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Ré sumé à l'entraî nement scalaire avec vé rification expé rimentale, l'ensemble du systè me se comporte bien, et la mé thode MCA renforcé e par ré seaux neuronaux a fourni un bon potentiel dans l'application des harmoniques ré cupé rer.
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Finally, I wish to take this opportunity to express my appreciation and thanks to all my friends for their emotional support. I would also like to thank my parents who provide me the mental support and encouragement to explore the unknowns. Thanks are especially due to Jiayin for her love. Dans un deuxiè me temps, les travaux de thè se ont permis de dé velopper un systè me sans capteur en fonction de boucle à verrouillage de phase (PLL): La largeur de bande centrale est ré glé e en ligne sur la base des valeurs de ré fé rence, des fré quences d'alimentation et de glissement pré vues au convertisseur PWM, la PLL est ré glé e pour suivre le rotor de la machine à RSH sans la né cessité de toute injection de signal à haute fré quence, ni en rotation, ni de pulsation. Ce systè me d'estimation de vitesse, qui est approprié pour le contrôleur scalaire, avait é té inté gré avec le lecteur scalaire, conduisant à un simple calcul peu exigeant, à faible coût de l'entraînement de la machine à induction sans capteur à faible coût. Les ré sultats expé rimentaux montrent que le systè me est en mesure de suivre la vitesse de la machine dans une plage de vitesse trè s é tendue.

Enfin, un systè me sans capteur amé lioré basé sur l'analyse de composant mineur (MCA) neurones est dé crit. Selon la thé orie de Pisarenko, il a é té vé rifié que le MC qui se trouve dans le sous-espace de bruit est orthogonale au sous-espace de signal, par conséquent, les fré quences de signal contenues dans l'entré e peuvent ê tre calculé es à partir d'un polynôme formé par la MC. Classiquement, ce qui né cessitera la dé composition propre encombrants, né anmoins, la mé thode de neurones proposé e dans cette thè se peut ré cupé rer le MC de faç on ré cursive avec moins de calculs et des performances amé lioré es d'erreur (la solution est sur un total de moins sens carré ). En outre, l'estimateur de vitesse est appliqué e 

CHAPTER 1. INTRODUCTION

In high performance electrical drives with induction machine (IM) for traction applications, one of the key problems is the sensorless control of the speed and the position. The advantages of speed-sensorless IM drives are reduced hardware complexity, fewer maintenance requirements, lower cost and increased reliability. To replace the mechanical speed sensor, information on the rotor speed is extracted from measured stator currents and voltages at the motor terminals. Fundamental and anisotropy model based algorithms are used for this purpose [START_REF] Vas | Sensorless vector and direct torque control[END_REF][START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF][START_REF] Asher | Sensorless estimation for vector controlled induction motor drives[END_REF][START_REF] Holtz | Sensorless control of induction motor drives[END_REF][START_REF] Lascu | Direct torque control of sensorless induction motor drives: a sliding-mode approach[END_REF][START_REF] Blasco-Gimenez | Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive[END_REF][START_REF] Ghanes | On sensorless induction motor drives: Sliding-mode observer and output feedback controller[END_REF][START_REF] Kim | Speed-sensorless vector control of an induction motor using neural network speed estimation[END_REF][START_REF] Tajima | Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives[END_REF][START_REF] Rashed | A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation[END_REF][START_REF] Cirrincione | An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model[END_REF][START_REF] Toliyat | A review of RFO induction motor parameter estimation techniques[END_REF]. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This research work explores the speed estimation algorithms based on tracking the rotor slot harmonics (RSHs) of the IM, which are created by machine anisotropy and directly related to the real-time rotor speed. Like the other anisotropy-model based approaches, they are independent of machine parameters, like stator and rotor resistances, yet no extra signal injection is required. Moreover, the proposed algorithms have been applied to a sensorless drive, showing a good behavior in a very wide speed range from rated speed down to 2% of the rated speed.

Sensorless Control of Induction Motors

Literature about sensorless control of IM drives is huge . The sensorless techniques for IM can be mainly divided into two categories: methodologies based on fundamental models and methodologies based on anisotropies models, see fig. 1-1. The former, such as model reference adaptive system (MRAS) and observers in the synchronous or stationary reference frame, present good results in the middle and high speed regions, but they suffer problem at low speeds where the back EMF fade out, and the IM becomes an unobservable system.

The latter have a better performance at very low and zero speed, they either exploit the magnetic saliency by signal injection, or exploit the use of PWM switching signals, and can be more efficient at low and zero speed than any other sensorless estimation due to its uncorrelated property with the machine parameter. Yet the latter tends to fail at increasing speed because of the necessary signal processing system (filtering etc.). In general, it can be stated that they can hardly be adopted at rated or close to rated speed.

Some typical methods belong within the two categories as described in the following: the stator and rotor equations of the IM. The accuracy of the algorithms is largely dependent on the machine parameters; however, due to their simplicity and robustness, some of them are also currently employed in commercial sensorless drives. In [START_REF] Vas | Sensorless vector and direct torque control[END_REF], five open-loop sensorless schemes are described, which are all based on the stator and rotor equations of the IM, differing from one another by the reference frame in which the equations are expressed. In practice, the choice among them is usually made according to the machine parameters at hand.

If the stator flux-linkage has been estimated, one straightforward way for speed estimation is to estimate the stator flux-linkage speed 𝜔 𝑚𝑠 and the slip speed 𝜔 𝑠𝑙𝑠 [START_REF] Vas | Sensorless vector and direct torque control[END_REF], and take the difference as follows: 
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Or correspondingly, if the rotor flux-linkage has been estimated, then the rotor speed cab be obtained as the sum of the speed of the rotor flux (𝜔 𝑚𝑟 relative to the stator) and the
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Where, integration problem and the sensitivity to the stator resistance variation. Many literature papers refer improving the integration problem, i.e. the time derivation, parameter estimation [START_REF] Hu | New integration algorithms for estimating motor flux over a wide speed range[END_REF][START_REF] Hurst | Zero-speed tacholess IM torque control: simply a matter of stator voltage integration[END_REF][START_REF] Holtz | Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification[END_REF][START_REF] Holtz | Drift-and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors[END_REF]. At low stator frequency, in particular, a reduction of the speed estimation accuracy is to be expected in all these schemes due to a mismatch between the real and the estimated flux linkage caused by a wrong model of the stator resistance. The poor knowledge of the rotor time constant, on the contrary, mainly influences the estimation of the slip speed and therefore is critical at high loads. ones. An important category is that of MRASs (model referencing adaptive systems), in which an error vector is formed from the outputs of two models both dependent on different state variables of the IM. The error is driven to zero by an adaptation mechanism, through adjustment of a parameter that influences the adaptive model so that its output eventually coincides with that of the reference model.
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In [10][17-21], several MRAS schemes have been developed. They differ from one another by the state variables being employed. Fig. 1-3 shows the basic scheme of a MRAS based speed estimator, in this case, the parameters to be estimated is the rotor speed 𝜔 𝑟 . Some state variables, 𝑥 𝑑 , 𝑥 𝑞 (e.g. rotor flux-linkage components, 𝜓 𝑟𝑑 , 𝜓 𝑟𝑞 , or back e.m.f. components, 𝑒 𝑑 , 𝑒 𝑞 , etc.) of the induction machine, which are obtained by using measured In designing the adaptation mechanism for a MRAS, it is important to take account of the overall stability of the system and to ensure that the estimated quantity will converge to the desired value with suitable dynamic characteristic. The appropriate adaptation law can be derived by the Popov's hyperstability criterion [START_REF] Vas | Sensorless vector and direct torque control[END_REF].

If the classic MRAS scheme based on the rotor flux error is considered, the reference model is described by the stator voltage equations in stator reference frame (DQ), re-written here for the sake of simplicity:
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The adaptive model is based on the rotor equations in the stator reference frame, which is the so-called current model:
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The differences between the state variables estimated, respectively, with the reference and adaptive models are fed to a speed tuning signal 𝜀, and then processed by a PI (proportional integral) controller, whose output is the rotor speed. In this case, the speed is estimated as dressed in [START_REF] Schauder | Adaptive speed identification for vector control of induction motors without rotational transducers[END_REF] by adopting an LPF (Low Pass Filter) instead of a pure integrator, which causes, however, a poor flux amplitude and angle estimation as well as a poor speed estimation at low frequency, around the cut-off frequency of the LPF (usually a few Hertz). This consideration highly limits the minimum working speed of the drive and the correct field orientation, with consequent reduction of the torque performances at low speed. Alternative solutions to be adopted for the open-loop flux integration have been shown in [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF], in particular the adaptive integration based on a linear neural network [START_REF] Cirrincione | A New Adaptive Integration Methodology for Estimating Flux in Induction Machine Drives[END_REF]. Furthermore, at low speeds, the stator voltage amplitude is small, thus an accurate value of the stator resistance is required by the model to have a satisfactory response.
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Other attempts includes: A MRAS scheme based on the back emf error [START_REF] Rashed | A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation[END_REF], where no integration is needed so that satisfactory performance can be achieved even at low speeds, with resulting wider bandwidth of the speed loop; A MRAS-based system with a linear ANN (artificial neural network) adaptive model [START_REF] Cirrincione | An MRAS based speed estimation method with a linear neuron for high performance induction motor drives and its experimentation[END_REF] has been presented which enhances the stability. The closed-loop types of MRAS are described in [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF] (p.282), where the characteristics of a closed-loop flux observer (CLFO) are integrated with those of an MRAS, including also a mechanical system model. In general, they improve the performance of the speed estimation while increasing the complexity of the observer.

Adaptive Observers

For the open-loop estimators and MRAS described in the previous sections, the limit of acceptable performance depends on how precisely the model parameters can be matched with the corresponding parameters in the actual machine. The robustness against parameter mismatch and signal noise, however, can be improved by employing an adaptive observer.

The observer based method aims at providing a real-time estimation of the state variables of a system, using only the input and output signals, both of which are assumed to be known. They can further be classified into two categories: the one based on the deterministic model, such as the Luenberger observer [START_REF] Kubota | DSP-based speed adaptive flux observer of induction motor[END_REF], extended Luenberger observer [START_REF] Lee; Blaabjerg | Reduced-order extended luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation[END_REF], and sliding model observer [START_REF] Benchaib | Real-time sliding-mode observer and control of an induction motor[END_REF]; the other based on stochastic theory, such as Kalman filter and extended Kalman filter [START_REF] Kim | Speed sensorless vector control of induction motor using extended Kalman filter[END_REF].

If the stator current and the rotor flux-linkage space-vectors are chosen as state variables, the state equations of the IM in the stationary reference frame can be written as [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF] 
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is the state vector, composed of the stator current and rotor flux-linkage direct and quadrature components in the stationary reference frame, us is the input vector composed of the stator voltage direct and quadrature components in the stationary reference frame, A is the state matrix (4 × 4 matrix) depending on the rotor speed 𝜔 𝑟 , B is the input matrix, and finally C is the output matrix.

The observer can be established by adding an error compensator to the machine model.

If a full-order Luenberger observer is considered, the state observer estimates the stator current and the rotor flux, involving only the error vector on the stator current between the measured and model output one, 𝑒 𝑟𝑟 = (𝐢 𝒔 -𝐢ŝ), as given in the following:
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Where '∧' means the estimated values, G is the observer gain matrix which is designed so that the observer is stable [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF]. The speed signal ω ̂𝑟 is required to adapt the matrix𝐀 ̂.

The speed of IM, can be achieved by using a PI controller as
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Where the error term
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is the speed tuning signal found by utilizing Lyapunov's theorem [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF].

The block diagram of the full-order Luenberger adaptive observer is shown in Fig. 12345. The full-order Luenberger observer based methods yield a reasonably accurate value for the speed. In general, the robustness against parameter mismatch and signal noise can be improved by employing stochastic observers for the estimation of the state variables, although the algorithm and design complexity are increased. Among them, the Kalman filter, although being computationally cumbersome, permits a joint estimation of state variables and parameter providing a better accuracy at low speed.

Limitations of Model-Based Approach

Most of the fundamental model based schemes involve estimating both flux and speed from the information available at the stator terminals, i.e., voltage and current. Such schemes will always be marginally stable for zero excitation frequency, when the back e.m.f. decreases to null or it is so low to be comparable with the voltage drop caused by the stator resistance: the speed then becomes unobservable at the stator terminals and the controllability at zero speed is expected only for a short time duration.

Furthermore, machine parameters are necessary for constructing the speed information, which means that the performance of all model-based speed estimators degrades under incorrect motor parameters. It is especially the stator resistance that determines the estimation accuracy of the stator flux vector. Although a correct initial value of the stator resistance is easily identified during initialization, considerable variations of the resistance take place when the machine temperature changes at varying loads. Besides, the bad knowledge of the rotor time constant influences the estimation of the slip speed and therefore is critical at high loads.

To further improve the performance of model-based methods, online parameter identification is required. Besides that, a more precise model of the PWM inverter and flux can improve the accuracy at low speed range. Manufactured cage IMs usually do not have the inherited rotor saliency like permanent magnet synchronous machines (PMSMs); The magnetic saliency, however, can be caused by many reasons, such as discrete rotor bars in a cage rotor [START_REF] Pucci | Finite-Element Analysis of Rotor Slotting Saliency in Induction Motors for Sensorless Control[END_REF][START_REF] Teske | Analysis and suppression of highfrequency inverter modulation in sensorless position-controlled induction machine drives[END_REF], saturation effect of the leakage paths through the fundamental field [32][34]. Otherwise the saliency effect can also be enhanced by using a custom designed rotor so as to exhibit periodic variations of local magnetic or electrical characteristics within a fundamental pole pitch [START_REF] Holtz | Sensorless position control of induction motors-an emerging technology[END_REF]. The interaction of the HF (high frequency) signal with the rotor magnetic saliency produces a rotor position dependent signal that can be tracked by a properly designed observer [START_REF] Caruana | Performance of HF signal injection techniques for zero-low-frequency vector control of induction Machines under sensorless conditions[END_REF][START_REF] Jansen | Transducerless field orientation concepts employing saturation-induced saliencies in induction machines[END_REF][START_REF] Teske | Encoderless position estimation for symmetric cage induction machines under loaded conditions[END_REF][START_REF] Briz | Measuring, modeling, and decoupling of saturation-induced saliencies in carrier-signal injection-based sensorless AC drives[END_REF].

Considering the case of saturation-induced saliency, the maximum flux density occurs in the d axis of a field-oriented coordinate system. The fundamental field saturates the stator and rotor iron close to d region, and therefore produces a higher magnetic impedance to the local leakage paths, the stator and rotor currents in the conductors around the saturated dregion excite leakage fluxes having a dominating q-component. The total leakage inductance component 𝐿 𝜎𝑞 then reduces, while the component 𝐿 𝜎𝑑 of the unsaturated q axis remains unaffected, leading to 𝐿 𝜎𝑞 < 𝐿 𝜎𝑑 [START_REF] Holtz | Sensorless control of induction machines-With or without signal injection?[END_REF] 
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Being defined with reference to a coordinate system (X) that rotates at the speed of anisotropy 𝜔 𝑥 to be detected, the x axis coincides with the most saturated region.

To extract the speed information from the machine anisotropy, a poly-phase rotating carrier at pulsation 𝜔 𝑐 is usually added to the fundamental voltage generated by the pulsewidth modulation (PWM) system. The term is of the type,
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where 𝐮 𝑐 is the amplitude of the revolving carrier.

The interaction of such a voltage component with the machine anisotropies causes the presence of a current space-vector 𝐢 𝑐 at carrier frequency 𝜔 𝑐 appearing as a component of the stator current space-vector 𝐢 𝑠 . To compute the resulting current space vector 𝐢 𝑐 , the carrier voltage has to be transformed into the same reference frame by multiplying it by exp(-

𝑗𝜔 𝑥 ), dt d L e u u X c X t j c X c x c i       ) ( (1.12)
This formula can be used to solve for X c i , considering that 𝜔 𝑐 ≫ 𝜔 𝑥 , this leads to the following solution:
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which is then transformed back to the stationary reference frame
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This result shows the existence of a current space vector ip, rotating at carrier frequency 𝜔 𝑐 in a positive direction, and a space vector in that rotates at the angular velocity 𝜔 𝑐 -2𝜔 𝑥 in a negative direction. This last component has the information on the speed 𝜔 𝑥 of the anisotropy to be detected.

When carrier-signal excitation is used for sensorless control, the overall stator current consists of the fundamental current and the positive and negative sequence carrier signal currents. The separation of these components is necessary for both the fundamental current regulator operation and the extraction of the spatial information from the negative-sequence carrier signal. To be further processed by the speed estimation algorithm, the 𝐢 𝑐 component is extracted by a heterodyning technique or a band-pass filter centred at the carrier frequency, which separates it from both the fundamental current component and the highfrequency components due to the switching. Fig. 123456shows the basic structure of the signal injection method. Other methods in this category include high frequency pulsating carrier injection instead of the rotating one [START_REF] Vas | Sensorless vector and direct torque control[END_REF][4], which introduces a voltage vector on one of the axes of an estimated dq coordinate (synchronous frame). One of the problems of the signal injection technique is the low magnitude of the modulated signal. A method overcoming this is to impose to the machine a set of repetitive short reversal PWM voltage vector [START_REF] Staines | Sensorless control of induction Machines at zero and low frequency using zero sequence currents[END_REF]. Correspondingly, the transient flux components cannot penetrate the rotor sufficiently to create a mutual flux linkage, the response of this short-term voltage disturbance is therefore of high magnitude.

PWM Harmonics

In this method [START_REF] Raute | Sensorless Control of Induction Machines at Low and Zero Speed by Using PWM Harmonics for Rotor-Bar Slotting Detection[END_REF], the PWM harmonics are used as an 'injected' HF excitation signal, therefore no extra signal injection is needed. It was found that at low speed, the 2 nd PWM carrier harmonic (denoted as PWM2) has the largest amplitude, so it has been used as the 'injected' signal in the paper. The 2 nd PWM carrier harmonic can be actually described as a pulsating vector, rotating approximately synchronously with the fundamental voltage vector in the stator fixed αβ frame as below, together with the "injected" HF can be used for detecting the impedance related to the rotor speed. However as the HF pulsating vector amplitude and phase are now determined by the fundamental operation, the speed is retrieved from the impedance vector but not the resulting current. Paper [START_REF] Raute | Sensorless Control of Induction Machines at Low and Zero Speed by Using PWM Harmonics for Rotor-Bar Slotting Detection[END_REF] has proposed a novel position observer shown in the following (Fig. 1234567).
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Fig. 1 The angle RB  is the rotor bar position within one rotor bar period, which is the distance between 2 adjacent rotor bars. The idea is to detect the asynchronous modulation due to the conductor bars embedded in the rotor iron package of the machine. The resulting voltage equation system for the demodulated PWM2 variables is given by,
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The impedance vector is shown as an equivalent impedance vector with an offset Z ' and a circular modulation with the radius '
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After compensating for the offset [START_REF] Raute | Sensorless Control of Induction Machines at Low and Zero Speed by Using PWM Harmonics for Rotor-Bar Slotting Detection[END_REF], the additional Although problems at very low speed can be partly solved by these methods, in a real machine, the stator current signature presents a great quantity of harmonics: e.g., the saturation saliency resulting from the interaction of different fluxes in the machine will lead up to secondary saturation space harmonics [START_REF] Caruana | Performance of HF signal injection techniques for zero-low-frequency vector control of induction Machines under sensorless conditions[END_REF]; The discrete nature of the windings and the non-ideal manufacturing process generally produce other space harmonics. The inherit high frequency PWM harmonics. Moreover, there is generally more than one anisotropy in an IM with different spatial orientations: the response to an injected high-frequency signal necessarily reflects all anisotropies, and therefore contains more than one resulting harmonics close to each other. In order to separate the useful signals with noise, complicate signal processing methods are needed. This is usually achieved by using a band-pass and a band-stop filters, but they limit the bandwidth of both the current controller and the observer.

