N
N

N

HAL

open science

Cyclic Hoist Scheduling Problems in Classical and
Sustainabl
Weidong Lei

» To cite this version:

Weidong Lei. Cyclic Hoist Scheduling Problems in Classical and Sustainabl. Automatic. Université
de Technologie de Belfort-Montbeliard, 2014. English. NNT: 2014BELF0244 . tel-02084684

HAL Id: tel-02084684
https://theses.hal.science/tel-02084684
Submitted on 29 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-02084684
https://hal.archives-ouvertes.fr

SPIM

These de Doctorat

école doctorale sciences pour I’ingénieur et microtechniques

UNIVERSITE DE TECHNOLOGIE BELFORT-MONTBELIARD

N° d’'ordre :244

Cyclic Hoist Scheduling Problems in
Classical and Sustainable Contexts

Ordonnancement cyclique des
ressources de transport dans les
ateliers de traitement de surface,
dans des contextes traditionnel et
durable

m Weidonq LEI



DPIM

These de Doctorat

école doctorale sciences pour l'ingénieur et microtechniques

UNIVERSITE DE TECHNOLOGIE BELFORT-MONTBELIARD

Order number : 244

PhD THESIS

to obtain the degree

Doctor of Université de Technologie de Belfort-Monéliard

Speciality : Automatic

Cyclic Hoist Scheduling Problems in Classical andiu&tainable Contexts

by Weidong LEI

Laboratory OPERA-Université de Technologie de Bilfdontbéliard (France)

School of Management - Northwestern Polytechnigal/ersity (China)

Defended on december 8, 2014

Jury :
M. Aziz MOUKRIM Professor-UTC-France
M. Feng WU Professor-XJTU-China
Mme Rong DU Professor-XDU-China
Mme Marie-Ange MANIER Associate Professor HDRBM-France
M. Ada CHE Professeur-NPU-Chine

M. Hervé MANIER Associate Professor -UTBM-Fcan

Rewier
Reviewer
Prestden

Director
Director
Co-supervisor



DPIM

These de Doctorat

école doctorale sciences pour l’'ingénieur et microtechniques

. UNIVERSITE DE TECHNOLOGIE BELFORT-MONTBELIARD

N° d’ordre : 244
THESE

Pour I'obtention du grade de
Docteur de I'Université de Technologie de Belfort-Mntbéliard

Spécialité : Automatique

Ordonnancement cyclique des ressources de transpatans les ateliers de

traitement de surface, dans des contextes traditior! et durable

Présentée palVeidong LEI

Laboratoire OPERA — Université de Technologie dédBeMontbéliard (France)

School of Management - Northwestern Polytechnigal/ersity (Chine)

Soutenue le 8 Décembre 2014 devant le jury compesé

M. Aziz MOUKRIM Professeur-UTC-France Rapporteur

M. Feng WU Professeur-XJTU-Chine Rappo

Mme Rong DU Professeur-XDU-Chine Riésie

Mme Marie-Ange MANIER Maitre de Conférences HDRFRM-France Directeur de thése
M. Ada CHE Professeur-NPU-Chine Dieectde these

M. Hervé MANIER Maitre de Conférences-UTBM-Franc Co-encadrant



ACKNOWLEDGEMENTS

| would like to thank those who supported and aqeamed me with my
heartfelt gratitude during the past three years.

This thesis was supported by a co-tutelage progpatween Université de
Technologie de Belfort-Montbéliard (UTBM, France)daNorthwestern Polytechnical
University (NPU, China). | would like to thank tHeaboratoire Optimisation Et
ReséAux of UTBM and the School of Management of NRIW providing me with
good working conditions. | acknowledge the Chind@arship Council (CSC) for
providing me with a two-year study funds at UTBM.

| would like to express my sincere gratitude to jiny members of my PhD
committee, to Professor Rong DU for serving asdhairman; to Professors Aziz
MOUKRIM and Feng WU for having accepted to revidustthesis and their helpful
advices and suggestions; to my supervisors forsimyithis thesis carefully and
correcting the errors word by word.

| will forever be thankful to my two advisors, Assate Professor Marie-Ange
MANIER and Professor Ada CHE, for teaching me #search skills and ethics, and
for helping me in many aspects during my doctanadiges. | have been most indebted
to their professional guidance, great patience aragsive help. | am also very
grateful to my co-supervisor Dr. Hervé MANIER fosmany good discussions and
suggestions. Without them, | could not have acldeu®gything.

| also own my sincere gratitude to my friends, amg labmates at UTBM and
NPU who offered their kind helps and supports to ey added a lot of colors to
my life over the past years. Special thanks go t@a0o(ZHANG and Frédéric
LASSABE for their many helps when | lived in Belfor

At last, | want to express my sincere thanks tofamyily for their endless love
and selfless support.



ABSTRACT

Automated surface treatment facilities, which enggdomputer-controlled hoists
for part transportation, have been extensivelyldistaed in various kinds of industrial
companies, because of its numerous advantagesvamnal system, such as higher
productivity, better product quality, and reduceabdr intensity. This research
investigates three typical hoist scheduling prolslemth processing time windows in
surface treatment facilities, which are (I) cycéimgle-hoist scheduling problem to
minimize the cycle time; (ll) cyclic single-hoistreeduling problento minimize the
cycle time and processing resource consumption ¢andequently production cost);
and (111) cyclic multi-hoist scheduling probleim minimize the cycle time.

Due to the NP-completeness of the studied probkemisnumerous advantages
of quantum-inspired evolutionary algorithm (QEA)e Viirst propose a hybrid QEA
with improved decoding mechanism and repairing @doce to find the best cycle
time for the first problem. After that, to enhanedth both the economic and
environmental performance, which constitute two tbe three pillars of the
sustainable strategy nowadays deployed in many sinds, we formulate a
bi-objective mathematical model for the second fmwbby using the method of
prohibited interval (MPI). Then we propose a biestjve QEA with local search
procedure to simultaneously minimize the cycle tene the production cost, and we
find a set of Pareto-optimal solutions for thiskgemn. As for the third problem, we
find that most existing approaches, such as mixgdger programming (MIP)
approach, may identify a non-optimal solution to & optimal one due to an
assumption related to the loaded hoist moves wiscimade in many existing
researches. Consequently, we propose an improvedapproach for this problem by
relaxing the above-mentioned assumption. Our agprean guarantee the optimality
of its obtained solutions.

For each problem, experimental study on industmetances and random
instances has been conducted. Computational redeit®nstrate that the proposed
scheduling algorithms are effective and justify theices we made.

Keywords: cyclic hoist scheduling problem; processing timadews; bi-objective
optimization; quantum-inspired evolutionary alglenit; mixed integer programming
approach



RESUME

Les ateliers de traitement de surface automatpéisutilisent des robots de
manutention commandés par ordinateur pour le taahsge la piéce, ont été
largement mis en place dans différents types @pnses industrielles, en raison de
ses nombreux avantages par rapport a un mode deagbi@n manuel, tels que: une
plus grande productivité, une meilleure qualité gesduits, et I'impact sur les
rythmes de travail. Notre recherche porte sur tréypes de problemes
d'ordonnancement associés a ces systemes, appakis shheduling problems,
caractérisés par des contraintes de fenétres destdentraitement: (1) un probléme a
une seule ressource de transport ou I'objectilestinimiser le temps de cycle; (II)
un probleme bi-objectif avec une seule ressourciaasport ou il faut minimiser le
temps de cycle et la consommation de ressourcé®iteement (et par conséquent le
colt de production); et (lll) un probleme d'ordoncement cycligue mono-objectif
mais multi-robots.

En raison de la NP-complétude des probléemes étetlids nombreux avantages
de les outils de type quantum-inspired evolutioragprithm (QEA), nous proposons
d'abord un QEA hybride comprenant un mécanisme eémdhge amélioré et une
procédure réparation dédiée pour trouver le meiltemps de cycle pour le premier
probléme. Apres cela, afin d'améliorer a la foispkrformance économique et
environnementale qui constituent deux des troisergil de la stratégie de
développement durable de nos jours déployée dammomireuses industries, nous
formulons un modéle mathématique bi-objectif p@udéuxieme problem en utilisant
la méthode de l'intervalle interdit. Ensuite, npasposons un QEA bi-objectif couplé
avec une procédure de recherche locale pour mieinsisnultanément le temps de
cycle et les colts de production, en générant usemhle de solutions
Pareto-optimales pour ce probléme. Quant au troisi@robléme, nous constatons
gue la plupart des approaches utilisées dans t®enmehes actuelles, telles que la
programmation entiére mixte (MIP), peuvent conddiréobtention d’'une solution
non optimale en raison de la prise en compte coeirdiune hypothese limitant
'exploration de I'espace de recherche et relaux mouvements en charge des
robots. Par conséquent, nous proposons une appomehédlP améliorée qui peut
garantir I'optimalité des solutions obtenues paipmwbléme, en relaxant I'hypothese
mentionnée ci-dessus.

Pour chaque probleme, une étude expérimentale amét&e sur des cas
iii



industriels ainsi que sur des instances généréasoakement. Les résultats obtenus
montrent que l'efficacité des algorithmes d'ordarosment proposés, ce qui justifie
les choix que nous avons faits.

Mots-clés: ordonnancement cyclique des ateliers de traiteahesurface, fenétres de
temps de traitement; optimisation bi-objectif; algone évolutionnaire quantique;
approche de programmation mixte en nombres entiers.
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Chapter 1 Introduction

1.1 Research Background

In today'’s fiercely competitive market, to maximittee production capacity and
reduce the labor costs, automated production Ina& been widely used in many
industries, such as the automotive industry, theospace industry and more
particularly the surface treatment industry. Meaiteytwith the ongoing development
in automation technologies and scheduling theorsagpmated production lines
become more and more reliable and efficient.

In modern surface treatment facilities, productioes are often equipped with
computer-controlled material handling tools (uspatlalled hoists or robots in
different industries) for moving jobs or parts beem tanks or machines (Craetzaal,
2000; Manier and Bloch, 2003). That is to sayttadl transportation tasks during the
process are performed by hoists instead of work@isuiously, highly automated
production system gains several unique advantagesrmanual production system.
Firstly, both the productivity and product qualése effectively improved since hoists
generally have less variability compared to humaimds (suppose that hoists never
break down). In other words, hoists are not onlgye® control and implement but
also very stable (i.e., hoists can exactly and liinperform each transportation task
assigned to it). Secondly, hoists can replace werkehigh-temperature or hazardous
environments (or workplaces), since worker safstpne of most important issues
that each factory cares about. The last but notethagt advantage is that the process
line generally has plenty of high-frequency andetgwe transportation jobs, which
are generally very boring for workers but relatyvsiiitable for hoists.

Because of its wide applications, electroplatingnplhas been extensively
established in many surface treatment companieshvgmioduce tens of thousands of
products each year. According to Schlesinger anth®ac (2010), electroplating is
the coating of an electrically conductive objecthna layer of metal using electrical
current resulting in a thin, smooth of metal on dlgect. A representative example is
the Printed Circuit Boards (PCBs) electroplatingapl More precisely, a PCB
electroplating process line typically consists ofsequence of tanks (containing
various kinds of chemical solutions or freshwataranged in a row and a number of
computer-controlled material handling hoists modnt& a single track above the

tanks, as shown in Figure 1.1. Each tank contguegial chemicals for a specific
1



production step, such as depositing, degreasirypakling. Besides, multiple hoists
are generally used to move PCBs from tank to tamk @ its higher productivity.

Once a PCB is introduced into the line from theuingtation, it must be continuously
processed in each of the tanks one after anothérituis transported to the output

station.

e ]

()
\ /
/ Hoist S
Track
PCB \EI/ ]
7 //iq\\\ // //iq\\\ | //777\\:

. A Output station
Input station Processing tanks

Figure 1.1 A typical automated PCB electroplating lwith two hoists.

For automated electroplating process lines, sciveglalf hoists’ transportation
tasks efficiently is very critical because the prctivity and the product quality
extremely depend on it. Therefore, the decisioregaly concerns how to sequence
the hoists’ movements without collision happenedm@gnhoists and determine the
start time of each hoist move such that the prodticis maximized. It is well known
in the literature as Hoist Scheduling Problem (H@Bnier and Bloch, 2003). It also
has some other appellations called in differentustidals, such as Robotic Cells
(Levneret al, 2007) or Robotic flow-shop Scheduling Proble@safmaet al, 2000),
etc. Similar to the classic flow shop or job shopexluling problems, Livshitst al.
(1974) and Lei and Wang (1989) respectively praved the simple HSP (i.e., cyclic
HSP with a single part-type and a single hoistiiscomplete. Note thatlP means

non-deterministic polynomial.

Moreover, in today’s fast-changing and competitivarket, one most important
goal for electroplating plant is to maximize ito@uctivity, so as to timely provide
required products to customers. This is very imgartfor company to get good
reputation from partners. On the other hand, resooonsumption greatly affects the
production cost. As the costs of resources increthge product profit is generally

2



reduced. The traditional way that only maximizes pinoductivity cannot effectively
respond to the rising production costs. Therefoneimizing the production cost
plays a key role in enhancing the company’s cortipetability and profits. It also
joins the sustainable development strategies ofynradustrials because this effort to
reduce resource responds to both economic andoanvéntal concerns. At last but
not least, the defective part rate must be minichthgring the production, which has a
negative impact on the company’s profits.

Until now, a number of scheduling approaches haenlsuggested for various
HSP to maximize the productivity, for example, gleaee the works by Phillips and
Unger (1976), Shapiro and Nuttle (1988), Lei anch@vél1994), Cheret al. (1998),
Manier et al (2000), Che and Chu (2007), and lagi al. (2014). But study on
multi-objective HSP has not received much attenfrom researchers, except for a
few works, such as Xu and Huang (2004), Kurgbgl. (2006), and Fengt al (2014).
As a result, research for HSP with simultaneousifiieving various goals from
different expectations becomes urgent due to ieatgsignificance in theory and
application. This research will focus on this area.

1.2Problem Description

During the manufacture of many products, includimgectronic ones,
electroplating is an essential process for makiognes special treatments on part
surface, such as anti-corrosive, abrasion resigfarand improved electrical
conductivity. In a typical automated electroplatipgpcess line (Figure 1.1), a series
of tanks which contain different chemical solutiamsfreshwater are arranged in a
row. The input device and the output device aratkxat at the both ends of the line.
Each tank corresponds to a specific process ssagh,as degreasing, silver or copper
coating, drying, cleaning and rinsing. Since hasbften the bottleneck resource in
the process line, multiple hoists are widely usedbélance the line. During the
process, parts are transported by a hoist fromtamieto the other. For a hoist travel
among tanks without carrying a part, it is calledeampty move. On contrast, it is a
loaded move. All hoists often move on a sharedkirao hoist collisions must be
avoided. This is called collision avoidance constrdDue to the processing limitation,
each tank can process only one part at any timef &dtank is occupied by a part,
then it must be emptied before processing anothdr Phis is called tank capacity
constraint. Similarly, each hoist can only transpore part at any time, and must have

3



enough time to move empty between any two conseximaded moves, which are
called hoist capacity constraint.

Once a part is introduced into the process lines, sibaked in tanks to receive its
processing operations according to its procesagne until it is removed from the
line. According to the processing technology, tbaksor processing time in each tank
must be within a time window [minimum dwell time agsimum dwell time], called
time window constraint (Lei and Wang, 1991). By thay, in this thesis, when we
mention HSP, it refers to HSP with processing tiwmedows. If each processing time
falls into its time window, then part quality woubg guaranteed; otherwise, defective
parts would be produced. Besides, no buffer eristeng tanks. In other words, once
a part finishes its processing operation in a tankust be moved out of the current
tank and then transported to the next one by d.t€isem this, we can know that each
part is either in a tank or being transported Ipist without any pause allowed.

From above descriptions, we can know that a holstdule is said to be feasible
for HSP only if it simultaneously satisfies the yaorisly mentioned four families of
constraints, i.e., (19ollision avoidance constrainif multiple hoists are used; (Bank
capacity constraint(3) hoist capacity constrain{4) time window constraint

Because of its easy implementation in a mass ptmtuenvironment, cyclic
production mode is usually adopted in the electtipd line. This leads to a repetitive
schedule performed by hoists in every certain tiiftee duration of performing the
repetitive schedule is called the cycle time (Caeal, 1998). In each cycle, one part
is introduced into the line, and one part (note tha two parts are not necessary the
same one) is removed from the line after all itscpssing operations are finished.
Obviously, line productivity heavily depends on haw schedule the hoists’
transportation tasks, since the more frequentlyhibist picks a part from the input
station, the higher the line productivity. As aulkesin most studies, the objective of
HSP is to minimize the cycle time. On the otherdhatue to the high treatment costs
of hazardous wastes (such as chemical sludge asigweter) in electroplating plant,
the more resource used for processing parts, giehithe operating costs. Therefore,
how to optimize the actual processing time in ettk while satisfying the time
window constraint is crucial in reducing the protioic cost.

Since the 1970s, many researchers have dedicatsolve various variants of
HSP motivated by automated electroplating process.| Most studies are relevant
with minimizing the cycle time for HSP, e.g. Piplii and Unger (1976), Shapiro and
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Nuttle (1988), Lei and Wang (1994), Ng (1996), Ckérl (1998) and Che and Chu
(2007). Due to its great significance in theory gmdctice, several works about
multi-hoist scheduling have been published espgdialrecently years, such as Zhou
and Liu (2008), Zhou and Li (2009), Chtouretual. (2013), Jiang and Liu (2014), and
Li and Fung (2014). As far as the single-object®P is concerned, it is far from
meeting the various expectations from the real-dvgrtoduction. To reduce the
complexity of multi-objective HSP, a few studiesids as Xu and Huang, 2004,
Kuntay et al, 2006, and Subagt al, 2006) have been conducted on the HSP with
dual objectives, which are optimized in a sequémtianner, i.e., one objective is
considered in the first step, and the other is id@ned in the second step. Obviously,
such separate and sequential optimization appreaatee not sufficient in practice.
Therefore, simultaneously optimizing different asmmetimes conflicting objectives
from different aspects for HSP is very necessadyiaxportant.

To address the considered problems, we have chosese a rather new tool
called Quantum-inspired Evolutionary Algorithm (QEASIince 1990s, QEA has been
received much attention and successfully appliesbtee travelling salesman problem
(Narayanan and Moore, 1996), knapsack problem (Had Kim, 2002), flow
shop/job shop scheduling problems (Li and Wang,72@u et al, 2009), etc. In the
following section, we briefly describe its mainrmiples.

1.3 Quantum-inspired evolutionary algorithm

Quantum-inspired Evolutionary Algorithm (QEA) isrfeed according to the
concepts and principles of quantum computation {8y 1985; Hey, 1999), in
which Q-bit is the smallest unit of information anquantum computer. Each Q-bit
may be in “0” state, “1” state, or in any superpiosi of the two. The following
equation is usually used to define a Q-bit (Han l&imd, 2002; Li and Wang, 2007):

W)=al0)+A1), wherelaf*+|4=1. (1.1)

In (1.1), a and S are two complex numbers, which represent the fmibha
amplitudes of states 0 and 1, respectively. Assallte|al® and |37 represent the
probabilities that the Q-bit would be found in std0” and state “1”, respectively.
However, each Q-bit collapses to a single stateidigg a random-key observation
way. That is, a random numbeis generated from the uniform distribution [0, If).
r>|af?, then Q-bit is in state “1”; else, Q-bit is in &t&0”. So QEA can be seen as a
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probabilistic algorithm. Moreover, Q-gate is oftemployed to change the valuesaof
and S so as to influence the state of Q-bit. Until n@syveral Q-gates have been
proposed in the literature, such as NOT gate, obbett NOT gate, and rotation gate
(Hey, 1999).

Bi|Bal-{ B

a,|a,l..a
W, { s "‘] where |ai"+|AP=1, Isism. (1.2)

Suppose that a quantum individ4h is a string ofm Q-bits, as shown in (1.2),
this individual can represent'atates at the same time, i.e., a linear superposif
states. For instance, consider a quantum indivicdu#h three Q-bits and their
amplitudes as the following:

V4| V3 V7
_| 3| 3|3
W, = T5l- Tl v | (1.3)

3|33
In (1.3), W3 includes the information of eight states, i/6Q0), |001), |010), |01D),
[100, |10D), |110, |111), and their probabilities are respectively 84/72@/729,
168/729, 48/729, 105/729, 30/729, 210/729, 60/T2@eed if we consider the state
010 as an example, the associated probabilityaig™>|3*%|as> which equals
(4/9)x(6/9)x(7/9)=168/729. From this example, we can know @ttt representation
has a better characteristic of population divertign other representations, since it
potentially maps to a larger phenotype space thher dinary representation based
Evolutionary algorithms (EAS).

Like other EAs (such as genetic algorithm and alng evolution algorithm),
QEA generally has a similar evolution paradignmbdgins with an initial population,
in which each individual is encoded by Q-bits. Aealuating the population fitness,
it applies Q-gate to update individuals for genagahew offspring and guiding the
individual towards better solutions, and then eatds the new population. When the
stop condition is satisfied, it ends and outpugstibst solution. Figure 1.2 illustrates
this process in details, whe€t), P(t) andB(t) are quantum chromosome, problem
solution and best solution respectively.



Begin: t<-0

(1) Initialize Q(7), i.e. Quantum individual at generation t;

(2) Make P(r) by observing the states of O(1);

(3) Evaluate P(z);

(4) Store the best solution among P(1) into B(1);

While (not termination condition) do

re—1+1;
Make P() by observing the states of Q(r—1);
Evaluate P(7);
Store the best solution among P(f) and B(r—1) into B(t);

Apply Q-gates to update O();
End

End: Output the best solution

Figure 1.2 Pseudocode algorithm for QEA (Han and,K1002).

1.4 Contributions

In this thesis, we investigate three types of HS&tivated by automated
electroplating process lines. They are respecti@jycyclic single-hoist scheduling
problem to minimize the cycle time, (Il) cyclic gie-hoist scheduling problemo
minimize the cycle time and the production costd gitll) cyclic multi-hoist
scheduling problerto minimize the cycle time.

Due to the NP-completeness of HSP, the computdiime spent by exact
methods usually increases exponentially with it siThus, it is a wise choice to
adopt meta-heuristic methods to find reasonablydgadedules in a reasonable time
for HSP. Because of its unique advantages, sudbetier population diversity and
rapid convergence, QEA has gained great successolving many different
optimization problems, but it was not used yet $mving HSP. Therefore, this
research tries to connect this gap. The main dartans of this research are
summarized as follows.

Firstly, we propose a hybrid QEA with improved déicg scheme for the first
problem. More precisely, we elaborate three difieecoding procedures to convert
Q-bit individual into hoist move sequences. Morepwee develop a more effective
repairing procedure than the existing one. Bothnjua rotation-gate and adaptive
genetic operators as variant operators are apphezl/olve the population towards
better solutions.

Secondly, we propose an efficient QEA algorithmhvitcal search procedure for
7



the second problem. More precisely, based on ahalysis of the studied problem, a
bi-objective mathematical model is formulated byngsthe method of prohibited

intervals (MPI). After that, we use a double-deogdprocedure to convert Q-bit
individuals into problem solutions. All solutionsea evaluated by the famous
Pareto-dominance technique. A chaotic quantumicstagate is designed for

updating Q-bit individuals. To increase the induadl diversity, mutation operator is

implanted into the proposed algorithm. Moreovetemal archive is used to store the
obtained non-dominated solutions. Local search quore is applied for further

improving the solution quality.

