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Abstract

Real-time processing of data streams emanating from sensors is becoming a common

task in industrial scenarios. In an Internet of Things (IoT) context, data are emitted

from heterogeneous stream sources, i.e., coming from different domains and data

models. This requires that IoT applications efficiently handle data integration

mechanisms. The processing of RDF data streams hence became an important

research field. This trend enables a wide range of innovative applications where

the real-time and reasoning aspects are pervasive. The key implementation goal of

such application consists in efficiently handling massive incoming data streams and

supporting advanced data analytics services like anomaly detection.

However, a modern RSP engine has to address volume and velocity characteristics

encountered in the Big Data era. In an on-going industrial project, we found out

that a 24/7 available stream processing engine usually faces massive data volume,

dynamically changing data structure and workload characteristics. These facts impact

the engine’s performance and reliability. To address these issues, we propose Strider,

a hybrid adaptive distributed RDF Stream Processing engine that optimizes logical

query plan according to the state of data streams. Strider has been designed to

guarantee important industrial properties such as scalability, high availability, fault-

tolerant, high throughput and acceptable latency. These guarantees are obtained by

designing the engine’s architecture with state-of-the-art Apache components such as

Spark and Kafka.

Moreover, an increasing number of processing jobs executed over RSP engines are

requiring reasoning mechanisms. It usually comes at the cost of finding a trade-off

between data throughput, latency and the computational cost of expressive inferences.

Therefore, we extend Strider to support real-time RDFS+ (i.e., RDFS + sameAs)

reasoning capability. We combine Strider with a query rewriting approach for

SPARQL that benefits from an intelligent encoding of knowledge base. The system

is evaluated along different dimensions and over multiple datasets to emphasize its

performance.

Finally, we have stepped further to exploratory RDF stream reasoning with a
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fragment of Answer Set Programming. This part of our research work is mainly

motivated by the fact that more and more streaming applications require more

expressive and complex reasoning tasks. The main challenge is to cope with the large

volume and high-velocity dimensions in a scalable and inference-enabled manner.

Recent efforts in this area still missing the aspect of system scalability for stream

reasoning. Thus, we aim to explore the ability of modern distributed computing

frameworks to process highly expressive knowledge inference queries over Big Data

streams. To do so, we consider queries expressed as a positive fragment of LARS (a

temporal logic framework based on Answer Set Programming) and propose solutions

to process such queries, based on the two main execution models adopted by major

parallel and distributed execution frameworks: Bulk Synchronous Parallel (BSP) and

Record-at-A-Time (RAT). We implement our solution named BigSR and conduct a

series of evaluations. Our experiments show that BigSR achieves high throughput

beyond million-triples per second using a rather small cluster of machines.
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Résumé de Thèse

Le traitement en temps réel des flux de données émanant des capteurs est devenu

une tâche courante dans de nombreux scénarios industriels. Dans le contexte de

l’Internet des objets (IoT), les données sont émises par des sources de flux hétérogènes,

c’est-à-dire provenant de domaines et de modèles de données différents. Cela impose

aux applications de l’IoT de gérer efficacement l’intégration de données à partir de

ressources diverses. Le traitement des flux RDF est dès lors devenu un domaine de

recherche important. Cette démarche basé sur des technologies du Web Sémantique

supporte actuellement de nombreuses applications innovantes où les notions de

temps réel et de raisonnement sont prépondérantes. La recherche présentée dans ce

manuscript s’attaque à ce type d’application. En particulier, elle a pour objectif de

gérer efficacement les flux de données massifs entrants et à avoir des services avancés

d’analyse de données, e.g., la détection d’anomalie.

Cependant, un moteur de RDF Stream Processing (RSP) moderne doit prendre

en compte les caractéristiques de volume et de vitesse rencontrées à l’ère du Big

Data. Dans un projet industriel d’envergure, nous avons découvert qu’un moteur

de traitement de flux disponible 24/7 est généralement confronté à un volume de

données massives, avec des changements dynamiques de la structure des données

et les caractéristiques de la charge du système. Ces faits ont un impact sur les

performances et la fiabilité du moteur. Pour résoudre ces problèmes, nous proposons

Strider, un moteur de traitement de flux RDF distribué, hybride et adaptatif qui

optimise le plan de requête logique selon l’état des flux de données. Strider a été conçu

pour garantir d’importantes propriétés industrielles telles que l’évolutivité, la haute

disponibilité, la tolérance aux pannes, le haut débit et une latence acceptable. Ces

garanties sont obtenues en concevant l’architecture du moteur avec des composants

actuellement incontournables du Big Data: Apache Spark et Apache Kafka.

De plus, un nombre croissant de traitements exécutés sur des moteurs RSP

nécessitent des mécanismes de raisonnement. Ils se traduisent généralement par

un compromis entre le débit de données, la latence et le coût computationnel des

inférences. Par conséquent, nous avons étendu Strider pour prendre en charge la
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capacité de raisonnement en temps réel avec un support d’expressivité d’ontologies

en RDFS + (i.e., RDFS + sameAs). Nous combinons Strider avec une approche de

réécriture de requêtes pour SPARQL qui bénéficie d’un encodage intelligent pour

les bases de connaissances. Le système est évalué selon différentes dimensions et sur

plusieurs jeux de données, pour mettre en évidence ses performances.

Enfin, nous avons exploré le raisonnement du flux RDF dans un contexte d’ontologies

exprimés avec un fragment d’ASP (Answer Set Programming). La considération

de cette problématique de recherche est principalement motivée par le fait que de

plus en plus d’applications de streaming nécessitent des tâches de raisonnement plus

expressives et complexes. Le défi principal consiste à gérer les dimensions de débit

et de latence avec des méthologies efficaces. Les efforts récents dans ce domaine ne

considèrent pas l’aspect de passage à l’échelle du système pour le raisonnement des

flux. Ainsi, nous visons à explorer la capacité des systèmes distribuées modernes à

traiter des requêtes d’inférence hautement expressive sur des flux de données volu-

mineux. Nous considérons les requêtes exprimées dans un fragment positif de LARS

(un cadre logique temporel basé sur Answer Set Programming) et proposons des

solutions pour traiter ces requêtes, basées sur les deux principaux modèles d’exécution

adoptés par les principaux systèmes distribuées: Bulk Synchronous Parallel (BSP) et

Record-at-A-Time (RAT). Nous mettons en œuvre notre solution nommée BigSR et

effectuons une série d’évaluations. Nos expériences montrent que BigSR atteint un

débit élevé au-delà du million de triplets par seconde en utilisant un petit groupe de

machines.
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2. Introduction

2.1. Motivation

Nowadays, we are in the era of rapid data generation and rapid data consumption.

Processing data from real-time data streams and sensors devices is becoming ubiqui-

tous. Applications like GPS (Global Positioning System), Social Network, Traffic

Monitoring services, Financial Transaction System and Building Management System

are continuously producing and consuming massive timely information.

Under this trend, the service of Internet of Things (IoT) is gaining in popularity.

Real-time processing of data streams emanating from sensors is becoming a common

task in industrial scenarios. Such applications usually require low latency and high

throughput. Moreover, integrating these information sources, deriving valuable

information and knowledge from data stream also enable a new wide range of real-

time applications. To achieve this, the RDF data model could be applied and

provides two major advantages: supporting data integration and reasoning over the

represented data and knowledge. In 2006, W3C Semantic Sensor Network Incubator

Group first introduced the semantic annotation to data stream [1]. The idea is to

make data stream available based on the Linked Data principles [2]:

• Use URIs as names for things

• Use HTTP URIs for name lookup

• Use URI to provide useful information

• Include links to other URIs for discovering more things.

The advantage of such a data stream model would be simplifying the data integration

from heterogeneous data sources. I.e., , it does not only connect different sources of

streaming data, but also provides an easy way to bridge data stream and static data.

In a traditional relational database setting, a regular way to handle such a request is

done by converting the input data stream into a certain relation and then to execute

an ad hoc query. Since data conversion and disk-based storage could be quite costly,
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this approach normally assumes that the data does not change frequently. Moreover,

it does not meet the real-time aspect.

On the other hand, Data Stream Management Systems (DSMS) might be a better

choice. However, existing DSMS mainly focuses on relational data stream processing.

For heterogeneous data stream integration, DSMS potentially bring an expensive

overhead for data transformation. Moreover, due to the schema-free nature of RDF

data, the data structure of input data stream is not predictable in general. I.e.,

, in real world scenarios, we are frequently facing dynamically changing data and

workload characteristics, e.g., a sensor could emit different types of messages based

on the user requests. These changes impact the execution performance of continuous

queries executed over data streams and the stability of the system.

In addition, the scenarios like [3, 4, 5, 6, 7, 8, 9] require the streaming service

to have reasoning capabilities for advanced data analytics. An inference service

generally produces, preferably in a sound and complet manner, implicit data from

explicit data and knowledge. Such a service is usually costly on a computation point

of view and not natively supported by standard data management systems, e.g.,

RDBMS.

In the last decade, the RDF stream processing (RSP) /reasoning community has

contributed to the effort of tackling the above mentioned issues. Most of work either

ignore the fact that the amount of data could be massive, or the ability of reasoning

over RDF data stream. A common way to cope with performance issue or system

scalability is to adopt a distributed approach. However, using distributed techniques

for RDF stream processing/reasoning is still an emerging trend. In this thesis, we

tackle the above-mentioned issues by developing a scalable, high performance stream

processing system for real-time RDF stream processing and reasoning.

As the first step of our work, we start by investigating the related work of RDF

stream processing and reasoning. In particular, we mainly concentrate on the state

of the art for RSP benchmarks. A deep insight into RSP benchmark design gives

us a preliminary view of basic conceptions and system design. After that, we shift

to distributed stream processing over RDF data stream. For this part, our work

covers distributed stream processing and SPARQL query optimization. Our approach

aims at designing an adaptive, scalable, high performance RSP engine in distributed

settings, namely, Strider. Then, we extend Strider to support online inference, i.e.,

RDFS and RDFS extended with sameAs. Finally, we proposed BigSR, a technical

demonstrator for expressive real-time RDF stream reasoning. The main goal of

BigSR is to verify the feasibility of applying modern Big Data techniques for real-
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time expressive and complex RDF stream reasoning (e.g., temporal Datalog and

Answer Set Programming).

2.2. Use Case

This thesis is partially sponsored by the French national environmental project,

Waves FUI # 17 [10]. The initial motivation of Waves is awareness of water as a

finite resource. Waves aims to reduce water losses and provides an efficient solution

for industrial water resource management. A robust water management system

should be able to monitor water production and consummation for various regions,

provides data analytic services like anomaly detection in real-time.

In the Waves context, we are processing data streams emanating from sensors

distributed over the potable water distribution network of a resource management

international company. For France alone, this company distributes water to over 12

million clients through a network of more than 100.000 kilometers equipped with

thousands (and growing) sensors. Our system’s main objective is to automatically

detect anomalies, e.g., water leaks, from analyzed data streams. Obviously, the

promptness and accuracy of our anomaly discoveries potentially impacts ecological

(loss of cleaned up water) as well as economical (price of clients’ consumed water)

aspects.

In Waves scenarios, real-time data streams are emitted from various sensors located

in France. The sensor observation covers water flow, temperature and chlorine level,

etc. Each type of sensors provides its proper data format (i.e., CSV - Comma-

Separated Values) of observation. We build an ontology for data conversion from

relational CSV data to RDF data. Moreover, this ontology is also served as the input

of our knowledge base for reasoning tasks. E.g., , some representative use cases in

Waves are returning the difference of water flow in each sector for every 5 seconds

? Which sector has potential water leak anomaly in last 15 minutes, and which

category of this leak belongs to? Efficiently handling such requirements is recognized

as a difficult problem for DSMS, but it opens up many interesting topics for stream

processing/reasoning and query optimization.

We regard Waves as the cornerstone of this thesis, and the results of this thesis

also play an essential role for Waves. Note that even though Waves is originally

motivated by the use case of water resource management, its final goal is to provide

a platform for general RDF stream processing and reasoning in IoT context.
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2.3. Contributions

The main contributions of this thesis are:

2.3.1. Survey of RSP performance evaluations

We conduct a survey and experiments to give an insight and comparisons of RSP

engine. Based on existing RSP benchmark, we have proposed some new metrics RSP

engine performance evaluation.

2.3.2. Hybrid Adaptive Distributed RDF Stream Processing engine.

We design a production-ready RSP engine for large scale RDF data streams processing

which is based on the state-of-the-art distributed computing frameworks. Strider

integrates two forms of adaptation. In the first one, for each execution of a continuous

query, the system decides, based on incoming stream volumes, to use either a query

compile-time (rule-based) or query run-time (cost-based) optimization approach.

The second one concerns the run-time approach and decides when the query plan is

optimized (either at the previous query window or at the current one). An evaluation

of Strider over real-world and synthetic data sets is provided.

2.3.3. Massive RDF stream reasoning (RDF++ and sameAs) in the

cloud.

We extend Strider to support reasoning services over RDFS plus the sameAs property

with an intelligent knowledge base encoding and query rewriting techniques. It thus

minimizes the reasoning cost, and guarantee high throughput and acceptable latency.

2.3.4. BigSR: An empirical study for real-time expressive RDF stream

reasoning on modern Big Data platforms.

We build a connection between recent theoretical work on RDF stream reasoning to

state of the art Big Data technologies (e.g., Apache Spark). We also try to combine

stream reasoning (with complex temporal logics and recursion) with distributed

computing. Then, we implement a reusable prototype to support a positive fragment

of the LARS framework on two distributed systems, namely Apache Spark and

Apache Flink. We also identify the pros and cons of BSP (Bulk Synchrounous

Parallel) and RAT (Recort At a Time) for different scenarios, respectively. Finally,

we conduct a series of evaluation and experimentation on various datasets, and
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through our experiments, we highlight an interesting inference expressiveness and

scalability trade-off.

2.4. Publications

The related publications of this thesis are listed as follows:

• (2018) Xiangnan Ren, Olivier Curé, Hubert Naacke, Guohui Xiao

BigSR: real-time expressive RDF stream reasoning on modern Big Data plat-

forms, IEEE Big Data (Chapter 9)

• (2018) Xiangnan Ren, Olivier Curé, Hubert Naacke, Guohui Xiao

RDF Stream Reasoning via Answer Set Programming on Modern Big Data

Platform, 2018, Poster & Demo@ISWC (Chapter 9)

• (2017) Xiangnan Ren, Olivier Curé, Li Ke, Jérémy Lhez, Badre Belabbess,

Tendry Randriamalala, Yufan Zheng, Gabriel Képéklian: Strider: An Adaptive,

Inference-enabled Distributed RDF Stream Processing Engine, Demo@VLDB

(Chapter 8)

• (2017) Xiangnan Ren, Olivier Curé, Li Ke, Jérémy Lhez, Badre Belabbess,

Tendry Randriamalala, Yufan Zheng, Gabriel Képéklian: Strider: An Adaptive,

Inference-enabled Distributed RDF Stream Processing Engine, BDA (Chapter

8)

• (2017) Xiangnan Ren, Olivier Curé, Hubert Naacke, Li Ke

StriderR: Massive and distributed RDF graph stream reasoning. IEEE BigData

(Chapter 8)

• (2017) Xiangnan Ren, Olivier Curé Strider: A Hybrid Adaptive Distributed

RDF Stream Processing Engine. ISWC (Chapter 7)

• (2017) Jérémy Lhez, Xiangnan Ren, Badre Belabbess, Olivier Curé

A Compressed, Inference-Enabled Encoding Scheme for RDF Stream Processing,

ESWC (Chapter 7)

• (2016) Xiangnan Ren, Olivier Curé, Houda Khrouf, Zakia Kazi-Aoul, Yousra

Chabchoub (Chapter 5)

Apache Spark and Apache Kafka at the Rescue of Distributed RDF Stream

Processing Engines, Posters & Demos@ISWC
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• (2016) Xiangnan Ren, Houda Khrouf, Zakia Kazi-Aoul, Yousra Chabchoub,

Olivier Curé (Chapter 5)

On Measuring Performances of C-SPARQL and CQELS. SR+SWIT@ISWC

• (2016) Xiangnan Ren

Towards a distributed, scalable and real-time RDF Stream Processing engine,

DoctoralConsortium@ISWC (Chapter 5)

2.5. Thesis Outline

This thesis is organized as follows: Chapter 3 gives general background knowledge

on semantic web, RDF data management, SPARQL query processing, distributed

computing framework, and Datalog/ASP. Chapter 4 covers the state of the art

for RDF stream processing and reasoning. Chapter 6 introduces a high level view

of Strider architecture. Chapter 7 explores the details of the query execution

and optimization in Strider. Chapter 8 presents the reasoning techniques used in

Strider. The empirical study of applying distributed stream processing techniques

on expressive RDF stream reasoning is given in Chapter 9. Finally, Chapter 10

concludes this thesis and points out future work.
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3. Background Knowledge

This chapter provides the background concepts for RDF, SPARQL and stream

processing. In 3.1, we provide the fundamentals of RDF and SPARQL query

processing. In Section 3.2, we discuss available techniques for the physical storage

of RDF data. For semantic web knowledge base and reasoning in Section 3.3, we

introduce the basic concepts of knowledge base, ontology and reasoning techniques.

After that, Section 3.4 presents the relevant notations about data stream models, the

semantics of continuous query and the execution mechanisms of stream processing

engine. Finally, Section 3.6 summarizes the main features of existing distributed

stream processing engines.

3.1. RDF and SPARQL

Data on the Web is frequently represented using RDF, a schema-free graph data

model. Assuming disjoint infinite sets I (RDF IRI references), B (blank nodes) and

L (literals), a triple (s, p, o) P (I Y B) x I x (I Y B Y L) is called an RDF triple with

s, p and o respectively being the subject, predicate and object. IB = I Y B, IBL = I

Y B Y L are the respective unions. We denote the respective unions as IB = I Y B

AND IBL = I Y B Y L. It models the statement “s has property p with value o ”.

From graph theory aspect, the model of RDF triple can be considered as a directed

edge e starts from vertex s to vertex o, and e is labeled by p. Hence, a set of triples

tt1, ...tnu form a directed graph G. Figure G1 shows the RDF graph G1, where G1 “

tpA, cityname,Bq, pA, isCapitalOf,Cq, pC, countryname,Dq, pA, hasPopulation,Bqu.

From our example, we see that the nature of schema-free gives RDF a flexible way

to represent the knowledge. E.g., , it is easy to add more triples that describes A, or

associate A to other entities. Such schema-less nature facilitates the data integration

from heterogeneous resources.

We now recall the definitions given in [11]. Assume that V is an infinite set of

variables and that it is disjoint with I, B and L. SPARQL is the W3C declarative

query language recommendation for the RDF format. We can recursively define a
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Figure 3.1.: Graph representation of G1

SPARQL [12] triple pattern (tp) as follows: (i) a triple tp P (IB Y V) x (I Y V) x

(IB Y V Y L) is a SPARQL triple pattern, (ii) if tp1 and tp2 are triple patterns, then

(tp1.tp2) represents a group of triple patterns that must all match, (tp1 OPTIONAL tp2)

where tp2 is a set of patterns that may extend the solution induced by tp1, and (tp1

UNION tp2), denoting pattern alternatives, are triple patterns and (iii) if tp is a triple

pattern and C is a built-in condition, then, (tp FILTER C) is a triple pattern enabling

to restrict the solutions of a triple pattern match according to the expression C. A

set of tp is denoted a Basic Graph Pattern (BGP). The SPARQL syntax follows

the select-from-where approach of SQL queries. E.g., , the query below returns all

capital cities and their belonging countries.

SELECT ?s ?n

WHERE {

?s isCapitalOf ?c;

?c countryname ?n. }

The semantics of SPARQL query is defined by mapping. A mapping µ is a

partial function µ : V Ñ IBL. dompµq is called the domain of µ. Two solution

mappings µ1 and µ2 are compatible, µ1 „ µ2, if and only if @?v P dompµ1qXdompµ2q,

µ1p?vq “ µ2p?vq. The union of two compatible mappings µ1 X µ2 is also a mapping.

The answer to a triple pattern tp for graph G is a bag of mappings Ωtp “

tµ | dompµq “ varsptpq, µptpq P Gu. Most commonly used operators on sets of

mappings, e.g., join(’) and unionX can be described as follow:
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Ω1 ’ Ω2 “ tµ1 Y µ2 | µ1 P Ω1 ^ µ2 P Ω2 ^ µ1 „ µ2u

Ω1 Y Ω2 “ tµ | µ1 P Ω1 _ µ2 P Ω2u

As previously-defined, a basic graph pattern (BGP) bgp “ ttp1, ..., tpku is a set of

triple patterns. We have Ωbgp “ Ωtp1 ’ ...Ωtpk . Considering the given example in

this section, bgp={(?s isCapitalOf ?c), (?c countryname ?n)}. Ωbgp “ Ωtp1 ’ Ωtp2 .

In addition to BGP operator, SPARQL contains other operators like OPTIONAL

and FILTER. Define the semantics of graph pattern expressions as function rr.ssD.

rr.ssD takes a graph pattern expression P (i.e., triple pattern or BGP pattern), an

RDF dataset D and G an RDF graph in D as parameters and returns a set of

mappings. The evaluation of graph pattern P is defined as follow:

P is a BGP, rrP ssDG “ rrP ssG

P “ pP1 AND P2q, rrP ss
D
G “ rrP1ss

D
G ’ rrP2ss

D
G

P “ pP1 OPTIONAL P2q, rrP ss
D
G “ rrP1ss

D
G ’ rrP2ss

D
G

P “ pP1 UNION P2q, rrP ss
D
G “ rrP1ss

D
G Y rrP2ss

D
G

For a given mapping µ and a built-in condition R, we say µ satisfies R, denoted

by µ ( R. The filter expression pP FILTER Rq, we have rrpP FILTER RqssDG “

tµ P rrP ssDG | µ ( Ru.

Undirected Connected Graph. We now introduce the notion of Undirected

Connected Graph (UCG) [13].

A graph g P G, where g is represented as an ordered pair g :“ pV, Eq. V is the

distinct set of triple patterns and E is the distinct set of triple pattern pairs. V and

E correspond to the set of vertices and the set of edges in g, respectively. We call

the subject, predicate and object are components of triple pattern. A triple pattern

pair with a shared component refers to the join relation between two triple patterns.

E.g., , the ordered pair e = ((?s isCapitalOf ?c), (?c countryname ?n)) means the

relation obtained by the binary join of (?s isCapitalOf ?c) and (?c countryname ?n)

on variable c.

Here, we use a more complex query for a better illustration. Let us consider

query Q1 with a BGP operator bgp1 “ ttp1, tp2, tp3, tp4u, Figure 3.2 gives a visual
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presentation of the relation of triple patterns in Q1. As tp1, tp2 and tp3 are joined

with the common variable ?s, tp1 and tp4 are joined with ?o1. More precisely, each

RDF triple obtained by its corresponding triple pattern is a RDF graph node, and

each node is connected with the others by the common variable in the triple patterns.

SELECT ?s ?o4

WHERE {
(tp1) ?s isCapitalOf ?o1.

(tp2) ?s cityname ?o2. pQ1q

(tp3) ?s hasPopulation ?o3.

(tp4) ?o1 countryname ?o4. }

Figure 3.2.: Undirected Connected Graph of Q1

The representation of BGP operator in UCG fashion helps us to construct the

logical plan used in query execution, more details will be given in Chapter 7.

3.2. Storage of RDF Data

Before we shift the discussion of RDF stream model, we briefly cover the available

approaches to store static RDF data. Compared to RDF stream processing engine,

the development of RDF storage system is more mature. Some optimization technique

such as data indexing and query optimization are widely-used in recent RDF stores.

A deep insight into these systems gives us some clues to design our own RDF stream

processing engines.
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In general, RDF data storage can be categorized by either centralized or dis-

tributed. Moreover, based on these two categories, the storage can be distinguished

by either relational database (i.e., SQL) or non-relational database (i.e., NoSQL,

graph database).

Centralized RDF store. The famous centralized RDF systems like Jena [14],

Sesame [15], Virtuoso [16], RDF-3X [17], RDFox [18] use RDBMS as the foundation

of data storage. Since domain of relational database has been well developed since

1970, storing or querying RDF data over relational database can benefit from the

mature technique (e.g., vertical partitioning [], indexing and compression) of RDBMS.

E.g., , Hexasotre creates six indexes consist the permutations of subject, predicate

and object in RDF triple. In RDF-3X and RDFox generate a set of indexes for all

triple permutations, which leads a total of 15 distinct indexes for fast data access.

In additionally, RDFox encodes each RDF triple in 12 bytes integer which enables

billions triples to be stored in main memory.

Distributed RDF store. To enhance the system scalability, distributed approach

is gaining more and more attention for the implementation of RDF data store. Most

of distributed RDF stores possess shared nothing architecture. According to the

summary in [19], we introduce the distributed RDF stores in three categories:

• Standalone distributed RDF stores are primarily dedicated and optimized

for RDF data processing. E.g., , RDF-Trinity [20] relies on the main system

architecture of Trinity [21]. Trinity generates the query plan through its proxy

and delivers to all the Trinity machine. Each Trinity machine holds a partition

of data, and performs the query execution of the subplan of the original query.

The query evaluation in the Trinity cluster is coordinated by the proxy. Besides,

RDF-Trinity models RDF data in key-value, adjacent list format. The query

evaluation is done by exploring the RDF graph from one RDF node to another.

TriAD [22] uses Message Passing Interface for asynchronous query evaluation in

distributed environment. It accelerates the distributed join execution through

fully parallel, asynchronous message passing.

• Federation. The federation-based RDF stores use centralized RDF stores

for subquery evaluation. Based on that, they add a layer of communication

and scheduling to coordinate the query evaluation in the cluster. Partout [23]

and DREAM [24] are two representative systems in this category. Partout

and DREAM use RDF-3X to support the computation of the SPARQL query

fragment. In addition, DREAM replicates a copy of the whole input dataset to
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avoid cluster shuffling.

• Built on top of Big Data framework. The systems in this category,

[25], [26], [27], [28], [29], [19] e.g., are built on top of available Big Data

computing framework like Hadoop[30] or Spark [31]. [25], [26], [28] use Hadoop

as the computing layer. The system keep the data in Hadoop Distributed

File System, and compile the query execution plan into Hadoop MapReduce

job. PigSPARQL first stores the data in vertical partitioning schema, then the

query execution plan is compiled into the built-in operators of Pig to support

the query evaluation.

S2X is based on GraphX [32]. Basically, GraphX shares the same data ab-

straction (i.e., Resilient Distributed Dataset) as Spark for large scale graph

computation. S2X first converts original RDF data into property graph of

GraphX, the query execution is done by graph exploring algorithm. S2RDF is

another Spark-based RDF store. Different from S2X, S2RDF relies on SQL

approach for SPARQL query execution. The system performs a pre-processing

to create a so-called Extended Vertical Partitioning tables, to pre-compute the

semi-join of triple patterns for accelerating the join execution in Spark.

3.3. Semantic Web Knowledge Base (KB) and Reasoning

One important aspect that differentiates RDF from other non-relational data struc-

ture, is the ability to reason over the represented information through knowledge

bases. The knowledge is derived from a set of ontology, which is usually expressed

by RDF Schema (RDFS) [33] or Web Ontology Language (OWL) [34] fragments.

An ontology formalizes the description of classification networks and dedicates the

structure of knowledge for various domains. We consider that a KB consists of

an ontology, aka Terminological Box (Tbox), and a fact base, aka Assertional Box

(Abox). The least expressive ontology language of the Semantic Web is RDFS. It

allows to describe groups of related re- sources (concepts) and their relationships

(proper- ties). RDFS entailment can be computed using 14 rules. But practical

inferences can be computed with a subset of them. The one we are using is ρ df which

has been defined and theoretically investigated in [35]. In a nutshell, ρdf considers

inferences using rdfs:subClassOf, rdfs:subPropertyOf as well as rdfs:range and

rdfs:domain properties.

An RDF property is defined as a relation between subject and object resources.

RDFS allows to describe this relation in terms of the classes of resources to which
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they apply by specifying the class of the subject (i.e., the domain) and the class

of the object (i.e., the range) of the corresponding predicate. The corresponding

rdfs:range and rdfs:domain properties allow to state that respectively the subject

and the object of a given rdf:Property should be an instance of a given rdfs:Class.