The tracked saliency depends on the overall saturation effect and will shift under a load [START_REF] Caruana | Performance of HF signal injection techniques for zero-low-frequency vector control of induction Machines under sensorless conditions[END_REF]. Robust operation across the whole torque and low/zero frequency regions is not always possible. Besides, the modulating signal represents itself an additional harmonic of high amplitude to be cancelled [START_REF] Holtz | Sensorless control of induction machines-With or without signal injection?[END_REF]: this will cause instability of the control system at the extreme condition. Although PWM harmonic methods [START_REF] Raute | Sensorless Control of Induction Machines at Low and Zero Speed by Using PWM Harmonics for Rotor-Bar Slotting Detection[END_REF] do not have this problem, more complicate signal processing is needed due to the low amplitude of the useful signal.

Contributions

Since the fundamental-model based method has limited performance due to the nonobservability of the model at low speed and sensitivity to the machine parameters, there has recently been considerable interest in anisotropy-based methods for the sensorless control of AC machines. However, the anisotropy information is usually retrieved by signal injection, where extra harmonics have to be introduced into the machine and complicate signal processing is required to retrieve the speed information. Other problems are related with the possible saliency shift problem, and finally the robustness of the method is not always satisfactory. PWM harmonics methods, which do not have to inject extra signal to the machine, alleviate the problem of signal injection, but their performance is highly determined by the PWM inverter pattern.

Thus, extensive research has been carried out in the extraction of the speed related rotor slot harmonics (RSHs) to estimate the speed. These algorithms require no extra signal injection, are independent of machine parameters, like stator and rotor resistances, and are mainly focused on the feasibility in steady-state or quasi steady-state. This thesis, on the contrary, will develop methods for tracking the RSH which are able to work online with high rejection ability to load torque changes. The proposed RSH speed estimators have also been applied to the scalar control system, they can work in a wide speed range, yet the entire system is simple, computationally not demanding, and low cost. It is characterized by a very low sensitivity to the parameters variations.

To directly track the RSH, the capability of the proposed system is tied to the following features of the detection system:

1). High pull-in capability so as to track the RSH in the entire speed range of the machine, where the loop gain at RSH frequency is high, while decreasing sharply as the frequency deviates away;.

2). A flexible and selective bandwidth so as to simultaneously track the RSH in a wide range of variation without permitting any noise to enter in the band of the detector.

These issues have been fully addressed and solved in the thesis. The proposed method can continuously and accurately track the rotational speed of IM at both dynamic or steadystate conditions, and the centre frequency do not have to be changed manually at each computation cycle.

Organization

This thesis considers the sensorless control of IMs using RSH in wide speed range, a background introduction on RSHs and literature review are presented in Chapter 2. Issues related to the RSH based speed estimator are discussed.

Chapter 3 presents the scheme of scalar control. It is not new, but it is included for the sake of readability. Also some improvements are made on the basis of the conventional scalar control scheme.

Chapter 4 describes RSH tracking method using the phase-locked loop, and the corresponding sensorless scalar drive. Simulation and experimental results are presented to verify the algorithm.

Chapter 5 describes the framework of RSH speed estimator based on minor component analysis, particularly by using the MCA EXIN neurons.

Finally, Chapter 6 summarizes and gives recommendations for future work.

In Appendix A, the IM model including the rotor slotting effect is presented. Its validity has been verified in simulation.

In Appendix B, the eigen-decomposition of the autocorrelation matrix is discussed, it is the fundamental of the Pisarenko' method.

In Appendix C, a graphical User Interface for TLS EXIN neurons is included, with an analysis of the MCA EXIN algorithm.

Appendix D includes the generalization of linear regression problems, where the differences are described mathematically among the OLS, DLS, and TLS.

CHAPTER 2. SPEED DETECTION USING ROTOR SLOT HARMONIC

Rotor slot harmonics (RSHs) are found in the stator current waveforms for most induction motors. Algorithms have long ago been developed to track the speed of a motor given a dedicated stator current measurement, for example [38][39]. These methods are insensitive to motor parameter changes with frequency, temperature, or any other external disturbances. Besides being used for nonintrusive speed estimators, harmonic analysis has also been applied to diagnostic detection of electro-mechanical faults such as rotor eccentricity and damaged bearings [START_REF] Nandi | Condition monitoring and fault diagnosis of electrical motors-a review[END_REF].

In the control of an electric drive, accuracy and speed of response are the main two criteria describing the performance of a speed sensor. This chapter introduces the RSHs and issues around the extraction of RSH. Moreover, the limitations of previous literature that use RSHs for speed tracking or sensorless drive will be fully addressed. The improved methods developed in this thesis can estimate the speed with reduced time and improved accuracy, and they are suitable for sensorless drives, which will be described in the next chapters.

Rotor Slot Harmonics

Introduction

In an induction motor, the speed related RSHs present in the stator current signature arise from the interaction between the permeance of the machine and the associated magnetomotive force (MMF). As the motor turns, the rotor slots alter the effective length of the air-gap periodically, thereby the permeance of the machine. This behavior is visible in the flux wave, which is the product of the MMF (the fundamental component) and the permeance across the air-gap. The resulting harmonic components of the machine flux move with respect to the stator and induce corresponding voltage harmonics and hence current harmonics in the stator winding.

Besides the fundamental MMF, the odd harmonics present in the stator and rotor current introduce a series of space and time MMF harmonics, producing the additional RSH of higher order.

Static and dynamic eccentricity harmonics also appear in the stator current as a result from rotor rotating irregularly in relation to the stator axis.

These harmonics are essentially a function of the number of pole pairs, the number of rotor slots per pole pair, and the speed, as it results from the following equation [START_REF] Cirrincione | Space-Vector State Model of Induction Machines Including Rotor Slotting Effects: Towards a New Category of Observers[END_REF]:

   1 1 1 f f s p n q r f d r h      (2.1)
Where 𝑓 1 fundamental harmonic of the supply voltage; 𝑠 slip; 𝑝 number of pole pairs; 𝑞 𝑟 number of rotor slots per pole pair; 𝑛 𝑑 eccentricity order (nd = 0 in case of static eccentricity and 𝑛 𝑑 = 1, 2, 3… in case if dynamic eccentricity), 𝑟 order of the space harmonic, 𝑟 = 1, 3, 5, …; 𝑣 the order of the stator time harmonics present in the power supply driving the motor. 𝑣 = 1, 3, 5, … It is worth mentioning that the stator slots, on the other hand, also affect the air gap permeance; the air-gap flux harmonics therefore result from the variation of the permeance due to both rotor and stator slotting. However, it has been found that there is no time harmonics in the air-gap field which is related to the stator slots. This means that the number of stator slots affects only the space distribution of the flux harmonics relative to the stationary stator, and will not induce new frequencies in the current signature: a detailed discussion can be found in [START_REF] Cameron | Vibration and current monitoring for detecting airgap eccentricity in large induction motors[END_REF][START_REF] Ferrah | An FFT-based novel approach to noninvasive speed measurement in induction motor drives[END_REF] .

The principal slot harmonic (PSH) which refers to the first and the prominent harmonic in the RSH series, is obtained by (2.1), with 𝑟 = 1 and 𝑛 𝑑 = 0, 𝑣 = 1 if the time harmonics of the stator and rotor currents together with the static and dynamical eccentricities are neglected. In this case the rotor slotting effects are located at frequencies:
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For most of the data presented in this thesis, there is little rotor imbalance so the most visible RSHs are given by (2.2), known as PSHs. However the motor is supplied by the inverter and the higher time harmonics cannot be neglected, so 𝑣 can have higher values than 1.

It should be noted, however, that the harmonics, as described by (2.2), are not present in a real machine for any combination of the number of rotor slots and pole pairs [START_REF] Kron | Equivalent circuits of electric machinery[END_REF][START_REF] Nandi | Detection of Rotor Slot and Other eccentricity Related Harmonics in a Three Phase Induction Motor with Different Cages[END_REF][START_REF] Ferrah | The effect of rotor design on sensorless speed estimation using rotor slot harmonics identified by adaptive digital filtering using the maximum likelihood approach[END_REF][START_REF] Joksimovic | Stator-Current Spectrum Signature of Healthy Cage Rotor Induction Machines[END_REF][START_REF] Jokinen | Design of Rotating Electrical Machines[END_REF]. The time harmonics obtained with (2.2) result from the corresponding space harmonics of the resulting MMF, which are of order qr  1. Since qr = 3m ±1, this also implies that one of the two space harmonics is always a multiple of three, and therefore, it never induces a time harmonic in a healthy machine (e.g., balanced three-phase winding). This will lead to the fact that, the lower PSH (upper sign) in (2.2) exists in the stator current spectrum when 𝑞 𝑟 satisfies,
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The higher PSH (lower sign ) exists when qr satisfies,

... , 2 , 1 , 0 1 3    n n q r
(2.4)

In the case under study, the adopted motors have 2 pole pairs, 36 stator slots (qs =18=3m, as in most cases) and 28 rotor slots (qr =14=3n-1), meaning only the lower PSH frequency is noticeable in the stator current signature.

Fig. 2-1 depicts how the PSH follows slip changes at constant speed. The experimental motor is operating in steady-state at mechanical speed of 10rad/s with a scalar controller, under load varying from 0 to 30% of rated value. It can be observed that the fundamental and the time harmonics frequencies increase with the slip. The PSH however, overlap with the time harmonics under some condition, e.g. the PSH lies higher than the 11 th harmonic, and approaches the 7 th at 30% load, making it difficult to be tracked dynamically. From (2.2) the frequencies where PSH meets the other harmonics can be further calculated when respectively. On the other hand, the amplitude of the RSH fades as the load decreases, since the slot permeance hardly changes with the load, so the slot current is almost proportional to the fundamental current. RSH at no-load is correctly detected by the system at 1310/=41 Hz, while it moves to 39

𝑓 ℎ = 11𝑓 1 , 7𝑓
Hz at rated load according to eq. ( 2.2), maintaning the working speed at 10 rad/s with a load slip pulsation of 𝜔 2 =11.41 rad/s. At this working speed, the closest harmonic to RSH is the 11 th at no-load, which lies at 36 Hz, while it is the 7 th at load, which lies at 34 Hz. RSH at no-load is correctly detected by the system at 135/=20 Hz, while it moves to 18

Hz at rated load according to eq. (2.2), maintaning the working speed at 5 rad/s with a load slip pulsation of 𝜔 2 =15 rad/s. At this working speed, the closest harmonic to RSH is the 11 th at no-load, which lies at 16 Hz, while is the 5 th at load, which lies at 20 Hz.

All these results are summarized in Table 2-1. It can be found that all the slot harmonics appear at frequencies in accordance with the theoretical values calculated from (2.2). For example, while at no-load the closest harmonic to RSH is the 11 th , as expected, at rated load the closest harmonic remains the 11 th at 50 rad/s, while it becomes the 7 th at 10 rad/s and the 5 th at 5 rad/s. This can be explained, considering that at low speed and high load, the slip pulsation 𝜔 2 becomes comparable or higher than the fundamental one; correspondingly the 7 th or 5 th harmonic can become closer to RSH than the 11 th . 

Review of Literatures on Speed Estimation via RSH

When the location of the speed dependent PSH is found, the speed of the electric motor can be computed rather easily: assuming 𝑓 ℎ is known, from (2.2), the rotor speed (expressed in electrical rad/s) is given by,
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Thus, the difficulty of speed estimation via PSH lies in the retrieve of PSH, for in a healthy machine the air-gap field and the stator current signal present a great quantity of harmonics caused by winding distribution, slotting effect, air gap eccentricity, PWM supply, etc [42][48-52]. Among all these harmonics, PSH is located at rather high ranges in the stator current spectrum, but it moves toward the fundamental frequency when the slip increases. Especially at low speed, the slip s increases dramatically even if the load torque remain constant (considering the slip frequency 𝑓 2 = 𝑠𝑓 1 remain constant, at low speed 𝑓 1 decreases, thus 𝑠 will increase), the PSH could lie at the same region of the 1 th , 5 th and 7 th harmonics, see tab.2-1 for example. Thus, in practical drives, the PSH varies in a very wide range (from a few hertz to hundreds of hertz) and rapidly (it is dependent of the applications, normally within a few milliseconds) and moreover the retrieval of PSH is made harder by the other harmonics arising both from the inverter and the motor itself.

As far as the direct RSH tracking is concerned, two main approaches have been followed in literature:

A. Frequency domain methods, which are mainly based on FFT (Fast Fourier Transform)-like approaches;

B. Time domain methods, which are mainly based on PLL (Phase-Locked Loop)-like approaches.

Frequency Domain Methods

As for the frequency domain approaches, the main contributions are the [START_REF] Ferrah | An FFT-based novel approach to noninvasive speed measurement in induction motor drives[END_REF][START_REF] Spanias | Block time and frequency domain modified covariance algorithms for spectral analysis[END_REF][START_REF] Hildebrand | Advanced Calculus for Applications[END_REF][START_REF] Hurst | Sensorless speed measurement using current harmonic spectral estimation in induction machine drives[END_REF][START_REF] Swingler | A modified Burg algorithm for maximum entropy spectral analysis[END_REF][START_REF] Aiello | An induction motor speed measurement method based on current harmonic analysis with the chirp-Z transform[END_REF].

A pioneering work has been made in [START_REF] Ferrah | An FFT-based novel approach to noninvasive speed measurement in induction motor drives[END_REF], where a speed detector based on fast Fourier transform (FFT) has been described. As shown in fig. 2 Some modern spectral estimation methods (mainly parametric methods), such as the covariance method [START_REF] Spanias | Block time and frequency domain modified covariance algorithms for spectral analysis[END_REF], the Prony method [START_REF] Hildebrand | Advanced Calculus for Applications[END_REF], have been used to improve the speed of response of FFT, with the accuracy of FFT being retained. An example can be found in [START_REF] Hurst | Sensorless speed measurement using current harmonic spectral estimation in induction machine drives[END_REF], where Hurst proposed a speed estimation algorithm employing maximum entropy spectral estimation (MESE) method [START_REF] Swingler | A modified Burg algorithm for maximum entropy spectral analysis[END_REF]. Many improvements have been made compared to the FFT approach: a notch filter is added to eliminate the fundamental current (see fig. 234567); Down-sampling of the current sequence is used to increase the effectiveness of subsequent filtering operations; Before the MESE, a 26th-order band-pass filter is used to eliminate all spectral harmonics outside the range containing expected RSH, etc. The main improvement, however lies in the MESE itself, which is based on linear prediction model whose impulse response best matches the data, by least-square minimization. It is able to compute the frequency with less points of data (36 points as used in the paper), as a consequence, it largely reduces the required sampling time and provides increased robustness to noise. Yet the drawbacks is obvious as well: the model order p has to be selected a priori with the experience of the author, it is required that the machine operates at a certain speed range, so the harmonics close to PSH is predictable. Besides that, the ratio between sampling frequency and fundamental frequency remain fixed, resulting in a long converging time at low speed. Apart from the modern spectral estimation approach, some papers have exploited the use of other types of transformation. One example can be found in [START_REF] Aiello | An induction motor speed measurement method based on current harmonic analysis with the chirp-Z transform[END_REF], where the harmonic analysis of the machine current is taken by means of the chirp-Z transform (CZT). Compared to the FFT, the frequency transformation is limited to certain restricted frequency bands. In the case of RSH tracking, they are frequency bands centered at the fundamental inverter frequency 𝑓 0 and the expected RSH frequency 𝑓 𝑠ℎ . Thanks to this constraint, the frequency resolution increases to 𝑓 𝑤 /𝑁, where 𝑓 𝑤 is the bandwidth of the selected window, and N is the data length. It has been shown in the paper that, Chirp-Z transform reduces sampling and process time to 1.5s from 4.1s of the standard FFT approach with the same resolution. Despite this improvement, the response time remains too long for a real-time speed detector. Moreover, a shorter observation window is required for the CZT, if the RSH frequency jumps out of the expected frequency range, the algorithm fails.

With all the frequency domain approaches under consideration, they generally provide good accuracy and linearity over a very wide speed range and load conditions, but a compromise has to be made between the required frequency resolution, to allow speed detection, and the response time versus changes of speed. A desired high frequency resolution imposes the acquisition of a large amount of samples and a corresponding high acquisition time. It means that the information on the RSH estimation can be updated only when the sampling window is completed. Besides that, the spectral analysis algorithm can only work with the help of band-pass filters: In steady-state, these filters will only increase the computation burden, but as long as the transient is concerned, the band of the filters has to be adapted according to the expected frequency of PSH, the transient of these filter during the parameters changing stage is complicate, together with the sensitive frequency analysis method, this implies that speed tracking during transients could provide insignificant results.

Time Domain Methods

As far as the time domain approach is concerned, the main contributions are the following [START_REF] Ferrah | A speed identifier for induction motor drives using realtime adaptive digital filtering[END_REF][START_REF] Yamamoto | A study of digital filter for rotor speed detection with slot harmonic current for induction motor[END_REF][START_REF] Gao | A Frequency Demodulation Approach to Induction Motor Speed Detection[END_REF].

The speed identifier, which was proposed in [START_REF] Ferrah | A speed identifier for induction motor drives using realtime adaptive digital filtering[END_REF], has used an adaptive digital filter to estimate the frequency of RSH (see fig. 2345678). The phase current is first pre-filtered by a high pass and band pass filter so that only the harmonics close to RSH are left, the cut-off frequencies of these filters are tuned online based on the fundamental inverter frequency f0 and slip s, which is estimated by torque current iq (it is very closely proportional to slip frequency for operation up to base speed). fsh is then computed as follows: by tuning the centre frequency of an infinite impulse response (IIR) notch filter to minimize the remainder of the filtered output spectrum, so at steady-state, the center frequency of this notch filter will be equal to the RSH frequency fsh. This method provides a sample by sample estimation of the rotor speed, and since the RSH is defined directly by the notch filter parameters but not its output, it is claimed that the RSH frequency can be identified in 0.2 ms at 5-kHz sampling rate. The computational burden of this method is low as well. However, one difficulty might be the redesign of band-pass filter, because the motor speed changes fast, and the centre frequency of this filter has to adapt with the expected location of RSH.

