
HAL Id: tel-02084684
https://theses.hal.science/tel-02084684

Submitted on 29 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyclic Hoist Scheduling Problems in Classical and
Sustainabl
Weidong Lei

To cite this version:
Weidong Lei. Cyclic Hoist Scheduling Problems in Classical and Sustainabl. Automatic. Université
de Technologie de Belfort-Montbeliard, 2014. English. �NNT : 2014BELF0244�. �tel-02084684�

https://theses.hal.science/tel-02084684
https://hal.archives-ouvertes.fr

N° d’ordre :244

Cyclic Hoist Scheduling Problems in

Classical and Sustainable Contexts

Ordonnancement cyclique des

ressources de transport dans les

ateliers de traitement de surface,

dans des contextes traditionnel et

durable

■ Weidong LEI

Order number : 244

 PhD THESIS

to obtain the degree

Doctor of Université de Technologie de Belfort-Montbéliard

Speciality : Automatic

Cyclic Hoist Scheduling Problems in Classical and Sustainable Contexts

by Weidong LEI

Laboratory OPERA-Université de Technologie de Belfort-Montbéliard (France)

School of Management - Northwestern Polytechnical University (China)

Defended on december 8, 2014

Jury :

M. Aziz MOUKRIM Professor-UTC-France Reviewer
M. Feng WU Professor-XJTU-China Reviewer
Mme Rong DU Professor-XDU-China President
Mme Marie-Ange MANIER Associate Professor HDR-UTBM-France Director
M. Ada CHE Professeur-NPU-Chine Director
M. Hervé MANIER Associate Professor -UTBM-France Co-supervisor

N° d’ordre : 244

THÈSE

Pour l’obtention du grade de

Docteur de l’Université de Technologie de Belfort-Montbéliard

Spécialité : Automatique

Ordonnancement cyclique des ressources de transport dans les ateliers de

traitement de surface, dans des contextes traditionnel et durable

Présentée par Weidong LEI

Laboratoire OPERA – Université de Technologie de Belfort-Montbéliard (France)

School of Management - Northwestern Polytechnical University (Chine)

Soutenue le 8 Décembre 2014 devant le jury composé de :

M. Aziz MOUKRIM Professeur-UTC-France Rapporteur
M. Feng WU Professeur-XJTU-Chine Rapporteur
Mme Rong DU Professeur-XDU-Chine Présidente
Mme Marie-Ange MANIER Maître de Conférences HDR- UTBM-France Directeur de thèse
M. Ada CHE Professeur-NPU-Chine Directeur de thèse
M. Hervé MANIER Maître de Conférences-UTBM-France Co-encadrant

i

ACKNOWLEDGEMENTS

I would like to thank those who supported and accompanied me with my

heartfelt gratitude during the past three years.

This thesis was supported by a co-tutelage program between Université de

Technologie de Belfort-Montbéliard (UTBM, France) and Northwestern Polytechnical

University (NPU, China). I would like to thank the Laboratoire Optimisation Et

ReséAux of UTBM and the School of Management of NPU, for providing me with

good working conditions. I acknowledge the China Scholarship Council (CSC) for

providing me with a two-year study funds at UTBM.

I would like to express my sincere gratitude to the jury members of my PhD

committee, to Professor Rong DU for serving as the chairman; to Professors Aziz

MOUKRIM and Feng WU for having accepted to review this thesis and their helpful

advices and suggestions; to my supervisors for revising this thesis carefully and

correcting the errors word by word.

I will forever be thankful to my two advisors, Associate Professor Marie-Ange

MANIER and Professor Ada CHE, for teaching me the research skills and ethics, and

for helping me in many aspects during my doctoral studies. I have been most indebted

to their professional guidance, great patience and massive help. I am also very

grateful to my co-supervisor Dr. Hervé MANIER for his many good discussions and

suggestions. Without them, I could not have achieved anything.

I also own my sincere gratitude to my friends, and my labmates at UTBM and

NPU who offered their kind helps and supports to me. They added a lot of colors to

my life over the past years. Special thanks go to Qiao ZHANG and Frédéric

LASSABE for their many helps when I lived in Belfort.

At last, I want to express my sincere thanks to my family for their endless love

and selfless support.

ii

ABSTRACT

Automated surface treatment facilities, which employ computer-controlled hoists

for part transportation, have been extensively established in various kinds of industrial

companies, because of its numerous advantages over manual system, such as higher

productivity, better product quality, and reduced labor intensity. This research

investigates three typical hoist scheduling problems with processing time windows in

surface treatment facilities, which are (I) cyclic single-hoist scheduling problem to

minimize the cycle time; (II) cyclic single-hoist scheduling problem to minimize the

cycle time and processing resource consumption (and consequently production cost);

and (III) cyclic multi-hoist scheduling problem to minimize the cycle time.

Due to the NP-completeness of the studied problems and numerous advantages

of quantum-inspired evolutionary algorithm (QEA), we first propose a hybrid QEA

with improved decoding mechanism and repairing procedure to find the best cycle

time for the first problem. After that, to enhance with both the economic and

environmental performance, which constitute two of the three pillars of the

sustainable strategy nowadays deployed in many industries, we formulate a

bi-objective mathematical model for the second problem by using the method of

prohibited interval (MPI). Then we propose a bi-objective QEA with local search

procedure to simultaneously minimize the cycle time and the production cost, and we

find a set of Pareto-optimal solutions for this problem. As for the third problem, we

find that most existing approaches, such as mixed integer programming (MIP)

approach, may identify a non-optimal solution to be an optimal one due to an

assumption related to the loaded hoist moves which is made in many existing

researches. Consequently, we propose an improved MIP approach for this problem by

relaxing the above-mentioned assumption. Our approach can guarantee the optimality

of its obtained solutions.

For each problem, experimental study on industrial instances and random

instances has been conducted. Computational results demonstrate that the proposed

scheduling algorithms are effective and justify the choices we made.

Keywords: cyclic hoist scheduling problem; processing time windows; bi-objective

optimization; quantum-inspired evolutionary algorithm; mixed integer programming

approach

iii

RÉSUMÉ

Les ateliers de traitement de surface automatisés, qui utilisent des robots de

manutention commandés par ordinateur pour le transport de la pièce, ont été

largement mis en place dans différents types d'entreprises industrielles, en raison de

ses nombreux avantages par rapport à un mode de production manuel, tels que: une

plus grande productivité, une meilleure qualité des produits, et l’impact sur les

rythmes de travail. Notre recherche porte sur trois types de problèmes

d'ordonnancement associés à ces systèmes, appelés hoist scheduling problems,

caractérisés par des contraintes de fenêtres de temps de traitement: (I) un problème à

une seule ressource de transport où l’objectif est de minimiser le temps de cycle; (II)

un problème bi-objectif avec une seule ressource de transport où il faut minimiser le

temps de cycle et la consommation de ressources de traitement (et par conséquent le

coût de production); et (III) un problème d'ordonnancement cyclique mono-objectif

mais multi-robots.

En raison de la NP-complétude des problèmes étudiés et de nombreux avantages

de les outils de type quantum-inspired evolutionary algorithm (QEA), nous proposons

d'abord un QEA hybride comprenant un mécanisme de décodage amélioré et une

procédure réparation dédiée pour trouver le meilleur temps de cycle pour le premier

problème. Après cela, afin d'améliorer à la fois la performance économique et

environnementale qui constituent deux des trois piliers de la stratégie de

développement durable de nos jours déployée dans de nombreuses industries, nous

formulons un modèle mathématique bi-objectif pour le deuxième problem en utilisant

la méthode de l'intervalle interdit. Ensuite, nous proposons un QEA bi-objectif couplé

avec une procédure de recherche locale pour minimiser simultanément le temps de

cycle et les coûts de production, en générant un ensemble de solutions

Pareto-optimales pour ce problème. Quant au troisième problème, nous constatons

que la plupart des approaches utilisées dans les recherches actuelles, telles que la

programmation entière mixte (MIP), peuvent conduire à l’obtention d’une solution

non optimale en raison de la prise en compte courante d’une hypothèse limitant

l’exploration de l’espace de recherche et relative aux mouvements en charge des

robots. Par conséquent, nous proposons une approche de MIP améliorée qui peut

garantir l'optimalité des solutions obtenues pour ce problème, en relaxant l'hypothèse

mentionnée ci-dessus.

Pour chaque problème, une étude expérimentale a été menée sur des cas

iv

industriels ainsi que sur des instances générées aléatoirement. Les résultats obtenus

montrent que l’efficacité des algorithmes d'ordonnancement proposés, ce qui justifie

les choix que nous avons faits.

Mots-clés: ordonnancement cyclique des ateliers de traitement de surface, fenêtres de

temps de traitement; optimisation bi-objectif; algorithme évolutionnaire quantique;

approche de programmation mixte en nombres entiers.

v

CONTENTS
ACKNOWLEDGEMENTS ... i

ABSTRACT ...ii

RÉSUMÉ .….…………………………………………………………………………………..iii

CONTENTS ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

Chapter 1 Introduction ... 1

1.1 Research Background.. 1

1.2 Problem Description ... 3

1.3 Quantum-inspired evolutionary algorithm .. 5

1.4 Contributions ... 7

1.5 Thesis Outline ... 8

Chapter 2 Literature Review ... 10

2.1 Literature review on HSP .. 11

2.1.1 Basic hoist scheduling problem (BHSP) ... 11

2.1.2 Multiple objectives hoist scheduling problem (MOHSP) 14

2.1.3 Cyclic multiple hoists scheduling problem (CMHSP) 16

2.2 Literature review on QEA ... 21

2.3 Synthesis ... 22

Chapter 3 A Hybrid Quantum Evolutionary Algorithm with Improv ed Decoding Scheme

for HSP ... 25

3.1 Introduction ... 25

3.2 Problem statement and mathematical model ... 26

3.2.1 Problem statement ... 26

3.2.2 Mathematical model .. 29

3.3 Hybrid Method .. 30

3.3.1 Introduction ... 30

3.3.2 Representation ... 31

vi

3.3.3 Initialization .. 32

3.3.4 Decoding Scheme .. 32

3.3.5 Fitness evaluation .. 34

3.3.6 Repairing procedure .. 35

3.3.7 Updating individuals ... 36

3.3.8 The procedure of hybrid QEA(HQEA) ... 39

3.4 Experimental results .. 40

3.4.1 Experimental results on benchmark instances ... 41

3.4.2 Experimental results on randomly generated instances 42

3.5 Summary ... 44

Chapter 4 Bi-objective QEA with Local Search Procedure for HSP with Simultaneous

Productivity Maximization and Production Cost Minim ization ... 46

4.1 Introduction ... 46

4.2 Problem description and its formulation ... 48

4.2.1 Sequence-based bi-objective mathematical model .. 48

4.2.2 Modified bi-objective mathematical model .. 50

4.3 Basic concepts of MOP and Pareto-optimal solutions .. 51

4.4 Solution method .. 52

4.4.1 Encoding and decoding scheme .. 52

4.4.2 Individual evaluation ... 53

4.4.3 Chaotic quantum-rotation gate .. 55

4.4.4 Mutation operator .. 59

4.4.5 Updating external archive ... 59

4.4.6 Local search (LS) procedure ... 60

4.4.7 Steps of the proposed algorithm .. 63

4.5 Experimental study ... 64

4.5.1 Industrial instance ... 64

4.5.2 Computational results .. 68

4.6 Summary ... 73

Chapter 5 An Improved Mixed Integer Programming Approach for Multi-hoist Cyclic

Scheduling Problem .. 74

vii

5.1 Introduction ... 74

5.2 Problem definition and Leung et al.’s MIP model .. 75

5.2.1 Problem definition ... 75

5.2.2 Leung et al.’s model .. 76

5.3 Illustration of a counterexample .. 78

5.4 The improved MIP model ... 81

5.4.1 Reformulation of the time window constraints ... 81

5.4.2 Other improvements on Leung et al.’s MIP model ... 85

5.4.3 The improved MIP model ... 88

5.5 Computational results.. 89

5.5.1 Computational results on benchmark instances .. 89

5.5.2 Computational results on randomly generated instances 91

5.6 Summary ... 94

Chapter 6 Conclusions and Future Research ... 95

6.1 Conclusions ... 95

6.2 Limitations and future research ... 96

Bibliography .. 98

viii

LIST OF FIGURES
Figure 1.1 A typical automated PCB electroplating line with two hoists. ... 2

Figure 2.1 The trend of publications about HSP from 1976 to 2014. ... 24

Figure 2.2 Ratio of proposed approaches in the reviewed HSP articles.. 24

Figure 3.1 An example of cyclic scheduling problem with a single hoist. 28

Figure 3.2 Crossover and mutation operators. .. 39

Figure 3.3 The flowchart of the proposed HQEA. .. 40

Figure 4.1 The main flowchart of the proposed bi-objective QEA. .. 52

Figure 4.2 Classification of the population (a) and Crowding-distance calculation (b). 55

Figure 4.3 The updating processes for Q-bit i in the 1st and 2nd quadrants. 57

Figure 4.4 The updating processes for Q-bit i in the 3rd and 4th quadrants. 58

Figure 4.5 The process of updating external archive. ... 60

Figure 4.6 The process of the proposed LS procedure. ... 61

Figure 4.7 Hoist move sequence 0−5−3−2−1−4 with C=170. .. 62

Figure 4.8 Hoist move sequence 0−5−3−2−1−4 with C=220. .. 62

Figure 4.9 Hoist move sequence 0−3−4−5−2−1 with C=220. .. 63

Figure 4.10 Zinc electroplating process for the selected problem. ... 66

Figure 4.11 Pareto frontiers identified with different mp for Np=50. .. 70

Figure 4.12 Pareto frontiers identified with different mp for Np=100. .. 71

Figure 4.13 Pareto frontiers identified with different mp for Np=150. .. 71

Figure 4.14 Pareto frontiers identified with different mp for Np=200. .. 72

Figure 4.15 Pareto frontiers identified with different mp for Np=250. .. 72

Figure 4.16 Comparison results of the algorithm with and without LS for Np=100 and mp=0.5. .. 73

Figure 5.1 Optimal cyclic schedule obtained with Leung et al.’s MIP approach. 80

Figure 5.2 A feasible cyclic schedule with shorter cycle time. ... 80

Figure 5.3 Four types of tank states for the time window constraints. .. 82

ix

LIST OF TABLES
Table 2.1 Summary of QEA works ... 24

Table 3.1 Results for the benchmark instances ... 41

Table 3.2 Results for the remaining number of Sn for each instance after applying Rule 1 42

Table 3.3 Comparison results between our decoding scheme and shifting decoding scheme on

Group1 and Group2 .. 43

Table 3.4 Comparison results for the randomly generated instances Group1 44

Table 3.5 Comparison results for the randomly generated instances Group2 44

Table 4.1 Lookup table of rotation angle .. 59

Table 4.2 Data for the example ... 62

Table 4.3 Process technology of a steel plate for Zinc-electroplating ... 67

Table 4.4 Data for the selected Zinc-electroplating problem .. 67

Table 4.5 Computational results obtained with the proposed algorithm ... 69

Table 5.1 Data for the counterexample ... 79

Table 5.2 Comparison of computation times for benchmark instances ... 90

Table 5.3 Comparison of optimal cycle times for benchmark instances ... 90

Table 5.4 Comparison of computation times for random instances Ui =Li 92

Table 5.5 Comparison of computation times for random instances Ui =Li +U(0, 50) 92

Table 5.6 Comparison of computation times for random instances Ui =Li +U(0, 100) 93

Table 5.7 Average number of improved instances with shorter cycles for random instances 93

1

Chapter 1 Introduction

1.1 Research Background

In today’s fiercely competitive market, to maximize the production capacity and

reduce the labor costs, automated production lines have been widely used in many

industries, such as the automotive industry, the aerospace industry and more

particularly the surface treatment industry. Meanwhile, with the ongoing development

in automation technologies and scheduling theories, automated production lines

become more and more reliable and efficient.

In modern surface treatment facilities, production lines are often equipped with

computer-controlled material handling tools (usually called hoists or robots in

different industries) for moving jobs or parts between tanks or machines (Crama et al.,

2000; Manier and Bloch, 2003). That is to say, all the transportation tasks during the

process are performed by hoists instead of workers. Obviously, highly automated

production system gains several unique advantages over manual production system.

Firstly, both the productivity and product quality are effectively improved since hoists

generally have less variability compared to human beings (suppose that hoists never

break down). In other words, hoists are not only easy to control and implement but

also very stable (i.e., hoists can exactly and timely perform each transportation task

assigned to it). Secondly, hoists can replace workers in high-temperature or hazardous

environments (or workplaces), since worker safety is one of most important issues

that each factory cares about. The last but not the least advantage is that the process

line generally has plenty of high-frequency and repetitive transportation jobs, which

are generally very boring for workers but relatively suitable for hoists.

Because of its wide applications, electroplating plant has been extensively

established in many surface treatment companies, which produce tens of thousands of

products each year. According to Schlesinger and Paunovic (2010), electroplating is

the coating of an electrically conductive object with a layer of metal using electrical

current resulting in a thin, smooth of metal on the object. A representative example is

the Printed Circuit Boards (PCBs) electroplating plant. More precisely, a PCB

electroplating process line typically consists of a sequence of tanks (containing

various kinds of chemical solutions or freshwater) arranged in a row and a number of

computer-controlled material handling hoists mounted on a single track above the

tanks, as shown in Figure 1.1. Each tank contains special chemicals for a specific

2

production step, such as depositing, degreasing, and pickling. Besides, multiple hoists

are generally used to move PCBs from tank to tank due to its higher productivity.

Once a PCB is introduced into the line from the input station, it must be continuously

processed in each of the tanks one after another until it is transported to the output

station.

Figure 1.1 A typical automated PCB electroplating line with two hoists.

For automated electroplating process lines, scheduling of hoists’ transportation

tasks efficiently is very critical because the productivity and the product quality

extremely depend on it. Therefore, the decision generally concerns how to sequence

the hoists’ movements without collision happened among hoists and determine the

start time of each hoist move such that the productivity is maximized. It is well known

in the literature as Hoist Scheduling Problem (HSP, Manier and Bloch, 2003). It also

has some other appellations called in different industrials, such as Robotic Cells

(Levner et al., 2007) or Robotic flow-shop Scheduling Problems (Crama et al., 2000),

etc. Similar to the classic flow shop or job shop scheduling problems, Livshits et al.

(1974) and Lei and Wang (1989) respectively proved that the simple HSP (i.e., cyclic

HSP with a single part-type and a single hoist) is NP-complete. Note that NP means

non-deterministic polynomial.

Moreover, in today’s fast-changing and competitive market, one most important

goal for electroplating plant is to maximize its productivity, so as to timely provide

required products to customers. This is very important for company to get good

reputation from partners. On the other hand, resource consumption greatly affects the

production cost. As the costs of resources increase, the product profit is generally

3

reduced. The traditional way that only maximizes the productivity cannot effectively

respond to the rising production costs. Therefore, minimizing the production cost

plays a key role in enhancing the company’s competitive ability and profits. It also

joins the sustainable development strategies of many industrials because this effort to

reduce resource responds to both economic and environmental concerns. At last but

not least, the defective part rate must be minimized during the production, which has a

negative impact on the company’s profits.

Until now, a number of scheduling approaches have been suggested for various

HSP to maximize the productivity, for example, please see the works by Phillips and

Unger (1976), Shapiro and Nuttle (1988), Lei and Wang (1994), Chen et al. (1998),

Manier et al. (2000), Che and Chu (2007), and Lei et al. (2014). But study on

multi-objective HSP has not received much attention from researchers, except for a

few works, such as Xu and Huang (2004), Kuntay et al. (2006), and Feng et al. (2014).

As a result, research for HSP with simultaneously achieving various goals from

different expectations becomes urgent due to its great significance in theory and

application. This research will focus on this area.

1.2 Problem Description

During the manufacture of many products, including electronic ones,

electroplating is an essential process for making some special treatments on part

surface, such as anti-corrosive, abrasion resistance, and improved electrical

conductivity. In a typical automated electroplating process line (Figure 1.1), a series

of tanks which contain different chemical solutions or freshwater are arranged in a

row. The input device and the output device are located at the both ends of the line.

Each tank corresponds to a specific process stage, such as degreasing, silver or copper

coating, drying, cleaning and rinsing. Since hoist is often the bottleneck resource in

the process line, multiple hoists are widely used to balance the line. During the

process, parts are transported by a hoist from one tank to the other. For a hoist travel

among tanks without carrying a part, it is called an empty move. On contrast, it is a

loaded move. All hoists often move on a shared track, so hoist collisions must be

avoided. This is called collision avoidance constraint. Due to the processing limitation,

each tank can process only one part at any time. So if a tank is occupied by a part,

then it must be emptied before processing another part. This is called tank capacity

constraint. Similarly, each hoist can only transport one part at any time, and must have

4

enough time to move empty between any two consecutive loaded moves, which are

called hoist capacity constraint.

Once a part is introduced into the process line, it is soaked in tanks to receive its

processing operations according to its processing routine until it is removed from the

line. According to the processing technology, the soak or processing time in each tank

must be within a time window [minimum dwell time, maximum dwell time], called

time window constraint (Lei and Wang, 1991). By the way, in this thesis, when we

mention HSP, it refers to HSP with processing time windows. If each processing time

falls into its time window, then part quality would be guaranteed; otherwise, defective

parts would be produced. Besides, no buffer exists among tanks. In other words, once

a part finishes its processing operation in a tank, it must be moved out of the current

tank and then transported to the next one by a hoist. From this, we can know that each

part is either in a tank or being transported by a hoist without any pause allowed.

From above descriptions, we can know that a hoist schedule is said to be feasible

for HSP only if it simultaneously satisfies the previously mentioned four families of

constraints, i.e., (1) collision avoidance constraint, if multiple hoists are used; (2) tank

capacity constraint; (3) hoist capacity constraint; (4) time window constraint.

Because of its easy implementation in a mass production environment, cyclic

production mode is usually adopted in the electroplating line. This leads to a repetitive

schedule performed by hoists in every certain time. The duration of performing the

repetitive schedule is called the cycle time (Chen et al., 1998). In each cycle, one part

is introduced into the line, and one part (note that the two parts are not necessary the

same one) is removed from the line after all its processing operations are finished.

Obviously, line productivity heavily depends on how to schedule the hoists’

transportation tasks, since the more frequently the hoist picks a part from the input

station, the higher the line productivity. As a result, in most studies, the objective of

HSP is to minimize the cycle time. On the other hand, due to the high treatment costs

of hazardous wastes (such as chemical sludge and wastewater) in electroplating plant,

the more resource used for processing parts, the higher the operating costs. Therefore,

how to optimize the actual processing time in each tank while satisfying the time

window constraint is crucial in reducing the production cost.

Since the 1970s, many researchers have dedicated to solve various variants of

HSP motivated by automated electroplating process lines. Most studies are relevant

with minimizing the cycle time for HSP, e.g. Phillips and Unger (1976), Shapiro and

5

Nuttle (1988), Lei and Wang (1994), Ng (1996), Chen et al. (1998) and Che and Chu

(2007). Due to its great significance in theory and practice, several works about

multi-hoist scheduling have been published especially in recently years, such as Zhou

and Liu (2008), Zhou and Li (2009), Chtourou et al. (2013), Jiang and Liu (2014), and

Li and Fung (2014). As far as the single-objective HSP is concerned, it is far from

meeting the various expectations from the real-world production. To reduce the

complexity of multi-objective HSP, a few studies (such as Xu and Huang, 2004,

Kuntay et al., 2006, and Subaï et al., 2006) have been conducted on the HSP with

dual objectives, which are optimized in a sequential manner, i.e., one objective is

considered in the first step, and the other is considered in the second step. Obviously,

such separate and sequential optimization approaches are not sufficient in practice.

Therefore, simultaneously optimizing different and sometimes conflicting objectives

from different aspects for HSP is very necessary and important.

To address the considered problems, we have chosen to use a rather new tool

called Quantum-inspired Evolutionary Algorithm (QEA). Since 1990s, QEA has been

received much attention and successfully applied to solve travelling salesman problem

(Narayanan and Moore, 1996), knapsack problem (Han and Kim, 2002), flow

shop/job shop scheduling problems (Li and Wang, 2007; Gu et al., 2009), etc. In the

following section, we briefly describe its main principles.

1.3 Quantum-inspired evolutionary algorithm

Quantum-inspired Evolutionary Algorithm (QEA) is formed according to the

concepts and principles of quantum computation (Deutsch, 1985; Hey, 1999), in

which Q-bit is the smallest unit of information in a quantum computer. Each Q-bit

may be in “0” state, “1” state, or in any superposition of the two. The following

equation is usually used to define a Q-bit (Han and Kim, 2002; Li and Wang, 2007):

|ψ〉=α|0〉+β|1〉, where |α|2+|β|2=1. (1.1)

In (1.1), α and β are two complex numbers, which represent the probability

amplitudes of states 0 and 1, respectively. As a result, |α|2 and |β|2 represent the

probabilities that the Q-bit would be found in state “0” and state “1”, respectively.

However, each Q-bit collapses to a single state by using a random-key observation

way. That is, a random number r is generated from the uniform distribution [0, 1). If

r>|α|2, then Q-bit is in state “1”; else, Q-bit is in state “0”. So QEA can be seen as a

6

probabilistic algorithm. Moreover, Q-gate is often employed to change the values of α

and β so as to influence the state of Q-bit. Until now, several Q-gates have been

proposed in the literature, such as NOT gate, controlled NOT gate, and rotation gate

(Hey, 1999).

=Ψ

m

m
m β

α
β
α

β
α

...

...

2

2

1

1 , where |αi|2+|βi|2=1, 1≤i≤m. (1.2)

Suppose that a quantum individual Ψm is a string of m Q-bits, as shown in (1.2),

this individual can represent 2m states at the same time, i.e., a linear superposition of

states. For instance, consider a quantum individual with three Q-bits and their

amplitudes as the following:

−−
=Ψ

3
2

3

7

3
6

3

3

3
5

3

4

3 , (1.3)

In (1.3), Ψ3 includes the information of eight states, i.e., |000〉, |001〉, |010〉, |011〉,

|100〉, |101〉, |110〉, |111〉, and their probabilities are respectively 84/729, 24/729,

168/729, 48/729, 105/729, 30/729, 210/729, 60/729. Indeed if we consider the state

|010〉 as an example, the associated probability is |α1|2×|β2|2×|α3|2 which equals

(4/9)×(6/9)×(7/9)=168/729. From this example, we can know that Q-bit representation

has a better characteristic of population diversity than other representations, since it

potentially maps to a larger phenotype space than other binary representation based

Evolutionary algorithms (EAs).