The property rdfs:subClassOf is used to state that a given class (i.e., rdfs:Class)

is a subclass of another class. Similarly, using the rdfs:subPropertyOf property ,

one can state that any pair of resources (i.e., subject and object) related by a given

property is also related by another property. E.g., , Figure 3.3 visualizes a fragment

of LUBM [36] ontology,

Figure 3.3.: A fragment of visual representation of LUBM ontology

The concept hierarchy is limited to:

Postdoc Ď Faculty

Professor Ď Faculty

Faculty Ď Employee

DteacherOfJ Ď Faculty

where Ď denotes the subsumption of concepts. I.e., PostDoc and Professor are

the subclasses of Faculty. Faculty is a subclass of Employee. The domain of object

property teacherOf is the concept Faculty.

Other ontology languages, OWL and its fragments, of the Semantic Web stack

extend RDFS expressiveness, e.g., by supporting properties such as sameAs or

owl:TransitiveProperty. Note that we mainly concentrate RDFS and owl:sameAs

in this thesis.

There are two main approaches used to support inferences in KBs. The first
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approach consists in materializing all derivable triples before evaluating any queries.

It implies a possibly long loading time due to running reasoning services during a

data preprocessing phase. This generally drastically increases the size of the buffered

data and imposes specific dynamic inference strategies when data is updated. Besides,

data materialization also potentially increases the complexity for query evaluation

(e.g., ., longer processing to scan the input data structure). These behaviors can

seriously impact query performance. The second approach consists in reformulating

each submitted query into an ex- tended one including semantic relationships from

the ontologies. Thus, query rewriting avoids costly data preprocessing, storage

extension and complex update strategies but induces slow query response times since

all the reasoning tasks are part of a complex query preprocessing step.

In a streaming context, due to the possibly long life- time of continuous queries,

the cost of query rewriting can be amortized. On the other hand, materialization

tasks have to be performed on each incoming streams, possibly on rather similar

sets of data, which implies a high processing cost, i.e., lower throughput and higher

latency. More details will be given in Chapter 8.

3.4. Stream Model and Continuous Query Processing

In this section, we formalize the basic conceptions of RDF Stream Processing (RSP),

i.e., the RDF stream model and the query semantics in a continuous context.

3.4.1. RDF Stream Model

A temporal annotation of a single RDF triple can be either time-point-based [37] or

time-interval-based [38].

Time-interval-based. Considering an RDF stream S as a sequence of elements

ă(s,p,o), [start, end]ą. (s,p,o) is an RDF triple, [start, end] is a closed time interval

which assign a temporal annotation to (s, p, o), i.e., (s, p, o) is valid from instant

start to instant end. E.g., , (car1, hasSpeed, 100, [10, 12]) means that car1 has speed

100 km/h from 10 to 12.

Time-point-based. Instead of using the time interval to assign the temporal

annotation, time-point-based approach labels an RDF triple by a time point t,

ă(s,p,o), [t]ą, (s, p, o) is valid at t. Practically, time-point-based can be considered

as a special case of time-interval-based, where start “ end. The equivalent time-

point-based representation of (car1, hasSpeed, 100, [10, 12]) could be expressed as

(car1, hasSpeed, 100, 10), (car1, hasSpeed, 100, 11), (car1, hasSpeed, 100, 12).
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Intuitively, time-point-based seems to be more redundant that time-interval-based.

Using time interval to assign the temporal annotation could be more expressive than

using a single time-point, since a certain time-point is a special case of the time

interval. Moreover, system like ETALIS [39], EP-SPARQL [40] use time interval

to handle complex event processing. However, time-point-based has an advantage

for the applications like data-driven, reactive and low latency system. It allows

data stream to be generated instantaneously. Instead of buffering and waiting the

expiration of the time interval, the system can process the incoming data stream as

soon as possible. In the above-mentioned example, for time-interval-based approach,

the computing layer should wait until time point 12 is expired. On the other hand,

time-point-based approach allows the system to continuously generate the result at

each time point 10, 11, 12.

3.4.2. Continuous SPARQL Query Processing

To continuously process SPARQL query over RDF data stream, the first step is to

extend standard SPARQL language to continuous and temporal annotation.

CQL [41] pioneers the stream processing over relational data stream. It adopts

window operator to temporally store incoming data stream and continuously launch

the query execution over the buffered data stream. To formalize the semantic of

continuous query, CQL categorizes the streaming operators into three categories:

Stream-to-Relation, Relation-to-Relation and Relation-to-Stream. For the sake of

better illustration, we use C-SPARQL as an example, it inherits the main spirit of

CQL, and extends SPARQL grammar to handle RDF data stream.

(1) Stream-to-Relation (S2R) operator produces a relation from input data

stream. Window operator fall into this category. C-SPARQL inherits the main spirits

of CQL, We use C-SPARQL to illustrate the window conception in RDF stream

processing.

In C-SPARQL, the system identifies each data stream by an associated, unique IRI.

The IRI signifies where the stream source comes from. It represents an IP address

for accessing streaming data. The syntax of window operator is defined as follow:
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FromClause ::“ ‘From‘r‘Named‘s‘Stream‘StreamIRI ‘rRANGEs‘

Window ::“ TimeBasedWindow | TripleBasedWindow

TimeBasedWindow ::“ Number T imeUnit WindowOverlap

T imeunit ::“ p‘ms‘|‘s‘|‘m‘|‘h‘|‘d‘q

WindowOverlap ::“ ‘STEP ‘ Number T imeUnit | ‘TUMBLING‘

TripleBasedWindow ::“ ‘TRIPLES‘ Number

The window operator extracts most recent data from input streams. The extraction

could be time-based (all triples valid within a given time interval) or triple-based

(a given number of triples). Time-based sliding window progressively slides along

the timeline, RANGE defines the size of window buffer, STEP indicates the frequency

to update the window. E.g., , RANGE 10s STEP 5s means that buffer the input data

stream of the last 10 seconds, and update the window for every 5 seconds.

(2) Relation-to-Relation operator (R2R) produces a relation from one (e.g.,

projection, selection) or several input relations (e.g., join, union). R2R operator

computes over the instantaneous relation within a given time interval or a time

instant. E.g., , considering the following C-SPARQL query:

SELECT ?sensor ?value

FROM STREAM <http://example.stream.org/temperature>

[RANGE 10s STEP 5s]

WHERE {
(tp1) ?sensor hasValue ?observation;

(tp2) ?observation numericalValue ?value. }

The above query can be interpreted as: for the last 10 seconds, what is the observed

value and which sensor it belongs to? The projection (SELECT ?sensor ?value) and

the join (tp1 ’ tp2) are applied to the sliding window.

(3) Relation-to-Stream operator (R2S) produces an output stream S from

a relation R. Define R a temporal relation, s is an RDF triple and t is a time point.

Considering a time interval T “ rt1, t3s which consists of 3 time points t1, t2, t3. A

sliding window W possesses range of 2 time points and sliding step of 1 time point.

An input relation R contains three RDF triples s1, s2, s3 which are assigned with

t1, t2, and t3, respectively. In CQL, three R2S operators are introduced:
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• Istream (for “Insert Stream”) is applied to R, whenever triple s is in

Rptq´Rpt´ 1q. If at a same time point t, s happens to be inserted and deleted,

Istream does not perform the insert operation. Phrasing differently, if an RDF

triple S is valid for Rptq and Rpt ´ 1q, Istream operator does not output s

in Rptq. Recall the above-mentioned example, at t3, output stream s only

produces s3.

• Dstream (for “Delete Stream”) is applied to R at t, whenever triple s is

in Rpt ´ 1q but not in Rptq. If an RDF triple s is invalid for Rptq but valid

for Rpt´ 1q, Dstream outputs s in Rptq. Recall the previous example, at t3, S

produces s1.

• Rstream maintains the entire current state of its input relation and outputs

all of the RDF triples as insertions at each time step. I.e., , at t2, S outputs

s1, s2. At t3, S outputs s2, s3 even s2 has already been produced at t2.

Notably, C-SPARQL implements Rstream as the R2S operator.

3.4.3. Execution Semantics for Stream Processing

To simply the further explanations in following chapters, we brief the main internal

execution models of streaming system in this section. In SECRET [42], authors

formalize the execution mechanism of stream processing engines. The evaluation

over input data stream can be regarded as a loop:

Tick Ñ ReportÑ ContentÑ Scope

Tick refers to what drives a stream processing engine to take action on input data

stream. Report defines the temporal conditions that the elements in the window

are visible or not (for query evaluation and result reporting). Content captures

the elements of input stream that are satisfied the given temporal condition of the

window. Finally, Scope maps an application time value to a time interval which the

input query should be evaluated. In this section, we mainly discus Tick model in

SECRET.

Tick is a part of streaming engine’s internal execution model. It basically indicates

the system how to react or how to perform an action when the window state change.

Considering an input data stream S and a continuous query Q, there are three

fashion that system ticks:

37



• Data-Driven. The system eagerly triggers the evaluation of Q when the

arrival of new item in S is detected. CQELS [43], another famous RSP engine

possesses this mechanism for the implementation. CQELS immediately launches

the query execution when a new triple is arrived.

• Time-Driven. Where a the update frequency of time-based window triggers

a query execution. E.g., , a parameterized C-SPARQL time-based window

RANGE 10s STEP 5s triggers the query execution for every 5 seconds over the

elements of the last 10 seconds.

• Batch-Driven. The new batch of data stream arrival, or the update frequency

of time-based window triggers a query execution. In particular, Time-Driven

can be regarded as a special case of Bath-Driven.

3.5. Datalog and Answer Set Programming (ASP)

3.5.1. Foundations of Datalog/ASP

A Datalog program is a finite set of rules. A rule is an expression of the form

R1pu1q Ð R2pu2q, ..., Rnpunq prq

Where, R1, ..., Rn are relation names and u1, ..., un are terms which can be con-

stants, variables or functions. Each expression Ripuiq, i ě is called an atom, and the

relation name Ri is the predicate of Ripuiq.

We call the expression R1pu1q is the head of r, and R2pu2q, ..., Rnpunq form the

body of r. For a relation Ri occurs only in the body of rules, Ri is called as

extensional relation. The comma between each extensional relation in the body is a

logical conjunction. Whereas a relation Ri occurs in the head of a rule, Ri is called

an intensional relation. The evaluation of rule r is the procedure to compute an

instantiation

R1pvpu1qq Ð R2pvpu2qq, ..., Rnpvpunqq

of rule r with a valuation v by replacing each variable x by vpxq. I.e., a assignment

of all variables in the body derives a fact for the intensional relation in the head.

Example: Transitive Closure. The following program (P1) computes all con-

nected vertices by some path in a given undirected graph:
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T pX,Y q Ð RpX,Y q pr1q

T pX,Zq Ð RpX,Y q, T pY,Zq pr2q

P1 consists of two rules r1, r2. r1 is an exit rule which is used for the initialization

of the recursion. Relation R is an extensional relation which represents the edge of

the graph. r1 derives T fat from each R fact. We call rule r2 is a recursive rule since

relation T appears in both the head and the body of rules. Program P1 outputs

relation T pX,Y q as the result, where @x P X,@y P Y , it exists at least one path from

x to y.

Answer Set Programming (ASP) can be regarded as an extension of Datalog. In

addition to the fragment of Datalog program, an ASP program also supports the

logical operators like term of function symbols and disjunction of atoms. A complete

introduction to ASP can be found here [44].

3.5.2. LARS Framework for RDF Streams

In this section, we mainly introduce LARS [45], a theoretical framework for temporal

Datalog/ASP evaluation.

Assume an atom set A “ AI YAE , where AI is a set of intensional atoms and

AE is a set of extensional atoms disjoint from AI . In the rest part of this chapter, a

term starting with a capital letter refers to a variable, otherwise it is a constant.

Definition 1 (Stream). A stream is a pair S “ pT, vq, where T is a timeline interval

in N, and v : NÑ 2A
E

is an evaluation function such that vptq “ H for t P NzT .

A stream S1 “ pT, v1q is a sub-stream of S “ pT, vq, if T 1 Ď T , and v1pt1q Ď vpt1q

for all t1 P T 1.

The vocabulary of RDF contains three disjoint sets of symbols: IRIs I, blank nodes

B and RDF literals L. An RDF term is an element of C “ I Y B Y L, and and

RDF triple is an element of Cˆ IˆC. By convention, an RDF triple ps, p, oq can

be also written as a fact spoq, if p “ rdf:type, or pps, oq, otherwise. An RDF graph

is a finite set of RDF triples. Then, an RDF stream is a stream restricting AE to the

set of all RDF triples, i.e., at each time points, vptq evaluates to an RDF graph.

Definition 2 (RDF Stream). A RDF stream is a stream S “ pT, vq such that

vptq Ď Cˆ IˆC for every t P T .
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Definition 3 (Window function). A window function w takes a stream S “ pT, vq

as input and returns a sub-stream S1, where S1 “ pT 1, v1q. where T 1 Ď T , @t1 P T 1,

v1pt1q Ď vpt1q. S1 selects the most recent atoms in the n time points.

Definition 4 (Time-based Window). Consider a stream S “ pT, vq, T “ rtmin, tmaxs

and a pair pl, dq P NY t8u. A time-based window wιpS, t, l, dq returns the sub-stream

S1 of S that contains all the elements of the last l time units, and w slides with step

size d.

LARS distinguishes two types of streams - S and S‹. S represents the currently

considered window S, and S‹ is called fixed input stream. To meet the real-time

feature, we consider that S as the type of input stream, i.e., we do not assume that

the system is capable of loading the stream S “ pT, vq, T “ rtmin, tmaxs from tmin

to tmax directly.

Definition 5 (Window operators). Let w be a window function. The window

operator ‘w signifies that the evaluation should occur on the delivered stream by

window function w.

We consider the set A` of extended atoms by the grammar: a | ‘w ♦α , where

a P A and t P N is a time point. The formula ♦α means ♦α holds in the current

window S, if α holds at some time point in S. The window operator ‘w signifies

that the evaluation should occur on the delivered stream by window function w.

Definition 6 (Rule and program). An expression of the form α Ð β1, . . . , βn is

called a LARS rule. where α is an atom and β1, . . . βn are extended atoms. A (positive

plain) LARS program P is a set of LARS rules.

The semantics of LARS programs is given by the notion of answer stream. For a

positive LARS program, its answer stream is unique.

3.6. Distributed Stream Processing Engines (DSPEs)

A stream processing engine can be either self-contained or built on top of an existing

framework. For the purpose of high performance, consistency, fault tolerance and

easy-to-use, Instead of building a streaming service from scratch, we use available

distributed stream processing framework as the computing layer. Such systems are

better designed and operated upon when implemented on top of robust, state-of-

the-art engines. This section lists the recent Distributed Stream Processing Engines

(DSPEs) of general use cases.
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Some engineering concepts for DSPEs. Before we introduce the DSPEs, we

first illustrate some related engineering concepts:

• Streaming Models in DSPEs. At the physical level, a computation model

in DSPEs has two principle classes: Bulk Synchronous Parallel (BSP) and

Record-at-a-time (RAT) [46]. Recall the definitions given in previous parts of

this section, a stream processing engine uses the concept of Tick to drive the

system in taking actions over input streams, i.e., Data-Driven, Time-Driven

and Batch-Driven. In general, the physical BSP is associated to Time-Driven

and/or Batch-Driven models. E.g., Spark Streaming and Google DataFlow

with FlumeJava [47] adopt this approach by creating a micro-batch of a certain

duration T . That is data are accumulated and processed through the entire

Directed Acyclic Graph (DAG) within each batch. The RAT model is usually

associated to the logical Data-Driven model (although Time-Driven and Batch-

Driven are possible) and prominent examples are Storm [48] and Flink [49]. The

RAT/Data-Driven model provides lower latency than BSP/Time-Driven/Batch-

Driven model for typical computation. On the other hand, the RAT model

requires state maintenance for all operators with record-level-granularity. This

behavior obstructs system throughput and brings much higher latencies when

recovering after a system failure [46]. For complex tasks involving lots of

aggregations and iterations, the RAT model could be less efficient, since it

introduces and an overhead for the launch of frequent tasks. A more detailed

comparison between BSP on Spark and RAT on Flink will be given in Chapter

9.

• Message Delivery Guarantee. A stream processing engine can be ab-

stracted as producer-consumer model. Producer generates data stream con-

tinuously, and consumer receives input data stream and performs the next

computations. (1) If the consumer always receives at least once the message

from producer (i.e., duplicated message delivery may exist), we say that the

engine enables to guarantee at-least-once semantic. (2) If the consumer at

most receives once the message from producer (i.e., message may be lost during

the transmission), we say that engine has at-most-once semantic. (3) If the

consumer always receives one and only once the message from producer, we

thus say that the engine possesses exactly-once semantic.

• Backpressure. When the consumer is unable to process the messages delivered

from the producer, the data will be accumulated in consumer’s buffer or causes
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memory leak in the consumer. Worse, the operations of downstream services

may also be affected. Backpressure is thus a mechanism which is designed to

contend this over-pressure. If input stream is too fast to be consumed, the

consumer will send a notification to the producer to slow down the stream

generation.

We now use Table 3.1 to summarize the main differences of above-mentioned

DSPEs.

Storm Spark Flink

API Low-level High-level Compositional

Streaming Model RAT BSP RAT

Exactly-once No Yes Yes

Back Pressure Yes Yes Yes

Latency Low Medium Low

Throughput Low High High

Fault Tolerance Yes Yes Yes

State Management Yes Yes Yes

Table 3.1.: Comparisons of different DSPEs

Storm is one of the first production-ready DSPEs. Storm use Topology, a DAG to

describe the application workflow. The main data structure used in Storm is called

tuple. Tuple is a serializable key-value pair for message passing between different

vertices of the DAG. The two types of elements in a topology are Spout and Bolt.

Spout is the vertex with in-degree equals to 0 in Storm’s topology, it represents the

data stream source which emit tuple to downstream operators. Bolt consumes data

from upstream operators and emits the evaluated results to downstream operators.

Once the topology of a streaming application is defined, Storm is able to handle

the distributed of tasks to computing nodes in the cluster (Figure 3.4).

Spark & Spark Streaming Spark is a MapReduce-like cluster-computing frame-

work that proposes a parallelized fault-tolerant collection of elements called Resilient

Distributed Dataset (RDD) [31]. An RDD is divided into multiple partitions across

different cluster nodes such that operations can be performed in parallel. Spark

enables parallel computations on unreliable machines and automatically handles

locality-aware scheduling, fault-tolerant and load balancing tasks. The computation

is described as a DAG of operators and is partitioned into different stages.
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Figure 3.4.: Storm Topology Architecture

Spark Streaming extends RDD to Discretized Stream (DStream) [50] and thus

enables to support near real-time data processing by creating micro-batches of

duration T . DStream represents a sequence of RDDs where each RDD is assigned a

timestamp. Similar to Spark, Spark Streaming describes the computing logics as a

template of RDD DAG. Each batch generates an instance according to this template

for later job execution (Figure 3.5). The micro-batch execution model provides Spark

Streaming second/sub-second latency and high throughput. To achieve continuous

SPARQL query processing on Spark Streaming, we bind the SPARQL operators to

the corresponding Spark SQL relational operators. Moreover, the data processing is

based on DataFrame (DF), an API abstraction derived from RDD.

Flink is another distributed computing framework that integrates stream process-

ing and batch processing. Flink handles stream processing in a similar way as Storm.

The logic of computation is compiled into Flink’s Streaming Topology, i.e., a DAG.

The vertex of the DAG represents the operator for data stream transformation, data

stream flows from one operator to another. Flink cluster consists of a Job Manager

and several Task Managers. The workflow of the application is mapped into Flink’s

Streaming Topology which corresponds to a Flink Job. A job contains group of tasks,

each task is managed by a Task Manager that locates on a node of the cluster. A

Task Manager locally manages a group of parallel tasks. A runtime example is given

in Figure 4.3.
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Figure 3.5.: Discretized Stream Processing on Spark Streaming

Comparing to Storm, Flink enables to achieve exactly-once semantic. Besides, Flink

uses a variant of Chandy-Lamport algorithm for distributed lightweight snapshot

drawing. Therefore, the state maintenance and data checkpoint in Flink are more

efficient than Storm.
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Figure 3.6.: Flink Runtime Environment
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4. Related Work

RDF stream processing was introduced [51] in order to bridge the gap between stream

and RDF data processing. The two main consensus motivations of materializing data

stream as RDF graph nodes are: (i) facilitate data integration from heterogeneous

stream sources; (ii) enable stream reasoning for advanced data analytic. The design

and benchmarking of a RDF Stream Processing (cf. Section 3.4.1) system can be

quite challenging:

• The stream processing model does not have a uniform paradigm so far. Normally,

a streaming system usually possesses its own streaming model and query

language. This makes it difficult to design a streaming system, since no uniform

standards can be followed. Besides, benchmark across systems should consider

the diversity of execution mechanism between different streaming system.

• Due to fast generation rates and schema free natures of RDF data streams,

a continuous SPARQL query usually involves intensive join tasks which may

rapidly become a performance bottleneck, thus requiring dedicated optimization

technique.

• Compared to continuous SPARQL query processing, RDF stream reasoning

involves more complexity to support real-time inference, e.g., query rewriting,

data materialization, recursion and fine-grained timestamp manipulation.

In this chapter, we present how recent contributions address above-mentioned

challenges, the presentation is organized as follow: Section 4.1 gives an overview

of existing RSP benchmarks. Section 4.2 showcases the implementations of the

most-known RSP engines. Finally, Section 4.3 gives a survey of state-of-the-art

systems that are tailored for enhancing reasoning ability and language expressiveness

over RDF data stream.
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4.1. RSP Benchmarks

Linear Road [52] is one of the earliest benchmark for stream processing system.

It is the first benchmark which formalizes the performance metrics, evaluation

methodologies and infrastructure of DSMSs. Linear Road simulates a context of

expressway toll system in a city: the city contains expressways, vehicle will be charged

with tolls based on the traffic congestion and accident occurrence. The benchmark

generates both dynamic data (e.g., vehicle positions, accident information, etc.)

and static data (e.g., vehicle information, toll system, etc.). Instead of interlinking

dynamic data and static data, Linear Road separates them into two independent

parts, and the benchmark considers query latency and maximum query load as two

primary performance metrics for DSMSs.

SRBench [53] is one of the first available RSP benchmarks, comes with 17

queries on LinkedSensorData. The datasets consists of weather observations about

hurricanes and blizzards in the United States (from 2001 to 2009). SRBench is

mainly design for the purpose of functionality test, i.e., , the support of different

operators like aggregations, property path, etc. SRBench does not include any RSP

engine performance evaluation.

LSBench [54] covers functionality, correctness and performance evaluation. It

uses a customized data generator and provides insights into some performance aspects

of RSP engines. However, there is no consideration of important performance metrics

such as stream rate, window size and number of streams. Besides, the memory

consumption has not been included in their experiments.

CSRBench [55] is another RSP benchmark for correctness evaluation of RSP

engine’s output. The infrastructure of CSRBench is based on SRBench. The

correctness-check in CSRBench is based offline oracle verification. The system sinks

the engine output on disk and compare them to the expected query answer. Notably,

CSRBench distinguishes the different execution mechanisms for correctness validation

(cf. Section 3.4.3).

CityBench [56] is a recent RSP benchmark based on smart city data and real

application scenarios. It provides a consistent and relevant plan to evaluate perfor-

mance. Only the number of concurrent queries and the number of streams have been

considered to evaluate the execution time and memory consumption, whereas other

important factors such as window size and stream rate are missing.

YABench [57] extends CSRBench. YABench inherits the same tested dataset

and queries from CSRBench, but it provides more metrics such as memory and CPU
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usage, output accuracy per window, etc.

4.2. RSP Systems

We divide the introduction of RSP systems into two parts: centralized and distributed

design. This section starts with a summary of the most popular centralized RSP

engines, then a quick introduction of distributed RSP engines will also be given.

Table 4.1 gives a comparison of existing popular centralized RSP systems. Due to

[58], the implementation of RSP systems can be broadly categorized as BlackBox

and WhiteBox.

C-SPARQL CQELS EP-SPARQL SPARQLstream

Architecture BlackBox WhiteBox BlackBox BlackBox

Input RDF Stream RDF Stream RDF Stream RDF Stream

Window TiW & TpW TiW & TpW SEQ TiW & TpW

R2S RStream IStream RStream IStream

Tick TD/BD DD DD TD/BD

Static Data Yes Yes Limited Yes

Underlying Jena/Sesame Native Prolog SNEE

Reasoning RDFS No CEP RDFS

Table 4.1.: Comparisons of RSP engines.
TiW: Time-Based Window. TpW: Triple-Based Window
TD: Time-Driven. BD: Batch-Driven. DD: Data-Driven.

The BlackBox approach delegates the query processing to existing systems (e.g.,

SPARQL engine), and achieves continuously SPARQL query processing by adding

a modular for data flow management. An intuitive advantage of BlackBox is that

it requires less efforts for implementation. However, the defects are: (1) each sub-

component has its own required data structure, therefore, data conversions between

different sub-components are expensive. E.g., , based on our experience, C-SPARQL

could spend 40% of query execution time to convert the output of ESPER to the

input of Jena. (2) Using SPARQL endpoint for query processing may suffer from

poor performance. Since standard SPARQL engine is tailored for querying static

RDF data, some negligible overheads for static data processing becomes critical in

streaming context, e.g., engine initialization, data pre-processing.
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Different from BlackBox approach, WhiteBox relies less on available systems and

has more control of data access for different sub-components. It thus increases the

difficulty of implementation. On the contrary, WhiteBox approach makes it possible

to internally optimize the data processing in each sub-component. This is very import

to improve the system performance and scalability.

In the rest of this section, we provide an extensive discussion on the state-of-the-art

RSP systems.

C-SPARQL

Figure 4.1.: C-SPARQL Architecture

A high-level architecture view of C-SPARQL is given in Figure 4.1. C-SPARQL uses

Esper [59] to implement window operators (i.e., S2R), and integrates Jena/Sesame

for query processing (i.e., R2R). Recall the syntax defined in 3.4.2, C-SPARQL first

divides an input continuous query into two parts, i.e., the dynamic sub-query involves

S2R operators, and a static sub-query which refers to a standard SPARQL query.

Esper buffers input data stream and delivers it to a SPARQL engine. After that,

the SPARQL engine triggers the query execution periodically and output the query

results.

CQELS

CQELS is developed in WhiteBox fashion to have a low-level data access. CQELS

is the first RSP system which emphasizes the optimization of continuous SPARQL

query processing. Figure 4.2 shows the architecture of CQELS. CQELS supports

data-driven query execution following the content-change policy, in which query

execution is triggered immediately at the arrival of new elements in the window.
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Figure 4.2.: CQELS Architecture

When new data is injected into CQELS, The pre-processor encodes every RDF

triple into integer that omits the effect of index. The index is maintained as ring

for fast lookup purpose. Next, encoded data stream will be injected into query

optimizer. The optimizer pre-computes all the possible query execution plan and

dynamically choose the plan with lowest cost (based on some heuristics). The algebra

optimization in CQLES is relatively coarse-grained, i.e., it adjusts the join order

among different windowing operators. Eventually, CQELS uses multi-way hash join

to accelerate the query processing.

Note that even if the SLIDE keyword is supported in CQLES syntax, it does not

have any effect on the engine behavior. The frequency of query execution depends

on the arrival of new data in the stream.

Etalis/EP-SPARQL

Etalis [39] is a rule-based complex event processing engine. EP-SPARQL inserts a

compiler layer on the top of Etalis which compiles continuous SPARQL query into

logic rules. EP-SPARQL bases on WhiteBox implementation, the query evaluation

is done by a Prolog engine. In addition, EP-SPARQL converts standard RDF triple

into Prolog atom, i.e., (s, p, o) Ñ triple(s, p ,o), and each atom is annotated by a

time interval (cf.Section 3.4.1).

EP-SPARQL handles temporal annotation by Sequence operator.The execution

mechanism of EP-SPARQL bases on Data-Driven, or Event-Driven. More precisely,

EP-SPARQL implements Event-Driven Backward Chaining (EDBC) rules [60] for

timely and incrementally query evaluation.
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Figure 4.3.: C-SPARQL Architecture

SPARQLstream

SPARQLstream [61] is designed for federated querying from heterogeneous data

sources. As shown in Figure 4.4, SPARQLstream rewrites input SPARQLstream

query into SNEEql [62] based on a given ontology. The rewriting in SPARQLstream

is achieved by using S2O [61] mapping, where S2O is an extension of R2O mapping

that supports continuous query processing.