Finally, we propose an improved mixed integer paogming (MIP) approach
for the last problem. In most existing studies, hswas Lei and Wang (1991),
Armstronget al. (1996), Leung and Zhang (2003), Lewstgal (2004), Che and Chu
(2004), Zhou and Liu (2008), Zhou and Li (2009)td&mouet al (2013) and Jiang
and Liu (2014), all loaded moves are implicitlyexplicitly assumed to start and end
within the same cycle. In this research, we giw®anterexample to demonstrate that
this assumption should be relaxed, since approabhsed on it may identify a
non-optimal solution to be an optimal one. In othards, loaded hoist moves are
allowed to start in the current cycle and end ia ttext one if necessary in our
research. Consequently, we propose an improvedadfoach for the third problem
by relaxing the above-mentioned assumption. Ourraggh can guarantee the
optimality of its obtained solutions.

1.5Thesis Outline

This thesis is arranged as follows.

Chapter 2 provides a literature review of HSP amaintum-inspired evolutionary
algorithm (QEA) most related to this research. Tésearch trends on HSP and the
research gap between HSP and QEA are also poiated o

Chapter 3 mainly develops an effective QEA for sajvthe cyclic single-hoist
scheduling problem with time window constraintsamomated electroplating lines.
The objective is to minimize the cycle time. Theolgem formulation and the
proposed QEA are presented. Comparison experinastsonducted between the
proposed algorithm and the existing approaches.

Chapter 4 first formulates a bi-objective mathep®tmodel by MPI approach
8



for the studied problem, and then develops a noblictive QEA with local search
procedure to find a set of Pareto-optimal solutitmisthe problem. The objective of
the problem is to minimize both the cycle time &mel production cost. At last, a real
electroplating instance is used to test the effeotess of the proposed algorithm.

Chapter 5 focuses on the development of an imprddd&dmodel for the cyclic
multiple hoists scheduling problem. In contrasthwihost previous approaches, our
MIP approach can always find a global optimal haishedule with the maximum
productivity. Experimental study is conducted onthbdenchmark instances and
randomly generated instances.

Chapter 6 makes some concluding remarks of thesarel, and suggests some
directions for future research.



Chapter 2 Literature Review

In this chapter, we perform a literature reviewatetl to this research. As
mentioned in Chapter 1, part of our research facasethe development of effective
QEAs for solving two kinds of HSP. Therefore, westfireview relevant works on the
HSP, and then give a literature review on QEA ealab our research.

The whole literature is rich of works related tagt@cheduling problems or near
problems. Manier and Bloch (2003) proposed a nmtadnd classification allowing to
identify the various kinds of HSPs. The followingragraph is directly extracted from
(Manier and Lamrous, 2008), and it sums up thigtinmt:

“This one considers some of the main physical agichl parameters found in
the literature related to the HSP. The completatimi is expressed in the form:

XHSHNI, ntransfer synchro (mh, mt ct) i=1 to nl/nc, circ, ret, empty/
load-unload| nparts/npsnop clean recrc| criteria.

It is worth noting that the use of default valueakes the expression of this
notation not so complex when it was applied to nafsthe instances studied in
literature.

The notation can be divided in four fields:
kind of HSP | physical parameters | logical paransdtcriteria.
Each one consists in several parameters:

— Kind of HSP XHSB: a hoist scheduling problem can be static (cy¢IEISP)
or not (PHSP)), or dynamic (dynamic problems (DHSPYeactive ones (RHSP) for
real time cases);

— Physical parameters: this field respectivelyudels the number of basic lines
(nl), the number of transfer systems connecting thiess (transfe), the need of
synchronization between hoists and transfer sys{ggmchrg. It also provides, for
each basic line of the facility (=1 tonl), the number of hoistsn), tanks ft) and
available carriersng), the maximal capacity of tankst), the constraints involved by
the characteristics of carriers (circulation of gwots €irc), dedicated transport
system to ensure the return of empty carriers fiteerunloading station to the loading
one (et), empty carriers remaining on the line if therents storage place near the
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facility (empty), and finally the configuration of the loadingdaanloading stations:
associated or dissociated statidlesagd-unload);

— Logical parameters: they describe the productemvironment to be
considered: the total number of parts to be treétpdrty, the number of processing
sequences npy, the maximal number of operations among thosecqgasing
sequencesnpp), the possible cleaning of empty carriers afteruhloading operation
(clean (one or several operations included nop), and finally the recirculation
constraint ecrc) for reentrant problems;

— Criteria: this field expresses one or severagdiyes to reach. For HSP, they
may be several criteria to optimize, for examplenimize the cycle time for the
cyclic HSP Cmin), or minimize the makespa@inay in dynamic cases.”

Among the various kinds of HSPs studied in therdiiere and possible to
identify via this notation, we have chosen to foonghree of them. Then, this chapter
is arranged as follows. Section 2.1 divides the #three parts: (2.1.1) Basic HSP;
(2.1.2) multiple objectives HSP; (2.1.3) HSP withltiple hoists, which respectively
correspond to the contribution points of our resleaiSection 2.2 gives a briefly
literature review on the QEA. Finally, Section 8 8nmaries this chapter.

2.1 Literature review on HSP

2.1.1 Basic hoist scheduling problem (BHSP)

Over the past decades, HSP has gained great atteritom many researchers
due to its significance in many real-world applicas. As a result, there is a vast
literature about it. Most of the works considerbd basic (i.e., a single hoist and a
single part type) HSP, called BHSP. The objectiivBI8SP is usually to minimize the
cycle time or the makespan. Before 1970, hoistcdles were usually developed by
experienced schedulers. The first work on compzeerischeduling approach was
provided by Phillips and Unger (1976). They fornteth the first Mixed Integer
Programming (MIP) model to find the optimal hoisthedule for BHSP. In the
experimental study, a real life numerical exampées wsed to testify the effectiveness
of the proposed MIP model. The example was chasen YWestern Electric Plant and
became a well-known benchmark (P&U) instance indker research.

Almost ten years later, Shapiro and Nuttle (198®ppsed a branch-and-bound
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(B&B) procedure to find the optimal cycle time fBHSP. The proposed approach
was verified by four practical instances, i.e., P&ldtance, Black Oxidel instance,
Black Oxide2 instance and Zinc instance. Computatioesults on those instances
demonstrated that the proposed approach had a petfermance than experienced
schedulers in terms of solution quality and CPUetim

Moreover, Armstronget al. (1994) also proposed a B&B search procedure based
on calculating a sequence-dependent parameteedcallnimal time span) for the
basic hoist scheduling problem. The performandd@proposed B&B algorithm was
evaluated on four benchmark instances and 360 malydgenerated instances, and
experimental results on those instances spenCletktimes than the LP procedure.

Lim (1997) was the first to propose genetic aldgont(GA) to solve BHSP. In his
work, a mathematic model based on hoist move seguesms formulated, and the
objective is to find the optimal hoist cyclic sces with minimum cycle time.
Specifically, hoist move sequences are encodetdrasnosomes. In other words, each
chromosome directly represents a possible hoistensequence. Note that for such a
representation way, the search ability of GA isegalty reduced as the problem size
increases. Besides, Linear Order Crossover (LOX) taro-gene mutation operator
were adopted in the proposed GA. Computationaltseesan benchmark instance P&U
with different parameter settings were reported endicated that the proposed GA
can find the optimal hoist schedule for instancdJP&

Chenet al. (1998) first formulated a mathematical model anent proposed a
B&B algorithm for BHSP. The proposed algorithm undés two branch-and-bound
treesA andB. In particular, treéA is responsible for enumerating all possible ihitia
part distributions at the beginning of a cycle, ietireeB is responsible for generating
the hoist schedules for each determined initial gistribution. Besides, to reduce the
solution space, an upper bound of the number d$ panich can be processed in the
line within a cycle was derived from the formulatedel. The proposed algorithm
was evaluated on five benchmark instances: P&Unélg Ligne2, Black Oxidel and
Black Oxide2. Computational results on those instanindicated that the proposed
B&B algorithm can find the optimal solution for daimstance in less than 1s.

Recently, Yaret al. (2010) applied the method of prohibited interv@tI) to
solve the BHSP. Specifically, if all the actual pessing times in the processing tanks
can be known, then the studied problem can be flated by using the MPI approach
(Levneret al, 1997). Due to this fact, the studied problem wather transformed to
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find all the non-prohibited intervals for the cydiene, which is done by a specific
B&B algorithm. Computational results on benchmanktances and 1800 random
instances demonstrated that the proposed metheftecive for solving the problem.
Moreover, due to the high performance of Tabu $edf&S) algorithm, Yaret al.
(2012) proposed a specific TS algorithm with a népg procedure and solution
space partition approach for the problem. In thark, to reduce the solution space
and increase the search speed, the maximum nutnbkthe work-in-process (WIP)
parts was used to divide the solution spacensubspaces. Three rules based on the
value of K were used to generate the initial population, h@st move sequences.
Note that the proposed algorithm used the realdaéeresentation, that is, hoist
move sequence is directly encoded as chromosonehwloies not require a decoding
mechanism. Finally, the proposed TS algorithm waspmared with GA proposed by
(Lim, 1997) using both benchmark instances and agandnstances. Comparison
results demonstrated that TS algorithm performgebéhan GA in terms of solution
quality and computation time.

To reduce the complexity of hoist scheduling prohlsome researchers studied
the problem with given hoist move sequences. Fstairce, Lei (1993) proposed a
simple algebraic procedure to minimize the cyateetand find the optimal start times
of hoist operations for the scheduling problem vgiven hoist move sequences. The
proposed procedure solves the studied proble@(Nflog(N)log(M)) time, whereN
andM represent the tank numbers and the number oféntegjnts between the lower
bound and the upper bound on the cycle time, réispéc Besides, Ng and Leung
(1997) proposed a binary search procedure to daterthe optimal execution times
of hoist moves for the similar problem.

All the works mentioned above treated the HSP feample production line, in
which each tank corresponds to a specific procgsstep. However, duplicated tanks
and multi-function tanks are often used in practitee representative works on HSP
with duplicated tanks or multi-function tanks arg {1995) with MIP approach, Ng
(1996) with B&B approach, Liet al. (2002) with MIP approach, Zhou and Li (2003)
with MIP approach, and Che and Chu (2007) with B&dproach.

Since a higher degree of cyclic schedule would gdlyeimprove the system
productivity, several works have been publishedtluis area. Note that a higher
degree means that least two partenter and leave the line within a cycle. Some of
the relevant works dealt with the single part tygrad which can be found in the work
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by Lei and Wang (1994), Spacek al. (1999), Cheet al. (2011), Kats and Levner
(2011a and 2011b), Zhecet al. (2012), and Li and Fung (2014). Moreover, various
exact or heuristic approaches have been proposétiSie with multiple distinct parts:
B&B approach (Lei and Liu, 2001; Let al, 2014), MIP approach (El Amraoei al,
2008; Zhacet al, 2013a; El Amraouet al, 2013a), Polynomial algorithm (Kaés$ al,
2008), and GA approach (El Amraaatial, 2013b).

Although the cyclic HSP is the theme of our reseaseveral researchers have
studied various variants of non-cyclic HSP duetsosignificance both in academic
field and industrial practice. To date, much aiteanhas been gained in this area, for
examples, please see the work by Yih (1994), Lamethal. (1995), Ge and Yih
(1995), Chauvett al. (2000), Fleuryet al. (2001), Hindi and Fleszar (2004), Paul
al. (2007), Kujawski andwiatek (2011), Zhaet al (2013b), Tiaret al (2013), Yan
et al.(2014), and Zhangt al. (2014).

2.1.2 Multiple objectives hoist scheduling problem (MOHSRP

In previous section, all mentioned works treatedPH8ith single objective,
which minimizes either the cycle time or the malasprlhis is far from meeting the
various expectations from real-world applicatiols.other words, considering HSP
with multiple objectives are more realistic, suchminimize the production cost or
wastewater, maximize the productivity and minimthe defective part rate. Since
2000, multi-objective HSP has been studied, andraber of scheduling approaches
have been proposed. In what follows, the relevarksvare reviewed in details.

Firstly, Fargier and Lamothe (2001) proposed adgiecisupport approach for the
dynamic hoist scheduling problem with bi-objectiwghich is to minimize the
makespan and maximize the processing quality. atispare supposed to be randomly
arrived and a single hoist for moving parts fromktao tank. The problem was
formulated by a linear programming model to gereetaé best hoist schedules and a
fuzzy model was used to evaluate the part procgsgrrations.

Later, Maket al. (2002) proposed a knowledge-based simulation systesolve
the multiple hoists real time scheduling problemwihich multi-function tanks and
duplicated tanks are used. The objectives of theblpm are to maximize the
productivity and minimize the defective rate. Toiavproducing defective parts, the
time of a new part entering into the line is col and determined by a heuristic
rule. In the proposed simulation system, theresaxen hoist dispatching rules, which
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are Nearest Hoist First (NHF), Average Tank Assignm(ATA), Average Hoist
Assignment (AHA), Boundary Shift by Job AllocatidBSJA), Modified Average
Tank Assignment (MATA), Modified Average Hoist Agament (MAHA), and
Modified Boundary Shift by Job Allocation (MBSJA)espectively. Computational
results on several real electroplating lines witifietent hoist speeds and hoist safe
distances were reported and discussed. The rasditated that the two new rules
MAHA and MBSJL perform better than all other disgang rules. Besides, higher
hoist speed and shorter hoist safety distancegeaifeed to have higher productivity.

Xu and Huang (2004) designed a graph-assistedirsadgorithm for the single
hoist cyclic scheduling problem with single pagpéyto minimize both the cycle time
and the wastewater. Specifically, a two-stage #lgorwas proposed to optimize the
two studied objectives. The first stage was resiptsgor finding the optimal hoist
schedules with minimum cycle time, while the secatage was responsible for
looking for the minimum wastewater for each deteeui hoist schedule. Moreover,
part of infeasible hoist move sequences is elinemhauring the search process. At last,
a numerical example was used to evaluate the pedposo-stage optimization
algorithm.

Jegouet al (2006) proposed a multi-agent system for the tie@enulti-hoist
scheduling problem, where the objectives are tammae the defective parts rate and
maximize the productivity. In their model, two difent agents called input date
decision system (IDDS) and hoist assignment sy$kéA®) were respectively used to
determine the time of a new part loading into thecpss line and to find the optimal
schedules for multiple hoists. In HAS, auction @pen was applied to assign
transportation tasks to hoists and also optimize hbist schedules. The proposed
multi-agent system was compared with the existiogthassignment heuristics (i.e.
NFR, ARA and BSJL) in the literatures and showettidbgperformance.

Kuntay et al. (2006) proposed a two-step optimization algoritiemsolving the
bi-objective single-hoist cyclic scheduling problem the proposed algorithm, the
first step was responsible for finding an optimalish schedule with maximum
productivity, while the second optimization stepswi@ minimize the wastewater
without reducing the production rate obtained ia fhist step. Finally, an example
from real electroplating facility was used to exaRithe proposed two-step algorithm.
Besides, Subadt al. (2006) also proposed a similar two-step optimaraglgorithm
for a bi-objective single-hoist cyclic schedulingoblem, in which cycle time and
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production cost are minimized in two sequentigbste

Zhanget al. (2012) studied the multiple hoists job shop schirdyroblem with
duplicated tanks and inter-storages between tanksyhich the objectives are to
minimize both the makespan and the total waitinges in inter-storages. It should be
noted that the solutions found with no waiting tsre®rrespond to feasible solutions
for HSP. Firstly, a mathematical model was formediafor the problem, and then a
genetic algorithm with tabu local search heuristes proposed to find the optimal
solutions. Computational results on several ingandrom different industry
backgrounds demonstrated that the proposed appi®adicient.

Very recently, Fengt al. (2014) proposed an iterative epsilon-constrainthiod
to solve a bi-objective HSP with non-Euclidean élavme metric, which means that
an empty move from tank to tankj may need longer time than passing by an
intermediate tanlk. The objective is to minimize the cycle time aheé total hoist
travel times simultaneously. Firstly, an initial MImodel was formulated for the
problem and then was further tightened by addingeswalid inequalities. Secondly,
an iterative epsilon-constraint method was proposedind the complete Pareto
optimal solutions for the problem. Finally, bothnbbmark instances and randomly
generated instances were used to evaluate thdiedieess of the proposed method.
Computational results showed that the proposed adetlan obtain Pareto optimal
solutions in reasonable time.

Most above mentioned works (such as Xu and Huab@4,2Kuntayet al, 2006,

and Subaet al, 2006) examined HSP with dual objectives, whiah @ptimized in a
separate way, i.e., one objective is optimized ha first step, and the other is
considered in the next step while maintaining tpénoized results obtained in the
first step. Obviously, such separate and sequeopfinization approaches can not
necessarily find the global Pareto-optimal soluifor MOHSP. So it becomes urgent
to develop efficient scheduling approaches for #iameously achieving different
objectives for HSP.

2.1.3 Cyclic multiple hoists scheduling problem (CMHSP)

Besides above, researchers have also worked grdbem with multiple hoists
that generally lead to higher productivity compatedhe single hoist system. In a
multi-hoist system, the hoist usually move the pathier in a unidirectional way or a
bidirectional way. To be more specific, the unidirenal way means that the hoist
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moves parts from left to right, i.e., the part @ssing sequence is exactly identical to
the tanks layout, while the bidirectional way metret the hoist can move parts from
left to right and from right to left, i.e., the paarocessing sequence is not necessarily
identical to the tanks layout. To avoid hoist @ins, various scheduling approaches
have been proposed, and they can be generallyifddsanto two classes: (I)
zone-partitioned based approaches and (Il) oveeldyased approaches. For class (1),
the production line is divided into several non4daeping zones according to the
number of the hoists, and each hoist is exclusiesgigned to one of zones for
moving parts. Thus, overlapping the coverage ramjebe hoists is forbidden. In
contrast, the production line is not divided angisthoists can overlap with each other
in class ().

() CMHSP with zone-partitioned approach

Lei and Wang (1991) were the first to propose Istigrialgorithm that is called
Minimum Common-Cycle (MCC) algorithm, to find thetonal move schedules for a
two-hoist cyclic scheduling problem. The proposégbathm used a zone-partition
approach to avoid two hoists conflicting with eather when they moved on a single
track. More precisely, the production line is dettinto two sections and each section
is exclusively assigned to a single hoist. Findlg proposed algorithm was verified
by benchmark instance and random instances.

Armstronget al. (1996) proposed a local optimization algorithmduh®n the
greedy zone-partition approach for the multiplesteoscheduling problem with given
cycle times, where overlapping the coverage rawnddbe hoists are forbidden. The
objective is to minimize the number of hoists usedthe line. To avoid hoist
collisions, the production line was divided intoveeal non-overlapping zones, and
each hoist was exclusively assigned to one of zdaesmoving parts. A local
optimization algorithm was proposed to maximize $iwe of each zone, which is
equivalent to minimize the number of hoists used tire system. Finally,
computational results on both benchmark instanndsandom instances showed that
the proposed approach is efficient for solvingph&blem.

Riera and Yorke-Smith (2002) proposed an improvgorid model combining
CLP with MIP to solve the generic cyclic schedulipgpblem with unidirectional
multiple hoists. The proposed hybrid model adopteal different approaches to deal
with hoist collisions, which are zone-partitionad.( non-overlapped) approach and
collision-based approach, respectively. Computatioasults on P&U instance and
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randomly generated instances demonstrated thaprposed model is robust and
scalable compared with the existing approaches.

Alcaideet al (2007) proposed a parametric algorithm for a iplalthoists cyclic
scheduling problem with given hoist move sequeiiceprevent hoist collisions, all
hoists are supposed to run on a circuit line imm@wesel mode. Besides, all loaded or
empty hoist moving times are not given specificdliyt within the pre-defined time
intervals. The objective is to determine the valisesactual processing times, loaded
and empty hoist moving times so that the cycle timeninimized. The proposed
parametric algorithm was verified by a numericareple.

Manier and Lamrous (2008) applied an evolutiondgpr@thm with a repairing
procedure to solve the cyclic scheduling problenthwnultiple hoists running on
parallel tracks, which means that each hoist [sagvitn track and no collision happens
between hoists. The objective is to minimize bdth tycle time and the number of
hoists since it is not given in advance. In thégoathm, chromosome is represented
by empty hoist moves. An MIP approach was propdseglvaluate the feasibility of
generated solutions. Moreover, a repairing procegias designed to repair infeasible
sequences. Computation results were reported amdussied with benchmark
instances.

Besides, Zhou and Li (2009) proposed an MIP apgprdac the multi-hoists
cyclic scheduling problem with duplicated tanks their work, the line was divided
into several non-overlapping areas according torimaber of hoists. That is, each
hoist is assigned to an exclusive area and calissmnly happen when two adjacent
hoists meet at the boundary tank. An MIP model Wt proposed to find the
optimal hoist schedules. Then, the model was exiértd solve the problem with
duplicated tanks. The proposed model was solveddnymercial software CPLEX.
Computational results on three numerical examplés two and three hoists implied
that the proposed approach is effective for soltirggstudied problem.

(I) CMHSP with overlapped approach

Baptisteet al. (1993) proposed a Constraint Logic ProgrammingR inethod
with depth-first search procedure to find the miamm cycle time for the hoist
scheduling problem with different line configuratioThe optimal cycle times
obtained with the proposed approach for the P&Uamse with one degree and
single/two hoists as well as two degrees singlesthavere reported. Finally,
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advantages and disadvantages of the CLP languagesel as the comparison
between the two different implementation langua@ies PROLOG Il and CHIP)
were also presented.

Moreover, Varnieret al. (1997) proposed a CLP based heuristic approach to
obtain the optimal hoist schedules for a multi-hoiglic scheduling problem, where
coverage ranges of the two neighboring hoists dimved to overlap. That is,
adjacent hoists can share several common tankseqgirbduction line. The proposed
approach consists of two specific procedures. Irtiqudar, procedureA used a
heuristic rule to assign transportation tasks @mhehoist. Then, proceduBzused an
exact method based on CLP to determine the optimiat schedules for the problem.
Computational results on benchmark instances andora instances indicated that
the multi-hoist system has larger productivity thlaa single hoist system.

Manier et al. (2000) developed a resolution procedure to sohe dyclic
scheduling problem with bidirectional multiple hisiallowed to overlap on a single
line, which includes duplicated tanks and multidtion tanks. Firstly, a mathematical
model was formulated for the problem with disjumeticonstraints (i.e. mutually
exclusive inequalities). Then, the proposed modek wmplemented using CLP
language. Based on the above works, a resolutiocegure using branch-and-bound
tree with depth-first search strategy was develdpdohd the optimal hoist schedules.
Note that a node of the search tree representsjandiive constraint (i.e. a pair of
operations), and when a leaf node is reached, &re droist schedule is obtained.
Finally, computational results on benchmark ins¢snand 35 randomly generated
instances with no more than 3 hoists were givensioaved that multi-hoists system
improves the line productivity compared to the Brigpist system.

Leung and Zhang (2003) formulated the first MIP elofibr the bidirectional
multiple hoists cyclic scheduling problem. All hisisare supposed to be run on a
single track and the production line is not partigd according to the number of
hoists. That is, two adjacent hoists may overlap common segment of the line. A
branch-and-cut procedure with depth-first searchtesgy was used to solve the
formulated MIP model. Computational results on Benchmark instances with no
more than three hoists were reported and analyzed.

