique) does not imply to update the input stream since the data streams are ephemeral.

This assumes that an update of the static KB is taken into account starting from the next window that only contains data produced after the update. For instance, consider the clique named C 1 with 3 members ppDoc1, pDoc2, pDoc3q.

At time t, the KB is updated: pDoc4 is declared to be sameAs pDoc2 thus pDoc4 joins C 1 . The data already streamed before t are not updated, i.e., the triples mentioning pDoc4 are not updated. Whereas, in the window following t, pDoc4 will be translated to ClppDoc4q.

Query processing

Based on the above encoding, a standard query processing is performed where variable bindings concern both standard individuals and sameAs representative.

Note that because the sameAs reasoning is fully supported by the representativebased encoding, we can simplify the query by removing the sameAs triple patterns that it may contain.

To evaluate a filter clause that refers to an IRI value, e. SAM reasoning targets the use cases that require to make the distinction between the original dataset triples and the inferred triples. That distinction is necessary for a user investigating which part (or domain) of the dataset contributes to the query, i.e., brings some piece of knowledge, when the IRIs within a clique have different domains. In this section, we begin by motivating SAM using a concrete example then we detail a method to evaluate queries in this setting.

Motivation

We briefly sketch an example showing the limitations of the RB approach and the need for the proposed SAM approach. For instance, consider the dataset of Figure 8.2.

Suppose all the triples about email addresses come from domain1 (e.g., mail.univ.edu), then the IRIs pDoc3, pDoc6, and pDoc9 are in that domain. Similarly, suppose all telephone numbers come from domain2 (e.g., phone.com), then pDoc2 is in domain2.

Let consider a query searching the IRI and the email of a person named Mary. We could write that query Q as follows:

Q: SELECT ?x, ?y WHERE { ?x name "Mary" .

?x email ?y. }

The result is ?x " pDoc2 and ?y " mary@gmail.com. Based on that result and on the clique membership information, we know that the possible bindings for ?x are also pDoc1 or pDoc3. However the result does not inform us that pDoc3 as well as its domain1 were originally concerning the email triple. To get this provenance information, we could write the query as Q 1 :

Q': SELECT ?x1, ?y WHERE { ?x name "Mary" .

?x sameAs ?x1 .

?x1 email ?y . } However, through the RB approach, the result is still ?x1 " pDoc2 and ?y " mary@gmail.com because pDoc2 is the representative of pDoc3. The goal of the SAM approach is to make Q 1 return the binding ?x1 " pDoc3 instead of ?x1 " pDoc2.

Doing this way, we will get that the IRI pDoc3 and domain1 directly relate to the email information within the dataset. To sum up, the RB approach (8.5.2) does not support the origin-preserving use case, because a query result only binds to individuals that are clique representatives or not member of a clique at all. The result lacks information about which IRI originally exists in the triples that match the query.

To overcome this drawback, we propose the SAM approach that keeps track of the individuals that match the query even if they are part of a sameAs clique. The principle of the SAM approach is to explicitly handle the sameAs equivalence such that the equivalent individuals that match a query are preserved in the query result. From a logical point of view, this means to manage explicit sameAs information both in the dataset and in the query.

• sameAs in the dataset: complete the input stream with explicit information representing the sameAs equivalences between IRIs.

• sameAs in the query: complete the query with triple patterns explicitly expressing the sameAs matching. lue

Materialize sameAs data streams

A general method consists in completing the input stream with sameAs information.

We devise an efficient solution that guarantees to materialize only the necessary triples and prevents from exploding the size of the data stream. Moreover, the IRIs are encoded to get a more concise representation to save on query execution time.

We now detail the steps of our solution. Let W be the current streaming window.

The idea is to express each clique that has at least one member in W by a minimal set of triples. Let C be the set of cliques used in W and a clique C i P C. For each member x of C i such that Idpxq ‰ i (the identifier Idpxq is defined in Table 8.2), add the triple ă i sameAs Idpxq ą into W . For instance, consider the three sameAs cliques of Figure 8.4(a). Let denote C 1 the clique containing ppDoc1, pDoc2, pDoc3q, the minimal Id in C 1 is IdppDoc1q " 1. Suppose the input stream window contains:

pDoc1 type PostDoc.
pDoc2 name "Mary".

pDoc3 emailAddress "mary@gmail.com".

While applying the SAM approach, the window is completed with only two triples:

1 sameAs Id(pDoc2) 1 sameAs Id(pDoc3)
Let S be the average clique size. Notice that only S ´1 edges of C i out of S 2

(those with subject i) are added into the stream. The added sameAs edges represent a directed star centered at i the member of C i with minimal Id. As explained below in Section 8.5.3, that light materialization is sufficient to fully enable the sameAs reasoning during query processing.

Cost analysis. We analyze the materialization cost in terms of data size. The total amount of materialized triples in W is |C| ˆpS ´1q. The space overhead of SAM is indeed far smaller than a full materialization of every triple inferred from the sameAs reasoning which would add 2 ˆ|W | ˆS2 triples (Table 8.2). Moreover, our solution materializes S times less triples compared to materializing all the clique edges. This low memory footprint makes our solution more scalable.

Query rewriting: add sameAs patterns Consider a BGP query represented by a graph of triple patterns where nodes are variables, IRIs or literals. In a query, a join node is a variable that connects at least two triple patterns. The query rewriting method consists in extending a BGP query with sameAs patterns that could match the materialized stream. The principle is to"inject" the sameAs semantics into each join appearing in the query, i.e., to decompose a direct join on one variable into an indirect join through a path of two sameAs triple patterns. Consequently, each join is decomposed into three join operations. Intuitively, the join nodes of the BGP are split to be replaced by a star of sameAs triple patterns such that the join"traverses" the star center.

The shape of the added sameAs patterns is a star because it has to match the stars sameAs triples that have been materialized into the stream. We consistently adopt a star-shaped representation of the sameAs information both in the materialized stream and in the query pattern. This guarantees any sameAs relation within a clique to be expressed by a path of length two (the diameter of a star). Besides, a star triple pattern is guaranteed to match any path of length two. Therefore, our proposed rewriting is guaranteed to match any sameAs path within the stream, i.e., the rewritten query is semantically equivalent to the initial one.

We next detail the query rewriting algorithm. Let V be the set of join variables of a query. For each v P V , (i) Split the join variable: replace each occurrence of v in the query by a distinct variable. Let v 1 , ¨¨¨, v n denote the variables replacing the n occurrences of v. (ii) Express the indirect join: For each v i add the p?v sameAs ?v i q triple pattern.

For example, consider the following query Q6 and its graphical representation Evaluating a rewritten sameAs query requires special attention in order to ensure that the result is complete. Our SAM approach minimizes the amount of materialized sameAs triples for better efficiency. Thus, the dataset does not contain any sameAs reflexive triple x sameAs x. Remind that our solution aims to bring sameAs reasoning capability to query engines that do not support sameAs reasoning natively. Such query engine do not infer x sameAs x for any individual. Therefore, a regular evaluation of a sameAs query may lead to incomplete result. For instance, let us remind the example dataset of § 8.5.3 including the materialized sameAs triples: 

Id(pDoc1)

}

That query result is empty because the triple pattern ?x sameAs ?x 1 does not bind to ?x " IdppDoc1q and ?x 1 " IdppDoc1q due to the absence of the reflexive sameAs triple in the dataset.

To overcome this limitation, while keeping the materialized data as small as possible, we devise an extended query evaluation process. The idea is to take into account the implicit reflexive sameAs triples while joining a non-sameAs triple pattern with a sameAs one in order to ensure that the result is complete. • the LiteMat + RB approach is, in most use cases, the best performing approach and is hence the default approach.

• the LiteMat + SAM provides additional features, e.g., a need for originpreserving scenario, and improves the processing performance of BGPs containing a single triple pattern with inference. We have defined a set of 8 queries2 to run our evaluation (see Appendix for details).

Queries Q1 to Q5 are limited to concept or/and property subsumption reasoning tasks. Query Q6 implies sameAs only inferences while Q7 and Q8 mix subsumptions and sameAs inferences.

Finally, we need to define which dimensions we want to evaluate. According to

Benchmarking Streaming Computation Engines at Yahoo!3 , a recent benchmark for modern distributed stream processing framework, we take system throughput and query latency as two performance metrics. In this chapter, throughput refers to how many triples can be processed in a unit of time (e.g., triples per second). Latency indicates the time consumed by an RSP engine between the arrival of the input and the generation of its output. More precisely, for a windowing buffer w i of the i-th query execution containing N triples and executed in t i , then throughput " N t i and the latency " t i .

Quantifying joins and unions over reasoning approaches

As stated before, we can not compare Strider R to other available RSP systems. This is mainly due to the high stream rate generated of our experiment which can not be supported by state-of-the-art reasoning-enabled RSPs, e.g., C-SPARQL and SparqlStream. This is probably due to the lack of data flow management scalability of in these RSPs. In fact, their design was not intended for large-scale streaming data processing. Moreover, RSP system that could handle such rate either do not support reasoning or are not open source, e.g., CQELS-cloud.

To assess the performance benefit of our solution for processing complex queries, specially comprising many joins, we compare LiteMat + RB and Lite + SAM with a more classical query rewriting approach. This combines SAM with UNION clauses between combinations of BGP reformulation (this approach is henceforth denoted UNION + SAM). Notice that the UNION + SAM approach acts as a baseline for our experiments. Such a rewriting comes at the cost of increasing the number of joins. Table 8.4 sums up the join and union operations involved in the 8 queries of our experimentation. In particular, queries Q5, Q7 and Q8 present an important number of joins (resp. 90, 45 and 180) due to a large number of union clauses (resp. Q4 is 75% faster. For Q5, UNION + SAM does not even terminate. This is mainly due to the insufficient computing resources (e.g., number of CPU cores, memories) on Spark driver nodes, which is not capable of handling such intensive overheads for jobs/tasks scheduling and memory management.

