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ABSTRACT 

Automated surface treatment facilities, which employ computer-controlled hoists 

for part transportation, have been extensively established in various kinds of industrial 

companies, because of its numerous advantages over manual system, such as higher 

productivity, better product quality, and reduced labor intensity. This research 

investigates three typical hoist scheduling problems with processing time windows in 

surface treatment facilities, which are (I) cyclic single-hoist scheduling problem to 

minimize the cycle time; (II) cyclic single-hoist scheduling problem to minimize the 

cycle time and processing resource consumption (and consequently production cost); 

and (III) cyclic multi-hoist scheduling problem to minimize the cycle time.  

Due to the NP-completeness of the studied problems and numerous advantages 

of quantum-inspired evolutionary algorithm (QEA), we first propose a hybrid QEA 

with improved decoding mechanism and repairing procedure to find the best cycle 

time for the first problem. After that, to enhance with both the economic and 

environmental performance, which constitute two of the three pillars of the 

sustainable strategy nowadays deployed in many industries, we formulate a 

bi-objective mathematical model for the second problem by using the method of 

prohibited interval (MPI). Then we propose a bi-objective QEA with local search 

procedure to simultaneously minimize the cycle time and the production cost, and we 

find a set of Pareto-optimal solutions for this problem. As for the third problem, we 

find that most existing approaches, such as mixed integer programming (MIP) 

approach, may identify a non-optimal solution to be an optimal one due to an 

assumption related to the loaded hoist moves which is made in many existing 

researches. Consequently, we propose an improved MIP approach for this problem by 

relaxing the above-mentioned assumption. Our approach can guarantee the optimality 

of its obtained solutions. 

For each problem, experimental study on industrial instances and random 

instances has been conducted. Computational results demonstrate that the proposed 

scheduling algorithms are effective and justify the choices we made. 

Keywords: cyclic hoist scheduling problem; processing time windows; bi-objective 

optimization; quantum-inspired evolutionary algorithm; mixed integer programming 

approach 
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RÉSUMÉ 

Les ateliers de traitement de surface automatisés, qui utilisent des robots de 

manutention commandés par ordinateur pour le transport de la pièce, ont été 

largement mis en place dans différents types d'entreprises industrielles, en raison de 

ses nombreux avantages par rapport à un mode de production manuel, tels que: une 

plus grande productivité, une meilleure qualité des produits, et l’impact sur les 

rythmes de travail. Notre recherche porte sur trois types de problèmes 

d'ordonnancement associés à ces systèmes, appelés hoist scheduling problems, 

caractérisés par des contraintes de fenêtres de temps de traitement: (I) un problème à 

une seule ressource de transport où l’objectif est de minimiser le temps de cycle; (II) 

un problème bi-objectif avec une seule ressource de transport où il faut minimiser le 

temps de cycle et la consommation de ressources de traitement (et par conséquent le 

coût de production); et (III) un problème d'ordonnancement cyclique mono-objectif 

mais multi-robots. 

En raison de la NP-complétude des problèmes étudiés et de nombreux avantages 

de les outils de type quantum-inspired evolutionary algorithm (QEA), nous proposons 

d'abord un QEA hybride comprenant un mécanisme de décodage amélioré et une 

procédure réparation dédiée pour trouver le meilleur temps de cycle pour le premier 

problème. Après cela, afin d'améliorer à la fois la performance économique et 

environnementale qui constituent deux des trois piliers de la stratégie de 

développement durable de nos jours déployée dans de nombreuses industries, nous 

formulons un modèle mathématique bi-objectif pour le deuxième problem en utilisant 

la méthode de l'intervalle interdit. Ensuite, nous proposons un QEA bi-objectif couplé 

avec une procédure de recherche locale pour minimiser simultanément le temps de 

cycle et les coûts de production, en générant un ensemble de solutions 

Pareto-optimales pour ce problème. Quant au troisième problème, nous constatons 

que la plupart des approaches utilisées dans les recherches actuelles, telles que la 

programmation entière mixte (MIP), peuvent conduire à l’obtention d’une solution 

non optimale en raison de la prise en compte courante d’une hypothèse limitant 

l’exploration de l’espace de recherche et relative aux mouvements en charge des 

robots. Par conséquent, nous proposons une approche de MIP améliorée qui peut 

garantir l'optimalité des solutions obtenues pour ce problème, en relaxant l'hypothèse 

mentionnée ci-dessus. 

Pour chaque problème, une étude expérimentale a été menée sur des cas 
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industriels ainsi que sur des instances générées aléatoirement. Les résultats obtenus 

montrent que l’efficacité des algorithmes d'ordonnancement proposés, ce qui justifie 

les choix que nous avons faits. 

Mots-clés: ordonnancement cyclique des ateliers de traitement de surface, fenêtres de 

temps de traitement; optimisation bi-objectif; algorithme évolutionnaire quantique; 

approche de programmation mixte en nombres entiers. 
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Chapter 1 Introduction 

1.1 Research Background 

In today’s fiercely competitive market, to maximize the production capacity and 

reduce the labor costs, automated production lines have been widely used in many 

industries, such as the automotive industry, the aerospace industry and more 

particularly the surface treatment industry. Meanwhile, with the ongoing development 

in automation technologies and scheduling theories, automated production lines 

become more and more reliable and efficient.  

In modern surface treatment facilities, production lines are often equipped with 

computer-controlled material handling tools (usually called hoists or robots in 

different industries) for moving jobs or parts between tanks or machines (Crama et al., 

2000; Manier and Bloch, 2003). That is to say, all the transportation tasks during the 

process are performed by hoists instead of workers. Obviously, highly automated 

production system gains several unique advantages over manual production system. 

Firstly, both the productivity and product quality are effectively improved since hoists 

generally have less variability compared to human beings (suppose that hoists never 

break down). In other words, hoists are not only easy to control and implement but 

also very stable (i.e., hoists can exactly and timely perform each transportation task 

assigned to it). Secondly, hoists can replace workers in high-temperature or hazardous 

environments (or workplaces), since worker safety is one of most important issues 

that each factory cares about. The last but not the least advantage is that the process 

line generally has plenty of high-frequency and repetitive transportation jobs, which 

are generally very boring for workers but relatively suitable for hoists.  

Because of its wide applications, electroplating plant has been extensively 

established in many surface treatment companies, which produce tens of thousands of 

products each year. According to Schlesinger and Paunovic (2010), electroplating is 

the coating of an electrically conductive object with a layer of metal using electrical 

current resulting in a thin, smooth of metal on the object. A representative example is 

the Printed Circuit Boards (PCBs) electroplating plant. More precisely, a PCB 

electroplating process line typically consists of a sequence of tanks (containing 

various kinds of chemical solutions or freshwater) arranged in a row and a number of 

computer-controlled material handling hoists mounted on a single track above the 

tanks, as shown in Figure 1.1. Each tank contains special chemicals for a specific 
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production step, such as depositing, degreasing, and pickling. Besides, multiple hoists 

are generally used to move PCBs from tank to tank due to its higher productivity. 

Once a PCB is introduced into the line from the input station, it must be continuously 

processed in each of the tanks one after another until it is transported to the output 

station.  

 

 

Figure 1.1 A typical automated PCB electroplating line with two hoists. 
 

For automated electroplating process lines, scheduling of hoists’ transportation 

tasks efficiently is very critical because the productivity and the product quality 

extremely depend on it. Therefore, the decision generally concerns how to sequence 

the hoists’ movements without collision happened among hoists and determine the 

start time of each hoist move such that the productivity is maximized. It is well known 

in the literature as Hoist Scheduling Problem (HSP, Manier and Bloch, 2003). It also 

has some other appellations called in different industrials, such as Robotic Cells 

(Levner et al., 2007) or Robotic flow-shop Scheduling Problems (Crama et al., 2000), 

etc. Similar to the classic flow shop or job shop scheduling problems, Livshits et al. 

(1974) and Lei and Wang (1989) respectively proved that the simple HSP (i.e., cyclic 

HSP with a single part-type and a single hoist) is NP-complete. Note that NP means 

non-deterministic polynomial.  

Moreover, in today’s fast-changing and competitive market, one most important 

goal for electroplating plant is to maximize its productivity, so as to timely provide 

required products to customers. This is very important for company to get good 

reputation from partners. On the other hand, resource consumption greatly affects the 

production cost. As the costs of resources increase, the product profit is generally 
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reduced. The traditional way that only maximizes the productivity cannot effectively 

respond to the rising production costs. Therefore, minimizing the production cost 

plays a key role in enhancing the company’s competitive ability and profits. It also 

joins the sustainable development strategies of many industrials because this effort to 

reduce resource responds to both economic and environmental concerns. At last but 

not least, the defective part rate must be minimized during the production, which has a 

negative impact on the company’s profits. 

Until now, a number of scheduling approaches have been suggested for various 

HSP to maximize the productivity, for example, please see the works by Phillips and 

Unger (1976), Shapiro and Nuttle (1988), Lei and Wang (1994), Chen et al. (1998), 

Manier et al. (2000), Che and Chu (2007), and Lei et al. (2014). But study on 

multi-objective HSP has not received much attention from researchers, except for a 

few works, such as Xu and Huang (2004), Kuntay et al. (2006), and Feng et al. (2014). 

As a result, research for HSP with simultaneously achieving various goals from 

different expectations becomes urgent due to its great significance in theory and 

application. This research will focus on this area. 

 

1.2 Problem Description 

During the manufacture of many products, including electronic ones, 

electroplating is an essential process for making some special treatments on part 

surface, such as anti-corrosive, abrasion resistance, and improved electrical 

conductivity. In a typical automated electroplating process line (Figure 1.1), a series 

of tanks which contain different chemical solutions or freshwater are arranged in a 

row. The input device and the output device are located at the both ends of the line. 

Each tank corresponds to a specific process stage, such as degreasing, silver or copper 

coating, drying, cleaning and rinsing. Since hoist is often the bottleneck resource in 

the process line, multiple hoists are widely used to balance the line. During the 

process, parts are transported by a hoist from one tank to the other. For a hoist travel 

among tanks without carrying a part, it is called an empty move. On contrast, it is a 

loaded move. All hoists often move on a shared track, so hoist collisions must be 

avoided. This is called collision avoidance constraint. Due to the processing limitation, 

each tank can process only one part at any time. So if a tank is occupied by a part, 

then it must be emptied before processing another part. This is called tank capacity 

constraint. Similarly, each hoist can only transport one part at any time, and must have 



4 

 

enough time to move empty between any two consecutive loaded moves, which are 

called hoist capacity constraint. 

Once a part is introduced into the process line, it is soaked in tanks to receive its 

processing operations according to its processing routine until it is removed from the 

line. According to the processing technology, the soak or processing time in each tank 

must be within a time window [minimum dwell time, maximum dwell time], called 

time window constraint (Lei and Wang, 1991). By the way, in this thesis, when we 

mention HSP, it refers to HSP with processing time windows. If each processing time 

falls into its time window, then part quality would be guaranteed; otherwise, defective 

parts would be produced. Besides, no buffer exists among tanks. In other words, once 

a part finishes its processing operation in a tank, it must be moved out of the current 

tank and then transported to the next one by a hoist. From this, we can know that each 

part is either in a tank or being transported by a hoist without any pause allowed.  

From above descriptions, we can know that a hoist schedule is said to be feasible 

for HSP only if it simultaneously satisfies the previously mentioned four families of 

constraints, i.e., (1) collision avoidance constraint, if multiple hoists are used; (2) tank 

capacity constraint; (3) hoist capacity constraint; (4) time window constraint. 

Because of its easy implementation in a mass production environment, cyclic 

production mode is usually adopted in the electroplating line. This leads to a repetitive 

schedule performed by hoists in every certain time. The duration of performing the 

repetitive schedule is called the cycle time (Chen et al., 1998). In each cycle, one part 

is introduced into the line, and one part (note that the two parts are not necessary the 

same one) is removed from the line after all its processing operations are finished. 

Obviously, line productivity heavily depends on how to schedule the hoists’ 

transportation tasks, since the more frequently the hoist picks a part from the input 

station, the higher the line productivity. As a result, in most studies, the objective of 

HSP is to minimize the cycle time. On the other hand, due to the high treatment costs 

of hazardous wastes (such as chemical sludge and wastewater) in electroplating plant, 

the more resource used for processing parts, the higher the operating costs. Therefore, 

how to optimize the actual processing time in each tank while satisfying the time 

window constraint is crucial in reducing the production cost.  

Since the 1970s, many researchers have dedicated to solve various variants of 

HSP motivated by automated electroplating process lines. Most studies are relevant 

with minimizing the cycle time for HSP, e.g. Phillips and Unger (1976), Shapiro and 
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Nuttle (1988), Lei and Wang (1994), Ng (1996), Chen et al. (1998) and Che and Chu 

(2007). Due to its great significance in theory and practice, several works about 

multi-hoist scheduling have been published especially in recently years, such as Zhou 

and Liu (2008), Zhou and Li (2009), Chtourou et al. (2013), Jiang and Liu (2014), and 

Li and Fung (2014). As far as the single-objective HSP is concerned, it is far from 

meeting the various expectations from the real-world production. To reduce the 

complexity of multi-objective HSP, a few studies (such as Xu and Huang, 2004, 

Kuntay et al., 2006, and Subaï et al., 2006) have been conducted on the HSP with 

dual objectives, which are optimized in a sequential manner, i.e., one objective is 

considered in the first step, and the other is considered in the second step. Obviously, 

such separate and sequential optimization approaches are not sufficient in practice. 

Therefore, simultaneously optimizing different and sometimes conflicting objectives 

from different aspects for HSP is very necessary and important. 

To address the considered problems, we have chosen to use a rather new tool 

called Quantum-inspired Evolutionary Algorithm (QEA). Since 1990s, QEA has been 

received much attention and successfully applied to solve travelling salesman problem 

(Narayanan and Moore, 1996), knapsack problem (Han and Kim, 2002), flow 

shop/job shop scheduling problems (Li and Wang, 2007; Gu et al., 2009), etc. In the 

following section, we briefly describe its main principles. 

 

1.3 Quantum-inspired evolutionary algorithm 

Quantum-inspired Evolutionary Algorithm (QEA) is formed according to the 

concepts and principles of quantum computation (Deutsch, 1985; Hey, 1999), in 

which Q-bit is the smallest unit of information in a quantum computer. Each Q-bit 

may be in “0” state, “1” state, or in any superposition of the two. The following 

equation is usually used to define a Q-bit (Han and Kim, 2002; Li and Wang, 2007): 

|ψ〉=α|0〉+β|1〉, where |α|2+|β|2=1.                 (1.1) 

In (1.1), α and β are two complex numbers, which represent the probability 

amplitudes of states 0 and 1, respectively. As a result, |α|2 and |β|2 represent the 

probabilities that the Q-bit would be found in state “0” and state “1”, respectively. 

However, each Q-bit collapses to a single state by using a random-key observation 

way. That is, a random number r  is generated from the uniform distribution [0, 1). If 

r>|α|2, then Q-bit is in state “1”; else, Q-bit is in state “0”. So QEA can be seen as a 
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probabilistic algorithm. Moreover, Q-gate is often employed to change the values of α 

and β so as to influence the state of Q-bit. Until now, several Q-gates have been 

proposed in the literature, such as NOT gate, controlled NOT gate, and rotation gate 

(Hey, 1999). 
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Suppose that a quantum individual Ψm is a string of m Q-bits, as shown in (1.2), 

this individual can represent 2m states at the same time, i.e., a linear superposition of 

states. For instance, consider a quantum individual with three Q-bits and their 

amplitudes as the following: 
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In (1.3), Ψ3 includes the information of eight states, i.e., |000〉, |001〉, |010〉, |011〉, 

|100〉, |101〉, |110〉, |111〉, and their probabilities are respectively 84/729, 24/729, 

168/729, 48/729, 105/729, 30/729, 210/729, 60/729. Indeed if we consider the state 

|010〉 as an example, the associated probability is |α1|2×|β2|2×|α3|2 which equals 

(4/9)×(6/9)×(7/9)=168/729. From this example, we can know that Q-bit representation 

has a better characteristic of population diversity than other representations, since it 

potentially maps to a larger phenotype space than other binary representation based 

Evolutionary algorithms (EAs). 

 Like other EAs (such as genetic algorithm and annealing evolution algorithm), 

QEA generally has a similar evolution paradigm. It begins with an initial population, 

in which each individual is encoded by Q-bits. After evaluating the population fitness, 

it applies Q-gate to update individuals for generating new offspring and guiding the 

individual towards better solutions, and then evaluates the new population. When the 

stop condition is satisfied, it ends and outputs the best solution. Figure 1.2 illustrates 

this process in details, where Q(t), P(t) and B(t) are quantum chromosome, problem 

solution and best solution respectively. 
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Figure 1.2 Pseudocode algorithm for QEA (Han and Kim, 2002). 

 

1.4 Contributions 

In this thesis, we investigate three types of HSP motivated by automated 

electroplating process lines. They are respectively: (I) cyclic single-hoist scheduling 

problem to minimize the cycle time, (II) cyclic single-hoist scheduling problem to 

minimize the cycle time and the production cost, and (III) cyclic multi-hoist 

scheduling problem to minimize the cycle time.  

Due to the NP-completeness of HSP, the computation time spent by exact 

methods usually increases exponentially with its size. Thus, it is a wise choice to 

adopt meta-heuristic methods to find reasonably good schedules in a reasonable time 

for HSP. Because of its unique advantages, such as better population diversity and 

rapid convergence, QEA has gained great success in solving many different 

optimization problems, but it was not used yet for solving HSP. Therefore, this 

research tries to connect this gap. The main contributions of this research are 

summarized as follows. 

Firstly, we propose a hybrid QEA with improved decoding scheme for the first 

problem. More precisely, we elaborate three different decoding procedures to convert 

Q-bit individual into hoist move sequences. Moreover, we develop a more effective 

repairing procedure than the existing one. Both quantum rotation-gate and adaptive 

genetic operators as variant operators are applied to evolve the population towards 

better solutions.  

Secondly, we propose an efficient QEA algorithm with local search procedure for 



8 

 

the second problem. More precisely, based on a full analysis of the studied problem, a 

bi-objective mathematical model is formulated by using the method of prohibited 

intervals (MPI). After that, we use a double-decoding procedure to convert Q-bit 

individuals into problem solutions. All solutions are evaluated by the famous 

Pareto-dominance technique. A chaotic quantum-rotation gate is designed for 

updating Q-bit individuals. To increase the individual diversity, mutation operator is 

implanted into the proposed algorithm. Moreover, external archive is used to store the 

obtained non-dominated solutions. Local search procedure is applied for further 

improving the solution quality. 

Finally, we propose an improved mixed integer programming (MIP) approach 

for the last problem. In most existing studies, such as Lei and Wang (1991), 

Armstrong et al. (1996), Leung and Zhang (2003), Leung et al. (2004), Che and Chu 

(2004), Zhou and Liu (2008), Zhou and Li (2009), Chtourou et al. (2013) and Jiang 

and Liu (2014), all loaded moves are implicitly or explicitly assumed to start and end 

within the same cycle. In this research, we give a counterexample to demonstrate that 

this assumption should be relaxed, since approaches based on it may identify a 

non-optimal solution to be an optimal one. In other words, loaded hoist moves are 

allowed to start in the current cycle and end in the next one if necessary in our 

research. Consequently, we propose an improved MIP approach for the third problem 

by relaxing the above-mentioned assumption. Our approach can guarantee the 

optimality of its obtained solutions.  

 

1.5 Thesis Outline 

This thesis is arranged as follows. 

Chapter 2 provides a literature review of HSP and quantum-inspired evolutionary 

algorithm (QEA) most related to this research. The research trends on HSP and the 

research gap between HSP and QEA are also pointed out. 

Chapter 3 mainly develops an effective QEA for solving the cyclic single-hoist 

scheduling problem with time window constraints in automated electroplating lines. 

The objective is to minimize the cycle time. The problem formulation and the 

proposed QEA are presented. Comparison experiments are conducted between the 

proposed algorithm and the existing approaches. 

Chapter 4 first formulates a bi-objective mathematical model by MPI approach 



9 

 

for the studied problem, and then develops a multi-objective QEA with local search 

procedure to find a set of Pareto-optimal solutions for the problem. The objective of 

the problem is to minimize both the cycle time and the production cost. At last, a real 

electroplating instance is used to test the effectiveness of the proposed algorithm. 

Chapter 5 focuses on the development of an improved MIP model for the cyclic 

multiple hoists scheduling problem. In contrast with most previous approaches, our 

MIP approach can always find a global optimal hoist schedule with the maximum 

productivity. Experimental study is conducted on both benchmark instances and 

randomly generated instances. 

Chapter 6 makes some concluding remarks of this research, and suggests some 

directions for future research. 
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Chapter 2 Literature Review 

In this chapter, we perform a literature review related to this research. As 

mentioned in Chapter 1, part of our research focuses on the development of effective 

QEAs for solving two kinds of HSP. Therefore, we first review relevant works on the 

HSP, and then give a literature review on QEA related to our research. 

The whole literature is rich of works related to hoist scheduling problems or near 

problems. Manier and Bloch (2003) proposed a notation and classification allowing to 

identify the various kinds of HSPs. The following paragraph is directly extracted from 

(Manier and Lamrous, 2008), and it sums up this notation: 

“This one considers some of the main physical and logical parameters found in 

the literature related to the HSP. The complete notation is expressed in the form: 

XHSP|nl, ntransfer, synchro, (mh, mt, ct) i=1 to nl/nc, circ, ret, empty/ 

load-unload | nparts/nps, nop, clean, recrc | criteria. 

It is worth noting that the use of default values makes the expression of this 

notation not so complex when it was applied to most of the instances studied in 

literature. 

The notation can be divided in four fields: 

kind of HSP | physical parameters | logical parameters | criteria. 

Each one consists in several parameters: 

– Kind of HSP (XHSP): a hoist scheduling problem can be static (cyclic (CHSP) 

or not (PHSP)), or dynamic (dynamic problems (DHSP), or reactive ones (RHSP) for 

real time cases); 

– Physical parameters: this field respectively includes the number of basic lines 

(nl), the number of transfer systems connecting these lines (ntransfer), the need of 

synchronization between hoists and transfer systems (synchro). It also provides, for 

each basic line i of the facility (i=1 to nl), the number of hoists (mh), tanks (mt) and 

available carriers (nc), the maximal capacity of tanks (ct), the constraints involved by 

the characteristics of carriers (circulation of products (circ), dedicated transport 

system to ensure the return of empty carriers from the unloading station to the loading 

one (ret), empty carriers remaining on the line if there is no storage place near the 
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facility (empty)), and finally the configuration of the loading and unloading stations: 

associated or dissociated stations (load−unload); 

– Logical parameters: they describe the production environment to be 

considered: the total number of parts to be treated (nparts), the number of processing 

sequences (nps), the maximal number of operations among those processing 

sequences (nop), the possible cleaning of empty carriers after the unloading operation 

(clean) (one or several operations included in nop), and finally the recirculation 

constraint (recrc) for reentrant problems; 

– Criteria: this field expresses one or several objectives to reach. For HSP, they 

may be several criteria to optimize, for example: minimize the cycle time for the 

cyclic HSP (Cmin), or minimize the makespan (Cmax) in dynamic cases.” 