Che and Chu (2004) first formulated an analyticatrematical model and then
proposed a B&B algorithm for the single track npl#i hoists cyclic scheduling
problem. The production line is supposed to be itgational. In their paper, two
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collision-checking properties were derived to indfgnthe hoist collisions. The
proposed B&B algorithm consists of two nest procedd and B. In particular,
procedureA is used to enumerate all possible tank stateildisions at time zero,
while procedurd is responsible for finding an optimal cyclic schkxfor each given
tank state distribution. The proposed algorithm wasnpared with the existing
approaches by using both benchmark instances artbmainstances. Comparison
results showed that the proposed B&B algorithm foaeh a smaller cycle times than
the existing approaches.

Besides above, Leurgg al. (2004) formulated the first MIP model for the agcl
scheduling problem with multiple hoists moving gaoh a single track, in which the
part processing sequence is exactly identical éatdihks layout. The objective of the
problem is to minimize the cycle time for a givasmrber of hoists. The authors first
tighten the MIP model proposed by Phillips and Un¢E976) with new valid
constraints. After that, by identifying all possbhoists-collision situations, they
formulated an MIP model for the studied problem.the experimental study, six
benchmark instances with no more than three hoeigse used to evaluate the
performance of the proposed model, which is solwethe commercial optimization
software CPLEX 6.5. Computational results on thosgances were given and
discussed.

Later, Zhou and Liu (2008) proposed a heuristioalgm based on enumerating
trial processing times for solving the cyclic schietg problem with two hoists
running on a single track. More precisely, actuacpssing time in each tank was
randomly generated within their corresponding tinméervals. Then, a simple
algebraic method was proposed to determine the hmse sequence according to
the generated actual processing times. In theikwbe production line was divided
into three areas from left to right. For each gimeove sequence, all moves located at
the left area (resp. right area) is exclusivelygrssd to hoist 1(resp. hoist 2). Hoist 1
and hoist 2 together take charge of performingrali’es located at the middle area.
Thus, collisions only happen in the middle areasdgon the above works, a linear
programming (LP) approach was proposed to findhb&t schedule for each given
hoist assignment. Finally, benchmark instance P&t mndomly generated instances
were used to evaluate the performance of the peabadgorithm. Computational
results on those instances demonstrated that thgoped heuristic algorithm can
obtain near-optimal cycle time in a short time.
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Chtourouet al. (2013) proposed a heuristic algorithm for the Engack two
hoists cyclic scheduling problem, where overlapghng coverage ranges of the hoists
are allowed. Thus, hoist collisions in common segimenust be avoided. In particular,
the same method that presented in Zhou and Liu8j2@@s used to generate hoist
move sequences. Then, a heuristic algorithm wagogex for dispatching moves to
hoist. Besides, to save the computation time, aR Mbdel without hoist collision
constraints was formulated for determining thetdiare of each hoist move, and a
test procedure was proposed for checking the awilisonstraints. The best solution
is chosen from all the verified feasible solutio@®mputational results were reported
and analyzed with benchmark instances and randstanoes.

Very recently, Jiang and Liu (2014) formulated atPNhodel and then proposed
a B&B algorithm for the cyclic scheduling problenithvbidirectional multiple hoists
moving parts on a single line. For such a problelntifying possible situations of
hoist collisions are very crucial since that is airmpart of the problem formulation.
Based on a full analysis of the studied problemivdR model was first formulated,
and then a B&B algorithm was proposed. The propadgarithm was compared with
Leung and Zhang's MIP approach (Leung and Zhand)3RGnd optimization
software CPLEX (11.11) using P&U instance and ramdostances with different
parameter settings (such as hoist numbers, probleenand time window width).
Comparison results presented that the proposed &8&arithm is more efficient than
the two competitors in terms of CPU time.

2.2 Literature review on QEA

In this section, we review some works on QEA ralatethis research. In recent
years, QEA has been received considerable attefrbom researchers because of its
excellent optimization performance. It can be sasna probability optimization
algorithm based on the concepts and principles uaintum computation, such as
Q-bits representation, observation process andwsiguantum gates (Deutsch, 1985).
It has achieved great success in several well knoptimization problems, such as
travelling salesman problem (Narayanan and Mod®86), knapsack problem (Han
and Kim, 2002), production scheduling problem (hdaVang, 2007), and economic
dispatch problem (Netet al, 2011).

To our knowledge, Narayanan and Moore (1996) ¥inistiroduced QEA to solve
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the travelling salesman problem (TSP) and gainguifstant performance compared
to classical method. Tallet al (2004) proposed a new QEA for TSP, and comparison
results showed that QEA performs better than GAsidgs above, Han and Kim
(2002) were the first to apply QEA to solve the psack problem. Moreover, Han
and Kim (2004) proposed a new termination criterdoml a novel quantum gate for
QEA to solve the knapsack problem. Zhetaal (2006) proposed a hybrid QEA that
combines QEA with constraint handling method foapsack problem. Zhang and
Gao (2007) proposed an improved QEA (IQEA) with mewation gate for knapsack
problem. Comparison results indicated that IQEsuperior to basic QEA.

Due to its excellent performance, several reseasdi@ve also proposed various
variants of QEA for production scheduling problerk®r instance, Li and Wang
(2007) employed QEA to solve the multi-objectivewll shop scheduling problem. In
their proposed QEA, chromosome is encoded by Q-Witsch are transformed into
job sequence by a binary-decimal decoding schemenp@tational results showed
that QEA is efficient and robust to obtain Paregpbvoal solutions with good diversity
and proximity. Later, Get al (2009) proposed a parallel QEA which also usdst-
encoding and binary-decimal decoding scheme fostbehastic job shop scheduling
problem. Moreover, Geet al (2010) proposed a co-evolutionary QEA with same
encoding and decoding scheme for the same proldetineaone studied in Gat al
(2009). Besides, Niet al. (2009) proposed a hybrid algorithm called QIlAttha
combines QEA with immune algorithm for the hybridw shop scheduling problem.
Experimental results indicated that QIA is betteart Immune algorithm in solution
quality. Zheng and Yamashiro (2010) proposed a Inbeeristic algorithm called
QDEA that combines QEA with differential evolutidor the permutation flow shop
scheduling problem to minimize the total flowtinmeakespan, and maximum lateness
of jobs. In their proposed QDEA, chromosome is éedoby rotation angles, which
are further used to order the job sequence.

2.3Synthesis

In above sections, more than 60 articles about &8Peviewed and analyzed in
details. We judged that they are significant of tbgearches in the field, even if they
still remain a part of the whole literature dealingh HSP and near problems. Figure
2.1 demonstrates the trend of those publicatioressc# see from it that the number
of articles has been gradually increased in tinfeclvimplies that HSP has become a
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hot research topic in the operations research #qae chart given in Figure 2.2
shows the ratios according to the approaches peojioghe literature. As can be seen
from Figure 2.2, the most proposed approaches aveisiic algorithm, MIP approach
and B&B algorithm. Moreover, Table 2.1 presentsrigafbtsummary of the existing
works on QEA related to our research. We can sme it that QEA has been applied
in many research fields except for HSP. Based enaltove works, we make the
following remarks:

() By analyzing the publications about HSP in reces#ry, two research trends can
be observed. One is to develop efficient approadtesolving various HSPs with
multiple objectives, because optimizing a singlgotive is not enough to deal with
the practical applications. The other is to sty HHSP with multiple hoists since it is
often encountered in many industrials.

(I) Due to the NP-completeness of HSP, it is a wisdcehto adopt heuristic or

meta-heuristic methods to find reasonably good dules in a reasonable time,
instead of obtaining an optimal one. To the besbwf knowledge, no work was

reported for using QEA to solve any types of HSfsTesearch tries to connect this
gap as described in previous section.

(1) In most existing studies on the cyclic multipleigt® scheduling problem
(CMHSP), such as Lei and Wang (1991), Armstrehgl. (1996), Leunget al. (2004),
Zhou and Liu (2008), Chtouroat al. (2013), Jiang and Liu (2014), loaded hoist
moves are implicitly or explicitly assumed to stanid end within the same cycle. We
think that scheduling approach under such an assommay identify a non-optimal
solution to be an optimal one, which can be vatifoy a counterexample. To find a
global optimal solution, the above-mentioned asgionshould be relaxed. In other
words, a loaded hoist move is allowed to startria oycle and end in the next one if
necessary. Therefore, this research focuses odetlopment of an improved MIP
approach for the CMHSP with relaxing the above-noseid assumption.
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Table 2.1 Summary of QEA works

Problems

References

TSP

Knapsack problem

Flow shop/Job shop
scheduling
HSP

Narayanan and Moore (1996), Talbal (2004)

Han and Kim (2002), Han and Kif0@®, Zhacet al (2006), Zhang
and Gao (2007)
Li and Wang (2007), Gat al (2009), Niuet al (2009), Get al
(2010), Zheng and Yamashiro (2010)
Our contribution
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Chapter 3 A Hybrid Quantum Evolutionary Algorithm
with Improved Decoding Scheme for HSP

3.1Introduction

With the development of automation technologiesngoter-controlled hoists
instead of workers have been gradually used in nmaagufacturing industries to
perform high frequency or dangerous transportgis. The advantages of robotic
or automated manufacturing systems include higheduyctivity, better product
quality, more efficient use of materials, improva&fety and reduced labor intensity.
Besides, highly robotic or automated manufactusystems can effectively meet the
requirement of mass production and respond to glabapetition.

In modern surface treatment facilities, the promunctine usually consists of
several processing tanks arranged in a line andoomaore hoists for transporting
parts from tank to tank, as shown in Figure 1.1e Dw the industrial applications
(Armstronget al, 1996), the part processing time in each tanksiglly limited to a
pair of minimum and maximum time intervals, whick called time window
constraints. The cyclic production mode is usualgopted in the automated
manufacturing systems because of easy implementdtioa mass production
environment. This leads to a repetitive scheduldopmed by the hoist in every
certain time. The duration of performing the refpegi schedule is called the cycle
time or cycle length (Cheet al, 1998).

As mentioned in Chapter 2, Lei and Wang (1989)drased that the simple HSP
is NP-complete, but many researchers have congtdetlicated to this area and
proposed various efficient methods for solving thkevant problems (Phillips and
Unger 1976; Baptistet al, 1993; Lei and Wang, 1994; Ng, 1996; Cletral, 1998;
Yanet al, 2010; Yaret al, 2012).

Since 1990s, QEA has been successfully appliedblice sseveral well-known
optimization problems, such as travelling salesqmarblem (Narayanan and Moore,
1996), knapsack problems (Han and Kim, 2002; ZtenthGao, 2007), flow shop/job
shop scheduling problems (Li and Wang, 2007;eGal, 2009; Guet al, 2010), etc.
Due to the NP-completeness of the studied probtbecomputation time spent by
exact methods usually increases exponentially u#stisize. Thus, it is a wise choice

to use meta-heuristics to find sufficiently goodhestules within a reasonable time.
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Because of its unique advantages, such as bettpulgtion diversity, rapid
convergence, and very well global search abilitiAChas gained great success in
many different optimization problems. Up to nower is no work reported on using
QEA to solve any types of HSP. So in this chapies, propose a new scheduling
algorithm based on QEA and genetic operators fersthgle-hoist cyclic scheduling
problem with processing time windows.

The main contribution of this chapter is summarized follows. Firstly, we
propose a new decoding scheme with three diffex@méersion procedures. Secondly,
we propose a more effective repairing procedura tha one in Yaret al. (2012) to
overcome the problem of unfeasibility of generasstjuences which are often
encountered in HSP. Note that in Yanal (2012), for each infeasible sequence, the
reparation is conducted by randomly swapping any tmoves. In this chapter, we
first identify the move segment that causes infabtyi of the entire move sequence
and then repair it. Finally, to increase the popaitediversity, crossover and mutation
operators with adaptive probabilities are also anpgd into our algorithm.

The rest of this chapter is arranged as followgh&nnext section, we introduce
the problem description and show an illustrativaregle of the problem as well as
the problem formulation. The proposed algorithmhwat repairing procedure is the
subject of the Section 3.3. The experimental resaid comparisons of the proposed
algorithm with the existing approaches are givenSection 3.4. And finally, we
conclude this chapter in Section 3.5.

3.2 Problem statement and mathematical model

3.2.1 Problem statement

As the problem has been studied in the literateuge, Phillips and Unger (1976),
Lei and Wang (1994), Ng (1996), Chenal (1998), Leunget al (2004), and Che
and Chu (2007), we briefly give a problem desaniptand notation, which are similar
to those existing in the literature. Givarprocessing tanks (i.eM1, Ma,..., Mp) in a
production line and a single hoist for part tramtqoon. Both tanks and hoist are
single capacity resources. Besides, tank 0 ig.and tankn+1 (i.e. Mn+1) are the
input station and the output station, respectivifter a part is unloaded froMo, it is
to be successively processed throbghto Mn. The hoist moves a part froM; to
Mi+1, O<i<n, which is called (loaded) moveEach (loaded) movement includes three
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sub-operations: 1) unloading a part from a tanlga2jying the part to the next tank; 3)
loading the part into the tank. The hoist withoatrging a part travels between two
tanks, which is called empty move.

Moreover, the part processing time at each tankaid to be processing time
windows, as it is confined within a pair of minimuend maximum time bounds. If
the actual processing time violates the time lindefective parts would be produced.
Furthermore, at any time, each tank can procesg @m part. When a processing
operation in a tank is finished, the part must b®/@d by the hoist to the next one
without delay, which includes no pause of the laatteist. The production lines
usually run in a cyclic mode since it is easy t@lement. In each cycle, each tank is
emptied exactly one time during a cycle, which imes cyclic schedules with
one-degree. This chapter studies the one-cyclieddding problem with a single hoist,
and the decision concerns how to optimize the hoisve sequences so as to
maximize the productivity.

To facilitate the problem formulation, we defineetfollowing notations and
variables in this chapter, which are similar to hget al (2004):

[Li, Ui]: the minimum and maximum bounds of the part pssoegy time inM;,
respectively, i<n.

di: the time needed to perform mavyéxi<n.

a,j: the travel time for empty hoist froi; to M;, note that,; =0 ande,; =¢,i,
0<i, j<nt+1. The values of ; satisfy the well-known triangular inequality (Chetral,
1998):e,j<e, kte j, kK{i, j}, i#], <1, j, ksn+1.

The decision variables are the following ones:
C: cycle time. It is the duration of a cycle.

ti; the start time of (loaded) moviewithin a cycle, &i<n. Without loss of
generality, move 0 is supposed to be the first nahaecycle, thus=0.

To facilitate the formulation, we define the follmg intermediate variables:

s: if 5 =0, thenM; is empty at the beginning of a cycle; etse1, thenM; is
occupied by a part,<n. Define S, = {so, s1,...,S}, which is called the initial part
distribution at the beginning of a cycle. Withoos$ of generality, we lep=1 and
$1=0, sinceMo is always occupied by part at the beginning ofyelecand move O is
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the first move of a cycle.

r[i]: thei+1™ move performed by the hoist within a cyclej€h. As mentioned
above, we have[0]=0. Define R\=<r[0], r[1], r[2],..., r[n]>, which represents the
sequence of moves during a cycle. An exampl&oWith n=3 is R:=<0, 2, 3, 1>,
wherer[1]=2, r[2]=3, andr[3]=1, as shown in Figure 3.1. Her§l]=2 means that the
second move transfers a part frtdn to Ms.

Figure 3.1 shows an illustrative example of thelistd problem witm=3. In this
example, there are three processing tanks Kil.g.M. andMs) with a single hoist for
part transportation as well as the loading stafi@Mo) and the unloading station (i.e.
Ma). In Figure 3.1, the inclined solid arrows and threken arrows represent the
loaded moves and the empty moves, respectively.sidré point and end point of an
inclined solid arrow (resp. a broken arrow) repnégkee start time and the end time of
corresponding loaded (resp. empty) move, respégtiFairthermore, the horizontal
solid line represents the duration of the part @ssing operation. The production line
is supposed to be in steady-state. As can be seenHigure 3.1, at time OJ2is the
only tank to be occupied (and implicitifo). So the initial part distribution S = {1,

0, 1, 0}. For this distribution, the optimal horabve sequence =<0, 2, 3, 1> (i.e.,
to<to<ts<t;). When move 1 finishes, the hoist comes backigand performs move 0
of the next cycle. We can also see that the h@dbpms the same loaded (or empty)
move sequence in time interv&,[2C] as those ones in time interval [0]. This is
called cyclic production mode. The duration of thpetitive sequence (i.&s) is the
cycle timeC.

Tanks

t;+d; C+t‘+d‘

B CHi+d, f \
M; Lid P %
LR e A
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Figure 3.1 An example of cyclic scheduling probheith a single hoist.

According to the notation in (Manier and Bloch, 2DPQdedicated to hoist

28



scheduling problems, the problem studied in thiaptér can be expressed in the
following form:

CHSP | n// diss | In+2| Cmin

which means the single hoist cyclic scheduling mwebwith n tanks,n+2 operations
per part, dissociated loading and unloaded stat@md minimization of cycle tim€
as the objective.

3.2.2 Mathematical model

As mentioned above, move 0 is supposed to starhat0, then the start times of
other moves are all greater than 0. Thus, we Hasie 1993; Ng, 1995):

to=0, t;>0, for IXi<n, (3.1)

In Figure 3.1, we notice that the start time ofgassing operationis the same
as the end time of loaded mavé (i.e.ti-1+di-1); the end time of processing operation
i is the same as the start time of loaded mdie. t)). Moreover, there are in total two
possible states (empty or occupied) for each tatikeabeginning of a cycle. Based on
the above observations, the actual processing thmmd; can be represented &8s
—(ti-1+di-1) for s=0 (like tankM1 in Figure 3.1) an&+ti—(ti-1+di-1) for s=1 (like tank
M2 in Figure 3.1), respectively. Considering the ps®ing time requirements, we
have (Cheret al, 1998):

Li<sCHti—(ti-1+di-1)<U;, 1<i<n, (3.2)

Furthermore, the hoist must have enough time téoparany two successive
moves (i.er[i] andr[i+1]), thus, the following relation holds (Chenal, 1998):

trip o ter i+, vy <trpiegg, OSiSn=1, (3.3)

It should be noted that constraint (3.3) also imifpyi guarantees the satisfaction
of tank capacity constraint. For instance, as showkigure 3.1, we havel]=2,
r[3]=1, andc.=1. By the definition of tank capacity constrai(ite., an occupied tank
must be emptied before processing a new part), Aonast performs before move 1,
and thus we haveést+d>+es 1 <t;, which must hold. From constraint (3.3), we caneha
to+dot+es <t3; t3+ds+ey 1<t1, which leads tdy+dz+e3 s+ds+es 1<t1. Sinceds+es 1>€31, the
inequality t>+d>+e31<t; holds. Therefore, we see that tank capacity caimsétnis
implicitly ensured by constraint (3.3).

Once the last move (i.e[n]) finishes, the hoist must come back My for
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executing move 0 of the next cycle. Hence, we [{@enet al, 1998):

tr[n]+dr[n]+er[n]+1, o<C, ler[n]sn. (34)

Based on the above works, the mathematical modelthe single-hoist
one-degree cyclic scheduling problem with processtime windows can be
formulated as (Cheet al, 1998):

Min. C
s.t. (3.13(3.4).

3.3Hybrid Method

In what follows, we present a specific hybrid QEWbgled HQEA in the
following) for the studied problem. More precisaly,Section 3.3.1, we introduce the
traditional solution representation and decodirfgestes; in Section 3.3.2, we present
the Q-bits representation; in Section 3.3.3, wemeihe the states of Q-bits in each
individual; in Section 3.3.4, we present the deaggrocedures; in Sections 3.3.5 and
3.3.6, we describe the fitness evaluation functaord the repairing procedure,
respectively; in Section 3.3.7, we introduce thiation gate and the genetic operators
to update individuals; finally, in Section 3.3.8.ewpresent the flowchart of the
proposed hybrid algorithm.

3.3.1Introduction

In QEA or GA models, a solution (also called chremme) is usually
represented by a permutation of job input sequamaassic flow shop or job shop
scheduling problems. However, a chromosome is esttbg Q-bits in QEA, which is
then converted into a binary chromosome. That SA@@ generally based on a binary
encoding. For this reason, a key issue in the deweént of QEA for production
scheduling problems is to design an efficient dewpdhechanism to convert a binary
representation into a permutation-based represemtatypically, there are mainly
two decoding schemes used in QEAS in the literatorresolving various scheduling
problems: binary-decimal decoding and shifting dieg. For the binary-decimal
decoding, it first uses a binary segment for eaath and then converts it into a
decimal number. After that, all jobs are sequenbaded on their corresponding
converted decimal numbers. It is understandablettteachromosome under such a

scheme is usually very long, especially when tloblem size is large. As a result, the
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search efficiency of the algorithm may be redudlfor shifting decoding, it uses a
permutation chromosome as a parent pattern ani$ sisiigenes with the direction of
a binary chromosome so as to generate a new pdromutghromosome. Such a
decoding usually has a better computational efficyethan binary-decimal decoding.
But it cannot make full use of the advantage of Q& to its permutation-based
representation.

To overcome the above drawbacks, we propose a eeadthg scheme in this
study. In our scheme, a binary chromosome is dyrexinverted into permutation
chromosome (i.e. a hoist move sequence) usingaeadiffierent decoding procedures.
Our decoding scheme can efficiently exploit theusoh diversity due to Q-bits
chromosome compared to shifting decoding, and hawoater chromosome than
binary-decimal decoding. In the following, we pneistihe Q-bits representation.

3.3.2Representation

Indeed, we notice that tank state and Q-bit statee the same characteristics.
That is, they both are either 0 or 1. Since preceeleelations need to be determined
betweem moves in this chapter, we let Q-bitorresponding to tank for 1<i<n, and
use Rule 1 and Rule 2 introduced in the followiegt®n to determine each Q-bit
state. If Q-bit is in state “0” (i.e.s =0), which represents that mowel is performed
before move during a cycle; otherwise (i.es,=1), move is performed before move
i—1 during a cycle. Hence, an individd#llcontainingn Q-bits is used to represemt
tank states, and is defined as follows:

T2 a”} (3.5)

W= {al
BilBol-A By
where |ai|*+|3[=1,1<i<n. Note that in the initialization step, all Q-bits W are
initialized as the equal probability (i.e. 1/2 ) loéing O or 1. From above, we can

know that each quantum individual corresponds tmmplete part distributiois,,
more precisely the state of eadh(i.e. empty or occupied).

In more classical and direct representations far $tudied problem, each
individual represents a moving sequence, so theevail geng gives the index of the
tank from which thg™ move starts during one cycle. In such represemstithe
solution space containd individuals. With our representation, we handieai first
step only 27! individual (and not 2 becauses; is always equal to 0, it is not use
making it explicitly appear in the representatioffhis number may be further
reduced for some instances with Rule 1, as explainethe following. Moreover,
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each Q-bits individual generally corresponds tcesaivmoving sequences, which we
consider in a second step. Each time Rule 1 enablés determine that an individual

is not good, then all the associated moving seqgeame unfeasible ones and it is no
use evaluating them.