Figure 4.4.: C-SPARQL Architecture

The input query is divided into sub-queries, each sub-query is evaluated by the

SNEE engine with the associated stream sources. After that sub-queries are evaluated,

SPARQLstream deliver the intermediate results to a converter to generate output

RDF stream.
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Distributed RSP systems

Distributed RDF stream processing is still an emerging area. Current implementation

of distributed RSP engines still stays in the scientific stage for the purpose of technical

demonstration. In this section, we introduce two distributed RSP systems: CQLES-

Cloud and Katts.

CQELS-Cloud. The centralized CQELS engine uses single thread for query

evaluation (cf. Section 7.3 for more details). Consequently, CQELS does not scale

up by adding more computing resources. To tackle this issue, and to cope with the

use case that incoming data stream is massive, a distributed version of CQLES is

proposed, namely CQLES-Cloud [63]. CQELS-Cloud is the first RSP system which

mainly focuses on the engine elasticity and scalability. The whole system is based

on Apache Storm. Firstly, CQELS-Cloud compresses the incoming RDF streams

by dictionary encoding in order to reduce the data size and the communication in

the computing cluster. Instead of evaluating the continuous SPARQL query in a

centralized, blocking way, CQELS-Cloud maps query logical plan into Storm topology

for parallel query evaluation. Practically, CQLES-Cloud inherits the main spirit of

optimization techniques in CQLES, e.g., dictionary encoding, multi-way hash joins.

Katts is another distributed RSP engine based on Storm. To reduce the network

communication in Storm cluster, Katts [64] uses METIS [65] to optimize the parti-

tioning of Storm topology. The implementation of Katts[64] is relatively primitive, it

is more or less a platform for algorithm testing but not an RSP engine. The main

goal of Katts’ design is to verify the efficiency of graph partitioning algorithm for

cluster communication reduction.

4.3. Datalog, Answer Set Programming, and RDF Stream

Reasoning

To obtain more power of expressiveness for RSP, a natural way is to add the reasoning

capability to existing RSP engine. In [66], motivated by IoT use cases of smart

city, the authors first proposes the study to combine reasoning techniques with

data streams. Although the original idea of RDF stream reasoning is proposed

since a decade, the development of reasoning over RDF stream is still in its infancy.

Systems like C-SPARQL or StriderR[67] allow reasoning of RDFS++ and owl:sameAs

over RDF streams, however, they still have limit expressiveness on temporal logical

operators, e.g., the combination or even nesting of window operators. Moreover, the
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support of recursion is also missing. In this section, we consider related work in the

context of RDF stream reasoning and Datalog engines.

RDF Stream Reasoner. TrOWL1 [68, 69] is one of the first system which

pioneers RDF stream reasoning. The stream reasoner in TrOW is based on a

truth maintenance system. TrOWL is thus capable to approximately compute and

maintain the justification of inferred results on-the-fly. TrOWL provides justifications

for atomic concept subsumption, atomic class assertion and atomic object property

assertion.

The goal of the open source ELK reasoner [70] is to support the OWL 2 EL profile.

It is part of the ConDOR project2 which investigates novel ”consequence driven”

reasoning procedures. Even though ELK is not originally tailored for RDF stream

reasoning, we consider that LiteMat could rely on ELK’s TBox classification facilities.

However, once LiteMat’s encoding are performed, we do not need rely on any other

reasoners, e.g., [68, 71].

Both StreamRule [72] and its recent parallelized (single machine but multi-

threading) version StreamRuleP [73] use an RSP engine for data stream pre-filtering

and Clingo [74] as the ASP solver. The expressiveness of BSP implementation in

BigSR can fully cover StreamRule and StreamRuleP , since the implementation in

these two reasoners stay on positive stratified Datalog program. Moreover, evalua-

tion of StreamRule/StreamRuleP showcases that the average throughput is around

thousand-triples/second (1.x-2.x compared to C-SPARQL and CQELS) with second-

level delay. A centralized approach limits StreamRule/StreamRuleP to remain at

the same performance level as existing centralized RSP engines.

Laser [75] and Ticker [76] are both stream processing systems based on the LARS

framework but do not concentrate on scalability. Ticker concentrates on incremental

model maintenance and sacrifices performance by relying on an external ASP engine

(Clingo). Laser also proposes an incremental model based on time interval annotations

which can prevent unnecessary re-computations. Although Laser claims to represent a

trade-off between expressiveness and data throughput, it cannot scale the way BigSR

enables to. This is mainly due to Laser’s inability to distribute stream processing.

[77] is one of the most recent work concentrating on RDF stream reasoning with a

distributed approach. The paper aims to check the result consistency with massive,

complex RDF data stream. The authors propose two approaches to achieve this goal:

(1) to computes the closure of Negative Inclusions (NIs) of DL-Lite ontologies, then

1http://trowl.org/
2http://www.cs.ox.ac.uk/projects/ConDOR/
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register NIs as streaming queries; (2) to compiles the ontology as Strom/Heron’s

topology to evenly distribute the workload. The idea proposed in [77] could potentially

improve and complement our current research.

Other Datalog Solvers. Logiblox [78] is a single-machine commercial transac-

tional and analytical system. Its query language, namely LogiQL [79], is a unified

and declarative query language based on Datalog equipped with incremental main-

tenance. RDFox [18] is a centralized, main-memory RDF store with support for

parallel Datalog reasoning and incremental materialization maintenance. None of

these systems consider stream processing.

Myria [80] and BigDatalog [81] are both distributed datalog engines that perform

on shared-nothing architectures. The former is implemented on its parallel processing

framework and interacts with PostgreSQL [82] databases for write and read operations.

Much of the effort in the datalog engine of Myria has been concentrated on distributing

rule processing in a fault-tolerant manner. BigDatalog implements a parallel semi-

Näıve datalog evaluation on top of Spark. Neither Myria nor BigDatalog support

stream processing.
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5. RSP Performance Evaluation

5.1. Introduction

This chapter starts by introducing the general approaches for RSP benchmarking.

The main goals of this chapter are: (i) to get familiar with the architectures and

the execution mechanisms of existing RSP systems; (ii) and to identify the proper

performance metrics for the design of RSP benchmarks. This chapter can be

considered as the cornerstone for the rest of our works, i.e., design, implement and

evaluate our native RSP engines for scalable RDF stream processing in a distributed

setting.

This chapter consists of 4 sections. In Section 5.2, we first choose C-SPARQL and

CQELS, two well-know RSP systems as our evaluation baseline. We discuss about the

execution mechanisms on C-SPARQL and CQELS, which illustrate the connections

between different execution mechanisms to the corresponding evaluation approaches.

Then, we introduce a deeper insight of available RSP benchmark by briefly covering

their the pros and cons. In Section 5.3, we present our own infrastructure which

includes data stream generator, continuous SPARQL queries and performance metrics

monitoring for the experiments. After that, Section 5.4 gives the experiments results

with some formal discussions. Finally, we conclude the work of this chapter in Section

5.5.

5.2. C-SPARQL, CQELS and RSP Benchmarks

In this section, we first recall some basic features of C-SPARQL, CQELS, and the

involved RSP benchmarks for performance evaluation.

C-SPARQL and CQELS represent, at the time of writing this thesis, certainly

the two most popular RSP engines. Each of the mature engines proposes its own

continuous query language extensions to query time-annotated triples, and employs

a specific RSP mechanism. Since C-SPARQL and CQELS are two centralized RSP

systems, to simplify the discussion, we distinguish two kinds of RSP mechanisms in
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this section, i.e., time-driven and data-driven for C-SPARQL and CQELS, respec-

tively. The time-driven mechanism periodically executes SPARQL queries within a

time-based or triple-based window. Whereas, the data-driven mechanism executes

SPARQL queries immediately after the arrival of new data streams.

Other RSP benchmarks, such as SRBench, CSRBench and YABench are not

considered performance evaluations. They are thus not in the scope of the discussion

for this chapter. As introduced in 4.1, although LSBench and CityBench cover

performance evaluation, they still miss some important performance metrics for the

evaluation baselines, e.g., stream rate, window size, and proper measurement of

memory usage.

Note that we do not propose a new benchmark for RSP engines. This chapter

aims to deeply understand the performance of C-SPARQL and CQELS, which also

helps us to design our own RSP engines.

5.3. Evaluation Plan

In our experiments, we resolved to use our own data generator for two main reasons:

first, to be able to control the size of the generated data streams and, second, to

control the data content in order to check the results correctness. In particular, we

use both streaming and static data related to the Waves’ use case, i.e., , the domain of

water resource management. The logical data model is presented in Figure 5.1. The

dynamic data describes sensors observations and their metadata, e.g., the message,

the observation and the assigned tags. A message basically contains an observation,

and we set a fixed number of tags (hasTag predicate) for each observation. For each

50 flow observations, we include a chlorine observation. The static data provide

detailed information about each sensor, namely the label, the manufacturer ID, and

the sector ID to which it belongs to in the potable water network.

We define a set of queries Q “ tQ1, Q2, Q3, Q4, Q5, Q6u of increasing complexity,

where Q1, ..., Q5 operate over streaming data, and Q6 integrates static data as

background knowledge. These queries involve different SPARQL operators (e.g.,

FILTER, UNION, etc.) and are sorted in ascending order based on the execution

complexity (e.g., complex queries involve more query operators). Only the time-based

window is addressed in all these queries. As for the last query Q6, we compare the

behavior of RSP engines when varying the size of static data. Details and pseudo

code of the predefined queries are available on Github1. They can be summarized as

1https://github.com/renxiangnan/Reference_Stream_Reasoning_2016/wiki
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Figure 5.1.: Dynamic and static data in Water Resource Management Context

follows:

• Q1: Which observation involves chlorine value?

• Q2: How many tags are assigned to each chlorine observation?

• Q3: Which observation ID has an identification ending with “00” or “50”?

• Q4: Which chlorine observation possesses three tags?

• Q5: Which observation has an identification that ends with “00” or “10” and

how many tags assigned to this observation?

• Q6: What is the sector, manufacturer, and assigned label of each chlorine

observation?

5.3.1. Performance metrics

Let us denote the input parameters by X={stream rate, number of triples, win-

dow size, number of streams, static data size}, and the set of output metrics by

Y={execution time, memory consumption}. We next detail each of these parameters.

- X: (1) stream rate. The time-driven mechanism consists in executing periodi-

cally the query with a frequency step specified in the query. This frequency, specified

in STEP clause, can be time-based (e.g., every 10 seconds) or tuple-based (e.g., every

10 triples). The query is periodically performed over the most recent items. The
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keyword RANGE defines the size of these temporary items. Just like the frequency

step, the window size can be time or tuple-based. In case of time-based window,

the execution time and memory consumption are closely dependent on stream rate.

Increasing the stream rate makes the engines, such as C-SPARQL, process more data

for each execution. The frequency step indicates the interval between two successive

executions of the same query. Therefore, input stream rate should not exceed the

engine’s processing capacity, otherwise the system has to store an always growing

amount of data.

Example has already been given in related work. - X: (2) number of triples.

The stream rate is not an appropriate factor to be considered for the data-driven

mechanism because the query execution and the data injection are performed in

parallel. In another words, it is not feasible to precisely control the input stream rate.

In this context, we need to once feed the system with a fixed number of triples, and

that is why we define an additional parameter called number of triples N . A bigger

N generates a smaller error rate, but N should remain under a given threshold to

respect the processing limitations of the RSP engines. E.g., in CQELS, based on our

experience, if N is too large, the query evaluation will be blocked or the system even

get crashed. Such a behavior signifies that the data flow management is not well

designed in CQELS, in fact it seems that an important feature likes back pressure is

still missing.

- X: (3) window size. We use window size as a performance metric for RSP

engines. Note that the window size (RANGE) is closely related to the volume of

the queried triples for each execution of the query. According to our preliminary

experiments, the window size has marginal impact on the performance of CQELS.

Thus, we do not consider this metric when evaluating CQELS.

- X: (4) number of streams, (5) static data size. The capacity to handle

complex queries with multi-stream sources or static background information is an

important criterion to evaluate RSP engines. LSBench and CityBench have already

proposed these metrics.

- Y : execution time and memory consumption. As the machine conditions

have uncontrollable varying factors, we evaluate the execution time, for a given query,

as the average value of n iterations. Since C-SPARQL and CQELS have two different

execution mechanisms (time-driven and data-driven), we adapt the definition of

execution time to each context. As a consequence, the execution time represents

for C-SPARQL the average execution time over several query executions, while it

represents for CQELS the global query execution time for processing N triples.
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Time-driven and Data-Driven does not determine the output. It actually depends

on S2R operator, example is already given in related work.

5.4. Experiments

All experiments are performed on a laptop equipped with Intel Core i5 quad-core

processor (2.70 GHz), 8GB RAM, the maximum heap size is set to 2 GB, running

Windows 7, Java version JDK/JRE 1.8. The formal evaluation is done after a

1-to-2-minutes warm-up period with relatively low stream rate.

5.4.1. Time-driven: C-SPARQL

We conducted our experiments over C-SPARQL by testing the previously defined

queries. We measure the average value of twenty iterations for query execution time

and memory consumption.

(a) (b)

Figure 5.2.: Impact of stream rate and number of streams on the execution time of
C-SPARQL.

Execution Time We evaluate query execution time by varying stream rate,

number of streams, window size (time-based) and static data size.

In Figure 5.2 (a), one can see that the five curves exhibit approximately a linear

trend (up to a given threshold concerning the stream rate). For each query, the

linear trend can be maintained only when the stream rate is under a given threshold.

For all five queries, C-SPARQL normally operates when its execution time is smaller

than one second, which is also the query preset STEP value. Let us denote by

Ratemaxptriples{sq the maximum stream rate that can be accepted by C-SPARQL

for a given query. Ratemax represents the maximum number of triples that can be

processed per unit time. Table 5.1 shows the Ratemax for each query.
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Query Q1 Q2 Q3 Q4 Q5

Ratemax (triples/s) « 55000 « 40000 « 25000 « 16000` « 16000

Table 5.1.: Ratemax for the considered queries in C-SPARQL.

As shown in Figure 5.2 (a), if the stream rate exceeds the corresponding Ratemax,

the results provided by C-SPARQL are erroneous. The reason behind is that C-

SPARQL does not have enough time to process both current and incoming data.

Indeed, newly incoming data streams are jammed in memory, and the system will

enforce C-SPARQL to start the next execution which causes errors. Thus, Ratemax

represents the maximum number of triples under which C-SPARQL delivers correct

results.

In some cases, queries require data from multiple streams. In Figure 5.2 (b),

we focus on C-SPARQL’s behavior by varying the number of streams where the

stream rate is set to 1,000 triples/s (i.e. the dotted line in Figure5.2 (a)). This figure

reports the execution time of Q1 for different number of streams. The dotted line

represents the execution time of Q1 on a single equivalent (i.e. same workload) stream

with a rate Stream Ratesingle “ Number of Streams ˆ Stream Ratemulti, where

Stream Ratesingle and Stream Ratemulti denote the stream rate for respectively

single and multi streams. The curve of the query execution time increases as a

convex function over the number of streams. C-SPARQL has a substantial delay by

the increasing number of streams. Indeed, it has to repeat the query execution for

each stream [83], then executes the join operation among the intermediate results

from different stream sources. This action requires important computing resources,

so we can deduce that C-SPARQL is more efficient to process single stream than

multi-streams. In addition, according to our experiments, we find that the query

execution time linearly increases with the growth of the size of time-based window

and static data. C-SPARQL has a constant overhead for delay when increasing

these two metrics.

In Figure 5.2 (b), we present the impact of time-based Window Size on execution

time. Here, we fix stream rate at 1,000 triples/s while increasing the window size

from 2s to 10s using the STEP clause. Figure 5.2 (b) shows that there is a linear

relation between window size and execution time for the five queries.

Query Q6 is specially designed for testing Static Data. We recorded the query

execution time by varying the size of static data from 10MB to 50MB. Stream

rate is fixed at 1,000 triples/s. The curve displayed in Figure 5.4 (b) illustrates

the linear increase trend of execution time over static data size. This emphasizes
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Figure 5.3.: The real-time monitoring of memory consumption of Q1

that C-SPARQL holds a stable performance while varying the size of background

data. The execution time of Q6 is close to one second when 50 MB static data were

added. 50 MB is approximately the largest size of static data which can be handled

by C-SPARQL for Q6. Experimentation with over 50 MB static data injection

emphasizes that C-SPARQL then spends more than one second (i.e. STEP value) to

finish its current execution. This will make C-SPARQL unreliable, as the correctness

of output will seriously drop.

Memory Consumption We used VisualVM to monitor the Memory Consump-

tion of C-SPARQL.

Since the Java Virtual Machine executes the GC lazily (in order to leave the

maximum available CPU resources to the application), using the maximum mem-

ory allocated during execution is not an appropriate way to measure the memory

consumption. Practically, the processing of a simple query, while allocating far

63



(a) (b)

Figure 5.4.: The impact of (a) stream rate and (b) static data size on memory
consumption in C-SPARQL.

less memory on each execution, can also reach the maximum allocated heap as the

processing of a complex query. Thus, instead, we define a new evaluation metric

called Memory Consumption Rate (MCR). Measuring the amount (in megabytes) of

allocated and released memory by GC per unit of time comprehensively describes

MCR. MCR(MB/s) “ Max´Min
Period

, Max and Min refer to the average maximum

and minimum memory consumption, respectively. Period is the average duration

of two consecutive maximum memory observed instances. Max, Min, Period are

computed over 10 observed periods. MCR signifies the memory changes in heap

per second. A higher MCR shows a more frequent activity of GC (Figure 5.3). It

intuitively shows how many bytes have been released and reallocated by GC per

unit time. Figure 5.4 (a) shows the impact of stream rate on MCR. For each query,

the period decreases and MCR increases with the growth of Stream Rate. Query

Q3 has the highest MCR. This can be explained by the aggregate operator which

produces more intermediate results during query execution. Note that MCR is not

a general criterion for measuring memory consumption. In some use cases, we could

not observe periodical activity on the GC. The main goal of using MCR is to give a

comprehensive description of memory management on C-SPARQL.

Figure 5.4 (b) displays the increase of memory consumption rate over the growth

of static data size. For query Q6, memory peak varies marginally while increasing

static data size, but the minimum consumed memory is directly impacted. One

possible explanation is that C-SPARQL produces additional objects to process static

data, and keeps these objects as long-term in memory.
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5.4.2. Data-driven: CQELS

This section focuses on the performance evaluation of CQELS. The variant parameters

are number of triples, number of streams, and static data size. Q4 and Q5 are not

included in this evaluation since CQELS does not support the timestamp function

(i.e., function that performs basic temporal filtering on the streamed triples).

Execution Time Since CQELS uses a so-called probing sequence (for multi-way

hash joins) to support its query evaluation, getting the running time for each query

execution is not experimentally feasible. Thus, we evaluate the global execution time

of N triples for CQELS. More precisely, we keep the same strategy as LSBench, i.e.

inject a finite sequence of stream into the system which contains N triples. N should

be big enough to get more accurate results (N ě 105 [54]).

(a) (b)

Figure 5.5.: The impact of number of triples and static data size on query execution
time in CQELS.

Figure 5.5 (a) shows the impact of number of triples on execution time. N

should also be controlled within a certain range to prevent the engine from crashing

(c.f. “Memory Consumption” part of CQELS). Queries Q1, Q2, Q3 contain chain

patterns (join occurs on subject-object position) that select chlorine observation:

{T1: ?observation ex:observeChlorine ?chlorineObs . T2: ?chlorineObs ex:hasTag

?tag . }. Pattern T1 returns all results by matching the predicate “observeChlorine”,

then T2 filters among all selected observations in T1 those which have been assigned

tags. In Figure 5.5 (a), note that there is no significant difference between Q2 and Q3.

Based on Q2, the query Q3 adds a “FILTER” operator to restrict that preselected

observations which have an ID ending by “00” or “50”. This additional filter in Q3

slightly influences the engine performance, which lets suggest that CQELS is very

efficient at processing “FILTER” operator. As the dotted line Q11, it represents Q1

without the pattern T2. Its corresponding execution time is reduced to one-six times
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compared with Q1. Indeed, the pattern T2 plays a key role in term of execution time.

Without T2, CQELS will return the results immediately if T1 is verified, but pattern

T2 makes the engine wait till T2 is verified.

CQELS supports queries with multi-streams. It allows to assign the triple

patterns which are only relative to the corresponding stream source. CQELS requires

that the associated stream source (i.e., URI) for each triple pattern must be explicitly

indicated.

This property gives the engine some advantages to process complex queries. Each

triple just needs to be verified in its attached stream source. However, C-SPARQL

has to repeat verification on all presenting streams for the whole query syntax,

and this behavior leads to a waste of computing resources. Due to data-driven

mechanism, serious mismatches occur in output for a multi-streams query, especially

when the query requests synchronization among the triples. Asynchronous streams

are illustrated in our GitHub2.

Suppose that we have two streams, S1 and S2, sent sequentially (due to the data-

driven approach adopted by CQELS) into the engine. If the window size defined

on S1 is not large enough, ?observation in pattern T2 will not be matched with

?observation in T1. This problem can be solved by defining a larger window size in T1

with a small number of streams. In our experiments, we carry out the multi-streams

test by constructing two streams on Q1, Q2 and Q3. For Q1, with two streams,

CQELS spent approximately 26s to process p2ˆq 105 triples, that is just 30% more

than the single stream case. To conclude, CQELS gains some advantages in term

of execution time to process queries with multi-streams. However, the output may

also be influenced by the asynchronous behavior in multi-stream context. Note

that C-SPARQL does not suffer from the streams synchronization since it follows

batch-oriented approach.

In Figure 5.5 (b), the curve gives the total execution time(s) for 1.260.000 triples.

The execution time for N triples slightly changes while increasing the size of Static

Data from 10MB to 50MB. The result shows that CQELS is efficient for processing

static data of a large size.

Memory Consumption As we directly send N triples into the system at once,

CQELS’s memory consumption does not behave as C-SPARQL (which follows a

periodic pattern). Generally, the memory consumption on CQELS keeps growing by

increasing the number N of triples. As mentioned in the previous section, N should

not exceed a given threshold. If N is very large, the memory consumption will reach

2https://github.com/renxiangnan/Reference_Stream_Reasoning_2016/wiki
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its limit. In this situation, latency on query execution will increase substantially.

Furthermore, since serious mismatch occurs on multi-streams query, X = Number

of Stream is not considered as a metric for memory consumption. We evaluate the

peak of memory consumption (MC) during query execution. The trend increases

over time, where MC reaches the peak just before the end of query execution.

Figure 5.6 (a) shows that the memory consumption of Q1, Q2 and Q3 is very

close when varying the number of triples, i.e., the complexity of queries are not

reflected by their memory consumption. CQELS manages efficiently the memory for

complex queries. In Figure 5.6 (b), the memory consumption of Q6 is proportional

to the size of static data. According to the evaluation, we found that a lower

maximum allocated heap size (e.g., 512MB) causes a substantial delay on CQELS.

The consumed memory keeps growing to the limited heap size, i.e. the GC could

clear the unused objects in a timely manner. This behavior is possibly caused by the

built-dictionary for URI encoding [43].

(a) (b)

Figure 5.6.: Impact of the number of triples and the static data size on memory
consumption in CQELS.

5.5. Result Discussion & Conclusion

As we generate different streaming modes for time-driven (C-SPARQL) and data-

driven (CQELS) engines, the memory consumption is not comparable between them.

This section mainly derives a discussion on query execution time based on observed

results. It is about a simple comparison between C-SPARQL and CQELS.
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It is not obvious to compare the performance of different RSP engines, since each

of them has a specific execution strategy. According to [54] and our experiments, we

list the following conditions to support a fair cross-engines performance comparison:

(i) the engine results should be correct, at least comparable [54]. We remind that the

untypical behavior of C-SPARQL occurs when the incoming stream rate exceeds the

threshold. Even if the engine still produces results, it is meaningless to measure the

execution time; (ii) The execution time for different RSP engines should associate

the same workload. As C-SPARQL uses a batch mechanism, it is easy to control

the workload of the window operator. However, the data-driven eager mechanism

practically makes infeasible the workload control. Therefore, we choose t “ T
N , the

average execution time per triple to support our comparison. T is the total execution

time for N triples. Note that t marginally changes when varying the metrics defined

in section 5.3.1; (iii) The engine warming up is also recommended. We inject the

“warming up” stream (with a relatively low stream rate) into the system before the

formal evaluation.

Average execution time per triple (millisecond)

RSP engine Q1 Q2 Q3 Q6 (50MB static data)

CSPARQL 0.018 0.025 0.040 0.952

CQELS 0.169 0.239 0.243 0.032

Table 5.2.: Execution time (in seconds) of Q1, Q2, Q3 and Q6.

Table 5.2 shows that C-SPARQL outperforms CQELS when dealing with queries

Q1, Q2 and Q3. This can be explained by the chain query pattern existing in Q1,

Q2 and Q3, which forces CQELS to repeat the verification on matching condition for

the whole window. This behavior significantly hinder the engine performance. For

Q6, CQELS is almost 27 times faster than C-SPARQL. It shows its high efficiency

to process queries with static data.

Finally, we summarize our experiment over three aspects:

• 1) Functionality support. Since C-SPARQL uses the Sesame/Jena APIs

during query processing, it supports most of the SPARQL 1.1 grammar. In

contrast, as CQELS is implemented in a native way, it supports less operations

than C-SPARQL, e.g., timestamp function, property path, etc.

• 2) Output correctness. As mentioned in section 5.4.2, CQELS suffers from

a serious output mismatch in the multi-stream context. This is due to the
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eager execution mechanism and asynchronous streams. C-SPARQL behaves

normally with multi-stream queries since it is characterized by a time-driven

mechanism. As a matter of fact, real use cases often require concurrency of join

from different stream sources. In this context, C-SPARQL takes the advantages

of correctness and completeness of output results.

• 3) Performance. C-SPARQL shows stability with complex queries. However,

in practical applications, input stream rate should be controlled at a low level to

guarantee C-SPARQL’s output correctness. Besides, C-SPARQL has scalability

problem when dealing with static data. CQELS takes advantage from its

dictionary encoding technique and dynamic routing policy, and thus, is efficient

for simple queries and is scalable with static data.

Yahoo Benchmark for Distributed Streaming Systems Right after the end

of this work, Yahoo published their benchmark for the performance evaluation of

distributed stream processing systems 3. The originally published Yahoo benchmark

covered the evaluation of Spark Streaming, Storm and Flink. The benchmark mainly

considers system throughput and latency as the two primary performance impact

factors. In our case, i.e., distributed RDF Stream Processing, throughput refers

that how many RDF triples can be processed by the system per unit time (e.g.,

triples/second). Latency means how long does the RSP engine consumes between

the arrival of an input and the generation of its output (i.e., execution time as

previously-mentioned).

This chapter focuses on the performance evaluation of two state-of the-art RSP

engines with our native RSP performance benchmark proposals. We propose some new

performance metrics and designed a specific evaluation plan. In particular, we take

into account the specific implementation of each RSP engine. We performed many

experiments to evaluate the impact of Stream Rate, Number of Triples, Window

Size, Number of Streams and Static Data Size on Execution Time and Memory

Consumption. Several queries with different complexities have been considered. The

main result of this complete study is that each RSP engine has its own advantage and

is adapted to a particular context and use case, e.g., C-SPARQL excels on complex

and multi-stream queries while CQELS stands out on queries requiring static data.

Based on the experience of this work, we have accumulated a lot of experience

for RSP engine performance evaluation. Since the benchmark for distributed RSP

engine is still missing, we refer to Yahoo’s benchmark. Yahoo’s DSPE benchmark

3https://github.com/yahoo/streaming-benchmarks
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omits the impact fact like window size, number of streams, stream rate, etc. And the

memory consumption is also not in the scope of the consideration, since this metric

is practically difficult to measure in a precise way. In the rest part of this thesis, all

the experiments based on Yahoo’s benchmark, i.e., we regard system throughput

and latency as the main performance metrics. Be aware that the reason why we

abandoned existing RSP performance benchmarking systems [54, 56] is that, none of

them is tailored for massive data stream. This limitation is contrary to our original

intention of using distributed stream processing framework to cope with massive

RDF stream.
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6. Strider Architecture

6.1. Motivation

Querying over RDF data streams can be quite challenging. Due to fast generation

rates and the schema free nature of RDF data streams, a continuous SPARQL

query usually involves intensive join tasks which may rapidly become a performance

bottleneck. Existing centralized RSP systems like C-SPARQL, CQELS and ETALIS

are not capable of handling massive incoming data streams, as they do not benefit

from task parallelism and the scalability of a computing cluster. Besides, most

streaming systems are operating 24{7 with patterns (e.g., number of temperature

or flow observations), i.e., stream graph structures, that may change overtime (in

terms of graph shapes and sizes). This can potentially have a performance impact

on query processing since in most available distributed RDF streaming systems, e.g.,

CQELSCloud and Katts, the logical query plan is determined at compile time. Such

a behavior can hardly promise long-term efficiency and reliability, since there is no

single query plan that is always optimal for a given query.