Among the various kinds of HSPs studied in the literature and possible to 

identify via this notation, we have chosen to focus on three of them. Then, this chapter 

is arranged as follows. Section 2.1 divides the HSP into three parts: (2.1.1) Basic HSP; 

(2.1.2) multiple objectives HSP; (2.1.3) HSP with multiple hoists, which respectively 

correspond to the contribution points of our research. Section 2.2 gives a briefly 

literature review on the QEA. Finally, Section 2.3 summaries this chapter. 

 

2.1 Literature review on HSP 

2.1.1 Basic hoist scheduling problem (BHSP) 

Over the past decades, HSP has gained great attentions from many researchers 

due to its significance in many real-world applications. As a result, there is a vast 

literature about it. Most of the works considered the basic (i.e., a single hoist and a 

single part type) HSP, called BHSP. The objective of BHSP is usually to minimize the 

cycle time or the makespan. Before 1970, hoist schedules were usually developed by 

experienced schedulers. The first work on computerized scheduling approach was 

provided by Phillips and Unger (1976). They formulated the first Mixed Integer 

Programming (MIP) model to find the optimal hoist schedule for BHSP. In the 

experimental study, a real life numerical example was used to testify the effectiveness 

of the proposed MIP model. The example was chosen from Western Electric Plant and 

became a well-known benchmark (P&U) instance in the later research.  

Almost ten years later, Shapiro and Nuttle (1988) proposed a branch-and-bound 
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(B&B) procedure to find the optimal cycle time for BHSP. The proposed approach 

was verified by four practical instances, i.e., P&U instance, Black Oxide1 instance, 

Black Oxide2 instance and Zinc instance. Computational results on those instances 

demonstrated that the proposed approach had a better performance than experienced 

schedulers in terms of solution quality and CPU time. 

Moreover, Armstrong et al. (1994) also proposed a B&B search procedure based 

on calculating a sequence-dependent parameter (called minimal time span) for the 

basic hoist scheduling problem. The performance of the proposed B&B algorithm was 

evaluated on four benchmark instances and 360 randomly generated instances, and 

experimental results on those instances spent less CPU times than the LP procedure.  

Lim (1997) was the first to propose genetic algorithm (GA) to solve BHSP. In his 

work, a mathematic model based on hoist move sequence was formulated, and the 

objective is to find the optimal hoist cyclic schedules with minimum cycle time. 

Specifically, hoist move sequences are encoded as chromosomes. In other words, each 

chromosome directly represents a possible hoist move sequence. Note that for such a 

representation way, the search ability of GA is generally reduced as the problem size 

increases. Besides, Linear Order Crossover (LOX) and two-gene mutation operator 

were adopted in the proposed GA. Computational results on benchmark instance P&U 

with different parameter settings were reported and indicated that the proposed GA 

can find the optimal hoist schedule for instance P&U.  

Chen et al. (1998) first formulated a mathematical model and then proposed a 

B&B algorithm for BHSP. The proposed algorithm includes two branch-and-bound 

trees A and B. In particular, tree A is responsible for enumerating all possible initial 

part distributions at the beginning of a cycle, while tree B is responsible for generating 

the hoist schedules for each determined initial part distribution. Besides, to reduce the 

solution space, an upper bound of the number of parts which can be processed in the 

line within a cycle was derived from the formulated model. The proposed algorithm 

was evaluated on five benchmark instances: P&U, Ligne1, Ligne2, Black Oxide1 and 

Black Oxide2. Computational results on those instances indicated that the proposed 

B&B algorithm can find the optimal solution for each instance in less than 1s.  

Recently, Yan et al. (2010) applied the method of prohibited intervals (MPI) to 

solve the BHSP. Specifically, if all the actual processing times in the processing tanks 

can be known, then the studied problem can be formulated by using the MPI approach 

(Levner et al., 1997). Due to this fact, the studied problem was further transformed to 
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find all the non-prohibited intervals for the cycle time, which is done by a specific 

B&B algorithm. Computational results on benchmark instances and 1800 random 

instances demonstrated that the proposed method is effective for solving the problem. 

Moreover, due to the high performance of Tabu search (TS) algorithm, Yan et al. 

(2012) proposed a specific TS algorithm with a repairing procedure and solution 

space partition approach for the problem. In their work, to reduce the solution space 

and increase the search speed, the maximum number K of the work-in-process (WIP) 

parts was used to divide the solution space into K subspaces. Three rules based on the 

value of K were used to generate the initial population, i.e. hoist move sequences. 

Note that the proposed algorithm used the real-coded representation, that is, hoist 

move sequence is directly encoded as chromosome which does not require a decoding 

mechanism. Finally, the proposed TS algorithm was compared with GA proposed by 

(Lim, 1997) using both benchmark instances and random instances. Comparison 

results demonstrated that TS algorithm performs better than GA in terms of solution 

quality and computation time. 

To reduce the complexity of hoist scheduling problem, some researchers studied 

the problem with given hoist move sequences. For instance, Lei (1993) proposed a 

simple algebraic procedure to minimize the cycle time and find the optimal start times 

of hoist operations for the scheduling problem with given hoist move sequences. The 

proposed procedure solves the studied problem in O(N2log(N)log(M)) time, where N 

and M represent the tank numbers and the number of integer points between the lower 

bound and the upper bound on the cycle time, respectively. Besides, Ng and Leung 

(1997) proposed a binary search procedure to determine the optimal execution times 

of hoist moves for the similar problem.  

All the works mentioned above treated the HSP from simple production line, in 

which each tank corresponds to a specific processing step. However, duplicated tanks 

and multi-function tanks are often used in practice. The representative works on HSP 

with duplicated tanks or multi-function tanks are Ng (1995) with MIP approach, Ng 

(1996) with B&B approach, Liu et al. (2002) with MIP approach, Zhou and Li (2003) 

with MIP approach, and Che and Chu (2007) with B&B approach.  

Since a higher degree of cyclic schedule would generally improve the system 

productivity, several works have been published on this area. Note that a higher 

degree means that at least two parts enter and leave the line within a cycle. Some of 

the relevant works dealt with the single part type, and which can be found in the work 
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by Lei and Wang (1994), Spacek et al. (1999), Che et al. (2011), Kats and Levner 

(2011a and 2011b), Zhou et al. (2012), and Li and Fung (2014). Moreover, various 

exact or heuristic approaches have been proposed for HSP with multiple distinct parts: 

B&B approach (Lei and Liu, 2001; Lei et al., 2014), MIP approach (El Amraoui et al., 

2008; Zhao et al., 2013a; El Amraoui et al., 2013a), Polynomial algorithm (Kats et al., 

2008), and GA approach (El Amraoui et al., 2013b). 

Although the cyclic HSP is the theme of our research, several researchers have 

studied various variants of non-cyclic HSP due to its significance both in academic 

field and industrial practice. To date, much attention has been gained in this area, for 

examples, please see the work by Yih (1994), Lamothe et al. (1995), Ge and Yih 

(1995), Chauvet et al. (2000), Fleury et al. (2001), Hindi and Fleszar (2004), Paul et 

al. (2007), Kujawski and Świątek (2011), Zhao et al. (2013b), Tian et al. (2013), Yan 

et al. (2014), and Zhang et al. (2014). 

2.1.2 Multiple objectives hoist scheduling problem (MOHSP) 

In previous section, all mentioned works treated HSP with single objective, 

which minimizes either the cycle time or the makespan. This is far from meeting the 

various expectations from real-world applications. In other words, considering HSP 

with multiple objectives are more realistic, such as minimize the production cost or 

wastewater, maximize the productivity and minimize the defective part rate. Since 

2000, multi-objective HSP has been studied, and a number of scheduling approaches 

have been proposed. In what follows, the relevant works are reviewed in details. 

Firstly, Fargier and Lamothe (2001) proposed a decision support approach for the 

dynamic hoist scheduling problem with bi-objective, which is to minimize the 

makespan and maximize the processing quality. All parts are supposed to be randomly 

arrived and a single hoist for moving parts from tank to tank. The problem was 

formulated by a linear programming model to generate the best hoist schedules and a 

fuzzy model was used to evaluate the part processing operations.  

Later, Mak et al. (2002) proposed a knowledge-based simulation system to solve 

the multiple hoists real time scheduling problem, in which multi-function tanks and 

duplicated tanks are used. The objectives of the problem are to maximize the 

productivity and minimize the defective rate. To avoid producing defective parts, the 

time of a new part entering into the line is controlled and determined by a heuristic 

rule. In the proposed simulation system, there are seven hoist dispatching rules, which 
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are Nearest Hoist First (NHF), Average Tank Assignment (ATA), Average Hoist 

Assignment (AHA), Boundary Shift by Job Allocation (BSJA), Modified Average 

Tank Assignment (MATA), Modified Average Hoist Assignment (MAHA), and 

Modified Boundary Shift by Job Allocation (MBSJA), respectively. Computational 

results on several real electroplating lines with different hoist speeds and hoist safe 

distances were reported and discussed. The results indicated that the two new rules 

MAHA and MBSJL perform better than all other dispatching rules. Besides, higher 

hoist speed and shorter hoist safety distances are verified to have higher productivity.  

Xu and Huang (2004) designed a graph-assisted search algorithm for the single 

hoist cyclic scheduling problem with single part type to minimize both the cycle time 

and the wastewater. Specifically, a two-stage algorithm was proposed to optimize the 

two studied objectives. The first stage was responsible for finding the optimal hoist 

schedules with minimum cycle time, while the second stage was responsible for 

looking for the minimum wastewater for each determined hoist schedule. Moreover, 

part of infeasible hoist move sequences is eliminated during the search process. At last, 

a numerical example was used to evaluate the proposed two-stage optimization 

algorithm.  

Jegou et al. (2006) proposed a multi-agent system for the reactive multi-hoist 

scheduling problem, where the objectives are to minimize the defective parts rate and 

maximize the productivity. In their model, two different agents called input date 

decision system (IDDS) and hoist assignment system (HAS) were respectively used to 

determine the time of a new part loading into the process line and to find the optimal 

schedules for multiple hoists. In HAS, auction operation was applied to assign 

transportation tasks to hoists and also optimize the hoist schedules. The proposed 

multi-agent system was compared with the existing hoist assignment heuristics (i.e. 

NFR, ARA and BSJL) in the literatures and showed better performance.  

Kuntay et al. (2006) proposed a two-step optimization algorithm for solving the 

bi-objective single-hoist cyclic scheduling problem. In the proposed algorithm, the 

first step was responsible for finding an optimal hoist schedule with maximum 

productivity, while the second optimization step was to minimize the wastewater 

without reducing the production rate obtained in the first step. Finally, an example 

from real electroplating facility was used to evaluate the proposed two-step algorithm. 

Besides, Subaï et al. (2006) also proposed a similar two-step optimization algorithm 

for a bi-objective single-hoist cyclic scheduling problem, in which cycle time and 
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production cost are minimized in two sequential steps.  

Zhang et al. (2012) studied the multiple hoists job shop scheduling problem with 

duplicated tanks and inter-storages between tanks, in which the objectives are to 

minimize both the makespan and the total waiting times in inter-storages. It should be 

noted that the solutions found with no waiting times correspond to feasible solutions 

for HSP. Firstly, a mathematical model was formulated for the problem, and then a 

genetic algorithm with tabu local search heuristic was proposed to find the optimal 

solutions. Computational results on several instances from different industry 

backgrounds demonstrated that the proposed approach is efficient.  

Very recently, Feng et al. (2014) proposed an iterative epsilon-constraint method 

to solve a bi-objective HSP with non-Euclidean travel-time metric, which means that 

an empty move from tank i to tank j may need longer time than passing by an 

intermediate tank k. The objective is to minimize the cycle time and the total hoist 

travel times simultaneously. Firstly, an initial MIP model was formulated for the 

problem and then was further tightened by adding some valid inequalities. Secondly, 

an iterative epsilon-constraint method was proposed to find the complete Pareto 

optimal solutions for the problem. Finally, both benchmark instances and randomly 

generated instances were used to evaluate the effectiveness of the proposed method. 

Computational results showed that the proposed method can obtain Pareto optimal 

solutions in reasonable time. 

Most above mentioned works (such as Xu and Huang, 2004, Kuntay et al., 2006, 

and Subaï et al., 2006) examined HSP with dual objectives, which are optimized in a 

separate way, i.e., one objective is optimized in the first step, and the other is 

considered in the next step while maintaining the optimized results obtained in the 

first step. Obviously, such separate and sequential optimization approaches can not 

necessarily find the global Pareto-optimal solutions for MOHSP. So it becomes urgent 

to develop efficient scheduling approaches for simultaneously achieving different 

objectives for HSP. 

2.1.3 Cyclic multiple hoists scheduling problem (CMHSP) 

Besides above, researchers have also worked on the problem with multiple hoists 

that generally lead to higher productivity compared to the single hoist system. In a 

multi-hoist system, the hoist usually move the part either in a unidirectional way or a 

bidirectional way. To be more specific, the unidirectional way means that the hoist 
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moves parts from left to right, i.e., the part processing sequence is exactly identical to 

the tanks layout, while the bidirectional way means that the hoist can move parts from 

left to right and from right to left, i.e., the part processing sequence is not necessarily 

identical to the tanks layout. To avoid hoist collisions, various scheduling approaches 

have been proposed, and they can be generally classified into two classes: (I) 

zone-partitioned based approaches and (II) overlapped based approaches. For class (I), 

the production line is divided into several non-overlapping zones according to the 

number of the hoists, and each hoist is exclusively assigned to one of zones for 

moving parts. Thus, overlapping the coverage ranges of the hoists is forbidden. In 

contrast, the production line is not divided and thus hoists can overlap with each other 

in class (II).  

(I) CMHSP with zone-partitioned approach 

Lei and Wang (1991) were the first to propose heuristic algorithm that is called 

Minimum Common-Cycle (MCC) algorithm, to find the optimal move schedules for a 

two-hoist cyclic scheduling problem. The proposed algorithm used a zone-partition 

approach to avoid two hoists conflicting with each other when they moved on a single 

track. More precisely, the production line is divided into two sections and each section 

is exclusively assigned to a single hoist. Finally, the proposed algorithm was verified 

by benchmark instance and random instances. 

Armstrong et al. (1996) proposed a local optimization algorithm based on the 

greedy zone-partition approach for the multiple hoists scheduling problem with given 

cycle times, where overlapping the coverage ranges of the hoists are forbidden. The 

objective is to minimize the number of hoists used in the line. To avoid hoist 

collisions, the production line was divided into several non-overlapping zones, and 

each hoist was exclusively assigned to one of zones for moving parts. A local 

optimization algorithm was proposed to maximize the size of each zone, which is 

equivalent to minimize the number of hoists used in the system. Finally, 

computational results on both benchmark instances and random instances showed that 

the proposed approach is efficient for solving the problem. 

Riera and Yorke-Smith (2002) proposed an improved hybrid model combining 

CLP with MIP to solve the generic cyclic scheduling problem with unidirectional 

multiple hoists. The proposed hybrid model adopted two different approaches to deal 

with hoist collisions, which are zone-partitioned (i.e. non-overlapped) approach and 

collision-based approach, respectively. Computational results on P&U instance and 
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randomly generated instances demonstrated that the proposed model is robust and 

scalable compared with the existing approaches. 

Alcaide et al. (2007) proposed a parametric algorithm for a multiple hoists cyclic 

scheduling problem with given hoist move sequence. To prevent hoist collisions, all 

hoists are supposed to run on a circuit line in a carousel mode. Besides, all loaded or 

empty hoist moving times are not given specifically but within the pre-defined time 

intervals. The objective is to determine the values for actual processing times, loaded 

and empty hoist moving times so that the cycle time is minimized. The proposed 

parametric algorithm was verified by a numerical example. 

Manier and Lamrous (2008) applied an evolutionary algorithm with a repairing 

procedure to solve the cyclic scheduling problem with multiple hoists running on 

parallel tracks, which means that each hoist has its own track and no collision happens 

between hoists. The objective is to minimize both the cycle time and the number of 

hoists since it is not given in advance. In their algorithm, chromosome is represented 

by empty hoist moves. An MIP approach was proposed to evaluate the feasibility of 

generated solutions. Moreover, a repairing procedure was designed to repair infeasible 

sequences. Computation results were reported and discussed with benchmark 

instances. 

Besides, Zhou and Li (2009) proposed an MIP approach for the multi-hoists 

cyclic scheduling problem with duplicated tanks. In their work, the line was divided 

into several non-overlapping areas according to the number of hoists. That is, each 

hoist is assigned to an exclusive area and collisions only happen when two adjacent 

hoists meet at the boundary tank. An MIP model was first proposed to find the 

optimal hoist schedules. Then, the model was extended to solve the problem with 

duplicated tanks. The proposed model was solved by commercial software CPLEX. 

Computational results on three numerical examples with two and three hoists implied 

that the proposed approach is effective for solving the studied problem. 

(II)  CMHSP with overlapped approach 

Baptiste et al. (1993) proposed a Constraint Logic Programming (CLP) method 

with depth-first search procedure to find the minimum cycle time for the hoist 

scheduling problem with different line configuration. The optimal cycle times 

obtained with the proposed approach for the P&U instance with one degree and 

single/two hoists as well as two degrees single hoist were reported. Finally, 
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advantages and disadvantages of the CLP languages as well as the comparison 

between the two different implementation languages (i.e. PROLOG III and CHIP) 

were also presented. 

Moreover, Varnier et al. (1997) proposed a CLP based heuristic approach to 

obtain the optimal hoist schedules for a multi-hoist cyclic scheduling problem, where 

coverage ranges of the two neighboring hoists are allowed to overlap. That is, 

adjacent hoists can share several common tanks of the production line. The proposed 

approach consists of two specific procedures. In particular, procedure A used a 

heuristic rule to assign transportation tasks for each hoist. Then, procedure B used an 

exact method based on CLP to determine the optimal hoist schedules for the problem. 

Computational results on benchmark instances and random instances indicated that 

the multi-hoist system has larger productivity than the single hoist system. 

Manier et al. (2000) developed a resolution procedure to solve the cyclic 

scheduling problem with bidirectional multiple hoists allowed to overlap on a single 

line, which includes duplicated tanks and multi-function tanks. Firstly, a mathematical 

model was formulated for the problem with disjunctive constraints (i.e. mutually 

exclusive inequalities). Then, the proposed model was implemented using CLP 

language. Based on the above works, a resolution procedure using branch-and-bound 

tree with depth-first search strategy was developed to find the optimal hoist schedules. 

Note that a node of the search tree represents a disjunctive constraint (i.e. a pair of 

operations), and when a leaf node is reached, an entire hoist schedule is obtained. 

Finally, computational results on benchmark instances and 35 randomly generated 

instances with no more than 3 hoists were given and showed that multi-hoists system 

improves the line productivity compared to the single hoist system. 

Leung and Zhang (2003) formulated the first MIP model for the bidirectional 

multiple hoists cyclic scheduling problem. All hoists are supposed to be run on a 

single track and the production line is not partitioned according to the number of 

hoists. That is, two adjacent hoists may overlap in a common segment of the line. A 

branch-and-cut procedure with depth-first search strategy was used to solve the 

formulated MIP model. Computational results on six benchmark instances with no 

more than three hoists were reported and analyzed. 

Che and Chu (2004) first formulated an analytical mathematical model and then 

proposed a B&B algorithm for the single track multiple hoists cyclic scheduling 

problem. The production line is supposed to be unidirectional. In their paper, two 
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collision-checking properties were derived to indentify the hoist collisions. The 

proposed B&B algorithm consists of two nest procedures A and B. In particular, 

procedure A is used to enumerate all possible tank state distributions at time zero, 

while procedure B is responsible for finding an optimal cyclic schedule for each given 

tank state distribution. The proposed algorithm was compared with the existing 

approaches by using both benchmark instances and random instances. Comparison 

results showed that the proposed B&B algorithm can find a smaller cycle times than 

the existing approaches. 

Besides above, Leung et al. (2004) formulated the first MIP model for the cyclic 

scheduling problem with multiple hoists moving parts on a single track, in which the 

part processing sequence is exactly identical to the tanks layout. The objective of the 

problem is to minimize the cycle time for a given number of hoists. The authors first 

tighten the MIP model proposed by Phillips and Unger (1976) with new valid 

constraints. After that, by identifying all possible hoists-collision situations, they 

formulated an MIP model for the studied problem. In the experimental study, six 

benchmark instances with no more than three hoists were used to evaluate the 

performance of the proposed model, which is solved by the commercial optimization 

software CPLEX 6.5. Computational results on those instances were given and 

discussed. 

Later, Zhou and Liu (2008) proposed a heuristic algorithm based on enumerating 

trial processing times for solving the cyclic scheduling problem with two hoists 

running on a single track. More precisely, actual processing time in each tank was 

randomly generated within their corresponding time intervals. Then, a simple 

algebraic method was proposed to determine the hoist move sequence according to 

the generated actual processing times. In their work, the production line was divided 

into three areas from left to right. For each given move sequence, all moves located at 

the left area (resp. right area) is exclusively assigned to hoist 1(resp. hoist 2). Hoist 1 

and hoist 2 together take charge of performing all moves located at the middle area. 

Thus, collisions only happen in the middle area. Based on the above works, a linear 

programming (LP) approach was proposed to find the best schedule for each given 

hoist assignment. Finally, benchmark instance P&U and randomly generated instances 

were used to evaluate the performance of the proposed algorithm. Computational 

results on those instances demonstrated that the proposed heuristic algorithm can 

obtain near-optimal cycle time in a short time. 
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Chtourou et al. (2013) proposed a heuristic algorithm for the single track two 

hoists cyclic scheduling problem, where overlapping the coverage ranges of the hoists 

are allowed. Thus, hoist collisions in common segments must be avoided. In particular, 

the same method that presented in Zhou and Liu (2008) was used to generate hoist 

move sequences. Then, a heuristic algorithm was proposed for dispatching moves to 

hoist. Besides, to save the computation time, an MIP model without hoist collision 

constraints was formulated for determining the start time of each hoist move, and a 

test procedure was proposed for checking the collision constraints. The best solution 

is chosen from all the verified feasible solutions. Computational results were reported 

and analyzed with benchmark instances and random instances. 

Very recently, Jiang and Liu (2014) formulated an MIP model and then proposed 

a B&B algorithm for the cyclic scheduling problem with bidirectional multiple hoists 

moving parts on a single line. For such a problem, identifying possible situations of 

hoist collisions are very crucial since that is a main part of the problem formulation. 

Based on a full analysis of the studied problem, an MIP model was first formulated, 

and then a B&B algorithm was proposed. The proposed algorithm was compared with 

Leung and Zhang’s MIP approach (Leung and Zhang, 2003) and optimization 

software CPLEX (11.11) using P&U instance and random instances with different 

parameter settings (such as hoist numbers, problem size and time window width). 

Comparison results presented that the proposed B&B algorithm is more efficient than 

the two competitors in terms of CPU time.  

 

2.2 Literature review on QEA 

In this section, we review some works on QEA related to this research. In recent 

years, QEA has been received considerable attention from researchers because of its 

excellent optimization performance. It can be seen as a probability optimization 

algorithm based on the concepts and principles of quantum computation, such as 

Q-bits representation, observation process and various quantum gates (Deutsch, 1985). 

It has achieved great success in several well known optimization problems, such as 

travelling salesman problem (Narayanan and Moore, 1996), knapsack problem (Han 

and Kim, 2002), production scheduling problem (Li and Wang, 2007), and economic 

dispatch problem (Neto et al., 2011).  