 Like other EAs (such as genetic algorithm and annealing evolution algorithm),

QEA generally has a similar evolution paradigm. It begins with an initial population,

in which each individual is encoded by Q-bits. After evaluating the population fitness,

it applies Q-gate to update individuals for generating new offspring and guiding the

individual towards better solutions, and then evaluates the new population. When the

stop condition is satisfied, it ends and outputs the best solution. Figure 1.2 illustrates

this process in details, where Q(t), P(t) and B(t) are quantum chromosome, problem

solution and best solution respectively.

7

Figure 1.2 Pseudocode algorithm for QEA (Han and Kim, 2002).

1.4 Contributions

In this thesis, we investigate three types of HSP motivated by automated

electroplating process lines. They are respectively: (I) cyclic single-hoist scheduling

problem to minimize the cycle time, (II) cyclic single-hoist scheduling problem to

minimize the cycle time and the production cost, and (III) cyclic multi-hoist

scheduling problem to minimize the cycle time.

Due to the NP-completeness of HSP, the computation time spent by exact

methods usually increases exponentially with its size. Thus, it is a wise choice to

adopt meta-heuristic methods to find reasonably good schedules in a reasonable time

for HSP. Because of its unique advantages, such as better population diversity and

rapid convergence, QEA has gained great success in solving many different

optimization problems, but it was not used yet for solving HSP. Therefore, this

research tries to connect this gap. The main contributions of this research are

summarized as follows.

Firstly, we propose a hybrid QEA with improved decoding scheme for the first

problem. More precisely, we elaborate three different decoding procedures to convert

Q-bit individual into hoist move sequences. Moreover, we develop a more effective

repairing procedure than the existing one. Both quantum rotation-gate and adaptive

genetic operators as variant operators are applied to evolve the population towards

better solutions.

Secondly, we propose an efficient QEA algorithm with local search procedure for

8

the second problem. More precisely, based on a full analysis of the studied problem, a

bi-objective mathematical model is formulated by using the method of prohibited

intervals (MPI). After that, we use a double-decoding procedure to convert Q-bit

individuals into problem solutions. All solutions are evaluated by the famous

Pareto-dominance technique. A chaotic quantum-rotation gate is designed for

updating Q-bit individuals. To increase the individual diversity, mutation operator is

implanted into the proposed algorithm. Moreover, external archive is used to store the

obtained non-dominated solutions. Local search procedure is applied for further

improving the solution quality.

Finally, we propose an improved mixed integer programming (MIP) approach

for the last problem. In most existing studies, such as Lei and Wang (1991),

Armstrong et al. (1996), Leung and Zhang (2003), Leung et al. (2004), Che and Chu

(2004), Zhou and Liu (2008), Zhou and Li (2009), Chtourou et al. (2013) and Jiang

and Liu (2014), all loaded moves are implicitly or explicitly assumed to start and end

within the same cycle. In this research, we give a counterexample to demonstrate that

this assumption should be relaxed, since approaches based on it may identify a

non-optimal solution to be an optimal one. In other words, loaded hoist moves are

allowed to start in the current cycle and end in the next one if necessary in our

research. Consequently, we propose an improved MIP approach for the third problem

by relaxing the above-mentioned assumption. Our approach can guarantee the

optimality of its obtained solutions.

1.5 Thesis Outline

This thesis is arranged as follows.

Chapter 2 provides a literature review of HSP and quantum-inspired evolutionary

algorithm (QEA) most related to this research. The research trends on HSP and the

research gap between HSP and QEA are also pointed out.

Chapter 3 mainly develops an effective QEA for solving the cyclic single-hoist

scheduling problem with time window constraints in automated electroplating lines.

The objective is to minimize the cycle time. The problem formulation and the

proposed QEA are presented. Comparison experiments are conducted between the

proposed algorithm and the existing approaches.

Chapter 4 first formulates a bi-objective mathematical model by MPI approach

9

for the studied problem, and then develops a multi-objective QEA with local search

procedure to find a set of Pareto-optimal solutions for the problem. The objective of

the problem is to minimize both the cycle time and the production cost. At last, a real

electroplating instance is used to test the effectiveness of the proposed algorithm.

Chapter 5 focuses on the development of an improved MIP model for the cyclic

multiple hoists scheduling problem. In contrast with most previous approaches, our

MIP approach can always find a global optimal hoist schedule with the maximum

productivity. Experimental study is conducted on both benchmark instances and

randomly generated instances.

Chapter 6 makes some concluding remarks of this research, and suggests some

directions for future research.

10

Chapter 2 Literature Review

In this chapter, we perform a literature review related to this research. As

mentioned in Chapter 1, part of our research focuses on the development of effective

QEAs for solving two kinds of HSP. Therefore, we first review relevant works on the

HSP, and then give a literature review on QEA related to our research.

The whole literature is rich of works related to hoist scheduling problems or near

problems. Manier and Bloch (2003) proposed a notation and classification allowing to

identify the various kinds of HSPs. The following paragraph is directly extracted from

(Manier and Lamrous, 2008), and it sums up this notation:

“This one considers some of the main physical and logical parameters found in

the literature related to the HSP. The complete notation is expressed in the form:

XHSP|nl, ntransfer, synchro, (mh, mt, ct) i=1 to nl/nc, circ, ret, empty/

load-unload | nparts/nps, nop, clean, recrc | criteria.

It is worth noting that the use of default values makes the expression of this

notation not so complex when it was applied to most of the instances studied in

literature.

The notation can be divided in four fields:

kind of HSP | physical parameters | logical parameters | criteria.

Each one consists in several parameters:

– Kind of HSP (XHSP): a hoist scheduling problem can be static (cyclic (CHSP)

or not (PHSP)), or dynamic (dynamic problems (DHSP), or reactive ones (RHSP) for

real time cases);

– Physical parameters: this field respectively includes the number of basic lines

(nl), the number of transfer systems connecting these lines (ntransfer), the need of

synchronization between hoists and transfer systems (synchro). It also provides, for

each basic line i of the facility (i=1 to nl), the number of hoists (mh), tanks (mt) and

available carriers (nc), the maximal capacity of tanks (ct), the constraints involved by

the characteristics of carriers (circulation of products (circ), dedicated transport

system to ensure the return of empty carriers from the unloading station to the loading

one (ret), empty carriers remaining on the line if there is no storage place near the

11

facility (empty)), and finally the configuration of the loading and unloading stations:

associated or dissociated stations (load−unload);

– Logical parameters: they describe the production environment to be

considered: the total number of parts to be treated (nparts), the number of processing

sequences (nps), the maximal number of operations among those processing

sequences (nop), the possible cleaning of empty carriers after the unloading operation

(clean) (one or several operations included in nop), and finally the recirculation

constraint (recrc) for reentrant problems;

– Criteria: this field expresses one or several objectives to reach. For HSP, they

may be several criteria to optimize, for example: minimize the cycle time for the

cyclic HSP (Cmin), or minimize the makespan (Cmax) in dynamic cases.”

Among the various kinds of HSPs studied in the literature and possible to

identify via this notation, we have chosen to focus on three of them. Then, this chapter

is arranged as follows. Section 2.1 divides the HSP into three parts: (2.1.1) Basic HSP;

(2.1.2) multiple objectives HSP; (2.1.3) HSP with multiple hoists, which respectively

correspond to the contribution points of our research. Section 2.2 gives a briefly

literature review on the QEA. Finally, Section 2.3 summaries this chapter.

2.1 Literature review on HSP

2.1.1 Basic hoist scheduling problem (BHSP)

Over the past decades, HSP has gained great attentions from many researchers

due to its significance in many real-world applications. As a result, there is a vast

literature about it. Most of the works considered the basic (i.e., a single hoist and a

single part type) HSP, called BHSP. The objective of BHSP is usually to minimize the

cycle time or the makespan. Before 1970, hoist schedules were usually developed by

experienced schedulers. The first work on computerized scheduling approach was

provided by Phillips and Unger (1976). They formulated the first Mixed Integer

Programming (MIP) model to find the optimal hoist schedule for BHSP. In the

experimental study, a real life numerical example was used to testify the effectiveness

of the proposed MIP model. The example was chosen from Western Electric Plant and

became a well-known benchmark (P&U) instance in the later research.

Almost ten years later, Shapiro and Nuttle (1988) proposed a branch-and-bound

12

(B&B) procedure to find the optimal cycle time for BHSP. The proposed approach

was verified by four practical instances, i.e., P&U instance, Black Oxide1 instance,

Black Oxide2 instance and Zinc instance. Computational results on those instances

demonstrated that the proposed approach had a better performance than experienced

schedulers in terms of solution quality and CPU time.

Moreover, Armstrong et al. (1994) also proposed a B&B search procedure based

on calculating a sequence-dependent parameter (called minimal time span) for the

basic hoist scheduling problem. The performance of the proposed B&B algorithm was

evaluated on four benchmark instances and 360 randomly generated instances, and

experimental results on those instances spent less CPU times than the LP procedure.

Lim (1997) was the first to propose genetic algorithm (GA) to solve BHSP. In his

work, a mathematic model based on hoist move sequence was formulated, and the

objective is to find the optimal hoist cyclic schedules with minimum cycle time.

Specifically, hoist move sequences are encoded as chromosomes. In other words, each

chromosome directly represents a possible hoist move sequence. Note that for such a

representation way, the search ability of GA is generally reduced as the problem size

increases. Besides, Linear Order Crossover (LOX) and two-gene mutation operator

were adopted in the proposed GA. Computational results on benchmark instance P&U

with different parameter settings were reported and indicated that the proposed GA

can find the optimal hoist schedule for instance P&U.

Chen et al. (1998) first formulated a mathematical model and then proposed a

B&B algorithm for BHSP. The proposed algorithm includes two branch-and-bound

trees A and B. In particular, tree A is responsible for enumerating all possible initial

part distributions at the beginning of a cycle, while tree B is responsible for generating

the hoist schedules for each determined initial part distribution. Besides, to reduce the

solution space, an upper bound of the number of parts which can be processed in the

line within a cycle was derived from the formulated model. The proposed algorithm

was evaluated on five benchmark instances: P&U, Ligne1, Ligne2, Black Oxide1 and

Black Oxide2. Computational results on those instances indicated that the proposed

B&B algorithm can find the optimal solution for each instance in less than 1s.

Recently, Yan et al. (2010) applied the method of prohibited intervals (MPI) to

solve the BHSP. Specifically, if all the actual processing times in the processing tanks

can be known, then the studied problem can be formulated by using the MPI approach

(Levner et al., 1997). Due to this fact, the studied problem was further transformed to

13

find all the non-prohibited intervals for the cycle time, which is done by a specific

B&B algorithm. Computational results on benchmark instances and 1800 random

instances demonstrated that the proposed method is effective for solving the problem.

Moreover, due to the high performance of Tabu search (TS) algorithm, Yan et al.

(2012) proposed a specific TS algorithm with a repairing procedure and solution

space partition approach for the problem. In their work, to reduce the solution space

and increase the search speed, the maximum number K of the work-in-process (WIP)

parts was used to divide the solution space into K subspaces. Three rules based on the

value of K were used to generate the initial population, i.e. hoist move sequences.

Note that the proposed algorithm used the real-coded representation, that is, hoist

move sequence is directly encoded as chromosome which does not require a decoding

mechanism. Finally, the proposed TS algorithm was compared with GA proposed by

(Lim, 1997) using both benchmark instances and random instances. Comparison

results demonstrated that TS algorithm performs better than GA in terms of solution

quality and computation time.

To reduce the complexity of hoist scheduling problem, some researchers studied

the problem with given hoist move sequences. For instance, Lei (1993) proposed a

simple algebraic procedure to minimize the cycle time and find the optimal start times

of hoist operations for the scheduling problem with given hoist move sequences. The

proposed procedure solves the studied problem in O(N2log(N)log(M)) time, where N

and M represent the tank numbers and the number of integer points between the lower

bound and the upper bound on the cycle time, respectively. Besides, Ng and Leung

(1997) proposed a binary search procedure to determine the optimal execution times

of hoist moves for the similar problem.

All the works mentioned above treated the HSP from simple production line, in

which each tank corresponds to a specific processing step. However, duplicated tanks

and multi-function tanks are often used in practice. The representative works on HSP

with duplicated tanks or multi-function tanks are Ng (1995) with MIP approach, Ng

(1996) with B&B approach, Liu et al. (2002) with MIP approach, Zhou and Li (2003)

with MIP approach, and Che and Chu (2007) with B&B approach.

Since a higher degree of cyclic schedule would generally improve the system

productivity, several works have been published on this area. Note that a higher

degree means that at least two parts enter and leave the line within a cycle. Some of

the relevant works dealt with the single part type, and which can be found in the work

14

by Lei and Wang (1994), Spacek et al. (1999), Che et al. (2011), Kats and Levner

(2011a and 2011b), Zhou et al. (2012), and Li and Fung (2014). Moreover, various

exact or heuristic approaches have been proposed for HSP with multiple distinct parts:

B&B approach (Lei and Liu, 2001; Lei et al., 2014), MIP approach (El Amraoui et al.,

2008; Zhao et al., 2013a; El Amraoui et al., 2013a), Polynomial algorithm (Kats et al.,

2008), and GA approach (El Amraoui et al., 2013b).

Although the cyclic HSP is the theme of our research, several researchers have

studied various variants of non-cyclic HSP due to its significance both in academic

field and industrial practice. To date, much attention has been gained in this area, for

examples, please see the work by Yih (1994), Lamothe et al. (1995), Ge and Yih

(1995), Chauvet et al. (2000), Fleury et al. (2001), Hindi and Fleszar (2004), Paul et

al. (2007), Kujawski and Świątek (2011), Zhao et al. (2013b), Tian et al. (2013), Yan

et al. (2014), and Zhang et al. (2014).

2.1.2 Multiple objectives hoist scheduling problem (MOHSP)

In previous section, all mentioned works treated HSP with single objective,

which minimizes either the cycle time or the makespan. This is far from meeting the

various expectations from real-world applications. In other words, considering HSP

with multiple objectives are more realistic, such as minimize the production cost or

wastewater, maximize the productivity and minimize the defective part rate. Since

2000, multi-objective HSP has been studied, and a number of scheduling approaches

have been proposed. In what follows, the relevant works are reviewed in details.

Firstly, Fargier and Lamothe (2001) proposed a decision support approach for the

dynamic hoist scheduling problem with bi-objective, which is to minimize the

makespan and maximize the processing quality. All parts are supposed to be randomly

arrived and a single hoist for moving parts from tank to tank. The problem was

formulated by a linear programming model to generate the best hoist schedules and a

fuzzy model was used to evaluate the part processing operations.

Later, Mak et al. (2002) proposed a knowledge-based simulation system to solve

the multiple hoists real time scheduling problem, in which multi-function tanks and

duplicated tanks are used. The objectives of the problem are to maximize the

productivity and minimize the defective rate. To avoid producing defective parts, the

time of a new part entering into the line is controlled and determined by a heuristic

rule. In the proposed simulation system, there are seven hoist dispatching rules, which

15

are Nearest Hoist First (NHF), Average Tank Assignment (ATA), Average Hoist

Assignment (AHA), Boundary Shift by Job Allocation (BSJA), Modified Average

Tank Assignment (MATA), Modified Average Hoist Assignment (MAHA), and

Modified Boundary Shift by Job Allocation (MBSJA), respectively. Computational

results on several real electroplating lines with different hoist speeds and hoist safe

distances were reported and discussed. The results indicated that the two new rules

MAHA and MBSJL perform better than all other dispatching rules. Besides, higher

hoist speed and shorter hoist safety distances are verified to have higher productivity.

Xu and Huang (2004) designed a graph-assisted search algorithm for the single

hoist cyclic scheduling problem with single part type to minimize both the cycle time

and the wastewater. Specifically, a two-stage algorithm was proposed to optimize the

two studied objectives. The first stage was responsible for finding the optimal hoist

schedules with minimum cycle time, while the second stage was responsible for

looking for the minimum wastewater for each determined hoist schedule. Moreover,

part of infeasible hoist move sequences is eliminated during the search process. At last,

a numerical example was used to evaluate the proposed two-stage optimization

algorithm.

Jegou et al. (2006) proposed a multi-agent system for the reactive multi-hoist

scheduling problem, where the objectives are to minimize the defective parts rate and

maximize the productivity. In their model, two different agents called input date

decision system (IDDS) and hoist assignment system (HAS) were respectively used to

determine the time of a new part loading into the process line and to find the optimal

schedules for multiple hoists. In HAS, auction operation was applied to assign

transportation tasks to hoists and also optimize the hoist schedules. The proposed

multi-agent system was compared with the existing hoist assignment heuristics (i.e.

NFR, ARA and BSJL) in the literatures and showed better performance.

Kuntay et al. (2006) proposed a two-step optimization algorithm for solving the

bi-objective single-hoist cyclic scheduling problem. In the proposed algorithm, the

first step was responsible for finding an optimal hoist schedule with maximum

productivity, while the second optimization step was to minimize the wastewater

without reducing the production rate obtained in the first step. Finally, an example

from real electroplating facility was used to evaluate the proposed two-step algorithm.

Besides, Subaï et al. (2006) also proposed a similar two-step optimization algorithm

for a bi-objective single-hoist cyclic scheduling problem, in which cycle time and

16

production cost are minimized in two sequential steps.

Zhang et al. (2012) studied the multiple hoists job shop scheduling problem with

duplicated tanks and inter-storages between tanks, in which the objectives are to

minimize both the makespan and the total waiting times in inter-storages. It should be

noted that the solutions found with no waiting times correspond to feasible solutions

for HSP. Firstly, a mathematical model was formulated for the problem, and then a

genetic algorithm with tabu local search heuristic was proposed to find the optimal

solutions. Computational results on several instances from different industry

backgrounds demonstrated that the proposed approach is efficient.

Very recently, Feng et al. (2014) proposed an iterative epsilon-constraint method

to solve a bi-objective HSP with non-Euclidean travel-time metric, which means that

an empty move from tank i to tank j may need longer time than passing by an

intermediate tank k. The objective is to minimize the cycle time and the total hoist

travel times simultaneously. Firstly, an initial MIP model was formulated for the

problem and then was further tightened by adding some valid inequalities. Secondly,

an iterative epsilon-constraint method was proposed to find the complete Pareto

optimal solutions for the problem. Finally, both benchmark instances and randomly

generated instances were used to evaluate the effectiveness of the proposed method.

Computational results showed that the proposed method can obtain Pareto optimal

solutions in reasonable time.

Most above mentioned works (such as Xu and Huang, 2004, Kuntay et al., 2006,

and Subaï et al., 2006) examined HSP with dual objectives, which are optimized in a

separate way, i.e., one objective is optimized in the first step, and the other is

considered in the next step while maintaining the optimized results obtained in the

first step. Obviously, such separate and sequential optimization approaches can not

necessarily find the global Pareto-optimal solutions for MOHSP. So it becomes urgent

to develop efficient scheduling approaches for simultaneously achieving different

objectives for HSP.

2.1.3 Cyclic multiple hoists scheduling problem (CMHSP)

Besides above, researchers have also worked on the problem with multiple hoists

that generally lead to higher productivity compared to the single hoist system. In a

multi-hoist system, the hoist usually move the part either in a unidirectional way or a

bidirectional way. To be more specific, the unidirectional way means that the hoist

17

moves parts from left to right, i.e., the part processing sequence is exactly identical to

the tanks layout, while the bidirectional way means that the hoist can move parts from

left to right and from right to left, i.e., the part processing sequence is not necessarily

identical to the tanks layout. To avoid hoist collisions, various scheduling approaches

have been proposed, and they can be generally classified into two classes: (I)

zone-partitioned based approaches and (II) overlapped based approaches. For class (I),

the production line is divided into several non-overlapping zones according to the

number of the hoists, and each hoist is exclusively assigned to one of zones for

moving parts. Thus, overlapping the coverage ranges of the hoists is forbidden. In

contrast, the production line is not divided and thus hoists can overlap with each other

in class (II).

(I) CMHSP with zone-partitioned approach

Lei and Wang (1991) were the first to propose heuristic algorithm that is called

Minimum Common-Cycle (MCC) algorithm, to find the optimal move schedules for a

two-hoist cyclic scheduling problem. The proposed algorithm used a zone-partition

approach to avoid two hoists conflicting with each other when they moved on a single

track. More precisely, the production line is divided into two sections and each section

is exclusively assigned to a single hoist. Finally, the proposed algorithm was verified

by benchmark instance and random instances.

Armstrong et al. (1996) proposed a local optimization algorithm based on the

greedy zone-partition approach for the multiple hoists scheduling problem with given

cycle times, where overlapping the coverage ranges of the hoists are forbidden. The

objective is to minimize the number of hoists used in the line. To avoid hoist

collisions, the production line was divided into several non-overlapping zones, and

each hoist was exclusively assigned to one of zones for moving parts. A local

optimization algorithm was proposed to maximize the size of each zone, which is

equivalent to minimize the number of hoists used in the system. Finally,

computational results on both benchmark instances and random instances showed that

the proposed approach is efficient for solving the problem.

Riera and Yorke-Smith (2002) proposed an improved hybrid model combining

CLP with MIP to solve the generic cyclic scheduling problem with unidirectional

multiple hoists. The proposed hybrid model adopted two different approaches to deal

with hoist collisions, which are zone-partitioned (i.e. non-overlapped) approach and

collision-based approach, respectively. Computational results on P&U instance and

18

randomly generated instances demonstrated that the proposed model is robust and

scalable compared with the existing approaches.

Alcaide et al. (2007) proposed a parametric algorithm for a multiple hoists cyclic

scheduling problem with given hoist move sequence. To prevent hoist collisions, all

hoists are supposed to run on a circuit line in a carousel mode. Besides, all loaded or

empty hoist moving times are not given specifically but within the pre-defined time

intervals. The objective is to determine the values for actual processing times, loaded

and empty hoist moving times so that the cycle time is minimized. The proposed

parametric algorithm was verified by a numerical example.

Manier and Lamrous (2008) applied an evolutionary algorithm with a repairing

procedure to solve the cyclic scheduling problem with multiple hoists running on

parallel tracks, which means that each hoist has its own track and no collision happens

between hoists. The objective is to minimize both the cycle time and the number of

hoists since it is not given in advance. In their algorithm, chromosome is represented

by empty hoist moves. An MIP approach was proposed to evaluate the feasibility of

generated solutions. Moreover, a repairing procedure was designed to repair infeasible

sequences. Computation results were reported and discussed with benchmark

instances.

Besides, Zhou and Li (2009) proposed an MIP approach for the multi-hoists

cyclic scheduling problem with duplicated tanks. In their work, the line was divided

into several non-overlapping areas according to the number of hoists. That is, each

hoist is assigned to an exclusive area and collisions only happen when two adjacent

hoists meet at the boundary tank. An MIP model was first proposed to find the

optimal hoist schedules. Then, the model was extended to solve the problem with

duplicated tanks. The proposed model was solved by commercial software CPLEX.

Computational results on three numerical examples with two and three hoists implied

that the proposed approach is effective for solving the studied problem.

(II) CMHSP with overlapped approach

Baptiste et al. (1993) proposed a Constraint Logic Programming (CLP) method

with depth-first search procedure to find the minimum cycle time for the hoist

scheduling problem with different line configuration. The optimal cycle times

obtained with the proposed approach for the P&U instance with one degree and

single/two hoists as well as two degrees single hoist were reported. Finally,

19

advantages and disadvantages of the CLP languages as well as the comparison

between the two different implementation languages (i.e. PROLOG III and CHIP)

were also presented.

Moreover, Varnier et al. (1997) proposed a CLP based heuristic approach to

obtain the optimal hoist schedules for a multi-hoist cyclic scheduling problem, where

coverage ranges of the two neighboring hoists are allowed to overlap. That is,

adjacent hoists can share several common tanks of the production line. The proposed

approach consists of two specific procedures. In particular, procedure A used a

heuristic rule to assign transportation tasks for each hoist. Then, procedure B used an

exact method based on CLP to determine the optimal hoist schedules for the problem.

Computational results on benchmark instances and random instances indicated that

the multi-hoist system has larger productivity than the single hoist system.

Manier et al. (2000) developed a resolution procedure to solve the cyclic

scheduling problem with bidirectional multiple hoists allowed to overlap on a single

line, which includes duplicated tanks and multi-function tanks. Firstly, a mathematical

model was formulated for the problem with disjunctive constraints (i.e. mutually

exclusive inequalities). Then, the proposed model was implemented using CLP

language. Based on the above works, a resolution procedure using branch-and-bound

tree with depth-first search strategy was developed to find the optimal hoist schedules.

Note that a node of the search tree represents a disjunctive constraint (i.e. a pair of

operations), and when a leaf node is reached, an entire hoist schedule is obtained.

Finally, computational results on benchmark instances and 35 randomly generated

instances with no more than 3 hoists were given and showed that multi-hoists system

improves the line productivity compared to the single hoist system.

Leung and Zhang (2003) formulated the first MIP model for the bidirectional

multiple hoists cyclic scheduling problem. All hoists are supposed to be run on a

single track and the production line is not partitioned according to the number of

hoists. That is, two adjacent hoists may overlap in a common segment of the line. A

branch-and-cut procedure with depth-first search strategy was used to solve the

formulated MIP model. Computational results on six benchmark instances with no

more than three hoists were reported and analyzed.

Che and Chu (2004) first formulated an analytical mathematical model and then

proposed a B&B algorithm for the single track multiple hoists cyclic scheduling

problem. The production line is supposed to be unidirectional. In their paper, two

20

collision-checking properties were derived to indentify the hoist collisions. The

proposed B&B algorithm consists of two nest procedures A and B. In particular,

procedure A is used to enumerate all possible tank state distributions at time zero,

while procedure B is responsible for finding an optimal cyclic schedule for each given

tank state distribution. The proposed algorithm was compared with the existing

approaches by using both benchmark instances and random instances. Comparison

results showed that the proposed B&B algorithm can find a smaller cycle times than

the existing approaches.

Besides above, Leung et al. (2004) formulated the first MIP model for the cyclic

scheduling problem with multiple hoists moving parts on a single track, in which the

part processing sequence is exactly identical to the tanks layout. The objective of the

problem is to minimize the cycle time for a given number of hoists. The authors first

tighten the MIP model proposed by Phillips and Unger (1976) with new valid

constraints. After that, by identifying all possible hoists-collision situations, they

formulated an MIP model for the studied problem. In the experimental study, six

benchmark instances with no more than three hoists were used to evaluate the

performance of the proposed model, which is solved by the commercial optimization

software CPLEX 6.5. Computational results on those instances were given and

discussed.

