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RÉSUMÉ 

Les avantages de contrôle de la machine asynchrone sans capteur de vitesse sont les 

suivants : réduction de la complexité du matériel, moins d’exigences en termes d’entretien, 

coût moindre et une fiabilité accrue. Cette thèse propose l'utilisation d'un modèle harmo-

nique plus élevée du moteur à induction qui prend en compte les effets de fente de rotor et 

son utilisation pour le calcul de la vitesse du rotor des moteurs à induction (IM). Elle se 

caractérise par une très faible sensibilité aux variations des paramètres. 

La thèse étudie tout d’abord la relation entre les harmoniques à fentes du rotor (RSHs) 

et la vitesse du rotor instantanée. Pour suivre directement l'RSH, les exigences du système 

sont pleinement prises en compte. 

Dans un deuxième temps, les travaux de thèse ont permis de développer un système 

sans capteur en fonction de boucle à verrouillage de phase (PLL): La largeur de bande 

centrale est réglée en ligne sur la base des valeurs de référence, des fréquences d'alimenta-

tion et de glissement prévues au convertisseur PWM, la PLL est réglée pour suivre le rotor 

de la machine à RSH sans la nécessité de toute injection de signal à haute fréquence, ni en 

rotation, ni de pulsation. Ce système d'estimation de vitesse, qui est approprié pour le con-

trôleur scalaire, avait été intégré avec le lecteur scalaire, conduisant à un simple calcul peu 

exigeant, à faible coût de l’entraînement de la machine à induction sans capteur à faible 

coût. Les résultats expérimentaux montrent que le système est en mesure de suivre la vitesse 

de la machine dans une plage de vitesse très étendue. 

Enfin, un système sans capteur amélioré basé sur l'analyse de composant mineur 

(MCA) neurones est décrit. Selon la théorie de Pisarenko, il a été vérifié que le MC qui se 

trouve dans le sous-espace de bruit est orthogonale au sous-espace de signal, par consé-

quent, les fréquences de signal contenues dans l'entrée peuvent être calculées à partir d'un 

polynôme formé par la MC. Classiquement, ce qui nécessitera la décomposition propre 

encombrants, néanmoins, la méthode de neurones proposée dans cette thèse peut récupérer 

le MC de façon récursive avec moins de calculs et des performances améliorées d'erreur (la 

solution est sur un total de moins sens carré). En outre, l'estimateur de vitesse est appliquée 
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à l'entraînement scalaire avec vérification expérimentale, l'ensemble du système se com-

porte bien, et la méthode MCA renforcée par réseaux neuronaux a fourni un bon potentiel 

dans l'application des harmoniques récupérer. 

Mot clés: moteurs à induction, entraînements électriques, PLL, analyse de composant 

mineur, extraction des harmoniques 
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ABSTRACT 

The advantages of speed-sensorless IM drives are reduced hardware complexity, fewer 

maintenance requirements, lower cost and increased reliability. This thesis proposes the 

use of a higher harmonic model of the induction motor which takes into account the rotor 

slot effects and its use for the computation of the rotor speed of induction motors (IMs). It 

is characterized by a very low sensitivity to the parameters variations. 

The thesis first studies the relation between the rotor slot harmonics (RSHs) and the 

instantaneous rotor speed. To directly track the RSH, the requirements of the system are 

fully addressed.  

Second, the thesis presents a sensorless scheme based on phase-locked loop (PLL): The 

centre bandwidth is tuned on-line on the basis of the reference values of the supply and slip 

frequencies provided to the PWM converter, the PLL is tuned to track the machine rotor 

slotting harmonic without the need of any high frequency signal injection, neither rotating 

nor pulsating. This speed estimation scheme, which is suitable for the scalar controller, had 

been integrated with the scalar drive, leading to a simple, computationally not demanding, 

low cost sensorless IM drives. The experiment results show that the system is able to track 

the machine speed in a very wide speed range. 

Finally, an improved sensorless scheme based on minor component analysis (MCA) 

neurons is described. According to the Pisarenko’s theory, it has been verified that the MC 

which lies in the noise subspace is orthogonal to the signal subspace, thus, the signal fre-

quencies contained in the input can be computed from a polynomial formed by the MC. 

Conventionally, this will require the bulky eigen-decomposition, nevertheless, the neural 

method proposed in this thesis can retrieve the MC recursively with less computation and 

improved error performance (the solution is of total least square meaning). Moreover, the 

speed estimator is applied to the scalar drive with experimental verification, the overall 

system is well behaved, and the MCA method enhanced by neural networks has provided 

a good potential in the application of harmonics retrieve. 
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CHAPTER 1. INTRODUCTION

In high performance electrical drives with induction machine (IM) for traction appli-

cations, one of the key problems is the sensorless control of the speed and the position. The 

advantages of speed-sensorless IM drives are reduced hardware complexity, fewer mainte-

nance requirements, lower cost and increased reliability. To replace the mechanical speed 

sensor, information on the rotor speed is extracted from measured stator currents and volt-

ages at the motor terminals. Fundamental and anisotropy model based algorithms are used 

for this purpose [1-12]. They differ with respect to accuracy, robustness, and sensitivity 

against model parameter variations.  

This research work explores the speed estimation algorithms based on tracking the ro-

tor slot harmonics (RSHs) of the IM, which are created by machine anisotropy and directly 

related to the real-time rotor speed. Like the other anisotropy-model based approaches, they 

are independent of machine parameters, like stator and rotor resistances, yet no extra signal 

injection is required. Moreover, the proposed algorithms have been applied to a sensorless 

drive, showing a good behavior in a very wide speed range from rated speed down to 2% 

of the rated speed. 

 

1.1 Sensorless Control of Induction Motors 

Literature about sensorless control of IM drives is huge [1-37]. The sensorless tech-

niques for IM can be mainly divided into two categories: methodologies based on funda-

mental models and methodologies based on anisotropies models, see fig. 1-1.  

 

Fundamental Wave Models

MRAS
Observers

EMF Models
Flux Modulation ...

Exploitation of Anisotropies

Saturation in the 

Main Pass

Slot 

Asymmetries

Custom 

Designed
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Fig 1-1 Classification of the sensorless control of machine  
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The former, such as model reference adaptive system (MRAS) and observers in the 

synchronous or stationary reference frame, present good results in the middle and high 

speed regions, but they suffer problem at low speeds where the back EMF fade out, and the 

IM becomes an unobservable system.  

The latter have a better performance at very low and zero speed, they either exploit the 

magnetic saliency by signal injection, or exploit the use of PWM switching signals, and 

can be more efficient at low and zero speed than any other sensorless estimation due to its 

uncorrelated property with the machine parameter. Yet the latter tends to fail at increasing 

speed because of the necessary signal processing system (filtering etc.). In general, it can 

be stated that they can hardly be adopted at rated or close to rated speed. 

Some typical methods belong within the two categories as described in the following: 

 

1.1.1 Model-Based Sensorless Approach 

1.1.1.1 Open-Loop Speed Estimators 

Various rotor speed and slip speed open-loop estimators can be obtained by rewriting 

the stator and rotor equations of the IM. The accuracy of the algorithms is largely dependent 

on the machine parameters; however, due to their simplicity and robustness, some of them 

are also currently employed in commercial sensorless drives. In [1], five open-loop sensor-

less schemes are described, which are all based on the stator and rotor equations of the IM, 

differing from one another by the reference frame in which the equations are expressed. In 

practice, the choice among them is usually made according to the machine parameters at 

hand. 

If the stator flux-linkage has been estimated, one straightforward way for speed estima-

tion is to estimate the stator flux-linkage speed 𝜔𝑚𝑠 and the slip speed 𝜔𝑠𝑙𝑠 [1], and take 

the difference as follows: 

 
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///
2  (1.1a) 

 

Or correspondingly, if the rotor flux-linkage has been estimated, then the rotor speed 

cab be obtained as the sum of the speed of the rotor flux (𝜔𝑚𝑟  relative to the stator) and the 

slip 𝜔𝑠𝑙𝑟, 
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Where, 

𝜓𝑠𝐷, 𝜓𝑠𝑄 instantaneous values of the direct and quadrature axis stator flux linkages 

expressed in the stator reference frame 

𝜓𝑟𝑑, 𝜓𝑟𝑞  instantaneous values of the direct and quadrature axis rotor flux linkages 

expressed in the rotor reference frame 

𝑖𝑠𝑥
ψ𝑠, 𝑖𝑠𝑦

ψ𝑠
 instantaneous values of the direct and quadrature axis stator current ex-

pressed in the stator flux-oriented reference frame 

𝐿𝑚, 𝐿𝑠, 𝐿𝑟 3-phase magnetizing inductance, 3 phase total self-inductance of stator  

and rotor respectively 

σ = 1 − 𝐿𝑚
2 /𝐿𝑟𝐿𝑠 global leakage factor 

𝑇𝑟 = 𝐿𝑟/𝑅𝑟 rotor time constant 

 

In (1.1a), the stator flux-linkage speed is obtained by taking the derivative of the stator 

flux-linkage angle 𝜃𝑚𝑠, with the division between the vector product of the stator flux-

linkage vector and its derivative and the square of the stator flux amplitude itself. The slip 

speed (the speed of the stator flux-linkage space vector relative to the rotor) is obtained on 

the basis of the direct and quadrature components of the stator current in the stator flux-

oriented reference frame. For this reason, a coordinate transformation is needed for this 

estimator. While in (1.1b), the rotor flux-linkage speed is obtained with the division be-

tween the vector product of the rotor flux-linkage vector and its derivative and the square 

of the rotor flux amplitude. The slip speed is obtained on the basis of the vector product of 

the rotor flux and the stator current vectors. The rotor flux linkage, however, is usually 

obtained from the stator flux linkage, and the stator flux linkages can be obtained by using 

monitoring stator currents and voltages. From (1.1), it can be known that the accuracy of 

the speed estimator depends greatly on the machine parameters, and the model used for the 

estimation of the rotor flux linkage.  

The correct field orientation is affected by the accuracy in estimating the angles 𝜃𝑚𝑠 or 

𝜃𝑚𝑟 that, depending on the open-loop flux estimation (see fig.1-2), suffer from both the 

integration problem and the sensitivity to the stator resistance variation. Many literature 
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papers refer improving the integration problem, i.e. the time derivation, parameter estima-

tion [13-16]. At low stator frequency, in particular, a reduction of the speed estimation 

accuracy is to be expected in all these schemes due to a mismatch between the real and the 

estimated flux linkage caused by a wrong model of the stator resistance. The poor 

knowledge of the rotor time constant, on the contrary, mainly influences the estimation of 

the slip speed and therefore is critical at high loads.  

 

Rs

I/s Lr/Lm

σLs

ΨR
  us

is
 

Fig 1-2 Basic structure for determination of the flux of the IMs 

 

1.1.1.2 Model Reference Adaptive Systems 

Both the steady-state and transient accuracy of the speed estimation can be significantly 

increased by adopting closed-loop speed estimation algorithms instead of the open-loop 

ones. An important category is that of MRASs (model referencing adaptive systems), in 

which an error vector is formed from the outputs of two models both dependent on different 

state variables of the IM. The error is driven to zero by an adaptation mechanism, through 

adjustment of a parameter that influences the adaptive model so that its output eventually 

coincides with that of the reference model. 

In [10][17-21], several MRAS schemes have been developed. They differ from one an-

other by the state variables being employed. Fig. 1-3 shows the basic scheme of a MRAS 

based speed estimator, in this case, the parameters to be estimated is the rotor speed 𝜔𝑟. 

Some state variables, 𝑥𝑑, 𝑥𝑞(e.g. rotor flux-linkage components, 𝜓𝑟𝑑, 𝜓𝑟𝑞 , or back e.m.f. 

components, 𝑒𝑑, 𝑒𝑞, etc.) of the induction machine, which are obtained by using measured 

quantities, are estimated in a reference model. Meanwhile, in the adjust model, the same 

state variables are estimated using the measured quantities and the rotor speed. The corre-

sponding speed tuning signals 𝜀  are, respectively, 𝜀𝜔 = Im(𝛙𝑟
′ 𝛙̂𝑟

′∗) , 𝜀𝑒 = Im(𝐞𝐞̂∗) , or 
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𝜀𝑒 = Im[(𝐞 − 𝐞̂)𝐢𝑠
∗]： the quantities with ‘∧’ are related to the adaptive model and the ‘*’ 

operator denotes the complex conjugate.  

 

Reference
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Fig 1-3 Basic MRAS-based speed estimator scheme 

 

In designing the adaptation mechanism for a MRAS, it is important to take account of 

the overall stability of the system and to ensure that the estimated quantity will converge to 

the desired value with suitable dynamic characteristic. The appropriate adaptation law can 

be derived by the Popov’s hyperstability criterion [1].  

If the classic MRAS scheme based on the rotor flux error is considered, the reference 

model is described by the stator voltage equations in stator reference frame (DQ), re-written 

here for the sake of simplicity: 
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The adaptive model is based on the rotor equations in the stator reference frame, which 

is the so-called current model: 
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The differences between the state variables estimated, respectively, with the reference 

and adaptive models are fed to a speed tuning signal 𝜀, and then processed by a PI (propor-

tional integral) controller, whose output is the rotor speed. In this case, the speed is esti-

mated as 

  dtKK rqrdrdrqirqrdrdrqpr )ˆˆ()ˆˆ(ˆ    (1.4) 

 

Fig. 1-4 shows the block diagram of the classic MRAS scheme. The MRAS structure 

has numerous advantages: it is physically explicit and the PI controller in the adaptive loop 

is easy to design for a given estimation bandwidth. The result is accurate except for very 

low speeds when the voltage-model-derived flux vector becomes inaccurate. 
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Fig 1-4 Block diagrams of MRAS based on rotor flux error. 