To our knowledge, Narayanan and Moore (1996) firstly introduced QEA to solve 
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the travelling salesman problem (TSP) and gained significant performance compared 

to classical method. Talbi et al. (2004) proposed a new QEA for TSP, and comparison 

results showed that QEA performs better than GA. Besides above, Han and Kim 

(2002) were the first to apply QEA to solve the knapsack problem. Moreover, Han 

and Kim (2004) proposed a new termination criterion and a novel quantum gate for 

QEA to solve the knapsack problem. Zhao et al. (2006) proposed a hybrid QEA that 

combines QEA with constraint handling method for knapsack problem. Zhang and 

Gao (2007) proposed an improved QEA (IQEA) with new rotation gate for knapsack 

problem. Comparison results indicated that IQEA is superior to basic QEA.  

Due to its excellent performance, several researchers have also proposed various 

variants of QEA for production scheduling problems. For instance, Li and Wang 

(2007) employed QEA to solve the multi-objective flow shop scheduling problem. In 

their proposed QEA, chromosome is encoded by Q-bits, which are transformed into 

job sequence by a binary-decimal decoding scheme. Computational results showed 

that QEA is efficient and robust to obtain Pareto-optimal solutions with good diversity 

and proximity. Later, Gu et al. (2009) proposed a parallel QEA which also uses Q-bits 

encoding and binary-decimal decoding scheme for the stochastic job shop scheduling 

problem. Moreover, Gu et al. (2010) proposed a co-evolutionary QEA with same 

encoding and decoding scheme for the same problem as the one studied in Gu et al. 

(2009). Besides, Niu et al. (2009) proposed a hybrid algorithm called QIA that 

combines QEA with immune algorithm for the hybrid flow shop scheduling problem. 

Experimental results indicated that QIA is better than Immune algorithm in solution 

quality. Zheng and Yamashiro (2010) proposed a novel heuristic algorithm called 

QDEA that combines QEA with differential evolution for the permutation flow shop 

scheduling problem to minimize the total flowtime, makespan, and maximum lateness 

of jobs. In their proposed QDEA, chromosome is encoded by rotation angles, which 

are further used to order the job sequence.  

 

2.3 Synthesis 

In above sections, more than 60 articles about HSP are reviewed and analyzed in 

details. We judged that they are significant of the researches in the field, even if they 

still remain a part of the whole literature dealing with HSP and near problems. Figure 

2.1 demonstrates the trend of those publications. We can see from it that the number 

of articles has been gradually increased in time, which implies that HSP has become a 
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hot research topic in the operations research area. A pie chart given in Figure 2.2 

shows the ratios according to the approaches proposed in the literature. As can be seen 

from Figure 2.2, the most proposed approaches are Heuristic algorithm, MIP approach 

and B&B algorithm. Moreover, Table 2.1 presents a brief summary of the existing 

works on QEA related to our research. We can see from it that QEA has been applied 

in many research fields except for HSP. Based on the above works, we make the 

following remarks: 

(I) By analyzing the publications about HSP in recent years, two research trends can 

be observed. One is to develop efficient approaches for solving various HSPs with 

multiple objectives, because optimizing a single objective is not enough to deal with 

the practical applications. The other is to study the HSP with multiple hoists since it is 

often encountered in many industrials.  

(II)  Due to the NP-completeness of HSP, it is a wise choice to adopt heuristic or 

meta-heuristic methods to find reasonably good schedules in a reasonable time, 

instead of obtaining an optimal one. To the best of our knowledge, no work was 

reported for using QEA to solve any types of HSP. This research tries to connect this 

gap as described in previous section.  

(III)   In most existing studies on the cyclic multiple hoists scheduling problem 

(CMHSP), such as Lei and Wang (1991), Armstrong et al. (1996), Leung et al. (2004), 

Zhou and Liu (2008), Chtourou et al. (2013), Jiang and Liu (2014), loaded hoist 

moves are implicitly or explicitly assumed to start and end within the same cycle. We 

think that scheduling approach under such an assumption may identify a non-optimal 

solution to be an optimal one, which can be verified by a counterexample. To find a 

global optimal solution, the above-mentioned assumption should be relaxed. In other 

words, a loaded hoist move is allowed to start in one cycle and end in the next one if 

necessary. Therefore, this research focuses on the development of an improved MIP 

approach for the CMHSP with relaxing the above-mentioned assumption.  
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Figure 2.1 The trend of publications about HSP from 1976 to 2014. 

 
 

 

Figure 2.2 Ratio of proposed approaches in the reviewed HSP articles. 

 

 

Table 2.1 Summary of QEA works 

Problems References 

TSP Narayanan and Moore (1996), Talbi et al. (2004) 

Knapsack problem Han and Kim (2002), Han and Kim (2004), Zhao et al. (2006), Zhang 

and Gao (2007) 

Flow shop/Job shop 

scheduling 

Li and Wang (2007), Gu et al. (2009), Niu et al. (2009), Gu et al. 

(2010), Zheng and Yamashiro (2010) 

HSP Our contribution 
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Chapter 3 A Hybrid Quantum Evolutionary Algorithm 

with Improved Decoding Scheme for HSP 

3.1 Introduction 

With the development of automation technologies, computer-controlled hoists 

instead of workers have been gradually used in many manufacturing industries to 

perform high frequency or dangerous transportation jobs. The advantages of robotic 

or automated manufacturing systems include higher productivity, better product 

quality, more efficient use of materials, improved safety and reduced labor intensity. 

Besides, highly robotic or automated manufacturing systems can effectively meet the 

requirement of mass production and respond to global competition.  

In modern surface treatment facilities, the production line usually consists of 

several processing tanks arranged in a line and one or more hoists for transporting 

parts from tank to tank, as shown in Figure 1.1. Due to the industrial applications 

(Armstrong et al., 1996), the part processing time in each tank is usually limited to a 

pair of minimum and maximum time intervals, which is called time window 

constraints. The cyclic production mode is usually adopted in the automated 

manufacturing systems because of easy implementation in a mass production 

environment. This leads to a repetitive schedule performed by the hoist in every 

certain time. The duration of performing the repetitive schedule is called the cycle 

time or cycle length (Chen et al., 1998).  

As mentioned in Chapter 2, Lei and Wang (1989) has proved that the simple HSP 

is NP-complete, but many researchers have constantly dedicated to this area and 

proposed various efficient methods for solving the relevant problems (Phillips and 

Unger 1976; Baptiste et al., 1993; Lei and Wang, 1994; Ng, 1996; Chen et al., 1998; 

Yan et al., 2010; Yan et al., 2012).  

Since 1990s, QEA has been successfully applied to solve several well-known 

optimization problems, such as travelling salesman problem (Narayanan and Moore, 

1996), knapsack problems (Han and Kim, 2002; Zhang and Gao, 2007), flow shop/job 

shop scheduling problems (Li and Wang, 2007; Gu et al., 2009; Gu et al., 2010), etc. 

Due to the NP-completeness of the studied problem, the computation time spent by 

exact methods usually increases exponentially with its size. Thus, it is a wise choice 

to use meta-heuristics to find sufficiently good schedules within a reasonable time. 
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Because of its unique advantages, such as better population diversity, rapid 

convergence, and very well global search ability, QEA has gained great success in 

many different optimization problems. Up to now, there is no work reported on using 

QEA to solve any types of HSP. So in this chapter, we propose a new scheduling 

algorithm based on QEA and genetic operators for the single-hoist cyclic scheduling 

problem with processing time windows.  

The main contribution of this chapter is summarized as follows. Firstly, we 

propose a new decoding scheme with three different conversion procedures. Secondly, 

we propose a more effective repairing procedure than the one in Yan et al. (2012) to 

overcome the problem of unfeasibility of generated sequences which are often 

encountered in HSP. Note that in Yan et al. (2012), for each infeasible sequence, the 

reparation is conducted by randomly swapping any two moves. In this chapter, we 

first identify the move segment that causes infeasibility of the entire move sequence 

and then repair it. Finally, to increase the population diversity, crossover and mutation 

operators with adaptive probabilities are also implanted into our algorithm. 

The rest of this chapter is arranged as follows. In the next section, we introduce 

the problem description and show an illustrative example of the problem as well as 

the problem formulation. The proposed algorithm with a repairing procedure is the 

subject of the Section 3.3. The experimental results and comparisons of the proposed 

algorithm with the existing approaches are given in Section 3.4. And finally, we 

conclude this chapter in Section 3.5. 

 

3.2 Problem statement and mathematical model 

3.2.1 Problem statement 

As the problem has been studied in the literature, e.g. Phillips and Unger (1976), 

Lei and Wang (1994), Ng (1996), Chen et al. (1998), Leung et al. (2004), and Che 

and Chu (2007), we briefly give a problem description and notation, which are similar 

to those existing in the literature. Given n processing tanks (i.e., M1, M2,…, Mn) in a 

production line and a single hoist for part transportation. Both tanks and hoist are 

single capacity resources. Besides, tank 0 (i.e. M0) and tank n+1 (i.e. Mn+1) are the 

input station and the output station, respectively. After a part is unloaded from M0, it is 

to be successively processed through M1 to Mn. The hoist moves a part from Mi to 

Mi+1, 0≤i≤n, which is called (loaded) move i. Each (loaded) movement includes three 
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sub-operations: 1) unloading a part from a tank; 2) carrying the part to the next tank; 3) 

loading the part into the tank. The hoist without carrying a part travels between two 

tanks, which is called empty move.  

Moreover, the part processing time at each tank is said to be processing time 

windows, as it is confined within a pair of minimum and maximum time bounds. If 

the actual processing time violates the time limits, defective parts would be produced. 

Furthermore, at any time, each tank can process only one part. When a processing 

operation in a tank is finished, the part must be moved by the hoist to the next one 

without delay, which includes no pause of the loaded hoist. The production lines 

usually run in a cyclic mode since it is easy to implement. In each cycle, each tank is 

emptied exactly one time during a cycle, which involves cyclic schedules with 

one-degree. This chapter studies the one-cyclic scheduling problem with a single hoist, 

and the decision concerns how to optimize the hoist move sequences so as to 

maximize the productivity.  

To facilitate the problem formulation, we define the following notations and 

variables in this chapter, which are similar to Leung et al. (2004): 

[Li, Ui]: the minimum and maximum bounds of the part processing time in Mi, 

respectively, 1≤i≤n. 

di: the time needed to perform move i, 0≤i≤n. 

ei, j: the travel time for empty hoist from Mi to Mj, note that ei,i =0 and ei, j =ej, i, 

0≤i, j≤n+1. The values of ei, j satisfy the well-known triangular inequality (Chen et al., 

1998): ei, j ≤ei, k+ek, j, k∉{ i, j}, i≠j, 0≤ i, j, k ≤n+1. 

The decision variables are the following ones: 

C: cycle time. It is the duration of a cycle. 

ti: the start time of (loaded) move i within a cycle, 0≤i≤n. Without loss of 

generality, move 0 is supposed to be the first move of a cycle, thus t0=0. 

To facilitate the formulation, we define the following intermediate variables: 

si: if si =0, then Mi is empty at the beginning of a cycle; else si =1, then Mi is 

occupied by a part, 0≤i≤n. Define Sn = {s0, s1,…,sn}, which is called the initial part 

distribution at the beginning of a cycle. Without loss of generality, we let s0=1 and 

s1=0, since M0 is always occupied by part at the beginning of a cycle and move 0 is 
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the first move of a cycle.  

r[i]: the i+1th move performed by the hoist within a cycle, 0≤i≤n. As mentioned 

above, we have r[0]=0. Define Rn=<r[0], r[1], r[2],…, r[n]>, which represents the 

sequence of moves during a cycle. An example of Rn with n=3 is R3=<0, 2, 3, 1>, 

where r[1]=2, r[2]=3, and r[3]=1, as shown in Figure 3.1. Here, r[1]=2 means that the 

second move transfers a part from M2 to M3. 

Figure 3.1 shows an illustrative example of the studied problem with n=3. In this 

example, there are three processing tanks (i.e., M1, M2 and M3) with a single hoist for 

part transportation as well as the loading station (i.e. M0) and the unloading station (i.e. 

M4). In Figure 3.1, the inclined solid arrows and the broken arrows represent the 

loaded moves and the empty moves, respectively. The start point and end point of an 

inclined solid arrow (resp. a broken arrow) represent the start time and the end time of 

corresponding loaded (resp. empty) move, respectively. Furthermore, the horizontal 

solid line represents the duration of the part processing operation. The production line 

is supposed to be in steady-state. As can be seen from Figure 3.1, at time 0, M2 is the 

only tank to be occupied (and implicitly M0). So the initial part distribution is S3 = {1, 

0, 1, 0}. For this distribution, the optimal hoist move sequence is R3=<0, 2, 3, 1> (i.e., 

t0<t2<t3<t1). When move 1 finishes, the hoist comes back to M0 and performs move 0 

of the next cycle. We can also see that the hoist performs the same loaded (or empty) 

move sequence in time interval [C, 2C] as those ones in time interval [0, C]. This is 

called cyclic production mode. The duration of the repetitive sequence (i.e. R3) is the 

cycle time C. 

 

 

Figure 3.1 An example of cyclic scheduling problem with a single hoist. 

According to the notation in (Manier and Bloch, 2003) dedicated to hoist 
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scheduling problems, the problem studied in this chapter can be expressed in the 

following form:  

CHSP | n // diss | /n+2| Cmin 

which means the single hoist cyclic scheduling problem with n tanks, n+2 operations 

per part, dissociated loading and unloaded stations, and minimization of cycle time C 

as the objective. 

3.2.2 Mathematical model 

As mentioned above, move 0 is supposed to start at time 0, then the start times of 

other moves are all greater than 0. Thus, we have (Lei, 1993; Ng, 1995): 

t0=0, ti>0, for 1≤i≤n,                            (3.1) 

In Figure 3.1, we notice that the start time of processing operation i is the same 

as the end time of loaded move i−1(i.e. ti−1+di−1); the end time of processing operation 

i is the same as the start time of loaded move i (i.e. ti). Moreover, there are in total two 

possible states (empty or occupied) for each tank at the beginning of a cycle. Based on 

the above observations, the actual processing time in Mi can be represented as ti 

−(ti−1+di−1) for si=0 (like tank M1 in Figure 3.1) and C+ti−(ti−1+di−1) for si=1 (like tank 

M2 in Figure 3.1), respectively. Considering the processing time requirements, we 

have (Chen et al., 1998): 

Li≤siC+ti−(ti−1+di−1)≤Ui, 1≤i≤n,                    (3.2) 

Furthermore, the hoist must have enough time to perform any two successive 

moves (i.e. r[i] and r[i+1]), thus, the following relation holds (Chen et al., 1998): 

tr[i]+dr[i]+er[i]+1, r[i+1] ≤tr[i+1], 0≤i≤n−1,               (3.3) 

It should be noted that constraint (3.3) also implicitly guarantees the satisfaction 

of tank capacity constraint. For instance, as shown in Figure 3.1, we have r[1]=2, 

r[3]=1, and c2=1. By the definition of tank capacity constraints (i.e., an occupied tank 

must be emptied before processing a new part), move 2 must performs before move 1, 

and thus we have: t2+d2+e3,1 ≤t1, which must hold. From constraint (3.3), we can have: 

t2+d2+e3,3≤t3; t3+d3+e4,1≤t1, which leads to t2+d2+e3,3+d3+e4,1≤t1. Since d3+e4,1>e3,1, the 

inequality t2+d2+e3,1<t1 holds. Therefore, we see that tank capacity constraint is 

implicitly ensured by constraint (3.3). 

Once the last move (i.e. r[n]) finishes, the hoist must come back to M0 for 
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executing move 0 of the next cycle. Hence, we have (Chen et al., 1998): 

tr[n]+dr[n]+er[n]+1, 0≤C, 1≤r[n]≤n.                  (3.4) 

 

Based on the above works, the mathematical model for the single-hoist 

one-degree cyclic scheduling problem with processing time windows can be 

formulated as (Chen et al., 1998): 

Min. C 

s.t. (3.1)−(3.4). 
 

3.3 Hybrid Method 

In what follows, we present a specific hybrid QEA (labeled HQEA in the 

following) for the studied problem. More precisely, in Section 3.3.1, we introduce the 

traditional solution representation and decoding schemes; in Section 3.3.2, we present 

the Q-bits representation; in Section 3.3.3, we determine the states of Q-bits in each 

individual; in Section 3.3.4, we present the decoding procedures; in Sections 3.3.5 and 

3.3.6, we describe the fitness evaluation function and the repairing procedure, 

respectively; in Section 3.3.7, we introduce the rotation gate and the genetic operators 

to update individuals; finally, in Section 3.3.8, we present the flowchart of the 

proposed hybrid algorithm. 

3.3.1 Introduction 

In QEA or GA models, a solution (also called chromosome) is usually 

represented by a permutation of job input sequence in classic flow shop or job shop 

scheduling problems. However, a chromosome is encoded by Q-bits in QEA, which is 

then converted into a binary chromosome. That is, QEA is generally based on a binary 

encoding. For this reason, a key issue in the development of QEA for production 

scheduling problems is to design an efficient decoding mechanism to convert a binary 

representation into a permutation-based representation. Typically, there are mainly 

two decoding schemes used in QEAs in the literature for solving various scheduling 

problems: binary-decimal decoding and shifting decoding. For the binary-decimal 

decoding, it first uses a binary segment for each job and then converts it into a 

decimal number. After that, all jobs are sequenced based on their corresponding 

converted decimal numbers. It is understandable that the chromosome under such a 

scheme is usually very long, especially when the problem size is large. As a result, the 
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search efficiency of the algorithm may be reduced. As for shifting decoding, it uses a 

permutation chromosome as a parent pattern and shifts its genes with the direction of 

a binary chromosome so as to generate a new permutation chromosome. Such a 

decoding usually has a better computational efficiency than binary-decimal decoding. 

But it cannot make full use of the advantage of QEA due to its permutation-based 

representation.  

To overcome the above drawbacks, we propose a new decoding scheme in this 

study. In our scheme, a binary chromosome is directly converted into permutation 

chromosome (i.e. a hoist move sequence) using several different decoding procedures. 

Our decoding scheme can efficiently exploit the solution diversity due to Q-bits 

chromosome compared to shifting decoding, and has a shorter chromosome than 

binary-decimal decoding. In the following, we present the Q-bits representation. 

3.3.2 Representation 

Indeed, we notice that tank state and Q-bit state have the same characteristics. 

That is, they both are either 0 or 1. Since precedence relations need to be determined 

between n moves in this chapter, we let Q-bit i corresponding to tank i, for 1≤i≤n, and 

use Rule 1 and Rule 2 introduced in the following section to determine each Q-bit 

state. If Q-bit i is in state “0” (i.e., si =0), which represents that move i−1 is performed 

before move i during a cycle; otherwise (i.e., si =1), move i is performed before move 

i−1 during a cycle. Hence, an individual Ψ containing n Q-bits is used to represent n 

tank states, and is defined as follows: 
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where |αi|2+|βi|2=1,1≤i≤n. Note that in the initialization step, all Q-bits in Ψ are 

initialized as the equal probability (i.e. 1/2 ) of being 0 or 1. From above, we can 

know that each quantum individual corresponds to a complete part distribution Sn, 

more precisely the state of each Mi (i.e. empty or occupied). 

In more classical and direct representations for the studied problem, each 

individual represents a moving sequence, so the value of gene j gives the index of the 

tank from which the j th move starts during one cycle. In such representations, the 

solution space contains n! individuals. With our representation, we handle in a first 

step only 2n−1 individual (and not 2n, because s1 is always equal to 0, it is not use 

making it explicitly appear in the representation). This number may be further 

reduced for some instances with Rule 1, as explained in the following. Moreover, 
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each Q-bits individual generally corresponds to several moving sequences, which we 

consider in a second step. Each time Rule 1 enables us to determine that an individual 

is not good, then all the associated moving sequences are unfeasible ones and it is no 

use evaluating them. 

3.3.3 Initialization 

For each specific instance, some tank states may be directly determined by the 

following method. Specifically, we first suppose that si=1, therefore move i occurs 

before move i−1 within a cycle. Moreover, let us suppose that move i−1 and move i 

are the last move and the second move of a cycle, respectively. Correspondingly, the 

minimum processing time of a part in Mi with si =1 is ei, 0+d0+e1, i. As an example, if 

we consider move 1 and move 2 in Figure 3.1, the processing time of a part in M2 is 

equal to e2,0+d0+e1,2. Indeed, move i would be the first move to be performed after 

move 0, and move i−1would be the last move of the cycle. Else, the processing time 

in Mi would be greater than ei, 0+d0+e1, i, which would make the following assertion 

even more true. Then we can compare this processing time with Ui which is the 

maximum authorized time in Mi.  

1) If Ui<ei, 0+d0+e1, i (hereafter called Rule 1) happens, then we can know that the 

processing time requirement in Mi is violated. Consequently, all sequences 

relevant with si =1 are infeasible ones. So si must be 0.  

2) Else, si may be 0 or 1. 

Note that Rule 1 can be used to reduce the enumerating space of Sn and thus 

improve the search efficiency. Indeed, if Rule 1 enables us to fix 0 to the values of p 

variables si, then the search space of Sn can be reduced to 2n−p−1individuals. 

For the state of Q-bit i in a quantum individual Ψ that is not determined by Rule 

1, a random number rdi is generated from the uniform distribution [0, 1). If rdi>|αi|2, 
then Q-bit i is in state “1” (i.e. si =1); else, Q-bit i is in state “0” (i.e. si =0). This 

method is called Rule 2. Based on the above, the states of all Q-bits in one individual 

can be easily determined by Rule 1 and Rule 2, that is to say the initial part 

distribution Sn.  

3.3.4 Decoding Scheme 

In what follows, we present how we derive the hoist move sequence from a 

quantum individual. For a better diversification, three different decoding procedures 

described in the following are used to convert a quantum individual into possible hoist 
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move sequences, providing that the states of all Q-bits (i.e. Sn) in a quantum 

individual are already determined.  

3.3.4.1 Decoding procedure 1 

For ease of description, we first define λi be a copy of si and λi = si. Let Φ be a 

set that records the performed moves. It should be noted that λi can be seen as an 

indicator that indicates the state (i.e., empty or occupied) of Mi in the process. Thus, 

the value of λi is dynamically modified in the process. That is, when move i finishes, 

both the states of Mi and Mi+1 are changed, i.e., Mi becomes empty and Mi+1 is 

occupied by a part. Thus, we set λi =0, λi+1 =1 and put move i into set Φ .  

Procedure 1 mainly depends on the probability sizes of Q-bits in Ψ to derive the 

hoist move sequence, for 1≤i≤n. In particular, for given Sn, when move r[k] finishes, 

for 0≤k≤n, we first calculate the number (labeled with cnt) of λi=1 under condition 

λi+1=0 (note that if i=n, the output station can be seen as always be empty) and i∉Φ. 

Then, we successively assign i with above condition to Ωm (i.e. Ωm=i) in set 

Ω={Ω1,…Ωcnt}, which is defined to record the possible moves for the next step, for 

1≤m≤cnt. Thus, each step has in total cnt possibilities. Finally, we choose move j with 

the highest probability (i.e. |αj|2 ) in set Ω as move r[k+1], and let λj=0, λj+1=1(for 

j≠n),Φ=Φ∪{ j}. In the next step, we update both cnt and Ω, and use a similar way to 

derive the following move (i.e. r[k+2]). When the whole hoist move sequence (i.e. Rn) 

is determined, this procedure stops. 