Nevertheless, UNION + SAM is more efficient than LiteMat + RB on Q3 which contains a single triple pattern needing to reason over a property hierarchy of length two. This is due to the automatic parallelism provided by Spark on the execution of the UNION queries, thus benefiting from a good usage of cluster resources. With its FILTER clause, LiteMat + RB on Q5 does not benefit from such a parallel execution. Under this circumstance, a filter operator with numeric range determination seems to be more costly than the union of three selections. In fact, a filter operator to evaluate a range predicate (LiteMat + RB) is longer to process than evaluating three equality predicates (UNION + SAM). The same evolution for LiteMat + RB is witnessed on the more complex Q7 and Q8 queries. Nevertheless, for these queries, a throughput of over 800,000 triples per second can be achieved. Given our computing setting of 11 machines, this is still a major breakthrough compared to existing RSP engines. Moreover these systems are currently not able to support important constructors such as sameAs.

Cost analysis of the SAM approach

The SAM approach allows for retrieving the specific members of a clique that match the original dataset. As explained in Section 8.5.3, we propose an evaluation strategy that efficiently generates the result of a join operation between a non-sameAs pattern and its adjacent sameAs patterns, without actually processing the join. For example, SAM only executes 5 out of 12 joins for query Q 8 , the result of each of the remaining 7 joins is directly obtained from the clique metadata, (see Clpxq in Table 8.2). The SAM approach implies to customize the query engine and add the specific logic for joining sameAs triple patterns. Therefore, SAM only suits to extensible query processors and prevents a 'black box' SPARQL processors from being used.

Due to the extensible Spark APIs, it is possible to implement such an approach.

It would more difficult to obtain such a behavior with an out-of-the box SPARQL query processor.

Conclusion

In this chapter, we have presented the integration of several reasoning approaches for RDFS plus sameAs within our Strider RSP engine. For most queries, LiteMat together with the representative-based (RB) approach for sameAs cliques is the most efficient. Nevertheless, LiteMat + SAM proposes an unprecedented provenanceawareness feature that can not be obtained in other approaches. Lite + SAM can also be useful for very simple queries, e.g., a single triple patter in the WHERE clause.

To the best of our knowledge, this is the first scalable, production-ready RSP system to support such an ontology expressiveness. Via a thorough evaluation, we have demonstrated the pertinence of our system to reason with low latency over high throughput data streams. One of the limitations of our system corresponds to the potential large memory footprint of the generated dictionaries. Comparing to conventional stream reasoning approach, in the case of small workload or simplistic query, Strider R does not have a definitive advantage.

As future work, we consider adding the support for the ontology which contains cycle and multiple hierarchies. We will also investigate novel semantic partitioning solutions. This could be applied to elements such as dictionaries, streaming data and continuous queries. We are aiming to support data streams that would update the ontology and thus our dictionaries. An improvement of the FILTER operator in Strider R is also in the scope of consideration. Finally, we are also working on increasing the expressiveness of supported ontologies, e.g., including transitive properties. To do so, we implement a reusable distributed RDF stream reasoning prototype, namely BigSR to support our evaluations.

Thus our system addresses important problems that are being met frequently in modern applications. For instance, projects like Waves, SEAS1 (European ITEA2), Optique2 (European FP7) and many others require processing data streams with rich semantics in close to real time. At the same time, industrial systems based on Datalog (Logiblox [START_REF] Aref | Design and implementation of the logicblox system[END_REF], Yedalog [START_REF] Chin | Yedalog: Exploring knowledge at scale[END_REF], datomic3 ) are emerging. It hence makes sense to mix these two features (i.e., close to real-time stream processing and rule-based reasoning) in a single framework to fulfill an emerging kind of systems.

Some available stream reasoning systems like StreamRule [START_REF] Mileo | Streamrule: A nonmonotonic stream reasoning system for the semantic web[END_REF], Ticker [START_REF] Beck | Ticker: A system for incremental asp-based stream reasoning[END_REF][START_REF] Beck | Expressive rule-based stream reasoning[END_REF] and Laser [START_REF] Bazoobandi | Expressive stream reasoning with laser[END_REF] have opted for a centralized design to benefit from existing ASP solver such as Clingo [START_REF] Gebser | Clingo = ASP + control: Preliminary report[END_REF]. Their scalability is hence limited by single machine/process and thus can not scale. Actually, high expressive queries often involve recursion or complex temporal logic operators, which are considered as the main performance bottleneck for stream reasoning. Additionally, the optimization tailored for static query evaluation Before we present the implementation details of BigSR, we use an example to demonstrate a fundamental difference between BSP and RAT. Considering a program P " TpX q Ð ' wpl,dq τ ♦pR1pY q ^R2pY , X qq, Figure 9.1 roughly gives a runtime example of P 0 on Spark (Figure 9.1(a)) and Flink (Figure 9.1(b)). Spark processes the data stream synchronously, the next query execution will be launched after the previous one is finished. Conversely, Flink serializes, caches, and pushes forward each record to the next operator eagerly right after the current computation is done. Such behavior minimizes the data processing delay, and operators are able to perform asynchronously. In Figure 9.1, although Spark uses 3 nodes to compute the second part of every query with higher parallelism than Flink, it still needs some time for synchronization between two jobs. Thus, within 9-time units, Flink is able to finish 5 continuous queries while Spark is only able to process 3 queries during this same period of time. This clearly showcases a better use of computing resources in favor of Flink.

LARS does not include any notion of state. Thus, to build the connection between LARS and Spark/Flink's execution model, we define stateful and stateless operators as follows: A stateless operator over a stream transforms a stream into another stream. In contrast, a stateful operator is a function which takes a pair of a stream and a state, and returns another pair of stream and state. In other words, the data processing in stateless operator only looks up the current record. The evaluation of the stateful operator requires the system to hold an internal state, e.g., use local 

Window Operation in BigSR

We introduce the translation of LARS window semantics to the physical operators in Spark and Flink. As described in Section ??, only time-based window is involved in BigSR for the current implementation. We thus cover the most common use-cases of stream reasoning.

Here, we clarify the translation of LARS time-based window operator to Spark (BSP) and Flink (RAT). Specifically, we provide, under BSP and RAT, the translations of atoms of the form ' wpl,dq τ ♦, for an input stream S, with range size l, sliding size d and a sliding window operator wpl, dq.

Spark. A Spark Streaming application only allows a single global window operator.

The system buffers input data stream in real-time, and launches the computation w.r.t. its predefined logical plan (more details are given in Section 9.3.4).

For an input stream S, the translation of ' wpl,dq τ ♦S in Spark is illustrated in Figure 9.4. A window operator with range size l in LARS is firstly translated into four micro-batches of size l b " l{4 in Spark, and then a batch of these four micro-batches with sliding size d, l b " d{2. Each micro-batch batch i is assigned to a time interval T i " rt i , t i`l b s containing data within T i . A micro-batch is the basic unit of data processing in Spark's BSP model.

Recall that LARS defines the window operator at ASP's formula level. It is not obvious how to extend such translation to the program level in LARS when there are multiple different window definitions, because the micro-batch approach can only applied to one window over the whole program. 

Distributed Stream Reasoning on Spark

In the following section, in order to provide a fair comparison between BSP and RAT, we keep identical query semantics for these two models. Hence, consider the following program P 0 consisting of rules R 1 , R 2 , and R 3 :

R1 : p 2 pX , Y q Ð ' wpl,dq τ ♦pp 0 pX, Y qq R2 : p 1 pX , Y q Ð ' wpl,dq τ ♦pp 2 pX, Y q ^p0 pY , Z qq R3 : p 2 pX , Y q Ð ' wpl,dq τ ♦pp 1 pX , Y q ^p0 pX , Y qq
We assume that R 1 , R 2 , and R 3 hold the same window operator in their bodies.

Be aware that this is not a prerequisite for Flink in the general case. Predicate p 0 is an EDB predicate while p 1 and p 2 are two IDB predicates. ♦ applied over input streams, and initializes IDBs p 1 , δp 1 , p 2 , and δp 2 . The evaluation terminates when a fixed-point is reached on IDB relations. During the whole semi-naive evaluation, the system omits the notion of time, and the evaluation is performed as usual in a statical data processing.

We now present how this evaluation of P 0 is parallelized on Spark:

• PL1.: The system starts the evaluation by initializing p 1 and p 2 using input EDB p 0 . p 1 and p 2 forms an SCC C i , for any other SCC C j , where C j does not depend on C i , the evaluations of C i and C j can be computed in parallel.

• PL2. In each iteration step of the semi-naive evaluation, the set of operations (e.g., selection, join, union) which compute each IDB predicate are chained together as a Spark job, i.e., , two Spark jobs for the evaluation of p 1 and p 2 are involved. The iterations are completed until a fix-point is reached. The system outputs p 1 and p 2 for further calculation.

• PL3. Inside a single Spark Job, each operator performs a transformation of RDD. As an RDD is a distributed data collection, multiple tasks may execute concurrently across different data partitions.

The program P 0 corresponds to a series of BSP Spark jobs which execute in a Spark Streaming context. One restriction is that P 0 is only allowed to possess a single global window (' wpl,dq τ

).

For a non-recursive program, the logical plan is first mapped into a single Spark job's DAG logical plan. Next, Spark compiles the logical plan to its physical plan and is then evaluated. We mainly discuss the recursive program evaluation on Spark here. Considering the previously defined program P 0 , Figure 9.6 (a) gives a running example by using the semi-naive evaluation of [START_REF] Abiteboul | Foundations of Databases[END_REF].

Limitation & Envisioned Optimization. The implementation of recursion support in BigSR is straightforward. Some discussions about [START_REF] Shkapsky | Big data analytics with datalog queries on spark[END_REF] and our envisioned optimization for recursive query handling are worth mentioning. Of the four proposed solutions in [START_REF] Shkapsky | Big data analytics with datalog queries on spark[END_REF], two of them play key roles: (i) extending immutable RDD to mutable SetRDD; (ii) adding recursive stage support in Spark job scheduler. Both (i) and (ii) sacrifice fault-tolerance to gain system performance. For a streaming service running 24 ˆ7, such a fault-tolerance trade-off has a high potential impact on system's robustness and reliability.