Unlike the frequency domain method, [START_REF] Ferrah | A speed identifier for induction motor drives using realtime adaptive digital filtering[END_REF] highly relies on the on-line tuning of filter parameters, and such tuning often requires comprehensive understandings of the convergence properties of filters and increases the amount of computation considerably.

A similar RSH frequency detection approach using filtering has been proposed in [START_REF] Yamamoto | A study of digital filter for rotor speed detection with slot harmonic current for induction motor[END_REF],

where a digital IIR band-pass filter is used to let only the PSH pass through. The cut-off frequency of the filter is directly linked with its parameters, so it can be tuned quickly online. The frequency of the extracted RSH is determined by counting the number of zerocrossing, meaning the computation burden will be largely decreased, however with degraded accuracy. Although the idea of the easy tuning filter is novel, in practice, a sole band-pass filter is hardly able to isolate the RSH from the other harmonics, unsurprisingly, large oscillation of the estimated speed can be found in the results. A frequency tracking method based on frequency demodulation approach, which is actually an opened-loop PLL has been introduced in [START_REF] Gao | A Frequency Demodulation Approach to Induction Motor Speed Detection[END_REF]. Since it implements in complex domain, a complex current vector is first formed by phase currents, it is then fed to the frequency-demodulation block as shown in fig. 23456789, where the resulting RSH frequency is the sum of two component: the expected slot frequency fsh,0 and the correcting term fR,n.

Given the parameters are well tuned, the output fsh,n should be accuracy and response fast, and the local oscillator frequency permits the band-pass filter to be properly tuned with constant bandwidth. One major drawbacks is that, the frequency of the local oscillator has to be chosen a priori, on the knowledge of RSH under constant (rated) supply frequency.

As a consequence, such a method cannot be used in a variable speed drive case, since it requires an on-line adaptation of the local oscillator frequency according to the drive reference speed. This is the reason why results are presented only at rated or close to rated speed.

Moreover, to guarantee the validity of this method, the instantaneous RSH should be clearly the largest signal in the varying frequency span between the rated and the current work condition, this is not always true in practical platform due to the presence of harmonics. The time domain method provides a better real time performance than the frequency domain method, although the accuracy of the result will be affected by the noise level. They generally behave like such a band-pass filter: the gain is very large at the RSH frequency and very small away the RSH frequency, they usually need a better prior knowledge of the location of expected RSH frequency, so that the system operates only around a small band.

If this band is not chosen correctly, this method fails. Therefore there is always the possibility of line frequency harmonics or harmonics from other sources being mistaken with RSH.

Considering all the pros and cons, this thesis mainly focused on the time domain method, making it better suited for real-time applications. Yet improvements have to be made on both the resolution and the on-line tuning, so that the system can work robustly in a very wide range.

Practical Tuning of the Observation Window

As stated earlier the current signature has a variable bandwidth directly related to the supply frequency f1 and slip s. For high efficiency induction motors, the slip s usually does not exceed 5%and possibly less. This assumption leads to interesting simplifications when searching for the PSH. If the PSH was confined to a frequency window under the practical limitations of slip, there would be no ambiguity in determining the window in which the PSH is located. This is not always true however, at low frequency. This is because the output torque is proportional to slip frequency (𝑓 2 = 𝑠𝑓 1 ), the rated slip increases as 𝑓 1 decreases. It has not taken into the consideration the imperfect behavior of the controller, in practice, the slip can be large at low speed.

On the basis of the above discussion, the observing window should be further refined to exclude the other harmonics, permitting a better robustness and faster convergence, the real-time slip pulsation 𝜔 2 can be estimated, in this case, on the basis of a simple rotor flux estimator, defined by the following equations written in the stator reference frame (see [START_REF] Vas | Sensorless vector and direct torque control[END_REF] p. 414):
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where isD, isQ are the stator currents components in the stator reference frame, |ψr| is the amplitude of the rotor flux and ψrd, ψrq its components in the stator reference frame, te is the electromagnetic torque, Lm and Tr are respectively the three-phase magnetizing inductance and the rotor time constant. This simple flux estimator requires the knwoledge of just two electrical parameters and does not requires any computationally demanding vector rotation.

The slip pulsation calculated by (2.7) and the fundamental inverter freuquency can be used to update an estimated location of RSH by using (2.2), then it can be used as the center frequency of the observing window. The bandwidth of this window, should be as small as possible, to eliminate the disturbance of other harmonics.

Effect of Eccentricity of the Motor

One important issue to be considered is the influence on the rotor speed estimation of a potential dynamic eccentricity. In case of dynamic eccentricity, it is well known in literature that the stator current signature exhibits a couple of main sidebands, derived from (2.1) with nd=1, r=1 and ν=1:
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Where fr is the rotor speed expressed in Hz, if (2.5), without considering any dynamic eccentricity, is adopted for speed estimation, an error on the estimated speed occurs. This error can be written as:
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With 𝑓 𝑟 ′ the rotor speed considering dynamic eccentricity. The percentage speed estimation error, with the 2 pole pairs and 14 rotor slots for pole pair machine, is constant and about 3.7 %. This error poses the sidebands out of the normal searching range, which means that the speed could not be properly estimated.

To overcome this problem, one way is to increase the searching range of the extraction algorithm. This, however, implies a worse performance, since other harmonics can easily enter the predefined bandwidth, and it is difficult to distinguish the RSH from the others Another solution is, whenever it is known that a dynamic eccentricity occurs, to adopt a speed estimation formula directly taking into consideration the eccentricity, differently from (2.5), as:

p q r ref h m 1 ˆ1       (2.9)
The adoption of (2.9) instead of (2.5) permits the correct computation of the speed and consequently the correct on-line tuning of the centre RSH bandwidth.

Determination of the Number of Rotor Slot

The number of rotor slots, if unknown, can be determined by generating a set of stator current data records at rated supply frequency and under increasing load levels. A visual inspection in the spectrum reveals the speed-dependent harmonic as a component increasing in amplitude and decreasing in frequency. From the frequency of this component and the knowledge of the slip (only approximate value is needed), the number of rotor slots is easily determined according to (2.2). A long enough data records has to be used to guarantee the frequency resolution, so that the PSH can be easily distinguished.

A Matlab script can be designed to compute the number of rotor slot from the measured stator current. So long as the fundamental frequency is known, it is not difficult to compute the possible PSH range according to an estimated load condition. All the other time harmonics related to the fundamental can be excluded firstly, then the possible PSHs in the range can be selected by setting a threshold on the amplitude. With the help of those harmonics which comply with the selection criteria, the number of rotor slot can be determined by trying (2.2) with a reasonable integer rotor slots iteratively. Since most machines have a number of stator slots defined by their size and pole number, rotor slots are then marginally greater or less than this number.

CHAPTER 3. SCALAR CONTROL SCHEME

Control techniques of induction machines (IMs) can be divided into two main categories: scalar and vector controls [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF][4] [START_REF] Vas | Electrical machines and drives: a space-vector theory approach[END_REF][START_REF] Vas | Electrical machines and drives: present and future[END_REF][START_REF] Bose | Scalar decoupled control of induction motor[END_REF][START_REF] Rajashekara | Sensorless Control of AC Motor Drives[END_REF][START_REF] Bodson | High-performance induction motor control via input-output linearization[END_REF]. Scalar control is based on the steady-state model of the IM and therefore permits regulating at steady-state only the magnitudes and frequency of the stator voltages, currents, flux linkages, and electromagnetic torque. Since it does not act on the angular position of the space vectors of the control variables, it does not permit the best dynamic performance to be achieved. On the contrary, vector controls are based on the dynamic model of the machine; they permit the drive to achieve its best dynamic performance in terms of electromagnetic torque control, thanks to their feature to take into consideration the instantaneous angular position of the stator voltages, currents as well as of the flux linkages.

Although vector control can provide higher dynamic performance, some kinds of mechanical loads exist which do not require a high dynamic performance. Typical examples are fans and pumps where it is sufficient to regulate the speed of the IM with adequate efficiency over a wide speed range. This implies that it is sufficient to use the steady-state model of the IM instead of the dynamic one, as far as the control system design is concerned.

The machine is supposed to be supplied by a pulse width modulation (PWM) voltage source inverter (VSI), able to generate a set of three-phase voltages whose fundamental component is characterized by the desired amplitude and frequency. Scalar control of IMs was born with the idea to use as a simple control method for regulating the speed of an AC machine [START_REF] Vas | Electrical machines and drives: present and future[END_REF][START_REF] Boys | Scalar control: an alternative AC drive philosophy[END_REF][START_REF] Wang | Sensorless scalar-controlled induction motor drives with modified flux observer[END_REF].

Steady-State modeling and V/f Control

Steady-State Modeling

The open loop voltage/frequency (V/f) control (scalar control) is described in numerous papers in literature [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF][62] [START_REF] Leonhard | Control of electrical drives[END_REF][71], the main idea is described here for coherence.

The steady-state per-phase equivalent circuit of a symmetrical three-phase operation induction machine in steady-state is shown in fig. 3 -variables with a superscript (') are rotor variable referred to the stator.

For simplicity's sake the core losses have been neglected.

Starting from the steady-state space-vector equations of the IM, the air-gap electromagnetic torque is related to the mechanical power and air gap power as
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Where Pm and Pgap are the mechanical and air gap power, and 𝜔 𝑚 is the rotor mechanical speed (in electrical radians).

The current can be obtained from fig. 3-1 as
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is the stator leakage factor.

Thus by substitution of eqn. (3.2) into eqn. (3.1), the electromagnetic torque can be expressed in terms of the machine parameters as,
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is the transient rotor reactance of the induction machine.

It follows from (3.3), that by assuming the machine parameters constant, the electromagnetic torque is proportional to the square amplitude of the stator voltage for a given slip. By equaling the first derivative of (3.3) with respect to the slip to zero, 0  ds dT e , the critical slip (breakdown slip) is given by
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This slip corresponds to the maximum torque given by:
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Within (3.5) and (3.6), the 'positive' corresponds to the maximum motoring torque, which is also referred to as breakdown torque, the 'negative' is referred to as maximum generating torque. It can be seen that the maximum torque is proportional to the square of the stator voltage and it is inversely proportional to the transient rotor reactance ' X of the IM. Considering only the motoring condition, it follows from (3.3) and (3.6) that the ratio of the torque and the breakdown torque can be expressed as Where the superscript Eg/f denotes the assumption of constant flux linkage applied to (3.12). The slip at maximum torque can be given following the same procedure as (3.5)
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And the maximum torque is equal to chapter 4, section "test set-up". This figure clearly shows that the higher the supply frequency, the higher the synchronous speed of the machine, as expected. Moreover, the lower the supply frequency, the higher the starting torque as long as the maximum torque is kept constant. The maximum torque remains almost constant while varying the frequency.

Open-Loop Scalar Control

Since it is impossible to control the air gap voltage Eg directly with a voltage-fed inverter, the practical way to control the speed of the IM is to open-loop regulate its supply frequency while simultaneously keeping constant the Us/f ratio. So long as Eg is high enough, it is acceptable to ignore the voltage drop in the stator resistance and leakage inductance, and then to consider The band-limited stator frequency reference then generates the stator voltage reference magnitude while its integral determines the phase angle. The amplitude and phase of the reference stator voltage space-vector constitute the input of the space vector PWM system that, in turn, establishes the switching pattern of the inverter synthesizing the reference voltages.

Inverter Induction Machine

Vector Modulation
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The |Us|/ω1 ratio defines the rate of change of the linear function in fig. 34and is usually set equal to the rated stator flux amplitude of the machine, |Us|/ω1= |Ψsrat|, when the motor speed remains below the rated one. Above the rated speed, field weakening can be simply At very low stator frequency, there is a pre-set minimum value of the supply stator voltage so as to account for the resistive stator voltage drop, |Us| = |Us min|. This is due to the fact that, because of a non-null value of the stator resistance, as long as the supply frequency reduces, the stator flux amplitude decreases too. A compensator can be deployed to take account of this voltage deeply as explained in 3.2.2.

Even if theoretically no stator current sensor is needed, since no direct current control is performed, in practical terms, it is frequently mounted to inhibit the switching of the inverter power devices for overload protection in the presence of over currents.

Closed-Loop Scalar Control

Closed-loop Scalar Control

Section 3.1 corresponds to varying only the synchronous speed of the drive, while maintaining Us /ω1 ratio constant, without the need of measuring the machine speed on the one hand, but without the possibility to compensate any variation of the speed caused by the load torque on the other hand. Thus, when more speed accuracy is required, the closed-loop control strategy should be adopted. The closed-loop control of the rotor speed can be achieved with the scheme in Fig. 345, where the speed PI controller employs the speed error signal to compensate the slip frequency.

Inverter Induction Machine

Vector Modulation
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In Fig. 345to compensate for the slip frequency, the speed signal should be detected.

The reference speed ωmref is compared with the measured one ωm, and the error is then From fig. 3456, for a given supply frequency, it is clear that the breakdown slip is smaller than those in constant Eg/ω1 condition and moreover the maximum torque cannot be kept constant; finally, the slip range corresponding to linear torque-slip characteristic becomes narrower. This becomes even worse at low speeds.

A boost voltage is therefore required at low frequencies to compensate this voltage drop.

However, if this voltage is high enough to give rated torque at standstill, when the excitation frequency is equal to the slip frequency, it will be too high however to allow the motor to operate on no-load at this same excitation frequency for long periods, without excessive heating. In many drives this problem is circumvented by a special 'starting' procedure which applies a high boost voltage for only the few seconds required to start the motor while the running boost voltage is lower.

A more sophisticated method [START_REF] Boys | Scalar control: an alternative AC drive philosophy[END_REF] is to correct the stator voltage reference on the basis of such a relationship, compensating the stator resistance ohm drop:

        2 1   r s m s R R  U (3.16)
where m  is the space-vector of the steady-state magnetizing flux, 2  is the slip pulsa- tion, Rs and Rr are the stator and rotor resistances. On the basis of (3.16), the following simple stator resistance voltage drop compensation method has been adopted, to maintain the magnetizing flux amplitude constant, even under heavy load [START_REF] Boys | Scalar control: an alternative AC drive philosophy[END_REF]:
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This method relies on the realistic assumption that the rated pulsation in the denominator of the second term is much higher than the component dependant on the slip pulsation. The third term indicates that for low speeds the voltage component dependent of the slip pulsation is added.

Inverter Induction Machine

Vector Modulation
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of the improved scalar drive Fig. 34567shows the block diagram of the proposed improved scalar controlled induction motor drive. The main difference here is that the voltage compensation part is introduced into the scheme.

Controller Design

The closed loop scalar control refers to the scheme of controlling the motor torque and speed by proportionally varying the voltage with supply frequency to keep the air-gap flux constant and achieve up to rated torque at any speed by controlling the slip pulsation. Equation (3.12) clearly shows that e T is in proportional to the slip pulsation 
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The design of the PI is therefore a simple exercise of compensation for linear system and any traditional compensator design technique can be used [74][75]. In particular, as for the control algorithm, only the PI control is to be tuned and only the stator and rotor resistances are to be known (only if voltage drop compensation is to be performed). As far as the PLL speed estimator is concerned, the only tuning parameters are the PLL gain and the cut-off frequency of its low pass filter while the only machine parameter to be known is the number of rotor slots per phase and per pole.

PLL Based Sensorless Scalar Control System

Phase-Locked Loop (PLL)

A PLL [START_REF] Egan | Phase-lock basics[END_REF][START_REF] Hsieh; Hung | Phase-locked loop techniques. A survey[END_REF][START_REF] Sun | A Phase Locked Loop-Based Approach to Real-Time Modal Analysis on Synchrophasor Measurements[END_REF][START_REF] Ama | Phase-Locked Loop Based on Selective Harmonics Elimination for Utility Applications[END_REF][START_REF] Singh | Implementation of Single-Phase Enhanced Phase-Locked Loop-Based Control Algorithm for Three-Phase DSTATCOM[END_REF][START_REF] Nascimento | FPGA implementation of the generalized delayed signal cancelation-Phase locked loop method for detecting harmonic sequence components in three-phase signals[END_REF][START_REF] Chung | Phase-locked loop for grid-connected three-phase power conversion systems[C]//Electric Power Applications[END_REF][START_REF] Rodrí Guez | Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions[END_REF] is a circuit or software used heavily in communications engineering, radar, sonar, control engineering and many other applications. It makes an output signal synchronize with a reference input signal both in frequency and in phase. More precisely, the PLL is simply a servo system, which controls the phase of its output signal in such a way that the phase error between output phase and reference phase reduces to a minimum, so that the output and reference signal can operate at the same frequency.

A typical PLL is composed of a phase detector (PD), a low-pass filter (LPF), and a voltage-controlled oscillator (VCO) (see Fig. 4-1). 

v i v o v e v c v o Fig 4-1 General Structure of PLL
The PD compares the reference signal vi with the feedback signal vo, producing a signal ve that depends on the phase error between vi and vo. In this thesis a multiplier type PD is adopted, but other types of PD can be used [START_REF] Egan | Phase-lock basics[END_REF].The PD is then followed by a low-pass filter (LPF), which eliminates higher frequency terms, so that only the DC component and lower harmonics ve are left. The VCO generates an output signal vo with frequency ω, which is dependent on the input voltage vc. In general, without any input, the VCO generates by itself a signal of frequency ωc, called centre frequency. When an input ve is given, the VCO deviates from its central frequency ωc, typically with a linear law, so that the output frequency is given by ω=ω c +Kv e . The output signal vo will be then be v o =V o sin(ωt+φ). Thus the complete system produces an output signal vo synchronized in phase and frequency with the reference signal vi once the PLL is in steady-state. Often the feedback signal vo is a unit amplitude sinusoidal signal [START_REF] Egan | Phase-lock basics[END_REF].

PLLs are often used because they provide filtering of a signal that is similar to what is provided to voltage or current waveforms by ordinary filters. The designer has some control over the manner in which the phase (or frequency) of the VCO follows a changing reference phase (or a changing reference frequency): the loop can be made to follow quickly or to follow sluggishly, which is particularly valuable in removing the effects of noise on the reference. Actually PLLs can provide filtering that ordinary filters cannot do, because PLLs can follow a signal whose frequency varies slowly, that is, it acts like an adaptive filter that can track the signal frequency in a large range by adapting its center frequency, while rejecting all the noise provided that it is separated sufficiently in frequency from the signal.