For example, a complete part distribution (corresponding to a quantum 

individual) Sn with n=5 is S5 ={1, 0, 1, 0, 1, 0}. When the first move (i.e. r[0]) finishes, 

by definitions, we have λ1=1, λ2=1, λ3=0, λ4=1, λ5=0 and Φ={0}, from which we can 

know that M1, M2 and M4 are currently occupied by a part. As the hoist cannot unload 

a part from an empty tank and also cannot load a part into an occupied tank, we have 

Ω={2,4}. Finally, according to the selection rule, if |α2|2≥|α4|2, we have r[1]=2;else, 

r[1]=4. The similar ways are used to update λi, Φ, Ω and then determine r[k], 2≤k≤5. 

3.3.4.2 Decoding procedure 2 

For ease of description, we keep the intermediate parameters λi, Φ and Ω defined 

in procedure 1. Furthermore, we define sti be the start time of move i in the process of 

deriving the whole sequence and let st0=0, for 0≤i≤n. To derive a move sequence from 

given Sn, procedure 2 mainly depends on the rule of minimal time unit increment 

between str[k] and str[k+1], for 1≤k<n, while respecting the processing time windows, 
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since the objective of the problem is to minimize the cycle time C. In other words, in 

each step, we have a set of several moves and choose one move with the earliest 

starting time as move r[k+1] from the set.  

In particular, on one hand, when move r[k] finishes, as similarly done in 

procedure 1, we derive the values of cnt and Ω from each given Sn. On the other hand, 

we design a different strategy to determine move r[k+1] compared with the procedure 

1. At first, we calculate each stj (supposing j=Ωm) in set Ω, that is, stj=str[i]+dr[i]+er[i]+1, 

j, 1≤m≤cnt. Then, for each move j in set Ω, we check whether move j−1 exists in the 

partial determined sequence <r[0], r[1],…, r[i]>. If it exists and stj−stj−1−dj−1<Lj 

happens, then we update stj=stj−1+dj−1+Lj so as to meet the minimal processing time 

requirement. Then it involves a waiting time of the empty hoist above tank j until the 

minimal processing time in tank j is completed. Finally, we choose move j (supposing 

j=Ωm) with the smallest value of stj in set Ω as move r[k+1], and let λj=0, λj+1=1 (for 

j≠n),Φ=Φ∪{ j}. In the next step, we update both cnt and Ω so as to derive move 

r[k+2]. When the whole sequence (i.e. Rn) is determined, this procedure stops. 

For instance, an example of Sn with n=5 is S5={1, 0, 0, 1, 0, 1}. When the first 

move (i.e. r[0]) finishes, by definitions, we have λ1=1, λ2=0, λ3=1, λ4=0, λ5=1 and 

Φ={0} as well as Ω={1, 3, 5}. We first calculate st1 (note that if st1−d0<L1, then 

st1=d0+L1), st3 and st5 by st0+d0 plus e1, 1, e1, 3, e1, 5, respectively, then choose the move 

with the smallest starting time among the three candidates as r[1]. The similar ways 

are used to update λi, Φ, Ω and then determine r[k], 2≤k≤5. 

3.3.4.3 Decoding procedure 3 

Procedure 3 mainly depends on the precedence relationship between move i−1 

and move i (i.e., the value of si) to derive the move sequence. For each given Sn and 

Rn (i.e. quantum individual), if si=1, then move i is set before move i−1in Rn; else, 

move i is set after move i−1 in Rn. For instance, an examples of Sn and Rn with n=5 

are respectively S5 ={1,0,1,1,0,1} and R5=<0, 2, 1, 4, 3, 5>, from which we can easily 

derive a possible sequence that is R5=<0, 3, 2, 1, 5, 4>. Note that at the initial step, we 

set r[i]= i, 0≤i≤n.  

Based on the above descriptions, we first apply the three proposed decoding 

procedures to each quantum individual and then select the best sequence (i.e. the best 

fitness) from the three generated sequences to represent this individual. 

3.3.5 Fitness evaluation 
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To facilitate the description, fit(X) is defined to represent the fitness value of 

each individual X, and it can be computed as follows: fit(X)=F/C, in which F is a 

parameter and set as 2000 in this chapter. From this definition, we see that the smaller 

the cycle time C (C>0), the greater the fitness value. For each individual relevant with 

a hoist move sequence, it is evaluated by using the graph-based polynomial procedure 

(Chen et al., 1998). In particular, if the sequence is proved to be feasible, then the 

procedure returns a positive value for the cycle time C and the individual fitness can 

be calculated; Otherwise, the individual fitness is set to be 0. For more details about 

the graph-based polynomial procedure, please see Chen et al. (1998). 

3.3.6 Repairing procedure 

It should be noted that constraints (3.2) ~ (3.4) formulated in subsection 3.2.2 

can be regarded as two classes. One is flexible processing time constraints and the 

other is hoist transportation capacity constraints, which are (3.2) and (3.3), (3.4), 

respectively. Generally, if a sequence Rn is infeasible, the following cases happen: 

(C1) the flexible processing time constraint is violated; 

(C2) the hoist transportation capacity constraint is violated; 

Due to the characteristics of the HSPs in terms of constraints, it is well known 

that very few feasible solutions exist among the numerous possible moving sequences. 

Long before searching the optimal solution, the first challenge is to find feasible 

sequences. So some repairing procedures are often required to transform the 

unfeasible solutions into feasible ones. In what follows, we present the repairing 

procedure based on the above cases. For an individual with an associated hoist move 

sequence Rn, we identify each partial sequence in a whole hoist move sequence Rn 

which is either in sequence of i−1→•→•→i (which means move i−1 is performed 

before move i within a cycle) or of i→•→•→i−1(which means move i is performed 

before move i−1 within a cycle). That is to say, a complete hoist move sequence Rn 

consists of n pieces of such a partial sequence. For ease of description, we define the 

following parameters: 

zi−1, i: the duration between the finish time of move i−1 and the start time of move 

i for a partial sequence i−1→•→•→i, for 1≤i≤n. Note that zi−1, i generally equals to the 

sum of all loaded move (denoted by •) times and relevant empty move times. If there 

exists a pair of moves j−1 and j in the sequence, that is i−1→•→ j−1→•→j→i, and 

zj−1, j<Lj, then we let zi−1, i= zi−1, i+Lj −zj−1, j. Note that zi−1, i may span the cycle or be 
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within a cycle. For example, in Figure 3.1, the two consecutive sequences are 

0→2→3→1→0→2→3→1. From it, we can see that z0, 1 and z2, 3 are within a cycle, 

but z1, 2 spans the cycle. Therefore, zi−1, i can be used to check the satisfaction of 

flexible processing requirements no matter si=0 or si=1. 
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that the possible number of empty moves is 2/)65( 2 ++ nn . Since the empty moves 

between M0 and M0, M0 and M1, Mn+1 and Mn+1 do not actually happen, the number is 

reduced to 2/)5( 2 nn + . 

For an infeasible sequence Rn, we first use parameters zi−1, i to check the 

sequence Rn.  

1) If zi−1, i is verified to be greater than its upper bound Ui, then we remove one or 

more move(s) from the corresponding partial sequence, so as to make the partial 

sequence to be feasible; else if zi−1, i is verified to be smaller than its lower bound Li, 

and the time gap between Li and zi−1, i is greater than the sum of d and 2e, then we 

insert possible moves into the partial sequence. 

2) Then, we identify the violated hoist capacity constraints by the start times of 

all moves (i.e., ti, 1≤i≤n) given by the evaluation process. For ease of description, let 

moves i and j be the identified two moves violating the hoist capacity constraints, that 

is, ti+di+ei+1, j >tj, with ti<tj. If these two moves are two consecutive moves, we set 

move j before move i in sequence Rn so as to make the sequence be feasible; else, we 

remove one or more moves between moves i and j so as to make the two moves 

satisfy the hoist capacity constraints. 

3.3.7 Updating individuals 

3.3.6.1 Rotation gate 

In this chapter, the rotation gate U(∆ωi) is adopted as the variation operator to 

update the Q-bits in (3.5). ω0 is set to be as the initial rotation angle. For individual X, 

the Q-bit i in it can be updated as the following way (Han and Kim, 2002; Li and 

Wang, 2007): 
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We define fit_b be the fitness of the best individual found in population. The 

rotation angle ∆ωi is defined according to the respective values of the corresponding 

parameter si in the individual X (labeled si−X) and in the best one (labeled si−best). If the 

condition fit(X)<fit_b holds, then consider the following conditions (Han and Kim, 

2002): 

Case A: If Q-bit i is in the 1st or the 3rd quadrant, then consider the following: 

Case (A.1): if si−best=1 and si−X=0, then ∆ωi=(−ω0), here the rotation angle ∆ωi is 

set negative so as to increase the probability that Q-bit i is in state “1”; 

Case (A.2): if si−best=0 and si−X=1, then ∆ωi=ω0, the rotation angle ∆ωi is set 

positive so as to increase the probability that Q-bit i is in state “0”; 

Case (A.3): else, ∆ωi =0;    

Case B: If Q-bit i is in the 2nd or the 4th quadrant, then consider the following: 

Case (B.1): if si−best=1 and si−X=0, then ∆ωi=ω0, here the rotation angle ∆ωi is set 

positive so as to increase the probability that Q-bit i is in state “1”; 

Case (B.2): if si−best=0 and si−X=1, then ∆ωi=(−ω0), the rotation angle ∆ωi is set 

negative so as to increase the probability that Q-bit i is in state “0”; 

Case (B.3): else, ∆ωi =0; 

Besides, since the probability of a Q-bit i in state “0” may be equal to 1 or 0, the 

updated Q-bit i may be trapped in state “0” or “1”, which may lead to the premature 

convergence of population. Thus, a small constant µ is applied to ensure that the 

probabilities of the two states are both belonged to the range [µ, 1−µ]. As a result, the 

following equation must be considered (Han and Kim, 2004): 
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By applying the decoding procedures given in Section 3.3.4 to each updated 

quantum individual, hoist move sequences can be generated from it. 
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3.3.6.2 Genetic operators 

In this subsection, selection, crossover and mutation operators (Akpinar and 

Bayhan, 2011) are applied to further evolve the population. To facilitate the 

description, the following notations are given: 

cp, mp: crossover and mutation probabilities, respectively. 

fit_a: the average fitness of the entire population. 

fit_0: the maximum fitness of a specific instance, which is computed as follows: 

fit_0=2000/CL. CL is the lower bound on cycle time C for the instance. It can be 

obtained by the following way, which is taken from Chen et al. (1998): 

CL ≥max(Li+di+di−1+ei+1, i−1), 1≤i≤n.                    (3.8) 

According to Srinivas and Patnaik (1994), cp and mp are defined respectively in a 

similar way: 

cp =0.7×[fit_0− fit_b]/[ fit_0−fit_a].                   (3.9) 

mp =0.5×[fit_0− fit(X)]/[ fit_0−fit_a].                  (3.10) 

Adaptively adjusting cp and mp (i.e., (3.9) and (3.10)) can prevent divergence and 

escape from the local optimal, since (3.9) and (3.10) can dynamically reduce cp and 

mp for individuals with high fitness, or increase cp and mp for individuals with low 

fitness. 

In this chapter, two-point crossover operator is applied to generate the offspring. 

First, two individuals are chosen by the binary tournament method as parents 1 and 2; 

then, for parent 1, two different positions p and q are randomly chosen, p, q∈[1, n]. 

For i∈[1, p) and (q, n], the values of r[i] for the new offspring1 inherits from parent 1. 

For i∈[p, q], the new r[i] is sequentially chosen from parent 2, on condition that its 

value was not already chosen from parent 1. The same operations are done, starting 

with parent 2 and then parent 1, to generate offspring2. This operation is depicted as 

Figure 3.2(a), in which | is the chosen position. 

Besides, a mutation operator is adopted to prevent a solution falling into a local 

optimum of a specific instance, which is designed as follows. For a chosen individual 

Rn =<r[0], r[1], r[2],…, r[n]>, first, we randomly choose a position p, p∈[1, n], then 

randomly reorders the move sequence in <r[p+1], r[p+2],…, r[n]>. This operation is 

depicted as Figure 3.2(b), in which | is the chosen position. 
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Figure 3.2 Crossover and mutation operators. 

 

3.3.8 The procedure of hybrid QEA(HQEA) 

Based on the above works presented in sections 3.3.1~3.3.7, the procedure of 

HQEA for solving the considered problem can be depicted as Figure 3.3. From this 

flowchart, we can see that the proposed algorithm uses two mechanisms to update the 

population: Q-gate and genetic operators. 
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Figure 3.3 The flowchart of the proposed HQEA. 

 

3.4 Experimental results 

To verify the feasibility and applicability of the proposed HQEA, both 

benchmark and randomly generated instances were used in the experimental study. All 

computational experiments were conducted on an ASUS Laptop with an Intel Core 

i5-3210M Processor 2.50GHZ and on a windows 8 environment. The parameters 

were set as follows: population size: Popsize=50; the maximum number of 

generations: MaxIter=200; Initial rotation angle ω0=0.05π; µ= 0.008. The maximum 

repairing times were set as 6. For evaluating the quality of the solution obtained with 

our HQEA, the same problem was also formulated by the mixed integer programming 

(MIP) approach and solved by the ILOG CPLEX (Version12.4). 
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3.4.1 Experimental results on benchmark instances 

The proposed algorithm was verified by using five well known benchmark 

instances in the literature: Mini Phillips (Mini, n=8), Black and Oxide2 (BO2, n=11), 

Phillips and Unger (P&U, n=12), Ligne1 (n=12) and Ligne2 (n=14), which are taken 

from Leung et al. (2004), Phillips and Unger (1976) and Manier (1994), respectively. 

Table 3.1 gives the experimental results for five benchmark instances obtained 

with our algorithm and CPLEX software, in terms of the number of remaining 

possible Sn after applying Rule 1 (Nb. Sn after Rule 1 for short), the Convergence 

generation(Con.gen. for short), the Best cycle times and the CPU times (measured in 

seconds). The “Con.gen.” refers to how many generations are needed for our 

algorithm to find the best solution and no improvement on the solution in the later. 

Consequently, the sub-column “Con. time” represents the time needed by the 

“Con.gen.” and is computed as: Con. time= Con.gen. × (Our CPU time/MaxIter). 

Table 3.1 Results for the benchmark instances 

Instances Nb. Sn after Rule 1 Con.gen. Best cycle times CPU times(In seconds) 

Our CPLEX SD Our Con. time CPLEX Gap 

Mini 26 2 287 287 0 4.75 0.048 0.16 −0.112 

BO2 210 13 279.3 279.3 0 5.26 0.342 0.25 +0.095 

P&U 210 29 521 521 0 5.65 0.819 0.47 +0.349 

Ligne1 211 24 411 392 4.84% 7.35 0.882 0.72 +0.162 

Ligne2 213 26 712 712 0 6.71 0.872 0.48 +0.392 

 

In Table 3.1, we can see that Rule 1 works well on two benchmark instances (i.e., 

Mini and P&U) as shown in column “Nb. Sn after Rule 1”, as the enumerating space 

of Sn is respectively reduced 50% for the two instances (Note that there are in total 

2n−1 individuals for each instance with given value of n.). In column “Best cycle 

times”, our algorithm finds the same solutions as the optimal ones obtained with 

CPLEX (see “Our” and “CPLEX”), except for Ligne1. The standard deviation of the 

best cycle time obtained with our algorithm from the optimal cycle time obtained with 

CPLEX for Ligne1 is less than 5%, see sub-column “SD”, which is computed as: 

SD=(Our−CPLEX)/CPLEX×100%. Although the CPU times spent by our algorithm 

are generally longer than those spent by CPLEX (see column “CPU times”), we can 

also see in column “Con.gen.” that our algorithm finds the optimal solutions for most 

cases in very early generations (the spent time is given in sub-column “Con.time”). 

Note that the time gaps (i.e. sub-column “Gap”) between Con. time and CPLEX are 
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very narrow, less than 1s. Due to this very small amount of gaps, the difference in 

CPU times between CPLEX and our algorithm is meaningless and can be negligible. 

In summary, our algorithm is an effective method for solving the benchmark instances 

in terms of solution quality and CPU times. 

3.4.2 Experimental results on randomly generated instances 

In this subsection, random instances are generated to further test the performance 

of the proposed algorithm. We compare our algorithm with the QEA with shifting 

decoding scheme to demonstrate the effectiveness of our decoding scheme. We also 

compare it with commercial software CPLEX and Tabu search (TS) algorithm (Yan et 

al., 2012). The random instances are generated as follows. We set n belongs to {10, 15, 

18, 20, 22}, and let U(c1, c2) be a uniform distribution between parameters c1 and c2. 

The random tests were set as two different groups. One (called Group1) was defined 

as the following way: the time windows were set as Li=U(30, 120) and Ui=Li+U(10, 

750), 1≤i≤n; the time of empty and loaded moves were respectively computed as the 

followings: ei, i+1=U(3, 6), ei, j =∑
−

=
+

1

1,

j

ik
kke , 0≤i, j≤n+1, and di=20+ei, i+1, 0≤i≤n. The other 

(called Group2) was defined as the following: Li=U(40, 120), Ui =30+U(1, 8)×Li, for 

1≤i≤n, ei, i+1= U(2, 5), ei, j =∑
−

=
+

1

1,

j

ik
kke , for 0≤i, j≤n+1, and di=15+ei, i+1, for 0≤i≤n. These 

defined parameters were based on the magnitude of the data from real production 

lines (Phillips and Unger, 1976; Manier, 1994). For each given n, five instances were 

randomly generated.  

Table 3.2 reports the remaining number of Sn for each randomly generated 

instance after applying Rule 1. As mentioned before, there are in total 2n−1 individuals 

for each instance with a given value of n. As presented in Table 3.2, Rule 1 is efficient 

on 22 random instances (i.e. the numbers in bold font). We can also see in Table 3.2 

that the enumerating space of Sn for each instance among the 22 instances is reduced 

at least 50% and at most 87.5% after applying Rule 1. Based on these results, Rule 1 

seems efficient for the studied problem. 

Firstly, we compare our algorithm with the QEA with shifting decoding scheme 

(i.e. SQEA). Table 3.3 presents the comparison results between our decoding scheme 

and shifting decoding scheme on Group1 and Group2. We can see that our decoding 

scheme generally outperforms than the shifting decoding scheme in terms of solution 
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quality and CPU times for all random instances. In particular, the deviations (i.e. AD) 

of our algorithm from that with shifting decoding generally decrease with the problem 

size. Besides, our algorithm spent less time than that with shifting decoding for all 

random instances. 

Table 3.2 Results for the remaining number of Sn for each instance after applying Rule 1 

n Group1 Group2 

1 2 3 4 5 1 2 3 4 5 

10 29 28 29 29 29 29 29 29 29 29 

15 214 214 214 213 214 214 214 214 214 214 

18 216 217 217 216 217 216 217 217 216 215 

20 218 219 219 217 218 218 218 218 218 219 

22 218 221 220 220 218 219 220 221 219 219 

 
 

Table 3.3 Comparison results between our decoding scheme and shifting decoding scheme on 

Group1 and Group2 

n Group1 Group2 

Average cycle times Average CPU times Average cycle times Average CPU times 

Our SQEA AD Our SQEA Our SQEA AD Our SQEA 
10 400.4 401.2 −0.20% 6.74 10.12 318.4 318.4 0 6.83 17.8 
15 607.2 628 −3.31% 24.56 51.79 470.6 470.8 −0.04% 37.44 146.68 
18 808.8 817.4 −1.05% 54.88 286.55 627.4 638.2 −1.69% 49.46 267.57 
20 897.2 927.8 −3.30% 117.53 360.14 678.6 690.2 −1.68% 141.02 275.59 
22 1058.6 1351.2 −21.65% 274.43 315.62 802.6 878.2 −8.61% 190.16 373.43 

 

Secondly, Tables 3.4 and 3.5 reports the comparison results for randomly 

generated instances using our algorithm, Yan’s algorithm (Yan et al., 2012) and 

commercial software CPLEX. Columns AD1 and AD2 represent the standard deviation 

of our solution from those obtained with CPLEX and Yan’s algorithm, respectively. 

They are computed as: AD1=(Our−CPLEX)/CPLEX×100%, and AD2= 

(Our−Yan)/Yan×100%). As presented in Tables 3.4 and 3.5, our algorithm and Yan’s 

algorithm find the same solutions as the optimal ones obtained with CPLEX for 

random instances with n=10. For the remaining random instances, the average cycle 

times obtained with our algorithm are smaller than those obtained with Yan’s 

algorithm. As a result, the deviations (i.e. AD2) of our algorithm from Yan’s algorithm 

are all negative, which range from −5.89% to −1.9% in Table 3.4 and from −3.93% to 

−0.42% in Table 3.5. Note that the smaller the AD2, the better solution quality our 

algorithm obtained over Yan’s algorithm. Therefore, our algorithm has a better 
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solution quality than Yan’s algorithm. We also notice that CPLEX has a better solution 

quality than our algorithm and Yan’s algorithm but it spent much longer CPU times, 

which will be discussed later. Moreover, the values of AD1 in Table 3.4 and Table 3.5 

both increase with the problem size, but are less than 4% and 3%, respectively, which 

are generally small and acceptable. 

Table 3.4 Comparison results for the randomly generated instances Group1 

n Average cycle times Average CPU times (In seconds) 

Our Yan CPLEX AD1 AD2 Our Yan CPLEX 

10 400.4 400.4 400.4 0 0 6.74 2.7 1.44 

15 607.2 624.6 602.4 0.8% −2.79% 24.56 19.95 42.95 

18 808.8 859.4 797.6 1.4% −5.89% 54.88 32.16 1351.53 

20 897.2 914.6 865.8 3.63% −1.90% 117.53 114.51 1692.12 

22 1058.6 1122.4 1025 3.28% −5.68% 274.43 211.34 2712.38 

 
 

Table 3.5 Comparison results for the randomly generated instances Group2 

n Average cycle times Average CPU times (In seconds) 

Our Yan CPLEX AD1 AD2 Our Yan CPLEX 

10 318.4 318.4 318.4 0 0 6.83 4.58 1.38 

15 470.6 472.6 466.4 0.9% −0.42% 37.44 62.35 51.50 

18 627.4 636.4 612.6 2.42% −1.41% 49.46 92.84 324.24 

20 678.6 684 661.8 2.54% −0.79% 141.02 53.52 1077.9 

22 802.6 835.4 779.8 2.92% −3.93% 190.16 102.62 1897.76 

 

For the average CPU times, we can see from Tables 3.4 and 3.5 that both our 

algorithm and Yan’s algorithm performs much better than CPLEX for each value of n, 

except for n=10. We also notice that Yan’s algorithm has a better performance than 

our algorithm in terms of CPU times except for n=15 and n=18 in Table 3.5. But their 

gaps are not so large. Moreover, although the CPU times spent by the three 

approaches generally increase with the instance size n, the CPU times spent by 

CPLEX generally have a very sharper growth than those spent by our algorithm and 

Yan’s algorithm, especially for large-size instances. From these results, we can see 

that our algorithm has a better computational performance than CPLEX. 