In this chapter, we provide a high-level view of Strider’s architecture, the core

stream management component of the Waves project. Strider is not just a tailored

RDF stream processing engine for IoT usage purpose, but also aims to handle general

use cases for RDF stream processing.

The key implementation goal of Strider consists in efficiently handling massive

incoming data streams and supporting advanced data analytics services like anomaly

detection. Strider has been designed to guarantee important industrial properties

such as scalability, high availability, fault-tolerant, high throughput and acceptable

latency. These guarantees are obtained by designing the engine’s architecture with

state-of-the-art Apache components such as Spark and Kafka. To cope with the

above-stated problems, Strider comes with a capability of optimizing logical query

plan according to the state of data streams.

In Section 6.2, we detail the principal components of Strider and its properly

defined grammar for continuous SPARQL query processing.
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6.2. System Architecture

6.2.1. Syntax

Listing 6.2 introduces a running example that we will use throughout this chapter

and Chapter 7. The example corresponds to a query encountered in the Waves

project, i.e., query Q8 continuously processes the messages of various types of sensor

observations. The semantic of this query can be interpreted as: return all the

observation ID of each sensor which measures water flow, temperature, and chlorine

level.

We introduce new lexical rules for continuous SPARQL queries which are tailored

to a micro-batch approach. The query syntax we use in Strider is defined as follow:

StreamingClause ::“ ‘Streaming1p‘Window1|‘Slide1|‘Batch1q

Window ::“ pSlidingWindowq

Timeunit ::“ p‘Minutes1|‘Seconds1|‘Milliseconds1q

RegisterClause ::“ ‘Register1p‘QueryId1|‘Sparql1q

STREAMING { WINDOW [10 Seconds] SLIDE [10 Seconds] BATCH [5 Seconds] }

REGISTER { QUERYID [Q8] SPARQL [

prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

prefix ssn: <http :// purl.oclc.org/NET/ssnx/ssn/>

prefix cuahsi: <http ://www.cuahsi.org/waterML/>

SELECT ?s ?o1 ?o2 ?o3

WHERE { ?s ssn:hasValue ?o1 (tp1); ssn:hasValue ?o2 (tp2);

ssn:hasValue ?o3 (tp3).

?o1 rdf:type cuahsi:flow (tp4).

?o2 rdf:type cuahsi:temperature (tp5).

?o3 rdf:type cuahsi:chlorine (tp6). }] }

Listing 6.1: Strider’s query example (Q8)

The Current implementation of Strider covers the most commonly used operator

of SPARQL 1.1, we list all supported operators as follow:

• Query types: Select, Construct, Ask

• Algebra operators: Projection, Inner-Join, Optional (Left-Join), BGP, Union,

Filter, Distinct, GroupBy
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• Expressions (sub-operators of algebra): LogicalAnd, LogicalOr, Bound, Log-

icalNot, Equals, NotEquals, GreaterThan, GreaterThanOrEqual, LessThan,

LessThanOrEqual, NodeValue, ExprVar

• Aggregations: Sum, Max, Min, Avg, Count

The STREAMING keyword initializes the application context of Spark Streaming

and the windowing operator. More precisely, WINDOW and SLIDE respectively indicate

the size and sliding parameter of a time-based window. The novelty comes from the

BATCH clause which specifies the micro-batch interval of discretized stream for Spark

Streaming. Here, a sliding window consists of one or multiple micro-batches.

The REGISTER clause is used to register standard SPARQL queries. Each query is

identified by an identifier. The system allows to register several queries simultaneously

in a thread pool. This is the motivation of thread pool: Thus by sharing the same

application context and cluster resources, Strider launches all registered continuous

SPARQL queries asynchronously by different threads.

Note that we do not expose the stream URI for the users as the other RSP engines

do. Based on our experience, we find that exposing such parameters to the users

increases the difficulties of system deployment and tuning. Such inconvenience

may not be significant for a centralized system since the system setup is far less

complicated.

6.2.2. Architecture Overview

Strider contains two principle modules: (1) data flow management. In order to ensure

high throughput, fault-tolerance, and easy-to-use features, Strider uses Apache Kafka

to manage input data flow. The incoming RDF streams are categorized into different

message topics, which practically represent different types of RDF events. (2)

Computing core. Strider core is based on the Spark programming framework. Spark

Streaming receives, maintains messages emitted from Kafka in parallel, and generates

data processing pipeline.

Figure 6.1 gives a high-level overview of the system’s architecture. The upper

part of the figure provides details on the application’s data flow management. In a

nutshell, data sources (IoT sensors) are sending messages to a publish-subscribe layer.

This layer emits messages for the streaming layer which executes registered queries.

The sensor’s metadata are converted into RDF events for data integration purposes.

We use Kafka to design the system’s data flow management. Kafka is connected
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Figure 6.1.: Strider Architecture. Blue arrows and green arrows refer respectively to
the dataflow and the processes

to Spark Streaming using a Direct Approach1 to guarantee exactly-once semantics

and parallel data feeding. The input RDF event streams are then continuously

transformed to DataFrames.

STREAMING { WINDOW [10 Seconds] SLIDE [10 Seconds] BATCH [5 Seconds] }

REGISTER { QUERYID [Q8] SPARQL [

prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

prefix ssn: <http :// purl.oclc.org/NET/ssnx/ssn/>

prefix cuahsi: <http ://www.cuahsi.org/waterML/>

SELECT ?s ?o1 ?o2 ?o3

WHERE { ?s ssn:hasValue ?o1 (tp1); ssn:hasValue ?o2 (tp2);

ssn:hasValue ?o3 (tp3).

?o1 rdf:type cuahsi:flow (tp4).

?o2 rdf:type cuahsi:temperature (tp5).

?o3 rdf:type cuahsi:chlorine (tp6). }] }

Listing 6.2: Strider’s query example (Q8)

The use case of waves is also mentioned at the beginning of this chapter. I think it

is repeated to mention again the work flow here. Since previous paragraphs already

1https://spark.apache.org/docs/latest/streaming-kafka-integration.html
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described how the data flow from one component to the others.

In this chapter, we describe the main components and the workflow of Strider. We

implement Strider by using Spark Streaming as the underlying engine, and we use

Kafka data flow management. The details of each component will be given in the

next chapter.
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7. Hybrid Adaptive Continuous

SPARQL Query Processing in

Strider

In this chapter, we detail continuous SPARQL query processing in Strider. The

content of this chapter is organized as follows: Section 7.1 illustrates how Strider

handles basic SPARQL query processing on Spark. Section 7.2 gives a deep insight

of adaptive continuous SPARQL query processing in Strider. Section 7.3 showcases

the results of the experiments that we have conducted on an Amazon Web Service

(AWS) cluster. Finally, Section 7.4 concludes the work in this chapter.

7.1. RDF to RDBMS Mapping

We now briefly cover the mapping from RDF to RDBMS in Strider. In general, to

enable SPARQL query processing on Spark, Strider:

• parses a query with Jena ARQ and obtains a query algebra tree in the Parsing

layer.

• reconstructs the algebra tree into a new Abstract Syntax Tree (AST) based on

the Visitor model.

• pushes obtained AST into the algebra Optimization layer.

• traverses the AST, binds the SPARQL operators to the corresponding Spark

SQL relational operators for query evaluation.

Converting RDF data into a relational database model is a common way for

RDF data management. The advantage of this approach is to benefit from mature

techniques developed in RDBMS systems for RDF data processing. Figure 7.1 gives

a SPARQL query example and its translation in SQL (considering that all triples

are stored in a single RDBMS table denoted database) in Listing 6.2.
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Figure 7.1.: Conversion from RDF to RDBMS

An intuitive observation shows that SPARQL query processing with RDBMS

as back-end involves intensive self-joins [84]. The inner-join operator between two

relations in a distributed environment refers to a shuffle operation, which is a main

performance bottleneck. Therefore, the join order of triple patterns becomes the

critical factor for query processing.

7.2. Hybrid Adaptive Query Processing

7.2.1. Query processing outline & trigger layer

Strider possesses a hybrid SPARQL query optimization strategy, two optimization

components are proposed, i.e., static and adaptive, which are respectively based on

heuristic rules and (stream-based) statistics (Figure 7.2).

The first trigger layer decides whether the query processing adopts a static or an

adaptive approach. Once the system moves to adaptive query processing, the second

trigger layer determines whether backward (B-AQP) and forward (F-AQP) should be

applied in AQP. They mainly differ on when, i.e., at the previous or current window,

the query plan is computed.

Before providing a detailed explanation, we briefly present the interactions between

the main components of the query optimizer. In general, the system will first estimate

the size of the input stream in the trigger layer. If the data size is considered small
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Figure 7.2.: Strider Hybrid Query Optimization

(the default threshold of data volume is empirically set at 100 megabytes. However,

this parameter depends on query complexity and cluster resources.), Strider will

takte the already-calculated static query plan since there will be no performance

gain by triggering the adaptive optimization. When the adaptive optimization is

triggered, the system will decide whether backward or forward for adaptive query

processing.

Strider’s optimizer is tailored for Basic Graph Pattern (BGP) reconstruction at

run-time. The system thus varies the optimal join ordering of triple patterns based

on the collected statistics. Fundamentally, both static and adaptive optimizations are

processed using a graph GU “ pV,Eq, denoted Undirected Connected Graph (UCG)

[13] where vertices represent triple patterns and edges symbolize joins between triple

patterns. Naturally, for a given query q and its query graph GQpqq, GU pqq Ď GQpqq.

A UCG showcases the structure of a BGP and the join possibilities among its triple

patterns. That query representation is considered to be more expressive [85] than

the classical RDF query graph. The weight of UCG’s vertices and edges correspond

to the selectivity of triple patterns and join, respectively. Once the weights of an

UCG are initialized, the query planner automatically generates an optimal logical

plan and triggers a query execution.

Strider’s static optimization retains the philosophy of [86]. Basically, static opti-

mization implies a heuristics-based query optimization. It ignores data statistics and

leads to a static query planner. In this case, unpredictable changes in data stream

structures may incur a bad query plan. The static optimization layer aims at giving

a basic performance guarantee. The predefined heuristic rules set empirically assign

the weights for UCG vertices and edges. Next, the query planner determines the

shortest traversal path in the current UCG and generates the logical plan for query
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execution. The obtained logical plan represents the query execution pipeline which

is permanently kept by the system.

The Trigger layer supports the transition between the stages of static optimization

and adaptive optimization. In a nutshell, that layer is dedicated to notify the system

whether it is necessary to proceed an adaptive optimization. Our adaptation strategy

requires collecting statistical information and generating an execution logical plan.

The overhead coming with such actions is not negligible in a distributed environment.

The Strider prototype provides a set of straightforward trigger rules, i.e., the adaptive

algebra optimization is triggered by a configurable workload threshold. The threshold

refers to two factors: (1) the input number of RDF events/triples; (2) the fraction of

the estimated input data size and the allocated executors’ heap memory.

7.2.2. Query plan generation

This section explains how we collect statistics and construct query plan. Then, we

give an insight into the AQP optimization, which is essentially a cardinality-based

optimization.

Both compile-time (static) and run-time (adaptive) query plan generation are base

on UCG. Once an input query is initialized, we parse the query and reconstruct

its corresponding UCG graph. This step is done only once per query, i.e. at query

compiled time. Figure 7.3 displays the corresponding UCG of query in Listing 6.2 .

Figure 7.3.: UCG creation

Unlike systems based on a greedy and left-deep tree generation, e.g., [13, 43],

Strider makes a full usage of CPU computing resources and benefits from parallel

hardware settings. It thus creates query logical plans in the form of general (bushy)
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directed trees. Hence, the nodes with the same height in a query plan pn can

be asynchronously computed in a non-blocking way (in the case where computing

resources are allowed). Coming back to our Listing 6.2 example, Figure 7.5 refines

the procedure of query processing (F-AQP) at wn, n P N . If wn contains multiple

RDDs (micro-batches), the system performs the union all RDDs and generates a

new combined RDD. Note that the union operator has a very low-cost in Spark.

Afterward, the impending query plan optimization follows three steps: (a) UCG

(weight) initialization; (b) UCG path cover finding; (c) query plan generation.

UCG weight initialization is briefly described in Algorithm 1 and Figure 7.6

(step (a), step (b)). Since triple patterns are located at the bottom of a query

tree, the query evaluation is performed in a bottom-up fashion and starts with the

selection of triple patterns σptpiq, 1 ď i ď I (with I the number of triple patterns in

the query’s BGP). The cardinality Cardptpiq and the already-computed intermediate

result of tpi are cached main memory. The cardinality (i.e., statistic gathering) is

obtained by count action, which returns the number of rows for each triple pattern

(Figure 7.4).

Figure 7.4.: UCG weight initialization

The system computes σptpiq asynchronously for each i and temporally caches the

corresponding results (Rσptpiq) in memory. Cardptpiq, i.e., the cardinality of Rσptpiq,

is computed by a Spark count action. Thence, we can directly assign the weight of

vertices in GU pQq. Note that the estimation of Cardptpiq is exact.

Once all vertices are set up, the system predicts the weight of edges (i.e., joined

patterns) in GU pqq. We categorize two types of joins (edges): (i) star join, includes

two sub-types, i.e., star join without bounded object and star join with bounded

object; (ii) non-star join. To estimate the cardinality of join patterns, we make a
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Figure 7.5.: Dynamic Query Plan Generation for Q8

trade-off between accuracy and complexity. The main idea is inspired by a research

conducted in [13, 85, 87]. However, we infer the weight of an edge from its connected

vertices, i.e., no data pre-processing is required. The algorithm begins by iteratively

traversing GU pqq and identifies each vertex v P V and each edge e P E. Then we can

decompose GU pqq into the disjoint star-shaped joins and their interconnected chains

(Figure 7.6, step (b)). The weight of an edge in a star join shape is estimated by the

function getStarJoinWeight. The function first estimates the upper bound of each

star join output cardinality (e.g., , Cardptp1 ’ tp2 ’ tp3q), then assigns the weight

edge by edge. Every time the weight of the current edge e is assigned, we mark e as

visited. This process repeats until no more star join can be found. Then, the weight

of unvisited non-star join shapes is estimated by the function getNonStarJoinweight.

It lookups the two vertices of the current edge, and chooses the one with smaller

weight to estimate the edge cardinality. The previous processes are repeated until all

the edges have been visited in GU pqq.

UCG path cover finding & Query plan generation. Figure 7.6 step (c)

introduces path cover finding and query plan generation. The system starts by

finding the path cover in GU pqq right after GU pqq is prepared. Intuitively, we search

the undirected path cover which links all the vertices of GU pqq with a minimum

total edge weight. The path searching is achieved by applying Floyd–Warshall

algorithm [88] iteratively. The extracted path CardpGU pqqq Ď GU pqq, is regarded as
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Figure 7.6.: Initialized UCG weight, find path cover and generate query plan

the candidate for the logical plan generation. Finally, we construct pn, the logical

plan of GU pqq at wn, in a top-down manner (Figure 7.6, step (c)). Note that path

finding and plan generation are both computed on the driver node and are not

expensive operations (around 2 - 4 milliseconds in our case).

Algorithm 1 UCG weight initialization

Input : query q, GU pqq “ pV,Eq Ď GQpqq, current buffered window wn
Output : GU pqq with weight-assigned
while Dv unvisited P V do

mark v as visited, Rσpvq Ð compute (v) buffer (v, Rσpvq) ^ v.weight Ð
Cardpvq

end
while De unvisited P E do

mark e as visited if (D star join SJ) ^eX SJ ‰ H then
locate each SJ P G

U pqq
foreach @eS P SJ do

mark eS as visited eS .weight Ð getStarJoinWeightpSJ , eS .verticesq
end

end
else e.weight Ð getNonStarJoinWeightpSJq;

end

83



7.2.3. B-AQP & F-AQP

We propose a dual AQP strategy, namely, backward (B-AQP) and forward (F-

AQP). B/F-AQP depict two philosophies for AQP, Figure 7.7 roughly illustrates

how B/F-AQP switching is decided at run-time, i.e., this is the responsibility of

the Decision Maker component. Generally, B-AQP and F-AQP are using similar

techniques for query plan generation. Compared to F-AQP, B-AQP delays the

process for query plan generation.

Our B-AQP strategy is inspired by [46]’s pre-scheduling. Backward implies gath-

ering, feeding back the statistics to the optimizer on the current window, then the

optimizer constructs the query plan for the next window. That is the system com-

putes the query plan pn`1 of a window wn`1 using the statistics of a previous window

wn. Strider possesses a time-driven execution mechanism, the query execution is

triggered periodically with a fixed update frequency s (i.e., sliding window size).

Between two consecutive window wn and wn`1, there is a computing barrier to

reconstruct the query plan for wn`1 based on the collected statistics from a previous

window wn. Suppose the query execution of wn consumes a time tn (e.g., in seconds),

then for all tn ă s, the idle duration δn “ s´ tn allows to re-optimize the query plan.

But δn should be larger than a configurable threshold ε. For δn ă ε, the system

may not have enough time to (i) collect the statistic information of wn and (ii) to

construct a query plan for wn`1. This potentially expresses a change of incoming

steams and a degradation of query execution performance. Hence, the system decides

to switch to the F-AQP approach.

Figure 7.7.: Decision Maker of Adaptation Strategy

F-AQP applies a Dynamic Programming strategy to find the optimal logical query

plan for the current window wn. The main purpose of F-AQP is to adjust the system

state as soon as possible. The engine executes a query, collects statistics and computes

84



the logical query plan simultaneously. Here, the statistics are obtained by counting

intermediate query results, which causes data shuffling and DAG interruption, i.e., the

system has to temporally cut the query execution pipeline. In Spark, such suspending

operation is called an action, which immediately triggers a job submission in Spark

application. However, frequent job submission may bring some side effects. The

rationale is, for a master-slave based distributed computing framework (e.g., Spark,

Storm) uses a master node (i.e., driver) to schedule jobs. The driver locally computes

and optimizes each submitted DAG and returns the control messages to each worker

node for parallel processing. Although the “count” action itself is not expensive,

the induced side effects (e.g., driver job-scheduling/submission, communication of

control message between driver and workers) will potentially impact the system’s

stability. For instance, based on our experience, F-AQP’s frequent job submission

and intermediate data persistence/unpersistence put a great pressure on the JVM’s

Garbage Collector (GC), e.g., untypical GC pauses are observed from time to time

in our experiment.

Decision Maker. Through experimentations of different Strider configurations,

we understood the complementarity of both the B-AQP and F-AQP approaches.

Real performance gains can be obtained by switching from one approach to another.

This is mainly due to their properties which are summarized as below:

• B-AQP. For B-AQP, no overhead of dynamic programming for run-time query

plan generation is involved. However, B-AQP generate approximate optimal

query plan through previously-collected statistic, which could be inaccurate for

query plan generation.

• F-AQP. For F-AQP, the system takes extra overhead to collect statistics and

generate query execution plan at run-time. This overhead can not be ignored,

however, it obtains the precise statistic information for query plan generation.

We designed a decision maker to automatically select the most adapted strategy

for each query execution. The decision maker takes into account two parameters: a

configurable switching threshold ε P s0, 1r; γn “
tn
s , the fraction of query execution

time t over windowing update frequency s. For the query execution at wn, if γn ă ε,

the system updates the query plan from pn to pn`1 for the next execution. Otherwise,

the system recomputes pn`1 by DP at wn`1 (see Algorithm 2). We empirically set

ε “ 0.7 by default.

The decision maker plays a key role for maintaining the stability of the system’s

performance. Our experiment (Sec. 7.3.2) shows that, the combination of F/B-AQP
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Algorithm 2 B-AQP and F-AQP Switching in Decision Maker

Input : query q, switching threshold ε, sliding window W “ twnunPN ,
update frequency s of W

foreach wn PW do
tn Ð getRuntime { execute (q) } // executionTime
λn Ð getAdaptiveStrategy (ε,tn,s) // adaptiveStrategy
if λn == Backward then

update query plan pn of q at wn
pn`1 Ð update (pn)

end
if λn == Forward then Recompute pn`1 at wn`1;

end

through decision maker is able to prevent the sudden performance declining during a

long running time.

7.3. Experiments

Strider is written in Scala, the code source can be found here1. To enable SPARQL

query processing on Spark, Strider parses a query with Jena ARQ and obtains a

query algebra tree in the Parsing layer. The system reconstructs the algebra tree

into a new Abstract Syntax Tree (AST) based on the Visitor model. Basically, the

AST represents the logical plan of a query execution. Once the AST is created, it

is pushed into the algebra Optimization layer. By traversing the AST, we bind the

SPARQL operators to the corresponding Spark SQL relational operators for query

evaluation.

We use a series of micro-benchmarks to measure the performance of Strider,

including the system’s adaptivity. We first focus on continuous SPARQL query

processing with stable stream structure. I.e., , in the ideal case, incoming data

streams maintain invariant structure, the proportion of variant types of RDF triples

does not change over time. We next demonstrate the efficiency of Strider’s AQP by

feeding the system structurally unstable RDF streams, i.e., the structure of input

stream varies over time. To that end, we first present the experimental setup and

then provide results.

1https://github.com/renxiangnan/strider
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7.3.1. Experimental Setup

We test and deploy our engine on an Amazon EC2/EMR cluster of 9 computing

nodes with resource management handled by Yarn. The system holds 3 nodes of

m4.xlarge for data flow management (i.e., Kafka broker and Zookeeper [89]). Each

node has 4 CPU virtual cores of 2.4 GHz Intel Xeon E5-2676, 16 GB RAM and 750

MB/s bandwidth. We use Apache Spark 2.0.2, Scala 2.11.7 and Java 8 as baselines

for our evaluation. The Spark (Streaming) cluster is configured with 6 nodes (1

master, 5 workers) of type c4.xlarge. Each one has 4 CPU virtual cores of 2.9 GHz

Intel Xeon E5-2666, 7.5 GB RAM and 750 MB/s. The experiments of Strider on

local mode, C-SPARQL and CQELS are all performed on a single instance of type

c4.xlarge.

Datasets & Queries. We evaluated our system using two datasets that are built

around real world streaming use cases: SRBench and Waves.

We have already introduced SRBench in 4.1, we thus only give some further infor-

mation about Waves dataset. Waves dataset describes different water measurements

captured by sensors. Values of flow, water pressure and chlorine levels are examples

of these measurements. The value annotation uses three popular ontologies: SSN,

CUAHSI-HIS and QUDT. Each sensor observes and records at least one physical

phenomenon or a chemical property, and thus generates RDF data stream through

Kafka producer. Our micro-benchmark contains 9 queries, denoted from Q1 to Q9
2.

The road map of our evaluation is designed as follow: (1) injection of structurally

stable stream for experiment of Q1 to Q6. Q1 to Q3 are tested by SRBench datasets.

Here, a comparison between Strider and the state of the art RSP systems e.g.,

C-SPARQL and CQELS are also provided. Then we perform Q4 to Q6 based on

Waves dataset. (2) Injection of structurally unstable stream. We generate RDF

streams by varying the proportion of different types of Kafka messages (i.e., sensor

observations). For this part of the evaluation, queries Q7 to Q9 are considered.

In accordance with the discussion at the end of Chapter 5, we choose system

throughput and query latency as two primary performance metrics. Be aware that,

Throughput indicates how many data can be processed in a unit of time. Throughput

is denoted as “triples per second” in our case. Latency means how long does the RSP

engine consumes between the arrival of an input and the generation of its output.

We did not record the latency of C-SPARQL, CQELS and Strider in local mode for

two reasons: (1) given the scalability limitation of C-SPARQL, we have to control

input stream rate within a low level to ensure the engine can run normally [54]. (2)

2Check the wiki of our github page for more details of the queries and datasets
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due to its design, based on a so-called eager execution mechanism and DStream R2S

operator, the latency measure in CQELS is unfeasible [54].

Performance tuning on Spark is quite difficult. Inappropriate cluster config-

uration may seriously hinder engine performance. So far we can only empirically

configure Spark cluster and tune the cluster settings step by step. We briefly list

some important performance settings based on our experience. First of all, we

apply some basic optimization techniques. e.g., using Kryo serializer to reduce the

time for task/data serialization. Besides, we generally considered adjustments of

Spark configuration along three control factors to achieve better performance. The

first factor is the size of micro-batch intervals. Smaller batch sizes can better meet

real-time requirements. However, it also brings frequent job submissions and job

scheduling. The performance of a BSP system like Spark is sensitive to the chosen

size of batch intervals. The second factor is GC tuning. Set appropriately, the

GC strategy (e.g., using Concurrent Mark-Sweep) and storage/shuffle fraction may

efficiently reduce GC pressure. The third factor is the parallelism level. This includes

the partition number of Kafka messages, the partition number of RDD for shuffling,

and the upper/lower bound for concurrent job submissions, etc..

7.3.2. Evaluation Result

Figure 7.8.: RSP engine throughput (triples/second). D/L-S: Distributed/Local
mode Static Optimization. D/L-A: Distributed/Local mode Adaptive
Optimization. SR: Queries for SRBench dataset. W: Queries for Waves
dataset.
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In Figure 7.8, we observe that Strider generally achieves million/sub-million-level

throughput under our test suite. Note that both Q1 and Q4 have only one join,

i.e., optimization is not needed. Most tested queries scale well in Strider. Adaptive

optimization generates query plans based on the workload statistics. In total, it

provides a more efficient query plan than static optimization. But the gain of AQP

for the simple queries that have less join tasks (e.g., Q1, Q5) becomes insubstantial.

We also found out that, even if Strider runs on a single machine, it still provides

up to 60x gain on throughput compared to C-SPARQL and CQELS. Figure 7.9

shows Strider attains a second/sub-second delay. Obviously, for queries with 2 triple

patterns in the query’s BGP, we can observe the same latency between static and

adaptive optimizations, Q1 and Q4. Query Q2 is the only query where the latency of

the adaptive approach is higher than the static one. This is due to the very simple

structure of the BGP (2 joins in the BGP). In this situation, the overhead of DP

covers the gain from AQP. For all other queries, the static latency is higher than the

adaptive one. This is justified by more complex BGP structures (more than 5 triple

patterns per BGP) or some union of BGPs.

Figure 7.9.: Query latency (milliseconds) for Strider (in distributed mode)

On the contrary, the average throughput of C-SPARQL and CQELS is maintained

in the range of 6.000 and 50.000 triples/second. The centralized designs of C-SPARQL

and CQELS limit the scalability of the systems. Beyond the implementation of query

processing, the reliability of data flow management on C-SPARQL and CQELS could

also cause negative impact on system robustness. Due to the lack of some important

features for streaming system (e.g., back pressure, checkpoint and failure recovery)

once input stream rate reaches to certain scale, C-SPARQL and CQELS start

behaving abnormally, e.g., data loss, exponential increasing latency or query process
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interruption [54, 90]. Moreover, we have also observed that CQELS’ performance is

insensitive to the changing of computing resources. We tested CQELS on different

EC2 instance types, i.e., with 2, 4 and 8 cores, and the results evaluation variations

were negligible.

(a) (b)

Figure 7.10.: Record of throughput on Strider. (a)-throughput for q7;
(b)-throughput for q8

Figure 7.11.: Throughput for q9 on Strider
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(a) (b)

Figure 7.12.: Scalability evaluation of Q4, Q5, Q6 on Strider. (a)-throughput;
(b)-latency for

Figure 7.10 and Figure 7.11 concern the monitoring of Strider’s throughput for

Q7 to Q9. We recorded the changes of throughput over a continuous period of time

(one hour). The source stream produces the messages with different types of sensor

observations. The stream is generated by mixing temperature, flow and chlorine-level

measurement with random proportions. The red and blue curves denote query with

respectively static and adaptive logical plan optimization. For Q7 and Q8 (Figure

7.10), except when some serious throughput drops have been observed in 7.12b, static

and adaptive planners return a close throughput trend. For a more complex query

Q9 (Figure 7.11), which contains 9 triple patterns and 8 join operators. Altering

logical plans on Q9 causes significant impact on engine performance. Consequently,

our adaptive strategy is capable to handle the structurally unstable RDF stream.

Thus the engine can avoid a sharp performance degradation. Figur 7.12 reports a

group of scalability test. Strider scales well when the number of machines varies

from 2 nodes to 8 nodes.

