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Iasonas KOKKINOS University College London Rapporteur

Victor LEMPITSKY Skolkovo Institute of Science and Technology Rapporteur

Lourdes AGAPITO University College London Examinateur

Ivan LAPTEV Inria Paris Examinateur

Nikos PARAGIOS École Centrale Paris Examinateur
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Abstract

Multilayer neural networks were first proposed more than three decades ago, and various architectures

and parameterizations were explored since. Recently, graphics processing units enabled very efficient

neural network training, and allowed training much larger networks on larger datasets, dramatically

improving performance on various supervised learning tasks. However, the generalization is still far

from human level, and it is difficult to understand on what the decisions made are based. To improve

on generalization and understanding we revisit the problems of weight parameterizations in deep neural

networks. We identify the most important, to our mind, problems in modern architectures: network

depth, parameter efficiency, and learning multiple tasks at the same time, and try to address them in

this thesis. We start with one of the core problems of computer vision, patch matching, and propose to

use convolutional neural networks of various architectures to solve it, instead of manual hand-crafting

descriptors. Then, we address the task of object detection, where a network should simultaneously

learn to both predict class of the object and the location. In both tasks we find that the number of

parameters in the network is the major factor determining it’s performance, and explore this phenomena

in residual networks. Our findings show that their original motivation, training deeper networks for

better representations, does not fully hold, and wider networks with less layers can be as effective as

deeper with the same number of parameters. Overall, we present an extensive study on architectures and

weight parameterizations, and ways of transferring knowledge between them.
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Résumé

Les réseaux de neurones profond ont été créés il y a plus de trois décennies avec des architectures

basiques, concernant particulièrement de petits signaux ; depuis, une grande diversité de modèles et

d’hyper-paramètres ont été explorés. Récemment, les calculs sur cartes graphiques ont permis aux

réseaux de neurones profonds d’être appliqués à des signaux beaucoup plus grands à plus de données

et ce avec des modèles significativement plus grands, cela a considérablement amélioré le rendement

dans de nombreuses tâches d’apprentissage supervisé. Cependant, il existe encore une différence de

performance significative avec celles obtenues par annotations humaines, cette dernière étant difficile à

interpréter car elle repose sur des critères difficiles à expliciter. Pour améliorer la généralisation et la

compréhension, nous ré-examinons les problèmes de paramétrage des poids des réseaux neuronaux pro-

fonds. Nous identifions et traitons les problèmes les plus importants dans les architectures modernes :

la profondeur du réseau, l’efficacité des paramètres et l’apprentissage multi-tâches,. Nous commençons

par l’un des problèmes fondamentaux de la vision par ordinateur, la correspondance de patch, et pro-

posons d’utiliser des réseaux neuronaux convolutifs de différentes architectures pour le résoudre, au lieu

de descripteurs prédéfinis. Ensuite, nous abordons la tâche de détection d’objets, où un réseau doit ap-

prendre simultanément à prédire à la fois la classe de l’objet et son emplacement. Dans les deux tâches,

nous constatons que le nombre de paramètres dans le réseau est le principal facteur déterminant sa per-

formance, et nous explorons ce phénomène dans les réseaux résiduels. Nos résultats montrent qu’il

existe un compromis entre profondeur et largeur des réseaux: contrairement à la pensée commune, les

meilleures performances ne sont pas obtenues par les réseaux les plus profonds, par contre les perfor-

mances semblent être guidées par le nombre de paramètres appris. De manière générale, nous présentons

une étude empirique approfondie sur les architectures et leurs paramétrisations, ainsi que sur les moyens

d’opérer un transfert d’apprentissage.

Keywords: réseau de neurones artificiels, apprentissage profond, vision par ordinateur
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Notation

This section provides a concise reference describing notation used throughout this document, taken from

Goodfellow et al. (2016).
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I Identity matrix with dimensionality implied by con-

text

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at

position i

diag(a) A square, diagonal matrix with diagonal entries given

by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of

A that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrixA

Ai,: Row i of matrixA

A:,i Column i of matrixA

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a



Abbreviations xix

Linear Algebra Operations

A> Transpose of matrixA

A+ Moore-Penrose pseudoinverse ofA

A�B Element-wise (Hadamard) product ofA andB

det(A) Determinant ofA

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect toX

∇Xy Tensor containing derivatives of y with respect to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) orH(f)(x) The Hessian matrix of f at input point x∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set S



Abbreviations xx

Probability and Information Theory

a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable,

or over a variable whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covari-

ance Σ



Abbreviations xxi

Functions

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we

write f(x) and omit the argument θ to lighten nota-

tion)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector, matrix, or tensor:

f(x), f(X), or f(X). This denotes the application of f to the array element-wise. For example, if

C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid values of i, j and k.

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning

X Them×nmatrix with input example x(i) in rowXi,:





Chapter 1

Introduction

Basic theory behind training deep multilayer neural networks was well developed back in the 80-90s,

but, mostly due to the lack of suitable computing machines, did not see as much progress until until

recently, when the good fit of graphics processing units (GPUs) to parallel nature of calculations in

neural networks was noticed. Since then, the number of research works and applications of neural

networks in various fields exploded, and formed a new direction of training deep networks on large

amounts of data, called “deep learning”.

If we look at modern deep neural networks, and compare to the ones trained in their early days, we find

that there are not so many differences. Variants of stochastic gradients descent with momentum are still

used for training, L1 or L2 are still the most effective regularization techniques, cross entropy losses are

the most popular choice for training classifiers. The major change was weight reparameterization, which

actually allowed successful training of deep networks.

Even five years ago training deep neural networks was very difficult for several reasons. First, it was

very difficult to initialize networks such that either activations or gradients would not explode or vanish

after a 5-6 layers. Second, large networks would suffer from overfitting, so strong regularization was

needed. Finally, training deeper network is against the parallel nature of neural networks. However,

deeper networks have the potential to build more powerful representations, useful for various tasks.

In this thesis we identify several issues with parameterizations and architectures of deep neural networks,

and propose several ways to improve their efficiency and understanding. For experimental evaluation we

choose computer vision tasks.

1
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ConvNet

similarity

patch 1 patch 2

decision network

Figure 1.1: Patch matching with a convolutional neural network

We start with one of the core problems of computer vision, patch matching, which is probably one of the

most fundamental tasks in computer vision and image analysis, that has given rise to the development of

many hand-designed feature descriptors over the past years, including SIFT, that had a huge impact in the

computer vision community. Yet, such manually designed descriptors may be unable to take into account

in an optimal manner all the different factors that can affect the final appearance of image patches. On

the other hand, nowadays one can easily gain access to (or even generate using available software) large

datasets that contain patch correspondences between images. This begs the following question: can we

make proper use of such datasets to automatically learn a similarity function for image patches ? Our

goal is to affirmatively address the above question. We show how to learn directly from image data

(i.e., without resorting to manually-designed features) a general similarity function for comparing image

patches. To encode such a function, we opt for a convolutional neural network-based model that is

trained to account for a wide variety of changes in image appearance. To that end, we explore and study

multiple neural network architectures, including novel NCC-networks, which are specifically adapted

to this task. We show that such an approach can significantly outperform the state-of-the-art on several

problems and benchmark datasets. The contributions of this part are the following:

• We learn directly from image data (i.e., without any manually-designed features) a general sim-

ilarity function for patches that can implicitly take into account various types of transformations

and effects (due to e.g., a wide baseline, illumination, etc.).

• We explore and propose a variety of different neural network models adapted for representing such

a function, highlighting at the same time network architectures that offer improved performance.
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Figure 1.2: MultiPathNet model architecture

• We apply our approach on several problems and benchmark datasets, showing that it significantly

outperforms the state-of-the-art and that it leads to feature descriptors with much better perfor-

mance than manually designed descriptors (e.g., SIFT, DAISY) or other learnt descriptors as in

Simonyan et al. (2014). Importantly, due to their convolutional nature, the resulting descriptors

are very efficient to compute even in a dense manner.

• Last, we present NCC-networks, which are neural networks where the convolution operation is

being replaced by that of normalized cross correlation, and show their significant improvements

over convolutional networks in patch comparison task. We furthermore show their generality and

their promising performance by presenting experimental results on the ImageNet classification

task.

Then, we address the task of object detection, where a network should simultaneously learn to both pre-

dict class of the object and the location. Recognition requires network architecture to have invariance to

certain transformations, reducing localization capabilities, so we propose to augment the network with

multiple information flows. For experiments we choose COCO object detection dataset. Proposed in

2015, this dataset presented several new challenges for object detection over older very popular VOC

datasets. In particular, it contains objects at a broad range of scales, less prototypical images, and re-

quires more precise localization. To address these challenges, we test three modifications to the standard

Fast R-CNN object detector: (1) skip connections that give the detector access to features at multiple

network layers, (2) a foveal structure to exploit object context at multiple object resolutions, and (3) an

integral loss function and corresponding network adjustment that improve localization. The result of

these modifications is that information can flow along multiple paths in our network, including through
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Figure 1.3: Residual and wide residual blocks

features from multiple network layers and from multiple object views. We refer to our modified classifier

as a ‘MultiPath’ network. We couple our MultiPath network with DeepMask object proposals, which

are well suited for localization and small objects, and adapt our pipeline to predict segmentation masks

in addition to bounding boxes. The combined system improves results over the baseline Fast R-CNN

detector with Selective Search by 66% overall and by 4× on small objects. It placed second in both the

COCO 2015 detection and segmentation challenges.

In both tasks of patch matching and object detection we find that number of parameters in the network is

major factor determining it’s performance, and explore this phenomena in residual networks. Residual

networks (ResNet) proposed to reparameterize network such that to output of every pair of convolutional

layers added it’s input. ResNet were shown to be able to scale up to thousands of layers and still have

improving performance, and achieved outstanding results on various tasks.

However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers,

which makes these networks very slow to train. To tackle these problems, we conduct a detailed ex-

perimental study on the architecture of ResNet blocks, based on which we propose a novel architecture

where we decrease depth and increase width of residual networks. We call the resulting network struc-

tures wide residual networks (WRNs) and show that these are far superior over their commonly used

thin and very deep counterparts. The contributions of this part are the following:

• We present a detailed experimental study of residual network architectures that thoroughly exam-

ines several important aspects of ResNet block structure.

• We propose a novel widened architecture for ResNet blocks that allows for residual networks with

significantly improved performance.
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• We propose a new way of utilizing dropout within deep residual networks so as to properly regu-

larize them and prevent overfitting during training.

• Last, we show that our proposed ResNet architectures achieve state-of-the-art results on several

datasets dramatically improving accuracy and speed of residual networks.

Based on this evidence, we conclude that the initial motivation behind ResNet - training deeper net-

works - does not fully hold, and the benefits come from increased capacity, rather than from depth.

Based on this, we explore alternative definitions of ResNet, and propose an implicit skip-connection via

weight parameterization as a sum of weight and Dirac delta function. This parameterization has a minor

computational cost at training time and no cost at all at inference, as both Dirac parameterization and

batch normalization can be folded into convolutional filters, so that network becomes a simple chain of

convolution-ReLU pairs. The contributions of DiracNets part are the following:

• We propose generic Dirac weight parameterization, applicable to a wide range of neural network

architectures;

• Our plain Dirac parameterized networks are able to train end-to-end with hundreds of layers.

Furthermore, they are able to train with massive number of parameters and still generalize well

without negative effects of overfitting;

• Dirac parameterization can be used in combination with explicit skip-connections like ResNet, in

which case it eliminates the need of careful initialization.

• In a trained network Dirac-parameterized filters can be folded into a single vector, resulting in a

simple and easily interpretable VGG-like network, a chain of convolution-ReLU pairs.

Finally, we explore the phenomena of knowledge distillation, allowing to transfer knowledge from a

large teacher network to a smaller and more efficient student network. In addition to a common approach

of using outputs of a neural network for this, we propose to use attention defined in intermediate layers,

useful for understanding network predictions.

We choose attention, as it plays a critical role in human visual experience, and, furthermore, it has re-

cently been demonstrated that it can also play an important role in the context of applying artificial

neural networks to a variety of tasks from fields such as computer vision and NLP. We show that, by

properly defining attention for convolutional neural networks, we can actually use this type of informa-

tion in order to significantly improve the performance of a student CNN network by forcing it to mimic
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Figure 1.4: Attention transfer

the attention maps of a powerful teacher network. We propose several novel methods of transferring

attention, showing consistent improvement across a variety of datasets and convolutional neural network

architectures.

Contributions of this last chapter on knowledge transfer via attention maps:

• We propose attention as a mechanism of transferring knowledge from one network to another.

• We propose the use of both activation-based and gradient-based spatial attention maps.

• We show experimentally that our approach provides significant improvements across a variety of

datasets and deep network architectures, including both residual and non-residual networks.

• We show that activation-based attention transfer gives better improvements than full-activation

transfer, and can be combined with knowledge distillation.

1.1 Thesis outline

The document is organized as follows: Chapter 2 presents and overview of related work, Chapter 3

presents a method for learning supervised neural network for patch comparison from data, Chapter 4

presents a network for object detection in which information can follow several paths, Chapter 5 ex-

plores deep and wide residual networks for object recognition, and Chapter 6 proposes a novel way of

knowledge distillation for neural networks. Finally, Chapter 7 concludes the work, presenting possible

avenues for future work.
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1.2 Contributions

Overall, in this thesis we present a detailed study on weight parameterizations and architectures of deep

neural networks for computer vision. We propose to use convolutional neural networks for the task of

patch comparison, instead of hand-crafted features, and explore various architectures and weight sharing.

We also explore various architectures for the task of object detection with convolutional neural networks.

In both tasks we notice some interesting properties such networks have, and focus on the understanding

of depth, width, and number of parameters in residual networks. Finally, we propose a novel way of

doing knowledge transfer between convolutional neural networks, using attention transfer.

All publications, software and project codes developed during this PhD are available in free access.

Below are the lists of publications and corresponding codes for selected projects.

1.2.1 Publications

The work done during this PhD led to the following publications:

Peer-reviewed conferences:

• Learning to Compare Image Patches via Convolutional Neural Networks, Sergey Zagoruyko and

Nikos Komodakis, at Computer Vision and Pattern Recognition (CVPR), 2015 Zagoruyko and

Komodakis (2015);

• A MultiPath Network for Object Detection, Sergey Zagoruyko, Adam Lerer, Tsung-Yi Lin, Pedro

O. Pinheiro, Sam Gross, Soumith Chintala and Piotr Dollár, at British Machine Vision Conference

(BMVC), 2016 Zagoruyko et al. (2016);

• Wide Residual Networks, Sergey Zagoruyko and Nikos Komodakis, at British Machine Vision

Conference (BMVC), 2016 Zagoruyko and Komodakis (2016b);

• Paying More Attention to Attention: Improving the Performance of Convolutional Neural Net-

works via Attention Transfer, Sergey Zagoruyko and Nikos Komodakis, at International Confer-

ence on Learning Representations (ICLR), 2017 Zagoruyko and Komodakis (2017b);

• Scaling the Scattering Transform: Deep Hybrid Networks, Edouard Oyallon, Eugene Belilovsky

and Sergey Zagoruyko, at International Conference on Computer VisionOyallon et al. (2017).
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• Benchmarking Deep Learning Frameworks For The Classification Of Very High Resolution Satel-

lite Multispectral Data, Maria Papadomanolaki, Maria Vakalopoulou, Sergey Zagoruyko, Kon-

stantinos Karantzalos, at ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Infor-

mation Sciences (ISPRS), 2016Papadomanolaki et al. (2016)

• A MRF shape prior for facade parsing with occlusions, Mateusz Kozinski, Raghudeep Gadde,

Sergey Zagoruyko, Guillaume Obozinski, Renaud Marlet, at Computer Vision and Pattern Recog-

nition (CVPR), 2015 Kozinski et al. (2015);

Journals:

• Deep Compare: A Study on Using Convolutional Neural Networks to Compare Image Patches,

Sergey Zagoruyko and Nikos Komodakis, at Computer Vision and Image Understanding Special

Issue: Deep Learning 2016 Zagoruyko and Komodakis (2016a).

Technical reports:

• DiracNets: Training Very Deep Neural Networks Without Skip-Connections, Sergey Zagoruyko

and Nikos Komodakis, technical report, 2017 Zagoruyko and Komodakis (2017a).

1.2.2 Software contributions

Code for projects

• DeepCompare, code and pretrained models for training and applying neural networks for patch

matching (Lua Torch, Caffe, Matlab, PyTorch)

https://github.com/szagoruyko/cvpr15deepcompare

• MultiPathNet, code and pretrained models for training and applying object detection networks on

COCO 2015 dataset (Lua Torch)

https://github.com/facebookresearch/multipathnet

• Wide-ResNet, code for training wide residual networks on CIFAR, SVHN and ImageNet (Lua

Torch, PyTorch)

https://github.com/szagoruyko/wide-residual-networks

https://github.com/szagoruyko/cvpr15deepcompare
https://github.com/facebookresearch/multipathnet
https://github.com/szagoruyko/wide-residual-networks
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• AttentionTransfer, code for training networks with knowledge distillation and attention transfer

losses on CIFAR and ImageNet (PyTorch)

https://github.com/szagoruyko/attention-transfer

• DiracNets, code for training networks with Dirac parameterization (PyTorch)

https://github.com/szagoruyko/diracnets

https://github.com/szagoruyko/attention-transfer
https://github.com/szagoruyko/diracnets




Chapter 2

Background

In this chapter we briefly describe operations and training methods of modern multilayer neural net-

works, and used in this manuscript. We mention essential operations such as convolution and activation

functions, as well as more recent batch normalization and skip-connections.

11
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2.1 Neural networks

A detailed overview of deep learning history, including supervised learning (SL), unsupervised learning

(UL) with feed-forward and recurrent neural networks can be found in Schmidhuber (2015). In this chap-

ter we include a very brief summarization of history of feed-forward networks, including convolutional,

and backpropagation.

First ideas related to neural networks started to appear as early as 1800s, as first variants of linear regres-

sion methods Legendre (1805); Gauss (1809) were essentially supervised neural networks. Architectures

actually referred to as neural networks, however, first appeared in 1940s McCulloch and Pitts (1943), and

did not learn. SL networks, such as perceptron Rosenblatt (1958), and UL methods as self-organizing

maps and associative memory Kohonen (1972); Hopfield (1982); Kohonen (1988) appeared in the fol-

lowing decades.

Jürgen Schmidhuber names Group Method of Data Handling (GMDH) Ivakhnenko and Lapa (1965);

Ivakhnenko et al. (1967); Ivakhnenko (1968, 1971) one of the first methods of training deep neural

networks. It had Kolmogorov-Gabor activation functions, could be trained with 8 layers and used now

traditional data split. He also names later Neocognitron Fukushima (1980) the first deep artificial neural

network and the first to incorporate the neurophysiological insights. It was also the first convolutional

neural network, on which we continue in section 2.1.2.

We briefly describe multilayer neural networks and their building blocks in the following subchapters.

2.1.1 Multi-layer perceptron

Multi-layer neural network is defined by a vector of parameters θ and a function f of inputs x and

θ. The function and parameters are typically split into simpler operations, called layers. Normally,

f(x,θ) is trained to approximate some function g(x), with a loss L defined on outputs of f(x,θ),

optimizing which involves doing gradient descent using gradients of L w.r.t. θ computed via chain rule,

or backpropagation, which we describe in section 2.2.

Let’s review a basic neural network, multi-layer perceptron (MLP) with a single hidden layer. Let it have

vector of parameters θ = vec(W ,v, b), whereW is a 2-dimensional weight matrix of the hidden layer

with biases vector b, v weight vector of the output layer, and vec is a vectorization function. Let it also

have sigmoid activation function σ(h) of outputs of previous layer h. Function of input vector x and θ
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Figure 2.1: MLP with a single hidden layer.

defining MLP is the following:

f(x,θ) =

N∑
i=1

viσ(w>i x+ bi).

Schematic representation of such function can be found on figure 2.1. Theoretically, such function is

able to approximate any function Cybenko (1989); Hornik et al. (1989), given enough (possibly very

large number) of neurons in the hidden layerW . It does not define if such network is learnable, though.

In practice, neural networks are defined by a more complex combinations of layers, as training MLP on

highly multidimensional data is often too costly or infeasible.

2.1.2 Convolutional neural networks

The first predecessor of modern convolutional neural networks was Neocognitron Fukushima (1980),

heavily inspired from mammalian visual cortex. In a simplified form, multilayer convolutional neural

networks for document recognition were proposed in LeCun et al. (1998). Convolutional neural net-

works introduce weight sharing to the matrix multiplication as in MLP, and allow efficient approxima-

tion by doing operations in local neighborhoods of data and activations with shared parameters. Despite

being introduced almost two decades ago, basic architecture and means of training remain almost un-

changed even today. For example, very similar convolutional neural network was used by Krizhevsky

et al. (2012b) to win ImageNet 2012 competition with their famous AlexNet architecture. We further

review the most common components of modern convolutional neural networks: convolutional layer,

activation function, and batch normalization.
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Figure 2.2: Schematic representation of convolving input of size 4×4 (blue) with filters of size
3× 3, output is 2× 2 (cyan) Dumoulin and Visin (2016)

Let I be output of previous hidden layer or input image (input to current layer), S output of the current

layer, andK be the filters of the current layer. We define convolution operation by ∗ symbol:

S = K ∗ I

For a single plane 2-dimensional input I and filterK of size N ×M with no padding output at position

k,m is a discrete cross correlation of I andK:

S(k,m) =
N−1∑
i=0

M−1∑
j=0

K(i, j)I(k + i,m+ j)

See also visualization on fig. 2.2. Various modifications for neural networks exist, such as depthwise,

grouped, dilated, etc., we refer reader to Dumoulin and Visin (2016) for more details and explanations.

For backpropagation derivatives w.r.t. I andK need to be computed, which are convolutions themselves.

2.1.3 Activation function

Activation is an essential operation adding complexity and capacity to the network. It needs to be

differentiable and nonlinear (not necessarily continuously differentiable) to work with backpropagation.

It is typically an elementwise function of output of the previous layer x, e.g. sigmoid activation function:

σ(x) =
1

1 + exp(−x)

Recently, ReLU gained popularity over hyperbolic tangent and sigmoid functions, due to simplicity and

improved convergence and generalization. It is a simple thresholding operation (fig. 2.3):

g(x) = max(0, x)



Background 15

−4 −2 0 2 4

x

−1

0

1

2

3

4

5

g
(x

)

ReLU

Tanh

Sigmoid

Figure 2.3: ReLU, Sigmoid and Tanh activation functions.

It backpropagates error e where x > 0:

∂g

∂x
e =


e, if x > 0

0, otherwise

so that both output and gradient have a lot of zeros, i.e. their distribution is significantly different from

the distribution of input.