Later, Zhou and Liu (2008) proposed a heuristic algorithm based on enumerating

trial processing times for solving the cyclic scheduling problem with two hoists

running on a single track. More precisely, actual processing time in each tank was

randomly generated within their corresponding time intervals. Then, a simple

algebraic method was proposed to determine the hoist move sequence according to

the generated actual processing times. In their work, the production line was divided

into three areas from left to right. For each given move sequence, all moves located at

the left area (resp. right area) is exclusively assigned to hoist 1(resp. hoist 2). Hoist 1

and hoist 2 together take charge of performing all moves located at the middle area.

Thus, collisions only happen in the middle area. Based on the above works, a linear

programming (LP) approach was proposed to find the best schedule for each given

hoist assignment. Finally, benchmark instance P&U and randomly generated instances

were used to evaluate the performance of the proposed algorithm. Computational

results on those instances demonstrated that the proposed heuristic algorithm can

obtain near-optimal cycle time in a short time.

21

Chtourou et al. (2013) proposed a heuristic algorithm for the single track two

hoists cyclic scheduling problem, where overlapping the coverage ranges of the hoists

are allowed. Thus, hoist collisions in common segments must be avoided. In particular,

the same method that presented in Zhou and Liu (2008) was used to generate hoist

move sequences. Then, a heuristic algorithm was proposed for dispatching moves to

hoist. Besides, to save the computation time, an MIP model without hoist collision

constraints was formulated for determining the start time of each hoist move, and a

test procedure was proposed for checking the collision constraints. The best solution

is chosen from all the verified feasible solutions. Computational results were reported

and analyzed with benchmark instances and random instances.

Very recently, Jiang and Liu (2014) formulated an MIP model and then proposed

a B&B algorithm for the cyclic scheduling problem with bidirectional multiple hoists

moving parts on a single line. For such a problem, identifying possible situations of

hoist collisions are very crucial since that is a main part of the problem formulation.

Based on a full analysis of the studied problem, an MIP model was first formulated,

and then a B&B algorithm was proposed. The proposed algorithm was compared with

Leung and Zhang’s MIP approach (Leung and Zhang, 2003) and optimization

software CPLEX (11.11) using P&U instance and random instances with different

parameter settings (such as hoist numbers, problem size and time window width).

Comparison results presented that the proposed B&B algorithm is more efficient than

the two competitors in terms of CPU time.

2.2 Literature review on QEA

In this section, we review some works on QEA related to this research. In recent

years, QEA has been received considerable attention from researchers because of its

excellent optimization performance. It can be seen as a probability optimization

algorithm based on the concepts and principles of quantum computation, such as

Q-bits representation, observation process and various quantum gates (Deutsch, 1985).

It has achieved great success in several well known optimization problems, such as

travelling salesman problem (Narayanan and Moore, 1996), knapsack problem (Han

and Kim, 2002), production scheduling problem (Li and Wang, 2007), and economic

dispatch problem (Neto et al., 2011).

To our knowledge, Narayanan and Moore (1996) firstly introduced QEA to solve

22

the travelling salesman problem (TSP) and gained significant performance compared

to classical method. Talbi et al. (2004) proposed a new QEA for TSP, and comparison

results showed that QEA performs better than GA. Besides above, Han and Kim

(2002) were the first to apply QEA to solve the knapsack problem. Moreover, Han

and Kim (2004) proposed a new termination criterion and a novel quantum gate for

QEA to solve the knapsack problem. Zhao et al. (2006) proposed a hybrid QEA that

combines QEA with constraint handling method for knapsack problem. Zhang and

Gao (2007) proposed an improved QEA (IQEA) with new rotation gate for knapsack

problem. Comparison results indicated that IQEA is superior to basic QEA.

Due to its excellent performance, several researchers have also proposed various

variants of QEA for production scheduling problems. For instance, Li and Wang

(2007) employed QEA to solve the multi-objective flow shop scheduling problem. In

their proposed QEA, chromosome is encoded by Q-bits, which are transformed into

job sequence by a binary-decimal decoding scheme. Computational results showed

that QEA is efficient and robust to obtain Pareto-optimal solutions with good diversity

and proximity. Later, Gu et al. (2009) proposed a parallel QEA which also uses Q-bits

encoding and binary-decimal decoding scheme for the stochastic job shop scheduling

problem. Moreover, Gu et al. (2010) proposed a co-evolutionary QEA with same

encoding and decoding scheme for the same problem as the one studied in Gu et al.

(2009). Besides, Niu et al. (2009) proposed a hybrid algorithm called QIA that

combines QEA with immune algorithm for the hybrid flow shop scheduling problem.

Experimental results indicated that QIA is better than Immune algorithm in solution

quality. Zheng and Yamashiro (2010) proposed a novel heuristic algorithm called

QDEA that combines QEA with differential evolution for the permutation flow shop

scheduling problem to minimize the total flowtime, makespan, and maximum lateness

of jobs. In their proposed QDEA, chromosome is encoded by rotation angles, which

are further used to order the job sequence.

2.3 Synthesis

In above sections, more than 60 articles about HSP are reviewed and analyzed in

details. We judged that they are significant of the researches in the field, even if they

still remain a part of the whole literature dealing with HSP and near problems. Figure

2.1 demonstrates the trend of those publications. We can see from it that the number

of articles has been gradually increased in time, which implies that HSP has become a

23

hot research topic in the operations research area. A pie chart given in Figure 2.2

shows the ratios according to the approaches proposed in the literature. As can be seen

from Figure 2.2, the most proposed approaches are Heuristic algorithm, MIP approach

and B&B algorithm. Moreover, Table 2.1 presents a brief summary of the existing

works on QEA related to our research. We can see from it that QEA has been applied

in many research fields except for HSP. Based on the above works, we make the

following remarks:

(I) By analyzing the publications about HSP in recent years, two research trends can

be observed. One is to develop efficient approaches for solving various HSPs with

multiple objectives, because optimizing a single objective is not enough to deal with

the practical applications. The other is to study the HSP with multiple hoists since it is

often encountered in many industrials.

(II) Due to the NP-completeness of HSP, it is a wise choice to adopt heuristic or

meta-heuristic methods to find reasonably good schedules in a reasonable time,

instead of obtaining an optimal one. To the best of our knowledge, no work was

reported for using QEA to solve any types of HSP. This research tries to connect this

gap as described in previous section.

(III) In most existing studies on the cyclic multiple hoists scheduling problem

(CMHSP), such as Lei and Wang (1991), Armstrong et al. (1996), Leung et al. (2004),

Zhou and Liu (2008), Chtourou et al. (2013), Jiang and Liu (2014), loaded hoist

moves are implicitly or explicitly assumed to start and end within the same cycle. We

think that scheduling approach under such an assumption may identify a non-optimal

solution to be an optimal one, which can be verified by a counterexample. To find a

global optimal solution, the above-mentioned assumption should be relaxed. In other

words, a loaded hoist move is allowed to start in one cycle and end in the next one if

necessary. Therefore, this research focuses on the development of an improved MIP

approach for the CMHSP with relaxing the above-mentioned assumption.

24

Figure 2.1 The trend of publications about HSP from 1976 to 2014.

Figure 2.2 Ratio of proposed approaches in the reviewed HSP articles.

Table 2.1 Summary of QEA works

Problems References

TSP Narayanan and Moore (1996), Talbi et al. (2004)

Knapsack problem Han and Kim (2002), Han and Kim (2004), Zhao et al. (2006), Zhang

and Gao (2007)

Flow shop/Job shop

scheduling

Li and Wang (2007), Gu et al. (2009), Niu et al. (2009), Gu et al.

(2010), Zheng and Yamashiro (2010)

HSP Our contribution

25

Chapter 3 A Hybrid Quantum Evolutionary Algorithm

with Improved Decoding Scheme for HSP

3.1 Introduction

With the development of automation technologies, computer-controlled hoists

instead of workers have been gradually used in many manufacturing industries to

perform high frequency or dangerous transportation jobs. The advantages of robotic

or automated manufacturing systems include higher productivity, better product

quality, more efficient use of materials, improved safety and reduced labor intensity.

Besides, highly robotic or automated manufacturing systems can effectively meet the

requirement of mass production and respond to global competition.

In modern surface treatment facilities, the production line usually consists of

several processing tanks arranged in a line and one or more hoists for transporting

parts from tank to tank, as shown in Figure 1.1. Due to the industrial applications

(Armstrong et al., 1996), the part processing time in each tank is usually limited to a

pair of minimum and maximum time intervals, which is called time window

constraints. The cyclic production mode is usually adopted in the automated

manufacturing systems because of easy implementation in a mass production

environment. This leads to a repetitive schedule performed by the hoist in every

certain time. The duration of performing the repetitive schedule is called the cycle

time or cycle length (Chen et al., 1998).

As mentioned in Chapter 2, Lei and Wang (1989) has proved that the simple HSP

is NP-complete, but many researchers have constantly dedicated to this area and

proposed various efficient methods for solving the relevant problems (Phillips and

Unger 1976; Baptiste et al., 1993; Lei and Wang, 1994; Ng, 1996; Chen et al., 1998;

Yan et al., 2010; Yan et al., 2012).

Since 1990s, QEA has been successfully applied to solve several well-known

optimization problems, such as travelling salesman problem (Narayanan and Moore,

1996), knapsack problems (Han and Kim, 2002; Zhang and Gao, 2007), flow shop/job

shop scheduling problems (Li and Wang, 2007; Gu et al., 2009; Gu et al., 2010), etc.

Due to the NP-completeness of the studied problem, the computation time spent by

exact methods usually increases exponentially with its size. Thus, it is a wise choice

to use meta-heuristics to find sufficiently good schedules within a reasonable time.

26

Because of its unique advantages, such as better population diversity, rapid

convergence, and very well global search ability, QEA has gained great success in

many different optimization problems. Up to now, there is no work reported on using

QEA to solve any types of HSP. So in this chapter, we propose a new scheduling

algorithm based on QEA and genetic operators for the single-hoist cyclic scheduling

problem with processing time windows.

The main contribution of this chapter is summarized as follows. Firstly, we

propose a new decoding scheme with three different conversion procedures. Secondly,

we propose a more effective repairing procedure than the one in Yan et al. (2012) to

overcome the problem of unfeasibility of generated sequences which are often

encountered in HSP. Note that in Yan et al. (2012), for each infeasible sequence, the

reparation is conducted by randomly swapping any two moves. In this chapter, we

first identify the move segment that causes infeasibility of the entire move sequence

and then repair it. Finally, to increase the population diversity, crossover and mutation

operators with adaptive probabilities are also implanted into our algorithm.

The rest of this chapter is arranged as follows. In the next section, we introduce

the problem description and show an illustrative example of the problem as well as

the problem formulation. The proposed algorithm with a repairing procedure is the

subject of the Section 3.3. The experimental results and comparisons of the proposed

algorithm with the existing approaches are given in Section 3.4. And finally, we

conclude this chapter in Section 3.5.

3.2 Problem statement and mathematical model

3.2.1 Problem statement

As the problem has been studied in the literature, e.g. Phillips and Unger (1976),

Lei and Wang (1994), Ng (1996), Chen et al. (1998), Leung et al. (2004), and Che

and Chu (2007), we briefly give a problem description and notation, which are similar

to those existing in the literature. Given n processing tanks (i.e., M1, M2,…, Mn) in a

production line and a single hoist for part transportation. Both tanks and hoist are

single capacity resources. Besides, tank 0 (i.e. M0) and tank n+1 (i.e. Mn+1) are the

input station and the output station, respectively. After a part is unloaded from M0, it is

to be successively processed through M1 to Mn. The hoist moves a part from Mi to

Mi+1, 0≤i≤n, which is called (loaded) move i. Each (loaded) movement includes three

27

sub-operations: 1) unloading a part from a tank; 2) carrying the part to the next tank; 3)

loading the part into the tank. The hoist without carrying a part travels between two

tanks, which is called empty move.

Moreover, the part processing time at each tank is said to be processing time

windows, as it is confined within a pair of minimum and maximum time bounds. If

the actual processing time violates the time limits, defective parts would be produced.

Furthermore, at any time, each tank can process only one part. When a processing

operation in a tank is finished, the part must be moved by the hoist to the next one

without delay, which includes no pause of the loaded hoist. The production lines

usually run in a cyclic mode since it is easy to implement. In each cycle, each tank is

emptied exactly one time during a cycle, which involves cyclic schedules with

one-degree. This chapter studies the one-cyclic scheduling problem with a single hoist,

and the decision concerns how to optimize the hoist move sequences so as to

maximize the productivity.

To facilitate the problem formulation, we define the following notations and

variables in this chapter, which are similar to Leung et al. (2004):

[Li, Ui]: the minimum and maximum bounds of the part processing time in Mi,

respectively, 1≤i≤n.

di: the time needed to perform move i, 0≤i≤n.

ei, j: the travel time for empty hoist from Mi to Mj, note that ei,i =0 and ei, j =ej, i,

0≤i, j≤n+1. The values of ei, j satisfy the well-known triangular inequality (Chen et al.,

1998): ei, j ≤ei, k+ek, j, k∉{ i, j}, i≠j, 0≤ i, j, k ≤n+1.

The decision variables are the following ones:

C: cycle time. It is the duration of a cycle.

ti: the start time of (loaded) move i within a cycle, 0≤i≤n. Without loss of

generality, move 0 is supposed to be the first move of a cycle, thus t0=0.

To facilitate the formulation, we define the following intermediate variables:

si: if si =0, then Mi is empty at the beginning of a cycle; else si =1, then Mi is

occupied by a part, 0≤i≤n. Define Sn = {s0, s1,…,sn}, which is called the initial part

distribution at the beginning of a cycle. Without loss of generality, we let s0=1 and

s1=0, since M0 is always occupied by part at the beginning of a cycle and move 0 is

28

the first move of a cycle.

r[i]: the i+1th move performed by the hoist within a cycle, 0≤i≤n. As mentioned

above, we have r[0]=0. Define Rn=<r[0], r[1], r[2],…, r[n]>, which represents the

sequence of moves during a cycle. An example of Rn with n=3 is R3=<0, 2, 3, 1>,

where r[1]=2, r[2]=3, and r[3]=1, as shown in Figure 3.1. Here, r[1]=2 means that the

second move transfers a part from M2 to M3.

Figure 3.1 shows an illustrative example of the studied problem with n=3. In this

example, there are three processing tanks (i.e., M1, M2 and M3) with a single hoist for

part transportation as well as the loading station (i.e. M0) and the unloading station (i.e.

M4). In Figure 3.1, the inclined solid arrows and the broken arrows represent the

loaded moves and the empty moves, respectively. The start point and end point of an

inclined solid arrow (resp. a broken arrow) represent the start time and the end time of

corresponding loaded (resp. empty) move, respectively. Furthermore, the horizontal

solid line represents the duration of the part processing operation. The production line

is supposed to be in steady-state. As can be seen from Figure 3.1, at time 0, M2 is the

only tank to be occupied (and implicitly M0). So the initial part distribution is S3 = {1,

0, 1, 0}. For this distribution, the optimal hoist move sequence is R3=<0, 2, 3, 1> (i.e.,

t0<t2<t3<t1). When move 1 finishes, the hoist comes back to M0 and performs move 0

of the next cycle. We can also see that the hoist performs the same loaded (or empty)

move sequence in time interval [C, 2C] as those ones in time interval [0, C]. This is

called cyclic production mode. The duration of the repetitive sequence (i.e. R3) is the

cycle time C.

Figure 3.1 An example of cyclic scheduling problem with a single hoist.

According to the notation in (Manier and Bloch, 2003) dedicated to hoist

29

scheduling problems, the problem studied in this chapter can be expressed in the

following form:

CHSP | n // diss | /n+2| Cmin

which means the single hoist cyclic scheduling problem with n tanks, n+2 operations

per part, dissociated loading and unloaded stations, and minimization of cycle time C

as the objective.

3.2.2 Mathematical model

As mentioned above, move 0 is supposed to start at time 0, then the start times of

other moves are all greater than 0. Thus, we have (Lei, 1993; Ng, 1995):

t0=0, ti>0, for 1≤i≤n, (3.1)

In Figure 3.1, we notice that the start time of processing operation i is the same

as the end time of loaded move i−1(i.e. ti−1+di−1); the end time of processing operation

i is the same as the start time of loaded move i (i.e. ti). Moreover, there are in total two

possible states (empty or occupied) for each tank at the beginning of a cycle. Based on

the above observations, the actual processing time in Mi can be represented as ti

−(ti−1+di−1) for si=0 (like tank M1 in Figure 3.1) and C+ti−(ti−1+di−1) for si=1 (like tank

M2 in Figure 3.1), respectively. Considering the processing time requirements, we

have (Chen et al., 1998):

Li≤siC+ti−(ti−1+di−1)≤Ui, 1≤i≤n, (3.2)

Furthermore, the hoist must have enough time to perform any two successive

moves (i.e. r[i] and r[i+1]), thus, the following relation holds (Chen et al., 1998):

tr[i]+dr[i]+er[i]+1, r[i+1] ≤tr[i+1], 0≤i≤n−1, (3.3)

It should be noted that constraint (3.3) also implicitly guarantees the satisfaction

of tank capacity constraint. For instance, as shown in Figure 3.1, we have r[1]=2,

r[3]=1, and c2=1. By the definition of tank capacity constraints (i.e., an occupied tank

must be emptied before processing a new part), move 2 must performs before move 1,

and thus we have: t2+d2+e3,1 ≤t1, which must hold. From constraint (3.3), we can have:

t2+d2+e3,3≤t3; t3+d3+e4,1≤t1, which leads to t2+d2+e3,3+d3+e4,1≤t1. Since d3+e4,1>e3,1, the

inequality t2+d2+e3,1<t1 holds. Therefore, we see that tank capacity constraint is

implicitly ensured by constraint (3.3).

Once the last move (i.e. r[n]) finishes, the hoist must come back to M0 for

30

executing move 0 of the next cycle. Hence, we have (Chen et al., 1998):

tr[n]+dr[n]+er[n]+1, 0≤C, 1≤r[n]≤n. (3.4)

Based on the above works, the mathematical model for the single-hoist

one-degree cyclic scheduling problem with processing time windows can be

formulated as (Chen et al., 1998):

Min. C

s.t. (3.1)−(3.4).

3.3 Hybrid Method

In what follows, we present a specific hybrid QEA (labeled HQEA in the

following) for the studied problem. More precisely, in Section 3.3.1, we introduce the

traditional solution representation and decoding schemes; in Section 3.3.2, we present

the Q-bits representation; in Section 3.3.3, we determine the states of Q-bits in each

individual; in Section 3.3.4, we present the decoding procedures; in Sections 3.3.5 and

3.3.6, we describe the fitness evaluation function and the repairing procedure,

respectively; in Section 3.3.7, we introduce the rotation gate and the genetic operators

to update individuals; finally, in Section 3.3.8, we present the flowchart of the

proposed hybrid algorithm.

3.3.1 Introduction

In QEA or GA models, a solution (also called chromosome) is usually

represented by a permutation of job input sequence in classic flow shop or job shop

scheduling problems. However, a chromosome is encoded by Q-bits in QEA, which is

then converted into a binary chromosome. That is, QEA is generally based on a binary

encoding. For this reason, a key issue in the development of QEA for production

scheduling problems is to design an efficient decoding mechanism to convert a binary

representation into a permutation-based representation. Typically, there are mainly

two decoding schemes used in QEAs in the literature for solving various scheduling

problems: binary-decimal decoding and shifting decoding. For the binary-decimal

decoding, it first uses a binary segment for each job and then converts it into a

decimal number. After that, all jobs are sequenced based on their corresponding

converted decimal numbers. It is understandable that the chromosome under such a

scheme is usually very long, especially when the problem size is large. As a result, the

31

search efficiency of the algorithm may be reduced. As for shifting decoding, it uses a

permutation chromosome as a parent pattern and shifts its genes with the direction of

a binary chromosome so as to generate a new permutation chromosome. Such a

decoding usually has a better computational efficiency than binary-decimal decoding.

But it cannot make full use of the advantage of QEA due to its permutation-based

representation.

To overcome the above drawbacks, we propose a new decoding scheme in this

study. In our scheme, a binary chromosome is directly converted into permutation

chromosome (i.e. a hoist move sequence) using several different decoding procedures.

Our decoding scheme can efficiently exploit the solution diversity due to Q-bits

chromosome compared to shifting decoding, and has a shorter chromosome than

binary-decimal decoding. In the following, we present the Q-bits representation.

3.3.2 Representation

Indeed, we notice that tank state and Q-bit state have the same characteristics.

That is, they both are either 0 or 1. Since precedence relations need to be determined

between n moves in this chapter, we let Q-bit i corresponding to tank i, for 1≤i≤n, and

use Rule 1 and Rule 2 introduced in the following section to determine each Q-bit

state. If Q-bit i is in state “0” (i.e., si =0), which represents that move i−1 is performed

before move i during a cycle; otherwise (i.e., si =1), move i is performed before move

i−1 during a cycle. Hence, an individual Ψ containing n Q-bits is used to represent n

tank states, and is defined as follows:

=Ψ

n

n

β
α

β
α

β
α

...

...

2

2

1

1 (3.5)

where |αi|2+|βi|2=1,1≤i≤n. Note that in the initialization step, all Q-bits in Ψ are

initialized as the equal probability (i.e. 1/2) of being 0 or 1. From above, we can

know that each quantum individual corresponds to a complete part distribution Sn,

more precisely the state of each Mi (i.e. empty or occupied).

In more classical and direct representations for the studied problem, each

individual represents a moving sequence, so the value of gene j gives the index of the

tank from which the j th move starts during one cycle. In such representations, the

solution space contains n! individuals. With our representation, we handle in a first

step only 2n−1 individual (and not 2n, because s1 is always equal to 0, it is not use

making it explicitly appear in the representation). This number may be further

reduced for some instances with Rule 1, as explained in the following. Moreover,

32

each Q-bits individual generally corresponds to several moving sequences, which we

consider in a second step. Each time Rule 1 enables us to determine that an individual

is not good, then all the associated moving sequences are unfeasible ones and it is no

use evaluating them.

3.3.3 Initialization

For each specific instance, some tank states may be directly determined by the

following method. Specifically, we first suppose that si=1, therefore move i occurs

before move i−1 within a cycle. Moreover, let us suppose that move i−1 and move i

are the last move and the second move of a cycle, respectively. Correspondingly, the

minimum processing time of a part in Mi with si =1 is ei, 0+d0+e1, i. As an example, if

we consider move 1 and move 2 in Figure 3.1, the processing time of a part in M2 is

equal to e2,0+d0+e1,2. Indeed, move i would be the first move to be performed after

move 0, and move i−1would be the last move of the cycle. Else, the processing time

in Mi would be greater than ei, 0+d0+e1, i, which would make the following assertion

even more true. Then we can compare this processing time with Ui which is the

maximum authorized time in Mi.

1) If Ui<ei, 0+d0+e1, i (hereafter called Rule 1) happens, then we can know that the

processing time requirement in Mi is violated. Consequently, all sequences

relevant with si =1 are infeasible ones. So si must be 0.

2) Else, si may be 0 or 1.

Note that Rule 1 can be used to reduce the enumerating space of Sn and thus

improve the search efficiency. Indeed, if Rule 1 enables us to fix 0 to the values of p

variables si, then the search space of Sn can be reduced to 2n−p−1individuals.

For the state of Q-bit i in a quantum individual Ψ that is not determined by Rule

1, a random number rdi is generated from the uniform distribution [0, 1). If rdi>|αi|2,
then Q-bit i is in state “1” (i.e. si =1); else, Q-bit i is in state “0” (i.e. si =0). This

method is called Rule 2. Based on the above, the states of all Q-bits in one individual

can be easily determined by Rule 1 and Rule 2, that is to say the initial part

distribution Sn.

3.3.4 Decoding Scheme

In what follows, we present how we derive the hoist move sequence from a

quantum individual. For a better diversification, three different decoding procedures

described in the following are used to convert a quantum individual into possible hoist

33

move sequences, providing that the states of all Q-bits (i.e. Sn) in a quantum

individual are already determined.

3.3.4.1 Decoding procedure 1

For ease of description, we first define λi be a copy of si and λi = si. Let Φ be a

set that records the performed moves. It should be noted that λi can be seen as an

indicator that indicates the state (i.e., empty or occupied) of Mi in the process. Thus,

the value of λi is dynamically modified in the process. That is, when move i finishes,

both the states of Mi and Mi+1 are changed, i.e., Mi becomes empty and Mi+1 is

occupied by a part. Thus, we set λi =0, λi+1 =1 and put move i into set Φ .

Procedure 1 mainly depends on the probability sizes of Q-bits in Ψ to derive the

hoist move sequence, for 1≤i≤n. In particular, for given Sn, when move r[k] finishes,

for 0≤k≤n, we first calculate the number (labeled with cnt) of λi=1 under condition

λi+1=0 (note that if i=n, the output station can be seen as always be empty) and i∉Φ.

Then, we successively assign i with above condition to Ωm (i.e. Ωm=i) in set

Ω={Ω1,…Ωcnt}, which is defined to record the possible moves for the next step, for

1≤m≤cnt. Thus, each step has in total cnt possibilities. Finally, we choose move j with

the highest probability (i.e. |αj|2) in set Ω as move r[k+1], and let λj=0, λj+1=1(for

j≠n),Φ=Φ∪{ j}. In the next step, we update both cnt and Ω, and use a similar way to

derive the following move (i.e. r[k+2]). When the whole hoist move sequence (i.e. Rn)

is determined, this procedure stops.

For example, a complete part distribution (corresponding to a quantum

individual) Sn with n=5 is S5 ={1, 0, 1, 0, 1, 0}. When the first move (i.e. r[0]) finishes,

by definitions, we have λ1=1, λ2=1, λ3=0, λ4=1, λ5=0 and Φ={0}, from which we can

know that M1, M2 and M4 are currently occupied by a part. As the hoist cannot unload

a part from an empty tank and also cannot load a part into an occupied tank, we have

Ω={2,4}. Finally, according to the selection rule, if |α2|2≥|α4|2, we have r[1]=2;else,

r[1]=4. The similar ways are used to update λi, Φ, Ω and then determine r[k], 2≤k≤5.

3.3.4.2 Decoding procedure 2

For ease of description, we keep the intermediate parameters λi, Φ and Ω defined

in procedure 1. Furthermore, we define sti be the start time of move i in the process of

deriving the whole sequence and let st0=0, for 0≤i≤n. To derive a move sequence from

given Sn, procedure 2 mainly depends on the rule of minimal time unit increment

between str[k] and str[k+1], for 1≤k<n, while respecting the processing time windows,

34

since the objective of the problem is to minimize the cycle time C. In other words, in

each step, we have a set of several moves and choose one move with the earliest

starting time as move r[k+1] from the set.