Through this experiment, we identified some shortcomings in Strider that will be

addressed in future work: (1) the data preparation on Spark Streaming is relatively

expensive. It costs around 0.8 to 1 second to initialize before triggering the query

execution in our experiment. (2) Strider has a more substantial throughput decreasing

with an increasing number of join tasks. In order to alleviate this effect, possible

solutions are to enlarge the cluster scale or to choose a more powerful driver node.

(3) Strider does not support well high concurrent requests, although this is not at

the moment one of our system design goals. E.g., some use cases demand to process

a big amount of concurrent queries. Even through Strider allows to perform multiple
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queries asynchronously, it could be less efficient.

7.4. Conclusion

In this chapter, we present the details of continuous SPARQL query processing

in Strider. Strider is built on top of Spark Streaming and Kafka to support high

performance query evaluation and thus possesses the characteristics of a production-

ready RSP. Strider comes with a set of hybrid AQP strategies: i.e., static heuristic

rule-based optimization, forward and backward adaptive query processing. We insert

the trigger into the optimizer to attain the automatic strategy switching at query

runtime. Moreover, with its micro-batch approach, Strider fills a gap in the current

state of RSP ecosystem which solely focuses on record-at-a-time. Through our micro-

benchmark based on real-word datasets, Strider provides a million/sub-million-level

throughput and second/sub-second latency, a major breakthrough in distributed

RSPs. And we also demonstrate the system reliability which is capable to handle

the structurally instable RDF streams.
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8. Distributed RDF Stream Reasoning

in Strider with Litemat

8.1. Introduction

In this chapter, we focus on the extension of Strider, namely StriderR, that integrates

a set of inferencce services in Strider for RDFS and sameAs, sometimes denoted as

RDFS++ stream reasoning in the cloud. StriderR extends an existing reasoning

technique i.e., LiteMat to adapt to large volumes of semantically annotated data

streams.

The main goal amounts to producing sound and complete answers from a set of

continuous queries. This problem is quite important for many Big data applications

in domains such as science, finance, information technology, social networks and

Internet of Things (IoT) in general. For instance, in the Waves project, we are

dealing with “real-time” anomaly detection in large water distribution networks.

By working with domain experts, we found out that such detections can only be

performed using reasoning services over data streams. Such inferences are performed

over knowledge bases (KB) about the sensors used in water networks, e.g., sensor

characteristics together with their measure types, locations, geographical profiles,

events occurring nearby, etc..

Tackling this issue implies to find a trade-off between high data throughput and

low latency on the one hand and reasoning over semantically annotated data streams

on the other hand. This is notoriously hard and even though it is currently getting

some attention, it still remains an open problem.

Existing RSP engines are either not scalable (i.e., they do not distribute data

and/or processing) or do not support expressive reasoning services. The velocity

aspect of Big Data implies the emergence of almost real time applications which

are generally expressed via the processing of data streams. Alongside this frequent

system design movement, cognitive aspects, such as the ability to reason about

represented data and knowledge, are becoming prominent.

We present StriderR that addresses these two dimensions, i.e., it infers data
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necessary for the computation of sound and complete answer sets of continuous queries.

Our work deals with the hardest problems in designing such a system: guaranteeing

high throughput and acceptable latency with reasoning services performed over

expressive Knowledge Bases.

StriderR combines Strider RSP engine with a reasoning approach. As previously

introduced in Chapter 7, Strider is capable of processing and adaptively optimizing

continuous SPARQL queries. Nevertheless, it was not originally designed to perform

inferences. Hence, a main goal of this work is to integrate stream reasoning services

that can support the main RDFS inferences together with the owl:sameAs property

(henceforth denoted sameAs).

Intuitively, this property enables to define aliases between RDF resources. This

is frequently used when a domain’s (meta) data is described in a collaborative

way, i.e., a given object has been described with different identifiers (possibly by

different persons) and are later reconciled by stating their equivalence. Reasoning

with the sameAs property is motivated by the popularity of sameAs across many

datasets, including several domains of the Linked Open Data (LOD). For instance,

the sameAs constructor is frequently encountered to practically define or maintain

ontologies. In [91], the authors measured the frequency of sameAs triples in an

important repository of LOD. That property was involved in more than 58 million

triples over 1,202 unique domain names with the most popular domains being biology,

e.g., Bio2rdf and Uniprot (respectively 26 and 6 million sameAs triples), and general

domains e.g., DBpedia (4.3 million sameAs triples).

Moreover, the knowledge management of LOD, estimated to more than 100 billion

triples, clearly amounts to big data issues. In our Waves running example, we also

found out that, due to the cooperative ontology building, many sameAs triples were

necessary to re-conciliate ontology designs. We discovered several of these situations

in the context of the IoT Waves project. For instance, we found out that sensors or

locations in water distribution networks could be given different identifiers.

These sameAs triples are generally persisted in RDF stores[92] but data streams

are providing dynamic data streams about these resources. Such metadata are

needed to perform valuable inferences. In the Waves project, they correspond to the

topology of the network, characteristics of the network’s sensors, etc. We consider

that the presence of static metadata can be generalized to many domains, e.g., life

science, finance, social, cultural, and is hence important when designing a solution

that reasons over their data streams. StriderR thus needs to reason over both static

KBs, i.e., a set of facts together with some ontologies, and dynamic data streams,
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i.e., a set of facts which once annotated with ontology concepts and properties can

be considered as an ephemeral extension of the KB fact base. Apart from sameAs

inferences, the most prevalent reasoning services in a streaming context are related

to ontology concept and property hierarchies. We are addressing these inferences

tasks via a trade-off between the query rewriting and materialization approaches.

The main contributions of this chapter are:

• (i) to combine a scalable, production-ready RSP engine that supports reasoning

services over RDFS plus the sameAs property.

• (ii) to minimize the reasoning cost, and thus to guarantee high throughput and

acceptable latency.

• (iii) to propose a thorough evaluation of the system and thus to highlight its

relevance.

The chapter is organized as follows. Section 8.2 provides an overview of the system’s

architecture. In Section 8.3, we detail a running example. Then Sections 8.4 and

8.5 provide reasoning approaches with respectively concept/property hierarchies and

sameAs individuals. Section 8.6 evaluates StriderR and demonstrates its relevancy.

Finally, we conclude this chapter in Section 8.7.

8.2. StriderR Overview

This section gives a high-level overview of the StriderR system. Its architecture has

been designed to support the distribution the processing of RDF data streams and

to provide guarantees on fault tolerance, high throughput and low latency. Moreover,

StriderR aims to integrate efficient reasoning services into an optimized continuous

query processing solution.

Figure 8.1 shows 3 vertical “columns” or groups of functions: (a), (b), and (c). On

the middle and the right, (a) and (b) are off-line pre-processing functions. Note that

both (a) and (b) are based on LiteMat [93] for knowledge base encoding and query

rewriting. On the left, (c) is the on-line stream processing pipeline. We detail the

three groups below, in the order they participate to the whole workflow:
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Figure 8.1.: StriderR Functional Architecture

(a) Off-line KB encoding consists in reading the static knowledge base to get

the classification of concepts and properties, both organized into a hierarchy. The

knowledge base also contains sameAs predicates from which sameAs cliques are

detected. This step generates the identifiers for each concept, property and cliques

of sameAs individuals that is later used in steps (b) and (c). Note that we use the

GraphX library of Apache Spark to efficiently process clique detection in parallel.

(b) Off-line query preparation. Once a SPARQL query is registered into the

system, it is parsed then rewritten into a plan composed of basic RDF processing

operations. The plan is extended with dedicated operations to support the reasoning

over properties and concepts, using the semantic identifiers generated at step (a). The

plan also relies on the sameAs cliques information to support the sameAs reasoning

for various use cases.
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(c) On-line stream semantic encoding. The data stream is encoded based on the

hierarchical codes generated from the static KB at step (a). Each concept and

property is replaced by an identifier that allows for fast reasoning over concept and

property hierarchies. The stream is also completed with sameAs clique membership

information. For the purpose of ensuring high throughput and fault-tolerance, we

use Apache Kafka to manage the data flow. The incoming raw data are assigned to

so-called Kafka topics. The Kafka broker distributes the topics and the corresponding

data over a cluster of machines to enable parallelism of upstream/downstream

operations. Then the distributed streams seamlessly enter the Spark Streaming layer

which encodes them in parallel.

Continuous query processing. The logical plan obtained at step (b) is pushed

into the query execution layer (i.e., the base layer of Figure 8.1 on which the three

“groups” (i.e., a,b and c) of previously defined functions rely). To achieve continuous

SPARQL query processing on Spark Streaming, we bind the SPARQL operators to the

corresponding Spark SQL relational operators that access a distributed compressed

in-memory representation of the data stream (through the DataFrame and the RDD

APIs provided by the Spark platform). Note that, StriderR is capable of adjusting the

query execution plan at-runtime via its adaptive optimization component. Concerning

the computing core, the query processing pipeline is implemented using the Apache

Spark parallel computing framework. Spark Streaming continuously receives data

from Kafka, and performs continuous SPARQL queries executions in parallel.

Figure 8.1 also serves as a map to better outline our main contributions:

• The green arrows highlight the contributions about reasoning over con-

cepts and properties presented in Section 8.4: generating hierarchies of

concepts and properties (Section 8.4), concept and property encoding and the

corresponding query rewriting method (Section 8.4.2).

• The yellow arrows highlight the contributions about reasoning over sameAs

facts presented in Section 8.5: sameAs clique detection (Section 8.5.1) and two

alternative methods (Sections 8.5.2 and 8.5.3) for sameAs encoding and query

rewriting.

8.3. Running Example of Continuous Reasoning Query

In this section, we present a running example that will be used all along the remaining

of the chapter. The data sets provided by our Waves use case partner are proprietary
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and we do not have the permission to distribute them. So a first issue concerns the

selection of a benchmark/data sets which could support researchers and interested

developers to replay our experimentation. Two characteristics prevent us from using

well-established RSP benchmarks such as SRBnech, LSBench, and CityBench: their

lack of support for the considered reasoning tasks and their inability to cope with

massive RDF streams. We thus selected a benchmark with which the Semantic Web

community is confident with, namely the Lehigh University Benchmark (henceforth

LUBM)[36], and extended it in two directions. First, we created a stream generator

based on the triples contained in the LUBM Abox. Second, we extended the LUBM

generator with the ability to create individuals related by the sameAs property.

Intuitively, novel individuals are generated and stated as being equivalent to some

other LUBM individuals. This generator is configurable and one can decide how

many sameAs cliques and how many individuals per clique are created.

The LUBM Tbox has not been extended and in Figure 8.2 we provide an extract

of it. It contains a subset of the property hierarchy (i.e., memberOf, worksOf and

headOf) as well as a subset of the concept hierarchy. We will emphasize in Section

8.4 on the encoding of this extract of the Tbox. This figure also presents elements

of the Abox,i.e., RDF triples concerning individuals. That extract highlights the

creation of individuals related by sameAs property, thus creating individual cliques.

We have three cliques in this figure: (pDoc1, pDoc2, pDoc3), (pDoc4,pDoc5,pDoc6)

and (pDoc7, pDoc8 and pDoc9). This example will be used in Section 8.5 when

detailing inferences concerned with the sameAs property.

As shown in Q4, we have extended the standard SPARQL query language with

some clauses for a continuous query processing (more details in Appendix B).

STREAMING { WINDOW [10 Seconds] SLIDE [10 Seconds] BATCH [5 Seconds] }

REGISTER { QUERYID [Q1] REASONING [U,SM]

SPARQL [ PREFIX rdf: <http ://... ns#>

PREFIX lubm: <http ://.. owl#>

SELECT ?o ?n WHERE {

?x rdf:type lubm:Professor;

?x lubm:memberOf ?o;

?x lubm:name ?n. } } ]

}

Listing 8.1: Query Q4 involving concept hierarchy inference

In Listing 8.2, we present the SPARQL part of query Q6 (i.e., the streaming and

register clauses are not presented since they do not provide any new information).
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Figure 8.2.: LUBM’s Tbox and Abox running example

This query retrieves names and email addresses of resources typed as PostDoc. It

requires sameAs inferences since several individuals typed with a PostDoc concept

belong to sameAs cliques (namely pDoc1 to pDoc9).

PREFIX rdf: <http ://... ns#>

PREFIX lubm: <http ://.. owl#>

SELECT ?n ?e

WHERE {

?x rdf:type lubm:PostDoc;

?x lubm:name ?n;

?x lubm:emailAddress ?e. }

Listing 8.2: Query Q6 involving sameAs inference

8.4. Reasoning over concept and property hierarchies

In the following, we consider the approaches for reasoning over concept and property

hierarchies. We first present the classical approach consisting in the standard query

rewriting. Then, we present an extension of LiteMat reasoner, which compared to

the standard approach, provides better performances in most queries.
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In both approaches, encoding the elements of the Tbox, i.e., concept and property

hierarchies, is needed upfront to any data stream processing. The KB Encoding

component encodes concepts, properties and instances of registered static KBs. This

aims to provide a more compact (i.e., replacing string-based IRIs or literals with

integer identifiers) representation of the Tbox and Abox as well as supporting more

efficient comparison operations. In the general case, each concept and property is

mapped to an arbitrary unique integer identifier. We will emphasize that our LiteMat

approach produces a semantic encoding scheme that supports important reasoning

services. In the following, we consider inferences pertaining to the ρdf subset of

RDFS (the sameAs property is considered in Sectio 8.5) and the input ontology is

considered to be the union of (supposedly aligned) ontologies necessary to operate

over one’s application domain.

8.4.1. Standard rewriting: add UNION Clauses

The standard rewriting approach to perform inferences over concept and property

hierarchies on SPARQL queries consists in a reformulation according to an analysis

of the Tbox. Intuitively, for a query Q with BGP B. For all triples t P B, the system

searches in the Tbox if the property (resp. concept) in t has sub-properties (resp.

sub-concepts). In the affirmative, a set of UNION clauses is appended to Q, thus

producing a new query Q1. A new UNION clause contains a rewriting of B where

the property (resp. concept) is replaced with a sub-property (resp. sub-concept).

A UNION clause will be added for each direct and indirect sub-properties ( resp.

sub-concepts) and their combinations if the BGP contains several of them.

In Listing 8.3, we provide an example of this rewriting for Q4 and the extract of

the LUBM ontology (see Figure 8.2). We display only six (out of the twelve, three

properties times four concepts) UNION clauses present in the rewriting. Note that

for each UNION clause, two joins are required.

SELECT ?o ?n

WHERE {{ ?x rdf:type lubm:Professor;

memberOf ?o;

lubm:name ?n. }

UNION { ?x rdf:type lubm:Professor;

worksFor ?o;

lubm:name ?n. }

UNION { ?x rdf:type lubm:Professor;

headOf ?o;

lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;

memberOf ?o;
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lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;

worksFor ?o;

lubm:name ?n. }

UNION { ?x rdf:type lubm:AssistantProfessor;

headOf ?o;

lubm:name ?n. } ... }

Listing 8.3: Strider’s query example (Q4)

This approach guarantees the completeness of the query result set but comes at

the high cost of executing a potentially very large queries (due to an exponential

increase of original query). Those constraints are not compatible with executions

in a streaming environment. In the next section, we present a much more efficient

approach.

8.4.2. LiteMat adapted to stream reasoning

In the following, we dedicate two subsections to our encoding scheme: one for the

static KB and one for the streaming (dynamic) data. Then a rewriting dedicated to

this encoding scheme is detailed.

Static encoding

Inferences drawn from properties such as rdfs:subClassOf and rdfs:subPropertyOf

in Litemat, are addressed by attributing numerical identifiers to ontology terms,

i.e., concepts and properties. Moreover, LiteMat also supports rdfs:domain and

rdfs:range using a set of addittional data structures. The compression principle of

this term encoding lies in the fact that subsumption relationships are represented

within the encoding of each term. This is performed by prefixing the encoding of

a term with the encoding of its direct parent (a workaround using an additional

data structure is proposed to support multiple inheritance). The generation of the

identifiers is performed at the bit level. More precisely, the concept (resp. property)

encoding are performed in a top-down manner, i.e., starting from the top concept

of the hierarchy (the classification is performed by a state-of-the-art reasoner, e.g.,

HermiT[71], and hence supports all OWL2 logical concept subsumptions), such that

the prefix of any given sub-concept (resp. sub-property) corresponds to its super-

concept (resp. super-property). Intuitively, for the entity hierarchy (i.e., concept or

property), we start from a top entity and assign it the value 1 (see the raw id of

owl:Thing in Table 8.1) and process its N direct sub-entities. These sub-entities
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will be encoded over rlog2pN ` 1qs bits and their identifiers will be incremented

by 1. This approach is performed recursively until all entities in the TBox are

assigned an identifier. It is guaranteed at the end of this first phase that, for 2

entities A and B with B Ď A, the prefix of idB matches with the encoding idA.

Note that for the property hierarchy, a reasoner is not needed to access the direct

sub-properties. Moreover, we distinguish between object and datatype properties by

assigning different starting identifiers, respectively ‘01’ and ‘10’. Finally, some RDF

and OWL properties, e.g., rdf:type are assigned identifiers in the ‘00’ range.

In a second step, to guarantee a total order among the identifiers of a given concept

or property hierarchy, the lengths of these identifiers have to be normalized. This

is performed by computing the size of the longest branch in each hierarchy and by

encoding each identifier on this length of bits (i.e., filling ‘0’ on the right most bit

positions).

These normalized identifiers are stored as integer values in our dictionary. The

characteristics of this encoding scheme ensures that from any concept (resp. property)

element, all its direct and indirect sub-elements can be computed with only two bit

shift operations and are comprised into a discrete interval of integer values, namely

its lower and upper bound (resp. LB,UB). Table 8.1 presents the identifiers of Figure

8.2’s LUBM concept hierarchy extract. The first step of the encoding generates raw

ids (column 1). We can observe that the Faculty’s prefix 110101 corresponds to

the Employee’s identifier, and his hence one of its direct sub-concept. Moreover,

Employee is a direct sub-concept of Person and indirect sub-concept of owl:Thing.

These raw ids are normalized to produce column 2 of Table 8.1. Finally, integer

values contained in the id column are stored in the dictionary.

The encoding scheme of individuals of static KBs can take two forms. It depends

on whether an individual is involved in a triple with a sameAs property or not. The

encoding scheme for sameAs cliques is detailed in Section 8.5.1. For non-sameAs

individuals, we apply a simple method which attributes a unique integer identifier

(starting from 1) to each individual. In [93], we provided an efficient distributed

method to perform this encoding.

Dynamic partial encoding

In the previous section, we detailed the generation of dictionaries for the elements of

static KBs, i.e., their concepts, properties and individuals. These maps are being

used to encode, on the fly, incoming data streams. That is concept and property IRIs

of a data stream are being replaced with their respective integer identifier. The same

102



Raw ids Normalized ids id Term

1 1000000000000 4096 owl:Thing

1001 1001000000000 4608 Schedule

1010 1010000000000 5120 Organization

1011 1011000000000 5632 Publication

1100 1100000000000 6144 Work

1101 1101000000000 6656 Person

110101 1101010000000 6784 Employee

110101001 1101010010000 6800 Faculty

11010100101 1101010010100 6804 Lecturer

11010100110 1101010011000 6808 PostDoc

11010100111 1101010011100 6812 Professor

1101010011101 1101010011101 6813 AssistantProf.

1101010011110 1101010011110 6814 AssociateProf.

Table 8.1.: Encoding for an extract of the concept hierarchy of the LUBM ontology

transformation is processed for individual IRIs or literals. This approach permits to

drastically compress the streams without incurring high compression costs.

In practical use cases, some entries of data streams may not correspond to an entry

in one of the dictionaries. For instance, due to their infinite nature, numerical values,

e.g., sensor measures in the IoT, can not possibly all be stored in the individual

dictionary. Other cases are possible where a stream emits a message where concepts

and/or properties are not present in our dictionaries. Note that such situations

prevent the system from performing any reasoning tasks upon the missing ontology

elements.

When facing the absence of a dictionary entry, we are opting for a partial stream

encoding. Intuitively, this means that we are not trying to create a new identifier

on the fly but rather decide to leave the original data as is, i.e., as an IRI, literal or

blank node. After some experimentations, we found out that this is good trade-off

between maintaining ever growing, distributed dictionaries and favoring an increase

of incoming data streams rate.

Figure8.3 provides some details on how this partial encoding is implemented into

StriderR. Intuitively, it uses the Discretized Stream (DStream) abstraction of Apache

Spark Streaming where each RDD is composed of a set of RDF triples. For each

RDD, a transformation is performed which takes a IRI/literal based representation

to a partially encoded form. This transformation lookups into the TBox and Abox

dictionaries precomputed from static KBs. The bottom right table of the figure
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Figure 8.3.: Parallel partial encoding over DStream

emphasizes that some triple elements are encoded while some other are not. The

dictionaries are broad-casted to all the machines in the cluster. The encoding for

each partition of data is thus performed locally.

We briefly summarize important advantages of the partial encoding of RDF streams:

(i) an efficient parallel encoding to meet real-time request; (ii) no extra overhead for

dictionary generation.

Query rewriting: FILTER clauses and UDF

The query rewriting in StriderR is done in the Inference Layer. Intuitively, the system

parses a given SPARQL query Q and rewrites it into Q’. This rewriting concerns

inferences pertaining to concept and property hierarchies. For sameAs individuals,

no specific rewriting is necessary due to our data streams encoding. Due to space

limitations, we do not present the rewriting of SPARQL queries into Spark SQL

Scala programs but the interested reader can find details on our github page.

In Section 8.4.2, we highlighted that to each concept and property corresponds

to a unique integer identifier. Moreover, one characteristic of our encoding method
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guarantees that all sub-concept (resp. sub-property) identifiers of a given concept

(resp. property) are included into an interval of integer values, denoted lower bound

(LB) and upper bound (UB) of that ontology element.

We now concentrate on the query rewriting for concepts. In order to speed up the

rewriting, we take advantage of the following context: since we are only considering

that data streams are representing elements of the Abox, concepts are necessarily at

the object position of a triple pattern and the property must be rdf:type. Intuitively,

if a concept has at least one sub-concept then it is replaced in the triple pattern by a

novel variable and a SPARQL FILTER clause is added to the query’s BGP. That filter

imposes that the new variable is included between the LB and UB values (which

have been previously computed at encoding-time and stored in the dictionary) of

that concept.

The overall approach is quite similar for the rewriting concerning the property

hierarchy but no specific context applies, i.e., all triple patterns have to be considered.

For each triple pattern, we check whether the property has some sub-properties. If it

is the case then the property is replaced by a new variable in the triple pattern and

a SPARQL FILTER clause is introduced in the BGP. That filter clause restricts the

new variable to be included in the LB and UB of that property.

As a concrete example of this rewriting, we are using query Q4 of our benchmark

since it requires inferences over both the concept and property hierarchies.

The rewriting Q4’ of Q4 contains two FILTER clauses, one for the Professor

concept and one for the memberOf property (LB() and UB() functions respectively

return the LB and UB of their parameter). Given p, the parameter submitted to

LB and UB, these functions respectively return the identifier of p and an identifier

computed using two bit shift operations on p. So, the computation of the UB function

is quite fast. Note the introduction of the ?p and ?m variables, respectively replacing

the Professor concept and memberOf property. The lower and upper bounds for

?p correspond to the identifier of the Professor and AssociateProfessor, respectively

(equal to 6812 and 6814 in Table 8.1).

SELECT ?o ?n

WHERE { ?x rdf:type ?p; ?x ?m ?o; ?x lubm:name ?n.

FILTER (?p>=LB(Professor) && ?p<UB(Professor)).

FILTER (?m>=LB(memberOf) && ?m<UB(memberOf)).}

Listing 8.4: LiteMat query rewriting for query Q4
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Finally, this rewriting is much more compact and efficient than the classical

reformulation which would require twelve UNION clauses and twenty four joins1.

8.5. Reasoning with the sameAs property

This section concerns inferences performed in the presence of triples containing the

sameAs property. In Section 8.5.1 a distributed, parallelized approach to encode

sameAs cliques and a naive approach to materialize inferred triples are proposed.

We emphasize that this approach is not adapted to a streaming context. Therefore,

the challenge is to support sameAs reasoning efficiently while answering queries over

streaming data. In StriderR, we address this challenge and propose two solutions.

The first one (Section 8.5.2) aims for efficiency, the second one (Section 8.5.3) aims to

handle reasoning applied to a ”provenance awareness” scenario which is not supported

by the first solution.

8.5.1. SameAs clique encoding

Consider, in a KB, a set of sameAs triples that represents a graph denoted Gsa. The

nodes V of Gsa are set of individuals (either at the subject or object position of a

triple) of the sameAs triples. Let x P V denote such a node. For convenience, every

node x P V is uniquely identified by an integer value Idpxq P r1, |V |s.

Let C be the set of connected components that partition Gsa. Although a com-

ponent may not be fully connected, it represents a sameAs clique because of the

semantic equivalence (i.e., transitivity and symmetry) of the sameAs property. Let

Ci denote the connected component containing the node identified by i.

In StriderR, we assume that the sameAs triples are in the static KB. We detect

the Ci using a parallel algorithm to compute connected components [94].

The principle of that algorithm is to propagate through the graph a numeric value

representing a component id, such that every connected component will end up with

a component id assigned to its members.

Initially, each node x is assigned with Idpxq. Then for each node x, the group that

comprises x and its neighbors is considered and the minimum number among the

group members is assigned to all the group members. The algorithm ends when no

more update occurs at any group, i.e., for any group (or connected component) all

the members share the same component id. About the computational cost of clique

detection, note that it is computed in a distributed and parallel manner (using the

1Rewriting available on our github page
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GraphX library of the Apache Spark engine). Hence it is able to scale to very large

static KBs.

Once the connected components are detected, we define the Clpxq mapping that

associates the IRI of x with its clique id. Table 8.2 summarizes the notations used in

this section.

Notation Description

Gsa The sameAs graph of individuals

Idpxq The integer ID of individual x

Ci The clique st. i is the minimal ID among the members

Clpxq The clique ID of individual x.

IRIpiq The IRI of ID i (or set of IRIs if i is in a clique)

S The average size of a clique

Table 8.2.: Notations used for sameAs reasoning

In order to reason over sameAs, an obvious solution is to materialize all inferences.

However that is not tractable because the number of inferred triples is far too high in

general. Consider a triple t “ px, p, yq where x (resp. y) belongs to the sameAs clique

Cx (resp. Cy). Let S be the average size of a clique. The number of triples inferred

from t is 2ˆS2. Therefore, the number of triples inferred from the entire dataset D (of

size |D| ) can grow up to 2ˆ|D|ˆS2 in the worst case. For instance, from Figure 8.2

we obtain Figure 8.4(a) where all dashed edges correspond to a materialization of all

inferences induced by sameAs explicit triples. We can easily witness the increase of

represented triples. This näıve approach is generally not adopted in RDF database

systems storing relatively static datasets due to its ineffectiveness. This is even more

relevant in a dynamic, streaming context. First, it may not be feasible to generate

all materialization within the time constraint of a window execution. Second, the

execution of a continuous query over such stream sets would be inefficient.

8.5.2. Representative-based (RB) reasoning

Based on the detected cliques, the principle of the representative-based (RB) reasoning

is to fuse the dataset such that all the individuals that belong to the same clique

appear as a single (representative) individual. As a consequence, the fused graph

implicitly carries the sameAs semantics. Then, a regular evaluation of any query on

the fused graph is guaranteed to comply with the sameAs semantics.
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Figure 8.4.: sameAs representation solutions

Stream encoding

Stream encoding according to sameAs individuals consists of two steps:

1. First, select a single individual per clique Ci, which acts as the clique rep-

resentative. The representative can be any member, as long as there is only

one representative per clique. Without loss of generality, we assume that the

representative for Ci is the member whose node number equals to i. Therefore,

given the IRI x of any individual, its representative is numbered Clpxq. In

Figure 8.4(a) shows three cliques in dotted boxes, and pDoc1 individual can

serve as the representative of the clique ppDoc1, pDoc2, pDoc3q.

2. Second, encode the input stream: replace every px, p, yq triple by its correspond-

ing representative-based triple: pClpxq, p, Clpyqq. Fig. 8.4(b) shows the result

of the encoding where individuals pDoc1, pDoc5 and pDoc9 are the so-called

representatives of the cliques.

This approach has many advantages, especially in a data streaming context:

• (i) The inferred graph is more compact without loss of information from the

original graph.

• (ii) The dictionary data structure that implements Clpxq is light. The dictionary

size equals to the size of Gsa which is in practice very small compared to the
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number of triples to process in a streaming window. The computing overhead

of encoding the input stream is negligible.