Other nonlinearities were proposed, such as ELU Clevert et al. (2015), parametric ReLU He et al. (2015)

and leaky ReLU Maas et al. (2013), and search continues, but in practice changing nonlinearity brings

no or marginal benefits over ReLU.

Let’s analyze a network which is a sequential chain of convolution-ReLU layers (fig. 2.4):

y = g(Wn ∗ g(Wn−1 ∗ g(...W1 ∗ x...)))

If we would assumeW and input to the network are drawn from normal distributionN (0, 1), activations

would quickly diminish to zeroes. Even with weight initialization that aims to preserve activation or error

variance through the network such as He et al. (2015), it is difficult to preserve both. Batch normalization

in the following section significantly simplifies initialization.
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Figure 2.4: Deep neural network with 8 hidden layers.

2.1.4 Batch normalization

Batch normalization Ioffe and Szegedy (2015) aims to remove internal covariate shift by performing

batch-wise mean and std normalization. Statistics are computed over minibatch dimension. Let x be a

minibatch of size m, it’s per-output mean and variance:

µ =
1

m

m∑
i

xi

σ2 =
1

m

m∑
i

(xi − µ)2

Batch normalization then performs:

yi =
xi − µ√
σ2 + ε

γ + β,

where γ and β are per-output scaling and bias coefficients.

It has been shown that batch normalization speed up convergence and significantly improves generaliza-

tion, increasing network capacity at the same time. Also, it allows setting large learning rates without

worrying about divergence. However, it complicates network structure, makes multi-GPU training more

difficult, and has different formulation in training/validation phases, so several alternatives were pro-

posed, such as weight normalization Salimans and Kingma (2016) and layer normalization Ba et al.

(2016), which, however, do not work as well in practice.

2.1.5 Skip-connections

Skip connection in it’s simplest form is a reparameterization which does addition of the layer output

to input, instead of simply propagating it further, e.g. hidden layer with sigmoid nonlinearity and skip-

connection:

y = x+ σ(Wx+ b)
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It can also be implemented in concatenation of input signal and output, or as a gated summation, for

example, as in LSTM Hochreiter and Schmidhuber (1997), or in Highway networks Srivastava et al.

(2015). ResNet basic building block actually has two linear-activation pairs in the residual part, and

batch normalization is essential for it to work.

2.2 Neural network training methods

Fitting deep neural networks with aforementioned blocks is typically done by optimizing a non-convex

objective function, a procedure called training. Let us briefly review the problem and the common

methods used to solve it.

Let {x(i),y(i)}, i = 1..N be a set X of N training pairs of inputs and labels, and θ the parameters of the

neural network defined as a function f(x;θ). The learning problem is then fitting θ into training data:

min
θ

1

N

N∑
i=1

L(f(x(i);θ),y(i)) + λ‖θ‖p, (2.1)

where L(ŷ(i),y(i)) is a loss function of predicted label ŷ(i) and target label y(i). Second term adds Lp-

regularization with coefficient λ. Most commonly used is L2-regularization, also referred to as weight

decay.

If f(x;θ) is defined by a multilayer neural network, 2.1 can be efficiently optimized using gradient de-

scent and backpropagation. Gradient descent in parameter space in context of Euler-LaGrange equations

was discussed since the 1960s Bryson (1961); Kelley (1960); Pontryagin et al. (1961), and efficient error

backpropagation in arbitrary, discrete NN-like networks was proposed in Linnainmaa (1970, 1976), and

was used to minimize control parameters in Dreyfus (1973). According to Schmidhuber (2015), the first

NN-specific application of backpropagation was described in Werbos (1981), and later in Parker (1985);

Lecun (1987); LeCun (1988).

Despite the existence of efficient second order methods Becker and LeCun (1989); Martens and Grosse

(2015), simple minibatch stochastic gradient descent (SGD) with momentum Polyak (1964) remains the

most efficient and commonly used optimization methods for deep neural networks. Simple minibatch

SGD is done by updates:

θk+1 ← θk −
ηk
n
∇fi(θk), (2.2)
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where ηk and n are learning rate at step k and minibatch size respectively. With the addition of the

velocity vector v the update rule becomes:

vk+1 ← αkvk −
ηk
n
∇fi(θk),

θk+1 ← θk + vk+1,

which is the update rule of SGD with momentum.

In case f(θk) is strongly convex or convex and smooth, there are convergence guarantees for SGD update

rules. However, neural network functions are highly non-convex, so it is unclear how to optimally set

learning rate rule ηk. Often used in practice are exponentially decaying ηk at every step, of every m > 1

steps. Several adaptive learning rates were proposed, which can be advantageous by setting different

learning rates for different coordinates, e.g. larger learning rates for coordinates with smaller gradients,

and smaller for larger gradients, such as AdaGrad Duchi et al. (2010), RMSProp, Adam Kingma and

Ba (2014) and others. Such methods result in biased gradient updates which change the underlying

optimization problem Wilson et al. (2017), and often end up with worse generalization error compared

to simple SGD.



Chapter 3

Using convolutional neural networks to

compare image patches

Comparing patches across images is probably one of the most fundamental tasks in computer vision and

image analysis, that has given rise to the development of many hand-designed feature descriptors over the

past years, including SIFT, that had a huge impact in the computer vision community. Yet, such manually

designed descriptors may be unable to take into account in an optimal manner all the different factors that

can affect the final appearance of image patches. On the other hand, nowadays one can easily gain access

to (or even generate using available software) large datasets that contain patch correspondences between

images. This begs the following question: can we make proper use of such datasets to automatically

learn a similarity function for image patches ? Our goal in this work is to affirmatively address the above

question. We show how to learn directly from image data (i.e., without resorting to manually-designed

features) a general similarity function for comparing image patches. To encode such a function, we opt

for a CNN-based model that is trained to account for a wide variety of changes in image appearance. To

that end, we explore and study multiple neural network architectures, including novel NCC-networks,

which are specifically adapted to this task. We show that such an approach can significantly outperform

the state-of-the-art on several problems and benchmark datasets.

This chapter is based on Deep Compare: A Study on Using Convolutional Neural Networks to Compare

Image Patches Zagoruyko and Komodakis (2016a).

19
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ConvNet

similarity

patch 1 patch 2

decision network

Figure 3.1: Our goal is to learn a general similarity function for image patches. To encode such
a function, here we make use of and explore convolutional neural network architectures.

3.1 Introduction

Comparing patches is a subroutine that plays an important role in a wide variety of vision tasks. These

can range from low-level tasks such as structure from motion, wide baseline matching, building panora-

mas, and image super-resolution, up to higher-level tasks such as object recognition, image retrieval, and

classification of object categories, to mention a few characteristic examples. Of course, the problem of

deciding if two patches correspond to each other or not is quite challenging as there exist far too many

factors that affect the final appearance of an image Nowak and Jurie (2007). These can include changes

in viewpoint, variations in the overall illumination of a scene, occlusions, shading, differences in camera

settings, etc. Many hand-crafted feature descriptors were designed for this task, including SIFT Lowe

(2004), which, however, may not be able to take into account in an optimal manner all of the aforemen-

tioned factors that determine the appearance of a patch. For this reason, in this work we aim to explore

if it is possible to generate a patch similarity function from scratch, i.e., without attempting to use any

manually designed features but instead directly learning this function from annotated pairs of raw image

patches.

To that end, inspired also by the recent advances in neural architectures and deep learning, we choose

to represent such a function in terms of a deep convolutional neural network LeCun (1988); Krizhevsky

et al. (2012b) (Fig. 3.1) with the help of large data collections of patch correspondences Snavely et al.

(2008). Given that there exist several ways in which patch pairs can be processed by the network or

in which the information sharing can take place, we are also interested in addressing the issue of what

specific network architectures are best to be used in a task like this. We thus explore and propose various

types of networks, having architectures that exhibit different trade-offs and advantages. This includes
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networks such as: (i) siamese (this type of network resembles the idea of having a descriptor, in which

case there are two branches – one per patch – in the network that share exactly the same architecture

and the same set of weights), (ii) pseudo-siamese (as siamese, but without sharing weights between

branches, the reason for which will be explained later), (iii) 2-channel (where, unlike previous models,

there is no direct notion of descriptor in the architecture and the network proceeds directly with the

similarity estimation), (iv) central-surround two-stream (where we modify the network to consist of two

separate streams, central and surround, which enable a processing in the spatial domain that takes place

over two different resolutions), (v) spatial-pyramid-pooling (SPP), (vi) deep networks, and (vii) NCC-

networks (these will be explained later). Many of the above variations can be used in conjunction with

each other, thus leading to a wide range of models for comparing patches. Based on these, we draw

interesting conclusions about which architectural choices help in improving performance in practice.

In all of the above cases, to train the proposed networks we are using as sole input a large database that

contains pairs of raw image patches (both matching and non-matching). This allows one to easily further

improve the performance of the proposed methodology for comparing patches simply by enriching such

a database with more samples, where software for automatically generating such samples can be readily

available Snavely et al. (2006).

This work extends Zagoruyko and Komodakis (2015) by providing a more complete study of the ar-

chitecture of patch matching convolutional networks along with new experimental results. In addi-

tion, inspired by normalized cross correlation (NCC) and the fact that convolutional networks from

Zagoruyko and Komodakis (2015) lack normalization compared to SIFT, we develop NCC-networks,

performing normalized cross correlation instead of convolution, and learning NCC-filters. We show that

NCC-networks achieve significantly better results than convolutional. To our knowledge, this is the first

attempt to train such networks, and to show their generality we also present corresponding results on the

ImageNet classification task.

To conclude this section, the chapter’s main contributions are as follows:

• We learn directly from image data (i.e., without any manually-designed features) a general sim-

ilarity function for patches that can implicitly take into account various types of transformations

and effects (due to e.g., a wide baseline, illumination, etc.).

• We explore and propose a variety of different neural network models adapted for representing such

a function, highlighting at the same time network architectures that offer improved performance.
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• We apply our approach on several problems and benchmark datasets, showing that it significantly

outperforms the state-of-the-art and that it leads to feature descriptors with much better perfor-

mance than manually designed descriptors (e.g., SIFT, DAISY) or other learnt descriptors as in

Simonyan et al. (2014). Importantly, due to their convolutional nature, the resulting descriptors

are very efficient to compute even in a dense manner.

• Last, we present NCC-networks, which are neural networks where the convolution operation is

being replaced by that of normalized cross correlation, and show their significant improvements

over convolutional networks in patch comparison task. We furthermore show their generality and

their promising performance by presenting experimental results on the ImageNet classification

task.

3.2 Related work

The conventional approach to compare patches is to use descriptors and a squared euclidean distance.

Most feature descriptors are hand-crafted as SIFT Lowe (2004), SURF Bay et al. (2006), DAISY Tola

et al. (2008), ORB Rublee et al. (2011), or even created with randomization as BRISK Leutenegger et al.

(2011) or BRIEF Calonder et al. (2010). Recently, methods for learning a descriptor have been proposed

Trzcinski et al. (2012, 2013), (e.g., DAISY-like descriptors learn pooling regions and dimensionality

reduction Brown et al. (2011)), Simonyan et al. Simonyan et al. (2014) proposed a convex procedure

for training on both tasks.

Our approach, however, is inspired by the recent success of convolutional neural networks Razavian

et al. (2014); Taigman et al. (2014); Szegedy et al. (2013); Eigen et al. (2014). Although these models

involve a highly non-convex objective function during training, they have shown outstanding results

in various tasks Razavian et al. (2014). Fischer et al. Fischer et al. (2014) analysed the performance

of convolutional descriptors from AlexNet network (that was trained on Imagenet dataset Krizhevsky

et al. (2012b)) on the well-known Mikolajczyk dataset Mikolajczyk and Schmid (2005) and showed

that these convolutional descriptors outperform SIFT in most cases except blur. They also proposed an

unsupervised training approach for deriving descriptors that outperform both SIFT and Imagenet trained

network.

Zbontar and LeCun in Zbontar and LeCun (2015) have recently proposed a CNN-based approach to

compare patches for computing cost in small baseline stereo problem and shown the best performance

in KITTI dataset. However, the focus of that work was only on comparing pairs that consist of very small
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patches like the ones in narrow baseline stereo. In contrast, here we aim for a similarity function that can

account for a broader set of appearance changes and can be used in a much wider and more challenging

set of applications, including, e.g., wide baseline stereo, feature matching and image retrieval.

After publication Zagoruyko and Komodakis (2015) served as baseline for a number of successful appli-

cations of convolutional neural networks in descriptor learning for keypoint matching, stereo-matching,

optical flow computation and tracking Bertinetto et al. (2016); Tao et al. (2016). Among them G et al.

(2016) and Balntas et al. (2016) improved results of siamese networks in patch matching by using triplet

loss functions, building on Hoffer and Ailon (2015), leading to more efficient architectures and better

training time. Hard negative mining and sampling strategies for training deep convolutional descriptors

were explored in Simo-Serra et al. (2015). These improvements are complementary and can be com-

bined with our work. Problem of assigning orientations to convolutional descriptors was explored in Yi

et al. (2016a). Directly learning the whole pipeline of detecting and matching keypoints was explored in

Yi et al. (2016b); Choy et al. (2016). Concurrently to our work, MatchNet Han et al. (2015) was released

with the same goal as ours. Our networks outperform MatchNet having lower descriptor dimensionality,

except in 4096d case, which we did not explore because of its implausible application.

Cross-correlation based descriptors were among the first descriptors used in computer vision Mikola-

jczyk and Schmid (2005), and are still popular in stereo matching Faugeras et al. (1993); Goesele et al.

(2007), because of their simplicity and ease of computation. It also offers invariance to illumination

changes, but poor invariance to affine transformations, which we propose to address by learning NCC-

filters. Compared to batch normalization Ioffe and Szegedy (2015) NCC-layer normalizes inputs across

a different dimension.

The remainder of the chapter is structured as follows. We first describe in section 3.3 a wide variety of

architectures that can be used to build patch comparison networks (many of which are possible to be

combined with each other), we then provide in section 3.4 details about the training process that was

followed, and finally in section 3.5 we evaluate the proposed networks on different datasets and tasks,

including patch comparing, wide baseline stereo estimation, descriptor evaluation and image classifica-

tion.

3.3 Architectures

As already mentioned, the input to the neural network is considered to be a pair of image patches.

Our models do not impose any limitations with respect to the number of channels in the input patches,
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Figure 3.2: Three basic network architectures: 2-channel on the left, siamese and pseudo-
siamese on the right (the difference between siamese and pseudo-siamese is that the latter does
not have shared branches). Color code used: cyan = Conv+ReLU, purple = max pooling,
yellow = fully connected layer (ReLU exists between fully connected layers as well).

i.e., given a dataset with colour patches the networks could be trained to further increase performance.

However, to be able to compare our approach with state-of-the-art methods on existing datasets, we

chose to use only grayscale patches during training. Furthermore, with the exception of the SPP model

described in section 3.3.2, in all other cases the patches given as input to the network are assumed to

have a fixed size of 64× 64 (this means that original patches may need to be resized to the above spatial

dimensions).

There are several ways in which patch pairs can be processed by the network and how the information

sharing can take place in this case. For this reason, we explored and tested a variety of models. We

start in section 3.3.1 by describing the three basic neural network architectures that we studied, i.e.,

2-channel, Siamese, Pseudo-siamese (see Fig. 3.2), which offer different trade-offs in terms of speed

and accuracy (note that, as usually, applied patch-matching techniques imply testing a patch against a

big number of other patches, and so re-using computed information is always useful). Essentially these

architectures stem from the different way that each of them attempts to address the following question:

when composing a similarity function for comparing image patches, do we first choose to compute a

descriptor for each patch and then create a similarity on top of these descriptors or do we perhaps choose

to skip the part related to the descriptor computation and directly proceed with the similarity estimation?

In addition to the above basic models, we also describe in section 3.3.2 extra variations concerning the

network architecture. These variations, which are not mutually exclusive to each other, can be used in

conjunction with any of the basic models described in section 3.3.1. Overall, this leads to a variety of

models that is possible to be used for the task of comparing image patches.
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3.3.1 Basic models

Siamese: This type of network resembles the idea of having a descriptor Bromley et al. (1993); Chopra

et al. (2005). There are two branches in the network that share exactly the same architecture and the

same set of weights. Each branch takes as input one of the two patches and then applies a series of con-

volutional, ReLU and max-pooling layers. Branch outputs are concatenated and given to a top network

that consists of linear fully connected and ReLU layers. In our tests we used a top network consisting

of 2 linear fully connected layers (each with 512 hidden units) that are separated by a ReLU activation

layer. Branches of the siamese network can be viewed as descriptor computation modules and the top

network - as a similarity function. For the task of matching two sets of patches at test time, descriptors

can first be computed independently using the branches and then matched with the top network (or even

with a distance function like l2).

Pseudo-siamese: In terms of complexity, this architecture can be considered as being in-between the

siamese and the 2-channel networks. More specifically, it has the structure of the siamese net described

above except that the weights of the two branches are uncoupled, i.e., not shared. This increases the

number of parameters that can be adjusted during training and provides more flexibility than a restricted

siamese network, but not as much as the 2-channel network described next. On the other hand, it main-

tains the efficiency of siamese network at test time.

2-channel: unlike the previous models, here there is no direct notion of descriptor in the architecture.

We simply consider the two patches of an input pair as a 2-channel image, which is directly fed to the

first convolutional layer of the network. In this case, the bottom part of the network consists of a series

of convolutional, ReLU and max-pooling layers. The output of this part is then given as input to a

top module that consists simply of a fully connected linear decision layer with 1 output. This network

provides greater flexibility compared to the above models as it starts by processing the two patches

jointly. Furthermore, it is fast to train, but in general at test time it is more expensive as it requires all

combinations of patches to be tested against each other in a brute-force manner.

We further denote siamese networks with siam prefix, and 2-channel - 2ch.

3.3.2 Additional models

In this section we provide additional architectures, that can be combined with the above, and describe

the structure of these networks in more detail. In doing so, our goal is to indicate specific architectural
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choices that are beneficial for the task of comparing patches. We thus explore how this task is affected

by the depth of the network (section 3.3.2) or by reducing the number of parameters through the use

of average pooling before the classification layer (section 3.3.2), we explore novel NCC-networks that

rely on the use of normalized cross correlation operations (section 3.3.2), central-surround networks that

rely on exploting information from multiple resolutions (section 3.3.2) as well as networks that properly

make use of spatial pyramid pooling when comparing patches (section 3.3.2).

Deep networks

Convolutional neural networks have seen a gradual increase of the number of layers in the last few

years, starting from AlexNet Krizhevsky et al. (2012b), VGG Simonyan and Zisserman (2015), Inception

Szegedy et al. (2015) to Residual He et al. (2016a) networks, corresponding to improvements in many

image recognition tasks. The superiority of deep networks has been spotted in several works in the recent

years Bianchini and Scarselli (2014); Montúfar et al. (2014). Inspired by this, we apply the technique

proposed by Simonyan and Zisserman in Simonyan and Zisserman (2015) advising to break up large

convolutional layers into smaller 3x3 kernels, separated by ReLU activations, which is supposed to

increase the nonlinearities inside the network and make the decision function more discriminative. They

also report that it might be difficult to initialize such a network, we, however, do not observe this behavior

and train the network from scratch as usual. In our case, when applying this technique to our model,

the convolutional part of the final architecture turns out to consist of one convolutional 4x4 layer and

6 convolutional layers with 3x3 layers, separated by ReLU activations. As we shall also see later in

the experimental results, such a change in the network architecture can contribute in further improving

performance. We also tried to utilize residual connections as proposed in He et al. (2016a), but did not

observe improvements probably due to simplicity of our task and less deep base network architecture.

2-channel-avg

This network architecture (further 2ch-avg) is similar to 2-channel, but with average pooling on top

before the final layer, which was shown to effectively reduce the number of parameters reducing the risk

of overfitting Lin et al. (2013), while at the same time speeding up the network. We note that average

pooling before the final decision layer is used in many recent successful architectures such as Inception

Szegedy et al. (2015) and ResNet He et al. (2016a).
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Central-surround two-stream networks

As its name suggests, the proposed architecture consists of two separate streams, central and surround,

which enable a processing in the spatial domain that takes place over two different resolutions. More

specifically, the central high-resolution stream receives as input two 32 × 32 patches that are generated

by cropping (at the original resolution) the central 32 × 32 part of each input 64 × 64 patch. Further-

more, the surround low-resolution stream receives as input two 32× 32 patches, which are generated by

downsampling at half the original pair of input patches. The resulting two streams can then be processed

by using any of the basic architectures described in section 3.3.1 (see Fig. 3.3 for an example that uses a

siamese architecture for each stream).

One reason to make use of such a two-stream architecture is because multi-resolution information is

known to be important in improving the performance of image matching. Furthermore, by consider-

ing the central part of a patch twice (i.e., in both the high-resolution and low-resolution streams) we

implicitly put more focus on the pixels closer to the center of a patch and less focus on the pixels in

the periphery, which can also help for improving the precision of matching (essentially, since pooling

is applied to the downsampled image, pixels in the periphery are allowed to have more variance during

matching). Note that the total input dimensionality is reduced by a factor of two in this case. As a result,

training proceeds faster, which is also one other practical advantage.

NCC networks

Normalization is an important part of many hand-crafted descriptors, due to various brightness, illumi-

nation, contrast, etc. conditions of patches coming from real images. Even a simple NCC-metric can

be used to efficiently compare image patches. While normalization in convolutional networks can be

achieved by adding certain normalization layers to some extent, we choose a different approach, incorpo-

rating NCC into convolutional layers directly, defining convolutional neural network consisting of NCC-

layers, which we call NCC-network. Each NCC-layer normalizes input data and its weights and learns

correlation filter coefficients. Any of the architectures above can be combined with NCC-networks, and,

as we show in experimental results, NCC-networks significantly outperform convolutional networks in

patch matching. On fig. 3.4b we present 2ch-ncc-avg schematic representation.

Below we describe the structure of NCC-layer. Normalized cross-correlation of discrete signals x and y

is defined as:

NCC(x, y) =
n∑
i=1

xi − µx
σx + ε

yi − µy
σy + ε

, (3.1)
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Figure 3.3: A central-surround two-stream network that uses a siamese-type architecture to
process each stream. This results in 4 branches in total that are given as input to the top decision
layer (the two branches in each stream are shared in this case).

where µx, µy and σi, σy are mean and std of signals x and y correspondingly

µx =
n∑
i=1

xi
n
, σx =

√√√√ 1

n

n∑
i=1

(xi − µx)2 , (3.2)

and ε is a small constant added to avoid numerical issues.