 

3.5 Summary 

This chapter proposed a hybrid QEA with improved decoding scheme to solve a 

single-hoist cyclic scheduling problem with processing time windows. In particular, 
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three different decoding procedures were proposed to convert Q-bit individual into 

robot move sequences. A repairing procedure was designed to repair the infeasible 

sequences. Both Q-gate and adaptive genetic operators as variant operators were 

applied to evolve the population. The effectiveness of the proposed algorithm were 

demonstrated by solving benchmark instances and randomly generated instances 

compared with commercial software CPLEX and Yan’s algorithm. Experimental 

results indicate that our decoding scheme outperforms the shifting decoding scheme, 

and the proposed algorithm can provide high-quality solutions within a reasonable 

time. The results also imply that the proposed algorithm generally has a shorter 

computation time than CPLEX, especially for large-size instances, and has a better 

solution quality than Yan’s algorithm. 
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Chapter 4 Bi-objective QEA with Local Search Procedure 

for HSP with Simultaneous Productivity Maximization 

and Production Cost Minimization 

4.1 Introduction 

In practice, electroplating plant is huge resource (such as electricity and 

freshwater) consumer due to its specific processing technology. For instance, part may 

be firstly immersed into an electrolytic degreasing tank containing certain volume of 

concentrated acids and alkalis solutions at required temperatures, for removing dust 

and grease from its surface, and then put into a rinsing tank containing certain volume 

of freshwater for cleaning possible chemical residue on its surface. Obviously, the 

amount of consumed electricity and freshwater mainly depends on the soaking 

duration (i.e. actual processing time). In other words, increased soaking durations in 

processing tanks generally give rise to the resource consumption, resulting in higher 

production cost.  

On the other side, electroplating plant also generates plenty of toxic waste daily, 

such as sludge and wastewater from treatment, and used acids and other chemicals. 

Generally, the less resource spent during the process, the less waste generated by 

electroplating plant. Concerning the environmental pollution as well as the shortage of 

freshwater and electricity, most countries such as France and China enact legislation 

to regulate the amount of freshwater and electricity consumed and pollutant emissions 

daily in electroplating industry. Note that the governments not only severely punish 

the electroplating plants discharging heavy pollution to the environment, but also 

charge higher prices of electricity and freshwater for industrial usage. Viewed from 

these aspects, optimal HSP with production cost minimization has great significance 

from both theoretical and practical perspectives. It implies more benefits while 

minimizing the amount of freshwater, electricity and chemicals used, then while 

limiting the associated costs as well as the pollutant emission and effluent treatment. 

So scheduling such facilities enhances with both the economic and environmental 

pillars which are the basis of the sustainable strategy deployed in many industries, due 

to the double pressure of concurrency and legislation. 

In the past decades, a number of efficient scheduling approaches, such as B&B 
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algorithm (Shapiro and Nuttle, 1988; Ng, 1995; Chen et al., 1998; Manier et al., 2000; 

Che and Chu, 2004; Che et al., 2011; Lei et al., 2014), MIP approach (Phillips and 

Unger, 1976; Liu et al., 2002; Leung et al., 2004; Zhou et al., 2012), and heuristics or 

meta-heuristics (Lei and Wang, 1991; Baptiste et al., 1993; Zhou and Liu, 2008; 

Zhang et al., 2014), have been suggested for various variants of HSP with 

productivity maximization (i.e. cycle time or makespan minimization). To reduce the 

problem complexity, some researchers, such as Kuntay et al. (2006) and Subaï et al. 

(2006), proposed various two-step sequential scheduling approaches for bi-objective 

HSP, where cycle time and wastewater or production cost are minimized. Obviously, 

such sequential approaches are not sufficient to find the complete Pareto-optimal 

solutions for the multi-objective HSP.  

It is understandable that a hoist schedule is a key factor for improving the 

productivity. Typically, the more frequently the hoist picks a part from the input 

station, the higher the productivity. Moreover, efficient hoist scheduling can also plays 

an important role in decreasing the production cost, since it is inherently determined 

by the actual processing times, which also affect the production cost. So maximizing 

the productivity may conflict with minimizing the production cost. This creates the 

trade-off between the two objectives, since that is hard to determine whether one 

solution is better than another if it is better on the productivity but is worse on the 

production cost. Therefore, there is a set of Pareto-optimal solutions for 

multi-objective optimization problem (MOP), instead of a single optimal one 

(Miettinen, 1999). 

To overcome the solution evaluation issue of MOP, several approaches have been 

suggested, such as Pareto-dominance (PD) approach, objective aggregation (OA) 

approach and lexicographic ordering (LO) approach. The PD approach is the most 

commonly used approach. It is mainly based on the concepts of Pareto-dominance 

and crowding-distance to evaluate solutions. It has been shown that PD approach is 

very efficient in optimizing bi-objective or three-objective optimization problems. 

Besides, by assigning weight to each objective and then summing up all objectives, 

the OA approach transforms multiple objectives into a single objective. Since 

determining suitable weight for different objectives plays an important role in the 

success of this approach, it is not sufficient in practice. In addition to OA approach, 

some researchers suggested LO approach for MOP. All objectives are sorted based on 

their importance and optimized alternately. It is also difficult to give orders to 

different objectives.  
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As mentioned above, no research has been reported on HSP with simultaneously 

maximizing productivity and minimizing production cost. Therefore, in this chapter, 

we study the cyclic HSP with the above mentioned dual objectives. In order to find a 

set of Pareto-optimal solutions, an efficient QEA with local search procedure is 

designed for the studied problem. By adopting the well-known concepts of Pareto 

dominance and crowding distance, the proposed algorithm can optimize the two 

objectives effectively and simultaneously, and can obtain a set of Pareto-optimal 

solutions for the problem in very short time. To guide the search direction and 

generate the offspring population, a chaotic quantum-rotation gate is proposed. For 

increasing the individual diversity, mutation operator is implanted into the proposed 

algorithm. As usual, an external archive is used to store the obtained non-dominated 

solutions, and it is updated at each generation. 

The rest of this chapter is arranged as follows. In Section 4.2, we present the 

problem description and its formulation. Some concepts about the multi-objective 

optimization problem (MOP) and the Pareto-optimal solutions are given in Section 

4.3. Section 4.4 details the proposed bi-objective QEA. The experimental results are 

given in Section 4.5. Section 4.6 gives some conclusions. 

 

4.2 Problem description and its formulation 

4.2.1 Sequence-based bi-objective mathematical model 

In this chapter, the studied problem is similar to that in Chapter 3, except for the 

problem objective. More precisely, two conflicting objectives (i.e., minimization of 

production cost and maximization of productivity, which equivalents to minimize the 

cycle time C ) are simultaneously considered in this chapter, instead of a single one. 

The objective “production cost” represents the sum costs of the resource consumed in 

all processing tanks per cycle. To avoid introducing the problem repeatedly, the 

problem description is omitted here. Then according to the notation in Manier and 

Bloch (2003), the studied problem can be written in the following form:  

CHSP | n // diss | /n+2| (Cmin, Production Cost min) 

In the following, the same notations and variables defined in Chapter 3 are used 

in this chapter. To facilitate the problem formulation, we assume that the cost of 

resource consumption in each tank is proportional to the processing times in it. 

Therefore, the following notation (i.e. wi) and decision variable (i.e. pi) are defined: 
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wi: the cost of resource consumed per time unit in tank Mi, 1≤i≤n. For simplicity, 

we define W= (w1, w2, w3…wn), which will be given by each specific instance. 

pi: the actual processing or soaking time in tank Mi, 1≤i≤n. For simplicity, we 

define P= (p1, p2, p3…pn). Furthermore, from constraint (3.2) formulated in Chapter 3, 

we can know that pi=Csi+ti−(ti−1+di−1), for 1≤i≤n. 

Based on the above descriptions and notations, the bi-objective mathematical 

model for the studied problem can be formulated as: 

Min f1=C,                                    

Min f2=∑
=

n

i
ii pw

1

,                               

subject to (3.1) −(3.4). 

In above model, the first objective (i.e. f1) is set to minimize the cycle time C, 

which equivalents to maximize the productivity, and the second objective (i.e. f2) is 

set to minimize the total production cost of all processing tanks per cycle. As reported 

in Chapter 3, if a hoist move sequence H satisfies the constraints (3.1)−(3.4), then it is 

a feasible schedule for HSP with only minimizing the cycle time (i.e. f1 in this 

chapter). On the other side, as all values of decision variables (i.e., ti, C, si) can be 

obtained from a feasible sequence H, the value of P can be easily calculated. In other 

words, as W is known in advance, the value of the second objective (i.e. f2) can be 

easily deduced from a feasible hoist move sequence H, which is a solution for the 

HSP with only minimizing the cycle time.  

From above point of view, it seems that the HQEA proposed in Chapter 3 is also 

suitable for solving the bi-objective HSP considered in this chapter. But it is not in 

fact. The reason is two-fold. The first one is that as the value of production cost 

(denoted by f2(C1)) obtained from a shorter cycle time (denoted by C1) may be greater 

than that (denoted by f2(C2)) from a longer cycle time (denoted by C2), i.e., C1<C2 and 

f2(C1)>f2(C2), it is difficult to say that solution (C1, f2(C1)) is better or worse than (C2, 

f2(C2)). For this reason, the fitness evaluation function proposed in HQEA is no longer 

suitable for bi-objective HSP. The second one is that the feasibility checking 

procedure used in HQEA only returns the minimum cycle time for a feasible hoist 

move sequence. It is understandable that a feasible hoist move sequence may have 

several different cycle times, which consequently may result in different production 

costs. In other words, a feasible hoist move sequence may generate multiple different 
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solutions (note that one solution represents a pair of values respectively for f1 and f2) 

for bi-objective HSP. Obviously, the HQEA proposed in Chapter 3 has one main 

shortcoming in obtaining the Pareto-optimal solutions for bi-objective HSP, i.e., it 

only returns one feasible solution and inherently drops other potential ones for a 

feasible hoist move sequence. Based on above the descriptions, a new scheduling 

approach needs to be developed for bi-objective HSP in this chapter. 

4.2.2 Modified bi-objective mathematical model 

Inspired by the previous descriptions, we can know that the bi-objective HSP can 

be reduced to the single-objective HSP (i.e. minimize the cycle time C) if P is given. 

It should be noted that Levner et al. (1997) proposed a method of prohibited intervals 

(MPI) to formulate the HSP with fixed processing times (i.e., P is given in advance), 

and developed an efficient polynomial procedure (called Levner’s procedure hereafter) 

to find the optimal cycle time C for their studied problem. The complexity of Levner’s 

procedure is O(n3logn), where n is the number of processing tanks. Inspired by their 

work, we can use the MPI approach to reformulate our bi-objective optimization 

problem, and then apply the associated polynomial procedure to obtain the values of 

cycle time and production cost providing that P can be determined in advance. 

Similarly to Levner et al. (1997), Yan et al. (2010), and Wang and Che (2013), the 

new mathematical model for the studied bi-objective problem providing that P is 

given can be reformulated as follows: 

 Min f1(P)=C,                                  

Min f2(P)=∑
=

n

i
ii pw

1

,                             

subject to:         

∑
=

− +=
i

j
jji pdZ

1
1 ),(  for 1≤i≤n.                      (4.1) 
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Li≤pi≤Ui,   for 1≤i≤n.             (4.4) 



51 

 

In constraint (4.1), Zi represents the start time of move i of part 0 (suppose that it 

entered the line at time 0) from Mi, 1≤i≤n, i.e., the completion time of part 0’s i th 

processing operation. Moreover, Zi+mC represents the start time of move i of part m 

(note that it is introduced into the mth cycle at time mC, as only one part can enter the 

line within each cycle) from tank Mi, 0≤i≤n, and Z0=0. Constraints (4.2) and (4.3) 

impose a series of prohibited intervals for cycle time C. In particular, if the value 

(denoted by C') of cycle time falls within the prohibited intervals V (i.e., C'∈V) in 

(4.2), then at least one conflict happens in the use of a same tank by different parts at 

the same time. Thus, C' is an infeasible solution for the problem since each tank 

cannot process more than one part at any time. Similarly, if C' belongs to prohibited 

intervals defined in (4.3) (i.e., C'∈I), then C' is also infeasible for the problem since 

two consecutive moves conflict in the use of the hoist. At last, constraint (4.4) ensures 

that the processing time window constraints are satisfied.  

 

4.3 Basic concepts of MOP and Pareto-optimal solutions 

Multi-objective optimization problem (MOP) is often encountered in many 

real-world applications. In practice, it involves optimizing at least two objectives 

simultaneously, which are usually conflicting with each other, i.e., an improvement on 

one objective may give declination to some others. Due to this reason, MOP is more 

complex than the single-objective optimization problem. Suppose an optimization 

problem with minimization of two objectives, which can be expressed as follows: 

Min  ],,[)( 21 ）（）（ xfxfxF =  

s.t. x∈X. 

In above definition, fi(x) is the problem objective, 1≤i≤2; x denotes the decision 

variables vector; X represents the solution space or the constraints of MOP. Generally, 

there are multiple optimal solutions for MOP, instead of a single one. They are usually 

called as Pareto-optimal or non-dominated solutions, which are defined by the Pareto 

dominance concept. It is explained as follows. For any two solutions x1∈X and x2∈X, 

if we have f1(x1)≤f1(x2) and f2(x1)<f2(x2), or f1(x1)<f1(x2) and f2(x1)≤f2(x2), then we say 

that solution x1 dominates solution x2. If a solution x* is not dominated by any other 

solutions, then x* is called non-dominated (i.e. Pareto-optimal) solution. Moreover, 

the Pareto front (PF) is defined as: PF={F(x)|x∈Ω}, in which Ω denotes the set of 
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non-dominated solutions. For more details about the MOP, please see the works by 

Miettinen (1999) and Deb (2001). 

 

4.4 Solution method 

In this section, we develop an efficient bi-objective QEA with local search 

procedure to find a set of Pareto-optimal solutions for the studied problem. Figure 4.1 

depicts the main flowchart of our proposed algorithm. We can see from Figure 4.1 

that the proposed algorithm includes the encoding and decoding scheme, the 

individual evaluation procedure based on the Pareto-dominance technique, the chaotic 

quantum-rotation gate, the mutation operator, the external archive updating 

mechanism and the local search procedure. The algorithm stops when the maximal 

number of iterations (i.e. maxgen) is reached. As mentioned above, our bi-objective 

problem can be solved by Levner’s procedure on condition that P can be known. In 

what follows, we first present how to obtain P with the proposed encoding and 

decoding scheme and then introduce other components of the algorithm in details. 

 

 

Figure 4.1 The main flowchart of the proposed bi-objective QEA. 
 

4.4.1 Encoding and decoding scheme 

As there are n processing operations, each chromosome is encoded as a string 

consisting of n Q-bits, which are defined as follows: 
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where |αi|2+|βi|2=1. Since we need to know the value of pi, 1≤i≤n, and it must fall 

within its corresponding time windows [Li, Ui], the following two decoding schemes 

are used to transform each quantum chromosome (i.e. (4.5)) into the actual processing 

time P(Li and Li, 2008): 

),)((5.0 iiiiii LULUp α×−++×=  for 1≤i≤n.         (4.6) 

),)((5.0 iiiiii LULUp β×−++×=  for 1≤i≤n.         (4.7) 

In (4.6) and (4.7), we define αi=cos(σi), βi=sin(σi), and σi=2π×rd, where 

π=3.1415926 and rd is randomly generated between 0 and 1. From this definition, we 

can see that αi and βi fall within the range [−1, 1]. Consequently, each generated 

processing time pi is limited by its corresponding lower and upper bounds [Li, Ui]. 

Therefore, processing time window constraints are ensured. Note that for each 

quantum chromosome, it is decoded by both (4.6) and (4.7). In other words, two 

different solutions (such as P and P' ) are generated from each quantum chromosome. 

For this reason, such an encoding and decoding scheme can provide a better diversity 

of population.  

4.4.2 Individual evaluation 

After the chromosomes decoding, the objective values of each individual can be 

obtained with Levner’s procedure. Thereafter, individual evaluation is an important 

issue for the studied problem. To fix this issue, the Pareto-dominance approach is 

adopted to evaluate all individuals. According to Deb et al. (2002), the population is 

first classified into K different frontiers (F1, F2, F3,…, FK) based on the dominance 

relationship by a fast sorting procedure. Note that F1 includes all the non-dominated 

solutions obtained in each generation. After that, distance metrics are assigned to 

individuals by a crowing distance computing procedure. In what follows, we first 

describe the fast non-dominated sorting procedure and then the crowing distance 

computing procedure, which can be found in Deb et al. (2002). To facilitate the 

descriptions, we let ndP denote the number of solutions which dominate solution P, 

and ΩP denote the set of solutions which are dominated by solution P. 

(a)The fast non-dominated sorting procedure: 

Step(I): For each solution P, first set ndP=0 and ΩP =∅; then determine ndP and 
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Ωx. 

Step(II ): For any solution P with ndP =0, first put it into the first frontier F1, and 

set its rank number to be 1, i.e., RankP=1; then set k=1. 

Step(III ): If Fk≠∅, then set Q=∅; else, go to Step(VI). 

Step(IV): For ∀x∈Fk, set ndq = ndq −1 for q∈ΩP; if ndq=0, put solution q into Q.  

Step(V): Let k=k+1 and Fk=Q; For ∀q∈Fk, set Rankq=k. And go to Step(III ). 

Step(VI): Let K=k−1; End. 

 

(b)The crowding distances calculation procedure: 

Step(I): Order the population according to each objective value in increasing 

order; for each objective, set infinite distance value (denoted by M) for both the 

smallest and largest solutions (boundary solutions). 

Step(II ): For objective i(i∈{ 1,2}) , the distance Disi (Pj) of each non-boundary 

solution Pj is calculated based on the absolute normalized difference in the objective 

values of two neighbor solutions by the following equation: 

)/())()(()( minmax
11 iijijiji ffPfPfPDis −−= −+             (4.8) 

Step(III ): For each solution Pj, its overall crowding distance CD(Pj) is calculated 

as the sum of the distance value for all objectives. This is expressed as follows: 

∑
=

=
G

i
jij PDisPCD

1

)()(                            (4.9) 

where G represents the total number of considered objectives. Figure 4.2 illustrates an 

example of an optimization problem with dual objectives minimization. In Figure 

4.2(a), the population is divided into 3 frontiers (i.e., F1, F2, F3) by the above 

described fast non-dominated sorting procedure. Note that F1 represents the set of all 

non-dominated solutions (denoted by •), which dominate those in F2, and solutions in 

F2 dominate those in F3. Moreover, Figure 4.2(b) depicts the crowding-distance 

calculation process of solution Pj. As can be seen from Figure 4.2(b), P1 and PD 

denote the two boundary solutions. 

After using above two described procedures, each solution P has two attributes: 
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Non-domination rank (RankP) and crowding distance (CD(P)). For any two solutions 

P and P′, if RankP<RankP′, then we say that solution P is better than solution P′, 
because the former dominates the latter. For solutions with same rank (i.e. 

RankP=RankP′), if CD(P)>CD(P′), then we say that solution P is better than solution 

P′, because P is located in a lesser crowded area, and it improves the population 

diversity.  

 

 

Figure 4.2 Classification of the population (a) and Crowding-distance calculation (b). 

 

4.4.3 Chaotic quantum-rotation gate 

In this chapter, for generating new offspring, quantum-rotation gate is adopted to 

update each Q-bits chromosome. For a Q-bits chromosome Y, its Q-bit i can be 

updated as follows (Han and Kim, 2002; Li and Wang, 2007): 

iiiii

iiiii

βωαωβ
βωαωα

×∆+×∆=

×∆−×∆=

)cos()sin(

)sin()cos(
'

'

.              (4.10) 

In (4.10), ∆ωi represent the rotation angle, which plays an important role in 

updating Q-bits chromosome. Generally, the value of ∆ωi is determined by an 

intuitive reasoning way (Han and Kim, 2002; Li and Wang, 2007). In this section, we 

propose a different way to determine suitable rotation angle for updating each Q-bit. 

Firstly, for driving the search direction towards Pareto-optimal solutions, we 

randomly choose a non-dominated solution P (note that P=(p1, p2, p3…pn)) from 
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external archive to guide the updating process of chromosome Y. Then, we assume 

that each actual processing time pi of P corresponds to a probability amplitude γi of a 

Q-bit m with γi=cos(ηi). Note that γi can be deduced by (4.6) or (4.7), and then ηi can 

also be known. For ease of description, we let ϕ=ηi−σi, where αi=cos(σi). From this, 

we can know that the gap (i.e. ϕ) between ηi and σi can be used as the rotation angle 

to update Q-bit i. But this may reduce the diversity of Q-bits chromosome, and the 

solutions may fall into local optimal. For this reason, chaotic sequence is used in the 

updating process of each Q-bit due to its good ergodicity and regularity. It is produced 

by the logistic map, which is usually defined as follows (Dettmer, 1993): 

µg =4×µg−1×(1−µg−1), 1<g.                    (4.11) 

where µg is generated at generation g. Note that µ0 is randomly generated from (0, 1) 

at the initial generation. Finally, we propose a chaotic quantum-rotation gate to update 

each Q-bits chromosome, i.e., the rotation angle is mainly determined by µg and ϕ. In 

the following, we explain how to choose the rotation angle according to eight 

different cases, which are illustrated in Figure 4.3 (case(I)−case(IV)) and Figure 

4.4(case(V)−case(VIII )). Note that in the two figures, the curved arrow represents our 

proposed rotation direction for Q-bit i.  
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Figure 4.3 The updating processes for Q-bit i in the 1st and 2nd quadrants. 

 

If Q-bit i is located in the first quadrant, then consider the following cases: 

Case (I): For γi ≥0, as case (I) illustrated in Figure 4.3, to simplify the updating 

process, if 1.5π<ηi≤2π (i.e., Q-bit m is in the fourth quadrant), then we let ηi =2π−ηi 

(i.e., let Q-bit m in the first quadrant). After that, we set ∆ωi =µg×ϕ (ϕ=ηi−σi), which 

implies that the value of ∆ωi is positive if ϕ>0 and negative if ϕ<0. This makes Q-bit i 

closer to Q-bit m. Moreover, if ϕ=0, both small negative and positive values are 

acceptable for ∆ωi, so as to search the neighborhood area. 

Case (II ): For γi<0, as illustrated in Figure 4.3, we know that Q-bit m is located 

either in the second or the third quadrant, so the value of ∆ωi is set to be 0.5π×µg, 

which is a relatively “big jump” to drive Q-bit i towards the location area of Q-bit m. 

If Q-bit i is located in the second quadrant, then consider the following cases: 

Case (III ): For γi ≥0, we set ∆ωi=(−0.5π)×µg, in order to drive Q-bit i towards the 

location area of Q-bit m. 
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Case (IV): For γi<0, we first let ηi =2π−ηi if π<ηi ≤1.5π, and then set ∆ωi =µg×ϕ. 

It implies that the value of ∆ωi is positive if ϕ>0 and negative if ϕ<0, and which 

makes Q-bit i closer to Q-bit m. Moreover, if ϕ=0, both small negative and positive 

values are acceptable for ∆ωi, so as to search the neighborhood space. 
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Figure 4.4 The updating processes for Q-bit i in the 3rd and 4th quadrants. 