 

However, like the open-loop estimators, the MRASs depend on the stator machine 

model: the block diagrams of the reference and adaptive models clearly highlight that the 

reference model suffers from the open-loop integration problem: this problem was ad-

dressed in [17] by adopting an LPF (Low Pass Filter) instead of a pure integrator, which 

causes, however, a poor flux amplitude and angle estimation as well as a poor speed esti-

mation at low frequency, around the cut-off frequency of the LPF (usually a few Hertz). 
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This consideration highly limits the minimum working speed of the drive and the correct 

field orientation, with consequent reduction of the torque performances at low speed. Al-

ternative solutions to be adopted for the open-loop flux integration have been shown in [2], 

in particular the adaptive integration based on a linear neural network [22]. Furthermore, 

at low speeds, the stator voltage amplitude is small, thus an accurate value of the stator 

resistance is required by the model to have a satisfactory response. 

Other attempts includes: A MRAS scheme based on the back emf error [10], where no 

integration is needed so that satisfactory performance can be achieved even at low speeds, 

with resulting wider bandwidth of the speed loop; A MRAS-based system with a linear 

ANN (artificial neural network) adaptive model [23] has been presented which enhances 

the stability. The closed-loop types of MRAS are described in [2] (p.282), where the char-

acteristics of a closed-loop flux observer (CLFO) are integrated with those of an MRAS, 

including also a mechanical system model. In general, they improve the performance of the 

speed estimation while increasing the complexity of the observer. 

 

1.1.1.3 Adaptive Observers 

For the open-loop estimators and MRAS described in the previous sections, the limit of 

acceptable performance depends on how precisely the model parameters can be matched 

with the corresponding parameters in the actual machine. The robustness against parameter 

mismatch and signal noise, however, can be improved by employing an adaptive observer. 

The observer based method aims at providing a real-time estimation of the state variables 

of a system, using only the input and output signals, both of which are assumed to be known. 

They can further be classified into two categories: the one based on the deterministic model, 

such as the Luenberger observer [24], extended Luenberger observer [25], and sliding 

model observer [26]; the other based on stochastic theory, such as Kalman filter and ex-

tended Kalman filter [27].  

If the stator current and the rotor flux-linkage space-vectors are chosen as state variables, 

the state equations of the IM in the stationary reference frame can be written as [2] 
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Cxi s      (1.6) 

Where 
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 
   

 
 
























IIB

JIJIA

IIA

JIJIA

IA

bL

TaT

aTL

TaTLLL

aTLR

s

rrrr

rm

rrrrrsm

rss

)/(1

)/1()/1(

/

)/1()/1()/(

)/()1()/(

1

2222

2121

1212

1111









  (1.7) 

With 

 TsQsDs iii ,  TsQsDs uuu ,  Trqrdr 'ψ , 

 I0C
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In the above state representation,  ', rs ψix 
 
is the state vector, composed of the stator 

current and rotor flux-linkage direct and quadrature components in the stationary reference 

frame, us is the input vector composed of the stator voltage direct and quadrature compo-

nents in the stationary reference frame, A is the state matrix (4 × 4 matrix) depending on 

the rotor speed 𝜔𝑟, B is the input matrix, and finally C is the output matrix. 

The observer can be established by adding an error compensator to the machine model. 

If a full-order Luenberger observer is considered, the state observer estimates the stator 

current and the rotor flux, involving only the error vector on the stator current between the 

measured and model output one, 𝑒𝑟𝑟 = (𝐢𝒔 − 𝐢̂𝒔), as given in the following: 

)ˆ(ˆˆ
sss

dt

d
iiGBuxA

x
    (1.8) 

 

Where ‘∧’ means the estimated values, G is the observer gain matrix which is designed 

so that the observer is stable [2]. The speed signal ω̂𝑟 is required to adapt the matrix𝐀̂. 

The speed of IM, can be achieved by using a PI controller as 

   dteKeK ipr  ̂     (1.9) 

 

Where the error term  )ˆ()ˆ(
ˆ

sQsQrdsDsDrq

rs

mr iiii
LL

L

dt

d
e  




  is the speed tuning 

signal found by utilizing Lyapunov’s theorem [2]. 

 

The block diagram of the full-order Luenberger adaptive observer is shown in Fig. 1-5.  
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Fig 1-5 Block diagram of the full-order Luenberger adaptive observer 

 

The full-order Luenberger observer based methods yield a reasonably accurate value for 

the speed. In general, the robustness against parameter mismatch and signal noise can be 

improved by employing stochastic observers for the estimation of the state variables, alt-

hough the algorithm and design complexity are increased. Among them, the Kalman filter, 

although being computationally cumbersome, permits a joint estimation of state variables 

and parameter providing a better accuracy at low speed. 

 

1.1.1.4 Limitations of Model-Based Approach 

Most of the fundamental model based schemes involve estimating both flux and speed 

from the information available at the stator terminals, i.e., voltage and current. Such 

schemes will always be marginally stable for zero excitation frequency, when the back 

e.m.f. decreases to null or it is so low to be comparable with the voltage drop caused by the 

stator resistance: the speed then becomes unobservable at the stator terminals and the con-

trollability at zero speed is expected only for a short time duration.  

Furthermore, machine parameters are necessary for constructing the speed information, 

which means that the performance of all model-based speed estimators degrades under in-

correct motor parameters. It is especially the stator resistance that determines the estimation 

accuracy of the stator flux vector. Although a correct initial value of the stator resistance is 

easily identified during initialization, considerable variations of the resistance take place 

when the machine temperature changes at varying loads. Besides, the bad knowledge of the 
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rotor time constant influences the estimation of the slip speed and therefore is critical at 

high loads.  

To further improve the performance of model-based methods, online parameter identi-

fication is required. Besides that, a more precise model of the PWM inverter and flux can 

improve the accuracy at low speed range. 

 

1.1.2 Anisotropy-Based Sensorless Approach 

1.1.2.1 Signal Injection 

Signal injection methods exploit machine anisotropy properties that are not employed 

by the fundamental machine model. The injected signal usually excites the machine at a 

much higher frequency than the bandwidth of the machine, and generates flux linkages that 

close through the leakage paths in the stator and rotor, leaving the mutual flux linkage with 

the fundamental almost unaffected [28-33].  

Manufactured cage IMs usually do not have the inherited rotor saliency like permanent 

magnet synchronous machines (PMSMs); The magnetic saliency, however, can be caused 

by many reasons, such as discrete rotor bars in a cage rotor [28,29], saturation effect of the 

leakage paths through the fundamental field [32][34]. Otherwise the saliency effect can 

also be enhanced by using a custom designed rotor so as to exhibit periodic variations of 

local magnetic or electrical characteristics within a fundamental pole pitch [30]. The inter-

action of the HF (high frequency) signal with the rotor magnetic saliency produces a rotor 

position dependent signal that can be tracked by a properly designed observer [31-34].  

Considering the case of saturation-induced saliency, the maximum flux density occurs 

in the d axis of a field-oriented coordinate system. The fundamental field saturates the stator 

and rotor iron close to d region, and therefore produces a higher magnetic impedance to the 

local leakage paths, the stator and rotor currents in the conductors around the saturated d-

region excite leakage fluxes having a dominating q-component. The total leakage induct-

ance component 𝐿𝜎𝑞 then reduces, while the component 𝐿𝜎𝑑 of the unsaturated q axis re-

mains unaffected, leading to 𝐿𝜎𝑞 < 𝐿𝜎𝑑 [35] 
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Being defined with reference to a coordinate system (X) that rotates at the speed of ani-

sotropy 𝜔𝑥 to be detected, the x axis coincides with the most saturated region. 

To extract the speed information from the machine anisotropy, a poly-phase rotating 

carrier at pulsation 𝜔𝑐 is usually added to the fundamental voltage generated by the pulse-

width modulation (PWM) system. The term is of the type,  

tj

cc
ceu


u      (1.11) 

where 𝐮𝑐 is the amplitude of the revolving carrier. 

The interaction of such a voltage component with the machine anisotropies causes the 

presence of a current space-vector 𝐢𝑐  at carrier frequency 𝜔𝑐  appearing as a component of 

the stator current space-vector 𝐢𝑠. To compute the resulting current space vector 𝐢𝑐, the car-

rier voltage has to be transformed into the same reference frame by multiplying it by exp(-

𝑗𝜔𝑥), 
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This formula can be used to solve for X

ci , considering that 𝜔𝑐 ≫ 𝜔𝑥, this leads to the 

following solution: 
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which is then transformed back to the stationary reference frame 
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This result shows the existence of a current space vector ip, rotating at carrier frequency 

𝜔𝑐  in a positive direction, and a space vector in that rotates at the angular velocity 𝜔𝑐 − 2𝜔𝑥  

in a negative direction. This last component has the information on the speed 𝜔𝑥 of the 

anisotropy to be detected. 

When carrier-signal excitation is used for sensorless control, the overall stator current 

consists of the fundamental current and the positive and negative sequence carrier signal 

currents. The separation of these components is necessary for both the fundamental current 

regulator operation and the extraction of the spatial information from the negative-sequence 

carrier signal. To be further processed by the speed estimation algorithm, the 𝐢𝑐 component 
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is extracted by a heterodyning technique or a band-pass filter centred at the carrier fre-

quency, which separates it from both the fundamental current component and the high-

frequency components due to the switching. Fig.1-6 shows the basic structure of the signal 

injection method.  
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Fig 1-6 Basic structure for the determination of the flux or rotor position  

by using an injection method 

 

Other methods in this category include high frequency pulsating carrier injection instead 

of the rotating one [1][4], which introduces a voltage vector on one of the axes of an esti-

mated dq coordinate (synchronous frame). One of the problems of the signal injection tech-

nique is the low magnitude of the modulated signal. A method overcoming this is to impose 

to the machine a set of repetitive short reversal PWM voltage vector [36]. Correspondingly, 

the transient flux components cannot penetrate the rotor sufficiently to create a mutual flux 

linkage, the response of this short-term voltage disturbance is therefore of high magnitude.  

 

1.1.2.2 PWM Harmonics 

In this method [37], the PWM harmonics are used as an ‘injected’ HF excitation signal, 

therefore no extra signal injection is needed. It was found that at low speed, the 2nd PWM 

carrier harmonic (denoted as PWM2) has the largest amplitude, so it has been used as the 

‘injected’ signal in the paper. The 2nd PWM carrier harmonic can be actually described as 

a pulsating vector, rotating approximately synchronously with the fundamental voltage 

vector in the stator fixed αβ frame as below, 
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Where 𝑉𝐷𝐶  is the DC voltage, 𝑚𝑥 =
2𝑣𝑥

𝑉𝐷𝐶
 (x=A, B, C), 𝑣𝑥 , 𝜔𝑃𝑊𝑀are respectively the 

PWM output voltage and angular frequency. 

Then, similar to HF pulsating injection approach, the resulting current PWM2 carrier 

harmonic 2PWMi together with the “injected” HF can be used for detecting the impedance 

related to the rotor speed. However as the HF pulsating vector amplitude and phase are now 

determined by the fundamental operation, the speed is retrieved from the impedance vector 

but not the resulting current. Paper [37] has proposed a novel position observer shown in 

the following (Fig. 1-7).  

Fig.1-7 shows the demodulation block. The stator voltage and current vectors  (vαβ, iαβ) 

are first band pass filtered with the centre frequency set to twice the PWM switching fre-

quency. The filtered signals are further demodulated by a heterodyning technique. The HF 

carrier frequency component is removed by a discrete average filter. As a result only the 

amplitude modulation signal '

2PWMv  and '

2PWMi of frequency fPWM2 are derived. An equiva-

lent impedance vector '

2PWMz  can be defined on the basis of the demodulated voltage and 

current PWM carrier harmonic vectors '

2PWMv  and '

2PWMi  as, 
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Fig 1-7 Block diagram of PWM2 signal demodulation 

 

To retrieve the flux angle information from the impedance vector, it is assumed that the 

rotor bars (RB) cause a circular equivalent impedance modulation with the amplitude '

RBZ . 
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The angle 
RB  is the rotor bar position within one rotor bar period, which is the distance 

between 2 adjacent rotor bars. The idea is to detect the asynchronous modulation due to the 

conductor bars embedded in the rotor iron package of the machine. The resulting voltage 

equation system for the demodulated PWM2 variables is given by, 
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The impedance vector is shown as an equivalent impedance vector with an offset Z’ and 

a circular modulation with the radius '

RBZ rotating backwards with '

22  PWMRB i  occurs,  
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2   PWMRBRBPWMRBRBPWM iZjiZZ z  (1.18) 

After compensating for the offset [37], the additional '

22 PWMi  phase modulation can 

be easily removed since the HF current vector position '

22 PWMi is directly known. Fig.1-

8 shows the corresponding signal tracking algorithm. A basic look up table (LUT) com-

pensation scheme is implemented to extract only the desired rotor bar modulation. One PLL 

(PLL1) is used to track and filter the measured Δz’PWM2 RB modulation, which contains the 

rotor bar modulation signal. A second PLL (PLL2) is used to condition the final derived 

rotor bar position signal and construct the speed information. 