In a two-dimensional case when input tensor x has D features and size HxW and NCC-layer with N

neurons and filters of size KxK, then µx, σx are computed over spatial neighbourhoods of x with size

KxK and feature dimension, while µw, σw of NCC-filters w are computed over DxKxK dimensions,

resulting in exactly the same tensor size as in convolutional case.

We define NCC operation on input tensor x with filters w and biases b:

y = NCC(x,w) + b =
n∑
i=1

xi − µx
σx + ε

wi − µw
σw + ε

+ b . (3.3)

The bias is added to deactivate outputs with negative correlations, which are thresholded by activation

function, e.g. ReLU, if negative.

When backpropagating errors through NCC-layers gradients w.r.t. to inputs and weights chain rule is

used. Let:

w?i =
wi − µw
σw + ε

, x?i =
xi − µx
σx + ε

(3.4)
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Figure 3.4: SPP and NCC architectures. SPP network for a siamese architecture: SPP layers
(orange) are inserted immediately after the 2 branches of the network so that the top decision
layer has an input of fixed dimensionality for any size of the input patches. Color codes used
in NCC-scheme: blue = NCC+ReLU, green = avg pooling

Then the derivative of y w.r.t to input xi is:

δy

δxi
=

w?i
σx + ε

− xi
∑n

i=1w
?
i xi

(σx + ε)3
(3.5)

The second part of equation 3.5 contains output y and is simplified to:

δy

δxi
=

w?i
σx + ε

− xi
(σx + ε)2

y. (3.6)

Derivatives w.r.t. to weights are computed the same way containing output y variable in the second part,

so both derivatives w.r.t. inputs and weights can be computed in an efficient manner.

Unlike convolutional, NCC-networks initialization distribution parameters have no effect on forward

propagation, as weights are normalized. However it does make difference on backward propagation, so

we derived and empirically adjusted initialization technique for NCC-layers, following He et al. (2015).

We use zero-mean Gaussian distribution whose standard deviation equals to
√

10nl where nl is a number

of feature planes in the layer. If NCC-layer has batch normalization we set standard deviation to 1.
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Spatial pyramid pooling (SPP) networks

Up to this point we have been assuming that the network requires the input patches to have a fixed size

of 64 × 64. This requirement comes from the fact that the output of the last convolutional layer of the

network needs to have a predefined dimensionality. Therefore, when we need to compare patches of

arbitrary sizes, this means that we first have to resize them to the above spatial dimensions. However, if

we look at the example of descriptors like SIFT, for instance, we can see that another possible way to deal

with patches of arbitrary sizes is via adjusting the size of the spatial pooling regions to be proportional

to the size of the input patch so that we can still maintain the required fixed output dimensionality for

the last convolutional layer without deteriorating the resolution of the input patches.

This is also the idea behind the recently proposed SPP-net architecture He et al. (2014), which essentially

amounts to inserting a spatial pyramid pooling layer between the convolutional layers and the fully-

connected layers of the network. Such a layer aggregates the features of the last convolutional layer

through spatial pooling, where the size of the pooling regions is dependent on the size of the input.

Inspired by this, we propose to also consider adapting the network models of section 3.3.1 according to

the above SPP-architecture. This can be easily achieved for all the considered models (e.g., see Fig. 3.4a

for an example with a siamese model).

3.4 Learning

Optimization. We train all models in strongly supervised manner. We use a hinge-based loss term and

squared l2-norm regularization that leads to the following learning objective function

min
w

λ

2
‖w‖2 +

N∑
i=1

max(0, 1− yioneti ) , (3.7)

where w are the weights of the neural network, oneti is the network output for the i-th training sample,

and yi ∈ {−1, 1} the corresponding label (with −1 and 1 denoting a non-matching and a matching pair,

respectively).

ASGD with constant learning rate 1.0, momentum 0.9 and weight decay λ = 0.0005 is used to train

the models. We find that ASGD is not essential and standard SDG can be used as well, however ASGD

achieves slightly better results. Training is done in mini-batches of size 128. Weights are initialized

randomly and all models are trained from scratch. We also find that batch normalization Ioffe and
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Szegedy (2015) can be used to speed up training of siamese networks. In this case batch statistics should

be computed across examples of both siamese branches, otherwise they produce very different results

and training diverges.

Data Augmentation and preprocessing. To combat overfitting we augment training data by flipping

both patches in pairs horizontally and vertically and rotating to 90, 180, 270 degrees. As we don’t notice

overfitting while training in such manner we train models for a certain number of iterations, usually for

2 days, and then test performance on test set.

Training dataset size allows us to store all the images directly in GPU memory and very efficiently

retrieve patch pairs during training. Images are augmented “on-the fly”. We use Titan GPU in Torch

Collobert et al. (2011) and convolution routines are taken from cudnn library. Our NCC layer imple-

mentation is slightly slower than GEMM version of convolution on GPU, and significantly slower than

cudnn direct convolutions. NCC could be significantly faster if implemented directly similar to cudnn

or using FFT similar to Vasilache et al. (2014).

Our siamese descriptors on GPU are just 2 times slower than computing SIFT descriptors on CPU and 2

times faster than Imagenet descriptors on GPU according to Fischer et al. (2014).

3.5 Experimental results

We applied our models to a variety of problems and datasets. In the following we report extensive results,

and also provide comparisons with the state-of-the-art.

3.5.1 Local image patches benchmark

For the first evaluation of our models, we used the standard benchmark dataset from Brown et al. (2011)

that consists of three subsets, Yosemite, Notre Dame, and Liberty, each of which contains more than

450,000 image patches (64 x 64 pixels) sampled around Difference of Gaussians feature points. The

patches are scale and orientation normalized. Each of the subsets was generated using actual 3D cor-

respondences obtained via multi-view stereo depth maps. These maps were used to produce 500,000

ground-truth feature pairs for each dataset, with equal number of positive (correct) and negative (incor-

rect) matches.
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train test 2ch-ncc-avg 2ch-2stream 2ch-avg 2ch-deep 2ch Simonyan et al. (2014)

#parameters 0.97M 2.35M 0.97M 1.08M 0.91M -

Yos ND - 2.11 1.83 2.52 3.05 6.82
Yos Lib - 7.20 6.55 7.40 8.59 14.58
ND Yos 4.05 4.09 5.13 4.38 6.04 10.08
ND Lib 3.63 4.85 5.03 4.55 6.05 12.42
Lib Yos 4.24 5.00 5.00 4.75 7.00 11.18
Lib ND 1.04 1.90 1.70 2.01 3.03 7.22

mean 3.24 4.19 4.21 4.27 5.63 10.38
mean(1,4) 3.84 4.56 4.64 4.71 5.93 10.98

Table 3.1: FPR95 of 2-channel models on the “local image patches” benchmark.
The models architecture is as follows: (i) 2ch-2stream consists of two branches
C(96, 5, 1)-P(2, 2)-C(96, 3, 1)-P(2, 2)-C(192, 3, 1)-C(192, 3, 1), one for central and one for
surround parts, followed by F(768)-ReLU-F(1) (ii) 2ch-ncc-avg: NCC(96, 7, 3)-P(2, 2)-
NCC(192, 5, 1)-NCC(256, 3, 1)-NCC(256, 1, 1)-A(2, 2)-F(1) (iii) 2ch-deep: C(96, 4, 3)-
Stack(96)-P(2, 2)-Stack(192)-F(1), where Stack(n)=C(n, 3, 1)-C(n, 3, 1)-C(n, 3, 1). (iv)
2ch-avg: C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-C(256, 3, 1)-C(256, 1, 1)-A(2, 2)-F(1) (v) 2ch:
C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-P(2, 2)-C(256, 3, 1)-C(256, 1, 1)-F(1) The shorthand nota-
tion used was the following: C(n, k, s) is a convolutional layer with n filters of spatial size
k× k applied with stride s followed by ReLU; NCC(n, k, s) is NCC-layer with the same defi-
nition as C(n, k, s); P(k, s) is a max-pooling layer of size k × k applied with stride s; A(k, s)
is avg-pooling with the same definition as max-pooling; F(n) denotes a fully connected linear
layer with n output units.

For evaluating our models, we use the evaluation protocol of Brown et al. (2011) and generate ROC

curves by thresholding the distance between feature pairs in the descriptor space. We report the false

positive rate at 95% recall (FPR95) on each of the six combinations of training and test sets, as well

as the mean across all combinations. We also report the mean, denoted as mean(1, 4), for only those

4 combinations that were used in Boix et al. (2013), Brown et al. (2011) (in which case training takes

place on Yosemite or Notre Dame, but not Liberty).

Table 3.1 and table 3.2 reports the performance of several models, and also details their architecture

(we have also experimented with smaller kernels, less max-pooling layers, as well as adding normaliza-

tions, without noticing any significant improvement in performance). We briefly summarize some of the

conclusions that can be drawn from these tables.

2-channel networks. A first important conclusion is that 2-channel-based architectures (e.g., 2ch,

2ch-deep, 2ch-2stream) exhibit clearly the best performance among all models. This is something

that indicates that it is important to jointly use information from both patches right from the first layer

of the network. 2ch-2stream network was the top-performing among convolutional networks on this

dataset, with 2ch-deep following closely (this verifies the importance of multi-resolution information

during matching and that also increasing the network depth helps). In fact, 2ch-2stream managed
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train test
siam siam pseudo-siam pseudo-siam siam-2stream siam-2stream Simonyan et al. (2014)

l2(256d) l2(256d) l2(512d)

#parameters 1.17M 0.9M 2.08M 0.9M 5.85M 2.4M -

Yos ND 5.75 8.38 5.44 8.95 5.29 5.58 6.82
Yos Lib 13.48 17.25 12.64 18.37 11.51 12.84 14.58
ND Yos 13.23 15.89 10.35 15.62 10.44 13.02 10.08
ND Lib 8.77 13.24 12.87 16.58 6.45 8.79 12.42
Lib Yos 14.89 19.91 12.50 17.83 9.02 13.24 11.18
Lib ND 4.33 6.01 3.93 6.58 3.05 4.54 7.22

mean 10.07 13.45 9.62 13.99 7.63 9.67 10.38
mean(1,4) 10.31 13.69 10.33 14.88 8.42 10.06 10.98

Table 3.2: Performance of siamese models on the “local image patches” benchmark. The
models architecture is as follows: (i) siam has two branches C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-
P(2, 2)-C(256, 3, 1) and decision layer F(512)-ReLU-F(1) (ii) siam-l2 reduces to a single
branch of siam (iii) pseudo-siam is uncoupled version of siam (iv) pseudo-siam-
l2 reduces to a single branch of pseudo-siam (v) siam-2stream has 4 branches
C(96, 4, 2)-P(2, 2)-C(192, 3, 1)-C(256, 3, 1)-C(256, 3, 1) (coupled in pairs for central and sur-
round streams), and decision layer F(512)-ReLU-F(1) (vi) siam-2stream-l2 consists of
one central and one surround branch of siam-2stream. The shorthand notation used was
the following: C(n, k, s) is a convolutional layer with n filters of spatial size k×k applied with
stride s followed by ReLU, P(k, s) is a max-pooling layer of size k × k applied with stride s,
and F(n) denotes a fully connected linear layer with n output units.

to outperform the previous state-of-the-art by a large margin, achieving 2.45 times better score than

Simonyan et al. (2014)! The difference with SIFT was even larger, with our model giving 6.65 times

better score in this case (SIFT score on mean(1,4) was 31.2 according to Brown et al. (2011)).

To construct 2ch-avg from 2ch we remove the second max-pooling and insert average-pooling with

the same kernel size and stride after the last convolutional layer. As expected, 2ch-avg shows better

results than 2ch with less parameters. It is only slightly worse than 2ch-2stream without utilizing

2-stream architecture, which should further improve performance.

NCC-networks. We used 2ch-avg architecture to construct NCC-network 2ch-ncc-avg, which

outperformed all other networks by a significant margin. As NCC-networks improve significantly the

results with our best architecture, we believe that’s enough to show their supremacy in patch compar-

ing tasks. For the goal of achieving better convolutional descriptors for l2 matching we expect NCC-

networks to achieve superior performance when trained using recently proposed triplet training Balntas

et al. (2016) or global loss functions G et al. (2016). On fig. 3.8c we show first and second channel

filters of 2ch-ncc-avg network.

To show that the proposed NCC-networks are general and can be applied in other tasks, we trained

AlexNet with NCC layers instead of convolutional on ImageNet-2012 image classification dataset.
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(a) Input image (b) Filters of the first NCC-layer (c) Outputs of the first NCC-layer

Figure 3.5: Visualization of the filters and outputs of the first NCC-layer of NCC-AlexNet
trained on ImageNet.

NCC-AlexNet gives 1% higher both top1 and top5 single crop accuracy than convolutional AlexNet

(both networks trained with batch normalization), improving top1 from 56.2% to 57.2%. For reference

we provide learnt filters of the first layer visualization with the corresponding outputs of the first layer

in figure 3.5. The filters are very similar to those learnt by baseline convolutional AlexNet. Both net-

works were modified to use batch normalization and dropout was removed. Using batch normalization

was essential to obtaining improvement over baseline, but not required for making network train with

proper initialization. We speculate that in this case batch normalization acts as a per-layer learning rate

to normalized network that doesn’t have a way to scale itself otherwise, thus improving training process.

With batch normalization NCC-layers are initialized with normal distribution. We plan to investigate

these intriguing findings in future work.

Overall, the architectures of 2-channel networks are the following:

• 2ch-2stream consists of two branches C(96, 5, 1)-P(2, 2)-C(96, 3, 1)-P(2, 2)-C(192, 3, 1)-

C(192, 3, 1), one for central and one for surround parts, followed by F(768)-ReLU-F(1)

• 2ch-deep: C(96, 4, 3)-Stack(96)-P(2, 2)-Stack(192)-F(1), where Stack(n)=C(n, 3, 1)-

C(n, 3, 1)-C(n, 3, 1)

• 2ch: C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-P(2, 2)-C(256, 3, 1)-C(256, 1, 1)-F(1)

• 2ch-avg: C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-C(256, 3, 1)-C(256, 1, 1)-A(2, 2)-F(1)

• 2ch-ncc-avg: NCC(96, 7, 3)-P(2, 2)-NCC(192, 5, 1)-NCC(256, 3, 1)-NCC(256, 1, 1)-

A(2, 2)-F(1)
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The shorthand notation used was the following: C(n, k, s) is a convolutional layer with n filters of

spatial size k × k applied with stride s followed by ReLU, P(k, s) is a max-pooling layer of size k × k
applied with stride s, and F(n) denotes a fully connected linear layer with n output units.

Siamese/pseudo-siamese networks. Regarding siamese-based architectures, these too manage to

achieve better performance than existing state-of-the-art systems. This is quite interesting because, e.g.,

none of these siamese networks tries to learn the shape, size or placement of the pooling regions (like,

e.g., Simonyan et al. (2014); Brown et al. (2011) do), but instead utilizes just standard max-pooling lay-

ers. Among the siamese models, the two-stream network (siam-2stream) had the best performance,

verifying once more the importance of multi-resolution information when it comes to comparing image

patches. Furthermore, the pseudo-siamese network (pseudo-siam) was better than the corresponding

siamese one (siam).

We also conducted additional experiments, in which we tested the performance of siamese models when

their top decision layer is replaced with the l2 Euclidean distance of the two convolutional descriptors

produced by the two branches of the network (denoted with the suffix l2 in the name). In this case, prior

to applying the Euclidean distance, the descriptors are l2-normalized (we also tested l1 normalization).

For pseudo-siamese only one branch was used to extract descriptors. As expected, in this case the two-

stream network (siam-2stream-l2) computes better distances than the siamese network (siam-l2),

which, in turn, computes better distances than the pseudo-siamese model (pseudo-siam-l2). In fact,

the siam-2stream-l2 network manages to outperform even the previous state-of-the-art descriptor

Simonyan et al. (2014), which is quite surprising given that these siamese models have never been trained

using l2 distances.

The pseudo-siam network has two uncoupled branches which make it asymmetric. It is possible to

make its decision symmetric by taking the sum of decisions from both possible combinations of patches

in pair. Let P1 and P2 be the patches in pair and o(P1, P2) - network’s decision on these patches. Then

the symmetric decision is defined as:

os(P1, P2) = o(P1, P2) + o(P2, P1) (3.8)

In table 3.3 we show the results of evaluation of the above decision function. It’s mean FPR95 over all

dataset combinations is 9.11, which is by 0.63 better than a single asymmetric decision result and by

0.96 better than a result of siam network.

Overall, siamese models have the following architectures:
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o(P1, P2) o(P1, P2) + o(P2, P1)
Yos ND 5.44 4.82
Yos Lib 12.64 11.79
ND Yos 13.61 13.25
ND Lib 10.35 9.99
Lib Yos 12.50 11.44
Lib ND 3.93 3.37
mean 9.74 9.11
mean(1,4) 10.51 9.96

Table 3.3: Results of pseudo-siam network with symmetric decision function evaluation
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Figure 3.6: ROC curves for various models (including the state-of-the-art descriptor Simonyan
et al. (2014)) on the local image patches benchmark. Numbers in the legends are corresponding
FPR95 values

• siam has two branches C(96, 7, 3)-P(2, 2)-C(192, 5, 1)-P(2, 2)-C(256, 3, 1) and decision layer

F(512)-ReLU-F(1)

• siam-l2 reduces to a single branch of siam

• pseudo-siam is uncoupled version of siam

• pseudo-siam-l2 reduces to a single branch of pseudo-siam

• siam-2stream has 4 branches C(96, 4, 2)-P(2, 2)-C(192, 3, 1)-C(256, 3, 1)-C(256, 3, 1)

(coupled in pairs for central and surround streams), and decision layer F(512)-ReLU-F(1)



Using convolutional neural networks to compare image patches 37

conv3(3456) conv4(3456) conv5(2304)
Notredame 12.22 9.64 19.384
Liberty 16.25 14.26 21.592
Yosemite 33.25 30.22 43.262
mean 20.57 17.98 28.08

Table 3.4: FPR95 of ImageNet model features (dimensionality of each feature appears as sub-
script). We feed AlexNet with resized grayscale patches, and extract features from different
convolutional layers.

• siam-2stream-l2 consists of one central and one surround branch of siam-2stream

We recall again that the following shorthand notation was used: C(n, k, s) is a convolutional layer with

n filters of spatial size k × k applied with stride s followed by ReLU, P(k, s) is a max-pooling layer of

size k × k applied with stride s, and F(n) denotes a fully connected linear layer with n output units.

For a more detailed comparison of the various models, we provide the corresponding ROC curves in

Fig. 3.6. Furthermore, we show in Table 3.4 the performance of imagenet-trained CNN features (these

were l2-normalized to improve results). Among these, conv4 gives the best FPR95 score, which is

equal to 17.98. This makes it better than SIFT but still much worse than our models. We provide here a

more detailed quantitative comparison of l2-decision networks (i.e., where we use l2 distance to compare

descriptors at test time). To that end, we show the corresponding ROC curves in figure 3.7, comparing

also with the state-of-the-art method Simonyan et al. (2014). As can be observed, the siam-2stream-l2

model exhibits the best performance on all datasets combinations except when being tested on Yosemite.

Fig. 3.8a displays the filters of the first convolutional layer learnt by the siamese network. Furthermore,

Fig. 3.8b shows the subset of first and second channel first layer filters of the 2-channel network 2ch. It

is worth mentioning that corresponding first and second channel parts look like being negative to each

other, which basically means that the network has learned to compute differences of features between the

two patches (note, though, that not all first layer filters of 2ch look like this). Last, we show in Fig. 3.9

some top ranking false and correct matches as computed by the 2ch-deep network. We observe that

false matches could be easily mistaken even by a human (notice, for instance, how similar the two

patches in false positive examples look like).

For the rest of the experiments, we note that we use models trained on the Liberty dataset.



Using convolutional neural networks to compare image patches 38

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

yosemite −> notredame

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 6.82%
siam-l2 8.38%
pseudo-siam-l2 8.95%
siam-2stream-l2 5.58%

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

yosemite −> liberty

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 14.58%
siam-l2 17.25%
pseudo-siam-l2 18.37%
siam-2stream-l2 12.84%

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

notredame −> yosemite

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 10.08%
siam-l2 15.89%
pseudo-siam-l2 15.63%
siam-2stream-l2 13.02%

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

notredame −> liberty

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 12.42%
siam-l2 13.24%
pseudo-siam-l2 16.58%
siam-2stream-l2 8.79%

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

liberty −> yosemite

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 11.18%
siam-l2 19.91%
pseudo-siam-l2 17.65%
siam-2stream-l2 13.24%

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

liberty −> notredame

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Simonyan etal 7.22%
siam-l2 6.01%
pseudo-siam-l2 6.54%
siam-2stream-l2 4.54%

Figure 3.7: ROC curves of l2 networks. siam-2stream-l2 shows the best performance on 4 out
of 6 combinations of sequences

3.5.2 Wide baseline stereo evaluation

For this evaluation we chose the dataset by Strecha et al. Strecha et al. (2008), which contains several

image sequences with ground truth homographies and laser-scanned depthmaps. We used “fountain”

(fig. 3.10) and “herzjesu” (fig. 3.11) sequences to produce 6 and 5 rectified stereo pairs respectively.

Baselines in both sequences we chose are increasing with each image making matching more difficult.

Our goal was to show that a photometric cost computed with neural network competes favorably against

costs produced by a state-of-the-art hand-crafted feature descriptor, so we chose to compare with DAISY

Tola et al. (2008).

Since our focus was not on efficiency, we used an unoptimized pipeline for computing the photometric

costs. More specifically, for 2-channel networks we used a brute-force approach, where we extract

patches on corresponding epipolar lines with subpixel estimation, construct batches (containing a patch

from the left image I1 and all patches on the corresponding epipolar line from the right image I2) and

compute network outputs, resulting in the cost:

C(p, d) = −onet(I1(p), I2(p + d)) (3.9)
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(a) Filters of the first convolu-
tional layer of siam network.

(b) Rows correspond to first layer
filters from 2ch network (only a
subset shown), depicting first and
second channel filters.

(c) First and second channel fil-
ters of the first NCC-layer of
2ch-ncc-avg network

(a) true positives (b) false negatives

(c) true negatives (d) false positives

Figure 3.9: Top-ranking false and true matches by 2ch-deep.

Here, I(p) denotes a neighbourhood intensity matrix around a pixel p, onet(P1, P2) is the output of the

neural network given a pair of patches P1 and P2, and d is the distance between points on epipolar line.