3.3.3Initialization

For each specific instance, some tank states malirbetly determined by the
following method. Specifically, we first supposeatls=1, therefore move occurs
before mova—-1 within a cycle. Moreover, let us suppose that enexl and mova
are the last move and the second move of a cyedpectively. Correspondingly, the
minimum processing time of a part i with 5 =1 isg o+doter,i. As an example, if
we consider move 1 and move 2 in Figure 3.1, tlegssing time of a part Mo is
equal toex gtdoter 2. INdeed, mova would be the first move to be performed after
move 0, and move-1would be the last move of the cycle. Else, the@ssing time
in Mi would be greater tha®, o+do+e1,i, which would make the following assertion
even more true. Then we can compare this processimg with U; which is the
maximum authorized time iWl;.

1) If Ui<e, otdotey,i (hereafter called Rule 1) happens, then we cawkhat the
processing time requirement M; is violated. Consequently, all sequences
relevant withs =1 are infeasible ones. Sanust be 0.

2) Else,s may be Oor 1.

Note that Rule 1 can be used to reduce the enumgrspace ofS, and thus
improve the search efficiency. Indeed, if Rule Aldas us to fix 0 to the values pf
variabless, then the search spaceSfcan be reduced td"2-tindividuals.

For the state of Q-bitin a quantum individud¥ that is not determined by Rule
1, a random numbaed; is generated from the uniform distribution [0, [)rdi>|aif?,
then Q-biti is in state “1” (i.es =1); else, Q-bit is in state “0” (i.e.s =0). This
method is called Rule 2. Based on the above, ttessbf all Q-bits in one individual
can be easily determined by Rule 1 and Rule 2, thab say the initial part
distributionS..

3.3.4Decoding Scheme

In what follows, we present how we derive the homgive sequence from a
qguantum individual. For a better diversificatiohree different decoding procedures

described in the following are used to convert amgum individual into possible hoist
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move sequences, providing that the states of allitQ-(i.e. &) in a quantum
individual are already determined.

3.3.4.1 Decoding procedure 1

For ease of description, we first defidebe a copy o6 andAi =s. Let® be a
set that records the performed moves. It shouleshdied thatli can be seen as an
indicator that indicates the state (i.e., emptpaoeupied) ofVi in the process. Thus,
the value ofdi is dynamically modified in the process. That isiew move finishes,
both the states oM; and Mj+1 are changed, i.eM; becomes empty anili+1 is
occupied by a part. Thus, we get0, Ai+1 =1 and put moveinto set®d .

Procedure 1 mainly depends on the probability sit€3-bits inW to derive the
hoist move sequence, fokikn. In particular, for givers,, when move|[K] finishes,
for O<k<n, we first calculate the number (labeled witht) of Ai=1 under condition
Ai+1=0 (note that ifi=n, the output station can be seen as always be ¢mapty1P.
Then, we successively assignwith above condition toQm (i.e. Qn=i) in set
Q={Q,...Qcn¢, Which is defined to record the possible movestfe next step, for
1<m=cnt Thus, each step has in totak possibilities. Finally, we choose moywith
the highest probability (i.da]?) in setQ as mover[k+1], and letA=0, Aj+1=1(for
j#£n),®=®[{j}. In the next step, we update batht andQ, and use a similar way to
derive the following move (i.e[k+2]). When the whole hoist move sequence R:.
is determined, this procedure stops.

For example, a complete part distribution (corresjpog to a quantum
individual) S, with n=5i1sS ={1, 0, 1, 0, 1, 0}. When the first move (i§0]) finishes,
by definitions, we havdi=1, 1>=1, A3=0, A4=1, As=0 and®={0}, from which we can
know thatM1, M2>andMgs are currently occupied by a part. As the hoisincaminload
a part from an empty tank and also cannot loadraiq@ an occupied tank, we have
Q={2,4}. Finally, according to the selection rulé,|i|>>|as]>, we haver[1]=2;else,
r[1]=4. The similar ways are used to updateb, Q and then determimgk], 2<k<5.

3.3.4.2 Decoding procedure 2

For ease of description, we keep the intermediatampetersli, ® andQ defined
in procedure 1. Furthermore, we defstebe the start time of movan the process of
deriving the whole sequence anddigt0, for (ki<n. To derive a move sequence from
given S, procedure 2 mainly depends on the rule of minitmak unit increment
betweensty andstk+1), for I1<k<n, while respecting the processing time windows,
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since the objective of the problem is to minimike tycle timeC. In other words, in
each step, we have a set of several moves and elues move with the earliest
starting time as movgk+1] from the set.

In particular, on one hand, when movf] finishes, as similarly done in
procedure 1, we derive the valuexotandQ from each giverg. On the other hand,
we design a different strategy to determine mgie1] compared with the procedure
1. At first, we calculate eaddt (supposing=Qm) in setQ, that is,st=stij+drijteri+1,

i, I<m<cnt Then, for each movein setQ, we check whether moyjel exists in the
partial determined sequence[®, r[1],..., r[i]>. If it exists andst—st-1—dj-1<L;
happens, then we updatg=st-1+di-1+Lj SO as to meet the minimal processing time
requirement. Then it involves a waiting time of #rapty hoist above tarjkuntil the
minimal processing time in tanks completed. Finally, we choose mgusupposing
]=Qm) with the smallest value afj in setQ as move[k+1], and let4;=0, Aj+1=1 (for
j#n),®=®[{j}. In the next step, we update botht and Q so as to derive move
r[k+2]. When the whole sequence (i) is determined, this procedure stops.

For instance, an example &f with n=5 is $={1, 0, 0, 1, 0, 1}. When the first
move (i.e.r[0]) finishes, by definitions, we havé&=1, A,=0, A3=1, A4=0, As=1 and
®={0} as well asQ={1, 3, 5}. We first calculatest; (note that ifsti—do<Li, then
sti=do+L1), Sk andst by sio+do pluser, 4, €1, 3, €1, 5 respectively, then choose the move
with the smallest starting time among the threedwiates as[1]. The similar ways
are used to updaik, ®, Q and then determingk], 2<k<5.

3.3.4.3 Decoding procedure 3

Procedure 3 mainly depends on the precedenceorgdaip between movie-1
and move (i.e., the value o§) to derive the move sequence. For each gfxesnd
R, (i.e. quantum individual), i§=1, then mova is set before move-1lin R,; else,
movei is set after move-1 in R.. For instance, an examples $fandR, with n=5
are respectivelys ={1,0,1,1,0,1} andRs=<0, 2, 1, 4, 3, 5>, from which we can easily
derive a possible sequence thaRds<O0, 3, 2, 1, 5, 4>. Note that at the initial step,

setr[i]=i, O<i<n.

Based on the above descriptions, we first applythitee proposed decoding
procedures to each quantum individual and thercistle best sequence (i.e. the best
fitness) from the three generated sequences tegept this individual.

3.3.5Fitness evaluation
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To facilitate the descriptiorfjt(X) is defined to represent the fitness value of
each individual X, and it can be computed as fodlofit(X)=F/C, in whichF is a
parameter and set as 2000 in this chapter. Frard#finition, we see that the smaller
the cycle timeC (C>0), the greater the fitness value. For each indadidelevant with
a hoist move sequence, it is evaluated by usingtéeh-based polynomial procedure
(Chenet al, 1998). In particular, if the sequence is prowede feasible, then the
procedure returns a positive value for the cyateetC and the individual fithess can
be calculated; Otherwise, the individual fitnesses to be 0. For more details about
the graph-based polynomial procedure, please seedtlal (1998).

3.3.6 Repairing procedure

It should be noted that constraints (3.2) ~ (3atniulated in subsection 3.2.2
can be regarded as two classes. One is flexibleepsing time constraints and the
other is hoist transportation capacity constraimtbjch are (3.2) and (3.3), (3.4),
respectively. Generally, if a sequeriggs infeasible, the following cases happen:

(C1) the flexible processing time constraint islated;
(C2) the hoist transportation capacity constrantiolated;

Due to the characteristics of the HSPs in termsowistraints, it is well known
that very few feasible solutions exist among thmerous possible moving sequences.
Long before searching the optimal solution, thatfichallenge is to find feasible
sequences. So some repairing procedures are oftgmired to transform the
unfeasible solutions into feasible ones. In whdlowes, we present the repairing
procedure based on the above cases. For an indiwdth an associated hoist move
sequencer,, we identify each partial sequence in a whole thmieve sequenck,
which is either in sequence 0fl-e+—-e+-i (which means move-1 is performed
before mova within a cycle) or of - ¢+ i-1(which means moveis performed
before mova-1 within a cycle). That is to say, a complete hoistve sequencB,
consists oh pieces of such a partial sequence. For ease ofipigsn, we define the
following parameters:

Z-1,i: the duration between the finish time of mavé and the start time of move
i for a partial sequendel-e+—«—i, for I<i<n. Note thatz-1,i generally equals to the
sum of all loaded move (denoted by ¢) times aneviait empty move times. If there
exists a pair of moves-1 andj in the sequence, thatiisl—-e+- j-1-+-j-1, and
Z-1,i<Lj, then we letz-1,i= z-1,i+Lj —z-1,j. Note thatz-1,; may span the cycle or be
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within a cycle. For example, in Figure 3.1, the twonsecutive sequences are
0-2-3-1-0-2-3-1. From it, we can see thai zand 2z, sare within a cycle,
but z, 2spans the cycle. Thereforg;1,i can be used to check the satisfaction of
flexible processing requirements no masief ors=1.

d: the mean time of all loaded move times= Zdi I(n+1).
i=0

n+l n+l
e: the mean time of all empty move times=2(>"> e —¢,,)/(n” +5n). Note
i=0 j=i

that the possible number of empty movegis-5n+6)/2. Since the empty moves
betweenMoand Mo, Moand M1, Mn+1andMn+1do not actually happen, the number is

reduced t@n’ +5n)/2.

For an infeasible sequend®&, we first use parameters-1, i to check the
sequencé,.

1) If z-1,i is verified to be greater than its upper bouhdhen we remove one or
more move(s) from the corresponding partial segeeso as to make the partial
sequence to be feasible; elseif,; is verified to be smaller than its lower bound
and the time gap betweén andz-1,i is greater than the sum dfand 2, then we
insert possible moves into the partial sequence.

2) Then, we identify the violated hoist capacitysiwaints by the start times of
all moves (i.e.fi, 1<i<n) given by the evaluation process. For ease ofrgsmn, let
movesi andj be the identified two moves violating the hoisbaeity constraints, that
is, ti+di+a+1,j >tj, with ti<tj. If these two moves are two consecutive movessete
movej before move in sequenc®, so as to make the sequence be feasible; else, we
remove one or more moves between movesdj so as to make the two moves
satisfy the hoist capacity constraints.

3.3.7 Updating individuals

3.3.6.1 Rotation gate

In this chapter, the rotation gatf{Aw) is adopted as the variation operator to
update the Q-bits in (3.5 is set to be as the initial rotation angle. Falividual X,
the Q-biti in it can be updated as the following way (Han #&moh, 2002; Li and
Wang, 2007):
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a, | _[cosAw -sinAw | a; (3.6)
B | |sindw coshw | B '
We definefit_b be the fithess of the best individual found in pagon. The
rotation angleAw is defined according to the respective valueshefdorresponding
parametes in the individual X (labeledi-x) and in the best one (labelgdes). If the

condition fit(X)<fit_b holds, then consider the following conditions (Hamd Kim,
2002):

Case A: If Q-biti is in the 1st or the 3rd quadrant, then considerfollowing:

Case (A.1): ifs-pestl ands—x=0, thenAw=(-ap), here the rotation angleaw is
set negative so as to increase the probability@hbit i is in state “1”;

Case (A.2): ifs-pest0 ands-x=1, thenAw=w, the rotation anglé\w is set
positive so as to increase the probability thatitQ-s in state “0”;

Case (A.3): elsédaw =0;
Case B: If Q-bii is in the 2nd or the 4th quadrant, then considerfallowing:

Case (B.1): is-pestl ands-x=0, thenAw=w», here the rotation anglew is set
positive so as to increase the probability thatitQ-is in state “1”;

Case (B.2): ifs-pest0 ands-x=1, thenAw=(-w), the rotation angldw is set
negative so as to increase the probability thait@+b in state “0”;

Case (B.3): elsé\w =0;

Besides, since the probability of a Q-bih state “0” may be equal to 1 or O, the
updated Q-bit may be trapped in state “0” or “1”, which may |lgadthe premature
convergence of population. Thus, a small constamt applied to ensure that the
probabilities of the two states are both belongethé range/, 1-4]. As a result, the
following equation must be considered (Han and Ki604):

- W \/H]:if a <Ju
m= Vi-u Julit a>u (3.7)

a B else

By applying the decoding procedures given in Sec8s.4 to each updated
guantum individual, hoist move sequences can bergeed from it.
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3.3.6.2 Genetic operators

In this subsection, selection, crossover and natatiperators (Akpinar and
Bayhan, 2011) are applied to further evolve the ubetpon. To facilitate the
description, the following notations are given:

Cp, My: crossover and mutation probabilities, respecyivel
fit_a: the average fitness of the entire population.

fit_0: the maximum fitness of a specific instance,clvhs computed as follows:
fit_0=2000C.. C. is the lower bound on cycle time for the instance. It can be
obtained by the following way, which is taken fr@@henet al (1998):

CL 2maxLi+di+di-1+e+1,i-1), 1<i<n. (3.8)

According to Srinivas and Patnaik (1994)andm, are defined respectively in a
similar way:

cp =0.7%[fit_O- fit_b)/[fit_0-fit_a]. (3.9)
mp =0.5x[fit_0- fit(X)}/[ fit_O-fit_al. (3.10)

Adaptively adjusting, andm, (i.e., (3.9) and (3.10)) can prevent divergena an
escape from the local optimal, since (3.9) andQBchn dynamically reduog and
mp for individuals with high fitness, or increasg and m, for individuals with low
fitness.

In this chapter, two-point crossover operator igliagl to generate the offspring.
First, two individuals are chosen by the binaryrt@ament method as parents 1 and 2;
then, for parent 1, two different positiopsandq are randomly chosemp, qJ[1, n].
Foril[1, p) and @, n], the values of[i] for the new offspringl inherits from parent 1.
Foril[p, g], the newr[i] is sequentially chosen from parent 2, on conditileat its
value was not already chosen from parent 1. Theesgperations are done, starting
with parent 2 and then parent 1, to generate offg@r This operation is depicted as
Figure 3.2(a), in whichis the chosen position.

Besides, a mutation operator is adopted to prexzesiution falling into a local
optimum of a specific instance, which is designedodiows. For a chosen individual
Ry =<r[0], r[1], r[2],..., r[n]>, first, we randomly choose a positipnpJ[1, n], then
randomly reorders the move sequencerifp«l], r[p+2],..., r[n]>. This operation is
depicted as Figure 3.2(b), in whitts the chosen position.
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Parentl [4 ][ 1[5 (6 ]|[71[3]— % oftspringt [4] [1][5][6][2][8][7]
/
paren2 [5][6][3][1][7][2][4][8] 3 offspring2 [ 5][6 ]| 1] [3]I4]

(a): Two-point crossover operation

Original Offspring Mutated Offspring

] 2]EIFIE] ] R E]E]
(b): Mutation operation

Figure 3.2 Crossover and mutation operators.

3.3.8 The procedure of hybrid QEA(HQEA)

Based on the above works presented in section$~33.7, the procedure of
HQEA for solving the considered problem can be degi as Figure 3.3. From this
flowchart, we can see that the proposed algoritees iwo mechanisms to update the
population: Q-gate and genetic operators.
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Figure 3.3 The flowchart of the proposed HQEA.

3.4Experimental results

To verify the feasibility and applicability of the@roposed HQEA, both
benchmark and randomly generated instances wedeusiee experimental study. All
computational experiments were conducted on an AS&f8op with an Intel Core
i5-3210M Processor 2.50GHZ and on a windows 8 enwent. The parameters
were set as follows: population size: Popsize=83fe maximum number of
generations: Maxlter=200; Initial rotation angle=0.05t = 0.008. The maximum
repairing times were set as 6. For evaluating thadity of the solution obtained with
our HQEA, the same problem was also formulatechbynixed integer programming
(MIP) approach and solved by the ILOG CPLEX (Vendid.4).
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3.4.1 Experimental results on benchmark instances

The proposed algorithm was verified by using fivellwknown benchmark
instances in the literature: Mini Phillips (Mim=8), Black and Oxide2 (BO2=11),
Phillips and Unger (P&Un=12), Lignel (=12) and Ligne2r(=14), which are taken
from Leunget al (2004), Phillips and Unger (1976) and Manier @R%espectively.

Table 3.1 gives the experimental results for fiemdhmark instances obtained
with our algorithm and CPLEX software, in terms tbe number of remaining
possibleS, after applying Rule 1 (NbS, after Rule 1 for shortthe Convergence
generation(Con.gen. for short), the Best cycle sirmed the CPU times (measured in
seconds). The “Con.gen.” refers to how many geimratare needed for our
algorithm to find the best solution and no improesrnon the solution in the later.
Consequently, the sub-column “Con. time” represetis time needed by the
“Con.gen.” and is computed as: Con. time= Con.ggi@ur CPU time/Maxlter).

Table 3.1 Results for the benchmark instances

Instances NbS, after Rule 1  Con.gen. Best cycle times CPU times(In seconds)

Our CPLEX SD Our Con.time CPLEX Gap
Mini 26 2 287 287 0 4.75 0.048 0.16 -0.112
BO2 20 13 279.3 2793 0 5.26 0.342 0.25  +0.095
P&U 210 29 521 521 0 5.65 0.819 0.47 +0.349
Lignel a1 24 411 392 4.84% 7.35 0.882 0.72  +0.162
Ligne2 23 26 712 712 0 6.71 0.872 0.48  +0.392

In Table 3.1, we can see that Rule 1 works welambenchmark instances (i.e.,
Mini and P&U) as shown in column “NI&, after Rule 17, as the enumerating space
of S is respectively reduced 50% for the two instan@®éste that there are in total
2! individuals for each instance with given value rof. In column “Best cycle
times”, our algorithm finds the same solutions las bptimal ones obtained with
CPLEX (see “Our” and “CPLEX”), except for Lignelhd@ standard deviation of the
best cycle time obtained with our algorithm frone tiptimal cycle time obtained with
CPLEX for Lignel is less than 5%, see sub-columB”;Svhich is computed as:
SD=(Our-CPLEX)/CPLEXx100%. Although the CPU times spentdoy algorithm
are generally longer than those spent by CPLEX ¢sehamn “CPU times”), we can
also see in column “Con.gen.” that our algorithmd§ the optimal solutions for most
cases in very early generations (the spent tingdvisn in sub-column “Con.time”).
Note that the time gaps (i.e. sub-column “Gap”’westn Con. time and CPLEX are
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very narrow, less than 1s. Due to this very smadbant of gaps, the difference in
CPU times between CPLEX and our algorithm is meglass and can be negligible.
In summary, our algorithm is an effective methoddolving the benchmark instances
in terms of solution quality and CPU times.

3.4.2 Experimental results on randomly generated instance

In this subsection, random instances are genetatiedther test the performance
of the proposed algorithm. We compare our algorithith the QEA with shifting
decoding scheme to demonstrate the effectivenessiroflecoding scheme. We also
compare it with commercial software CPLEX and Tabarch (TS) algorithm (Yaet
al., 2012). The random instances are generatedlas/$lWe seh belongs to {10, 15,
18, 20, 22}, and lety(cl, c2) be a uniform distribution between parametdrandc2.
The random tests were set as two different groOpe. (called Groupl) was defined
as the following way: the time windows were set a$J(30, 120) andJi=Li+U(10,
750), ki<n; the time of empty and loaded moves were respagtcomputed as the

j-1
followings: &,i+1=U(3, 6),6j =Ze&kﬂ, 0<i, j<n+1, anddi=20+g, i+1, O<i<n. The other

k=i

(called Group2) was defined as the followihgsU(40, 120),U; =30+U(1, 8)Li, for

j-1
1<isn, ,i41= U(2, 5),8,) =) &, for Osi, jsn+1, anddi=15+e, i1, for O<isn. These

k=i
defined parameters were based on the magnitudbeotiata from real production

lines (Phillips and Unger, 1976; Manier, 1994). Each givem, five instances were
randomly generated.

Table 3.2 reports the remaining number Siffor each randomly generated
instance after applying Rule 1. As mentioned beftvere are in total"? individuals
for each instance with a given valuenofAs presented in Table 3.2, Rule 1 is efficient
on 22 random instances (i.e. the numbers in bait).fdVe can also see in Table 3.2
that the enumerating space&ffor each instance among the 22 instances is redduce
at least 50% and at most 87.5% after applying RulBased on these results, Rule 1
seems efficient for the studied problem.

Firstly, we compare our algorithm with the QEA wghifting decoding scheme
(i.,e. SQEA). Table 3.3 presents the comparisonlteebetween our decoding scheme
and shifting decoding scheme on Groupl and Growecan see that our decoding
scheme generally outperforms than the shifting degpscheme in terms of solution
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quality and CPU times for all random instancesparticular, the deviations (i.e. AD)
of our algorithm from that with shifting decodingrerally decrease with the problem
size. Besides, our algorithm spent less time than with shifting decoding for all

random instances.

Table 3.2 Results for the remaining numbeggdior each instance after applying Rule 1

n Groupl Group2
1 2 3 4 5 1 2 3 4 5
10 2 28 2 P 2 2 2 2 2 2
15 2[4 214 214 213 214 214 214 214 214 214
18 216 217 217 216 217 216 217 217 216 215
20 218 219 219 217 218 218 218 218 218 219
22 218 221 220 220 218 219 220 221 219 219

Table 3.3 Comparison results between our decodingrnse and shifting decoding scheme on
Groupl and Group2

n Groupl Group2
Average cycle times Average CPU times  Average cycle times  Average CPU times
Our SQEA AD Oour SQEA Our SQEA AD our SQEA
10 4004 401.2 -0.20% 6.74 10.12 318.4 3184 0 6.83 17.8

15 607.2 628 -3.31%  24.56 51.79 470.6 470.8 -0.04% 37.44 146.68
18 808.8 8174 -1.05% 54.88 286.55 627.4 638.2 -1.69% 49.46 267.57
20 8972 9278 -3.30% 117.53 360.14 678.6 690.2 -1.68% 141.02 275.59
22 1058.6 1351.2 -21.65% 274.43 315.62 802.6 8782 -8.61% 190.16 373.43

Secondly, Tables 3.4 and 3.5 reports the compariesalts for randomly
generated instances using our algorithm, Yan'srdlgn (Yan et al, 2012) and
commercial software CPLEX. Columns ABnd AD’ represent the standard deviation
of our solution from those obtained with CPLEX arah’s algorithm, respectively.
They are computed as: AEOur-CPLEX)/CPLEXx100%, and ADB=
(Our-Yan)/Yarx100%). As presented in Tables 3.4 and 3.5, ourriéihg and Yan’s
algorithm find the same solutions as the optimatsowobtained with CPLEX for
random instances with=10. For the remaining random instances, the aeecggle
times obtained with our algorithm are smaller thiwose obtained with Yan's
algorithm. As a result, the deviations (i.e. ADf our algorithm from Yan’s algorithm
are all negative, which range frof5.89% to—1.9% in Table 3.4 and from3.93% to
-0.42% in Table 3.5. Note that the smaller the?Afbe better solution quality our
algorithm obtained over Yan's algorithm. Therefomyr algorithm has a better
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solution quality than Yan’s algorithm. We also wetthat CPLEX has a better solution
quality than our algorithm and Yan’s algorithm luspent much longer CPU times,
which will be discussed later. Moreover, the valogAD!in Table 3.4 and Table 3.5
both increase with the problem size, but are leas 4% and 3%, respectively, which

are generally small and acceptable.