In this chapter, PLL is introduced with carefully designed loop parameters and bandwidth so as to extract the rotor slot harmonics. Then a speed estimator based on it is adopted to estimate the rotor speed.

PLL Based Speed Estimator

The proposed PLL based speed estimator is based on processing the stator current waveform to track the rotor speed: the overall idea is to extract the rotor speed from the rotor slot harmonic fh , as discussed in chapter 2. The centre bandwidth of the PLL is tuned online on the basis of the reference values of the synchronous and slip pulsation and is applied to the scalar control of induction motor drives, in which the supply and slip pulsation frequencies are obtained in the control loop (see chapter 3). The tuning of centre bandwidth is realized by changing the centre frequency of the VCO, like in conventional PLLs.

From eqn. (2.2), rewritten here for easy reference,
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the RSH appears at a certain frequency connected with the synchronous pulsation 1 and the slip pulsation 2. Considering that the rotor speed in electrical angle per second is given by 𝜔 𝑟 = 𝜔 1 (1-s), then the estimated mechanical rotor speed for a given RSH is given by,
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Where m is the estimated mechanical rotor speed (the symbol ^ refers to estimated) , the 1 is the reference supply pulsation, and p is the pole pairs Thus, a PLL speed estimator as the one shown in fig. 4-2 can be used to track the rotor speed. on the basis of the following expression, directly derived by (2.2) using the lower rotor slot harmonic :
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In particular, a constant term equals to 1 is added to the variable a, obtained by the output of the low pass filter amplified by K. This sum is practically equal to the VCO of a common PLL, as seen in fig. 4-1 and accounts for the deviation from the central frequency: indeed this sum is denormalized by multiplication of the h  ~, the central frequency, and is connected to the variation of the slot harmonics due to the speed variation. The output of this 'VCO' is the estimated pulsation h  ˆ of the slot harmonics. The mechanical rotor speed is then computed on the basis of (4.2).

The only tuning parameters in the PLL are the gain K and the cut-off frequency of the low pass filter, while the only machine parameter to be known is qr, number of rotor slots per phase and pole. The choice of gain K in fig. 4-2 is critical for the PLL to work in a proper lock range narrow enough for including the slot harmonic frequency while rejecting the other harmonics as will be more clearly explained in section 4.2.2. As for the filter, a 4-order low-pass Butterworth filter has been chosen in this PLL scheme. Whenever the reference fundamental frequency 1ref coming from the scalar control part changes, or 2ref changes because of the load condition, the PLL adapts itself to a new working band, but the loop gain and the cut-off frequency of the low-pass filter remain constant.

The whole PLL speed estimator is based on the PLL output which is the estimated frequency of the RSH h  ˆ, independently of the presence of the load and its amplitude, as well as of the drift of the machine parameters. Once the mechanical rotor speed m  ˆis computed on the basis of eq. ( 4.2), it is then given to the scalar control algorithm as the feedback signal. It should further be noted that, in principle, the ref 2

 signal is already available at the output of the speed controller of the scalar control scheme. This signal cannot, however, be used in eq. ( 4.3) for the centre bandwidth adaptation since, otherwise, it would be used twice: 1) for the adaptation of the centre of the bandwidth, 2) for the compensation of the load torque in the control scheme. This means that the slip reference pulsation 



itself. As a result, the centre frequency of the PLL does not follow the slot harmonic, making then the PLL tracking a frequency which is not the correct one: thus the drive would have a weak load torque rejecting capacity.

PLL Mathematical Analysis

PLL Mathematical Description

As shown in Fig. 4-2, the core of the PLL speed estimator includes a multiplier, a lowpass (LP) filter, and a pulsation produced by the signal isc and by the unit vector. In this case, a current controlled oscillator (ICO) rather than a VCO is to be envisaged.

The normalized phase stator current 𝑖 𝑠 /|𝐢 𝐬 | (which is a periodical signal with maximal unit amplitude) can be expressed in steady state in harmonic form as:
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Where 𝑎 ℎ , 𝜔 ℎ , 𝜃 ℎ are the amplitude, frequency, and initial phase of the slot harmonic respectively; 𝑎 𝑘 , 𝜔 𝑘 , 𝜃 𝑘 are the same parameters for all of the harmonics, excluding the slot harmonic. At the start of the PLL action, if the central frequency 𝜔 ̃ℎ is close enough to 𝜔 ℎ so that the PLL is inside the pull-in region and locks in (see below) , the feedback signal isfb, is given by:
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Where 𝜔 ̃ℎis the centre pulsating frequency, ∆𝜔 ̃ℎis the correction of PLL (∆𝜔 ̃ℎ = a𝜔 ̃ℎ, where a is the normalized correction of the PLL), 𝜔 𝑐 = 𝜔 ̃ℎ + ∆𝜔 ̃ℎ, and φ0 is the initial phase for t=0. After multiplication between 𝑖 𝑠 /|𝑖 𝑠 | and isfb , the signal ise can be obtained as follows:
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When the PLL locks in, then 𝜔 𝑐 → 𝜔 ℎ , which means that, if the LP filter cut-off frequency is chosen low enough, all harmonic components of the first term of (4.7) and second component of the second term are cancelled out, and only the first component of the second term is present, since it is a DC component. The output of the LP filter is therefore.
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Where Kf is the gain of the LP filter.

The correction term a, once the PLL locks in at steady state (ss) is:

a ss = 1 2
𝑎 ℎ 𝐾𝐾 𝑓 cos (𝜃 ℎ -𝜑 0 ) (4.9)

During transient the correction term is simply:

a =K𝑖 𝑠𝑐 (4.10) 
From (4.6), it results that the feedback signal at steady state is

𝑖 𝑠𝑓𝑏 𝑠𝑠 = 𝑐𝑜𝑠[(𝜔 ̃ℎ + a ss 𝜔 ̃ℎ)𝑡 + 𝜑 0 ] (4.11) 
In transient 𝜔 𝑐 = 𝜔 ̃ℎ + ∆𝜔 ̃ℎ = 𝜔 ̃ℎ + a ss 𝜔 ̃ℎ = 𝜔 ̃ℎ + K𝑖 𝑠𝑐 𝜔 ̃ℎ From (4.13), the phase difference between input and the feedback signal can be expressed as
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This means that when, for example, 𝜔 ℎ is exactly equal to the central frequency𝜔 ̃ℎ,

𝜑 0 = 𝜃 ℎ - 𝜋 2 , so 𝜃 ℎ -𝜑 0 = 𝜋 2
, or that the real slot harmonic is in quadrature with the feedback signal (4.11) 
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On this application a 4-th order Butterworth (Btw) LP IIR filter has been chosen as the low pass filter of the PLL, and the transfer function of the squared amplitude is given by:
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Where ωn = 30 rad/s is the cut off frequency of the loop filter, Kf=1 is the gain of the filter. It should be noted that the choice of adopting a 4 th order Butterworth filter instead of a simple 1 st order one, as in the theoretical analysis shown above, is due to the necessity to obtain a stronger attenuation of the filter beyond its cut-off frequency. It does not in any case affect the reliability of the resulting analysis. The choice of a 4 th order Butterworth filter is due to a trade-off between quick on-line and good high frequency attenuation.

The hold-in range is the span of frequencies from the centre frequency to the frequency where the PLL will remain locked after having been initially locked. This range can be shown to be in the region where the steady-state phase error remains linear. In the case under study the following relationship holds [START_REF] Egan | Phase-lock basics[END_REF]:
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where Kf=1 (gain of the 4 th order Butterworth filter), K=0.04 (PLL gain) and ah=0.05 (the amplitude of the fundamental of the measured stator current space-vector is equal to 1 and the RSH amplitude is almost as much as 2.5% of the fundamental).

The pull-in range is the span of frequencies from the centre frequency to the frequency where the system will initially lock in. This is a transient condition which is not easy to calculate exactly. For a type-I PLL with low-pass filter and sinusoidal phase detector, as the one adopted here, it can be approximated as follows [START_REF] Egan | Phase-lock basics[END_REF]:
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where  is the damping ratio of the equivalent closed-loop 2 nd order system.

Both ∆𝜔 ℎ𝑜𝑙𝑑 and ∆𝜔 𝑝𝑢𝑙𝑙 are very important parameters of the PLL. It is desirable to have those parameters as low as possible, to guarantee a suitable selectivity of the PLL: no other harmonics than the RSH should enter inside the band of the PLL. However, the lower the values of these parameter, the lower is the convergence speed of the PLL [START_REF] Egan | Phase-lock basics[END_REF]. A tradeoff between these two opposite exigencies should be then found.

In the case under study, ∆𝜔 ℎ𝑜𝑙𝑑 and ∆𝜔 𝑝𝑢𝑙𝑙 are both functions depending on the motor speed ωm (Fig. 45). As expected, both of them increase linearly with the machine speed:

at zero or close-to zero speed the hold-in range is almost null, which is the limit of PLL. At rated speed the pull-in range is about 2 rad/s and the hold-in range is almost 1.3 times the pull-in one. The fact that the hold-in range reduces with the machine speed is an important issue, since the lower the machine speed, the closer to the RSH are the other harmonics: in this situation, a narrower hold-in range is desirable.

As for the dynamic behaviour of the proposed PLL, figs. 4-6, 4-7 show the Bode diagrams of the W1(s), W2(s) transfer functions. As for W1(s), it should be noted that, because of the variability of centre bandwidth, the cut-off frequency of the PLL and consequently its dynamics, varies with the supply frequency of the motor, ranging from 0.08 rad/s at f1=1

Hz to 7 rad/s at f1=50 Hz. This means that the capability of the PLL to work in a wide speed range is paid with the reduction of its dynamic behaviour at very low speed. As for W2(s),

it should be noted that the presence of a variable centre bandwidth introduces a constant proportionality gain between 𝜃 ̂ℎ and ω ̃ℎ, which attenuates only when the PLL is out of its operating frequency region. Moment of inertia J [kgm 2 ] 0.0048

Simulation Results

The proposed PLL based scalar control system has been studied and tested in Matlab/Simulink environment and the same parameters of tab. 4-1 have been used. The space-vector dynamic model of the IM including rotor slotting effects, which was proposed in [START_REF] Cirrincione | Space-Vector State Model of Induction Machines Including Rotor Slotting Effects: Towards a New Category of Observers[END_REF] is used for the simulation part (see Appendix A).

The simulation part is organized as follows. In part A, the proposed PLL speed estimator has been evaluated in the framework of the scalar control with measured speed feedback system (see fig. 34567). Secondly, in part B, the measured speed was replaced by the PLL estimated one to close the loop so as to test the whole sensorless scalar drive system in a wide speed range with different load conditions (see fig .

A. The Verification of the Proposed PLL Speed Estimator

In this part, the speed tracking ability of the proposed PLL speed estimator has been evaluated, in the framework of the measured speed based scalar control system (see fig. Fig. 456789shows that the centre bandwidth 𝜔 ̃ℎ is disturbed as much as 10 rad/s (0.3%), the estimated 𝜔 ̂ℎhowever tracks ωh within 0.4s, after the disturbance. Fig. 456789shows the corresponding variation of the correction term a , which adjust itself after the perturbation of the centre bandwidth to track the slot harmonic ωh.

The results also show that ωh lies in the hold-in range of PLL even after 𝜔 ̃ℎ is deviated, and during the transient after this deviation, the value of a varies to compensate the perturbation of 𝜔 2𝑟𝑒𝑓 * (10% error in this case).

It should also be remarked that the hold-in and pull-in range of the PLL estimator cannot be too wide, otherwise the PLL would lock in other harmonics. In this study 𝜔 ̃ℎ is a linear combination of ω1ref and 𝜔 2𝑟𝑒𝑓 * , or equivalently it is dependent on slip s. For small values of s (and for not too low speed) 𝜔 2𝑟𝑒𝑓 * is small and has little impact on 𝜔 ̃ℎ: only 0.3% in the case under study (see fig. 4-9c, where 𝜔 ̃ℎ =3910 rad/s and h  is 3900 rad/s). Since s is not too large, the RSH harmonics is far from the other harmonics, it is then not difficult to find a proper bandwidth for the PLL estimator. steps down from 2.7 rad/s to 2.6 rad/s at 3.5s, after a 5% deviation is added, ω1ref remains at 12.8 rad/s at steady-state.

Compared to the results at rated speed, the magnifying curve in fig. 4-10b) shows that the PLL estimator output is still satisfactory but worse than the one at rated speed. The restoring time of the PLL estimator is now near 0.7s in this case, which is slower than 0.4s for the rated speed. This is caused by two reasons: 1) the bandwidth of the proposed PLL estimator is smaller at low speed, 2) although 𝜔 2𝑟𝑒𝑓 * changes less, ω1ref in this case is much smaller, thus the disturbance introduced into 𝜔 ̃ℎ is about 2%, which is larger than the rated case 0.3%. , which causes 𝜔 ̃ℎ shift from 256 rad/s to 259.8 rad/s. The corresponding correction term a decreases simultaneously to compensate the error.

In the low speed range, any error in 𝜔 2𝑟𝑒𝑓 

B. The Performance of the Sensorless Scalar Drive Based on PLL Estimator

The sensorless scalar drive based on PLL estimator has been tested in a wide speed range from 150 rad/s down to 2 rad/s, to evaluate the performance of the PLL based scalar control scheme. In these tests, the PLL estimated speed has been used as the feedback signal, while the measured speed has been shown in the figures for comparison.

The first set of tests refers to a speed step , both at no-load and full-load working conditions. The second set of drive tests refer to the speed reversal, both at high and low speed range.

Fig. 4-15a, shows the speed reversal at rated speed from150 to -150rad/s, at no load condition. It can be found that the speed tracks the reference properly, although some oscilations can be observed during the trasient: this is largely due to the small inertia of the rotor; however no steady-state error is observed. no-load and full-load working conditions. In the following, all the tests have been performed using the estimated speed as feedback signal, while the measured speed has been used only for comparison.

The first test refers to a speed reversal at the rated speed of the machine. (corresponding to about 15 % of the rated torque). It can be seen that the drive is able to accomplish the speed reversal at very low speed in almost 0.3 s, with an almost null speed estimation error at steady-state and with a short time lag between the estimated and measured speed, due to the reduced bandwidth of the speed estimator at low speed, as expected.

It should be further noticed that such a speed reversal at low speed is particularly hard to be accomplished, since, besides the voltage compensation term, the flux amplitude of the machine at low speed reduces significantly and so does the torque capability of the machine correspondingly. Furthermore, when the machine is at zero or close to zero speed, during the transient, there is a time interval in which the flux amplitude is null. This explains the reduction of the bandwidth of the speed estimator at low speed. It is then clearly observable how the voltage compensation term is very useful in such a test at low speed, considering that the main voltage term and the compensation one present a comparable amplitude. The third test refers to the application of a square waveform of load torques at low speed.

The drive has been given a constant low reference speed of 10 rad/s (6.6% of the rated speed), and then two subsequent very fast load torque square waveforms of time interval equal to 0.5 s and amplitude equal to 6 Nm and 10 Nm (rated torque). The fourth test refers to the minimum possible operating speed of the drive. Fig. 4-25

shows the reference, the measured and the estimated speed during a constant speed reference equal to 3 rad/s (2 % of the rated speed), at no-load and at 5 Nm load torque. These figures show clearly a very good behavior of the drive at 2 % of the rated speed, at both noload and half of the rated load. These figures show also an increasing ripple of the estimated and measured speed, especially at load, due to the presence of other spectral lines than the PSH: these enter the bandwidth of the PLL and so limit the PLL operation close to zero speed. 

Summary

The simulation and experimental results show the PLL is able to properly track the machine speed in a very wide speed range; the results also show a proper behaviour of the scalar sensorless drive in a very wide speed range from rated speed down to 2% of the rated speed, at no load and with load conditions. Moreover experimental results are in high accordance with the simulation ones and with the theoretical analysis.

The speed estimation has been performed on the basis of a PLL algorithm, whose centre bandwidth is tuned on-line on the basis of the reference values of the supply and slip frequencies provided to the PWM. The speed estimation performed on the basis of a PLL algorithm is of a particular interest in terms of a potential industrial applications: if applied to a simple scalar control it requires both a very limited numbers of tuning parameters (PI of the speed control and the gain and cut-off frequency of the filter PLL), and the knowledge of very few machine parameters (stator and rotor resistances, and the number of rotor slots per phase and per pole). This makes the methodology easily exportable to several other types of drives.

.

CHAPTER 5. SPEED ESTIMATION BY ADALINES AND MCA EXIN NEURAL NETWORKS

To retrieve the PSH, chapter 4 describes the PLL (phase-locked loop), whose centre frequency adapts according to the working condition of the machine, and whose linearized transfer function is,
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(see chapter 4 for the symbols)

The corresponding tracking error to a step of the PSH frequency,

∆𝜔 ℎ 𝑠 = 𝑠∆𝜑 ℎ 𝑠
, is given by:
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W1e(s)=1-W1(s) is the error transfer function for (5.1).

From (5.2), it is obvious that the PLL has zero tracking error with input frequency steps.

However, under the framework of PLL, the frequency output become correct after the phase is locked, this usually results in a longer settling time, or in worst case, ex. step of phase angle, causes the spurious transient frequency, and it takes typically many circles for the PLL to relock the phase.

To improve the speed estimation performance, in this chapter, the slot frequency is estimated by ADALINEs and MCA EXIN Neural Networks. First, two cascaded ADA-LINEs are used to extract the rotor slot harmonic from the input stator phase current, acting as adaptive filters and whose output consists only of the slot harmonic. Then, the MCA EXIN neurons are used to extract the eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix formed by the ADALINEs' output sequence: as a matter of fact the slot frequency can then be estimated by finding all the roots of the polynomial equation formed from this eigenvector by using Pisarenko's theory. Moreover not only can the proposed neural network work recursively sample by sample, but the computational complexity and mean square frequency estimation errors are largely reduced. Finally, like the PLL observer, the rotor speed can then be computed by (2.5).

Retrieval of Rotor Slot Harmonics

ADALINE

A linear adaptive neuron (ADALINE) is a single layer artificial neural network which can be used as a notch filter or a band filter [2][89-91]. This means that the neuron is either able to cancel a determined signal at a certain frequency (notch filter), or it is able to let a determined signal pass at a predefined frequency (band filter, where band stands for a band of signals in a very narrow range around a predefined frequency). The network presents two inputs and two outputs: the primary input is the signal to be processed, which is assumed to be of any kind of signal; the reference input is a pure cosine wave ωc and its π/2vdelay, at the frequency of the primary input signal d(k) that should be eliminated or let pass; the two outputs give the notch and the band behaviour respectively.

The sampled reference inputs are,
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where C is the amplitude of the sinusoidal sequence with reference frequency ωc.

