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N˚ 2 3 7





Acknowledgments

Foremost, I would like to express my sincere gratitude to my thesis advisor
Prof. Dr. Alexandre CAMINADA, for his continuous support to my PhD study
and research, for his patience, motivation, enthusiasm, insightful comments and
immense knowledge. His guidance helped during the time of my research and writing
of this thesis. I would like to thank my co-advisor Assoc. Prof. Dr. Hakim Mabed
and Dr. Frédéric Lassabe for their professional advice, patience, encouragement and
friendship. I could not have imagined having a better group of advisors and mentors
for my PhD study.

I would like to thank my friends who have supported me with their friendship
and encouragement all these years of my studies.

Last but certainly not least, with my love and gratitude, I want to dedicate this
PhD dissertation to my father and mother, to my husband and my son. They all
supported me generously and unconditionally throughout my studies.





Résumé

Le conflit entre la demande de services multimédia en multidiffusion à haut débit
(MBMS) et les limites en ressources radio demandent une gestion efficace de l’allocation
des ressources radio (RRM) dans les réseaux 3G UMTS. À l’opposé des travaux ex-
istant dans ce domaine, cette thèse se propose de résoudre le problème de RRM dans
les MBMS par une approche doptimisation combinatoire. Le travail commence par
une modélisation formelle du problème cible, désigné comme Flexible Radio Re-
source Management Model (F2R2M). Une analyse de la complexité et du paysage
de recherche est effectuée à partir de ce modèle. Tout dabord on montre qu’en
assouplissant les contraintes de code OVSF, le problème de RRM pour les MBMS
peut s’apparenter à un problème de sac à dos à choix multiples (MCKP). Une telle
constatation permet de calculer les limites théoriques de la solution en résolvant le
MCKP similaire. En outre, l’analyse du paysage montre que les espaces de recherche
sont accidentés et constellés d’optima locaux. Sur la base de cette analyse, des al-
gorithmes métaheuristiques sont étudiés pour résoudre le problème. Nous montrons
tout d’abord que un Greedy Local Search (GLS) et un recuit simulé (SA) peuvent
trouver de meilleures solutions que les approches existantes implémentées dans le
système UMTS, mais la multiplicité des optima locaux rend les algorithmes très in-
stables. Un algorithme de recherche tabou (TS) incluant une recherche à voisinage
variable (VNS) est aussi développé et comparé aux autres algorithmes (GLS et SA)
et aux approches actuelles du système UMTS; les résultats de la recherche tabou
dépassent toutes les autres approches. Enfin les meilleures solutions trouvées par
TS sont également comparées avec les solutions théoriques générées par le solveur
MCKP. On constate que les meilleures solutions trouvées par TS sont égales ou très
proches des solutions optimales théoriques.

Mots clés: gestion des ressources radio UMTS, service multimédia MBMS, trans-
mission à échelle variable, problème de sac à dos, recherche tabou et recherche à
voisinage variable.





Abstract

The high throughputs supported by the multimedia multicast services (MBMS) and
the limited radio resources result in strong requirement for efficient radio resource
management (RRM) in UMTS 3G networks. This PhD thesis proposes to solve the
MBMS RRM problem as a combinatorial optimization problem. The work starts
with a formal modeling of the problem, named as the Flexible Radio Resource
Management Model (F2R2M). An in-depth analysis of the problem complexity and
the search landscape is done based on this model. It is showed that, by relaxing
the OVSF code constraints, the MBMS RRM problem can be approximated as a
Multiple-Choice Knapsack Problem (MCKP). Such work allows us to compute the
theoretical solution bounds by solving the approximated MCKP. Then the fitness
landscape analysis shows that the search spaces are rough and reveal several local
optimums. Based on the analysis, some metaheuristic algorithms are studied to
solve the MBMS RRM problem. We first show that a Greedy Local Search (GLS)
and a Simulated Annealing (SA) allow us to find better solutions than the existing
approaches implemented in the UMTS system, however the results are instable due
to the landscape roughness. Finally we have developed a Tabu Search (TS) mixed
with a Variable Neighborhood Search (VNS) algorithm and we have compared it
with GLS, SA and UMTS embedded algorithms. Not only the TS outperforms
all the other approaches on several scenarios but also, by comparing it with the
theoretical solution bounds generated by the MCKP solver, we observe that TS is
equal or close to the theoretical optimal solutions.

Keyword: UMTS radio resource management, MBMS multimedia services, scal-
able transmission, knapsack problem, Tabu Search, Variable Neighborhood Search.
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Introduction

In the past decades, the rapid growth of mobile communication technology boosts
the demand of wireless multimedia services. According to the Cisco mobile forecast
highlights [20], the global consumer mobile data traffic grew of 74% in 2012, and
grew more than 81% in 2013. From 2013 to 2018, the mobile data traffic is expected
to grow at 61% Compound Annual Growth Rate (CAGE). By 2018, 69% of the
world mobile data traffic will be video, up from 53% in 2013. The rapid growth
of multimedia mobile data demands higher transmission rate with lower radio and
network resource cost. Hence the content and service providers are increasingly
interested in more efficient multicast communications over mobile networks.

The Universal Mobile Telecommunications System (UMTS) is the second world’s
most widely used wireless technology with 500 million customers [19]. In the ra-
dio network of UMTS where the radio resources (power and channelization codes)
are limited, the sharing of resources among numerous users per cell is constrained
with more services subscriptions and higher traffic bandwidth requirements. Hence
UMTS is facing challenges with the rapid growth of multicast multimedia ser-
vice requirement. In order to provide an efficient multicast and broadcast trans-
mission platform in mobile networks, the 3GPP specified the Multimedia Broad-
cast/Multicast Service (MBMS) since Release 6 specifications [16].

In MBMS, the broadcast/multicast data are provided by a particular service
center which performs control functions for all individual users in the same MBMS
region. For each MBMS service, only one MBMS tunnel is established, through
which the service data is sent to a class D IP multicast address (identifying a mul-
ticast group). Hence the network resource is saved by avoiding content duplication.
In the radio air link, MBMS defines common logical channels for multicast data
and signaling transmission. The same service is served to multiple users by a a
common signal transmission facility and bearer (point-to-multipoint transmission
mode), hence conserving radio resources.

MBMS aims to provide more efficient multimedia streaming within UMTS. Since
the radio resource is limited in UMTS, to provide the multimedia service with satis-
fied quality requirement by using minimal transmission power and channel codes is
the most critical topic in MBMS study. Besides, if the point-to-multipoint carrier is
used for service that are not popular, the complicated MBMS signaling will actually
lead to more overhead than with a simple unicast link. With these considerations,
a wide range of work is investigated on the efficient Radio Resource Management
(RRM) for MBMS. The literature in this field mainly focus on the static switching
between conventional MBMS transmission modes. That is because different chan-
nels for carrying MBMS traffic have different characteristics in power consumption.



2 Introduction

To bring additional gains, the enhancement in physical layer such as Macro Diversity
and Spatio-Temporal Transmit Diversity (STTD) are also proposed. Few studies
mention the selection of transmitted content for multicast service, which is based
on the scalability encoding technology. Besides, stream schedule is another topic in
the field of MBMS RRM, the base station needs to schedule streams by determining
the target multicast group and transmit rate per time slot.

By emphasizing the existing literatures, some shortcomings are identified: first,
the approaches are mono-objective, e.g. only consider the power consumption. In
addition, almost all the existing allocation approaches study the selection among
different transmission channels but not flexible combination of them. Such deter-
ministic approaches are easy to implement but not optimum. Furthermore, none
of the studies have ever propose a general model, which allows to evaluate all the
existing approaches under the same criterion. To treat these problems, a general
model is required to mathematically formulate the MBMS RRM problem and eval-
uate all existing allocation approaches. From the model, the problem complexity
and characteristics should be analyzed. The analysis leads to design innovative al-
gorithms which can conserve the transmission power and channel code utilization,
and achieve the trade-off between the resource consumption and the service quality.

This thesis manuscript includes five chapters. Chapter 1 introduces the back-
ground information related to the research area of this thesis manuscript. The first
section starts from the fundamentals in UMTS. The UMTS Terrestrial Radio Access
Network (UTRAN) provides air interface for UE. In particular, the radio network
controller (RNC) takes in charge the setup and the release of the radio bearers for
data transmission. Then the Wideband Code Division Multiple Access (WCDMA),
the radio access technology of UMTS, is explained. In which the notation of chan-
nelization codes is illustrated. In the second section, the development of multicast
method before and with MBMS is introduced. The MBMS specific mechanisms help
us to understand the advantages of MBMS as well as state the challenges and moti-
vations in this thesis. The last section in background statement, briefly introduces
the High Speed Downlink Packet Access (HSDPA) technology. HSDPA offers a new
option carrying MBMS multicast service as it can use multiple codes to improve
peak throughput for certain users. Based on its adaptive coding and modulation
combination mechanism, the service quality can be guaranteed when link quality is
very favorable. Finally the different RRM algorithms proposed in literature are de-
tailed, their advantages and disadvantages are analyzed, following by the motivation
of this work.

Chapter 2 presents the first contribution of this thesis: the mathematical model-
ing of the RRM Problem for MBMS system, named Flexible Radio Resource Man-
agement Model (F2R2M). This model maps the MBMS radio resource establishment
procedures into a three-phase flow chart. Within this model, a dynamic radio re-
source allocation framework for MBMS is proposed. This allocation framework is
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abstracted by seven functional modules. The framework explores the solution space
by iteratively searching a new allocation solution by modifying the current solution.
To evaluate the efficiency of the new solution, a two-dimensional cost function is
proposed, such that the estimated throughput loss and the estimated power estima-
tion are compared by a lexicographic-order evaluation criterion. These modules and
the search procedure target at finding the best solution satisfying the QoS require-
ment of multicast service and minimizing the transmission power, with the feasibility
control of channelization code availability and the power saturation. Besides, the
proposed model could also be utilized as a general platform to abstract, implement
and evaluate the other existing MBMS radio resource allocation approaches. Finally,
the simulation parameters are described, several scenarios with different traffic loads
and user distributions are designed for study in the following chapters.

Chapter 3 describes the second contribution: in-depth mathematical analysis on
the proposed model. In the first section, it is shown that by reducing the channel
code constraints, the MBMS RRM problem can be approximated as a Multi-Choice
Knapsack Problem (MCKP). Based on this, the solution complexity can be ana-
lyzed and NP-Hard proof is provided. Also based on this, the solution bounds for
MBMS RRM problem can be obtained by solving this MCKP problem. In the sec-
ond section, the characteristics and the complexity of the problem based on fitness
landscape analysis method are analyzed. First, two neighborhood functions are pro-
posed, constructing two different fitness landscapes. Then the mathematical solution
representations and solution distance measurement are proposed. The two fitness
landscape constructed by these two operators are generated through Greedy Local
Search (GLS) method. These two fitness spaces are studied in three aspects: the
distribution of feasible solutions in the search space, the structure of fitness space,
and the relationships between solution distance and fitness value. These analysis
reveal that the studied problem is rugged, i.e. the search space is not flat, hence
the search procedure is relevant and difficult. The comparative study of these two
fitness landscapes helps us to select the appropriate neighborhood function. Based
on the NP-Hard characteristics of the studied problem, it is reasonable to select
metaheuristic approaches to solve it. Then in chapter 4 and chapter 5, the third
contribution of our work is described: the optimization process.

Chapter 4 presents a Simulated Annealing (SA) based algorithm to solve the
studied problem. SA is selected because it is easy to implement and can avoid the
local optima by accepting the new solution with probability. Firstly, the general
optimization procedure and parameter definitions in classical SA are introduced.
Then the problem specific parameters are discussed and selected. In the construction
of new solution, the selected neighborhood operator in chapter 3 is used. In the
acceptance probability function, the Boltzmann function is modified to calculate
the acceptance probability according to the change of the proposed fitness value.
The SA results are compared with the results of the greedy local search. For small
size scenarios, simulated annealing obtains equivalent solution quality as greedy local
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search but with longer time cost. For larger size scenarios, simulated annealing only
obtains worse solution than that of greedy local search, which is because of the
randomness characteristics of SA while the studied problem is rugged.

Chapter 5 presents a Tabu Search (TS) based algorithm to further increase the
efficiency of the search procedure in the proposed model. Three tabu memory struc-
tures are defined and their search performances are compared. Then the classical
TS is extended by proposing a problem specific method named tabu repair mech-
anism, which helps to explore candidate solutions. Simulation results show that
TS outperforms the deterministic algorithms. For most scenarios, tabu search can
obtain feasible solutions with full utilization of power and channel codes. While
existing approaches obtains either feasible solutions but with unnecessary through-
put scarifies or unfeasible solutions but higher power consumption than tabu search
results. Besides, tabu search results are also better than two other metaheuristic
approaches: the SA and GLS. For small size scenarios, TS can find solutions with
less power consumption than GLS and SA and equivalent QoS; for large size sce-
narios, TS obtains solution not only with less power consumption than GLS and
SA but also with fully satisfied bandwidth hence if it decreases the possibility of
channel code saturation.

Finally, the contributions of this thesis manuscript are concluded, the simulation
results are compared, and the opportunities for future work are identified.



Chapter 1

Background Knowledge

This chapter provides the background knowledge and the existing literature related
to the research area of this thesis manuscript. The section 1.1 describes the Universal
Mobile Telecommunications System (UMTS) architecture, including the functional-
ities of the Core Network (CN) and the UMTS Terrestrial Radio Access Network
(UTRAN). Then the basic principles of Wideband Code Division Multiple Access
(WCDMA) are described, with the fundamentals of channelization code allocation
in 3G network. In section 1.2, the history of multicast in cellular networks and the
Multimedia Broadcast Multicast Service (MBMS) systems are introduced, leading to
the studied issues in existing literature and in this thesis. In section 1.3, the High
Speed Downlink Packet Access (HSDPA) is briefly introduced. HSDPA defines the
HS-DSCH channel, which is potentially used to carry multicast data. Finally, in
section 1.4, the state of the art in the MBMS RRM is analyzed; the advantages and
drawbacks of the existing radio resource allocation approaches are illustrated, then
the motivation of this work is stated.

Contents
1.1 Universal Mobile Telecommunications System . . . . . . . . 6

1.1.1 UMTS network architecture . . . . . . . . . . . . . . . . . . . 6
1.1.2 UMTS channels . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Wideband Code Division Multiple Access (WCDMA) . . . . 12

1.2 Multicast in 3G and 3G+ . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Multicast in UMTS network prior to MBMS . . . . . . . . . 14
1.2.2 Multimedia Broadcast Multicast Service (MBMS) . . . . . . 16
1.2.3 MBMS transmission modes . . . . . . . . . . . . . . . . . . . 22

1.3 High Speed Downlink Packet Access (HSDPA) . . . . . . . 24
1.4 State of the art for MBMS RRM . . . . . . . . . . . . . . . . 25

1.4.1 MBMS UE counting . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 MBMS power counting . . . . . . . . . . . . . . . . . . . . . . 26
1.4.3 MBMS FACH enhancements . . . . . . . . . . . . . . . . . . 26
1.4.4 Dual transmission mode . . . . . . . . . . . . . . . . . . . . . 28
1.4.5 MBMS over HSDPA . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.6 Literature analysis and motivation . . . . . . . . . . . . . . . 29

1.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



6 Chapter 1. Background Knowledge

1.1 Universal Mobile Telecommunications System

The throughput limitations of the Global System for Mobile communications
(GSM) led the International Telecommunications Union (ITU) to initiate work on a
new worldwide standard, called 3G for the third generation network. The 3G Part-
nership Project (3GPP) develops the Universal Mobile Telecommunications System
(UMTS) [53] that delivers high-bandwidth data and voice services to mobile users
and mobile web data. UMTS is based on Wideband-Code Division Multiple Ac-
cess (W-CDMA) for the radio part and inherits of the GSM/General Packet Radio
Service (GPRS) topology for the network backbone.

1.1.1 UMTS network architecture

Figure 1.1 shows the architecture of a UMTS network. It consists of three parts:
the Core Network (CN), the UMTS Terrestrial Radio Access Network (UTRAN)
and the User Equipment (UE). The CN is responsible for switching/routing voice,
inter-system handover, gateway to other networks (fixed or wireless), and perform
location management when there is no dedicated links between the UE and the
UTRAN. The UTRAN handles all radio-related functionalities, and operates in
Frequency Division Duplex (FDD) or Time Division Duplex (TDD) modes using
WCDMA protocol. The UE is the equipment used by the user to access the UMTS
services.
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1.1.1.1 Core Network

The CN is logically divided into two service domains: the Circuit-Switched (CS)
service domain and the Packet-Switched (PS) service domain. The CS domain han-
dles the voice-related traffic, while the PS domain handles the packet transfer. In the
CS domain, the network includes the Mobile Switching Center (MSC), the Visitor
Location Register (VLR) and the Gateway Mobile Switching Center (GMSC). The
PS domain consists of the Gateway GPRS Support Node (GGSN) and the Serving
GPRS Support Node (SGSN). Other network elements, such as the Home Location
Register (HLR) and the Authentication Center (AUC) are shared by both domains.

1.1.1.2 UTRAN

The UTRAN provides the air interface for UE. As shown in Figure 1.1, the
UTRAN consists of several Radio Network Subsystems (RNS). Each RNS is con-
trolled by a Radio Network Controller (RNC) and has several Node B. Each Node
B can control several antennas and each antenna covers an area called a radio cell.
The UE can directly communicate with one or more antennas (when the UE is in
handover procedure). The radio resources control is implemented through a dis-
tributed architecture; each RNC is connected with the CN over the interface named
Iu and with a Node B over the interface named Iub.

Radio Network Controller The RNC is a key element within the UTRAN as
it controls all the radio resources. A RNC is responsible for a wide range of tasks
[72].

– Admission control: in the CDMA system, it is very important to keep the
interference below a certain level. The RNC calculates the traffic within each
cell, and then it decides to accept or reject the new coming calls.

– Power control: the RNC only performs the outer loop power control. This
means that the RNC controls the transmission power in one cell on the basis
of the interference received from the other neighbor cells. While the fast power
control is performed by a Node B 1500 times per second, the outer loop power
control helps the RNC to minimize the interference between the neighbor cells.

– Radio bearer setup and release: the RNC has to set up, maintain and
release a logical data connection to a UE. This connection is called UMTS
radio bearer.

– Radio resource control: the RNC controls all radio resources of the cells
connected to it via a Node B. This task includes the interference control and
load measurements.

– Handover control: based on the downlink/uplink signal strength and the
signal-to-interference ratio received by the UE and the Node B, the RNC can
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decide if the current cell is suitable for a given connection. When the RNC
decides to handover, it informs the new cell and the UE.

To achieve above tasks, one physical RNC contains three logical functionalities
[54]:

– CRNC: the Controlling RNC (CRNC) controls the resources of one Node B.
It performs the load and congestion control within the cells of the Node B.
Besides, a CRNC executes the admission control and the code allocation to
establish new radio links in these cells.

– SRNC: the Serving RNC serves a particular UE and manages the connections
(to/from the CN) with that UE.

– DRNC: the Drift RNC fulfills a similar role to the SRNC except that it is
involved only in the case of soft handover.

The difference between the CRNC, SRNC and DRNC is that the CRNC is
logically tied to the Node B, not to the connections. On the contrary, the SRNC
and the DRNC are tied to the connections with the UE, which implies that the
CRNC manages the common and the shared resource while the SRNC and the
DRNC manage the dedicated resources.

Node B The Node B is the base station and provides the radio coverage to one
or more cells. It is connected directly with the UE via the WCDMA air accessing
technology. An important task of the Node B is the inner loop power control. The
Node B measures the link quality and the signal strength, it manages the air interface
transmission and reception, the modulation and the demodulation, the physical
channel coding, etc. With the emergence of High Speed Downlink Packet Access
(HSDPA), the Node B even handles some logic functionalities (e.g. retransmission)
for lower response times.

1.1.1.3 NAS Stratum and AS Stratum

Vertically, there are two strata in the UMTS signaling protocol stack: the Non-
Access Stratum (NAS) and the Access Stratum (AS). The NAS protocols are applied
between the UE and the core network, for which the access stratum acts as a re-
lay. The UMTS non-access stratum consists in the Connection Management (CM),
the Session Management (SM), the Mobility Management (MM), and the GPRS
Mobility Management (GMM).

The access stratum consists of three layers. The layer 1 is the Physical Layer
(PHY), the layer 2 consists of the Radio Link Control (RLC) and the Medium Access
Control (MAC). The layer 3 is the Radio Resource Control (RRC).

The layer 1 service is the physical layer. It is responsible for transporting the
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data received from the higher layers over the physical channels. It hides all details
of the underlying physical media, and provides the transport channels to the MAC
layer. The PHY layer provides transport channels to the L2/MAC layer. The
concept of channels will be introduced later.

The layer 2 service consists of four sub-layers:

– RLC: The RLC layer provides service to the higher layers in both control
plane and user plane. It provides Service Access Points (SAPs) to the higher
layers, to invoke some service of the RLC layer.

– MAC: The MAC sub-layer provides services to the RLC layer by means of
logical channels. This layer internally maps the data received over the logical
channels to the transport channels.

– PDCP: The Packet Data Convergence Protocol (PDCP) sub-layer provides
PDCP Service Data Unit (SDU) delivery service through the SAP for user
plane packet data.

– BMC: The BMC (Broadcast and Multicast Control) sub-layer provides a
broadcast/multicast transmission service in the user plane. It has functions
for storing cell broadcast messages and transmitting BMC messages to the
UE.
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Figure 1.2: Radio interface protocol stacks in access stratum

As shown in Figure 1.2, the protocol stack in layer 3 can be divided into the user
plane and the control plane. The control plane protocol stack deals with signaling
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protocol. For example, the Radio Resource Control (RRC) protocol is part of the
control plane, which carries the network signaling messages. The user plane protocol
stack deals with user protocols, it carries the data streams from/to the user.

1.1.2 UMTS channels

The UMTS channels can be classified in terms of functionalities, data flow di-
rection and sharing. In terms of data flow direction, the downlink channels are
transmitted by the UTRAN and received by the UE, while the uplink channels are
transmitted by the UE and received by the UTRAN. In terms of sharing mechanism
among UE, the common channels send information toward and from multiple UE,
while the dedicated channels send information to and from a single UE. In terms
of functions, there are the logical channels, the transport channels and the physical
channels (see Figure 1.2).

Logical channels The logical channels provide the data transfer service of the
MAC layer. The logical channel type is defined by its content and the kind of offered
data service. A general classification of logical channel is into two groups: the control
channels and the traffic channels. The control channels are used to transfer control
plane information, and the traffic channels for the user plan information.

Transport channels The MAC layer provides the logical channel to transport
channel conversion. The connections between the logical channels and the transport
channels are shown in Figure 1.3.

Figure 1.3: Logical channel to transport channel mapping

Different transport channels are defined from the type of information transferred
by that channel. The transport channels can be subdivided into the common trans-
port channels, the dedicated transport channels and the shared transport channels.
The common transport channel is a resource divided between all or a group of users
in a cell, whereas a dedicated transport channel resource, identified by a certain
code on a certain frequency, is reserved for a single user only. The common channels
are the Random Access Channel (RACH) in the uplink and the Forward Access
Channel (FACH) in the downlink. The common channels do not have a feedback
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channel, and cannot use the fast closed loop power control, but only the open loop
power control or fixed power. Therefore the link level performance of the common
channels is not as good as the dedicated channels, and the common channels gener-
ate more interference than the dedicated channels. The Dedicated Channel (DCH)
is a bi-direction channel with both uplink and downlink connections. Because of
the feedback channel, the fast power control and the soft handover can be used.
These features improve their radio performance and consequently less interference
is generated than with common channels.

Physical channels The transport channels are mapped in the physical layer to
different physical channels. The physical channel is required to support variable bit
rate transport channels to offer bandwidth-on-demand services, and to be able to
multiplex several services to one connection.

Each transport channel is accompanied by the Transport Format Indicator (TFI)
at each time event at which data is expected to arrive for the specific transport
channel from the higher layer. The physical layer combines the TFI information
from different transport channels to the Transport Format Combination Indicator
(TFCI). The TFCI is transmitted in the physical control channel to inform the
receiver which transport channels are active for the current frame. The transport
channel to physical channel mapping is illustrated in Figure 1.4.

BCH Primary common control physical channel (PCCPCH)

FACH Secondary common control physical channel (SCCPCH)

PCH

RACH Physical random access channel (PRACH)

DCH Dedicated physical data channel (DPDCH)

Dedicated physical control channel (DPCCH)

DSCH Physical downlink shared channel (PDSCH)

CPCH Physical common packet channel (PCPCH)

Synchronization channel (SCH)

Common pilot channel (CPICH)

Acquisition indication channel (AICH)

Paging indication channel (PICH)

CPCH Status indication Channel

Figure 1.4: Transport channel to physical channel mapping
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1.1.3 Wideband Code Division Multiple Access (WCDMA)

In the radio accessing technologies, one of the basic concepts is to allow several
transmitters to send information simultaneously over the radio link. It means to
share a band of frequencies, i.e. bandwidth between several users. The three most
important families of radio access schemes are: Frequency Division Multiple Access
(FDMA), Time Division Multiple Access (TDMA) and Code Division Multiple Ac-
cess (CDMA). These three mechanisms subdivide radio resources in the frequency,
time and code domains, respectively.

WCDMA is a Wideband Direct-Sequence Code Division Multiple Access (DS-
CDMA) system, i.e. user information bits are spread over a wide bandwidth by
multiplying the user data with quasi-random bits (called chips) derived from CDMA
spreading codes. In WCDMA, all users use the same frequency band; to separate
different users, the codes used for spreading should be (quasi) orthogonal, i.e. their
cross-correlation should be (almost) zero. The chip rate of 3.84 Mchip/s leads to a
carrier bandwidth of approximately 5 Mhz. DS-CDMA systems with a bandwidth
of about 1 MHz are commonly referred to as narrowband CDMA systems. The
inherently wide carrier bandwidth of WCDMA supports high user data rates and
also has certain performance benefits, such as increased multipath diversity.

WCDMA supports highly variable user data rates. The user data rate is kept
constant during 10 ms frame, however, the data capacity among the users can
changed from frame to frame. The different user data rates can be supported using
different spreading factor (i.e., the number of chips per bit). This step is spreading
operation, which multiplies different data streams with orthogonal spreading codes.
UMTS uses Orthogonal Variable Spreading Factor (OVSF) codes to spread data
symbol to chips on both the uplink and downlink. OVSF codes are also known
as channelization codes or Walsh codes. In its general form, an OVSF code can be
written as a sequence of CSF (k); where C stands for channelization code, SF stands
for spreading factor, and k stands for code number with 0 < k ≤ SF − 1.

Figure 1.5: OVSF code tree used for orthogonal spreading
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The OVSF codes are generated from a code tree as shown in Figure 1.5. It begins
with the first generation one-bit code C1(0) = 1; where the subscript 1 stands for
spreading factor 1, and (0) stands for code number 0. The second generation consists
of two codes: C2(0) and C2(1). They are two-bit codes with a spreading factor of 2.
The third and fourth generations consist of four-bit and eight-bit codes numbering
of four and eight respectively. The code tree can go up to 10 generations with the
10th generation having 512 codes. For a given code tree generation, the spreading
factor is equal to the number of codes. The following functions illustrate how the
OVSF codes are generated:

C1(0) = 1 (1.1)[
C2(0)

C2(1)

]
=

[
C1(0) C1(0)

C1(0) −C1(0)

]
=

[
1 1

1 −1

]
(1.2)

C4(0)

C4(1)

C4(2)

C4(3)

 =


C2(0) C2(0)

C2(0) −C2(0)

C2(1) C2(1)

C2(1) −C2(1)

 =


1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 (1.3)

Two sequences are said to be orthogonal to each other if they have zero cross-
correlation. In the OVSF code tree, two codes are orthogonal if and only if neither
code lies on the same path from the other code to the tree root. Graphically, two
codes are non orthogonal if they belong to the same branch of the tree. For example,
if the code C4(0) is assigned to a user, the codes C1(0), C2(0), C8(0), C8(1) and so
on, cannot be assigned to any other user in the same cell. In this way, OVSF codes
for different channels in the same cell are carefully chosen in order to be mutually
orthogonal to each other, this restricts the number of available codes for a given
cell.

With a given OVSF code, WCDMA performs the orthogonal spreading by mul-
tiplying each encoded symbol with a code, meaning that one symbol is represented
by multiple chips. e.g. a Spreading Factor (SF) of 4 means 4 chips per symbol,
while a SF of 256 means 256 chips per symbol. The chip rate is kept in constant at
3.84 Mcps(chips per second), and the ratio of chip rate and symbol rate is known
as the spreading factor.

SF =
ChipRate

Symbol Rate
=

3.84Mcps

Symbol Rate
(1.4)

Therefore, high-rate transmissions use low spreading factor while low-rate trans-
missions use high spreading factors. For example, for voice with a symbol rate of
60 ksps, the 64-bit OVSF code used for spreading runs 64 times faster than the
symbol, making the spread symbol run at 3.84 Mcps. For data with a symbol rate
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of 960 ksps, the 4-bit OVSF code used for spreading runs four times faster than
the symbol, resulting in again a spread symbol chip rate of 3.84 Mcps. Spreading
factors can be range from 4 to 512 for the downlink and 4 to 256 for the uplink.

1.2 Multicast in 3G and 3G+

Traditionally, data communications concerns two entities: a transmitter and a
receiver. Nowadays, with the introduction of mobile streaming, video conferencing
etc, there is an increasing demand of traffic between one transmitter and many
receivers, or even many transmitters and many receivers. Hence, efficient broadcast
and multicast communications are required.