For siamese-type networks, we compute descriptors for each pixel in both images once and then match

them with decision top layer or l2 distance. In the first case the formula for photometric cost is the

following:

C(p, d) = −otop(D1(I1(p)), D2(I2(p + d))) (3.10)

where otop is output of the top decision layer, and D1, D2 are outputs of branches of the siamese or

pseudo-siamese network, i.e. descriptors (in case of siamese network D1 = D2). For l2 matching, it

holds:

C(p, d) = ‖D1(I1(p))−D2(I2(p + d))‖2 (3.11)
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(a) Image 0002 (b) Image 0003 (c) Image 0004 (d) Image 0005 (e) Image 0006

(f) Image 0007 (g) Image 0008

Figure 3.10: Images from “fountain” dataset. We use images 0002-0008 to generate 6 rectified
stereo pairs against image 0003

(a) Image 0000 (b) Image 0001 (c) Image 0002 (d) Image 0003 (e) Image 0004

(f) Image 0005

Figure 3.11: Images from “herzjesu” dataset. We use images 0000-0005 to generate 5 stereo
pairs against image 0005.

It is worth noting that all costs above can be computed a lot more efficiently using speed optimizations

similar with Zbontar and LeCun (2015). This essentially means treating all fully connected layers as 1×1

convolutions, computing branches of siamese network only once, and furthermore computing the outputs

of these branches as well as the final outputs of the network at all locations using a number of forward

passes on full images. For a 2-channel architecture such an approach of computing the photometric costs

would only require feeding the network with s2 · dmax full 2-channel images of size equal to the input

image pair, where s is the stride at the first layer of the network and dmax is the maximum disparity.

This scenario might be interesting for real-time stereo applications, where the pairs could be packed in

one batch of images and processed very efficiently in fully feed-forward manner without involving any

descriptor matching. Modern GPUs are exceptionally efficient in this setting.

Once computed, the photometric costs are subsequently used as unary terms in the following pairwise

MRF energy

E({dp})=
∑
p

C(p, dp) +
∑

(p,q)∈E

(λ1 + λ2e
− ‖∇I1(p)‖2

σ2 ) · |dp − dq| ,
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minimized using algorithm Conejo et al. (2014) based on FastPD Komodakis et al. (2007) (we set

λ1=0.01, λ2=0.2, σ=7 and E is a 4-connected grid).

We show in fig. 3.14 and fig. 3.15 (also close-up views in fig. 3.17 and fig. 3.19) some qualitative results

in terms of computed depth maps (with and without global optimization) for the “fountain” image set.

Global MRF optimization results visually verify that photometric cost computed with neural network is

much more robust than with hand-crafted features, as well as the high quality of the depth maps produced

by 2-channel architectures. Results without global optimization also show that the estimated depth maps

contain much more fine details than DAISY. They may exhibit a very sparse set of errors for the case

of siamese-based networks, but these errors can be very easily eliminated during global optimization.

Close-up view reveals the ability of our networks to capture small details, unavailable to DAISY. We

especially note very good siam-2stream-l2’s performance, confirming quantitative results.

Fig. 3.12 and fig. 3.13 also shows a quantitative comparison, focusing in this case on siamese-based

models as they are more efficient. The first plot of that figure shows (for a single stereo pair) the dis-

tribution of deviations from the ground truth across all range of error thresholds (expressed here as a

fraction of the scene’s depth range). Furthermore, the other plots of the same figure summarize the

corresponding distributions of errors for the six stereo pairs of increasing baseline (in this case we also

show separately the error distributions when only unoccluded pixels are taken into account). The error

thresholds were set to 3 and 5 pixels in these plots (note that the maximum disparity is around 500 pixels

in the largest baseline). As can be seen, all siamese models perform much better than DAISY across all

error thresholds and all baseline distances (e.g., notice the difference in the curves of the corresponding

plots).

3.5.3 Local descriptors performance evaluation

We also test our networks on Mikolajczyk dataset for local descriptors evaluation Mikolajczyk and

Schmid (2005). The dataset consists of 48 images in 8 sequences with camera viewpoint changes, blur,

compression, lighting changes and zoom with gradually increasing amount of transformation. There are

known ground truth homographies between the first and each other image in sequence.

Testing technique is the same as in Mikolajczyk and Schmid (2005). Briefly, to test a pair of images,

detectors are applied to both images to extract keypoints. Following Fischer et al. (2014), we use MSER

detector. The ellipses provided by detector are used to extract patches from input images. Ellipse size

is magnified by a factor of 3 to include more context. Then, depending on the type of network, either
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Figure 3.12: Quantitative comparison for wide baseline stereo evaluation on “fountain” dataset.
(a) Distributions of deviations from the laser-scan data, expressed as a fraction of the scene’s
depth range of the second depth map in the sequence. (b) Distribution of errors for stereo pairs
of increasing baseline (horizontal axis) both with and without taking into account occluded
pixels (error thresholds were set equal to 5, 3 and 1 pixels in these plots - maximum disparity
is around 500 pixels).
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Figure 3.13: Quantitative comparison for wide baseline stereo on “herzjesu” dataset. (a) Dis-
tributions of deviations from the laser-scan data, expressed as a fraction of the scene’s depth
range of the second of the second depth map in the sequence. (b) Distribution of errors for
stereo pairs of increasing baseline (horizontal axis) both with and without taking into account
occluded pixels (error thresholds were set equal to 5, 3 and 1 pixels in these plots - maximum
disparity is around 500 pixels).
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Figure 3.14: Qualitative comparison for wide baseline stereo evaluation on “fountain” dataset.
From left to right column we show depth maps from ground truth, 2ch, siam-2stream-l2, siam
networks and DAISY. The baseline between stereo pairs increases from top to bottom. All
depth maps were computed with MRF optimization, only non-occluded pixels are shown.

descriptors, meaning outputs of siamese or pseudo-siamese branches, are extracted, or all patch pairs are

given to 2-channel network to assign a score.

A quantitative comparison on this dataset is shown for several models in Fig. 3.20, 3.21, 3.22, 3.23.

Fig. 3.20 provides evaluation plots for all sequences from Mikolajczyk dataset Mikolajczyk and Schmid

(2005). To compute the performance measure we extract elliptic regions of interest and corresponding

image patches from both images using MSER detector. Minimal area size of detected ellipses set to 100.

Next we compute the descriptors of all extracted patches and match all of them based on l2 distance.

A pair is a true positive if and only if the ellipse of the descriptor in the target image and the ground

truth ellipse have an intersection over union that is greater than or equal to 0.6 (all other pairs are false

positives). Based on this, a precision recall curve is computed and the area under this curve (average

precision) is used as performance measure (mAP).
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Figure 3.15: Qualitative comparison for wide baseline stereo evaluation on “herzjesu” dataset.
From left to right column we show depth maps from ground truth, 2ch, siam-2stream-l2, siam
networks and DAISY. The baseline between stereo pairs increases from top to bottom. All
depth maps were computed with MRF optimization, only non-occluded pixels are shown.

Here we also test the CNN network siam-SPP-l2, which is an SPP-based siamese architecture (note

that siam-SPP is same as siam but with the addition of two SPP layers - see also Fig. 3.4a). We

used an inserted SPP layer that had a spatial dimension of 4 × 4. As can be seen, this provides a

big boost in matching performance, suggesting the great utility of such an architecture when compar-

ing image patches. Regarding the rest of the models, the observed results in Fig. 3.21 reconfirm the

conclusions already drawn from previous experiments. Surprisingly, 2ch-ncc-avg does worse than

2ch-2stream. We also note again the very good performance of siam-2stream-l2, which (al-

though not trained with l2 distances) is able to significantly outperform SIFT and to also match the

performance of imagenet-trained features (using, though, a much lower dimensionality of 512).

We also experimented with evaluating the performance of SPP-based networks when using SPP layers

of different spatial sizes. Minimal area size of detected with MSER ellipses set to 100. The results



Using convolutional neural networks to compare image patches 46

(a) DAISY (b) 2ch (c) siam-2stream-l2 (d) siam

(e) Ground truth

Figure 3.16: Close-up views on wide-baseline stereo evaluation results on “fountain” dataset.
All networks are better than DAISY, with siam-2stream-l2 is better than siam, 2-ch is
comparable, but has some small artifacts.

(a) 2ch (b) siam-2stream-l2

(c) siam (d) DAISY

0 0.5 1 1.5 2 2.5 3

(e)

Figure 3.17: For the close-up views of fig. 3.16 we show thresholded absolute differences of
ground truth depth map and estimated depth maps. Threshold is set to 3 pixels. All networks
are better than DAISY.
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(a) DAISY (b) 2ch (c) siam-2stream-l2 (d) siam

(e) Ground truth

Figure 3.18: Close-up views on wide-baseline stereo evaluation results on “herzjesu” dataset.
All networks are better than DAISY, with siam-2stream-l2 is better than siam, 2-ch is
comparable, but has some small artifacts.

(a) 2ch (b) siam-2stream-l2

(c) siam (d) DAISY

0 0.5 1 1.5 2 2.5 3

(e)

Figure 3.19: For the close-up views of fig. 3.18 we show thresholded absolute differences of
ground truth depth map and estimated depth maps. Threshold is set to 3 pixels.
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Figure 3.20: Evaluation plots of local descriptors on different datasets (i.e., with different trans-
formations). Horizontal axis represents the transformation magnitude in each case.

in fig. 3.22 concern the model siam-SPP-l2 (recall that siam-SPP is obtained using siam descriptors,

with spatial max-pooling module inserted after the second convolutional layer). The input patches were

rescaled such that min(width, height) > a where a is a minimal image size accepted by the network

and were equal to 34, 40, 46 and 64 for 1 × 1, 2 × 2, 3 × 3 and 4 × 4 spatial pooling output sizes

respectively. Fig. 3.23 shows average mAP of all datasets. The results show that increasing pooling

output size consistently improves results. It has to be noted that increasing pooling output leads to

increased dimensionality of the descriptor, for example, 4x4 output size produces 192 × 4 × 4 = 3072

dimensional feature. SPP performance can improve even further, as no multiple aspect ratio patches

were used during training (these appear only at test time).
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Figure 3.21: Overall evaluation of local descriptors showing the average performance over all
datasets in Fig. 3.20.

3.6 Conclusions

In this chapter we showed how to learn directly from raw image pixels a general similarity function

for patches, which is encoded in the form of a CNN model. To that end, we studied several neural

network architectures that are specifically adapted to this task, and showed that they exhibit extremely

good performance, significantly outperforming the state-of-the-art on several problems and benchmark

datasets.

Among these architectures, we note that 2-channel-based ones were clearly the superior in terms of

results. It is, therefore, worth investigating how to further accelerate the evaluation of these networks in

the future. As for wide-baseline stereo, we proposed a fast promising approach to compute the stereo

cost in batched fully feed-forward manner not involving descriptor matching.

Regarding siamese-based architectures, 2-stream multi-resolution models turned out to be extremely

strong, providing always a significant boost in performance and verifying the importance of multi-

resolution information when comparing patches. The same conclusion applies to SPP-based siamese

networks, which also consistently improved the quality of results1.
1In fact, SPP performance can improve even further, as no multiple aspect ratio patches were used during the training of

SPP models (such patches appear only at test time).
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Figure 3.22: Evaluation plots of SPP-based network on different datasets when using SPP
layers with different spatial sizes.

We also presented NCC-networks, improving the results even further, and proving the importance of

normalization in patch-matching networks. To show the generality of presented NCC-networks we

compared them with convolutional on ImageNet image classification task and showed a solid improve-

ment. In general, as our other architectures NCC-networks can be combined among each other and the

follow-up works in triplet training, leading to better convolutional descriptors in general.

Last, we should note that simply the use of a larger training set can potentially benefit and improve

the overall performance of our approach even further, as the training set that was used in the present

experiments can actually be considered rather small by today’s standards.
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Figure 3.23: Overall performance when using SPP layers with different spatial sizes. We show
average of all datasets of Fig. 3.22.





Chapter 4

Multipath neural network for object

detection

Proposed in 2015, COCO object detection dataset presented several new challenges for object detection

over older very popular VOC datasets. In particular, it contains objects at a broad range of scales, less

prototypical images, and requires more precise localization. To address these challenges, we test three

modifications to the standard Fast R-CNN object detector: (1) skip connections that give the detector

access to features at multiple network layers, (2) a foveal structure to exploit object context at multiple

object resolutions, and (3) an integral loss function and corresponding network adjustment that improve

localization. The result of these modifications is that information can flow along multiple paths in

our network, including through features from multiple network layers and from multiple object views.

We refer to our modified classifier as a ‘MultiPath’ network. We couple our MultiPath network with

DeepMask object proposals, which are well suited for localization and small objects, and adapt our

pipeline to predict segmentation masks in addition to bounding boxes. The combined system improves

results over the baseline Fast R-CNN detector with Selective Search by 66% overall and by 4× on small

objects. It placed second in both the COCO 2015 detection and segmentation challenges.

This paper is based on A MultiPath Network for Object Detection Zagoruyko et al. (2016).

53
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4.1 Introduction

Object classification Krizhevsky et al. (2012b); Simonyan and Zisserman (2015); Szegedy et al. (2015)

and object detection Sermanet et al. (2014); Szegedy et al. (2014); Girshick (2015) have rapidly pro-

gressed with advancements in convolutional neural networks (CNNs) LeCun et al. (1998) and the advent

of large visual recognition datasets Everingham et al. (2010); Deng et al. (2009); Lin et al. (2015). Mod-

ern object detectors predominantly follow the paradigm established by Girshick et al. in their seminal

work on Region CNNs Girshick et al. (2014): first an object proposal algorithm Hosang et al. (2015)

generates candidate regions that may contain objects, second, a CNN classifies each proposal region.

Most recent detectors follow this paradigm Gidaris and Komodakis (2015); Girshick (2015); Ren et al.

(2015) and they have achieved rapid and impressive improvements in detection performance.

Except for concurrent work (e.g. Bell et al. (2016); He et al. (2016a); Dai et al. (2016)), most previous

object detection work has focused on the PASCAL Everingham et al. (2010) and ImageNet Deng et al.

(2009) detection datasets. Recently, the COCO dataset Lin et al. (2015) was introduced to push object

detection to more challenging settings. The dataset contains 300,000 images of fully segmented object

instance in 80 categories, with an average of 7 object instances per image. COCO introduces a number

of new challenges compared to previous object detection datasets: (1) it contains objects at a broad

range of scales, including a high percentage of small objects, (2) objects are less iconic, often in non-

standard configurations and amid clutter or heavy occlusion, and (3) the evaluation metric encourages

more accurate object localization.

In this paper, we revisit recent improvements in object detection by performing extensive experiments

on the COCO dataset. In particular, we begin with the Fast R-CNN object detector Girshick (2015),

and test a number of intuitive modifications to explicitly address the unique challenges of this dataset,

including small object detection, detection of objects in context, and improved localization. Our goal is

to adapt the highly successful Fast R-CNN object detector to perform better in these settings, and we use

COCO to drive our experiments.

Inspired by recent advances in object detection, we implement three network modifications: (1) a multi-

stage feature aggregator that implements skip connections in intermediate network layers to more accu-

rately detect objects at multiple scales, (2) a foveal structure in the classifier network that helps improve

localization by looking at multiple image contexts, and (3) a novel loss function and corresponding

network adjustment that optimize an integral of localization overlaps and encourage higher-precision

localization. These three modifications allow information to flow along multiple paths in our network,
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Figure 4.1: Proposed MultiPath architecture. The COCO dataset Lin et al. (2015) contains ob-
jects at multiple scales, in context and among clutter, and under frequent occlusion. Moreover,
the COCO evaluation metric rewards high quality localization. To addresses these challenges,
we propose the MultiPath network pictured above, which contains three key modifications: skip
connections, foveal regions, and and an integral loss function. Together these modifications al-
low information to flow along multiple paths through the network, enabling the classifier to
operate at multiple scales, utilize context effectively, and perform more precise object localiza-
tion. Our MultiPath network, coupled with DeepMask object proposals Pinheiro et al. (2015,
2016), achieves major gains on COCO detection.

including through features from multiple network layers and from multiple object views, see Figure 4.1.

We therefore refer to our approach as a ‘MultiPath’ network.

We train our MultiPath detector using the recently proposed DeepMask object proposals Pinheiro et al.

(2015, 2016), which, like our model, are well adapted to the COCO dataset. Our combined system, using

DeepMask proposals and our MultiPath classifier, achieves a detection score of 33.5 average precision

(AP) for detection with an ensemble of 6 models. Compared to the baseline Fast R-CNN detector Gir-

shick (2015) with Selective Search proposals Uijlings et al. (2013), which achieves an AP of 19.3, this

represents a 66% improvement in performance. Moreover, for small objects we improve AP by nearly

4×. We also adopt our system to generate segmentation masks, and achieve an AP of 25.1 on the

segmentation task.

Our system placed second in the 2015 COCO Detection Challenge in both the bounding box and segmen-

tation tracks. Only the deeper ResNet classifier He et al. (2016a) outperformed our approach. Potentially,

ResNet could be used as the feature extractor in our MultiPath network.
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4.2 Related Work

Object detection is a fundamental and heavily-researched task in computer vision. Until recently, the

sliding window paradigm was dominant Viola and Jones (2004); Dollár et al. (2014), especially for face

and pedestrian detection. Deformable part models Felzenszwalb et al. (2010) followed this framework

but allowed for more object variability and thus found success across general object categories; likewise,

Sermanet et al. Sermanet et al. (2014, 2013) showcased the use of CNNs for general object detection

in a sliding window fashion. More recent detectors follow the region-proposal paradigm established

by Girshick et al. Girshick et al. (2014) in which a CNN is used to classify regions generated by an

object proposal algorithm Hosang et al. (2015). Many recent detectors follow this setup Gidaris and

Komodakis (2015); Szegedy et al. (2014); He et al. (2014); Girshick et al. (2014); Girshick (2015); Ren

et al. (2015), including our own work, which uses the Fast R-CNN detector as its staring point Girshick

(2015). We next discuss in more detail specific innovations in this paradigm and how they relate to our

approach.

Context: Context is known to play an important role in visual recognition Torralba (2003). Numerous

ideas for exploiting context in CNNs have been proposed. Sermanet et al. Sermanet et al. (2013) used

two contextual regions centered on each object for pedestrian detection. In Szegedy et al. (2014), in ad-

dition to region specific features, features from the entire image are used to improve region classification.

He et al. He et al. (2014) implement context in a more implicit way by aggregating CNN features prior

to classification using different sized pooling regions. More recently, Gidaris and Komodakis (2015)

proposed to use ten contextual regions around each object with different crops. Our approach is most

related to Gidaris and Komodakis (2015), however, we use just four contextual regions organized in a

foveal structure and importantly our classifier is trained jointly end-to-end.

Skip connections: Sermanet et al. Sermanet et al. (2013) proposed to use a ‘multi-stage’ classifier that

used features at many convolutional layers for pedestrian detection, showing improved results. Such

‘skip’ architectures have recently become popular for semantic segmentation Long et al. (2015); Hari-

haran et al. (2015). Concurrently with our work, Bell et al. Bell et al. (2016) proposed to revisit skip

connections for general object detection. Our own implementation of skip connections closely resem-

bles Bell et al. (2016).

Object Proposals: When originally introduced, object proposals were based on low-level grouping cues,

edges, and superpixels Alexe et al. (2012); Uijlings et al. (2013); Zitnick and Dollár (2014); Arbeláez

et al. (2014); Hosang et al. (2015). More recently, large gains in proposal quality have been achieved
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through use of CNNs Szegedy et al. (2014); Ren et al. (2015); Pinheiro et al. (2015, 2016). In this

work we use DeepMask segmentation proposals Pinheiro et al. (2015). Specifically, we used an early

version of the improved variant of DeepMask described in Pinheiro et al. (2016) that includes top-down

refinement but is based on the VGG-A architecture Simonyan and Zisserman (2015), not the later ResNet

architecture presented in He et al. (2016a). Overall, we obtain substantial improvements in detection

accuracy on COCO by using DeepMask in place of the Selective Search Uijlings et al. (2013) proposals

used in the original work on Fast R-CNN Girshick (2015).

Classifier: The CNN used for classification forms an integral part of the detection pipeline and is key

in determining final detector accuracy. The field has witnessed rapid progress in CNNs in recent years.

The introduction of AlexNet Krizhevsky et al. (2012b) reinvigorated the use of deep learning for visual

recognition. The much deeper VGG Simonyan and Zisserman (2015) and GoogleNet Szegedy et al.

(2015) models further pushed accuracy. In our work we use variants of the VGG network Simonyan

and Zisserman (2015), specifically VGG-A for DeepMask and VGG-D for our MultiPath network. In

concurrent work, He at al. He et al. (2016a) introduced the even deeper Residual Networks (ResNet) that

have greatly improved the state of the art and have also proven effective for object detection. We expect

that integration of ResNet into our system could further boost accuracy.

4.3 Methods

A high-level overview of our detection model is shown in Figure 4.1. Our system is based on the Fast

R-CNN framework Girshick (2015). As in Fast R-CNN, the VGG-D network Simonyan and Zisserman

(2015) (pretrained on ImageNet Deng et al. (2009)) is applied to each input image and RoI-pooling is

used to extract features for each object proposal. Using these features, the final classifier outputs a score

for each class (plus the background) and predicts a more precise object localization via bounding box

regression. We refer readers to Girshick (2015) for details.

We propose the following modifications to this basic setup. First, instead of a single classifier head,

our model has four heads that observe different-sized context regions around the bounding box in a

‘foveal’ structure. Second, each of these heads combines features from the conv3, conv4, and conv5

layers. Finally, the outputs of the four classifiers are concatenated and used to compute a score based on

our proposed integral loss. Similar to Fast R-CNN, the network also performs bounding box regression

using these same features.
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As information can flow through several parallel pathways of our network we name it a MultiPath CNN.

We describe details of each modification next.

4.3.1 Foveal Structure

Fast R-CNN performs RoI-pooling on the object proposal bounding box without explicitly utilizing

surrounding information. However, as discussed, context is known to play an important role in object

recognition Torralba (2003). We also observed that given only cropped object proposals, identification

of small objects is difficult even for humans without context.

To integrate context into our model, we looked at the promising results from the ‘multiregion’ model Gi-

daris and Komodakis (2015) for inspiration. The multiregion model achieves improved localization

results by focusing on 10 separate crops of an object with varying context. We hypothesized that this

mainly improves localization from observing the object at multiple scales with increasing context, rather

than by focusing on different parts of the object.

Therefore, to incorporate context, we add four region crops to our model with ‘foveal’ fields of view of

1×, 1.5×, 2× and 4× of the original proposal box all centered on the object proposal. In each case we

use RoI-pooling to generate features maps of the same spatial dimensions given each differently-sized

foveal region. The downstream processing shares an identical structure for each region (but with separate

parameters), and the output features from the four foveal classifiers are concatenated into a single long

vector. This feature vector is used for both classification and bounding box regression. See Figure 4.1

for details.