The procedure for updating the weights is a Least-Squares Algorithm (LS), such as the LMS or the TLS algorithm [ 92 ][ 93 ]. The LMS is adopted here because of its low complexity, low computational demand, and high-speed of convergence, its learning laws are beneath: It can be proved (see [START_REF] Widrow | Adaptive Signal Processing, Signal Processing Series[END_REF](p. 318), for the complete proof) that the notch transfer functions The bandwidth and centre frequency of the filter can be adjusted respectively by the learning rate μ and ωc, and they completely define the dynamic and the filtering characteristics of the ADALINE filter.
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The Retrieval of the RSH by ADALINEs

To retrieve the harmonic current ih due to the PSH, the following structure is proposed: ADALINE1 receives as input the normalized stator phase current

is-is1 ih ADALINE q r q r -1 ADALINE 1 2
s sA k i i / ) (
given by
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Where ω1ref is the supply fundamental angular frequency, Ih, ωh ,φh are respectively the amplitude, angular frequency and initial phase of the RSH, and In, ωn ,φn are respectively, the amplitude, angular frequency and initial phase of the harmonics not including the RSH. is is the stator's current space phasors.

The output of ADALINE1 is the current is-is1, that is the normalized stator phase current without the fundamental frequency.

The second ADALINE (ADALINE2) has this last signal as input as well as the estimated slot frequency 𝜔 ̃ℎ. which is computed by using ω1ref and the slip pulsation ω2ref as follows by using (2.2),
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ADALINE2 works in band mode and extracts the slot current ih
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where Ih and φh are the extracted PSH amplitude and phase.

ω1ref is generally the supply fundamental frequency of the inverter, and its value is given in the framework of both scalar and vector controls.

The structure shown in fig. 5-2 works properly if the RSH is the largest signal once the fundamental frequency has been cancelled. However, 𝜔 ̃ℎmust be provided quickly and in this thesis the idea is to estimate it on the basis of a simple rotor flux estimator, defined by (2.6).

Design Criteria

The learning rate μ has to be set to obtain a good trade-off between the bandwidth and the convergence speed; which is critical for the network performance, and the overall stability of the system. As a matter of fact, a slow convergence, corresponding to a lower value of μ and a resulting narrower band, introduces a delay that, in a feedback action, could be unacceptable. In addition, filter stability considerations impose the upper limit of μ on the basis of the maximum eigenvalue λmax of the autocorrelation matrix of the input signal, that is: 1/λmax > µ > 0.

In particular, for the ADALINE in notch mode, the fundamental harmonic is expected to be eliminated. It is assumed that the supply pulsation reference ω1ref is close enough to the true fundamental frequency. Normally a greater μ is preferred, due to the resulting faster convergence and perfect elimination of the fundamental harmonic. This is not true however for low speed values and with heavy load: in these conditions, the PSH frequency is very close to the fundamental, and therefore a smaller μ can guarantee that the PSH be unaffected when the fundamental is cancelled. Fig. 5-3 shows the frequency response of the ADALINE notch with respect to μ.

For the ADALINE in band mode, the centre frequency is tuned according to the estimated 𝜔 ̃ℎ, therefore the bandwidth has to be wide enough to compensate for the error between 𝜔 ̃ℎ and the true one, permitting the system to track the PSH properly even in the presence of variations of the value given by (5.8). Moreover they have better phase characteristics around the band frequency. On the other hand, it is important that the harmonic and inter-harmonics outside the PSH be outside the bandwidth of the filter, and this requires a low value of μ. Since in real drive systems the PSH varies quickly according to the working conditions, and since the motor current signature is full of different time-variable harmonics, the constraints for the ADALINE in band mode are of utmost importance. shows the frequency response of the ADALINE in band mode with respect to μ. 

Frequency Estimation Based on MCA EXIN Pisarenko Method

The Pisarenko's Theory

The noisy discrete-time measurements of the filtered slot harmonic can be represented as
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where ωh is the slot harmonics pulsation, and φ is a random variable uniformly distributed in [0, 2π). The noise q(k) is assumed to be a zero-mean white process with unknown variance σ 2 .The task is to find ωh from K samples of x(k) [START_REF] Kun | Dynamic phasor and frequency estimators considering decaying DC components[END_REF][START_REF] Fedele | A Frequency-Locked-Loop Filter for Biased Multi-Sinusoidal Estimation[END_REF][START_REF] Wen | Frequency Estimation of Distorted and Noisy Signals in Power Systems by FFT-Based Approach[END_REF][START_REF] Kia | A High-Resolution Frequency Estimation Method for Three-Phase Induction Machine Fault Detection[END_REF][START_REF] Dash | A Fast Recursive Algorithm for the Estimation of Frequency, Amplitude, and Phase of Noisy Sinusoid[END_REF][101].

One way to estimate frequency is using subspace methods, such as Pisarenko and MU-SIC, which assume that the signal is a sum of harmonics and explore the orthogonality between the noise subspace and the signal subspace [START_REF] Hayes | Statistical digital signal processing and modelling[END_REF][START_REF] So | Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses[END_REF][START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF][START_REF] Pisarenko | The retrieval of harmonics from a covariance function[END_REF][START_REF] Stoica | On spatial power spectrum and signal estimation using the Pisarenko framework[END_REF][START_REF] Kay | Spectrum analysis-a modern perspective[END_REF]. The frequency can be then computed simply by making an eigenvalue decomposition of the autocorrelation matrix of the input signal.

Among them, Pisarenko is probably the most simple and computational efficient. In the Pisarenko method [START_REF] Hayes | Statistical digital signal processing and modelling[END_REF], it is assumed that the data sequence is a sum of p complex exponentials in white noise,
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Where v(n) is a zero mean white noise with variance σ 2 , and Ai, ωi are respectively the amplitude and the angular frequencies of the i th exponential. The amplitudes Ai are complex numbers as follows:
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and the phases φi are considered uncorrelated random variables uniformly distributed over the interval [0, 2π).

In the Pisarenko's theory, the data sequence is considered to be a final length sequence of p+1 elements, therefore a (p+1)×(p+1)autocorrelation matrix can be constructed as follows (see Appendix B for details):
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where rxx(k) is the k th input autocorrelation sequence Rxx can be decomposed into (5.14) where Rss is the autocorrelation matrix without noise.
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The autocorrelation matrix Rss is of rank p [START_REF] Hayes | Statistical digital signal processing and modelling[END_REF], but Rxx is of rank p+1 due to the presence of white noise, with eigenvalues σ 2 ≤λp≤…≤λ1 and corresponding orthonormal eigenvectors zp+1 , zp,…, z1. In this choice, the dimension of noise subspace is equal to one, and it is spanned by the eigenvector corresponding to the minimum eigenvalue, λmin= σ 2 . Denoting this noise eigenvector by vmin, it follows from (5.14) that
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And vmin is therefore orthogonal to each of the signal vectors, [START_REF] Hayes | Statistical digital signal processing and modelling[END_REF]. Thus, the frequency can be estimated by finding all the roots of the following polynomial equation formed by the minimum eigenvector, Consequently, the z-transform of the noise eigenvector, vmin, has p zeros on the unit circle,
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(5.17) corresponding to the p harmonics of the signal: the frequencies of the complex exponentials can be therefore extracted from the roots of Vmin(z).

When the original Pisarenko's method is used to estimate the frequency, it is limited by:

1) The estimation of the autocorrelation sequence: in real-time applications, the amount of data samples that one has to work with is never unlimited, actually most are computed on a limited number of samples, and this will lead up to an erroneous estimation.

2) The general difficulties involved in determining the eigenvalues and eigenvectors of autocorrelation matrix: the algorithm of SVD require O(N 3 ) multiplications, for high-order problems, resulting in a lot of computation effort.

To adaptively compute the generated eigenvector associated with the smallest eigenvalue of an autocorrelation matrix. A number of algorithms have been proposed in the framework of Pisarenko theory. These algorithms can mainly be divided into two categories: The first category involves stochastic-type adaptive algorithms. Thompson [START_REF] Thompson | Adaptive spectral analysis technique for unbiased frequency estimation in the presence white noise[END_REF] first proposed an adaptive algorithm that is used to extract a single minor component and can be applied to find the Pisarenko solutions. Other similar algorithms have also been reported in [START_REF] So | Reformulation of Pisarenko harmonic decomposition method for single-tone frequency estimation[END_REF], [START_REF] Yang | Adaptive eigen-subspace algorithms for directionor frequency estimation and tracking[END_REF], they usually require O(N) computational complexity. The second category algorithms are called the recursive total least squares (RTLS) algorithms. They are developed on the basis of recursive least square (RLS) method, in the RTLS algorithm however, the observation vector is also assumed to be corrupted by noise. In general, the RTLS algorithms have O(N 2 ) computational complexity per iteration, whereas the fluctuations in the estimation parameter are reduced. Examples can be found in [START_REF] Feng | A fast recursive total least squares algorithm for adaptive FIR filtering[END_REF][127], they can quickly track the eigenvector associated with the smallest eigenvalue of the augmented correlation matrix.

Obviously the algorithms in the first category are more appropriate to implement online due to the reduced computation. However, the inherent limitation of the learning process necessitates a compromise between the requirement of fast convergence rate and small mean square frequency estimation error (MSFE) (the MSFE are of order O(α), being α the learning rate [START_REF] Adali | Adaptive signal processing: next generation solutions[END_REF](p.251)). One interesting approach for the stochastic-type adaptive algorithms is, to adaptively select the values of the learning rate in accordance with some criterion, which can provide an approximate measure of the adaptation process state. Such an algorithm is, even imperative when one tries to apply it in the real-time case. Many heuristic methods has been directed to vary the step size for the gradient based algorithm such as LMS, RLS, and back propagation [START_REF] Chen | An adaptive learning algorithm for principal component analysis[END_REF], [START_REF] Aboulnasr | A robust variable step-size LMS-type algorithm: analysis and simulations[END_REF], they can all work effectively in their own field, but are not directly applicable to the MCA neurons.

In the following the recursive frequency estimation algorithms using the original MCA EXIN and two improved MCA EXIN method under the framework of Pisarenko will be discussed. The MCA EXIN neuron, which deals with the recovery of eigenvectors of the data sequence's autocorrelation matrix, as proposed in [START_REF] Cirrincione | Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing[END_REF][113] [START_REF] Cirrincione | Linear system identification by using the TLS EXIN neuron[END_REF], can be adopted for finding the minimum eigenvalue and eigenvector to be used in Pisarenko method. Thus, the estimation algorithm can become iterative and deal with each data sample instead of the whole data block, meanwhile, the overall solution is of TLS meaning (see appendix D).

The MCA EXIN Pisarenko method

A recursive total least squares neural network (MCA EXIN) can be used to compute the TLS solution of the minimum eigenvector required by Pisarenko's method; the algorithm requires only O(N) multiplication at each iteration. Fig. 56shows the scheme of the neural networks. In the following a brief summary of the MCA EXIN neuron is given as in [START_REF] Cirrincione | The MCA EXIN neuron for the minor component analysis[END_REF].

Z -1 y x(n) Z -1 Z -1
Let a linear neuron be considered with a real input vector x(t) = [x1(t),…, xM(t)] T and real output y(t) (see appendix C for details):
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where w(t) = [w1(t),…, wM(t)] T is the weight vector.

In order that the neural weights converge to the minimum eigenvector, the updates of weights should follow the minimization of the Rayleigh quotient (RQ),
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By employing a gradient descent method for minimizing this function, the gradient flow of E[J] is given by ) (
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 the Euclidean norm of a vector. This equation is the average version of the continuous time differential equation,
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The EXIN neuron, one of the best learning laws in terms of stability and converging time, whose averaging gradient flow (ODE) is directly derived from the discretization of the sequential version of the exact gradient flow of RQ, is given by (5.23) Then this weight vector, which converges to the eigenvector corresponds to the smallest eigenvalue (MC), can be used in (5.17) for computing the frequencies.
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It should be noted that in (5.11) the signal is assumed to have p complex-valued exponential: the required dimension of autocorrelation matrix and number of MCA neurons are M=p+1. It is obvious that for p real-valued sinusoidal (cos(𝜔𝑡) = (𝑒 𝑗𝜔𝑡 + 𝑒 -𝑗𝜔𝑡 ) 2 ⁄ ); thus the required dimensions is M=2p+1 correspondingly. For the real-valued data stream from the ADALINEs (5.10) M=2p+1=3 neurons are required, so it is considered that the output of the ADALINE is only one harmonic, i.e. the PSH.

The rMCA EXIN Pisarenko method

If the signal to be processed is real-valued, the symmetry property can be used to accelerate the convergence. Consider a stream of signals 𝑥 ∈ ℝ 2𝑝+1 where 2p is the number of harmonics in the signal (p complex frequencies). Define 𝐑 𝑥𝑥 = 𝐸(𝑥𝑥 𝑇 ) as the associated covariance matrix.

Define:
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which is (2𝑝 + 1) × (𝑝 + 1), where 𝐼 𝑝 is the 𝑝 × 𝑝 identity matrix and 𝐽 𝑝 is the 𝑝 × 𝑝 anti-diagonal matrix:
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Consider the "projected stream" of vectors 𝒚 = 𝑄 1 𝑇 𝒙, which results as :
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with 𝑝 + 1 components (reduced space).

Find the eigenvector 𝛾 1 associated to the smallest eigenvalue for the projected stream

𝑦.

The true eigenvector is given by

1 1 γ c Q  (5.27)
Then the eigenvector for the Pisarenko's method is given by the corresponding unit vector. This MCA EXIN with reduced space is named rMCA EXIN. With regard to MCA EXIN, the convergence is accelerated and the computational complexity is reduced by p.

For the signal given in (5.10), it is considered that only one slot harmonic is present;

hence, M=p+1=2 neurons are required.

The Adaptive MCA EXIN Pisarenko method

The learning rate of the MCA EXIN is normally assumed to be constant or exponentially decreasing to zero [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF][START_REF] Yi | Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm[END_REF][START_REF] Zufiria | On the discrete-time dynamics of the basic Hebbian neural network node[END_REF][START_REF] Adali | Adaptive signal processing: next generation solutions[END_REF]. However, a data-driven adaptive learning rate can be used in the conventional gradient MCA algorithm. This new algorithm, gives faster tracking and smaller mean square error.

Recall the learning process,

𝐰(𝑡 + 1) = 𝐰(𝑡) -𝛼(𝑡)∇(𝐰(𝑡)) (5.28) 
where ∇(𝐰(𝑡)) is the gradient flow and has been given in (5.20). Consider the averaged continuous equation and expand it around the critical directions, {z1 , z2,…, zM}. The averaged gradient flow vanishes at these critical directions, i.e. at 𝒘 𝒊 * such that ∇ ̅ (𝒘 𝒊 * ) = 0. It follows

𝑑𝐰(𝑡) 𝑑𝑡 = -𝛼(𝑡)∇ ̅ (𝐰(𝑡)) ≅ -𝛼(𝑡)𝑯 𝑖 * [𝐰(𝑡) -𝒘 𝒊 * ] (5.29) 
where 𝒘 𝒊 * , 𝑯 𝑖 * (i=1,…M) are, respectively, the weight vector and the Hessian matrix at the critical direction i, i.e., i=M, which corresponds to the optimal solution (MC).

Suppose an eigenvector v of the matrix𝑯 𝑖 * , satisfying

𝒗 𝑻 𝑯 𝑖 * = 𝜆𝒗 𝑻 (5.30)
and define [START_REF] Murata | Adaptive on-line learning in changing environments[END_REF][120]

𝜉(t) = 𝒗 𝑻 ∇ ̅ (𝐰(𝑡)) ≅ 𝒗 𝑻 𝑯 𝑖 * [𝐰(𝑡) -𝐰 𝒊 * ] (5.31) 
where the average gradient flow ∇ ̅ is projected into a unique direction v. The idea is to choose a good direction v such that it is sufficient to observe the whole dynamics of the flow only along this projection, whereas any computation of the Hessian matrix itself can be avoided.

Hence the dynamics of 𝜉(t) can be approximately represented as

𝑑 𝑑𝑡 𝜉(t) = -𝜆𝛼(𝑡)𝜉(t) (5.32) 
By using 𝜉(t), the discrete and continuous modification of the rule for 𝛼(𝑡) is given by [START_REF] Murata | Adaptive on-line learning in changing environments[END_REF] 𝛼(𝑡) = 𝛼(𝑡) + 𝑙𝛼(𝑡)[𝑚| 𝜉(t)| -𝛼(𝑡)] (5.33)

𝑑 𝑑𝑡 𝛼(𝑡) = 𝑙𝛼(𝑡)[𝑚| 𝜉(t)| -𝛼(𝑡)] (5.34) 
where l, m are constants. The asymptotic solutions of equation (

This 1/t-convergence rate is the optimal order of any estimator 𝐰(𝑡) converging to 𝐰 * .

An important problem concerns the choice of a good direction v of projection. It should be noted that any direction can be valid except the one which is orthogonal to the gradient flow. Here it is assumed that all the critical directions are sufficiently different from each other. It exists a learning rate such that, at the critical direction, the learning becomes

𝐰 𝒊 * -𝐰(𝑡) = -𝛼(𝑡)∇ ̅ (𝐰(𝑡)) (5.36) 
Together with (5.31), it follows

1 𝛼(𝑡) ∇ ̅ (𝐰(𝑡)) = 𝑯 𝑖 * ∇ ̅ (𝐰(𝑡)) (5.37) 
From (5.37), it follows that by properly choosing the learning rate, the average instantaneous gradient flow can be forced to be one of the eigenvector of 𝑯 𝑖 * , with the corresponding eigenvalue inversely proportional to the learning rate. Hence the projection direction can be approximated by

𝒗 = ∇ ̅ (𝐰(𝑡))
‖∇ ̅ (𝐰(𝑡))‖ (5.38) and it can be adopted :

𝜉(t) = 𝒗 𝑻 ∇ ̅ (𝐰(𝑡)) = ‖∇ ̅ (𝐰(𝑡))‖ (5.39) 
(5.38) and (5.39) represent the most possible efficient projection direction. Eq. (5.33) can be computed by only using the knowledge of instantaneous flow. The learning process converges to the critical direction with 1/t optimal rate. The critical direction is unstable toward the directions associated to smaller eigenvalues [START_REF] Cirrincione | The MCA EXIN neuron for the minor component analysis[END_REF], because the considered equilibrium direction is a local maximum (in RQ) for the directions with smaller eigenvalues:

the fact that the algorithm is a gradient descent implies that the equilibrium has to be unstable in this direction. Hence, the weights converge to the critical direction corresponding to the minimum eigenvalue.

From [START_REF] Cirrincione | The MCA EXIN neuron for the minor component analysis[END_REF], the eigenvalues of the Hessian matrix are given by An upper bound of learning rate can be used to enhance the convergence of the adaptive MCA EXIN algorithm under all conditions, the derivation of this bound in detail has been included in appendix E for the simplicity's sake.