Table 3.4 Comparison results for the randomly gateerinstances Groupl

n Average cycle times Average CPU times (In seconds)
Our Yan CPLEX AB AD? Our Yan CPLEX
10 400.4 400.4 400.4 0 0 6.74 2.7 1.44
15 607.2 624.6 602.4 0.8% -2.79% 24.56 19.95 42.95
18 808.8 859.4 797.6 14% -5.89% 54.88 32.16 1351.53
20 897.2 914.6 865.8 3.63% -1.90% 117.53 114,51 1692.12
22 1058.6 1122.4 1025 3.28% -5.68% 274.43 211.34 2712.38

Table 3.5 Comparison results for the randomly gateerinstances Group2

n Average cycle times Average CPU times (In seconds)
Our Yan CPLEX AD AD? Our Yan CPLEX
10 318.4 318.4 318.4 0 0 6.83 4.58 1.38
15 470.6 472.6 466.4 0.9% -0.42% 37.44 62.35 51.50
18 627.4 636.4 612.6 242% -1.41% 49.46 92.84 324.24
20 678.6 684 661.8 2.54% -0.79% 141.02 53.52 1077.9
22 802.6 835.4 779.8 2.92% -3.93% 190.16 102.62 1897.76

For the average CPU times, we can see from Tablesr®l 3.5 that both our
algorithm and Yan'’s algorithm performs much bettem CPLEX for each value of
except forn=10. We also notice that Yan’s algorithm has adogterformance than
our algorithm in terms of CPU times exceptferl5 andn=18 in Table 3.5. But their
gaps are not so large. Moreover, although the Citést spent by the three
approaches generally increase with the instance rsizhe CPU times spent by
CPLEX generally have a very sharper growth thaseéhgpent by our algorithm and
Yan’s algorithm, especially for large-size insta;micErom these results, we can see
that our algorithm has a better computational perémce than CPLEX.

3.5Summary

This chapter proposed a hybrid QEA with improvedaditng scheme to solve a
single-hoist cyclic scheduling problem with progegstime windows. In particular,
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three different decoding procedures were proposecbhvert Q-bit individual into
robot move sequences. A repairing procedure waigts to repair the infeasible
sequences. Both Q-gate and adaptive genetic operaso variant operators were
applied to evolve the population. The effectivenekshe proposed algorithm were
demonstrated by solving benchmark instances andomaly generated instances
compared with commercial software CPLEX and Yargoathm. Experimental
results indicate that our decoding scheme outpaddhe shifting decoding scheme,
and the proposed algorithm can provide high-qualdjutions within a reasonable
time. The results also imply that the proposed ralym generally has a shorter
computation time than CPLEX, especially for larggesinstances, and has a better
solution quality than Yan'’s algorithm.
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Chapter 4 Bi-objective QEA with Local Search Procedure
for HSP with Simultaneous Productivity Maximization

and Production Cost Minimization

4.1 Introduction

In practice, electroplating plant is huge resoufsech as electricity and
freshwater) consumer due to its specific processnlnology. For instance, part may
be firstly immersed into an electrolytic degreasiagk containing certain volume of
concentrated acids and alkalis solutions at redquieenperatures, for removing dust
and grease from its surface, and then put intasaang tank containing certain volume
of freshwater for cleaning possible chemical residn its surface. Obviously, the
amount of consumed electricity and freshwater myaipends on the soaking
duration (i.e. actual processing time). In otherdgo increased soaking durations in
processing tanks generally give rise to the resaonsumption, resulting in higher
production cost.

On the other side, electroplating plant also geersrplenty of toxic waste daily,
such as sludge and wastewater from treatment, sed acids and other chemicals.
Generally, the less resource spent during the pspdbie less waste generated by
electroplating plant. Concerning the environmeptdlution as well as the shortage of
freshwater and electricity, most countries sucliri@mce and China enact legislation
to regulate the amount of freshwater and eleggrmiinsumed and pollutant emissions
daily in electroplating industry. Note that the gavments not only severely punish
the electroplating plants discharging heavy padtio the environment, but also
charge higher prices of electricity and freshwdterindustrial usage. Viewed from
these aspects, optimal HSP with production cosimipation has great significance
from both theoretical and practical perspectivasiniplies more benefits while
minimizing the amount of freshwater, electricitydaschemicals used, then while
limiting the associated costs as well as the pafiuemission and effluent treatment.
So scheduling such facilities enhances with both ébhonomic and environmental
pillars which are the basis of the sustainabldessadeployed in many industries, due
to the double pressure of concurrency and legisiati

In the past decades, a number of efficient schedwpproaches, such as B&B
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algorithm (Shapiro and Nuttle, 1988; Ng, 1995; Cheal, 1998; Manieet al, 2000;
Che and Chu, 2004; Clet al, 2011; Leiet al, 2014), MIP approach (Phillips and
Unger, 1976Liu et al, 2002; Leunget al, 2004; Zhowet al, 2012), and heuristics or
meta-heuristics (Lei and Wang, 1991; Baptisteal, 1993; Zhou and Liu, 2008;
Zhang et al, 2014), have been suggested for various variafitdHSP with
productivity maximization (i.e. cycle time or makas minimization). To reduce the
problem complexity, some researchers, such as Kuital. (2006) and Subat al.
(2006), proposed various two-step sequential sdmedapproaches for bi-objective
HSP, where cycle time and wastewater or produatast are minimized. Obviously,
such sequential approaches are not sufficientrtd the complete Pareto-optimal
solutions for the multi-objective HSP.

It is understandable that a hoist schedule is a fketor for improving the
productivity. Typically, the more frequently the isiopicks a part from the input
station, the higher the productivity. Moreoverja@ént hoist scheduling can also plays
an important role in decreasing the production,csisce it is inherently determined
by the actual processing times, which also affeetgroduction cost. So maximizing
the productivity may conflict with minimizing therq@uction cost. This creates the
trade-off between the two objectives, since thabhasd to determine whether one
solution is better than another if it is better tbe productivity but is worse on the
production cost. Therefore, there is a set of Bawptimal solutions for
multi-objective optimization problem (MOP), insteaaf a single optimal one
(Miettinen, 1999).

To overcome the solution evaluation issue of M@Rggal approaches have been
suggested, such as Pareto-dominance (PD) approagctive aggregation (OA)
approach and lexicographic ordering (LO) approddie PD approach is the most
commonly used approach. It is mainly based on thecepts of Pareto-dominance
and crowding-distance to evaluate solutions. It besn shown that PD approach is
very efficient in optimizing bi-objective or thremjective optimization problems.
Besides, by assigning weight to each objective thed summing up all objectives,
the OA approach transforms multiple objectives im@tosingle objective. Since
determining suitable weight for different objectvplays an important role in the
success of this approach, it is not sufficient iactice. In addition to OA approach,
some researchers suggested LO approach for MOBbfdttives are sorted based on
their importance and optimized alternately. It isoadifficult to give orders to

different objectives.
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As mentioned above, no research has been repantet6B with simultaneously
maximizing productivity and minimizing productiomst. Therefore, in this chapter,
we study the cyclic HSP with the above mentioneal dbjectives. In order to find a
set of Pareto-optimal solutions, an efficient QEAhwlocal search procedure is
designed for the studied problem. By adopting tlel-known concepts of Pareto
dominance and crowding distance, the proposed i#igorcan optimize the two
objectives effectively and simultaneously, and cdomain a set of Pareto-optimal
solutions for the problem in very short time. Toidguthe search direction and
generate the offspring population, a chaotic quantotation gate is proposed. For
increasing the individual diversity, mutation oderais implanted into the proposed
algorithm. As usual, an external archive is usedttoe the obtained non-dominated
solutions, and it is updated at each generation.

The rest of this chapter is arranged as followsSéttion 4.2, we present the
problem description and its formulation. Some cpit€ebout the multi-objective
optimization problem (MOP) and the Pareto-optimalliBons are given in Section
4.3. Section 4.4 details the proposed bi-objeciN&A. The experimental results are
given in Section 4.5. Section 4.6 gives some c@Eichs.

4.2 Problem description and its formulation

4.2.1 Sequence-based bi-objective mathematical model

In this chapter, the studied problem is similathat in Chapter 3, except for the
problem objective. More precisely, two conflictiogjectives (i.e., minimization of
production cost and maximization of productivityhish equivalents to minimize the
cycle timeC ) are simultaneously considered in this chaptetesd of a single one.
The objective “production cost” represents the swsts of the resource consumed in
all processing tanks per cycle. To avoid introdgcthe problem repeatedly, the
problem description is omitted here. Then accordmghe notation in Manier and
Bloch (2003), the studied problem can be writtethmfollowing form:

CHSP | n/l diss | /In+2| (Cmin, Production Cost min

In the following, the same notations and varialdlened in Chapter 3 are used
in this chapter. To facilitate the problem formidat we assume that the cost of
resource consumption in each tank is proportionathie processing times in it.
Therefore, the following notation (i.e;) and decision variable (i.p.) are defined:
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wi: the cost of resource consumed per time unitnk k4, 1<i<n. For simplicity,
we defineW= (w1, wz, wa...Wn), which will be given by each specific instance.

pi: the actual processing or soaking time in tdhk 1<i<n. For simplicity, we
defineP= (p1, p2, ps...pn). Furthermore, from constraint (3.2) formulatedCinapter 3,
we can know thapi=Cs+ti—(ti-1+di-1), for 1<i<n.

Based on the above descriptions and notationspitodjective mathematical
model for the studied problem can be formulated as:

Min f1=C,

Min fzzznlwi o,

i=1

subject to (3.13(3.4).

In above model, the first objective (i) is set to minimize the cycle tinte,
which equivalents to maximize the productivity, ahé second objective (i.&) is
set to minimize the total production cost of albb@essing tanks per cycle. As reported
in Chapter 3, if a hoist move sequettsatisfies the constraints (3-{3.4), then it is
a feasible schedule for HSP with only minimizing thycle time (i.ef; in this
chapter). On the other side, as all values of detigariables (i.e.ti, C, s) can be
obtained from a feasible sequernttethe value oP can be easily calculated. In other
words, asW is known in advance, the value of the second tbgdi.e.f2) can be
easily deduced from a feasible hoist move sequéhoehich is a solution for the
HSP with only minimizing the cycle time.

From above point of view, it seems that the HQE®@pamsed in Chapter 3 is also
suitable for solving the bi-objective HSP considene this chapter. But it is not in
fact. The reason is two-fold. The first one is thatthe value of production cost
(denoted by»(C1)) obtained from a shorter cycle time (denotedChymay be greater
than that (denoted Hy(C)) from a longer cycle time (denoted 8y), i.e.,C:<C;and
f2(C1)>f2(Cy), it is difficult to say that solutiondj, f2(Cy)) is better or worse tharts,
f2(C2)). For this reason, the fitness evaluation funcpooposed in HQEA is no longer
suitable for bi-objective HSP. The second one iat tthe feasibility checking
procedure used in HQEA only returns the minimumleyone for a feasible hoist
move sequence. It is understandable that a fealsdot# move sequence may have
several different cycle times, which consequentlymesult in different production

costs. In other words, a feasible hoist move secpiemy generate multiple different
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solutions (note that one solution represents aqfamlues respectively fdiandf)
for bi-objective HSP. Obviously, the HQEA proposedChapter 3 has one main
shortcoming in obtaining the Pareto-optimal solusidor bi-objective HSP, i.e., it
only returns one feasible solution and inherentlgpd other potential ones for a
feasible hoist move sequence. Based on above thwiglons, a new scheduling
approach needs to be developed for bi-objective iH$its chapter.

4.2.2 Modified bi-objective mathematical model

Inspired by the previous descriptions, we can kitoat the bi-objective HSP can
be reduced to the single-objective HSP (i.e. mina@rthe cycle tim€) if P is given.
It should be noted that Levnet al (1997) proposed a method of prohibited intervals
(MPI) to formulate the HSP with fixed processingéis (i.e. P is given in advance),
and developed an efficient polynomial procedurddda_evner’s procedure hereafter)
to find the optimal cycle tim€ for their studied problem. The complexity of Levse
procedure i©O(n°logn), wheren is the number of processing tanks. Inspired byr the
work, we can use the MPI approach to reformulate lbtobjective optimization
problem, and then apply the associated polynomi@dquure to obtain the values of
cycle time and production cost providing tHatcan be determined in advance.
Similarly to Levneret al (1997), Yanet al (2010), and Wang and Che (2013), the
new mathematical model for the studied bi-objectreblem providing thaP is
given can be reformulated as follows:

Min f1(P)=C,

Min fz(F’):Zn:V\lI P,

i=1

subject to:

Z=>(d;,+p;), fori<isn. (4.1)
j=1

coav EU(_OO,Zi _Zi—1+di +Q+Li—l)' (42)

i=1

~J

col ELHJ ((Z,-Z;,-d;-e,) /K (Z, -Z,+d +8,,,)/k). (4.3)

1N

LispisUi, for Ii<n. (4.4)
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In constraint (4.1)Z represents the start time of mawvef part O (suppose that it
entered the line at time 0) froMi, 1<i<n, i.e., the completion time of part 0%
processing operation. Moreov&+mC represents the start time of mavef partm
(note that it is introduced into tmg" cycle at timemC, as only one part can enter the
line within each cycle) from tank;, O<i<n, andZo=0. Constraints (4.2) and (4.3)
impose a series of prohibited intervals for cydhaetC. In particular, if the value
(denoted byC") of cycle time falls within the prohibited integaV (i.e., C'V) in
(4.2), then at least one conflict happens in theeafsa same tank by different parts at
the same time. Thux;' is an infeasible solution for the problem sincehe#&ank
cannot process more than one part at any time.l&lgiif C' belongs to prohibited
intervalsdefined in (4.3) (i.e.C'0l), thenC' is also infeasible for the problem since
two consecutive moves conflict in the use of thisth@t last, constraint (4.4) ensures
that the processing time window constraints anesfsad.

4.3Basic concepts of MOP and Pareto-optimal solutions

Multi-objective optimization problem (MOP) is ofteancountered in many
real-world applications. In practice, it involvegtimizing at least two objectives
simultaneously, which are usually conflicting wehach other, i.e., an improvement on
one objective may give declination to some othBrge to this reason, MOP is more
complex than the single-objective optimization peof. Suppose an optimization
problem with minimization of two objectives, whichn be expressed as follows:

Min F(x) =[ f,00, f(x],

s.t.xtX.

In above definitionfi(x) is the problem objective <i<2; x denotes the decision
variables vectorX represents the solution space or the constrai80°. Generally,
there are multiple optimal solutions for MOP, irsteof a single one. They are usually
called as Pareto-optimal or non-dominated solutiarigch are defined by the Pareto
dominance concept. It is explained as follows. &wy two solutions;[IX andx.[1X,
if we havefi(x1)<fi(x2) andfy(x1)<fa(x2), or fi(x1)<fi(x2) andfz(x1)<fz(x2), then we say
that solutionx, dominates solution. If a solutionx” is not dominated by any other
solutions, thenx’ is called non-dominated (i.e. Pareto-optimal) Sotu Moreover,
the Pareto frontRF) is defined asPF={F(X)|xQ}, in which Q denotes the set of
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non-dominated solutiong-or more details about the MOP, please see th&snly
Miettinen (1999) and Deb (2001).

4.4 Solution method

In this section, we develop an efficient bi-objeetiQEA with local search
procedure to find a set of Pareto-optimal solutifanghe studied problem. Figure 4.1
depicts the main flowchart of our proposed algonithVe can see from Figure 4.1
that the proposed algorithm includes the encodingd decoding scheme, the
individual evaluation procedure based on the Patetoinance technique, the chaotic
guantum-rotation gate, the mutation operator, thdersal archive updating
mechanism and the local search procedure. Theiddgostops when the maximal
number of iterations (i.e. maxgen) is reached. Astoned above, our bi-objective
problem can be solved by Levner’s procedure on itiondthat P can be known. In
what follows, we first present how to obtakh with the proposed encoding and
decoding scheme and then introduce other componétite algorithm in details.

‘/ Start \‘ Initialize population Obtain the values of ) Use Pareto-dominance
\T/ =i the two objectives technique to evaluate

N A individuals

I'l Encode | | :

I chromosomes| ! Apply mutation Decode quantum ¢

I I opClaton chromosomes

| + | + Update e.xternal

| | archive

I Decode I Update individual

: chromosomes : using chaotic TN

! | quantum-rotation gate \ End ) '
- = _V_ === j N H—J Time for local
: , search?
O}l:tam the \./alu.es of <t/> e ¥ Output the external
the two objectives ~IT SEI archive

v t

Use Pareto-dominance | Apply local search
technique to evaluate »  Update external Y Y | procedure to each solution
individuals archive o ’ in external archive

Figure 4.1 The main flowchart of the proposed heotive QEA.

4.4.1 Encoding and decoding scheme

As there aren processing operations, each chromosome is encagledstring
consisting oh Q-bits, which are defined as follows:
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ala,
W =
L?l Je

where |ai|>+|3[*=1. Since we need to know the valuepaf 1<i<n, and it must fall

a .
} I<i<n. (4.5)

within its corresponding time windows;[ Ui], the following two decoding schemes
are used to transform each quantum chromosomé4i%) into the actual processing
time P(Li and Li, 2008):

P, =05x(U, +L +(U, -L)xa,), for i<isn. (4.6)

p,=05xU, +L, +(U; —-L)x4), for I<i<n. (4.7)

In (4.6) and (4.7), we definex=coqag), B=sin(ag), and g=2r=rd, where
1=3.1415926 andd is randomly generated between 0 and 1. From tHisitien, we
can see thaty and 4 fall within the range 41, 1]. Consequently, each generated
processing timey is limited by its corresponding lower and uppeuthds Li, Ui].
Therefore, processing time window constraints amsueed. Note that for each
guantum chromosome, it is decoded by both (4.6) @nd). In other words, two
different solutions (such @&andP') are generated from each quantum chromosome.
For this reason, such an encoding and decodingrszican provide a better diversity
of population.

4.4.2 Individual evaluation

After the chromosomes decoding, the objective \sahfeeach individual can be
obtained with Levner’s procedure. Thereafter, imtinal evaluation is an important
issue for the studied problem. To fix this issue Pareto-dominance approach is
adopted to evaluate all individuals. According teb2t al (2002), the population is
first classified intoK different frontiers 1, F2, Fs,..., Fk) based on the dominance
relationship by a fast sorting procedure. Note thahcludes all the non-dominated
solutions obtained in each generation. After tlhibdfance metrics are assigned to
individuals by a crowing distance computing progedun what follows, we first
describe the fast non-dominated sorting procedumc then the crowing distance
computing procedure, which can be found in Babal (2002). To facilitate the
descriptions, we lehdr denote the number of solutions which dominate tsmiuP,
and Q» denote the set of solutions which are dominatesdbytionP.

(a)The fast non-dominated sorting procedure

Stefl): For each solutiorP, first setnde=0 and 2r =[1; thendeterminendrand
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Stegdll): For any solutionP with nde =0, first put it into the first frontie~,, and
set its rank number to bk i.e.,Ranle=1; thensetk=1.

Step(ll): If Fz, then seQ=L0]; else go to StefVI).
SteglV): For OxOFk, setndy = ndy —1 for qUI2p; if ndy=0, put solution q intd.
StefV): Letk=k+1 and F«=Q; For [JgUFk, setRank=k. And go to Stefll ).

StefgVI): LetK=k-1; End

(b)The crowding distances calculation procedure

Stefdl): Order the population according to each objectivéueain increasing
order; for each objective, set infinite distanceuwea (denoted by M) for both the
smallest and largest solutiofisoundary solutions

Stefgll): For objective (i(}{1,2), the distance DigP;) of each non-boundary
solution R is calculated based on the absolute normalizeigrifice in the objective
values of two neighbor solutions by the followiggation

Dis; (P,) = (f,(P...) = fi (P (£ = £™) (4.8)

Stefglll ): For each solution Rits overall crowding distance GB)) is calculated
as the sum of the distance value for all objectiVéss is expressed as follows

CD(P) = Dis (P) (4.9
whereG represents the total number of considered obgstiFigure 4.2 illustrates an
example of an optimization problem with dual objge$ minimization. In Figure
4.2@), the population is divided into 3 frontiers (j.€1, F2, F3) by the above
described fast non-dominated sorting proceduree NuitF: represents the set of all
non-dominated solutions (denoted 4y which dominate those I/, and solutions in
F> dominate those irFs. Moreover, Figure 4.B) depicts the crowding-distance
calculation process of solutidf. As can be seen from Figure 4p(P: and Pp
denote the two boundary solutions.

After using above two described procedures, eatitiso P has two attributes:
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Non-domination rankKanl) and crowding distanc€CO(P)). For any two solutions
P and P’ if Ranl<Ranle, then we say that solutioR is better than solutionP’,

because the former dominates the latter. For solsitiwith same rank (i.e.
Ranle=Ranle), if CD(P)>CD(P’), then we say that solutidd is betterthan solution
P’ becauseP is located in a lesser crowded area, and it imgsothe population

diversity.
fi Si
A A Boundary solution
\ Piy”  cDp)=M
® 450 ®  CD(P)=Dis(PyDiss(P)
\, & \ 'y DA )
P .
\%h O\) ’ \’Disz(P/)z(fz(P,'ﬂ)ﬁ(P/1))/(f2m"xfzmm)
) — - F3 P, @ A DlS](P )
OO,,,,J— J-1 y P4 J
. \O\ i L / Boundary solution
e O . PS4
e O " A P e +CD(P =M
—@— F 1 DlSz(P ,‘) %%75]'* F 1
> f : >
(a) Classification of population (b) Crowding-distance calculation

Figure 4.2 Classification of the population (a) &rdwding-distance calculation (b).

4.4.3 Chaotic quantum-rotation gate

In this chapter, for generating new offspring, quamrotation gate is adopted to
update each Q-bits chromosome. For a Q-bits chromesy, its Q-biti can be
updated as follows (Han and Kim, 2002; Li and W&@f)7):

a, =cosw) xa; —sin@w) x B

o . (4.10)
B =sin@w)*a; +cosBw) xS

In (4.10), Aw represent the rotation angle, which plays an ingmrrole in
updating Q-bits chromosome. Generally, the valueAaf is determined by an
intuitive reasoning way (Han and Kim, 2002; Li avang, 2007). In this section, we
propose a different way to determine suitable romaéngle for updating each Q-bit.
Firstly, for driving the search direction towardsaréto-optimal solutions, we
randomly choose a non-dominated solut®r(note thatP=(p1, p2, ps...pn)) from
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external archive to guide the updating processhobrnosomeY. Then, we assume
that each actual processing timeof P corresponds to a probability amplitugeof a
Q-bit mwith y=cog(r7:). Note thaty can be deduced by (4.6) or (4.7), and thecan
also be known. For ease of description, wegkeli—d, whereai=coq ). From this,
we can know that the gap (i.¢) betweernvy and g can be used as the rotation angle
to update Q-bii. But this may reduce the diversity of Q-bits chomome, and the
solutions may fall into local optimal. For this sem, chaotic sequence is used in the
updating process of each Q-bit due to its gooddiaity and regularity. It is produced
by the logistic map, which is usually defined aéofes (Dettmer, 1993):

Mg =4% Lig-1%(1~Lig1), 1< (4.11)

where/gyis generated at generatignNote thatuo is randomly generated from (0O, 1)
at the initial generation. Finally, we propose aatic quantum-rotation gate to update
each Q-bits chromosome, i.e., the rotation angleasly determined byg andg. In
the following, we explain how to choose the rotatiangle according to eight
different cases, which are illustrated in Figur@ 4casel)—caselV)) and Figure
4.4(case()—caseVIlll)). Note that in the two figures, the curved arn@gresents our
proposed rotation direction for Q-hit
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Figure 4.3 The updating processes for Q-bitthe 1st and 2nd quadrants.