In particular, on one hand, when move r[k] finishes, as similarly done in

procedure 1, we derive the values of cnt and Ω from each given Sn. On the other hand,

we design a different strategy to determine move r[k+1] compared with the procedure

1. At first, we calculate each stj (supposing j=Ωm) in set Ω, that is, stj=str[i]+dr[i]+er[i]+1,

j, 1≤m≤cnt. Then, for each move j in set Ω, we check whether move j−1 exists in the

partial determined sequence <r[0], r[1],…, r[i]>. If it exists and stj−stj−1−dj−1<Lj

happens, then we update stj=stj−1+dj−1+Lj so as to meet the minimal processing time

requirement. Then it involves a waiting time of the empty hoist above tank j until the

minimal processing time in tank j is completed. Finally, we choose move j (supposing

j=Ωm) with the smallest value of stj in set Ω as move r[k+1], and let λj=0, λj+1=1 (for

j≠n),Φ=Φ∪{ j}. In the next step, we update both cnt and Ω so as to derive move

r[k+2]. When the whole sequence (i.e. Rn) is determined, this procedure stops.

For instance, an example of Sn with n=5 is S5={1, 0, 0, 1, 0, 1}. When the first

move (i.e. r[0]) finishes, by definitions, we have λ1=1, λ2=0, λ3=1, λ4=0, λ5=1 and

Φ={0} as well as Ω={1, 3, 5}. We first calculate st1 (note that if st1−d0<L1, then

st1=d0+L1), st3 and st5 by st0+d0 plus e1, 1, e1, 3, e1, 5, respectively, then choose the move

with the smallest starting time among the three candidates as r[1]. The similar ways

are used to update λi, Φ, Ω and then determine r[k], 2≤k≤5.

3.3.4.3 Decoding procedure 3

Procedure 3 mainly depends on the precedence relationship between move i−1

and move i (i.e., the value of si) to derive the move sequence. For each given Sn and

Rn (i.e. quantum individual), if si=1, then move i is set before move i−1in Rn; else,

move i is set after move i−1 in Rn. For instance, an examples of Sn and Rn with n=5

are respectively S5 ={1,0,1,1,0,1} and R5=<0, 2, 1, 4, 3, 5>, from which we can easily

derive a possible sequence that is R5=<0, 3, 2, 1, 5, 4>. Note that at the initial step, we

set r[i]= i, 0≤i≤n.

Based on the above descriptions, we first apply the three proposed decoding

procedures to each quantum individual and then select the best sequence (i.e. the best

fitness) from the three generated sequences to represent this individual.

3.3.5 Fitness evaluation

35

To facilitate the description, fit(X) is defined to represent the fitness value of

each individual X, and it can be computed as follows: fit(X)=F/C, in which F is a

parameter and set as 2000 in this chapter. From this definition, we see that the smaller

the cycle time C (C>0), the greater the fitness value. For each individual relevant with

a hoist move sequence, it is evaluated by using the graph-based polynomial procedure

(Chen et al., 1998). In particular, if the sequence is proved to be feasible, then the

procedure returns a positive value for the cycle time C and the individual fitness can

be calculated; Otherwise, the individual fitness is set to be 0. For more details about

the graph-based polynomial procedure, please see Chen et al. (1998).

3.3.6 Repairing procedure

It should be noted that constraints (3.2) ~ (3.4) formulated in subsection 3.2.2

can be regarded as two classes. One is flexible processing time constraints and the

other is hoist transportation capacity constraints, which are (3.2) and (3.3), (3.4),

respectively. Generally, if a sequence Rn is infeasible, the following cases happen:

(C1) the flexible processing time constraint is violated;

(C2) the hoist transportation capacity constraint is violated;

Due to the characteristics of the HSPs in terms of constraints, it is well known

that very few feasible solutions exist among the numerous possible moving sequences.

Long before searching the optimal solution, the first challenge is to find feasible

sequences. So some repairing procedures are often required to transform the

unfeasible solutions into feasible ones. In what follows, we present the repairing

procedure based on the above cases. For an individual with an associated hoist move

sequence Rn, we identify each partial sequence in a whole hoist move sequence Rn

which is either in sequence of i−1→•→•→i (which means move i−1 is performed

before move i within a cycle) or of i→•→•→i−1(which means move i is performed

before move i−1 within a cycle). That is to say, a complete hoist move sequence Rn

consists of n pieces of such a partial sequence. For ease of description, we define the

following parameters:

zi−1, i: the duration between the finish time of move i−1 and the start time of move

i for a partial sequence i−1→•→•→i, for 1≤i≤n. Note that zi−1, i generally equals to the

sum of all loaded move (denoted by •) times and relevant empty move times. If there

exists a pair of moves j−1 and j in the sequence, that is i−1→•→ j−1→•→j→i, and

zj−1, j<Lj, then we let zi−1, i= zi−1, i+Lj −zj−1, j. Note that zi−1, i may span the cycle or be

36

within a cycle. For example, in Figure 3.1, the two consecutive sequences are

0→2→3→1→0→2→3→1. From it, we can see that z0, 1 and z2, 3 are within a cycle,

but z1, 2 spans the cycle. Therefore, zi−1, i can be used to check the satisfaction of

flexible processing requirements no matter si=0 or si=1.

d: the mean time of all loaded move times,)1/(
0

+=∑
=

ndd
n

i
i .

e: the mean time of all empty move times,

)5/()(2 2
1,0

1

0

1

, nneee
n

i

n

ij
ji +−= ∑∑

+

=

+

=

. Note

that the possible number of empty moves is 2/)65(2 ++ nn . Since the empty moves

between M0 and M0, M0 and M1, Mn+1 and Mn+1 do not actually happen, the number is

reduced to 2/)5(2 nn + .

For an infeasible sequence Rn, we first use parameters zi−1, i to check the

sequence Rn.

1) If zi−1, i is verified to be greater than its upper bound Ui, then we remove one or

more move(s) from the corresponding partial sequence, so as to make the partial

sequence to be feasible; else if zi−1, i is verified to be smaller than its lower bound Li,

and the time gap between Li and zi−1, i is greater than the sum of d and 2e, then we

insert possible moves into the partial sequence.

2) Then, we identify the violated hoist capacity constraints by the start times of

all moves (i.e., ti, 1≤i≤n) given by the evaluation process. For ease of description, let

moves i and j be the identified two moves violating the hoist capacity constraints, that

is, ti+di+ei+1, j >tj, with ti<tj. If these two moves are two consecutive moves, we set

move j before move i in sequence Rn so as to make the sequence be feasible; else, we

remove one or more moves between moves i and j so as to make the two moves

satisfy the hoist capacity constraints.

3.3.7 Updating individuals

3.3.6.1 Rotation gate

In this chapter, the rotation gate U(∆ωi) is adopted as the variation operator to

update the Q-bits in (3.5). ω0 is set to be as the initial rotation angle. For individual X,

the Q-bit i in it can be updated as the following way (Han and Kim, 2002; Li and

Wang, 2007):

37

∆
∆−

∆
∆

=

i

i

i

i

i

i

i

i

β
α

ω
ω

ω
ω

β
α

cos

sin

sin

cos
'

'

 (3.6)

We define fit_b be the fitness of the best individual found in population. The

rotation angle ∆ωi is defined according to the respective values of the corresponding

parameter si in the individual X (labeled si−X) and in the best one (labeled si−best). If the

condition fit(X)<fit_b holds, then consider the following conditions (Han and Kim,

2002):

Case A: If Q-bit i is in the 1st or the 3rd quadrant, then consider the following:

Case (A.1): if si−best=1 and si−X=0, then ∆ωi=(−ω0), here the rotation angle ∆ωi is

set negative so as to increase the probability that Q-bit i is in state “1”;

Case (A.2): if si−best=0 and si−X=1, then ∆ωi=ω0, the rotation angle ∆ωi is set

positive so as to increase the probability that Q-bit i is in state “0”;

Case (A.3): else, ∆ωi =0;

Case B: If Q-bit i is in the 2nd or the 4th quadrant, then consider the following:

Case (B.1): if si−best=1 and si−X=0, then ∆ωi=ω0, here the rotation angle ∆ωi is set

positive so as to increase the probability that Q-bit i is in state “1”;

Case (B.2): if si−best=0 and si−X=1, then ∆ωi=(−ω0), the rotation angle ∆ωi is set

negative so as to increase the probability that Q-bit i is in state “0”;

Case (B.3): else, ∆ωi =0;

Besides, since the probability of a Q-bit i in state “0” may be equal to 1 or 0, the

updated Q-bit i may be trapped in state “0” or “1”, which may lead to the premature

convergence of population. Thus, a small constant µ is applied to ensure that the

probabilities of the two states are both belonged to the range [µ, 1−µ]. As a result, the

following equation must be considered (Han and Kim, 2004):

[]
[]

[] else

if

if

i

i

T

ii

T

T

i

i µα
µα

βα
µµ
µµ

β
α

>
<

−
−

=

 '

'

''
'

'

1

1

 (3.7)

By applying the decoding procedures given in Section 3.3.4 to each updated

quantum individual, hoist move sequences can be generated from it.

38

3.3.6.2 Genetic operators

In this subsection, selection, crossover and mutation operators (Akpinar and

Bayhan, 2011) are applied to further evolve the population. To facilitate the

description, the following notations are given:

cp, mp: crossover and mutation probabilities, respectively.

fit_a: the average fitness of the entire population.

fit_0: the maximum fitness of a specific instance, which is computed as follows:

fit_0=2000/CL. CL is the lower bound on cycle time C for the instance. It can be

obtained by the following way, which is taken from Chen et al. (1998):

CL ≥max(Li+di+di−1+ei+1, i−1), 1≤i≤n. (3.8)

According to Srinivas and Patnaik (1994), cp and mp are defined respectively in a

similar way:

cp =0.7×[fit_0− fit_b]/[fit_0−fit_a]. (3.9)

mp =0.5×[fit_0− fit(X)]/[fit_0−fit_a]. (3.10)

Adaptively adjusting cp and mp (i.e., (3.9) and (3.10)) can prevent divergence and

escape from the local optimal, since (3.9) and (3.10) can dynamically reduce cp and

mp for individuals with high fitness, or increase cp and mp for individuals with low

fitness.

In this chapter, two-point crossover operator is applied to generate the offspring.

First, two individuals are chosen by the binary tournament method as parents 1 and 2;

then, for parent 1, two different positions p and q are randomly chosen, p, q∈[1, n].

For i∈[1, p) and (q, n], the values of r[i] for the new offspring1 inherits from parent 1.

For i∈[p, q], the new r[i] is sequentially chosen from parent 2, on condition that its

value was not already chosen from parent 1. The same operations are done, starting

with parent 2 and then parent 1, to generate offspring2. This operation is depicted as

Figure 3.2(a), in which | is the chosen position.

Besides, a mutation operator is adopted to prevent a solution falling into a local

optimum of a specific instance, which is designed as follows. For a chosen individual

Rn =<r[0], r[1], r[2],…, r[n]>, first, we randomly choose a position p, p∈[1, n], then

randomly reorders the move sequence in <r[p+1], r[p+2],…, r[n]>. This operation is

depicted as Figure 3.2(b), in which | is the chosen position.

39

Figure 3.2 Crossover and mutation operators.

3.3.8 The procedure of hybrid QEA(HQEA)

Based on the above works presented in sections 3.3.1~3.3.7, the procedure of

HQEA for solving the considered problem can be depicted as Figure 3.3. From this

flowchart, we can see that the proposed algorithm uses two mechanisms to update the

population: Q-gate and genetic operators.

40

Figure 3.3 The flowchart of the proposed HQEA.

3.4 Experimental results

To verify the feasibility and applicability of the proposed HQEA, both

benchmark and randomly generated instances were used in the experimental study. All

computational experiments were conducted on an ASUS Laptop with an Intel Core

i5-3210M Processor 2.50GHZ and on a windows 8 environment. The parameters

were set as follows: population size: Popsize=50; the maximum number of

generations: MaxIter=200; Initial rotation angle ω0=0.05π; µ= 0.008. The maximum

repairing times were set as 6. For evaluating the quality of the solution obtained with

our HQEA, the same problem was also formulated by the mixed integer programming

(MIP) approach and solved by the ILOG CPLEX (Version12.4).

41

3.4.1 Experimental results on benchmark instances

The proposed algorithm was verified by using five well known benchmark

instances in the literature: Mini Phillips (Mini, n=8), Black and Oxide2 (BO2, n=11),

Phillips and Unger (P&U, n=12), Ligne1 (n=12) and Ligne2 (n=14), which are taken

from Leung et al. (2004), Phillips and Unger (1976) and Manier (1994), respectively.

Table 3.1 gives the experimental results for five benchmark instances obtained

with our algorithm and CPLEX software, in terms of the number of remaining

possible Sn after applying Rule 1 (Nb. Sn after Rule 1 for short), the Convergence

generation(Con.gen. for short), the Best cycle times and the CPU times (measured in

seconds). The “Con.gen.” refers to how many generations are needed for our

algorithm to find the best solution and no improvement on the solution in the later.

Consequently, the sub-column “Con. time” represents the time needed by the

“Con.gen.” and is computed as: Con. time= Con.gen. × (Our CPU time/MaxIter).

Table 3.1 Results for the benchmark instances

Instances Nb. Sn after Rule 1 Con.gen. Best cycle times CPU times(In seconds)

Our CPLEX SD Our Con. time CPLEX Gap

Mini 26 2 287 287 0 4.75 0.048 0.16 −0.112

BO2 210 13 279.3 279.3 0 5.26 0.342 0.25 +0.095

P&U 210 29 521 521 0 5.65 0.819 0.47 +0.349

Ligne1 211 24 411 392 4.84% 7.35 0.882 0.72 +0.162

Ligne2 213 26 712 712 0 6.71 0.872 0.48 +0.392

In Table 3.1, we can see that Rule 1 works well on two benchmark instances (i.e.,

Mini and P&U) as shown in column “Nb. Sn after Rule 1”, as the enumerating space

of Sn is respectively reduced 50% for the two instances (Note that there are in total

2n−1 individuals for each instance with given value of n.). In column “Best cycle

times”, our algorithm finds the same solutions as the optimal ones obtained with

CPLEX (see “Our” and “CPLEX”), except for Ligne1. The standard deviation of the

best cycle time obtained with our algorithm from the optimal cycle time obtained with

CPLEX for Ligne1 is less than 5%, see sub-column “SD”, which is computed as:

SD=(Our−CPLEX)/CPLEX×100%. Although the CPU times spent by our algorithm

are generally longer than those spent by CPLEX (see column “CPU times”), we can

also see in column “Con.gen.” that our algorithm finds the optimal solutions for most

cases in very early generations (the spent time is given in sub-column “Con.time”).

Note that the time gaps (i.e. sub-column “Gap”) between Con. time and CPLEX are

42

very narrow, less than 1s. Due to this very small amount of gaps, the difference in

CPU times between CPLEX and our algorithm is meaningless and can be negligible.

In summary, our algorithm is an effective method for solving the benchmark instances

in terms of solution quality and CPU times.

3.4.2 Experimental results on randomly generated instances

In this subsection, random instances are generated to further test the performance

of the proposed algorithm. We compare our algorithm with the QEA with shifting

decoding scheme to demonstrate the effectiveness of our decoding scheme. We also

compare it with commercial software CPLEX and Tabu search (TS) algorithm (Yan et

al., 2012). The random instances are generated as follows. We set n belongs to {10, 15,

18, 20, 22}, and let U(c1, c2) be a uniform distribution between parameters c1 and c2.

The random tests were set as two different groups. One (called Group1) was defined

as the following way: the time windows were set as Li=U(30, 120) and Ui=Li+U(10,

750), 1≤i≤n; the time of empty and loaded moves were respectively computed as the

followings: ei, i+1=U(3, 6), ei, j =∑
−

=
+

1

1,

j

ik
kke , 0≤i, j≤n+1, and di=20+ei, i+1, 0≤i≤n. The other

(called Group2) was defined as the following: Li=U(40, 120), Ui =30+U(1, 8)×Li, for

1≤i≤n, ei, i+1= U(2, 5), ei, j =∑
−

=
+

1

1,

j

ik
kke , for 0≤i, j≤n+1, and di=15+ei, i+1, for 0≤i≤n. These

defined parameters were based on the magnitude of the data from real production

lines (Phillips and Unger, 1976; Manier, 1994). For each given n, five instances were

randomly generated.

Table 3.2 reports the remaining number of Sn for each randomly generated

instance after applying Rule 1. As mentioned before, there are in total 2n−1 individuals

for each instance with a given value of n. As presented in Table 3.2, Rule 1 is efficient

on 22 random instances (i.e. the numbers in bold font). We can also see in Table 3.2

that the enumerating space of Sn for each instance among the 22 instances is reduced

at least 50% and at most 87.5% after applying Rule 1. Based on these results, Rule 1

seems efficient for the studied problem.

Firstly, we compare our algorithm with the QEA with shifting decoding scheme

(i.e. SQEA). Table 3.3 presents the comparison results between our decoding scheme

and shifting decoding scheme on Group1 and Group2. We can see that our decoding

scheme generally outperforms than the shifting decoding scheme in terms of solution

43

quality and CPU times for all random instances. In particular, the deviations (i.e. AD)

of our algorithm from that with shifting decoding generally decrease with the problem

size. Besides, our algorithm spent less time than that with shifting decoding for all

random instances.

Table 3.2 Results for the remaining number of Sn for each instance after applying Rule 1

n Group1 Group2

1 2 3 4 5 1 2 3 4 5

10 29 28 29 29 29 29 29 29 29 29

15 214 214 214 213 214 214 214 214 214 214

18 216 217 217 216 217 216 217 217 216 215

20 218 219 219 217 218 218 218 218 218 219

22 218 221 220 220 218 219 220 221 219 219

Table 3.3 Comparison results between our decoding scheme and shifting decoding scheme on

Group1 and Group2

n Group1 Group2

Average cycle times Average CPU times Average cycle times Average CPU times

Our SQEA AD Our SQEA Our SQEA AD Our SQEA
10 400.4 401.2 −0.20% 6.74 10.12 318.4 318.4 0 6.83 17.8
15 607.2 628 −3.31% 24.56 51.79 470.6 470.8 −0.04% 37.44 146.68
18 808.8 817.4 −1.05% 54.88 286.55 627.4 638.2 −1.69% 49.46 267.57
20 897.2 927.8 −3.30% 117.53 360.14 678.6 690.2 −1.68% 141.02 275.59
22 1058.6 1351.2 −21.65% 274.43 315.62 802.6 878.2 −8.61% 190.16 373.43

Secondly, Tables 3.4 and 3.5 reports the comparison results for randomly

generated instances using our algorithm, Yan’s algorithm (Yan et al., 2012) and

commercial software CPLEX. Columns AD1 and AD2 represent the standard deviation

of our solution from those obtained with CPLEX and Yan’s algorithm, respectively.

They are computed as: AD1=(Our−CPLEX)/CPLEX×100%, and AD2=

(Our−Yan)/Yan×100%). As presented in Tables 3.4 and 3.5, our algorithm and Yan’s

algorithm find the same solutions as the optimal ones obtained with CPLEX for

random instances with n=10. For the remaining random instances, the average cycle

times obtained with our algorithm are smaller than those obtained with Yan’s

algorithm. As a result, the deviations (i.e. AD2) of our algorithm from Yan’s algorithm

are all negative, which range from −5.89% to −1.9% in Table 3.4 and from −3.93% to

−0.42% in Table 3.5. Note that the smaller the AD2, the better solution quality our

algorithm obtained over Yan’s algorithm. Therefore, our algorithm has a better

44

solution quality than Yan’s algorithm. We also notice that CPLEX has a better solution

quality than our algorithm and Yan’s algorithm but it spent much longer CPU times,

which will be discussed later. Moreover, the values of AD1 in Table 3.4 and Table 3.5

both increase with the problem size, but are less than 4% and 3%, respectively, which

are generally small and acceptable.

Table 3.4 Comparison results for the randomly generated instances Group1

n Average cycle times Average CPU times (In seconds)

Our Yan CPLEX AD1 AD2 Our Yan CPLEX

10 400.4 400.4 400.4 0 0 6.74 2.7 1.44

15 607.2 624.6 602.4 0.8% −2.79% 24.56 19.95 42.95

18 808.8 859.4 797.6 1.4% −5.89% 54.88 32.16 1351.53

20 897.2 914.6 865.8 3.63% −1.90% 117.53 114.51 1692.12

22 1058.6 1122.4 1025 3.28% −5.68% 274.43 211.34 2712.38

Table 3.5 Comparison results for the randomly generated instances Group2

n Average cycle times Average CPU times (In seconds)

Our Yan CPLEX AD1 AD2 Our Yan CPLEX

10 318.4 318.4 318.4 0 0 6.83 4.58 1.38

15 470.6 472.6 466.4 0.9% −0.42% 37.44 62.35 51.50

18 627.4 636.4 612.6 2.42% −1.41% 49.46 92.84 324.24

20 678.6 684 661.8 2.54% −0.79% 141.02 53.52 1077.9

22 802.6 835.4 779.8 2.92% −3.93% 190.16 102.62 1897.76

For the average CPU times, we can see from Tables 3.4 and 3.5 that both our

algorithm and Yan’s algorithm performs much better than CPLEX for each value of n,

except for n=10. We also notice that Yan’s algorithm has a better performance than

our algorithm in terms of CPU times except for n=15 and n=18 in Table 3.5. But their

gaps are not so large. Moreover, although the CPU times spent by the three

approaches generally increase with the instance size n, the CPU times spent by

CPLEX generally have a very sharper growth than those spent by our algorithm and

Yan’s algorithm, especially for large-size instances. From these results, we can see

that our algorithm has a better computational performance than CPLEX.

3.5 Summary

This chapter proposed a hybrid QEA with improved decoding scheme to solve a

single-hoist cyclic scheduling problem with processing time windows. In particular,

45

three different decoding procedures were proposed to convert Q-bit individual into

robot move sequences. A repairing procedure was designed to repair the infeasible

sequences. Both Q-gate and adaptive genetic operators as variant operators were

applied to evolve the population. The effectiveness of the proposed algorithm were

demonstrated by solving benchmark instances and randomly generated instances

compared with commercial software CPLEX and Yan’s algorithm. Experimental

results indicate that our decoding scheme outperforms the shifting decoding scheme,

and the proposed algorithm can provide high-quality solutions within a reasonable

time. The results also imply that the proposed algorithm generally has a shorter

computation time than CPLEX, especially for large-size instances, and has a better

solution quality than Yan’s algorithm.

46

Chapter 4 Bi-objective QEA with Local Search Procedure

for HSP with Simultaneous Productivity Maximization

and Production Cost Minimization

4.1 Introduction

In practice, electroplating plant is huge resource (such as electricity and

freshwater) consumer due to its specific processing technology. For instance, part may

be firstly immersed into an electrolytic degreasing tank containing certain volume of

concentrated acids and alkalis solutions at required temperatures, for removing dust

and grease from its surface, and then put into a rinsing tank containing certain volume

of freshwater for cleaning possible chemical residue on its surface. Obviously, the

amount of consumed electricity and freshwater mainly depends on the soaking

duration (i.e. actual processing time). In other words, increased soaking durations in

processing tanks generally give rise to the resource consumption, resulting in higher

production cost.

On the other side, electroplating plant also generates plenty of toxic waste daily,

such as sludge and wastewater from treatment, and used acids and other chemicals.

Generally, the less resource spent during the process, the less waste generated by

electroplating plant. Concerning the environmental pollution as well as the shortage of

freshwater and electricity, most countries such as France and China enact legislation

to regulate the amount of freshwater and electricity consumed and pollutant emissions

daily in electroplating industry. Note that the governments not only severely punish

the electroplating plants discharging heavy pollution to the environment, but also

charge higher prices of electricity and freshwater for industrial usage. Viewed from

these aspects, optimal HSP with production cost minimization has great significance

from both theoretical and practical perspectives. It implies more benefits while

minimizing the amount of freshwater, electricity and chemicals used, then while

limiting the associated costs as well as the pollutant emission and effluent treatment.

So scheduling such facilities enhances with both the economic and environmental

pillars which are the basis of the sustainable strategy deployed in many industries, due

to the double pressure of concurrency and legislation.

In the past decades, a number of efficient scheduling approaches, such as B&B

47

algorithm (Shapiro and Nuttle, 1988; Ng, 1995; Chen et al., 1998; Manier et al., 2000;

Che and Chu, 2004; Che et al., 2011; Lei et al., 2014), MIP approach (Phillips and

Unger, 1976; Liu et al., 2002; Leung et al., 2004; Zhou et al., 2012), and heuristics or

meta-heuristics (Lei and Wang, 1991; Baptiste et al., 1993; Zhou and Liu, 2008;

Zhang et al., 2014), have been suggested for various variants of HSP with

productivity maximization (i.e. cycle time or makespan minimization). To reduce the

problem complexity, some researchers, such as Kuntay et al. (2006) and Subaï et al.

(2006), proposed various two-step sequential scheduling approaches for bi-objective

HSP, where cycle time and wastewater or production cost are minimized. Obviously,

such sequential approaches are not sufficient to find the complete Pareto-optimal

solutions for the multi-objective HSP.

It is understandable that a hoist schedule is a key factor for improving the

productivity. Typically, the more frequently the hoist picks a part from the input

station, the higher the productivity. Moreover, efficient hoist scheduling can also plays

an important role in decreasing the production cost, since it is inherently determined

by the actual processing times, which also affect the production cost. So maximizing

the productivity may conflict with minimizing the production cost. This creates the

trade-off between the two objectives, since that is hard to determine whether one

solution is better than another if it is better on the productivity but is worse on the

production cost. Therefore, there is a set of Pareto-optimal solutions for

multi-objective optimization problem (MOP), instead of a single optimal one

(Miettinen, 1999).

To overcome the solution evaluation issue of MOP, several approaches have been

suggested, such as Pareto-dominance (PD) approach, objective aggregation (OA)

approach and lexicographic ordering (LO) approach. The PD approach is the most

commonly used approach. It is mainly based on the concepts of Pareto-dominance

and crowding-distance to evaluate solutions. It has been shown that PD approach is

very efficient in optimizing bi-objective or three-objective optimization problems.

Besides, by assigning weight to each objective and then summing up all objectives,

the OA approach transforms multiple objectives into a single objective. Since

determining suitable weight for different objectives plays an important role in the

success of this approach, it is not sufficient in practice. In addition to OA approach,

some researchers suggested LO approach for MOP. All objectives are sorted based on

their importance and optimized alternately. It is also difficult to give orders to

different objectives.