PLL1 PLL2

LUT 2

 

Fig 1-8 Signal tracking PLL’s in the sensorless algorithm 

 

1.1.2.3 Limitations of Anisotropy-Based Approach 

Although problems at very low speed can be partly solved by these methods, in a real 

machine, the stator current signature presents a great quantity of harmonics: e.g., the satu-

ration saliency resulting from the interaction of different fluxes in the machine will lead up 

to secondary saturation space harmonics [31]; The discrete nature of the windings and the 

non-ideal manufacturing process generally produce other space harmonics. The inherit high 
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frequency PWM harmonics. Moreover, there is generally more than one anisotropy in an 

IM with different spatial orientations: the response to an injected high-frequency signal 

necessarily reflects all anisotropies, and therefore contains more than one resulting har-

monics close to each other. In order to separate the useful signals with noise, complicate 

signal processing methods are needed. This is usually achieved by using a band-pass and a 

band-stop filters, but they limit the bandwidth of both the current controller and the ob-

server.  

The tracked saliency depends on the overall saturation effect and will shift under a load 

[31]. Robust operation across the whole torque and low/zero frequency regions is not al-

ways possible. Besides, the modulating signal represents itself an additional harmonic of 

high amplitude to be cancelled [35]: this will cause instability of the control system at the 

extreme condition. Although PWM harmonic methods [37] do not have this problem, more 

complicate signal processing is needed due to the low amplitude of the useful signal. 

 

1.2 Contributions 

Since the fundamental-model based method has limited performance due to the non-

observability of the model at low speed and sensitivity to the machine parameters, there 

has recently been considerable interest in anisotropy-based methods for the sensorless con-

trol of AC machines. However, the anisotropy information is usually retrieved by signal 

injection, where extra harmonics have to be introduced into the machine and complicate 

signal processing is required to retrieve the speed information. Other problems are related 

with the possible saliency shift problem, and finally the robustness of the method is not 

always satisfactory. PWM harmonics methods, which do not have to inject extra signal to 

the machine, alleviate the problem of signal injection, but their performance is highly de-

termined by the PWM inverter pattern. 

Thus, extensive research has been carried out in the extraction of the speed related rotor 

slot harmonics (RSHs) to estimate the speed. These algorithms require no extra signal in-

jection, are independent of machine parameters, like stator and rotor resistances, and are 

mainly focused on the feasibility in steady-state or quasi steady-state. This thesis, on the 

contrary, will develop methods for tracking the RSH which are able to work online with 

high rejection ability to load torque changes. The proposed RSH speed estimators have also 

been applied to the scalar control system, they can work in a wide speed range, yet the 
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entire system is simple, computationally not demanding, and low cost. It is characterized 

by a very low sensitivity to the parameters variations. 

To directly track the RSH, the capability of the proposed system is tied to the following 

features of the detection system:  

1). High pull-in capability so as to track the RSH in the entire speed range of the machine, 

where the loop gain at RSH frequency is high, while decreasing sharply as the frequency 

deviates away;. 

2). A flexible and selective bandwidth so as to simultaneously track the RSH in a wide 

range of variation without permitting any noise to enter in the band of the detector. 

 These issues have been fully addressed and solved in the thesis. The proposed method 

can continuously and accurately track the rotational speed of IM at both dynamic or steady-

state conditions, and the centre frequency do not have to be changed manually at each com-

putation cycle. 

 

1.3 Organization 

This thesis considers the sensorless control of IMs using RSH in wide speed range, a 

background introduction on RSHs and literature review are presented in Chapter 2. Issues 

related to the RSH based speed estimator are discussed. 

Chapter 3 presents the scheme of scalar control. It is not new, but it is included for the 

sake of readability. Also some improvements are made on the basis of the conventional 

scalar control scheme. 

Chapter 4 describes RSH tracking method using the phase-locked loop, and the corre-

sponding sensorless scalar drive. Simulation and experimental results are presented to ver-

ify the algorithm. 

Chapter 5 describes the framework of RSH speed estimator based on minor component 

analysis, particularly by using the MCA EXIN neurons. 

Finally, Chapter 6 summarizes and gives recommendations for future work. 

In Appendix A, the IM model including the rotor slotting effect is presented. Its validity 

has been verified in simulation. 

In Appendix B, the eigen-decomposition of the autocorrelation matrix is discussed, it is 

the fundamental of the Pisarenko’ method. 

In Appendix C, a graphical User Interface for TLS EXIN neurons is included, with an 

analysis of the MCA EXIN algorithm. 
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Appendix D includes the generalization of linear regression problems, where the differ-

ences are described mathematically among the OLS, DLS, and TLS. 
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CHAPTER 2. SPEED DETECTION USING ROTOR SLOT 

HARMONIC

Rotor slot harmonics (RSHs) are found in the stator current waveforms for most induc-

tion motors. Algorithms have long ago been developed to track the speed of a motor given 

a dedicated stator current measurement, for example [38][39]. These methods are insensi-

tive to motor parameter changes with frequency, temperature, or any other external disturb-

ances. Besides being used for nonintrusive speed estimators, harmonic analysis has also 

been applied to diagnostic detection of electro-mechanical faults such as rotor eccentricity 

and damaged bearings [40]. 

In the control of an electric drive, accuracy and speed of response are the main two 

criteria describing the performance of a speed sensor. This chapter introduces the RSHs 

and issues around the extraction of RSH. Moreover, the limitations of previous literature 

that use RSHs for speed tracking or sensorless drive will be fully addressed. The improved 

methods developed in this thesis can estimate the speed with reduced time and improved 

accuracy, and they are suitable for sensorless drives, which will be described in the next 

chapters. 

 

2.1 Rotor Slot Harmonics 

2.1.1 Introduction 

In an induction motor, the speed related RSHs present in the stator current signature 

arise from the interaction between the permeance of the machine and the associated mag-

netomotive force (MMF). As the motor turns, the rotor slots alter the effective length of the 

air-gap periodically, thereby the permeance of the machine. This behavior is visible in the 

flux wave, which is the product of the MMF (the fundamental component) and the perme-

ance across the air-gap. The resulting harmonic components of the machine flux move with 

respect to the stator and induce corresponding voltage harmonics and hence current har-

monics in the stator winding.  
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Besides the fundamental MMF, the odd harmonics present in the stator and rotor current 

introduce a series of space and time MMF harmonics, producing the additional RSH of 

higher order. 

Static and dynamic eccentricity harmonics also appear in the stator current as a result 

from rotor rotating irregularly in relation to the stator axis.  

These harmonics are essentially a function of the number of pole pairs, the number of 

rotor slots per pole pair, and the speed, as it results from the following equation [41]: 

   111 ffspnqrf drh       (2.1) 

Where 

𝑓1 fundamental harmonic of the supply voltage; 

𝑠 slip; 

𝑝 number of pole pairs; 

𝑞𝑟  number of rotor slots per pole pair; 

𝑛𝑑 eccentricity order (nd = 0 in case of static eccentricity and 𝑛𝑑 = 1, 2, 3… in case 

if dynamic eccentricity),  

𝑟 order of the space harmonic, 𝑟 = 1, 3, 5, …; 

𝑣 the order of the stator time harmonics present in the power supply driving the mo-

tor. 𝑣 = 1, 3, 5, …  

It is worth mentioning that the stator slots, on the other hand, also affect the air gap 

permeance; the air-gap flux harmonics therefore result from the variation of the permeance 

due to both rotor and stator slotting. However, it has been found that there is no time har-

monics in the air-gap field which is related to the stator slots. This means that the number 

of stator slots affects only the space distribution of the flux harmonics relative to the sta-

tionary stator, and will not induce new frequencies in the current signature: a detailed dis-

cussion can be found in [42,53] . 

The principal slot harmonic (PSH) which refers to the first and the prominent harmonic 

in the RSH series, is obtained by (2.1), with 𝑟 = 1 and 𝑛𝑑 = 0, 𝑣 = 1 if the time harmonics 

of the stator and rotor currents together with the static and dynamical eccentricities are 

neglected. In this case the rotor slotting effects are located at frequencies: 

  11 1 fsfqf rh      (2.2) 

For most of the data presented in this thesis, there is little rotor imbalance so the most 

visible RSHs are given by (2.2), known as PSHs. However the motor is supplied by the 
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inverter and the higher time harmonics cannot be neglected, so 𝑣 can have higher values 

than 1.  

It should be noted, however, that the harmonics, as described by (2.2), are not present in 

a real machine for any combination of the number of rotor slots and pole pairs [43-47]. The 

time harmonics obtained with (2.2) result from the corresponding space harmonics of the 

resulting MMF, which are of order qr 1. Since qr = 3m ±1, this also implies that one of the 

two space harmonics is always a multiple of three, and therefore, it never induces a time 

harmonic in a healthy machine (e.g., balanced three-phase winding). This will lead to the 

fact that, the lower PSH (upper sign) in (2.2) exists in the stator current spectrum when 𝑞𝑟 

satisfies, 

...,2,1,013  nnqr
    (2.3) 

The higher PSH (lower sign ) exists when qr satisfies, 

...,2,1,013  nnqr
    (2.4) 

In the case under study, the adopted motors have 2 pole pairs, 36 stator slots (qs =18=3m, 

as in most cases) and 28 rotor slots (qr =14=3n-1), meaning only the lower PSH frequency 

is noticeable in the stator current signature.  

Fig.2-1 depicts how the PSH follows slip changes at constant speed. The experimental 

motor is operating in steady-state at mechanical speed of 10rad/s with a scalar controller, 

under load varying from 0 to 30% of rated value. It can be observed that the fundamental 

and the time harmonics frequencies increase with the slip. The PSH however, overlap with 

the time harmonics under some condition, e.g. the PSH lies higher than the 11th harmonic, 

and approaches the 7th at 30% load, making it difficult to be tracked dynamically. From 

(2.2) the frequencies where PSH meets the other harmonics can be further calculated when 

𝑓ℎ = 11𝑓1, 7𝑓1, 𝑓1, whereby the slips are 𝑠=
1

7
, 

3

7
, 

6

7
 respectively. On the other hand, the am-

plitude of the RSH fades as the load decreases, since the slot permeance hardly changes 

with the load, so the slot current is almost proportional to the fundamental current. 

Fig. 2-2 illustrates how the PSH changes with the motor speed. The adopted machine 

runs at low speed range, under no load condition. The operating speed varies from 1 to10 

rad/s. It is shown that the PSH decreases with the machine speed; in particular at very low 

speed, isolating the PSH from the other harmonics is really challenging as the PSH become 
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closer to the other time harmonics. This difficulty is even harder considering that the work-

ing condition of the machine is unpredictable. 

 

 

Fig 2-1 Current signature of the experimental motor runs at 10 rad/s, under different 

load 

 

 

Fig 2-2 Current signature of the experimental motor at low speed from1-10 rad/s, at no 

load 

 

2.1.2 Experimental results 

A more complete harmonic analysis on the stator current signature has been performed 

at different operating speeds as well as at no load and with load. This has been done with 
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the goal to verify which are the limits of the observer to properly extract only the RSH from 

the whole stator current signature. The experimental harmonic analysis has been made by 

employing the Real Time Signal Analyser Tektronics RSA5103A instrument, which 

permits the frequency range and the frequency accuracy to be analyzed even at very low 

frequency.   

The Real Time Signal Analyser Tektronics RSA5103A has been equipped with an 

attenuator of 40 dB to measure the voltage signals coming from current sensors; to obtain 

the amplitude of the measured current, the value read on the screen is to be added to 43 dB 

(the presence of the attenuator of 40dB+3dB to convert the RMS into amplitude).  

 

 

Fig 2-3a. Spectrum of the stator current signature at constant speed of 50 rad/s with no 

load 

 

 

Fig. 2-3b. Spectrum of the stator current signature at constant speed of 50 rad/s with 

10 Nm load torque 
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Fig.s 2-3 a and b show the stator current signature spectrum, measured with the above 

cited instrument, obtained at steady-state during a constant speed of 50 rad/s, respectively 

at no-load and at rated load (10 Nm torque). The RSH at no-load is correctly detected by 

the system at 1350/=208 Hz, while it moves to 207 Hz at rated load according to (2.2), 

maintaning the working speed at 50 rad/s with a slip pulsation of 𝜔2=13 rad/s. At this 

working speed, the closest harmonic to RSH is the 11th , which lies at 176 Hz at no-load, 

while it moves to 197 Hz at load.  

 

 

Fig 2-4a. Spectrum of the stator current signature at constant speed of 10 rad/s with no 

load 

 

 

Fig. 2-4b. Spectrum of the stator current signature at constant speed of 10 rad/s with 

10 Nm load torque 

 

Fig.s 2-4 a and b show the current signature spectrum obtained at steady-state during a 

constant speed of 10 rad/s, respectively at no-load and at rated load (10 Nm torque). The 

RSH at no-load is correctly detected by the system at 1310/=41 Hz, while it moves to 39 
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Hz at rated load according to eq. (2.2), maintaning the working speed at 10 rad/s with a 

load slip pulsation of 𝜔2=11.41 rad/s. At this working speed, the closest harmonic to RSH 

is the 11th at no-load, which lies at 36 Hz, while it is the 7th at load, which lies at 34 Hz. 

 

 

Fig 2-5a. Spectrum of the stator current signature at constant speed of 5 rad/s with no 

load 

 

 

Fig. 2-5b. Spectrum of the stator current signature at constant speed of 5 rad/s with 10 

Nm load torque 

 

Fig.s 2-5 a and b show the current signature spectra obtained at steady-state during a 

constant speed of 5 rad/s, respectively at no-load and at rated load (10 Nm torque). The 

RSH at no-load is correctly detected by the system at 135/=20 Hz, while it moves to 18 

Hz at rated load according to eq. (2.2), maintaning the working speed at 5 rad/s with a load 

slip pulsation of 𝜔2=15 rad/s. At this working speed, the closest harmonic to RSH is the 

11th at no-load, which lies at 16 Hz, while is the 5th at load, which lies at 20 Hz.  
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All these results are summarized in Table 2-1. It can be found that all the slot harmonics 

appear at frequencies in accordance with the theoretical values calculated from (2.2). For 

example, while at no-load the closest harmonic to RSH is the 11th, as expected, at rated 

load the closest harmonic remains the 11th at 50 rad/s, while it becomes the 7th at 10 rad/s 

and the 5th at 5 rad/s. This can be explained, considering that at low speed and high load, 

the slip pulsation 𝜔2 becomes comparable or higher than the fundamental one; 

correspondingly the 7th or 5th harmonic can become closer to RSH than the 11th .  