If Q-bit i is located in the first quadrant, then considerftilowing cases:

Case [): For y =0, as casel] illustrated in Figure 4.3, to simplify the updaji
process, if 1.5<ni<2m (i.e., Q-bitmis in the fourth quadrant), then we Igt=2rt-7,
(i.e., let Q-bitmin the first quadrant). After that, we &ty =yx¢ (¢=r—a), which
implies that the value da is positive ifg>0 and negative i§<0. This makes Q-bit
closer to Q-bitm. Moreover, if =0, both small negative and positive values are
acceptable foAw, so as to search the neighborhood area.

Case [1): For y<0, as illustrated in Figure 4.3, we know that @+hiis located
either in the second or the third quadrant, sovlee of Aw is set to be 07x Ly,
which is a relatively “big jump” to drive Q-bittowards the location area of Q-hit

If Q-bit i is located in the second quadrant, then consigefailowing cases:

Case (I ): For i 20, we seAw=(-0.5m)x /4, in order to drive Q-bit towards the

location area of Q-bin.
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Case [V): For y<0, we first letri =2rs if T<s7i <1.5m, and then sehaw =14% @.
It implies that the value oAw is positive if >0 and negative <0, and which
makes Q-bit closer to Q-bitm. Moreover, if =0, both small negative and positive
values are acceptable ftu, so as to search the neighborhood space.

A A
1 RS
o Q-bitm Q-bitm
=
-1 ‘ z . n (EP)) : .
' a Do 1 -1 A7 I i
i s i
O-bit i . / O-bit i <. o/
\: | /,,/‘(‘/Q-bitm a 0-bit m/
h T - \,, O-biti |-
case(V) case(VI)
A A
is 1

\

\/

\\\‘\\9’;\\5}\\\\\ 1 i = 1
A\ 7 O-biti \
U*‘\\ VA o Q-biti
- \/,/’/Q-bit m Q-bit m\ //
i e P
-1 Q-bziz / -
case(VII) case(VIII)

Figure 4.4 The updating processes for Q-bitthe 3rd and 4th quadrants.

Furthermore, similar analyses have been performedbiti in the third and
fourth quadrants, i.e., caS@tcaseVIll) shown in Figure 4.4. Based on the above
analysis, Table 4.1 presents the lookup table fmosing suitable rotation angle to
update Q-bits chromosome. By using the above destrchaotic quantum-rotation
gate, different rotation angle is determined foifedent cases. Consequently, each
chromosome has an evolutionary diversification, ainds updated towards the
non-dominated solution space by a diverse way.
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Table 4.1 Lookup table of rotation angle

w20, ¢ =n-a u<0,¢=n-a
ai >0,5 =0 If ¢20, A = LigX @; Ay =0.5m% Ly,
else,Aw =+0.008T,
a <0, 3 >0 A =(~0.5m)% 145, If $20, Acd= Lgx @,
else,Aw=+0.008Tt
ai <0,5 <0 Ay =0.5mx Ly, If §20, Aci= Lgx @;
else,Aw =+0.008t
ai =0, 5 <0 If ¢20, A = g &; A =(—0.5m)x Lg;

else,Aa =+0.008T

4.4.4 Mutation operator

Although the proposed decoding scheme and updaiohgme has a strong
ability to provide a better diversity of populatjanstill has some room to increase the
population diversity, so as to prevent the algonittalling into local optimal as far as
possible. Thus, mutation is applied to each chad@momosome according to the
mutation rate. More precisely, two positionandy are randomly generated for each
chosen chromosome, s y<n. For each Q-bit between positions andy, we swap
the values oty andf. If x equals toy, then just swap the values @f and 5.

4.4.5Updating external archive

The external archive (EA) is initialized to be emplt is updated at each
generation. For simplicity, |&§iDg-1 be the set of non-dominated solutions stored in
EA updated at generatig+landF; be the set of non-dominated solutions obtained at
generationg. We first letNDg=NDg-100F1, and then calculate the crowding-distance
for each solution iMNDg. For any two solution®1 andP2 in NDg, consider the
following: (a) if P1 is the same aB2 (i.e., fi(P1)=f1(P2) andf.(P1)=f»(P2)), then
remove one of them froMDyg; (b) if P1 dominate$2, then remov®2 fromNDg and
vice versa. If the size MiDy exceeds the pre-defined maximum size, then wevemo
the individual with the smallest crowding distarfoem NDg until the size equals to
the maximum size. Finally, EA is updated a¥idy contains the final non-dominated
solutions. The above described updating procedspgted in Figure 4.5.
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Figure 4.5 The process of updating external archive

4.4.6 Local search (LS) procedure

As mentioned above, as soon as the actual progessiaP (note thatP= (p1, p2,
ps...pn)) is determined, Levner’s procedure can be apgletind its corresponding
optimal cycle timeCy, (i.e. Co= f1(P)). After that, the associated hoist move sequence
H and value of the production cost (ifg€P)) can be known foP. Due to the special
characteristic of hoist scheduling problem, it rderstandable that a feasible hoist
move sequenckl may has several different feasible cycle timesictwvtare denoted
by {Ci, C, Cg3, ..., Ci}, corresponding to diverse processing times fazhetank.
Obviously, the optimal cycle tim@, for P obtained with Levner’s procedure is one of
the cycle times €1, Cy, C3, ..., Cqy} related toH. This implies that there probably
exists a better cycle time irC{, Cy, Cs, ..., Gy} than Cy for H. Besides, it should be
noted that different feasible hoist move sequentag have the same cycle tirGe

For the above reasons, a local search (LS) proeeduneeded foH so as to
further search other possibly better cycle timdated to it. To save the computation
time, LS procedure is applied to the non-dominated/iduals from External Archive
at everyx generation, wherg is a parameter to be set in the experimental @ecti
Due to its high efficiency in finding the best oydime for each giveh (Wang and
Che, 2013), in this chapter, the graph-based pohyaloprocedure proposed by Chen
et al (1998) is used as the LS procedure to find therah cycle timeC* for eachH
(it corresponds to a non-dominated soluti®mwith objective valuesf{(P), fo(P))) in
External Archive. Thereafter, the new processinges spent in all tanks (i.B%) can
be determined according to the newly foli C*=f1(P")), and the value (i.d2(P"))
of the second objective can be calculatedHoaccording toP'. As a result, a new
solutionP’ with objective values@*, f»(P')) for H is obtained with our LS procedure.
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At last, we update the External Archive with thevhefound solutions. The above
described LS procedure is depicted in Figure 4.6.

Start _ | Select one solution P which Apply LS Derive the actual processing
a A | corresponds to a move sequence ¥ PPy p| time P’ according to the newly

H from External Archive (EA) procedure to /7 found cycle time C* for H

N  /
Update EA . , Determine the
with the Y _“All solutions in Put the new solution P value of the second
= solutions A are selected? g i GEHTE TEIES | g objective according
“ ? N Ny )
stored in Q (C*,£(P?) ) into set @ to P’

Figure 4.6 The process of the proposed LS procedure

To better understand our above observation, Figdr&s4.8 illustrate two
different feasible cycle times with the same haistve sequence for a HSP example.
The data for the example is given in Table 4.2, clwhivas generated via our
experiment. Note that the travel times of emptyshaioves for the presented move
sequence are given as;, 5=12s, 65, =9S, &4, = 55, &, 1=7S, €, =58, 5, =16s. As
illustrated in Figures 4.7~4.811~ Ms are processing tank$/o and Mg are input
station and output station, respectively. The hoisve sequences illustrated in the
two figures are the same, i.e5;3-3-2-1-4. But the cycle times given in the two
figures are different, i.eC=170s andC=220s, which are all feasible ones. To our
knowledge, the valu€=170s given in Figure 4.7 is the optimal cycle tifoe the
given example. Note that the numbers around amenxtisolid arrow (resp. a broken
arrow) in Figures 4.7 and 4.8 represent the statteand times of a loaded move (resp.
an empty move). Moreover, we can derive the agitaessing timeB= (90s, 124s,
128s, 56s, 48s) from Figure 4.7 ddd (140s, 174s, 137s, 97s, 48s) from Figure 4.8.
From these values, we can see that two differemiahprocessing times are given by
the same hoist move sequence for each tank ektept
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M,

M,

C=170 Time

Figure 4.7 Hoist move sequences83-2-1-4 with C=170.

Figure 4.8 Hoist move sequences83-2—-1-4 with C=220.

Table 4.2 Data for the example

Tanki 0 1 2 3 4

L - 71s 81s 45s 40s 30s
Ui - 187s 188s 137s 97s 63s
di 20s 20s 19s 18s 19s 20s
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Furthermore, Figure 4.9 illustrates a differentsibbe hoist move sequence for
C=220s. The travelling times of empty hoist movelsitesl to the presented move
sequence aree, =75, &, 765, 5=0, €5, =125, €3, 1=7S, &, =8s. As can be seen from
Figure 4.9, the hoist move sequence-+i8-1-5-2-1. As verified by Figures 4.8 and
4.9, different hoist move sequences can have tine sgcle time.

/22
166 Vﬂ_
A Y
\
v,
0 C=220 Time

Figure 4.9 Hoist move sequence384-5-2-1 with C=220.

4.4.7 Steps of the proposed algorithm

Input: Np (size of the quantum chromosomedaxgen (maximum number of
iterationg; MaxEA (maximum size of external archjyen, (probability of mutatioiy
X (LS period; NDo=0] (external archive, which is set to be empty at tiigai step.

Output:ND (the set of non-dominated solutigns

Steggl) Initialization: First encode an initial populatiorwith Np quantum
individuals, and then decode each quantum chromesota 2 problem solutions (i.e.
P) using(4.6)and (4.7); set g=0.

Stefgll) Determine objective values: First use Levner's puobae to find the
optimal value of the first objective (i.e. cyclmd), and then calculate the value of the
second objective (i.e., production cost) accordmgach solution P.
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Stefglll) Individual evaluation: classify the population inkodifferent frontiers
F1, F2, F3,..., Fk, and calculate the crowding-distance for each imdlal.

SteglV) Update the external archiv®lDo= NDo[J F.

StefgV) Let g=g+1.

SteggVI) if g>Maxgen, then go to Stop and output the externdiiae; else, go
to StegVvIl).

StegVIl) Update quantum individuals: apply the proposed titamtation gate
to update each quantum individual

StegVIIl) Apply mutation operator to each chosen quantunmviddal.

StedlX) Decode the quantum individuals usiognversion procedure@.6)and
4.7).

StegX) Obtain objective values and evaluate solutions
StegXl) Update the external archiv®lDg= NDg-1[1 F1.

StegXll) At everyy generation apply the LS procedure to improve the solutions
in external archiveAfter that Go toStegV).

4.5 Experimental study

In this section, the performance of the proposeabiective optimization
algorithm QEA with local search procedure is evidaon a practical electroplating
problem selected from an automated zinc platingtgla China (Ni, 2010). In what
follows, we first describe the selected real indakinstance, and then present the
computational results as well as some analysidauiissions on the obtained results.

4.5.1 Industrial instance

Due to its wide application, zinc plating has exisfor a long time. It is mainly
for providing corrosion-resistance or decorativwels to metal objects, such as steel
plates and nuts. As shown in Figure 4.10, the sadlezinc electroplating process has
20 processing stages, each of which correspondsspecific tank containing special
solutions. A steel plate with double-surface areg B processed throug¥iito Mz
for achieving a uniform zinc layer on its surfaddore precisely, as steel plate is
generally contaminated with dust, grease lubricants metal finedyli~ M12 (usually
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called pre-treatment step) are used to remove tlessdues from its surface. This is a
prerequisite for achieving better adhesion of zayer to be deposited on the steel
part in later stages. Thereafter, steel part isqulan the plating tank 3 containing
alkaline-type electrolytes for zinc electroplatimgpcess. After that, bright dipping and
passivating tanks (usually called post-treatmegyh)stontaining concentrated acid are
used to further improve the corrosion-resistancéheftreated steel part. Moreover,
after each chemical tank, at least one rinsing tanksed, which is designed for
cleaning the chemical solution adsorbed on the parface as well as other
processing purposes. The process technology cfaleeted electroplating problem is
given in Table 4.3.

In this study, for each rinsing tamnki.e., M2, M3, M4, Mg, Mo, M1o, M12, M14, M5,
Mi17, Mi9), its cost coefficientw; is computed aswi=gix0.006RMB/L, whereq;
denotes the water flow rate per second, and 0.0MB R the water price per liter, i.e.
6RMB/tonnes. For each electricity-based tanki.e. Ms, Mg, M11, M13), its cost
coefficientw; can be computed as follows;=(100x1ixVixSAx4.17x10'RMB/Watt,
where 108IixVixSA denotes the amount of electricity consumed peorsgcand
4.17x10"RMB is the electricity price per Watt, i.e. 1.5 RKkB/h. More precisely,
100xl; represents the current density per square métetdenotes the voltage, ash
denotes the double surface areas of the treatedpste. Note that both the water and
the electricity prices are obtained from the PBegeau of Xi'an, China. For the rest
tanks (i.e.M1, M7, M1s, M1s, M2g), their cost coefficients are set to be 0 dueh® t
difficulties of obtaining the resource consumptamount during the process. Based
on the above descriptions, Table 4.4 reports tls¢ cwefficient of each tank and the
execution times of loaded moves. Moreover, the niize@xecution time is given as:
do=15s. The travel time between tarlkendj is computed as, j=|i - j | x2s.
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Figure 4.10 Zinc electroplating process for thesteld problem.
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Table 4.3 Process technology of a steel plate ifiz-Zlectroplating

Processing timdomia (s) Current density(A/dm?)  Water flow rateg

Tank Processing stage Solutions
1 Chemical degreasing NaOH, {8, 300~450
2 Rinsing Hot water 30~90 0.3L/s
3,4 Rinsing Purified water 60~120, 30~90 0.40/8L/s
5 Pickling HCI 600~900 2~10(9Vv~12V)
6 Rinsing Purified water 30~120 0.4L/s
7 Derusting Cr@ HsPOy 60~300
8 Electrolytic degreasing ~ NaOH, BRO:, NaCOs 30~120 3~10(9V~12V)
9 Rinsing Hot water 30~90 0.3L/s
10 Rinsing Purified water 60~120 0.5L/s
11 Activating HSQy, H:PO, 30~60 3~5 (1v~18V)
12 Rinsing Purified water 20~80 0.4L/s
13 Zinc-plating ZnO, NaOH, JZ04 660~1350 1~12(6WHL6
14,15 Rinsing Purified water 30~60, 30~90 0.50/d) /s
16 Bright dipping HNQ 10~30
17 Rinsing Purified water 30~90 0.2L/s
18 Color Passivating  CrQOs, NaNG;, NisQy[6H20 120~480
19 Rinsing Purified water 20~30 0.4L/s
20 Drying O 15~35
Table 4.4 Data for the selected Zinc-electroplaingblem
Tanki 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
di 22 15 15 20 21 20 19 20 15 20 19 15 25 20 21 15 2@2 15 15
Wi 0 0.0018 0.0024 0.0018 0.012 0.0024 0 0.0165 0.001803 0.0075 0.0024 0.21 0.003 0.0024 0 0.0012 @028 O
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4.5.2 Computational results

In this section, the proposed bi-objective QEA with procedure is implemented
in C programming language and evaluated by the emmscribed instance. It is
solved on an ASUS Laptop with an Intel Core i5-3@1Processor 2.50GHZ and on a
windows 8 environment. The parameters are set lasvE maximum generations,
Maxgerr1000; maximum size of external archiWdaxEA=20; local search periog,
=100. As evolutionary algorithm is generally semsitto the value of initial
population sizeNp and mutation probabilityn,, we setNp{50, 100, 150, 200, 250}
andmy[{0.2, 0.5, 0.7, 0.9} in our experimental study téstigate the performance
of our proposed algorithm.

Table 4.5 gives the computational results Fkp({50, 100, 150, 200, 250}
obtained with the proposed algorithm. Note that dach givenNp, the proposed
algorithm with four different mutation probabiliiehas been tested. From Table 4.5,
we can see that the proposed algorithm Wp+100 (bym,=0.5) andNp=250 (by
mp=0.2) generally has a better solution quality tb#rer parameter settings. Besides,
we observe that as the population size increasese siew non-dominated solutions
are identified. Note that for ease of descripti@neh each solution is represented by
its objective values (i.egycle timeand production cost instead of the processing
time P used before. For instance, solutions (783, 15Z);1801, 148.6116) and (843,
147.6519) are found by settiddp=100 withmp=0.5. As forNp=150, we can see that
another new solution (823,147.9924) is identifigdtee algorithm withm,=0.9, and it
is not dominated by any other solutions reportedable 4.5. Moreover, a better
solution (801, 148.2918) is produced by settipgr200 and 250. As we can see, none
of the reported solutions can dominate the soluf@fxi, 148.2918), which dominates
the solution (801, 148.6116) produced by setthg=100 andm,=0.5, since the
former gives a smaller (i.e. better) value of prctchn cost than the latter. We also
notice that the two solutions have a same valueyole time (i.e.C=801) but have
different values of production cost. This is be@dgdferent actual processing times
or hoist move sequences may have the same cyae tim
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Table 4.5 Computational results obtained with tfteppsed algorithm

Np Non-dominated solutiorGycle TimeProduction Cogt Computational
time (s)
50 | my=0.2 (787, 154.1709), (883, 152.0364), (964, 1461)9(1389, 8.14
148.0755), (1402, 147.4062), (1449, 147.372)
m,=0.5 (863, 147.765), (1402, 147.4062), (1449, 147.372) .268
m,=0.7 (782, 153.6855), (964, 148.1961), (1389, 148.0785)02, 8.29
147.4062), (1449, 147.372)
m,=0.9 (843, 148. 9065), (1389, 148.0755), (1402, 147.408249, 8.32
147.372)
100 | my=0.2 (782, 153.6855), (964, 148.1961), (1005, 1894(1415, 16.91
148.224), (1449, 147.372)
my=0.5 (782, 153.6855), (783, 152.7117), (801, 14469, (843, 16.22
147.6519), (1372,147.4212), (1402, 147.4062), (1449.372)
m,=0.7 (787, 154.1709), (843, 148.9065), (863, 144976(1402, 16.30
147.4062), (1449, 147.372)
m,=0.9 (787, 154.1709), (964, 148.1961), (1402, 13624, (1449, 15.87
147.372)
150 | my=0.2 (782, 153.6855), (801, 148.6116), (891, 1482)5(1402, 23.53
147.4062), (1449, 147.372)
my=0.5 (782, 153.6855), (843, 147.6519), (1402, 13624, (1449, 23.34
147.372)
m,=0.7 (863, 147.7649), (1402, 147.4062), (1449,3A7) 23.23
m,=0.9 (782, 153.6855), (823, 147.9924), (1402, 13624, (1449, 23.49
147.372)
200 | my=0.2 (782, 153.6855), (801, 148.2918), (843, 141965(1402, 30.9
147.4062), (1449, 147.372)
my=0.5 (787, 154.1709), (801, 148.2918), (843, 147965(1402, 31.04
147.4062), (1449, 147.372)
m,=0.7 (782, 153.6855), (843, 147.6519), (1402, 13624, (1449, 31.02
147.372)
m,=0.9 (813, 171.45), (816, 149.224), (843, 148.90@H3, 147.7649), 30.97
(1372, 147.4212), (1402, 147.4062), (1449, 147.372)
250 | my=0.2 (782, 153.6855), (801, 148.2918), (843, 1479%5(1372, 38.44
147.4212), (1402, 147.4062), (1449, 147.372)
my=0.5 (843, 147.6519), (1372, 147.4212), (1402,4062), (1449, 38.52
147.372)
m,=0.7 (787, 154.1709), (843, 147.6519), (1372, 121724, (1402, 38.68
147.4062), (1449, 147.372)
m,=0.9 (782, 153.6855), (816, 148.8456), (1372, 121724, (1402, 38.49
147.4062), (1449, 147.372)
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Furthermore, we notice from Table 4.5 that all toenputational times are less
than one minute, and it generally increases withittitial population sizeNp. For
each giverNp, it seems that the computational time has begts}i influenced by
the mutation probability. The Pareto frontiers kp=50, 100, 150, 200, and 250 are
respectively illustrated in Figure 4.11~Figure 4.MNote that in each figure, four
Pareto frontiers are illustrated, and each oneeptssthe distribution state of the
obtained solutions for a given valueraf. We can see from these figures that as the
population sizéNp increases, it seems that the four obtained Pé@ttiers gradually
have similar curves. This indicates that the predoslgorithm has a good
computational performance.

Finally, to test the performance of the proposexl@earch (LS) procedure, we
also run our proposed bi-objective QEA without LU®gedure. Since it has a worse
performance than the algorithm with LS procedureefach pair oNp andmy, we do
not present the computational results for all veloéNp and mp. Instead, we only
illustrate the comparison results Mp=100 withm,=0.5 in Figure 4.16. In summary,
the computational results show that our proposeabfective QEA with LS
procedure is efficient in solving the studied dabjective hoist scheduling problem

with processing time windows.
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Figure 4.11 Pareto frontiers identified with difetm, for Np=50.
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Figure 4.13 Pareto frontiers identified with ditatm, for Np=150.
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Figure 4.14 Pareto frontiers identified with ditetm, for Np=200.
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Figure 4.15 Pareto frontiers identified with ditatm, for Np=250.
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Figure 4.16 Comparison results of the algorithnhwaihd without LS foNp=100 andn,=0.5.

4.6 Summary

In this chapter, minimizing both cycle time and guotion cost for a cyclic hoist
scheduling problem with processing time windows Ib@sn studied. Firstly, by using
the MPI approach, a bi-objective mathematical modes formulated for the studied
problem supposing that all actual processing tiraes known (In fact they are
decision variables). Thereafter, a Pareto-dominaveduation based QEA with local
search (LS) procedure was proposed for the prolbtefind a set of Pareto-optimal
solutions, which are stored and updated in an eatarchive. More precisely, each
chromosome was encoded byQ-bits, which were converted into actual procegsin
times by a double-decoding procedure. Then, weqs®g a specific chaotic rotation
gate to update each Q-bits chromosome. Besidesgtiontoperator was implanted
into the proposed algorithm to increase the indiglddiversity. All solutions were
evaluated by the well-known Pareto-dominance tephi Because of the special
solution feature of the studied problem, an effitieS procedure was proposed for
further improving the solution quality. Finally,raal zinc electroplating problem was
used to test the performance of our proposed dgoriExperimental results showed
that the proposed algorithm is efficient.
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Chapter 5 An Improved Mixed Integer Programming

Approach for Multi-hoist Cyclic Scheduling Problem

5.1Introduction

Multi-hoist cyclic scheduling problems are oftenceantered in automated
electroplating lines for processing printed cirdusiards (PCBs) and other electronics
(e.g., Lei and Wang, 1991; Leung and Zhang, 200 &d Chu, 2004). The key to
the multi-hoist cyclic scheduling problem is to@haine an executable hoist schedule
such that the cycle time is minimized.