48

As mentioned above, no research has been reported on HSP with simultaneously

maximizing productivity and minimizing production cost. Therefore, in this chapter,

we study the cyclic HSP with the above mentioned dual objectives. In order to find a

set of Pareto-optimal solutions, an efficient QEA with local search procedure is

designed for the studied problem. By adopting the well-known concepts of Pareto

dominance and crowding distance, the proposed algorithm can optimize the two

objectives effectively and simultaneously, and can obtain a set of Pareto-optimal

solutions for the problem in very short time. To guide the search direction and

generate the offspring population, a chaotic quantum-rotation gate is proposed. For

increasing the individual diversity, mutation operator is implanted into the proposed

algorithm. As usual, an external archive is used to store the obtained non-dominated

solutions, and it is updated at each generation.

The rest of this chapter is arranged as follows. In Section 4.2, we present the

problem description and its formulation. Some concepts about the multi-objective

optimization problem (MOP) and the Pareto-optimal solutions are given in Section

4.3. Section 4.4 details the proposed bi-objective QEA. The experimental results are

given in Section 4.5. Section 4.6 gives some conclusions.

4.2 Problem description and its formulation

4.2.1 Sequence-based bi-objective mathematical model

In this chapter, the studied problem is similar to that in Chapter 3, except for the

problem objective. More precisely, two conflicting objectives (i.e., minimization of

production cost and maximization of productivity, which equivalents to minimize the

cycle time C) are simultaneously considered in this chapter, instead of a single one.

The objective “production cost” represents the sum costs of the resource consumed in

all processing tanks per cycle. To avoid introducing the problem repeatedly, the

problem description is omitted here. Then according to the notation in Manier and

Bloch (2003), the studied problem can be written in the following form:

CHSP | n // diss | /n+2| (Cmin, Production Cost min)

In the following, the same notations and variables defined in Chapter 3 are used

in this chapter. To facilitate the problem formulation, we assume that the cost of

resource consumption in each tank is proportional to the processing times in it.

Therefore, the following notation (i.e. wi) and decision variable (i.e. pi) are defined:

49

wi: the cost of resource consumed per time unit in tank Mi, 1≤i≤n. For simplicity,

we define W= (w1, w2, w3…wn), which will be given by each specific instance.

pi: the actual processing or soaking time in tank Mi, 1≤i≤n. For simplicity, we

define P= (p1, p2, p3…pn). Furthermore, from constraint (3.2) formulated in Chapter 3,

we can know that pi=Csi+ti−(ti−1+di−1), for 1≤i≤n.

Based on the above descriptions and notations, the bi-objective mathematical

model for the studied problem can be formulated as:

Min f1=C,

Min f2=∑
=

n

i
ii pw

1

,

subject to (3.1) −(3.4).

In above model, the first objective (i.e. f1) is set to minimize the cycle time C,

which equivalents to maximize the productivity, and the second objective (i.e. f2) is

set to minimize the total production cost of all processing tanks per cycle. As reported

in Chapter 3, if a hoist move sequence H satisfies the constraints (3.1)−(3.4), then it is

a feasible schedule for HSP with only minimizing the cycle time (i.e. f1 in this

chapter). On the other side, as all values of decision variables (i.e., ti, C, si) can be

obtained from a feasible sequence H, the value of P can be easily calculated. In other

words, as W is known in advance, the value of the second objective (i.e. f2) can be

easily deduced from a feasible hoist move sequence H, which is a solution for the

HSP with only minimizing the cycle time.

From above point of view, it seems that the HQEA proposed in Chapter 3 is also

suitable for solving the bi-objective HSP considered in this chapter. But it is not in

fact. The reason is two-fold. The first one is that as the value of production cost

(denoted by f2(C1)) obtained from a shorter cycle time (denoted by C1) may be greater

than that (denoted by f2(C2)) from a longer cycle time (denoted by C2), i.e., C1<C2 and

f2(C1)>f2(C2), it is difficult to say that solution (C1, f2(C1)) is better or worse than (C2,

f2(C2)). For this reason, the fitness evaluation function proposed in HQEA is no longer

suitable for bi-objective HSP. The second one is that the feasibility checking

procedure used in HQEA only returns the minimum cycle time for a feasible hoist

move sequence. It is understandable that a feasible hoist move sequence may have

several different cycle times, which consequently may result in different production

costs. In other words, a feasible hoist move sequence may generate multiple different

50

solutions (note that one solution represents a pair of values respectively for f1 and f2)

for bi-objective HSP. Obviously, the HQEA proposed in Chapter 3 has one main

shortcoming in obtaining the Pareto-optimal solutions for bi-objective HSP, i.e., it

only returns one feasible solution and inherently drops other potential ones for a

feasible hoist move sequence. Based on above the descriptions, a new scheduling

approach needs to be developed for bi-objective HSP in this chapter.

4.2.2 Modified bi-objective mathematical model

Inspired by the previous descriptions, we can know that the bi-objective HSP can

be reduced to the single-objective HSP (i.e. minimize the cycle time C) if P is given.

It should be noted that Levner et al. (1997) proposed a method of prohibited intervals

(MPI) to formulate the HSP with fixed processing times (i.e., P is given in advance),

and developed an efficient polynomial procedure (called Levner’s procedure hereafter)

to find the optimal cycle time C for their studied problem. The complexity of Levner’s

procedure is O(n3logn), where n is the number of processing tanks. Inspired by their

work, we can use the MPI approach to reformulate our bi-objective optimization

problem, and then apply the associated polynomial procedure to obtain the values of

cycle time and production cost providing that P can be determined in advance.

Similarly to Levner et al. (1997), Yan et al. (2010), and Wang and Che (2013), the

new mathematical model for the studied bi-objective problem providing that P is

given can be reformulated as follows:

 Min f1(P)=C,

Min f2(P)=∑
=

n

i
ii pw

1

,

subject to:

∑
=

− +=
i

j
jji pdZ

1
1),(for 1≤i≤n. (4.1)

.),(
1

1,11U
n

i
iiiii edZZVC

=
−+− ++−−∞≡∉ (4.2)

.)/)(,/)((
1

1

0 1
,1,1UUU

n

i

i

j

ji

k
jiijiijjji kedZZkedZZIC

=

−

=

−

=
++ ++−−−−≡∉ (4.3)

Li≤pi≤Ui, for 1≤i≤n. (4.4)

51

In constraint (4.1), Zi represents the start time of move i of part 0 (suppose that it

entered the line at time 0) from Mi, 1≤i≤n, i.e., the completion time of part 0’s i th

processing operation. Moreover, Zi+mC represents the start time of move i of part m

(note that it is introduced into the mth cycle at time mC, as only one part can enter the

line within each cycle) from tank Mi, 0≤i≤n, and Z0=0. Constraints (4.2) and (4.3)

impose a series of prohibited intervals for cycle time C. In particular, if the value

(denoted by C') of cycle time falls within the prohibited intervals V (i.e., C'∈V) in

(4.2), then at least one conflict happens in the use of a same tank by different parts at

the same time. Thus, C' is an infeasible solution for the problem since each tank

cannot process more than one part at any time. Similarly, if C' belongs to prohibited

intervals defined in (4.3) (i.e., C'∈I), then C' is also infeasible for the problem since

two consecutive moves conflict in the use of the hoist. At last, constraint (4.4) ensures

that the processing time window constraints are satisfied.

4.3 Basic concepts of MOP and Pareto-optimal solutions

Multi-objective optimization problem (MOP) is often encountered in many

real-world applications. In practice, it involves optimizing at least two objectives

simultaneously, which are usually conflicting with each other, i.e., an improvement on

one objective may give declination to some others. Due to this reason, MOP is more

complex than the single-objective optimization problem. Suppose an optimization

problem with minimization of two objectives, which can be expressed as follows:

Min],,[)(21 ）（）（ xfxfxF =

s.t. x∈X.

In above definition, fi(x) is the problem objective, 1≤i≤2; x denotes the decision

variables vector; X represents the solution space or the constraints of MOP. Generally,

there are multiple optimal solutions for MOP, instead of a single one. They are usually

called as Pareto-optimal or non-dominated solutions, which are defined by the Pareto

dominance concept. It is explained as follows. For any two solutions x1∈X and x2∈X,

if we have f1(x1)≤f1(x2) and f2(x1)<f2(x2), or f1(x1)<f1(x2) and f2(x1)≤f2(x2), then we say

that solution x1 dominates solution x2. If a solution x* is not dominated by any other

solutions, then x* is called non-dominated (i.e. Pareto-optimal) solution. Moreover,

the Pareto front (PF) is defined as: PF={F(x)|x∈Ω}, in which Ω denotes the set of

52

non-dominated solutions. For more details about the MOP, please see the works by

Miettinen (1999) and Deb (2001).

4.4 Solution method

In this section, we develop an efficient bi-objective QEA with local search

procedure to find a set of Pareto-optimal solutions for the studied problem. Figure 4.1

depicts the main flowchart of our proposed algorithm. We can see from Figure 4.1

that the proposed algorithm includes the encoding and decoding scheme, the

individual evaluation procedure based on the Pareto-dominance technique, the chaotic

quantum-rotation gate, the mutation operator, the external archive updating

mechanism and the local search procedure. The algorithm stops when the maximal

number of iterations (i.e. maxgen) is reached. As mentioned above, our bi-objective

problem can be solved by Levner’s procedure on condition that P can be known. In

what follows, we first present how to obtain P with the proposed encoding and

decoding scheme and then introduce other components of the algorithm in details.

Figure 4.1 The main flowchart of the proposed bi-objective QEA.

4.4.1 Encoding and decoding scheme

As there are n processing operations, each chromosome is encoded as a string

consisting of n Q-bits, which are defined as follows:

53

=Ψ

n

n
n β

α
β
α

β
α

...

...

2

2

1

1 , 1≤i≤n. (4.5)

where |αi|2+|βi|2=1. Since we need to know the value of pi, 1≤i≤n, and it must fall

within its corresponding time windows [Li, Ui], the following two decoding schemes

are used to transform each quantum chromosome (i.e. (4.5)) into the actual processing

time P(Li and Li, 2008):

),)((5.0 iiiiii LULUp α×−++×= for 1≤i≤n. (4.6)

),)((5.0 iiiiii LULUp β×−++×= for 1≤i≤n. (4.7)

In (4.6) and (4.7), we define αi=cos(σi), βi=sin(σi), and σi=2π×rd, where

π=3.1415926 and rd is randomly generated between 0 and 1. From this definition, we

can see that αi and βi fall within the range [−1, 1]. Consequently, each generated

processing time pi is limited by its corresponding lower and upper bounds [Li, Ui].

Therefore, processing time window constraints are ensured. Note that for each

quantum chromosome, it is decoded by both (4.6) and (4.7). In other words, two

different solutions (such as P and P') are generated from each quantum chromosome.

For this reason, such an encoding and decoding scheme can provide a better diversity

of population.

4.4.2 Individual evaluation

After the chromosomes decoding, the objective values of each individual can be

obtained with Levner’s procedure. Thereafter, individual evaluation is an important

issue for the studied problem. To fix this issue, the Pareto-dominance approach is

adopted to evaluate all individuals. According to Deb et al. (2002), the population is

first classified into K different frontiers (F1, F2, F3,…, FK) based on the dominance

relationship by a fast sorting procedure. Note that F1 includes all the non-dominated

solutions obtained in each generation. After that, distance metrics are assigned to

individuals by a crowing distance computing procedure. In what follows, we first

describe the fast non-dominated sorting procedure and then the crowing distance

computing procedure, which can be found in Deb et al. (2002). To facilitate the

descriptions, we let ndP denote the number of solutions which dominate solution P,

and ΩP denote the set of solutions which are dominated by solution P.

(a)The fast non-dominated sorting procedure:

Step(I): For each solution P, first set ndP=0 and ΩP =∅; then determine ndP and

54

Ωx.

Step(II): For any solution P with ndP =0, first put it into the first frontier F1, and

set its rank number to be 1, i.e., RankP=1; then set k=1.

Step(III): If Fk≠∅, then set Q=∅; else, go to Step(VI).

Step(IV): For ∀x∈Fk, set ndq = ndq −1 for q∈ΩP; if ndq=0, put solution q into Q.

Step(V): Let k=k+1 and Fk=Q; For ∀q∈Fk, set Rankq=k. And go to Step(III).

Step(VI): Let K=k−1; End.

(b)The crowding distances calculation procedure:

Step(I): Order the population according to each objective value in increasing

order; for each objective, set infinite distance value (denoted by M) for both the

smallest and largest solutions (boundary solutions).

Step(II): For objective i(i∈{ 1,2}) , the distance Disi (Pj) of each non-boundary

solution Pj is calculated based on the absolute normalized difference in the objective

values of two neighbor solutions by the following equation:

)/())()(()(minmax
11 iijijiji ffPfPfPDis −−= −+ (4.8)

Step(III): For each solution Pj, its overall crowding distance CD(Pj) is calculated

as the sum of the distance value for all objectives. This is expressed as follows:

∑
=

=
G

i
jij PDisPCD

1

)()((4.9)

where G represents the total number of considered objectives. Figure 4.2 illustrates an

example of an optimization problem with dual objectives minimization. In Figure

4.2(a), the population is divided into 3 frontiers (i.e., F1, F2, F3) by the above

described fast non-dominated sorting procedure. Note that F1 represents the set of all

non-dominated solutions (denoted by •), which dominate those in F2, and solutions in

F2 dominate those in F3. Moreover, Figure 4.2(b) depicts the crowding-distance

calculation process of solution Pj. As can be seen from Figure 4.2(b), P1 and PD

denote the two boundary solutions.

After using above two described procedures, each solution P has two attributes:

55

Non-domination rank (RankP) and crowding distance (CD(P)). For any two solutions

P and P′, if RankP<RankP′, then we say that solution P is better than solution P′,
because the former dominates the latter. For solutions with same rank (i.e.

RankP=RankP′), if CD(P)>CD(P′), then we say that solution P is better than solution

P′, because P is located in a lesser crowded area, and it improves the population

diversity.

Figure 4.2 Classification of the population (a) and Crowding-distance calculation (b).

4.4.3 Chaotic quantum-rotation gate

In this chapter, for generating new offspring, quantum-rotation gate is adopted to

update each Q-bits chromosome. For a Q-bits chromosome Y, its Q-bit i can be

updated as follows (Han and Kim, 2002; Li and Wang, 2007):

iiiii

iiiii

βωαωβ
βωαωα

×∆+×∆=

×∆−×∆=

)cos()sin(

)sin()cos(
'

'

. (4.10)

In (4.10), ∆ωi represent the rotation angle, which plays an important role in

updating Q-bits chromosome. Generally, the value of ∆ωi is determined by an

intuitive reasoning way (Han and Kim, 2002; Li and Wang, 2007). In this section, we

propose a different way to determine suitable rotation angle for updating each Q-bit.

Firstly, for driving the search direction towards Pareto-optimal solutions, we

randomly choose a non-dominated solution P (note that P=(p1, p2, p3…pn)) from

56

external archive to guide the updating process of chromosome Y. Then, we assume

that each actual processing time pi of P corresponds to a probability amplitude γi of a

Q-bit m with γi=cos(ηi). Note that γi can be deduced by (4.6) or (4.7), and then ηi can

also be known. For ease of description, we let ϕ=ηi−σi, where αi=cos(σi). From this,

we can know that the gap (i.e. ϕ) between ηi and σi can be used as the rotation angle

to update Q-bit i. But this may reduce the diversity of Q-bits chromosome, and the

solutions may fall into local optimal. For this reason, chaotic sequence is used in the

updating process of each Q-bit due to its good ergodicity and regularity. It is produced

by the logistic map, which is usually defined as follows (Dettmer, 1993):

µg =4×µg−1×(1−µg−1), 1<g. (4.11)

where µg is generated at generation g. Note that µ0 is randomly generated from (0, 1)

at the initial generation. Finally, we propose a chaotic quantum-rotation gate to update

each Q-bits chromosome, i.e., the rotation angle is mainly determined by µg and ϕ. In

the following, we explain how to choose the rotation angle according to eight

different cases, which are illustrated in Figure 4.3 (case(I)−case(IV)) and Figure

4.4(case(V)−case(VIII)). Note that in the two figures, the curved arrow represents our

proposed rotation direction for Q-bit i.

57

Figure 4.3 The updating processes for Q-bit i in the 1st and 2nd quadrants.

If Q-bit i is located in the first quadrant, then consider the following cases:

Case (I): For γi ≥0, as case (I) illustrated in Figure 4.3, to simplify the updating

process, if 1.5π<ηi≤2π (i.e., Q-bit m is in the fourth quadrant), then we let ηi =2π−ηi

(i.e., let Q-bit m in the first quadrant). After that, we set ∆ωi =µg×ϕ (ϕ=ηi−σi), which

implies that the value of ∆ωi is positive if ϕ>0 and negative if ϕ<0. This makes Q-bit i

closer to Q-bit m. Moreover, if ϕ=0, both small negative and positive values are

acceptable for ∆ωi, so as to search the neighborhood area.

Case (II): For γi<0, as illustrated in Figure 4.3, we know that Q-bit m is located

either in the second or the third quadrant, so the value of ∆ωi is set to be 0.5π×µg,

which is a relatively “big jump” to drive Q-bit i towards the location area of Q-bit m.

If Q-bit i is located in the second quadrant, then consider the following cases:

Case (III): For γi ≥0, we set ∆ωi=(−0.5π)×µg, in order to drive Q-bit i towards the

location area of Q-bit m.

58

Case (IV): For γi<0, we first let ηi =2π−ηi if π<ηi ≤1.5π, and then set ∆ωi =µg×ϕ.

It implies that the value of ∆ωi is positive if ϕ>0 and negative if ϕ<0, and which

makes Q-bit i closer to Q-bit m. Moreover, if ϕ=0, both small negative and positive

values are acceptable for ∆ωi, so as to search the neighborhood space.

i

Q-bit i

Q-bit m

i

Q-bit m

-

-

case(VIII)

i

i

Q-bit i

Q-bit m

i

Q-bit m

-

-

case(V)

i

i

i

Q-bit i

Q-bit m

Q-bit i

i

Q-bit m

-

-

case(VI)

i

i

i

Q-bit i

Q-bit m

Q-bit i

i

i

Q-bit m

-

-

case(VII)

i

Figure 4.4 The updating processes for Q-bit i in the 3rd and 4th quadrants.

Furthermore, similar analyses have been performed for Q-bit i in the third and

fourth quadrants, i.e., case(V)−case(VIII) shown in Figure 4.4. Based on the above

analysis, Table 4.1 presents the lookup table for choosing suitable rotation angle to

update Q-bits chromosome. By using the above described chaotic quantum-rotation

gate, different rotation angle is determined for different cases. Consequently, each

chromosome has an evolutionary diversification, and it is updated towards the

non-dominated solution space by a diverse way.

59

Table 4.1 Lookup table of rotation angle

γi ≥0, ϕ =ηi−σi γi <0, ϕ =ηi−σi

αi >0, βi ≥0 If ϕ≠0, ∆ωi = µg×ϕ;

else, ∆ωi =±0.008π;

∆ωi =0.5π×µg;

αi ≤0, βi >0 ∆ωi =(−0.5π)×µg; If ϕ≠0, ∆ωi = µg×ϕ;

else, ∆ωi =±0.008π;

αi <0, βi ≤0 ∆ωi =0.5π×µg; If ϕ≠0, ∆ωi = µg×ϕ;

else, ∆ωi =±0.008π;

αi ≥0, βi <0 If ϕ≠0, ∆ωi = µg×ϕ;

else, ∆ωi =±0.008π;

∆ωi =(−0.5π)×µg;

4.4.4 Mutation operator

Although the proposed decoding scheme and updating scheme has a strong

ability to provide a better diversity of population, it still has some room to increase the

population diversity, so as to prevent the algorithm falling into local optimal as far as

possible. Thus, mutation is applied to each chosen chromosome according to the

mutation rate. More precisely, two positions x and y are randomly generated for each

chosen chromosome, 1< x, y<n. For each Q-bit i between positions x and y, we swap

the values of αi and βi. If x equals to y, then just swap the values of αx and βx.

4.4.5 Updating external archive

The external archive (EA) is initialized to be empty. It is updated at each

generation. For simplicity, let NDg−1 be the set of non-dominated solutions stored in

EA updated at generation g−1and F1 be the set of non-dominated solutions obtained at

generation g. We first let NDg=NDg−1∪F1, and then calculate the crowding-distance

for each solution in NDg. For any two solutions P1 and P2 in NDg, consider the

following: (a) if P1 is the same as P2 (i.e., f1(P1)=f1(P2) and f2(P1)=f2(P2)), then

remove one of them from NDg; (b) if P1 dominates P2, then remove P2 from NDg and

vice versa. If the size of NDg exceeds the pre-defined maximum size, then we remove

the individual with the smallest crowding distance from NDg until the size equals to

the maximum size. Finally, EA is updated and NDg contains the final non-dominated

solutions. The above described updating process is depicted in Figure 4.5.

60

Figure 4.5 The process of updating external archive.

4.4.6 Local search (LS) procedure

As mentioned above, as soon as the actual processing time P (note that P= (p1, p2,

p3…pn)) is determined, Levner’s procedure can be applied to find its corresponding

optimal cycle time Cb (i.e. Cb= f1(P)). After that, the associated hoist move sequence

H and value of the production cost (i.e. f2(P)) can be known for P. Due to the special

characteristic of hoist scheduling problem, it is understandable that a feasible hoist

move sequence H may has several different feasible cycle times, which are denoted

by {C1, C2, C3, …, Cm}, corresponding to diverse processing times for each tank.

Obviously, the optimal cycle time Cb for P obtained with Levner’s procedure is one of

the cycle times {C1, C2, C3, …, Cm} related to H. This implies that there probably

exists a better cycle time in {C1, C2, C3, …, Cm} than Cb for H. Besides, it should be

noted that different feasible hoist move sequences may have the same cycle time C.

For the above reasons, a local search (LS) procedure is needed for H so as to

further search other possibly better cycle times related to it. To save the computation

time, LS procedure is applied to the non-dominated individuals from External Archive

at every χ generation, where χ is a parameter to be set in the experimental section.

Due to its high efficiency in finding the best cycle time for each given H (Wang and

Che, 2013), in this chapter, the graph-based polynomial procedure proposed by Chen

et al. (1998) is used as the LS procedure to find the optimal cycle time C* for each H

(it corresponds to a non-dominated solution P with objective values (f1(P), f2(P))) in

External Archive. Thereafter, the new processing times spent in all tanks (i.e. P′) can

be determined according to the newly found C*(C*= f1(P′)), and the value (i.e. f2(P′))
of the second objective can be calculated for H according to P′. As a result, a new

solution P′ with objective values (C*, f2(P′)) for H is obtained with our LS procedure.

61

At last, we update the External Archive with the newly found solutions. The above

described LS procedure is depicted in Figure 4.6.

Figure 4.6 The process of the proposed LS procedure.

To better understand our above observation, Figures 4.7~4.8 illustrate two

different feasible cycle times with the same hoist move sequence for a HSP example.

The data for the example is given in Table 4.2, which was generated via our

experiment. Note that the travel times of empty hoist moves for the presented move

sequence are given as: e1, 5=12s, e6, 3=9s, e4, 2= 5s, e3, 1=7s, e2, 4=5s, e5, 0=16s. As

illustrated in Figures 4.7~4.8, M1~ M5 are processing tanks, M0 and M6 are input

station and output station, respectively. The hoist move sequences illustrated in the

two figures are the same, i.e., 0−5−3−2−1−4. But the cycle times given in the two

figures are different, i.e., C=170s and C=220s, which are all feasible ones. To our

knowledge, the value C=170s given in Figure 4.7 is the optimal cycle time for the

given example. Note that the numbers around an inclined solid arrow (resp. a broken

arrow) in Figures 4.7 and 4.8 represent the start and end times of a loaded move (resp.

an empty move). Moreover, we can derive the actual processing times P= (90s, 124s,

128s, 56s, 48s) from Figure 4.7 and P= (140s, 174s, 137s, 97s, 48s) from Figure 4.8.

From these values, we can see that two different actual processing times are given by

the same hoist move sequence for each tank except M5.

62

Figure 4.7 Hoist move sequence 0−5−3−2−1−4 with C=170.

Figure 4.8 Hoist move sequence 0−5−3−2−1−4 with C=220.

Table 4.2 Data for the example

Tank i 0 1 2 3 4 5

Li − 71s 81s 45s 40s 30s

Ui − 187s 188s 137s 97s 63s

di 20s 20s 19s 18s 19s 20s

63

Furthermore, Figure 4.9 illustrates a different feasible hoist move sequence for

C=220s. The travelling times of empty hoist moves related to the presented move

sequence are: e1, 3=7s, e4, 4=e5, 5=0, e6, 2=12s, e3, 1=7s, e2, 0=8s. As can be seen from

Figure 4.9, the hoist move sequence is 0−3−4−5−2−1. As verified by Figures 4.8 and

4.9, different hoist move sequences can have the same cycle time.

Figure 4.9 Hoist move sequence 0−3−4−5−2−1 with C=220.

4.4.7 Steps of the proposed algorithm

Input: Np (size of the quantum chromosomes); Maxgen (maximum number of

iterations); MaxEA (maximum size of external archive); mp (probability of mutation);

χ (LS period); ND0=∅ (external archive, which is set to be empty at the initial step).

Output: ND (the set of non-dominated solutions).

Step(I) Initialization: First encode an initial population with Np quantum

individuals, and then decode each quantum chromosome into 2 problem solutions (i.e.

P) using (4.6) and (4.7); set g=0.

Step(II) Determine objective values: First use Levner’s procedure to find the

optimal value of the first objective (i.e. cycle time), and then calculate the value of the

second objective (i.e., production cost) according to each solution P.

64

Step(III) Individual evaluation: classify the population into K different frontiers

F1, F2, F3,…, FK, and calculate the crowding-distance for each individual.

Step(IV) Update the external archive: ND0= ND0∪ F1.

Step(V) Let g=g+1.

Step(VI) if g>Maxgen, then go to Stop and output the external archive; else, go

to Step(VII).

Step(VII) Update quantum individuals: apply the proposed chaotic rotation gate

to update each quantum individual.

Step(VIII) Apply mutation operator to each chosen quantum individual.

Step(IX) Decode the quantum individuals using conversion procedures (4.6) and

(4.7).

Step(X) Obtain objective values and evaluate solutions.

Step(XI) Update the external archive: NDg= NDg−1∪ F1.

Step(XII) At every χ generation, apply the LS procedure to improve the solutions

in external archive. After that, Go to Step(V).