 

TAB 2-1 AMPLITUDE AND FREQUENCIES OF RSH AT VARIOUS SPEED 

 f1 f (closest harmonic.) fRSH 

 f [Hz] I [A] f [Hz] I [mA] f [Hz] I [mA] 

5 rad/s 

no load 
2 1.38 16( 11th ) 53 20 123 

5 rad/s 

10Nm 
4 7.31 20( 5th ) 611 18 404 

10 rad/s 

no load 
3 2.39 36( 11th ) 39 41 62 

10 rad/s 

10 Nm 
5 6.96 34( 7th ) 19 39 229 

50 rad/s 

no load 
16 4.36 176( 11th ) 29 208 69 

50 rad/s 

10 Nm 
18 7.85 197( 11th ) 31 207 323 

 

2.2 Review of Literatures on Speed Estimation via RSH 

When the location of the speed dependent PSH is found, the speed of the electric motor 

can be computed rather easily: assuming 𝑓ℎ is known, from (2.2), the rotor speed (expressed 

in electrical rad/s) is given by, 

r

h

r

h

r
qq

ff
sf 11

1

)(2
)1(2ˆ








    (2.5) 

Thus, the difficulty of speed estimation via PSH lies in the retrieve of PSH, for in a 

healthy machine the air-gap field and the stator current signal present a great quantity of 
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harmonics caused by winding distribution, slotting effect, air gap eccentricity, PWM supply, 

etc [42][48-52]. Among all these harmonics, PSH is located at rather high ranges in the 

stator current spectrum, but it moves toward the fundamental frequency when the slip in-

creases. Especially at low speed, the slip s increases dramatically even if the load torque 

remain constant (considering the slip frequency 𝑓2 = 𝑠𝑓1 remain constant, at low speed 𝑓1 

decreases, thus 𝑠 will increase), the PSH could lie at the same region of the 1th, 5th and 7th 

harmonics, see tab.2-1 for example. Thus, in practical drives, the PSH varies in a very wide 

range (from a few hertz to hundreds of hertz) and rapidly (it is dependent of the applications, 

normally within a few milliseconds) and moreover the retrieval of PSH is made harder by 

the other harmonics arising both from the inverter and the motor itself. 

 

As far as the direct RSH tracking is concerned, two main approaches have been followed 

in literature: 

A. Frequency domain methods, which are mainly based on FFT (Fast Fourier Trans-

form)-like approaches; 

B. Time domain methods, which are mainly based on PLL (Phase-Locked Loop)-like 

approaches. 

 

2.2.1 Frequency Domain Methods 

As for the frequency domain approaches, the main contributions are the [53-58].  

A pioneering work has been made in [53], where a speed detector based on fast Fourier 

transform (FFT) has been described. As shown in fig. 2-6, the conditioned phase current is 

first decomposed into frequency components by using FFT. Then the algorithm search the 

location of supply frequency 𝑓1within the range close to the fundamental inverter frequency 

𝑓0. Following (2.2), the component found is then used to define another two harmonic index 

ranges where the slot harmonics component might be located. The first range, [18(𝑓0/∆𝑓), 

19 (𝑓0/∆𝑓 )-1], allows for under-load condition and the second one, [18( 𝑓0/∆𝑓 ), 

19(𝑓0/∆𝑓)+1], for near no-load condition (𝑠 ≈ 0), where ∆𝑓 is the frequency resolution of 

the algorithm. The load condition is determined by setting a threshold on the amplitude of 

the RSH. The isolated RSH component and fundamental component are used to compute 

the rotor speed using (2.5). The FFT approach has shown a good estimation accuracy and 

can effectively work in a wide range with the help of fast digital signal processing. However, 

the resolution of the FFT depends on the data sampling frequency 𝑓𝑠 and the data block 
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length N (or 𝑓𝑠/𝑁 exactly), its speed of response is very limited due to the long data records 

required to produce a good frequency resolution. Fast tracking of RSHs, particularly during 

high slew rate transients, is a real challenge. As consistently shown in the paper, a single 

cycle speed estimation (including data acquisition, spectral estimation, harmonic extraction, 

etc.) time reaches about 3s at 10-kHz sampling rate. 
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Fig 2-6 FFT based speed detector 

 

Some modern spectral estimation methods (mainly parametric methods), such as the 

covariance method [54], the Prony method [55], have been used to improve the speed of 

response of FFT, with the accuracy of FFT being retained. An example can be found in 

[56], where Hurst proposed a speed estimation algorithm employing maximum entropy 

spectral estimation (MESE) method [57]. Many improvements have been made compared 

to the FFT approach: a notch filter is added to eliminate the fundamental current (see fig. 

2-7); Down-sampling of the current sequence is used to increase the effectiveness of sub-

sequent filtering operations; Before the MESE, a 26th-order band-pass filter is used to elim-

inate all spectral harmonics outside the range containing expected RSH, etc. The main im-

provement, however lies in the MESE itself, which is based on linear prediction model 

whose impulse response best matches the data, by least-square minimization. It is able to 

compute the frequency with less points of data (36 points as used in the paper), as a conse-

quence, it largely reduces the required sampling time and provides increased robustness to 

noise. Yet the drawbacks is obvious as well: the model order p has to be selected a priori 

with the experience of the author, it is required that the machine operates at a certain speed 

range, so the harmonics close to PSH is predictable. Besides that, the ratio between sam-

pling frequency and fundamental frequency remain fixed, resulting in a long converging 

time at low speed.  
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Fig 2-7 Speed detection algorithm based on spectral estimation. 

 

Apart from the modern spectral estimation approach, some papers have exploited the 

use of other types of transformation. One example can be found in [58], where the harmonic 

analysis of the machine current is taken by means of the chirp-Z transform (CZT). Com-

pared to the FFT, the frequency transformation is limited to certain restricted frequency 

bands. In the case of RSH tracking, they are frequency bands centered at the fundamental 

inverter frequency 𝑓0 and the expected RSH frequency 𝑓𝑠ℎ. Thanks to this constraint, the 

frequency resolution increases to 𝑓𝑤/𝑁, where 𝑓𝑤 is the bandwidth of the selected window, 

and N is the data length. It has been shown in the paper that, Chirp-Z transform reduces 

sampling and process time to 1.5s from 4.1s of the standard FFT approach with the same 

resolution. Despite this improvement, the response time remains too long for a real-time 

speed detector. Moreover, a shorter observation window is required for the CZT, if the RSH 

frequency jumps out of the expected frequency range, the algorithm fails. 

With all the frequency domain approaches under consideration, they generally provide 

good accuracy and linearity over a very wide speed range and load conditions, but a com-

promise has to be made between the required frequency resolution, to allow speed detection, 

and the response time versus changes of speed. A desired high frequency resolution im-

poses the acquisition of a large amount of samples and a corresponding high acquisition 

time. It means that the information on the RSH estimation can be updated only when the 

sampling window is completed. Besides that, the spectral analysis algorithm can only work 

with the help of band-pass filters: In steady-state, these filters will only increase the com-

putation burden, but as long as the transient is concerned, the band of the filters has to be 

adapted according to the expected frequency of PSH, the transient of these filter during the 
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parameters changing stage is complicate, together with the sensitive frequency analysis 

method, this implies that speed tracking during transients could provide insignificant results.  

 

2.2.2 Time Domain Methods 

As far as the time domain approach is concerned, the main contributions are the follow-

ing [59-61]. 

The speed identifier, which was proposed in [59], has used an adaptive digital filter to 

estimate the frequency of RSH (see fig. 2-8). The phase current is first pre-filtered by a 

high pass and band pass filter so that only the harmonics close to RSH are left, the cut-off 

frequencies of these filters are tuned online based on the fundamental inverter frequency f0 

and slip s, which is estimated by torque current iq (it is very closely proportional to slip 

frequency for operation up to base speed). fsh is then computed as follows: by tuning the 

centre frequency of an infinite impulse response (IIR) notch filter to minimize the remain-

der of the filtered output spectrum, so at steady-state, the center frequency of this notch 

filter will be equal to the RSH frequency fsh. This method provides a sample by sample 

estimation of the rotor speed, and since the RSH is defined directly by the notch filter pa-

rameters but not its output, it is claimed that the RSH frequency can be identified in 0.2 ms 

at 5-kHz sampling rate. The computational burden of this method is low as well. However, 

one difficulty might be the redesign of band-pass filter, because the motor speed changes 

fast, and the centre frequency of this filter has to adapt with the expected location of RSH. 

Unlike the frequency domain method, [59] highly relies on the on-line tuning of filter pa-

rameters, and such tuning often requires comprehensive understandings of the convergence 

properties of filters and increases the amount of computation considerably.  

A similar RSH frequency detection approach using filtering has been proposed in [60], 

where a digital IIR band-pass filter is used to let only the PSH pass through. The cut-off 

frequency of the filter is directly linked with its parameters, so it can be tuned quickly 

online. The frequency of the extracted RSH is determined by counting the number of zero-

crossing, meaning the computation burden will be largely decreased, however with de-

graded accuracy. Although the idea of the easy tuning filter is novel, in practice, a sole 

band-pass filter is hardly able to isolate the RSH from the other harmonics, unsurprisingly, 

large oscillation of the estimated speed can be found in the results.  
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Fig 2-8 Speed detection algorithm based on adaptive filter 

 

A frequency tracking method based on frequency demodulation approach, which is 

actually an opened-loop PLL has been introduced in [61]. Since it implements in complex 

domain, a complex current vector is first formed by phase currents, it is then fed to the 

frequency-demodulation block as shown in fig. 2-9, where the resulting RSH frequency is 

the sum of two component: the expected slot frequency fsh,0 and the correcting term fR,n. 

Given the parameters are well tuned, the output fsh,n should be accuracy and response fast, 

and the local oscillator frequency permits the band-pass filter to be properly tuned with 

constant bandwidth. One major drawbacks is that, the frequency of the local oscillator has 

to be chosen a priori, on the knowledge of RSH under constant (rated) supply frequency. 

As a consequence, such a method cannot be used in a variable speed drive case, since it 

requires an on-line adaptation of the local oscillator frequency according to the drive refer-

ence speed. This is the reason why results are presented only at rated or close to rated speed. 

Moreover, to guarantee the validity of this method, the instantaneous RSH should be clearly 

the largest signal in the varying frequency span between the rated and the current work 

condition, this is not always true in practical platform due to the presence of harmonics. 

 

 
Fig 2-9 Speed detection algorithm based on a frequency modulation method ([61]) 
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The time domain method provides a better real time performance than the frequency 

domain method, although the accuracy of the result will be affected by the noise level. They 

generally behave like such a band-pass filter: the gain is very large at the RSH frequency 

and very small away the RSH frequency, they usually need a better prior knowledge of the 

location of expected RSH frequency, so that the system operates only around a small band. 

If this band is not chosen correctly, this method fails. Therefore there is always the possi-

bility of line frequency harmonics or harmonics from other sources being mistaken with 

RSH. 

Considering all the pros and cons, this thesis mainly focused on the time domain 

method, making it better suited for real-time applications. Yet improvements have to be 

made on both the resolution and the on-line tuning, so that the system can work robustly in 

a very wide range. 

 

2.3 Practical Tuning of the Observation Window 

As stated earlier the current signature has a variable bandwidth directly related to the 

supply frequency f1 and slip s. For high efficiency induction motors, the slip s usually does 

not exceed 5％and possibly less. This assumption leads to interesting simplifications when 

searching for the PSH. If the PSH was confined to a frequency window under the practical 

limitations of slip, there would be no ambiguity in determining the window in which the 

PSH is located. This is not always true however, at low frequency. This is because the 

output torque is proportional to slip frequency (𝑓2 = 𝑠𝑓1), the rated slip increases as 𝑓1 de-

creases. It has not taken into the consideration the imperfect behavior of the controller, in 

practice, the slip can be large at low speed. 

On the basis of the above discussion, the observing window should be further refined to 

exclude the other harmonics, permitting a better robustness and faster convergence, the 

real-time slip pulsation 𝜔2 can be estimated, in this case, on the basis of a simple rotor flux 

estimator, defined by the following equations written in the stator reference frame (see [1] 

p. 414): 
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where isD, isQ are the stator currents components in the stator reference frame, |ψr| is the 

amplitude of the rotor flux and ψrd, ψrq its components in the stator reference frame, te is 
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the electromagnetic torque, Lm and Tr are respectively the three-phase magnetizing 

inductance and the rotor time constant. This simple flux estimator requires the knwoledge 

of just two electrical parameters and does not requires any computationally demanding 

vector rotation.  

The slip pulsation calculated by (2.7) and the fundamental inverter freuquency can be 

used to update an estimated location of RSH by using (2.2), then it can be used as the center 

frequency of the observing window. The bandwidth of this window, should be as small as 

possible, to eliminate the disturbance of other harmonics. 