In addition to the optimizations of [START_REF] Shkapsky | Big data analytics with datalog queries on spark[END_REF], we propose two other envisioned solutions:

(a) Integration with distributed index. For stratified LARS program, iterations and join operations become the performance bottleneck since an iteration potentially involves intensive job scheduling and network shuffling in a distributed environment. 

p 1 , δ 1 p 2 Let δp 1 " δp 2 " H Let R p 1 " R p 2 " H R p 0 " δp 1 " δp 2 :" tp 0 ps, oq | p 0 ps, oq P S 1 u; R p 1 :" δp 1 , R p 2 :" δp 2 ; do // Compute δ 1 p1, δ 1 p2 in parallel δ 1 p1 :" δp 2 ' π Y,Z pR p 0 q ´Rp 1 ; δ 1 p2 :" δp 1 ' π X,Y pR p 0 q ´Rp 2 ; // Compute R p1 , R p2 in parallel R p 1 :" R p 1 Ť δ 1 p 1 ; R p 2 :" R p 2 Ť δ 1 p 2 ; δp1 " δ 1 p1, δp2 " δ 1 p2 while δp 1 ‰ H or δp 2 ‰ H; end
Instead of scanning each partition entirely in RDD, the work4 integrates adaptive radix tree [START_REF] Leis | The adaptive radix tree: Artful indexing for main-memory databases[END_REF] to enable efficient data access and update. Our preliminary experimentation emphasizes that a performance gain for each iteration is up to 2.5-3 with indexed RDD compared to standard RDD. However, the index needs to be reconstructed after each iteration, which comes with a non-negligible overhead. This approach thus is in the experimental and envisaged stage. (b) Parallel job scheduling. Spark scheduler submits jobs in a centralized way via a master node. Frequent job submissions cause unavoidable latency. Rather than merging multiple jobs together into a single job [START_REF] Shkapsky | Big data analytics with datalog queries on spark[END_REF], a distributed job scheduler [START_REF] Ousterhout | Sparrow: Distributed, low latency scheduling[END_REF] would provide millisecond latency for job scheduling without sacrificing any fault-tolerance.

Distributed Stream Reasoning on Flink

For a non-recursive program, BigSR compiles a LARS program into Flink's streaming topology (i.e., DAG). Then, it is evaluated through data flowing between operators in the DAG.

In the case of a recursive program (e.g., P 0 ), i.e., different from the BSP model of Spark, Flink needs to handle the timestamp during the whole life cycle of the LARS program evaluation. For input stream S, Flink computes S 1 and continuously append data to p 0 . The program evaluation on Flink follows the main spirit of semi-naive algorithm. However, each IDB/EDB relation is mapped into the independent data stream, and all stateful relational operators (e.g., distinct, stream join) in P 0 is restricted by wpl, dq. In particular, the RAT model requires Flink to feed back the IDB stream after each iteration before the fixed-point is reached. Algorithm 4 gives the general steps to evaluate program P 0 on Flink. Figure 9.6(b) gives a high-level vision of the workflow of Flink of P 0 :

• PL1. Similar to Spark, any other SCC which is independent from C i can be computed in parallel.

• PL2. Different from Spark, which splits the recursion into a series of independent jobs. Flink achieves recursion with streaming feedback. In iteration i, the system needs to feed back S i f pp 1 q and S i f pp 2 q (downstream for computing p 1 and p 2 , respectively) as the input for iteration i `1. And the processes on S i f pp 1 q and S i f pp 2 q occur in parallel in a single iteration step.

• PL3. Similar to Spark, the DataStream flows through each operator across in parallel, each operator consists of multiple tasks (over some partitions) which can be performed concurrently (w.r.t. PL3).

Limitation & Envisioned Optimization. There are two main limitations we found by using the RAT model:

(1) We require that the conjunction of two atoms a 1 , a 2 should share the same window operator, e.g., , a formula α " ' w 1 ♦a 1 ^'w 2 ♦a 2 currently imposes that w " w 1 " w 2 (i.e., α " ' w ♦pa 1 ^a2 q). Given our experience, this limitation shows up when input stream is of type S and the underlying process relies on multi-cores/distributed environment. The main difficulties come from synchronization of clocks, task progress, and window trigger mechanisms. However, a single-core/centralized system with input stream S ‹ does not suffer from such a synchronization problem. Since all the computations are done sequentially, the program evaluation performs in a quasi-static way without considering the fast update of S ‹ .

To the best of our knowledge, CQELSCloud, which is the only implementation with distributed setting, has a similar semantic. Nevertheless, to avoid above-mentioned problems, CQELSCloud forbids event timestamp and "sliding" mechanisms in their window operators. The record is emitted eagerly right when the computation is done.

(2) We do not support recursive queries on Flink yet. Within the LARS framework, the implementation of recursion with RAT could be quite challenging. The example given earlier skips window operator. Once the body atoms of p 1 and p 2 are restricted by the temporal logic operator (e.g., window operator), the synchronization problem mentioned in (1) will reappear. A possible solution is to merge multiple input streams together and perform the recursion with a recursive operator. The system would then have to cut off the query processing pipeline to handle the recursion. In such a situation, the recursive operator behaves similarly to the BSP model which is against the original intention of using the RAT model. 

Discussions

Evaluation

The code base (written using the Scala programming language), data sources and test queries are available on GitHub To guarantee query semantics consistency between BSP and RAT, the result sets of a given query should be the same on the two distributed models. Input data streams are generated by Kafka message producer and injected into BigSR in parallel.

Q 1 -Q 3 Q 4 -Q 6 Q 7 -Q 8 Q 9 -Q 11 Q 12 -
The average stream rate is around 250,000 to 300,000 triples/second. Performance metrics. Considering Benchmarking Streaming Computation Engines at Yahoo!, the well-known benchmark for distributed streaming systems6 , we take system throughput and query latency as the principal performance criteria. In particular, we categorize the evaluations into two groups:

• Group 1: Q 1 to Q 11 (queries with stateful operators). We denote throughput level of million triples per second. We observe that the throughput of Flink is 1.x -3.x times superior to Spark. This difference is more substantial when the query has more intensive joins/conjunctions. This can be explained by the job scheduling of Spark which imposes join operations to be performed on different compute nodes, thus causing network shuffles. Moreover, Spark's job scheduling is difficult to control in a fine-grained manner. On the contrary, Flink is able to avoid shuffles with an appropriate system configuration, i.e., the join operation can be managed by a task manager and performed locally on a single compute node.

For recursive queries Q 9 to Q 11 , Spark achieves a throughput of up to 2.3M triples/second. Although we design three recursive queries for LUBM, the length of transitivity in LUBM is rather small which limits the number of iterations in the semi-naive evaluation. Additionally, the intermediate results generated in Q 9 to Q 11 are of moderate size, which reduces the performance penalty implied by shuffle operations.

Latency. We summarize the query latency of Group 1 (Q 1 to Q 11 ) in Figure 9.8. Spark and Flink hold second/sub-second delay in general (only Q 3 exceeds one second on Flink). Flink has a lower latency than Spark. The obtained latency on Spark and Flink are already acceptable for most streaming applications.

Here, we highlight the experiment over queries in group 2 (Table 9.3). Intuitively, On Flink, we calculate the record latency by subtracting the output timestamp from input system-assigned timestamp. 

Q

Conclusion

This work bridges the gap between theoretical work in progress on RDF stream reasoning and modern cutting-edge Big Data technologies. In fact, our BigSR system is able to reach the millions of triples per second processing mark on complex queries and second/subsecond latency in general. In order to tackle scalability, BigSR considers the standard BSP and RAT approaches through implementations with state of the art open source frameworks, respectively Apache Spark and Apache Flink. Both these systems offer rich APIs (e.g., obviously for stream processing but also for machine learning, graph analytics), fault-tolerance, load balancing, and automatic work distribution. In terms of reasoning, we address logic programming through the ASP-based LARS framework.

Conclusion and Future Work

In this thesis, we have addressed some major problems of distributed RDF stream processing and reasoning by handling continuously SPARQL query, optimizing reasoning query and executing expressive temporal Datalog/ASP program.

The thesis starts with a survey of existing RSP benchmarks. We propose some new performance metrics and design a specific evaluation plan. In particular, we take into account the specific implementation of each RSP engine. We perform many Strider comes with a set of hybrid AQP strategies: i.e., static heuristic rule-based optimization, forward and backward adaptive query processing. We insert the trigger into the optimizer to attain the automatic strategy switching at query runtime.