In broadcast, a message is sent to every possible destination. It is unknown that
if only a few receivers are interested in the message. In a wireless mobile network,
broadcast transmission not only wastes the network resources but also the receiver
resources, since the receiver, whom are not interested in the broadcast data, must
consume energy in order to process useless data.

Multicast is more efficient in terms of network and receiver resources than broad-
cast. Multicast data delivery increases the network efficiency and decreases the
server load by sending one data stream to several particular destinations. When
the network is aware of the fact that multiple receivers are targeted, it creates a
distribution tree from the transmitter towards all receivers overlaying the network
topology. The network will duplicate the data only at branching points of the tree
towards the receivers. Thus, instead of sending many streams from the transmitter,
one to each receiver, multicast lets all receivers listen to the same stream and avoids
processing overheads replication at the source on the same link. Multicast requires
additional mechanisms for group maintenance while broadcast does not.

1.2.1 Multicast in UMTS network prior to MBMS

Two services for transmitting data from a single source to several destinations
were defined prior to MBMS: the Cell Broadcast Service (CBS) and the IP multicast
service.

Since Release 4, the CBS service (CBS: Cell Broadcast Service) [14, 10] allows low
bit-rate unacknowledged messages to be transmitted to all receivers in a particular
area. The CBS broadcasts each message periodically, at a frequency and duration
arranged with the information provider. The CBS, however, is targeted to text
messaging and without any QoS, therefore, it is unsuitable for high bandwidth
multimedia services.
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The IP Multicast service [3, 4] is defined since Release 99. It allows IP appli-
cations to send data to a set of recipients (a multicast group) specified by an IP
address. Any UE may join or leave a multicast group without restrictions. Release
99 IP multicast is implemented by separately sending each packet from the GGSN
to each UE, therefore, no sharing gains are achieved, and high bandwidth multime-
dia services remain expensive. The IP multicast traffic can be received by mobile
subscribers already. However, the IP multicast does not allow to share radio or core
network resource hence no optimized transport solution exists.

In the initial UMTS multicast design [51], 3GPP decided to terminate the IP
multicast routing protocol in the GGSN. With this design, GGSN serves as a ren-
dezvous point routers. Also, GGSN serves as a router Internet Group Management
Protocol (IGMP) designated and performs IGMP signaling on point-to-point packet-
data channels. IGMP signaling is performed in the network user plane, that means
it is seen as data traffic for the UMTS network. Multicast data is forwarded to
the UMTS terminal on point-to-point packet-data channels, i.e. unicast distribu-
tion. The GGSN manufacturer can choose which IP multicast routing protocol to
support. Only the UE and the GGSN are multicast compatible in this design. As
shown in Figure 1.6, the distribution tree by the IP multicast service allows the
network to treat multicast traffic in the same manner as unicast traffic.

Figure 1.6: Multicast duplication in UMTS network prior to MBMS [51]

To send and receive multicast data, the terminal firstly needs to perform a GPRS
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attach, then the terminal must establish a packet data channel with the GGSN. The
UMTS terminal is now part of the IGMP environment, and can join and leave the
multicast groups using normal IGMP signaling. Finally the terminal must establish
one or more packet data channels (Packet Data Protocol (PDP) context activation)
for the multicast data flows.

As shown in Figure 1.6, this multicast architecture reduces the load on a wireless
source. The source only needs to send one copy of the multicast data to the GGSN.
Then the GGSN replicates and forwards the packet on to the multicast distribution
tree. However, the UMTS multicast source does not receive any information from
multicast members. Thus even if the multicast group does not have any members,
the source will continue transmitting its multicast data to the GGSN. The source is
not aware of the empty state of the multicast group. A modified signaling connection
between the GGSN and the source can avoid this situation. This architecture also
imposes a high strain on the GGSN. The GGSN already has the responsibility for
many complex mechanisms, thus it is important to avoid turning the GGSN into
the UMTS networks bottleneck.

The drawback of this multicast architecture is that it requires more network
resources than unicast distribution of the same data. Moreover, due to the fact
that GGSN serves as a designated router, detailed membership information must be
stored in the GGSN for the UMTS Terminals. This might work efficiently when the
number of the users requesting to join the multicast group is low. But when a great
number of users request the same MBMS service, the network may then collapse
with huge capacity and processing requirements in the core and the radio network.

With these shortcomings in mind, 3GPP defined MBMS to decrease the amount
of data within the network. It aims at offering an efficient way to transmit data
from a single source to multiple destinations over the radio network. MBMS is
transparent to end users (they have the same experience as with Point-to-Point
connections) while saving resources on the UE side.

1.2.2 Multimedia Broadcast Multicast Service (MBMS)

To support efficient distribution of multicast multimedia services over mobile net-
working, the 3GPP specified the Multimedia Broadcast/Multicast Service (MBMS)
since Release 6 specifications [18, 16, 17]. The main advantage of MBMS is that
it allows many receivers in the same radio cell to be served by a common signal
transmission facility, or bearer, thus saving radio resources.
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1.2.2.1 MBMS system architecture

MBMS integrates broadcast/multicast transmission capabilities into 3G service
and network infrastructures. In UMTS network, bandwidth is a limited resource.
MBMS supports the network to transmit the data only once over a particular route.
All users that belong to the same multicast group can receive service simultane-
ously on the same frequency and time slot. As shown in Figure 1.7, the existing
Packet-Switched (PS) domain functional entities (UE, GGSN, SGSN, UTRAN and
GERAN) and MBMS-specific interface functions (Gmb) are enhanced to support
the MBMS bearer service.
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Figure 1.7: Enhancement of MBMS in UMTS [18]

Besides, MBMS system is realized by one additional component named Broad-
cast Multicast Service Center (BM-SC). The BM-SC is a MBMS specific functional
entity supporting various MBMS user service such as schedule and deliver. It per-
forms following functions:

– Membership function.
– Session and Transmission (in radio access network) function.
– Proxy and Transport (in CN) function.
– Service Announcement function.
– Security function.

With these enhancement, the MBMS feature is split into the MBMS Bearer
Service and the MBMS User Service.

The MBMS Bearer Service includes a Multicast and a Broadcast Mode. The
MBMS Bearer Service uses IP multicast addresses for the IP flows. The advan-
tage of the MBMS Bearer Service compared to unicast bearer services (interactive,
streaming, etc.) is, that the transmission resources in the core and radio network
are shared. One MBMS packet flow is replicated by GGSN, SGSN and RNC (see
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Figure 1.7). MBMS may use an advanced counting scheme to decide the most effi-
cient system usage between using (zero, one or more) dedicated (i.e. unicast) radio
channels and using one common (i.e. broadcast) radio channel.

The MBMS User Service is basically the MBMS Service Layer and offers a
Streaming and a Download Delivery Method. The Streaming Delivery method
can be used for continuous transmissions like Mobile TV services. The Download
Method is intended for Download and Play services. To increase the transmission
reliability, an application layer FEC code may be used. Furthermore, a file-repair
service may be offered to complement the download delivery method.

1.2.2.2 MBMS services

According to the different quality of service (QoS) types, the services targeted
by MBMS are classified into three categories.

– Streaming service: Continuous media such as audio and video, plus supple-
mentary text and images, similar to TV channels but enhanced with multime-
dia content. Images may also be used for banner images that advertise some
product or service. These static media need to be synchronized and displayed
with audio/video streams.

– File Download services: Reliable binary data transfers without strict delay
constraints over an MBMS bearer, similar to conventional file transfers but
with multiple receivers. It is necessary that the user receives all the data sent
in order to experience the service.

– Carousel service: Combination of streaming service and file download ser-
vice, similar to stock quote ticker tapes. The target media of this service is
only static media (e.g. text and/or still images). Time synchronization with
other media is also required, e.g. text objects are delivered and updated from
time to time. Images are also collated to display low frame-rate video. The
benefit of this service is that it is possible over a low bit-rate bearer. An ex-
ample of the carousel service is a ’ticker-tape’ type service in which the data
is provided to the user repetitively and updated at certain times to reflect
changing circumstances.

Therefore, potential MBMS applications include not only cellular band broadcast
mobile television; but also cellular band broadcast mobile radio and area-specific
target mobile advertising, etc. These potential applications in MBMS are shown in
Table 1.1.
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Service type Service Content Potential Application

News clip Text distribution News/sport highlights, movie
trailers, economics, etc

Localized service Text, video Tourist information, restaurant,
etc

Audio stream Audio, timed text Music, live traffic information,
voice notification

Content distribution Downloading, video,
audio

Software updates, etc

Video clip Video and audio
streams, timed text

Live events, interactive television
voting

Table 1.1: MBMS services and potential applications

1.2.2.3 MBMS service distribution procedures

MBMS supports broadcast and multicast services in mobile environment. It
defines the transmission of service through Point-to-Multipoint method. With this
manner, the same data is transmitted from a single source entity to multiple recip-
ients while sharing the core and radio network resources.

The broadcast service is a unidirectional point-to-multipoint transmission ser-
vice, from a single source entity to all users in a broadcast service area. It does not
need subscription. The broadcast service is free of charge and does not need spe-
cific activation requirements. Broadcast supports streaming service while the Cell
Broadcast Service (CBS) is intended for messages only.

The multicast service allows the unidirectional Point-to-Multipoint transmission
of multimedia data from a single source point to a multicast group in a particular
service area. Unlike the broadcast service, the multicast service requires a subscrip-
tion to the multicast group. Users need to be notified of the service availability by
service announcements. Then they need to join the corresponding multicast group
by sending joining messages. From the network point of view, the same content can
be provided in a Point-to-Point fashion if there are not enough users to justify the
high power transmission of the Point-to-Multipoint channel. Unlike the broadcast,
users are expected to be charged for multicast service.

As shown in Figure 1.8, there are several procedures to enable MBMS multicast
service. The subscription, joining and leaving phase are performed individually for
each single user. The other procedures are performed for all users interested in a
multicast service. The sequence of procedures may repeat if it is necessary.



20 Chapter 1. Background Knowledge

 

  

Subscri ption 
  

Joining 
  

Service announcement 
  

Data transfer 
  

Leaving 
  

MBMS notification 
  

Session start 
  

Session Stop 
  

Figure 1.8: Multicast procedure [16]

– Subscription: The subscription is the agreement of a user to receive ser-
vice(s) offered by the operator, which allows the user to receive the related
MBMS multicast service in further transmission. The subscription information
is recorded in the BM-SC. This information allows to establish the relationship
between users and the service provider.

– Service announcement: By receiving MBMS service announcement, users
shall discover the range of MBMS services and service availability. This mech-
anism distributes to users information about the service content, parameters
required for service activation (e.g. IP multicast address(es)) and possibly
other service related parameters (e.g. service start time).

– Joining: The joining is an activation message sent by the UE. In this pro-
cedure, the UE indicates to the network that it wants to receive multicast
mode data of a specific MBMS service. This activation procedure allows a
subscriber to become a member of a multicast group, and to be recorded by
the network.

– Session Start: This step is the point at which the BM-SC is ready to send
data. A session start message is sent for each MBMS bearer service. This
can be identified with the start of a multicast session. Session start occurs
independently of activation of the service by the user, which means, a given
user may join the service before or after session start. Session start is the
trigger for radio/network resource establishment for MBMS data transfer.

– MBMS notification: It informs the UEs about forthcoming (and poten-
tially about ongoing) MBMS multicast data transfer.

– Data transfer: In this procedure, MBMS data are transferred to UEs. The
user data and control messages are transmitted, as well as the error recovery
packets if it is necessary (e.g. fading conditions or handover).
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– Session Stop: This step is the point at which there will be no more data to
send for a period of time. The bearer resources are released at session stop.

– Leaving: In this process a subscriber leaves, i.e. stops being a member. Then
MBMS multicast is deactivated by the user.

Figure 1.9 shows a timeline example of the multicast service procedures, in which
two users join and receive data flow from the same service sequentially. It is il-
lustrated that the subscription, joining, leaving, service announcements as well as
MBMS notification can run in parallel to other phases. Moreover, there are three
important periods related with the management of radio resource for MBMS service.

Figure 1.9: An example of two users receiving MBMS multicast service
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– Period between Service Announcement and Joining. The Joining
time depends on the user’s choice and the possible user is in response to a
service announcement. Users will typically join at a chosen time so that the
period between announcement and joining may be very long or very short. In
order to avoid overload situations being caused by many users attempting to
join in a short period of time, the UE shall be able to use parameters sent by
the BM-SC in the service announcement to randomize the joining time.

– Period between Joining and Session Start. Some MBMS multicast
services may be ’always on’. In this case, Joining can take place immediately
after Service Announcement and possibly many hours before, or after, the
session start. In other cases, if a Session Start time is known, Joining may
take place immediately before Session Start or after Session Start. For these
services, the announcement may contain some indication of a time period at
which users and UEs should use to choose a time to Join the MBMS bearer
service.

– Period between Session Start and First Data Arrival. Session Start
indicates that the transmission is about to start, then the network actions
will take place for the arrival of first data. Therefore, the time delay between
a Session Start indication and actual data arrival should be long enough for
these network actions, e.g. provision of service information to the UTRAN,
and establishment of the network and radio resources. Session Start may be
triggered by an explicit notification from the BM-SC.

1.2.3 MBMS transmission modes

MBMS defines two transmission modes in UTRAN to provide MBMS multicast
service: point-to-point transmission (PTP) mode and point-to-multipoint trans-
mission (PTM) mode. To carry the relevant MBMS data and signaling through
PTM mode, three new logical channels are added to Release 6. They are MBMS
Control Channel (MCCH) carrying MBMS control signaling; MBMS Traffic Chan-
nel (MTCH) carrying MBMS application data; and MBMS Scheduling Channel
(MSCH) carrying MBMS scheduling information to support discontinuous recep-
tion in the UE. MTCH is used to carry MBMS multicast data through PTM mode.

MTCH is a logical channel specifically used for a PTM downlink transmission
of user plane information between network and UEs. The user plane information
on MTCH is MBMS service specific and is sent to UEs in a cell with an activated
MBMS service [18]. MTCH maps to one transport channel named Forward Access
Channel (FACH) and then to physical channel named Secondary Common Control
Physical Channel (SCCPCH) in the downlink direction. Initially, FACH is a down-
link transport channel that carries control information to terminals known to be
located in the given cell. This is used, for example, after a random access message
has been received by the base station through a Random Access Channel (RACH).
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Figure 1.10: MBMS transmission modes and channel mapping

Currently, MBMS defines the PTM transmission mode which supports to transmit
data packets on FACH. It aims at overcoming network congestion when a larger
number of users request the same service. For each service, only one FACH is re-
quired for the transmission of service stream, while no traffic load on the uplink
connections is required. FACH does not use fast power control (see section 1.1.1.2),
and the transmitted messages should include band identification information to en-
sure their correct reception. On one hand, the reliability of FACH transmission
is less than channels using a feedback channel for receiving quality. On the other
hand, PTM mode needs rather high-power level to reach all users in the cell since
it lacks of physical layer feedback in uplink. One or several FACH(s) are carried
on the secondary common control physical channel (S-CCPCH); each FACH is sent
with a fixed data rate (depending on the traffic bandwidth).

The PTP mode uses the logical channel named Dedicated Traffic Channel (DTCH).
DTCH is defined in the user plane and transfers the information of a given service
dedicated to a single user. It exists both in the uplink and downlink direction.
Different DTCH may coexist for a given UE whenever several services are provided
simultaneously (e.g. data and voice connections). Each DTCH serves one ded-
icated UE, and maps to transport channel Dedicated Channel (DCH) then over
the downlink physical channel Downlink Physical Dedicated Channel (DPDCH).
DCH is bi-directional with inner and outer loop power control. Because DCH is a
Point-to-Point channel, multiple DCHs are required for transferring common data
to a multicast group. Since DCH can employ fast closed-loop power control, it
can achieve a highly reliable transmission quality. DCH also consists of an uplink
channel, which is used to feedback power control information. RNC could control
the state transitions between PTP and PTM modes which allows the radio network
to keep the efficient power utilization state. Hence it needs to transfer the traffic
volume between Cell_FACH and Cell_DCH and vice versa.
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1.3 High Speed Downlink Packet Access (HSDPA)

High Speed Downlink Packet Access (HSDPA) [54] and MBMS are two im-
portant aspects of the UMTS network evolution. HSDPA is introduced in 3GPP
Release 5, it defines a new channel named High-Speed Downlink Shared CHannel
(HS-DSCH). The HS-DSCH is a downlink transport channel shared by a number of
UEs, it could be transmitted over only a portion of the cell using smart antennas.
Figure 1.10 shows the channel mapping of HS-DSCH. HS-DSCH maps to DTCH
logical channels above it and to a HS-PDSCH physical channel below it.

Feature FACH DCH HS-DSCH

Spreading factor 4 to 256 4 to 512 16

Modulation QPSK QPSK QPSK/16QAM

Soft handover No Yes No

Interleaving 10-80 ms 10-80 ms 2 ms

Multi-code operation No Yes Yes, extended

Hybrid ARQ RLC level RLC level
L1 packet
combining

Fast power control No Yes
Only for
associated DCH

Adaptive Modulation
No No Yes

and Coding (AMC)

Base Transceiver
No No Yes

Station (BTS) scheduling

Specification Release 99 Release 99 Release 5

Table 1.2: Comparison of properties of transport channels

Table 1.2 illustrates the technologies used in HS-DSCH and compares it with R99
channels [54]. The upgrade of HSDPA to the existing WCDMA network is a software
upgrade, which helps the Node B to obtain new functionalities supporting HSDPA:
the fast scheduling based on the quality feedback, UE capability, buffer status, etc.
HSDPA disables two features of WCDMA: the variable SF (SF=16 for HSDPA)
and fast power control. Instead, the utilization of Adaptive Modulation and Coding
(AMC), extensive multi-code operation and a fast efficient retransmission strategy
(BTS scheduling), helps HSDPA to select a coding and modulation combination for
the users. To benefit from the dynamic range of HSDPA link adaptation, a user
may simultaneously utilize up to 15 multi-codes in parallel. When link conditions
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are very favorable, based on the scheduling decisions done in the Node B, most of
the cell capacity may be allocated to one user for a very short time. In this way,
additional user throughout could be achieved, in general for free. The peak rate
of HS-DSCH is up to 10 Mbps with 16 quadrature amplitude modulation (QAM).
Therefore, HS-DSCH provides a more flexible and efficient method for utilizing radio
resource management to achieve significant improvements on the downlink capacity,
reduced network latency and higher data rates for packet data services.

Although Release 99 transport channels involving FACH and DCH, have already
been standardized for MBMS multicast transmission, MBMS over HS-DSCH is still
an interesting research topic [73, 80, 25, 68, 31].

1.4 State of the art for MBMS RRM

This section introduces the related work in the study of radio resource allocation
for MBMS. In UTRAN, the sharing of limited radio resources among numerous
users per cell is constrained with more services subscriptions and higher requested
traffic bandwidth. The RNC is responsible for the efficiency of transmission scheme
selection. Before MBMS data transfer (see Figure 1.8), in the period between Joining
and Session Start, the RNC needs to choose the appropriate transmission schemes
and relevant radio resource allocation. In the period between Session Start and
First Data Arrival, the radio bearers are established for data transmission, aiming
to achieve an efficient overall utilization of radio and network resources. Then during
the MBMS session, the RNC should adapt to continuous changes in the dynamic
wireless environments, optimally allocate radio resources and satisfy the service
requirement in real-time, during which, the switch of MBMS transmission modes is
crucial to the allocation efficiency.

In particular, the Node B transmission power is a limited resource and should
be shared among all MBMS multicast users in a cell. Hence the power control is
essential in order to minimize the power consumption, thus to eliminate intercell
interference and reserve cell capacity. When the number of subscribers for multicast
services and traffic requirement increases, the main concern in the development of
radio resource management for MBMS session is to serve the purpose of power saving
(with or without lower QoS). The existing MBMS RRM techniques are presented
in following paragraphs.

1.4.1 MBMS UE counting

The 3GPP designed the MBMS UE Counting mechanism in TS 25.346 [18]. The
UE counting supports to determine the switching threshold between PTP and PTM
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modes based on the number of MBMS subscribers. This function is performed by
the RNC before MBMS data transfer. First, the RNC sends counting messages
to users in a given cell, then identifies the numbers of users by received counting
response messages. When the number of users that wish to receive a multicast
session for a particular service is below an operator-defined threshold, the RNC will
establish PTP connections through the DCH channel(s). During MBMS service
transmission, the switch from PTP to PTM resources should occur, when the user
numbers exceeds the predefined threshold, and vice versa. The study in [37] claimed
that the threshold is 7 UEs per cell, with the assumption that the FACH transmission
power is set to 4 W. While in [56] the threshold is 5 UEs.

However, since the PTP transmission power would be different for different geo-
graphic distribution of users, to determine the appropriate radio bearer only based
on the number of users is simply to implement but not sufficient.

1.4.2 MBMS power counting

The inefficiency of the UE counting and the power limitation motivated the
3GPP to define the MBMS Power Counting (MPC) mechanism in TR 25.922 [15].
This function aims to minimize the Node B power requirements during the trans-
mission. The study under these assumptions is presented in [55], where the authors
first consider that the PTM transmission power remains as the same level to cover
the whole cell. Then the switching point between PTP and PTM modes is based on
the power consumption of PTP mode. When the estimated power consumption of
PTP mode in a cell is less than that for PTM, the network establishes PTP connec-
tions. The switch from PTP to PTM occurs when the power exceeds the threshold,
and vice versa. Furthermore, the study in [24] proposes a power control scheme for
the MBMS transmission channel selection among PTM and PTP modes. Later this
work is analyzed in micro and macrocell environments [22].

MPC has limited flexibility because it only considers delivering service for all
users with full service quality; it does not support PTP and PTM for one service
concurrently. Therefore, when MBMS transmission power in one cell is near satura-
tion, MPC does not provide alternative allocation scheme to save resource for new
service or new users to access into the network. These alternative schemes involve
reducing power consumption by decreasing service’s quality, or applying flexible
power allocation for PTM mode.

1.4.3 MBMS FACH enhancements

FACH is the only PTM channel that carries MTCH traffic. In conventional PTM
downlink transmissions, FACH does not support the fast power control. Therefore,
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in order to be received by all UEs throughout the cell, each FACH should be estab-
lished at a fixed power level high enough to ensure the requested QoS in the whole
cell. The following studies aim to increase the FACH efficiency.

1.4.3.1 Physical layer enhancement

As FACH power is limited, FACH transmission efficiency strongly depends on
the maximizing diversity. In [67], the authors propose a longer Transmission Time
Interval (TTI), using 80 ms instead of 20 ms as the FACH TTI for MBMS transmis-
sion, thus to provide time diversity against fast fading. While longer TTI introduces
more complexity and larger memory space requirement in user side, to obtain macro
diversity in which a user receives the same signal from multiple transmitters located
in different cells, the combing transmissions (soft and selection combing) is proposed
from multiple cells [67]. Besides, the Spatio-Temporal Transmit Diversity (STTD)
processing techniques exploit diversity in both spatial and temporal domains. It as-
sumes two transmitting antennas and a single data stream in order to improve the
signal quality and reduce the power requirement. These statements are confirmed
through analytical investigations in [12].

1.4.3.2 Dynamic power setting

Dynamic Power Setting (DPS) for PTM mode was initially proposed in [78].
Instead of fixing the FACH power to cover the whole cell, the RNC dynamically
adjusts the FACH power to just achieve the worst users of multicast group. This
technology aims to save the power efficiently in PTM mode. To support DPS, the
MBMS users need to turn on measurement report mechanism while they are on the
Cell_FACH state. Based on such dynamic and periodic measurement reports, the
Node B adjusts the transmission power for FACH [28].

1.4.3.3 Scalable FACH transmission

The multicast service delivery quality can be improved by adapting the scalabil-
ity ratio (bit rate and frame rate) of multimedia streams through different coding
structures. This technology is also named as rate splitting because the service can
be split into several streams. The transmission schemes of multicast service are
divided into single layer (SL) and multilayer (ML) transmission schemes [52]. For
the ML scheme, the service is scalable encoded by several flows; each flow has lower
bitrate and QoS requirements comparing to a nonscalable stream.

The scalable technology, integrated with FACH transmission (named S-FACH
in this work), is initially proposed in [79]. Then it is further studied in [31]. In
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the scalable FACH transmission technology, to provide basic service quality, the
most important stream (basic flow) is sent to all the users in the cell; then the
less important streams (advanced flows) are only sent to users who have better link
qualities. For these users (e.g. the users near the Node B), the reception of advanced
flows can enhance the service quality on top of the basic flow. The authors in [23]
studied the performance of scalable FACH transmission in cells with site-to-site
distance of 1 km. The simulation shows that a single 64 kbps stream carried by one
FACH channel requires the power of 7.6 W to cover the whole cell (95%). While
for a double stream transmission, only 5.8 W is required for transmitting two data
streams of 32 kbps through two FACHs, in which the basic flow with 95 % coverage
requests the power of 4.0 W, and 1.8 W for the advanced flow covering 50 % of the
cell. Thus, 1.8 W can be saved through the Scalable FACH transmission.

However, the scalable FACH transmission involves certain negative results. Some
users which are near the cell edge will not be fully satisfied, as they only receive the
basic service quality. Besides, the utilization of the scalable transmission for MBMS
multicast is less flexible as it only supports PTM mode and with fixed coverage
under static assumption [79, 31]. Therefore, the gain of S-FACH is rather limited
as the Node B could not able to weigh the transmission power consumption and the
users’ satisfaction.

1.4.4 Dual transmission mode

Dual Transmission Mode (DTM) allows the co-existing usage of PTP and PTM
mode for one MBMS service [28]. It adapts the FACH coverage for users with better
link quality, while the users near the cell edge are served by DCHs. DTM is active
both before and during MBMS transmission. The FACH coverage is dynamically
adapted by changing its transmission power (i.e. Dynamic Power Setting for FACH),
meanwhile the DCH connections are released or established for the rest of users.
DTM enriches the candidate transmission modes for MBMS. The advantage of DTM
is obvious during handover for single user. However, DTM does not consider the
integration with scalable transmission, and the simulation in [9] concluded that
DTM is only beneficial for up to 5 users with PTP connections. Therefore, only
applying FACH and DCH co-existing for transmission modes is limited not only in
power efficiency, but also in terms of channelization codes usage [24].

1.4.5 MBMS over HSDPA

The HSDPA as a means to deliver MBMS streaming is investigated by many re-
searchers. The studies mainly focus on the scheduling and multi-resolution aspects
(modulation and coding) [73, 31]. It is proved that with suitable packet scheduler
algorithm and hierarchical QAM constellations, MBMS over HSDPA can achieve a
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good fairness and capacity. Besides, some literature have studied the power utiliza-
tion of MBMS transmission through HS-DSCH [68, 80, 25]. There are two methods
to allocate HS-DSCH power for carrying MBMS multicast data. The first method
considers the HS-DSCH transmission with fixed amount of power (e.g. 7 W [23, 31]).
Then when the estimated power of FACH or DCH transmission will be more than
7 W, the multicast service transmission will be carried by HS-DSCH. Otherwise,
when the estimated FACH or DCH transmission power are less than 7 W, the trans-
mission mode switch will be triggered, to transfer the multicast data by FACH or
DCH, depending on which channel consumes less power. In the second method,
after the power for common control channel and signaling channel are allocated, the
Node B will allocate the rest of available power to HS-DSCH . In this method, the
HS-DSCH power will dynamically change based on the available transmission power
and the serving service and users. In the study of HS-DSCH for MBMS [25, 68], the
second method is used to estimate the required HS-DSCH power, then to compare
it with the power of FACH and DCH, and to select the proper transmission mode
by using the mode which is less power consuming. But none of these literature has
considered the co-existing usage with the UMTS R99 channels.

1.4.6 Literature analysis and motivation

Although MBMS RRM in 3G network and HSDPA has been well studied, there
are three main drawbacks in the existing allocation approaches. Firstly, the MBMS
in 3G network has not been systematically analyzed, neither the problem complexity
nor the problem characteristics. The existing approaches try to improve the RRM
efficiency, rather than following systematic guidances. Therefore, almost all algo-
rithms can only be compared with the standardized allocation approaches, while
rare study compares their performance with competitive algorithms.

Secondly, all existing approaches only consider the allocation scheme for mono-
objective, i.e. to minimize the consumption of transmission power. Therefore, only
a one dimensional evaluation criterion is proposed in existing studies. However, the
channelization code is also a crucial limitation in UTRAN, which impacts the cell
capacity and data rate. While considering both these two radio resources will bring
significant problem complexity in algorithm design as well as implementation.

Last but not least, the transmission modes in the existing approaches offer lim-
ited flexibility regarding the dynamic mobile environments and radio resources con-
sumption. For example, when the transmission power is saturated, the transmission
mode should be determined between transmission service i) through basic quality
link with full coverage and ii) through advanced quality link with smaller coverage.
When the transmission power is sufficient, meanwhile, the channel codes is also an
important but limited radio resource. Therefore, in case of channel codes saturation,
the transmission mode should be selected among i) less power consumption scheme
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and ii) less occupation of channel codes.

To overcome these limitations mentioned above, we propose a Flexible Radio
Resource Management Model (F2R2M) which combines the flexible transmission
mode selection and the multimedia scalability. The contribution of this work is
three-fold: Firstly, a general model of the MBMS RRM problem is provided, which
abstracts the input parameter, decision parameter and optimization objectives. In
this model, the mathematical formulation based on classical combinatorial optimiza-
tion problem is developed. Then the fitness landscape analysis is conducted, which
proves the problem difficulties and guides the optimization strategies.