 

 

2.4 Effect of Eccentricity of the Motor 

One important issue to be considered is the influence on the rotor speed estimation of a 

potential dynamic eccentricity. In case of dynamic eccentricity, it is well known in litera-

ture that the stator current signature exhibits a couple of main sidebands, derived from (2.1) 

with nd=1, r=1 and ν=1:  

  11 ffpqf rrh      (2.7) 

Where fr is the rotor speed expressed in Hz, if (2.5), without considering any dynamic 

eccentricity, is adopted for speed estimation, an error on the estimated speed occurs. This 

error can be written as: 
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With 𝑓𝑟
′ the rotor speed considering dynamic eccentricity. The percentage speed esti-

mation error, with the 2 pole pairs and 14 rotor slots for pole pair machine, is constant and 

about 3.7 %. This error poses the sidebands out of the normal searching range, which means 

that the speed could not be properly estimated.  

To overcome this problem, one way is to increase the searching range of the extraction 

algorithm. This, however, implies a worse performance, since other harmonics can easily 

enter the predefined bandwidth, and it is difficult to distinguish the RSH from the others 

Another solution is, whenever it is known that a dynamic eccentricity occurs, to adopt 

a speed estimation formula directly taking into consideration the eccentricity, differently 

from (2.5), as: 
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The adoption of (2.9) instead of (2.5) permits the correct computation of the speed and 

consequently the correct on-line tuning of the centre RSH bandwidth. 

 

2.5 Determination of the Number of Rotor Slot 

The number of rotor slots, if unknown, can be determined by generating a set of stator 

current data records at rated supply frequency and under increasing load levels. A visual 

inspection in the spectrum reveals the speed-dependent harmonic as a component increas-

ing in amplitude and decreasing in frequency. From the frequency of this component and 

the knowledge of the slip (only approximate value is needed), the number of rotor slots is 

easily determined according to (2.2). A long enough data records has to be used to guaran-

tee the frequency resolution, so that the PSH can be easily distinguished.  

A Matlab script can be designed to compute the number of rotor slot from the measured 

stator current. So long as the fundamental frequency is known, it is not difficult to compute 

the possible PSH range according to an estimated load condition. All the other time har-

monics related to the fundamental can be excluded firstly, then the possible PSHs in the 

range can be selected by setting a threshold on the amplitude. With the help of those har-

monics which comply with the selection criteria, the number of rotor slot can be determined 

by trying (2.2) with a reasonable integer rotor slots iteratively. Since most machines have 

a number of stator slots defined by their size and pole number, rotor slots are then margin-

ally greater or less than this number. 

 

app:ds:approximate
app:ds:value
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CHAPTER 3. SCALAR CONTROL SCHEME

Control techniques of induction machines (IMs) can be divided into two main categories: 

scalar and vector controls[2][4][62-66]. Scalar control is based on the steady-state model 

of the IM and therefore permits regulating at steady-state only the magnitudes and fre-

quency of the stator voltages, currents, flux linkages, and electromagnetic torque. Since it 

does not act on the angular position of the space vectors of the control variables, it does not 

permit the best dynamic performance to be achieved. On the contrary, vector controls are 

based on the dynamic model of the machine; they permit the drive to achieve its best dy-

namic performance in terms of electromagnetic torque control, thanks to their feature to 

take into consideration the instantaneous angular position of the stator voltages, currents as 

well as of the flux linkages. 

Although vector control can provide higher dynamic performance, some kinds of me-

chanical loads exist which do not require a high dynamic performance. Typical examples 

are fans and pumps where it is sufficient to regulate the speed of the IM with adequate 

efficiency over a wide speed range. This implies that it is sufficient to use the steady-state 

model of the IM instead of the dynamic one, as far as the control system design is concerned. 

The machine is supposed to be supplied by a pulse width modulation (PWM) voltage source 

inverter (VSI), able to generate a set of three-phase voltages whose fundamental component 

is characterized by the desired amplitude and frequency. Scalar control of IMs was born 

with the idea to use as a simple control method for regulating the speed of an AC machine 

[67-69]. 

 

3.1 Steady-State modeling and V/f Control 

3.1.1 Steady-State Modeling 

The open loop voltage/frequency (V/f) control (scalar control) is described in numerous 

papers in literature [2][62][70][71], the main idea is described here for coherence.  

The steady-state per-phase equivalent circuit of a symmetrical three-phase operation in-

duction machine in steady-state is shown in fig. 3-1 [62]  
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Fig 3-1 Steady-State per-phase equivalent circuits of IM 

 

Where -𝐔s, 𝑬g are the phasors of supply voltage, air gap voltage respectively, 

-𝐈s, 𝐈0, 𝐈r
′  are the phasors of stator, mutual, rotor current, 

-𝑅𝑠, 𝑅𝑟, 𝐿𝜎𝑠, 𝐿𝜎𝑟, are the resistance, leakage inductance of stator and rotor, 

- 𝑋𝜎𝑠, 𝑋𝜎𝑟represents stator and rotor reactance, 

-𝜔1 represents the supply frequency in electrical rad/s, 

- s=slip,  

- variables with a superscript (’) are rotor variable referred to the stator. 

 

For simplicity’s sake the core losses have been neglected. 

Starting from the steady-state space-vector equations of the IM, the air-gap electromag-

netic torque is related to the mechanical power and air gap power as  
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Where Pm and Pgap are the mechanical and air gap power, and 𝜔𝑚 is the rotor mechanical 

speed (in electrical radians). 

The current can be obtained from fig. 3-1 as 
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Where 
m

s
s

X

X  is the stator leakage factor. 

Thus by substitution of eqn. (3.2) into eqn. (3.1), the electromagnetic torque can be ex-

pressed in terms of the machine parameters as, 
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is the transient rotor reactance of the induction machine. 

It follows from (3.3), that by assuming the machine parameters constant, the electro-

magnetic torque is proportional to the square amplitude of the stator voltage for a given 

slip. By equaling the first derivative of (3.3) with respect to the slip to zero, 0dsdTe
, the 

critical slip (breakdown slip) is given by 
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This slip corresponds to the maximum torque given by: 
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Within (3.5) and (3.6), the ‘positive’ corresponds to the maximum motoring torque, 

which is also referred to as breakdown torque, the ‘negative’ is referred to as maximum 

generating torque. It can be seen that the maximum torque is proportional to the square of 

the stator voltage and it is inversely proportional to the transient rotor reactance 
'X of the 

IM. Considering only the motoring condition, it follows from (3.3) and (3.6) that the ratio 

of the torque and the breakdown torque can be expressed as 
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Equation (3.7) implies that the steady-state torque, for the same value of the supply fre-

quency and voltage, depends only on the slip; this relationship is almost linear for small 

values of the slip, where speed is close to the synchronous speed. In this case, 
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Fig. 3-2 shows a typical torque-slip curve of IM in steady state for negative and positive 

slip s. 
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On the other hand, the flux linkage of an IM is related to air gap voltage as 
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The flux linkage can be maintained constant by keeping the ratio between air gap voltage 

and supply angular frequency constant. The rotor current can be rewritten from fig. 3.1 as 

a function of 𝐄g 
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Meanwhile the expression for torque under the assumption of constant mΨ , can be re-

written as, 
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Fig 3-2 Torque-slip characteristic of an IM at steady-state 
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Where the superscript Eg/f denotes the assumption of constant flux linkage applied to 

(3.12). The slip at maximum torque can be given following the same procedure as (3.5) 
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And the maximum torque is equal to 

'

2

1

/

max

1

2

3

lr

gfE

e
L

T g


















E
    (3.14) 

A revised version of equation (3.9) under constant m  at speed close to the synchronous 

speed yields: 
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Equation (3.14) shows that the maximum torque is only dependent of the ratio Eg/f , and 

hence remains the same for constant Eg/f.  

 

 

Fig. 3-3 shows a set of the steady-state torque-speed characteristics of an IM under con-

stant flux linkage for a 2.2kW machine, the parameters of this machine can be found in 

Fig 3-3 Torque-speed characteristic of an IM under constant Eg/f 
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chapter 4, section “test set-up”. This figure clearly shows that the higher the supply fre-

quency, the higher the synchronous speed of the machine, as expected. Moreover, the lower 

the supply frequency, the higher the starting torque as long as the maximum torque is kept 

constant. The maximum torque remains almost constant while varying the frequency. 

 

3.1.2 Open-Loop Scalar Control 

Since it is impossible to control the air gap voltage Eg directly with a voltage-fed inverter, 

the practical way to control the speed of the IM is to open-loop regulate its supply frequency 

while simultaneously keeping constant the Us/f ratio. So long as Eg is high enough, it is 

acceptable to ignore the voltage drop in the stator resistance and leakage inductance, and 

then to consider
gs EU  : this happens for sufficiently high speeds. 

Fig. 3-4 shows the block diagram of an open-loop scalar control scheme [2][72][73]. In 

this scheme, the gradient limiter reduces the bandwidth of the stator frequency reference. 

The band-limited stator frequency reference then generates the stator voltage reference 

magnitude while its integral determines the phase angle. The amplitude and phase of the 

reference stator voltage space-vector constitute the input of the space vector PWM system 

that, in turn, establishes the switching pattern of the inverter synthesizing the reference 

voltages. 
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The |Us|/ω1 ratio defines the rate of change of the linear function in fig. 3-4 and is usually 

set equal to the rated stator flux amplitude of the machine, |Us|/ω1= |Ψsrat|, when the motor 

speed remains below the rated one. Above the rated speed, field weakening can be simply 

Fig 3-4 Block diagram of the open-loop scalar control. 
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achieved by limiting the voltage amplitude to the rated voltage of the machine, |Us| = |Usrat|. 

At very low stator frequency, there is a pre-set minimum value of the supply stator voltage 

so as to account for the resistive stator voltage drop, |Us| = |Us min|. This is due to the fact 

that, because of a non-null value of the stator resistance, as long as the supply frequency 

reduces, the stator flux amplitude decreases too. A compensator can be deployed to take 

account of this voltage deeply as explained in 3.2.2. 

Even if theoretically no stator current sensor is needed, since no direct current control is 

performed, in practical terms, it is frequently mounted to inhibit the switching of the in-

verter power devices for overload protection in the presence of over currents. 

 

3.2 Closed-Loop Scalar Control 

3.2.1 Closed-loop Scalar Control 

Section 3.1 corresponds to varying only the synchronous speed of the drive, while main-

taining Us /ω1 ratio constant, without the need of measuring the machine speed on the one 

hand, but without the possibility to compensate any variation of the speed caused by the 

load torque on the other hand. Thus, when more speed accuracy is required, the closed-loop 

control strategy should be adopted. The closed-loop control of the rotor speed can be 

achieved with the scheme in Fig. 3-5, where the speed PI controller employs the speed error 

signal to compensate the slip frequency. 
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In Fig. 3-5 to compensate for the slip frequency, the speed signal should be detected. 

The reference speed ωmref is compared with the measured one ωm, and the error is then 

Fig 3-5 Block diagram of the closed-loop scalar control  

with impressed voltages 
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processed by a PI controller. The output of such a controller is the reference slip speed ω2ref 

which, added to the measured speed, provides the stator pulsation reference ω1ref. The ref-

erence slip speed must be properly limited to the range where the speed/torque relationship 

is almost linear, to avoid pull-out phenomena. Then the same structure explained in 3.2.2 

is adopted. 

 

3.2.2 Improved Closed-Loop Scalar Control 

As explained in 3.1.2, the presumption that Us=Eg is not always true especially at low 

speed range, where Eg is not high enough, the voltage drop in the stator windings should 

also be considered. As a comparison, Fig 3-6 shows the torque-speed characteristics of the 

same 2.2 kW machine with constant Us/ω1. 

From fig. 3-6, for a given supply frequency, it is clear that the breakdown slip is smaller 

than those in constant Eg/ω1 condition and moreover the maximum torque cannot be kept 

constant; finally, the slip range corresponding to linear torque-slip characteristic becomes 

narrower. This becomes even worse at low speeds.  

 

A boost voltage is therefore required at low frequencies to compensate this voltage drop. 

However, if this voltage is high enough to give rated torque at standstill, when the excitation 

frequency is equal to the slip frequency, it will be too high however to allow the motor to 

Fig 3-6 Torque-speed characteristic of an IM under constant Ug/f 
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operate on no-load at this same excitation frequency for long periods, without excessive 

heating. In many drives this problem is circumvented by a special 'starting' procedure which 

applies a high boost voltage for only the few seconds required to start the motor while the 

running boost voltage is lower. 

A more sophisticated method [68] is to correct the stator voltage reference on the basis 

of such a relationship, compensating the stator resistance ohm drop: 
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where 
m  is the space-vector of the steady-state magnetizing flux, 

2 is the slip pulsa-

tion, Rs and Rr are the stator and rotor resistances. On the basis of (3.16), the following 

simple stator resistance voltage drop compensation method has been adopted, to maintain 

the magnetizing flux amplitude constant, even under heavy load [68]: 
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This method relies on the realistic assumption that the rated pulsation in the denominator 

of the second term is much higher than the component dependant on the slip pulsation. The 

third term indicates that for low speeds the voltage component dependent of the slip pulsa-

tion is added. 
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Fig 3-7 Block diagram of the improved scalar drive 
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Fig. 3-7 shows the block diagram of the proposed improved scalar controlled induction 

motor drive. The main difference here is that the voltage compensation part is introduced 

into the scheme. 

 

3.3 Controller Design 

The closed loop scalar control refers to the scheme of controlling the motor torque and 

speed by proportionally varying the voltage with supply frequency to keep the air-gap flux 

constant and achieve up to rated torque at any speed by controlling the slip pulsation. Equa-

tion (3.12) clearly shows that eT is in proportional to the slip pulsation
21  s , if Eg /ω1 is 

kept constant. Thus, the torque developed by the machine could be controlled by acting on 

the slip pulsation 𝜔2. The closed-loop scalar control using a PI regulator can be modeled 

as in fig. 3-8: 
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where J is the inertia of the motor and D is the friction coefficient The open loop transfer 

function of the machine under constant |Eg | /ω1, assuming load torque TL=0, is then given 

by the transfer function of the mechanic equation of the motor 
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The design of the PI is therefore a simple exercise of compensation for linear system 

and any traditional compensator design technique can be used [74][75]. 