Moreover, with its micro-batch approach, Strider fills a gap in the current state of RSP ecosystem which solely focuses on record-at-a-time. Q 2 :
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 9697421491 Cependant, un moteur de RDF Stream Processing (RSP) moderne doit prendre en compte les caractéristiques de volume et de vitesse rencontrées à l'ère du Big Data. Dans un projet industriel d'envergure, nous avons découvert qu'un moteur de traitement de flux disponible 24/7 est généralement confronté à un volume de données massives, avec des changements dynamiques de la structure des données et les caractéristiques de la charge du système. Ces faits ont un impact sur les performances et la fiabilité du moteur. Pour résoudre ces problèmes, nous proposons Strider, un moteur de traitement de flux RDF distribué, hybride et adaptatif qui optimise le plan de requête logique selon l'état des flux de données. Strider a été conçu pour garantir d'importantes propriétés industrielles telles que l'évolutivité, la haute disponibilité, la tolérance aux pannes, le haut débit et une latence acceptable. Ces garanties sont obtenues en concevant l'architecture du moteur avec des composants actuellement incontournables du Big Data: Apache Spark et Apache Kafka. De plus, un nombre croissant de traitements exécutés sur des moteurs RSP nécessitent des mécanismes de raisonnement. Ils se traduisent généralement par un compromis entre le débit de données, la latence et le coût computationnel des inférences. Par conséquent, nous avons étendu Strider pour prendre en charge la capacité de raisonnement en temps réel avec un support d'expressivité d'ontologies en RDFS + (i.e., RDFS + sameAs). Nous combinons Strider avec une approche de réécriture de requêtes pour SPARQL qui bénéficie d'un encodage intelligent pour les bases de connaissances. Le système est évalué selon différentes dimensions et sur plusieurs jeux de données, pour mettre en évidence ses performances. Enfin, nous avons exploré le raisonnement du flux RDF dans un contexte d'ontologies exprimés avec un fragment d'ASP (Answer Set Programming). La considération de cette problématique de recherche est principalement motivée par le fait que de plus en plus d'applications de streaming nécessitent des tâches de raisonnement plus expressives et complexes. Le défi principal consiste à gérer les dimensions de débit et de latence avec des méthologies efficaces. Les efforts récents dans ce domaine ne considèrent pas l'aspect de passage à l'échelle du système pour le raisonnement des flux. Ainsi, nous visons à explorer la capacité des systèmes distribuées modernes à traiter des requêtes d'inférence hautement expressive sur des flux de données volumineux. Nous considérons les requêtes exprimées dans un fragment positif de LARS (un cadre logique temporel basé sur Answer Set Programming) et proposons des solutions pour traiter ces requêtes, basées sur les deux principaux modèles d'exécution adoptés par les principaux systèmes distribuées: Bulk Synchronous Parallel (BSP) et Record-at-A-Time (RAT). Nous mettons en oeuvre notre solution nommée BigSR et effectuons une série d'évaluations. Nos expériences montrent que BigSR atteint un débit élevé au-delà du million de triplets par seconde en utilisant un petit groupe de machines. Recursive program (P 0 ) evaluation on Spark and Flink. . . . . . . . System throughput (triples/second) on Spark and Flink for Q 1 to Q11.141 9.8. Query latency (milliseconds) on Spark and Flink for Q 1 to Q11. . . . List of Tables 3.1. Comparisons of different DSPEs . . . . . . . . . . . . . . . . . . . . Comparisons of RSP engines. TiW: Time-Based Window. TpW: Triple-Based Window TD: Time-Driven. BD: Batch-Driven. DD: Data-Driven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate max for the considered queries in C-SPARQL. . . . . . . . . . . 62 5.2. Execution time (in seconds) of Q 1 , Q 2 , Q 3 and Q 6 . . . . . . . . . . . 68 8.1. Encoding for an extract of the concept hierarchy of the LUBM ontology103 8.2. Notations used for sameAs reasoning . . . . . . . . . . . . . . . . . . 107 8.3. SamesAs statistics on LOD datasets (ipc = number of distinct individuals per sameAs clique, max and avg denotes resp. the maximum and average of ipc,*: subsets containing only sameAs triples with DBpedia, Biomodels contains triples of the form a sameAs a . . . . . . . . . . 117 8.4. Number of joins, unions and filter per query for LiteMat + RB (LMRB) and UNION + SAM (USAM) approaches. Here, the number of UNIONs correspond to the number of UNION keywords. USAM* relies on a simplified LUBM ontology . . . . . . . . . . . . . . . . . . 118 9.1. Intuitive comparison between BSP and RAT . . . . . . . . . . . . . 138 9.2. Test queries and datasets. . . . . . . . . . . . . . . . . . . . . . . . . 139 9.3. Stateless query latency (millisecond); Spark micro-batch size = 500 ms.142 2. Introduction 2.1. Motivation Nowadays, we are in the era of rapid data generation and rapid data consumption. Processing data from real-time data streams and sensors devices is becoming ubiquitous. Applications like GPS (Global Positioning System), Social Network, Traffic Monitoring services, Financial Transaction System and Building Management System are continuously producing and consuming massive timely information.

  model. Assuming disjoint infinite sets I (RDF IRI references), B (blank nodes) and L (literals), a triple (s, p, o) P (I Y B) x I x (I Y B Y L) is called an RDF triple with s, p and o respectively being the subject, predicate and object. IB = I Y B, IBL = I Y B Y L are the respective unions. We denote the respective unions as IB = I Y B AND IBL = I Y B Y L. It models the statement "s has property p with value o ".
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  It adopts window operator to temporally store incoming data stream and continuously launch the query execution over the buffered data stream. To formalize the semantic of continuous query, CQL categorizes the streaming operators into three categories: Stream-to-Relation, Relation-to-Relation and Relation-to-Stream. For the sake of better illustration, we use C-SPARQL as an example, it inherits the main spirit of CQL, and extends SPARQL grammar to handle RDF data stream. (1) Stream-to-Relation (S2R) operator produces a relation from input data stream. Window operator fall into this category. C-SPARQL inherits the main spirits of CQL, We use C-SPARQL to illustrate the window conception in RDF stream processing.

Definition 5 (

 5 Window operators). Let w be a window function. The window operator ' w signifies that the evaluation should occur on the delivered stream by window function w. We consider the set A `of extended atoms by the grammar: a | ' w ♦α , where a P A and t P N is a time point. The formula ♦α means ♦α holds in the current window S, if α holds at some time point in S. The window operator ' w signifies that the evaluation should occur on the delivered stream by window function w. Definition 6 (Rule and program). An expression of the form α Ð β 1 , . . . , β n is called a LARS rule. where α is an atom and β 1 , . . . β n are extended atoms. A (positive plain) LARS program P is a set of LARS rules.
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 35 Figure 3.5.: Discretized Stream Processing on Spark Streaming
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 36 Figure 3.6.: Flink Runtime Environment
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 41 Figure 4.1.: C-SPARQL Architecture

Figure 4 .

 4 2 shows the architecture of CQELS. CQELS supports data-driven query execution following the content-change policy, in which query execution is triggered immediately at the arrival of new elements in the window.
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 42 Figure 4.2.: CQELS Architecture
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 43 Figure 4.3.: C-SPARQL Architecture
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 44 Figure 4.4.: C-SPARQL Architecture

  threading) version StreamRule P[START_REF] Pham | Towards scalable non-monotonic stream reasoning via input dependency analysis[END_REF] use an RSP engine for data stream pre-filtering and Clingo[START_REF] Gebser | Clingo = ASP + control: Preliminary report[END_REF] as the ASP solver. The expressiveness of BSP implementation in BigSR can fully cover StreamRule and StreamRule P , since the implementation in these two reasoners stay on positive stratified Datalog program. Moreover, evaluation of StreamRule/StreamRule P showcases that the average throughput is around thousand-triples/second (1.x-2.x compared to C-SPARQL and CQELS) with secondlevel delay. A centralized approach limits StreamRule/StreamRule P to remain at the same performance level as existing centralized RSP engines.

Figure 5 . 1 .

 51 Figure 5.1.: Dynamic and static data in Water Resource Management Context

  static data size. The capacity to handle complex queries with multi-stream sources or static background information is an important criterion to evaluate RSP engines. LSBench and CityBench have already proposed these metrics. -Y : execution time and memory consumption. As the machine conditions have uncontrollable varying factors, we evaluate the execution time, for a given query, as the average value of n iterations. Since C-SPARQL and CQELS have two different execution mechanisms (time-driven and data-driven), we adapt the definition of execution time to each context. As a consequence, the execution time represents for C-SPARQL the average execution time over several query executions, while it represents for CQELS the global query execution time for processing N triples. Time-driven and Data-Driven does not determine the output. It actually depends on S2R operator, example is already given in related work.

Figure 5

 5 Figure 5.2.: Impact of stream rate and number of streams on the execution time of C-SPARQL.

  Figure 5.2 (b), we focus on C-SPARQL's behavior by varying the number of streams where the stream rate is set to 1,000 triples/s (i.e. the dotted line in Figure5.2 (a)). This figure reports the execution time of Q 1 for different number of streams. The dotted line represents the execution time of Q 1 on a single equivalent (i.e. same workload) stream with a rate Stream Rate single " N umber of Streams ˆStream Rate multi , where Stream Rate single and Stream Rate multi denote the stream rate for respectively single and multi streams. The curve of the query execution time increases as a convex function over the number of streams. C-SPARQL has a substantial delay bythe increasing number of streams. Indeed, it has to repeat the query execution for each stream[START_REF] Barbieri | Querying RDF streams with C-SPARQL[END_REF], then executes the join operation among the intermediate results from different stream sources. This action requires important computing resources, so we can deduce that C-SPARQL is more efficient to process single stream than multi-streams. In addition, according to our experiments, we find that the query execution time linearly increases with the growth of the size of time-based window and static data. C-SPARQL has a constant overhead for delay when increasing these two metrics.In Figure5.2 (b), we present the impact of time-based Window Size on execution time. Here, we fix stream rate at 1,000 triples/s while increasing the window size from 2s to 10s using the STEP clause.

  Figure 5.3.: The real-time monitoring of memory consumption of Q 1

Figure 5

 5 Figure 5.4.: The impact of (a) stream rate and (b) static data size on memory consumption in C-SPARQL.

  Figure 5.4 (a) shows the impact of stream rate on M CR. For each query, the period decreases and M CR increases with the growth of Stream Rate. Query Q 3 has the highest M CR. This can be explained by the aggregate operator which produces more intermediate results during query execution. Note that M CR is not a general criterion for measuring memory consumption. In some use cases, we could not observe periodical activity on the GC. The main goal of using M CR is to give a comprehensive description of memory management on C-SPARQL.

Figure 5 .

 5 Figure 5.4 (b) displays the increase of memory consumption rate over the growth of static data size. For query Q 6 , memory peak varies marginally while increasing

  inject a finite sequence of stream into the system which contains N triples. N should be big enough to get more accurate results (N ě 10 5[START_REF] Phuoc | Linked stream data processing engines: Facts and figures[END_REF]).

Figure 5

 5 Figure 5.5.: The impact of number of triples and static data size on query execution time in CQELS.

Figure 5 .

 5 Figure 5.5 (a) shows the impact of number of triples on execution time. N

Figure 5 .

 5 Figure 5.6 (a) shows that the memory consumption of Q 1 , Q 2 and Q 3 is very close when varying the number of triples, i.e., the complexity of queries are not reflected by their memory consumption. CQELS manages efficiently the memory for complex queries. In Figure5.6 (b), the memory consumption of Q 6 is proportional to the size of static data. According to the evaluation, we found that a lower maximum allocated heap size (e.g., 512MB) causes a substantial delay on CQELS.