𝑯 𝑖 * 𝒛 𝑗 = { 0 𝑖 = 𝑗 (𝜆 𝑗 -𝜆 𝑖 )𝒛 𝑗 𝑖 ≠ 𝑗 (5.40) 
5.2.5 Numerical Simulation of the MCA EXIN and rMCA EXIN 5.2.5.1 Methods to be compared

A. PLL

The phase locked loop (PLL) is chosen as one of the methods to be compared [START_REF] Ye; Cirrincione | Improved sensorless scalar control by a PLL tracking rotor slotting effects[END_REF]. The structure of the main PLL topology can be found in chapter 4 (see fig. 4-2 inside the dashed box).

B. Cross correlation based method

The cross correlation matrix based method (COR) proposed in [START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF] is chosen as another method to be compared. In [START_REF] Chan | A parameter estimation approach to estimation of frequencies of sinusoids[END_REF], the cross-correlation matrix is used to replace the autocorrelation matrix used in the Pisarenko type method, where the estimation of autocorrela-tion sequence is usually biased for short data samples. The recursive version of COR algorithm (recCOR), which avoids matrix inversion, is also described in the paper, and it can be used to track time-variant frequencies.

The only parameter to be adjusted in the recCOR is a forgetting coefficient ρ. For there is not much discussion about the choice of ρ in the original paper, in this simulation, ρ =0.9

is used by which a best simulation performance, in terms of rapidity and variance, can be achieved.

Some Definitions

A. SNR

The signal to noise ratio is given by [START_REF] Terzija | Frequency and power components estimation from instantaneous power signal[END_REF],

        2 log 20 A SNR (5.43)
where A is the amplitude of the signal, σ is the standard deviation of the noise.

B. The mean-square frequency estimation error

The mean-square frequency estimation error (MSFE), which is used to evaluate the frequency estimation error, is given as below [START_REF] So | Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses[END_REF],

N MSFE N i e e     1 2 * ) ( log 10   (5.44)
Where e  is the estimated frequency, * e  is the value of the true frequency, N is the number of iterations over which the algorithm has been evaluated.

C. CRLB

The CRLB, which is the lowest MSFE that can be achieved by any unbiased estimator

is given in [103][125] ] 1 ) 2 )[( 2 ( 6 2 2 2     N N A CRB  (5.45)

Simulation Results

The performances of the MCA EXIN Pisarenko's method have been evaluated using Matlab/Simulink, the objective of the simulation study is to investigate the realization of the MCA EXIN Pisarenko method and highlight the characteristics of the MCA EXIN Pisarenko method. It has been applied to estimate the frequency in various conditions: as the proposed method is aimed to estimate the frequency of the rotor slot harmonics (RSH) in an induction machine, which varies in a very wide range (from a few hertz to hundreds of hertz), and rapidly (it is dependent of the target system, normally within a few milliseconds). The simulation conditions are designed based on the characteristics of RSH, The sampling frequency is 2 kHz, the typical value for the learning rate is in the range 0.001~0.05. The initial weight modulus are 0.5~0.8.

Comparisons are made among the proposed MCA EXIN and rMCA EXIN algorithms with learning rate α=1e-3, the PLL, the correlation method (COR), the recursive type correlation method (recCOR) (ρ =0.9), and the original Pisarenko's harmonic decomposition method (PSH). The estimator is aimed to have a good performance for the extraction of RSH, whose frequency possibly lies in a wide range, so the MSFE has to be tested in full range. Meanwhile the RSH frequency could be quite low compared to the sampling frequency, it is necessary to specify the performance at low frequency.

A. Comparason of MCA EXIN and rMCA EXIN

In this part, the converging speed of MCA EXIN and rMCA EXIN are compared: the MCA EXIN and rMCA EXIN start from the same initial condition, and end when the same stop criterion is met, the stop criterion is that the error of instantaneous RQ |λ(t+1)-λ(t) <|threshold for 30 consecutive iterations. The MCA EXIN and rMCA EXIN have been applied to single, two real-valued, and three real-valued frequencies cases respectively, under noise level SNR=10dB, 20dB, 30dB and 40dB.

The results are summarized in Tabs. 5-1 to 5-3, they illustrate respectively the results for single, two real-valued, and three real-valued frequencies estimation results. Among them, the number of iterations, elapsed time, and stop rho (2) show the dynamic of neuron, while the mean value, variance, and MSFE, which are computed over 100 iterations, suggest the steady-state performance of the neuron.

From Tab 5-1 to Tab 5-3, they show that the rMCA EXIN converges faster than MCA EXIN in all the cases, with less time and computation burden. Although the MSFE of MCA EXIN is a littler larger than rMCA EXIN, it is acceptable for the significant improvement in the speed of convergence. 

N w w rho

M i i i     1 * ) ( log 10
is used as an indicator for estimation accuracy. M is the dimension of neurons, wi are the components of the neuron weight vector and 𝑤 𝑖 * are the components of the true value, the neuron weights are normalized according to the minimum eigenvector for comparison.

B. MSFE versus estimated frequency(normalized)

Fig. 5-7a shows the MSFE results versus frequency at SNR=20dB, which is computed by (5.44) over 100 iterations.

As shown in the figure, the MSFE of MCA and rMCA EXIN have the smallest MSFE in the whole range, and their performance are comparable to CRLB. It should be noted that their performance is acceptable even at very low frequency, i.e. ω approaches 0 and π, this verifies that they are suitable for frequency estimation over a wide range. The original COR outperforms the original Pisarenko's method (PSH) in the medium frequency range, however, it degrades dramatically as the frequency approaching 0 and π. The same phenomenon can be observed in its recursive version, but with a much higher MSFE, especially at low frequency. Compared to the other algorithms, the results of PLL is more flat, making its performance at low frequency notable.

The mean frequency estimation error is illustrated in fig. 5 The tracking features of the MCA EXIN method, rMCA EXIN method, PLL and rec-COR with respect to step change is investigated in this part in the conditions 1) the frequency steps down from 50Hz to 49.5Hz at 0.1s, then steps up to 50Hz at 0.35s. SNR=60dB.

2) The frequency steps down from 200 Hz to 100Hz and steps up, SNR=40dB

Fig. 5-9 shows the result for condition 1). At steady-state, the estimated frequencies for all methods are accurate. The MCA EXIN tracks the new frequency within 0.01s, no oscillation is observed as it approaches the actual frequency, and the rMCA EXIN converges even faster, although the oscillations is larger than MCA EXIN. The PLL response rapidly, but it has an overshoot and bias which die out slowly. That results from the linear nature of PLL, whereby it will either have a fast response with large ripples at steady-state, or a slow response with small ripples; it is difficult to find a proper bandwidth which satisfies both requirements. MCA EXIN and rMCA EXIN algorithm however follow the direction of gradient descent, once they arrives at the minimum component, a large 'inertia' will prevent it from overshoot. The recCOR has a good steady-state performance, but the transient is not good enough, although the dynamic could be accelerated by using a smaller forgetting factor, the oscillation increases in the same way. 

E. The estimation of two sinusoidal simultaneously

The The performance of the proposed adaptive MCA EXIN method have been evaluated using Matlab/Simulink environment. It was compared with the variable forgetting factor RTLS algorithm in [START_REF] Feng | A fast recursive total least squares algorithm for adaptive FIR filtering[END_REF] and RLS in [START_REF] Leung | Gradient-based variable forgetting factor RLS algorithm in timevarying environments[END_REF]. Both of them require O(N 2 ) computational complexity, but the proposed algorithm has only O(N). They are not originally built to estimate the frequency, but have been integrated into the Pisarenko's theory, thus the three can be compared using the frequency estimation results with same conditions.

Tab.5-4 shows the parameters in the simulation unless they are indicated elsewhere. versa. This is due to the fact that the MCA EXIN employs a stochastic gradient approach to recursively minimize the RQ of input autocorrelation matrix, and the learning rate controls the trade-off between the convergence speed and steady state estimation accuracy.

This trade-off, however, is a common problem faced by all the gradient based algorithms. 

Simulation Results of the Proposed Speed Estimator

The proposed speed estimator (with ADALINES + MCA EXIN Pisarenko structure) has been studied in Matlab/Simulink® environment. The space-vector dynamic model of the IM including rotor slotting effects, which was proposed in [START_REF] Cirrincione | Space-Vector State Model of Induction Machines Including Rotor Slotting Effects: Towards a New Category of Observers[END_REF] is used for the simulation part, with the parameters shown in tab.5-5.

The speed estimation performance is verified in the framework of the measured speed based vector control system: a VSI direct rotor-flux oriented vector control [field oriented control (FOC)] in which current control is performed at the field reference frame level The overall behavior is similar to the one in the step down test, which shows that the proposed speed estimator is able to work at these conditions. shows that the slot harmonic is well-extracted by the ADALINEs, the frequency of it lies at higher range. In fig. 5-27, the machine is 5Nm-loaded, the reference speed varies from 10 rad/s to 2 rad/s. The results are similar to the no-load case. However, it has to be stressed that the bias is larger at 2 rad/s, since when the machine is loaded, the actual RSH frequency has lower values, and the other harmonics are very close to the RSH, which is in the output of the ADALINEs can appear. Moreover, at 2 rad/s, the RSH frequency is just a few hertz, and like most of the frequency estimation methods, the mean square estimation error will increase. This can be improved by adopting a smaller sampling frequency, and a slower response is to be expected. 

Summary

In this chapter, the speed related rotor slot harmonic is extracted from the stator phase current by two ADALINEs: one works in notch mode in order to eliminate the fundamental current, the other works in band mode thus its output consists only of the slot harmonic.

The frequency of this harmonic is then estimated by using MCA EXIN neural networks based on Pisarenko theory: The neural weights converge to the eigenvector corresponding to the minimum eigenvalue of the input autocorrelation matrix, which is the output of ADA-LINEs in this case, thus the frequency can be estimated by finding all the roots of the polynomial equation formed by this eigenvector in Pisarenko theory. However, compared to the original Pisarenko's method, the computational complexity and mean square frequency estimation error are largely reduced, and the proposed frequency estimator can work recursively sample by sample. The overall speed estimation algorithm is fast and accurate, its performance has been verified both in the simulation and in the experiment.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This thesis proposed the techniques using a higher harmonic model of the induction motor which takes into account the rotor slot effects and its use for the computation of the rotor speed of induction motors (IMs). It is characterized by a very low sensitivity to the parameters variations. The proposed algorithms fulfill the requirements of steady-state accuracy and transient behavior.

Conclusions in specific areas are summarized in the following sections.

Speed Detection by Tracking Rotor Slot Harmonics

It was already known from the previous literatures that the rotor slot harmonics are detectable, and are related to the instantaneous rotor speed. Several investigative studies have been taken in this thesis, and this thesis proposed to divide the RSH tracking approaches into two main categories:

1). Frequency domain methods, which are mainly based on FFT (Fast Fourier Transform)-like approaches;

2). Time domain methods, which are mainly based on PLL (Phase-Locked Loop)-like approaches.

The former generally provides good accuracy and linearity over a very wide speed range and load conditions, but a compromise has to be made between the required frequency resolution, to allow speed detection, and the response time versus changes of speed.

The latter can provides a better real time performance than the frequency domain method, although the accuracy of the result will be affected by the noise level. It generally behaves like such a band-pass filter: the gain is very large at the RSH frequency and very small away the RSH frequency, thus it usually needs a better prior knowledge of the location of expected RSH frequency.

Considering all the pros and cons, this thesis focused on the time domain method, making it better suited for real-time applications. On the basis of that, two main approaches have been proposed

1) A phase-locked loop (PLL) structure. The centre bandwidth of PLL was tuned online on the basis of the reference values of the supply and slip frequencies provided to the PWM converter, tracking the machine rotor slotting harmonic without the need of any high frequency signal injection, neither rotating nor pulsating, this results in tracking the machine speed in a very wide speed range (from rated speed down to as much as 2% of it).

Meanwhile, the frequency of the slot harmonic is available directly in the framework of PLL.

2) The ADALINEs plus MCA EXIN Neural Networks structure. First, two cascaded ADALINEs were used to extract the rotor slot harmonic from the input stator phase current, acting as adaptive filters and whose output consists only of the slot harmonic. Then, the MCA EXIN neurons were used to extract the eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix formed by the ADALINEs' output sequence: as a matter of fact, the slot frequency can then be estimated by finding all the roots of the polynomial equation formed from this eigenvector by using Pisarenko's theory. Moreover not only can the proposed neural networks work recursively sample by sample, but the computational complexity and mean square frequency estimation errors are largely reduced.

Sensorless Scalar Drive by PLL Speed Detector

The proposed PLL speed estimator has been applied to a scalar controlled drive. The speed estimation performed on the basis of a PLL algorithm is of a particular interest in terms of a potential industrial applications: with the aim of developing a low cost, computationally light sensorless drive, where the number of parameters to be tuned, both in the controller and in the estimator, is very limited in comparison with more performing sensorless drives. In particular, as for the control algorithm, only the PI control is to be tuned and only the stator and rotor resistances are to be known (only if voltage drop compensation is to be performed). As far as the PLL speed estimator is concerned, the only tuning parameters are the PLL gain and the cut-off frequency of its low pass filter while the only machine parameter to be known is the number of rotor slots per phase and per pole. This makes the methodology easily exportable to several other types of drives.

Improved Frequency Estimation Algorithms

According to the Pisarenko's theory, it has been verified that the minor component which lies in the noise subspace is orthogonal to the signal subspace, thus, the signal frequencies contained in the input can be computed from a polynomial formed by the MC.

When the original Pisarenko's method is used to estimate the frequency, it is limited by: 1) the estimation of the autocorrelation sequence, 2) the general difficulties involved in determining the eigenvalues and eigenvectors of autocorrelation matrix.

This thesis has improved the Pisarenko's method by using the MCA EXIN neurons, which deals with the recovery of eigenvectors of the data sequence's autocorrelation matrix.

Thus, the estimation algorithm can retrieve the MC recursively with less computation and improved error performance (the solution is of total least square meaning).

Moreover, two improvements have been made to the original MCA EXIN methods.

1) The rMCA EXIN. Consider a stream of signals 𝑥 ∈ ℝ 2𝑝+1 where 2p is the number of harmonics in the signal (p complex frequencies), then the input signal has been projected to a reduced space 𝑦 ∈ ℝ 𝑝+1 , thus, the convergence rate is accelerated and the computational complexity is reduced by p.

2) The adaptive MCA EIXN. The learning rate of the MCA EXIN is normally assumed to be constant or exponentially decreasing to zero, however, on the basis of convergence study on the conventional gradient MCA algorithm, this thesis proposed a data-driven adaptive learning rate. This new algorithm, gives faster tracking and smaller mean square error.

Directions for Future Work

Future work could proceed efficiently in several directions:

1) The speed estimation algorithm which combines the signal injection algorithm with the proposed slot harmonics based algorithm: either the two algorithms work in parallel, or the slot harmonics tracking algorithm works in the high speed range, while the signal injection works in the low speed range. Thus, the sensorless algorithm can works efficiently in a wider range (from rated speed down to zero speed theoretically).

2) Experiment verification of the proposed speed detection algorithms both in scalar controlled and vector controlled drives.

3) The gradient based frequency estimation with improved converging speed and reduced frequency estimation error. To achieve this, a better learning rate adaptive mechanism has to be adopted. Meanwhile, the non-linear type MCA algorithms can be developed to increase the noise rejection ability.

4) Instead of estimating the frequency in the presence of noise under the framework of Pisarenko's theory, the minor space analysis (MSA) neural networks can be used to estimate the frequency under the framework of MUSIC theory, thus the mean square estimation error can be reduced.

5)

Algorithms that are able to determine the model order of the Pisarenko's method and MUSIC's method automatically by using some criterion, such as Akaike information criterion (AIC), yet the computational complexity remains as low as possible.

APPENDIX A SPACE VECTOR MODEL OF IM INCLUDING THE RO-TOR SLOTTING EFFECTS

The full-state space-vector model of the induction machine, including rotor slotting effects was given in [START_REF] Cirrincione | Space-Vector State Model of Induction Machines Including Rotor Slotting Effects: Towards a New Category of Observers[END_REF] as, Remark that, at full load, decreasing the supply voltage and frequency, the amplitudes of the first and slot harmonic increase. The variations in harmonic magnitude do not affect the algorithm as long as the slot harmonics are above the noise level. Where v(n) is zero mean white noise with variance σ 2 ; Ai, ωi are respectively the complex amplitude, and the principal argument of the angular frequency of the i th exponential.
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The complex amplitudes Ai are given by, where w(t) = [w1(t),…, wN(t)] T is the weight vector. 

Convergence and time constant of MCA EXIN

Assume that Rxx is well behaved: the observation follows from the well-known secondorder ergodicity properties. Which is the ODE of the MCA EXIN neurons. Convergence and stability properties of gradient flows may depend on the choice of the Riemannian metric. In case of a nondegenerate critical point of , the local stability properties of the gradient flow around that point do not change with the Riemannian metric. However, in case of a degenerate critical point, the qualitative picture of the local phase portrait of the gradient around that point may well change with the Riemannian metric [START_REF] Helmke | Optimization and dynamical systems[END_REF], [START_REF] Shafer | Gradient vectorfields near degenerate singularities[END_REF].

As seen in the Degeneracy proposition [START_REF] Cirrincione | The MCA EXIN neuron for the minor component analysis[END_REF], the RQ critical points are degenerate. As a consequence, the phase portrait of the gradient flow has only degenerate straight lines in the direction of the RQ eigenvectors, i.e., the critical points are not isolated. This fundamental observation, together with the above analysis, justifies the creation of MCA neurons. 

Total Least Squares (TLS)

The total least squares (TLS) method is a technique devised to make up for the errors in both the data matrix and observation vector. The least-square solution is the one minimizing     For this purpose, the cases j=M and 𝑗 ≠ 𝑀 should be distinguished, where j=M corresponding to the eigenvector associated with the minimum eigenvalue𝜆 𝑀 .