 

 

Fig 3-8 System model of IM with scalar controller 
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CHAPTER 4. SENSORLESS SCALAR CONTROL BY PLL 

SPEED ESTIMATOR

Extensive research has been done in sensorless control by using the retrieval of RSH. 

As far as the direct RSH tracking is concerned, two main approaches have been followed 

in literature [53][56][58-61][76-80]: Frequency domain methods, mainly based on FFT 

(Fast Fourier Transform)-like approaches, and time domain methods, most of which are 

PLL (Phase-Locked Loop)-like approaches. The sensorless techniques proposed in litera-

ture hardly comply with wide speed range operation, and actually results are usually pre-

sented only at rated or close to rated speed. 

This chapter proposes a very simple sensorless technique based on a phase-locked loop 

(PLL) structure, suited for scalar controlled induction motor drives, where the centre band-

width is tuned on-line on the basis of the reference values of the supply and slip frequencies 

provided to the PWM converter. The PLL is tuned to track the machine rotor slotting har-

monic without the need of any high frequency signal injection, neither rotating nor pulsat-

ing. This results in tracking the machine speed in a very wide speed range (from rated speed 

down to as much as 2% of it) with a proper on-line adaptation of the centre frequency of 

the PLL. This has been made on the basis of the reference values of the fundamental supply 

pulsation and the on-line estimation of the slip pulsation. The methodology has been ap-

plied to a scalar controlled drive, with the aim of developing a low cost, computationally 

light sensorless drive, where the number of parameters to be tuned, both in the controller 

and in the estimator, is very limited in comparison with more performing sensorless drives. 

In particular, as for the control algorithm, only the PI control is to be tuned and only the 

stator and rotor resistances are to be known (only if voltage drop compensation is to be 

performed). As far as the PLL speed estimator is concerned, the only tuning parameters are 

the PLL gain and the cut-off frequency of its low pass filter while the only machine param-

eter to be known is the number of rotor slots per phase and per pole.  
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4.1 PLL Based Sensorless Scalar Control System  

4.1.1 Phase-Locked Loop (PLL) 

A PLL [81-88] is a circuit or software used heavily in communications engineering, 

radar, sonar, control engineering and many other applications. It makes an output signal 

synchronize with a reference input signal both in frequency and in phase. More precisely, 

the PLL is simply a servo system, which controls the phase of its output signal in such a 

way that the phase error between output phase and reference phase reduces to a minimum, 

so that the output and reference signal can operate at the same frequency. 

A typical PLL is composed of a phase detector (PD), a low-pass filter (LPF), and a 

voltage-controlled oscillator (VCO) (see Fig. 4-1). 
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Fig 4-1 General Structure of PLL 

 

The PD compares the reference signal vi with the feedback signal vo, producing a signal 

ve that depends on the phase error between vi and vo. In this thesis a multiplier type PD is 

adopted, but other types of PD can be used [81].The PD is then followed by a low-pass 

filter (LPF), which eliminates higher frequency terms, so that only the DC component and 

lower harmonics ve are left. The VCO generates an output signal vo with frequency ω, which 

is dependent on the input voltage vc. In general, without any input, the VCO generates by 

itself a signal of frequency ωc, called centre frequency. When an input ve is given, the VCO 

deviates from its central frequency ωc, typically with a linear law, so that the output fre-

quency is given by ω=ωc+Kve. The output signal vo will be then be vo=Vosin(ωt+φ). Thus 

the complete system produces an output signal vo synchronized in phase and frequency with 

the reference signal vi once the PLL is in steady-state. Often the feedback signal vo is a unit 

amplitude sinusoidal signal [81]. 

PLLs are often used because they provide filtering of a signal that is similar to what is 

provided to voltage or current waveforms by ordinary filters. The designer has some control 

over the manner in which the phase (or frequency) of the VCO follows a changing reference 

phase (or a changing reference frequency): the loop can be made to follow quickly or to 
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follow sluggishly, which is particularly valuable in removing the effects of noise on the 

reference. Actually PLLs can provide filtering that ordinary filters cannot do, because PLLs 

can follow a signal whose frequency varies slowly, that is, it acts like an adaptive filter that 

can track the signal frequency in a large range by adapting its center frequency, while re-

jecting all the noise provided that it is separated sufficiently in frequency from the signal. 

In this chapter, PLL is introduced with carefully designed loop parameters and band-

width so as to extract the rotor slot harmonics. Then a speed estimator based on it is adopted 

to estimate the rotor speed. 

 

4.1.2 PLL Based Speed Estimator 

The proposed PLL based speed estimator is based on processing the stator current wave-

form to track the rotor speed: the overall idea is to extract the rotor speed from the rotor 

slot harmonic fh , as discussed in chapter 2. The centre bandwidth of the PLL is tuned on-

line on the basis of the reference values of the synchronous and slip pulsation and is applied 

to the scalar control of induction motor drives, in which the supply and slip pulsation fre-

quencies are obtained in the control loop (see chapter 3). The tuning of centre bandwidth is 

realized by changing the centre frequency of the VCO, like in conventional PLLs.  

From eqn. (2.2), rewritten here for easy reference, 

  11 1 fsfqf rh      (4.1) 

the RSH appears at a certain frequency connected with the synchronous pulsation 1 

and the slip pulsation 2. Considering that the rotor speed in electrical angle per second is 

given by 𝜔𝑟 = 𝜔1(1-s), then the estimated mechanical rotor speed for a given RSH is given 

by, 

r

hr
m

pqp

1
ˆˆ

ˆ





      (4.2) 

 

Where m  is the estimated mechanical rotor speed (the symbol ^ refers to estimated) , 

the 1 is the reference supply pulsation, and p is the pole pairs Thus, a PLL speed estimator 

as the one shown in fig. 4-2 can be used to track the rotor speed.  
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Fig 4-2 Block diagram of the PLL speed estimator 

 

The induction motor stator current of one phase, including the slot harmonic, is firstly 

normalized to obtain a quantity of unitary amplitude. The PLL operates as a filter with a 

tunable band center h
~ , computed by using the 1ref and the estimated slip pulsation 2ref   

on the basis of the following expression, directly derived by (2.2) using the lower rotor slot 

harmonic : 

  refrrefrh qq 211~       (4.3) 

In particular, a constant term equals to 1 is added to the variable a, obtained by the output 

of the low pass filter amplified by K. This sum is practically equal to the VCO of a common 

PLL, as seen in fig. 4-1 and accounts for the deviation from the central frequency: indeed 

this sum is denormalized by multiplication of the h
~ , the central frequency, and is 

connected to the variation of the slot harmonics due to the speed variation. The output of 

this ‘VCO’ is the estimated pulsation h̂   of the slot harmonics. The mechanical rotor speed 

is then computed on the basis of (4.2). 

The only tuning parameters in the PLL are the gain K and the cut-off frequency of the 

low pass filter, while the only machine parameter to be known is qr, number of rotor slots 

per phase and pole. The choice of gain K in fig.4-2 is critical for the PLL to work in a 

proper lock range narrow enough for including the slot harmonic frequency while rejecting 

the other harmonics as will be more clearly explained in section 4.2.2. As for the filter, a 

4-order low-pass Butterworth filter has been chosen in this PLL scheme. Whenever the 

reference fundamental frequency 1ref  coming from the scalar control part changes, or 2ref 
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changes because of the load condition, the PLL adapts itself to a new working band, but 

the loop gain and the cut-off frequency of the low-pass filter remain constant. 

The whole PLL speed estimator is based on the PLL output which is the estimated 

frequency of the RSH h̂ , independently of the presence of the load and its amplitude, as 

well as of the drift of the machine parameters. Once the mechanical rotor speed m̂ is 

computed on the basis of eq. (4.2), it is then given to the scalar control algorithm as the 

feedback signal. 

 

4.1.3 PLL Based Sensorless Scalar Control Drive 

Fig 4-3 shows the scheme of the adopted sensorless scalar control scheme based on PLL 

estimator. The scheme is exactly the same as the one in fig. 3-7 except that the measured 

speed is replaced by the proposed PLL speed estimator output.  
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Fig 4-3 Scheme of Scalar Control Drive based on PLL 

 

However, in the scheme, 
*

2ref is not the one at the output of PI controller(see fig. 4-3 

ref2 ), but has been estimated using eq. (2.6) (see [1] pag. 414): 
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     (4.4) 

where isD, isQ are the stator currents components in the stator reference frame, |ψr| is the 

amplitude of the rotor flux and ψrd, ψrq its components in the stator reference frame, te is 

the electromagnetic torque, Lm and Tr are respectively the three-phase magnetizing 
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inductance and the rotor time constant. It should be noted that this flux estimator requires 

the knowledge of just two electrical parameters [2](p205). 

It should further be noted that, in principle, the ref2 signal is already available at the 

output of the speed controller of the scalar control scheme. This signal cannot, however, be 

used in eq. (4.3) for the centre bandwidth adaptation since, otherwise, it would be used 

twice: 1) for the adaptation of the centre of the bandwidth, 2) for the compensation of the 

load torque in the control scheme. This means that the slip reference pulsation ref2  would 

be used to compute the estimated speed, by adapting the centre-band of the PLL, whose 

value would be then exploited to close the speed loop and therefore to compute the ref2  

itself. As a result, the centre frequency of the PLL does not follow the slot harmonic, mak-

ing then the PLL tracking a frequency which is not the correct one: thus the drive would 

have a weak load torque rejecting capacity.  

 

4.2 PLL Mathematical Analysis 

4.2.1 PLL Mathematical Description 

As shown in Fig.4-2, the core of the PLL speed estimator includes a multiplier, a low-

pass (LP) filter, and a pulsation produced by the signal isc and by the unit vector. In this 

case, a current controlled oscillator (ICO) rather than a VCO is to be envisaged. 

The normalized phase stator current 𝑖𝑠/|𝐢𝐬| (which is a periodical signal with maximal 

unit amplitude) can be expressed in steady state in harmonic form as: 

   hhh
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Where 𝑎ℎ, 𝜔ℎ, 𝜃ℎ are the amplitude, frequency, and initial phase of the slot harmonic 

respectively; 𝑎𝑘, 𝜔𝑘, 𝜃𝑘 are the same parameters for all of the harmonics, excluding the slot 

harmonic. At the start of the PLL action, if the central frequency 𝜔̃ℎ is close enough to 𝜔ℎ 

so that the PLL is inside the pull-in region and locks in (see below) , the feedback signal 

isfb, is given by: 

   00 cos)~~(cos   tti chhsfb    (4.6) 
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Where 𝜔̃ℎis the centre pulsating frequency, ∆𝜔̃ℎis the correction of PLL (∆𝜔̃ℎ = a𝜔̃ℎ, 

where a is the normalized correction of the PLL), 𝜔𝑐 = 𝜔̃ℎ + ∆𝜔̃ℎ , and φ0 is the initial 

phase for t=0. After multiplication between 𝑖𝑠/|𝑖𝑠| and isfb , the signal ise can be obtained 

as follows: 
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   (4.7) 

When the PLL locks in, then 𝜔𝑐 → 𝜔ℎ , which means that, if the LP filter cut-off 

frequency is chosen low enough, all harmonic components of the first term of (4.7) and 

second component of the second term are cancelled out, and only the first component of 

the second term is present, since it is a DC component. The output of the LP filter is 

therefore. 

  0cos
2

1
  hchhfsc taKi    (4.8) 

Where Kf is the gain of the LP filter.  

The correction term a, once the PLL locks in at steady state (ss) is: 

ass=
1

2
𝑎ℎ𝐾𝐾𝑓cos (𝜃ℎ − 𝜑0)    (4.9) 

During transient the correction term is simply: 

a =K𝑖𝑠𝑐       (4.10) 

From (4.6), it results that the feedback signal at steady state is  

 𝑖𝑠𝑓𝑏
𝑠𝑠 = 𝑐𝑜𝑠[(𝜔̃ℎ + ass𝜔̃ℎ)𝑡 + 𝜑0]    (4.11) 

In transient 

 𝜔𝑐 = 𝜔̃ℎ + ∆𝜔̃ℎ = 𝜔̃ℎ + ass𝜔̃ℎ = 𝜔̃ℎ + K𝑖𝑠𝑐𝜔̃ℎ  (4.12) 

and in the steady state (𝜔𝑐 = 𝜔ℎ) 

𝜔ℎ = 𝜔̃ℎ + ass𝜔̃ℎ = 𝜔̃ℎ + K𝑖𝑠𝑐
𝑠𝑠𝜔̃ℎ = 𝜔̃ℎ + 𝜔̃ℎ

𝑎ℎ𝐾𝐾𝑓

2
cos (𝜃ℎ − 𝜑0) (4.13) 

From (4.13), the phase difference between input and the feedback signal can be 

expressed as 
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This means that when, for example, 𝜔ℎ  is exactly equal to the central frequency𝜔̃ℎ , 

𝜑0 = 𝜃ℎ −
𝜋

2
, so 𝜃ℎ − 𝜑0 =

𝜋

2
, or that the real slot harmonic is in quadrature with the feed-

back signal (4.11). From (4.14), it is obvious that if 𝜔ℎ − 𝜔̃ℎ  exceeds the overall loop 

gain 
 𝑎ℎ𝐾𝑓𝐾𝜔̃ℎ

2
, the PLL cannot work. 