Secondly, based on the proposed model and the problem properties, we propose
an allocation procedure with two-dimensional objective along with a lexicographic-
order evaluation criteria to evaluate the quality of resources allocation in terms of
service satisfaction and resource consumption. Hence the allocation approach is
able to minimize the power consumption, and to save the channel code occupation.
Finding the optimal solution which efficiently allocates the radio resource for MBMS
multicast service, while guarantees the Quality of Service (QoS), maintains the
service coverage and offers the cell capacity as high as possible.

Thirdly, our allocation approach offers higher flexibility in terms of allocation
efficiency. It can self adapt to the dynamic user scenario in the mobile environment:
the user number, the user distributions and the service requests which are different
from time to time. The proposed allocation approach is implemented, and the other
approaches are reproduced, then they are applied to the same scenarios in the same
platform; in this way, we offer a general test-bed to compare these algorithms under
common situation.

1.5 Synthesis

This chapter provides the background knowledge and the existing literature
study related to the research area in this thesis manuscript.

The first section presented the fundamentals of UMTS. UMTS uses WCDMA
as the radio access technology, which subdivides the radio resource in code domain
for simultaneous transmissions over the radio link. The high level architecture of
UMTS includes UE, UTRAN and CN. UTRAN takes in charge the radio resource
establishment, reconfiguration and release. In these procedures, the channelization
codes and the transmission power of channels are limited resource in UTRAN.

The second section introduced the MBMS framework and its features since the
Release 6. MBMS provides an efficient distribution platform for the multicast multi-
media services transmission over mobile networks. MBMS defines the logical channel
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MTCH to support the PTM transmission mode for multicast service, which saves
the unnecessary radio resource in UTRAN. MBMS also supports the PTP mode
for multicast, which is carried by DCH channel. Following by which the HS-DSCH
transport channel defined in HSDPA is introduced. Then HS-DSCH is compared
with the traditional MBMS transmission modes. The HS-DSCH feature is analyzed
as an open issue for MBMS multicast carrier.

Based on the background knowledge, the related literature work in the field of
MBMS RRM study has been introduced. The advantages and the disadvantages
of these approaches are analyzed. It is found that the existing studies have the
following shortcomings:

1. Lack of systematic modeling of the targeting problem.

2. Lack of systematic analysis of the solution space for the targeting problem,
therefore they can not prove whether the achieved radio resource assignment
is optimal or not.

3. Lack of enough flexibility and therefore they can only be beneficial in some
scenarios but they have limitations in other scenarios.

With these in mind, the motivation of this work is declared:

1. To propose a general mathematical model to allow in-depth analysis for the
MBMS RRM problem. The model should also be able to provide enough
flexibility to enable efficient radio resource allocation schemes.

2. To systematically analyze the problem complexity and the structure of the
solution space, so that the algorithm performance can be better evaluated.

3. To propose novel and practical algorithms, which aim to find the optimal radio
resource assignments for arbitrary user scenarios in dynamic mobile environ-
ment, considering both the throughput requirement and the power consump-
tion limitation.

The proposed flexible radio resource management model for MBMS multicast service
will be detailed in chapter 2.





Chapter 2

F2R2M: A Flexible Model for
RRM of MBMS

This chapter will describe the first contribution: a general modeling of MBMS
RRM problem named the Flexible Radio Resource Management Model (F2R2M).
Based on this model, the target is to perform dynamic radio resource allocation for
multicast service by using optimization approach. In terms of allocation scheme, this
model provides the abstraction for the mixed usage of three transport channels, as
well as the abstraction for the scalable encoded multimedia stream, hence it offers the
flexibility and possibility for high efficient radio resource utilization, and it satisfies
the search complexity. In this model, a two-dimensional cost function is proposed
which reflects the optimization for both the power consumption and the quality of
service. A lexicographic evaluation criterion is also proposed to allow us to meet the
throughput requirement while at the same time to minimize the transmission power.
Finally we obtain solution with proper service quality, low power and channelization
code consumption, hence minimizing the cell interference and maximizing the cell
capacity.
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2.1 Model framework

The flow chart in Figure 2.1 shows the establishment of network and radio re-
source during the MBMS service provision procedure. The procedures are mapped
into three phases in our model: the parameter collection phase, the estimation
phase, and the resource allocation phase. The radio resource management and the
allocation process are supposed to be operated in RNC for each Node B.
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UE Joins Multicast Group

MBMS Session start 
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MBMS Data Transfer
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(individual users)
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Figure 2.1: A three phase framework

2.1.1 Phase 1: Parameter collection phase

Before the MBMS session starts, the RNC collects the MBMS service and the UE
information in the first phase: the parameter collection phase. More particularly,
this phase consists of four different sub steps: phase 1-1, phase 1-2, phase 1-3 and
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phase 1-4.

The phase 1-1 is active when the network distributes the multicast service an-
nouncement to users. The RNC announces to users the service availability and
collects the service content in the service announcement distribution procedure.
The announcement messages include the parameters required for service activation,
e.g. IP multicast address(es), and other parameters which are service related, e.g.
service bandwidth, encoded technologies and service start time. Then the phase
1-2 is performed when UE are joining the session, such that the RNC records the
user membership from the UE activation message. In the subsequent phase 1-3, the
user information is complemented in the MBMS counting procedure, by which the
network sends the MBMS counting request and collects counting response from the
UE. In this step, the context reporting process is required [21], which reports the
current location of UE. The collection phase is repeated periodically if necessary.
The phase 1-4, named periodic re-counting process will be triggered by any change
of the MBMS session state, e.g. user mobility or service announcement.

In this first phase, the following parameters are collected as the input variables
of model.

– UE information
– T (c) = {t1, . . . , tk}. Set of mobile terminals in cell c. The terminal indexes

are ordered from the closest to the farthest distance from the Node B at
any time slot (after each TTI).

– D(c) = {d1, . . . , dk}, tk ∈ T (c). Set of instantaneous distances from the
Node B to the terminal, this value can be obtained through the channel
quality measurement report from UE side [78].

– Service information
– S(c) = {s1, ..., sNs}. Set of services to be transmitted to multicast groups

located in cell c. The total number of service is Ns.
– F (si). The flow set of service si and flow bandwidth, si ∈ S(c). F (si) =

{fsi,0} if si is a single layer (SL) transmission scheme service. Or F (si) =

{fsi,1, fsi,2, [fsi,3]} if si is a multilayer (ML) transmission scheme service,
where fsi,1 is the basic flow and fsi,j with j > 1 are advanced flows. Let’s
assume that each service has Nf (si) flows, and Nf is the total number of
flows, Nf =

∑Ns
i=1Nf (si).

– M(si) ⊆ T (c). Multicast group of service si. One group includes all the
terminals {t1, . . . , tk′} requiring the same service content with k′ ≤ k. The
number of terminals in each group is Nt(si) = Nt(fsi,j), ∀fsi,j ∈ F (si), and
Nt is the total number of terminals in the cell, Nt =

∑Ns
i=1Nt(si).
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2.1.2 Phase 2: Estimation phase

A MBMS multicast procedure named session start is the trigger of radio and net-
work resource establishment for data transfer. During the interval between session
start and user joining, the RNC conducts the estimation phase, which adopts the
obtained UE and service information in phase 1 and estimates the best assignment
of radio resources to start the MBMS session. The estimated radio resource assign-
ment is called a solution. Therefore, the estimation phase plays a key role for radio
resource allocation performance for the total framework. By modeling this phase,
the MBMS RRM problem can now be abstracted as an optimization problem, which
tries to find the best radio resource assignment in the estimation phase, based on a
given search space. The search space is determined by the UE and service informa-
tion obtained in the collection phase. The way to obtain the estimated best found
solution can be deterministically computed like previously mentioned in the state
of art. However, it can be obtained by adaptive and iterative approaches which are
proposed in our model. The detailed description of our optimization process in the
estimation phase will be presented in section 2.2. In order to better help to explore
the search space, two additional flexibilities for the radio resource in F2R2M will be
explained below: the flow-based channel assignment and the flexible transmission
mode selection.

2.1.2.1 Flow-based channel assignment

To fully utilize the allocation efficiency for scalable encoded multicast service,
the transport channels are allocated for each flow transmission, unlike the service-
based channel allocation in existing approaches. For single layer transmission scheme
service, which has only one flow f0, the channel allocation is determined for f0. For
multilayer transmission stream service, the multimedia stream is divided into two
or more flows, then the transport channels are allocated for each flow fj , j ≥ 1.

2.1.2.2 Flexible transmission mode selection

F2R2M supports the flexible transmission mode selection, meaning different
users can be assigned with different channels based on their service requests and
their link quality.

The possible assignments of transport channels are summarized in Table 2.1.
The proposed channel types mainly follow UMTS R99 and HSDPA but also contain
the innovation to allow the coexisting of PTM and PTP transmission modes for
each flow.
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Table 2.1: Candidate transport channel assignment

Transmission mode Candidate transport channels

Existing
transmission
modes

pure PTM FACH

pure PTP
DCH
HS-DSCH

Proposed
(new)
transmission
modes

mix of PTP one HS-DSCH and m × DCH

mix of PTP and PTM
FACH and m × DCH
FACH and n × HS-DSCH
FACH, m × DCH and n × HS-
DSCH

2.1.3 Phase 3: Resource allocation phase

Finally, according to the best found solution in the estimation phase, the RNC
establishes the transport channels for selected UEs, then allocates the planned power
and the spreading codes for the transmission channels, which have been determined.
After that, the multicast session will start based on the established radio bearers.

2.2 Model abstraction

This section explicates the details in the estimation phase. Regarding the flexible
channel assignment, the RNC needs to determine the transmission mode for each
flow, and which users are served through which channel. The final solution should
satisfy the throughput requirement, while it is constrained with the power and the
channel codes limitation. Therefore, in the estimation phase, which selects the
transmission mode for each user and each flow, there are three types of decision
variable to consider: the UE partition, which selects the transmission mode for each
user and each flow, the channel code allocation, and the power allocation. Also in
the studied model, an iterative architecture for the best solution search is proposed.
As shown in Figure 2.2, these decision variables are initialized as input solution to
the search model, then the search procedure is conducted iteratively through seven
modules until the stop criteria is satisfied. Then the final solution is output to the
allocation phase.

2.2.1 UE partition search engine

The UE partition search engine is responsible for generating a neighborhood
solution from the current found solution. This part contains the modeling of the
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Figure 2.2: Model abstraction in the estimation phase

transports channels as well as the algorithm to generate the neighborhood solutions.
It introduces the solution variations and drives the search procedure. The way to
generate the neighborhood solution is called neighborhood operator.

2.2.1.1 Transport channels

The selected transmission mode for each flow should indicate not only the se-
lected transport channel(s) through which the users receive the flow content, but
also the transmission destination (i.e. selected users) for each channel. To represent
such allocation scheme, the concept of user channel set UEch(fs,j) is adopted. Each
user set includes the served users through the channel defined by ch. Therefore, the
task of the UE partition search engine, is to partition multicast group into several
user sets, where each set reflects the served users through the corresponding trans-
port channel(s). More particular, for each flow fs,j of service s with flow index j, the
UE search engine partitions the service’s multicast group M(s) into four disjointed
sets:

– UEfach(fs,j): users served through a FACH.
– UEdch(fs,j): users served through DCHs.
– UEhs(fs,j): users sharing a HS-DSCH.
– UEnoch(fs,j): non-served users.

UEnoch(fs,j) is modeled for two purposes. On one hand, it is to distinguish
between the users that belong to multicast group M(s) but not selected for flow
reception, and the users in cell but not belong to M(s). On the other hand, it
is convenient for the mathematical expression of search operation, as the user not
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selected for flow reception is also a part of the radio resource assignment solution.
For UEch(fs,j) with ch ∈ {fach, dch, hs}, an empty user set means this channel is
not selected for flow transmission. If fs,j is not selected for transmission, then its
subscribed users are all moved into the set of UEnoch(fs,j). This operation generally
only happens for advanced flow solution operation.

To guarantee the service coverage, two basic principles are defined. First, all
users in multicast group should be selected to receive fs,0 or fs,1. This principle is
defined as a constraint in Equation 2.1a. In Equation 2.1b, R(fs,j) represents the
users who are receiving fs,j . The principle defined in Equation 2.1c restricts that
the advanced flow is only sent to users who also receive the lower level flow, that is
to avoid the redundant content transfer to the same user.

∀s, j ∈ {0, 1}, R(fs,j) = M(s) (2.1a)

R(fs,j) = UEfach(fs,j) ∪ UEdch(fs,j) ∪ UEhs(fs,j) (2.1b)

∀s, j ≥ 2, R(fs,j) ⊆ R(fs,j−1) (2.1c)

Moreover, the user partition for fs,j should be in accord with the channel char-
acteristics. If di is the distance of the user ti from the base station, and dthr is the
distance threshold found during the optimization procedure, other constraints are
defined in Equation 2.2.

∀ti ∈ UEfach, di ≤ dthr (2.2a)

∀tj ∈ UEdch ∪ UEhs ∪ UEnoch, dj > dthr (2.2b)

∀chm, chn ∈ {fach, dch, hs, noch}, UEchm ∩ UEchn = φ (2.2c)

The constraint in Equation 2.2a is to guarantee that UEfach(fs,j) includes the
closest users in the multicast group. That is because FACH is a common channel
and can be listened by all users within its coverage. The constraint in Equation 2.2b
means that the users in multicast group, farther than the FACH coverage, are as-
signed to HS-DSCH or DCH. When there is no available channel code for a given
user, this user is switched to UEnoch(fs,j). The constraint in Equation 2.2c guaran-
tees that the user sets for each flow do not overlap as sending the same flow to the
same user through more than one channel will waste resource.

In the proposed model, the user partition is initialized randomly or by predefined
method, and then is modified during each iteration of the optimization procedure.
The modification strategies will be described in the next section.

2.2.1.2 Neighborhood Operators

As shown in Figure 2.2, at each iteration, the UE partition search engine is
applied to a new search partition. This search is done through a neighborhood



2.2. Model abstraction 41

operation function which moves the current solution x into a neighbor solution x′.
The neighborhood operator is the key element that leads to different optimization
performance. In this section, two neighborhood operators are proposed, which define
two associated neighborhood structures.

Single insert operator. The single insert operator δSI moves only one user
from an initial channel cho to a target channel chi for each operator application. It
randomly selects a user tj and moves it from UEcho to UEchi

. If FACH is one of
the channel cho or chi, then tj is determined by the following principles:

– From FACH: tj is the farthest user within UEfach, i.e. it reduces the FACH
coverage as well as its power consumption.

– To FACH: tj is the nearest user within UEhs or UEdch or UEnoch, i.e. it
minimizes the additional power consumption for FACH.

The δSI operation is implemented through the following three steps:
1. Choose randomly one channel set cho, UEcho 6= φ, UEcho is the “output” user

set.
2. Select randomly another channel set UEchi

as the “input” user set, chi 6= cho.
3. Select randomly user tj from UEcho , δSI moves tj from UEcho to UEchi

.

Table 2.2: Single insert operation example

Solution UEfach UEdch UEhs UEnoch

x1 t1, t2, t3 t4, t5, t7, t8 t6, t9 t10, t11

x2 t1, t2 t3, t4, t5, t7, t8 t6, t9 t10, t11

x3 t1 t2, t3, t4, t5, t7, t8 t6
:
, t9 t10, t11

x4 t1 t2, t3, t4, t5, t6
:
, t7, t8 t9 t10, t11

Table 2.2 shows the example of δSI operations, which transfer solution x1 to x4.
The first column lists the solution name, each row illustrates the UE partitions for
one solution. The four channel user sets in the corresponding solution are listed
from the second to the fifth columns. Therefore each table cell shows the terminals
in one user channel set. The terminal index is arranged in ascending order of the
distance from the Node B, e.g. the smaller index represents the closer user distance.
To move the solution x1 to x4, three steps of single insert operator are performed:

– Move 1: x1 → x2, cho = FACH, chi = DCH. The farthest user t3 in UEfach

is moved to UEdch.
– Move 2: x2 → x3, cho = FACH, chi = DCH. The farthest user t2 in UEfach

is moved to UEdch.
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– Move 3: x3 → x4, cho = HS-DSCH, chi = DCH. t6 is randomly selected.

Multiple insert operator. The multiple insert operator δMI moves several
users from an initial channel cho to a target channel chi. It randomly selects a user
tj and move a set of users from UEcho to UEchi

. If FACH is one of the channel cho
or chi then:

– If tj moves from FACH, all users farther than tj within UEfach are moved to
the chosen chi to reduce FACH power.

– If tj moves to FACH, all users nearer than tj can now hear from FACH, thus,
they are inserted in UEfach to reduce power consumption in cho.

δMI is implemented in three steps:

1. Choose randomly one channel cho, UEcho 6= φ, UEcho is the “output” user set.

2. Select randomly another set UEchi
as the “input” user set, chi 6= cho.

3. Select randomly user tj from UEcho , δMI moves this single tj or a block of
users including tj from UEcho to UEchi

.

In the third step, the moved users depends on the chosen chi and cho. For
example, once the algorithm decides to move tj from UEhs to UEfach, the FACH
coverage will be enlarged to tj . In that case, all the users of the cell that are nearer
than tj can now hear from FACH, thus, no matter what user sets they are currently
allocated at, they need to stay or be inserted in FACH user set. Therefore, once a
user tj is chosen to be moved to FACH set, firstly the user distributions served by the
other channels are checked, then the users within the enlarged FACH coverage will
be picked out to UEfach. Finally, in that case we will have several users assigned to
different channels all moving to the FACH all together. By contrast, once we decide
to move one user tj out of UEfach, i.e. reducing the FACH coverage, then all users
farther than tj within UEfach should be picked and moved to the chosen chi. In
that case, one destination channel is considered for all moved users.

Table 2.3: Multiple insert operation example

Solution UEfach UEdch UEhs UEnoch

x1 t1, t2, t3 t4, t5, t7, t8 t6, t9 t10, t11

x2 t1 t2, t3, t4, t5, t7, t8 t6, t9 t10, t11

x3 t1 t2, t3, t4, t5, t6, t7, t8 t9 t10, t11

Table 2.3 shows the example of δMI move operations. Two steps of multiple
insert operator are conducted from solution x1 to x3:
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– Move 1: x1 → x2, cho = FACH, chi = DCH, tj = t2. Supposing that FACH
coverage is reduced, t3 is farther than t2 from the base station, then both t2
and t3 are moved to DCH user set.

– Move 2: x2 → x3, cho = HS-DSCH, chi = DCH, tj = t6. t6 is ordered before
t7 as it is closer to the Node B than t7.

By comparing with the example in Table 2.2, it is shown that δMI operator
needs less operations than δSI to move the users, then there are two neighborhood
structures as a Variable Neighborhood Search (VNS) algorithm.

2.2.2 Channel code allocator and availability control

When the UE partition search engine determines the user selection and the
channel assignment, the channel code allocator then assigns available downlink or-
thogonal codes to nonempty user sets. The channelization codes are picked from the
Orthogonal Variable Spreading Factor (OVSF) code tree (see Figure 1.5). The allo-
cation procedure corresponds to the orthogonal principle of OVSF codes [6]: if one
code on the OVSF tree is used, all codes underneath it are no longer usable. Hence
the channel code with proper spreading factor should be selected according to the
users in UEch(fs,j), the requested flows bandwidth, and the occupation situation of
OVSF code tree.

The use of OVSF codes allows the orthogonality between different spreading
codes. We define CH(fs,j , t) to represent the channelization code allocated to user
t for the receiving flow fs,j . The selection of CH(fs,j , t) is related with the data
rate of fs,j . On one hand, the allocated channel bandwidth should be not higher
than the flow bandwidth; this is to avoid unnecessary radio resource waste. On the
other hand, the channel code allocator uses channelization codes from the branch
with the smallest spreading factor satisfying the required bandwidth.

As shown in Table 2.4, the lowest used spreading factor in UMTS FDD downlink
is SF=4, which corresponds to the raw symbol rate of 960 kbps, the channel bit rate
of 1920 kbps (QPSK modulation) and the user bit rate of 768 kbps with 1/2.5 rate
coding. Full rate voice is on SF=128, meaning a maximum of 128 simultaneous
voice calls on a 5 Mhz carrier, which corresponds to the raw symbol rate of 30 kbps,
the channel bit rate of 60 kbps and the user bit rate of 12.2 kbps with 1/5 rate
coding.

The channel availability controller will check if all the channel codes are available
in the OVSF code tree. If any channel code is already occupied for a given user,
through a given channel, the related user will be moved to the non-served user set
UEnoch(fs,j).

Let’s take the solution x1 in Table 2.3 as an example. The spreading codes will
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Table 2.4: Spreading factor and downlink user bit rate in UMTS FDD [5]

Spreading
factor

Channel
symbol rate
(kbps)

QPSK
channel bit
rate (kbps)

Rate
coding
1/k (k)

User bit rate
(kbps)

4 960 1920 2.5 768

8 480 960 2.5 384

16 240 480 3.75 128

32 120 240 3.75 64

64 60 120 3.75 32

128 30 60 5 12.2 full rate voice

256 15 30 4 7.5 half rate voice

512 7.5 15 2 7.5 half rate voice

be assigned to users in x1 to receive a flow with bandwidth of 64 kbps, with 1/3.75

rate coding. For channel bandwidth of 64 kbps, the channel spreading factor is 32
(see Table 2.4). In the OVSF code tree, the root depth is 1, the channel code with
SF=32 is at depth log2 32 = 5.

x1 = t1, t2, t3,︸ ︷︷ ︸
UE(fach)

t4, t5, t7, t8,︸ ︷︷ ︸
UE(dch)

t6, t9,︸ ︷︷ ︸
UE(hs)

t10, t11︸ ︷︷ ︸
UE(noch)

(2.3)

As shown in Figure 2.3, there are 32 codes in depth 5, each code is represented
as C32,n, n ∈ {0, . . . , 31}, where n is the code index.

The channel code allocator assigns the available channel codes to users in x1 from
the OVSF tree through the following procedure: firstly C32,0 is assigned to the FACH
because the UEfach in x1 is non-empty. Note that two OVSF codes are orthogonal
if and only if neither code lies on the path from the other code to the root. Then the
codes C4,0, C8,0, C16,0, C64,0, C64,1, C128,0, C128,1 and so on, cannot be assigned to
any other user in the same cell. Secondly, four channel codes are assigned for users
in UEdch. The codes C32,1, C32,2, C32,3 and C32,4 are then selected, each code for
one dedicated channel serving one dedicated user. In consequence, the codes C16,1,
C16,2 in lower depth and so on, and the codes C64,2, . . . , C64,9 in higher depth and
so on, are all blocked. Thirdly, there are two users in UEhs; the total bandwidth
requirement for HS-DSCH is 64× 2 = 128 kbps. Because HS-DSCH only allocates
channel codes with SF=16, C16,3 is selected and assigned to HS-DSCH, which will
be shared by users t6 and t9. Finally, the total allocated codes for x1 are:

– C32,0 for all mobiles in UEfach
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Figure 2.3: Allocation of spreading codes: an example

– C32,1, C32,2, C32,3, C32,4 to each mobile of UEdch respectively.
– C16,3 for all mobiles in UEhs

2.2.3 Power emulator and feasibility control

Once the user partition and the channel codes allocation are determined, the
power emulator will estimate the consumed transmission power for the current al-
location scheme. The transmission power is implicitly determined from the user
distribution and the allocated channel bandwidth.

2.2.3.1 FACH Transmission Power

Unlike the traditional FACH power allocation which sets the FACH power such
that it covers the whole cell, our model supports the dynamic power setting (DPS)
for FACH. This idea is initially proposed in [78]: the power of FACH could be
adjusted to achieve the worst users in its target transmission coverage, hence the
FACH/S-CCPCH power can be efficiently save. With this idea, the S-CCPCH power
requirements are different for different transmission coverages. DPS technology
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requests to enable channel quality measurement report from UE in CELL_FACH
state, e.g. the received Common Pilot Channel (CPICH) Ec/No signal quality on
UE side [78]. Based on the periodic report from UE, typically every 600 ms for
CELL_FACH, the FACH power will be different depending on the various user
distributions in UEfach(fs,j).

Table 2.5: Estimated S-CCPCH power vs. cell coverage (PedestrianB 3km/h) [5]

Estimated cell coverage, % Power for 64 kbps service, W

30 0.64

40 0.8

50 1.0

60 1.2

70 1.8

80 2.8

90 4

100 10

Table 2.5 shows the simulation results in the 3GPP technical report [12]. In this
report, the authors study the S-CCPCH power level to capture the simulation results
in MBMS standardization [1] in which the simulated FACH power are conducted by
SIEMENS private simulator presented in [32, 31]. As the dynamic power setting for
FACH is not standardized in MBMS, the simulation results in [12] do not involve
all geometry coverages of the cell for various service bandwidth. For example, for
a 64 kbps service, 80ms TTI and 1% BLER target, the FACH transmit power is
simulated with a cell coverage from 30% to 100% (see Table 2.5). While for 16, 32,
128 and 256 kbps services, the results are only for the cell coverage from 90% to
95%.

Besides, in our simulation setup, the cell layout is 3-cell sectorization with site-
to-site distance of 3 km, i.e. the distance between two Node B. Where the Node B is
located in the corner of the three cells, thus the cell radius is 1 km and the farthest
user distance from Node B could be 2 km. While in [1] the site-to-site distance is
1 km, the Node B sits in the cell center and the farthest distance between the UE
and the Node B is 0.5 km. Regarding the parameter setting difference and lacking
of various geometry coverages, the FACH estimated power is simulated by OPNET
Modeller 15.0.A [8], with the parameter setup in Table 2.6.

The obtained FACH transmission power is shown in Figure 2.4. The simulation
parameter settings are Pedestrian B 3 km/h with geometry factor = - 3dB, Block
Error Rate (BLER) = 1% and Transmission Time Interval (TTI) = 80ms. The
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Figure 2.4: FACH transmission power obtained by OPNET 15.0.A

BLER is the error rate of the transport data passed by the physical layer to the
MAC layer for a given transport channel. The TTI is the interval of time over
which a transport data is transmitted on the radio link.

FACH is the common channel that many users can access at the same time with
the same resource (one channel code and one portion of power). Although FACH is
the favorite choice for MBMS transmission, other crucial factors such as the number
of users within the multicast group, the user distances from the serving Node B,
the service bandwidth, the throughput requirement and the Eb/No target affect the
choice of the most efficient transport channel.

2.2.3.2 DCH Transmission Power

On the PTP downlink transmissions, where the multiple DCHs are used, fast
power control is used to maintain the quality of each link (set target Eb/No = 3

dB in our simulation [53]) and to provide a reliable connection for the receiver to
obtain data with acceptable error rate. Besides, DCH power control supports to
maintain required link quality with just enough power thus to ensure the minimum
interference.
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Equation 2.4 (see section 4.4.4 in [70]) is used to calculate the base station
transmission power for DCH covering n users in a cell. Based on this equation, the
DCH power is variable depending on the number of users, the geographic distribu-
tions of users, the service bandwidth and the target signal quality for each user. In
Equation 2.4, the length unit is meter and the power unit is W.

PDCH =

Pccc +
n∑

i=1
Li · Pnoise+Ii

W

(
Eb
No

)Ri

+ρ

1−
n∑

i=1

ρ

(
Eb
No

)Ri

+ ρ

(2.4)

In Equation 2.4, Pccc is the power devoted to common control channels, Pnoise

is the background noise, W is the bandwidth in UMTS environment, Eb/No is
the target experienced signal quality of user. ρ is the orthogonality factor since
orthogonal codes are used in the downlink but some orthogonality is lost due to
multi-path. ρ is between 0 and 1, 0 represents perfect orthogonality. Ri is the ith
user transmit rate; in this model it is the allocated channel bit rate for this user.
Li is the user path loss from its attached Node B; it is calculated with Okumura
Hata’s model [65]: Li = 128.1 + 37.6LOG(di), where di is the user distance to the
attached Node B. Ii is the intercell interference observed by the ith user given by a
function of the transmitted power from neighboring stations Pj and path loss Li,j

from the jth station to the ith user [70].

Ii =

N∑
j=1

Pj

Li,j
(2.5)

where Pj is the transmission power from neighboring station j and N is the number
of neighboring stations. Li,j is the path loss from the jth station to the ith user.

An example of PDCH calculation. Given an example in one cell C1, two
terminals t1 and t2 are receiving one flow through two DCH at 64 kbps. The user
distances to the Node B in C1 are d1 = 0.614 km and d2 = 0.949 km. Firstly the
path loss from the Node B in C1 to terminals t1 and t2 are:

L1,0 = 128.1 + 37.6LOG(0.614) = 120.14 (2.6)

L2,0 = 128.1 + 37.6LOG(0.949) = 127.245 (2.7)

There are 14 neighboring Node B around the C1 with transmitted power P =

5W . The coordinates of these Node B are: (2600, 4500), (0, 3000), (5200, 3000),
(−2600, 1500), (2600,−4500), (0,−3000), (5200,−3000), (2600, 1500), (−2600,−4500),
(5200, 0), (−3000,−5200), (−5200, 0), (−2600,−1500) and (2600,−1500). From the
link quality report received at these Node B sides, the terminal distances to Node
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B are obtained, then the neighborhood cell interference to each terminal could be
calculated:

i ∈ {1, 2}, Ii =
14∑
j=1

5

Li,j
(2.8)

where L1,j is the path loss from jth neighbor cell to terminal t1. According to the
parameter setting in Table 2.6, the value of PDCH for transmission to t1 and t2 is
calculated:

PDCH =

1 +
2∑

i=1
Li · 10−10+Ii

5×106

(103/10)64000
+0.5

1−
2∑

i=1

0.5
(103/10)64000

+ 0.5

= 0.0787W (2.9)

2.2.3.3 HS-DSCH Transmission Power

HS-DSCH is a rate controlled rather than a power controlled transport channel
[49]. In HSDPA, the fast power control and variable spreading factor principles
(characterizing Release 99 channels) are replaced by the link adaptation functional-
ity, including techniques such as dynamic Adaptive Modulation and Coding (AMC),
multicode operation, fast scheduling, Hybrid ARQ (HARQ) and short TTI of 2ms.