• (iii) Clique updates (e.g., removing or adding an individual from a clique) does

not imply to update the input stream since the data streams are ephemeral.

This assumes that an update of the static KB is taken into account starting

from the next window that only contains data produced after the update. For

instance, consider the clique named C1 with 3 members ppDoc1, pDoc2, pDoc3q.

At time t, the KB is updated: pDoc4 is declared to be sameAs pDoc2 thus

pDoc4 joins C1. The data already streamed before t are not updated, i.e., the

triples mentioning pDoc4 are not updated. Whereas, in the window following

t, pDoc4 will be translated to ClppDoc4q.

Query processing

Based on the above encoding, a standard query processing is performed where variable

bindings concern both standard individuals and sameAs representative.

Note that because the sameAs reasoning is fully supported by the representative-

based encoding, we can simplify the query by removing the sameAs triple patterns

that it may contain.

To evaluate a filter clause that refers to an IRI value, e.g., FILTER {?x like

‘*w3c.org*’}, we rewrite it into an expression that refers back to the IRI value(s)

instead of the encoded identifier. Let define IRIpxq as the IRI (or the set of IRIs in

case of a clique) associated with encoded ID x. Let fpxq be a FILTER condition on

variable ?x, fpxq is then rewritten into tDe P IRIpxq|fpequ.

A final step decodes the bindings: each encoded value is translated to its respective

IRI or literal value. If the encoded value is a clique number, then it translates to the

IRI of the clique representative.

8.5.3. SAM reasoning

SAM stands for SAM for sameAs Materialization and aims to handle reasoning in the

case of origin-preserving (or provenance-awareness) scenario which are not supported

by the RB solution introduced above (Section 8.5.2).

SAM reasoning targets the use cases that require to make the distinction between

the original dataset triples and the inferred triples. That distinction is necessary for

a user investigating which part (or domain) of the dataset contributes to the query,

i.e., brings some piece of knowledge, when the IRIs within a clique have different
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domains. In this section, we begin by motivating SAM using a concrete example

then we detail a method to evaluate queries in this setting.

Motivation

We briefly sketch an example showing the limitations of the RB approach and the

need for the proposed SAM approach. For instance, consider the dataset of Figure 8.2.

Suppose all the triples about email addresses come from domain1 (e.g., mail.univ.edu),

then the IRIs pDoc3, pDoc6, and pDoc9 are in that domain. Similarly, suppose all

telephone numbers come from domain2 (e.g., phone.com), then pDoc2 is in domain2.

Let consider a query searching the IRI and the email of a person named Mary. We

could write that query Q as follows:

Q: SELECT ?x, ?y

WHERE {

?x name "Mary" .

?x email ?y. }

The result is ?x “ pDoc2 and ?y “ mary@gmail.com. Based on that result and

on the clique membership information, we know that the possible bindings for ?x

are also pDoc1 or pDoc3. However the result does not inform us that pDoc3 as well

as its domain1 were originally concerning the email triple. To get this provenance

information, we could write the query as Q1:

Q’: SELECT ?x1, ?y

WHERE {

?x name "Mary" .

?x sameAs ?x1 .

?x1 email ?y . }

However, through the RB approach, the result is still ?x1 “ pDoc2 and ?y “

mary@gmail.com because pDoc2 is the representative of pDoc3. The goal of the

SAM approach is to make Q1 return the binding ?x1 “ pDoc3 instead of ?x1 “ pDoc2.

Doing this way, we will get that the IRI pDoc3 and domain1 directly relate to the

email information within the dataset. To sum up, the RB approach (8.5.2) does

not support the origin-preserving use case, because a query result only binds to

individuals that are clique representatives or not member of a clique at all. The

result lacks information about which IRI originally exists in the triples that match

the query.
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To overcome this drawback, we propose the SAM approach that keeps track of

the individuals that match the query even if they are part of a sameAs clique. The

principle of the SAM approach is to explicitly handle the sameAs equivalence

such that the equivalent individuals that match a query are preserved in the query

result. From a logical point of view, this means to manage explicit sameAs information

both in the dataset and in the query.

• sameAs in the dataset: complete the input stream with explicit information

representing the sameAs equivalences between IRIs.

• sameAs in the query: complete the query with triple patterns explicitly express-

ing the sameAs matching.

lue

Materialize sameAs data streams

A general method consists in completing the input stream with sameAs information.

We devise an efficient solution that guarantees to materialize only the necessary

triples and prevents from exploding the size of the data stream. Moreover, the IRIs

are encoded to get a more concise representation to save on query execution time.

We now detail the steps of our solution. Let W be the current streaming window.

The idea is to express each clique that has at least one member in W by a minimal

set of triples. Let C be the set of cliques used in W and a clique Ci P C. For each

member x of Ci such that Idpxq ‰ i (the identifier Idpxq is defined in Table 8.2),

add the triple ă i sameAs Idpxq ą into W . For instance, consider the three sameAs

cliques of Figure 8.4(a). Let denote C1 the clique containing ppDoc1, pDoc2, pDoc3q,

the minimal Id in C1 is IdppDoc1q “ 1. Suppose the input stream window contains:

pDoc1 type PostDoc.

pDoc2 name "Mary".

pDoc3 emailAddress "mary@gmail.com".

While applying the SAM approach, the window is completed with only two triples:

1 sameAs Id(pDoc2)

1 sameAs Id(pDoc3)

Let S be the average clique size. Notice that only S ´ 1 edges of Ci out of S2

(those with subject i) are added into the stream. The added sameAs edges represent
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a directed star centered at i the member of Ci with minimal Id. As explained below

in Section 8.5.3, that light materialization is sufficient to fully enable the sameAs

reasoning during query processing.

Cost analysis. We analyze the materialization cost in terms of data size. The total

amount of materialized triples in W is |C| ˆ pS ´ 1q. The space overhead of SAM is

indeed far smaller than a full materialization of every triple inferred from the sameAs

reasoning which would add 2ˆ |W | ˆ S2 triples (Table 8.2). Moreover, our solution

materializes S times less triples compared to materializing all the clique edges. This

low memory footprint makes our solution more scalable.

Query rewriting: add sameAs patterns

Consider a BGP query represented by a graph of triple patterns where nodes are

variables, IRIs or literals. In a query, a join node is a variable that connects at

least two triple patterns. The query rewriting method consists in extending a BGP

query with sameAs patterns that could match the materialized stream. The principle

is to“inject” the sameAs semantics into each join appearing in the query, i.e., to

decompose a direct join on one variable into an indirect join through a path of

two sameAs triple patterns. Consequently, each join is decomposed into three join

operations. Intuitively, the join nodes of the BGP are split to be replaced by a star

of sameAs triple patterns such that the join“traverses” the star center.

The shape of the added sameAs patterns is a star because it has to match the stars

sameAs triples that have been materialized into the stream. We consistently adopt

a star-shaped representation of the sameAs information both in the materialized

stream and in the query pattern. This guarantees any sameAs relation within a

clique to be expressed by a path of length two (the diameter of a star). Besides, a

star triple pattern is guaranteed to match any path of length two. Therefore, our

proposed rewriting is guaranteed to match any sameAs path within the stream, i.e.,

the rewritten query is semantically equivalent to the initial one.

We next detail the query rewriting algorithm. Let V be the set of join variables of

a query. For each v P V , (i) Split the join variable: replace each occurrence of v in

the query by a distinct variable. Let v1, ¨ ¨ ¨ , vn denote the variables replacing the n

occurrences of v. (ii) Express the indirect join: For each vi add the p?v sameAs ?viq

triple pattern.

For example, consider the following query Q6 and its graphical representation

shown in Figure 8.5:
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SELECT ?x

WHERE {

?x type PostDoc.

?x name ?n.

?x emailAddress ?y. }

Figure 8.5.: SAM rewriting for the Q6 query

The ?x join variable is split into ?x1, ?x2, ?x3 and these new variables are connected

through sameAs patterns. The rewritten equivalent query is:

SELECT ?x, ?x1, ?x2, ?x3

WHERE {

?x1 type PostDoc. ?x sameAs ?x1.

?x2 name ?n. ?x sameAs ?x2.

?x3 emailAddress ?y. ?x sameAs ?x3. }

Another example, on Figure 8.6, shows the rewriting case of a join variable that

appears both as an object and as a subject position.

Figure 8.6.: SAM rewriting for Q8 query
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Query evaluation: join with sameAs patterns

Evaluating a rewritten sameAs query requires special attention in order to ensure

that the result is complete. Our SAM approach minimizes the amount of materialized

sameAs triples for better efficiency. Thus, the dataset does not contain any sameAs

reflexive triple x sameAs x. Remind that our solution aims to bring sameAs reasoning

capability to query engines that do not support sameAs reasoning natively. Such

query engine do not infer x sameAs x for any individual. Therefore, a regular

evaluation of a sameAs query may lead to incomplete result. For instance, let us

remind the example dataset of § 8.5.3 including the materialized sameAs triples:

Id(pDoc1) type PostDoc

Id(pDoc2) name "Mary"

Id(pDoc3) email "mary@gmail.com"

Id(pDoc1) sameAs Id(pDoc2)

Id(pDoc1) sameAs Id(pDoc3)

Consider the query:

SELECT ?x, ?x1, ?x2

WHERE {

?x sameAs ?x1. ?x1 type PostDoc.

?x sameAs ?x2. ?x2 name ?n.

}

That query result is empty because the triple pattern ?x sameAs ?x1 does not bind

to ?x “ IdppDoc1q and ?x1 “ IdppDoc1q due to the absence of the reflexive sameAs

triple in the dataset.

To overcome this limitation, while keeping the materialized data as small as

possible, we devise an extended query evaluation process. The idea is to take into

account the implicit reflexive sameAs triples while joining a non-sameAs triple pattern

with a sameAs one in order to ensure that the result is complete. The key phases of

the query evaluation are:

(i) Decomposition. A query containing n non-sameAs triple patterns is decom-

posed into n chains (or sub-queries). A chain contains one non-sameAs triple pattern

and the sameAs patterns it is joined to. A chain has exactly one non-sameAs triple

pattern and at most 2 sameAs triple patterns. For example, the decomposition for

query Q8 in Section 8.6 has 6 chains, among which a chain of length 2 is ?x sameAs
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?x3. ?x3 memberOf ?o and a chain of length 3 is ?s sameAs ?s2. ?s2 advisor

?x1. ?x sameAs ?x1.

(ii) Planning. Based on the chains that somehow hide the sameAs patterns, the

query planner assesses a join order and generates an execution plan as usual (ignoring

the sameAs patterns).

(iii) Execution. During the query execution phase, if a chain contains a sameAs

pattern then a dedicated operator ensures that all the bindings are produced. More

precisely, to execute the chain ?x sameAs?y. ?y p ?z consists in evaluating the

triple pattern ?y p ?z which results in a set of p?y, ?zq bindings. Then, for each

binding, produce a set of p?x, ?y, ?zq bindings such that ?x binds to the ?y value and

also to each individual equivalent to ?y value. This ensures a complete result.

8.6. Evaluation

Putting together the contributions presented in Sections 8.4 and 8.5, we are able to

combine LiteMat with one of the two methods to reason over sameAs individuals,

denoted RB (representative-based) and SAM (SameAs Materialization). It thus

defines two forms of reasoners for RDFS with sameAs:

• the LiteMat + RB approach is, in most use cases, the best performing approach

and is hence the default approach.

• the LiteMat + SAM provides additional features, e.g., a need for origin-

preserving scenario, and improves the processing performance of BGPs con-

taining a single triple pattern with inference.

8.6.1. Computing Setup

We evaluate StriderR on an Amazon EC2/EMR cluster of 11 machines (type

m3.xlarge) and manage resources with Yarn. Each machine has 4 CPU virtual

cores of 2.6 GHz Intel Xeon E5-2670, 15 GB RAM, 80 GB SSD, and 500 MB/s

bandwidth. The cluster consists of 2 nodes for data flow management via the Kafka

broker (version 0.8.x) and Zookeeper (version 3.5.x)[89], 9 nodes for Spark cluster (1

master, 8 workers, 16 executors). We use Apache Spark 2.0.2, Scala 2.11.7 and Java

8 in our experiment. The number of partitions for message topic is 16, generated

stream rate is around 200,000 triples/second.
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8.6.2. Datasets, Queries and Performance metrics

As explained in Section 8.3, we can not use any existing RSP benchmarks to

evaluate the performances of StriderR. Hence, we are using our LUBM-based stream

generator configured with 10 universities, i.e., 1.4 million triples. For the purpose

of our experimentation, we extended LUBM with triples containing the sameAs

property. This extension requires to set two parameters: the number of cliques in a

dataset and the number of distinct individuals per clique. To define these parameters

realistically, we ran an evaluation over different LOD datasets. The results are

presented in Table 8.3. It highlights that although the number of cliques can be

very large (over a million in Yago), the number of individuals per clique is rather

low, i.e., a couple of individuals. Given the size of our dataset, we will run most of

our experimentations with 1,000 cliques and an average of 10 individuals per clique,

denoted 1k-10. Nevertheless, on queries requiring this form of reasoning, we will

stress StriderR with up to 5,000 cliques and an average of 100 individuals per clique

(see Fig.?? for more details). More precisely, we will experiment with the following

configurations: 1k-10, 2k-10, 5k-10, 1k-25, 1k-50 and 1k-100. For the SAM approach,

the number of materialized triples can be computed by nc ˚ ipc with nc the number

of cliques and ipc the number of individuals per clique.

We have defined a set of 8 queries2 to run our evaluation (see Appendix for details).

Queries Q1 to Q5 are limited to concept or/and property subsumption reasoning

tasks. Query Q6 implies sameAs only inferences while Q7 and Q8 mix subsumptions

and sameAs inferences.

Finally, we need to define which dimensions we want to evaluate. According to

Benchmarking Streaming Computation Engines at Yahoo! 3, a recent benchmark for

modern distributed stream processing framework, we take system throughput and

query latency as two performance metrics. In this chapter, throughput refers to how

many triples can be processed in a unit of time (e.g., triples per second). Latency

indicates the time consumed by an RSP engine between the arrival of the input and

the generation of its output. More precisely, for a windowing buffer wi of the i-th

query execution containing N triples and executed in ti, then throughput “ N
ti

and

the latency “ ti.

2https://github.com/renxiangnan/strider/wiki
3https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-
engines-at
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8.6.3. Quantifying joins and unions over reasoning approaches

As stated before, we can not compare StriderR to other available RSP systems.

This is mainly due to the high stream rate generated of our experiment which can

not be supported by state-of-the-art reasoning-enabled RSPs, e.g., C-SPARQL and

SparqlStream. This is probably due to the lack of data flow management scalability

of in these RSPs. In fact, their design was not intended for large-scale streaming

data processing. Moreover, RSP system that could handle such rate either do not

support reasoning or are not open source, e.g., CQELS-cloud.

To assess the performance benefit of our solution for processing complex queries,

specially comprising many joins, we compare LiteMat + RB and Lite + SAM with a

more classical query rewriting approach. This combines SAM with UNION clauses

between combinations of BGP reformulation (this approach is henceforth denoted

UNION + SAM). Notice that the UNION + SAM approach acts as a baseline for

our experiments. Such a rewriting comes at the cost of increasing the number of

joins. Table 8.4 sums up the join and union operations involved in the 8 queries of

our experimentation. In particular, queries Q5, Q7 and Q8 present an important

number of joins (resp. 90, 45 and 180) due to a large number of union clauses (resp.

17, 14, 29).

datasets #triples #sameAs cliques max avg

Yago* 3696623 3696622 2 2

Drugbank 4215954 7678 2 2

Biomodels 2650964 187764 2 1.95

SGD 14617696 15235 8 3

OMIM 9496062 22392 2 2

Table 8.3.: SamesAs statistics on LOD datasets (ipc = number of distinct individuals
per sameAs clique, max and avg denotes resp. the maximum and average
of ipc,*: subsets containing only sameAs triples with DBpedia, Biomodels
contains triples of the form a sameAs a

8.6.4. Results evaluation & Discussion

The window size for involved continuous SPARQL queries with LiteMat reasoning

support is set to 10 seconds, which is large enough to hold all the data generated

from the dataset. However, since the impacts of extra data volume and more complex

overheads are introduced in SAM query processing, we have to increase the window

size (up to 60 seconds) to ensure that both LiteMat and SAM approaches return
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Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

# Joins

LMRB 1 4 0 2 5 2 2 5

USAM 7 84 0 42 210 2 120 420

USAM* 3 24 0 18 90 2 60 210

# Union keywords

USAM 6 20 3 20 41 0 29 59

USAM* 2 5 2 8 17 0 14 29

# Filter clauses

LMRB 1 2 1 2 3 0 2 3

Table 8.4.: Number of joins, unions and filter per query for LiteMat + RB (LMRB)
and UNION + SAM (USAM) approaches. Here, the number of UNIONs
correspond to the number of UNION keywords. USAM* relies on a
simplified LUBM ontology

the same result. In a nutshell, we approximately adjust the window size and the

incoming stream rate by checking the materialized data volume.

Figure 8.7.: Throughput Comparison between LiteMat+RB and UNION+SAM for
Q1 to Q5
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Figure 8.8.: Latency Comparison between LiteMat+RB and UNION+SAM for Q1
to Q5

All the evaluation results include the cost of LiteMat encoding and, for the LiteMat

+ SAM solution, the cost of sameAs triple materialization. Figure 8.7, 8.8 reports

the throughput and query latency of Q1 to Q5. Reasoning LiteMat + RB achieves

the highest throughput (up to 2 millions triples/seconds) and the query latency

remains at the second-level. To the best of our knowledge, such performances have

not been achieved by any existing RSP engines. When both original and rewritten

query patterns are relatively simple, e.g., Q1 and Q2, LiteMat + RB has 30% gain

over UNION+SAM on throughput and latency. The improvement gain of LiteMat +

RB over UNION + SAM is increasing for queries involving multiple inferences, i.e.,

Q4 is 75% faster. For Q5, UNION + SAM does not even terminate. This is mainly

due to the insufficient computing resources (e.g., number of CPU cores, memories)

on Spark driver nodes, which is not capable of handling such intensive overheads for

jobs/tasks scheduling and memory management.

Nevertheless, UNION + SAM is more efficient than LiteMat + RB on Q3 which

contains a single triple pattern needing to reason over a property hierarchy of length

two. This is due to the automatic parallelism provided by Spark on the execution of

the UNION queries, thus benefiting from a good usage of cluster resources. With its

FILTER clause, LiteMat + RB on Q5 does not benefit from such a parallel execution.

Under this circumstance, a filter operator with numeric range determination seems

to be more costly than the union of three selections. In fact, a filter operator to

evaluate a range predicate (LiteMat + RB) is longer to process than evaluating three

equality predicates (UNION + SAM).
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Figure 8.9.: Throughput Comparison between LiteMat+RB and UNION+SAM for
Q6 by varying the size of clique.

Figure 8.10.: Latency Comparison between LiteMat+RB and UNION+SAM for Q6
by varying the size of clique.
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Figure 8.11.: Throughput Comparison between LiteMat+RB and UNION+SAM for
Q7, Q8 by varying the size of clique.

Figure 8.12.: Latency Comparison between LiteMat+RB and UNION+SAM for Q7,
Q8 by varying the size of clique.
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Figures 8.9, 8.10, 8.11 and 8.12 illustrate the impact on engine throughput and

latency of Q6 to Q8 with varying sameAs clique sizes. As noted previously, “1K-10”

means 1,000 cliques, and 10 individuals per clique. The number of materialized triples

for sameAs reasoning support follows the nc ˚ ipc formula presented in Section 8.6.2.

The number of materialized triples obviously increases with greater number of cliques

and/or number of individuals per clique. The data throughput and latency can only

be compared on Q6 since on Q7 and Q8, LiteMat + SAM does not terminate. The

same non termination issue than on Q5 is observed (Q7 and Q8 respectively have 60

joins and 210 joins). Although stream rate is controlled at a low level, the system

quickly fails after the query execution is triggered.

Data throughput and latency is always better for LiteMat + RB than LiteMat +

SAM by up to respectively two and three times. For the same computing setting,

when the number of individuals per clique increases for a given number of cliques or

when the number of cliques increases for the same number of individuals per clique,

the performances of the LiteMat approaches decrease.

The same evolution for LiteMat + RB is witnessed on the more complex Q7 and

Q8 queries. Nevertheless, for these queries, a throughput of over 800,000 triples per

second can be achieved. Given our computing setting of 11 machines, this is still a

major breakthrough compared to existing RSP engines. Moreover these systems are

currently not able to support important constructors such as sameAs.

8.6.5. Cost analysis of the SAM approach

The SAM approach allows for retrieving the specific members of a clique that match

the original dataset. As explained in Section 8.5.3, we propose an evaluation strategy

that efficiently generates the result of a join operation between a non-sameAs pattern

and its adjacent sameAs patterns, without actually processing the join. For example,

SAM only executes 5 out of 12 joins for query Q8, the result of each of the remaining

7 joins is directly obtained from the clique metadata, (see Clpxq in Table 8.2). The

SAM approach implies to customize the query engine and add the specific logic

for joining sameAs triple patterns. Therefore, SAM only suits to extensible query

processors and prevents a ‘black box’ SPARQL processors from being used.

Due to the extensible Spark APIs, it is possible to implement such an approach.

It would more difficult to obtain such a behavior with an out-of-the box SPARQL

query processor.
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8.7. Conclusion

In this chapter, we have presented the integration of several reasoning approaches

for RDFS plus sameAs within our Strider RSP engine. For most queries, LiteMat

together with the representative-based (RB) approach for sameAs cliques is the most

efficient. Nevertheless, LiteMat + SAM proposes an unprecedented provenance-

awareness feature that can not be obtained in other approaches. Lite + SAM can

also be useful for very simple queries, e.g., a single triple patter in the WHERE

clause.

To the best of our knowledge, this is the first scalable, production-ready RSP

system to support such an ontology expressiveness. Via a thorough evaluation, we

have demonstrated the pertinence of our system to reason with low latency over

high throughput data streams. One of the limitations of our system corresponds to

the potential large memory footprint of the generated dictionaries. Comparing to

conventional stream reasoning approach, in the case of small workload or simplistic

query, StriderR does not have a definitive advantage.

As future work, we consider adding the support for the ontology which contains

cycle and multiple hierarchies. We will also investigate novel semantic partitioning

solutions. This could be applied to elements such as dictionaries, streaming data

and continuous queries. We are aiming to support data streams that would update

the ontology and thus our dictionaries. An improvement of the FILTER operator

in StriderR is also in the scope of consideration. Finally, we are also working

on increasing the expressiveness of supported ontologies, e.g., including transitive

properties.
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9. BigSR: An Empirical Study of

Real-time Expressive RDF Stream

Reasoning on Modern Big Data

Platforms

9.1. Introduction

In this chapter, we study the feasibility of applying modern Big Data technique to

support real-time expressive RDF stream reasoning. We have conducted a series of

experiments based on benchmarking different streaming model and parallelism levels.

To do so, we implement a reusable distributed RDF stream reasoning prototype,

namely BigSR to support our evaluations.

Thus our system addresses important problems that are being met frequently in

modern applications. For instance, projects like Waves, SEAS1 (European ITEA2),

Optique2 (European FP7) and many others require processing data streams with

rich semantics in close to real time. At the same time, industrial systems based on

Datalog (Logiblox[78], Yedalog [95], datomic3) are emerging. It hence makes sense

to mix these two features (i.e., close to real-time stream processing and rule-based

reasoning) in a single framework to fulfill an emerging kind of systems.

Some available stream reasoning systems like StreamRule [72], Ticker [76, 96] and

Laser [75] have opted for a centralized design to benefit from existing ASP solver such

as Clingo [74]. Their scalability is hence limited by single machine/process and thus

can not scale. Actually, high expressive queries often involve recursion or complex

temporal logic operators, which are considered as the main performance bottleneck for

stream reasoning. Additionally, the optimization tailored for static query evaluation

e.g., data indexing, data preprocessing, neither meet the real-time nor the defined

1https://www.the-smart-energy.com
2http://optique-project.eu/
3www.datomic.com
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temporal logic requirements. Finally, distributed environments often adopt a shared-

nothing architecture where the memory of different data partitions are isolated, thus

preventing some advanced optimization for Datalog program materialization [97] to

be applied.

This chapter first introduces our BigSR prototype which addresses distributed

computing techniques on expressive stream reasoning. This system possesses two

broad classes of streaming models: Bulk Synchronous Parallel (BSP) and Record-at-

A-Time(RAT) which are respectively implemented using Apache Spark Streaming

and Apache Flink. The adoption of these two models is motivated by different needs

from real-world use cases, e.g., ASP programs with or without recursion, the capacity

to support multiple streaming windows and constraints on acceptable processing

latency.
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9.2. Stream Reasoning with LARS in BSP and RAT models

Recall the definitions given in 3.5.2 (in the Background knowledge chapter), we

use LARS as the theoretical foundation. LARS is a rule-based logical framework

defined as an extension of Answer Set Programming (ASP) which we are using as a

theoretical foundation. Ticker and Laser[75] are recent systems also based on LARS.

In this section, we recall some basic definition of LARS, and we describe the general

methodologies to parallelize the evaluation of Datalog programs and their relations

to LARS. Finally, we reformulate the streaming models on Spark and Flink ( i.e.,

BSP and RAT ) with a simple example.

9.2.1. Parallel Datalog evaluation

Before illustrating the distributed stream reasoning in BigSR, we summarize the

three Parallelism Levels (PL) mentioned in [98] for parallel instantiation of Datalog

programs.

(PL1) Components level. Consider a stratified Datalog program P and its

dependency graph GP “ xV,Ey. P can be split into n subprograms tpiuiP1,...,n where

each subprogram pi is associated to a strongly connected component (SCC) Ci of

GP . In accordance with the topological order of Ci, we can identify the subprograms

that can be executed in parallel.

(PL2) Rules level. When recursion occurs in Ci, pi is concurrently evaluated

through bottom-up semi-naive algorithm [99].

(PL3) Single Rule level. Consider a program P “ TpX q Ð RpY ,X q where P
contains a limited number of rules. As a result, P is neither benefiting from PL1 nor

PL2. In this situation, the idea is to divide a single rule instantiation into a number

of subtasks. All the subtasks are able to run independently.

Computing the answer stream of a positive LARS program can be regarded as

evaluating a Datalog program at each time point. PL1, PL2, and PL3 are thus

enabled to be applied in LARS program.

9.2.2. Streaming Models on Spark and Flink

Streaming Models. In general, two broad classes of execution models exist in

distributed stream processing frameworks: BSP and RAT. Representative streaming

systems, e.g., Spark Streaming, Google Dataflow [47], based on the BSP model buffer

and process data by batch. Intuitively, BSP organizes the communication between

processes and synchronizes the data processing across records by setting barriers at
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Figure 9.1.: Blocking and non-blocking query processing.

the end of each batch. On the contrary, RAT systems like Flink and Storm handle

data processing record by record, where operators are regarded as long running

tasks, which rely on mutable local states. The computation is done through the data

flowing from one operator to another. We choose Spark and Flink as the underlying

systems of BigSR. Both systems ensure fault tolerance, automatic work distribution,

and load balancing.

Before we present the implementation details of BigSR, we use an example to

demonstrate a fundamental difference between BSP and RAT. Considering a program

P “ TpX q Ð ‘
wpl,dq
τ ♦pR1pY q ^ R2pY ,X qq, Figure 9.1 roughly gives a runtime

example of P0 on Spark (Figure 9.1(a)) and Flink (Figure 9.1(b)). Spark processes

the data stream synchronously, the next query execution will be launched after the

previous one is finished. Conversely, Flink serializes, caches, and pushes forward each

record to the next operator eagerly right after the current computation is done. Such

behavior minimizes the data processing delay, and operators are able to perform

asynchronously. In Figure 9.1, although Spark uses 3 nodes to compute the second

part of every query with higher parallelism than Flink, it still needs some time for

synchronization between two jobs. Thus, within 9-time units, Flink is able to finish

5 continuous queries while Spark is only able to process 3 queries during this same

period of time. This clearly showcases a better use of computing resources in favor

of Flink.

LARS does not include any notion of state. Thus, to build the connection between

LARS and Spark/Flink’s execution model, we define stateful and stateless operators

as follows: A stateless operator over a stream transforms a stream into another

stream. In contrast, a stateful operator is a function which takes a pair of a stream

and a state, and returns another pair of stream and state. In other words, the data

processing in stateless operator only looks up the current record. The evaluation of

the stateful operator requires the system to hold an internal state, e.g., use local
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memory or an external database for window operator.