Case 𝑗 ≠ 𝑀, considering the eigenvalues for 𝑖 ≠ 𝑗 in (E.5a), 
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 11 Fig 1-1 Classification of the sensorless control of machine
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 11 Model-Based Sensorless Approach 1.1.1.1 Open-Loop Speed Estimators Various rotor speed and slip speed open-loop estimators can be obtained by rewriting

  𝑠𝐷 , 𝜓 𝑠𝑄 instantaneous values of the direct and quadrature axis stator flux linkages expressed in the stator reference frame 𝜓 𝑟𝑑 , 𝜓 𝑟𝑞 instantaneous values of the direct and quadrature axis rotor flux linkages expressed in the rotor reference frame 𝑖 𝑠𝑥 ψ 𝑠 , 𝑖 𝑠𝑦 ψ 𝑠 instantaneous values of the direct and quadrature axis stator current expressed in the stator flux-oriented reference frame 𝐿 𝑚 , 𝐿 𝑠 , 𝐿 𝑟 3-phase magnetizing inductance, 3 phase total self-inductance of stator and rotor respectively σ = 1 -𝐿 𝑚 2 /𝐿 𝑟 𝐿 𝑠 global leakage factor 𝑇 𝑟 = 𝐿 𝑟 /𝑅 𝑟 rotor time constant In (1.1a), the stator flux-linkage speed is obtained by taking the derivative of the stator flux-linkage angle 𝜃 𝑚𝑠 , with the division between the vector product of the stator fluxlinkage vector and its derivative and the square of the stator flux amplitude itself. The slip speed (the speed of the stator flux-linkage space vector relative to the rotor) is obtained on the basis of the direct and quadrature components of the stator current in the stator fluxoriented reference frame. For this reason, a coordinate transformation is needed for this estimator. While in (1.1b), the rotor flux-linkage speed is obtained with the division between the vector product of the rotor flux-linkage vector and its derivative and the square of the rotor flux amplitude. The slip speed is obtained on the basis of the vector product of the rotor flux and the stator current vectors. The rotor flux linkage, however, is usually obtained from the stator flux linkage, and the stator flux linkages can be obtained by using monitoring stator currents and voltages. From (1.1), it can be known that the accuracy of the speed estimator depends greatly on the machine parameters, and the model used for the estimation of the rotor flux linkage. The correct field orientation is affected by the accuracy in estimating the angles 𝜃 𝑚𝑠 or 𝜃 𝑚𝑟 that, depending on the open-loop flux estimation (see fig.1-2), suffer from both the
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 12 Fig 1-2 Basic structure for determination of the flux of the IMs

Fig 1 - 3

 13 Fig 1-3 Basic MRAS-based speed estimator scheme
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 114 Fig. 1-4 shows the block diagram of the classic MRAS scheme. The MRAS structure has numerous advantages: it is physically explicit and the PI controller in the adaptive loop is easy to design for a given estimation bandwidth. The result is accurate except for very low speeds when the voltage-model-derived flux vector becomes inaccurate.
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 15 Fig 1-5 Block diagram of the full-order Luenberger adaptive observer
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 12 Anisotropy-Based Sensorless Approach 1.1.2.1 Signal InjectionSignal injection methods exploit machine anisotropy properties that are not employed by the fundamental machine model. The injected signal usually excites the machine at a much higher frequency than the bandwidth of the machine, and generates flux linkages that close through the leakage paths in the stator and rotor, leaving the mutual flux linkage with the fundamental almost unaffected[START_REF] Pucci | Finite-Element Analysis of Rotor Slotting Saliency in Induction Motors for Sensorless Control[END_REF][START_REF] Teske | Analysis and suppression of highfrequency inverter modulation in sensorless position-controlled induction machine drives[END_REF][START_REF] Holtz | Sensorless position control of induction motors-an emerging technology[END_REF][START_REF] Caruana | Performance of HF signal injection techniques for zero-low-frequency vector control of induction Machines under sensorless conditions[END_REF][START_REF] Jansen | Transducerless field orientation concepts employing saturation-induced saliencies in induction machines[END_REF][START_REF] Teske | Encoderless position estimation for symmetric cage induction machines under loaded conditions[END_REF].
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 16 Fig 1-6 Basic structure for the determination of the flux or rotor position by using an injection method
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 17 Fig 1-7 Block diagram of PWM2 signal demodulation
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 18 Fig 1-8 Signal tracking PLL's in the sensorless algorithm
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 22122 Fig. 2-2 illustrates how the PSH changes with the motor speed. The adopted machine runs at low speed range, under no load condition. The operating speed varies from 1 to10 rad/s. It is shown that the PSH decreases with the machine speed; in particular at very low speed, isolating the PSH from the other harmonics is really challenging as the PSH become

Fig 2 -

 2 Fig 2-3a. Spectrum of the stator current signature at constant speed of 50 rad/s with no load

Fig 2 -

 2 Fig 2-5a. Spectrum of the stator current signature at constant speed of 5 rad/s with no load
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 626 Fig 2-6 FFT based speed detector

Fig 2 - 7

 27 Fig 2-7 Speed detection algorithm based on spectral estimation.

Fig 2 - 8

 28 Fig 2-8 Speed detection algorithm based on adaptive filter

Fig 2 - 9

 29 Fig 2-9 Speed detection algorithm based on a frequency modulation method ([61])

  -1[START_REF] Vas | Electrical machines and drives: a space-vector theory approach[END_REF] 

1 Fig 3 - 1

 131 Fig 3-1 Steady-State per-phase equivalent circuits of IM

Fig. 3 -

 3 Fig. 3-2 shows a typical torque-slip curve of IM in steady state for negative and positive slip s.

12 )Fig 3 - 2

 1232 Fig 3-2 Torque-slip characteristic of an IM at steady-state

  of equation (3.9) under constant m  at speed close to the synchronous speed yields: 14) shows that the maximum torque is only dependent of the ratio Eg/f , and hence remains the same for constant Eg/f.

Fig. 3 -

 3 Fig.3-3shows a set of the steady-state torque-speed characteristics of an IM under constant flux linkage for a 2.2kW machine, the parameters of this machine can be found in
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 33 Fig 3-3 Torque-speed characteristic of an IM under constant Eg/f

:

  this happens for sufficiently high speeds.

Fig. 3 -

 3 Fig. 3-4 shows the block diagram of an open-loop scalar control scheme [2][72][73]. In this scheme, the gradient limiter reduces the bandwidth of the stator frequency reference.
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 34 Fig 3-4 Block diagram of the open-loop scalar control.

Fig 3 - 5

 35 Fig 3-5 Block diagram of the closed-loop scalar control with impressed voltages
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 36 Fig 3-6 Torque-speed characteristic of an IM under constant Ug/f



  Eg /ω1 is kept constant. Thus, the torque developed by the machine could be controlled by acting on the slip pulsation 𝜔 2 . The closed-loop scalar control using a PI regulator can be modeled as in fig.3-8:where J is the inertia of the motor and D is the friction coefficient The open loop transfer function of the machine under constant |Eg | /ω1, assuming load torque TL=0, is then given by the transfer function of the mechanic equation of the motor
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 38 Fig 3-8 System model of IM with scalar controller

1 LOWFig 4 - 2

 142 Fig 4-2 Block diagram of the PLL speed estimator

4. 1 . 3 Fig 4 - 3 2 

 13432 Fig 4-3 shows the scheme of the adopted sensorless scalar control scheme based on PLL estimator. The scheme is exactly the same as the one in fig. 3-7 except that the measured speed is replaced by the proposed PLL speed estimator output.

ref 2 

 2 would be used to compute the estimated speed, by adapting the centre-band of the PLL, whose value would be then exploited to close the speed loop and therefore to compute the ref 2

(4. 12 )

 12 and in the steady state (𝜔 𝑐 = 𝜔 ℎ ) 𝜔 ℎ = 𝜔 ̃ℎ + a ss 𝜔 ̃ℎ = 𝜔 ̃ℎ + K𝑖 𝑠𝑐 𝑠𝑠 𝜔 ̃ℎ = 𝜔 ̃ℎ + 𝜔 ̃ℎ 𝑎 ℎ 𝐾𝐾 𝑓 2 cos (𝜃 ℎ -𝜑 0 ) (4.13)
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 45464748 Fig 4-5 ∆𝜔 ℎ𝑜𝑙𝑑 and ∆𝜔 𝑝𝑢𝑙𝑙 versus m 
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 3749 Figs. 4-9 show the results for rated speed at 10Nm load condition. The corresponding PLL estimator reference ω1ref and 𝜔 2𝑟𝑒𝑓 *

Figs. 4 -Fig. 4 -

 44 Figs.[START_REF] Holtz | Sensorless control of induction motor drives[END_REF][START_REF] Lascu | Direct torque control of sensorless induction motor drives: a sliding-mode approach[END_REF][START_REF] Blasco-Gimenez | Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive[END_REF][START_REF] Ghanes | On sensorless induction motor drives: Sliding-mode observer and output feedback controller[END_REF][START_REF] Kim | Speed-sensorless vector control of an induction motor using neural network speed estimation[END_REF][START_REF] Tajima | Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives[END_REF][START_REF] Rashed | A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation[END_REF] show the results at reference speed of 10 rad/s, with 10Nm load. With such low speed and load (great value of s) the RSH is much closer to the other harmonics, so any strong perturbation can make the PLL lose lock, so a deviation of 5% is given in this case. Fig. 4-10a shows the waveform of PLL reference ω1ref and 𝜔 2𝑟𝑒𝑓 *

Fig. 4 -

 4 Fig. 4-10c shows the value of 𝜔 ̃ℎ and the estimated 𝜔 ̂ℎ, the PLL output is always exactly equals to the real RSH frequency, which is at 254 rad/s in spite of the deviation of 𝜔 2𝑟𝑒𝑓 *

  Fig 4-10 Verification of the PLL speed estimator at 10rad/s, 10Nm load condition

Fig 4 - 2 Fig 4 - 11 Fig. 4 -Figs 4 -Fig 4 - 12 Fig. 4 -Figs. 4 -Fig 4 - 13 Fig 4 - 14

 424114441244413414 Fig 4-11a shows the speed step result at high speed range: the reference speed steps up from 50 rad/s to 100 rad/s at no load. The drive behaves properly: the rotor speed ωm converges to the reference speed ωmref, and the estimated speed 𝜔 ̂𝑚 tracks the measured speed ωm accurately in less than 0.5s. The corresponding controller intermdiate terms, which are the supply pulsaton ω1ref, the slip pulsation ω2ref (mechanical angular pulsation), the supply voltage Us1, the compensating voltage Uscomp (see eq. (3.17)), and the compensated voltage Ustot ( the sum of Us1 and Uscomp), are shown in fig. 4-11b and fig. 4-11c. This figure clearly shows that the slip pulsation, very low at steady-state since at no load condition with only friction ( its D=0.025), rises up during the transient. The supply Us1 follows ω1ref, the compensating voltage Uscomp is close zero at steady-state, so that the compensated voltage Ustot is practically equal to Us1.
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 4415 Figs. 4-15b and c show the corresponding PI output which is null all the time since s≈ 0. The compensated voltage Ustot is simply a constant multiple of the supply frequency.Actually the amplitude of the supply voltage remains constant before and after the reversal, but the phase sequence changes after the reversal, which does not affect the voltage terms.

Fig. 4 -Fig 4 - 16 Fig 4 - 17 Figs 4 -Fig 4 - 18 Fig 4 - 19

 44164174418419 Fig. 4-16 b presents a small ripple in ω2ref, which is in accordance with the waveform of rotor speed response. The compensating voltage oscillates in the same way as ω2ref, and eventually it converges to 1.1rad/s at steady-state. Figs. 4-17 show the results for low speed reversal, from -10 rad/s to 3 rad/s, lightly loaded (2 Nm). The speed response performance is similar to the one from -5 rad/s to 5

Fig. 4 -

 4 Fig. 4-20 shows the reference, measured and the estimated speed during a constant speed reference of 3 rad/s (2% of the rated speed), at no-load and 5Nm load. They show clearly a very good behavior of the drive at 2% of the rated speed. The ripples for the full load condition is larger due to the bigger ripples in the 𝜔 ̃ℎ as discussed in part A.

Fig 4 - 2 %

 42 Fig 4-20 Reference, measured and estimated speed during constant speed operation at 3 rad/s

Fig. 4 -

 4 Fig. 4-21 a shows the reference, measured and estimated speed during a speed reversal from 150 to -150 rad/s (rated speed) at no load. It shows a very good behaviour of the drive, with the estimated speed properly tracking the measured one during the whole transient.

Fig. 4 -

 4 Fig. 4-21 b presents the corresponding waveforms of the stator voltage amplitude terms, that is the Us1 term, the compensating term Uscomp and the compensated voltage Ustot as sum of the two. These terms are multiplied for the sign of the speed, including the sign of the voltage to be applied to counterbalance the back emf. It can be seen that the amplitude of the voltage varies during the speed transient, and the compensation term is maximum during the speed transient when the slip speed is maximum (maximum torque operation).

Fig.s 4 -

 4 Fig.s 4-22 a and b show the same waveforms obtained during a speed reversal at low speed, from -5 rad/s to 5 rad/s (3.3 % of the rated speed), with a light load torque of 2 Nm
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 4422423 Fig.s 4-23 a and b show the same waveforms obtained during another speed reversal at low speed, from -10 rad/s to 3 rad/s (2 % of the rated speed), with a light load torque of 2Nm (corresponding to about 15 % of the rated torque). Even these figures show the goodness of the proposed estimator, thanks to which the speed reversal at very low speed is
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 444 Fig. 4-24a. Reference, measured and estimated mechanical speed during the subsequent load torque steps at constant speed of 10 rad/s

Fig 4 -

 4 Fig 4-25 reference, measured and estimated speed during the constant speed operation at 3 rad/s at no-load (up) and at 5 Nm load (down)
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 551 Fig.5-1 shows the notch/band ADALINE with two adaptive weights.

  the weight of the i th neuron at the k th time sample; μ the learning rate; 𝜀(𝑘) the difference between the primary input signal d(k) and the band filter output y(k); ɛ(k) is also the notch filter output.

  5b)where ε(z)and d(z) are the z-transform of the sequences εk and dk; the transfer functions are therefore linear functions, and they represents typical second order adaptive filters, like the SOGI-FLL in[START_REF] Rodríguez | A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions[END_REF][START_REF] Golestan | Dynamics Assessment of Advanced Single-Phase PLL Structures[END_REF]. The notch output and the band output are one complementary to the other. Moreover it can be further derived by a simple analysis on the poles and zeros of the function, that the quality factor of the filter is explicitly related to the parameters as follows
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 52 Fig 5-2 ADALINE structure to track the RSH
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 535455455 Fig 5-3 Frequency response of the ADALINE notch with respect to μ, centered at
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 56 Fig 5-6 The recursive linear total least square neural network

1 𝜆)

 1 Hence, it has the same eigenvectors as Rxx, but with different eigenvalues. Compared to the Hessian matrix at the minimum, the Hessian matrix at the other critical directions has smaller spectra, and the one corresponding to the largest eigenvalues has the smallest spectrum. As 𝜆 in the asymptotic solution(5.35) is one of the eigenvalues of 𝑯 𝑖 * , the term 1 𝜆 in (5.35) decreases as the neural networks converge towards the eigenvector corresponding to the minimum eigenvalue of Rxx. When the weight vector is in the same direction of the eigenvector corresponding to the minimum eigenvalue (MC), will be the smallest possible one, and the learning rate 𝛼(𝑡) decreases continuously along the critical directions corresponding to different eigenvalues represent different learning stages of the neural networks, i.e. the weight vector is still far from the MC if it is in the directions corresponding to the largest eigenvalues, and it is the final solution if it is in the same direction of MC, which corresponds to the smallest eigenvalue. They should be treated differently by the adaptive mechanism. The averaged instantaneous cost function 𝐽 ̅ =< 𝐰 𝑇 (𝑡)𝐱(𝑡)𝐱 𝑇 (𝑡)𝐰(𝑡) 𝐰 𝑇 (𝑡)𝐰(𝑡) > (5.41) can be adopted, since from the property of RQ, at the critical direction it holds that the eigenvalues of input correlation matrix𝜆 𝑖 ≈ 𝐽 ̅ . When 𝐽 ̅ is large, it means the neurons are still far from the final solution, and are possibly approaching towards the critical direction associated to a larger eigenvalue. Therefore, the new adapting rule is given by considering the RQ as, 𝛼(𝑡 + 1) = 𝛼(𝑡) + 𝑛𝐽 ̅ 𝛼(𝑡)[𝑚| 𝜉(t)| -𝛼(𝑡)] (5.42) where l in (5.33) is replaced by 𝑛𝐽 ̅ , being n a constant which scales the product to a reasonable range. If the term 𝑛𝐽 ̅ varies much slower than the learning rate itself, i.e. (5.41) is averaged over a large number of iterations, then it still holds the solution in (5.35), and l in the solution is replaced by 𝑛𝐽 ̅ . Thus, the term ( in (5.35) is larger at the beginning, and it decreases as 𝐽 ̅ converges. The global convergence becomes faster.
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 558 Fig 5-7 Frequency estimation performance of the algorithms under consideration at different frequencies, with A= √2, SNR=20dB and N=100
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 59 Fig 5-9 Tracking capability of the MCA EXIN method with respect to step change in frequency of the input signal (small step).

Fig. 5 -

 5 Fig.[START_REF] Lascu | Direct torque control of sensorless induction motor drives: a sliding-mode approach[END_REF][START_REF] Blasco-Gimenez | Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive[END_REF][START_REF] Ghanes | On sensorless induction motor drives: Sliding-mode observer and output feedback controller[END_REF][START_REF] Kim | Speed-sensorless vector control of an induction motor using neural network speed estimation[END_REF][START_REF] Tajima | Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives[END_REF][START_REF] Rashed | A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation[END_REF][START_REF] Cirrincione | An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model[END_REF] shows that the MCA EXIN and rMCA EXIN method track the change properly within 0.02s, but the whole recovery process takes 0.1s for MCA EXIN and 0.05s for rMCA EXIN. The recCOR tracks the reference in about 0.16s, and the transient of the recCOR method is not as smooth as the EXIN method. For this case, the MCA EXIN has a dimension of 5 (2p+1) instead of 3 in the single frequency case, and the rMCA EXIN has a dimension of 3(p+1). The improvement on the speed of converging of rMCA EXIN relative to the MCA EXIN is bigger than in the single frequency case.

Fig 5 -

 5 Fig 5-10 Tracking capability of the MCA EXIN method with respect to step change in frequency of the input signal (big step)
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 512 Fig 5-12 Frequency estimation performance of the MCA EXIN algorithm for variant learning rate, with SNR=40dB and, 𝜔 = 0.1𝜋 initiated by the same conditions

Fig. 5 -

 5 Fig.5-13dshows the adaption of learning rate for the proposed method, the global converging of learning rate is in accordance with the theoretical analysis.
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 1514 Fig 5-14 Implement field oriented scheme and speed estimation scheme

Figs. 5 -

 5 Figs. 5-15~18 show the speed tracking performance at low speed range, at different loads. In fig. 5-15 and fig.5-16, the reference speed steps up from 5 rad/s to 10 rad/s, with a load of 5 Nm, while in fig.5-17 and fig.5-18 the reference speed steps down from 10 rad/s to 5 rad/s at no load.

Fig. 5 -

 5 Fig.5-15a shows that the estimated speed tracks the measured speed properly: even during the transient, the estimated speed converges to the true one, and the speed of response is fast. Fig.5-15 b shows the corresponding estimated slot frequencies.