 

4.2.2 PLL System Analysis 

In the case under study, the output of the PLL h̂ is the sum of terms, one depending on 

the PLL input h , the other depending on the center band frequency h
~

. Correspondingly, 

if the linearized system is represented as in Fig.4-4, two transfer functions can be defined 

as follows: 
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Fig 4-4 Linearized equivalent PLL transfer function 

 

On this application a 4-th order Butterworth (Btw) LP IIR filter has been chosen as the 

low pass filter of the PLL, and the transfer function of the squared amplitude is given by: 



CHAPTER 4. Sensorless Scalar Control by PLL Speed Estimator 53 

   
8

1

1












nj
s

sFsF


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Where ωn = 30 rad/s is the cut off frequency of the loop filter, Kf=1 is the gain of the 

filter. It should be noted that the choice of adopting a 4th order Butterworth filter instead of 

a simple 1st order one, as in the theoretical analysis shown above, is due to the necessity to 

obtain a stronger attenuation of the filter beyond its cut-off frequency. It does not in any 

case affect the reliability of the resulting analysis. The choice of a 4th order Butterworth 

filter is due to a trade-off between quick on-line and good high frequency attenuation.  

The hold-in range is the span of frequencies from the centre frequency to the frequency 

where the PLL will remain locked after having been initially locked. This range can be 

shown to be in the region where the steady-state phase error remains linear. In the case 

under study the following relationship holds [81]: 

 hfhhold KKa  ~)2/(     (4.17) 

where Kf=1 (gain of the 4th order Butterworth filter), K=0.04 (PLL gain) and ah=0.05 

(the amplitude of the fundamental of the measured stator current space-vector is equal to 1 

and the RSH amplitude is almost as much as 2.5% of the fundamental).  

The pull-in range is the span of frequencies from the centre frequency to the frequency 

where the system will initially lock in. This is a transient condition which is not easy to 

calculate exactly. For a type-I PLL with low-pass filter and sinusoidal phase detector, as 

the one adopted here, it can be approximated as follows [81]: 

holdpull   24 092.12.1423.03    (4.18) 

where  is the damping ratio of the equivalent closed-loop 2nd order system. 

Both ∆𝜔ℎ𝑜𝑙𝑑 and ∆𝜔𝑝𝑢𝑙𝑙 are very important parameters of the PLL. It is desirable to 

have those parameters as low as possible, to guarantee a suitable selectivity of the PLL: no 

other harmonics than the RSH should enter inside the band of the PLL. However, the lower 

the values of these parameter, the lower is the convergence speed of the PLL [81]. A trade-

off between these two opposite exigencies should be then found.  

In the case under study, ∆𝜔ℎ𝑜𝑙𝑑 and ∆𝜔𝑝𝑢𝑙𝑙 are both functions depending on the motor 

speed ωm (Fig. 4-5). As expected, both of them increase linearly with the machine speed: 

at zero or close-to zero speed the hold-in range is almost null, which is the limit of PLL. At 
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rated speed the pull-in range is about 2 rad/s and the hold-in range is almost 1.3 times the 

pull-in one. The fact that the hold-in range reduces with the machine speed is an important 

issue, since the lower the machine speed, the closer to the RSH are the other harmonics: in 

this situation, a narrower hold-in range is desirable. 

As for the dynamic behaviour of the proposed PLL, figs. 4-6, 4-7 show the Bode dia-

grams of the W1(s), W2(s) transfer functions. As for W1(s), it should be noted that, because 

of the variability of centre bandwidth, the cut-off frequency of the PLL and consequently 

its dynamics, varies with the supply frequency of the motor, ranging from 0.08 rad/s at f1=1 

Hz to 7 rad/s at f1=50 Hz. This means that the capability of the PLL to work in a wide speed 

range is paid with the reduction of its dynamic behaviour at very low speed. As for W2(s), 

it should be noted that the presence of a variable centre bandwidth introduces a constant 

proportionality gain between 𝜃ℎ and ω̃ℎ, which attenuates only when the PLL is out of its 

operating frequency region.  

 

Fig 4-5  ∆𝜔ℎ𝑜𝑙𝑑 and ∆𝜔𝑝𝑢𝑙𝑙 versus m  

 

Fig 4-6 Bode diagram of the W1(s) transfer function 
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Fig 4-7 Bode diagram of the W2(s) transfer function 

 

4.3 Simulation and Experiment Results 

4.3.1 Test Set-up  

The employed test set-up (see fig. 4-8) consists of: 

 A three-phase induction machine with parameters shown in Table 4-1. 

An 8 kVA, three-phase VSI for the control of the machine side inverter.  

 A torque controlled brushless Interior Mounted Permanent Magnet (IMPM) machine 

drive for the load of 1.5kW.  

 A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a floating-point DSP 

TMS320F240 for the control of the machine side inverter. 

 

 

 

Fig 4-8 Photograph of the test set-up 
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Tab 4-1 Parameters of the induction machine  

Rated power Prated [kW] 2.2 

Rated voltage Urated [V] 220 

Rated frequency frated [Hz] 50 

Pole-pairs p 2 

Stator resistance Rs [] 2.9 

Stator inductance Ls [mH] 223 

Rotor resistance Rr [] 1.52 

Rotor inductance Lr [mH] 229 

3-phase magnetizing inductance Lm [mH] 217 

Moment of inertia J [kgm2] 0.0048 

 

4.3.2 Simulation Results   

The proposed PLL based scalar control system has been studied and tested in 

Matlab/Simulink environment and the same parameters of tab. 4-1 have been used. The 

space-vector dynamic model of the IM including rotor slotting effects, which was proposed 

in [41] is used for the simulation part (see Appendix A).  

The simulation part is organized as follows. In part A, the proposed PLL speed estimator 

has been evaluated in the framework of the scalar control with measured speed feedback 

system (see fig. 3-7). Secondly, in part B, the measured speed was replaced by the PLL 

estimated one to close the loop so as to test the whole sensorless scalar drive system in a 

wide speed range with different load conditions (see fig 4-3). 

 

A. The Verification of the Proposed PLL Speed Estimator 

In this part, the speed tracking ability of the proposed PLL speed estimator has been 

evaluated, in the framework of the measured speed based scalar control system (see fig. 3-

7): the PLL speed estimator is connected on-line along with the main scalar control loop, 

the centre bandwidth of the PLL 𝜔̃ℎ  is calculated from 𝜔2𝑟𝑒𝑓
∗ and ω1ref, where ω1ref is the 

supply frequency of PWM and 𝜔2𝑟𝑒𝑓
∗  is estimated by (4.4). The output of the PLL is shown 

together with the measured speed for comparison. Both the robustness and the rapidity of 

response are then discussed. 
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However, to clearly illustrate the transient of the PLL estimator, a perturbation has been 

introduced into the value of 𝜔2𝑟𝑒𝑓
∗  obtained with eq. (4.4) (at t=3.5s deliberately), to show 

that the PLL is able to compensate the error. Moreover, since 𝜔2𝑟𝑒𝑓
∗  is merely a value esti-

mated by eq. (4.4), and since this value can be disturbed by the noise, this test with a per-

turbation has also a real meaning. It should be noted that the slip pulsation in the output of 

PI remains unchanged in this test.  

Figs. 4-9 show the results for rated speed at 10Nm load condition. The corresponding 

PLL estimator reference ω1ref  and 𝜔2𝑟𝑒𝑓
∗  are shown in fig. 4-9 a, the measured rotor speed  

ωm and estimated rotor speed 𝜔̂𝑚 are shown in fig. 4-9 b. Fig. 4-9 c shows the intermediate 

terms of the PLL estimator: the center bandwidth 𝜔̃ℎ, the estimated slot harmonics h̂ , the 

real slot harmonic ωh, and the corresponding correction term a . 

10% Deviation
ref1

*
2ref

 

 a) ω1ref  and 𝜔2𝑟𝑒𝑓
∗  (mechanical) with 150 rad/s reference full load 

refm

m

m̂

 

b) Rotor speeds at 150 rad/s reference full load 
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a
h~
h̂

h

 

c)  PLL intermediate terms 

Fig 4-9 Verification of the PLL speed estimator at rated speed, 10Nm load condition 

 

In fig. 4-9 a, a 10% deviation is added to  𝜔2𝑟𝑒𝑓
∗ on purpose at t=3.5s: 𝜔2𝑟𝑒𝑓

∗ steps down 

immediately from 2.5 rad/s to 2.2 rad/s , the value of ω1ref  remains unchanged, to the value 

of 153 rad/s at steady-state.  

The magnified figure in fig. 4-9 b shows that the PLL estimated speed is very accurate 

at steady-state, and it restores the true speed within 0.4s after the disturbance of 𝜔2𝑟𝑒𝑓
∗ .  

Fig. 4-9 c shows that the centre bandwidth 𝜔̃ℎ  is disturbed as much as 10 rad/s (0.3%), 

the estimated 𝜔̂ℎhowever tracks ωh within 0.4s, after the disturbance. Fig. 4-9 c shows the 

corresponding variation of the correction term a , which adjust itself after the perturbation 

of the centre bandwidth to track the slot harmonic ωh. 

The results also show that ωh lies in the hold-in range of PLL even after 𝜔̃ℎ  is deviated, 

and during the transient after this deviation, the value of a varies to compensate the per-

turbation of 𝜔2𝑟𝑒𝑓
∗  (10% error in this case).  

It should also be remarked that the hold-in and pull-in range of the PLL estimator cannot 

be too wide, otherwise the PLL would lock in other harmonics. In this study 𝜔̃ℎ is a linear 

combination of ω1ref and 𝜔2𝑟𝑒𝑓
∗ , or equivalently it is dependent on slip s. For small values 

of s (and for not too low speed) 𝜔2𝑟𝑒𝑓
∗  is small and has little impact on 𝜔̃ℎ: only 0.3% in 

the case under study (see fig. 4-9c, where 𝜔̃ℎ =3910 rad/s and h  is 3900 rad/s). Since s is 

not too large, the RSH harmonics is far from the other harmonics, it is then not difficult to 

find a proper bandwidth for the PLL estimator.  
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Figs. 4-10 show the results at reference speed of 10 rad/s, with 10Nm load. With such 

low speed and load (great value of s) the RSH is much closer to the other harmonics, so 

any strong perturbation can make the PLL lose lock, so a deviation of 5% is given in this 

case. 

Fig. 4-10a shows the waveform of PLL reference ω1ref  and 𝜔2𝑟𝑒𝑓
∗ , fig. 4-10b shows the 

measured rotor speed m and estimated rotor speed 𝜔̂𝑚 respectively, the center bandwidth 

of PLL 𝜔̃ℎ  and estimated RSH 𝜔̂ℎ are shown in fig. 4-10c, together with the corresponding 

correction term a  . 

From fig. 4-10a, 𝜔2𝑟𝑒𝑓
∗  steps down from 2.7 rad/s to 2.6 rad/s at 3.5s, after a 5% 

deviation is added, ω1ref remains at 12.8 rad/s at steady-state.  

Compared to the results at rated speed, the magnifying curve in fig. 4-10b) shows that 

the PLL estimator output is still satisfactory but worse than the one at rated speed. The 

restoring time of the PLL estimator is now near 0.7s in this case, which is slower than 0.4s 

for the rated speed. This is caused by two reasons: 1) the bandwidth of the proposed PLL 

estimator is smaller at low speed, 2) although 𝜔2𝑟𝑒𝑓
∗  changes less, ω1ref in this case is much 

smaller, thus the disturbance introduced into 𝜔̃ℎ  is about 2%, which is larger than the rated 

case 0.3%.  

Fig. 4-10c shows the value of 𝜔̃ℎ  and the estimated 𝜔̂ℎ, the PLL output is always ex-

actly equals to the real RSH frequency, which is at 254 rad/s in spite of the deviation of 

𝜔2𝑟𝑒𝑓
∗ , which causes 𝜔̃ℎ  shift from 256 rad/s to 259.8 rad/s. The corresponding correction 

term a  decreases simultaneously to compensate the error.  

In the low speed range, any error in 𝜔2𝑟𝑒𝑓
∗  will affect 𝜔̃ℎ  significantly, and large ripples 

can occur in 𝜔̃ℎ. Thus on the one hand K should be increased to have a good Signal/Noise 

ratio, but on the other hand, K should be kept small to avoid other harmonics to enter the 

PLL: a compromise between these two aspects is therefore to be found. 
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a) ω1ref and 𝜔2𝑟𝑒𝑓
∗  (mechanical) with 10 rad/s reference full load 

refm

m

m̂

 

b)  Rotor speeds at 10 rad/s reference, full load 
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h̂
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c)  PLL intermediate terms 

Fig 4-10 Verification of the PLL speed estimator at 10rad/s, 10Nm load condition  
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B. The Performance of the Sensorless Scalar Drive Based on PLL Estimator 

The sensorless scalar drive based on PLL estimator has been tested in a wide speed range 

from 150 rad/s down to 2 rad/s, to evaluate the performance of the PLL based scalar control 

scheme. In these tests, the PLL estimated speed has been used as the feedback signal, while 

the measured speed has been shown in the figures for comparison.  

The first set of tests refers to a speed step , both at no-load and full-load working 

conditions. 

Fig 4-11a shows the speed step result at high speed range: the reference speed steps up 

from 50 rad/s to 100 rad/s at no load. The drive behaves properly: the rotor speed ωm 

converges to the reference speed ωmref, and the estimated speed 𝜔̂𝑚 tracks the measured 

speed ωm accurately in less than 0.5s.  