Our foveal model can be interpreted as a simplified version of the multiregion model that only uses four

regions instead of the ten in Gidaris and Komodakis (2015). With the reduced number of heads, we can

train the network end-to-end rather than each head separately as in Gidaris and Komodakis (2015).

4.3.2 Skip Connections

Fast R-CNN performs RoI-pooling after the VGG-D conv5 layer. At this layer, features have been

downsampled by a factor of 16. However, 40% of COCO objects have area less than 32× 32 pixels and

20% less than 16×16 pixels, so these objects will have been downsampled to 2×2 or 1×1 at this stage,

respectively. RoI-pooling will upsample them to 7× 7, but most spatial information will have been lost

due to the 16× downsampling of the features.
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Effective localization of small objects requires higher-resolution features from earlier layers Sermanet

et al. (2013); Long et al. (2015); Hariharan et al. (2015); Bell et al. (2016); Pinheiro et al. (2016).

Therefore, we concatenate the RoI-pooled normalized features from conv3, conv4, and conv5 layers in

the same manner as described in Bell et al. (2016) and provide this as input to each foveal classifier, as

illustrated in Figure 4.1. A 1×1 convolution is used to reduce the dimension of the concatenated features

to the classifier input dimension. The largest foveal features will not need as fine-grained features, so

as an optimization, we sparsify these connections slightly. Specifically, we only connect conv3 to the

1× classifier head and conv4 to the 1×, 1.5×, and 2× heads. Overall, these skip connections give the

classifier access to information from features at multiple resolutions.

4.3.3 Integral Loss

In PASCAL Everingham et al. (2010) and ImageNet Deng et al. (2009), the scoring metric only considers

whether the detection bounding box has intersection over union (IoU) overlap greater than 50 with the

ground truth. On the other hand, the COCO evaluation metric Lin et al. (2015) averages AP across

IoU thresholds between 50 and 95, awarding a higher AP for higher-overlap bounding boxes1. This

incentivizes better object localization. Optimizing AP50 has resulted in models that perform basic object

localization well but often fail to return tight bounding boxes around objects.

For training, Fast R-CNN uses an IoU threshold of 50. We observed that changing this foreground/back-

ground threshold u during training improves APu during testing, but can decrease AP at other IoU

thresholds. To target the integral AP, we propose a loss function that encourages a classifier to perform

well at multiple IoU thresholds.

The original loss L used in Fast R-CNN Girshick (2015) is given by:

L(p, k∗, t, t∗) = Lcls(p, k
∗) + λ[k∗ ≥ 1]Lloc(t, t

∗), (4.1)

for predicted class probabilities p, true class k∗, predicted bounding box t, and true bounding box t∗.

The first term Lcls(p, k) = − log pk∗ is the classification log loss for true class k∗. The second term,

Lloc(t, t
∗), encourages the class-specific bounding box prediction to be as accurate as possible. The

combined loss is computed for every object proposal. If the proposal overlaps a ground truth box with
1Going forward, we use the notation introduced by the COCO dataset Lin et al. (2015). Specifically, we use AP to denote

AP averaged across IoU values from 50 to 95, and APu to denote AP at IoU threshold u (e.g., the PASCAL metric is denoted
by AP50). Note also that we use the convention that IoU ranges from 0 to 100.
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IoU greater than 50, the true class k∗ is given by the class of the ground truth box, otherwise k∗ = 0 and

the second term of the loss is ignored.

Observe that in the original R-CNN loss, the classification loss Lcls does not prefer object proposals

with high IoU: all proposals with IoU greater than 50 are treated equally. Ideally, proposals with higher

overlap to the ground truth should be scored more highly. We thus propose to modify Lcls to explicitly

measure integral loss over all IoU thresholds u:

∫ 100

50
Lcls(p, k

∗
u)du, (4.2)

where k∗u is the true class at overlap threshold u. We approximate this integral as a sum with du = 5 and

modify our network to output multiple corresponding predictions pu. Specifically, our modified loss can

be written as:

L(p, k∗, t, t∗) =
1

n

∑
u

[
Lcls(pu, k

∗
u) + λ[k∗u ≥ 1]Lloc(t, t

∗)
]
. (4.3)

We use n = 6 thresholds u ∈ {50, 55, . . . , 75}. Note that in this formulation each object proposal

actually has n ground truth labels k∗u, one label per threshold u. In our model, each term pu is predicted

by a separate head, see Figure 4.1. Specifically, for each u, we train a separate linear classifier (using

shared features) to predict the true class k∗u of a proposal (where the ground truth label is defined using

threshold u). At inference time, the output softmax probabilities pu of each of the n classifiers are

averaged to compute the final class probabilities p. The modified loss function and updated network

encourages object proposals with higher overlap to the ground truth to be scored more highly.

During training, each head has progressively fewer total positive training samples as there are fewer

proposals overlapping the ground truth as u is increased. To keep the ratio of sampled positive and

negative examples constant for each head, each minibatch is constructed to train a single head in turn.

We restrict the heads to the range u ≤ 75, otherwise the proposals contain too few total positive samples

for training. Finally, note that for bounding box regression, our network is unchanged and predicts only

a single bounding box output t.

4.4 Experiments

In this section we perform a detailed experimental analysis of our MultiPath network. For all following

experiments, Fast R-CNN Girshick (2015) serves as our baseline detector (with VGG-D Simonyan and

Zisserman (2015) features pre-trained on ImageNet Deng et al. (2009)). We use DeepMask object
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proposals Pinheiro et al. (2015, 2016) and focus exclusively on the recent COCO dataset Lin et al.

(2015) which presents novel challenges for detection.

We begin by describing the training and testing setup in §4.4.1. Next, in §4.4.2 we study the impact of

each of our three core network modifications, including skip connections, foveal regions, and the integral

loss. We analyze the gain from DeepMask proposals in §4.4.3 and compare with the state of the art in

§4.5. Finally, in the section 4.5 we analyze a number of key parameters and also additional modifications

that by and large did not improve accuracy.

Our system is written using the Torch-7 framework.

4.4.1 Training and Testing Setup

For all experiments in this section we report both the overall AP (averaged over multiple IoU thresholds)

and AP50. All our models are trained on the 80K images in COCO 2014 train set and tested on the first

5K images from the val set. We find that testing on these 5K images correlates well with the full 40K val

set and 20K test-dev set, making these 5K images a good proxy for model validation without the need

to test over the full val or test-dev sets.

Training is performed for 200K iterations with 4 images per batch and 64 object proposals per image.

We use an initial learning rate of 10−3 and reduce it to 10−4 after 160K iterations. Training the full

model takes ∼3 days on 4 NVIDIA Titan X GPUs. Unless noted, in testing we use a non maximal

suppression threshold of 30, 1000 proposals per image, an image scale of 800 pixels, and no weight

decay (we analyze all settings in section 4.5).

Both data and model parallelism are used in training Krizhevsky (2014). First, 4 images are propagated

through the VGG-D network trunk, in parallel with 1 image per GPU. The features are then concatenated

into one minibatch and subsequently used by each of the 4 foveal regions. Each foveal region resides

in a separate GPU. Note that the prevalence of 4 GPU machines helped motivate our choice of using 4

foveal regions due to ease of parallelization.

Our network requires 150ms to compute the features and 350ms to evaluate the foveal regions, for a total

of about 500ms per COCO image. We time with a scale of 800px and 400 proposals (see section 4.5 and

Figure 4.3). Fast R-CNN with these settings is about 2× faster.
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integral loss foveal skip AP50 AP
43.4 25.2

X 42.2 25.6
X 45.2 25.8

X X 44.4 26.9
X X 46.4 27.0

X X X 44.8 27.9

integral loss context #regions AP50 AP
none 1 43.4 25.2

multiregion 10 44.0 25.5
foveal 4 45.2 25.8

X none 1 42.2 25.6
X multiregion 10 43.1 26.3
X foveal 4 44.4 26.9

Table 4.1: Left: Model improvements of our MultiPath network. Results are shown for various
combinations of modifications enabled. Each contributes roughly equally to final accuracy,
and in total AP increases 2.7 points to 27.9. Right: Our 4-region foveal setup versus the
10 regions used in multiregion Gidaris and Komodakis (2015). Surprisingly, our approach
outperforms Gidaris and Komodakis (2015) despite using fewer regions. See text for details.

4.4.2 MultiPath Network Analysis

Our implementation of Fast R-CNN Girshick (2015) with DeepMask object proposals Pinheiro et al.

(2015) achieves an overall AP of 25.2 and an AP50 of 43.4. This is already a large improvement over the

original Fast R-CNN results that used Selective Search proposals Uijlings et al. (2013), we will return

to this shortly.

A breakdown of how each of our three core network modifications affects AP and AP50 over our strong

baseline is shown in Table 4.1, left. Results are shown for each combination of modifications enabled

including skip connections, foveal regions, and the integral loss (except skip connections were imple-

mented only for foveal regions). Altogether, AP increases 2.7 points to 27.9, with each modification

contributing ∼1 point to final performance. AP50 improves 1.4 points to 44.8; however, not surprisingly,

the best AP50 of 46.4 is achieved without the integral loss. We carefully analyze the foveal structure and

integral loss next.

Foveal structure: A breakdown of the gains from using foveal regions is shown in Table 4.1, right, both

with and without the integral loss but without skip connections. Gains from foveal regions are amplified

when using the integral loss, resulting in an AP improvement of 1.3 points. We also compare our foveal

approach to the multiregion network Gidaris and Komodakis (2015) which used 10 regions (for a fair

comparison, we re-implement it in our setup). Surprisingly, it performs slightly worse than our foveal

setup despite having more regions. This may be due to the higher number of parameters or it’s possible

that this requires more iterations to converge.

Integral Loss: Figure 4.2, left, shows AP at various IoU thresholds for models trained with different

IoU cutoffs u as well as our integral loss. Each standard model tends to perform best at the IoU for

which it was trained. Integral loss improves overall AP by ∼1 over the u = 50 model, and does so while



MultiPath network for object detection 63

Figure 4.2: Left: Each standard model performs best at the threshold used for training while
using the integral loss yields good results at all settings. Right: Integral loss achieves best AP
with 6 heads.

Figure 4.3: AP50 and AP versus number and type of proposals. Accuracy saturates using 400
DeepMask proposals per image and using ∼50 DeepMask proposals matches 2000 Selective
Search proposals.

maintaining a slightly higher AP50 than simply increasing u (e.g. our AP50 is 0.6 points higher than

the u = 60 model). Figure 4.2, right, shows AP and AP50 for varying number of heads. Using 6 heads

(u ≤ 75) achieves the highest AP. For the experiments in Figure 4.2 we trained for 280K iterations as

we found the integral loss requires somewhat longer to converge (we used 200K iterations for all other

ablations studies).

4.4.3 DeepMask Proposals

Object proposals play a central role in determining detector accuracy. The original implementation of

Fast R-CNN with Selective Search proposals Uijlings et al. (2013) has an AP of 19.3. Our MultiPath net-

work improves this to 22.8 AP using these same proposals. Switching to DeepMask proposals Pinheiro

et al. (2015, 2016) increases accuracy by a further very substantial 5.1 points to 27.9 AP.

Figure 4.3 shows AP50 and AP for varying number and type of proposals. Not only is accuracy substan-

tially higher using DeepMask, fewer proposals are necessary to achieve top performance. Our results

saturate with around 400 DeepMask proposals per image and using just 50 DeepMask proposals matches

accuracy with 2000 Selective Search proposals.

Interestingly, our setup substantially reduces the benefits provided by bounding box regression. With

the original Fast R-CNN and Selective Search proposals, box regression increases AP by 3.5 points, but
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AP50 AP
base +bb ∆ base +bb ∆

SS + Fast R-CNN 38.2 39.8 +1.6 18.1 21.6 +3.5
SS + MultiPath 38.0 38.5 +0.5 20.9 22.8 +1.9
DM + Fast R-CNN 42.5 43.4 +0.9 23.5 25.2 +1.7
DM + MultiPath 44.5 44.8 +0.3 26.8 27.9 +1.1

AP50 ∆ AP ∆

baseline 44.8 27.9
+ trainval 47.5 +2.7 30.2 +2.3
+ hflip 48.3 +0.8 30.8 +0.6
+ FMP 49.6 +1.3 31.5 +0.7
+ ensembling 51.9 +2.3 33.2 +1.7

Table 4.2: Left: Bounding box regression is key when using Selective Search (SS) proposals
and the Fast R-CNN classifier (our implementation). However, with DeepMask (DM) proposals
and our MultiPath network, box regression increases AP by only 1.1 points (and AP50 by 0.3)
as our pipeline already outputs well-localized detections. Right: Final enhancements to our
model. Use of additional training data, horizontal flip at inference, fractional max pooling
(FMP), and ensembling gave a major cumulative boost. These are common approaches for
maximizing accuracy, see section. 4.5 for details.

Figure 4.4: Selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

ResNet He et al. (2016a) 27.9 51.2 27.6 8.6 30.2 45.3 25.4 37.1 38.0 16.6 43.3 57.8
MultiPath 25.0 45.4 24.5 7.2 28.8 39.0 23.8 36.6 38.5 17.0 46.7 53.5
ResNet He et al. (2016a) 37.1 58.8 39.8 17.3 41.5 52.5 31.9 47.5 48.9 26.7 55.2 67.9
MultiPath 33.2 51.9 36.3 13.6 37.2 47.8 29.9 46.0 48.3 23.4 56.0 66.4
ION Bell et al. (2016) 30.7 52.9 31.7 11.8 32.8 44.8 27.7 42.8 45.4 23.0 50.1 63.0
Fast R-CNN* Girshick (2015) 19.3 39.3 19.9 3.5 18.8 34.6 21.4 29.5 29.8 7.7 32.2 50.2
Faster R-CNN* Ren et al. (2015) 21.9 42.7 — — — — — — — — — —

Table 4.3: Top: COCO test-standard segmentation results. Bottom: COCO test-standard
bounding box results (top methods only). Leaderboard snapshot from 01/01/2016. *Note:
Fast R-CNN and Faster R-CNN results are on test-dev as reported in Ren et al. (2015), but
results between splits tend to be quite similar.

with our MultiPath model and DeepMask proposals, box regression only increases AP by 1.1 points.

See Table 4.2, left, for details.
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Figure 4.5: Effect of scale (left) and NMS threshold (right) on detection performance

4.5 COCO 2015 Results

To maximize accuracy prior to submitting to the COCO leaderboard, we added validation data to train-

ing, employed horizontal flip and fractional max pooling Graham (2014) at inference, and ensembled

6 models. Together, these four enhancements boosted AP from 27.9 to 33.2 on the held-out validation

images, see Table 4.2, right. More details are given in the section 4.5. Finally, to obtain segmentation

results, we simply fed the bounding box regression outputs back to the DeepMask segmentation system.

Note that as discussed in §4.4.3, box regression only improved accuracy slightly. In principle, we could

have used the original DeepMask segmentation proposals without box regression; however, we did not

test this variant.

We submitted our results the COCO 2015 Object Detection Challenge. Our system placed second in

both the bounding box and segmentation tracks. Table 4.3 compares our results to the top COCO 2015

challenge systems and additional baselines. Only the deeper ResNet classifier He et al. (2016a) outper-

formed our approach (and potentially ResNet could be integrated as the feature extractor in our MultiPath

network, leading to further gains). Compared to the baseline Fast R-CNN, our system showed the largest

gains on small objects and localization, improving AP on small objects by 4× and AP75 by 82%.

Figure 4.4 and Figure 4.6 show selected detection results from our system. Figure 4.7 shows a break-

down of errors of our system. Most of the overall error comes from false positives and negatives, with

little inter-class classification error. Despite our improvements on small objects, small object detection

remains quite challenging.

Additional Analysis

In this section we describe our additional enhancements reported in Table 4.2 and analyze a number of

key parameters. We also report additional modifications that did not improve accuracy; we hope that

sharing our negative results will prove beneficial to the community.
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train+val: Adding validation data to training (minus the 5K held-out images from the validation set we

use for testing) improved accuracy by 2.3 points AP, see Table 4.2. We trained for 280K iterations in

this case. We note that the DeepMask proposals were only trained using the train set, so retraining these

on train+val could further improve results.

hflip: Fast R-CNN is not invariant to horizontal image flip (hflip) even though it is trained with hflip

data augmentation. Thus, we average the softmax scores from the original and flipped images and also

average the box regression outputs (directly, not in log space). AP improves by 0.6 points, see Table 4.2.

FMP: Inspired by Fractional Max Pooling Graham (2014), we perform multiple RoI-pooling operations

with perturbed pooling parameters and average the softmax outputs (note that the network trunk is com-

puted only once). Specifically, we perform two ROI-poolings: the first follows He et al. (2014) and uses

the floor and ceil operations for determining the RoI region, the second uses the round operation. As

shown in Table 4.2, FMP improves AP 0.7 points.

Ensembling: Finally, we trained an ensemble of 6 similar models. Each model was initialized with the

same ImageNet pre-trained model, only the order of COCO training images changed. This ensemble

boosted AP 1.7 points to 33.2, see Table 4.2.

Scale: Figure 4.5, left, shows accuracy as a function of image scale (minimum image dimension in pixels

with maximum fixed to 1000px). Increasing scale improves accuracy up to ∼800px, but at increasing

computation time. We set the scale to 800px which improves AP by 0.5 points over the 600px scale used

by Girshick (2015) for PASCAL.

NMS threshold: Figure 4.5, right, shows accuracy as a function of the NMS threshold. Fast R-CNN Gir-

shick (2015) used a threshold of 30. For our model, an NMS threshold of 50 performs best, improving

AP by 0.4 points, possibly due to the higher object density in COCO.

Dropout & Weight Decay: Dropout helped regularize training and we keep the same dropout value

of 0.5 that was used for training VGG-D. On the other hand, setting weight decay to 0 for fine-tuning

improved results by 1.1 AP50 and 0.5 AP. Note that Bell et al. (2016) used weight decay but not dropout,

so perhaps it is sufficient to have just one form of regularization.

Iterative Localization: Bounding box voting with iterative localization as proposed in Gidaris and

Komodakis (2015) did not substantially improve the AP of our model, again probably due to the higher

quality of DeepMask proposals and the improved localization ability of our MultiPath network.
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ImageNet Data Augmentation: As there are some under-represented classes in COCO with few anno-

tations, we tried to augment the training set with ImageNet 2012 detection training data. Surprisingly,

this only improved performance on the most underrepresented class: hair dryer; for all other classes,

accuracy remained unchanged or suffered.
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Figure 4.6: Selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.
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Figure 4.7: Detailed analysis of detector performance on unseen COCO validation images
at select settings (plots in style of Hoiem et al. (2012) generated by COCO API code). (a)
Removing localization errors would lead to an AP10 of 58.8 on COCO (‘Loc’). Removing
similar and other class confusion (‘Sim’ and ‘Oth’) would only lead to slight improvements
in accuracy. The remaining errors are all based on background confusions (‘BG’) and false
negatives (‘FN’). (b,c) Our detector performs similarly on cats and dogs, achieving high overall
accuracy with some class and background confusions but few missed detections. (d) Zebras are
quite distinct, however, localization of overlapping zebras can be difficult due to their striped
patterns. (e) People are the dominant category on COCO and have average difficulty. (f) Books
are an incredibly difficult category due to their small size and highly inconsistent annotation in
COCO. (g,h,i) Accuracy broken down by scale; not unexpectedly, small objects (area < 322)
are quite difficult, while accuracy on large objects (area > 962) is much higher. While there
is a practical limit to the performance on small objects which are often ambiguous or poorly-
labeled, there is still substantial opportunity for improvement. We expect better proposals, more
accurate filtering of false positives, and stronger reasoning about context can all improve small
object detection.
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4.6 Conclusions

In this chapter, we proposed three modifications to Fast R-CNN: (1) skip connections to give the network

access to multi-scale features, (2) foveal regions to provide context, and (3) the integral loss to improve

localization. We coupled our resulting MultiPath classifier with DeepMask proposals and achieved a

66% improvement over the baseline Fast R-CNN with Selective Search.



Chapter 5

Residual weight parameterizations in deep

neural networks

In this chapter we address the problem of understanding deep networks with residual weight parame-

terizations, which were shown to be able to scale up to thousands of layers and still have improving

performance. However, each fraction of a percent of improved accuracy costs nearly doubling the num-

ber of layers, and so training very deep residual networks has a problem of diminishing feature reuse,

which makes these networks very slow to train. To tackle these problems, in the first part of this chapter

we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we pro-

pose a novel architecture where we decrease depth and increase width of residual networks. We call the

resulting network structures wide residual networks (WRNs) and show that these are far superior over

their commonly used thin and very deep counterparts.

We also observe that the initial motivation behind ResNet - training deeper networks - does not actually

hold true, and the benefits come from increased capacity, rather than from depth. Based on this, in the

second part we explore alternative definitions of ResNet, and propose an implicit skip-connection via

weight parameterization as a sum of weight and Dirac delta function. This parameterization has a minor

computational cost at training time and no cost at all at inference, as both Dirac parameterization and

batch normalization can be folded into convolutional filters, so that network becomes a simple chain of

convolution-ReLU pairs.

The chapter is based on Wide Residual Networks Zagoruyko and Komodakis (2016b) and DiracNets:

Training Very Deep Neural Networks Without Skip-Connections Zagoruyko and Komodakis (2017a).
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5.1 Introduction

Convolutional neural networks have seen a gradual increase of the number of layers in the last few

years, starting from AlexNet Krizhevsky et al. (2012b), VGG Simonyan and Zisserman (2015), Inception

Szegedy et al. (2015) to Residual He et al. (2016a) networks, corresponding to improvements in many

image recognition tasks. The superiority of deep networks has been spotted in several works in the recent

years Bianchini and Scarselli (2014); Montúfar et al. (2014). However, training deep neural networks has

several difficulties, including exploding/vanishing gradients and degradation. Various techniques were

suggested to enable training of deeper neural networks, such as well-designed initialization strategies

Bengio and Glorot (2010); He et al. (2015), better optimizers Sutskever et al. (2013), skip connections

Lee et al. (2014); Raiko et al. (2012), knowledge transfer Romero et al. (2014); Chen et al. (2016) and

layer-wise training Schmidhuber (1992).

The latest residual networks He et al. (2016a), a follow-up of highway networks Srivastava et al. (2015),

had a large success winning ImageNet and COCO 2015 competition and achieving state-of-the-art in

several benchmarks, including object classification on ImageNet and CIFAR, object detection and seg-

mentation on PASCAL VOC and MS COCO. Compared to Inception architectures they show better

generalization, meaning the features can be utilized in transfer learning with better efficiency. Also,

follow-up work showed that residual links speed up convergence of deep networks Szegedy et al. (2016).