4.5 Experimental study

In this section, the performance of the proposed bi-objective optimization

algorithm QEA with local search procedure is evaluated on a practical electroplating

problem selected from an automated zinc plating plant in China (Ni, 2010). In what

follows, we first describe the selected real industrial instance, and then present the

computational results as well as some analysis and discussions on the obtained results.

4.5.1 Industrial instance

Due to its wide application, zinc plating has existed for a long time. It is mainly

for providing corrosion-resistance or decorative layers to metal objects, such as steel

plates and nuts. As shown in Figure 4.10, the selected zinc electroplating process has

20 processing stages, each of which corresponds to a specific tank containing special

solutions. A steel plate with double-surface area 5m2 is processed through M1 to M20

for achieving a uniform zinc layer on its surface. More precisely, as steel plate is

generally contaminated with dust, grease lubricants and metal fines, M1~ M12 (usually

65

called pre-treatment step) are used to remove these residues from its surface. This is a

prerequisite for achieving better adhesion of zinc layer to be deposited on the steel

part in later stages. Thereafter, steel part is placed in the plating tank M13 containing

alkaline-type electrolytes for zinc electroplating process. After that, bright dipping and

passivating tanks (usually called post-treatment step) containing concentrated acid are

used to further improve the corrosion-resistance of the treated steel part. Moreover,

after each chemical tank, at least one rinsing tank is used, which is designed for

cleaning the chemical solution adsorbed on the part surface as well as other

processing purposes. The process technology of the selected electroplating problem is

given in Table 4.3.

In this study, for each rinsing tank i (i.e., M2, M3, M4, M6, M9, M10, M12, M14, M15,

M17, M19), its cost coefficient wi is computed as: wi=qi×0.006RMB/L, where qi

denotes the water flow rate per second, and 0.006 RMB is the water price per liter, i.e.

6RMB/tonnes. For each electricity-based tank i (i.e. M5, M8, M11, M13), its cost

coefficient wi can be computed as follows: wi=(100×I i×Vi×SA)×4.17×10−7RMB/Watt,

where 100×I i×Vi×SA denotes the amount of electricity consumed per second, and

4.17×10−7 RMB is the electricity price per Watt, i.e. 1.5 RMB/kWh. More precisely,

100×I i represents the current density per square meters. Vi denotes the voltage, and SA

denotes the double surface areas of the treated steel part. Note that both the water and

the electricity prices are obtained from the Price Bureau of Xi’an, China. For the rest

tanks (i.e. M1, M7, M16, M18, M20), their cost coefficients are set to be 0 due to the

difficulties of obtaining the resource consumption amount during the process. Based

on the above descriptions, Table 4.4 reports the cost coefficient of each tank and the

execution times of loaded moves. Moreover, the move 0’s execution time is given as:

d0=15s. The travel time between tanks i and j is computed as: ei, j=i − j ×2s.

66

Figure 4.10 Zinc electroplating process for the selected problem.

67

Table 4.3 Process technology of a steel plate for Zinc-electroplating

Tank Processing stage Solutions Processing time windows (s) Current density I (A/dm2) Water flow rate q

1 Chemical degreasing NaOH, Na3PO4 300~450

2 Rinsing Hot water 30~90 0.3L/s

3, 4 Rinsing Purified water 60~120, 30~90 0.4L/s, 0.3L/s

5 Pickling HCI 600~900 2~10(9V~12V)

6 Rinsing Purified water 30~120 0.4L/s

7 Derusting CrO3, H3PO4 60~300

8 Electrolytic degreasing NaOH, Na3PO4, Na2CO3 30~120 3~10(9V~12V)

9 Rinsing Hot water 30~90 0.3L/s

10 Rinsing Purified water 60~120 0.5L/s

11 Activating H2SO4, H3PO4 30~60 3~5 (1V~18V)

12 Rinsing Purified water 20~80 0.4L/s

13 Zinc-plating ZnO, NaOH, JZ04 660~1350 1~12(6V~16V)

14, 15 Rinsing Purified water 30~60, 30~90 0.5L/s, 0.4L/s

16 Bright dipping HNO3 10~30

17 Rinsing Purified water 30~90 0.2L/s

18 Color Passivating CrO3, NaNO3, NisO4⋅6H2O 120~480

19 Rinsing Purified water 20~30 0.4L/s

20 Drying 15~35

Table 4.4 Data for the selected Zinc-electroplating problem

Tank i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

di 22 15 15 20 21 20 19 20 15 20 19 15 25 20 21 15 20 22 15 15

wi 0 0.0018 0.0024 0.0018 0.012 0.0024 0 0.0165 0.0018 0.003 0.0075 0.0024 0.21 0.003 0.0024 0 0.0012 0 0.0024 0

68

4.5.2 Computational results

In this section, the proposed bi-objective QEA with LS procedure is implemented

in C programming language and evaluated by the above described instance. It is

solved on an ASUS Laptop with an Intel Core i5-3210M Processor 2.50GHZ and on a

windows 8 environment. The parameters are set as follows: maximum generations,

Maxgen=1000; maximum size of external archive, MaxEA=20; local search period, χ

=100. As evolutionary algorithm is generally sensitive to the value of initial

population size Np and mutation probability mp, we set Np∈{50, 100, 150, 200, 250}

and mp∈{0.2, 0.5, 0.7, 0.9} in our experimental study to investigate the performance

of our proposed algorithm.

Table 4.5 gives the computational results for Np∈{50, 100, 150, 200, 250}

obtained with the proposed algorithm. Note that for each given Np, the proposed

algorithm with four different mutation probabilities has been tested. From Table 4.5,

we can see that the proposed algorithm with Np=100 (by mp=0.5) and Np=250 (by

mp=0.2) generally has a better solution quality than other parameter settings. Besides,

we observe that as the population size increases, some new non-dominated solutions

are identified. Note that for ease of description here, each solution is represented by

its objective values (i.e., cycle time and production cost) instead of the processing

time P used before. For instance, solutions (783, 152.7117), (801, 148.6116) and (843,

147.6519) are found by setting Np=100 with mp=0.5. As for Np=150, we can see that

another new solution (823,147.9924) is identified by the algorithm with mp=0.9, and it

is not dominated by any other solutions reported in Table 4.5. Moreover, a better

solution (801, 148.2918) is produced by setting Np=200 and 250. As we can see, none

of the reported solutions can dominate the solution (801, 148.2918), which dominates

the solution (801, 148.6116) produced by setting Np=100 and mp=0.5, since the

former gives a smaller (i.e. better) value of production cost than the latter. We also

notice that the two solutions have a same value of cycle time (i.e. C=801) but have

different values of production cost. This is because different actual processing times

or hoist move sequences may have the same cycle time.

69

Table 4.5 Computational results obtained with the proposed algorithm

Np Non-dominated solution (Cycle Time, Production Cost) Computational

time (s)

50 mp=0.2 (787, 154.1709), (883, 152.0364), (964, 148.1961), (1389,

148.0755), (1402, 147.4062), (1449, 147.372)

8.14

mp=0.5 (863, 147.765), (1402, 147.4062), (1449, 147.372) 8.26

mp=0.7 (782, 153.6855), (964, 148.1961), (1389, 148.0755), (1402,

147.4062), (1449, 147.372)

8.29

mp=0.9 (843, 148. 9065), (1389, 148.0755), (1402, 147.4062), (1449,

147.372)

8.32

100 mp=0.2 (782, 153.6855), (964, 148.1961), (1005, 149.469), (1415,

148.224), (1449, 147.372)

16.91

mp=0.5 (782, 153.6855), (783, 152.7117), (801, 148. 6116), (843,

147.6519), (1372,147.4212), (1402, 147.4062), (1449, 147.372)

16.22

mp=0.7 (787, 154.1709), (843, 148.9065), (863, 147.7649), (1402,

147.4062), (1449, 147.372)

16.30

mp=0.9 (787, 154.1709), (964, 148.1961), (1402, 147.4062), (1449,

147.372)

15.87

150 mp=0.2 (782, 153.6855), (801, 148.6116), (891, 148.1592), (1402,

147.4062), (1449, 147.372)

23.53

mp=0.5 (782, 153.6855), (843, 147.6519), (1402, 147.4062), (1449,

147.372)

23.34

mp=0.7 (863, 147.7649), (1402, 147.4062), (1449, 147.372) 23.23

mp=0.9 (782, 153.6855), (823, 147.9924), (1402, 147.4062), (1449,

147.372)

23.49

200 mp=0.2 (782, 153.6855), (801, 148.2918), (843, 147.6519), (1402,

147.4062), (1449, 147.372)

30.9

mp=0.5 (787, 154.1709), (801, 148.2918), (843, 147.6519), (1402,

147.4062), (1449, 147.372)

31.04

mp=0.7 (782, 153.6855), (843, 147.6519), (1402, 147.4062), (1449,

147.372)

31.02

mp=0.9 (813, 171.45), (816, 149.224), (843, 148.9065), (863, 147.7649),

(1372, 147.4212), (1402, 147.4062), (1449, 147.372)

30.97

250 mp=0.2 (782, 153.6855), (801, 148.2918), (843, 147.6519), (1372,

147.4212), (1402, 147.4062), (1449, 147.372)

38.44

mp=0.5 (843, 147.6519), (1372, 147.4212), (1402, 147.4062), (1449,

147.372)

38.52

mp=0.7 (787, 154.1709), (843, 147.6519), (1372, 147.4212), (1402,

147.4062), (1449, 147.372)

38.68

mp=0.9 (782, 153.6855), (816, 148.8456), (1372, 147.4212), (1402,

147.4062), (1449, 147.372)

38.49

70

Furthermore, we notice from Table 4.5 that all the computational times are less

than one minute, and it generally increases with the initial population size Np. For

each given Np, it seems that the computational time has been slightly influenced by

the mutation probability. The Pareto frontiers for Np=50, 100, 150, 200, and 250 are

respectively illustrated in Figure 4.11~Figure 4.15. Note that in each figure, four

Pareto frontiers are illustrated, and each one presents the distribution state of the

obtained solutions for a given value of mp. We can see from these figures that as the

population size Np increases, it seems that the four obtained Pareto frontiers gradually

have similar curves. This indicates that the proposed algorithm has a good

computational performance.

Finally, to test the performance of the proposed local search (LS) procedure, we

also run our proposed bi-objective QEA without LS procedure. Since it has a worse

performance than the algorithm with LS procedure for each pair of Np and mp, we do

not present the computational results for all values of Np and mp. Instead, we only

illustrate the comparison results of Np=100 with mp=0.5 in Figure 4.16. In summary,

the computational results show that our proposed bi-objective QEA with LS

procedure is efficient in solving the studied dual-objective hoist scheduling problem

with processing time windows.

Figure 4.11 Pareto frontiers identified with different mp for Np=50.

71

Figure 4.12 Pareto frontiers identified with different mp for Np=100.

Figure 4.13 Pareto frontiers identified with different mp for Np=150.

72

Figure 4.14 Pareto frontiers identified with different mp for Np=200.

Figure 4.15 Pareto frontiers identified with different mp for Np=250.

73

Figure 4.16 Comparison results of the algorithm with and without LS for Np=100 and mp=0.5.

4.6 Summary

In this chapter, minimizing both cycle time and production cost for a cyclic hoist

scheduling problem with processing time windows has been studied. Firstly, by using

the MPI approach, a bi-objective mathematical model was formulated for the studied

problem supposing that all actual processing times are known (In fact they are

decision variables). Thereafter, a Pareto-dominance evaluation based QEA with local

search (LS) procedure was proposed for the problem to find a set of Pareto-optimal

solutions, which are stored and updated in an external archive. More precisely, each

chromosome was encoded by n Q-bits, which were converted into actual processing

times by a double-decoding procedure. Then, we proposed a specific chaotic rotation

gate to update each Q-bits chromosome. Besides, mutation operator was implanted

into the proposed algorithm to increase the individual diversity. All solutions were

evaluated by the well-known Pareto-dominance technique. Because of the special

solution feature of the studied problem, an efficient LS procedure was proposed for

further improving the solution quality. Finally, a real zinc electroplating problem was

used to test the performance of our proposed algorithm. Experimental results showed

that the proposed algorithm is efficient.

74

Chapter 5 An Improved Mixed Integer Programming

Approach for Multi-hoist Cyclic Scheduling Problem

5.1 Introduction

Multi-hoist cyclic scheduling problems are often encountered in automated

electroplating lines for processing printed circuit boards (PCBs) and other electronics

(e.g., Lei and Wang, 1991; Leung and Zhang, 2003; Che and Chu, 2004). The key to

the multi-hoist cyclic scheduling problem is to determine an executable hoist schedule

such that the cycle time is minimized.

In most existing studies on the multi-hoist cyclic scheduling problem, such as

Lei and Wang (1991), Armstrong et al. (1996), Leung and Zhang (2003), Leung et al.

(2004), Che and Chu (2004), Zhou and Liu (2008), Zhou and Li (2009), Chtourou et

al. (2013) and Jiang and Liu (2014), loaded hoist moves are assumed to start and end

within the same cycle. In this chapter, we first give a counterexample to demonstrate

that the optimal solution obtained under such an assumption is not necessarily the best

one among all feasible solutions, which we call hereafter global optimal solution.

To obtain a global optimal solution, the assumption that loaded hoist moves are

assumed to start and end within the same cycle should be relaxed. That is, a loaded

hoist move is allowed to start in the current cycle and end in the next one if necessary.

With the relaxation of the assumption mentioned above, we propose an improved MIP

approach for the multi-hoist cyclic scheduling problem with unidirectional part flow,

where the part processing sequence is the same as the tanks layout. Since Leung et al.

(2004) developed the first MIP model for the same problem as the one considered in

this chapter, this work can be seen as an extension of their MIP model. Hence, in what

follows, we will first present Leung et al.’s MIP model and then describe our

extension and improvements based on their MIP model.

The rest of this chapter is arranged as follows. The problem description and

Leung et al.’s MIP model are given in Section 5.2. In Section 5.3, we give a

counterexample to justify our findings. Then, an improved MIP model is proposed in

Section 5.4. Computational results are presented and analyzed in Section 5.5. Section

5.6 concludes this chapter.

75

5.2 Problem definition and Leung et al.’s MIP model

For completeness, we give in this section a brief problem description and Leung

et al.’s MIP model. For ease of comparison between Leung et al.’s MIP model and

ours, we follow all the assumptions and notations given in Leung et al. (2004).

5.2.1 Problem definition

Firstly, we describe the problem involved. Consider an automated electroplating

line with n processing tanks and K hoists for material handling between the tanks.

Each part to be processed starts at the input station (i.e. tank 0), then successively

passes through tank 1, tank 2, …, tank n and is finally unloaded at the output station

(i.e. tank n+1). The tanks are arranged in a row according to the processing sequence

of the parts. Each tank can process only one part at any time. There is no intermediate

buffer between the tanks. After the processing in a tank has been completed, the part

must be transported by a hoist to the next tank without any delay.

The K hoists are numbered consecutively with the one closest to tank 0 being

hoist 1 and the one closest to tank n+1 being hoist K. The hoists are assumed to have

zero width and the same travel speed. The hoist movement of transporting a part from

tank i to tank i+1 is called (loaded) move i, which is composed of three simple hoist

operations: 1) unload a part from tank i; 2) transport it to tank i+1; and 3) load it into

tank i+1.

In a cyclic schedule, the hoists perform a fixed sequence of moves repeatedly.

Each repetition of the sequence of hoist moves is called a cycle. The duration of a

cycle is the cycle time. The objective is to find an optimal K-hoist schedule such that

the cycle time is minimized.

Let N= {1, 2, …, n}, N0={0, 1, 2, …, n} and K= {1, 2, …, K}. The following

parameters are given:

di : the time required to execute move i, for i∈N0.

ei, j =ej, i : the empty hoist travelling time from tank i to tank j, for i, j∈

N0∪{ n+1}.

Li : the minimum processing time in tank i, for i∈N.

Ui : the maximum processing time in tank i, for i∈N.

76

M: a very large positive number.

δ : a small constant.

The following decision variables are involved in this chapter:

ti : start time of move i, for i∈N0.

yij: 0-1 variable. If ti<tj, then yij=1, which means that move j starts after move i;

otherwise, yij=0, for i≠j, i, j∈N.

ℒi: 0-1 variable. If move i is the last move for hoist 1, then ℒi =1; otherwise,

ℒi=0, for i∈N0.

k
iz :0-1 variable. If move i is executed by hoist k, then k

iz =1; otherwise, k
iz =0, for

i∈N0, k∈K.

si: 0-1 variable. If a part is in process in tank i at the beginning of a cycle, then

si=1; otherwise, si=0, for i∈N.

C: cycle time.

With above notations and according to Manier and Bloch (2003), the considered

problem can be written in the form:

CHSP | K, n, 1 // diss | /n+2| Cmin

which means cyclic hoist scheduling problem with K hoists and n tanks, each tank

being a single capacity resource, with dissociated loading and unloaded stations, n+2

operations per part, and minimization of cycle time C as the objective.

5.2.2 Leung et al.’s model

Leung et al. (2004) developed their MIP model by addressing the following four

families of constraints:

1) Hoist assignment and cycle-time definitional constraints. Each hoist move is

assigned to one and only one hoist and the cycle time is long enough to allow hoist 1

to return to the input station (i.e. tank 0) for starting move 0 of the next cycle.

2) Time window constraints. The soaking or processing time of a part in a tank

must be within its prescribed minimum and maximum processing times. Otherwise,

77

defective parts would be produced.

3) Hoist capacity constraints. The start-times of the moves executed by the same

hoist are determined in such a way that there is sufficient time gap for any hoist to

travel between the successive moves assigned to that hoist.

4) Collision avoidance constraints. No collisions happen among the hoists

running on a single shared track.

According to the four families of constraints given above, Leung et al. (2004)

developed the following MIP model for the multi-hoist cyclic scheduling problem:

Minimize C

subject to

Hoist assignment and cycle-time definitional constraints:

∑
=

=
K

k

k
iz

1

1, for all i∈N, (5.1)

∑
=

n

i 0

ℒi=1, (5.2)

ℒ0+ 11 ≤iz , for all i∈N, (5.3)

ℒi≤ 1
iz , for all i∈N, (5.4)

 1
iz +ℒj−yij≤1, for all i, j∈N, (5.5)

 ti+di+ei+1, 0ℒi≤C, for all i∈N0, (5.6)

 tj−(d0+e1, j) 1
jz ≥0, for all j∈N, (5.7)

t0=0, (5.8)

Time window constraints:

ti−(ti−1+di−1)≤Ui, for all i∈N, (5.9)

ti−(ti−1+di−1)+Msi≥ Li, for all i∈N, (5.10)

ti+C−(ti−1+di−1)−M(1−si)≤Ui, for all i∈N, (5.11)

78

ti+C−(ti−1+di−1)≥ Li, for all i∈N, (5.12)

ti−ti−1−di−1+δ−(Ui+δ)(1−si)≤0, for all i∈N, (5.13)

Hoist capacity constraints:

tj−ti≤Myij, for all i, j∈N, i≠j, (5.14)

yij+yji=1, for all i, j∈N, i≠j, (5.15)

Collision avoidance constraints:

)3(,1 ∑
=

+ −−−≤−++
K

kh

h
j

k
iijjjiii zzyMtedt , for all i, j∈N, j<i, k∈K , (5.16)

)3(,1 ∑
=

+ −−−≤−++
K

kh

h
j

k
ijiiijjj zzyMtedt , for all i, j∈N, j<i, k∈K , (5.17)

)3(
1

,1 ∑
=

+ −−−≤−++
k

h

h
j

k
ijiiijjj zzyMtedt , for all i, j∈N, i<j, k∈K , (5.18)

)3(
1

,1 ∑
=

+ −−−≤−++
k

h

h
j

k
iijjjiii zzyMtedt , for all i, j∈N, i<j, k∈K , (5.19)

)2()(,1 ∑
=

+ −−≤+−++
K

kh

h
j

k
iiijjj zzMtCedt , for all i, j∈N, j<i, k∈K , (5.20)

)2()(,1 ∑
=

+ −−≤+−++
K

kh

h
j

k
ijjiii zzMtCedt , for all i, j∈N, j<i, k∈K , (5.21)

)2()(
1

,1 ∑
=

+ −−≤+−++
k

h

h
j

k
iiijjj zzMtCedt , for all i, j∈N, i<j, k∈K , (5.22)

)2()(
1

,1 ∑
=

+ −−≤+−++
k

h

h
j

k
ijjiii zzMtCedt , for all i, j∈N, i<j, k∈K , (5.23)

Binary variable definitional constraints:

k
iz ∈{0, 1}, for all i∈N0, k∈K , (5.24)

ℒi∈{0, 1}, for all i∈N0, (5.25)

si∈{0, 1}, for all i∈N, (5.26)

yij∈{0, 1}, for all i, j∈N. (5.27)

5.3 Illustration of a counterexample

79

We now use the following counterexample to demonstrate that the optimal

solution obtained with Leung et al.’s MIP approach is not a global optimal solution.

There are 5 processing tanks and 2 hoists for this example (i.e., n = 5, K = 2). The

data for the example is given in Table 5.1, which was generated via our experiment.

Tank 0 and tank 6 are the input station and the output station, respectively. The travel

time between tank i and tank j can be computed as follows: ei, j =ej, i =∑
−

=
+

1

1,

j

ik
kke , i<j and

i, j∈N0∪{ n+1}. The spent time of loaded move i can be computed as the following

way: di=20+ei, i+1, i∈N0. Without loss of generality, we assume that move 0 is

executed by hoist 1 and starts at the beginning of a cycle.

Table 5.1 Data for the counterexample

Tank i 0 1 2 3 4 5

Li − 80s 68s 75s 61s 66s

Ui − 126s 126s 154s 104s 146s

ei, i+ 1 9s 8s 6s 4s 8s 8s

di 29s 28s 26s 24s 28s 28s

For this example, the optimal cycle time obtained with Leung et al.’s MIP

approach is 145s. The time-way diagram for the corresponding optimal cyclic

schedule is shown in Figure 5.1. Note that the numbers around a loaded move in

Figure 5.1 represent its start and end times. We give in Figure 5.2 a feasible schedule

for this example with the cycle time C=142s, which is smaller than the optimal cycle

time obtained with Leung et al.’s approach. Hence, for this example, the optimal

solution obtained with Leung et al.’s approach is actually not a global optimal

solution.

80

Figure 5.1 Optimal cyclic schedule obtained with Leung et al.’s MIP approach.

Figure 5.2 A feasible cyclic schedule with shorter cycle time.

We explain the above observation as follows. Note that constraint (5.6) in Leung

et al.’s model implies that ti+di≤C holds for all loaded moves. This requires that any

loaded move started in the current cycle must be completed within the same cycle.

Hence, in their model, Leung et al. implicitly assumed that no loaded moves are

allowed to go across the cycle (i.e., start in one cycle and end in the next one).

Although such an assumption may simplify the formulation of the problem, it may

81

restrict the possibility of achieving a better feasible solution.

We verify the above observation using the cyclic schedule given in Figure 5.2.

We note that move 1 in Figure 5.2 starts at time 139s and ends at time 167s. Recall

that the cycle time C is 142s. Thus, move 1 goes across the cycle. We see that a better

feasible solution than the one obtained with Leung et al.’s MIP approach was

obtained by allowing move 1 to go across the cycle. Note that the cyclic schedule with

shorter cycle time given in Figure 5.2 was obtained by using our improved MIP

approach, which will be presented in section 5.4.

To sum up, no loaded moves are allowed to go across the cycle in Leung et al.’s

MIP model. For this reason, the optimal solution obtained with Leung et al.’s MIP

approach is not necessarily a global optimal solution.

5.4 The improved MIP model

5.4.1 Reformulation of the time window constraints

To obtain a global optimal solution, the assumption that no loaded moves are

allowed to go across the cycle should be relaxed in the formulation of the problem. To

achieve this purpose, constraint (5.6) in Leung et al.’s model, which requires that no

loaded moves are allowed to go across the cycle, should be replaced with the

following formula:

ti+(di+ei+1, 0)ℒi≤C, for all i∈N0, (5.28)

In what follows, we first extend Leung et al.’s time window constraints

(5.9)−(5.12) by relaxing the assumption that no loaded moves are allowed to go

across the cycle. With such a relaxation, four possible cases, as illustrated in Figure

5.3, should be considered when the time window constraints are formulated. In Figure

5.3, Case (a) (resp. Case (b)) corresponds to the case in which tank i is empty (resp.

occupied) at the beginning of a cycle and move i−1 does not go across the cycle.

Cases (c) and (d) correspond to the situations in which tank i is empty and occupied,

respectively, at the beginning of a cycle and move i−1 goes across the cycle.

In fact, Leung et al. (2004) only considered Cases (a) and (b) in their formulation

of the time window constraints, which lead to constraints (5.9)−(5.12) in their MIP

model. They did not consider Cases (c) and (d) in which move i−1 goes across the

82

cycle.

In what follows, we give a complete formulation of the time window constraints

by considering Cases (a), (b), (c) and (d) in Figure 5.3. To facilitate the reformulation,

we define a new binary variable wi to represent whether move i goes across the cycle:

wi: 0-1 variable. If move i starts and ends within the same cycle, i.e., ti<C and

ti+di≤C, then wi= 0; otherwise, wi= 1, i.e., ti <C and ti+di>C, for i∈N0.

Figure 5.3 Four types of tank states for the time window constraints.

Case (a): si =0 and wi−1=0. It means that tank i is empty at the beginning of a

cycle and move i−1 does not go across the cycle. For this case, tank i is still empty

until a part enters upon completion of move i−1, which happens at time ti–1+di–1. Note

that the part will be unloaded from tank i at time ti. As shown in Case (a) in Figure 5.3,

move i–1 and move i happen within the same cycle. Thus, the actual processing time

in tank i is ti–(ti–1+di–1). Consequently, the time window constraints for tank i can be

formulated as:

 ti−(ti−1+di−1)≤Ui+M(si +wi−1), for all i∈N, (5.29)

ti−(ti−1+di−1)≥Li−M(si +wi−1), for all i∈N, (5.30)

83

Case (b): si =1 and wi−1=0. It means that a part is in process in tank i at the

beginning of a cycle and move i–1 does not go across the cycle. As shown in Case (b)

in Figure 5.3, a part is loaded into tank i at time ti–1+di–1 in the current cycle, and it

will be unloaded from tank i at time ti+C in the next cycle. Thus, the actual processing

time in tank i is ti +C–(ti–1+di–1). Based on the above analysis, the time window

constraints for tank i can be formulated as:

C+ti−(ti−1+di−1)≤Ui+M(1–si +wi−1), for all i∈N, (5.31)

C+ti −(ti−1+di−1)≥Li−M(1–si +wi−1), for all i∈N, (5.32)

Case (c): si =0 and wi−1=1. It means that tank i is empty at the beginning of a

cycle and move i–1 goes across the cycle. For this case, move i–1 starts at time ti–1 in

the current cycle and ends at time ti–1+di–1 in the next cycle, which means that move

i–1 goes across the cycle because we have ti–1<C and ti–1+di–1>C. Thus, as shown in

Case (c) in Figure 5.3, the actual processing time in tank i is ti–(ti–1+di–1–C).