 

Furthermore, similar analyses have been performed for Q-bit i in the third and 

fourth quadrants, i.e., case(V)−case(VIII ) shown in Figure 4.4. Based on the above 

analysis, Table 4.1 presents the lookup table for choosing suitable rotation angle to 

update Q-bits chromosome. By using the above described chaotic quantum-rotation 

gate, different rotation angle is determined for different cases. Consequently, each 

chromosome has an evolutionary diversification, and it is updated towards the 

non-dominated solution space by a diverse way.  
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Table 4.1 Lookup table of rotation angle 

 
γi ≥0, ϕ =ηi−σi  γi <0, ϕ =ηi−σi 

αi >0, βi ≥0 If ϕ≠0, ∆ωi = µg×ϕ; 

else, ∆ωi =±0.008π; 

∆ωi =0.5π×µg; 

αi ≤0, βi >0 ∆ωi =(−0.5π)×µg; If ϕ≠0, ∆ωi = µg×ϕ; 

else, ∆ωi =±0.008π; 

αi <0, βi ≤0 ∆ωi =0.5π×µg; If ϕ≠0, ∆ωi = µg×ϕ; 

else, ∆ωi =±0.008π; 

αi ≥0, βi <0 If ϕ≠0, ∆ωi = µg×ϕ; 

else, ∆ωi =±0.008π; 

∆ωi =(−0.5π)×µg; 

 

4.4.4 Mutation operator 

Although the proposed decoding scheme and updating scheme has a strong 

ability to provide a better diversity of population, it still has some room to increase the 

population diversity, so as to prevent the algorithm falling into local optimal as far as 

possible. Thus, mutation is applied to each chosen chromosome according to the 

mutation rate. More precisely, two positions x and y are randomly generated for each 

chosen chromosome, 1< x, y<n. For each Q-bit i between positions x and y, we swap 

the values of αi and βi. If x equals to y, then just swap the values of αx and βx.  

4.4.5 Updating external archive 

The external archive (EA) is initialized to be empty. It is updated at each 

generation. For simplicity, let NDg−1 be the set of non-dominated solutions stored in 

EA updated at generation g−1and F1 be the set of non-dominated solutions obtained at 

generation g. We first let NDg=NDg−1∪F1, and then calculate the crowding-distance 

for each solution in NDg. For any two solutions P1 and P2 in NDg, consider the 

following: (a) if P1 is the same as P2 (i.e., f1(P1)=f1(P2) and f2(P1)=f2(P2)), then 

remove one of them from NDg; (b) if P1 dominates P2, then remove P2 from NDg and 

vice versa. If the size of NDg exceeds the pre-defined maximum size, then we remove 

the individual with the smallest crowding distance from NDg until the size equals to 

the maximum size. Finally, EA is updated and NDg contains the final non-dominated 

solutions. The above described updating process is depicted in Figure 4.5. 
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Figure 4.5 The process of updating external archive. 

 

4.4.6 Local search (LS) procedure 

As mentioned above, as soon as the actual processing time P (note that P= (p1, p2, 

p3…pn)) is determined, Levner’s procedure can be applied to find its corresponding 

optimal cycle time Cb (i.e. Cb= f1(P)). After that, the associated hoist move sequence 

H and value of the production cost (i.e. f2(P)) can be known for P. Due to the special 

characteristic of hoist scheduling problem, it is understandable that a feasible hoist 

move sequence H may has several different feasible cycle times, which are denoted 

by {C1, C2, C3, …, Cm}, corresponding to diverse processing times for each tank. 

Obviously, the optimal cycle time Cb for P obtained with Levner’s procedure is one of 

the cycle times {C1, C2, C3, …, Cm} related to H. This implies that there probably 

exists a better cycle time in {C1, C2, C3, …, Cm} than Cb for H. Besides, it should be 

noted that different feasible hoist move sequences may have the same cycle time C. 

For the above reasons, a local search (LS) procedure is needed for H so as to 

further search other possibly better cycle times related to it. To save the computation 

time, LS procedure is applied to the non-dominated individuals from External Archive 

at every χ generation, where χ is a parameter to be set in the experimental section. 

Due to its high efficiency in finding the best cycle time for each given H (Wang and 

Che, 2013), in this chapter, the graph-based polynomial procedure proposed by Chen 

et al. (1998) is used as the LS procedure to find the optimal cycle time C* for each H 

(it corresponds to a non-dominated solution P with objective values (f1(P), f2(P))) in 

External Archive. Thereafter, the new processing times spent in all tanks (i.e. P′) can 

be determined according to the newly found C*(C*= f1(P′)), and the value (i.e. f2(P′)) 
of the second objective can be calculated for H according to P′. As a result, a new 

solution P′ with objective values (C*, f2(P′)) for H is obtained with our LS procedure. 
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At last, we update the External Archive with the newly found solutions. The above 

described LS procedure is depicted in Figure 4.6. 

 

 

Figure 4.6 The process of the proposed LS procedure. 

 

To better understand our above observation, Figures 4.7~4.8 illustrate two 

different feasible cycle times with the same hoist move sequence for a HSP example. 

The data for the example is given in Table 4.2, which was generated via our 

experiment. Note that the travel times of empty hoist moves for the presented move 

sequence are given as: e1, 5=12s, e6, 3=9s, e4, 2= 5s, e3, 1=7s, e2, 4=5s, e5, 0=16s. As 

illustrated in Figures 4.7~4.8, M1~ M5 are processing tanks, M0 and M6 are input 

station and output station, respectively. The hoist move sequences illustrated in the 

two figures are the same, i.e., 0−5−3−2−1−4. But the cycle times given in the two 

figures are different, i.e., C=170s and C=220s, which are all feasible ones. To our 

knowledge, the value C=170s given in Figure 4.7 is the optimal cycle time for the 

given example. Note that the numbers around an inclined solid arrow (resp. a broken 

arrow) in Figures 4.7 and 4.8 represent the start and end times of a loaded move (resp. 

an empty move). Moreover, we can derive the actual processing times P= (90s, 124s, 

128s, 56s, 48s) from Figure 4.7 and P= (140s, 174s, 137s, 97s, 48s) from Figure 4.8. 

From these values, we can see that two different actual processing times are given by 

the same hoist move sequence for each tank except M5.  
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Figure 4.7 Hoist move sequence 0−5−3−2−1−4 with C=170. 

 

 

 

Figure 4.8 Hoist move sequence 0−5−3−2−1−4 with C=220. 

 

 

Table 4.2 Data for the example 

Tank i 0 1 2 3 4 5 

Li − 71s 81s 45s 40s 30s 

Ui − 187s 188s 137s 97s 63s 

di 20s 20s 19s 18s 19s 20s 
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Furthermore, Figure 4.9 illustrates a different feasible hoist move sequence for 

C=220s. The travelling times of empty hoist moves related to the presented move 

sequence are: e1, 3=7s, e4, 4=e5, 5=0, e6, 2=12s, e3, 1=7s, e2, 0=8s. As can be seen from 

Figure 4.9, the hoist move sequence is 0−3−4−5−2−1. As verified by Figures 4.8 and 

4.9, different hoist move sequences can have the same cycle time. 

 

Figure 4.9 Hoist move sequence 0−3−4−5−2−1 with C=220. 

 

4.4.7 Steps of the proposed algorithm 

Input: Np (size of the quantum chromosomes); Maxgen (maximum number of 

iterations); MaxEA (maximum size of external archive); mp (probability of mutation); 

χ (LS period); ND0=∅ (external archive, which is set to be empty at the initial step). 

Output: ND (the set of non-dominated solutions). 

Step(I) Initialization: First encode an initial population with Np quantum 

individuals, and then decode each quantum chromosome into 2 problem solutions (i.e. 

P) using (4.6) and (4.7); set g=0. 

Step(II ) Determine objective values: First use Levner’s procedure to find the 

optimal value of the first objective (i.e. cycle time), and then calculate the value of the 

second objective (i.e., production cost) according to each solution P. 
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Step(III ) Individual evaluation: classify the population into K different frontiers 

F1, F2, F3,…, FK, and calculate the crowding-distance for each individual.  

Step(IV) Update the external archive: ND0= ND0∪ F1. 

Step(V) Let g=g+1. 

Step(VI) if g>Maxgen, then go to Stop and output the external archive; else, go 

to Step(VII). 

Step(VII) Update quantum individuals: apply the proposed chaotic rotation gate 

to update each quantum individual. 

Step(VIII ) Apply mutation operator to each chosen quantum individual. 

Step(IX) Decode the quantum individuals using conversion procedures (4.6) and 

(4.7). 

Step(X) Obtain objective values and evaluate solutions. 

Step(XI) Update the external archive: NDg= NDg−1∪ F1. 

Step(XII) At every χ generation, apply the LS procedure to improve the solutions 

in external archive. After that, Go to Step(V).  

 

4.5 Experimental study 

In this section, the performance of the proposed bi-objective optimization 

algorithm QEA with local search procedure is evaluated on a practical electroplating 

problem selected from an automated zinc plating plant in China (Ni, 2010). In what 

follows, we first describe the selected real industrial instance, and then present the 

computational results as well as some analysis and discussions on the obtained results. 

4.5.1 Industrial instance 

Due to its wide application, zinc plating has existed for a long time. It is mainly 

for providing corrosion-resistance or decorative layers to metal objects, such as steel 

plates and nuts. As shown in Figure 4.10, the selected zinc electroplating process has 

20 processing stages, each of which corresponds to a specific tank containing special 

solutions. A steel plate with double-surface area 5m2 is processed through M1 to M20 

for achieving a uniform zinc layer on its surface. More precisely, as steel plate is 

generally contaminated with dust, grease lubricants and metal fines, M1~ M12 (usually 
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called pre-treatment step) are used to remove these residues from its surface. This is a 

prerequisite for achieving better adhesion of zinc layer to be deposited on the steel 

part in later stages. Thereafter, steel part is placed in the plating tank M13 containing 

alkaline-type electrolytes for zinc electroplating process. After that, bright dipping and 

passivating tanks (usually called post-treatment step) containing concentrated acid are 

used to further improve the corrosion-resistance of the treated steel part. Moreover, 

after each chemical tank, at least one rinsing tank is used, which is designed for 

cleaning the chemical solution adsorbed on the part surface as well as other 

processing purposes. The process technology of the selected electroplating problem is 

given in Table 4.3. 

In this study, for each rinsing tank i (i.e., M2, M3, M4, M6, M9, M10, M12, M14, M15, 

M17, M19), its cost coefficient wi is computed as: wi=qi×0.006RMB/L, where qi 

denotes the water flow rate per second, and 0.006 RMB is the water price per liter, i.e. 

6RMB/tonnes. For each electricity-based tank i (i.e. M5, M8, M11, M13), its cost 

coefficient wi can be computed as follows: wi=(100×I i×Vi×SA)×4.17×10−7RMB/Watt, 

where 100×I i×Vi×SA denotes the amount of electricity consumed per second, and 

4.17×10−7 RMB is the electricity price per Watt, i.e. 1.5 RMB/kWh. More precisely, 

100×I i represents the current density per square meters. Vi denotes the voltage, and SA 

denotes the double surface areas of the treated steel part. Note that both the water and 

the electricity prices are obtained from the Price Bureau of Xi’an, China. For the rest 

tanks (i.e. M1, M7, M16, M18, M20), their cost coefficients are set to be 0 due to the 

difficulties of obtaining the resource consumption amount during the process. Based 

on the above descriptions, Table 4.4 reports the cost coefficient of each tank and the 

execution times of loaded moves. Moreover, the move 0’s execution time is given as: 

d0=15s. The travel time between tanks i and j is computed as: ei, j=i − j ×2s.  
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Figure 4.10 Zinc electroplating process for the selected problem. 
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Table 4.3 Process technology of a steel plate for Zinc-electroplating 

Tank Processing stage Solutions Processing time windows (s) Current density I (A/dm2) Water flow rate q  

1 Chemical degreasing NaOH, Na3PO4 300~450   

2 Rinsing Hot water 30~90  0.3L/s 

3, 4 Rinsing Purified water 60~120, 30~90  0.4L/s, 0.3L/s 

5 Pickling HCI 600~900 2~10(9V~12V)  

6 Rinsing Purified water 30~120  0.4L/s 

7 Derusting CrO3, H3PO4 60~300   

8 Electrolytic degreasing NaOH, Na3PO4, Na2CO3 30~120 3~10(9V~12V)  

9 Rinsing Hot water 30~90  0.3L/s 

10 Rinsing Purified water 60~120  0.5L/s 

11 Activating H2SO4, H3PO4 30~60 3~5 (1V~18V)  

12 Rinsing Purified water 20~80  0.4L/s 

13 Zinc-plating ZnO, NaOH, JZ04 660~1350 1~12(6V~16V)  

14, 15 Rinsing Purified water 30~60, 30~90  0.5L/s, 0.4L/s 

16 Bright dipping HNO3 10~30   

17 Rinsing Purified water 30~90  0.2L/s 

18 Color Passivating CrO3, NaNO3, NisO4⋅6H2O 120~480   

19 Rinsing Purified water 20~30  0.4L/s 

20 Drying  15~35   

 

Table 4.4 Data for the selected Zinc-electroplating problem 

Tank i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

di 22 15 15 20 21 20 19 20 15 20 19 15 25 20 21 15 20 22 15 15 

wi 0 0.0018 0.0024 0.0018 0.012 0.0024 0 0.0165 0.0018 0.003 0.0075 0.0024 0.21 0.003 0.0024 0 0.0012 0 0.0024 0 
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4.5.2 Computational results 

In this section, the proposed bi-objective QEA with LS procedure is implemented 

in C programming language and evaluated by the above described instance. It is 

solved on an ASUS Laptop with an Intel Core i5-3210M Processor 2.50GHZ and on a 

windows 8 environment. The parameters are set as follows: maximum generations, 

Maxgen=1000; maximum size of external archive, MaxEA=20; local search period, χ 

=100. As evolutionary algorithm is generally sensitive to the value of initial 

population size Np and mutation probability mp, we set Np∈{50, 100, 150, 200, 250} 

and mp∈{0.2, 0.5, 0.7, 0.9} in our experimental study to investigate the performance 

of our proposed algorithm. 

Table 4.5 gives the computational results for Np∈{50, 100, 150, 200, 250} 

obtained with the proposed algorithm. Note that for each given Np, the proposed 

algorithm with four different mutation probabilities has been tested. From Table 4.5, 

we can see that the proposed algorithm with Np=100 (by mp=0.5) and Np=250 (by 

mp=0.2) generally has a better solution quality than other parameter settings. Besides, 

we observe that as the population size increases, some new non-dominated solutions 

are identified. Note that for ease of description here, each solution is represented by 

its objective values (i.e., cycle time and production cost) instead of the processing 

time P used before. For instance, solutions (783, 152.7117), (801, 148.6116) and (843, 

147.6519) are found by setting Np=100 with mp=0.5. As for Np=150, we can see that 

another new solution (823,147.9924) is identified by the algorithm with mp=0.9, and it 

is not dominated by any other solutions reported in Table 4.5. Moreover, a better 

solution (801, 148.2918) is produced by setting Np=200 and 250. As we can see, none 

of the reported solutions can dominate the solution (801, 148.2918), which dominates 

the solution (801, 148.6116) produced by setting Np=100 and mp=0.5, since the 

former gives a smaller (i.e. better) value of production cost than the latter. We also 

notice that the two solutions have a same value of cycle time (i.e. C=801) but have 

different values of production cost. This is because different actual processing times 

or hoist move sequences may have the same cycle time.  
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Table 4.5 Computational results obtained with the proposed algorithm 

Np Non-dominated solution (Cycle Time, Production Cost) Computational 

time (s) 

50 mp=0.2 (787, 154.1709), (883, 152.0364), (964, 148.1961), (1389, 

148.0755), (1402, 147.4062), (1449, 147.372) 

8.14 

mp=0.5 (863, 147.765), (1402, 147.4062), (1449, 147.372) 8.26 

mp=0.7 (782, 153.6855), (964, 148.1961), (1389, 148.0755), (1402, 

147.4062), (1449, 147.372) 

8.29 

mp=0.9 (843, 148. 9065), (1389, 148.0755), (1402, 147.4062), (1449, 

147.372) 

8.32 

100 mp=0.2 (782, 153.6855), (964, 148.1961), (1005, 149.469), (1415, 

148.224), (1449, 147.372) 

16.91 

mp=0.5 (782, 153.6855), (783, 152.7117), (801, 148. 6116), (843, 

147.6519), (1372,147.4212), (1402, 147.4062), (1449, 147.372) 

16.22 

mp=0.7 (787, 154.1709), (843, 148.9065), (863, 147.7649), (1402, 

147.4062), (1449, 147.372) 

16.30 

mp=0.9 (787, 154.1709), (964, 148.1961), (1402, 147.4062), (1449, 

147.372) 

15.87 

150 mp=0.2 (782, 153.6855), (801, 148.6116), (891, 148.1592), (1402, 

147.4062), (1449, 147.372) 

23.53 

mp=0.5 (782, 153.6855), (843, 147.6519), (1402, 147.4062), (1449, 

147.372) 

23.34 

mp=0.7 (863, 147.7649), (1402, 147.4062), (1449, 147.372) 23.23 

mp=0.9 (782, 153.6855), (823, 147.9924), (1402, 147.4062), (1449, 

147.372) 

23.49 

200 mp=0.2 (782, 153.6855), (801, 148.2918), (843, 147.6519), (1402, 

147.4062), (1449, 147.372) 

30.9 

mp=0.5 (787, 154.1709), (801, 148.2918), (843, 147.6519), (1402, 

147.4062), (1449, 147.372) 

31.04 

mp=0.7 (782, 153.6855), (843, 147.6519), (1402, 147.4062), (1449, 

147.372) 

31.02 

mp=0.9 (813, 171.45), (816, 149.224), (843, 148.9065), (863, 147.7649), 

(1372, 147.4212), (1402, 147.4062), (1449, 147.372) 

30.97 

250 mp=0.2 (782, 153.6855), (801, 148.2918), (843, 147.6519), (1372, 

147.4212), (1402, 147.4062), (1449, 147.372) 

38.44 

mp=0.5 (843, 147.6519), (1372, 147.4212), (1402, 147.4062), (1449, 

147.372) 

38.52 

mp=0.7 (787, 154.1709), (843, 147.6519), (1372, 147.4212), (1402, 

147.4062), (1449, 147.372) 

38.68 

mp=0.9 (782, 153.6855), (816, 148.8456), (1372, 147.4212), (1402, 

147.4062), (1449, 147.372) 

38.49 
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Furthermore, we notice from Table 4.5 that all the computational times are less 

than one minute, and it generally increases with the initial population size Np. For 

each given Np, it seems that the computational time has been slightly influenced by 

the mutation probability. The Pareto frontiers for Np=50, 100, 150, 200, and 250 are 

respectively illustrated in Figure 4.11~Figure 4.15. Note that in each figure, four 

Pareto frontiers are illustrated, and each one presents the distribution state of the 

obtained solutions for a given value of mp. We can see from these figures that as the 

population size Np increases, it seems that the four obtained Pareto frontiers gradually 

have similar curves. This indicates that the proposed algorithm has a good 

computational performance.  

Finally, to test the performance of the proposed local search (LS) procedure, we 

also run our proposed bi-objective QEA without LS procedure. Since it has a worse 

performance than the algorithm with LS procedure for each pair of Np and mp, we do 

not present the computational results for all values of Np and mp. Instead, we only 

illustrate the comparison results of Np=100 with mp=0.5 in Figure 4.16. In summary, 

the computational results show that our proposed bi-objective QEA with LS 

procedure is efficient in solving the studied dual-objective hoist scheduling problem 

with processing time windows. 

 

 

Figure 4.11 Pareto frontiers identified with different mp for Np=50. 
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Figure 4.12 Pareto frontiers identified with different mp for Np=100. 

 

 

 

Figure 4.13 Pareto frontiers identified with different mp for Np=150. 
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Figure 4.14 Pareto frontiers identified with different mp for Np=200. 

 

 

Figure 4.15 Pareto frontiers identified with different mp for Np=250. 
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Figure 4.16 Comparison results of the algorithm with and without LS for Np=100 and mp=0.5. 

 

4.6 Summary 

In this chapter, minimizing both cycle time and production cost for a cyclic hoist 

scheduling problem with processing time windows has been studied. Firstly, by using 

the MPI approach, a bi-objective mathematical model was formulated for the studied 

problem supposing that all actual processing times are known (In fact they are 

decision variables). Thereafter, a Pareto-dominance evaluation based QEA with local 

search (LS) procedure was proposed for the problem to find a set of Pareto-optimal 

solutions, which are stored and updated in an external archive. More precisely, each 

chromosome was encoded by n Q-bits, which were converted into actual processing 

times by a double-decoding procedure. Then, we proposed a specific chaotic rotation 

gate to update each Q-bits chromosome. Besides, mutation operator was implanted 

into the proposed algorithm to increase the individual diversity. All solutions were 

evaluated by the well-known Pareto-dominance technique. Because of the special 

solution feature of the studied problem, an efficient LS procedure was proposed for 

further improving the solution quality. Finally, a real zinc electroplating problem was 

used to test the performance of our proposed algorithm. Experimental results showed 

that the proposed algorithm is efficient. 
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Chapter 5 An Improved Mixed Integer Programming 

Approach for Multi-hoist Cyclic Scheduling Problem 

5.1 Introduction 

Multi-hoist cyclic scheduling problems are often encountered in automated 

electroplating lines for processing printed circuit boards (PCBs) and other electronics 

(e.g., Lei and Wang, 1991; Leung and Zhang, 2003; Che and Chu, 2004). The key to 

the multi-hoist cyclic scheduling problem is to determine an executable hoist schedule 

such that the cycle time is minimized. 

In most existing studies on the multi-hoist cyclic scheduling problem, such as 

Lei and Wang (1991), Armstrong et al. (1996), Leung and Zhang (2003), Leung et al. 

(2004), Che and Chu (2004), Zhou and Liu (2008), Zhou and Li (2009), Chtourou et 

al. (2013) and Jiang and Liu (2014), loaded hoist moves are assumed to start and end 

within the same cycle. In this chapter, we first give a counterexample to demonstrate 

that the optimal solution obtained under such an assumption is not necessarily the best 

one among all feasible solutions, which we call hereafter global optimal solution.  

To obtain a global optimal solution, the assumption that loaded hoist moves are 

assumed to start and end within the same cycle should be relaxed. That is, a loaded 

hoist move is allowed to start in the current cycle and end in the next one if necessary. 

With the relaxation of the assumption mentioned above, we propose an improved MIP 

approach for the multi-hoist cyclic scheduling problem with unidirectional part flow, 

where the part processing sequence is the same as the tanks layout. Since Leung et al. 

(2004) developed the first MIP model for the same problem as the one considered in 

this chapter, this work can be seen as an extension of their MIP model. Hence, in what 

follows, we will first present Leung et al.’s MIP model and then describe our 

extension and improvements based on their MIP model. 

The rest of this chapter is arranged as follows. The problem description and 

Leung et al.’s MIP model are given in Section 5.2. In Section 5.3, we give a 

counterexample to justify our findings. Then, an improved MIP model is proposed in 

Section 5.4. Computational results are presented and analyzed in Section 5.5. Section 

5.6 concludes this chapter. 
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5.2 Problem definition and Leung et al.’s MIP model 

For completeness, we give in this section a brief problem description and Leung 

et al.’s MIP model. For ease of comparison between Leung et al.’s MIP model and 

ours, we follow all the assumptions and notations given in Leung et al. (2004). 

5.2.1 Problem definition 

Firstly, we describe the problem involved. Consider an automated electroplating 

line with n processing tanks and K hoists for material handling between the tanks. 