Figure 5

 5 Figure 5.6.: Impact of the number of triples and the static data size on memory consumption in CQELS.

  Benchmark for Distributed Streaming Systems Right after the end of this work, Yahoo published their benchmark for the performance evaluation of distributed stream processing systems 3 . The originally published Yahoo benchmark covered the evaluation of Spark Streaming, Storm and Flink. The benchmark mainly considers system throughput and latency as the two primary performance impact factors. In our case, i.e., distributed RDF Stream Processing, throughput refers that how many RDF triples can be processed by the system per unit time (e.g., triples/second). Latency means how long does the RSP engine consumes between the arrival of an input and the generation of its output (i.e., execution time as previously-mentioned).This chapter focuses on the performance evaluation of two state-of the-art RSP engines with our native RSP performance benchmark proposals. We propose some new performance metrics and designed a specific evaluation plan. In particular, we take into account the specific implementation of each RSP engine. We performed many experiments to evaluate the impact of Stream Rate, Number of Triples, Window Size, Number of Streams and Static Data Size on Execution Time and Memory Consumption. Several queries with different complexities have been considered. The main result of this complete study is that each RSP engine has its own advantage and is adapted to a particular context and use case, e.g., C-SPARQL excels on complex and multi-stream queries while CQELS stands out on queries requiring static data.

•

  Algebra operators: Projection, Inner-Join, Optional (Left-Join), BGP, Union, Filter, Distinct, GroupBy • Expressions (sub-operators of algebra): LogicalAnd, LogicalOr, Bound, Log-icalNot, Equals, NotEquals, GreaterThan, GreaterThanOrEqual, LessThan, LessThanOrEqual, NodeValue, ExprVar • Aggregations: Sum, Max, Min, Avg, Count The STREAMING keyword initializes the application context of Spark Streaming and the windowing operator. More precisely, WINDOW and SLIDE respectively indicate the size and sliding parameter of a time-based window. The novelty comes from the BATCH clause which specifies the micro-batch interval of discretized stream for Spark Streaming. Here, a sliding window consists of one or multiple micro-batches.

  Strider contains two principle modules: (1) data flow management. In order to ensure high throughput, fault-tolerance, and easy-to-use features, Strider uses Apache Kafka to manage input data flow. The incoming RDF streams are categorized into different message topics, which practically represent different types of RDF events. (2) Computing core. Strider core is based on the Spark programming framework. Spark Streaming receives, maintains messages emitted from Kafka in parallel, and generates data processing pipeline.

Figure 6 .

 6 Figure 6.1 gives a high-level overview of the system's architecture. The upper part of the figure provides details on the application's data flow management. In a nutshell, data sources (IoT sensors) are sending messages to a publish-subscribe layer.

Figure 6 .

 6 Figure 6.1.: Strider Architecture. Blue arrows and green arrows refer respectively to the dataflow and the processes

Figure 7 .

 7 Figure 7.1.: Conversion from RDF to RDBMS

7. 2 .

 2 Hybrid Adaptive Query Processing 7.2.1. Query processing outline & trigger layer Strider possesses a hybrid SPARQL query optimization strategy, two optimization components are proposed, i.e., static and adaptive, which are respectively based on heuristic rules and (stream-based) statistics (Figure 7.2).
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 72 Figure 7.2.: Strider Hybrid Query Optimization
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 7 3 displays the corresponding UCG of query in Listing 6.2 .
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 736 Figure 7.3.: UCG creation
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 7 Figure 7.4.: UCG weight initialization
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 7 Figure 7.5.: Dynamic Query Plan Generation for Q 8
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 7 Figure 7.6.: Initialized UCG weight, find path cover and generate query plan
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 77 Figure 7.7.: Decision Maker of Adaptation Strategy

  in 4.1, we thus only give some further information about Waves dataset. Waves dataset describes different water measurements captured by sensors. Values of flow, water pressure and chlorine levels are examples of these measurements. The value annotation uses three popular ontologies: SSN, CUAHSI-HIS and QUDT. Each sensor observes and records at least one physical phenomenon or a chemical property, and thus generates RDF data stream through Kafka producer. Our micro-benchmark contains 9 queries, denoted from

Figure 7 . 8 .

 78 Figure 7.8.: RSP engine throughput (triples/second). D/L-S: Distributed/Local mode Static Optimization. D/L-A: Distributed/Local mode Adaptive Optimization. SR: Queries for SRBench dataset. W: Queries for Waves dataset.
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 78779 Figure 7.10.: Record of throughput on Strider. (a)-throughput for q 7 ;(b)-throughput for q 8

Figure 8 .

 8 Figure 8.1 shows 3 vertical "columns" or groups of functions: (a), (b), and (c). On the middle and the right, (a) and (b) are off-line pre-processing functions. Note that both (a) and (b) are based on LiteMat[START_REF] Curé | Litemat: A scalable, cost-efficient inference encoding scheme for large RDF graphs[END_REF] for knowledge base encoding and query rewriting. On the left, (c) is the on-line stream processing pipeline. We detail the three groups below, in the order they participate to the whole workflow:
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 81 Figure 8.1.: Strider R Functional Architecture

8. 4

 4 on the encoding of this extract of the Tbox. This figure also presents elements of the Abox,i.e., RDF triples concerning individuals. That extract highlights the creation of individuals related by sameAs property, thus creating individual cliques.

Figure 8 .

 8 Figure 8.2.: LUBM's Tbox and Abox running example

Figure8. 3

 3 Figure8.3 provides some details on how this partial encoding is implemented into Strider R . Intuitively, it uses the Discretized Stream (DStream) abstraction of Apache Spark Streaming where each RDD is composed of a set of RDF triples. For each RDD, a transformation is performed which takes a IRI/literal based representation to a partially encoded form. This transformation lookups into the TBox and Abox dictionaries precomputed from static KBs. The bottom right table of the figure

Figure 8 .

 8 Figure 8.4.: sameAs representation solutions

  g., FILTER {?x like '*w3c.org*'}, we rewrite it into an expression that refers back to the IRI value(s) instead of the encoded identifier. Let define IRIpxq as the IRI (or the set of IRIs in case of a clique) associated with encoded ID x. Let f pxq be a FILTER condition on variable ?x, f pxq is then rewritten into tDe P IRIpxq|f pequ. A final step decodes the bindings: each encoded value is translated to its respective IRI or literal value. If the encoded value is a clique number, then it translates to the IRI of the clique representative. 8.5.3. SAM reasoning SAM stands for SAM for sameAs Materialization and aims to handle reasoning in the case of origin-preserving (or provenance-awareness) scenario which are not supported by the RB solution introduced above (Section 8.5.2).
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 88 Figure 8.5.: SAM rewriting for the Q 6 query
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 86 Figure 8.6.: SAM rewriting for Q 8 query
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 8788 Figure 8.7.: Throughput Comparison between LiteMat+RB and UNION+SAM for Q1 to Q5
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 8 Figure 8.9.: Throughput Comparison between LiteMat+RB and UNION+SAM for Q6 by varying the size of clique.

Figure 8 .

 8 Figure 8.10.: Latency Comparison between LiteMat+RB and UNION+SAM for Q6 by varying the size of clique.

Figure 8 .

 8 Figure 8.11.: Throughput Comparison between LiteMat+RB and UNION+SAM for Q7, Q8 by varying the size of clique.

Figure 8 .

 8 Figure 8.12.: Latency Comparison between LiteMat+RB and UNION+SAM for Q7, Q8 by varying the size of clique.

Figures

  Figures 8.9, 8.10, 8.11 and 8.12 illustrate the impact on engine throughput and

  e.g., data indexing, data preprocessing, neither meet the real-time nor the defined temporal logic requirements. Finally, distributed environments often adopt a sharednothing architecture where the memory of different data partitions are isolated, thus preventing some advanced optimization for Datalog program materialization[START_REF] Motik | Parallel materialisation of datalog programs in centralised, main-memory RDF systems[END_REF] to be applied. This chapter first introduces our BigSR prototype which addresses distributed computing techniques on expressive stream reasoning. This system possesses two broad classes of streaming models: Bulk Synchronous Parallel (BSP) and Record-at-A-Time(RAT) which are respectively implemented using Apache Spark Streaming and Apache Flink. The adoption of these two models is motivated by different needs from real-world use cases, e.g., ASP programs with or without recursion, the capacity to support multiple streaming windows and constraints on acceptable processing latency.

Figure 9 . 1 .

 91 Figure 9.1.: Blocking and non-blocking query processing.
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 93 Figure 9.3.: Logical plan of query D.2 on Spark and Flink
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 94 Figure 9.4.: The translation of window operator on Spark.
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 9 Figure 9.5.: The translation of window operator on Flink.

9. 3 . 4 .

 34 Program plans generation.

Figure 9 .

 9 Figure 9.3 compares the logical plan of our Listing D.2 query example. Both Spark and Flink can naturally embed the three parallelism strategies of Section 9.2.1 into their own native physical plan. Due to reliable cluster resource allocation, continuous Spark jobs are launched synchronously, i.e., a link connects two consecutive query
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 96 Figure 9.6.: Recursive program (P 0 ) evaluation on Spark and Flink.

Figure 9 . 7 .

 97 Figure 9.7.: System throughput (triples/second) on Spark and Flink for Q 1 to Q11.

  Figure 9.8.: Query latency (milliseconds) on Spark and Flink for Q 1 to Q11.

  experimentations to evaluate the impact of Stream Rate, Number of Triples, Window Size, Number of Streams and Static Data Size on Execution Time and Memory Consumption. Several queries with different complexities have been considered. The main results of this complete study are that each RSP engine has its own advantage and are adapted to a particular context and use case, e.g., C-SPARQL excels on complex and multi-stream queries while CQELS stands out on queries requiring static data. Given this evaluation of existing RSP engines, we are able to design Strider, a distributed RDF stream processing engine for large scale data stream. It is built on top of Apache Spark Streaming and Apache Kafka to support continuous SPARQL query evaluation and thus possesses the characteristics of a production-ready RSP.