9.3. Distributed Stream Reasoning

This section is organized as follow: Section 9.3.1 presents the system architecture of

BigSR; Section 9.3.2 gives some description of the data structure on Spark, Flink, and

the RDF stream representation in our system. Section 9.3.3 explains the translation

of LARS window operator to the BSP and RAT models. Then, Section 9.3.5 and

9.3.6 explore some details about distributed RDF stream reasoning on Spark and

Flink, respectively. Finally, we introduce some discussions and partial conclusions in

Section 9.3.7.

9.3.1. Architecture of BigSR

Figure 9.2.: BigSR system architecture

Figure 9.2 gives a high-level view of the BigSR architecture. It consists of three

principal modules: (i) Data-feed is built on top of Apache Kafka (a distributed

message queue) and ensures high throughput and fault-tolerant data stream injec-

tion/management; (ii) Sink persists query outputs into a storage component such as

Amazon S3, HDFS or even Kafka; (iii) Computing core first registers and compiles a

given LARS program into BigSR’s logical execution plan. Then, the system binds

the obtained logical plan to the physical operators of Spark (Streaming) or Flink for

real-time distributed RDF stream reasoning.

9.3.2. Data Structure

BigSR comes with a LARS stream reasoning Domain Specific Language (DSL).

Listing D.2 showcases a query example from the SRBench dataset. The query
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grammar follows a general Datalog program writing style. For instance, on line 2 of

Listing D.2, atom tp2 denotes an atom of extensional predicate type with variable

Obs and constant rainObs. Rule r is constructed with a head atom atom res, two

body atoms atom 1, atom 2 and a time-based window timeWindow. timeWindow

accepts two parameters l and d to define a sliding window over the conjunction of

atom tp1 and atom tp2. Finally, we construct program p, where p can be expressed

by the following LARS rule:

resIRIpObs,Senq Ð ‘wpl,dq
τ ♦pprocedurepObs,Senq, typepObs, rainObsq.

In order to capture the previously-stated parallelism paradigms of Section 9.2.1

with BSP and RAT streaming models, we detail the query evaluation on Spark and

Flink. BigSR adopts set semantics to handle all stateful operators, i.e., each IDB

inferred by stateful Datalog formulas will be deduplicated.

va l atom tp1 = Atom( procedure , Term( ”Obs” ) , Term( ”Sen” ) )

va l atom tp2 = Atom( type , Term( ”Obs” ) , Term( ” rainObs ” ) )

va l atom res = Atom( resIRI , Term( ”Obs” ) , Term( ”Sen” ) )

va l r = Rule ( atom res , Set ( atom tp1 , atom tp2 ) , timeWindow ( l , d ) )

va l p = Program ( Set ( r ) )

Listing 9.1: BigSR DSL code snippet

Both Spark and Flink keep their own data structures to support BSP and RAT,

respectively: (1) Spark abstracts a sequence of RDD as DStream[50] to enable near

real-time data processing. The system buffers incoming data streams periodically

as a micro-batch RDD. Each RDD encapsulates the data in a certain time interval,

i.e., corresponding to wall-clock times. Intuitively, a micro-batch RDD refers to the

minimum allowable data operation granularity. In addition, the timestamp assigned

by the system does not bring any impact to the query’s semantics. (2) Flink takes

DataStream as a basic data structure. DataStream represents a parallel data flow

running on multiple partitions where all data transformations are processed at a

record-level. Such a fine-grained data transformation makes event-timestamp-based

operation feasible. In BigSR, we use the so-called ingestion time to handle time-

based windows. Practically, each record gets the stream source’s current time as a

timestamp. Moreover, internally, Flink handles ingestion and event time in the same
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Figure 9.3.: Logical plan of query D.2 on Spark and Flink

manner. Instead of using event timestamp, we choose ingestion time for data stream

processing in Flink for the purpose of simplifying our experiment.

9.3.3. Window Operation in BigSR

We introduce the translation of LARS window semantics to the physical operators in

Spark and Flink. As described in Section ??, only time-based window is involved in

BigSR for the current implementation. We thus cover the most common use-cases of

stream reasoning.

Here, we clarify the translation of LARS time-based window operator to Spark

(BSP) and Flink (RAT). Specifically, we provide, under BSP and RAT, the transla-

tions of atoms of the form ‘
wpl,dq
τ ♦, for an input stream S, with range size l, sliding

size d and a sliding window operator wpl, dq.

Spark. A Spark Streaming application only allows a single global window operator.

The system buffers input data stream in real-time, and launches the computation

w.r.t. its predefined logical plan (more details are given in Section 9.3.4).

For an input stream S, the translation of ‘
wpl,dq
τ ♦S in Spark is illustrated in Figure

9.4. A window operator with range size l in LARS is firstly translated into four

micro-batches of size lb “ l{4 in Spark, and then a batch of these four micro-batches

with sliding size d, lb “ d{2. Each micro-batch batchi is assigned to a time interval

Ti “ rti, ti`lbs containing data within Ti. A micro-batch is the basic unit of data

processing in Spark’s BSP model.

Recall that LARS defines the window operator at ASP’s formula level. It is not

obvious how to extend such translation to the program level in LARS when there

are multiple different window definitions, because the micro-batch approach can only

applied to one window over the whole program.
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Figure 9.4.: The translation of window operator on Spark.

Flink. Comparing to the coarse-grained, micro-batch-level timestamp operation

in Spark Streaming, Flink manipulates timestamps at the record-level. Each RDF

triple is annotated by a timestamp.

In Figure 9.5, for a given start time point ti of a window function wpl, dq, ‘
wpl,dq
τ ♦S

holds all the data from rti, ti` ls, e.g., in Figure 9.5, rt1, t4s P rt1, t1` ls, and 4 triples

are buffered by wpl, dq. wpl, dq slides periodically over S by d “ 3 time points.

In our implementation, we identify stream S by a certain predicate of RDF triple.

E.g, the answer stream of ‘
wpl,dq
τ ♦pppY qq only contains the atoms with predicate p.

Figure 9.5.: The translation of window operator on Flink.

9.3.4. Program plans generation.

Figure 9.3 compares the logical plan of our Listing D.2 query example. Both Spark

and Flink can naturally embed the three parallelism strategies of Section 9.2.1 into

their own native physical plan. Due to reliable cluster resource allocation, continuous

Spark jobs are launched synchronously, i.e., a link connects two consecutive query
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executions (Figure 9.3, (a)). Input data from stream sources are collected through a

window of duration T which consists of n micro-batches of duration t. The buffered

data are processed by the entire DAG of operators. On the other hand, the execution

bound only exists on stateful operators, e.g., join and window, in Flink (Figure 9.3

(b)). Except for the conjunction of σtype and σprocedure which run synchronously,

data reception and selections σtype, σprocedure run asynchronously.

9.3.5. Distributed Stream Reasoning on Spark

In the following section, in order to provide a fair comparison between BSP and

RAT, we keep identical query semantics for these two models. Hence, consider the

following program P0 consisting of rules R1, R2, and R3:

R1 : p2pX ,Y q Ð‘wpl,dq
τ ♦pp0pX,Y qq

R2 : p1pX ,Y q Ð‘wpl,dq
τ ♦pp2pX,Y q ^ p0pY ,Z qq

R3 : p2pX ,Y q Ð‘wpl,dq
τ ♦pp1pX ,Y q ^ p0pX ,Y qq

We assume that R1, R2, and R3 hold the same window operator in their bodies.

Be aware that this is not a prerequisite for Flink in the general case. Predicate p0 is

an EDB predicate while p1 and p2 are two IDB predicates.

Figure 9.6.: Recursive program (P0) evaluation on Spark and Flink.

Algorithm 3 adopts the semi-naive evaluation of program P0 on Spark Streaming.

p0 is the set of input facts over DStream. Spark captures p0 by window operator

‘
wpl,dq
τ ♦ applied over input streams, and initializes IDBs p1, δp1, p2, and δp2. The

evaluation terminates when a fixed-point is reached on IDB relations. During the

whole semi-naive evaluation, the system omits the notion of time, and the evaluation
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is performed as usual in a statical data processing.

We now present how this evaluation of P0 is parallelized on Spark:

• PL1.: The system starts the evaluation by initializing p1 and p2 using input

EDB p0. p1 and p2 forms an SCC Ci, for any other SCC Cj , where Cj does

not depend on Ci, the evaluations of Ci and Cj can be computed in parallel.

• PL2. In each iteration step of the semi-naive evaluation, the set of operations

(e.g., selection, join, union) which compute each IDB predicate are chained

together as a Spark job, i.e., , two Spark jobs for the evaluation of p1 and p2

are involved. The iterations are completed until a fix-point is reached. The

system outputs p1 and p2 for further calculation.

• PL3. Inside a single Spark Job, each operator performs a transformation of

RDD. As an RDD is a distributed data collection, multiple tasks may execute

concurrently across different data partitions.

The program P0 corresponds to a series of BSP Spark jobs which execute in a

Spark Streaming context. One restriction is that P0 is only allowed to possess a

single global window (‘
wpl,dq
τ ).

For a non-recursive program, the logical plan is first mapped into a single Spark

job’s DAG logical plan. Next, Spark compiles the logical plan to its physical plan

and is then evaluated. We mainly discuss the recursive program evaluation on Spark

here. Considering the previously defined program P0, Figure 9.6 (a) gives a running

example by using the semi-naive evaluation of [99].

Limitation & Envisioned Optimization. The implementation of recursion

support in BigSR is straightforward. Some discussions about [81] and our envisioned

optimization for recursive query handling are worth mentioning. Of the four proposed

solutions in [81], two of them play key roles: (i) extending immutable RDD to mutable

SetRDD ; (ii) adding recursive stage support in Spark job scheduler. Both (i) and (ii)

sacrifice fault-tolerance to gain system performance. For a streaming service running

24 ˆ 7, such a fault-tolerance trade-off has a high potential impact on system’s

robustness and reliability.

In addition to the optimizations of [81], we propose two other envisioned solutions:

(a) Integration with distributed index. For stratified LARS program, iterations and

join operations become the performance bottleneck since an iteration potentially

involves intensive job scheduling and network shuffling in a distributed environment.
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Algorithm 3 Semi-Naive evaluation of P0 in Spark

Input : program P0 with global window function wpl, dq,
DStream S

Output : Rp1 ,Rp2 (RDDs)

foreach Substream S1 of S, computed by ‘
wpl,dq
τ ♦ do

// Initialize RDDs for δ1p1, δ
1p2

Let δp1 “ δp2 “ H

Let Rp1 “ Rp2 “ H

Rp0 “ δp1 “ δp2 :“ tp0ps, oq | p0ps, oq P S
1u;

Rp1 :“ δp1, Rp2 :“ δp2;

do
// Compute δ1p1, δ1p2 in parallel
δ1p1 :“ δp2 ’ πY,ZpRp0q ´Rp1 ;
δ1p2 :“ δp1 ’ πX,Y pRp0q ´Rp2 ;

// Compute Rp1, Rp2 in parallel
Rp1 :“ Rp1

Ť

δ1p1;
Rp2 :“ Rp2

Ť

δ1p2;
δp1 “ δ1p1, δp2 “ δ1p2

while δp1 ‰ H or δp2 ‰ H;

end

Instead of scanning each partition entirely in RDD, the work4 integrates adaptive radix

tree [100] to enable efficient data access and update. Our preliminary experimentation

emphasizes that a performance gain for each iteration is up to 2.5-3 with indexed

RDD compared to standard RDD. However, the index needs to be reconstructed after

each iteration, which comes with a non-negligible overhead. This approach thus is in

the experimental and envisaged stage. (b) Parallel job scheduling. Spark scheduler

submits jobs in a centralized way via a master node. Frequent job submissions

cause unavoidable latency. Rather than merging multiple jobs together into a single

job [81], a distributed job scheduler [101] would provide millisecond latency for job

scheduling without sacrificing any fault-tolerance.

9.3.6. Distributed Stream Reasoning on Flink

For a non-recursive program, BigSR compiles a LARS program into Flink’s streaming

topology (i.e., DAG). Then, it is evaluated through data flowing between operators

in the DAG.

4https://github.com/amplab/spark-indexedrdd
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In the case of a recursive program (e.g., P0), i.e., different from the BSP model of

Spark, Flink needs to handle the timestamp during the whole life cycle of the LARS

program evaluation. For input stream S, Flink computes S1 and continuously append

data to p0. The program evaluation on Flink follows the main spirit of semi-naive

algorithm. However, each IDB/EDB relation is mapped into the independent data

stream, and all stateful relational operators (e.g., distinct, stream join) in P0 is

restricted by wpl, dq. In particular, the RAT model requires Flink to feed back the

IDB stream after each iteration before the fixed-point is reached. Algorithm 4 gives

the general steps to evaluate program P0 on Flink. Figure 9.6(b) gives a high-level

vision of the workflow of Flink of P0:

• PL1. Similar to Spark, any other SCC which is independent from Ci can be

computed in parallel.

• PL2. Different from Spark, which splits the recursion into a series of indepen-

dent jobs. Flink achieves recursion with streaming feedback. In iteration i, the

system needs to feed back Sif pp1q and Sif pp2q (downstream for computing p1

and p2, respectively) as the input for iteration i ` 1. And the processes on

Sif pp1q and Sif pp2q occur in parallel in a single iteration step.

• PL3. Similar to Spark, the DataStream flows through each operator across in

parallel, each operator consists of multiple tasks (over some partitions) which

can be performed concurrently (w.r.t. PL3).

Limitation & Envisioned Optimization. There are two main limitations we

found by using the RAT model:

(1) We require that the conjunction of two atoms a1, a2 should share the same

window operator, e.g., , a formula α “ ‘w1♦a1 ^ ‘w2♦a2 currently imposes that

w “ w1 “ w2 (i.e., α “ ‘w♦pa1 ^ a2q). Given our experience, this limitation

shows up when input stream is of type S and the underlying process relies on

multi-cores/distributed environment. The main difficulties come from synchro-

nization of clocks, task progress, and window trigger mechanisms. However, a

single-core/centralized system with input stream S‹ does not suffer from such a syn-

chronization problem. Since all the computations are done sequentially, the program

evaluation performs in a quasi-static way without considering the fast update of S‹.

To the best of our knowledge, CQELSCloud, which is the only implementation with

distributed setting, has a similar semantic. Nevertheless, to avoid above-mentioned
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Algorithm 4 Semi-Naive evaluation of P0 on Flink

Input : program P0 with global window function wpl, dq,
DataStream S

Output : Sp1 ,Sp2 (DataStream)
Initialize DataStreams for p0, p1, p2 as Sp0 , Sp1 , Sp2 , respectively

foreach DataStream S do
Buffer the current state statepSp0q of Sp0

δSp1 :“ πX,Y pstatepSp0qq, δSp2 :“ πX,Y pstatepSp0qq;

while δSp1 ‰ H or δSp2 ‰ H do

δ1Sp1 :“ ‘
wpl,dq
τ ♦pδSp2 ’ πY,ZSp0 ´ Sp2)

δ1Sp2 :“ ‘
wpl,dq
τ ♦pδSp1 ’ πX,Y Sp0 ´ Sp1)

// Append derived facts to p1,p2

Sp1 :“ ‘
wpl,dq
τ ♦pSp1

Ť

δ1Sp1q;

Sp2 :“ ‘
wpl,dq
τ ♦pSp2

Ť

δ1Sp2q;

δSp2 “ δ1Sp2 , δSp1 “ δ1Sp1

// Feed back streams for next iteration
Feed back Sp1 ,Sp2 ;

end

end

problems, CQELSCloud forbids event timestamp and “sliding” mechanisms in their

window operators. The record is emitted eagerly right when the computation is done.

(2) We do not support recursive queries on Flink yet. Within the LARS framework,

the implementation of recursion with RAT could be quite challenging. The example

given earlier skips window operator. Once the body atoms of p1 and p2 are restricted

by the temporal logic operator (e.g., window operator), the synchronization problem

mentioned in (1) will reappear. A possible solution is to merge multiple input streams

together and perform the recursion with a recursive operator. The system would

then have to cut off the query processing pipeline to handle the recursion. In such a

situation, the recursive operator behaves similarly to the BSP model which is against

the original intention of using the RAT model.

9.3.7. Discussions

Table 9.1 briefly compares BSP and RAT for implementing a stream reasoning frame-

work like LARS. With BSP on Spark, the manipulation of temporal logical operators
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Model Expressiveness Recursion

BSP (Spark) Low, coarse-grained Implementation easy

RAT (Flink) High, fine-grained Implementation difficult

Table 9.1.: Intuitive comparison between BSP and RAT

is rather coarse-grained with low expressiveness. The query should be evaluated in

batches by a global window. Furthermore, the semantic of data timestamps does not

influence the semantic of the query. The combination of window operators is not

flexible. However, the query evaluation of the BSP model in a window is practically

similar to a static data processing. Therefore, BSP greatly simplifies the implementa-

tion of recursion. On the other hand, the RAT model handles data processing record

by record. The evaluation of operators can be performed asynchronously. RAT

enables to manipulate the timestamp and window operators in a fine-grained fashion.

Different types of time (e.g., event time, ingestion time, system processing time)

can be integrated on RAT. The combination of multiple window operators can be

chained together and ran independently. For recursive query evaluation, RAT suffers

from synchronization of processes over multiple streams and multiple windows. This

makes the implementation of recursion within the LARS framework a challenging

problem.

9.4. Evaluation

The code base (written using the Scala programming language), data sources and

test queries are available on GitHub5. We conduct our experiments on a Amazon

EMR cluster with a Yarn resource manager. The EMR cluster consists of a total

of 9 nodes of type m4.xlarge. One node is setup for the Kafka broker and message

producer, one node for Apache Zookeeper, seven nodes for Spark/Flink application

(one master node and six worker nodes). Each node has 4 CPU virtual cores of 2.4

GHz Intel Xeon E5-2676 v3 processors, 16 GB RAM and 750 MB/s bandwidth. We

use Spark 2.2.1, Flink 1.4.0 (broadcast join is disabled), Scala 2.11.7 and Java 8 as

evaluation baselines.

5https://github.com/renxiangnan/bigsr
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9.4.1. Benchmark Design

Dataset & Queries. Our evaluation is based on synthetic and real-world datasets

which involve 4 different datasets and 15 queries (Table 9.2). The 4 datasets

correspond to Waves, SRBench, CityBench and LUBM. All the data captured by

the Waves, SRBench, and CityBench datasets come from real-world IoT sensors.

The Waves dataset describes measures of a potable water network, e.g., values of

flow, pressure and chlorine levels, etc. SRBench, one of the first RSP benchmark,

contains USA weather observations ranging from 2001 to 2009. CityBench simulates

a smart city context for RSP applications and concerns sensor measures on vehicle

traffic, parking lot utilization and user location use cases. All the aforementioned

datasets come from RSP contexts. It is hard to design a recursive query, because

the generated RDF data streams are usually directly converted from flat data (CSV)

with few references between entities. Therefore, we use LUBM for recursive query

evaluations.

Query Q1 to Q11 include stateful operators for windowing and recursion, where

Q12 to Q15 only contain stateless operators (e.g., selection, filter, projection). We

evaluate Q12 to Q15 to highlight the engine performance with BSP and RAT model

for low-latency use cases, such as reactive applications.

Q1 - Q3 Q4 - Q6 Q7 - Q8 Q9 - Q11 Q12 - Q15

Dataset Waves SRBench CityBench LUBM Synthetic

Recursive No No No Yes No

Table 9.2.: Test queries and datasets.

To guarantee query semantics consistency between BSP and RAT, the result sets

of a given query should be the same on the two distributed models. Input data

streams are generated by Kafka message producer and injected into BigSR in parallel.

The average stream rate is around 250,000 to 300,000 triples/second.

Performance metrics. Considering Benchmarking Streaming Computation En-

gines at Yahoo!, the well-known benchmark for distributed streaming systems6, we

take system throughput and query latency as the principal performance criteria. In

particular, we categorize the evaluations into two groups:

• Group 1: Q1 to Q11 (queries with stateful operators). We denote throughput

6https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-
engines-at
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as the number of triples processed per second by the engine (i.e., triples/second).

Latency corresponds to the duration taken by BigSR between the arrival of an

input and the generation of its output.

• Group 2: Q12 to Q15 (queries with only stateless operators). We focus on the

minimum latency that the engine is able to attain. On Spark, we first reduce

the micro-batch size as much as possible, then we record the query latency

for completing the process of current micro-batch. On Flink, the latency of a

record r indicates the time difference between the moment r enters the system

and the moment r1 outputs from the system.

Performance tuning is one of the most important steps for the deployment of

Spark and Flink applications. Based on our previous experience, we list three impor-

tant factors which bring significant impact on engine performance, i.e., parallelism

level, memory management, and data serialization. Unfortunately, there is no fixed

rule to configure these parameters in an optimal way. The tuning has to be done

empirically. Besides, recursion on Spark may generate long RDD lineage in the driver

memory which can lead to stack overflow. We thus periodically trigger the local

checkpoint of RDD to truncate the RDD lineage.

9.4.2. Evaluation Results & Discussion

In this section, we present and discuss the evaluation result over the queries presented

in Section 9.4.1. We do not compare BigSR to the state of the art RSP/(Streaming)

nor to ASP systems due to the following reasons: (1) Compared to our previous

work, on Strider [102] , the Spark implementation in BigSR is approximately 30%

less efficient. We partially attribute this to the distinct operation which satisfies

the set semantic. Nevertheless, performance evaluation in [102] emphasizes 1 to 2

orders of magnitude performance gains over available RSPs (i.e., C-SPARQL and

CQELS). We keep exactly the same cluster settings as our previous work [102] , we

can consider that the distributed design of BigSR takes a substantial performance

advantage over existing centralized RSP engines.

(2) The system likes Laser currently does not allow to continuously inject data

stream in real-time. The system considers the stream is finite and loads the entire

stream into memory for program evaluation. Moreover, the support of recursion is

also missing (i.e., occurrence of a runtime-error) in the current version of Laser.

Throughput. Figure 9.7 reports the engine throughput for Q1 to Q11. Both

implementation with BSP (Spark) and RAT (Flink) achieves high throughput at the
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Figure 9.7.: System throughput (triples/second) on Spark and Flink for Q1 to Q11.

level of million triples per second. We observe that the throughput of Flink is 1.x -

3.x times superior to Spark. This difference is more substantial when the query has

more intensive joins/conjunctions. This can be explained by the job scheduling of

Spark which imposes join operations to be performed on different compute nodes,

thus causing network shuffles. Moreover, Spark’s job scheduling is difficult to control

in a fine-grained manner. On the contrary, Flink is able to avoid shuffles with an

appropriate system configuration, i.e., the join operation can be managed by a task

manager and performed locally on a single compute node.

For recursive queries Q9 to Q11, Spark achieves a throughput of up to 2.3M

triples/second. Although we design three recursive queries for LUBM, the length

of transitivity in LUBM is rather small which limits the number of iterations in

the semi-naive evaluation. Additionally, the intermediate results generated in Q9 to

Q11 are of moderate size, which reduces the performance penalty implied by shuffle

operations.

Latency. We summarize the query latency of Group 1 (Q1 to Q11) in Figure

9.8. Spark and Flink hold second/sub-second delay in general (only Q3 exceeds one

second on Flink). Flink has a lower latency than Spark. The obtained latency on

Spark and Flink are already acceptable for most streaming applications.

Here, we highlight the experiment over queries in group 2 (Table 9.3). Intuitively,

Q12 to Q15 have been designed to stress BSP and RAT on the latency dimension. In

fact, the micro-batch interval size of Spark is set to 500 ms. Even though the average

latency on Spark is around 100 ms, but 500 ms is approximately the minimum “safe”

batch size we can configure on Spark. The reason is that the garbage collection (GC)

triggers periodically in a long-running Spark Streaming application (on driver and

workers), GC pause occurs from time to time. The query latency thus can grow up to
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Figure 9.8.: Query latency (milliseconds) on Spark and Flink for Q1 to Q11.

400 ms. We conclude that Spark satisfies the near-real-time use case with sub-second

delay requirement.

On Flink, we calculate the record latency by subtracting the output timestamp from

input system-assigned timestamp. The minimum observable time unit is millisecond

(limited by Flink), and the vast majority obtained latency is 0 ms. Apparently,

sub-millisecond delay meets most real-time, latency-sensitive use cases.

Q12 Q13 Q14 Q15

Spark 110 96 115 99

Flink <1 <1 <1 <1

Table 9.3.: Stateless query latency (millisecond); Spark micro-batch size = 500 ms.

9.5. Conclusion

This work bridges the gap between theoretical work in progress on RDF stream

reasoning and modern cutting-edge Big Data technologies. In fact, our BigSR system

is able to reach the millions of triples per second processing mark on complex queries

and second/subsecond latency in general. In order to tackle scalability, BigSR

considers the standard BSP and RAT approaches through implementations with

state of the art open source frameworks, respectively Apache Spark and Apache

Flink. Both these systems offer rich APIs (e.g., obviously for stream processing

but also for machine learning, graph analytics), fault-tolerance, load balancing, and

automatic work distribution. In terms of reasoning, we address logic programming

through the ASP-based LARS framework.
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Our experimentation presents some interesting results on the current state of these

systems. With its large programmer community, Spark is easier than Flink to get

into and implement applications with. Nevertheless, it may be difficult to configure,

and tune this parallel computing framework. The support for recursive rules was not

a difficult problem. The overall performance of Flink on both data throughput and

latency is superior to Spark and is quite impressive without requiring a lot of tuning.

Nonetheless, the design and implementation of an evaluation approach for recursive

programs are not straightforward. This is in fact in our future work list together

with a more efficient incremental model maintenance.
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10. Conclusion and Future Work

In this thesis, we have addressed some major problems of distributed RDF stream

processing and reasoning by handling continuously SPARQL query, optimizing

reasoning query and executing expressive temporal Datalog/ASP program.

The thesis starts with a survey of existing RSP benchmarks. We propose some

new performance metrics and design a specific evaluation plan. In particular, we

take into account the specific implementation of each RSP engine. We perform many

experimentations to evaluate the impact of Stream Rate, Number of Triples, Window

Size, Number of Streams and Static Data Size on Execution Time and Memory

Consumption. Several queries with different complexities have been considered. The

main results of this complete study are that each RSP engine has its own advantage

and are adapted to a particular context and use case, e.g., C-SPARQL excels on

complex and multi-stream queries while CQELS stands out on queries requiring

static data.

Given this evaluation of existing RSP engines, we are able to design Strider, a

distributed RDF stream processing engine for large scale data stream. It is built on

top of Apache Spark Streaming and Apache Kafka to support continuous SPARQL

query evaluation and thus possesses the characteristics of a production-ready RSP.

Strider comes with a set of hybrid AQP strategies: i.e., static heuristic rule-based

optimization, forward and backward adaptive query processing. We insert the trigger

into the optimizer to attain the automatic strategy switching at query runtime.

Moreover, with its micro-batch approach, Strider fills a gap in the current state

of RSP ecosystem which solely focuses on record-at-a-time. Through our micro-

benchmark based on real-word datasets, Strider provides a million/sub-million- level

throughput and second/sub-second latency, a major breakthrough in distributed

RSPs. And we also demonstrate the system reliability which is capable of handling

the structurally instable RDF streams.

Then, we extend Strider to enable distributed RDF stream reasoning by integrating

several novel reasoning approaches, i.e., LiteMat for RDFS + sameAs reasoning over

streaming data. For most queries, LiteMat together with the representative-based
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(RB) approach for sameAs cliques is the most efficient. Nevertheless, LiteMat + SAM

proposes an unprecedented provenance-awareness feature that can not be obtained

in other approaches. Lite + SAM can also be useful for very simple queries, e.g., a

single triple pattern in the WHERE clause. To the best of our knowledge, this is the

first scalable, production-ready RSP system to support such ontology expressiveness.

Via a thorough evaluation, we have demonstrated the relevance of our system to

reason with low latency over high throughput data streams.

Finally, we bridge the gap between theoretical work in progress on RDF stream

reasoning and modern cutting-edge Big Data technologies. We emphasize that a

trade-off between expressiveness of reasoning and scalability is possible in RDF

stream reasoning. In fact our BigSR system is able to reach millions triples per

second processing mark on complex queries and second and subsecond latency in

general. In order to tackle scalability, BigSR considers the standard BSP and RAT

approaches through implementations with state-of-the-art open source frameworks,

respectively Apache Spark and Apache Flink. Both these systems offer rich APIs (e.g.,

obviously for stream processing but also for machine learning, graph analytics), fault-

tolerance, load balancing and automatic work distribution. In terms of reasoning,

we address logic programming through the ASP-based LARS framework. Our

experimentation presents some interesting results on the current state of these

systems. With its large programmer community, Spark is easier than Flink to get

into and implement applications. Nevertheless, it may be difficult to configure,

tune this parallel computing framework. The support for recursive rules was not a

difficult problem. The overall performance of Flink on both data throughput and

latency is superior to Spark and is quite impressive without requiring a lot of tuning.