Each part to be processed starts at the input station (i.e. tank 0), then successively 

passes through tank 1, tank 2, …, tank n and is finally unloaded at the output station 

(i.e. tank n+1). The tanks are arranged in a row according to the processing sequence 

of the parts. Each tank can process only one part at any time. There is no intermediate 

buffer between the tanks. After the processing in a tank has been completed, the part 

must be transported by a hoist to the next tank without any delay. 

The K hoists are numbered consecutively with the one closest to tank 0 being 

hoist 1 and the one closest to tank n+1 being hoist K. The hoists are assumed to have 

zero width and the same travel speed. The hoist movement of transporting a part from 

tank i to tank i+1 is called (loaded) move i, which is composed of three simple hoist 

operations: 1) unload a part from tank i; 2) transport it to tank i+1; and 3) load it into 

tank i+1.  

In a cyclic schedule, the hoists perform a fixed sequence of moves repeatedly. 

Each repetition of the sequence of hoist moves is called a cycle. The duration of a 

cycle is the cycle time. The objective is to find an optimal K-hoist schedule such that 

the cycle time is minimized.  

Let N= {1, 2, …, n}, N0={0, 1, 2, …, n} and K= {1, 2, …, K}. The following 

parameters are given: 

di : the time required to execute move i, for i∈N0. 

ei, j =ej, i : the empty hoist travelling time from tank i to tank j, for i, j∈ 

N0∪{ n+1}. 

Li : the minimum processing time in tank i, for i∈N. 

Ui : the maximum processing time in tank i, for i∈N.  
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M: a very large positive number. 

δ : a small constant. 

The following decision variables are involved in this chapter:  

ti : start time of move i, for i∈N0. 

yij: 0-1 variable. If ti<tj, then yij=1, which means that move j starts after move i; 

otherwise, yij=0, for i≠j, i, j∈N. 

ℒi: 0-1 variable. If move i is the last move for hoist 1, then ℒi =1; otherwise, 

ℒi=0, for i∈N0. 

k
iz :0-1 variable. If move i is executed by hoist k, then k

iz =1; otherwise, k
iz =0, for 

i∈N0, k∈K.  

si: 0-1 variable. If a part is in process in tank i at the beginning of a cycle, then 

si=1; otherwise, si=0, for i∈N. 

C: cycle time. 

With above notations and according to Manier and Bloch (2003), the considered 

problem can be written in the form:  

CHSP | K, n, 1 // diss | /n+2| Cmin 

which means cyclic hoist scheduling problem with K hoists and n tanks, each tank 

being a single capacity resource, with dissociated loading and unloaded stations, n+2 

operations per part, and minimization of cycle time C as the objective. 

5.2.2 Leung et al.’s model 

Leung et al. (2004) developed their MIP model by addressing the following four 

families of constraints:  

1) Hoist assignment and cycle-time definitional constraints. Each hoist move is 

assigned to one and only one hoist and the cycle time is long enough to allow hoist 1 

to return to the input station (i.e. tank 0) for starting move 0 of the next cycle.   

2) Time window constraints. The soaking or processing time of a part in a tank 

must be within its prescribed minimum and maximum processing times. Otherwise, 
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defective parts would be produced. 

3) Hoist capacity constraints. The start-times of the moves executed by the same 

hoist are determined in such a way that there is sufficient time gap for any hoist to 

travel between the successive moves assigned to that hoist. 

4) Collision avoidance constraints. No collisions happen among the hoists 

running on a single shared track. 

According to the four families of constraints given above, Leung et al. (2004) 

developed the following MIP model for the multi-hoist cyclic scheduling problem: 

Minimize C 

subject to  

Hoist assignment and cycle-time definitional constraints: 

∑
=

=
K

k

k
iz

1

1, for all i∈N,                         (5.1) 

∑
=

n

i 0

ℒi=1,                                     (5.2) 

ℒ0+ 11 ≤iz , for all i∈N,                        (5.3) 

ℒi≤ 1
iz , for all i∈N,                           (5.4) 

  1
iz +ℒj−yij≤1, for all i, j∈N,                    (5.5) 

   ti+di+ei+1, 0ℒi≤C, for all i∈N0,                  (5.6) 

  tj−(d0+e1, j) 1
jz ≥0, for all j∈N,                   (5.7) 

t0=0,                                       (5.8) 

Time window constraints:  

ti−(ti−1+di−1)≤Ui, for all i∈N,                      (5.9) 

ti−(ti−1+di−1)+Msi≥ Li, for all i∈N,                (5.10) 

ti+C−(ti−1+di−1)−M(1−si)≤Ui, for all i∈N,           (5.11) 
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ti+C−(ti−1+di−1)≥ Li, for all i∈N,                  (5.12) 

ti−ti−1−di−1+δ−(Ui+δ)(1−si)≤0, for all i∈N,          (5.13) 

Hoist capacity constraints: 

tj−ti≤Myij, for all i, j∈N, i≠j,                (5.14) 

yij+yji=1, for all i, j∈N, i≠j,                 (5.15) 

Collision avoidance constraints: 
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ijjiii zzMtCedt , for all i, j∈N, i<j, k∈K ,      (5.23) 

Binary variable definitional constraints: 

k
iz ∈{0, 1}, for all i∈N0, k∈K ,                           (5.24) 

ℒi∈{0, 1}, for all i∈N0,                              (5.25) 

si∈{0, 1}, for all i∈N,                                 (5.26) 

yij∈{0, 1}, for all i, j∈N.                               (5.27) 

 

5.3 Illustration of a counterexample 
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We now use the following counterexample to demonstrate that the optimal 

solution obtained with Leung et al.’s MIP approach is not a global optimal solution. 

There are 5 processing tanks and 2 hoists for this example (i.e., n = 5, K = 2). The 

data for the example is given in Table 5.1, which was generated via our experiment. 

Tank 0 and tank 6 are the input station and the output station, respectively. The travel 

time between tank i and tank j can be computed as follows: ei, j =ej, i =∑
−

=
+

1

1,

j

ik
kke , i<j and 

i, j∈N0∪{ n+1}. The spent time of loaded move i can be computed as the following 

way: di=20+ei, i+1, i∈N0. Without loss of generality, we assume that move 0 is 

executed by hoist 1 and starts at the beginning of a cycle. 

Table 5.1 Data for the counterexample 

Tank i 0 1 2 3 4 5 

Li − 80s 68s 75s 61s 66s 

Ui − 126s 126s 154s 104s 146s 

ei, i+ 1 9s 8s 6s 4s 8s 8s 

di 29s 28s 26s 24s 28s 28s 

 

For this example, the optimal cycle time obtained with Leung et al.’s MIP 

approach is 145s. The time-way diagram for the corresponding optimal cyclic 

schedule is shown in Figure 5.1. Note that the numbers around a loaded move in 

Figure 5.1 represent its start and end times. We give in Figure 5.2 a feasible schedule 

for this example with the cycle time C=142s, which is smaller than the optimal cycle 

time obtained with Leung et al.’s approach. Hence, for this example, the optimal 

solution obtained with Leung et al.’s approach is actually not a global optimal 

solution. 
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Figure 5.1 Optimal cyclic schedule obtained with Leung et al.’s MIP approach. 

 

 
 

Figure 5.2 A feasible cyclic schedule with shorter cycle time. 

 

We explain the above observation as follows. Note that constraint (5.6) in Leung 

et al.’s model implies that ti+di≤C holds for all loaded moves. This requires that any 

loaded move started in the current cycle must be completed within the same cycle. 

Hence, in their model, Leung et al. implicitly assumed that no loaded moves are 

allowed to go across the cycle (i.e., start in one cycle and end in the next one). 

Although such an assumption may simplify the formulation of the problem, it may 
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restrict the possibility of achieving a better feasible solution.  

We verify the above observation using the cyclic schedule given in Figure 5.2. 

We note that move 1 in Figure 5.2 starts at time 139s and ends at time 167s. Recall 

that the cycle time C is 142s. Thus, move 1 goes across the cycle. We see that a better 

feasible solution than the one obtained with Leung et al.’s MIP approach was 

obtained by allowing move 1 to go across the cycle. Note that the cyclic schedule with 

shorter cycle time given in Figure 5.2 was obtained by using our improved MIP 

approach, which will be presented in section 5.4. 

To sum up, no loaded moves are allowed to go across the cycle in Leung et al.’s 

MIP model. For this reason, the optimal solution obtained with Leung et al.’s MIP 

approach is not necessarily a global optimal solution. 

 

5.4 The improved MIP model 

5.4.1 Reformulation of the time window constraints 

To obtain a global optimal solution, the assumption that no loaded moves are 

allowed to go across the cycle should be relaxed in the formulation of the problem. To 

achieve this purpose, constraint (5.6) in Leung et al.’s model, which requires that no 

loaded moves are allowed to go across the cycle, should be replaced with the 

following formula: 

ti+(di+ei+1, 0)ℒi≤C, for all i∈N0,                   (5.28) 

In what follows, we first extend Leung et al.’s time window constraints 

(5.9)−(5.12) by relaxing the assumption that no loaded moves are allowed to go 

across the cycle. With such a relaxation, four possible cases, as illustrated in Figure 

5.3, should be considered when the time window constraints are formulated. In Figure 

5.3, Case (a) (resp. Case (b)) corresponds to the case in which tank i is empty (resp. 

occupied) at the beginning of a cycle and move i−1 does not go across the cycle. 

Cases (c) and (d) correspond to the situations in which tank i is empty and occupied, 

respectively, at the beginning of a cycle and move i−1 goes across the cycle.  

In fact, Leung et al. (2004) only considered Cases (a) and (b) in their formulation 

of the time window constraints, which lead to constraints (5.9)−(5.12) in their MIP 

model. They did not consider Cases (c) and (d) in which move i−1 goes across the 
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cycle. 

In what follows, we give a complete formulation of the time window constraints 

by considering Cases (a), (b), (c) and (d) in Figure 5.3. To facilitate the reformulation, 

we define a new binary variable wi to represent whether move i goes across the cycle: 

wi: 0-1 variable. If move i starts and ends within the same cycle, i.e., ti<C and 

ti+di≤C, then wi= 0; otherwise, wi= 1, i.e., ti <C and ti+di>C, for i∈N0. 

 

 
Figure 5.3 Four types of tank states for the time window constraints. 

 

Case (a): si =0 and wi−1=0. It means that tank i is empty at the beginning of a 

cycle and move i−1 does not go across the cycle. For this case, tank i is still empty 

until a part enters upon completion of move i−1, which happens at time ti–1+di–1. Note 

that the part will be unloaded from tank i at time ti. As shown in Case (a) in Figure 5.3, 

move i–1 and move i happen within the same cycle. Thus, the actual processing time 

in tank i is ti–(ti–1+di–1). Consequently, the time window constraints for tank i can be 

formulated as: 

  ti−(ti−1+di−1)≤Ui+M(si +wi−1), for all i∈N,               (5.29) 

ti−(ti−1+di−1)≥Li−M(si +wi−1),  for all i∈N,              (5.30) 
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Case (b): si =1 and wi−1=0. It means that a part is in process in tank i at the 

beginning of a cycle and move i–1 does not go across the cycle. As shown in Case (b) 

in Figure 5.3, a part is loaded into tank i at time ti–1+di–1 in the current cycle, and it 

will be unloaded from tank i at time ti+C in the next cycle. Thus, the actual processing 

time in tank i is ti +C–(ti–1+di–1). Based on the above analysis, the time window 

constraints for tank i can be formulated as: 

C+ti−(ti−1+di−1)≤Ui+M(1–si +wi−1), for all i∈N,         (5.31) 

C+ti −(ti−1+di−1)≥Li−M(1–si +wi−1), for all i∈N,         (5.32) 

Case (c): si =0 and wi−1=1. It means that tank i is empty at the beginning of a 

cycle and move i–1 goes across the cycle. For this case, move i–1 starts at time ti–1 in 

the current cycle and ends at time ti–1+di–1 in the next cycle, which means that move 

i–1 goes across the cycle because we have ti–1<C and ti–1+di–1>C. Thus, as shown in 

Case (c) in Figure 5.3, the actual processing time in tank i is ti–(ti–1+di–1–C). 

Consequently, the time window constraints for tank i can be formulated as: 

ti−(ti−1+di−1–C)≤Ui+M(1–wi−1+ si), for all i∈N,         (5.33) 

ti−(ti−1+di−1–C)≥Li−M(1–wi−1+ si), for all i∈N,         (5.34) 

It is interesting to note that constraints (5.10)−(5.12) can correctly impose the 

lower and upper bounds on soak time in tank i for this case. To be more specific, 

constraint (5.12) imposes the lower bound on soak time in tank i. Constraint (5.10) 

would set si to be 1. Consequently, constraint (5.11) would correctly impose the upper 

bound on soak time tank i. We also note that in this case, the value of si being 1 is 

inconsistent with its definition. By definition, if si =1, there should be a part in tank i 

at the beginning of a cycle. However, we see that for this case, tank i is empty at the 

beginning of a cycle, as illustrated in Figure 5.2. Hence, if constraints (5.10)−(5.12) 

are used to formulate the time window constraint for case (c), si should be redefined. 

In our model, constraints (5.33) and (5.34) handle case (c) without such an 

inconsistency.  

Case (d): si =1 and wi−1=1. It means that a part is in process in tank i at the 

beginning of a cycle and move i–1 goes across the cycle. For this case, move i–1 

starts at time ti–1 in the current cycle and ends at time ti–1+di–1 in the next cycle. Thus, 

as shown in Case (d) in Figure 5.3, the actual processing time in tank i is C+ti 

–(ti–1+di–1–C). Based on the above analysis, the time window constraints for tank i can 

be formulated as: 
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C+ti−(ti−1+di−1–C)≤Ui+M(2–wi−1–si), for all i∈N,       (5.35) 

C+ti −(ti−1+di−1–C)≥Li−M(2–wi−1–si), for all i∈N,       (5.36) 

From the above analysis, constraints (5.29)−(5.36) ensure that the processing 

time in each tank is within its prescribed lower and upper bounds. Note that if we set 

wi−1=0 for all i∈N, as is the case in Leung et al.’s formulation of the time window 

constraints, then constraints (5.29)−(5.32) would be reduced to constraints (5.9)−(5.12) 

in Leung et al.’s model. 

We now deal with Leung et al.’s time window constraint (5.13). As stated by 

Leung et al. (2004), constraint (5.13) ensures that if tank i is occupied by a part at the 

beginning of a cycle, then there is a time gap of δ between when the part is unloaded 

from tank i (at time ti) and another part is loaded into the tank (at time ti–1+di–1). 

Below we extend this formulation to handle the case in which a loaded move is 

allowed to go across the cycle. Hereafter, to facilitate the reformulation, we define: 

εi: the time required to unload a part from tank i, for all i∈N. 

ρi: the time required to load a part into tank i, for all i∈N. 

We first consider the case in which move i–1 does not go across the cycle, as 

illustrated in Case (b) in Figure 5.3. In this case, the unloading operation of the 

previous part from tank i starts at time ti and ends at time ti+εi. The loading operation 

of the next part into tank i starts at time ti–1+di–1–ρi and ends at time ti–1+di–1. To avoid 

the collision in using tank i, it follows that: 

(ti+εi)−(ti−1+di−1− ρi)≤M(1–si +wi−1), for all i∈N.         (5.37) 

Similarly, if move i–1 goes across the cycle, as illustrated in Cases (c) and (d) in 

Figure 5.3, we have: 

(ti+εi)−(ti−1+di−1− ρi)≤M(1–wi−1+ si), for all i∈N,         (5.38) 

(ti+εi)−(ti−1+di−1− ρi−C)≤M(2–wi−1– si), for all i∈N.       (5.39) 

Note that Leung et al. (2004) only consider Case (b) in Figure 5.3, in which 

move i–1 does not go across the cycle. If we set wi−1=0 for all i∈N and set δ =εi+ρi, 

then constraint (5.37) would be equivalent to constraint (5.13) in Leung et al.’s model. 

Note also that Case (a) is not required to be considered here because in this case, the 

time window constraint (5.30) guarantees that ti ≥ti−1+di−1+Li. As Li is usually greater 

than εi+ρi, there is sufficient time gap between the loading and unloading operations 
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of the (same) part and no collision would happen between the two hoists executing the 

loading and unloading operations, respectively. 

In addition, in order to ensure variable wi to be well defined, the following 

constraints must hold: 

ti<C, for all i∈N,                            (5.40) 

ti+di ≤C+Mwi, for all i∈N,                     (5.41) 

ti+di>C−M(1−wi), for all i∈N,                (5.42) 

wi+ 1
iz ≤1, for all i∈N0,                      (5.43) 

wi∈{0,1}, for all i∈N0.                     (5.44) 

Constraint (5.40) says that the start time of move i should be less than the cycle 

time C. Constraints (5.40) and (5.42) guarantee that if wi =1, then move i starts in the 

current cycle and ends in the next one. On the other hand, constraints (5.40) and (5.41) 

ensure that move i starts and ends within the same cycle if wi =0. Constraint (5.43) 

ensures that if move i is executed by hoist 1(i.e.1iz =1), then it cannot go across the 

cycle as explained below. In each cycle, hoist 1 would first execute move 0 and then 

other moves assigned to it, and finally return to the input station to start move 0 of the 

next cycle, which happens at time C. Hence, if move i is assigned to hoist 1, it must 

be finished within a cycle and would not go across the cycle. 

In order to facilitate the formulation of constraints (5.40) and (5.42) using 

CPLEX, we add a sufficiently small constant δ into them and they can be equivalently 

written as: 

ti+δ ≤C, for all i∈N,                 (5.45) 

ti+di≥C+δ −M(1−wi), for all i∈N.                 (5.46) 

 

5.4.2 Other improvements on Leung et al.’s MIP model 

In this subsection, we report two other improvements on Leung et al.’s model. 

We first demonstrate that the binary variable ℒi is unnecessary to be defined in Leung 

et al.’s model. To be more specific, constraint (5.6) ensures that if move i is the last 

move executed by hoist 1, then upon completion of move i, hoist 1 has sufficient time 
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to travel back to the input station (i.e. tank 0) to start move 0 of the next cycle. In fact, 

as the hoist travelling times satisfy the triangular inequality, constraint (5.6) can be 

replaced with the following constraint: 

ti+(di+ei+1, 0) 1
iz ≤C, for all i∈N0,                  (5.47) 

The above relation says that ti+di+ei+1, 0 ≤C holds for all moves executed by hoist 

1. Similar relation can also be found in Chen et al. (1998) (see Inequality (8)) for the 

single-hoist scheduling problem. Thus, it is unnecessary to define the binary variable 

ℒi in Leung et al.’s model. Consequently, constraints (5.2)−(5.5), (5.25) and (5.28) 

modified from constraint (5.6) can be removed from the model. 

We now show that some collision-avoidance constraints given in Leung et al.’s 

MIP model are unnecessary. Suppose that moves i and j are performed by hoists k and 

h, respectively. Without loss of generality, we assume that i >j for any pair of moves 

(i, j). That is, given any pair of moves (i, j), we designate the larger number of move 

as i and the smaller number of move as j. For example, if the collision avoidance 

constraint between move 2 and move 4 is to be considered, we set i=4 and j=2 and 

consider the possible collision between them.  

As the part processing sequence is same as the tank arrangement sequence, it is 

understandable that the collision may happen between any two hoists k and h using a 

common segment of the track, i.e., k<h, i >j. That is to say, no collision would happen 

in the situation of k>h, i >j+1. It should be noted that constraints (5.37)–(5.39) ensure 

that no collision would happen between two hoists sharing the same tank (i.e., k >h, 

i=j+1), where parts are loaded/unloaded by one hoist and unloaded/loaded by another 

one. 

Based on above analysis, we only need to consider the case k<h, i >j in the 

formulation of the hoist collision avoidance constraints. In this case, hoists k and h 

would pass through a common segment of the track. In order to guarantee that no 

collision would happen between them during the execution of moves i and j, they 

cannot be executed at the same time. That is, either move j must start after move i has 

finished or move i must start after move j has finished in order to avoid the collision. 

Let us first suppose that move j starts after move i has finished. In this case, move i 

finishes at time ti+di, hoist k will pass through tank j at time ti+di+ei+1, j. Knowing that 

move j executed by hoist h starts at time tj, to avoid the possible collision, hoist k must 
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pass through tank j before time tj. Thus, we have: 

    ti+di+ei+1, j≤tj, for all k≤h, i>j, i, j∈N, k, h∈K and ti<tj,   (5.48) 

Similarly, if move i starts after move j has finished, we have: 

   tj+dj+ej+1,i≤ti, for all k≤h, i>j, i, j∈N, k, h∈K and tj<ti,    (5.49) 

Besides, consider the possible collision between moves i and j in two 

consecutive cycles, we must have: 

    tj+dj+ej+1,i≤C+ti, for all k≤h, i>j, i, j∈N, k, h∈K ,        (5.50) 

       ti+di+ei+1, j≤C+tj, for all k≤h, i>j, i, j∈N, k, h∈K ,       (5.51) 

Based on above analysis, for any two moves i and j performed by hoists k and h, 

respectively, (5.48)−(5.51) are their corresponding collision-avoidance constraints. 

Note that by adding previously defined binary variables into (5.48)−(5.51), they can 

be transformed into constraints (5.16), (5.17), (5.20), (5.21). We thus can find that 

constraints (5.16), (5.17), (5.20), (5.21) are sufficient, and constraints (5.18), (5.19), 

(5.22) and (5.23) are unnecessary and can be removed from the model. 

In what follows, we give an illustration to further demonstrate the above 

observation. Let us consider the collision avoidance constraints between move 3 and 

move 4 in Figure 5.1 with K=2. We have from Figure 5.1 that y34=0, y43=1, i.e., move 

3 starts after move 4 has finished. We also have 1
3z =0, 2

3z =1, 1
4z =1 and 2

4z =0, i.e., 

move 3 and move 4 are executed by hoist 2 and hoist 1, respectively. We now see for 

this hoist assignment, what relation between the start times of move 3 and move 4 

should satisfy to avoid the possible collision between them. As required by Leung et 

al. (2004), we first let i=3 and j=4 and substitute the values of y34=0, y43=1, 1
3z =0, 

2
3z =1, 1

4z =1 and 2
4z =0 into the collision avoidance constraints (5.18), (5.19), (5.22) 

and (5.23). We obtain the following inequalities: 

t4+d4+e5,3≤t3                              (5.52) 

t4+d4+e5,3≤C+t3                            (5.53) 

t3+d3+e4,4≤C+t4                            (5.54) 
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As required by Leung et al. (2004), we now let i=4 and j=3. By substituting the 

above values into the collision avoidance constraints (5.16), (5.17), (5.20) and (5.21), 

we obtain exactly the same inequalities as (5.52)−(5.54). Hence, constraints (5.18), 

(5.19), (5.22), (5.23) can be removed from the model with the consideration of 

constraints (5.16), (5.17), (5.20), (5.21).  

The model becomes more compact due to the two improvements presented in 

this subsection. 

5.4.3 The improved MIP model 

With the extension presented above, the improved MIP model allowing loaded 

moves to go across the cycle can be formulated as follows: 

Minimize C 

subject to  

Hoist assigning and cycle-time definitional constraints: (5.1), (5.7), (5.8), (5.47). 

Time window constraints: (5.29)−(5.39). 