Recent follow-up work explored the order of activations in residual networks, presenting identity map-

pings in residual blocks He et al. (2016b) and improving training of very deep networks. The essential

difference between residual and highway networks is that in the latter residual links are gated and weights

of these gates are learned.

So, up to this point, the study of residual networks has focused mainly on the order of activations inside a

ResNet block and the depth of residual networks. In this chapter we attempt to conduct an experimental

study that goes beyond the above points. By doing so, our goal is to explore a much richer set of network

architectures of ResNet blocks and thoroughly examine how several other different aspects besides the

order of activations affect performance. As we explain below, such an exploration of architectures has

led to new interesting findings with great practical importance concerning residual networks.

Width vs depth in residual networks. The problem of shallow vs deep networks has been in discussion

for a long time in machine learning Larochelle et al. (2007); Bengio and LeCun (2007) with pointers

to the circuit complexity theory literature showing that shallow circuits can require exponentially more

components than deeper circuits. The authors of residual networks tried to make them as thin as possible
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Figure 5.1: Various residual blocks used in the chapter. Batch normalization and ReLU precede
each convolution (omitted for clarity)

in favor of increasing their depth and having less parameters, and even introduced a “bottleneck” block

which makes ResNet blocks even thinner.

We note, however, that the residual block with identity mapping that allows to train very deep networks is

at the same time a weakness of residual networks. As gradient flows through the network there is nothing

to force it to go through residual block weights and it can avoid learning anything during training, so it is

possible that there is either only a few blocks that learn useful representations, or many blocks share very

little information with small contribution to the final goal. This problem was formulated as diminishing

feature reuse in Srivastava et al. (2015). The authors of Huang et al. (2016) tried to address this problem

with the idea of randomly disabling residual blocks during training. This method can be viewed as a

special case of dropout Srivastava et al. (2014), where each residual block has an identity scalar weight

on which dropout is applied. The effectiveness of this approach proves the hypothesis above.

Motivated by the above observation, our work builds on top of He et al. (2016b) and tries to answer

the question of how wide deep residual networks should be and address the problem of training. In this

context, we show that the widening of ResNet blocks (if done properly) provides a much more effective

way of improving performance of residual networks compared to increasing their depth. In particular,

we present wider deep residual networks that significantly improve over He et al. (2016b), having 50

times less layers and being more than 2 times faster. We call the resulting network architectures wide

residual networks. For instance, our wide 16-layer deep network has the same accuracy as a 1000-layer

thin deep network and a comparable number of parameters, although being several times faster to train.

This type of experiments thus seem to indicate that the main power of deep residual networks is in

residual blocks, and that the effect of depth is supplementary. We note that one can train even better

wide residual networks that have twice as many parameters (and more), which suggests that to further

improve performance by increasing depth of thin networks one needs to add thousands of layers in this

case.
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Use of dropout in ResNet blocks. Dropout was first introduced in Srivastava et al. (2014) and then

was adopted by many successful architectures as Krizhevsky et al. (2012b); Simonyan and Zisserman

(2015) etc. It was mostly applied on top layers that had a large number of parameters to prevent feature

coadaptation and overfitting. It was then mainly substituted by batch normalization Ioffe and Szegedy

(2015) which was introduced as a technique to reduce internal covariate shift in neural network activa-

tions by normalizing them to have specific distribution. It also works as a regularizer and the authors

experimentally showed that a network with batch normalization achieves better accuracy than a network

with dropout. In our case, as widening of residual blocks results in an increase of the number of param-

eters, we studied the effect of dropout to regularize training and prevent overfitting. Previously, dropout

in residual networks was studied in He et al. (2016b) with dropout being inserted in the identity part of

the block, and the authors showed negative effects of that. Instead, we argue here that dropout should

be inserted between convolutional layers. Experimental results on wide residual networks show that this

leads to consistent gains, yielding even new state-of-the-art results (e.g. 16-layer-deep wide residual

network with dropout achieves 1.64% error on SVHN).

In summary, the contributions of this work are as follows:

• We present a detailed experimental study of residual network architectures that thoroughly exam-

ines several important aspects of ResNet block structure.

• We propose a novel widened architecture for ResNet blocks that allows for residual networks with

significantly improved performance.

• We propose a new way of utilizing dropout within deep residual networks so as to properly regu-

larize them and prevent overfitting during training.

• Last, we show that our proposed ResNet architectures achieve state-of-the-art results on several

datasets dramatically improving accuracy and speed of residual networks.

5.2 Wide Residual Networks

Residual block with identity mapping can be represented by the following formula:

xl+1 = xl + F(xl,Wl),

where xl+1 and xl are input and output of the l-th unit in the network, F is a residual function and Wl

are parameters of the block. Residual network consists of sequentially stacked residual blocks.
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In He et al. (2016b) residual networks consisted of two type of blocks:

• basic - with two consecutive 3 × 3 convolutions with batch normalization and ReLU preceding

convolution: conv3× 3-conv3× 3 Fig.5.1a

• bottleneck - with one 3 × 3 convolution surrounded by dimensionality reducing and expanding

1× 1 convolution layers: conv1× 1-conv3× 3-conv1× 1 Fig.5.1b

Compared to the original architecture He et al. (2016a) in He et al. (2016b) the order of batch normal-

ization, activation and convolution in residual block was changed from conv-BN-ReLU to BN-ReLU-

conv. As the latter was shown to train faster and achieve better results we don’t consider the original

version. Furthermore, so-called “bottleneck” blocks were initially used to make blocks less computa-

tionally expensive to increase the number of layers. As we want to study the effect of widening and

“bottleneck” is used to make networks thinner we don’t consider it too, focusing instead on “basic”

residual architecture.

There are essentially three simple ways to increase representational power of residual blocks:

• to add more convolutional layers per block

• to widen the convolutional layers by adding more feature planes

• to increase filter sizes in convolutional layers

As small filters were shown to be very effective in several works including Simonyan and Zisserman

(2015); Szegedy et al. (2016) we do not consider using filters larger than 3×3. Let us also introduce two

factors, deepening factor l and widening factor k, where l is the number of convolutions in a block and

k multiplies the number of features in convolutional layers, thus the baseline “basic” block corresponds

to l = 2, k = 1. Figures 5.1a and 5.1c show schematic examples of “basic” and “basic-wide” blocks

respectively.

The general structure of our residual networks is illustrated in table 5.1: it consists of an initial convo-

lutional layer conv1 that is followed by 3 groups (each of size N ) of residual blocks conv2, conv3

and conv4, followed by average pooling and final classification layer. The size of conv1 is fixed in

all of our experiments, while the introduced widening factor k scales the width of the residual blocks in

the three groups conv2-4 (e.g. the original “basic” architecture is equivalent to k = 1). We want to

study the effect of representational power of residual block and, to that end, we perform and test several

modifications to the “basic” architecture, which are detailed in the following subsections.
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group name output size block type = B(3, 3)

conv1 32× 32 [3×3, 16]

conv2 32×32
[

3×3, 16×k
3×3, 16×k

]
×N

conv3 16×16
[

3×3, 32×k
3×3, 32×k

]
×N

conv4 8×8
[

3×3, 64×k
3×3, 64×k

]
×N

avg-pool 1× 1 [8× 8]

Table 5.1: Structure of wide residual networks. Network width is determined by factor k.
Original architecture He et al. (2016b) is equivalent to k = 1. Groups of convolutions are
shown in brackets where N is a number of blocks in group, downsampling performed by the
first layers in groups conv3 and conv4. Final classification layer is omitted for clarity. In the
particular example shown, the network uses a ResNet block of type B(3, 3).

5.2.1 Type of convolutions in residual block

Let B(M) denote residual block structure, where M is a list with the kernel sizes of the convolutional

layers in a block. For example, B(3, 1) denotes a residual block with 3 × 3 and 1 × 1 convolutional

layers (we always assume square spatial kernels). Note that, as we do not consider “bottleneck” blocks

as explained earlier, the number of feature planes is always kept the same across the block. We would

like to answer the question of how important each of the 3×3 convolutional layers of the “basic” residual

architecture is and if they can be substituted by a less computationally expensive 1 × 1 layer or even a

combination of 1 × 1 and 3 × 3 convolutional layers, e.g. B(1, 3) or B(1, 3). This can increase or

decrease the representational power of the block. We thus experiment with the following combinations

(note that the last combination, i.e., B(3, 1, 1) is similar to effective Network-in-Network Lin et al.

(2013) architecture):

1. B(3, 3) - original “basic” block

2. B(3, 1, 3) - with one extra 1× 1 layer

3. B(1, 3, 1) - with the same dimensionality of all convolutions, “straightened” bottleneck

4. B(1, 3) - the network has alternating 1× 1 - 3× 3 convolutions everywhere

5. B(3, 1) - similar idea to the previous block

6. B(3, 1, 1) - Network-in-Network style block
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5.2.2 Number of convolutional layers per residual block

We also experiment with the block deepening factor l to see how it affects performance. The compar-

ison has to be done among networks with the same number of parameters, so in this case we need to

build networks with different l and d (where d denotes the total number of blocks) while ensuring that

network complexity is kept roughly constant. This means, for instance, that d should decrease whenever

l increases.

5.2.3 Width of residual blocks

In addition to the above modifications, we experiment with the widening factor k of a block. While

the number of parameters increases linearly with l (the deepening factor) and d (the number of ResNet

blocks), number of parameters and computational complexity are quadratic in k. However, it is more

computationally effective to widen the layers than have thousands of small kernels as GPU is much more

efficient in parallel computations on large tensors, so we are interested in an optimal d to k ratio.

One argument for wider residual networks would be that almost all architectures before residual net-

works, including the most successful Inception Szegedy et al. (2015) and VGG Simonyan and Zisserman

(2015), were much wider compared to He et al. (2016b). For example, residual networks WRN-22-8

and WRN-16-10 (see next paragraph for explanation of this notation) are very similar in width, depth

and number of parameters to VGG architectures.

We further refer to original residual networks with k = 1 as “thin” and to networks with k > 1 as

“wide”. In the rest of the chapter we use the following notation: WRN-n-k denotes a residual network

that has a total number of convolutional layers n and a widening factor k (for example, network with 40

layers and k = 2 times wider than original would be denoted as WRN-40-2). Also, when applicable we

append block type, e.g. WRN-40-2-B(3, 3).

5.2.4 Dropout in residual blocks

As widening increases the number of parameters we would like to study ways of regularization. Residual

networks already have batch normalization that provides a regularization effect, however it requires

heavy data augmentation, which we would like to avoid, and it’s not always possible. We add a dropout

layer into each residual block between convolutions as shown in fig. 5.1d and after ReLU to perturb

batch normalization in the next residual block and prevent it from overfitting. In very deep residual
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networks that should help deal with diminishing feature reuse problem enforcing learning in different

residual blocks.

5.2.5 Experimental results

All of our experiments are based on He et al. (2016b) architecture with pre-activation residual blocks

and we use it as baseline. For experiments we chose well-known CIFAR-10, CIFAR-100, SVHN and

ImageNet image classification datasets. CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2012a)

consist of 32 × 32 color images drawn from 10 and 100 classes split into 50,000 train and 10,000 test

images. For data augmentation we do horizontal flips and take random crops from image padded by

4 pixels on each side, filling missing pixels with reflections of original image. We don’t use heavy

data augmentation as proposed in Graham (2014). SVHN is a dataset of Google’s Street View House

Numbers images and contains about 600,000 digit images, coming from a significantly harder real world

problem. For experiments on SVHN we don’t do any image preprocessing, except dividing images by

255 to provide them in [0,1] range as input. To speed up training we run “type of convolutions in a

block” and “number of convolutions per block” experiments with k = 2 and reduced depth compared to

He et al. (2016b).

Initially we followed CIFAR image preprocessing of Goodfellow et al. (2013) with ZCA whitening,

but later found out that simple mean/std normalization was used in He et al. (2016b) and other ResNet

related works, so we updated tables where comparison with other methods needed. We further use ZCA

preprocessing, unless mentioned otherwise.

In the following we describe our findings w.r.t. the different ResNet block architectures and also analyze

the performance of our proposed wide residual networks.
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block type depth # params time,s CIFAR-10

B(1, 3, 1) 40 1.4M 85.8 6.06

B(3, 1) 40 1.2M 67.5 5.78

B(1, 3) 40 1.3M 72.2 6.42

B(3, 1, 1) 40 1.3M 82.2 5.86

B(3, 3) 28 1.5M 67.5 5.73

B(3, 1, 3) 22 1.1M 59.9 5.78

Table 5.2: Test error (%, median over 5 runs) on CIFAR-10
of residual networks with k = 2 and different block types.
Time column measures one training epoch.

l CIFAR-10

1 6.69

2 5.43

3 5.65

4 5.93

Table 5.3: Test error (%,
median over 5 runs) on
CIFAR-10 of WRN-40-2
(2.2M) with various l.

Type of convolutions in a block

We start by reporting results using trained networks with different block types B (reported results are

on CIFAR-10). We used WRN-40-2 for blocks B(1, 3, 1), B(3, 1), B(1, 3) and B(3, 1, 1) as these

blocks have only one 3 × 3 convolution. To keep the number of parameters comparable we trained

other networks with less layers: WRN-28-2-B(3, 3) and WRN-22-2-B(3, 1, 3). We provide the results

including test accuracy in median over 5 runs and time per training epoch in the table 5.2. Block B(3, 3)

turned out to be the best by a little margin, and B(3, 1) with B(3, 1, 3) are very close to B(3, 3) in

accuracy having less parameters and less layers. B(3, 1, 3) is faster than others by a small margin.

Based on the above, blocks with comparable number of parameters turned out to give more or less the

same results. Due to this fact, we hereafter restrict our attention to only WRNs with 3× 3 convolutions

so as to be also consistent with other methods.

Number of convolutions per block

We next proceed with the experiments related to varying the deepening factor l (which represents the

number of convolutional layers per block). We show indicative results in table 5.3, where in this case we

took WRN-40-2 with 3 × 3 convolutions and trained several networks with different deepening factor

l ∈ [1, 2, 3, 4], same number of parameters (2.2×106) and same number of convolutional layers.

As can be noticed, B(3, 3) turned out to be the best, whereas B(3, 3, 3) and B(3, 3, 3, 3) had the worst

performance. We speculate that this is probably due to the increased difficulty in optimization as a result

of the decreased number of residual connections in the last two cases. Furthermore, B(3) turned out to
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depth k # params CIFAR-10 CIFAR-100

40 1 0.6M 6.85 30.89
40 2 2.2M 5.33 26.04
40 4 8.9M 4.97 22.89
40 8 35.7M 4.66 -
28 10 36.5M 4.17 20.50
28 12 52.5M 4.33 20.43
22 8 17.2M 4.38 21.22
22 10 26.8M 4.44 20.75
16 8 11.0M 4.81 22.07
16 10 17.1M 4.56 21.59

Table 5.4: Test error (%) of various wide networks on CIFAR-10 and CIFAR-100 (ZCA pre-
processing).

be quite worse. The conclusion is that B(3, 3) is optimal in terms of number of convolutions per block.

For this reason, in the remaining experiments we only consider wide residual networks with a block of

type B(3, 3).

Width of residual blocks

As we try to increase widening parameter k we have to decrease total number of layers. To find an

optimal ratio we experimented with k from 2 to 12 and depth from 16 to 40. The results are presented

in table 5.4. As can be seen, all networks with 40, 22 and 16 layers see consistent gains when width is

increased by 1 to 12 times. On the other hand, when keeping the same fixed widening factor k = 8 or

k = 10 and varying depth from 16 to 28 there is a consistent improvement, however when we further

increase depth to 40 accuracy decreases (e.g. WRN-40-8 loses in accuracy to WRN-22-8).

We show additional results in table 5.5 where we compare thin and wide residual networks. As can

be observed, wide WRN-40-4 can be compared to thin ResNet-1001 as they achieve approximately the

same accuracy on CIFAR-10 and CIFAR-100. It is interesting that they have comparable number of

parameters, 8.9×106 and 10.2×106, suggesting that depth does not add regularization effects compared

to width at this level. As we show further in benchmarks, WRN-40-4 is 8 times faster to train, so

evidently depth to width ratio in the original thin residual networks is far from optimal.

Also, wide WRN-28-10 outperforms thin ResNet-1001 by 0.8% (with the same minibatch size during

training) on CIFAR-10 and 2.8% on CIFAR-100, having 36 times less layers (see table 5.5). We note

that the result of 4.64% with ResNet-1001 was obtained with batch size 64, whereas we use a batch size
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128 in all of our experiments (i.e., all other results reported in table 5.5 are with batch size 128). Training

curves for these networks are presented in Figure 5.2.

Despite previous arguments that depth gives regularization effects and width causes network to overfit,

we successfully train networks with 5 times more parameters than ResNet-1001. Wide WRN-28-12

(table 5.4) has 52.5× 106 parameters and outperforms ResNet-1001 (table 5.5) by a significant margin.

depth-k # params CIFAR-10 CIFAR-100

NIN Lin et al. (2013) 8.81 35.67
DSN Lee et al. (2014) 8.22 34.57
FitNet Romero et al. (2014) 8.39 35.04
Highway Srivastava et al. (2015) 7.72 32.39
ELU Clevert et al. (2015) 6.55 24.28

original-ResNetHe et al. (2016a)
110 1.7M 6.43 25.16
1202 10.2M 7.93 27.82

stoc-depthHuang et al. (2016)
110 1.7M 5.23 24.58
1202 10.2M 4.91 -

pre-act-ResNetHe et al. (2016b)
110 1.7M 6.37 -
164 1.7M 5.46 24.33
1001 10.2M 4.92(4.64) 22.71

WRN (ours)
40-4 8.7M 4.65 21.8
16-8 11.0M 4.6 21.5
28-10 36.5M 4.15 19.92

Table 5.5: Test error of different methods on CIFAR-10 and CIFAR-100 with moderate data
augmentation (flip/translation) and mean/std normalzation. We don’t use dropout for these re-
sults. In the second column k is a widening factor. Results for He et al. (2016b) are shown with
minibatch size 128 (as ours), and 64 in parenthesis. Our results were obtained by computing
median over 5 runs.

To be able to directly compare to original ResNet and follow-ups, we removed whitening preprocessing

and trained WRN on mean/std normalized data, and updated tables 5.5 and 5.6. To our surprise this

gave slightly better results. We further found out that mean/std preprocessing allows training wider and

deeper networks with better accuracy, and achieved 18.5% on CIFAR-100 with WRN-40-10 with 80M

parameters, giving total improvement of 4.2% over ResNet-1001.

To summarize:

• widening consistently improves performance across residual networks of different depth;

• increasing both depth and width helps until the number of parameters becomes too high and

stronger regularization is needed;
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Figure 5.2: Training curves for thin and wide residual networks on CIFAR-10 and CIFAR-100.
Solid lines denote test error (y-axis on the right), dashed lines denote training loss (y-axis on
the left).

• there doesn’t seem to be a regularization effect from very high depth in residual networks as wide

networks with the same number of parameters as thin ones can learn same or better representa-

tions. Furthermore, wide networks can successfully learn with a 2 or more times larger number

of parameters than thin ones, which would require doubling the depth of thin networks, making

them infeasibly expensive to train.

Dropout in residual blocks

We trained networks with dropout inserted into residual block between convolutions on all datasets. We

used cross-validation to determine dropout probability values, 0.3 on CIFAR and 0.4 on SVHN. Also,

we didn’t have to increase number of training epochs compared to baseline networks without dropout.

Dropout decreases test error on CIFAR-10 and CIFAR-100 by 0.16% and 0.48% correnspondingly (over

median of 5 runs and mean/std preprocessing) with WRN-28-10, and gives improvements with other

ResNets as well (table 5.6. To our knowledge, that’s the first result to approach 20% error on CIFAR-

100, even outperforming methods with heavy data augmentation. There is a noticeable drop in accuracy

with WRN-16-4 on CIFAR which we speculate is due to the relatively small number of parameters.

We notice a disturbing effect in residual network training after the first learning rate drop when both loss

and validation error suddenly start to go up and oscillate on high values until the next learning rate drop.

We found out that it is caused by weight decay, however making it lower leads to a significant drop in

accuracy. Interestingly, dropout partially removes this effect in most cases, see figures 5.2, 5.3.

The effect of dropout becomes more evident on SVHN. This is probably due to the fact that we don’t

do any data augmentation and batch normalization overfits, so dropout adds a regularization effect.
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depth k dropout CIFAR-10 CIFAR-100 SVHN

16 4 5.02 24.03 1.85
16 4 X 5.24 23.91 1.64
28 10 4.15 19.92 -
28 10 X 3.99 19.44 -
52 1 6.43 29.89 2.08
52 1 X 6.28 29.78 1.70

Table 5.6: Effect of dropout in residual block. (mean/std preprocessing, CIFAR numbers are
based on median of 5 runs)
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Figure 5.3: Training curves for SVHN. On the left: thin and wide networks, on the right: effect
of dropout. Solid lines denote test error (y-axis on the right), dashed lines denote training loss
(y-axis on the left).

Evidence for this can be found on training curves in figure 5.3 where the loss without dropout drops

to very low values. The results are presented in table 5.6. We observe significant improvements from

using dropout on both thin and wide networks. Thin 50-layer deep network even outperforms thin

152-layer deep network with stochastic depth Huang et al. (2016). We additionally trained WRN-16-8

with dropout on SVHN, which achieves impressive 1.54% on SVHN - the best published result to our

knowledge. Without dropout it only achieves 1.81%.

Overall, despite the arguments of combining with batch normalization, dropout shows itself as an effec-

tive techique of regularization of thin and wide networks. It can be used to further improve results from

widening, while also being complementary to it.

ImageNet

We first experiment with non-bottleneck ResNet-18 and ResNet-34, trying to gradually increase their

width from 1.0 to 4.0. The results are shown in table 5.7. Increasing width gradually increases accu-

racy of both netowrks, and networks with the comparable number of parameters achieve similar results,
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despite having different depth. Althouth these networks have a large number of parameters, they are

outperfomed by bottleneck networks, which might be caused by two reasons: either bottleneck architec-

ture is simply better suited for ImageNet classification task, or this more complex task needs a deeper

network. To test this, we took the ResNet-50, and tried to make it wider by increasing inner 3× 3 layer

width. With widening factor of 2.0 WRN-50-2 outperforms ResNet-152 having 3 times less layers,

and being significantly faster. WRN-50-2 is only slightly worse and almost 2× faster than the best-

performing pre-activation ResNet-200, althouth having slightly more parameters (table 5.8). In general,

we find that, unlike CIFAR, ImageNet networks need more width at the same depth to achieve the same

accuracy. It is however clear that it is unnecessary to have residual networks with more than 50 layers

due to computational reasons.