There are two modes to allocate the transmission power for HS-DSCH. In the
first mode, a fixed amount of power is explicitly allocated per cell, and might be
updated any time later. In the second mode, the base station is allowed to use
any unused power remaining after serving other power controlled channels (such
those for voice and non HSDPA UE) for HS-DSCH transmission [49]. In the first
mode, setting the power too high might result in too much interference in cell, while
setting it too low could not achieve the highest data rate. Therefore, in our work,
like in most of the real networks, the second mode is considered to provide only the
required amount of power so as to satisfy the MBMS multicast users. Equation 2.10
is used to calculate the minimum required HS-DSCH transmission power to achieve
a minimum required HS-DSCH data rate at the edge of channel coverage [49].

PHS−DSCH = SINRhs × [ρ−G−1]
Pintra

SF16
(2.10)

Where ρ is the orthogonality factor. SF16 is the spreading factor equal to 16, as
the allocation of HS-DSCH is in units of channelization codes of length 16. Pintra

is the total power transmitted in the serving cell. G is the geometry factor or
the Carrier-to-Noise-and-Interference Ratio (C/(N + I)) defined according to the
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following equation [53]:

G =
Pintra

Iinter + Pnoise
(2.11)

Where Iinter is the power spectral density of a band limited white noise source
(simulating the interference from neighboring cells) and Pnoise is the effective power
spectral density of the Additive Gaussian White Noise (AGWN).

G is related with the user position. For a user at the cell edge, the interfering
power from the neighboring cells is higher than the transmitted power from the
serving cell, thus G is expressed by a lower value. In the macrocell (hexagonal
layout with 1000 m base station spacing), the user within 80% coverage experiences
a geometry factor of −2.5dB or better, that is Iinter is the double of Pintra, within
95% the geometry factor is at least −5.2dB [32], that is Iinter is the triple of Pintra.

SINRhs in Equation 2.10 is the target user experienced Signal-to-Interference-
plus-Noise Ratio (SINR) for any tk assigned to UEhs. Based on the analytic for-
mulation driven by link-level simulation results in [11], the value of SINRhs could
be obtained according to the Channel Quality Information (CQI) and target BLER
(set 1% in this work). The CQI is obtained through the target HS-DSCH total
bandwidth and mapping table of MAC-hs bit rates versus CQI (Appendix B) [13].
Then PHS−DSCH is calculated by applying SINRhs and G into Equation 2.10.

An example of PHS−DSCH calculation. Recall the example presented in sec-
tion 2.2.3.2, we assume that the terminals t1 and t2 are receiving the flow 64 kbps
through HS-DSCH. According to the total bandwidth of HS-DSCH (128 kbps), from
the mapping table in [13], the target CQI value is 5. Equation 2.12 shows the the-
oretical transfer formulation.

BLER = (1 + 10
2
SINRhs−1.03CQI+5.26√

3−LOG(CQI) )−
1
0.7 (2.12)

Then the practical formula used in enhanced simulator NS2 [11] is shown in Equa-
tion 2.13. The estimated SINRhs by Equation 2.13 is 2 dB with BLER fixed at
1%.

SINRhs(dB) = 0.5(1.73205− LOG(CQI))(LOG(BLER−1.43 − 1.03))

+ 1.03CQI − 5.36 (2.13)

According to the simulation results in [32] and the higher distance of the two
terminals (949 meters) in a 3 km diameter cell, the geometry factor is 2.5 dB, hence
the transmission power of HS-DSCH for t1 and t2 is:

PHS−DSCH = 10SINRhs(dB)/10 × [0.5− 1

10G/10
]
20

16
= 0.1288W (2.14)
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2.2.4 Solution evaluator

The optimization target of our model is first to guarantee the throughput request,
then to minimize the transmission power while avoiding power saturation. A two-
dimensional fitness or objective function is defined to reflect these aspects and are
computed for any solution x. The first objective is to minimize the loss of throughput
in one cell c:

Minimize Th(x) (2.15a)

with Th(x) =
∑

si∈S(c)

∑
fj∈F (si)

∑
tk∈M(fsi,j)

max{−∆j,k, 0} (2.15b)

Where ∆j,k is the difference between the allocated channel bandwidth (determined
by its OVSF code(s) [6]) and the required flow bandwidth. For example, the user
tk requires fs,j (64 kbps) and receive 32 kbps through a DCH channel (SF = 64),
then −∆j,k is: −(32− 64) = 32 kbps.

As shown in Equation 2.16, the second optimization objective is to minimize the
power consumption on one cell c.

Minimize Po(x) (2.16a)

with Po(x) =
∑

si∈S(c)

∑
fj∈F (si)

∑
ch∈{fach,dch,hs}

P (fj , ch) (2.16b)

Po(x) ≤ Pmbms_budget(c) (2.16c)

Equation 2.16c enforces the total power consumption on one cell c to simultane-
ous MBMS services to be lower than the maximum power budget.

With the two-dimensional fitness value, the comparison of a new solution x′ and
current solution x is conducted in lexicographic order:

Algorithm 1 Lexicographic evaluation.
Require: Th(x), Po(x);Th(x′);Po(x′)

Ensure: x′ is better or worse than x

if Po(x′) ≤ Pmbms_budget(c) then
if Th(x′) < Th(x) or (Th(x′) = Th(x) and Po(x′) < Po(x)) then
x′ is better than x

end if
end if
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2.2.5 Model complexity

Let’s assume that the service si has Nf (si) flow and Nt(si) users. When the user
t is receiving the flows Ft, Ft ⊆ F (si), the number of possible channel assignment
of user t is:

4 for Ft = {fsi,0} or Ft = {fsi,1}
3× 4 for Ft = {fsi,1, fsi,2}
3× 3 . . . 4 for Ft = {fsi,1, fsi,2 . . . fsi,Nf (si)}

(2.17)

Hence, the number of allocation schemes for one user receiving service si is:

4 +

Nf (si)−1∑
i=0

4 · 3i = 2
(
3Nf (si) + 1

)
, si ∈ S(c) (2.18)

The total number of possible channel assignment for all users and all services is:

Ns∏
i=1

Nt(si)∏
1

2
(
3Nf (si) + 1

)
(2.19)

In Equation 2.19, Ns is the number of services, Nt(si) is the number of users
receiving the si, Nf (si) is the number of flows in si. The number of candidate
solutions exponentially increases with the number of users, flows, and services. By
looking at this, the exact algorithm by exhaustive search is not practical to solve
this problem, and metaheuristic approach is a reasonable choice for solving such
combinatorial optimization problem. In chapter 3, the MBMS RRM problem will
be formally proved as NP-Hard problem.

2.2.6 Model synthesis

From subsection 2.2.1 to subsection 2.2.4, a mathematical model for the flexi-
bility radio resource management for MBMS multicast service is built. Briefly, this
model can be summarized as follows.

2.2.6.1 Input variables

The input variables of the proposed model are:

1. UE information

(a) T (c) = {t1, . . . , tk}. Set of mobile terminals in cell c. The terminal
indexes are ordered from the closest to the farthest distance from the
Node B at any time slot (after each TTI).
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(b) D(c) = {d1, . . . , dk}, tk ∈ T (c). Set of instantaneous distances from the
Node B to the terminal, this value can be obtained through the channel
quality measurement report from UE side [78].

2. Service information

(a) S(c) = {s1, ..., sNs}. Set of services to be transmitted to multicast groups
located in cell c. The total number of service is Ns.

(b) F (si). The flow set of service si and its bandwidth, si ∈ S(c). F (si) =

{fsi,0} if si is a single layer (SL) transmission scheme service. Or F (si) =

{fsi,1, fsi,2, [fsi,3]} if si is a multilayer (ML) transmission scheme service,
where fsi,1 is the basic flow and fsi,j with (j > 1) are advanced flows.
We assume that each service has Nf (si) flows.

(c) M(si) ⊆ T (c). Multicast group of service si. One group includes all
the terminals {t1, t2, . . . , tk′} requesting the same service content with
k′ ≤ k. The number of terminals in each group is Nt(si) = Nt(fsi,j),
∀fsi,j ∈ F (si).

2.2.6.2 Decision variables

To support the combinational allocation modes for each flow (see Table 2.1), the
decision variables include the UE partition and the channel code assignment. The
UE partition indicates the terminals allocated in four disjointed channel user sets.

– UEfach(fs,j), users served through a FACH.
– UEdch(fs,j), users served through DCHs.
– UEhs(fs,j), users sharing a HS-DSCH.
– UEnoch(fs,j), non-served users.

Then the channel code assignment is performed by the channel code allocator which
assigns the available channel code to a given channel.

2.2.6.3 Decision constraints

The UE partition for flow fs,j should be in accord with the channel characteris-
tics, as shown in following decision constraints:
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∀s, j ∈ {0, 1}, R(fs,j) = M(s) (2.20)

R(fs,j) = UEfach(fs,j) ∪ UEdch(fs,j) ∪ UEhs(fs,j) (2.21)

∀s, j ≥ 2, R(fs,j) ⊆ R(fs,j−1) (2.22)

∀ti ∈ UEfach, di ≤ dthr (2.23)

∀tj ∈ UEdch ∪ UEhs ∪ UEnoch, dj > dthr (2.24)

chm, chn ∈ {fach, dch, hs, noch}, UEchm ∩ UEchn = φ (2.25)

Where R(fs,j) represents the users whom are receiving fs,j . di is the distance
of the user ti from the base station, and dthr is the distance threshold found during
the optimization procedure.

2.2.6.4 Optimization objective

A two-dimensional optimization objective is defined in the proposed model. The
first optimization objective is to minimize the throughput loss, which is the accu-
mulated bandwidth difference between the allocated channel bandwidth and the
required flow bandwidth, in one cell c.

Minimize Th(x) (2.26a)

with Th(x) =
∑

si∈S(c)

∑
fj∈F (si)

∑
tk∈M(fsi,j)

max{−∆j,k, 0} (2.26b)

The second optimization objective is to minimize the consuming power in cell c.

Minimize Po(x) (2.27a)

with Po(x) =
∑

si∈S(c)

∑
fj∈F (si)

∑
ch∈{fach,dch,hs}

P (fj , ch) (2.27b)

Po(x) ≤ Pmbms_budget(c) (2.27c)

2.3 Simulation setup

The proposed F2R2M is implemented as a simulator with the MBMS RRM
core model, together with its simulation environment. This section describes the
simulation parameter settings and the designed experiment scenarios which are used
to evaluate the proposed model.
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2.3.1 Simulation parameters

Figure 2.5 depicts the macrocell layout which consists of 19 hexagonal cells.
The red rings indicate the location of the Node B. The simulation focus on MBMS
transmission in cell C1, assuming that only multicast services are transmitted in
this cell.

Node B

C1

C2

C3

C4

C10

C5 C17

C15

C9

C18

C19

C14 C16

C13

C12

C11

C6

C7

C8

19 Hexagon Cells, 9 3−sector base stations
site distance = 3 km, cell radius = 1 km

Figure 2.5: Cellular layout in simulation setup

Table 2.6 lists the simulation parameters. The maximum power for MBMS in
one cell is 19 W, which is the total transmission power (20 W) minus the power
for common channel (1 W); it is the conventional power setup for MBMS study
[24, 28, 12]. In macrocell environment, the Okumura Hata path loss model is applied
to calculate the path loss Li of user ti, with a carrier frequency of 5 MHz and a
base station antenna hight of 15 meters, that is: Li = 128.1 + 37.6LOG(di), where
di represents the distance from the Node B to the UE in km [2].

2.3.2 Simulation scenarios

As shown in Table 2.7, a number of scenarios are designed with different ser-
vice requests and user distributions. These scenarios will be used in the following
chapters for model analysis and algorithm evaluation.

The scenario name indicates the number of service s, the total number of users
u and the service transmission scheme, where S stands for scalable transmission
scheme and N stands for non-scalable transmission scheme. For example, the sce-
nario 2s20uSN has two multicast services s1 and s2, both having 10 users. s1 is a
scalable transmission scheme service. It consists of three flows: the basic flow fs1,1
with the bandwidth 32 kbps, and the two advanced flows fs1,2 and fs1,3 with 32
kbps and 64 kbps, respectively. s2 is a non-scalable transmission scheme service, i.e.
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Table 2.6: System level parameter setting

Parameters Value

Cellular layout 19 hexagonal cells, 3-sector sites

Number of neighboring cells 18

Orthogonally factor (ρ) 0.5

UMTS bandwidth 5 MHz

Site to site distance 3 km

Cell radius 1 km

Base station transmit power 43 dBm (20 Watts[49] )

Background noise -100 dBm

Power of neighbor cell 37 dBm (5 Watts)

Propagation models Okumura Hata

IUT path loss environment Pedestrian B, 3 km/h

Common channel power 30 dBm (1 Watt)

Target Eb/No 3 dB

Block Error Ratio (BLER) 1 %

one flow fs2,0 with the bandwidth 128 kbps. The total bandwidth requirement of
2s20uSN is 2560 kbps, obtained by 10× (32 + 32 + 64) + 10× 128.

2.3.3 Power simulation of three transport channels

In this section, to validate the power emulator in our model, simulation is con-
ducted to synthesize the power consumption of three transport channels, for various
service bandwidths. For each service bandwidth, three types of user distributions
(depending on their distance to the Node B) are defined. They are named as “close”,
“median” and “far”, in which, the users are randomly generated in cell C1, located
with random distance in given ranges: ]0, 700], ]700, 1400] and ]1400, 2000] meters
from the Node B.

Figure 2.6 shows an example of users located in C1. There are 12 users, marked
as black points, close to the Node B, the blue plus signs represent 12 users in median
locations, and the 12 red asterisks are the users which are far from the Node B, some
of them are in the cell edge.

The power simulation is conducted as follows. Assume that all users belong to
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Table 2.7: Experimental scenarios

Scenario
name

Flows of service User
number

Total traffic
requirement
(kbps)

1s30uS s1 (f1: 64 kbps, f2: 64 kbps) 30 3840

1s60uS s1 (f1: 64 kbps, f2: 64 kbps) 60 7680

1s150uS s1 (f1: 64 kbps, f2: 64 kbps) 150 19200

2s20uSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

2560
s2 (f0: 128 kbps) 10

2s20uSS
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

2560
s2 (f1: 64 kbps, f2: 64 kbps) 10

2s50uSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

6400
s2 (f0: 128 kbps) 20

2s50uSS
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

6400
s2 (f1: 64 kbps, f2: 64 kbps) 20

3s30uSNN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

3200
s2 (f0: 128 kbps) 10
s3 (f0: 64 kbps) 10

3s30uSSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

3200
s2 (f1: 64 kbps, f2: 64 kbps) 10
s3 (f0: 64 kbps) 10

3s50uSNN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

4480
s2 (f1: 128 kbps) 20
s3 (f0: 64 kbps) 10

3s50uSSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

4480
s2 (f1: 64 kbps, f2: 64kbps) 20
s3 (f0: 64 kbps) 10

3s80uSNN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

8960
s2 (f0: 128 kbps) 30
s3 (f0: 64 kbps) 20

3s80uSSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

8960
s2 (f1: 64 kbps, f2: 64kbps) 30
s3 (f0: 64 kbps) 20

3s100uSNN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

10240
s2 (f0: 128 kbps) 40
s3 (f0: 64 kbps) 30

3s100uSSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 30

10240
s2 (f1: 64 kbps, f2: 64kbps) 40
s3 (f0: 64 kbps) 30
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Figure 2.6: Three user distributions for power comparison

the same multicast group, for a given service bandwidth and a given user distri-
bution, three transport channels (i.e. FACH, HS-DSCH and DCH) are separately
applied in three different runs, hence there is no channel co-existing for the same
service. The service bandwidth could be 32, 64, 128 and 256 kbps, respectively.
The user distribution could be “close”, “median” or “far”; each distribution has 1
to 18 users. There is no optimization in these evaluations; we run the different
scenarios separately to calculate the impact of the different parameters on MBMS
performance: user location, service bandwidth and transport channels.

Figure 2.7 shows the transmission power of the three transport channels for
sending 32 kbps and 64 kbps services to users located close, median and far from
the Node B. The x-axis shows the number of users from 1 to 18, while the y-axis
plots the power level of three channels separately. When the users are close to the
Node B, for 32 kbps service, DCH consumes the lowest power, while FACH power
is fixed around 1 W; it is sufficient to cover the farthest user in the multicast group.
When users are in the middle of the cell, HS-DSCH offers a better power adaptation
than the other two channels. When the users are far from Node B, the transmission
power of these channels fluctuates. For 32 kbps service, HS-DSCH consumes the
lowest power when the number of users is smaller than 11 (Figure 2.7(e)), while
FACH consumes the lowest power for user number larger than 11. For 64 kbps
service, HS-DSCH always consumes lower power than FACH and DCH whatever
the number of users is (Figure 2.7(f)). In these six runs, all required bandwidths
are satisfied.
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Figure 2.7: Separate power consumption of the three channels for 32 kbps and 64
kbps services
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Figure 2.8: Separate power consumption of three channels for 128 kbps and 256
kbps services
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Figure 2.8 shows the power emulation of the three transport channels for the
service 128 kbps and 256 kbps. It can be observed that the power consumption
increase with the number of users and the user distance from the Node B and
sometimes the total power consumption overpasses the maximum power set to 19
W (Figure 2.8(b), 2.8(d), 2.8(e) and 2.8(f)).

Then two conclusions can be obtained. First, none of these three channel gains
absolute transmission efficiency in terms of power consumption when the users num-
bers and users positions are different. In this study, the user positions are randomly
changed, hence the same user number and similar geographic scenario may still have
different power levels. Therefore, the MBMS UE counting mechanism or any trans-
mission decision algorithm based on the user numbers cannot be efficient whatever
the input scenarios. Second, HS-DSCH can truly consume the lowest power for
certain scenarios in particular when the terminal distance is not close to the Node
B.

Besides, the advantages of scalable transmission can be observed. In Figure
2.8(f) at 256 kbps, when the user number is over 14, the three channels consume
more than 19 W, hence achieve the power saturation within one cell. While in Figure
2.8(e), for one 128 kbps stream transmission to 14 users far from Node B, the lowest
power is 6.4 W with HS-DSCH and is also acceptable for FACH. Therefore two 128
kbps streams will need 12.8 W, much less than the power requirement of one 256 kbps
stream transmission with the same channel (22 W in Figure 2.8(f)). To fully take
advantages of the transmission characteristics of the three transport channels, we
propose to integrate the scalable transmission with the combined channel selection
and transmission.

2.4 Synthesis

This chapter presents a model for the MBMS RRM problem. This model maps
the radio resource establishment procedure for MBMS into three phases: i) collect
the input variables; ii) determine the decision variables; and iii) establish the radio
bearers according to the best found solution. The second phase plays the most
important role for the system performance and is the focus of our model. In this
phase, the MBMS RRM is modeled as an optimization problem which tries to find
the optimum radio resource assignment for a given scenario. To solve this prob-
lem, an iterative search architecture is designed to explore new solutions. In each
iteration, seven modules are invoked consecutively:

1. UE partition search engine generates a candidate solution x′ by modifying
a current solution x.

2. Channel code allocator associates available channelization code to each
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assigned transport channel.

3. Channel availability controller will shift user(s) to UEnoch when there are
no more available channel code for these users, thus the candidate solution is
modified regarding the limited channel code resource.

4. Power emulator estimates the transmission power of the candidate solution
after the channel code verification.

5. Feasibility controller will pass the candidate solution if its transmission
power is below the cell power budget, otherwise this solution will be rejected
as unfeasible solution.

6. Solution evaluator compares the candidate solution and the current solution
in lexicographic order, it accepts the new solution if it is better than the current
solution.

7. Stop criteria determines if the search procedure should stop, then output
the best found solution.

To better explore the solution space, two additional flexibilities are proposed.
First, instead of service based channel allocation, the flow based allocation is pro-
posed, which supports the scalable streaming data. Second, this model supports
the flexible transmission mode selection. For solution representation, a solution
contains the UE partitioning of four different channel types, as well as the channel
code allocation and the transmission power allocation. For solution evaluation, a
two-dimensional fitness function is proposed, which reflects both the allocated band-
width and the consumed power of the allocation solution. Therefore, the allocation
solution is found regarding a two-dimensional objective function, while the other
MBMS radio resource allocation approaches consider the MBMS RRM as a mono-
objective optimization problem. For solution updating, two neighborhood operators
are proposed: the single insert operator δSI and the multiple insert operator δMI .
The current flow solution is transfered to a new flow solution by one application of
the operator.

The proposed F2R2M is implemented as a simulator which reflects the MBMS
RRM core model, together with its simulation environment which contains the
OVSF code allocator and the power emulator. A number of scenarios are also
designed, which will be used for algorithm performance evaluation in the next chap-
ters. Besides, to verify the implemented power emulator, the channel code allocator
and the model validity, the transmission power of the three transport channels are
simulated for various service bandwidths. The simulation results show that the
transmission power fluctuates with different users number and users distributions.
Hence three observations were concluded: firstly, none of these three channel gains
absolute transmission efficiency in terms of power consumption for arbitrary scenar-
ios; secondly, HS-DSCH can consume the lowest power for certain scenarios, hence
the co-existing of R5 channel and R99 channels could improve the efficiency of ra-
dio resource allocation; thirdly, the adopted scalable transmission technology can
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reduce the power consumption for several scenarios, and therefore proves its value
in our model.

The proposed F2R2M enables systematic analysis for MBMS RRM problem.
Also it makes it possible that optimization algorithms (e.g. metaheuristic algo-
rithms), can be used to solve this MBMS RRM problem. The detailed analysis and
algorithm design will be presented in the following chapters.





Chapter 3

Model Analysis

In this chapter, we conduct an in-depth analysis on the studied problem. To un-
derstand the problem complexity and the solution boundaries, the work shows that,
by relaxing the OVSF code constraints, the MBMS RRM problem can be approxi-
mated to be a multiple-choice knapsack problem (MCKP). It gives two outcomes:
first, the NP-hard proof for MBMS RRM is self-contained because MCKP is NP-
hard. Second, solving MCKP will give theoretical solution bounds for MBMS RRM
solver. To understand the structure of the solution space, the landscape analysis
technique is conducted on F2R2M. In this analysis, the landscapes differentiated by
two neighborhood operators, single insert operator and multiple insert operator, are
generated. Then the characteristics of the studied problem are analyzed regarding
the search space and the solution distribution. Simulations show that the studied
problem is rugged in both search spaces. Simulations also show that multiple insert
operator is better than the single insert operator for efficient search.
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3.1 Knapsack problem approximation

In this section, the MBMS RRM problem is formulated as a variant of the
knapsack problem (KP), which represents a set of integer combinatorial optimization
problems known as NP-Hard [30, 60].

3.1.1 Knapsack problem and its variants

The knapsack problem and its variants appear in real-world applications in a
wide variety of fields, such as cargo systems [47] and telecommunications [81]. Many
different kinds of knapsack problems are found in the literature, including multi-
dimensional [40], multi-objective [26], multiple-choice knapsack problems [74] and
their combinations [64].

Classic 0-1 knapsack problem (KP). The 0-1 knapsack problem is a classical
problem in combinatorial optimization. Suppose a hiker needs to fill a knapsack
for a trip. He has a set of items, each with a value (benefit) of vi and a weight
of wi. It is common to assume that all values and weights are positive. The hiker
needs to package selected items to his knapsack to maximize the overall value in
the knapsack, while guaranteeing that the aggregated size of all selected items do
not exceed the knapsack capacity constraint W . A binary decision variable xi is
introduced to model the decision process. If the i-th item is selected then xi = 1

while xi = 0 otherwise. The standard knapsack problem is given by Equation 3.1.

Maximize z =
n∑

i=1

vixi (3.1a)

Subject to ∀i, xi ∈ {0, 1},
n∑

i=1

wixi ≤W (3.1b)

The objective function in the standard knapsack is to maximize the sum of the
values of the items in the knapsack, so that the sum of the weights must be less
than the knapsack capacity.

Multi-dimensional knapsack problem (MKP). A problem may have different
criteria to measure the solution quality, and it is not possible to select a most
important criterion or to combine the criteria into a single objective function. The
goal of a Multi-dimensional Knapsack Problem (MKP), also called m-dimensional
knapsack problem, is to maximize the profit of selected items. The selected items
should be partitioned over a set of knapsacks contrary to the classical KP where only
one knapsack is available. Each knapsack is characterized by a capacity representing
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the maximal total weight it can contain. Given a set of n items and a set of m

knapsacks (m ≤ n), with vi = value of item i, wi = weight of item i, Wj = capacity

of knapsack j. The decision here is not only whether to select a single item but also
in which knapsack it is packed. Therefore, MKP consists in selecting m disjointed
subsets of items so that the total value of the selected items be maximal, and each
subset can be assigned to a different knapsack whose capacity is no less than the total
weight of items in the subset. Formally, this problem is modeled in Equation 3.2:

Maximize z =

m∑
j=1

n∑
i=1

vixij (3.2a)

Subject to ∀j ∈ {1, . . . ,m},
n∑

i=1

wixij ≤Wj (3.2b)

∀i ∈ {1, . . . , n},
m∑
j=1

xij ≤ 1 (3.2c)

∀j ∈ {1, . . . ,m}, i = {1, . . . , n}, xij ∈ {0, 1} (3.2d)

wi ≥ 0, vi > 0,Wj ≥ 0 (3.2e)

A binary variable xij = 1 means that the item i is selected and packed into the
knapsack j, otherwise xij = 0. The constraints of the problem ensure that each
item is selected at most once in these knapsacks. The MKP is a well-studied and
strongly NP-Hard combinatorial optimization problem occurring in many different
application [29].

Multi-objective m-dimensional knapsack problem (MOKP). The multi-
objective optimization problem is frequently encountered in practice. This problem
can be formulated as in Equation 3.3.

Maximize Z = {
n∑

i=1

v1i xi, . . . ,

n∑
i=1

vki xi, . . .}, k = {1, . . . , t} (3.3a)

Subject to ∀j ∈ {1, . . . ,m},
n∑

i=1

wj
ixij ≤W j (3.3b)

∀i, xi ∈ {0, 1} (3.3c)

vki > 0, wj
i ≥ 0,W j ≥ 0 (3.3d)

In the multi-objective m-dimensional knapsack problem, each item i has t differ-
ent values ({v1i , . . . , vti}), which are corresponding to its benefit according to different
criteria (e.g. price, reliability). Instead of trying to compute a single optimal so-
lution with maximum value, this problem targets at computing a set of feasible
solutions covering all possible trade-offs between the different profit values. In ad-
dition, each item i has m different weights, ({w1

i , . . . , w
m
i }) corresponding to the
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resources consumption (e.g. weight, volume, ...), while the knapsack is defined by m

different capacities ({W 1, . . . ,Wm}) representing the corresponding resources avail-
ability. Therefore, the knapsack capacity must be satisfied for each of the m resource
categories.

Multiple-choice knapsack problem (MCKP). The Multiple-Choice Knap-
sack Problem is a variant of the 0-1 knapsack problem, also known as a NP-Hard
problem [74]. Given a set of n items partitioned into k sets (classes) K1, . . . ,Kk

that should be packed into a knapsack of capacity W . Each item i is associated
with a value, vi, representing its benefit and a weight wi. The problem goal is to
choose one and only one item from each class in such manner that the sum of the
values of selected items is maximized and the knapsack capacity W is not exceeded.
The MCKP is formulated in Equation 3.4.

Maximize z =

n∑
i=1

vixi (3.4a)

Subject to
n∑

i=1

wixi ≤W (3.4b)

∀j ∈ {1, . . . , k},
∑
i∈Kj

xi = 1 (3.4c)

∀i = {1, ..., n}, xi ∈ {0, 1} (3.4d)

All parameters vi, wi and W are positive integers, the classes K1, ... , Kk are
mutually disjoint, nj is the size of the class Kj . The total number of items is
n =

∑k
j=1 nj .

3.1.2 Approximating MBMS RRM as a knapsack problem

For MBMS RRM, the main objective is to maximize the accumulation of allo-
cated bandwidth over all users and all flows, then to minimize the allocated trans-
mission power. And the total transmission power should be less that a predefined
value Pmbms_budget.

In F2R2M, when there is no channel code satisfying the required bandwidth for
a given set of users, a channelization code offering lower bandwidth will be selected.
In this way, the allocated bandwidth will be less than the required throughput,
and is named as bandwidth fraction. Besides, the solution of a given flow, i.e.
the allocation of the OVSF code, should be considered regarding the OVSF code
occupation by the other flows.

If the studied MBMS RRM problem is approximated as KP, the channel code
orthogonality can not be simultaneously considered in the candidate solution se-
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lection for flows, because the item selection for one flow (i.e. allocation schemes)
is independent to the item selection for the other flows. Moreover, the bandwidth
fraction will be meaningless without considering the OVSF code occupation and the
code orthogonality.

Therefore, to map the studied problem into a KP, it is assumed that there is
no channel code limitation. Once a user is selected, the required flow bandwidth is
assumed fully available. The power limitation remains as the only reason for not
serving a given user for a given flow. With the OVSF code constraint in mind, the
primary KP based formulation is proposed in Equation 3.5 as a MCKP.