9 D. 1 .

 91 processing model, we defined a BATCH clause to assign the time interval of each micro-batch. Basically, a single micro-batch represents a RDD, Spark's main abstraction. For each triggered query execution, Spark Streaming receives a segment of Dstreams which essentially consists of an RDD sequence.The REGISTER clause concerns the SPARQL queries to be processed. Strider R allows to register multiple queries, and uses a thread pool to launch all registered queries asynchronously. However, the optimization of multiple SPARQL queries is beyond the scope of this paper. Inside REGISTER, each continuous SPARQL query possesses a query ID. The REASONING clause enables the end-user to select a combination of concept/property hierarchy and sameAs inferences. Once REASONING service is triggered, Strider R automatically rewrites the given SPARQL query to its LiteMat mapping. Moreover, incoming data stream will also be encoded within the rules of LiteMat KBs.D. Queries for the evaluation inChapter Waves dataset, non-recursiveQ 1 :v a l a t o m t p 1 = Atom ( a d d P r e f ( s s n P r e f , " h a s V a l u e " ) , Term ( "S" ) , Term ( "O" ) ) v a l a t o m r e s = Atom ( r e s I R I , Term ( "S" ) ) v a l r u l e 1 = Rule ( a t o m r e s , Set ( a t o m t p 1 ) , f w i n ( r a n g e , s l i d e ) ) Program ( Set ( r u l e 1 ) )
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  1 , tp 2 , tp 3 , tp 4 u, Figure 3.2 gives a visual presentation of the relation of triple patterns in Q 1 . As tp 1 , tp 2 and tp 3 are joined with the common variable ?s, tp 1 and tp 4 are joined with ?o1. More precisely, each RDF triple obtained by its corresponding triple pattern is a RDF graph node, and each node is connected with the others by the common variable in the triple patterns.

	SELECT ?s ?o4
	WHERE {
	(tp 1 )

  Rpt ´1q but not in Rptq. If an RDF triple s is invalid for Rptq but valid for Rpt ´1q, Dstream outputs s in Rptq. Recall the previous example, at t 3 , S produces s 1 .• Rstream maintains the entire current state of its input relation and outputs all of the RDF triples as insertions at each time step. I.e., , at t 2 , S outputs s 1 , s 2 . At t 3 , S outputs s 2 , s 3 even s 2 has already been produced at t 2 .

	• Istream (for "Insert Stream") is applied to R, whenever triple s is in
	Rptq ´Rpt ´1q. If at a same time point t, s happens to be inserted and deleted,
	F romClause Istream does not perform the insert operation. Phrasing differently, if an RDF ::" 'F rom'r'N amed's'Stream'StreamIRI 'rRAN GEs'
	W indow triple S is valid for Rptq and Rpt ´1q, Istream operator does not output s ::" T imeBasedW indow | T ripleBasedW indow
	T imeBasedW indow in Rptq. Recall the above-mentioned example, at t 3 , output stream s only ::" N umber T imeU nit W indowOverlap
	T imeunit produces s3.	::" p'ms'|'s'|'m'|'h'|'d'q
	W indowOverlap • Dstream (for "Delete Stream") is applied to R at t, whenever triple s is ::" 'ST EP ' N umber T imeU nit | 'T U M BLIN G'
	T ripleBasedW indow ::" 'T RIP LES' N umber in
	The window operator extracts most recent data from input streams. The extraction
	could be time-based (all triples valid within a given time interval) or triple-based
	(a given number of triples). Time-based sliding window progressively slides along
	the timeline, RANGE defines the size of window buffer, STEP indicates the frequency
	to update the window. E.g., , RANGE 10s STEP 5s means that buffer the input data
	stream of the last 10 seconds, and update the window for every 5 seconds.
	(2) Relation-to-Relation operator (R2R) produces a relation from one (e.g.,
	projection, selection) or several input relations (e.g., join, union). R2R operator
	computes over the instantaneous relation within a given time interval or a time
	instant. E.g., , considering the following C-SPARQL query:
	SELECT ?sensor ?value	
	FROM STREAM <http://example.stream.org/temperature>
	[RANGE 10s STEP 5s]		
	WHERE {		
	(tp 1 ) ?sensor	hasValue	?observation;
	(tp 2 ) ?observation	numericalValue	?value. }
	The above query can be interpreted as: for the last 10 seconds, what is the observed
	It represents an IP address value and which sensor it belongs to? The projection (SELECT ?sensor ?value) and
	for accessing streaming data. The syntax of window operator is defined as follow: the join (tp 1 ' tp 2 ) are applied to the sliding window.
	(3) Relation-to-Stream operator (R2S) produces an output stream S from
	a relation R. Define R a temporal relation, s is an RDF triple and t is a time point.
	Considering a time interval T " rt 1 , t 3 s which consists of 3 time points t 1 , t 2 , t 3 . A
	sliding window W possesses range of 2 time points and sliding step of 1 time point.
	An input relation R contains three RDF triples s 1 , s 2 , s 3 which are assigned with
	t 1 , t 2 , and t 3 , respectively. In CQL, three R2S operators are introduced:

  For a relation R i occurs only in the body of rules, R i is called as

	extensional relation. The comma between each extensional relation in the body is a
	logical conjunction. Whereas a relation R i occurs in the head of a rule, R i is called
	an intensional relation. The evaluation of rule r is the procedure to compute an
	instantiation
	R 1 pvpu 1 qq Ð R 2 pvpu 2 qq, ..., R n pvpu n qq
	of rule r with a valuation v by replacing each variable x by vpxq. I.e., a assignment
	of all variables in the body derives a fact for the intensional relation in the head.
	Example: Transitive Closure. The following program (P 1 ) computes all con-
	nected vertices by some path in a given undirected graph:

Table 4 .

 4 1 gives a comparison of existing popular centralized RSP systems. Due to[START_REF] Phuoc | Linked stream data processing[END_REF], the implementation of RSP systems can be broadly categorized as BlackBox

	and WhiteBox.			
		C-SPARQL	CQELS	EP-SPARQL SPARQLstream
	Architecture	BlackBox	WhiteBox	BlackBox	BlackBox
	Input	RDF Stream	RDF Stream	RDF Stream	RDF Stream
	Window	TiW & TpW	TiW & TpW	SEQ	TiW & TpW
	R2S	RStream	IStream	RStream	IStream
	Tick	TD/BD	DD	DD	TD/BD
	Static Data	Yes	Yes	Limited	Yes
	Underlying	Jena/Sesame	Native	Prolog	SNEE
	Reasoning	RDFS	No	CEP	RDFS

Table 4 .

 4 

1.: Comparisons of RSP engines. TiW: Time-Based Window. TpW: Triple-Based Window TD: Time-Driven. BD: Batch-Driven. DD: Data-Driven.

Table 5 .

 5 1.: Rate max for the considered queries in C-SPARQL. As shown in Figure 5.2 (a), if the stream rate exceeds the corresponding Rate max , the results provided by C-SPARQL are erroneous. The reason behind is that C-SPARQL does not have enough time to process both current and incoming data.Indeed, newly incoming data streams are jammed in memory, and the system will enforce C-SPARQL to start the next execution which causes errors. Thus, Rate max represents the maximum number of triples under which C-SPARQL delivers correct results.

Table 5 .
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	static data)

2.: Execution time (in seconds

  Querying over RDF data streams can be quite challenging. Due to fast generation rates and the schema free nature of RDF data streams, a continuous SPARQL query usually involves intensive join tasks which may rapidly become a performance bottleneck. Existing centralized RSP systems like C-SPARQL, CQELS and ETALIS are not capable of handling massive incoming data streams, as they do not benefit from task parallelism and the scalability of a computing cluster. Besides, most

	6.1. Motivation

streaming systems are operating 24{7 with patterns (e.g., number of temperature or flow observations), i.e., stream graph structures, that may change overtime (in terms of graph shapes and sizes). This can potentially have a performance impact on query processing since in most available distributed RDF streaming systems, e.g.,

  In this chapter, we detail continuous SPARQL query processing in Strider. The content of this chapter is organized as follows: Section 7.1 illustrates how Strider handles basic SPARQL query processing on Spark. Section 7.2 gives a deep insight of adaptive continuous SPARQL query processing in Strider. Section 7.3 showcases the results of the experiments that we have conducted on an Amazon Web Service (AWS) cluster. Finally, Section 7.4 concludes the work in this chapter.

	7. Hybrid Adaptive Continuous
	SPARQL Query Processing in
	Strider
	SELECT ? s ? o1 ? o2 ? o3
	WHERE {	? s ssn : hasValue ? o1 ( tp1 ) ; ssn : hasValue ? o2 ( tp2 ) ;
		ssn : hasValue ? o3 ( tp3 ) .
		? o1 rdf : type cuahsi : flow ( tp4 ) .
		? o2 rdf : type cuahsi : temperature ( tp5 ) .
		? o3 rdf : type cuahsi : chlorine	( tp6 ) . }] }
		Listing 6.2: Strider's query example (Q 8 )
	The use case of waves is also mentioned at the beginning of this chapter. I think it
	is repeated to mention again the work flow here. Since previous paragraphs already

STREAMING { WINDOW [10 Seconds ] SLIDE [10 Seconds ] BATCH [5 Seconds ] } REGISTER { QUERYID [ Q8 ] SPARQL [ prefix rdf : < http :// www . w3 . org /1999/02/22 -rdf -syntax -ns # > prefix ssn : < http :// purl . oclc . org / NET / ssnx / ssn / > prefix cuahsi : < http :// www . cuahsi . org / waterML / >

  In this chapter, we focus on the extension of Strider, namely Strider R , that integrates a set of inferencce services in Strider for RDFS and sameAs, sometimes denoted as RDFS++ stream reasoning in the cloud. Strider

	this chapter, we present the details of continuous SPARQL query processing 8. Distributed RDF Stream Reasoning
	in Strider. Strider is built on top of Spark Streaming and Kafka to support high performance query evaluation and thus possesses the characteristics of a production-in Strider with Litemat
	ready RSP. Strider comes with a set of hybrid AQP strategies: i.e., static heuristic
	rule-based optimization, forward and backward adaptive query processing. We insert
	the trigger into the optimizer to attain the automatic strategy switching at query 8.1. Introduction
	runtime. Moreover, with its micro-batch approach, Strider fills a gap in the current
	state of RSP ecosystem which solely focuses on record-at-a-time. Through our micro-
	benchmark based on real-word datasets, Strider provides a million/sub-million-level
	throughput and second/sub-second latency, a major breakthrough in distributed
	RSPs. And we also demonstrate the system reliability which is capable to handle
	the structurally instable RDF streams.