We didn’t try to train bigger bottleneck networks as 8-GPU machines are needed for that.

width 1.0 2.0 3.0 4.0

WRN-18 top1,top5 30.4, 10.93 27.06, 9.0 25.58, 8.06 24.06, 7.33
#parameters 11.7M 25.9M 45.6M 101.8M

WRN-34 top1,top5 26.77, 8.67 24.5, 7.58 23.39, 7.00
#parameters 21.8M 48.6M 86.0M

Table 5.7: ILSVRC-2012 validation error (single crop) of non-bottleneck ResNets with various
width. Networks with the comparable number of parameters achieve similar accuracy, despite
having 2 times less layers.

Model top-1 err, % top-5 err, % #params time/batch 16

ResNet-50 24.01 7.02 25.6M 49
ResNet-101 22.44 6.21 44.5M 82
ResNet-152 22.16 6.16 60.2M 115
WRN-50-2 21.9 6.03 68.9M 93
pre-ResNet-200 21.66 5.79 64.7M 154

Table 5.8: ILSVRC-2012 validation error (single crop) of bottleneck ResNets. Faster WRN-
50-2 outperforms ResNet-152 having 3 times less layers, and stands close to pre-ResNet-200.

We also used WRN-34-2 to participate in COCO 2016 object detection challenge, using a combination of

MultiPathNet Zagoruyko et al. (2016) and LocNet Gidaris and Komodakis (2016). Despite having only

34 layers, this system achieves state-of-the-art single model performance of 35.2 mAP, outperforming

even ResNet-152 and Inception-v4-based networks.
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Computational efficiency

Thin and deep residual networks with small kernels are against the nature of GPU computations because

of their sequential structure. Increasing width helps effectively balance computations in much more

optimal way, so that wide networks are many times more efficient than thin ones as our benchmarks

show. We use cudnn v5 and Titan X to measure forward+backward update times with minibatch size 32

for several networks, the results are in the figure 5.4. We show that our best CIFAR wide WRN-28-10

is 1.6 times faster than thin ResNet-1001. Furthermore, wide WRN-40-4, which has approximately the

same accuracy as ResNet-1001, is 8 times faster.
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Figure 5.4: Time of forward+backward update per minibatch of size 32 for wide and thin net-
works. (x-axis denotes network depth and widening factor). Numbers beside bars indicate test
error on CIFAR-10, on top - time (ms). Test time is a proportional fraction of these bench-
marks. Note, for instance, that wide WRN-40-4 is 8 times faster than thin ResNet-1001 while
having approximately the same accuracy.

5.3 Implicit skip-connections

As we show the first part of the chapter, the original motivation behind ResNet of training deeper net-

works does not actually hold true, and widening is more effective that deepening, meaning that there is

no benefit from increasing depth to more than 50 layers. Additionally, widening networks are faster due

to their parallel execution, whereas deeper networks need to be executed in a more sequential manner.

To summarize, deep networks with skip-connections have the following problems:

• Feature reuse problem: upper layers might not learn useful representations given previous activa-

tions;

• Widening is more effective than deepening: there is no benefit from increasing depth;

• Actual depth is not clear: it might be determined by the shortest path.



Wide residual networks 86

However, the features learned by such networks are generic, and they are able to train with massive

number of parameters without negative effects of overfitting. We are thus interested in better under-

standing of networks with skip-connections, which would allow us to train very deep plain (without

skip-connections) networks and benefits they could bring, such as higher parameter efficiency, better

generalization, and improved computational efficiency.

Motivated by this, we propose a novel weight parameterization for neural networks, which we call

Dirac parameterization, applicable to a wide range of network architectures. Furthermore, by use of

the above parameterization, we propose novel plain VGG and ResNet-like architecture without explicit

skip-connections, which we call DiracNet. These networks are able to train with hundreds of layers,

surpass 1001-layer ResNet while having only 28-layers, and approach Wide ResNet (WRN) accuracy.

We should note that we train DiracNets end-to-end, without any need of layer-wise pretraining. We

believe that our work is an important step towards simpler and more efficient deep neural networks.

Overall, contributions of this part are the following:

• We propose generic Dirac weight parameterization, applicable to a wide range of neural network

architectures;

• Our plain Dirac parameterized networks are able to train end-to-end with hundreds of layers.

Furthermore, they are able to train with massive number of parameters and still generalize well

without negative effects of overfitting;

• Dirac parameterization can be used in combination with explicit skip-connections like ResNet, in

which case it eliminates the need of careful initialization.

• In a trained network Dirac-parameterized filters can be folded into a single vector, resulting in a

simple and easily interpretable VGG-like network, a chain of convolution-ReLU pairs.

5.3.1 Dirac parameterization

Inspired from ResNet, we parameterize weights as a residual of Dirac function, instead of adding explicit

skip connection. Because convolving any input with Dirac results in the same input, this helps propagate

information deeper in the network. Similarly, on backpropagation it helps alleviate vanishing gradients

problem.
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Let I be the identity in algebra of discrete convolutional operators, i.e. convolving it with input x results

in the same output x (∗ denotes convolution):

I ∗ x = x (5.1)

In two-dimensional case convolution might be expressed as matrix multiplication, so I is simply an

identity matrix, or a Kronecker delta δ. We generalize this operator to the case of a convolutional layer,

where input x ∈ RM,N1,N2,...,NL (that consists of M channels of spatial dimensions (N1, N2, ..., NL))

is convolved with weight Ŵ ∈ RM,M,K1,K2,...,KL (combining M filters1) to produce an output y of M

channels, i.e. y = Ŵ ∗x. In this case we define Dirac delta I ∈ RM,M,K1,K2,...,KL , preserving eq. (5.1),

as the following:

I(i, j, l1, l2, . . . , lL) =


1 if i = j and lm ≤ Km for m = 1..L,

0 otherwise;

(5.2)

Given the above definition, for a convolutional layer y = Ŵ ∗ x we propose the following parameteri-

zation for the weight Ŵ (hereafter we omit bias for simplicity):

y = Ŵ ∗ x, (5.3)

Ŵ = diag(a)I +W , (5.4)

where a ∈ RM is scaling vector learned during training, and W is a weight vector. Each i-th element

of a corresponds to scaling of i-th filter of W . When all elements of a are close to zero, it reduces to

a simple linear layer W ∗ x. When they are higher than 1 and W is small, Dirac dominates, and the

output is close to be the same as input.

We also use weight normalization Salimans and Kingma (2016) for W , which we find useful for stabi-

lizing training of very deep networks with more than 30 layers:

Ŵ = diag(a)I + diag(b)Wnorm, (5.5)

where b ∈ RM is another scaling vector (to be learned during training), and Wnorm is a normalized

weight vector where each filter is normalized by it’s Euclidean norm. We initialize a to 1.0 and b to

0.1, and do not L2-regularize them during training, as it would lead to degenerate solutions when their

1outputs are over the first dimension of Ŵ , inputs are over the second dimension of Ŵ



Wide residual networks 88

values are close to zero. We initialize W from normal distribution N (0, 1). Gradients of (5.5) can be

easily calculated via chain-rule. We rely on automatic differentiation, available in all major modern deep

learning frameworks (PyTorch, Tensorflow, Theano), to implement it.

Overall, this adds a negligible number of parameters to the network (just two scaling multipliers per

channel) during training, which can be folded into filters at test time.

5.3.2 Connection between Dirac parameterization and residual block

Let us discuss the connection of Dirac parameterization to ResNet. Due to distributivity of convolution,

eq. (5.3) can be rewritten to show that the skip-connection in Dirac parameterization is implicit (we omit

a for simplicity):

y = σ
(
(I +W ) ∗ x

)
= σ

(
x+W ∗ x

)
, (5.6)

where σ(x) is a function combining nonlinearity and batch normalization. The skip connection in

ResNet is explicit:

y = x+ σ(W ∗ x)

This means that Dirac parameterization and ResNet differ only by the order of nonlinearities. Each

delta parameterized layer adds complexity by having unavoidable nonlinearity, which is not the case for

ResNet. Additionally, Dirac parameterization can be folded into a single weight vector on inference.

5.3.3 Experimental results

We adopt architecture similar to ResNet and VGG, and instead of explicit skip-connections use Dirac

parameterization (see table 5.9). The architecture consists of three groups, where each group has 2N

convolutional layers (2N is used for easier comparison with basic-block ResNet and WRN, which have

N blocks of pairs of convolutional layers per group). For simplicity we use max-pooling between groups

to reduce spatial resolution. We also define width k as in WRN to control number of parameters.

We chose CIFAR and ImageNet for our experiments. As for baselines, we chose Wide ResNet with

identity mapping in residual block He et al. (2016b) and basic block (two 3× 3 convolutions per block).

We used the same training hyperparameters as WRN for both CIFAR and ImageNet.

The experimental section is composed as follows. First, we provide a detailed experimental comparison

between plain and plain-Dirac networks, and compare them with ResNet and WRN on CIFAR. Also,
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we analyze evolution of scaling coefficients during training and their final values. Then, we present

ImageNet results. Lastly, we apply Dirac parameterization to ResNet and show that it eliminates the

need of careful initialization.

name output size layer type

conv1 32× 32 [3×3, 16]
group1 32×32

[
3×3, 16× 16k

]
×2N

max-pool 16×16
group2 16×16

[
3×3, 32k × 32k

]
×2N

max-pool 8×8
group3 8×8

[
3×3, 64k × 64k

]
×2N

avg-pool 1× 1 [8× 8]

Table 5.9: Structure of DiracNets. Network width is determined by factor k. Groups of con-
volutions are shown in brackets as [kernel shape, number of input channels, number of output
channels] where 2N is a number of layers in a group. Final classification layer and dimension-
ality changing layers are omitted for clarity.

Plain networks with Dirac parameterization

In this section we compare plain networks with plain DiracNets. To do that, we trained both with 10-52

layers and the same number of parameters at the same depth (fig. 5.5). As expected, at 10 and 16 layers

there is no difficulty in training plain networks, and both plain and plain-Dirac networks achieve the same

accuracy. After that, accuracy of plain networks quickly drops, and with 52 layers only achieves 88%,

whereas for Dirac parameterized networks it keeps growing. DiracNet with 34 layers achieves 92.8%

validation accuracy, whereas simple plain only 91.2%. Plain 100-layer network does not converge and

only achieves 40% train/validation accuracy, whereas DiracNet achieves 92.4% validation accuracy.

Plain Dirac networks and residual networks

To compare plain Dirac parameterized networks with WRN we trained them with different width k

from 1 to 4 and depth from 10 to 100 (fig. 5.5). As observed by WRN authors, accuracy of ResNet

is mainly determined by the number of parameters, and we even notice that wider networks achieve

better performance than deeper. DiracNets, however, benefit from depth, and deeper networks with

the same accuracy as wider have less parameters. In general, DiracNets need more parameters than

ResNet to achieve top accuracy, and we were able to achieve 95.25% accuracy with DiracNet-28-10

with 36.5M parameters, which is close to WRN-28-10 with 96.0% and 36.5M parameters as well. We

do not observe validation accuracy degradation when increasing width, the networks still perform well
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Figure 5.5: DiracNet and ResNet with different depth/width. Each circle area is proportional to
number of parameters. DiracNet needs more width (i.e. parameters) to match ResNet accuracy.
Accuracy is calculated as median of 5 runs.

depth-width # params CIFAR-10 CIFAR-100

NIN Lin et al. (2013), 8.81 35.67
ELU Clevert et al. (2015), 6.55 24.28
VGG 16 20M 6.09±0.11 25.92±0.09

DiracNet (ours)
28-5 9.1M 5.16±0.14 23.44±0.14

28-10 36.5M 4.75±0.16 21.54±0.18

ResNet 1001-1 10.2M 4.92 22.71
Wide ResNet 28-10 36.5M 4.00 19.25

Table 5.10: CIFAR performance of plain (top part) and residual (bottom part) networks on with
horizontal flips and crops data augmentation. DiracNets outperform all other plain networks
by a large margin, and approach residual architectures. No dropout it used. For VGG and
DiracNets we report mean±std of 5 runs.

despite the massive number of parameters, just like WRN. Interestingly, plain DiracNet with only 28

layers is able to closely match ResNet with 1001 layers (table 5.10)

Analysis of scaling coefficients

As we leave a and b free of L2-regularization, we can visualize significance of various layers and how

it changes during training by plotting their averages ā and b̄, which we did for DiracNet-34 trained on

CIFAR-10 on fig. 5.6. Interestingly, the behaviour changes from lower to higher groups of the network

with increasing dimensionality. We also note that no layers exhibit degraded a to b ratio, meaning that
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Figure 5.6: Average values of a and b during training for different layers of DiracNet-34.
Deeper color means deeper layer in a group of blocks.

all layers are involved in training. We also investigate these ratios in individual feature planes, and find

that the number of degraded planes is low too.

Dirac parameterization for ResNet weight initialization

As expected, Dirac parameterization does not bring accuracy improvements to ResNet on CIFAR, but

eliminates the need of careful initialization. To test that, instead of usually used MSRA init He et al.

(2015), we parameterize weights as:

Ŵ = I +W ,

omitting other terms of eq. (5.5) for simplicity, and initialize all weights from a normal distribution

N (0, σ2), ignoring filter shapes. Then, we vary σ and observe that ResNet-28 converges to the same

validation accuracy with statistically insignificant deviations, even for very small values of σ such as

10−8, and only gives slightly worse results when σ is around 1. It does not converge when all weights

are zeros, as expected. Additionally, we tried to use the same orthogonal initialization as for DiracNet

and vary it’s scaling, in which case the range of the scaling gain is even wider.
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Network # parameters top-1 error top-5 error

plain

VGG-CNN-S Chatfield et al. (2014) 102.9M 36.94 15.40
VGG-16 Simonyan and Zisserman (2015) 138.4M 29.38 -
DiracNet-18 11.7M 30.37 10.88
DiracNet-34 21.8M 27.79 9.34

residual
ResNet-18 [our baseline] 11.7M 29.62 10.62
ResNet-34 [our baseline] 21.8M 27.17 8.91

Table 5.11: Single crop top-1 and top-5 error on ILSVRC2012 validation set for plain (top) and
residual (bottom) networks.
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Figure 5.7: Convergence of DiracNet and ResNet on ImageNet. Training top-5 error is shown
with dashed lines, validation - with solid. All networks are trained using the same optimiza-
tion hyperparameters. DiracNet closely matches ResNet accuracy with the same number of
parameters.

ImageNet results

We trained DiracNets with 18 and 34 layers and their ResNet equivalents on ILSVRC2012 image classi-

fication dataset. We used the same setup as for ResNet training, and kept the same number of blocks per

groups. Unlike on CIFAR, DiracNet almost matches ResNet in accuracy (table 5.11), with very similar

convergence curves (fig. 5.7) and the same number of parameters. As for simple plain VGG networks,

DiracNets achieve same accuracy with 10 times less parameters, similar to ResNet.

5.4 Conclusions

In the first part of the chapter we presented a study on width of residual networks and showed state-

of-the-art results on CIFAR-10, CIFAR-100, SVHN and significant improvements on ImageNet only

due to increased width of residual networks. We show that wide networks with only 16 layers can
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significantly outperform 1000-layer deep networks on CIFAR, as well as 50-layer outperform 152-layer

on ImageNet, showing that the main power of residual networks is in residual blocks, and not in extreme

depth as claimed earlier. Also, wide residual networks are several times faster to train. We think that

these intriguing findings will help further advances in research in deep neural networks.

Motivated by the wide residual networks, in the second part we proposed Dirac-parameterized networks,

a simple and efficient way to train very deep networks with nearly state-of-the-art accuracy. Even though

they are able to successfully train with hundreds of layers, after a certain number of layers there seems

to be very small or no benefit in terms of accuracy for both ResNets and DiracNets. This is likely caused

by underuse of parameters in deeper layers, and both architectures are prone to this issue to a different

extent.

Even though on large ImageNet dataset DiracNets are able to closely match ResNet in accuracy with the

same number of parameters and a simpler architecture, they are significantly behind on smaller CIFAR

datasets, which we think is due to lack of regularization, more important on small amounts of data. Due

to use of weight normalization and free scaling parameters DiracNet is less regularized than ResNet,

which we plan to investigate in future.

We also observe that DiracNets share the same property as WRN to train with massive number of pa-

rameters and still generalize well without negative effects of overfitting, which was initially thought was

due to residual connections. We now hypothesize that it is due to a combination of SGD with momen-

tum at high learning rate, which has a lot of noise, and stabilizing factors, such as residual or Dirac

parameterization, batch normalization, etc.





Chapter 6

Improving convolutional neural networks

via attention transfer

In this chapter we explore attention, which plays a critical role in human visual experience. Furthermore,

it has recently been demonstrated that attention can also play an important role in the context of applying

artificial neural networks to a variety of tasks from fields such as computer vision and NLP. In this work

we show that, by properly defining attention for convolutional neural networks, we can actually use this

type of information in order to significantly improve the performance of a student CNN network by

forcing it to mimic the attention maps of a powerful teacher network. To that end, we propose several

novel methods of transferring attention, showing consistent improvement across a variety of datasets and

convolutional neural network architectures.

This chapter is based on Paying More Attention to Attention: Improving the Performance of Convolu-

tional Neural Networks via Attention Transfer Zagoruyko and Komodakis (2017b).

95
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6.1 Introduction

As humans, we need to pay attention in order to be able to adequately perceive our surroundings. At-

tention is therefore a key aspect of our visual experience, and closely relates to perception - we need to

keep attention to build a visual representation, possessing detail and coherence.

As artificial neural networks became more popular in fields such as computer vision and natural lan-

guage processing in the recent years, artificial attention mechanisms started to be developed as well.

Artificial attention lets a system “attend” to an object to examine it with greater detail. It has also be-

come a research tool for understanding mechanisms behind neural networks, similar to attention used in

psychology.

One of the popular hypothesis there is that there are non-attentional and attentional perception processes.

Non-attentional processes help to observe a scene in general and gather high-level information, which,

when associated with other thinking processes, helps us to control the attention processes and navigate

to a certain part of the scene. This implies that different observers — with different knowledge, different

goals, and therefore different attentional strategies — can literally see the same scene differently. This

brings us to the main topic of this chapter: how attention differs within artificial vision systems, and

can we use attention information in order to improve the performance of convolutional neural networks

? More specifically, can a teacher network improve the performance of another student network by

providing to it information about where it looks, i.e., about where it concentrates its attention into ?

To study these questions, one first needs to properly specify how attention is defined w.r.t. a given

convolutional neural network. To that end, here we consider attention as a set of spatial maps that

essentially try to encode on which spatial areas of the input the network focuses most for taking its output

decision (e.g., for classifying an image), where, furthermore, these maps can be defined w.r.t. various

layers of the network so that they are able to capture both low-, mid-, and high-level representation

information. More specifically, in this work we define two types of spatial attention maps: activation-

based and gradient-based. We explore how both of these attention maps change over various datasets and

architectures, and show that these actually contain valuable information that can be used for significantly

improving the performance of convolutional neural network architectures (of various types and trained

for various different tasks). To that end, we propose several novel ways of transferring attention from a

powerful teacher network to a smaller student network with the goal of improving the performance of

the latter (Fig. 6.1).
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Figure 6.1: (a) An input image and a corresponding spatial attention map of a convolutional
network that shows where the network focuses in order to classify the given image. Surely, this
type of map must contain valuable information about the network. The question that we pose
in this chapter is the following: can we use knowledge of this type to improve the training of
CNN models ? (b) Schematic representation of attention transfer: a student CNN is trained so
as, not only to make good predictions, but to also have similar spatial attention maps to those
of an already trained teacher CNN.

To summarize, the contributions of this work are as follows:

• We propose attention as a mechanism of transferring knowledge from one network to another

• We propose the use of both activation-based and gradient-based spatial attention maps

• We show experimentally that our approach provides significant improvements across a variety of

datasets and deep network architectures, including both residual and non-residual networks

• We show that activation-based attention transfer gives better improvements than full-activation

transfer, and can be combined with knowledge distillation

The rest of the chapter is structured as follows: we first describe related work in section 6.2, we explain

our approach for activation-based and gradient-based attention transfer in section 6.3, and then present

experimental results for both methods in section 6.4. We conclude the chapter in section 6.5.

6.2 Related work

Early work on attention based tracking Larochelle and Hinton (2010), Denil et al. (2012) was moti-

vated by human attention mechanism theories Rensink (2000) and was done via Restricted Bolzmann

Machines. It was recently adapted for neural machine translation with recurrent neural networks, e.g.

Bahdanau et al. (2014) as well as in several other NLP-related tasks. It was also exploited in computer-

vision-related tasks such as image captioning Xu et al. (2015), visual question answering Yang et al.
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(2016), as well as in weakly-supervised object localization Oquab et al. (2015) and classification Mnih

et al. (2014), to mention a few characteristic examples. In all these tasks attention proved to be useful.

Visualizing attention maps in deep convolutional neural networks is an open problem. The simplest

gradient-based way of doing that is by computing a Jacobian of network output w.r.t. input (this leads to

attention visualization that are not necessarily class-discriminative), as for example in Simonyan et al.

(2014). Another approach was proposed by Zeiler and Fergus (2014) that consists of attaching a network

called “deconvnet” that shares weights with the original network and is used to project certain features

onto the image plane. A number of methods was proposed to improve gradient-based attention as well,

for example guided backpropagation Springenberg et al. (2015), adding a change in ReLU layers during

calculation of gradient w.r.t. previous layer output. Attention maps obtained with guided backpropaga-

tion are non-class-discriminative too. Among existing methods for visualizing attention, we should also

mention class activation maps Zhou et al. (2016), which are based on removing top average-pooling

layer and converting the linear classification layer into a convolutional layer, producing attention maps

per each class. A method combining both guided backpropagation and CAM is Grad-CAM by Selvaraju

et al. (2017), adding image-level details to class-discriminative attention maps.

Knowledge distillation with neural networks was pioneered by Hinton et al. (2015); Bucila et al. (2006),

which is a transfer learning method that aims to improve the training of a student network by relying

on knowledge borrowed from a powerful teacher network. Although in certain special cases shallow

networks had been shown to be able to approximate deeper ones without loss in accuracy Lei and Caru-

ana (2014), later work related to knowledge distillation was mostly based on the assumption that deeper

networks always learn better representations. For example, FitNets Romero et al. (2014) tried to learn

a thin deep network using a shallow one with more parameters. The introduction of highway Srivastava

et al. (2015) and later residual networks He et al. (2016a) allowed training very deep architectures with

higher accuracy, and generality of these networks was experimentally showed over a large variety of

datasets. Although the main motivation for residual networks was increasing depth, it was later shown

by Zagoruyko and Komodakis (2016b) that, after a certain depth, the improvements came mostly from

increased capacity of the networks, i.e. number of parameters (for instance, a wider deep residual net-

work with only 16 layers was shown that it could learn as good or better representations as very thin

1000 layer one, provided that they were using comparable number of parameters).