Maximize
Nf∑
j=1

nj∑
i=1

vijxij (3.5a)

Subject to
Nf∑
j=1

nj∑
i=1

wijxij ≤W (3.5b)

∀j ∈ {1, . . . , Nf},
nj∑
i=1

xij = 1 (3.5c)

∀j ∈ {1, . . . , Nf}, ∀i ∈ {1, . . . , nj}, xij ∈ {0, 1} (3.5d)

Where each flow fj is associated with nj items, corresponding to a class Kj .
The decision variable xij = 1 means that the ith item is selected as the allocation
scheme for the flow fj . In Equation 3.5a, vij is the allocated (required) channel
bandwidth of the item i concerning the flow fj (while in F2R2M, the bandwidth of
allocation solution is determined by the spreading factor of allocated channel code).
In Equation 3.5b, the weight of the i-th item in the j-th class, wij , is the power
consumption of the i-th item for flow fj . Besides, the total power consumption
should be less than W , which is the value of Pmbms_budget. xij is a binary decision
variable, xij = 1 when the i-th item in the j-th class is packed into the knapsack,
otherwise xij = 0. The objective function in Equation 3.5 is to maximize the sum
of the values selected, such that the sum of the weights must be less than W .

Equation 3.5 gives the hints that, by relaxing the OVSF code constraints, the
studied problem may possibly be formulated as a MCKP, where each class is a set of
candidate items for a given flow, each item represents a possible partition of its users
among DCH served users, HS-DCH served users, FACH served users and not served
users. The optimization target is to choose one and only one item from each class
(Equation 3.5c), to maximize the allocated bandwidth (Equation 3.5a) and satisfy
the power limitation (Equation 3.5b). However, more formulation details need to
be specified:

– The representation of the knapsack: the knapsack could represent a transport
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channel, a type of transmission mode or a whole cell.
– The item representation: an item could represent an allocation scheme for the

services, or for the flows, or for a given user.
– The calculations of vij and wij which depend on the item structure.

To address these issues, three candidate propositions are discussed later.

3.1.2.1 Proposition 1: multi-dimensional MCKP

In Equation 3.5, in a given class associated with a given flow, an item could rep-
resent a user for the flow reception. In order to distinguish which channel serves the
user (i.e. which channel set the user belongs to), instead of one knapsack with capac-
ity of Pmbms_budget (Equation 3.5b), three knapsacks are defined, each represents a
transport channel. Therefore, in this proposition, the flexible MBMS RRM problem
is proposed to be formulated as the Multi-dimensional Multiple-Choice Knapsack
Problem (MMKP).

As defined in the multi-dimensional KP, each knapsack is characterized by a
capacity representing the maximal weight it can contain. Each item has m types of
weight, and each weight measures the solution quality knowing that each weight is
a constant value in the corresponding knapsack.

Based on the problem characteristic, in this proposition, the knapsack capacity
could represent either the maximal bandwidth for each channel, or the maximal
power for each channel.

1. MMKP with three knapsacks. Each knapsack represents one of the three
transport channels: FACH, DCH and HS-DSCH. The knapsack capacity is
the power limitation for each of these channels.

2. MMKP with four knapsacks. One knapsack represents the total power lim-
itation in the whole cell. The capacity of the other three knapsacks is the
maximal bandwidth offered by the channel category.

In the first assumption, the weights (power) of item for different knapsacks (chan-
nel) are different. Equation 3.6 shows the calculation of the total weight of the
selected items packed in each knapsack (channel), which is the transmission power
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for all flows served by the channel ch, ch ∈ {fach, dch, hs}.

wdch =

Ns∑
i=1

Nf (si)∑
j=1

wdch,j =

Ns∑
i=1

Nf (si)∑
j=1

Nt(fsi,j)∑
k=1

Pdch(tk, bwfj ) (3.6a)

wfach =

Ns∑
i=1

Nf (si)∑
j=1

wfach,j =

Ns∑
i=1

Nf (si)∑
j=1

Pfach(tdmax , bwfj ) (3.6b)

whs =

Ns∑
i=1

Nf (si)∑
j=1

whs,j =

Ns∑
i=1

Nf (si)∑
j=1

Phs(tdmax , Nt(fsi,j)× bwfj ) (3.6c)

Nf denotes the total number of flows in the cell. Equation 3.6a shows the accu-
mulated weight of items in the knapsack ch = dch (served by DCH). wdch,j is the
DCH power for the flow fj , Pdch(tk, bwfj ) is the DCH power transmission for fj to
user tk, which is a constant value. Equation 3.6b is the accumulated weight in the
knapsack ch = fach, where wfach,j is the weight (power consumption) of the users
packed in the knapsack ch = fach (served by a FACH). This value depends on the
farthest user within the FACH user set and the required flow bandwidth. However,
for the other users, which are closer to the Node B in UEfach, their weight will be
0, because Pfach only depends on the farthest user in this transmission coverage.
Equation 3.6c represents the total weight of the knapsack ch = hs, which (i.e. HS-
DSCH power) depends on the farthest user (determining the SINR) in its user set.
Moreover, HS-DSCH is a shared channel, its transmission power depends on the
allocated channel bandwidth, which is the sum of the bandwidth received by the
users through HS-DSCH: bwfj × Number of users in UEhs. Therefore, the weight
of the kth item (a user tk), packed in the knapsack ch = hs is not a constant value,
because that whs,j could not be pre-calculated without knowing the users served by
HS-DSCH. Therefore, the first assumption is not in accordance with the MMKP
definition, in which the weights of item for each knapsack should be a constant
value.

For the second assumption, the knapsack capacities represent the maximum
bandwidth capacity of each channel in one cell. According to the channel codes
structure, when the OVSF codes are all used for DCH transmission, the accumulated
DCH downlink bandwidth is up to 2 Mbps [53]. When the OVSF codes are all used
for HS-DSCH transmission, HSPDA offers downlink data speeds up to 8-10 Mbps
[54]. However, this bandwidth limitation considers that each channel occupies all
OVSF codes. For one FACH, its theoretical maximum bandwidth is 2 Mbps [53],
while the accumulated FACH bandwidth depends on the number of users covered by
FACH, hence there is no bandwidth limitation for FACH. Therefore, the bandwidth
limitations of the channels are not independent from each other, and the FACH
knapsack has no bandwidth limitation, hence no maximal capacity. The second
assumption is not suitable for the studied problem.

Regarding above analysis, the multi-dimensional MCKP based formulation could
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not be accepted.

3.1.2.2 Proposition 2: parallel MCKP

The second proposition defines a single knapsack instead of multiple knapsacks,
but a set of classes are constructed associated with each flow. In these classes, each
item describes how the transmission modes are allocated for users receiving a given
flow: users served by FACH, users served by DCH, users served by HS-DSCH or not
served users. Therefore, the second proposition formulates the problem as MCKP.
More precisely, each item associated with a given flow, represents a set of users or
one user:

1. A set of user served by FACH receiving the same flow or not served.

2. One user served by DCH, HS-DSCH or not served.

The first case leads to one item which includes the users whose distance from
the base station do not exceeds the threshold dthr. In the second case, an item
refers to one user which is allocated to DCH, HS-DSCH, or not served. Items
indicating the same set of terminals for the same flow reception constitute one class.
With this proposition, the value/profit of each item could be calculated in advance.
Equation 3.7 describes a simple scenario to illustrate the second proposition.

A simple scenario:

S(c) = {s1} (3.7a)

F (s1) = {f1, f2} (3.7b)

M(s1) = {t1, t2, t3} (3.7c)

Where M(s1) is a set of terminals belongs to the multicast group of service s1,
which has Nf = 2 flows. The requested flow bandwidth are both 64 kbps. In the
multicast group Ms1 of service s1, three users request for the same service content.
Users are ordered according to their distance to the base station, t1 is the closest
user, while t3 is the farthest.

Based on the formulation in the second proposition, let’s assume that t1 and t2
are served by FACH to receive f1, i.e. dthr = d2, hence t3 is beyond the threshold,
its transmission could be DCH or HS-DSCH, or not served. Then with predefined
dthr, the set of items corresponding to the transmission of flow f1 are expressed in
Equation 3.8.

K1 = {{tf1,1t
f
1,2, t

f
1,1t

n
1,2}, {td1,3, th1,3, tn1,3}}, dthr = d2, and d3 > dthr (3.8a)
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K1 is the set of classes associated with the flow f1, where the braces describe
the different classes of the set of items. Each class (two in our case) indicates the
candidate allocation schemes for a set of users (e.g. t1 and t2), or for one user (e.g.
t3). According to the item definition in the 2nd proposition, the item tchj,k represents
the user tk receiving the flow fj through the channel ch, with ch ∈ {f, d, h, n} for
FACH, DCH, HS-DSCH, and not served respectively. tf1,1t

f
1,2 indicates that the

users t1 and t2 are served by a FACH for receiving f1, and tn1,1t
n
1,2 indicates that

they are not served. The value of the item tf1,1t
f
1,2 is th = 2 × bw1; the weight of

the item tf1,1t
f
1,2 is the power of the FACH channel covering the farthest user t2 with

the channel bandwidth bw1. While the value and the weight of tn1,1tn1,2 are both 0.
The weight of the item td1,k is the power required by a DCH for sending f1 to user
tk; and its value is th = bw1. The weight of item th1,k is the power required by a
HS-DSCH for sending f1 to user tk; and its value is th = bw1. The value and the
weight of tn1,k are both 0. Therefore, the item value and weight could be calculated
in advance. This overcomes the disadvantages of the 1st proposition.

However, during the optimization procedure, the value of dthr, which defines the
flexible FACH coverage for flow transmission, is dynamically changed, then the class
structure for the associated flows will be different depending on the different value
of dthr. To solve this issue, the parallel MCKP is proposed, in which the problem
processing is divided into two stages. In the first stage, for all Kj different dthr are
randomly generated. Nf is the total number of flows in the cell, i.e. the number
of sets of classes. Kj is the set of classes for the flow fj . Then with each dthr,
a corresponding subsets of items for each class Kj is generated, and different dthr
results in different items setting, therefore, parallel MCKP formulations. Hence in
the first stage, parallel MCKP will be generated, each determined with different dthr
for Kj .

In the second stage these MCKPs are separately solved and the optimal solution
of each one is recorded. Among these optimum solutions, the best one is selected
as the final solution. However, the two-stage method increases the complexity of
problem data generation (an input data file for each MCKP), and the execution
time of the resolution procedure increases exponentially with the number of flows.

3.1.2.3 Proposition 3: single MCKP

In the 3rd proposition, the item definition is modified to reduce the formulation
complexity introduce by the 2nd proposition. Instead of associating an item to one
user or a set of users, this proposal defines that each item represents a complete
allocation scheme for a given flow fsi,j , i.e. the transmission mode for all users in
M(si).

Let’s take the scenario in Equation 3.7 as an example, this scenario is composed
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of Nf = 2 flows. Each flow, fj , gives rise to a class of items, each item concerns the
transmission of fj to all the users in M(s1) = {t1, t2, t3}. As shown in Equation 3.9,
the FACH coverage, DCH and HS-DSCH allocation are indicated by the item format:

it = t
{f/n}
1 t

{f/n}
2 ...t{f/n}r t

{n/d/h}
r+1 . . . t

{n/d/h}
k (3.9)

Where the symbol "/" indicates an alternative: t
{f/n}
1 t

{f/n}
2 ...t

{f/n}
r indicates

that the users t1, . . . , tr either receive the flow f through a FACH (tf1 t
f
2 . . . t

f
r ) or do

not receive it (tn1 t
n
2 . . . t

n
r ). The users are ordered according to their distance from

the base station and t1, . . . , tr are the nearest r users. Then the users from tr+1

to tk are separately served by a dedicated channel (d), shared channel (h) or not
served (n). In this way, for each item it, its value and weight are computed as an
input constant. The item value (profit) v presents the allocated bandwidth th of
the item it, and the item weight w is the required transmission power po. With the
item definition in Equation 3.9, each scenario can be formulated as one MCKP.

Take the scenario in Equation 3.7 as an example. There are 40 candidate allo-
cation schemes for flow f1, hence 40 items in the class K1. These item structures
are shown in Table 3.1.

Table 3.1: Items list in class K1
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The 1st line shows the item representing all users served by a FACH. In the 2nd

line, the distance threshold dthr is the distance of the user t2. Two users t1 and t2
are served by a FACH, then the candidate transmission modes for t3 are DCH (d),
HS-DSCH (h) or not served (n). Similarly, the table lists the candidate solutions
for f1 with different values of dthr.

3.1.2.4 Synthesis: problem formulation by single MCKP

Three propositions have been sequentially discussed to formulate the flexible
MBMS RRM problem as MCKP. The first proposition defined the multi-dimensional
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MKCP, in which each knapsack represents one transport channel. The knapsack
capacities are defined either as maximal bandwidth or as maximal power of each
channel. However, the weights of the items for the different knapsacks are not
constant values and thus cannot be calculated in advance. Therefore, the proposal
is not accepted.

The second proposition defined a single MCKP, and proposed a set of classes
for one flow. Every item in one given class represents the transmission mode for a
subset of users in the multicast group. Moreover, to illustrate the flexible changed
FACH coverage, the second proposition included parallel MCKP defined by different
distance thresholds. Each MCKP generates an optimum solution and the final
solution is the best solution among these optimum solutions.

To simplify the second proposition, the third proposition formulated the studied
problem by mapping it into one MCKP with only one class per flow. Each item in
a given class describes the transmission mode of all users to receive the associated
flow. The third proposition is selected as the approximation formulation of the
MBMS RRM problem presented in Equation 3.10.

Maximize
Nf∑
j=1

nj∑
i=1

thijxij (3.10a)

Subject to: (3.10b)
Nf∑
j=1

nj∑
i=1

poijxij ≤ Pmbms_budget (3.10c)

Nf =

Ns∑
i=1

Nf (si) (3.10d)

∀j ∈ {1, . . . , Nf},
nj∑
i=1

xij = 1 (3.10e)

∀j ∈ {1, . . . , Nf}, ∀i ∈ {1, . . . , nj}, xij ∈ {0, 1} (3.10f)

Where Nf is the total number of flows in the whole cell, nj is the number of
items in the class associated with the flow fj . The optimization object is to choose
one and only one item from each class such that the aggregated allocated bandwidth
is maximized and the weight sum of selected items does not excess Pmbms_budget.

nj = 1 + 3Nt(si) +

Nt(si)−1∑
r=1

3Nt(si)−r (3.11)
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Equation 3.11 computes the number of items nj in the class associated with the
flow fj . Let’s assume that fj ∈ F (si). The value 1 represents the item where all users
are served by one FACH. The value 3Nt(si) computes the number of combinations
corresponding to the cases where every user in the multicast group of service si is
either served by DCH, HS-DSCH or not served. When the nearest r users are served
by one FACH, the rest of users have 3Nt(si) − r allocation assignments. Therefore,
the number of items in one class is:

nj =

Nt(si)−1∑
r=1

3r + 3Nt(si) + 1 =
3Nt(si)+1 − 1

2
(3.12)

For a given scenario, the total number of items within this scenario is expressed
in Equation 3.13. Therefore, the problem complexity is exponential increasing with
the number of users.

Ns∏
i=1

Nt(si)∏
1

2
(
3Nf (si) + 1

)
(3.13)

The formulation of F2R2M (with channel code constraint relaxed) based on
MCKP is achieved. Since MCKP is NP-Hard [74], this proves that the flexible
MBMS RRM problem formulated as F2R2M is also NP-Hard. The complexity of
the problem increases with the number of MBMS users and services.

3.1.3 Solution bound generation of F2R2M by solving MCKP

To solve the MCKP formulated MBMS RRM problem, different multimedia
diffusion scenarios are transferred to MCKP model parameter. These scenarios are
shown in Table 3.2.

In this table, each row presents one scenario, the setting of one scenario is in-
dicated by its name: the number of service s, the total number of users u and the
service transmission scheme, where S stands for scalable transmission scheme and
N stands for non-scalable transmission scheme. The mixed integer programming
(MIP) solver Gurobi [46] is used to solve the MCKP by using input parameters.
In this work, the MCKP based formulation does not consider the orthogonality of
OVSF code, hence the solutions found by the linear programming solver are the
theoretical solution bounds, but not the real optimum solution of the F2R2M sce-
narios. Such solution bound can be used as an indicator to evaluate the real MBMS
RRM algorithm performance.
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Table 3.2: Simulation scenarios for MCKP based formulation

Scenario
name

Flows of service User
number

Total traffic
requirement

1s10u128N s1 (f0: 128 kbps) 10 1280 kbps

1s10u128S s1 (f1: 64 kbps, f2: 64 kbps) 10 1280 kbps

2s20uSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

2560 kbps
s2 (f0: 128 kbps) 10

2s20uSS
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

2560 kbps
s2 (f1: 64 kbps, f2: 64 kbps) 10

3s30uSNN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

3200 kbps
s2 (f0: 128 kbps) 10
s3 (f0: 64 kbps) 10

3s30uSSN
s1 (f1: 32 kbps, f2: 32 kbps, f3: 64kbps) 10

4480 kbps
s2 (f1: 64 kbps, f2: 64 kbps) 10
s3 (f0: 64 kbps) 10

3.1.3.1 Parameter transformation

In order to solve the MCKP based problem by Gurobi, the scenarios in F2R2M
must be reformulated into MCKP parameters, which is described in a Gurobi model
file. Each model file represents all the constraints and the objective described in
Equation 3.10a. More precisely, the input model lists the decision variables, the
linear objective function, and finally the linear formulation of constraints. Gurobi
optimizer considers all possible values of decision variables that satisfy the given
constraints, and return the combination of values that optimizes the stated objective
function.

To illustrate the nature of the input file of MCKP, an example is given here,
which composes one service s0. s0 is scalable transmitted with two flows fs0,1 and
fs0,2. The multicast group of s0 includes users t1, t2. According to the MCKP based
formulation, two classes K0,1 and K0,2 are associated with the flows fs0,1 and fs0,2,
respectively. Each class includes all potential allocation schemes for the correspond-
ing flow. The number of items in each class is 13 (computed by Equation 3.13). The
set of items in each class is shown in Equation 3.14.

Ks0,fj = K0,j = {iti,j,k, . . .} = {it0,j,1, it0,j,2, . . . it0,j,13}, j = 1, 2 (3.14)

In Equation 3.14, i is for the service si and the kth item it0,j,k is a candidate
allocation scheme for the flow fs0,j . The detailed allocation schemes represented by
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(3.15)

The item tchm
1 tchn

2 represents that the user t1 receives transmission from chm,
and the user t2 receives transmission from chn. Each item it0,j,k has two parameters
according to its allocation scheme: the allocated bandwidth thk and the transmission
power pok. The solution vector is represented as: x0,1,1 . . . x0,1,13, x0,2,1 . . . x0,2,13,
with xi,j,k = 0, 1 and xi,j,k = 1 indicating that the selected allocation scheme is
iti,j,k, xi,j,k = 0 means that the corresponding item is not selected in the solution.
There is one and only one xi,j,k set to 1, ∀k. With above parameters, the format of
model file for Gurobi is shown in Equation 3.16.

MCKP model file:

Maximize Th0,1 + Th0,2 (3.16a)

Subject to

T0,1 : th0,1,1x0,1,1 + th0,1,2x0,1,2 + . . . th0,1,13x0,1,13 − Th0,1 = 0 (3.16b)

P0,1 : po0,1,1x0,1,1 + po0,1,2x0,1,2 + . . . po0,1,13x0,1,13 − Po0,1 = 0 (3.16c)

K0,1 : x0,1,1 + x0,1,2 + . . . x0,1,13 ≤ 1 (3.16d)

T0,2 : th0,2,1x0,2,1 + th0,1,2x0,2,2 + . . . th0,2,13x0,2,13 − Th0,2 = 0 (3.16e)

P0,2 : po0,2,1x0,2,1 + po0,1,2x0,2,2 + . . . po0,2,13x0,2,13 − Po0,2 = 0 (3.16f)

K0,2 : x0,2,1 + x0,2,2 + . . . x0,2,13 ≤ 1 (3.16g)

Pt : Po0,1 + Po0,2 − Ptot = 0 (3.16h)

Pm : Po0,1 + Po0,2 ≤ Pmbms_budget (3.16i)

Binaries

x0,j,k ∈ {0, 1}, ∀j, k (3.16j)

Equation 3.16a shows that Gurobi targets at finding the solution to maximize
the allocated throughput of all flows, where Th0,j is the allocated throughput of
flow fs0,j . Equation 3.16b to Equation 3.16j illustrate the problem constraints.
Equation 3.16b and Equation 3.16e state that Th0,j is the profit (bandwidth) of
the selected item for the jth class, j = 1, 2. Equation 3.16c and Equation 3.16f
state that Po0,j is the weight of the selected item in the jth class. Constraint K0,j

(Equation 3.16d and Equation 3.16g) guarantees that at least one and only one item
is selected from each class. Constraint Pm (Equation 3.16i)guarantees that the total
weight of the selected items does not exceed the maximum MBMS power budget.
Equation 3.16h shows that the total weight Ptot is the sum of Po0,1 and Po0,2. In
Equation 3.16j, x0,j,k indicates the selection of the kth item in the jth class.

With the MCKP input model file, Gurobi finds solution with a single objective:
the maximum throughput. While in the original F2R2M, the optimization objective
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has two-dimension (throughput and power). Therefore, the optimization by Gurobi
only aims to maximize the allocated throughput (i.e. minimize the throughput loss).
To minimize the transmission power, represented by Ptot in Equation 3.16h, the value
of the maximum power budget Pmbms_budget is gradually decreased manually, hence
we obtain different optimum solutions for different Pmbms_budget settings.

3.1.3.2 Gurobi results

The Gurobi model files for small size scenarios are generated and their optimum
solution found by Gurobi are shown in Table 3.3. For large size scenario, for example
one service with single flow with 17 users, the number of items in each class will be
1.937× 109, and the generated model file size is more than 5 Gigabytes. Therefore
the generated MCKP model files for large size scenarios are too large to be handled
by the solver.

Table 3.3: Solutions found by Gurobi

Scenarios Gurobi solutions

1s10u128N 0%, 1.352 W

1s10u128S 0%, 1.34 W

2s20uSN 0%, 4.328 W

2s20uSS 0%, 4.263 W

3s30uSNN 0%, 5.297 W

3s30uSSN 0%, 5.231 W

In this work, the MCKP based formulation describes the scenario with relaxed
channel code constraint; the MCKP based formulation does not consider the OVSF
code orthogonality as in F2R2M, thus the channel code are always fully available.
Therefore, the solutions solved by MCKP in Table 3.3 are not practical solutions
for each scenario, but the theoretical solution bounds for MBMS RRM, which could
be used as the reference for evaluating the practical MBMS RRM algorithms.

3.2 Fitness landscape analysis

Metaheuristic provides efficiency scheme to solve large problem in a reasonable
time consuming. In metaheuristic, the search space is the space of all possible
solutions that can be visited during the search. In which, a neighborhood operator
is used to move from the current solution to a neighbor solution within the search
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space. By applying one neighborhood operator on the current solution, a set of
neighbor solutions can be generated, constructing the neighborhood of the current
solution. Therefore, the operator is an essential parameter in metaheuristic as it
acts on the dynamics of the search. Different neighborhood can be constructed by
different neighborhood operator.

Generally, for a given combinatorial optimization problem, its fitness landscape
is defined as L = (X, f, d) [66, 39], where f denotes the fitness function, X is
the set of solutions depending on the neighborhood structure N and d represents
the distance between two feasible solutions. Therefore, the structure of a fitness
landscape is linked to the metaheuristic dynamics such as the solutions of the search
space and the objective functions. Hence the fitness landscape allows to characterize
the problem structure and provides the understanding of the search strategies. It is
an important technique to analyze combinatorial optimization problem [75].

In this section fitness landscape analysis technique will be used for analyzing the
solution space of MBMS RRM and evaluating the move operators, which will be
later used for metaheuristic searches.

3.2.1 Introduction of fitness landscape analysis

The notion of fitness landscape was firstly proposed in [82], aiming to analyze
the gene interaction in biological evolution. Each genotype has a fitness and the
distribution of the fitness values over the genotypes space constitutes a fitness land-
scape.

In chapter 2, two neighborhood operators were proposed to modify the current
solution to a new solution. They are the single insert operator δSI and the multi-
ple insert operator δMI , which define two associated neighborhood structures. The
neighborhood operator is the key element that leads to different optimization per-
formance. To characterize the studied problem, the fitness landscape analysis is
conducted to analyze the two neighborhood functions for different scenarios. This
study can also help us to determine the better operator in optimization algorithms
by studying the operator performance.

Existing studies [39, 66] have proved that a fitness landscape has several im-
portant properties. In our work, we focus on the following properties of a fitness
landscape:

– the distribution of feasible solutions within the search space.
– the distribution of solution fitness.
– the links between the solution distance and the difference of solutions fitness.

Generally, to achieve such analysis based on these properties, two sets of solutions
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are required. Sini is a set of initial solutions randomly chosen from the search space.
Slo is a set of local optima solutions found by applying Greedy Local Search (GLS)
starting from a solution in Sini. Then the fitness landscape LN is characterized
through these two solution sets Sini and Slo.

3.2.2 Solution representations

Two mathematical solution representations are defined, and then the solution
distance measurement between two feasible solutions are developed. The solution
distance indicates if the solutions are close to each other. Based on the solution
distance, then the relationship between the solutions and the landscape can be
analyzed.

3.2.2.1 Representation A

Equation 3.17 shows the solution representation A in which the radio resource
allocation solution of one cell, x(c), is represented as a matrix.

x(c) =



fs1,1 fs1,2 . . . fs1,Nf (s1) . . . fsNs ,Nf (sNs )

ch1,1 ch1,2 . . . ch1,Nf (s1) . . . ch1,Nf

. . . . . . . . . . . . . . . . . .

chi,1 chi,2 . . . . . . . . . chi,Nf

. . . . . . . . . . . . . . . . . .

chNt,1 chNt,2 . . . chNt,Nf (s1) . . . chNt,Nf


(3.17a)

Subject to: (3.17b)

chi,j ∈ {−1, 0, 1, 2, 3} (3.17c)

∀i < i′, d(ti) ≤ d(ti′) (3.17d)

x(c) has Nt rows and Nf columns, Nf =
∑Ns

i=1Nf (si) in the cell, is the number
of all flows and Nt =

∑Ns
i=1Nt(si), is the number of all users in the cell. As shown

in Equation 3.17d, the users are ordered in ascending order of distance from the
Node B, therefore, the user ti is closer than the user ti′ , hence i < i′ and di ≤ di′ .
An element of this matrix, ch(i, j), indicates the transport channel allocated to the
user ti to receive the flow fj . The value of ch(i, j) could be 0, 1, 2 or 3 if the user
ti belongs to UEfach(fsi,j), UEdch(fsi,j), UEhs(fsi,j) or UEnoch(fsi,j), respectively.
−1 means that the user does not belong to this multicast group.
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3.2.2.2 Representation B

In Equation 3.18, the solution representation B defines that the solution for the
flow fs,j is a vector of users.

x(fs,j) = (−1, 1, 2, . . . ,︸ ︷︷ ︸
UEfach(fs,j)

−1, i, . . . ,︸ ︷︷ ︸
UEdch(fs,j)

−1, j, . . . ,︸ ︷︷ ︸
UEhs(fs,j)

−1, k, . . . , tNt︸ ︷︷ ︸
UEnoch(fs,j)

) (3.18)

The four user subsets are delimited by the number −1, and indicates the trans-
mission channel for the users in each subset. In each subset, users are ordered in
ascending order of distance from the base station.

Subsequently, the solution of the cell x(c) is a vector of solutions for the service
x(si):

x(c) = {x(s1), . . . , x(sNs)}, ∀si ∈ S(c) (3.19a)

x(si) =

{
{x(fsi,0)} if si is a single layer service
{x(fsi,1), [x(fsi,2), [x(fsi,3) . . . ]]} otherwise

(3.19b)

3.2.3 Distance measurements

The solution distance should evaluate the number of elementary moves required
to move from one solution to another. In order to conduct the landscape analysis,
the distance measurement between the solutions is required.

3.2.3.1 Hamming distance

The hamming distance is a well-known distance in combinatorial optimization,
it corresponds to the number of different elements between two solutions. The ham-
ming distance dHam is used to measure the distance between two feasible solutions
in the format of the representation A.

3.2.3.2 Comparative distance

For the representation B, the solution distance is measured according to struc-
tural comparisons between solutions, named comparative distance dCom. Let’s as-
sume that the current solution x and the new solution x′ are based on the represen-
tation B. This measurement compares the solutions for the same flow in x and x′,
and then the users allocated in the different channel in x and x′ are counted, this
number is expressed by dCom.
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The comparative algorithm measures the exact minimum number of applications
of the single insert operator δSI to move from x to x′. It could also be used to mea-
sure the approximate distance of solutions generated by the multiple insert operator
δMI . dHam compares the different allocated values for all users in cell. While dCom

only considers the users within one multicast group for each flow. Therefore the rep-
resentation B requires less memory space and the associated comparative distance
computation is faster. Hence the solution representation B and the comparative
distance are used for the following analysis.

3.2.4 Greedy Local Search and its application on landscape anal-
ysis

A Greedy Local Search (GLS) algorithm is used to generate the local optimum
solutions from the randomly generated initial solutions. The search procedure is de-
scribed in Algorithm 2. In each single trial of GLS, the search begins from an initial
solution xini. The neighborhood operator specifies a set of allowable modifications
to the current solution x at each iteration. Among these neighborhood solutions,
the best solution offering the minimum fitness will be selected to replace the current
solution. The search procedure terminates when the new solution is worse than the
current solution. The final solution is named local optimum solution xlo.