Consequently, the time window constraints for tank i can be formulated as:

ti−(ti−1+di−1–C)≤Ui+M(1–wi−1+ si), for all i∈N, (5.33)

ti−(ti−1+di−1–C)≥Li−M(1–wi−1+ si), for all i∈N, (5.34)

It is interesting to note that constraints (5.10)−(5.12) can correctly impose the

lower and upper bounds on soak time in tank i for this case. To be more specific,

constraint (5.12) imposes the lower bound on soak time in tank i. Constraint (5.10)

would set si to be 1. Consequently, constraint (5.11) would correctly impose the upper

bound on soak time tank i. We also note that in this case, the value of si being 1 is

inconsistent with its definition. By definition, if si =1, there should be a part in tank i

at the beginning of a cycle. However, we see that for this case, tank i is empty at the

beginning of a cycle, as illustrated in Figure 5.2. Hence, if constraints (5.10)−(5.12)

are used to formulate the time window constraint for case (c), si should be redefined.

In our model, constraints (5.33) and (5.34) handle case (c) without such an

inconsistency.

Case (d): si =1 and wi−1=1. It means that a part is in process in tank i at the

beginning of a cycle and move i–1 goes across the cycle. For this case, move i–1

starts at time ti–1 in the current cycle and ends at time ti–1+di–1 in the next cycle. Thus,

as shown in Case (d) in Figure 5.3, the actual processing time in tank i is C+ti

–(ti–1+di–1–C). Based on the above analysis, the time window constraints for tank i can

be formulated as:

84

C+ti−(ti−1+di−1–C)≤Ui+M(2–wi−1–si), for all i∈N, (5.35)

C+ti −(ti−1+di−1–C)≥Li−M(2–wi−1–si), for all i∈N, (5.36)

From the above analysis, constraints (5.29)−(5.36) ensure that the processing

time in each tank is within its prescribed lower and upper bounds. Note that if we set

wi−1=0 for all i∈N, as is the case in Leung et al.’s formulation of the time window

constraints, then constraints (5.29)−(5.32) would be reduced to constraints (5.9)−(5.12)

in Leung et al.’s model.

We now deal with Leung et al.’s time window constraint (5.13). As stated by

Leung et al. (2004), constraint (5.13) ensures that if tank i is occupied by a part at the

beginning of a cycle, then there is a time gap of δ between when the part is unloaded

from tank i (at time ti) and another part is loaded into the tank (at time ti–1+di–1).

Below we extend this formulation to handle the case in which a loaded move is

allowed to go across the cycle. Hereafter, to facilitate the reformulation, we define:

εi: the time required to unload a part from tank i, for all i∈N.

ρi: the time required to load a part into tank i, for all i∈N.

We first consider the case in which move i–1 does not go across the cycle, as

illustrated in Case (b) in Figure 5.3. In this case, the unloading operation of the

previous part from tank i starts at time ti and ends at time ti+εi. The loading operation

of the next part into tank i starts at time ti–1+di–1–ρi and ends at time ti–1+di–1. To avoid

the collision in using tank i, it follows that:

(ti+εi)−(ti−1+di−1− ρi)≤M(1–si +wi−1), for all i∈N. (5.37)

Similarly, if move i–1 goes across the cycle, as illustrated in Cases (c) and (d) in

Figure 5.3, we have:

(ti+εi)−(ti−1+di−1− ρi)≤M(1–wi−1+ si), for all i∈N, (5.38)

(ti+εi)−(ti−1+di−1− ρi−C)≤M(2–wi−1– si), for all i∈N. (5.39)

Note that Leung et al. (2004) only consider Case (b) in Figure 5.3, in which

move i–1 does not go across the cycle. If we set wi−1=0 for all i∈N and set δ =εi+ρi,

then constraint (5.37) would be equivalent to constraint (5.13) in Leung et al.’s model.

Note also that Case (a) is not required to be considered here because in this case, the

time window constraint (5.30) guarantees that ti ≥ti−1+di−1+Li. As Li is usually greater

than εi+ρi, there is sufficient time gap between the loading and unloading operations

85

of the (same) part and no collision would happen between the two hoists executing the

loading and unloading operations, respectively.

In addition, in order to ensure variable wi to be well defined, the following

constraints must hold:

ti<C, for all i∈N, (5.40)

ti+di ≤C+Mwi, for all i∈N, (5.41)

ti+di>C−M(1−wi), for all i∈N, (5.42)

wi+ 1
iz ≤1, for all i∈N0, (5.43)

wi∈{0,1}, for all i∈N0. (5.44)

Constraint (5.40) says that the start time of move i should be less than the cycle

time C. Constraints (5.40) and (5.42) guarantee that if wi =1, then move i starts in the

current cycle and ends in the next one. On the other hand, constraints (5.40) and (5.41)

ensure that move i starts and ends within the same cycle if wi =0. Constraint (5.43)

ensures that if move i is executed by hoist 1(i.e.1iz =1), then it cannot go across the

cycle as explained below. In each cycle, hoist 1 would first execute move 0 and then

other moves assigned to it, and finally return to the input station to start move 0 of the

next cycle, which happens at time C. Hence, if move i is assigned to hoist 1, it must

be finished within a cycle and would not go across the cycle.

In order to facilitate the formulation of constraints (5.40) and (5.42) using

CPLEX, we add a sufficiently small constant δ into them and they can be equivalently

written as:

ti+δ ≤C, for all i∈N, (5.45)

ti+di≥C+δ −M(1−wi), for all i∈N. (5.46)

5.4.2 Other improvements on Leung et al.’s MIP model

In this subsection, we report two other improvements on Leung et al.’s model.

We first demonstrate that the binary variable ℒi is unnecessary to be defined in Leung

et al.’s model. To be more specific, constraint (5.6) ensures that if move i is the last

move executed by hoist 1, then upon completion of move i, hoist 1 has sufficient time

86

to travel back to the input station (i.e. tank 0) to start move 0 of the next cycle. In fact,

as the hoist travelling times satisfy the triangular inequality, constraint (5.6) can be

replaced with the following constraint:

ti+(di+ei+1, 0) 1
iz ≤C, for all i∈N0, (5.47)

The above relation says that ti+di+ei+1, 0 ≤C holds for all moves executed by hoist

1. Similar relation can also be found in Chen et al. (1998) (see Inequality (8)) for the

single-hoist scheduling problem. Thus, it is unnecessary to define the binary variable

ℒi in Leung et al.’s model. Consequently, constraints (5.2)−(5.5), (5.25) and (5.28)

modified from constraint (5.6) can be removed from the model.

We now show that some collision-avoidance constraints given in Leung et al.’s

MIP model are unnecessary. Suppose that moves i and j are performed by hoists k and

h, respectively. Without loss of generality, we assume that i >j for any pair of moves

(i, j). That is, given any pair of moves (i, j), we designate the larger number of move

as i and the smaller number of move as j. For example, if the collision avoidance

constraint between move 2 and move 4 is to be considered, we set i=4 and j=2 and

consider the possible collision between them.

As the part processing sequence is same as the tank arrangement sequence, it is

understandable that the collision may happen between any two hoists k and h using a

common segment of the track, i.e., k<h, i >j. That is to say, no collision would happen

in the situation of k>h, i >j+1. It should be noted that constraints (5.37)–(5.39) ensure

that no collision would happen between two hoists sharing the same tank (i.e., k >h,

i=j+1), where parts are loaded/unloaded by one hoist and unloaded/loaded by another

one.

Based on above analysis, we only need to consider the case k<h, i >j in the

formulation of the hoist collision avoidance constraints. In this case, hoists k and h

would pass through a common segment of the track. In order to guarantee that no

collision would happen between them during the execution of moves i and j, they

cannot be executed at the same time. That is, either move j must start after move i has

finished or move i must start after move j has finished in order to avoid the collision.

Let us first suppose that move j starts after move i has finished. In this case, move i

finishes at time ti+di, hoist k will pass through tank j at time ti+di+ei+1, j. Knowing that

move j executed by hoist h starts at time tj, to avoid the possible collision, hoist k must

87

pass through tank j before time tj. Thus, we have:

 ti+di+ei+1, j≤tj, for all k≤h, i>j, i, j∈N, k, h∈K and ti<tj, (5.48)

Similarly, if move i starts after move j has finished, we have:

 tj+dj+ej+1,i≤ti, for all k≤h, i>j, i, j∈N, k, h∈K and tj<ti, (5.49)

Besides, consider the possible collision between moves i and j in two

consecutive cycles, we must have:

 tj+dj+ej+1,i≤C+ti, for all k≤h, i>j, i, j∈N, k, h∈K , (5.50)

 ti+di+ei+1, j≤C+tj, for all k≤h, i>j, i, j∈N, k, h∈K , (5.51)

Based on above analysis, for any two moves i and j performed by hoists k and h,

respectively, (5.48)−(5.51) are their corresponding collision-avoidance constraints.

Note that by adding previously defined binary variables into (5.48)−(5.51), they can

be transformed into constraints (5.16), (5.17), (5.20), (5.21). We thus can find that

constraints (5.16), (5.17), (5.20), (5.21) are sufficient, and constraints (5.18), (5.19),

(5.22) and (5.23) are unnecessary and can be removed from the model.

In what follows, we give an illustration to further demonstrate the above

observation. Let us consider the collision avoidance constraints between move 3 and

move 4 in Figure 5.1 with K=2. We have from Figure 5.1 that y34=0, y43=1, i.e., move

3 starts after move 4 has finished. We also have 1
3z =0, 2

3z =1, 1
4z =1 and 2

4z =0, i.e.,

move 3 and move 4 are executed by hoist 2 and hoist 1, respectively. We now see for

this hoist assignment, what relation between the start times of move 3 and move 4

should satisfy to avoid the possible collision between them. As required by Leung et

al. (2004), we first let i=3 and j=4 and substitute the values of y34=0, y43=1, 1
3z =0,

2
3z =1, 1

4z =1 and 2
4z =0 into the collision avoidance constraints (5.18), (5.19), (5.22)

and (5.23). We obtain the following inequalities:

t4+d4+e5,3≤t3 (5.52)

t4+d4+e5,3≤C+t3 (5.53)

t3+d3+e4,4≤C+t4 (5.54)

88

As required by Leung et al. (2004), we now let i=4 and j=3. By substituting the

above values into the collision avoidance constraints (5.16), (5.17), (5.20) and (5.21),

we obtain exactly the same inequalities as (5.52)−(5.54). Hence, constraints (5.18),

(5.19), (5.22), (5.23) can be removed from the model with the consideration of

constraints (5.16), (5.17), (5.20), (5.21).

The model becomes more compact due to the two improvements presented in

this subsection.

5.4.3 The improved MIP model

With the extension presented above, the improved MIP model allowing loaded

moves to go across the cycle can be formulated as follows:

Minimize C

subject to

Hoist assigning and cycle-time definitional constraints: (5.1), (5.7), (5.8), (5.47).

Time window constraints: (5.29)−(5.39).

Hoist capacity constraints: (5.14)−(5.15).

Collision avoidance constraints: (5.16), (5.17), (5.20), (5.21).

Move cycle-crossing constraints: (5.41), (5.43), (5.45), (5.46).

Binary variable definitional constraints: (5.24), (5.26), (5.27), (5.44).

Note that we do not consider the safe distance between the hoists in the above

improved model in order to facilitate the comparison with Leung et al.’s model.

However, the model can be easily modified to take the safe distance into account. Let

β be the minimum interval between two adjacent hoists on the track to avoid collision.

For simplicity, β is measured in time and is equal to the width of the hoist divided by

its travelling speed. For instance, if the safe distance is considered, constraint (5.16)

can be rewritten as follows:

)3()(,1 ∑∑
==

+ −−−≤−−+++
K

kh

h
j

k
iijj

K

kh

k
i

h
jjiii zzyMtkzhzedt β ,

for all i, j∈N, j<i, k∈K (5.55)

89

In the above inequality, if 1=k
iz and ∑

=

=
K

kh

h
jz 1 for some h≥k, then we

have ββ)()(khkzhz
K

kh

k
i

h
j −=−∑

=

, which is the minimum safe distance required

between hoists k and h to avoid collision. Similar modifications can also be done to

constraints (5.17), (5.20), (5.21), (5.37)−(5.39).

5.5 Computational results

In this section, we evaluate our improved model using both benchmark and

randomly generated instances. Both Leung et al.’s model and our improved model

were coded using C++. The models were then solved using the MIP solver of CPLEX

(Version 12.4). All computational experiments were conducted on a HP PC with a

Pentium IV Processor 3.0GHZ and on a windows XP environment.

5.5.1 Computational results on benchmark instances

We compare our improved model with Leung et al.’s model using five

benchmark instances in the literature: BO1, BO2, Phillips and Unger (P&U), Ligne1

and Ligne2. Their data can be found in Leung et al. (2004), Phillips and Unger (1976)

and Manier (1994). For these benchmark instances, the part processing sequence is

assumed to be the same as the tank arrangement sequence.

Table 5.2 is used to test the effectiveness of the two improvements presented in

subsection 5.4.2 of Section 5.4. Note that the partially improved model is derived by

removing the two improvements presented in subsection 5.4.2 of Section 5.4 from our

improved model. The optimal solutions obtained with the partially improved model

and our improved model must be the same. In Table 5.2, “B&B” indicates the size of

branch-and-bound tree measured in the number of nodes, while “CPU” denotes the

computation time measured in CPU seconds. We can see from Table 5.2 that the

computation times spent by our improved model are generally smaller than those

spent by the partially improved model. However, the B&B sizes seem to show a

mixed trend among these instances.

Table 5.3 is used to demonstrate if a smaller cycle time can be found by our

improved model compared with Leung et al.’s model. In Table 5.3, the numbers on

the left and right sides of the slash (/) are the optimal cycle times obtained with Leung

90

et al.’s model and our improved model, respectively. The number marked with *

means that at least one hoist move in the optimal solution goes across the cycle. We

can see that both Leung et al.’s model and our improved model obtained the same

optimal solutions for most instances except problem P&U with K=3. For this problem,

the optimal cycle time obtained with Leung et al.’s model is 205 while a better

solution with the cycle time 198 was found by our improved model. For other

solutions marked with *, although at least one hoist move in the optimal solution

obtained with our improved model goes across the cycle, the optimal cycle times

obtained with the two models remain the same.

Table 5.2 Comparison of computation times for benchmark instances

Instances Partially improved model Our improved model

B&B CPU B&B CPU

BO1(K=2) 1928 1.03 708 0.44

BO1(K=3) 952 1.38 612 0.55

BO1(K=4) 283 0.81 1544 1.27

BO2(K=2) 1421 0.89 572 0.44

BO2(K=3) 1925 2.25 60 0.38

BO2(K=4) 151 0.78 1556 1.99

P&U(K=2) 43759 21.44 27086 9.94

P&U(K=3) 60081 45.88 29279 14.84

P&U(K=4) 2147 5.92 4776 4.77

Ligne1(K=2) 2419 2.47 3107 1.70

Ligne1(K=3) 3049 3.03 1513 1.02

Ligne1(K=4) 1939 2.38 2487 2.44

Ligne2(K=2) 2488 1.89 1501 1.08

Ligne2(K=3) 1200 2.53 1666 1.44

Ligne2(K=4) 1387 2.97 2040 2.13

Table 5.3 Comparison of optimal cycle times for benchmark instances

Instances K=2 K=3 K=4

BO1 255.2/255.2* 255.2/255.2 255.2/255.2*

BO2 255.2/255.2 255.2/255.2* 255.2/255.2

P&U 251/251* 205/198* 170/170

Ligne1 317.5/317.5 317.5/317.5 317.5/317.5*

Ligne2 675/675 675/675* 675/675*

We note that the optimal cycle times remain unchanged when the number of

hoist increases to 3 and 4 for problems BO1, BO2, Ligne1 and Ligne2. We explain

91

the above observation as follows. In a multi-hoist system, the cycle time C is bounded

from below by:

)(max iii
Ni

LC ρε ++≥
∈

. (5.56)

That is to say, the cycle time C is greater than or equal to the sum of minimum

processing time and the unloading and loading times in any tank. For problems BO1,

BO2, Ligne1 and Ligne2, the optimal cycle time for K=2 reaches the lower bound

given by (5.56). As a result, the optimal cycle time remains unchanged when the

number of hoist increases. In other words, for these cases (K≥2), the critical resource

becomes processing tanks and not transportation hoist.

5.5.2 Computational results on randomly generated instances

Randomly generated instances were also used to further evaluate the

performance of our improved model. All the random instances were generated as

described below. We set K∈{2, 3, 4}, and n∈{8, 10, 12, 14}. Let U(a, b) be a uniform

distribution between parameters a and b. The lower bound on processing time was

generated as Li=U(50, 200). The upper bound on processing time was generated using

the following three scenarios with different widths of time windows: Ui=Li,

Ui=Li+U(0, 50) and Ui=Li+U(0, 100). The travelling time between adjacent tanks was

generated as follows: ei, i+1 =U(2, 6). The travelling time between tank i and tank j can

be computed with the formula ei, j=ej, i=∑
−

=
+

1

1,

j

ik
kke , i<j, i, j∈N0∪{ n+1}. The loaded

move time is computed by di =25+ei, i+1, i∈N0, where εi+ρi =25, i∈N. For each given

values of n and K, 20 random instances were generated.

Tables 5.4, 5.5 and 5.6 are used to test the effectiveness of the two improvements

presented in subsection 5.4.2 of Section 4 under three scenarios Ui=Li, Ui=Li+U(0, 50)

and Ui=Li+U(0, 100), respectively. For each given values of n and K, the data for

columns “B&B” and “CPU” in these tables represent the average size of

branch-and-bound trees and average computation time (in CPU seconds) among 20

test instances, respectively. We can see from these tables that the B&B sizes explored

by our improved model are generally smaller than those explored by the partially

improved model. However, the computation times spent by our improved model are

always shorter than those spent by the partially improved model.

92

Table 5.4 Comparison of computation times for random instances Ui =Li

Random

Instances

Partially improved model Our improved model Ratio of

CPUs B&B CPU B&B CPU

n=8, K=2 1375 0.49 1075 0.31 1.58

n=8, K=3 1192 0.69 980 0.44 1.57

n=8, K=4 1337 0.99 984 0.48 2.06

n=10, K=2 3994 1.88 3382 1.26 1.49

n=10, K=3 5410 4.52 4783 2.44 1.85

n=10, K=4 3671 3.89 3121 1.96 1.99

n=12, K=2 6983 4.89 6514 3.11 1.57

n=12, K=3 12449 11.30 8504 4.72 2.39

n=12, K=4 5554 8.69 4947 3.95 2.20

n=14, K=2 11138 9.27 8753 5.05 1.84

n=14, K=3 51413 43.58 20324 11.15 3.91

n=14, K=4 263390 288.25 18562 11.38 25.33

Table 5.5 Comparison of computation times for random instances Ui =Li +U(0, 50)

Random

Instances

Partially improved model Our improved model Ratio of

CPUs B&B CPU B&B CPU

n=8, K=2 1368 0.53 857 0.31 1.71

n=8, K=3 1592 0.89 1612 0.64 1.39

n=8, K=4 1209 0.94 1051 0.56 1.69

n=10, K=2 6028 2.91 5129 1.77 1.64

n=10, K=3 7252 5.92 6103 2.83 2.09

n=10, K=4 4283 4.39 4165 2.34 1.88

n=12, K=2 18644 9.40 15309 5.14 1.83

n=12, K=3 39609 24.19 27505 10.20 2.37

n=12, K=4 6844 9.21 13697 6.56 1.40

n=14, K=2 39998 23.63 34652 13.37 1.77

n=14, K=3 203217 150.39 112123 43.39 3.47

n=14, K=4 674087 696.77 128213 50.15 13.89

We explain the above observations as follows. In fact, our improved model is

more compact than the partially improved model in terms of the number of variables

and constraints. With our improved model, a smaller linear program is solved at each

node, which requires shorter computation time at each node. Hence, our improved

model is always more efficient (in terms of the computation time) than the partially

improved model although the B&B size of the former is not always smaller than that

of the latter. This means that the two improvements presented in subsection B of

Section 5.4 are effective. Furthermore, we can also notice that the ratios of CPU times

93

spent by the partially improved model and our improved model increase generally

with the values of n and K. Therefore, it seems that the larger the instance size,

generally the more saving in computation time achieved by our improved model.

Table 5.6 Comparison of computation times for random instances Ui =Li +U(0, 100)

Random

Instances

Partially improved model Our improved model
Ratio of CPUs

B&B CPU B&B CPU

n=8, K=2 1514 0.58 1326 0.39 1.49

n=8, K=3 1773 0.93 1371 0.56 1.66

n=8, K=4 1203 0.95 1107 0.63 1.51

n=10, K=2 7833 3.73 5537 1.93 1.93

n=10, K=3 6206 5.13 4689 2.31 2.22

n=10, K=4 3334 3.80 2977 2.00 1.90

n=12, K=2 27397 12.52 21992 6.76 1.85

n=12, K=3 22239 16.30 15334 6.59 2.47

n=12, K=4 10798 10.58 16092 6.87 1.54

n=14, K=2 140203 82.14 79586 27.94 2.94

n=14, K=3 239951 177.27 154389 59.25 2.99

n=14, K=4 616542 722.49 261087 98.80 7.31

Table 5.7 Average number of improved instances with shorter cycles for random instances

Random

Instances

Ui=Li Ui=Li+U(0,50) Ui=Li+U(0,100)

n=8, K=2 4 2 0

n=8, K=3 12 1 1

n=8, K=4 10 1 0

n=10, K=2 2 4 2

n=10, K=3 14 3 1

n=10, K=4 13 2 0

n=12, K=2 9 3 2

n=12, K=3 10 6 2

n=12, K=4 15 4 1

n=14, K=2 3 1 2

n=14, K=3 14 6 3

n=14, K=4 12 2 2

Table 5.7 indicates that how many instances for which the optimal cycle time

obtained with our improved model is smaller than that by Leung et al.’s model among

20 test instances. We can see from Table 5.7 that the number of improved instances

seems to decrease generally with the width of the time windows. That is, the smaller

94

the width of the time windows, generally the larger the number of improved instances

achieved by our improved model. We explain the above observation as follows. When

the width of the time window is large, it provides a greater possibility of gaining a

better solution with Leung et al.’s model by exploring the flexibility resulting from

the time windows. Thus, it provides a smaller possibility of achieving a better solution

with our improved model compared with the one obtained by Leung et al.’s model.

5.6 Summary

In this chapter, we gave a counterexample to demonstrate that the optimal

solution obtained with the existing MIP approach for the multi-hoist cyclic scheduling

problem with unidirectional part flow is not necessarily a global optimal solution. To

find a global optimal solution, we proposed an improved MIP approach, in which

loaded moves are allowed to go across the cycle. Computational results demonstrated

that the smaller the width of the processing time windows, generally the greater

possibility of achieving a better optimal solution by allowing the loaded moves to go

across the cycle. The results also showed that our improved MIP approach is more

efficient than Leung et al.’s MIP approach.

95

Chapter 6 Conclusions and Future Research

6.1 Conclusions

Hoist scheduling problem with processing time windows (HSP for short) is often

encountered in surface treatment industry, which plays a key role in changing surface

properties of metals and other electronics. A typical example from surface treatment

industry is the automated electroplating plant, in which computer-controlled hoists are

widely used to transport part from one processing stage to another. This research

focused on the hoist scheduling issues arising from automated electroplating lines.

More precisely, three typical hoist scheduling problems with processing time

windows have been examined in this thesis: the basic cyclic HSP, the cyclic HSP with

bi-objective and the cyclic HSP with multiple hoists. These scheduling problems are

all NP-complete.

The main contributions of this thesis are summarized as follows. Firstly, we have

proposed a hybrid QEA (HQEA) to find the best hoist move schedule with minimal

cycle time for the basic HSP. As usual, each chromosome is encoded by Q-bits in the

proposed HQEA. For a better population diversification, a new decoding scheme

consisting of three different procedures was proposed for transforming Q-bits

chromosome into hoist move sequences. It has several advantages over the commonly

used ones, such as better ability to exploit the diversity of Q-bits chromosome and

shorter length of chromosome. As infeasible hoist move sequences are inevitable, a

simple and effective repairing procedure was designed to deal with this issue. Besides,

quantum-rotation gate and adaptive genetic operators were applied to evolve the

population towards best solution. The experimental results indicate that the proposed

algorithm can provide high-quality solutions within a reasonable time. Our

contribution was valorized through one communication (Lei et al., 2013) and one

submitted paper in the international journal Applied Soft Computing (Lei et al., 2014).

Secondly, we formulated a mathematical model and proposed an efficient

bi-objective QEA with local search (LS) procedure for a cyclic HSP with minimizing

the cycle time and the production cost simultaneously. More precisely, a bi-objective

mathematical model was formulated using the MPI approach (Levner et al., 1997)

providing that the actual processing times are known (In fact they are decision

variables). After that, an efficient QEA with LS procedure was proposed for

enumerating the actual processing times and finding a set of Pareto-optimal solutions

96

for the studied problem. Particularly, for providing a better diversity of population,

each chromosome is converted into two different individuals by a double-decoding

scheme. For finding the non-dominated individuals, Pareto-dominance procedure was

suggested for individual evaluation. A specific chaotic quantum-rotation gate was

designed for updating Q-bits individuals. To increase the diversity, mutation operator

was also implanted. Moreover, an efficient LS procedure was periodically applied to

improve all the non-dominated solutions stored in external archive.

A real zinc electroplating problem was used to investigate the performance of the

proposed algorithm. We have run the bi-objective QEA algorithm with different

parameter settings. For testing its performance, we also run the algorithm without LS

procedure. Computational results show that the proposed algorithm is efficient in

solving the studied problem, and the LS procedure is very helpful for improving the

solution quality. Our results were presented at the international conference IEEE ICIII

2014 (Lei et al., 2014).

At last, we have proposed an improved MIP model for the cyclic HSP with

unidirectional multiple hoists to minimize the cycle time. Our improved MIP model

was formulated with two improvements on Leung et al.’s MIP model (Leung et al.,

2004). The first improvement is the reformulation of the time window constraints by

allowing the loaded hoist moves to start at the one cycle and end at the next one if

necessary, which is a relaxation of the existing assumption that all loaded hoist moves

start and end within the same cycle used in most related works, such as Leung et al.