Fig. 5 -

 5 Fig.[START_REF] Lascu | Direct torque control of sensorless induction motor drives: a sliding-mode approach[END_REF][START_REF] Blasco-Gimenez | Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive[END_REF][START_REF] Ghanes | On sensorless induction motor drives: Sliding-mode observer and output feedback controller[END_REF][START_REF] Kim | Speed-sensorless vector control of an induction motor using neural network speed estimation[END_REF][START_REF] Tajima | Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives[END_REF][START_REF] Rashed | A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation[END_REF][START_REF] Cirrincione | An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model[END_REF][START_REF] Toliyat | A review of RFO induction motor parameter estimation techniques[END_REF][START_REF] Hu | New integration algorithms for estimating motor flux over a wide speed range[END_REF][START_REF] Hurst | Zero-speed tacholess IM torque control: simply a matter of stator voltage integration[END_REF][START_REF] Holtz | Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification[END_REF][START_REF] Holtz | Drift-and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors[END_REF] shows the current at the input and output of the ADALINEs. The slot current is well extracted from the stator current. In the simulation, the inductance caused by slotting effect is constant, thus the amplitude of the slot current after normalization remains almost constant.in the simulation. Although the machine current consists only of the slot harmonic and the fundamental one, nevertheless, the absence of other machine harmonics makes the choice of parameters easily coherent with the theoretical analysis, and it can provide a good guidance for the experimental part.
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 5 Fig. 5-17 shows respectively the estimated speed, measured speed and RSH frequency when the reference speed steps down at no load. Fig.5-18 shows the corresponding currents.
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 5 Fig 5-15 speed tracking result when speed steps up from 5 rad/s to 10 rad/s at 5Nm

Fig 5 -Fig. 5 -

 55 Fig 5-19 speed tracking result when speed steps up from 50 to 100 rad/s at 10Nm load
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 55524 Fig 5-21 Speed estimation results at steady-state, 5Nm load
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 526 Fig 5-26 Speed estimation results at steady-state no load

ψ

  , Lm, Lh are respectively the stator and rotor inductance without slotting, magnetizing inductance, and the slot inductance; qs , qr are the number of stator and rotor slots per pole pair; θr angular position of rotor a-phase with respect to stator a-phase (positive if counterare respectively the stator current space vectors, stator voltage space vector and the rotor flux linkage space vectors in the stator reference frame.The upper sign refers to the case qr=3n-1, qs=3m-1and the lower one to the case qr = 3n + 1. qs = 3m + 1, with n, m ∈ NIn the Matlab/Simulink environment, an IM model including rotor slot effect has been built, the validity of the space-vector dynamic model of IM has been verified, at different supply voltage, and load conditions.The IM model including slot effect has been tested at different supply voltage with constant V/f. At each supply voltage, different values of load torque have been applied to the machine. The corresponding stator current harmonics have been examined according to (eq.

2. 2 )

 2 Figs. A-1 and A-2 show the waveforms of stator current and its spectrum when the supply voltage is 50Hz (rated), respectively under no-load and full-load; the corresponding rotor speed is also shown. Figs. A-3 and A-4 show respectively the waveform of the rotor speed, the stator current and its current spectrum and for 15Hz supply voltage at no-load and full load. Some key information obtained from figs. A-1 to A-4 are listed on table A-1 for comparison.

Fig A- 1 Fig A- 2 Fig A- 3 Fig A- 4

 1234 Fig A-1 Current Signature at 50 Hz supply frequency and no load

123 APPENDIXB

 123 PROF OF PISARENKO'S THEORY(Eigen-Decomposition of the Autocorrelation Matrix )It is assumed that the data sample is a sum of p (usually considered known) complex exponentials in white noise,

ALet 2 . 2 Fig C- 1

 221 Fig C-1 The structure of the MCA linear neurons.

Fig C- 3 Fig C- 4

 34 Fig C-3 One of the weights for different learning laws in the presence of white noise

  computed at the RQ critical points, has the same eigenvectors as C, but with different eigenvalues. Hr(u) is positive semidefinite only when u=zmin.Degeneracy proposition: The RQ critical points are degenerate because in these points the Hessian matrix is not invertible. Then the RQ is not a Morse function in every open subspace of the domain containing a critical point. differential, i.e., the section of the cotangent bundle M T  defined by chet derivative of  at w. To be able to define the gradient vector field of , a Riemannian metric <,>w on M must be specified. Then the consequent gradient grad : define the gradient on the sphere, the standard Euclidean inner product on determined if it satisfies the tangency condition and the compatibility condition tangency condition. Thus the gradient flow for the RQ on the unit sphere S n-1 is flow restricted to the unit sphere extends to a flow on of the RQ with regard to w to gives the Fré chet derivative of

  DLS solution. It is proved that it corresponds to the minimization of the cost function

5 )

 5 TLS solution. It minimizes the sum of orthogonal squared distances (weighted residues squared sum):From the Lyapunov theory, an asymptotic stability at points 𝒛 𝑗 (𝜆 𝑗 ) sufficient condition is |𝜆| < 1, ∀𝜆 𝑜𝑓 𝑱 𝒋 . It should be noted from (E.5b) that we cannot draw any conclusions of the global stability because one eigenvalue lies on the unit circle for 𝑖 = 𝑗, the equilibrium can be either stable or unstable, however (E.5a) provide the necessary information about the range where the learning rate does not diverge the original system. The verification of the global convergence of MCA EXIN neurons, can be found in appendix D.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  -7 shows the demodulation block. The stator voltage and current vectors (vαβ, iαβ)

	are first band pass filtered with the centre frequency set to twice the PWM switching fre-
	quency. The filtered signals are further demodulated by a heterodyning technique. The HF
	carrier frequency component is removed by a discrete average filter. As a result only the
	amplitude modulation signal ' PWM v	2	and ' PWM i	2	of frequency fPWM2 are derived. An equiva-
	lent impedance vector ' PWM z	2	can be defined on the basis of the demodulated voltage and
	current PWM carrier harmonic vectors ' PWM v	2	and ' PWM i	2	as,
				z	' PWM	2		' PWM ' PWM 2 2 v i	(1.16)
	cos(ω PWM2 t + φ vPWM2 )	
	v αβ					
							÷
	i αβ					
	cos(ω PWM2 t + φ iPWM2 )	

  1 , 𝑓 1 , whereby the slips are 𝑠=

	1 7 ,	3 7 ,	6 7

  . From(4.14), it is obvious that if 𝜔 ℎ -𝜔 ̃ℎ exceeds the overall loop

	gain	𝑎 ℎ 𝐾 𝑓 𝐾𝜔 ̃ℎ 2	, the PLL cannot work.
	4.2.2 PLL System Analysis
	In the case under study, the output of the PLL

h

 ˆis the sum of terms, one depending on the PLL input h  , the other depending on the center band frequency h  ~. Correspondingly, if the linearized system is represented as in Fig.

4-4

, two transfer functions can be defined as follows:

  capability to track two real valued sinusoidal signals at the same time is investigated

	in this part. The harmonics signal is given by	x	( t	)		sin(	2 		50 t	)		5 . 0	sin(	2 		250 t	)	. A 5%
	step in frequency occurs at t=0.1s to one harmonic. Since the PLL cannot estimate two
	frequencies at the same time, the simulation is done only with the MCA EXIN, rMCA
	EXIN and recCOR method.																	

  The name of the parameters are compact with their original paper. It should be noted that for the proposed algorithm, m generally controls the MSFE at steady-state, while the term 𝑛𝐽 ̅ mainly control the adapting speed. It is already known that 𝐽 ̅ converges to the minimum eigenvalue, thus it will stabilizes at different values which are dependent of SNR, a single value n is not always the best choice unless 𝐽 ̅ is normalized according to SNR, this can be Fig.5-12 shows the MSFE results versus learning rate. The MCA EXIN algorithm has been implemented with different learning rate, but always been initiated by the same initial weights. As expected, a smaller  enables the proposed algorithm to track the system frequency more accurately (lower MSFE) but at the expense of slower convergence, and vice

		Tab 5-4 Parameters used in the simulation of adaptive MCA EXIN
	Algorithm	Parameters
	Proposed Algorithm	α(0)=0.01,n=10,m=0.04, 𝐽 ̅ = 𝑚𝑒𝑎𝑛(𝑟(𝑘)), 𝑘 = 𝑡, … , 𝑡 -9,
	RLS	α=0.3, β=0.99, μ=0.04,ω(0)=0.98
	RTLS	μ=0.95, λ(0)=0,π(0)=0,gM=0,𝒈 ̅ M=0,
	A.	The MCA EXIN with constant learning rate
	done by adding another subspace tracking process, here however, only the constant 𝑛 is
	used.	

Table A -

 A 1 Results of the Stator Current Signature Test It can be found that all the slot harmonics appear at frequencies in accordance with the theoretical values calculated from (2.2), which verifies the validity of the simulation IM model. It should be noted that in the simulation model, the IM presents no other harmonics except the RSH, which is apparently not the case in practice.

			f1		fRSH	ωm
	Conditions	Frequency (Hz)	Amplitude (A)	Frequency (Hz)	Amplitude (A)	(Rad/s)
	50Hz No-Load	50	4.6	650	0.2	156.7
	50Hz 10Nm-Load	50	6	636	0.24	154
	15 Hz No-Load	15	4.6	195	0.23	47.1
	15Hz 10Nm-Load	15	5.78	180	0.35	43.8

  The update of the weights, following different gradient flows, are listed as below:

	A. The OJA's Learning Laws																										
								w	( t			) 1		w	( t	)			( t	)	y	( t	 ) x ( t	)		y	( t	)	w	( t	)		(C.2)
	B. The explicitly normalized version of Oja's learning law (OJAn)
				w	( t		) 1		w	( t	)			( t	)	y	( t	)	  	( t x	)		) ) ( ( t t w w ) ) ( ( t t T y w	  	(C.3)
	C. The Luo-Unbehauen-Cichocki's learning law (LUO)
	w	( t		) 1		w	( t	)			( t	 ) w	T	( t	)	w	( t	)	y	( t	)	x	( t	)		y	2	( t	)	w	( t	)		(C.4)
	D.The Feng-Bao-Jiao's Learning Law															
				w	( t		) 1		w	( t	)			( t		 ) w	T	( t	)	w	( t	)	y	( t	)	x	( t	)		w	( t	)		(C.5)
	E. The EXIN learning law																													

  The symbol '=' in (C.15) is different from (5.23) is a consequence of the fact that the learning law represents only as a first-order approximation. The constancy of the weight modulus holds from (C.14), it then follows:

									( dt t i  d		)				f	n	( t	)	  ) ( ) ( 2 ( t f t f dt t df n i i 	)	( dt t df n	)	(	c.7 	)	w	( t	)	2 	2	  n		i 	 ) ( t i 	(C.10)
	Whose solution on		) [  is , 0														
										i	t (	)		    exp	(	n 		i 	)	 t 0	d ( w   )	2 2	   	 i		, 1	,..., 2	n		1	(C.11)
	If	n  is single, then		( i t	)	t  	0	, then,
																																				lim t 	f	i	( t	)		0	,	 i		, 1	,..., 2	n		1	(C.12)
	Which yields																																			
																																		t lim  	w	t (	)		w	t (	ss	)		t lim  	f	n	t (	)	z	n	(C.13)
	(C.13) shows	w	( t			)		is the eigenvector of
									ss																													
	Multiplying (5.23) by			w	T	(t	)		on the left yields
	  The Hessian matrix of the RQ is given by ) ( ) ( ) 2 ) 2 ( 2 2 2  t t t d T w w w 4 ( 2 t dt w  C H 2 r 2  R w grad(RQ)  ) (  t w u T 	( t T	 grad(RQ ( ) ( t t w w R u ) )  ) T	 0  RQ I  2 2		(C.14) (C.26)
	Then Where u is real and																								w	t ( u	 2 )	n   i 1	f	i t (	)	z	i	(C.7)
	Replace it into (C.6), and recalling the orthogonality of the eigenvectors, yields 2 2 2 2 ) 0 ( ) ( w w  t , 0  t  u I C RQ 2 grad(RQ) 2  	(C.15) (C.27)
			( dt t df i	)			w	( t	)			2 	4	 w	T		( t	)	R	xx	w	( t	)	f	i	( t	)			w	T	( t u	) 2 w	( t	)	i 	f	i	( t	)		i  	, 1	,..., 2	. n	(C.8)
	It can be observed that,	i 			, 1	, 2	,..., 3	n
	Define,	 i		, 1	,..., 2	n		. 1																				H	RQ	(	i z	)		C		i 	I	(C.28)
	Hence																																lim   t		f	n	) ) t ( ( t 2 ) 0 f f n i (  i )  z w i   r ( H    det ) t (	det	 C		i 	I	 0 	(C.9) (C.16) (C.29)
	Which gives Which implies that	H	 is singular ( ) ( ss t t w w )  lim  t ( i RQ z	)		    	 	w w	( (	) 0 ) 0	2 2	z z	n n	  w w	/ /	w w	T T	z z	n n	 	0 0	(C.17)

The weight w(t) can be expressed as a function of the orthogonal vectors xx R which corresponding to minimum eigenvalue n  . (C.16) and (C.17) represent the convergence of the MC neurons. More generally, the critical points and critical values of are the eigenvectors and eigenvalues for C. i z  . Furthermore

  It is obviously from the definition that for i>j, 𝜆 𝑖 ≤ 𝜆 𝑗 , which is in contradiction with (E.6). Therefore points 𝑗 ≠ 𝑀 are instable irrelevant to the choice of 𝛼, which is in accordance with the convergence analysis in appendix D.

			-	2𝛼 ‖𝐰‖ 2 2 (𝜆 𝑖 -𝜆 𝑗 )| < 1 ⇔ -1 < 1 -	2𝛼 ‖𝐰‖ 2 2 (𝜆 𝑖 -𝜆 𝑗 ) < 1
						⇔ (𝜆 𝑖 > 𝜆 𝑗 ) ∩ (	𝛼 ‖𝐰‖ 2 2 <	1 𝜆 𝑖 -𝜆 𝑗	)	(E.6)
	Case j=M, and considering𝑖 ≠ 𝑗, from (E.5a)
		|1 -	2𝛼 ‖𝐰‖ 2 2 (𝜆 𝑖 -𝜆 𝑀 )| < 1 ⇔ -1 < 1 -	2𝛼 ‖𝐰‖ 2 2 (𝜆 𝑖 -𝜆 𝑀 ) < 1
						⇔ (𝜆 𝑖 > 𝜆 𝑀 ) ∩ (	𝛼 ‖𝐰‖ 2 2 <	1 𝜆 𝑖 -𝜆 𝑀	)	(E.7)
	Note that	1 𝜆 𝑖 -𝜆 𝑀	≥	1 𝜆 1 -𝜆 𝑀	, so the maximal learning rate which does not diverge the orig-
	inal system is given as,	
						𝛼 < 𝛼 𝑚𝑎𝑥 =	2 ‖𝐰‖ 2 𝜆 1 -𝜆 𝑀	(E.8)
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Experiment Results

The employed test set-up consists of: Like in the simulations, to verify the proposed speed estimation algorithm, the measured speed (from the encoder) is used as feedback in the framework vector control, while the proposed speed estimation scheme is connected on-line along with the main vector control loop. The test is made for different loads and speed conditions. The RSH frequency varies from hundreds of hertz to only a few hertz, when the speed reference changes from 150 rad/s (rated) to 1 rad/s (1% rated), the sampling frequency for the MCA EXIN Pisarenko method is kept at 2.5k Hz. The following part only shows the results of the most challenging tests at low speed.

The tracking capability results when the speed steps up with 5Nm-load are shown in fig. From (C.11), in the approximation of modulus constancy (C.15),

The time constant of the neuron is given by [START_REF] Dybkowski | Self-tuning adaptive sensorless induction motor drive with the stator current-based MRAS speed estimator[END_REF] represents the approximate converging time for the the proposed estimator: it depends on the signal to noise ratio (SNR) and the modular of initial weights. As no assumptions on the SNR should be made, the time constant of the system can only be modified by the initial weights modulus.

(C. [START_REF] Dybkowski | Self-tuning adaptive sensorless induction motor drive with the stator current-based MRAS speed estimator[END_REF]) also shows the extra sibly outperform some conventional gradient based method. The method has quicker convergence in the beginning with small modulus, as we will discuss later, this implies a higher variance in the first temporal part of the weight time evolution, but the fluctuation will decrease as the evolution continues.

Rayleigh Quotient and MCA EXIN learning law

The Rayleigh quotient (RQ) is the function which assigns to any nonzero complex vector u the scalar quantity

The most relevant properties of the RQ are the following (for proofs see [START_REF] Chatelin | Eigenvalues of Matrices[END_REF][START_REF] Helmke | Optimization and dynamical systems[END_REF][START_REF] Parlett | The Rayleigh quotient iteration and some generalizations for nonormal matrices[END_REF][START_REF]The Symmetric Eigenvalue Problem[END_REF])  Orthogonality:

 Let C be a real symmetric n-dimensional matrix with eigenvalues Generally, A∈ ℝ mxn is called data matrix, and b∈ ℝ m is called observation vector. Several different problems require finding the solution, according to the error consideration, there are generally three types of approaches to solve this equation [START_REF] Cirrincione | Power Converters and AC Electrical Drives with Linear Neural Networks[END_REF][START_REF] Cirrincione | Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing[END_REF]:

Ordinary Least Squares (OLS)

According to the classical ordinary least squares (OLS) approach, errors are implicitly assumed to be confined to the observation vector. The least-square solution is the one min- 

Data Least Squares (DLS)

The opposite case is the data least squares (DLS) problem, because the error is assumed to lie only in the data matrix A. The data least-square solution is the one minimizing

where ||…||F is the Frobenius norm. Once a minimum A '' is found, every x″satisfying

APPENDIX E CONVERGENCE BOUND OF THE ADAPTIVE LEARNING RATE

Before studying the upper bound of the learning rate, consider again the learning process (5.20) in the deterministic continuous time (DCT) system [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF], and rewrite the learning process of EXIN neurons in the DDT system [START_REF] Yi | Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm[END_REF][START_REF] Zufiria | On the discrete-time dynamics of the basic Hebbian neural network node[END_REF].

Where r(k) = 𝐰 𝑇 (𝐤)𝐑 𝒙𝒙 𝐰(𝐤)

𝐰 𝑇 (𝐤)𝐰(𝐤) is the Rayleigh quotient at the k th iteration, and it holds that λ 𝑀 ≤ r(k) ≤ λ 1 from the properties of the RQ. To avoid confusion, the time index term t is replaced by k in the following DDT analysis.

It should be noted that (E.1) can also be obtained as the numerical integration of (5.20) via Euler's method with step size α, however, in (E.1) the discrete learning process is preserved appropriately. The term 1 ‖𝐰‖ 2 2 acts as a scaling term to the learning rate. Now the stability at point 𝒛 𝑗 (𝜆 𝑗 ) will depend on the spectral analysis of 𝑱 𝑗 , whose eigenvalues are given by the eigenvalues of Rxx, 𝜆 𝑖 , following (E.4),