Algorithm 2 Greedy Local Search [45]
randomly generate an initial solution xini
x← xini
repeat

generate x′ ∈ N(x) // the best solution from N(x)

if f(x′) ≤ f(x) then
x← x′ // downhill move

end if
until x 6= x′

xlo ← x // local optimum

By applying GLS to each solution xini ∈ Sini, a population of local optimum
solution is obtained.

3.2.5 Experiments and results analysis

Six scenarios are selected to conduct the fitness landscape analysis. Their user
distributions are illustrated in Figure 3.1.

Each figure illustrates two scenarios with the same multicast groups and traffic
load but the scalability is different. For example, in 3.1(a), the service s1 at 128
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kbps is transmitted as three flows at 32, 32 and 64 kbps, but the service s2 of 128
kbps is transmitted as a single 128 kbps flow in one scenario (2s50uSN ), while in
the other scenario it is transmitted as two flows at 64 kbps (2s50uSS ).

3.2.5.1 Analysis of search space

It is not possible to exhaustively enumerate all the solutions from the search
space, as the solutions number is exponential. The solution distribution could only
help to understand if the solutions are close or not, if they are similar or different,
if the local optima are far away from each other in the search space, etc. Then the
indicators are computed to estimate the width or the diversity of the search space.

To study the distribution of feasible solutions in the search space, we define two
kinds of distance: dini and dlo are a set of solution distances. In dini, each value
is the distance measurement among any two solutions in Sini. In dlo, each value is
the distance among any two solutions in Slo. Table 3.4 and Table 3.5 present the
minimum, the maximum and the median values (first and third quartile are also
given) of these distances. LSI and LMI are the search spaces constructed by the
operators δSI and δMI , respectively.

Table 3.4: Distance between solutions of LSI

Scenarios
dini in Sini,SI dlo in Slo,SI

Min MedianQ1,Q3 Max Min MedianQ1,Q3 Max

2s50uSN 15 6254,72 109 17 6254,71 108
2s50uSS 20 6455,74 114 20 6555,75 117
3s80uSNN 20 6455,73 116 20 6455,74 116
3s80uSSN 26 6656,76 148 20 6656,76 148
3s100uSNN 10 5344,63 92 12 5445,63 99
3s100uSSN 21 6455,73 130 19 6555,76 180

The first three columns list the statistics of dini and show that the random
initial solutions for both search spaces are quite homogeneous. Comparing the
statistics of dlo, the local optima are different for two landscapes. In Slo,MI , the
minimum value of 0 indicates that the identical local optimum is found from different
initial solutions. While in Slo,SI no local optimum solutions have the same value.
The quartiles (median, Q1 and Q3) show that the search space of Slo,MI is more
concentrated than for Slo,SI even if the maximum values are larger. Therefore, for
the population of local optima, LMI appears closer than LSI .
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Table 3.5: Distance between solutions of LMI

Scenarios
dini in Slo,MI dlo in Slo,MI

Min MedQ1,Q3 Max Min MedQ1,Q3 Max

2s50uSN 19 6253,71 108 0 3423,45 109
2s50uSS 23 6454,73 121 0 3322,46 127
3s80uSNN 21 6554,73 115 0 4330,57 138
3s80uSSN 20 6455,73 116 0 3524,49 156
3s100uSNN 24 5564,73 114 0 6339,86 157
3s100uSSN 21 6455,73 129 0 3823,56 194

3.2.5.2 Analysis of fitness space

The fitness value represents the quality of a solution. Figure 3.2 shows the
distribution of fitness values of Sini and Slo for 3s100uSNN for both objectives and
for both move operators.
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Figure 3.2: Two fitness spaces of scenario 5 (3s100uSNN)

Firstly, it can be observed that the fitness values of Sini are well diversified.
According to the similarity of the statistics in Sini for all scenarios (Table 3.4 and
Table 3.5), it can be observed that the random initial populations are uniformly
distributed and in a similar way both for δSI and δMI tests. As well, the fitness of
all local optimum for both operators are better than the associated random initial
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solutions on Th criteria.

Table 3.6: Fitness values of Slo,SI

Scenarios Min MedQ1,Q3 Max Mean

2s50uSN
Th(c) % 4.5 57.552.25,62 69 56.21
Po(c) w 1.5 6.535.03,8.33 18.54 6.44

2s50uSS
Th(c) % 0 58.7554,62 69.5 10.74
Po(c) w 1.69 6.244.69,7.93 16.3 6.44

3s80uSNN
Th(c) % 37 87.582,92 99 86.61
Po(c) w 2.10 6.564.96,8.21 18.96 6.74

3s80uSSN
Th(c) % 20.5 8883.5,91.5 99 86.34
Po(c) w 2.1 6.564.96,8.21 18.96 6.75

3s100uSNN
Th(c) % 20.5 8883.5,91.5 99 86.34
Po(c) w 2.1 6.564.96,8.21 18.96 6.75

3s100uSSN
Th(c) % 15.88 75.8872.64,77.94 82.35 74.4
Po(c) w 1.37 65.364.82,8.24 18.95 6.65

Moreover, in the first and third subfigures of Figure 3.2, the fitness values of the
local optima obtained by the two operators are not flat. Actually, the quality of
Slo,MI is better than that of Slo,SI (ThMI < ThSI). Table 3.7 and Table 3.6 give
the fitness of the local optima in the two landscapes LSI and LMI . It is shown that
δMI finds solutions with smaller Th(c), hence better solutions than δSI . This can be
explained by the fact that, unlike δSI , δMI moves a block of elements and explores
a larger search space, so that it can more easily escape from the local optima.

3.2.5.3 Analysis of links between distance and fitness

The step length is the number of moves from an initial solution to its associated
local optimum. In F2R2M, the step length is defined as the number of times that
the greedy local search method calls the neighborhood operator.

Table 3.8 presents the statistics of the step lengths to find local optima through
δMI and δSI . In average, δSI moves to shorter distances than δMI , which may make
δSI walks nearby the initial solution without exploring much better solution even
if the maximum step length is higher for δSI . Therefore, LSI seems to have less
capacity of combining exploration and exploitation than LMI , which explains that
in Table 3.4 the values of Slo,SI are close to the Sini,SI .

To investigate how the population of local optima is distributed in the search



88 Chapter 3. Model Analysis

Table 3.7: Fitness values of Slo,MI

Scenarios Min MedQ1,Q3 Max Mean

2s50uSN
Th(c) % 0 00,0 58 1.7
Po(c) w 7.08 14.8912.95,18.18 19.0 15.28

2s50uSS
Th(c) % 0 00,0 62.5 0.94
Po(c) w 5.81 14.6314.36,15.02 16.58 14.57

3s80uSNN
Th(c) % 0 40,15 91.5 9.43
Po(c) w 5.543 17.2915.92,18.79 18.99 17.2

3s80uSSN
Th(c) % 0 10,2 93.5 3.8
Po(c) w 6.38 17.5717.22,17.63 19.0 17.2

3s100uSNN
Th(c) % 0 10,2 93.5 3.8
Po(c) w 6.38 17.5717.22,17.63 19.0 17.2

3s100uSSN
Th(c) % 1.76 4.124.12,5.88 78.24 7.29
Po(c) w 5.67 18.3818.25,18.41 18.99 18.11

space relative to the best solution found, Figure 3.3, Figure 3.4 and Figure 3.5
present the plots of fitness distance scatter of all scenarios.

In each subfigure, e.g. Figure 3.3(a), in the left side the y-axis illustrates the
fitness difference in terms of throughput loss, and the x-axis illustrates the solution
distance with dCom. In the right side, the y-axis illustrates the fitness difference in
terms of power consumption, and the x-axis illustrates the solution distance. These
plots depict the fitness gap between local optima and best solution found according
to their distances in terms of required moves number. The plots determine the
relationship between the fitness gap and the move distance. When the distance to

Table 3.8: Step lengths of the two landscapes

Scenario
step length in LSI step length in LMI

Min Median Max Mean Min Median Max Mean

2s50uSN 1 7 80 9.70 1 18 57 25.97
2s50uSS 1 7.5 126 10.74 1 21 62 26.93
3s80uSNN 1 6 85 8.78 2 43 100 42.69
3s80uSSN 1 7 127 11.1 1 61 114 67.61
3s100uSNN 1 7 126 8.94 1 19.5 93 99.88
3s100uSSN 1 11 181 12.62 5 105 166 99.88
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(a) scenario 1: 2s50uSN
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Figure 3.3: Fitness distance scatter: scenarios 1, 2
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the best solution found becomes smaller (the fitness difference is decreased), the
search procedure is expected to be easier.

Figure 3.3, Figure 3.4 and Figure 3.5 reveal that all local optima converge in a
small region of the search space and the local optima found by δMI are closer to
the best solution found than the local optima found by δSI . When the points are
located in different distance from the best solution found, their fitness difference are
varied, which means that both search space are rugged. But in the search space of
δSI , the fitness gap and the distance from the best solution found is less correlated
than in the search space of δMI . The search difficulty with LSI is harder than LMI .

Moreover, the scenarios 1 and 2 (Figure 3.3(a) and Figure 3.3(b)) show higher
correlation than the scenarios 5 and 6, which indicates that the difficulty of exploring
the search space is increased with the increasing of scenario complexity.

Finally, the study of fitness landscape reveals that the local optima in LMI are
closer to each other than in LSI , and that δMI can explore larger neighborhood
space to reach better solution than δSI . Therefor LMI outperforms LSI .

3.2.5.4 Comparison of two neighborhood operators

Table 3.9 shows the best performance with the two neighborhood operators
through the Greedy Local Search algorithm. The fitness value of the solutions are
presented in terms of the percentage of loss throughput and the consumed power in
Watts of all MBMS multicast services within one cell.

Firstly we prove the feasibility of some scenarios with F2R2M. Then δMI always
offers good solution with higher satisfied throughput and less power consumption
than δSI , which proves that δMI has more ability to escape from local optima, while
δSI can only stay in basins.

3.3 Synthesis

In this chapter, the mathematical analysis was conducted in the proposed flexible
radio resource allocation model for MBMS RRM. In section 3.1, a mathematical
formulation of MBMS RRM is investigated on the basis of the knapsack problem
variants. Three propositions were done to discuss the possibility of this formulation,
and the work shows that the single MCKP formulation is the best choice. Then
the F2R2M is approximated as a MCKP, with the relaxation of the channel code
constraint. In this formulation, a set of classes are associated with the flows of the
MBMS service. Each class includes a set of items, each item is a candidate allocation
schemes of the corresponding flow. The problem target is to select one and only one
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(a) scenario 3: 3s80uSNN
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Figure 3.4: Fitness distance scatter: scenarios 3, 4
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(a) scenario 5: 3s100uSNN
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Figure 3.5: Fitness distance scatter: scenarios 5, 6
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Table 3.9: Performance of the Greedy Local Search with δSI and δMI

Scenarios
F2R2M with δSI F2R2M with δMI

best mean std. best mean std.

2s50uSN
4.5% 56.2% 8.12 0% 1.7% 8.18
18.5 6.4 8.12 10.19 15.28 2.56

2s50uSS
0% 57.29% 7.82 0% 0.94% 6.46
15.58 6.44 2.27 13.06 14.57 0.9

3s80uSNN
25.4% 66.62% 5.53 0% 7.25% 11.77
16.9 6.73 2.29 15 17.12 2.0

3s80uSSN
15.4% 66.42% 6.73 0% 2.9% 11.26
16.5 6.75 2.45 14.4 17.2 1.23

3s100uSNN
36.47% 74.98% 4.5337 1.76% 19.57% 12.61
18.82 6.58 2.3244 18.39 18.03 1.5856

3s100uSSN
15.9% 74.4% 7.13 1.76% 7.29% 11.93
18.12 6.65 2.55 17.5 18.12 1.4

item from each class in such manner that the sum of the values (throughput) of the
selected items is maximized and the knapsack capacity (power) is not exceeded.

The multiple-choice knapsack problem is a NP-hard optimization problem, hence
the problem of flexible radio resource allocation for scalable MBMS is proved as NP-
Hard problem. Six small-sized scenarios are designed and re-formulated as MCKP
model parameters. These model parameters are input of the Gurobi solver, which is
used to solve the MCKP. Because the MCKP based formulation does not consider
the orthogonality of OVSF code, the linear programming solver is not a practical
approach and the solutions found are only theoretical solution bounds of the F2R2M
scenarios.

In section 3.2, two solution representations were defined, and the corresponding
distance measurements between two feasible solutions were proposed. Based on the
solution distance and two neighborhood operators, the fitness landscape analysis
was conducted to study the characteristics of the proposed problem and the oper-
ators. The fitness distance plots showed that both search spaces generated by the
neighborhood operators are rugged. Among two proposed neighborhood operators,
the multiple insert operator δMI seems to be more efficient than the single insert
operator δSI even if its computation is more complicated.





Chapter 4

Solving MBMS RRM Problem by
Simulated Annealing

In chapter 3, the studied MBMS RRM problem has been proved as NP-Hard. This
combinatorial optimization problem thus cannot be handled by exhaustive search. To
solve this problem, the metaheuristic is selected since it requires reasonable amount
of effort to get a good (but might be non-optimal) solution. In this chapter, a pop-
ular metaheuristic algorithm, the Simulated Annealing (SA) is investigated to solve
the MBMS RRM problem based on F2R2M. This work shows that it is feasible to
modify and map the SA algorithm on the proposed model, named as F2R2M-SA.
The simulations are conducted and show that the proposed F2R2M-SA can generate
better solutions than the state-of-the-art approaches within acceptable time.

Contents
4.1 Introduction of simulated annealing algorithm . . . . . . . . 96
4.2 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Algorithm framework . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Solution initialization . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Annealing schedule . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 Select_flow(): flow selection . . . . . . . . . . . . . . . . . . . 101
4.2.5 Random_move(): solution generation . . . . . . . . . . . . . 103
4.2.6 Evaluation(): solution evaluation . . . . . . . . . . . . . . . . 103

4.3 Results and comparison with existing approaches . . . . . . 105
4.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



96 Chapter 4. Solving MBMS RRM Problem by Simulated Annealing

4.1 Introduction of simulated annealing algorithm

The complexity of the studied problem has been analyzed in chapter 3, and it
is proved that the size of the search space increases exponentially with the number
of users. To solve the combinatorial optimization (CO) problem, an algorithm is
required to find a good (eventually) near-optimal solution, with a reasonable amount
of effort. In the past three decades, metaheuristic algorithms tried to combine basic
heuristic methods offering efficiency and rapidity [27]. The simulated annealing
algorithm is one of the first metaheuristic that has a strategy to avoid local optima.
The origins of this algorithm for solving CO are first presented in [61] and [83].

Simulated annealing is so named because of its similarity to the solid annealing
process, in which a heated crystalline solid is allowed to cool very slowly until it
achieves its minimum lattice energy state, and thus is free of crystal defects [45].
The general framework of the simulated annealing is outlined in algorithm 3.

Algorithm 3 General SA algorithm [36]
select an initial solution x0
select an initial temperature T = T0, T0 ≥ 0

set change counter c = 0

select a repetition schedule, Mk, that defines the number of iterations executed
at each temperature, Tk

repeat
repeat

set repetition counter c = 0

generate x′ ∈ N(x)

calculate δ = f(x′)− f(x)

if δ < 0 then
x← x′ // downhill move

else if random(0, 1) < exp(−δ
Tk

) then
x← x′ // uphill move

end if
c← c+ 1

until c = Mk

k ← k + 1

compute Tk

until stopping criterion is met

To describe the features of the general simulated annealing algorithm, several
definitions need to be presented. Let Ω be the solution space, let f be an objective
function defined on the solution space. The goal is to find an optimum solution x∗,
x∗ ∈ Ω such that f(x∗) ≤ f(x), ∀x ∈ Ω. Let’s define N(x) to be the neighborhood
function for x ∈ Ω. The neighborhood solution x′ ∈ N(x) can be reached in a single



4.1. Introduction of simulated annealing algorithm 97

iteration by applying a neighborhood operator to the current solution x.

As shown in algorithm 3, SA starts with an initial solution x0 ∈ Ω. The tem-
perature parameter T is initialized by a predefined value T0. At each decreasing
temperature Tk, a series of Metropolis chains is performed (the inner loop in algo-
rithm 3). The aim of each Metropolis chain is to permit the system to reach the
thermal equilibrium, in which the energy state is being minimized. At each iteration
within the Metropolis chain, a neighborhood solution x′ ∈ N(x) is generated, either
randomly or using some pre-specific rules. The candidate solution x′ is accepted as
the current solution x based on the acceptance probability.

The major purpose of the acceptance probability pacc is to accept x′ with the
worse result than x, in order to explore new solutions and to escape from local
optimum. pacc is generally computed following the Boltzmann distribution function
[45], by Equation 4.1.

pacc =

{
exp

(
−f(x′)−f(x)

Tk

)
if f(x′)− f(x) > 0

1 if f(x′)− f(x) ≤ 0
(4.1)

where Tk is the temperature parameter at the kth iteration (the outer loop in algo-
rithm 3). This acceptance probability is the basic element of the search mechanism
in the simulated annealing. f(x′) and f(x) denote the energies (objective function
values) associate with the solutions x ∈ Ω and x′ ∈ N(x), respectively. With a fixed
temperature, the higher the difference δ = f(x′) − f(x), the lower the probability
to accept a move from x to x′. Moreover, the higher is the temperature, the higher
is the probability to receive non-improving moves.

In the SA framework, a full annealing schedule is defined by an initial tempera-
ture T0, a cooling schedule to reduce the temperature, and a stopping criterion.

The initial temperature should be chosen such that (nearly) every neighborhood
solution is accepted, thus the entire solution space could be captured. A high
temperature could increase the search space, however it will result in a larger number
of iterations without guarantee on the solution quality. Therefore, T0 is chosen by
experimentation depending upon the problem feature. Van Laarhoven has proposed
a method to analytically determine T0 for a given number of solution sampling [48].
This procedure starts from a random initial solution with an initial acceptance ratio
χ0, and then a series of random walk of solution modifications is performed. In this
random walk procedure, for minimization problem, the uphill move, also named
bad move, brings non-improving solution comparing to the current solution. While
the downhill move is good move, bringing improvement of the current solution.
Equation 4.2 shows the calculation of T0. In Equation 4.2a, ∆f0 is the average
increase of the objective function between x′ and x during the random walk, and
χ0 is the number of accepted bad moves divided by the number of attempted bad
moves. In Equation 4.2b, ∆f+ is the increase of fitness between x′ and x, brought
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by these bad moves.

T0 = −
∆f0
ln(χ0)

(4.2a)

∆f0 =
∆f+

number of accepted bad moves
(4.2b)

A similar method of selecting initial temperature, named find-T0 has been pro-
posed in [50]. Firstly, T0 is set to zero and a sequence of moves is implemented.
After each move, a new value of T0 is calculated according to Equation 4.3.

T0 =
∆+

ln( m2
m2χ0−m1(1−χ0)

)
(4.3a)

∆+ =
f(x)− f(x′)

m2
(4.3b)

In Equation 4.3a, χ0 is the initial acceptance ratio of bad moves (e.g. set 0.8
in [50]). m1 and m2 are the number of good (downhill) and bad (uphill) moves ob-
tained so far to solve a minimization problem. For solving a maximization problem,
downhill and uphill should be swapped. In Equation 4.3b, x and x′ are respectively
the current solution and the new solution in each iteration, ∆+ is the average fitness
difference brought by uphill moves so far. After a given iteration of moves, the final
value of T0 is used as the initial temperature.

The cooling schedule determines the decreasing of the temperature in the SA
search procedure. The earliest annealing schedules were based on the analogy with
the physical annealing. In early SA study, a proportional temperature is used,
Tk+1 = αT (k). α is a constant value known as the cooling factor, most of the
time it ranges from 0.80 to 0.99 [76]. At the end of the search, the temperature
does not allow any higher energy level, which is called the frozen state. However,
[76] concluded that a proportional temperature cooling schedule does not lead to
equilibrium at low temperature. Nowadays there are three important annealing
schedules to reduce the SA temperature:

– Logarithmic schedule [42], Tk = T0
LOG(k) . The temperature decreases quickly at

the beginning of the search, then it decreases slowly. It allows large variation
of f for bad solutions at the beginning and small at the end of the search.

– Cauchy schedule [77] is a faster schedule in which Tk = T0
k . The Cauchy

schedule allows a regular decreasing of Tk along the search procedure.
– Exponential [76] schedule, Tk = Tk−1 exp (−K). It is the fastest schedule and
K is a constant value.

Besides, a commonly implemented strategy for reducing the temperature in SA
is the linear approach. This strategy reduces the temperature by the same amount
throughout the annealing process: Tk+1 = Tk − t. In which t is a constant which
describes the amount of the temperature decrement after each iteration.
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4.2 Algorithm design

To solve the MBMS RRM problem, the general SA algorithm is modified and
mapped onto the proposed model, named as F2R2M-SA. We choose SA as it is
simple to implement and efficient in term of time cost, it statistically guarantees
finding a good (enough) solution, and it is adaptable to a variety of problems in-
cluding telecommunications [69]. The detailed design of F2R2M-SA algorithm is
presented in this section.

4.2.1 Algorithm framework

Algorithm 4 illustrates the pseudo code of the proposed F2R2M-SA algorithm.
The input parameters are the service and user informations collected in the first
phase of model (subsection 2.1.1). The output is the allocation solution for whole
cell x(c), which consists the solutions for all flows of all service.

Algorithm 4 F2M2R-SA algorithm
Require: T (c), D(c), S(c), F (si), M(si), ∀si ∈ S(c)

Ensure: x(c) = {xfsi,j , ∀si ∈ S(c), ∀j ∈ F (si)}
x0 ← initialize() // initialize solution
x(c)← x0, x(c)

∗ ← x(c), f∗ ← f(x∗(c))

Tk ← T0 // initialize temperature
while Tk > threshold do

for 1 to M do
fsi,j ← select_flow(F (si),M(si)) // randomly select one service and flow
xf ← extract (x(c), fsi,j) // the flow solution is a part of the cell solution
x′f ← random_move(xf), x′f ∈ N(xf ) // new flow solution
calculate F (x′f ) = (Th(x′f ), Po(x′f ))

if Po(x′f ) +
∑

Po(xf̃si,j
) > Pmbms_budget,∀f̃si,j 6= fsi,j then

reject x′f
end if
evaluation(F (xf ), F (x′f )) // evaluation is conducted only on the moved
flow
if x′f is accepted then

update the cell solution x(c) with x′f
end if

end for
Tk+1 ← cooling(Tk)

end while
return x(c)

The algorithm starts by generating an initial solution x(c) for the whole cell. The
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initial temperature T0 is a pre-defined value. At different decreasing temperatures, a
series of Metropolis chains is performed. The length of each Metropolis chain is M ,
i.e. the number of iterations at each temperature Tk. The value of M is set at 100

times the size of the search space for the current flow, i.e. the number of possible
channel assignment. This value is expressed as 4Nt(si), Nt(si) is the number of users
requesting the service si. At each iteration within the Metropolis procedure, a flow
is firstly selected by the function select_flow(). Then a neighborhood solution x′f is
randomly generated by applying a move operator to the solution of the current flow,
named flow solution xf . Then the function Evaluation() determines to accept or
reject x′f by comparing it with xf . Therefore, the process of the SA algorithm is the
result of two strategies: random walk and iterative improvement. The first strategy
improves slowly the current solution and explores gradually the search space. The
second strategy decreases the temperature thus leads the search to converge to a
(local) minimum.

4.2.2 Solution initialization

The pseudo code for the temperature initialization is described in algorithm 5.
The input parameters are the service and user informations collected in the first
phase of model (subsection 2.1.1). The output is the initial solution for the whole
cell x(c), which consists the solutions for all flows of all service.

Algorithm 5 Initialize()

Require: T (c), D(c), S(c), F (si), M(si), ∀si ∈ S(c)

Ensure: x(c) = {xfsi,j , ∀si ∈ S(c), ∀j ∈ F (si)}
for each service si ∈ S(c) do

if si is nonscalable transmission then
apply S-MPC to fsi,0

else if si is scalable transmission then
apply S-MPC to fsi,j , such that j > 0

end if
end for
while Po(x(c)) > Pmbms_budget do

random select si ∈ S(c)

gradually reduce the transmission coverage by 10% for fsi,j , such that j =

Nf (si)

end while

As shown in algorithm 5, x(c) is determined by applying the MBMS Power
Counting approach (MPC) for each flow, named S-MPC. That is because F2R2M
supports the flow-based channel assignment. In S-MPC, firstly, all users are sepa-
rately assigned to one of the three candidate transport channels, then the channel
which consumes the minimum power is selected as the allocation mode in the initial
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solution. If the power consuming of the selected (pure) transmission mode is over
the MBMS power budget, a service will be randomly selected, and the farthest users
for the advanced flow will be gradually rejected until a feasible solution is obtained.

4.2.3 Annealing schedule

As mentioned in section 4.1, a full annealing schedule is defined by the initial
temperature T0, a cooling schedule reducing the temperature, and a stop criteria.

In F2R2M-SA, the method proposed by Van Laarhoven in Equation 4.2 is used
to calculated T0 as in Equation 4.4.

T0 = −
∆f0
ln(χ0)

= −Po(x′)− Po(x) + Th(x′)− Th(x)

ln(χ0)
(4.4)

∆f0 is the average increase in the objective function brought by the uphill moves.

Table 4.1 shows the example of T0 values for 18 scenarios in 10 trials by the
method in Equation 4.4. The number of random walk iterations is 100, and the
initial probability of accepting a bad solution is 0.7 [48]. In each trial, the random
walk procedure is turned n times, the number of users in each scenario. Then
the initial temperature for each trial is the rounded integer of the average value:
T0 = d 1n

∑n
i=1 T

i
0e. As shown in Table 4.1, the more the number of users in one

scenario, the larger the value of T0.

For cooling the temperature, we select the logarithmic schedule [42] to decrease
the temperature in F2R2M-SA. In which, the temperature in kth step is determined
by Tk = d T0

LOG(k)e. The stop criterion is when Tk is below a given threshold.

4.2.4 Select_flow(): flow selection

To determine the flow fsi,j to modify, two methods are investigated. The first
method randomly selects a flow among all Nf flows in a given scenario, Nf is the
total number of flows in this scenario. This method randomly selects one service
si, i ≤ Ns, and then it randomly selects one flow fsi,j from F (si).

The second method determines fsi,j in quasi-determined order. Firstly the ser-
vice si is selected in a predefined order (i.e. i is set from 1 to Ns, Ns is the total
number of service in one scenario). Then the flow fsi,j is determined:

– j = 0, if si is a non-scalable transmission scheme service.
– j = random(1, Nf (si)), if si is a scalable transmission scheme service.

Four scenarios are selected to apply SA with the random flow selection and the
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Table 4.1: Values of T0 with Equation 4.2

Scenarios T0 in 10 trials Average T0

1s30uN 33 28 29 27 72 13 34 16 29 33 31

1s30uS 51 42 83 31 65 63 28 71 38 63 54

1s60uN 32 98 7 31 47 187 55 17 12 17 51

1s60uS 120 73 104 17 13 132 44 32 122 91 75

1s150uN 344 407 154 86 301 389 196 382 163 155 258

1s150uS 43 106 160 137 299 86 46 191 79 81 123

2s20uSN 22 20 19 12 13 15 5 12 17 16 16

2s20uSS 15 15 7 28 17 18 10 16 23 24 18

2s50uSN 100 53 67 92 75 162 49 45 57 42 75

2s50uSS 112 46 98 48 90 114 35 98 37 138 82

3s30uSNN 88 30 61 37 106 41 37 71 68 64 61

3s30uSSN 27 193 43 20 30 29 46 45 50 85 57

3s50uSNN 35 140 65 74 181 106 55 47 41 45 79

3s50uSSN 98 63 125 32 87 65 75 32 56 61 70

3s80uSNN 55 95 22 54 51 136 106 76 81 163 84

3s80uSSN 114 64 64 58 61 45 78 46 274 79 89

3s100uSNN 167 132 94 85 109 89 71 83 49 50 93

3s100uSSN 75 40 59 36 100 119 65 123 58 92 78
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sequential flow selection methods, respectively. Each algorithm is run 50 trials, the
best solutions found and average solutions are illustrated in Table 4.2. For each
scenario, the best solution is underlined.

Table 4.2: Comparison between two flow selection methods

Scenarios
Method 1: random flow selection Method 2: sequential flow selection
Best solution Average solution Best solutions Average solution

1s60uS 0%, 12.94 W 0%, 13.68 W 0%, 12.82 W 0%, 13.18 W

1s150uS 0%, 15.52 W 0%, 16.07 W 0%, 15.38 W 0%, 15.53 W

2s20uSN 0%, 13.81 W 9.5%, 14.97 W 0%, 7.83 W 0%, 13.18 W

3s50uSSN 5%, 18.87 W 15.19%, 18.26 W 2%, 17.26 W 0%, 18.79 W

Table 4.2 shows that the sequential flow selection method finds better solution
than the random flow selection method. That is because the sequential flow selection
method provides quasi-arbitrary decision instead of full arbitrary decision in the
search procedure. In the F2R2M-SA implementation, the sequential flow selection
method is adopted.

4.2.5 Random_move(): solution generation

In each iteration during the SA procedure, for a given flow fsi,j , a new flow
solution will be randomly selected from the neighborhood of the current flow solution
xfsi,j . Algorithm 6 shows the random generation which randomly moves the current
solution to generate the new solution x′fsi,j

.