R extends an existing reasoning technique i.e., LiteMat to adapt to large volumes of semantically annotated data streams.

Table 8 .

 8 1.: Encoding for an extract of the concept hierarchy of the LUBM ontology transformation is processed for individual IRIs or literals. This approach permits to drastically compress the streams without incurring high compression costs.

	The same

  Based on the chains that somehow hide the sameAs patterns, the query planner assesses a join order and generates an execution plan as usual (ignoring Putting together the contributions presented in Sections 8.4 and 8.5, we are able to combine LiteMat with one of the two methods to reason over sameAs individuals, denoted RB (representative-based) and SAM (SameAs Materialization). It thus defines two forms of reasoners for RDFS with sameAs:

	?x3. ?x3 memberOf ?o and a chain of length 3 is ?s sameAs ?s2. ?s2 advisor
	?x1. ?x sameAs ?x1.
	(ii) Planning. the sameAs patterns).
	(iii) Execution. During the query execution phase, if a chain contains a sameAs
	pattern then a dedicated operator ensures that all the bindings are produced. More
	precisely, to execute the chain ?x sameAs?y. ?y p ?z consists in evaluating the
	triple pattern ?y p ?z which results in a set of p?y, ?zq bindings. Then, for each
	binding, produce a set of p?x, ?y, ?zq bindings such that ?x binds to the ?y value and
	also to each individual equivalent to ?y value. This ensures a complete result.
	8.6. Evaluation
	The key phases of
	the query evaluation are:
	(i) Decomposition. A query containing n non-sameAs triple patterns is decom-
	posed into n chains (or sub-queries). A chain contains one non-sameAs triple pattern
	and the sameAs patterns it is joined to. A chain has exactly one non-sameAs triple
	pattern and at most 2 sameAs triple patterns. For example, the decomposition for
	query Q 8 in Section 8.6 has 6 chains, among which a chain of length 2 is ?x sameAs

  As explained in Section 8.3, we can not use any existing RSP benchmarks to evaluate the performances of Strider R . Hence, we are using our LUBM-based stream generator configured with 10 universities, i.e., 1.4 million triples. For the purpose of our experimentation, we extended LUBM with triples containing the sameAs property. This extension requires to set two parameters: the number of cliques in a dataset and the number of distinct individuals per clique. To define these parameters realistically, we ran an evaluation over different LOD datasets. The results are presented in Table8.[START_REF] Gyrard | Sensorbased linked open rules (S-LOR): an automated rule discovery approach for iot applications and its use in smart cities[END_REF]. It highlights that although the number of cliques can be very large (over a million in Yago), the number of individuals per clique is rather low, i.e., a couple of individuals. Given the size of our dataset, we will run most of our experimentations with 1,000 cliques and an average of 10 individuals per clique, denoted 1k-10. Nevertheless, on queries requiring this form of reasoning, we will stress Strider R with up to 5,000 cliques and an average of 100 individuals per clique (see Fig.?? for more details). More precisely, we will experiment with the following configurations: 1k-10, 2k-10, 5k-10, 1k-25, 1k-50 and 1k-100. For the SAM approach, the number of materialized triples can be computed by nc ˚ipc with nc the number of cliques and ipc the number of individuals per clique.

	8.6.2. Datasets, Queries and Performance metrics
	8.6.1. Computing Setup
	We evaluate Strider R on an Amazon EC2/EMR cluster of 11 machines (type
	m3.xlarge) and manage resources with Yarn. Each machine has 4 CPU virtual
	cores of 2.6 GHz Intel Xeon E5-2670, 15 GB RAM, 80 GB SSD, and 500 MB/s
	bandwidth. The cluster consists of 2 nodes for data flow management via the Kafka
	broker (version 0.8.x) and Zookeeper (version 3.5.x)[89], 9 nodes for Spark cluster (1
	master, 8 workers, 16 executors). We use Apache Spark 2.0.2, Scala 2.11.7 and Java

Table 8 .

 8 3.: SamesAs statistics on LOD datasets (ipc = number of distinct individuals per sameAs clique, max and avg denotes resp. the maximum and average of ipc,*: subsets containing only sameAs triples with DBpedia, Biomodels contains triples of the form a sameAs a

	17, 14, 29).				
	datasets	#triples #sameAs cliques max avg
	Yago*	3696623	3696622	2	2
	Drugbank	4215954	7678	2	2
	Biomodels 2650964	187764	2	1.95
	SGD	14617696	15235	8	3
	OMIM	9496062	22392	2	2
	8.6.4. Results evaluation & Discussion		
	The window size for involved continuous SPARQL queries with LiteMat reasoning
	support is set to 10 seconds, which is large enough to hold all the data generated
	from the dataset. However, since the impacts of extra data volume and more complex
	overheads are introduced in SAM query processing, we have to increase the window
	size (up to 60 seconds) to ensure that both LiteMat and SAM approaches return

Table 8 .

 8 4.: Number of joins, unions and filter per query for LiteMat + RB (LMRB) and UNION + SAM (USAM) approaches. Here, the number of UNIONs correspond to the number of UNION keywords. USAM* relies on a simplified LUBM ontology the same result. In a nutshell, we approximately adjust the window size and the incoming stream rate by checking the materialized data volume.

  8.9, 8.10, 8.11 and 8.12 illustrate the impact on engine throughput and latency of Q6 to Q8 with varying sameAs clique sizes. As noted previously, "1K-10" means 1,000 cliques, and 10 individuals per clique. The number of materialized triples for sameAs reasoning support follows the nc ˚ipc formula presented in Section 8.6.2.Data throughput and latency is always better for LiteMat + RB than LiteMat + SAM by up to respectively two and three times. For the same computing setting, when the number of individuals per clique increases for a given number of cliques or when the number of cliques increases for the same number of individuals per clique, the performances of the LiteMat approaches decrease.

	The number of materialized triples obviously increases with greater number of cliques
	and/or number of individuals per clique. The data throughput and latency can only
	be compared on Q6 since on Q7 and Q8, LiteMat + SAM does not terminate. The
	same non termination issue than on Q5 is observed (Q7 and Q8 respectively have 60
	joins and 210 joins). Although stream rate is controlled at a low level, the system
	quickly fails after the query execution is triggered.

  In this chapter, we study the feasibility of applying modern Big Data technique to support real-time expressive RDF stream reasoning. We have conducted a series of experiments based on benchmarking different streaming model and parallelism levels.

	9. BigSR: An Empirical Study of
	Real-time Expressive RDF Stream
	Reasoning on Modern Big Data
	Platforms
	9.1. Introduction

  Algorithm 3 Semi-Naive evaluation of P 0 in Spark Input : program P 0 with global window function wpl, dq, DStream S Output : R p 1 ,R p 2 (RDDs) foreach Substream S 1 of S, computed by '

	wpl,dq τ	♦ do
	// Initialize RDDs for δ 1	

  Algorithm 4 Semi-Naive evaluation of P 0 on Flink Input : program P 0 with global window function wpl, dq, DataStream S Output : S p 1 ,S p 2 (DataStream) Initialize DataStreams for p 0 , p 1 , p 2 as S p 0 , S p 1 , S p 2 , respectively foreach DataStream S do Buffer the current state statepS p 0 q of S p 0 δS p 1 :" π X,Y pstatepS p 0 qq, δS p 2 :" π X,Y pstatepS p 0 qq;while δS p1 ‰ H or δS p2 ‰ H do δ 1 S p 1 :" ' ♦pδS p 2 ' π Y,Z S p 0 ´Sp 2 ) δ 1 S p 2 :" ' ♦pδS p 1 ' π X,Y S p 0 ´Sp 1 ) //Append derived facts to p 1 , p 2 S p 1 :" ' δS p 2 " δ 1 S p 2 , δS p 1 " δ 1 S p 1 // Feed back streams for next iteration Feed back S p 1 , S p 2 ; end end

		wpl,dq	
		τ		
	wpl,dq		
	τ			
	wpl,dq τ	♦pS p 1	Ť	δ 1 S p 1 q;
	S p 2 :" ' wpl,dq τ	♦pS p 2	Ť	δ 1 S p 2 q;

Table 9 .

 9 1 briefly compares BSP and RAT for implementing a stream reasoning framework like LARS. With BSP on Spark, the manipulation of temporal logical operators

	Model	Expressiveness	Recursion
	BSP (Spark)	Low, coarse-grained	Implementation easy
	RAT (Flink)	High, fine-grained	Implementation difficult

Table 9 .

 9 1.: Intuitive comparison between BSP and RAT is rather coarse-grained with low expressiveness. The query should be evaluated in batches by a global window. Furthermore, the semantic of data timestamps does not influence the semantic of the query. The combination of window operators is not flexible. However, the query evaluation of the BSP model in a window is practically similar to a static data processing. Therefore, BSP greatly simplifies the implementation of recursion. On the other hand, the RAT model handles data processing record by record. The evaluation of operators can be performed asynchronously. RAT enables to manipulate the timestamp and window operators in a fine-grained fashion.

Different types of time (e.g., event time, ingestion time, system processing time) can be integrated on RAT. The combination of multiple window operators can be chained together and ran independently. For recursive query evaluation, RAT suffers from synchronization of processes over multiple streams and multiple windows. This makes the implementation of recursion within the LARS framework a challenging problem.

  GHz Intel Xeon E5-2676 v3 processors, 16 GB RAM and 750 MB/s bandwidth. We use Spark 2.2.1, Flink 1.4.0 (broadcast join is disabled), Scala 2.11.7 and Java 8 as evaluation baselines.9.4.1. Benchmark DesignDataset & Queries. Our evaluation is based on synthetic and real-world datasets which involve 4 different datasets and 15 queries (Table9.2). The 4 datasets correspond to Waves, SRBench, CityBench and LUBM. All the data captured by the Waves, SRBench, and CityBench datasets come from real-world IoT sensors. The Waves dataset describes measures of a potable water network, e.g., values of flow, pressure and chlorine levels, etc. SRBench, one of the first RSP benchmark, contains USA weather observations ranging from 2001 to 2009. CityBench simulates a smart city context for RSP applications and concerns sensor measures on vehicle traffic, parking lot utilization and user location use cases. All the aforementioned datasets come from RSP contexts. It is hard to design a recursive query, because the generated RDF data streams are usually directly converted from flat data (CSV) with few references between entities. Therefore, we use LUBM for recursive query evaluations.Query Q 1 to Q 11 include stateful operators for windowing and recursion, where Q 12 to Q 15 only contain stateless operators (e.g., selection, filter, projection). We evaluate Q 12 to Q 15 to highlight the engine performance with BSP and RAT model for low-latency use cases, such as reactive applications.