In most existing studies on the multi-hoist cydicheduling problem, such as
Lei and Wang (1991), Armstroreg al. (1996), Leung and Zhang (2003), Leletaal.
(2004), Che and Chu (2004), Zhou and Liu (2008pwhnd Li (2009), Chtouroet
al. (2013) and Jiang and Liu (2014), loaded hoist rmame assumed to start and end
within the same cycle. In this chapter, we firstega counterexample to demonstrate
that the optimal solution obtained under such au@ption is not necessarily the best
one among all feasible solutions, which we calkaéer global optimal solution.

To obtain a global optimal solution, the assumptioet loaded hoist moves are
assumed to start and end within the same cyclelghmurelaxed. That is, a loaded
hoist move is allowed to start in the current cyabel end in the next one if necessary.
With the relaxation of the assumption mentionedvabave propose an improved MIP
approach for the multi-hoist cyclic scheduling desb with unidirectional part flow,
where the part processing sequence is the sanhe &snks layout. Since Leumg al
(2004) developed the first MIP model for the samabjem as the one considered in
this chapter, this work can be seen as an extengithreir MIP model. Hence, in what
follows, we will first present Leungt al’s MIP model and then describe our
extension and improvements based on their MIP model

The rest of this chapter is arranged as followse Phoblem description and
Leung et al’s MIP model are given in Section 5.2. In Sectibi3, we give a
counterexample to justify our findings. Then, arpioved MIP model is proposed in
Section 5.4. Computational results are presentddaaalyzed in Section 5.5. Section
5.6 concludes this chapter.
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5.2 Problem definition and Leunget al.’s MIP model

For completeness, we give in this section a brieblem description and Leung
et al’s MIP model. For ease of comparison between Lesingl’s MIP model and
ours, we follow all the assumptions and notatiomsryin Leunget al (2004).

5.2.1 Problem definition

Firstly, we describe the problem involved. Considerautomated electroplating
line with n processing tanks and hoists for material handling between the tanks.
Each part to be processed starts at the inpubstétie. tank 0), then successively
passes through tank 1, tank 2, ..., tan&nd is finally unloaded at the output station
(i.e. tankn+1). The tanks are arranged in a row accordindpéoprocessing sequence
of the parts. Each tank can process only one paratime. There is no intermediate
buffer between the tanks. After the processing tark has been completed, the part
must be transported by a hoist to the next tankowit any delay.

The K hoists are numbered consecutively with the onsedbto tank 0 being
hoist 1 and the one closest to tarkl being hoisK. The hoists are assumed to have
zero width and the same travel speed. The hoisement of transporting a part from
tanki to tanki+1 is called (loaded) movie which is composed of three simple hoist
operations: 1) unload a part from tank) transport it to tank+1; and 3) load it into
tanki+1.

In a cyclic schedule, the hoists perform a fixequssnce of moves repeatedly.
Each repetition of the sequence of hoist movesiked a cycle. The duration of a
cycle is the cycle time. The objective is to find @timalK-hoist schedule such that
the cycle time is minimized.

Let N= {1, 2, ...,n}, N°={0, 1, 2, ...,n} and k= {1, 2, ..., K}. The following
parameters are given:

di : the time required to execute mayéor iCINC.

a,j =g, i: the empty hoist travelling time from tarkto tankj, for i, jO
N°CI{ n+1}.

Li : the minimum processing time in tankor iCIN.

Ui : the maximum processing time in tainkor i CJN.
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M: a very large positive number.

o: a small constant.

The following decision variables are involved imstbhhapter:

ti : start time of mové, for iCINC.,

yi: 0-1 variable. Ifti<t;, theny;j=1, which means that moyestarts after move
otherwisey;j=0, fori#j, i, jOIN.

Li: 0-1 variable. If move is the last move for hoist 1, thefy =1; otherwise,

£i=0, foriONC.

z¢:0-1 variable. If mové is executed by hoid, thenz‘=1; otherwise, Z‘=0, for
iONO, kOK,

s: 0-1 variable. If a part is in process in tanit the beginning of a cycle, then
s=1; otherwises=0, foriCIN.

C: cycle time.

With above notations and according to Manier anacBI(2003), the considered
problem can be written in the form:

CHSP | K, n, 1 // diss | In+2] Cmin

which means cyclic hoist scheduling problem wihoists andh tanks, each tank
being a single capacity resource, with dissoci&teding and unloaded stations;2
operations per part, and minimization of cycle tiéhas the objective.

5.2.2Leunget al.’s model

Leunget al (2004) developed their MIP model by addressimgftilowing four
families of constraints:

1) Hoist assignment and cycle-time definitional ftoaints. Each hoist move is
assigned to one and only one hoist and the cywle islong enough to allow hoist 1
to return to the input station (i.e. tank 0) fartihg move 0 of the next cycle.

2) Time window constraints. The soaking or proaggdime of a part in a tank
must be within its prescribed minimum and maximuracpssing times. Otherwise,
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defective parts would be produced.

3) Hoist capacity constraints. The start-timeshef inoves executed by the same
hoist are determined in such a way that there fiscgnt time gap for any hoist to
travel between the successive moves assignedttbdrst.

4) Collision avoidance constraints. No collisionappen among the hoists
running on a single shared track.

According to the four families of constraints givahove, Leunget al (2004)
developed the following MIP model for the multi-Bbcyclic scheduling problem:

Minimize C
subject to

Hoist assignment and cycle-time definitional constraints

i;k =1, for all iON, (5.1)
=

Y e=1, (5.2)

=

Lotz <1, for all iDON, (5.3)
Li<z', for all i0ON, (5.4)
z+Lj-yi<l, for all'i, jON, (5.5)
ti+di+a+1, oi<C, for all iON, (5.6)
ti—(dotey, j) z 20, for all jON, (5.7)
=0, (5.8)

Time window constraints

ti—(ti-1tdi-1)<U;, for all i0N, (5.9)
ti—(ti-1+di-))+Ms=> L, for all i0N, (5.10)
ti+C—(ti-1+di-1)-M(1-s)<U;, for all iON, (5.11)
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ti+C—(ti-1+di-1)= Li, for all i0ON, (5.12)
ti—ti-1—di-1+0-(Ui+)(1-s)<0, for all iON, (5.13)

Hoist capacity constraints
t—ti<My;, for all i, jON, i#j, (5.14)
yit+yi=1, for alli, jON, i#], (5.15)

Collision avoidance constraints

K
t+d +e,; ~t; <M@-y; -z -) z)), foralli, jON, j<i, kKO, (5.16)
h=k
K
t,+d +e,, ~t <M@B-y; -7 —gzj“), for alli, jON, j<i, kDK, (5.17)

k
t,+d, +e,, ~t <M@-y; -z ->.2"), for all i, jON, i<j, kDK , (5.18)
h=1

[
t+d +e,, ~t,<M@-y, —-z->.2), for all i, jON, i<j, kX , (5.19)
h=1

K
t,+d, +e,,;, —~(C+t)<sM@2-7 —gzj“), for alli, jON, j<i, kOK , (5.20)
K
t +d +g,, —(C+t)<M@2-z->2), foralli, jON, j<i, KOX,, (5.21)
h=k
k
t,+d, +e,,;, —~(C+t)sM@2-7 —;zj“), for alli, jON, i<j, kOK , (5.22)
k
t+d +g,;, —(C+t)<M@2-z->2), foralli, jON, i<j, kOX,, (5.23)
h=1
Binary variable definitional constraints:
Z {0, 1}, for all iON°, kD%, (5.24)
£i0{0, 1}, for all iON®, (5.25)
sH{O, 1}, for all ilIN, (5.26)
yi {0, 1}, for all i, jON. (5.27)

5.3lllustration of a counterexample
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We now use the following counterexample to demonstrate that pghimad
solution obtained with Leungt al’s MIP approach is not a global optimal solution.
There are 5 processing tanks and 2 hoists for this examplen(ze5, K = 2). The
data for the example is given in Table 5.1, which was gener&eouy experiment.
Tank 0 and tank 6 are the input station and the output sta¢igpectively. The travel

j-1
time between tankand tank can be computed as follows;j=g,i=)_e,,,, , i<j and
k=i

i, jJON°O{n+1}. The spent time of loaded movean be computed as the following

way: di=20+e, i+1, iON°. Without loss of generality, we assume that move 0 is
executed by hoist 1 and starts at the beginning of a cycle.

Table 5.1 Data for the counterexample

Tanki 0 1 2 3 4 5

Li - 80s 68s 75s 61s 66s

Ui - 126s 126s 154s 104s 146s
€ i+1 9s 8s 6s 4s 8s 8s

di 29s 28s 26s 24s 28s 28s

For this example, the optimal cycle time obtained with Leenhal’'s MIP
approach is 145s. The time-way diagram for the correspondinghaptyclic
schedule is shown in Figure 5.1. Note that the numbersdrauloaded move in
Figure 5.1 represent its start and end times. We give in Fig2ire feasible schedule
for this example with the cycle tin@=142s, which is smaller than the optimal cycle
time obtained with Leungt al’s approach. Hence, for this example, the optimal
solution obtained with Leun@t al’s approach is actually not a global optimal
solution.
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—»  Loaded move of Hoist | ——1=> Loaded move of Hoist 2
....... »  Empty move of Hoist 1 ---==--> Empty move of Hoist 2

Figure 5.1 Optimal cyclic schedule obtained witluhget al’'s MIP approach.

Tank

119 ;o

2 /V: ," /V :'
29 139 / 171
0 >

0 C=142
Part processing
—»  Loaded move of Hoist | ——T> Loaded move of Hoist 2
....... > Empty move of Hoist | ------>> Empty move of Hoist 2

Time

Figure 5.2 A feasible cyclic schedule with shoagele time.

We explain the above observation as follows. Note that cons{Baé)tin Leung
et al’s model implies that+di<C holds for all loaded moves. This requires that any
loaded move started in the current cycle must be completed wlitisame cycle.
Hence, in their model, Leungt al implicitly assumed that no loaded moves are
allowed to go across the cycle (i.e., start in one cycle and emldeimext one).
Although such an assumption may simplify the formulatérthe problem, it may
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restrict the possibility of achieving a better feasible solution.

We verify the above observation using the cyclic schedule givéigure 5.2.
We note that move 1 in Figure 5.2 starts at time 139s andagriaee 167s. Recall
that the cycle tim€ is 142s. Thus, move 1 goes across the cycle. We see thétra bet
feasible solution than the one obtained with Lewtgal’'s MIP approach was
obtained by allowing move 1 to go across the cycle. Notehbatyclic schedule with
shorter cycle time given in Figure 5.2 was obtained by usimgimproved MIP
approach, which will be presented in section 5.4.

To sum up, no loaded moves are allowed to go across theicyadeinget al’s
MIP model. For this reason, the optimal solution obtaiwétl Leunget al’'s MIP
approach is not necessarily a global optimal solution.

5.4The improved MIP model

5.4.1 Reformulation of the time window constraints

To obtain a global optimal solution, the assumption tlmatoaded moves are
allowed to go across the cycle should be relaxed in the formmlatithe problem. To
achieve this purpose, constraint (5.6) in Leeh@l’s model, which requires that no
loaded moves are allowed to go across the cycle, should be replattedhev
following formula:

ti+(di+e+1,0)Li<C, for allilIN, (5.28)

In what follows, we first extend Leungt al’s time window constraints
(5.9>-(5.12) by relaxing the assumption that no loaded moves are alltwegd
across the cycle. With such a relaxation, four possible casetfysimted in Figure
5.3, should be considered when the time window constrainfsranelated. In Figure
5.3, Case (a) (resp. Case (b)) corresponds to the case in whidhigaarkpty (resp.
occupied) at the beginning of a cycle and move does not go across the cycle.
Cases (c) and (d) correspond to the situations in whichitesn&mpty and occupied,
respectively, at the beginning of a cycle and miexlegoes across the cycle.

In fact, Leunget al (2004) only considered Cases (a) and (b) in their formulation
of the time window constraints, which lead to constraint8){§5.12) in their MIP
model. They did not consider Cases (c) and (d) in which melvejoes across the
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cycle.

In what follows, we give a complete formulation of the time winctonstraints
by considering Cases (a), (b), (c) and (d) in Figure 5.3. To #deilihe reformulation,
we define a new binary variabhe to represent whether movegoes across the cycle:

wi: 0-1 variable. If move starts and ends within the same cycle, ti€C and
ti+di<C, thenwi= 0; otherwisewi= 1, i.e.ti <C andti+di>C, for iIN°.

tank 7

i+1

titdo CC+Ht;C+tiy  time

Case (a) Case (b)

_—
=77

| | |

| | |

1 Il Il »
0 titd—C ¢ tia C tigtdiy time 0 & tigtd—C tin C CHty tiytdi time

Case (¢) Case (d)
——  Part processing —»  [oaded move

Figure 5.3 Four types of tank states for the tinmedaw constraints.

Case (a)s =0 andwi-1=0. It means that tankis empty at the beginning of a
cycle and move-1 does not go across the cycle. For this case,itaktill empty
until a part enters upon completion of mavé, which happens at tinte;+di-1. Note
that the part will be unloaded from tankt timeti. As shown in Case (a) in Figure 5.3,
movei—1 and move happen within the same cycle. Thus, the actual processing time
in tanki is t—(ti-1+di—1). Consequently, the time window constraints for tackn be
formulated as:

ti—(ti-a+di-1)SUi+M(s +wi-1), for alliCIN, (5.29)

ti—(ti-1+di-1)=Li-M(s +wi-1), for allilIN, (5.30)
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Case (b):s =1 andwi-1=0. It means that a part is in process in tard the
beginning of a cycle and mowel does not go across the cycle. As shown in Case (b)
in Figure 5.3, a part is loaded into tainkt timeti_;+di_1 in the current cycle, and it
will be unloaded from tankat timeti+C in the next cycle. Thus, the actual processing
time in tanki is ti +C—(ti-1+di-1). Based on the above analysis, the time window
constraints for tankcan be formulated as:

CHti—(ti-1+di-1)<Ui+M(1-s +wi-1), for allilIN, (5.31)
C+ti —(ti-1+di-1)=Li—-M(1-s +wi-1), for allilIN, (5.32)

Case (c)'s =0 andwi-1=1. It means that tankis empty at the beginning of a
cycle and moveé-1 goes across the cycle. For this case, melestarts at timé-1 in
the current cycle and ends at titng+di_1 in the next cycle, which means that move
i—1 goes across the cycle because we haw€ andti_1+di_1>C. Thus, as shown in
Case (c¢) in Figure 5.3, the actual processing time in famk ti—(ti-1+di-1—C).
Consequently, the time window constraints for tan&n be formulated as:

ti—(ti-1+di-1—C)<Ui+M(1-wi-1+ S), for alliCIN, (5.33)
ti—(ti-1+di-1—C)=Li-M(1-wi-1+ S), for allilIN, (5.34)

It is interesting to note that constraints (5-48)12) can correctly impose the
lower and upper bounds on soak time in tarfkr this case. To be more specific,
constraint (5.12) imposes the lower bound on soak time inita@knstraint (5.10)
would sets to be 1. Consequently, constraint (5.11) would correctly implos upper
bound on soak time tank We also note that in this case, the value dieing 1 is
inconsistent with its definition. By definition, § =1, there should be a part in taink
at the beginning of a cycle. However, we see that for this, ¢aski is empty at the
beginning of a cycle, as illustrated in Figure 5.2. Henceoiifstraints (5.16)5.12)
are used to formulate the time window constraint for cases (&hould be redefined.
In our model, constraints (5.33) and (5.34) handle case (c) withocih an
inconsistency.

Case (d):s =1 andwi-1=1. It means that a part is in process in tard the
beginning of a cycle and movel goes across the cycle. For this case, mete
starts at timei_1 in the current cycle and ends at tilmetdi—1 in the next cycle. Thus,
as shown in Case (d) in Figure 5.3, the actual processingitintenk i is C+t;
—(ti-1+di-1—C). Based on the above analysis, the time window constraints for tam

be formulated as:
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CHti—(ti-1+di-1-—C)<Ui+M(2-wi-1-S), for allilIN, (5.35)
C+tj —(ti-1+di-1—C)=Li-M(2-wi-1—s), for all iCIN, (5.36)

From the above analysis, constraints (5-29)36) ensure that the processing
time in each tank is within its prescribed lower and upper bauddte that if we set
wi-1=0 for all iLDN, as is the case in Leurey al’s formulation of the time window
constraints, then constraints (5.2@.32) would be reduced to constraints (5(9)12)
in Leunget al’s model.

We now deal with Leun@t al’s time window constraint (5.13). As stated by
Leunget al (2004), constraint (5.13) ensures that if tarkoccupied by a part at the
beginning of a cycle, then there is a time ga@ between when the part is unloaded
from tanki (at timet) and another part is loaded into the tank (at ttmedi-1).
Below we extend this formulation to handle the case in which aetbadlove is
allowed to go across the cycle. Hereafter, to facilitate the reformulatedefine:

&: the time required to unload a part from tajfor all iCIN.
A the time required to load a part into tanfor all iCIN.

We first consider the case in which mavd does not go across the cycle, as
illustrated in Case (b) in Figure 5.3. In this case, the atlilgy operation of the
previous part from tankstarts at timé; and ends at timgtsg. The loading operation
of the next part into tankstarts at timé_1+di-:—a and ends at timg-1+di-1. To avoid
the collision in using tank it follows that:

(ti+&8)—(ti-1+di-1— a)<M(1-s +wi-1), for all iCN. (5.37)

Similarly, if movei—1 goes across the cycle, as illustrated in Cases (c) and (d) in
Figure 5.3, we have:

(tit&)—(ti-1+di-1— 2)<=M(1-wi-1+ s), for all iCIN, (5.38)
(ti+&)—(ti-1+di-1-— p—C)<M(2-wi-1— §), for all iCIN. (5.39)

Note that Leunget al (2004) only consider Case (b) in Figure 5.3, in which
movei—1 does not go across the cycle. If wewget=0 for allilIN and seto =g+g,
then constraint (5.37) would be equivalent to constraint (3nli3¢unget al’s model.
Note also that Case (a) is not required to be considered here bec#usecase, the
time window constraint (5.30) guarantees that-1+di-1+Li. As Li is usually greater
than g+p, there is sufficient time gap between the loading and unloapeations
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of the (same) part and no collision would happen between thedists lexecuting the
loading and unloading operations, respectively.

In addition, in order to ensure variable to be well defined, the following
constraints must hold:

ti<C, for allilN, (5.40)
ti+ch <C+Mwi, for all iON, (5.41)
ti+0i>C-M(1-wi), for all i0N, (5.42)
wi+z'<1, for all iON°, (5.43)
wiC{0,1}, for all iONC. (5.44)

Constraint (5.40) says that the start time of miogkould be less than the cycle
time C. Constraints (5.40) and (5.42) guarantee thaf #1, then move starts in the
current cycle and ends in the next one. On the other hand, comss{éa#tt) and (5.41)
ensure that move starts and ends within the same cycleiit=0. Constraint (5.43)

ensures that if moviis executed by hoist 1(i.g.=1), then it cannot go across the

cycle as explained below. In each cycle, hoist 1 would first eeeuowve 0 and then

other moves assigned to it, and finally return to the inpubst&s start move 0 of the

next cycle, which happens at tin@e Hence, if movae is assigned to hoist 1, it must
be finished within a cycle and would not go across the cycle.

In order to facilitate the formulation of constraints (5.40) and2)6.using
CPLEX, we add a sufficiently small consta¥into them and they can be equivalently
written as:

ti+0<C, for alliCIN, (5.45)

ti+di>C+3-M(1-wi), for allilN. (5.46)

5.4.2 Other improvements on Leunget al.’s MIP model
In this subsection, we report two other improvements on ¢g.etral’s model.
We first demonstrate that the binary varialfies unnecessary to be defined in Leung

et al’s model. To be more specific, constraint (5.6) ensures thabvemis the last
move executed by hoist 1, then upon completion of mokeist 1 has sufficient time
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to travel back to the input station (i.e. tank 0) to start ntbekthe next cycle. In fact,
as the hoist travelling times satisfy the triangular inequatibystraint (5.6) can be
replaced with the following constraint:

ti+(di+&+1, 0) Z<C, for all iONC, (5.47)

The above relation says thatdi+e+1,0<C holds for all moves executed by hoist
1. Similar relation can also be found in Cregral. (1998) (see Inequality (8)) for the
single-hoist scheduling problem. Thus, it is unnecessadgfioe the binary variable

£Li in Leunget al’s model. Consequently, constraints (5(8)5), (5.25) and (5.28)

modified from constraint (5.6) can be removed from the model.

We now show that some collision-avoidance constraints giverumget al’s
MIP model are unnecessary. Suppose that mioaedj are performed by hoisksand
h, respectively. Without loss of generality, we assumeithffor any pair of moves
(i, J). That is, given any pair of moves j), we designate the larger number of move
asi and the smaller number of move jagror example, if the collision avoidance
constraint between move 2 and move 4 is to be considered, wetsatdj=2 and
consider the possible collision between them.

As the part processing sequence is same as the tank arrangement sefisence,
understandable that the collision may happen between any tatskandh using a
common segment of the track, ilesh, i >j. That is to say, no collision would happen
in the situation ok>h, i >j+1. It should be noted that constraints (5.37)—(5.39) ensure
that no collision would happen between two hoists shahagséame tank (i.ek >h,
i=j+1), where parts are loaded/unloaded by one hoist and unloaded/logé@nother
one.

Based on above analysis, we only need to consider thekehse >} in the
formulation of the hoist collision avoidance constraints. Is ttase, hoistk andh
would pass through a common segment of the track. In orderam@argee that no
collision would happen between them during the execution of mioaeslj, they
cannot be executed at the same time. That is, either pmoust start after moviehas
finished or mova must start after movehas finished in order to avoid the collision.
Let us first suppose that moyestarts after move has finished. In this case, move
finishes at timdi+d;, hoistk will pass through tankat timeti+di+e+1,j. Knowing that
movej executed by hoigt starts at timdy, to avoid the possible collision, holstmust
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pass through tankbefore time;. Thus, we have:
t+di+es, <t;, for all k<h, i>j, i, jON, k, hOK and ti<tj,  (5.48)
Similarly, if movei starts after movghas finished, we have:
t+di+g+1;<ti, for all k<h, i>j, i, jON, k, hOK and t;<t;, (5.49)

Besides, consider the possible collision between maveand j in two
consecutive cycles, we must have:

f+di+g+1,<C+t, for all keh, i>j, i, jON, k hO% | (5.50)

t+di++1, <C+, for all kh, i>j, i, jON, k hO%x , (5.51)

Based on above analysis, for any two mavasdj performed by hoistk andh,
respectively, (5.48)5.51) are their corresponding collision-avoidance constraints.
Note that by adding previously defined binary variables int48)5(5.51), they can
be transformed into constraints (5.16), (5.17), (5.20), (5\@.thus can find that
constraints (5.16), (5.17), (5.20), (5.21) are sufficient, @ntstraints (5.18), (5.19),
(5.22) and (5.23) are unnecessary and can be removed from the model.