Hoist capacity constraints: (5.14)−(5.15). 

Collision avoidance constraints: (5.16), (5.17), (5.20), (5.21). 

Move cycle-crossing constraints: (5.41), (5.43), (5.45), (5.46). 

Binary variable definitional constraints: (5.24), (5.26), (5.27), (5.44). 

Note that we do not consider the safe distance between the hoists in the above 

improved model in order to facilitate the comparison with Leung et al.’s model. 

However, the model can be easily modified to take the safe distance into account. Let 

β be the minimum interval between two adjacent hoists on the track to avoid collision. 

For simplicity, β is measured in time and is equal to the width of the hoist divided by 

its travelling speed. For instance, if the safe distance is considered, constraint (5.16) 

can be rewritten as follows: 

)3()(,1 ∑∑
==

+ −−−≤−−+++
K

kh

h
j

k
iijj

K

kh

k
i

h
jjiii zzyMtkzhzedt β , 

for all i, j∈N, j<i, k∈K   (5.55) 



89 

 

In the above inequality, if 1=k
iz  and ∑

=

=
K

kh

h
jz 1 for some h≥k, then we 

have ββ )()( khkzhz
K

kh

k
i

h
j −=−∑

=

, which is the minimum safe distance required 

between hoists k and h to avoid collision. Similar modifications can also be done to 

constraints (5.17), (5.20), (5.21), (5.37)−(5.39). 

 

5.5 Computational results 

In this section, we evaluate our improved model using both benchmark and 

randomly generated instances. Both Leung et al.’s model and our improved model 

were coded using C++. The models were then solved using the MIP solver of CPLEX 

(Version 12.4). All computational experiments were conducted on a HP PC with a 

Pentium IV Processor 3.0GHZ and on a windows XP environment. 

5.5.1 Computational results on benchmark instances 

We compare our improved model with Leung et al.’s model using five 

benchmark instances in the literature: BO1, BO2, Phillips and Unger (P&U), Ligne1 

and Ligne2. Their data can be found in Leung et al. (2004), Phillips and Unger (1976) 

and Manier (1994). For these benchmark instances, the part processing sequence is 

assumed to be the same as the tank arrangement sequence.  

Table 5.2 is used to test the effectiveness of the two improvements presented in 

subsection 5.4.2 of Section 5.4. Note that the partially improved model is derived by 

removing the two improvements presented in subsection 5.4.2 of Section 5.4 from our 

improved model. The optimal solutions obtained with the partially improved model 

and our improved model must be the same. In Table 5.2, “B&B” indicates the size of 

branch-and-bound tree measured in the number of nodes, while “CPU” denotes the 

computation time measured in CPU seconds. We can see from Table 5.2 that the 

computation times spent by our improved model are generally smaller than those 

spent by the partially improved model. However, the B&B sizes seem to show a 

mixed trend among these instances.  

Table 5.3 is used to demonstrate if a smaller cycle time can be found by our 

improved model compared with Leung et al.’s model. In Table 5.3, the numbers on 

the left and right sides of the slash (/) are the optimal cycle times obtained with Leung 
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et al.’s model and our improved model, respectively. The number marked with * 

means that at least one hoist move in the optimal solution goes across the cycle. We 

can see that both Leung et al.’s model and our improved model obtained the same 

optimal solutions for most instances except problem P&U with K=3. For this problem, 

the optimal cycle time obtained with Leung et al.’s model is 205 while a better 

solution with the cycle time 198 was found by our improved model. For other 

solutions marked with *, although at least one hoist move in the optimal solution 

obtained with our improved model goes across the cycle, the optimal cycle times 

obtained with the two models remain the same.  

Table 5.2 Comparison of computation times for benchmark instances 

Instances Partially improved model Our  improved model 

B&B CPU B&B CPU 

BO1(K=2) 1928 1.03 708 0.44 

BO1(K=3) 952 1.38 612 0.55 

BO1(K=4) 283 0.81 1544 1.27 

BO2(K=2) 1421 0.89 572 0.44 

BO2(K=3) 1925 2.25 60 0.38 

BO2(K=4) 151 0.78 1556 1.99 

P&U(K=2) 43759 21.44 27086 9.94 

P&U(K=3) 60081 45.88 29279 14.84 

P&U(K=4) 2147 5.92 4776 4.77 

Ligne1(K=2) 2419 2.47 3107 1.70 

Ligne1(K=3) 3049 3.03 1513 1.02 

Ligne1(K=4) 1939 2.38 2487 2.44 

Ligne2(K=2) 2488 1.89 1501 1.08 

Ligne2(K=3) 1200 2.53 1666 1.44 

Ligne2(K=4) 1387 2.97 2040 2.13 

 
 

Table 5.3 Comparison of optimal cycle times for benchmark instances 

Instances K=2 K=3 K=4 

BO1 255.2/255.2* 255.2/255.2 255.2/255.2* 

BO2 255.2/255.2 255.2/255.2* 255.2/255.2 

P&U 251/251* 205/198* 170/170 

Ligne1 317.5/317.5 317.5/317.5 317.5/317.5* 

Ligne2 675/675 675/675* 675/675* 

 

We note that the optimal cycle times remain unchanged when the number of 

hoist increases to 3 and 4 for problems BO1, BO2, Ligne1 and Ligne2. We explain 
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the above observation as follows. In a multi-hoist system, the cycle time C is bounded 

from below by: 

)(max iii
Ni

LC ρε ++≥
∈

.        (5.56) 

That is to say, the cycle time C is greater than or equal to the sum of minimum 

processing time and the unloading and loading times in any tank. For problems BO1, 

BO2, Ligne1 and Ligne2, the optimal cycle time for K=2 reaches the lower bound 

given by (5.56). As a result, the optimal cycle time remains unchanged when the 

number of hoist increases. In other words, for these cases (K≥2), the critical resource 

becomes processing tanks and not transportation hoist. 

5.5.2 Computational results on randomly generated instances 

Randomly generated instances were also used to further evaluate the 

performance of our improved model. All the random instances were generated as 

described below. We set K∈{2, 3, 4}, and n∈{8, 10, 12, 14}. Let U(a, b) be a uniform 

distribution between parameters a and b. The lower bound on processing time was 

generated as Li=U(50, 200). The upper bound on processing time was generated using 

the following three scenarios with different widths of time windows: Ui=Li, 

Ui=Li+U(0, 50) and Ui=Li+U(0, 100). The travelling time between adjacent tanks was 

generated as follows: ei, i+1 =U(2, 6). The travelling time between tank i and tank j can 

be computed with the formula ei, j=ej, i=∑
−

=
+

1

1,

j

ik
kke , i<j, i, j∈N0∪{ n+1}. The loaded 

move time is computed by di =25+ei, i+1, i∈N0, where εi+ρi =25, i∈N. For each given 

values of n and K, 20 random instances were generated. 

Tables 5.4, 5.5 and 5.6 are used to test the effectiveness of the two improvements 

presented in subsection 5.4.2 of Section 4 under three scenarios Ui=Li, Ui=Li+U(0, 50) 

and Ui=Li+U(0, 100), respectively. For each given values of n and K, the data for 

columns “B&B” and “CPU” in these tables represent the average size of 

branch-and-bound trees and average computation time (in CPU seconds) among 20 

test instances, respectively. We can see from these tables that the B&B sizes explored 

by our improved model are generally smaller than those explored by the partially 

improved model. However, the computation times spent by our improved model are 

always shorter than those spent by the partially improved model.  
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Table 5.4 Comparison of computation times for random instances Ui =Li 

Random 

Instances 

Partially improved model Our improved model Ratio of 

CPUs B&B CPU B&B CPU 

n=8, K=2 1375 0.49 1075 0.31 1.58 

n=8, K=3 1192 0.69 980 0.44 1.57 

n=8, K=4 1337 0.99 984 0.48 2.06 

n=10, K=2 3994 1.88 3382 1.26 1.49 

n=10, K=3 5410 4.52 4783 2.44 1.85 

n=10, K=4 3671 3.89 3121 1.96 1.99 

n=12, K=2 6983 4.89 6514 3.11 1.57 

n=12, K=3 12449 11.30 8504 4.72 2.39 

n=12, K=4 5554 8.69 4947 3.95 2.20 

n=14, K=2 11138 9.27 8753 5.05 1.84 

n=14, K=3 51413 43.58 20324 11.15 3.91 

n=14, K=4 263390 288.25 18562 11.38 25.33 

 
 

Table 5.5 Comparison of computation times for random instances Ui =Li +U(0, 50) 

Random 

Instances 

Partially improved model Our improved model Ratio of 

CPUs B&B CPU B&B CPU 

n=8, K=2 1368 0.53 857 0.31 1.71 

n=8, K=3 1592 0.89 1612 0.64 1.39 

n=8, K=4 1209 0.94 1051 0.56 1.69 

n=10, K=2 6028 2.91 5129 1.77 1.64 

n=10, K=3 7252 5.92 6103 2.83 2.09 

n=10, K=4 4283 4.39 4165 2.34 1.88 

n=12, K=2 18644 9.40 15309 5.14 1.83 

n=12, K=3 39609 24.19 27505 10.20 2.37 

n=12, K=4 6844 9.21 13697 6.56 1.40 

n=14, K=2 39998 23.63 34652 13.37 1.77 

n=14, K=3 203217 150.39 112123 43.39 3.47 

n=14, K=4 674087 696.77 128213 50.15 13.89 

 

We explain the above observations as follows. In fact, our improved model is 

more compact than the partially improved model in terms of the number of variables 

and constraints. With our improved model, a smaller linear program is solved at each 

node, which requires shorter computation time at each node. Hence, our improved 

model is always more efficient (in terms of the computation time) than the partially 

improved model although the B&B size of the former is not always smaller than that 

of the latter. This means that the two improvements presented in subsection B of 

Section 5.4 are effective. Furthermore, we can also notice that the ratios of CPU times 
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spent by the partially improved model and our improved model increase generally 

with the values of n and K. Therefore, it seems that the larger the instance size, 

generally the more saving in computation time achieved by our improved model.  

Table 5.6 Comparison of computation times for random instances Ui =Li +U(0, 100) 

Random 

Instances 

Partially improved model Our improved model 
Ratio of CPUs 

B&B CPU B&B CPU 

n=8, K=2 1514 0.58 1326 0.39 1.49 

n=8, K=3 1773 0.93 1371 0.56 1.66 

n=8, K=4 1203 0.95 1107 0.63 1.51 

n=10, K=2 7833 3.73 5537 1.93 1.93 

n=10, K=3 6206 5.13 4689 2.31 2.22 

n=10, K=4 3334 3.80 2977 2.00 1.90 

n=12, K=2 27397 12.52 21992 6.76 1.85 

n=12, K=3 22239 16.30 15334 6.59 2.47 

n=12, K=4 10798 10.58 16092 6.87 1.54 

n=14, K=2 140203 82.14 79586 27.94 2.94 

n=14, K=3 239951 177.27 154389 59.25 2.99 

n=14, K=4 616542 722.49 261087 98.80 7.31 

 
 

Table 5.7 Average number of improved instances with shorter cycles for random instances 

Random 

Instances 

Ui=Li Ui=Li+U(0,50) Ui=Li+U(0,100) 

n=8, K=2 4 2 0 

n=8, K=3 12 1 1 

n=8, K=4 10 1 0 

n=10, K=2 2 4 2 

n=10, K=3 14 3 1 

n=10, K=4 13 2 0 

n=12, K=2 9 3 2 

n=12, K=3 10 6 2 

n=12, K=4 15 4 1 

n=14, K=2 3 1 2 

n=14, K=3 14 6 3 

n=14, K=4 12 2 2 

 

Table 5.7 indicates that how many instances for which the optimal cycle time 

obtained with our improved model is smaller than that by Leung et al.’s model among 

20 test instances. We can see from Table 5.7 that the number of improved instances 

seems to decrease generally with the width of the time windows. That is, the smaller 
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the width of the time windows, generally the larger the number of improved instances 

achieved by our improved model. We explain the above observation as follows. When 

the width of the time window is large, it provides a greater possibility of gaining a 

better solution with Leung et al.’s model by exploring the flexibility resulting from 

the time windows. Thus, it provides a smaller possibility of achieving a better solution 

with our improved model compared with the one obtained by Leung et al.’s model.  

 

5.6 Summary 

In this chapter, we gave a counterexample to demonstrate that the optimal 

solution obtained with the existing MIP approach for the multi-hoist cyclic scheduling 

problem with unidirectional part flow is not necessarily a global optimal solution. To 

find a global optimal solution, we proposed an improved MIP approach, in which 

loaded moves are allowed to go across the cycle. Computational results demonstrated 

that the smaller the width of the processing time windows, generally the greater 

possibility of achieving a better optimal solution by allowing the loaded moves to go 

across the cycle. The results also showed that our improved MIP approach is more 

efficient than Leung et al.’s MIP approach. 
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Chapter 6 Conclusions and Future Research 

6.1 Conclusions 

Hoist scheduling problem with processing time windows (HSP for short) is often 

encountered in surface treatment industry, which plays a key role in changing surface 

properties of metals and other electronics. A typical example from surface treatment 

industry is the automated electroplating plant, in which computer-controlled hoists are 

widely used to transport part from one processing stage to another. This research 

focused on the hoist scheduling issues arising from automated electroplating lines. 

More precisely, three typical hoist scheduling problems with processing time 

windows have been examined in this thesis: the basic cyclic HSP, the cyclic HSP with 

bi-objective and the cyclic HSP with multiple hoists. These scheduling problems are 

all NP-complete.  

The main contributions of this thesis are summarized as follows. Firstly, we have 

proposed a hybrid QEA (HQEA) to find the best hoist move schedule with minimal 

cycle time for the basic HSP. As usual, each chromosome is encoded by Q-bits in the 

proposed HQEA. For a better population diversification, a new decoding scheme 

consisting of three different procedures was proposed for transforming Q-bits 

chromosome into hoist move sequences. It has several advantages over the commonly 

used ones, such as better ability to exploit the diversity of Q-bits chromosome and 

shorter length of chromosome. As infeasible hoist move sequences are inevitable, a 

simple and effective repairing procedure was designed to deal with this issue. Besides, 

quantum-rotation gate and adaptive genetic operators were applied to evolve the 

population towards best solution. The experimental results indicate that the proposed 

algorithm can provide high-quality solutions within a reasonable time. Our 

contribution was valorized through one communication (Lei et al., 2013) and one 

submitted paper in the international journal Applied Soft Computing (Lei et al., 2014). 

Secondly, we formulated a mathematical model and proposed an efficient 

bi-objective QEA with local search (LS) procedure for a cyclic HSP with minimizing 

the cycle time and the production cost simultaneously. More precisely, a bi-objective 

mathematical model was formulated using the MPI approach (Levner et al., 1997) 

providing that the actual processing times are known (In fact they are decision 

variables). After that, an efficient QEA with LS procedure was proposed for 

enumerating the actual processing times and finding a set of Pareto-optimal solutions 
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for the studied problem. Particularly, for providing a better diversity of population, 

each chromosome is converted into two different individuals by a double-decoding 

scheme. For finding the non-dominated individuals, Pareto-dominance procedure was 

suggested for individual evaluation. A specific chaotic quantum-rotation gate was 

designed for updating Q-bits individuals. To increase the diversity, mutation operator 

was also implanted. Moreover, an efficient LS procedure was periodically applied to 

improve all the non-dominated solutions stored in external archive. 

A real zinc electroplating problem was used to investigate the performance of the 

proposed algorithm. We have run the bi-objective QEA algorithm with different 

parameter settings. For testing its performance, we also run the algorithm without LS 

procedure. Computational results show that the proposed algorithm is efficient in 

solving the studied problem, and the LS procedure is very helpful for improving the 

solution quality. Our results were presented at the international conference IEEE ICIII 

2014 (Lei et al., 2014). 

At last, we have proposed an improved MIP model for the cyclic HSP with 

unidirectional multiple hoists to minimize the cycle time. Our improved MIP model 

was formulated with two improvements on Leung et al.’s MIP model (Leung et al., 

2004). The first improvement is the reformulation of the time window constraints by 

allowing the loaded hoist moves to start at the one cycle and end at the next one if 

necessary, which is a relaxation of the existing assumption that all loaded hoist moves 

start and end within the same cycle used in most related works, such as Leung et al. 

(2004), Chtourou et al. (2013) and Jiang and Liu (2014). The second one is to remove 

some unnecessary hoist collision-avoidance constraints from Leung et al.’s MIP 

model. Based on the above works, an improved and relatively more compact MIP 

model was formulated for the studied problem.  

Computational results verify that our improved MIP approach can always find 

the global optimal solution for the studied problem, while the existing ones may 

identify a non-optimal solution to be an optimal one. Our results were published in the 

international journal IEEE Transactions on Automation Science and Engineering (Che 

et al., 2014). 

 

6.2 Limitations and future research 

As described above, we have proposed efficient scheduling approaches for the 
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considered HSPs in this thesis. However, there are a lot of limitations in this search, 

so it still has enough room to conduct further research. In what follows, we discuss 

the limitations of this thesis and some potential directions for future research. 

In chapter 3, the studied basic cyclic HSP only deals with a single part type. 

However, to improve the productivity and meet the diverse demands, multi-type parts 

are often produced within a same cycle in practice. Besides, duplicated tanks are often 

used to overcome the bottleneck processing stages in practices. Note that for HSP 

with multi-type parts and duplicated tanks, part input sequence must be optimized 

along with the sequencing of hoist moves. So how to extend the proposed HQEA for 

solving multi-type parts HSP with duplicated tanks is worth investigating in future. A 

key issue for the algorithm extension is to develop an efficient encoding and decoding 

scheme for sequencing of parts and hoist moves.  

In chapter 4, optimizing HSP with two different objectives (i.e. cycle time and 

production cost) was investigated. To reduce the problem complexity, the second 

objective (i.e. the production cost) was supposed to be a linear function of the actual 

processing times. But from the practical point of view, a non-linear objective function 

may be more suitable for simulating the process of resource consumption. Thus, 

future interesting research direction is to introduce the non-linear objective function 

into the formulated bi-objective model. Moreover, it is also interesting to extend the 

proposed model and algorithm for solving the HSP with more than two objectives.  

In chapter 5, all tanks are arranged in a row according to their index numbers, 

and each part is supposed to be processed through tank 1 to tank n. In other words, the 

part is moved in only one direction, i.e. from left to right. However, the part 

processing sequence may be different from the tanks layout in many real-world 

applications. Consequently, the hoist may move the part from left to right and from 

right to left. Therefore, how to extend the developed MIP model to the multi-hoist 

system with bidirectional part flow is worth investigating in future. Moreover, it is 

also worthwhile to develop efficient QEAs for multi-hoist scheduling problem with 

multiple objectives based on this research. 
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Cyclic Hoist Scheduling Problems in Classical and Sustainable Contexts 
ABSTRACT  

Automated surface treatment facilities, which employ computer-controlled hoists for part transportation, have been extensively established in 

various kinds of industrial companies, because of its numerous advantages over manual system, such as higher productivity, better product quality, 

and reduced labor intensity. This research investigates three typical hoist scheduling problems with processing time windows in surface treatment 

facilities, which are (I) cyclic single-hoist scheduling problem to minimize the cycle time; (II) cyclic single-hoist scheduling problem to minimize 

the cycle time and processing resource consumption (and consequently production cost); and (III) cyclic multi-hoist scheduling problem to 

minimize the cycle time.  

Due to the NP-completeness of the studied problems and numerous advantages of quantum-inspired evolutionary algorithm (QEA), we first 

propose a hybrid QEA with improved decoding mechanism and repairing procedure to find the best cycle time for the first problem. After that, to 

enhance with both the economic and environmental performance, which constitute two of the three pillars of the sustainable strategy nowadays 

deployed in many industries, we formulate a bi-objective mathematical model for the second problem by using the method of prohibited interval 

(MPI). Then we propose a bi-objective QEA with local search procedure to simultaneously minimize the cycle time and the production cost, and 

we find a set of Pareto-optimal solutions for this problem. As for the third problem, we find that most existing approaches, such as mixed integer 

programming (MIP) approach, may identify a non-optimal solution to be an optimal one due to an assumption related to the loaded hoist moves 

which is made in many existing researches. Consequently, we propose an improved MIP approach for this problem by relaxing the 

above-mentioned assumption. Our approach can guarantee the optimality of its obtained solutions. 

For each problem, experimental study on industrial instances and random instances has been conducted. Computational results demonstrate that 

the proposed scheduling algorithms are effective and justify the choices we made. 

Keywords: cyclic hoist scheduling problem; processing time windows; bi-objective optimization; quantum-inspired evolutionary algorithm; 

mixed integer programming approach 

RÉSUMÉ 
Les ateliers de traitement de surface automatisés, qui utilisent des robots de manutention commandés par ordinateur pour le transport de la pièce, 

ont été largement mis en place dans différents types d'entreprises industrielles, en raison de ses nombreux avantages par rapport à un mode de 

production manuel, tels que: une plus grande productivité, une meilleure qualité des produits, et l’impact sur les rythmes de travail. Notre recherche 

porte sur trois types de problèmes d'ordonnancement associés à ces systèmes, appelés hoist scheduling problems, caractérisés par des contraintes 

de fenêtres de temps de traitement: (I) un problème à une seule ressource de transport où l’objectif est de minimiser le temps de cycle; (II) un 

problème bi-objectif avec une seule ressource de transport où il faut minimiser le temps de cycle et la consommation de ressources de traitement (et 

par conséquent le coût de production); et (III) un problème d'ordonnancement cyclique mono-objectif mais multi-robots. 

En raison de la NP-complétude des problèmes étudiés et de nombreux avantages de les outils de type quantum-inspired evolutionary algorithm 

(QEA), nous proposons d'abord un QEA hybride comprenant un mécanisme de décodage amélioré et une procédure réparation dédiée pour trouver 

le meilleur temps de cycle pour le premier problème. Après cela, afin d'améliorer à la fois la performance économique et environnementale qui 

constituent deux des trois piliers de la stratégie de développement durable de nos jours déployée dans de nombreuses industries, nous formulons un 

modèle mathématique bi-objectif pour le deuxième problem en utilisant la méthode de l'intervalle interdit. Ensuite, nous proposons un QEA 

bi-objectif couplé avec une procédure de recherche locale pour minimiser simultanément le temps de cycle et les coûts de production, en générant 

un ensemble de solutions Pareto-optimales pour ce problème. Quant au troisième problème, nous constatons que la plupart des approaches utilisées 

dans les recherches actuelles, telles que la programmation entière mixte (MIP), peuvent conduire à l’obtention d’une solution non optimale en 

raison de la prise en compte courante d’une hypothèse limitant l’exploration de l’espace de recherche et relative aux mouvements en charge des 

robots. Par conséquent, nous proposons une approche de MIP améliorée qui peut garantir l'optimalité des solutions obtenues pour ce problème, en 

relaxant l'hypothèse mentionnée ci-dessus. 

Pour chaque problème, une étude expérimentale a été menée sur des cas industriels ainsi que sur des instances générées aléatoirement. Les résultats 

obtenus montrent que l’efficacité des algorithmes d'ordonnancement proposés, ce qui justifie les choix que nous avons faits. 

Mots-clés: ordonnancement cyclique des ateliers de traitement de surface, fenêtres de temps de traitement; optimisation bi-objectif; algorithme 

évolutionnaire quantique; approche de programmation mixte en nombres entiers. 