As illustrated in algorithm 6, for the flow solution xfsi,j , according to the UE
partition in xfsi,j , a channel cho will be firstly randomly determined as “output” set
and UEcho should not be an empty set. Secondly, a channel chi will be randomly
chosen as “input” set, chi 6= cho and chi could be an empty user set. Thirdly, a user
tu will be randomly selected from UEcho . Then tu or a set of several users including
tu, constitute the list of users which will be moved from UEcho to UEchi

.

4.2.6 Evaluation(): solution evaluation

Algorithm 7 illustrates the criteria to accept or reject the new flow solution. The
comparison is conducted between the current flow solution xf (i.e. xfsi,j ), and the
new flow solution x′f (i.e. x′fsi,j

). Each of them should be a part of a feasible cell
solution.
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Algorithm 6 Random_move()
Require: xfsi,j
Ensure: generate new flow solution x′fsi,j

service ID = i, flow ID = j

randomly choose cho from xfsi,j , UEcho 6= φ // output (source) channel set
randomly choose chi, (chi 6= cho) // input (target) channel set
randomly choose user tu from UEcho

if cho 6= FACH and chi 6= FACH then
move tu from cho to chi

else
if cho = FACH then

move user(s) tv and tu from FACH to chi, tv ∈ UEfach, dv ≥ du // the
FACH coverage is reduced

else if chi = FACH then
move user(s) tv and tu from non FACH channels to FACH, tv ∈
UEnofach, dv ≤ du // the FACH coverage is increased

end if
end if

Algorithm 7 Evaluation()

Require: x′f , xf
Ensure: accept or reject x′f

calculate Th(x′f ), Po(x′f ), Th(xf ), Po(xf )

if Th(x′f ) < Th(xf ) or (Th(x′f ) = Th(xf ) and Po(x′f ) < Po(xf )) then
accept x′f

else
p← random(0, 1)

if Th(x′f ) > Th(xf ) then
pn = −Kt(Th(x

′
f )− Th(xf ))

else if Th(x′f ) = Th(xf ) and Po(x′f ) ≥ Po(xf ) then
pn = −Kp(Po(x′f )− Po(xf ))

end if
pa ← e

pn
Tk

if p < pa then
accept x′f // accept x′f with acceptance probability

else
reject x′f

end if
end if
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Based on the proposed lexicographic evaluation criteria in subsection 2.2.4, the
evaluator firstly compares the throughput loss because the throughout requirement
has higher priority than the power consumption. Therefore, the solution with less
throughput loss is the better solution regardless its power consumption. Then for
solutions having the same throughput loss, the solution with less power is better, so
if x′f has a better fitness, it is accepted, else it will be accepted with the acceptance
probability, calculated by Equation 4.5.

pa =

 exp
(
−Kp

Po(x′
f )−Po(xf )

Tk

)
if Th(x′f ) = Th(xf ) and Po(x′f ) ≥ Po(xf )

exp
(
−Kt

Th(x′
f )−Th(xf )

Tk

)
if Th(x′f ) > Th(xf )

(4.5)

The probability factor pa is a function of the current temperature Tk, the fitness
difference, two factors Kp and Kt. In the proposed model, the two-dimensional fit-
ness consists in the bandwidth difference in kilobits per second, and the transmission
power in Watts; Kt and Kp are defined to calculate pa separately. Kt is set larger
than Kp (Kp = 10,Kt = 50) because the higher constant leads to less acceptance
probability, then more restriction in the acceptance of the solution with additional
throughput loss.

4.3 Results and comparison with existing approaches

F2R2M-SA is implemented in the simulator proposed in chapter 2. Together
with the competing approaches from the state of the art, they are simulated and
compared under 18 scenarios. The competing approaches are MBMS Power Count-
ing (MPC), Dual Transmission mode (Dual Tx), and Scalable FACH transmission
(S-FACH). Besides, to prove the advantages of the flow based channel allocation,
we apply the MBMS power counting to each flow (S-MPC). To observe the power
saturation, the solutions of MPC, Dual Tx, S-FACH and S-MPC are determined for
their minimum power consumption, i.e. their solution are accepted no matter if the
power consumption is over the MBMS power budget.

Table 4.3 shows the algorithm solutions for all scenarios. To apply MPC and
Dual Tx, the services in all the scenarios use non-scalable transmission scheme.
Therefore the scenarios have the same service and user distributions share the same
solution, e.g. 1s30uN and 1s30uS. S-FACH allocates the FACH for each flow with
a fixed coverage [31]: 95% for f1, or f0 of nonscalable encoded service, 50% for f2
and 33% for f3 (if the service has f3).

In Table 4.3, the solutions are presented as two-dimensional fitness value: the
lost of throughout in percentage and the consumed power in Watts for all MBMS
multicast services within one cell. For example for scenario 1s30uS, S-FACH applies
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Table 4.3: Best solutions found by different MBMS RRM algorithms

Scenarios MPC Dual Tx S-FACH S-MPC F2R2M-SA

1s30uN 0%, 0%, 14%,
10.8 W

0%,
13.77 W

0%, 7.02 W

1s30uS 13.77 W 13.77 W 25%,
9.45 W

0%,
10.56 W

0%, 8.41 W

1s60uN 0%, 0% 29.2%,
10.8 W

0%,
16.68 W

0%, 11.62 W

1s60uS 16.68 W 16.68 W 29.2%,
10.8 W

0%,
17.16 W

0%, 12.82 W

1s150uN 0%, 0%, 29.3%,
10.8 W

0%,
16.68 W

0%, 14.65 W

1s150uS 16.68 W 16.68 W 29.3%,
10.8 W

0%,
17.16 W

0%, 15.38 W

2s20uSN 0%, 0%, 81.25%,
5.82 W

0%,
6.82 W

0%, 7.8291 W

2s20uSS 17.58 W 19.32 W 45.3%,
15.3 W

0%,
6.18 W

0%, 8.80 W

2s50uSN 0%, 0%, 65%,
10.23W

28%,
21.51 W

0%, 11.12 W

2s50uSS 27.19 W 30.45 W 47%,
15.4 W

16%,
18.4 W

0%, 13.06 W

3s30uSNN 0%, 0%, 85%,
5.82 W

0%,
8.17 W

0%, 8.72 W

3s30uSSN 8.93 W 22.92 W 57%,
15.3

0%,
7.53 W

0%, 10.97 W

3s50uSNN 0%, 0%, 24.3%,
12.7 W

0%,
18.8 W

0%, 17.32 W

3s50uSSN 18.08 W 32.16 W 41.4%,
15.8 W

24.3%,
12.9 W

0%, 18.79 W

3s80uSNN 0%, 0%, 23.6%,
26.9 W

41.4%,
21.5 W

0%, 14.99 W

3s80uSSN 32.47 W 37.68 W 22.6%,
22.6 W

32.9%,
18.4 W

0%, 14.36 W

3s100uSNN 0%, 0%, 89.3%,
5.9 W

0%,
31.79 W

11.8%, 18.96 W

3s100uSSN 35.73 W 37.68 W 62.1%,
15.4 W

68.8%,
12.1 W

15.9%, 18.8 W
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the FACH with 95% coverage to transmit the first flow f(s1, 1) and 50% coverage
for the second flow f(s1, 2); hence it loses 576 kbps required bandwidth (576/3840 =

15%), its solution fitness is (15%, 10.8 W). The feasible solutions (Po ≤ 19W ) are
emphasized in boldface.

Table 4.3 shows that, when the service transmission is a non-scalable mode (i.e.
MPC and Dual Tx), 6 scenarios can be transmitted through feasible solution with
MPC, while the Dual Tx obtains feasible solutions for 4 scenarios. Dual Tx costs
more power than MPC since the former does not consider using HS-DSCH. Such
inefficiency is confirmed in the solution allocation for 3s80uSNN (Table 4.4), where
MPC consumes less power than Dual Tx because the users of s2 and s3 receive the
services through HS-DSCH.

S-FACH saves the power consumption by reducing the coverage for the advanced
flow(s), it also guarantees the service coverage (all users can be covered). However,
when the power is not saturated, such throughout sacrifice in S-FACH is unnec-
essary. For scenarios having 1 service and 2s20uSN/SS, both S-FACH and MPC
could obtain feasible solutions. S-FACH costs less power than MPC but loses more
bandwidth due to the smaller coverage for the advanced flow(s). According to the
lexicographic evaluation criteria, MPC is still better than S-FACH. Moreover, when
the service demand is higher (i.e. 3s80uSNN/SSN ), with the fixed flow coverage,
S-FACH is not flexible in terms of trade-off between the service quality and power
consumption. Therefore, for the last eight scenarios, S-FACH still achieves power
saturation although certain throughput has been lost. Such power saturation actu-
ally could be avoided by (additionally) decreasing the user coverage from advanced
flow(s). We can conclude that MPC is more efficient than S-FACH.

However, MPC does not consider the multimedia scalability, therefore, it al-
ways achieve saturated transmission power for scenarios with heavier traffic load,
i.e. 2s50uSN/SS and 3s80uSNN/SSN. By comparing the MPC and S-MPC solu-
tions, we find that S-MPC costs less power than MPC, hence S-MPC achieves more
feasible solutions; in particular, for most of the scenarios (expect 3s50uSSN and
3s100u), S-MPC obtains the same throughput requirement (0% throughput loss)
and less power consumption than MPC. Therefore, the comparison between MPC
and S-MPC reveals the advantage of scalable transmission. Besides, we observe the
S-MPC solutions for the scenarios with the same user distribution and total traf-
fic load, i.e. 2s20uSN vs 2s20uSS, 2s50uSN vs 2s50uSS, 3s30uSNN vs 3s30uSSN,
3s80uSNN vs 3s80uSSN and 3s100uSNN vs 3s100uSSN, we can find that the sce-
narios with scalable transmission of s2 consume less power. This also proves the
advantage of scalable transmission. Among these scenarios, however, when the users
are more than than 20, e.g. 2s50u, 3s50u, 3s80u and 3s100u, the S-MPC solutions
have throughout loss more than 20%. That is because S-MPC only allocates pure
transmission mode for each flow, and when DCH users are numerous, S-MPC causes
expensive channel code consumption, that increases the possibility of channel codes
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saturation, and leads to high throughput loss.

Table 4.4: Detailed solutions of 3s80uSNN

Algorithms flow Number of users in UE sets

UEfach UEdch UEhs UEnoch

MPC fs1,0 30 0 0 0
fs2,0 0 0 20 0
fs3,0 0 0 30 0

Dual Tx fs1,0 30 0 0 0
fs2,0 20 0 0 0
fs3,0 30 0 0 0

Scalable FACH fs1,1 30 0 0 0
fs1,2 14 0 0 16
fs1,3 5 0 0 25
fs2,0 20 0 0 0
fs3,0 30 0 0 0

Scalable MPC fs1,1−3 0 0 30 0
fs2,0 0 0 20 0
fs3,0 0 0 30 0

F2R2M-SA fs1,1−3 0 20 10 0
fs2,0 0 10 10 0
fs3,0 0 18 12 0

The detailed allocation of different algorithms for 3s80uSNN is illustrated in
Table 4.4, which shows that F2R2M-SA avoids the saturation of channel codes by
applying combinational channel assignment of DCH and HS-DSCH for the advanced
flow fs1,2−3.

In conclusion, F2R2M-SA outperforms the other algorithms. For small size
scenarios, when the conventional approaches can allocate the radio resources prop-
erly, F2R2M-SA consumes less power (47% of MPC solution) by coordinating the
throughput request of the flows and the channel allocation. For large size scenarios,
F2R2M-SA avoids the unnecessary throughput loss by more flexibility on the allo-
cation of the users to each flow, which allows the algorithm to serve more users for
the advanced flow.
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4.4 Synthesis

MBMS RRM problem has been proved to be NP-Hard, which cannot be tackled
by exhaustive approach within practical computation time. The selection of meta-
heuristic is reasonable, since it requires reasonable amount of effort to get a good
solution. As a popular and efficient metaheuristic, the Simulated Annealing (SA)
has been studied to solve the target problem.

In this chapter, the concept of general SA is firstly introduced. Then a modified
SA algorithm, named F2R2M-SA is proposed to solve the MBMS RRM problem. In
the proposed algorithm, the MBMS power counting approach is used to generate the
initial solution. The temperature initialization is applied by a predefined sampling
procedure. For the cooling schedule, the logarithmic cooling schedule is used to de-
crease the temperature. At each temperature, the Metropolis chain is implemented
with 100 × 4Nt(si) iterations, Nt(si) is the number of users receiving the flow fsi,j .
At each iteration, one application of the neighborhood operator, named the multiple
insert operator, is applied to the current flow solution to randomly generate a new
flow solution. When the new solution offers a non-improving fitness (according to
the lexicographic evaluation method), an acceptance probability is calculated by the
difference of solution fitness and two factors Kp and Kt, which are related to the
two-dimensional fitness value.

Together with the existing MBMS RRM algorithms, the proposed F2R2M-SA
is implemented and tested in the same simulation environment. The algorithm
performance is evaluated. Simulation results show that, F2R2M-SA outperforms the
other UMTS existing algorithms: MPC, S-FACH and Dual Tx Mode. The proposed
model provides the best trade off between the power consumption and the service
quality by applying a flow based channel allocation, and reduces the possibility of
radio resource saturation by adapting the combinational channel assignment.





Chapter 5

Solving MBMS RRM Problem by
Tabu Search

In this chapter, a Tabu Search (TS) algorithm is investigated for solving the
MBMS RRM problem. The general TS algorithm is adapted and mapped on the
F2R2M, named F2R2M-TS. Comparing with F2R2M-SA which is proposed in chap-
ter 4, F2R2M-TS can avoid revisiting previous solutions by keeping memory of previ-
ous search steps, which helps to improve the search efficiency. For algorithm design,
three tabu memory structures are proposed based on the model characteristics. Their
performance are compared and evaluated. Furthermore, a tabu repair mechanism
is proposed as extension of the classic TS procedure. This mechanism improves
the search efficiency by self-adapting tabu moves during the search iterations. The
proposed F2R2M-TS is compared with F2R2M-SA and Greedy Local Search (GLS).
Simulation results show that F2R2M-TS outperforms the other two algorithms. The
best solutions found by F2R2M-TS are also compared with the theoretical solution
bounds. Results show that the solutions found by F2R2M-TS are very close or equal
to the theoretical optimum solutions.
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5.1 Introduction of tabu search algorithm

In chapter 3 and chapter 4, the GLS and F2R2M-SA algorithms have been pro-
posed to solve the MBMS RRM problem. The simulations show that they have
already outperformed the existing UMTS approaches. However, both of the al-
gorithms have the shortcoming that they have difficulties to avoid local optima,
making that the best solution found so far is not always found by the algorithms.
The Tabu Search (TS) algorithm is studied to overcome this inconvenience.

Tabu search is a metaheuristic search method, originally proposed by Glover in
1986 [43]. This algorithm guides a local search procedure to explore the solution
space beyond local optimality by using memory structures to avoid revisiting previ-
ous solutions. In the past decade, several applications of TS have been presented in
the field of wireless networks: frequency and channel assignment [63, 59], node plan-
ning and network topology optimization [35], routing optimization [57], etc. This
makes TS also an attractive candidate for solving MBMS RRM problem. The basic
concept of TS is described in this section.

Tabu search enhances the performance of the classical local search method. It
prevents cycling back to previously visited solutions by using memory structure,
called tabu list L. The tabu list records the recent search history, describing the
recently visited solutions or pre-defined sets of rules. If a potential solution has
been previously visited within a certain period, it is marked as “tabu” (forbidden)
so that TS does not consider this solution repeatedly. This memory structure aims
to overcome local optima. Another important element in TS is the neighborhood
structure. At each iteration, TS starts from the current solution x. The trans-
formations that can be applied to x define a set of neighboring solutions, denoted
N(x). N(x) is named the neighborhood of x. For any given solution, there are
many possible neighborhood structures defined by different optimization operators.

Algorithm 8 General TS algorithm [44]
select an initial solution x0
x← x0, f

∗ ← f(x0), x
∗ ← x0, L← ∅ // tabu list is empty

repeat
select x′ in argminx′∈N(x)\L[f(x′)] // the best solution among non tabu
neighboring solutions
update the tabu list L, L← L ∪ {x}
x← x′
if f(x) < f∗ then
f∗ ← f(x), x∗ ← x

end if
until stopping criterion is met
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Algorithm 8 illustrates the general framework of the most commonly used version
of TS. Where x denotes the current solution, x∗ is the best-known solution during
the TS search procedure. f∗ is the fitness value of x∗. N(x) is the neighborhood
of x. At each iteration, the best neighboring solution x′ is selected from all the
neighboring solutions of x. The selected solution should not appear in the tabu
list. Once a new solution x′ is selected, the tabu list is updated with the current
solution and the new solution replaces the current solution. The solution recorded
in the tabu list is named tabu. The number of iterations that one tabu stays in the
tabu list is named tabu tenure. The best-known solution x∗ is updated every time
the current solution is better than the best solution ever found. When the stopping
criterion is satisfied, x∗ is returned as the result of TS algorithm.

5.2 Algorithm design

To better get rid of local optimum and improve the search efficiency, the general
TS algorithm is modified and mapped onto the proposed F2R2M model, named
F2R2M-TS. This section presents the detailed design of F2R2M-TS algorithm. The
top level algorithm framework is described in Algorithm 9.

Algorithm 9 F2R2M-TS algorithm
Require: T (c), D(c), S(c), F (si), M(si), ∀si ∈ S(c)

Ensure: x(c) = {xfsi,j , si ∈ S(c), j ∈ F (si)}
randomly generate x0
x(c)← x0, x(c)

∗ ← x0, f
∗ ← f(x∗(c)), L← ∅

while termination criterion not satisfied do
for all si ∈ S(c) do

for all fj ∈ F (si) do
xfj ← xfsi,j // sequentially select one flow to modify its assignment
select x′fj in argminx′

fj
∈N(xfj

)\L[(F (x′fj )], F (x′fj ) = (Th(x′fj ), Po(x′fj ))

// the best neighborhood non tabu assignment for flow fsi,j
update tabu list L with the move from x′fj to xfj , L← L ∪ {x′fj → xfj}
update current flow solution xfj ← x′fj
update current cell solution x(c) with xfj
if Th(x(c)) < Th(x∗(c))

or (Th(x(c)) = Th(x∗(c)) and Po(x(c)) < Po(x∗(c))) then
x∗(c)← x(c), f∗ ← f(x∗(c))

end if
end for

end for
end while

Algorithm 9 describes the F2R2M-TS procedure. f(x) is the fitness value of
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the solution x, it includes the throughput loss and the transmission power f(x) =

(Th(x), Po(x)). To optimize the fitness value of the cell solution f(x(c)), F2R2M-TS
begins from an initial solution x0. At each iteration, a given flow fj is sequentially
selected. The partitioning of UE for the selected flow, xfj , is then explored. The
associated neighborhood of xfj , named N(xfj ) is generated. Each solution in N(xfj )

could be reached from xfj by an operator named move. The best neighborhood
solution x′fj is then generated from the feasible and admissible subset of N(xfj ).
The tabu list, L, is updated with the reversal move which transfers xfj to x′fj .
The tabu list, L, records the active tabu moves (forbidden moves) for a certain
number of iterations (i.e. tabu tenure). This process is repeated until satisfying the
termination criterion.

In Algorithm 9, a key step is to determine the best flow solution x′fj from the
admissible non tabu neighborhood of the current flow solution N(xfj ), that is to
generate x′fj from N(xfj ). Figure 5.1 illustrates the selection of the best neighboring
solution x′fj in argminx′

fj
∈N(xfj

)\L, and the update of the tabu list L.

Select x’fj from N(xfj)

f(x’fj) is the best neighbor 
found so far?

move(xfj→x’fj) is tabu ?

Still has candidate
in N(xfj)?

xfj ← xfj’; x(c) ← x’(c) ;  update move(xfj’→xfj) as tabu
if f(x(c)) < f(x*(c)) update aspiration criteria

Repaired  move(xfj→x’fj)
is nonempty?

Tabu repair applied to move(xfj→x’fj )

x’(c) is feasible?

Yes

Add x’fj to N(xfj)

Yes

No

Yes

f(x’(c)) is better than the 
best-known fitness f(x*(c))?

No

Pass aspiration criteria
Yes

Yes

No
No

Yes

Update x’(c) ← x(c) with  x’fj

No

No

Figure 5.1: Best neighborhood selection in F2R2M-TS

As shown in Figure 5.1, at each iteration, for each candidate neighborhood so-
lution x′fj , its feasibility and its admissibility is verified. x′fj is called “admissible”
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when it is not classified as tabu or is a tabu move but pass the aspiration criteria.
For feasibility control, the new candidate neighborhood solution x′fj will firstly re-
place the current flow solution xfj within the current cell solution x(c). Then the
power consumption of the obtained new candidate cell solution, x′(c), is calculated.
When Po(x′(c)) is less than the maximum power budget Pmbms_budget, x′(c) (as well
as x′fj ) is called “feasible”. It is necessary that an admissible solution should first
be a feasible solution.

As shown in Figure 5.1, if x′fj is tabu, the fitness of the solution x′fj will be
firstly calculated, and then the fitness of the other flow solutions x′fk , k 6= j, hence
the aggregated fitness value f(x′(c)) is obtained. f(x′(c)) will then be compared
with the best-known fitness f(x∗(c)). If f(x′c) is better than f(x∗c), x′fj will be
accepted even if it is tabu. This procedure is named aspiration criterion, which
overrides a solution tabu state when it obtains a fitness value which is better than
the best ever known flow solution. Then the best known solution and the tabu
list will be updated. When x′(c) does not satisfy the aspiration rule, a tabu repair
mechanism is proposed to extend the classic tabu search. This mechanism deletes
the tabu attributes from the tabu-declared move that transfers xfj to x′fj , which
eventually leads to a new admissible solution x′fj . x′fj is then be packed in the
candidate solution lists. The aspiration criteria and the repaired tabu mechanism
are important elements that introduce flexibility in the solution exploration process
of F2R2M-TS.

5.2.1 Move operator and neighborhood generation

In the study of optimization strategies in chapter 3, two move operators are
designed: the Single Insert (SI) operator δSI (one user moves at a time) and the
Multiple Insert (MI) operator δMI (several users move at a time). It is showed that
δMI can easily escape from local optimal solutions while δSI could not escape from
the initial solution space. Hence it is harder for δSI to get rid of local optimum than
δMI .

Hereby the tabu search neighborhood is considered based on δMI . As introduced
in section 2.2, a MI move operation is implemented in five steps:

1. Choose a flow fsi,j to change its current allocation solution xfsi,j .

2. From the UE partition in xfsi,j , choose a channel category iniCh as a “source”
set, UEiniCh 6= ∅.

3. From the UE partition in xfsi,j , select a channel category tarCh as a “desina-
tion” set, tarCh 6= iniCh.

4. Select one user tk from UEiniCh.
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5. According to iniCh and tarCh, move tk or a block of users including tk from
UEiniCh to UEtarCh.

Based on these five steps, the move structure is designed, including five variables,
shown in Table 5.1.

Table 5.1: Move structure

Variable Note Value

sId service ID 1, . . . , Ns

fId flow ID 1, . . . , Nf (sId)

iniCh channel ID of source user set 0, 1, 2, 3

tarCh channel ID of destination user set 0, 1, 2, 3

uList list of users to be moved 1, . . . , Nt(sId)

In the move structure, integer values are used to represent the channel ID,
hence 0, 1, 2, 3 represent the channels FACH, DCH, HS-DSCH and no transmis-
sion (NOCH). uList includes the moved users ID, and depends on the values of
iniCh and tarCh. When the move concerns the source channel is ch1 (DCH) or ch2
(HS-DSCH), the δMI operator moves only one user. While for the source channel
ch0 (FACH), the moved users depends on the changed FACH coverage. For exam-
ple, if the user tk is moved from UEhs to UEfach, the FACH coverage is extended to
reach tk and all the users nearer than tk can now hear from FACH transmission and
should be (if currently they are not in) moved to FACH user set. Therefore, when tk
is chosen to be inserted into UEfach, F2R2M-TS will first check the distribution of
users served by the other channels, and then pick out the users within the enlarged
coverage to UEfach. At the contrary, if the source channel iniCh is FACH, the
move will leads to reducing the FACH coverage and all users farther than tk within
UEfach should be inserted to UEtarCh.

x1 : (−1 1 2 3 4 5︸ ︷︷ ︸ −1 7 8︸ ︷︷ ︸ −1 6 9 10︸ ︷︷ ︸ −1 11︸ ︷︷ ︸) (5.1a)

x2 : (−1 1︸ ︷︷ ︸ −1 7 8︸ ︷︷ ︸ −1 2 3 4 5 6 9 10︸ ︷︷ ︸ −1 11︸ ︷︷ ︸) (5.1b)

x3 : (−1 1︸ ︷︷ ︸ −1 2 7 8︸ ︷︷ ︸ −1 3 4 5 6 9 10︸ ︷︷ ︸ −1 11︸ ︷︷ ︸) (5.1c)

x4 : (−1 1︸ ︷︷ ︸ −1 2 3 7 8︸ ︷︷ ︸ −1 4 5 6 9 10︸ ︷︷ ︸ −1 11︸ ︷︷ ︸) (5.1d)

x5 : (−1 1︸ ︷︷ ︸ −1 2 3 4 7 8︸ ︷︷ ︸ −1 5 6 9 10︸ ︷︷ ︸ −1 11︸ ︷︷ ︸) (5.1e)

In Equation 5.1, five examples of δMI operators are conducted. This example
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shows a case where the cell includes only one service with one flow and the solution is
changed from x1 to x2 and so on until x5. According to the solution representation
introduced in chapter 3, solutions are represented as a vector of four user sets:
UEfach, UEdch, UEhs and UEnoch, these user subsets are delimited by −1. In each
subset, users are ordered in ascending order of their distances from the base station.

Table 5.2 describes the first move, m1, modifying the solution x1 to x2.

Table 5.2: A move example m1: from x1 to x2

Variable sId fId iniCh tarCh uList

Value 1 1 0 2 2, 3, 4, 5

The users t2, t3, t4 and t5 are moved from the FACH channel to a HS-DSCH
channel with tk = t2. The coverage threshold dthr is set to d2. t1 is kept within
the FACH coverage because it is the nearest user from the base station. Whereas if
dthr < d1, the FACH coverage would be further reduced, bringing out the t1 from
the FACH coverage. Then from x3 to x5, one user is selected to move from the
HS-DSCH to the DCH channel.

Algorithm 10 shows the neighborhood generation of solution xfsi,j , based on
δMI .

5.2.2 Design of tabu memory structures

The tabu list is a memory structure dynamically modified during the search
procedure. The tabu search records the characteristics of previous moves. Once a
solution is updated, the modified attributes by the current move will be set tabu
active, and recorded in the tabu list. In the following iterations, the tabu evaluation
procedure compares the attributes of a potential move operation with the tabu
attributes stored in the tabu list. The move is considered as tabu if a matching is
found. The moves declared as tabu will be ignored except if it satisfies the aspiration
criterion. By doing this, re-visiting of recent solutions through non-improving moves
are prevented. In TS heuristic, tabu memory structures plays an important role in
the algorithm performances. Based on the move operator, three tabu structures are
defined. As shown in Table 5.3, these move based tabu structures include three,
four and five variables, respectively.

As shown in Table 5.3, the reverse move of the selected one is considered as
tabu. In addition to definitions in Table 5.1, uId refers to the user that recently
moved in a recent iteration. tabu-tri means that the current transmission channel
of the user uId on the flow fId belonging to the service sId is tabu-active (should
temporarily not be modified). tarCh represents the target channel for uId, therefore
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Algorithm 10 Neighborhood_generate()
Require: xfsi,j

,M(si), i ∈ S(c), j ∈ Nf (si)

Ensure: N(xfsi,j
)

for all user t ∈M(si) do
UEnofach = ∪ch 6=fachUEch(fsi,j)

if t ∈ UEfach(fsi,j) then
for all tar = 1 or 2 or 3 do

new move: sId = i; fId = j; iniCh = 0; tarCh = tar

uList = {v ∈ UEfach(fsi,j), dv < dt}
end for

end if
if t ∈ UEdch(fsi,j) then

for all tar = 0 or 2 or 3 do
new move: sId = i; fId = j; iniCh = 1; tarCh = tar

if tar = 0 then
uList = {v ∈ UEnofach, dv ≤ dt}

else
uList = t

end if
end for

end if
if t ∈ UEhs(fsi,j) then

for all tar = 0 or 1 or 3 do
new move: sId = i; fId = j; iniCh = 2; tarCh = tar

if tar = 0 then
uList = {v ∈ UEnofach, dv ≤ dt}

else
uList = t

end if
end for

end if
if t ∈ UEnoch(fsi,j) then

for all tar = 0 or 1 or 2 do
new move: sId = i; fId = j; iniCh = 3; tarCh = tar

if tar = 0 then
uList = {v ∈ UEnoch(fsi,j), dv ≤ dt}

else
uList = t

end if
end for

end if
end for
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Table 5.3: Three tabu structure definitions

tabu-tri tabu-qua tabu-pen

sId sId sId

fId fId fId

uId uId uId

tarCh tarCh

iniCh

tabu-qua stipulates that a given destination channel for uId is tabu-active, which
means that the reallocation of a given type of channel to the user is not allowed for
this flow. Finally, tabu-pen sets that the transfer of user uId from iniCh to tarCh
is tabu-active. tabu-tri is the most restrictive tabu structure.

Following the example in Equation 5.1, m1 transfers x1 to x2. Because x2 is the
best neighbor, it replaces x1, and the reverse move of m1 is recorded as tabu, as
shown in Table 5.4. The tarCh and iniCh in tabu elements are, respectively, the
initial channel and the target channel in the move operator.