In what follows, we give an illustration to further demonstrdte above
observation. Let us consider the collision avoidance constratiebn move 3 and
move 4 in Figure 5.1 witK=2. We have from Figure 5.1 tha=0, ya3=1, i.e., move

3 starts after move 4 has finished. We also hay=0, z?=1, z =1 and z.=0, i.e.,

move 3 and move 4 are executed by hoist 2 and hoist 1, respedfiteehow see for
this hoist assignment, what relation between the start timhesowe 3 and move 4
should satisfy to avoid the possible collision between thesrequired by Leungt

al. (2004), we first lei=3 andj=4 and substitute the values =0, yss=1, z,=0,

Z2=1, z,=1 and z2=0 into the collision avoidance constraints (5.18), (5.1Rp2)

and (5.23). We obtain the following inequalities:

ta+dstes <ts (5.52)
tst+dstes <C+t3 (5.53)
tatdstes «<C+ts (5.54)
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As required by Leungt al (2004), we now let=4 andj=3. By substituting the
above values into the collision avoidance constraints (5.18)7)55.20) and (5.21),
we obtain exactly the same inequalities as (5:&2%4). Hence, constraints (5.18),
(5.19), (6.22), (5.23) can be removed from the model with dbnsideration of
constraints (5.16), (5.17), (5.20), (5.21).

The model becomes more compact due to the two improvements presented
this subsection.

5.4.3The improved MIP model

With the extension presented above, the improved MIP modeViatioloaded
moves to go across the cycle can be formulated as follows:

Minimize C
subject to
Hoist assigning and cycle-time definitional constraints: (§3.Y), (5.8), (5.47).
Time window constraints: (5.29(5.39).
Hoist capacity constraints: (5.1».15).
Collision avoidance constraints: (5.16), (5.17), (5.20),1(6.2
Move cycle-crossing constraints: (5.41), (5.43), (5.45), (5.46
Binary variable definitional constraints: (5.24), (5.26), (5.2844).

Note that we do not consider the safe distance between the indists above
improved model in order to facilitate the comparison with Leeha@l’s model.
However, the model can be easily modified to take the safe distancacoount. Let
£ be the minimum interval between two adjacent hoists on the tivaakoid collision.
For simplicity, Bis measured in time and is equal to the width of the horsdeti by
its travelling speed. For instance, if the safe distance is consiaenestraint (5.16)
can be rewritten as follows:

K K
t +d, T € +(Zh2? _kzk)ﬁ_ti =M (3_yii _Z‘k —ZZ?),
h=k h=k

for alli, jON, j<i, KOK.  (5.55)
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K
In the above inequality, ifz = land ) z'=1 for somehzk, then we
h=k

K
have(} hz' -kz)B=(h-k)B, which is the minimum safe distance required
hek

between hoistk andh to avoid collision. Similar modifications can also be done to
constraints (5.17), (5.20), (5.21), (5.3(8.39).

5.5 Computational results

In this section, we evaluate our improved model using both besréhand
randomly generated instances. Both Le@h@l’s model and our improved model
were coded using C++. The models were then solved using RedNer of CPLEX
(Version 12.4). All computational experiments were conducted on &EIRvith a
Pentium IV Processor 3.0GHZ and on a windows XP environment.

5.5.1 Computational results on benchmark instances

We compare our improved model with Leursy al’s model using five
benchmark instances in the literature: BO1, BO2, Phillips anceitJgiRiU), Lignel
and Ligne2. Their data can be found in Leah@l (2004), Phillips and Unger (1976)
and Manier (1994). For these benchmark instances, the part procesgirence is
assumed to be the same as the tank arrangement sequence.

Table 5.2 is used to test the effectiveness of the two improvusmessented in
subsection 5.4.2 of Section 5.4. Note that the partialyrawmed model is derived by
removing the two improvements presented in subsection 5.4&ctb8 5.4 from our
improved model. The optimal solutions obtained with theigdgrtimproved model
and our improved model must be the same. In Table 5.2, “B&#itates the size of
branch-and-bound tree measured in the number of nodes, while “CPbteddhe
computation time measured in CPU seconds. We can see from Talileabibe
computation times spent by our improved model are generally sntlaiarthose
spent by the partially improved model. However, the B&B sigesm to show a
mixed trend among these instances.

Table 5.3 is used to demonstrate if a smaller cycle time canupel foy our
improved model compared with Leurg al’s model. In Table 5.3, the numbers on
the left and right sides of the slash (/) are the optimal cyolestiobtained with Leung
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et al’s model and our improved model, respectively. The number mawiibd*
means that at least one hoist move in the optimal soluties goross the cycle. We
can see that both Leurgg al’s model and our improved model obtained the same
optimal solutions for most instances except problem P&U KatB. For this problem,
the optimal cycle time obtained with Leurg al’s model is 205 while a better
solution with the cycle time 198 was found by our improwveddel. For other
solutions marked with *, although at least one hoist movéh@ optimal solution
obtained with our improved model goes across the cycle, thenaptycle times
obtained with the two models remain the same.

Table 5.2 Comparison of computation times for bematk instances

Instances Partially improved model Our improvedigio

B&B CPU B&B CPU
BO1(K=2) 1928 1.03 708 0.44
BO1(K=3) 952 1.38 612 0.55
BO1(K=4) 283 0.81 1544 1.27
BO2(K=2) 1421 0.89 572 0.44
BO2(K=3) 1925 2.25 60 0.38
BO2(K=4) 151 0.78 1556 1.99
P&U(K=2) 43759 21.44 27086 9.94

P&U(K=3) 60081 45.88 29279 14.84

P&U(K=4) 2147 5.92 4776 4.77
Lignel(K=2) 2419 2.47 3107 1.70
Lignel(K=3) 3049 3.03 1513 1.02
Lignel(K=4) 1939 2.38 2487 2.44
Ligne2(K=2) 2488 1.89 1501 1.08
Ligne2(K=3) 1200 2.53 1666 1.44
Ligne2(K=4) 1387 2.97 2040 2.13

Table 5.3 Comparison of optimal cycle times fordienark instances

Instances K=2 K=3 K=4
BO1 255.2/255.2 255.2/255.2 255.2/255.2
BO2 255.2/255.2 255.2/255.2 255.2/255.2
P&U 251/251 205/198 170/170
Lignel 317.5/317.5 317.5/317.5 317.5/317.5
Ligne2 675/675 675/675 675/675

We note that the optimal cycle times remain unchanged when theenwf
hoist increases to 3 and 4 for problems BO1, BO2, Lignel agweRi We explain
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the above observation as follows. In a multi-hoist systengtble timeC is bounded
from below by:

Cz mD%x(Li & +p). (5.56)

That is to say, the cycle tint@ is greater than or equal to the sum of minimum
processing time and the unloading and loading times in any Famkproblems BO1,
BO2, Lignel and Ligne2, the optimal cycle time #+2 reaches the lower bound
given by (5.56). As a result, the optimal cycle time remaimshanged when the
number of hoist increases. In other words, for these cls@3,(the critical resource
becomes processing tanks and not transportation hoist.

5.5.2 Computational results on randomly generated instanes

Randomly generated instances were also used to further evaluate the
performance of our improved model. All the random instances were genesated a
described below. We skt {2, 3, 4}, andn[{8, 10, 12, 14}. LetU(a, b) be a uniform
distribution between parametesisandb. The lower bound on processing time was
generated aki=U(50, 200). The upper bound on processing time was generated using
the following three scenarios with different widths of time daws: Ui=L,,
Ui=Li+U(0, 50) andJi=Li+U(0, 100). The travelling time between adjacent tanks was
generated as follows; i+1=U(2, 6). The travelling time between tanknd tanl§ can

j-1
be computed with the formula, j=g; i:ZekM, i<j, i, jON°O{n+1}. The loaded

k=i

move time is computed by =25+g,i+1, iON®, whereg+0 =25, i0N. For each given
values ofn andK, 20 random instances were generated.

Tables 5.4, 5.5 and 5.6 are used to test the effectivendss twfd improvements
presented in subsection 5.4.2 of Section 4 under three scedariosUi=Li+U(0, 50)
and Ui=L;+U(0, 100), respectively. For each given valuemmandK, the data for
columns “B&B” and “CPU” in these tables represent the average siz
branch-and-bound trees and average computation time (in CPU seaomay) 20
test instances, respectively. We can see from these tables tB&Bh&zes explored
by our improved model are generally smaller than those exploretiebpartially
improved model. However, the computation times spent by ouowed model are
always shorter than those spent by the partially improved model.
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Table 5.4 Comparison of computation times for randiastanced); =L,

Random Partially improved model Our improved model Ratio o
Instances B&B CPU B&B CPU CPUs
n=8, K=2 1375 0.49 1075 0.31 1.58
n=8,K=3 1192 0.69 980 0.44 1.57
n=8,K=4 1337 0.99 984 0.48 2.06
n=10,K=2 3994 1.88 3382 1.26 1.49
n=10,K=3 5410 4.52 4783 2.44 1.85
n=10,K=4 3671 3.89 3121 1.96 1.99
n=12,K=2 6983 4.89 6514 3.11 1.57
n=12,K=3 12449 11.30 8504 4.72 2.39
n=12,K=4 5554 8.69 4947 3.95 2.20
n=14,K=2 11138 9.27 8753 5.05 1.84
n=14,K=3 51413 43.58 20324 11.15 3.91
n=14,K=4 263390 288.25 18562 11.38 25.33

Table 5.5 Comparison of computation times for randastanced); =L; +U(0, 50)

Random Partially improved model Our improved model Ratio o
Instances B&B CPU B&B CPU CPUs
n=8, K=2 1368 0.53 857 0.31 1.71
n=8,K=3 1592 0.89 1612 0.64 1.39
n=8,K=4 1209 0.94 1051 0.56 1.69
n=10,K=2 6028 2.91 5129 1.77 1.64
n=10,K=3 7252 5.92 6103 2.83 2.09
n=10,K=4 4283 4.39 4165 2.34 1.88
n=12,K=2 18644 9.40 15309 5.14 1.83
n=12,K=3 39609 24.19 27505 10.20 2.37
n=12,K=4 6844 9.21 13697 6.56 1.40
n=14,K=2 39998 23.63 34652 13.37 1.77
n=14,K=3 203217 150.39 112123 43.39 3.47
n=14,K=4 674087 696.77 128213 50.15 13.89

We explain the above observations as follows. In fact, our improwedel is
more compact than the partially improved model in terms of the nuofib@riables
and constraints. With our improved model, a smaller linear prograwhisd at each
node, which requires shorter computation time at each node. Hencenmoved
model is always more efficient (in terms of the computation tima) the partially
improved model although the B&B size of the former is not asnawpaller than that
of the latter. This means that the two improvements presentsdbsection B of
Section 5.4 are effective. Furthermore, we can also notice that the fafiB&Jdimes

92



spent by the partially improved model and our improved modekase generally
with the values ofh and K. Therefore, it seems that the larger the instance size,
generally the more saving in computation time achieved by ounirad model.

Table 5.6 Comparison of computation times for randiestanced); =L; +U(0, 100)

Random Partially improved model Our improved model )
Instances B&B CPU B&B CPU Ratio of CPUs
n=8,K=2 1514 0.58 1326 0.39 1.49
n=8,K=3 1773 0.93 1371 0.56 1.66
n=8,K=4 1203 0.95 1107 0.63 151
n=10,K=2 7833 3.73 5537 1.93 1.93
n=10,K=3 6206 5.13 4689 2.31 2.22
n=10,K=4 3334 3.80 2977 2.00 1.90
n=12,K=2 27397 12.52 21992 6.76 1.85
n=12,K=3 22239 16.30 15334 6.59 2.47
n=12,K=4 10798 10.58 16092 6.87 1.54
n=14,K=2 140203 82.14 79586 27.94 2.94
n=14,K=3 239951 177.27 154389 59.25 2.99
n=14,K=4 616542 722.49 261087 98.80 7.31

Table 5.7 Average number of improved instances shibrter cycles for random instances

Random Ui=L; Ui=L+U(0,50) Ui=L+U(0,100)
Instances

n=8,K=2 4 2 0
n=8,K=3 12 1 1
n=8,K=4 10 1 0
n=10,K=2 2 4 2
n=10,K=3 14 3 1
n=10,K=4 13 2 0
n=12,K=2 9 3 2
n=12,K=3 10 6 2
n=12,K=4 15 4 1
n=14,K=2 3 1 2
n=14,K=3 14 6 3
n=14,K=4 12 2 2

Table 5.7 indicates that how many instances for which the aptgcle time
obtained with our improved model is smaller than that by Letrad’s model among
20 test instances. We can see from Table 5.7 that the numbepmived instances
seems to decrease generally with the width of the time winddved.i3, the smaller
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the width of the time windows, generally the larger the nurobenproved instances
achieved by our improved model. We explain the above observatfoticags. When
the width of the time window is large, it provides a greater poggiof gaining a
better solution with Leungt al’s model by exploring the flexibility resulting from
the time windows. Thus, it provides a smaller possibdftgchieving a better solution
with our improved model compared with the one obtained by Letiatjs model.

5.6 Summary

In this chapter, we gave a counterexample to demonstrate that thsalopt
solution obtained with the existing MIP approach for the rindist cyclic scheduling
problem with unidirectional part flow is not necessarily a glapimal solution. To
find a global optimal solution, we proposed an improved MIPr@gch, in which
loaded moves are allowed to go across the cycle. Computationis idsmonstrated
that the smaller the width of the processing time windows, géyndfrae greater
possibility of achieving a better optimal solution by wlilng the loaded moves to go
across the cycle. The results also showed that our improvedapfiach is more
efficient than Leungt al’s MIP approach.

94



Chapter 6 Conclusions and Future Research

6.1 Conclusions

Hoist scheduling problem with processing time windows (ft8Rhort) is often
encountered in surface treatment industry, which plays a keynroleanging surface
properties of metals and other electronics. A typical example from suréstenent
industry is the automated electroplating plant, in which coerpzdntrolled hoists are
widely used to transport part from one processing stage to andtherresearch
focused on the hoist scheduling issues arising from autoneddettoplating lines.
More precisely, three typical hoist scheduling problems with proggssme
windows have been examined in this thesis: the basic cyclictH&Byclic HSP with
bi-objective and the cyclic HSP with multiple hoists. Thedeeduling problems are
all NP-complete.

The main contributions of this thesis are summarized as falléinstly, we have
proposed a hybrid QEA (HQEA) to find the best hoist moveedole with minimal
cycle time for the basic HSP. As usual, each chromosome is encpdgdits in the
proposed HQEA. For a better population diversification, a newoding scheme
consisting of three different procedures was proposed for transformings Q-b
chromosome into hoist move sequences. It has several advantagése@ma@nmonly
used ones, such as better ability to exploit the diversit®-bits chromosome and
shorter length of chromosome. As infeasible hoist move sequencesewtable, a
simple and effective repairing procedure was designed to deal vgitisshe. Besides,
guantum-rotation gate and adaptive genetic operators were appliedblt@ ¢he
population towards best solution. The experimental resultsatelthat the proposed
algorithm can provide high-quality solutions within a reastsmabme. Our
contribution was valorized through one communication @teal, 2013) and one
submitted paper in the international jourAgiplied Soft Computin@_ei et al, 2014).

Secondly, we formulated a mathematical model and proposed an efficient
bi-objective QEA with local search (LS) procedure for a cyclic HSR wmiinimizing
the cycle time and the production cost simultaneously. Moresaigca bi-objective
mathematical model was formulated using the MPI approach (Leatnak, 1997)
providing that the actual processing times are known (In ttaey are decision
variables). After that, an efficient QEA with LS procedure waspgsed for
enumerating the actual processing times and finding a set of Pargtalogalutions
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for the studied problem. Particularly, for providing a better divwersitpopulation,
each chromosome is converted into two different individuals lapuble-decoding
scheme. For finding the non-dominated individuals, Pareto-domimanocedure was
suggested for individual evaluation. A specific chaotic quantumiootagate was
designed for updating Q-bits individuals. To increase the dtyerautation operator
was also implanted. Moreover, an efficient LS procedure was peaitydapplied to
improve all the non-dominated solutions stored in external archive

A real zinc electroplating problem was used to investigate therpafee of the
proposed algorithm. We have run the bi-objective QEA algorithnin \different
parameter settings. For testing its performance, we also run thdhatgeithout LS
procedure. Computational results show that the proposed hlgoi#t efficient in
solving the studied problem, and the LS procedure is very hdtpfimproving the
solution quality. Our results were presented at the internationédremcd EEE ICIII
2014 (Leiet al, 2014).

At last, we have proposed an improved MIP model for the cyd®& with
unidirectional multiple hoists to minimize the cycle timaur@mproved MIP model
was formulated with two improvements on Leustgal’s MIP model (Leunget al,
2004). The first improvement is the reformulation of the timedawn constraints by
allowing the loaded hoist moves to start at the one cycleeaddat the next one if
necessary, which is a relaxation of the existing assumgtairatl loaded hoist moves
start and end within the same cycle used in most related wodts asu_eunget al.
(2004), Chtourowet al. (2013)and Jiang and Liu (2014). The second one is to remove
some unnecessary hoist collision-avoidance constraints from Leuray’s MIP
model. Based on the above works, an improved and relatively mongacomlIP
model was formulated for the studied problem.

Computational results verify that our improved MIP approachatamays find
the global optimal solution for the studied problem, while #xisting ones may
identify a non-optimal solution to be an optimal one. Ourltesvere published in the
international journalEEE Transactions on Automation Science and Engine€Ghg
et al, 2014).

6.2 Limitations and future research

As described above, we have proposed efficient scheduling approachiee for
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considered HSPs in this thesis. However, there are a lot @tioms in this search,
so it still has enough room to conduct further research. In felatvs, we discuss
the limitations of this thesis and some potential directionfuture research.

In chapter 3, the studied basic cyclic HSP only deals witmglespart type.
However, to improve the productivity and meet the diverse déspanulti-type parts
are often produced within a same cycle in practice. Besides, duplteatesiare often
used to overcome the bottleneck processing stages in practicesthdotfor HSP
with multi-type parts and duplicated tanks, part input sequenc be optimized
along with the sequencing of hoist moves. So how to extengroposed HQEA for
solving multi-type parts HSP with duplicated tanks is wamtlestigating in future. A
key issue for the algorithm extension is to develop an effieieadding and decoding
scheme for sequencing of parts and hoist moves.

In chapter 4, optimizing HSP with two different objectives (¢ycle time and
production cost) was investigated. To reduce the problem compléxé&ysecond
objective (i.e. the production cost) was supposed to be a fimeetion of the actual
processing times. But from the practical point of view, a non-linbgactive function
may be more suitable for simulating the process of resource cotisamphus,
future interesting research direction is to introduce the non-lineactolg function
into the formulated bi-objective model. Moreover, it is alsenesgting to extend the
proposed model and algorithm for solving the HSP with morettharmobjectives.

In chapter 5, all tanks are arranged in a row according to their ma&bers,
and each part is supposed to be processed through tank 1 to bawkher words, the
part is moved in only one direction, i.e. from left to right.wdwer, the part
processing sequence may be different from the tanks layoutaimy meal-world
applications. Consequently, the hoist may move the part fromolefght and from
right to left. Therefore, how to extend the developed MIP mam¢hé multi-hoist
system with bidirectional part flow is worth investigatingfuture. Moreover, it is
also worthwhile to develop efficient QEAs for multi-hoist schedylproblem with
multiple objectives based on this research.
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Cyclic Hoist Scheduling Problems in Classical andiutainable Contexts

ABSTRACT
Automated surface treatment facilities, which emptomputer-controlled hoists for part transportatibave been extensively established
various kinds of industrial companies, becausésafumerous advantages over manual system, singhees productivity, better product quality
and reduced labor intensity. This research invatgigthree typical hoist scheduling problems witicpssing time windows in surface treatme
facilities, which are (1) cyclic single-hoist schaihg problem to minimize the cycle time; (Il) cickingle-hoist scheduling problem to minimi:
the cycle time and processing resource consumitind consequently production cost); and (Ill) ayatulti-hoist scheduling problem t
minimize the cycle time.
Due to the NP-completeness of the studied problenagsnumerous advantages of quantum-inspired evoblury algorithm (QEA), we first
propose a hybrid QEA with improved decoding mecéianand repairing procedure to find the best cyaoie for the first problem. After that, t
enhance with both the economic and environmentdbpeance, which constitute two of the three pdlaf the sustainable strategy nowad:
deployed in many industries, we formulate a bi-otiy@ mathematical model for the second problenuging the method of prohibited interv
(MPI). Then we propose a bi-objective QEA with Ibsearch procedure to simultaneously minimize §@ectime and the production cost, al
we find a set of Pareto-optimal solutions for fhisblem. As for the third problem, we find that megisting approaches, such as mixed inte
programming (MIP) approach, may identify a non-oai solution to be an optimal one due to an assompélated to the loaded hoist mov
which is made in many existing researches. Consgtplenve propose an improved MIP approach for thisblem by relaxing the
above-mentioned assumption. Our approach can gearéime optimality of its obtained solutions.
For each problem, experimental study on indusinistances and random instances has been cond@aethutational results demonstrate tt
the proposed scheduling algorithms are effectivjastify the choices we made.
Keywords: cyclic hoist scheduling problem; processing timedews; bi-objective optimization; quantum-inspiredolutionary algorithm;
mixed integer programming approach

RESUME

Les ateliers de traitement de surface automatigésitilisent des robots de manutention commandé®minateur pour le transport de la pie
ont été largement mis en place dans différentsstgentreprises industrielles, en raison de sesreur avantages par rapport a un mode
production manuel, tels que: une plus grande prtodid; une meilleure qualité des produits, et piact sur les rythmes de travail. Notre recher:
porte sur trois types de problemes d'ordonnanceassuiciés a ces systemes, appelés hoist schefrdinigms, caractérisés par des contrair
de fenétres de temps de traitement: (I) un probl@mae seule ressource de transport ou I'objestifie minimiser le temps de cycle; (II)
probléme bi-objectif avec une seule ressourceastesprort ou il faut minimiser le temps de cycleaatdnsommation de ressources de traitemen
par conséquent le colt de production); et (Illpuobléme d'ordonnancement cyclique mono-objectismaulti-robots.
En raison de la NP-complétude des problémes étedide nombreux avantages de les outils de typetguminspired evolutionary algorithn
(QEA), nous proposons d'abord un QEA hybride comgmeun mécanisme de décodage amélioré et unedurecéparation dédiée pour trouv
le meilleur temps de cycle pour le premier probleAmreés cela, afin d'améliorer a la fois la perfanoe économique et environnementale
constituent deux des trois piliers de la stratéigidéveloppement durable de nos jours déployéeditansmbreuses industries, nous formulons
modele mathématique bi-objectif pour le deuxiemebfm en utilisant la méthode de l'intervalle idterEnsuite, nous proposons un QE
bi-objectif couplé avec une procédure de rechelmtede pour minimiser simultanément le temps deecgtles colts de production, en génér
un ensemble de solutions Pareto-optimales pourat@éme. Quant au troisieme probléme, nous conmgtatoe la plupart des approaches utilis
dans les recherches actuelles, telles que la progation entiere mixte (MIP), peuvent conduire dgiéntion d’'une solution non optimale ¢
raison de la prise en compte courante d’une hygethmitant I'exploration de I'espace de rechereheelative aux mouvements en charge
robots. Par conséquent, nous proposons une appiledd&® améliorée qui peut garantir I'optimalités delutions obtenues pour ce probléme,
relaxant I'hypothése mentionnée ci-dessus.
Pour chaque probléme, une étude expérimentalerag#tée sur des cas industriels ainsi que sur desires générées aléatoirement. Les résu
obtenus montrent que I'efficacité des algorithmesdbnnancement proposés, ce qui justifie les cho&nous avons faits.

M ots-clés:ordonnancement cyclique des ateliers de traitemesurface, fenétres de temps de traitement; atiion bi-objectif; algorithme
évolutionnaire quantique; approche de programmatiode en nombres entiers.
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