Nonetheless, the design and implementation of an evaluation approach for recursive

programs is not straightforward.

In a next step, we plan to explore more features of reasoning RDF stream in

distributed environment. This implies four general aspects: (1) Querying over

compressed data stream. Since original RDF data format is redundant, efficient

RDF serializing would be considerably smaller than the original; (2) we found that

LiteMat could be integrated with conventional Datalog/ASP materialization; (3) the

further support of recursion for RAT model is also in the scope of consideration; (4)

neither Strider nor BigSR adopts any incremental evaluation strategy. Such behavior

may involve a lot of recomputations over input data stream which have been already

materialized. Incremental query evaluation could potentially leverage the system

performance by avoiding redundant computation.
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Prefix

• ex: ăhttp://myexample.org/ą

• f: ăhttp://larkc.eu/csparql/sparql/jena/ext#ą

• a: ăhttp://www.w3.org/1999/02/22-rdf-syntax-ns#typeą

• ssn: ăhttp://purl.oclc.org/NET/ssnx/ssn/ą

• qudt: ăhttp://data.nasa.gov/qudt/owl/qudt/ą

• waterML: ăhttp://www.cuahsi.org/waterML/ą
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A. Queries for the evaluation in

Chapter 5

Q1

SELECT DISTINCT ?observation

FROM STREAM <http://myexample.org/stream> [RANGE 1s STEP 1s]

WHERE {

?message ex:observeChlorine ?observation .

?observation ex:hasTag ?tag . }

Q2

SELECT DISTINCT ?observation (COUNT(?tag) AS ?numberOfTags)

FROM STREAM <http://myexample.org/stream> [RANGE 1s STEP 1s]

WHERE {

?message ex:observeChlorine ?observation .

?observation ex:hasTag ?tag . }

GROUP BY ?observation

ORDER BY ASC(?observation)

Q3

SELECT ?observation

FROM STREAM <http://myexample.org/stream> [RANGE 1s STEP 1s]

WHERE {

?message ex:observeChlorine ?observation .
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?observation ex:hasTag ?tag .

FILTER ( regex(str(?observation), ’00$’, ’i’)

|| ( regex(str(?observation), ’50$’, ’i’))) }

GROUP BY ?observation

Q4

SELECT ?observation (COUNT(?tag) AS ?numberOfTags)

FROM STREAM <http://myexample.org/stream> [RANGE 1s STEP 1s]

WHERE {

?message ex:observeChlorine ?observation .

?observation ex:hasTag ?tag .

FILTER ( regex(str(?tag), ’1$’, \"i\")

|| regex(str(?tag), ’2$’, \"i\")

|| regex(str(?tag), ’3$’, \"i\"))

FILTER (f:timestamp(?observation, ex:hasTag, ?tag)

>= f:timestamp(?message, ex:observeChlorine, ?observation)) }

GROUP BY ?observation ?numberOfTags

Q5

SELECT ?observation (COUNT(?tag) AS ?numberOfTags)

FROM STREAM <http://myexample.org/stream> [RANGE 1s STEP 1s]

WHERE { {

?message ex:observeChlorine ?observation .

?observation ex:hasTag ?tag .

FILTER ( regex(str(?observation), ’00$’, ’i’) )

FILTER (f:timestamp(?observation, ex:hasTag, ?tag)

>= f:timestamp(?message, ex:observeChlorine, ?observation))

} UNION {

?message1 ex:observeFlow ?observation.

?observation ex:hasTag ?tag .

FILTER ( regex(str(?observation), ’10$’, ’i’) ) } }

GROUP BY ?observation
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HAVING (COUNT(?tag) = 3)

ORDER BY ASC(?observation)

Q6

SELECT ?sector ?timestamp ?label

FROM NAMED STREAM <http://myexample.org> [RANGE 1s STEP 1s]

FROM <http:...>

WHERE {

?message ex:observeChlorine ?observation .

?observation ex:isProducedBy ?sensorId .

?sensorId ex:belongsTo ?sector .

?sensorId ex:isCreatedBy ?manufacture_ID .

rdfs:label ?label . }
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B. Queries for the evaluation in

Chapter 7

Q1

Q2

Q3

Q4

SELECT ?s ?o1

WHERE {

?s a ?o ;

?s ssn:isProducedBy ?o1 .}

Q5
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SELECT ?s ?o1 ?o2 ?o3 ?o4 ?o5

WHERE { {

?s a ?o .

?s ssn:isProducedB ?o1 .

?s ssn:hasValue ?o2 . }

UNION {

?o2 a ?o3 .

?o2 ssn:startTime ?o4 .

?o2 qudt:numericValue ?o5 . }}

Q6

SELECT ?s ?o1 ?o2 ?o3 ?o4 ?o5 ?o6

WHERE {

?s a ?o .

?s ssn:isProducedBy ?o1 .

?s ssn:hasValue ?o2 .

?o2 a ?o3 .

?o2 ssn:startTime ?o4 .

?o2 qudt:unit ?o5 .

?o2 qudt:numericValue ?o6 . }

Q7

SELECT ?s ?o1 ?o2 ?o3

WHERE {

?s ssn:hasValue ?o1 .

?s ssn:hasValue ?o2 .

?s ssn:hasValue ?o3 .

?o1 a waterML:flow .

?o2 a waterML:temperature .

?o3 a waterML:chlorine. }

Q8
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SELECT ?s ?o1 ?o2 ?o3

WHERE {

?s ssn:hasValue ?o1 .

?s ssn:hasValue ?o2 .

?s ssn:hasValue ?o3 .

?o1 a waterML:flow .

?o2 a waterML:temperature .

?o3 a waterML:chlorine. }

Q9

SELECT ?o11 ?o21 ?o31

WHERE {

?s ssn:hasValue ?o1 .

?s ssn:hasValue ?o2 .

?s ssn:hasValue ?o3 .

?o1 a waterML:flow.

?o1 qudt:numericValue ?o11 .

?o2 a waterML:temperature.

?o2 qudt:numericValue ?o21 .

?o3 a waterML:chlorine .

?o3 qudt:numericValue ?o31 .}
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C. Queries for the evaluation in

Chapter 8

C.1. Queries

C.1.1. Queries with inferences over concept hierarchies

Q1: Inferences are required on the Professor concept which has no direct instances

in LUBM datasets.

SELECT ?n

WHERE {

?x rdf:type lubm:Professor;

?x lubm:name ?n.}

Q2: Inferences are required on both the Professor and Student concepts.

SELECT ?ns ?nx

WHERE {

?x rdf:type lubm:Professor;

?x lubm:name ?nx.

?s lubm:advisor ?x;

?s rdf:type lubm:Student.

?s lubm:name ?ns. }

C.1.2. Query with inferences over property hierarchies

Q3: Inferences are required for the memberOf property which has on direct sub

property and one indirect sub property.

SELECT ?x ?o WHERE { ?x lubm:memberOf ?o.}
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C.1.3. Queries with inferences over both concept and property

hierarchies

Q4: This query mixes the Q1 and Q3 and thus necessitates to reason over the

Professor and memberOf hierarchies

SELECT ?o ?n

WHERE {

?x rdf:type lubm:Professor;

?x memberOf ?o;

?x lubm:name ?n.

}

Q5: This query goes further than Q4 by mixing Q2 and Q3, i.e., it requires reasoning

over the Professor and Student concept hierarchies and the memberOf property

hierarchy.

SELECT ?ns ?nx ?o

WHERE {

?x rdf:type lubm:Professor;

?x lubm:name ?nx;

?x lubm:memberOf ?o.

?s lubm:advisor ?x;

?s rdf:type lubm:Student;

?s lubm:name ?ns.

}

C.1.4. Query with inferences over the owl:sameAs property

Q6: Inferences are required over a clique of similar individuals of the type PostDoc.

SELECT ?n ?e

WHERE {

?x rdf:type lubm:PostDoc;

?x lubm:name ?n;

?x lubm:emailAddress ?e.

}
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C.1.5. Queries with inferences over concept, property hierarchies and

owl:sameAs

Q7: Inferences over the Faculty concept hierarchy, which includes PostDoc sameAs

individuals and the memberOf property.

SELECT ?o ?n

WHERE {

?x rdf:type lubm:Faculty;

?x memberOf ?o;

?x lubm:name ?n.}

Q8: The most complex query of our evaluation with two inferences over concept

hierarchies (Faculty and Student), with the former containing sameAs individual

cliques, and inferences over the memberOf property hierarchy.

SELECT ?ns ?nx ?o

WHERE {

?x rdf:type lubm:Faculty;

?x lubm:name ?nx;

?x lubm:memberOf ?o.

?s lubm:advisor ?x;

?s rdf:type lubm:Student;

?s lubm:name ?ns.}

C.2. Details on our continuous query extension

The STREAMING clause is used to initialize a Spark Streaming context. As in other

RSP query languages, the WINDOW and SLIDE keywords respectively specify the range

and size of a windowing operator. Since Spark Streaming is based on a micro-batch

processing model, we defined a BATCH clause to assign the time interval of each micro-

batch. Basically, a single micro-batch represents a RDD, Spark’s main abstraction.

For each triggered query execution, Spark Streaming receives a segment of Dstreams

which essentially consists of an RDD sequence.

The STREAMING clause is used to initialize a Spark Streaming context. As in

other RSP query languages, the WINDOW and SLIDE keywords respectively specify

the range and size of a windowing operator. Since Spark Streaming is based on a
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micro-batch processing model, we defined a BATCH clause to assign the time interval

of each micro-batch. Basically, a single micro-batch represents a RDD, Spark’s main

abstraction. For each triggered query execution, Spark Streaming receives a segment

of Dstreams which essentially consists of an RDD sequence.

The REGISTER clause concerns the SPARQL queries to be processed. StriderR al-

lows to register multiple queries, and uses a thread pool to launch all registered

queries asynchronously. However, the optimization of multiple SPARQL queries is

beyond the scope of this paper. Inside REGISTER, each continuous SPARQL query

possesses a query ID. The REASONING clause enables the end-user to select a combina-

tion of concept/property hierarchy and sameAs inferences. Once REASONING service

is triggered, StriderR automatically rewrites the given SPARQL query to its LiteMat

mapping. Moreover, incoming data stream will also be encoded within the rules of

LiteMat KBs.
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D. Queries for the evaluation in

Chapter 9

D.1. Waves dataset, non-recursive

Q1:

va l atom tp1 = Atom( addPref ( ssnPref , ”hasValue” ) , Term( ”S” ) , Term( ”O” ) )

va l atom res = Atom( resIRI , Term( ”S” ) )

va l ru l e1 = Rule ( atom res , Set ( atom tp1 ) , f w in ( range , s l ide ) )

Program (Set ( ru l e1 ) )

Q2:

va l atom tp1 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”S” ) , Term( ”O1” ) )

va l atom tp2 = Atom( addPref ( ssnPref , ” startTime ” ) , Term( ”S” ) , Term( ”O2” ) )

va l atom tp3 = Atom( addPref ( qudtPref , ” un i t ” ) , Term( ”S” ) , Term( ”O3” ) )

va l atom tp12 = Atom( addTempPref ( ” tp12” ) , Term( ”S” ) , Term( ”O2” ) )

va l a tom resu l t = Atom( resIRI , Term( ”S” ) , Term( ”O3” ) )

va l ru l e1 = Rule ( atom tp12 , Set ( atom tp1 , atom tp2 ) , f w in ( range , s l ide ) )

va l ru l e2 = Rule ( atom resu l t , Set ( atom tp12 , atom tp3 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru l e2 ) )

Q3:

va l atom tp1 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”S” ) , Term( ”O1” ) )

va l atom tp2 = Atom( addPref ( ssnPref , ” startTime ” ) , Term( ”S” ) , Term( ”O2” ) )

va l atom tp3 = Atom( addPref ( qudtPref , ” un i t ” ) , Term( ”S” ) , Term( ”O3” ) )

va l atom tp4 = Atom( addPref ( qudtPref , ”numericValue” ) , Term( ”S” ) , Term( ”O4” ) )

va l atom tp5 = Atom( addPref ( ssnPref , ” isProducedBy” ) , Term( ”O” ) , Term( ”O5” ) )

va l atom tp6 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”O” ) , Term( ”O6” ) )

va l atom tp7 = Atom( addPref ( ssnPref , ”hasValue” ) , Term( ”O” ) , Term( ”S” ) )

va l atom star1 = Atom( addTempPref ( ” s ta r1 ” ) , Term( ”S” ) , Term( ”O1” ) , Term( ”O2” ) , Term( ”O3” ) ,

Term( ”O4” ) )

va l atom star2 = Atom( addTempPref ( ” s ta r2 ” ) , Term( ”O” ) , Term( ”S” ) , Term( ”O5” ) , Term( ”O6” ) )
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va l a tom resu l t = Atom( resIRI , Term( ”O” ) , Term( ”O1” ) , Term( ”O2” ) , Term( ”O3” ) , Term( ”O4” ) ,

Term( ”O5” ) , Term( ”O6” ) )

va l ru l e1 = Rule ( atom star1 , Set ( atom tp1 , atom tp2 , atom tp3 , atom tp4 ) , f w in ( range ,

s l ide ) )

va l ru l e2 = Rule ( atom star2 , Set ( atom tp5 , atom tp6 , atom tp7 ) , f w in ( range , s l ide ) )

va l ru l e3 = Rule ( atom resu l t , Set ( atom star1 , atom star2 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru le2 , ru l e3 ) )

D.2. SRBench dataset, non-recursive

Q4:

va l atom tp1 = Atom( addPref ( obsPref , ” procedure ” ) , Term( ”Obs” ) , Term( ”Sen” ) )

va l atom tp2 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”Obs” ) , Term( addPref ( whtPref , ”

Ra in fa l lObse rvat i on ” ) ) )

va l a tom resu l t = Atom( resIRI , Term( ”Obs” ) , Term( ”Sen” ) )

va l ru l e1 = Rule ( atom resu l t , Set ( atom tp1 , atom tp2 ) , f w in ( range , s l ide ) )

Program (Set ( ru l e1 ) )

Q5:

va l atom tp1 = Atom( addPref ( obsPref , ” procedure ” ) , Term( ”Obs” ) , Term( ”Sen” ) )

va l atom tp2 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”Obs” ) , Term( addPref ( whtPref , ”

Ra in fa l lObse rvat i on ” ) ) )

va l atom tp3 = Atom( addPref ( obsPref , ” r e s u l t ” ) , Term( ”Obs” ) , Term( ”Res” ) )

va l atom star1 = Atom( addTempPref ( ” s ta r1 ” ) , Term( ”Obs” ) , Term( ”Sen” ) )

va l a tom resu l t = Atom( resIRI , Term( ”Obs” ) , Term( ”Res” ) )

va l ru l e1 = Rule ( atom star1 , Set ( atom tp1 , atom tp2 ) , f w in ( range , s l ide ) )

va l ru l e2 = Rule ( atom resu l t , Set ( atom star1 , atom tp3 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru l e2 ) )

Q6:

va l atom tp1 = Atom( addPref ( obsPref , ” procedure ” ) , Term( ”Obs” ) , Term( ”Sen” ) )

va l atom tp2 = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”Obs” ) , Term( addPref ( whtPref , ”

Ra in fa l lObse rvat i on ” ) ) )

va l atom tp3 = Atom( addPref ( obsPref , ” r e s u l t ” ) , Term( ”Obs” ) , Term( ”Res” ) )

va l atom tp4 = Atom( addPref ( obsPref , ” f l oa tVa lue ” ) , Term( ”Res” ) , Term( ”Value” ) )

va l atom tp5 = Atom( addPref ( obsPref , ”uom” ) , Term( ”Res” ) , Term( ”Uom” ) )

va l atom star1 = Atom( addTempPref ( ” s ta r1 ” ) , Term( ”Obs” ) , Term( ”Res” ) )

va l atom star2 = Atom( addTempPref ( ” s ta r2 ” ) , Term( ”Res” ) , Term( ”Uom” ) )

va l a tom resu l t = Atom( resIRI , Term( ”Obs” ) , Term( ”Uom” ) )

va l ru l e1 = Rule ( atom star1 , Set ( atom tp1 , atom tp2 , atom tp3 ) , f w in ( range , s l ide ) )

va l ru l e2 = Rule ( atom star2 , Set ( atom tp4 , atom tp5 ) , f w in ( range , s l ide ) )

va l ru l e3 = Rule ( atom resu l t , Set ( atom star1 , atom star2 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru le2 , ru l e3 ) )
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Q7:

va l atom tp1 = Atom( addPref ( ssnPref1 , ”observedBy” ) , Term( ”ObId” ) , Term( addPref (

s e r v i c ePr e f , ”AarhusTraff icData182955 ” ) ) )

va l atom tp2 = Atom( addPref ( saoPref , ”hasAvgSpeed” ) , Term( ”ObId” ) , Term( ”AvgSpeed” ) )

va l atom tp3 = Atom( addPref ( saoPref , ”hasAvgMeasuredTime” ) , Term( ”ObId” ) , Term( ”

AvgMeasuredTime” ) )

va l atom tp4 = Atom( addPref ( saoPref , ” hasVehicleCount ” ) , Term( ”ObId” ) , Term( ”VehicleCount ”

) )

va l atom res = Atom( resIRI , Term( ”ObId” ) , Term( ”AvgSpeed” ) )

va l r u l e = Rule ( atom res , Set ( atom tp1 , atom tp2 , atom tp3 , atom tp4 ) , f w in ( range , s l ide )

)

Q8:

va l atom tp1 = Atom( addPref ( ssnPref1 , ”observedBy” ) , Term( ”ObId” ) , Term( addPref (

s e r v i c ePr e f , ”AarhusTraff icData182955 ” ) ) )

va l atom tp2 = Atom( addPref ( saoPref , ” s t a tu s ” ) , Term( ”ObId” ) , Term( ” Status ” ) )

va l atom tp3 = Atom( addPref ( saoPref , ”hasAvgMeasuredTime” ) , Term( ”ObId” ) , Term( ”

AvgMeasuredTime” ) )

va l atom tp4 = Atom( addPref ( saoPref , ”hasAvgSpeed” ) , Term( ”ObId” ) , Term( ”AvgSpeed” ) )

va l atom tp5 = Atom( addPref ( saoPref , ”hasExtID” ) , Term( ”ObId” ) , Term( ”ExtID” ) )

va l atom tp6 = Atom( addPref ( saoPref , ”hasMedianMeasuredTime” ) , Term( ”ObId” ) , Term( ”

MedianMeasuredTime” ) )

va l atom tp7 = Atom( addPref ( ssnPref1 , ” startTime ” ) , Term( ”ObId” ) , Term( ”StartTime” ) )

va l atom tp8 = Atom( addPref ( saoPref , ” hasVehicleCount ” ) , Term( ”ObId” ) , Term( ”VehicleCount ”

) )

va l atom star1 = Atom( addTempPref ( ” s ta r1 ” ) , Term( ”ObId” ) ,Term( ” Status ” ) , Term( ”

AvgMeasuredTime” ) , Term( ”AvgSpeed” ) )

va l atom star2 = Atom( addTempPref ( ” s ta r2 ” ) , Term( ”ObId” ) , Term( ”ExtID” ) ,Term( ”

MedianMeasuredTime” ) , Term( ”StartTime” ) , Term( ”VehicleCount ” ) )

va l atom res = Atom( resIRI , Term( ”ObId” ) ,Term( ” Status ” ) , Term( ”AvgMeasuredTime” ) , Term( ”

AvgSpeed” ) , Term( ”ExtID” ) ,Term( ”MedianMeasuredTime” ) , Term( ”StartTime” ) , Term( ”

VehicleCount ” ) )

va l ru l e1 = Rule ( atom star1 , Set ( atom tp1 , atom tp2 , atom tp3 , atom tp4 ) , f w in ( range ,

s l ide ) )

va l ru l e2 = Rule ( atom star2 , Set ( atom tp1 , atom tp5 , atom tp6 , atom tp7 , atom tp8 ) , f w in (

range , s l ide ) )

va l ru l e3 = Rule ( atom res , Set ( atom star1 , atom star2 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru le2 , ru l e3 ) )

Q9:

va l atom1 = Atom( resIRI , Term( ”Pub” ) , Term( ”Author” ) )

va l atom2 = Atom( addPref ( lubmPref , ” publ icat ionAuthor ” ) , Term( ”Pub” ) , Term( ”Author” ) )

va l atom3 = Atom( addPref ( lubmPref , ” publ icat ionAuthor ” ) , Term( ”Pub1” ) , Term( ”Author2” ) )

va l atom4 = Atom( addPref ( lubmPref , ” publ icat ionAuthor ” ) , Term( ”Pub2” ) , Term( ”Author2” ) )

va l atom5 = Atom( resIRI , Term( ”Pub2” ) , Term( ”Author1” ) )

va l atom6 = Atom( resIRI , Term( ”Pub1” ) , Term( ”Author1” ) )
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va l ru l e1 = Rule ( atom1 , Set ( atom2 ) , f w in ( range , s l ide ) )

va l ru l e2 = Rule ( atom5 , Set ( atom6 , atom3 , atom4 ) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru l e2 ) )

Q10:

va l atomSubOrganizationOf XY = Atom( addPref ( lubmPref , ” subOrganizat ionOf ” ) , Term( ”X” ) ,

Term( ”Y” ) )

va l atomBaseOrg = Atom( addTempPref ( ”baseOrg” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomUpdateSubOrg XY = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomUpdateSubOrg XZ = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”X” ) , Term( ”Z” ) )

va l atomUpdateSubOrg YZ = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”Y” ) , Term( ”Z” ) )

va l atomUpdateSubOrg AB = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”A” ) , Term( ”B” ) )

va l atomResult = Atom( resIRI , Term( ”A” ) , Term( ”B” ) )

va l ru l e6 = Rule ( atomBaseOrg , Set ( atomSubOrganizationOf XY ) , f w in ( range , s l ide ) )

va l ru l e7 = Rule ( atomUpdateSubOrg XY , Set ( atomBaseOrg ) , f w in ( range , s l ide ) )

va l ru l e8 = Rule ( atomUpdateSubOrg XZ , Set ( atomUpdateSubOrg XY , atomUpdateSubOrg YZ ) , f w in (

range , s l ide ) )

va l ru l e9 = Rule ( atomResult , Set ( atomUpdateSubOrg AB) , f w in ( range , s l ide ) )

Program (Set ( ru le6 , ru le7 , ru le8 , ru l e9 ) )

Q11:

va l atom1 X = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”X” ) , Term( addPref ( lubmPref , ”

GraduateStudent” ) ) )

va l atom2 XY = Atom( addPref ( lubmPref , ”memberOf” ) , Term( ”X” ) , Term( ”Y” ) )

va l atom3 SY = Atom( addPref ( lubmPref , ”undergraduateDegreeFrom” ) , Term( ”S” ) , Term( ”Y” ) )

va l atom4 X = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”X” ) , Term( addPref ( lubmPref , ”

Un ive r s i ty ” ) ) )

va l atom5 X = Atom( addPref ( rdfSyntaxPref , ” type” ) , Term( ”X” ) , Term( ”Department” ) )

va l atom6 XY = Atom( addPref ( lubmPref , ” subOrganizationOf ” ) , Term( ”X” ) , Term( ”Y” ) )

va l atom6 YZ = Atom( addPref ( lubmPref , ” subOrganizationOf ” ) , Term( ”Y” ) , Term( ”Z” ) )

va l atomGraduateStudent = Atom( addTempPref ( ” graduateStudent ” ) , Term( ”X” ) )

va l atomMemberOf YX = Atom( addTempPref ( ”memberOf” ) , Term( ”Y” ) , Term( ”X” ) )

va l atomMemberOf XZ = Atom( addTempPref ( ”memberOf” ) , Term( ”X” ) , Term( ”Z” ) )

va l atomUgDegreeFrom YX = Atom( addTempPref ( ”ugDegreeFrom” ) , Term( ”Y” ) , Term( ”X” ) )

va l atomUgDegreeFrom XY = Atom( addTempPref ( ”ugDegreeFrom” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomUniv = Atom( addTempPref ( ”univ ” ) , Term( ”X” ) )

va l atomUniv Y = Atom( addTempPref ( ”univ ” ) , Term( ”Y” ) )

va l atomDept = Atom( addTempPref ( ”dept” ) , Term( ”X” ) )

va l atomDept Z = Atom( addTempPref ( ”dept” ) , Term( ”Z” ) )

va l atomBaseOrg = Atom( addTempPref ( ”baseOrg” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomUpdateSubOrg XY = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomUpdateSubOrg XZ = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”X” ) , Term( ”Z” ) )

va l atomUpdateSubOrg YZ = Atom( addTempPref ( ”updateSubOrg” ) , Term( ”Y” ) , Term( ”Z” ) )

va l atomTemp1 = Atom( addTempPref ( ”temp1” ) , Term( ”X” ) , Term( ”Y” ) )

va l atomTemp2 = Atom( addTempPref ( ”temp2” ) , Term( ”Y” ) )

va l atomResult = Atom( resIRI , Term( ”X” ) , Term( ”Y” ) )

va l ru l e1 = Rule ( atomGraduateStudent , Set ( atom1 X) , f w in ( range , s l ide ) )

va l ru l e2 = Rule (atomMemberOf YX , Set (atom2 XY) , f w in ( range , s l ide ) )

va l ru l e3 = Rule ( atomUgDegreeFrom YX , Set ( atom3 SY) , f w in ( range , s l ide ) )

va l ru l e4 = Rule ( atomUniv , Set ( atom4 X) , f w in ( range , s l ide ) )
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va l ru l e5 = Rule ( atomDept , Set ( atom5 X) , f w in ( range , s l ide ) )

//´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´ Recur s i v e Part ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

va l ru l e6 = Rule ( atomBaseOrg , Set (atom6 XY) )

va l ru l e7 = Rule ( atomUpdateSubOrg XY , Set ( atomBaseOrg ) , f w in ( range , s l ide ) )

va l ru l e8 = Rule ( atomUpdateSubOrg XZ , Set ( atomUpdateSubOrg XY , atomUpdateSubOrg YZ ) , f w in (

range , s l ide ) )

//´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́

va l ru l e9 = Rule (atomTemp1 , Set ( atomGraduateStudent , atomMemberOf XZ , atomUgDegreeFrom XY)

, f w in ( range , s l ide ) )

va l ru l e10 = Rule (atomTemp2 , Set ( atom6 YZ , atomUniv Y , atomDept Z ) , f w in ( range , s l ide ) )

va l ru l e11 = Rule ( atomResult , Set (atomTemp1 , atomTemp2) , f w in ( range , s l ide ) )

Program (Set ( ru le1 , ru le2 , ru le3 , ru le4 , ru le5 , ru le6 , ru le7 , ru le8 , ru le9 , ru le10 , ru l e11 )

)

Q12:

va l atom tp1 = Atom( addPref ( qudtPref , ”numericValue” ) , Term( ”S” ) , Term( ”O” ) )

va l atom res = Atom( resIRI , Term( ”S” ) , Term( ”O” ) )

va l r u l e = Rule ( atom res , Set ( atom tp1 ) )

Program (Set ( r u l e ) )

Q13:

va l atom = Atom( addPref ( obsPref , ” procedure ” ) , Term( ”Obs” ) , Term( ”Sen” ) )

va l a tom resu l t = Atom( resIRI , Term( ”Obs” ) , Term( ”Sen” ) )

va l r u l e = Rule ( atom resu l t , Set ( atom) )

Program (Set ( r u l e ) )

Q14:

va l atom = Atom( addPref ( ssnPref1 , ”observedBy” ) , Term( ”ObId” ) ,Term( addPref ( s e rv i c ePr e f , ”

AarhusTraff icData182955 ” ) ) )

va l atom res = Atom( resIRI , Term( ”ObId” ) )

va l r u l e = Rule ( atom res , Set ( atom) )

Program (Set ( r u l e ) )

Q15:

va l atom1 = Atom( addPref ( lubmPref , ” publ icat ionAuthor ” ) , Term( ”Pub” ) , Term( ”Author” ) )

va l atom res = Atom( resIRI , Term( ”Pub” ) , Term( ”Author” ) )

va l r u l e = Rule ( atom res , Set ( atom1 ) )

Program (Set ( r u l e ) )
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