(2004), Chtourou et al. (2013) and Jiang and Liu (2014). The second one is to remove

some unnecessary hoist collision-avoidance constraints from Leung et al.’s MIP

model. Based on the above works, an improved and relatively more compact MIP

model was formulated for the studied problem.

Computational results verify that our improved MIP approach can always find

the global optimal solution for the studied problem, while the existing ones may

identify a non-optimal solution to be an optimal one. Our results were published in the

international journal IEEE Transactions on Automation Science and Engineering (Che

et al., 2014).

6.2 Limitations and future research

As described above, we have proposed efficient scheduling approaches for the

97

considered HSPs in this thesis. However, there are a lot of limitations in this search,

so it still has enough room to conduct further research. In what follows, we discuss

the limitations of this thesis and some potential directions for future research.

In chapter 3, the studied basic cyclic HSP only deals with a single part type.

However, to improve the productivity and meet the diverse demands, multi-type parts

are often produced within a same cycle in practice. Besides, duplicated tanks are often

used to overcome the bottleneck processing stages in practices. Note that for HSP

with multi-type parts and duplicated tanks, part input sequence must be optimized

along with the sequencing of hoist moves. So how to extend the proposed HQEA for

solving multi-type parts HSP with duplicated tanks is worth investigating in future. A

key issue for the algorithm extension is to develop an efficient encoding and decoding

scheme for sequencing of parts and hoist moves.

In chapter 4, optimizing HSP with two different objectives (i.e. cycle time and

production cost) was investigated. To reduce the problem complexity, the second

objective (i.e. the production cost) was supposed to be a linear function of the actual

processing times. But from the practical point of view, a non-linear objective function

may be more suitable for simulating the process of resource consumption. Thus,

future interesting research direction is to introduce the non-linear objective function

into the formulated bi-objective model. Moreover, it is also interesting to extend the

proposed model and algorithm for solving the HSP with more than two objectives.

In chapter 5, all tanks are arranged in a row according to their index numbers,

and each part is supposed to be processed through tank 1 to tank n. In other words, the

part is moved in only one direction, i.e. from left to right. However, the part

processing sequence may be different from the tanks layout in many real-world

applications. Consequently, the hoist may move the part from left to right and from

right to left. Therefore, how to extend the developed MIP model to the multi-hoist

system with bidirectional part flow is worth investigating in future. Moreover, it is

also worthwhile to develop efficient QEAs for multi-hoist scheduling problem with

multiple objectives based on this research.

98

Bibliography

Alcaide, D., Chu, C., Kats, V., Levner, E., Sierksma, G., 2007. Cyclic multiple-robot
scheduling with time-window constraints using a critical path approach.
European Journal of Operational Research, 177(1): 147–162.

Armstrong, R., Gu, S., Lei, L., 1996. A greedy algorithm to determine the number of
transporters in a cyclic electroplating process. IIE Transactions, 28(5): 347−355.

Armstrong, R., Lei, L., Gu, S., 1994. A bounding scheme for deriving the minimal
cycle time of a single-transporter N-stage process with time-window constraints.
European Journal of Operational Research, 78(1): 130−140.

Baptiste, P., Legeard, B., Manier, M.-A., Varnier, C., 1993. Optimization with
constraint logic programming: the hoist scheduling problem solved with various
solvers. Application of Artificial Intelligence in Engineering, Toulouse, France,
Elsevier Science Publishers B. V., Amsterdam, 2(June-July 1993): 599−614.

Bloch, C., Manier, M.-A., Baptiste, P., Varnier, C., 2008. Hoist scheduling problem.
Chapter 8 in book: Production Scheduling, Control Systems, Robotics and
Manufacturing Series. New York, NY, USA: Wiley, 2008, 193–231.

Chauvet, F., Levner, E., Meyzin, L.K., Proth, J.-M., 2000. On-line scheduling in a
surface treatment system. European Journal of Operational Research. 120(2):
382–392.

Che, A, Chu, C., 2004. Single-track multi-hoist scheduling problem: a collision-free
resolution based on a branch-and-bound approach. International Journal of
Production Research, 42(12): 2435–2456.

Che, A., Chu, C., 2007. Cyclic hoist scheduling in large real-life electroplating lines.
OR Spectrum, 29(3): 445–470.

Che, A., Lei, W., Feng, J., Chu, C., 2014. An improved mixed integer programming
approach for multi-hoist cyclic scheduling problem. IEEE Transactions on
Automation Science and Engineering, 11(1): 302–309.

Che, A., Zhou, Z., Chu, C., Chen, H., 2011. Multi-degree cyclic hoist scheduling with
time window constraints. International Journal of Production Research, 49(19):
5679–5693.

Chen, H.X., Chu, C., Proth, J.M., 1998. Cyclic scheduling of a hoist with time
window constraints. IEEE Transaction on Robotics and Automation, 14(1):
144−152.

Chtourou, S., Manier, M.-A., Loukil, T., 2013. A hybrid algorithm for the cyclic hoist
scheduling problem with two transportation resources. Computers & Industrial

99

Engineering, 65(3): 426–437.

Crama, Y., Kats, V., Van de Klundert, J., Levner, E., 2000. Cyclic scheduling in
robotic flowshops. Annals of Operations Research, 96(1–4): 97–124.

Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2): 182–197.

Dettmer, R., 1993. Chaos and engineering, IEE Review, 39 (5): 199−203.

Deutsch, D., 1985. Quantum theory, the church-turing principle and the universal
quantum computer. Proceeding of the Royal Society of London, 97−117.

El Amraoui, A., Manier, M.-A., El Moudni, A., Benrejeb, M., 2008. A mixed linear
program for a multi-part cyclic hoist scheduling problem, International Journal
of Science and Techniques of Automatic control & Computer Engineering, 11,
special issue, 612–623.

El Amraoui, A., Manier, M.-A., El Moudni, A., Benrejeb, M., 2013a. A linear
optimization approach to the heterogeneous r-cyclic hoist scheduling problem.
Computers & Industrial Engineering, 65(3): 360–369.

El Amraoui, A., Manier, M.-A., El Moudni, A., Benrejeb, M., 2013b. A genetic
algorithm approach for a single hoist scheduling problem with time windows
constraints. Engineering Applications of Artificial Intelligence, 26(7):
1761–1771.

Fargier, H., Lamothe, J., 2001. Handling soft constraints in hoist scheduling problems:
the fuzzy approach. Engineering Applications of Artificial Intelligence, 14(3):
387–399.

Feng, J. Che, A., Wang, N., 2014. Bi-objective cyclic scheduling in a robotic cell with
processing time windows and non-Euclidean travel times. International Journal
of Production Research, 52(9): 2505–2518.

Fleury, G., Gourgand, M., Lacomme, P., 2001. Metaheuristics for the stochastic hoist
scheduling problem (SHSP). International Journal of Production Research,
39(15): 3419−3457.

Ge, Y., Yih, Y., 1995. Crane scheduling with time windows in circuit board production
lines. International Journal of Production Research, 33(5): 1187–1199.

Gu, J., Gu, M., Cao, C., Gu, X., 2010. A novel competitive co-evolutionary quantum
genetic algorithm for stochastic job shop scheduling problem. Computers &
Operations Research, 37(5): 927–937.

Gu, J., Gu, X, Gu, M., 2009. A novel parallel quantum genetic algorithm for

100

stochastic job shop scheduling. Journal of Mathematical Analysis and
Applications, 35(2009): 63–81.

Han, K.-H., Kim, J.-H., 2002. Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE Transactions on Evolutionary Computation,
6(6): 580–593.

Han, K.-H., Kim, J.-H., 2004. Quantum-inspired evolutionary algorithms with a new
termination criterion, H-gate and two-phase scheme. IEEE Transactions on
Evolutionary Computation, 8(2): 156–169.

Hey, T., 1999. Quantum computing: an introduction. Computing&Control
Engineering Journal, 10(3): 105–112.

Hindi, K., Fleszar, K., 2004. A constraint propagation heuristic for the single-hoist,
multiple-products scheduling problem. Computers & Industrial Engineering,
47(1): 91–101.

Jegou, D., Kim, D.-W., Baptiste, P., Lee, K. H., 2006. A contract net based intelligent
agent system for solving the reactive hoist scheduling problem. Expert Systems
with Applications, 30(2): 156–167.

Jiang, Y., Liu, J., 2014. A new model and an efficient branch and bound solution for
cyclic multi-hoist scheduling. IIE Transactions, 46(3): 249–262.

Kats, V., 1982. An exact optimal cyclic scheduling algorithm for multi-operator
service of a production line. Automation and Remote Control, 42(4II): 538–543.

Kats, V., and Levner, E., 2011. Cyclic routing algorithms in graphs: Performance
analysis and applications to robot scheduling. Computers & Industrial
Engineering, 61(2): 279–288.

Kats, V., Lei, L., Levner, E., 2008. Minimizing the cycle time of multiple-product
processing networks with a fixed operation sequence, setups, and time-window
constraints. European Journal of Operational Research, 187(3): 1196–1211.

Kats, V., Levner, E., 2011a. Parametric algorithms for 2-cyclic robot scheduling with
interval processing times. Journal of Scheduling, 14(3): 267−279.

Kats, V., Levner, E., 2011b. A faster algorithm for 2-cyclic robotic scheduling with a
fixed robot route and interval processing times. European Journal of Operational
Research, 209(1): 51–56.

Kim, J.H., Lee, T.E., 2008. Schedulability analysis of time-constrained cluster tools
with bounded time variation by an extended Petri Net. IEEE Transactions on
Automation Science and Engineering, 5(3): 490–503.

Kujawski, K., Świątek, J., 2011. Electroplating production scheduling by cyclogram
unfolding in dynamic hoist scheduling problem. International Journal of
Production Research, 49(17): 5355–5371.

101

Kuntay, I., Xu, Q., Uygun, K., Huang, Y., 2006. Environmentally Conscious Hoist
Scheduling for Electroplating Facilities. Chemical Engineering Communications,
193(3): 273–292.

Lamothe, J., Correge, M., Delmas, J., 1995. A dynamic heuristic for the real-time
hoist scheduling problem. Proceedings of 1995 INRIA/IEEE Symposium on
Emerging Technologies and Factory Automation (ETFA), 2: 161–168.

Lei, L., 1993. Determining the optimal starting times in a cyclic schedule with a given
route. Computers & Operations Research, 20(8): 807−816.

Lei, L., Liu, Q., 2001. Optimal cyclic scheduling of a robotic processing line with
two-product and time-window constraints. INFOR, 39(2): 185–199.

Lei, L., Wang, T. J., 1991. The minimum common-cycle algorithm for cyclic
scheduling of two material handling hoists with time window constraints.
Management Science, 37(12): 1629−1639.

Lei, L., Wang, T. J., 1994. Determining optimal cyclic hoist schedules in a single-hoist
electroplating line. IIE Transactions, 26(2): 25−33.

Lei, W., Che, A., Chu, C., 2014. Optimal cyclic scheduling of a robotic flowshop with
multiple part types and flexible processing times. European Journal of Industrial
Engineering, 8(2): 143–167.

Lei, W., Che, A., Manier, H., Manier, M-A., 2014. Quantum-inspired evolutionary
algorithm for bi-objective scheduling in an automated electroplating line. 7th
International Conference on Information Management, Innovation Management
and Industrial Engineering (ICIII), 2:157–160, October 25–26, Xi’an, China.

Lei, W., Manier, H., Manier, M-A., 2013. A quantum-inspired evolutionary for the
cyclic hoist scheduling problem. Quatorzième Congrès de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision (ROADEF’13), Troyes,
France (13−15, février, 2013).

Lei, W., Manier, H., Manier, M-A., Che, A., 2014. A hybrid quantum evolutionary
algorithm with improved decoding scheme for a robotic flowshop scheduling
problem. Applied soft computing, under review.

Leung, J., Zhang, G.Q., 2003. Optimal cyclic scheduling for printed circuit board
production lines with multiple hoists and general processing sequence. IEEE
Transactions on Robotics and Automation, 19(3): 480–484.

Leung, J.M.Y., Zhang, G.Q., Yang, X.G., Mak, R., Lam, K., 2004. Optimal cyclic
multi-hoist scheduling: a mixed integer programming approach. Operations
Research, 52(6): 965–976.

Levner, E., Kats, V., de Pablo, D.A.L., 2007. Cyclic scheduling in robotic cells: An
extension of basic models in machine scheduling theory. Multiprocessor
Scheduling: Theory and Applications, I-TECH Education and Publishing, Vienna,

102

Austria, 1–20.

Levner, E., Kats, V., de Pablo, D.A.L., Cheng, T.C.E., 2010. Complexity of cyclic
scheduling problems: A state-of-the-art survey. Computers & Industrial
Engineering, 59(2): 352–361.

Levner, E., Kats, V., Levit, V., 1997. An improved algorithm for cyclic flowshop
scheduling in a robotic cell. European Journal of Operational Research, 97(3):
500−508.

Li, B., Wang, L., 2007. A Hybrid quantum-inspired genetic algorithm for
multiobjective flow shop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 37(3): 576–591.

Li, P., Li, S., 2008. Quantum-inspired evolutionary algorithm for continuous spaces
optimization based on Bloch coordinates of qubits. Neurocomputing, 72(1–3):
581–591.

Li, X., Fung, R.Y.K., 2014. A mixed integer linear programming solution for single
hoist multi-degree cyclic scheduling with reentrance. Engineering Optimization,
46(5): 704–723.

Lim, M.-J., 1997. A genetic algorithm for a single hoist scheduling in the
printed-circuit-board electroplating line. Computers & Industrial Engineering,
33(3−4): 789−792.

Liu, J.Y., Jiang, Y., Zhou, Z.L., 2002. Cyclic scheduling of a single hoist in extended
electroplating lines: a comprehensive integer programming solution. IIE
Transactions, 34(10): 905–914.

Livshits, E.M., Mikhailetsky, Z.N., Chervyakov, E.V., 1974. A scheduling problem in
an automated flow time with an automated operator. Computational Mathematics
and Computerized Systems, 5, 151–155, in Russian.

Mak, R. W.T., Gupta, S. M., Lam, K., 2002. Modeling of material handling hoist
operations in a PCB manufacturing facility. Journal of Electronics
Manufacturing, 11(1): 33–50.

Manier, M.-A, Bloch, C., 2003. A classification for hoist scheduling problems.
International Journal of Flexible Manufacturing Systems, 15(1): 37−55.

Manier, M.-A., 1994. Contribution à l’ordonnancement cyclique du système de
manutention d’une ligne de galvanoplastie. PhD thesis in Automatics and
Computer Science, Université de Franche-Comté, France.

Manier, M.-A., Lamrous, S., 2008. An evolutionary approach for the design and
scheduling of electroplating facilities. Journal of Mathematical Modelling and
Algorithm, 7(2): 197–215.

Manier, M.-A., Varnier, C., Baptiste, P., 2000. Constraint-based model for the cyclic
multi-hoists scheduling problem. Production Planning & Control, 11(3):

103

244–257.

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Boston. MA: Kluwer
Academic Publishers.

Narayanan, A., Moore, M., 1996. Quantum-inspired genetic algorithms. Proceedings
of IEEE International Conference on Evolutionary Computation, 61−66.

Neto, J.X.V., De Andrade Bernert, D.L., Dos santos coelho, L., 2011. Improved
quantum-inspired evolutionary algorithm with diversity information applied to
economic dispatch problem with prohibited operating zones. Energy Conversion
and Management, 52(2011): 8–14.

Ng, W. C., 1995. Determining the optimal number of duplicated process tanks in a
single-hoist circuit board production line. Computers & Industrial Engineering,
28(4): 681−688.

Ng, W. C., 1996. A Branch and bound algorithm for hoist scheduling of a circuit
board production line. International Journal of Flexible Manufacturing Systems,
8(1): 45−65.

Ng, W. C., Leung, J., 1997. Determining the optimal move times for a given cyclic
schedule of a material handling hoist. Computers & Industrial Engineering,
32(3): 595−606.

Ni, B., 2010. Galvanizing technology. Beijing: China Machine Press.

Niu, Q., Zhou, T., Ma, S., 2009. A quantum-inspired immune algorithm for hybrid
flow shop with makespan criterion. Journal of Universal Computer Science,
15(4): 765–785.

Paul, H., Bierwirth, C., Kopfer, H., 2007. A heuristic scheduling procedure for
multi-item hoist production lines. International Journal of Production
Economics, 105(1): 54–69.

Phillips, L.W., Unger, P.S., 1976. Mathematical programming solution of a hoist
scheduling program. AIIE Transactions, 8(2): 219−225.

Riera, D., Yorke-Smith, N., 2002. An improved hybrid model for the generic hoist
scheduling problem. Annals of Operations Research, 115(1–4): 173–191.

Schleinger, M., Paunovic, M., 2010. Modern electroplating, fifth edition, John Wiley
& Sons, Inc., Hoboken, New Jersey.

Shapiro, G. W., Nuttle, H. L. W., 1988. Hoist scheduling for a PCB electroplating
facility. IIE Transactions, 20(2): 157−167.

Spacek, P., Manier, M.-A., El Moudni, A., 1999. Control of an electroplating line in
the max and min algebras. International Journal of Systems Science, 30(7):
759–778.

Subaï, C., Baptiste, P., Niel, E., 2006. Scheduling Issues for Environmentally

104

Responsible Manufacturing: The Case of Hoist Scheduling in an Electroplating
Line. International Journal of Production Economics, 99(1–2): 74–87.

Talbi, H., Draa, A., Batouche, M., 2004. A new quantum-inspired genetic algorithm
for solving the travelling salesman problem. 2004 IEEE International
Conference on Industrial Technology, 3: 1192–1197.

Tian, N., Che, A., Feng, J., 2013. Real-time hoist scheduling for multistage material
handling process under uncertainties. AIChE Journal, 59(4): 1046–1048.

Varnier, C., Bachelu, A., Baptiste, P., 1997. Resolution of the cyclic multi-hoists
scheduling problem with overlapping partitions. Information System and
Operations Research (INFOR), 35(4): 309–324.

Wang, Y., Che, A., 2013. Robotic cells scheduling based on hybrid quantum
evolutionary algorithm. Computer Integrated Manufacturing Systems, 19(9):
2193–2201, in Chinese.

Wu, N., Zhou, M., 2012a. Modeling, Analysis and control of dual-arm cluster tools
with residency time constraint and activity time variation based on Petri Nets.
IEEE Transactions on Automation Science and Engineering, 9(2): 446–454.

Wu, N., Zhou, M., 2012b. Schedulability analysis and optimal scheduling of dual-arm
cluster tools with residency time constraint and activity time variation. IEEE
Transactions on Automation Science and Engineering, 9(1): 203–209.

Xu, Q., Huang, Y. L., 2004. Graph-assisted cyclic hoist scheduling for
environmentally benign electroplating. Industrial and Engineering Chemistry
Research, 43(26): 8307–8316.

Yan, P., Che, A., Cai, X., Tang, X., 2014. Two-phase branch and bound algorithm for
robotic cells rescheduling considering limited disturbance. Computers &
Operations Research, 50(10): 128–140.

Yan, P., Che, A., Yang, N., Chu, C., 2012. A tabu search algorithm with solution space
partition and repairing procedure for cyclic robotic cell scheduling problem.
International Journal of Production Research, 50(22): 6403–6418.

Yan, P., Chu, C., Yang, N., Che, A., 2010. A branch-and-bound algorithm for optimal
cyclic scheduling in a robotic cell with processing time windows. International
Journal of Production Research, 48(21): 6461–6480.

Yih, Y., 1994. An algorithm for hoist scheduling problems. International Journal of
Production Research, 32(3): 501−516.

Yih, Y., Liang, T.-P., Moskowitz, H., 1993. Robot scheduling in a circuit board
production line: a hybrid OR/ANN approach. IIE Transactions, 25(2): 26−33.

Zhang, Q., Manier, H., Manier, M.-A., 2012. A genetic algorithm with tabu search
procedure for flexible job shop scheduling with transportation constraints and
bounded processing times. Computers & Operations Research, 39(7):

105

1713–1723.

Zhang, Q., Manier, H., Manier, M.-A., 2014. A modified shifting bottleneck heuristic
and disjunctive graph for job shop scheduling problems with transportation
constraints. International Journal of Production Research, 52(4): 985–1002.

Zhang, R., Gao, H., 2007. Improved quantum evolutionary algorithm for
combinatorial optimization problem. 2007 International Conference on Machine
Learning and Cybernetics (ICLMC), 6: 3501–3505.

Zhao, C., Fu, J., Xu, Q., 2013a. Production-ratio oriented optimization for
multi-recipe material handling via simultaneous hoist scheduling and production
line arrangement. Computers and Chemical Engineering, 50(5): 28–38.

Zhao, C., Fu, J., Xu, Q., 2013b. Real-time dynamic hoist scheduling for multistage
material handling process under uncertainties. AIChE Journal, 59(2): 465–482.

Zhao, Z., Peng, X., Peng, Y., Yu, E., 2006. An effective constraint handling method in
quantum-inspired evolutionary algorithm for knapsack problems. WSEAS
Transactions on Computers, 5(6): 1194–1199.

Zheng, T., Yamashiro, M., 2010. Solving flow shop scheduling problems by quantum
differential evolutionary algorithm. International Journal of Advanced
Manufacturing Technology, 49(5–8): 643−662.

Zhou, Z., Che, A., Yan. P., 2012. A mixed integer programming approach for
multi-cyclic robotic flowshop scheduling with time window constraints. Applied
Mathematical Modelling, 36(8): 3621–3629.

Zhou, Z., Li, L., 2003. Single hoist cyclic scheduling with multiple tanks: a material
handling solution. Computers & Operations Research, 30(6): 811–819.

Zhou, Z., Li, L., 2009. A Solution for Cyclic Scheduling of multi-hoists without
Overlapping. Annals of Operations Research, 168(1): 5−21.

Zhou, Z., Liu, J., 2008. A heuristic algorithm for the two-hoist cyclic scheduling
problem with overlapping hoist ranges. IIE Transactions, 40(8): 782−794.

106

Cyclic Hoist Scheduling Problems in Classical and Sustainable Contexts
ABSTRACT

Automated surface treatment facilities, which employ computer-controlled hoists for part transportation, have been extensively established in

various kinds of industrial companies, because of its numerous advantages over manual system, such as higher productivity, better product quality,

and reduced labor intensity. This research investigates three typical hoist scheduling problems with processing time windows in surface treatment

facilities, which are (I) cyclic single-hoist scheduling problem to minimize the cycle time; (II) cyclic single-hoist scheduling problem to minimize

the cycle time and processing resource consumption (and consequently production cost); and (III) cyclic multi-hoist scheduling problem to

minimize the cycle time.

Due to the NP-completeness of the studied problems and numerous advantages of quantum-inspired evolutionary algorithm (QEA), we first

propose a hybrid QEA with improved decoding mechanism and repairing procedure to find the best cycle time for the first problem. After that, to

enhance with both the economic and environmental performance, which constitute two of the three pillars of the sustainable strategy nowadays

deployed in many industries, we formulate a bi-objective mathematical model for the second problem by using the method of prohibited interval

(MPI). Then we propose a bi-objective QEA with local search procedure to simultaneously minimize the cycle time and the production cost, and

we find a set of Pareto-optimal solutions for this problem. As for the third problem, we find that most existing approaches, such as mixed integer

programming (MIP) approach, may identify a non-optimal solution to be an optimal one due to an assumption related to the loaded hoist moves

which is made in many existing researches. Consequently, we propose an improved MIP approach for this problem by relaxing the

above-mentioned assumption. Our approach can guarantee the optimality of its obtained solutions.

For each problem, experimental study on industrial instances and random instances has been conducted. Computational results demonstrate that

the proposed scheduling algorithms are effective and justify the choices we made.

Keywords: cyclic hoist scheduling problem; processing time windows; bi-objective optimization; quantum-inspired evolutionary algorithm;

mixed integer programming approach

RÉSUMÉ
Les ateliers de traitement de surface automatisés, qui utilisent des robots de manutention commandés par ordinateur pour le transport de la pièce,

ont été largement mis en place dans différents types d'entreprises industrielles, en raison de ses nombreux avantages par rapport à un mode de

production manuel, tels que: une plus grande productivité, une meilleure qualité des produits, et l’impact sur les rythmes de travail. Notre recherche

porte sur trois types de problèmes d'ordonnancement associés à ces systèmes, appelés hoist scheduling problems, caractérisés par des contraintes

de fenêtres de temps de traitement: (I) un problème à une seule ressource de transport où l’objectif est de minimiser le temps de cycle; (II) un

problème bi-objectif avec une seule ressource de transport où il faut minimiser le temps de cycle et la consommation de ressources de traitement (et

par conséquent le coût de production); et (III) un problème d'ordonnancement cyclique mono-objectif mais multi-robots.

En raison de la NP-complétude des problèmes étudiés et de nombreux avantages de les outils de type quantum-inspired evolutionary algorithm

(QEA), nous proposons d'abord un QEA hybride comprenant un mécanisme de décodage amélioré et une procédure réparation dédiée pour trouver

le meilleur temps de cycle pour le premier problème. Après cela, afin d'améliorer à la fois la performance économique et environnementale qui

constituent deux des trois piliers de la stratégie de développement durable de nos jours déployée dans de nombreuses industries, nous formulons un

modèle mathématique bi-objectif pour le deuxième problem en utilisant la méthode de l'intervalle interdit. Ensuite, nous proposons un QEA

bi-objectif couplé avec une procédure de recherche locale pour minimiser simultanément le temps de cycle et les coûts de production, en générant

un ensemble de solutions Pareto-optimales pour ce problème. Quant au troisième problème, nous constatons que la plupart des approaches utilisées

dans les recherches actuelles, telles que la programmation entière mixte (MIP), peuvent conduire à l’obtention d’une solution non optimale en

raison de la prise en compte courante d’une hypothèse limitant l’exploration de l’espace de recherche et relative aux mouvements en charge des

robots. Par conséquent, nous proposons une approche de MIP améliorée qui peut garantir l'optimalité des solutions obtenues pour ce problème, en

relaxant l'hypothèse mentionnée ci-dessus.

Pour chaque problème, une étude expérimentale a été menée sur des cas industriels ainsi que sur des instances générées aléatoirement. Les résultats

obtenus montrent que l’efficacité des algorithmes d'ordonnancement proposés, ce qui justifie les choix que nous avons faits.

Mots-clés: ordonnancement cyclique des ateliers de traitement de surface, fenêtres de temps de traitement; optimisation bi-objectif; algorithme

évolutionnaire quantique; approche de programmation mixte en nombres entiers.