Table 5.4: Tabus states (type tabu-pen) based on move m1

Variables tabu1 tabu2 tabu3 tabu 4

sId 1 1 1 1

fId 1 1 1 1

uId 2 3 4 5

iniCh 2 2 2 2

tarCh 0 0 0 0

5.2.2.1 Tabu evaluation

During the search iterations, the potential moves are evaluated by comparing the
move attributes with the tabu elements stored in the tabu list. A move is declared
as tabu when a matching is found. Only one type of tabu structure is applied in
each TS procedure. Assume that tabu-pen is decided to evaluate the tabu moves, a
move for x5 cannot put the users t2 or t3 from the iniCh 2 to the tarCh 0 as those
moves are tabu.
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Table 5.5: A tabu move for x5

Variable sId fId iniCh tarCh uList

Value 1 1 2 (HS-DSCH) 0 (FACH) 2, 3

5.2.3 Adaptive tabu tenure

The number of iterations that an attribute remains tabu-active is called its tabu
tenure. In general it could be fixed as predefined value or dynamically calculated.
Several studies [34, 71] have shown that a dynamic tabu tenure could be more
effective than a static value. Here, the tabu tenure varies for different tabu attributes
and different problem sizes, which provides a dynamic and robust form of search
[44]. In this work, the dynamic tabu tenure is randomly selected from the interval
[
√
N
2 , 3

√
N
2 ], where the value of N depends on the type of tabu attribute. Assume that

an instance has Ns services, each has Nf (si) = Nf flows and Nt(si) = Nt users. In
the case of tabu-pen structure there are N = 12 ·Ns ·Nf ·Nt possible moves (channel
modification) from a current solution. Similarly, for tabu-qua, N is the number of
possible target channel setting for the whole problem, hence N = 3 · Ns · Nf · Nt.
Finally, for tabu-tri, N = Ns · Nf · Nt. Therefore, the more restrictive the tabu
structure is, the shorter the tabu tenure, and consequentially the shorter the tabu
list.

5.2.4 Tabu repair mechanism

To explore new candidate solutions, the tabu repair mechanism is proposed based
on the definitions of tabu and the move structure. It is done by re-allowing a tabu-
declared move by modifying a sub-set of its attributes. In this application, the user
attribute is modified by the tabu repair mechanism.

1
sId

1
fId

2
iniCh

0
tarCh

5      6      9      10
uList

Tabu elements, to delete from uList

1
sId

1
fId

2
iniCh

0
tarCh

6       9       10
uList

Tabu 
Move

Repaired 
Move

Figure 5.2: Tabu repair mechanism: an example

As illustrated in Figure 5.2, a tabu move is selected to be applied to x5: move
the users t5, t6, t9 and t10 from HS-DSCH to FACH. The selected move is tabu
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because it includes one tabu element, i.e. users from HS-DSCH to FACH. To repair
this move, the user t5 is deleted from uList, then the repaired move is added to the
candidate list. The tabu repair mechanism improves the traditional TS search in
such a way that, it not only prevents re-visiting a previous non-improving move,
but also introduces the self-adaptation mechanism for the current moves during the
search iterations. Therefore it could further improve the search efficiency.

5.3 Experiments and results analysis

In this section, simulations are conducted to evaluate the proposed F2R2M-TS
algorithm. First, all the six combinations of tabu search strategies (three different
tabu memory structures, with and without tabu repair mechanism) are compared,
and the best strategy is selected. Then, F2R2M-TS is compared with the other two
metaheuristic algorithms, in terms of both the solution quality and the computation
time. Finally, F2R2M-TS performance is compared with the theoretical solution
bound generated by the multiple-choice knapsack problem based modeling. The
results show that F2R2M-TS can find optimum or near-optimal solutions for MBMS
RRM problem.

5.3.1 Analysis of tabu search strategies

The performance of the different TS strategies are conducted with two scenarios:
3s50uSSN and 3s80uSSN. We define a metric called rank value to compare the best
solution found of different approaches. The ranked values are obtained by comparing
the power and throughput loss of different best solutions found in lexicographic
order: x′ is evaluated as a better solution than x when Th(x′) = Th(x) and Po(x′) ≤
Po(x), or Th(x′) < Th(x). For each scenario, each TS method is applied 1000 trials.
6000 solutions are then collected together, then compared and listed in descending
order of quality. Each solution obtains a rank value corresponding to its index,
indicating its quality level in the solutions population. The lower the rank is, the
better the quality.

Figure 5.3 draws the curves of solutions ranks obtained by each TS approaches.
The x-axis orders the 1000 solutions obtained by one TS approach from the best to
the worst. The y-axis shows the solutions ranking among the 6000 final solutions,
where the lower ranks correspond to the best solutions. In Figure 5.3, the red, black
and blue lines are used to represent the TS solutions applying tabu-tri, tabu-qua and
tabu-pen tabu structure. The dash lines are solutions of TS without Tabu Repair
Mechanism (TRM), while the solid lines are solutions applying TRM.

According to the results shown in Figure 5.3, tabu-pen provides the best solu-



122 Chapter 5. Solving MBMS RRM Problem by Tabu Search

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Solution indexed in descending order of quality

S
ol

ut
io

n 
R

an
k

3s50uSSN

 

 
tri w rep
tri wo rep
qua w rep
qua wo rep
pen w rep
pen wo rep

(a) 3s50uSSN

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Solution indexed in descending order of quality

S
ol

ut
io

n 
R

an
k 

(t
he

 lo
w

er
 th

e 
be

tte
r)

3s80uSSN

 

 
tri w rep
tri wo rep
qua w rep
qua wo rep
pen w rep
pen wo rep

(b) 3s80uSSN

Figure 5.3: TS strategies comparison
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tions set among the three tabu structures and tabu-qua provides the worse solutions
quality. The comparison of the six TS strategies according to the tabu repair mech-
anism shows that this mechanism significantly improves the solution whatever the
tabu structure.

Table 5.6 and Table 5.7 illustrate the best solutions found (among 150 trials)
of tabu search with and without tabu repair mechanism. The solution fitness are
represented in two dimensions: Th(x) in percentage and Po(x) in Watts. The
maximum power budget is set to 19 W (solutions with Th(x) < 19 are feasible)
and all solutions are feasible. The solutions found by TRM approach (Table 5.6)
consume less power than without TRM in Table 5.7, which confirms the conclusions
of Figure 5.3(a) and Figure 5.3(b).

Table 5.6: TS solutions without tabu repair mechanism

Scenarios tabu-tri tabu-qua tabu-pen

1s60uS 0%, 12.46 W

1s150uS 0%, 15.38 W

2s50uSN 0%, 11.16 W 0%, 11.27 W 0%, 11.12 W

2s50uSS 0%, 10.71 W 0%, 10.74 W 0%, 10.70 W

3s50uSNN 0%, 9.27 W 0%, 9.50 W 0%, 9.27 W

3s50uSSN 0%, 9.27 W 0%, 9.53 W 0%, 9.27 W

3s80uSNN 0%, 14.07 W 0%, 14.46 W 0%, 14.06 W

3s80uSSN 0%, 13.45 W 0%, 13.59 W 0%, 13.50 W

Table 5.7: TS solutions with tabu repair mechanism

Scenarios tabu-tri tabu-qua tabu-pen

1s60uS 0%, 12.46 W

1s150uS 0%, 15.38 W

2s50uSN 0%, 11.12 W 0%, 11.17 W 0%, 11.12 W

2s50uSS 0%, 10.70 W 0%, 10.73 W 0%, 10.54 W

3s50uSNN 0%, 9.27 W 0%, 9.5 W 0%, 9.27 W

3s50uSSN 0%, 9.27 W 0%, 9.40 W 0%, 9.27 W
3s80uSNN 0%, 14.07 W 0%, 14.26 W 0%, 14.06 W

3s80uSSN 0%, 13.43 W 0%, 13.50 W 0%, 13.43 W

Table 5.7 indicates that TS with tabu-pen always provides the best solution
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(underlined). This tabu declaration method is less strict than the two others, hence
it provides more flexible neighborhood exploration. Moreover, although tabu-tri is
the most strict tabu type, the adaptive tabu tenure mechanism loosens its stringency.
The tabu list for tabu-tri is shorter since it has smaller tenure. Therefore, it can
sometimes also find good solutions as tabu-pen. Besides, the solutions in Table 5.7
are better than those of Table 5.6, which shows the advantage of the tabu repair
mechanism.

5.3.2 Results comparison with other metaheuristic algorithms

The proposed TS algorithm is compared with the Greedy Local Search (GLS)
in chapter 3 and the Simulated Annealing (SA) in chapter 4. In Figure 5.4, the
bars show the rank distributions of F2R2M-TS, GLS and F2R2M-SA solutions for
four scenarios. Here F2R2M-TS applies the tabu repair mechanism and uses the
tabu-pen structure to record the tabu moves.
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Figure 5.4: Rank distributions of three metaheuristic algorithms

GLS starts from a random initial solution, evaluates all its feasible neighbors and
replaces the current solution by the neighborhood solution that has the best fitness.
GLS stops at the local optimum when no neighbor is better than the current solution.
F2R2M-SA generates an initial solution by scalable MBMS power counting, then
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it randomly modifies the current solution in each iteration. The new solution will
be accepted if it has better fitness than the current one, else it is accepted with
an acceptance probability depending on the current temperature. 100 × 4Nt(si)

iterations are performed at each temperature until the temperature declines under a
given threshold. The following experiments are conducted to perform the algorithm
comparison. For each given scenario, each algorithm is run 300 times. All solutions
of these algorithms are ordered in the same database. The ranking number ranges
from 1 to 900 and the smaller the rank is, the better the solution. This range is
divided into 16 subsets, the number of ranking values in each subset is then counted.
Such number reflects the ranking distribution and shows the distribution of solution
ranking for a corresponding algorithm.

Table 5.8 lists the best solutions found by the three metaheuristics over the
18 scenarios (each algorithm runs 300 trials per scenario). The feasible solutions
(Po < 19W ) are underlined.

In Table 5.8, for the small-sized scenarios (one service), all algorithms can find
the same solutions, for both scalable and non-scalable transmission schemes. That
is because the landscape of these scenarios is quite smooth, having few local optima.

However, for the large-sized scenarios, F2R2M-TS outperforms GLS while F2R2M-
SA obtains worse solution than GLS. GLS is the most simple heuristic, but is not
robust in terms of solution quality. A well-known disadvantage of GLS is that, when
it reaches a state where no further improvement can be found, GLS stops the so-
lution modification and output the current solution, such states are referred to as
local optimum.

Besides, although SA is easy to implement and adaptable [69], the randomness
of the solution update mechanism and the complex search parameter setting (i.e.
cooling schedule and acceptance possibility) bring instability in solution quality.
Because the solution spaces of the large-sized scenarios are rugged, SA is not suit-
able for F2R2M for its randomness characteristics in new solution selection and
acceptance. It should need more tests with different parameter setting to improve
it.

In this work, the simulations are conducted on Linux PC with Intel(R) Core(TM)
i5 CPU 750 @ 2.67GHz. Table 5.9 shows the average computation time of the three
approaches for all scenarios on 300 runs. The consuming time of the search procedure
in F2R2M-TS is about 1 to 3 seconds in the regular Linux PC. It is acceptable for
a RNC server. A stop criterion is defined both in F2R2M-SA and F2R2M-TS;
they stop when the consecutive number of iterations with non-improving solutions
(comparing to the best solution found) is more than 100Nf , where Nf is the total
number of flows in the cell. GLS costs the shortest time since it does not conduct the
tabu evaluation. For simple scenarios, F2R2M-TS costs longer time than F2R2M-
SA because it requires to evaluate and update the tabu list. For complex scenarios,
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Table 5.8: Best solutions found by three metaheuristic algorithms

Scenarios F2R2M-TS GLS F2R2M-SA

1s30uN 0%, 5.18 W 0%, 5.18 W 0%, 5.18 W

1s30uS 0%, 5.31 W 0%, 5.31 W 0%, 5.31 W

1s60uN 0%, 11.62 W 0%, 11.62 W 0%, 11.62 W

1s60uS 0%, 12.82 W 0%, 12.82 W 0%, 12.82 W

1s150uN 0%, 14.65 W 0%, 14.65 W 0%, 14.65 W

1s150uS 0%, 15.38 W 0%, 15.38 W 0%, 15.38 W

2s20uSN 0%, 4.328 W 0%, 4.66 W 0%, 7.83 W

2s20uSS 0%, 4.35 W 0%, 5.12 W 0%, 8.80 W

2s50uSN 0%, 11.12 W 0%, 11.17 W 0%, 10.19 W

2s50uSS 0%, 10.94 W 0%, 10.92 W 0%, 13.06 W

3s30uSNN 0%, 5.33 W 0%, 6.15 W 0%, 8.72 W

3s30uSSN 0%, 5.31 W 0%, 6.27 W 0%, 10.97 W

3s50uSNN 0%, 9.27 W 0%, 11.18 W 0%, 18.8 W

3s50uSSN 0%, 9.27 W 0%, 11.38 W 0%, 18.79 W

3s80uSNN 0%, 14.06 W 0%, 14.49 W 0 %, 15 W

3s80uSSN 0%, 13.43 W 0%, 14.52 W 0%, 14.36 W

3s100uSNN 2.35 %, 18.11 W 4.12 %, 17.51 W 11.77 %, 18.96 W

3s100uSSN 0.59 %, 17.86 W 1.76 %, 18.11 W 15.89 %, 18.79 W

Table 5.9: Average time cost (second)

Scenario F2R2M-TS GLS F2R2M-SA

1s60uS 0.65 0.02 0.81

1s150uS 1.01 0.04 0.92

2s50uSN 1.36 0.16 1.24

2s50uSS 1.42 0.26 1.35

3s50uSNN 1.87 0.32 1.82

3s50uSSN 1.84 0.28 1.95

3s80uSNN 2.88 0.37 3.52

3s80uSSN 2.99 0.34 3.78
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F2R2M-SA costs much longer time than F2R2M-TS because at each iteration the
probability of randomly generating an unfeasible solutions is too high, therefore,
the most computation time is spent on searching for (randomly pick out) a feasible
solution. As F2R2M-TS can quickly find a good enough solution, the non-improving
iteration number larger than 100Nf is earlier satisfied than for F2R2M-SA for the
complex scenarios.

5.3.3 Performance comparison with theoretical lower bounds

In chapter 3, it has been shown that MBMS RRM problem can be approximated
as a Multiple-Choice Knapsack Problem (MCKP) when relaxing the OVSF code
constraints. Solving the MCKP gives the solution lower bound for the MBMS
RRM problem, which can be considered as the approximation of the MBMS RRM
optimum solution. In this section, to better evaluate the performance of F2R2M-TS,
a comparison is conducted between F2R2M-TS and the theoretical solution bound.
Table 5.10 shows the lower bounds by solving the MCKP using Gurobi solver, and
the best solutions found by using F2R2M-TS. It shows that, in the given scenarios,
F2R2M-TS can find the optimum or near-optimum solutions.

Table 5.10: Solution lower bounds found by Gurobi and the best solutions found by
F2R2M-TS

Scenarios Gurobi F2R2M-TS

1s10u128N 0%, 1.352 W 0%, 1.352 W

1s10u128S 0%, 1.34 W 0%, 1.34 W

2s20uSN 0%, 4.328 W 0%, 4.328 W

2s20uSS 0%, 4.263 W 0%, 4.346 W

3s30uSNN 0%, 5.297 W 0%, 5.328 W

3s30uSSN 0%, 5.231 W 0%, 5.314 W

5.4 Synthesis

In this chapter, the Tabu Search (TS) algorithm is conceived to solve the MBMS
RRM problem. First, the general concepts of TS are introduced then an adaptation
of TS algorithm, named F2R2M-TS, is proposed to solve the MBMS RRM problem.

In the proposed algorithm the move structure is designed based on the multiple
insert operator δMI . Each move includes five parameters. From the move structure,
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the neighborhood generation is illustrated. This procedure explores all the candidate
moves and constructs the candidate move list.

The tabu memory structure plays a key role for the search efficiency. Three
tabu structures are proposed for tabu declaration. Tabu-tri stipulates that the
modification of the allocated channel of a certain user for a given flow is tabu-
active. Tabu-qua stipulates that a certain target channel for a given user is tabu-
active, hence this tabu structure forbids to insert a given user back to a given
channel. Tabu-pen sets that transferring a given user from an initial channel to a
target channel is tabu-active. Tabu-tri is the most restrictive tabu structure. An
aspiration mechanism is used to authorize a tabu move when the candidate solution
that can be obtained is the best ever known solution. Moreover, based on the
characteristics of the application, a mechanism named tabu repair is proposed to re-
allow a tabu-declared move by modifying a sub-set of its attributes. This mechanism
makes the moves self-adaptive during the search iterations and therefore improves
the search efficiency.

The performance of six alternatives of F2R2M-TS strategies are compared: three
tabu declaration methods, with and without tabu repair mechanism. A performance
metric named rank distribution is proposed for the comparison. The comparative
study shows that tabu-pen is more efficient than the other two tabu structures,
and the proposed tabu repair mechanism leads to improve the search performance
significantly. Then comparison simulations among F2R2M-TS, F2R2M-SA and GLS
are carried out in a variety of scenarios. The simulations show that F2R2M-TS
provides higher robustness in terms of solution quality, and higher efficiency in terms
of time cost. Besides, F2R2M-TS can find optimum and near-optimum solutions
comparing to the theoretical solution bounds found with the MCKP model solved
exactly with the Gurobi solver.



Conclusion and Future Work

The conflict between the demand of high throughput multimedia multicast ser-
vice and the reality of limited radio resources results in strong requirement for
efficient radio resource allocation schemes in UMTS MBMS system. Some research
work has been done on this field, but in general there are several shortcomings.
Firstly, almost all existing schemes try to solve the issue in a perceptional way
but lacking systematic analysis of the targeting problem. Secondly, some existing
schemes lack enough flexibility so that they can only work in certain scenarios but
has limitations in other scenarios. Thirdly, the existing schemes do not fully explore
the solution space, therefore the obtained allocation solutions are not optimal. To
address these issues, this Ph.D. dissertation proposed a systematic approach to solve
the MBMS RRM problem. This approach covers a formal mathematical modeling
of the targeting problem, an in-depth analysis of the solution boundary and the
solution space based on the proposed model, as well as practical algorithms which
can achieve optimal or near-optimal solutions. In the following two sections, first,
the contributions accomplished by this Ph.D work will be summarized, and then,
the perspectives of further work will be outlined.

A summary of contributions

The first contribution of this thesis is the proposal of a formal modeling of the
MBMS RRM problem, named as F2R2M, as well as a C++ based simulator which
implemented the proposed model. The work shows that MBMS RRM problem can
be modeled as a combinational optimization problem. To better explore the solution
space, the model proposes the flexibility of transmission mode selection and scalable
multimedia streaming. F2R2M stipulated the definition of input parameters, deci-
sion parameters and optimization objectives. Seven modules were abstracted in this
model, constructing an iterative architecture to explore the solution space. The allo-
cation procedure designed in this model targets at finding good or optimum solution
for two-dimensional objective: a) the quality of resources allocation in terms of ser-
vice satisfaction; b) the resource consumption in terms of transmission power and
channel code occupation. Guided with a proposed lexicographic-order evaluation
criteria, this model aimed to find the optimal radio resource assignment with satisfi-
able throughput requirement and minimal transmission power. The proposed model
has been implemented as a simulator containing the abstraction of MBMS RRM pro-
cedure, as well as the power emulator and the OVSF code allocator. In particular,
the transmission power for different MBMS channels are simulated. Simulations
showed that the transmission power is non-linear and quite dynamic depending on
the user scenarios. Such results justified that, the concept of flexible radio resource
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management is a reasonable choice for minimizing the power consumption as well
as maximizing the cell capacity.

The second contribution is the mathematical approximation of the MBMS RRM
problem. To understand the problem complexity and the solution boundaries, the
work proved that the studied problem could be approximated as a Multiple-Choice
Knapsack Problem (MCKP) by relaxing the OVSF code constraints. In the MCKP
based formulation, each class is associated with a given flow of service. Each class
includes multiple items, which are potential allocation scheme for the associated
flow. Such finding generates two outcomes. First, the NP-Hard proof for MBMS
RRM is self-contained because MCKP is NP-hard, in which the solution size is
exponentially increased with the number of users. Second, solving MCKP could
give theoretical solution bounds for the MBMS RRM solver.

In the third contribution, to illustrate the structure of solution space for the tar-
geting problem, the fitness landscape analysis technique was conducted on F2R2M.
In this work, the solution representation and solution distance measurement were
defined. Then two landscapes differentiated by two neighborhood operators, single
insert operator and multiple insert operator, were generated. The characteristics
of the studied problem were analyzed regarding the search space and the solution
distribution. Simulations showed that the solution space is rugged for the targeting
problem, meaning that the search space is filled with local optima. Simulations also
showed that the multiple insert operator is better than the single insert operator for
efficient search.

The forth contribution is the proposal of a modified Simulated Annealing (SA)
algorithm to solve the MBMS RRM problem. The work showed that it is feasible to
modify and map SA algorithm on the proposed model, named F2R2M-SA. F2R2M-
SA generates the initial solution based on the MBMS power counting algorithm for
each flow of services. In each iteration of the search procedure, the new solution is
randomly generated by one application of the multiple insert neighborhood operator.
The new solution is accepted when it is better than the current solution, otherwise,
to prevent the search procedure to stick in a local minimum, the new solution is
rejected with an acceptance probability. The acceptance probability function is
composed by two parameters Kp and Kt, which are related to the two-dimensional
fitness values (the power and the allocated throughput). Simulation results show
that F2R2M-SA can find better solutions than the other UMTS existing algorithms.
F2R2M-SA obtained all feasible solutions while the existing algorithms obtained
either unfeasible solutions (power over the maximum limit), or feasible solutions with
low QoS (loss of throughput). The simulation results of F2R2M-SA proved that,
the proposed model could provide the solution balancing the power consumption
and the service quality, and reduce the possibility of radio resource saturation by
adapting the combinational channel assignment.
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In the fifth contribution, the general Tabu Search (TS) algorithm was modified
and mapped on F2R2M, named F2R2M-TS. Comparing with F2R2M-SA, this al-
gorithm further improves the search efficiency and solution quality by avoiding to
re-visit the previous found solutions. Specific to this application, three tabu struc-
tures for tabu evaluation are defined to conduct the tabu evaluation. Simulation
results show that the tabu structure tabu-pen offers the best performance. Besides,
a mechanism named tabu repair is designed to extend the classic TS algorithm.
Simulation results show that, this mechanism explores more potential solutions and
provides higher solution quality. Such mechanism re-allows a tabu-declared move
by modifying a sub-set of the tabu attributes, so that the search not only avoids
re-visiting a previous bad solution but also self-adjusts to the optimal solution. To
better compare the different metaheuristic algorithms, a metric called rank distri-
bution is proposed to compare the statistics of the best solutions found by different
algorithms. Simulations are conducted on the F2R2M simulator and the results
show that F2R2M-TS could find better solutions than F2R2M-SA and Greedy Lo-
cal Search (GLS) within acceptable computation time. The best solutions found by
F2R2M-TS are also compared with the theoretical solution bounds found by the
MCKP solver. It shows that they are equivalent with or closely approaching the
theoretical optimal solutions.

Perspectives for further work

For further research, there are sill some improvements which can be done based
on the current work.

Scenario tracking. In the current work, RNC assumes that the user scenario
is unchanged within a very short amount of time (e.g. 1 seconds). Therefore, the
search space stays constant before the best solution found is obtained by the MBMS
RRM solver. However, in hot-spot locations, for example the city center, the user
scenario partially changes in a very short time. It means that the search space is
gradually changed before a search is finished. It will be interesting to study how
robust our current algorithms can be in such situation. On the other hand, in
reality, there are similarities between two subsequent user scenarios. This gives the
opportunity that the best solution found for the previous scenario could be used to
speed up the search to solve the next scenario. It results in an iterative solver which
is tracking the field scenario changes. A new dimensional research can be explored
on such tracking mechanism.

Computation speed up by GPGPU programming. In the current implemen-
tation, the averaged computation time of the proposed metaheuristic algorithms for
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solving MBMS RRM is about 1 second in regular Linux PC. It is acceptable for
a RNC server but the computation time can be significantly shortened by pro-
gramming on General-Purpose Graphics Processing Units (GPGPU). This requires
the adaption of MBMS RRM algorithms such that it can be parallelized and then
mapped into a GPGPU architecture, e.g. CUDA [41]. Some literatures about par-
allel metaheuristics are listed [62, 33, 58]. A speed up of the MBMS RRM solver
will give performance improvement in dynamical scenarios.

Extend the concept to E-MBMS system. The Evolved MBMS (E-MBMS)
has been standardized in various groups of 3GPP as part of LTE release 9 [7]. The
physical layer of E-MBMS in LTE is different comparing with MBMS in UMTS but
the similar concept of F2R2M can be extended for E-MBMS by replacing OVSF
codes with time/frequency resource blocks. More flexible variants E-MBMS stan-
dards will better fit the flexible radio resource management concept and therefore
better performance gain can be expected.
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Appendix A: Acronyms

3GPP 3rd Generation Partnership Project

4G 4th Generation

AMC Adaptive Modulation and Coding

AUC Authentication Center

AGWN Additive Gaussian White Noise

BLER Block Error Rate

BMSC Broadcast Multicast Service Centre

BS Base Station

BTS Base Transceiver Station

CAGE Compound Annual Growth Rate

CBS Cell Broadcast Service

CDMA Code Division Multiple Access

CM Connection Management

CN Core Network

CNIR Carrier Noise and Interference Ratio

CPICH Common Pilot Channel

CQI Channel Quality Information

CS Circuit Switched

CUDA Compute Unified Device Architecture

DCH Dedicated Channel

DPS Dynamic Power Setting

DTM Dual Transmission Mode

Eb/No Energy per Bit to Noise power spectral density ratio

Ec/No Energy per Chip to Noise power spectral density ratio

E-MBMS Evolved Multimedia Broadcast Multicast Service

F2R2M Flexible Radio Resource Management Model

FACH Forward Access Channel



FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

GGSN Gateway GPRS Support Node

GLS Greedy Local Search

GMM GPRS Mobility Management

GMSC Gateway Mobile Switching Center

GPGPU General-Purpose Graphics Pocessing Units

GPRS General Packet Radio Service

GSM Global System for Mobile communications

KP Knapsack Problem

HARQ Hybrid Automatic Repeat reQuest

HLR Home Location Register

HSDPA High Speed Downlink Packet Access

HS-DSCH High Speed Downlink Shared Channel

IGMP Internet Group Management Protocol

IP Internet Protoco

ITU International Telecommunication Union

LTE Long Term Evolution

MAC Media Access Control

MBMS Multimedia Broadcast Multicast Service

MCCH MBMS Control Channel

MCKP Multiple-Choice Knapsack Problem

MKP Multi-dimensional Knapsack Problem

ML Multilayer (transmission scheme)

MM Mobility Management

MMKP Multi-dimensional Multiple-choice Knapsack Problem

MPC MBMS Power Counting

MSC Mobile Switching Center

MSCH MBMS Scheduling Channel

MTCH MBMS Point-to-Multipoint Traffic Channel

OVSF Orthogonal Variable Spreading Factor

PDP Packet Data Protocol

PHY Physical layer

PS Packet Switched

PTM Point-to-Multipoint



PTP Point-to-Point

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RLC Radio Link Control

RNC Radio Network Controller

RNS Radio Network Subsystem

RRC Radio Resource Control

RRM Radio Resource Management

SA Simulated Annealing

S-CCPCH Secondary Common Control Physical Channel

SF Spreading Factor

SGSN Serving GPRS Support Node

SINR Signal to Interference Noise Ratio

SL Single Layer (transmission scheme)

SM Session Management

STTD Spatio-Temporal Transmit Diversity

TDMA Time Division Multiple Access

TFCI Transport Format Combination Indicator

TFI Transport Format Indicato

TS Tabu Search

TTI Transmission Time Interval

UE User Equipment

UMTS Universal Mobile Telecommunications System

USIM UMTS Subscriber Identity Module

UTRAN UMTS Terrestrial Radio Access Network

VLR Visitor Location Register

WCDMA Wideband Code Division Multiple Access
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Appendix B: CQI mapping table

Table B.1: CQI mapping table [13]

CQI value Transport block size (bits) Num. of codes Modulation Total bit rate (kbps)

1 137 1 QPSK 480

2 173 1 QPSK 480

3 233 1 QPSK 480

4 317 1 QPSK 480

5 377 1 QPSK 480

6 461 1 QPSK 480

7 650 2 QPSK 960

8 792 2 QPSK 960

9 931 2 QPSK 960

10 1262 3 QPSK 1440

11 1483 3 QPSK 1440

12 1742 3 QPSK 1440

13 2279 4 QPSK 1920

14 2583 5 QPSK 1920

15 3319 5 QPSK 2400

16 3565 5 16-QAM 4800

17 4189 5 16-QAM 4800

18 4664 5 16-QAM 4800

19 5287 5 16-QAM 4800

20 5887 5 16-QAM 4800

21 6554 5 16-QAM 4800

22 7168 5 16-QAM 4800

23 9719 7 16-QAM 6720

24 11418 8 16-QAM 7680

25 14411 10 16-QAM 9600

26 17237 12 16-QAM 11520

27 21754 12 16-QAM 14400

28 23370 15 16-QAM 14400

29 24222 15 16-QAM 14400

30 25558 15 16-QAM 14400
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