Due to the above fact and due to that thin deep networks are less parallelizable than wider ones, we think

that knowledge transfer needs to be revisited, and take an opposite to FitNets approach - we try to learn

less deep student networks. Our attention maps used for transfer are similar to both gradient-based and
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Figure 6.2: Sum of absolute values attention maps Fsum over different levels of a network
trained for face recognition. Mid-level attention maps have higher activation level around eyes,
nose and lips, high-level activations correspond to the whole face.

activation-based maps mentioned above, which play a role similar to “hints” in FitNets, although we

don’t introduce new weights.

6.3 Attention transfer

In this section we explain the two methods that we use for defining the spatial attention maps of a

convolutional neural network as well as how we transfer attention information from a teacher to a student

network in each case.

6.3.1 Activation-based attention transfer

Let us consider a CNN layer and its corresponding activation tensor A ∈ RC×H×W , which consists of

C feature planes with spatial dimensions H ×W . An activation-based mapping function F (w.r.t. that

layer) takes as input the above 3D tensorA and outputs a spatial attention map, i.e., a flattened 2D tensor

defined over the spatial dimensions, or

F : RC×H×W → RH×W .

To define such a spatial attention mapping function, the implicit assumption that we make in this section

is that the absolute value of a hidden neuron activation (that results when the network is evaluated on

given input) can be used as an indication about the importance of that neuron w.r.t. the specific input.

By considering, therefore, the absolute values of the elements of tensor A, we can construct a spatial

attention map by computing statistics of these values across the channel dimension (see Fig. 6.3). More

specifically, in this work we will consider the following activation-based spatial attention maps:
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Figure 6.3: Attention mapping over feature dimension

• sum of absolute values: Fsum(A) =
∑C

i=1 |Ai|

• sum of absolute values raised to the power of p (where p > 1): F psum(A) =
∑C

i=1 |Ai|p

• max of absolute values raised to the power of p (where p > 1): F pmax(A) = maxi=1,C |Ai|p

where Ai = A(i, :, :) (using Matlab notation), and max, power and absolute value operations are ele-

mentwise (e.g. |Ai|p is equivalent to abs(Ai).∧p in Matlab notation).

We visualized activations of various networks on several datasets, including ImageNet classification and

localization, COCO object detection, face recognition, and fine-grained recognition. We were mostly

focused on modern architectures without top dense linear layers, such as Network-In-Network, ResNet

and Inception, which have streamlined convolutional structure. We also examined networks of the same

architecture, width and depth, but trained with different frameworks with significant difference in per-

formance. We found that the above statistics of hidden activations not only have spatial correlation with

predicted objects on image level, but these correlations also tend to be higher in networks with higher

accuracy, and stronger networks have peaks in attention where weak networks don’t (e.g., see Fig. 6.4).

Furthermore, attention maps focus on different parts for different layers in the network. In the first lay-

ers neurons activation level is high for low-level gradient points, in the middle it is higher for the most

discriminative regions such as eyes or wheels, and in the top layers it reflects full objects. For example,

mid-level attention maps of a network trained for face recognition Parkhi et al. (2015) will have higher

activations around eyes, nose and lips, and top level activation will correspond to full face (Fig. 6.2).

Concerning the different attention mapping functions defined above, these can have slightly different

properties. E.g.:

• Compared to Fsum(A), the spatial map F psum(A) (where p > 1) puts more weight to spatial

locations that correspond to the neurons with the highest activations, i.e., puts more weight to the
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Figure 6.4: Activation attention maps for various ImageNet networks. Network-In-Network
(62% top-1 val accuracy), ResNet-34 (73% top-1 val accuracy), ResNet-101 (77.3% top-1 val
accuracy). Left part: mid-level activations, right part: top-level pre-softmax activations

most discriminative parts (the larger the p the more focus is placed on those parts with highest

activations).

• Furthermore, among all neuron activations corresponding to the same spatial location, F pmax(A)

will consider only one of them to assign a weight to that spatial location (as opposed to F psum(A)

that will favor spatial locations that carry multiple neurons with high activations).

To further illustrate the differences of these functions we visualized attention maps of 3 networks

with sufficient difference in classification performance: Network-In-Network (62% top-1 val accuracy),

ResNet-34 (73% top-1 val accuracy) and ResNet-101 (77.3% top-1 val accuracy). In each network we

took last pre-downsampling activation maps, on the left for mid-level and on the right for top pre-average

pooling activations in fig. 6.4. Top-level maps are blurry because their original spatial resolution is 7×7.

It is clear that most discriminative regions have higher activation levels, e.g. face of the wolf, and that

shape details disappear as the parameter p (used as exponent) increases.

In attention transfer, given the spatial attention maps of a teacher network (computed using any of the

above attention mapping functions), the goal is to train a student network that will not only make correct

predictions but will also have attentions maps that are similar to those of the teacher. In general, one can

place transfer losses w.r.t. attention maps computed across several layers. For instance, in the case of
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Figure 6.5: Schematics of teacher-student attention transfer for the case when both networks
are residual, and the teacher is deeper.

ResNet architectures, one can consider the following two cases, depending on the depth of teacher and

student:

• Same depth: possible to have attention transfer layer after every residual block

• Different depth: have attention transfer on output activations of each group of residual blocks

Similar cases apply also to other architectures (such as NIN, in which case a group refers to a block of a

3 × 3, 1 × 1, 1 × 1 convolutions). In fig. 6.5 we provide a schematic illustration of the different depth

case for residual network architectures.

Without loss of generality, we assume that transfer losses are placed between student and teacher at-

tention maps of same spatial resolution, but, if needed, attention maps can be interpolated to match

their shapes. Let S, T and WS , WT denote student, teacher and their weights correspondingly, and

let L(W, x) denote a standard cross entropy loss. Let also I denote the indices of all teacher-student

activation layer pairs for which we want to transfer attention maps. Then we can define the following

total loss:

LAT = L(WS , x) +
β

2

∑
j∈I
‖ QjS
‖QjS‖2

− QjT
‖QjT ‖2

‖p , (6.1)

where QjS = vec(F (AjS)) and QjT = vec(F (AjT )) are respectively the j-th pair of student and teacher

attention maps in vectorized form, and p refers to norm type (in the experiments we use p = 2). As can

be seen, during attention transfer we make use of l2-normalized attention maps, i.e., we replace each

vectorized attention map Q with Q
‖Q‖2 (l1 normalization could be used as well). It is worth emphasizing

that normalization of attention maps is important for the success of the student training.

Attention transfer can also be combined with knowledge distillation Hinton et al. (2015), in which case

an additional term (corresponding to the cross entropy between softened distributions over labels of

teacher and student) simply needs to be included to the above loss. When combined, attention transfer
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adds very little computational cost, as attention maps for teacher can be easily computed during forward

propagation, needed for distillation.

6.3.2 Gradient-based attention transfer

In this case we define attention as gradient w.r.t. input, which can be viewed as an input sensitivity

map Simonyan et al. (2014), i.e., attention at an input spatial location encodes how sensitive the output

prediction is w.r.t. changes at that input location (e.g., if small changes at a pixel can have a large effect

on the network output then it is logical to assume that the network is “paying attention” to that pixel).

Let’s define the gradient of the loss w.r.t input for teacher and student as:

JS =
∂

∂x
L(WS, x), JT =

∂

∂x
L(WT, x)

Then if we want student gradient attention to be similar to teacher attention, we can minimize a distance

between them (here we use l2 distance but other distances can be employed as well):

LAT (WS,WT, x) = L(WS, x) +
β

2
||JS − JT ||2

As WT and x are given, to get the needed derivative w.r.t. WS :

∂

∂WS
LAT =

∂

∂WS
L(WS, x) + β(JS − JT )

∂2

∂WS∂x
L(WS, x) (6.2)

So to do an update we first need to do forward and back propagation to get JS and JT , compute the

second error β
2 ||JS − JT ||2 and propagate it second time. The second propagation is similar to for-

ward propagation in this case, and involves second order mixed partial derivative calculation ∂2

∂WS∂x
.

The above computation is similar to the double backpropagation technique developed by Drucker and

LeCun (1992) (where the l2 norm of the gradient w.r.t. input is used as regularizer). Furthermore, it

can be implemented efficiently in a framework with automatic differentiation support, even for modern

architectures with sophisticated graphs. The second backpropagation has approximately the same cost

with first backpropagation, excluding forward propagation.

We also propose to enforce horizontal flip invariance on gradient attention maps. To do that we propagate

horizontally flipped images as well as originals, backpropagate and flip gradient attention maps back.
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We then add l2 losses on the obtained attentions and outputs, and do second backpropagation:

Lsym(W, x) = L(W, x) +
β

2
|| ∂
∂x
L(W, x)− flip(

∂

∂x
L(W,flip(x)))||2 , (6.3)

where flip(x) denotes the flip operator. This is similar to Group Equivariant CNN approach by Cohen

and Welling (2016), however it is not a hard constraint. We experimentally find that this has a regular-

ization effect on training.

We should note that in this work we consider only gradients w.r.t. the input layer, but in general one

might have the proposed attention transfer and symmetry constraints w.r.t. higher layers of the network.

6.4 Experimental results

In the following section we explore attention transfer on various image classification datasets. We split

the section in two parts, in the first we include activation-based attention transfer and gradient-based at-

tention transfer experiments on CIFAR, and in the second activation-based attention transfer experiments

on larger datasets. For activation-based attention transfer we used Network-In-Network Lin et al. (2013)

and ResNet-based architectures (including the recently introduced Wide Residual Networks (WRN)

Zagoruyko and Komodakis (2016b)), as they are most performant and set strong baselines in terms of

number of parameters compared to AlexNet or VGG, and have been explored in various papers across

small and large datasets. On Scenes, CUB and ImageNet we experimented with ResNet-18 and ResNet-

34. As for gradient-based attention, we constrained ourselves to Network-In-Network without batch

normalization and CIFAR dataset, due to the need of complex automatic differentiation.

6.4.1 CIFAR experiments

We start with CIFAR dataset which has small 32 × 32 images, and after downsampling top activations

have even smaller resolution, so there is not much space for attention transfer. Interestingly, even under

this adversarial setting, we find that attention transfer seems to give reasonable benefits, offering in

all cases consistent improvements. We use horizontal flips and random crops data augmentations, and

all networks have batch normalization. We find that ZCA whitening has negative effect on validation

accuracy, and omit it in favor of simpler meanstd normalization. We raise Knowledge Distillation (KD)

temperature for ResNet transfers to 4, and use α = 0.9 (see Hinton et al. (2015) for an explanation of

these parameters).
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6.4.1.1 Activation-based attention transfer

Results of attention transfer (using F 2
sum attention maps) for various networks on CIFAR-10 can be

found in table 6.1. We experimented with teacher/student having the same depth (WRN-16-2/WRN-

16-1), as well as different depth (WRN-40-1/WRN-16-1, WRN-40-2/WRN-16-2). In all combinations,

attention transfer (AT) shows significant improvements, which are also higher when it is combined with

knowledge distillation (AT+KD).

student teacher student AT F-ActT KD AT+KD teacher

NIN-thin, 0.2M NIN-wide, 1M 9.38 8.93 9.05 8.55 8.33 7.28
WRN-16-1, 0.2M WRN-16-2, 0.7M 8.77 7.93 8.51 7.41 7.51 6.31
WRN-16-1, 0.2M WRN-40-1, 0.6M 8.77 8.25 8.62 8.39 8.01 6.58
WRN-16-2, 0.7M WRN-40-2, 2.2M 6.31 5.85 6.24 6.08 5.71 5.23

Table 6.1: Activation-based attention transfer (AT) with various architectures on CIFAR-10.
Error is computed as median of 5 runs with different seed. F-ActT means full-activation transfer
(see §6.4.1.2).

To verify if having at least one activation-based attention transfer loss per group in WRN transfer is

important, we trained three networks with only one transfer loss per network in group1, group2 and

group3 separately, and compared to a network trained with all three losses. The corresponding results

were 8.11, 7.96, 7.97 (for the separate losses) and 7.93 for the combined loss (using WRN-16-2/WRN-

16-1 as teacher/student pair). Each loss provides some additional degree of attention transfer.

We also explore which attention mapping functions tend to work best using WRN-16-1 and WRN-16-2

as student and teacher networks respectively (table 6.2). Interestingly, sum-based functions work very

similar, and better than max-based ones. From now on, we will use sum of squared attention mapping

function F 2
sum for simplicity. As for parameter β in eq. 6.1, it usually varies about 0.1, as we set it to 103

divided by number of elements in attention map and batch size for each layer. In case of combinining

AT with KD we decay it during traning in order to simplify learning harder examples.

6.4.1.2 Activation-based AT vs. transferring full activation

To check if transferring information from full activation tensors is more beneficial than from attention

maps, we experimented with FitNets-style hints using l2 losses on full activations directly, with 1 × 1

convolutional layers to match tensor shapes, and found that improvements over baseline student were

minimal (see column F-ActT in table 6.1). For networks of the same width different depth we tried

to regress directly to activations, without 1 × 1 convolutions. We also use l2 normalization before
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transfer losses, and decay β in eq. 6.1 during training as these give better performance. We find that

AT, as well as full-activation transfer, greatly speeds up convergence, but AT gives much better final

accuracy improvement than full-activation transfer (see fig. 6.7b, Appendix). It seems quite interesting

that attention maps carry information that is more important for transfer than full activations.

attention mapping function error

no attention transfer 8.77

Fsum 7.99

F 2
sum 7.93

F 4
sum 8.09

F 1
max 8.08

Table 6.2: Test error
of WRN-16-2/WRN-16-
1 teacher/student pair for
various attention map-
ping functions. Median
of 5 runs test errors are
reported.

norm type error

baseline (no attention transfer) 13.5

min-l2 Drucker and LeCun (1992) 12.5

grad-based AT 12.1

KD 12.1

symmetry norm 11.8

activation-based AT 11.2

Table 6.3: Performance of various gradient-based attention
methods on CIFAR-10. Baseline is a thin NIN network with
0.2M parameters (trained only on horizontally flipped aug-
mented data and without batch normalization), min-l2 refers
to using l2 norm of gradient w.r.t. input as regularizer, sym-
metry norm - to using flip invariance on gradient attention
maps (see eq. 6.3), AT - to attention transfer, and KD - to
Knowledge Distillation (both AT and KD use a wide NIN of
1M parameters as teacher).

6.4.1.3 Gradient-based attention transfer

For simplicity we use thin Network-In-Network model in these experiments, and don’t apply random

crop data augmentation with batch normalization, just horizontal flips augmentation. We also only use

deterministic algorithms and sampling with fixed seed, so reported numbers are for single run experi-

ments. We find that in this setting network struggles to fit into training data already, and turn off weight

decay even for baseline experiments. In future we plan to explore gradient-based attention for teacher-

student pairs that make use of batch normalization, because it is so far unclear how batch normalization

should behave in the second backpropagation step required during gradient-based attention transfer (e.g.,

should it contribute to batch normalization parameters, or is a separate forward propagation with fixed

parameters needed).

We explored the following methods:

• Minimizing l2 norm of gradient w.r.t. input, i.e. the double backpropagation method Drucker and

LeCun (1992);
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• Symmetry norm on gradient attention maps (see eq. 6.3);

• Student-teacher gradient-based attention transfer;

• Student-teacher activation-based attention transfer.

Results for various methods are shown in table 6.3. Interestingly, just minimizing l2 norm of gradient

already works pretty well. Also, symmetry norm is one the best performing attention norms, which

we plan to investigate in future on other datasets as well. We also observe that, similar to activation-

based attention transfer, using gradient-based attention transfer leads to improved performance. We

also trained a network with activation-based AT in the same training conditions, which resulted in the

best performance among all methods. We should note that the architecture of student NIN without batch

normalization is slightly different from teacher network, it doesn’t have ReLU activations before pooling

layers, which leads to better performance without batch normalization, and worse with. So to achieve

the best performance with activation-based AT we had to train a new teacher, with batch normalization

and without ReLU activations before pooling layers, and have AT losses on outputs of convolutional

layers.

6.4.2 Large input image networks

In this section we experiment with hidden activation attention transfer on ImageNet networks which

have 224× 224 input image size. Presumably, attention matters more in this kind of networks as spatial

resolution of attention maps is higher.

6.4.2.1 Transfer learning

To see how attention transfer works in finetuning we choose two datasets: Caltech-UCSD Birds-200-

2011 fine-grained classification (“CUB”) by Wah et al. (2011), and MIT indoor scene classification

(“Scenes”) by Quattoni and Torralba (2009), both containing around 5K images training images. We

took ResNet-18 and ResNet-34 pretrained on ImageNet and finetuned on both datasets. On CUB we

crop bounding boxes, rescale to 256 in one dimension and then take a random crop. Batch normaliza-

tion layers are fixed for finetuning, and first group of residual blocks is frozen. We then took finetuned

ResNet-34 networks and used them as teachers for ResNet-18 pretrained on ImageNet, with F 2
sum atten-

tion losses on 2 last groups. In both cases attention transfer provides significant improvements, closing

the gap between ResNet-18 and ResNet-34 in accuracy. On Scenes AT works as well as KD, and on
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type model ImageNet→CUB ImageNet→Scenes

student ResNet-18 28.5 28.2
KD ResNet-18 27 (-1.5) 28.1 (-0.1)
AT ResNet-18 27 (-1.5) 27.1 (-1.1)

teacher ResNet-34 26.5 26

Table 6.4: Finetuning with attention transfer error on Scenes and CUB datasets

CUB AT works much better, which we speculate is due to importance of intermediate attention for fine-

grained recognition. Moreover, after finetuning, student’s attention maps indeed look more similar to

teacher’s (Fig. 6.6).
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Figure 6.6: Top activation attention maps for different Scenes networks. Original pretrained
ResNet-18 (ResNet-18-ImageNet), ResNet-18 trained on Scenes (ResNet-18-scenes), ResNet-
18 trained with attention transfer (ResNet-18-scenes-AT) with ResNet-34 as a teacher, ResNet-
34 trained on Scenes (ResNet-34-scenes). Predicted classes for each task are shown on top.
Attention maps look more similar after transfer (images taken from test set).

6.4.2.2 ImageNet

To showcase activation-based attention transfer on ImageNet we took ResNet-18 as a student, and

ResNet-34 as a teacher, and tried to improve ResNet-18 accuracy. We added only two losses in the

2 last groups of residual blocks and used squared sum attention F 2
sum. ResNet-18 with attention transfer

achieved 1.1% top-1 and 0.8% top-5 better validation accuracy (Table. 6.5 and Fig. 6.7a).

We were not able to achieve positive results with KD on ImageNet. With ResNet-18-ResNet-34 student-

teacher pair it actually hurts convergence with the same hyperparameters as on CIFAR. As it was reported

that KD struggles to work if teacher and student have different architecture/depth (we observe the same
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(a) Attention transfer on ImageNet between ResNet-
18 and ResNet-34. Solid lines represent top-5 valida-
tion error, dashed - top-5 training error. Two attention
transfer losses were used on the outputs of two last
groups of residual blocks respectively, no KD losses
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(b) Activation attention transfer on CIFAR-10 from
WRN-16-2 to WRN-16-1. Test error is in bold, train
error is in dashed lines. Attention transfer greatly
speeds up convergence and improves final accuracy.

Figure 6.7: Attention transfer convergence curves on CIFAR and ImageNet datasets

Model top1, top5

ResNet-18 30.4, 10.8
AT 29.3, 10.0
ResNet-34 26.1, 8.3

Table 6.5: Attention transfer validation error (single crop) on ImageNet. Transfer losses are
added on epoch 60/100.

on CIFAR), so we tried using the same architecture and depth for attention transfer. On CIFAR both AT

and KD work well in this case and improve convergence and final accuracy, on ImageNet though KD

converges significantly slower. We also could not find applications of FitNets, KD or similar methods

on ImageNet in the literature. Given that, we can assume that proposed activation-based AT is the first

knowledge transfer method to be successfully applied on ImageNet.

6.5 Conclusions

We presented several ways of transferring attention from one network to another, with experimental

results over several image recognition datasets. It would be interesting to see how attention transfer

works in cases where spatial information is more important, e.g. object detection or weakly-supervised

localization.





Chapter 7

Discussion and future work

In this dissertation we showed that modern neural networks exhibit interesting novel properties, not yet

observed in machine learning models. We only explored a few of them, and there is a lot of room for

further exploration.

We started with patch matching in chapter 3, and showed that learned neural network descriptors can

significantly outperform hand-crafted ones on this task. We also proposed an interesting way of com-

paring patches via a 2-channel network, which works better than siamese or triplet approaches. This

finding could be interesting for other tasks that need to predict image or feature similarity. Since pub-

lished, the work on patch comparing neural networks in Zagoruyko and Komodakis (2015) spanned a lot

of research on not just learning better image descriptors, but the whole pipeline of detecting keypoints,

computing descriptors, and matching altogether, which is still under active exploration.

In chapter 4 we presented a detailed study on object detection, and proposed novel MultiPathNet ar-

chitecture in Zagoruyko et al. (2016), aggregating information via several paths before making final

decision. This work was the first to propose streamlined instance segmentation and recognition ap-

proach with SharpMask and MultiPathNet systems, on a challenging COCO 2015 dataset. Despite ours,

and more recent efforts, performance of neural networks on this dataset is far from human, and there is

a lot work to be done in this direction.

Our work on wide residual networks in Zagoruyko and Komodakis (2016b), presented in chapter 5,

switched the research on deep neural networks from focusing solely on depth to explore width as well,

and spanned a lot of interesting research on network architectures. Also, it served as a baseline for

countless number of papers on convolutional neural networks, due to simplicity and effectiveness of the

proposed approach, and won several competitions in computer vision. It is still unclear why residual

111
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connections are so effective, so we tried to address this question in our DiracNets work in Zagoruyko

and Komodakis (2017a), in which we proposed an alternative simpler parameterization. We showed that

DiracNets work as well ResNet on large datasets, but fall behind on smaller ones, which we plan to

address in future. DiracNets are also interesting for theoretical analysis, due to their simplicity, and for

understanding of trained networks.

Finally, in chapter 6 we presented a study on knowledge distillation, where we tried to transfer other

information than network outputs, between teacher and student in Zagoruyko and Komodakis (2017b).

Interestingly, we find that transferring full activations does not work as well as transferring attention,

which we define as functions of activations or gradients. Attention transfer is not the only one way

of doing knowledge distillation with intermediate features, there are other ways, which could poten-

tially significantly improve training and final student performance, as well as understanding of what’s

important for neural networks.

We hope that these small steps will lead to improvements in our understanding of neural networks, and,

ultimately, to more intelligent systems.
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