5 

. We conduct our experiments on a Amazon EMR cluster with a Yarn resource manager. The EMR cluster consists of a total of 9 nodes of type m4.xlarge. One node is setup for the Kafka broker and message producer, one node for Apache Zookeeper, seven nodes for Spark/Flink application (one master node and six worker nodes). Each node has 4 CPU virtual cores of 2.4

Table 9 . 2

 92 Q 15 

	Dataset	Waves	SRBench	CityBench	LUBM	Synthetic
	Recursive	No	No	No	Yes	No

.: Test queries and datasets.

Table 9 . 3

 93 The minimum observable time unit is millisecond (limited by Flink), and the vast majority obtained latency is 0 ms. Apparently, sub-millisecond delay meets most real-time, latency-sensitive use cases.

		Q 12	Q 13	Q 14	Q 15
	Spark	110	96	115	99
	Flink	<1	<1	<1	<1

.: Stateless query latency (millisecond); Spark micro-batch size = 500 ms.

  Through our microbenchmark based on real-word datasets, Strider provides a million/sub-million-level throughput and second/sub-second latency, a major breakthrough in distributed RSPs. And we also demonstrate the system reliability which is capable of handling the structurally instable RDF streams.Then, we extend Strider to enable distributed RDF stream reasoning by integrating several novel reasoning approaches, i.e., LiteMat for RDFS + sameAs reasoning over streaming data. For most queries, LiteMat together with the representative-based

		?observation ex:hasTag ?tag . SELECT ?s ?o1 ?o2 ?o3	?o4	?o5
		FILTER ( regex(str(?observation), '00$', 'i') WHERE { {
		?s	|| ( regex(str(?observation), '50$', 'i'))) } a ?o .
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	?s	FILTER (f:timestamp(?observation, ex:hasTag, ?tag) a ?o ; ?s ssn:hasValue ?o3 .
	?s	>= f:timestamp(?message, ex:observeChlorine, ?observation)) ssn:isProducedBy ?o1 .} ?o1 a waterML:flow .
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described how the data flow from one component to the others.

In this chapter, we describe the main components and the workflow of Strider. We implement Strider by using Spark Streaming as the underlying engine, and we use Kafka data flow management. The details of each component will be given in the next chapter.

In Figure 7.8, we observe that Strider generally achieves million/sub-million-level throughput under our test suite. Note that both Q 1 and Q 4 have only one join, i.e., optimization is not needed. Most tested queries scale well in Strider. Adaptive optimization generates query plans based on the workload statistics. In total, it provides a more efficient query plan than static optimization. But the gain of AQP for the simple queries that have less join tasks (e.g., Q 1 , Q 5 ) becomes insubstantial.

We also found out that, even if Strider runs on a single machine, it still provides up to 60x gain on throughput compared to C-SPARQL and CQELS. Figure 7.9

shows Strider attains a second/sub-second delay. Obviously, for queries with 2 triple patterns in the query's BGP, we can observe the same latency between static and adaptive optimizations, Q 1 and Q 4 . Query Q 2 is the only query where the latency of the adaptive approach is higher than the static one. This is due to the very simple structure of the BGP (2 joins in the BGP). In this situation, the overhead of DP covers the gain from AQP. For all other queries, the static latency is higher than the adaptive one. This is justified by more complex BGP structures (more than 5 triple patterns per BGP) or some union of BGPs. On the contrary, the average throughput of C-SPARQL and CQELS is maintained in the range of 6.000 and 50.000 triples/second. The centralized designs of C-SPARQL and CQELS limit the scalability of the systems. Beyond the implementation of query processing, the reliability of data flow management on C-SPARQL and CQELS could also cause negative impact on system robustness. Due to the lack of some important features for streaming system (e.g., back pressure, checkpoint and failure recovery) once input stream rate reaches to certain scale, C-SPARQL and CQELS start behaving abnormally, e.g., data loss, exponential increasing latency or query process

Stream Reasoning with LARS in BSP and RAT models

Recall the definitions given in 3.5.2 (in the Background knowledge chapter), we use LARS as the theoretical foundation. LARS is a rule-based logical framework defined as an extension of Answer Set Programming (ASP) which we are using as a theoretical foundation. Ticker and Laser [START_REF] Bazoobandi | Expressive stream reasoning with laser[END_REF] are recent systems also based on LARS.

In this section, we recall some basic definition of LARS, and we describe the general methodologies to parallelize the evaluation of Datalog programs and their relations to LARS. Finally, we reformulate the streaming models on Spark and Flink ( i.e., BSP and RAT ) with a simple example.

Parallel Datalog evaluation

Before illustrating the distributed stream reasoning in BigSR, we summarize the three Parallelism Levels (PL) mentioned in [START_REF] Perri | Parallel instantiation of ASP programs: techniques and experiments[END_REF] 

Distributed Stream Reasoning

This section is organized as follow: Section 9.3.1 presents the system architecture of BigSR; Section 9.3.2 gives some description of the data structure on Spark, Flink, and the RDF stream representation in our system. Section 9.3.3 explains the translation of LARS window operator to the BSP and RAT models. Then, Section 9.3.5 and 9.3.6 explore some details about distributed RDF stream reasoning on Spark and Flink, respectively. Finally, we introduce some discussions and partial conclusions in Section 9.3.7. Latency corresponds to the duration taken by BigSR between the arrival of an input and the generation of its output.

Architecture of BigSR

• Group 2: Q 12 to Q 15 (queries with only stateless operators). We focus on the minimum latency that the engine is able to attain. On Spark, we first reduce the micro-batch size as much as possible, then we record the query latency for completing the process of current micro-batch. On Flink, the latency of a record r indicates the time difference between the moment r enters the system and the moment r 1 outputs from the system.

Performance tuning is one of the most important steps for the deployment of Spark and Flink applications. Based on our previous experience, we list three important factors which bring significant impact on engine performance, i.e., parallelism level, memory management, and data serialization. Unfortunately, there is no fixed rule to configure these parameters in an optimal way. The tuning has to be done empirically. Besides, recursion on Spark may generate long RDD lineage in the driver memory which can lead to stack overflow. We thus periodically trigger the local checkpoint of RDD to truncate the RDD lineage.

Evaluation Results & Discussion

In this section, we present and discuss the evaluation result over the queries presented in Section 9.4.1. We do not compare BigSR to the state of the art RSP/(Streaming)

nor to ASP systems due to the following reasons: (1) Compared to our previous work, on Strider [START_REF] Ren | Strider: A hybrid adaptive distributed RDF stream processing engine[END_REF] , the Spark implementation in BigSR is approximately 30% less efficient. We partially attribute this to the distinct operation which satisfies the set semantic. Nevertheless, performance evaluation in [START_REF] Ren | Strider: A hybrid adaptive distributed RDF stream processing engine[END_REF] emphasizes 1 to 2 orders of magnitude performance gains over available RSPs (i.e., C-SPARQL and CQELS). We keep exactly the same cluster settings as our previous work [START_REF] Ren | Strider: A hybrid adaptive distributed RDF stream processing engine[END_REF] , we can consider that the distributed design of BigSR takes a substantial performance advantage over existing centralized RSP engines.

(2) The system likes Laser currently does not allow to continuously inject data stream in real-time. The system considers the stream is finite and loads the entire stream into memory for program evaluation. Moreover, the support of recursion is also missing (i.e., occurrence of a runtime-error) in the current version of Laser. Throughput. Figure 9.7 reports the engine throughput for Q 1 to Q 11 . Both implementation with BSP (Spark) and RAT (Flink) achieves high throughput at the Our experimentation presents some interesting results on the current state of these systems. With its large programmer community, Spark is easier than Flink to get into and implement applications with. Nevertheless, it may be difficult to configure, and tune this parallel computing framework. The support for recursive rules was not a difficult problem. The overall performance of Flink on both data throughput and latency is superior to Spark and is quite impressive without requiring a lot of tuning.

Nonetheless, the design and implementation of an evaluation approach for recursive programs are not straightforward. This is in fact in our future work list together with a more efficient incremental model maintenance.

(RB) approach for sameAs cliques is the most efficient. Nevertheless, LiteMat + SAM proposes an unprecedented provenance-awareness feature that can not be obtained in other approaches. Lite + SAM can also be useful for very simple queries, e.g., a single triple pattern in the WHERE clause. To the best of our knowledge, this is the first scalable, production-ready RSP system to support such ontology expressiveness.

Via a thorough evaluation, we have demonstrated the relevance of our system to reason with low latency over high throughput data streams.

Finally, we bridge the gap between theoretical work in progress on RDF stream reasoning and modern cutting-edge Big Data technologies. We emphasize that a trade-off between expressiveness of reasoning and scalability is possible in RDF stream reasoning. In fact our BigSR system is able to reach millions triples per second processing mark on complex queries and second and subsecond latency in general. In order to tackle scalability, BigSR considers the standard BSP and RAT approaches through implementations with state-of-the-art open source frameworks, respectively Apache Spark and Apache Flink. Both these systems offer rich APIs (e.g., obviously for stream processing but also for machine learning, graph analytics), faulttolerance, load balancing and automatic work distribution. In terms of reasoning, we address logic programming through the ASP-based LARS framework. Our experimentation presents some interesting results on the current state of these systems. With its large programmer community, Spark is easier than Flink to get into and implement applications. Nevertheless, it may be difficult to configure, tune this parallel computing framework. The support for recursive rules was not a difficult problem. The overall performance of Flink on both data throughput and latency is superior to Spark and is quite impressive without requiring a lot of tuning.

Nonetheless, the design and implementation of an evaluation approach for recursive programs is not straightforward.

In a next step, we plan to explore more features of reasoning RDF stream in distributed environment. This implies four general aspects: (