The corresponding controller intermdiate terms, which are the supply pulsaton ω1ref, the 

slip pulsation ω2ref (mechanical angular pulsation), the supply voltage Us1, the 

compensating voltage Uscomp (see eq. (3.17)), and the compensated voltage Ustot ( the sum 

of Us1 and Uscomp), are shown in fig. 4-11b and fig. 4-11c. This figure clearly shows that the 

slip pulsation, very low at steady-state since at no load condition with only friction ( its 

D=0.025), rises up during the transient. The supply Us1 follows ω1ref, the compensating 

voltage Uscomp is close zero at steady-state, so that the compensated voltage Ustot is practi-

cally equal to Us1. 
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Fig 4-11 Reference speed steps from 50 to 100 rad/s at no-load 
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Fig. 4-12a , b and c show results for the same speed step test, however, at full-

load(15Nm). From fig. 4-12a, the speed response curve is similar to the one for no-load 

case, and the drive behaves well with full-load.  

Figs 4-12 b, c show the same test at full-load condition. In this case, ω2ref and Uscomp  are 

not zero anymore because of slip.  
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Fig 4-12 Reference speed steps from 50 to 100 rad/s at full-load 

 

Figs 4-13 show the results for a speed step at low speed range, ωmref goes up from 5 rad/s 

to 10 rad/s at no-load.  

Fig. 4-13a shows that the drive works properly at steady-state, and during the transient 

an error is spotted between the estimated and measured speed, which however becomes 

almost null at steady-state. This behaviour is satisfactory since only the steady-state 

perfomance is of importance, since a scalar control is dealt with.  

The corresponding intermediate terms are shown in fig. 4-13b and fig. 4-13c: the PI 

output ω2ref is equals to zero and, correspondingly the zero compensating voltage. 

Figs. 4-14 show the same results for full-load condition. Fig. 4-14a shows that the speed 

tracking performance is similar to the one at no-load, with an overshoot resulting in a longer 

settling time. However, the estimated speed converges to the measured speed before and 

quickly. Figs.4-14b, c present the corresponding intermediate terms of the controller. The 
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PI output ω2ref is about 5.5 rad/s at steady-state, meanwhile, the compensating voltage 

increases because of the slip, along with the increase of ω2ref. For the same reason, the 

compensated voltage for the PWM is higher than the one for no-load. 
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Fig 4-13 Reference speed steps from 5 to 10 rad/s at no-load 
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Fig 4-14 Reference speed steps from 5 to 10 rad/s at full-load 
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The second set of drive tests refer to the speed reversal, both at high and low speed range. 

Fig. 4-15a, shows the speed reversal at rated speed from150 to -150rad/s, at no load 

condition. It can be found that the speed tracks the reference properly, although some 

oscilations can be observed during the trasient: this is largely due to the small inertia of the 

rotor; however no steady-state error is observed. 

Figs. 4-15b and c show the corresponding PI output which is null all the time since s≈

0. The compensated voltage Ustot is simply a constant multiple of the supply frequency. 

Actually the amplitude of the supply voltage remains constant before and after the reversal, 

but the phase sequence changes after the reversal, which does not affect the voltage terms. 
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Fig 4-15 Reference speed reverses from 150 to -150 rad/s at no-load 

 

Figs. 4-16 show the results for low speed reversal, from -5 rad/s to 5 rad/s, at light load 

(2Nm). Fig.4-16 a shows the esitmated speed 𝜔̂𝑚, and the measured speed ωm oscillate but 

they converge to the reference: 𝜔̂𝑚fluctuate more than the measured ωm, making the speed 

tracking performance is still quite satisfactory at low speed. 

Fig. 4-16 b presents a small ripple in ω2ref, which is in accordance with the waveform of 

rotor speed response. The compensating voltage oscillates in the same way as ω2ref, and 

eventually it converges to 1.1rad/s at steady-state. 

Figs. 4-17 show the results for low speed reversal, from -10 rad/s to 3 rad/s, lightly 

loaded (2 Nm). The speed response performance is similar to the one from -5 rad/s to 5 
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rad/s. However, fig.4-17b shows that at steady-state the slip increases when the rotor speed 

decreases, while the slip pulsation remain ω2ref almost the same, i.e. under the assumption 

of constant ψm, the output torque is in propotional to the slip pulsation ω2 =sω1. 
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Fig 4-16 Reference speed reverses from -5 to 5 rad/s at 2Nm-load 
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Fig 4-17 Reference speed reverses from -10 to 3 rad/s at 2Nm-load 
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The third set of tests refer to rejection to load torque steps: different load torques have 

been applied to the machine, operating at constant speed of 10 rad/s. The load torque steps 

occur according to fig.4-19, and the amplitudes range from 0 to 10 Nm. 

Figs 4-18 show respectively the estimated and measured rotor speed (𝜔̂𝑚, ωm),and the 

controller intermediate terms. 

From fig. 4-18a, it can be found that the drive is robust to all the load torque step 

variations, the estimated speed tracks the measured and reference speed properly in about 

0.4s. The compensating voltage term presented in fig. 4-18c increases with the high slip 

pulsation, which is exactly what was expected. 

Even though the drive has a simple scalar control, fig. 4-19 shows that the electromagetic 

torque of the machine te responds quickly to load torque variations. A small bias is present 

due to friction. 
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Fig 4-18 Rotor speed at 10 rad/s reference speed during load steps 
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eT
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Fig 4-19 Electromagnetic and load torque at 10 rad/s reference speed during load steps 

 

The last set of tests refers to the minimum possible working speeds of the drive. 

Fig. 4-20 shows the reference, measured and the estimated speed during a constant speed 

reference of 3 rad/s (2% of the rated speed), at no-load and 5Nm load. They show clearly a 

very good behavior of the drive at 2% of the rated speed. The ripples for the full load 

condition is larger due to the bigger ripples in the 𝜔̃ℎ as discussed in part A. 

 

 

Fig 4-20 Reference, measured and estimated speed during constant speed operation at 

3 rad/s 
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4.3.3 Experiment Results   

The proposed scalar sensorless induction motor drive has been verified experimentally 

on the test set-up presented in section 4.3.1. For the experimental implementation of the 

PLL based speed estimator, the scalar control as well as the PLL have been implemented 

in the discrete z domanin adopting a sampling frequency of fc=10 kHz. The PLL estimator 

has been tested in a very wide speed range, from rated speed (150 rad/s) down to 3 rad/s (2 

% of the rated speed), showing the capability of the PLL technique to track the rotor slotting 

saliency in this very wide speed range. Moreover, the PLL estimator has been tested in both 

no-load and full-load working conditions. In the following, all the tests have been 

performed using the estimated speed as feedback signal, while the measured speed has been 

used only for comparison. 

The first test refers to a speed reversal at the rated speed of the machine.  

Fig. 4-21 a shows the reference, measured and estimated speed during a speed reversal 

from 150 to –150 rad/s (rated speed) at no load. It shows a very good behaviour of the drive, 

with the estimated speed properly tracking the measured one during the whole transient. 

Fig. 4-21 b presents the corresponding waveforms of the stator voltage amplitude terms, 

that is the Us1 term, the compensating term Uscomp and the compensated voltage Ustot as sum 

of the two. These terms are multiplied for the sign of the speed, including the sign of the 

voltage to be applied to counterbalance the back emf. It can be seen that the amplitude of 

the voltage varies during the speed transient, and the compensation term is maximum dur-

ing the speed transient when the slip speed is maximum (maximum torque operation).  
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b) Stator voltage terms, supply and slip pulsations (mechanical) 

Fig 4-21 The speed reversal test at no-load at high speed from 150 to -150 rad/s 

 

The second test refers to the very challenging situation of a speed reversal at very low 

speed. 

 Fig.s 4-22 a and b show the same waveforms obtained during a speed reversal at low 

speed, from –5 rad/s to 5 rad/s (3.3 % of the rated speed), with a light load torque of 2 Nm 

(corresponding to about 15 % of the rated torque). It can be seen that the drive is able to 

accomplish the speed reversal at very low speed in almost 0.3 s, with an almost null speed 

estimation error at steady-state and with a short time lag between the estimated and meas-

ured speed, due to the reduced bandwidth of the speed estimator at low speed, as expected. 

It should be further noticed that such a speed reversal at low speed is particularly hard to 

be accomplished, since, besides the voltage compensation term, the flux amplitude of the 

machine at low speed reduces significantly and so does the torque capability of the machine 

correspondingly. Furthermore, when the machine is at zero or close to zero speed, during 

the transient, there is a time interval in which the flux amplitude is null. This explains the 

reduction of the bandwidth of the speed estimator at low speed. It is then clearly observable 

how the voltage compensation term is very useful in such a test at low speed, considering 

that the main voltage term and the compensation one present a comparable amplitude. 

Fig.s 4-23 a and b show the same waveforms obtained during another speed reversal at 

low speed, from –10 rad/s to 3 rad/s (2 % of the rated speed), with a light load torque of 2 

Nm (corresponding to about 15 % of the rated torque). Even these figures show the good-

ness of the proposed estimator, thanks to which the speed reversal at very low speed is 
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performed in about 0.6 s, with an almost null speed estimation error at steady-state even at 

0.3 rad/s. The same kinds of consideration of the previous test hold for this one.  

 

 

a). reference, measured and estimated mechanical speed  

 

b) Stator voltage terms, supply and slip pulsations (mechanical) 

Fig 4-22 The speed reversal test with 2Nm at low speed from -5 to 5rad/s 
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a). reference, measured and estimated mechanical speed during the speed reversal with 

2Nm from -10 to 3 rad/s 

 

b) Stator voltage terms, supply and slip pulsations (mechanical) 

Fig 4-23 The speed reversal test with 2Nm at low speed from -10 to 3 rad/s  

 

The third test refers to the application of a square waveform of load torques at low speed. 

The drive has been given a constant low reference speed of 10 rad/s (6.6% of the rated 

speed), and then two subsequent very fast load torque square waveforms of time interval 

equal to 0.5 s and amplitude equal to 6 Nm and 10 Nm (rated torque). Fig.s 4-24a, b, c 



72  Binying YE, Ph.D. Thesis, 2015 

show respectively the speed, the torque and the voltage waveforms. The speed waveform 

shows that the drive is able to properly counterbalance all the load torque step variations, 

with the estimated speed tracking the measured one and the reference one, even after a long 

speed transient with the speed of the machine assuming negative values during the 

transient. The torque waveforms show that the electromagnetic torque of the machine is 

able to track the load torque, with a very good dynamic performance, especially considering 

that the induction motor drive is controlled with a very simple scalar controller. Finally, the 

voltage waveforms show an increase of the voltage term Us1 because of the increase of the 

supply frequency and also a higher increase of the additional voltage term due to the very 

high increase of the slip speed.  

 

 

Fig. 4-24a. Reference, measured and estimated mechanical speed during the subse-

quent load torque steps at constant speed of 10 rad/s 
 

 

Fig. 4-24b.  Electromagnetic and load torques during the subsequent load torque steps 

at constant speed of 10 rad/s 
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Fig 4-24 c. Stator voltage terms, supply and slip pulsations during the subsequent load 

torque steps at constant speed of 10 rad/s 

 

The fourth test refers to the minimum possible operating speed of the drive. Fig. 4-25 

shows the reference, the measured and the estimated speed during a constant speed refer-

ence equal to 3 rad/s (2 % of the rated speed), at no-load and at 5 Nm load torque. These 

figures show clearly a very good behavior of the drive at 2 % of the rated speed, at both no-

load and half of the rated load. These figures show also an increasing ripple of the estimated 

and measured speed, especially at load, due to the presence of other spectral lines than the 

PSH: these enter the bandwidth of the PLL and so limit the PLL operation close to zero 

speed. 

 

Fig 4-25 reference, measured and estimated speed during the constant speed operation 

at 3 rad/s at no-load (up) and at 5 Nm load (down) 

 

4.4 Summary 

The simulation and experimental results show the PLL is able to properly track the ma-

chine speed in a very wide speed range; the results also show a proper behaviour of the 
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scalar sensorless drive in a very wide speed range from rated speed down to 2% of the rated 

speed, at no load and with load conditions. Moreover experimental results are in high ac-

cordance with the simulation ones and with the theoretical analysis.  

The speed estimation has been performed on the basis of a PLL algorithm, whose centre 

bandwidth is tuned on-line on the basis of the reference values of the supply and slip fre-

quencies provided to the PWM. The speed estimation performed on the basis of a PLL 

algorithm is of a particular interest in terms of a potential industrial applications: if applied 

to a simple scalar control it requires both a very limited numbers of tuning parameters (PI 

of the speed control and the gain and cut-off frequency of the filter PLL), and the 

knowledge of very few machine parameters (stator and rotor resistances, and the number 

of rotor slots per phase and per pole). This makes the methodology easily exportable to 

several other types of drives. 

.
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CHAPTER 5. SPEED ESTIMATION BY ADALINES AND 

MCA EXIN NEURAL NETWORKS

To retrieve the PSH, chapter 4 describes the PLL (phase-locked loop), whose centre 

frequency adapts according to the working condition of the machine, and whose linearized 

transfer function is, 
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(see chapter 4 for the symbols) 

The corresponding tracking error to a step of the PSH frequency, 
∆𝜔ℎ

𝑠
=

𝑠∆𝜑ℎ

𝑠
, is given 

by: 

0)(lim)(lim 1
0






sW

s

s
ste e

h

st


  (5.2) 

W1e(s)=1-W1(s) is the error transfer function for (5.1).  

From (5.2), it is obvious that the PLL has zero tracking error with input frequency steps. 

However, under the framework of PLL, the frequency output become correct after the phase 

is locked, this usually results in a longer settling time, or in worst case, ex. step of phase 

angle, causes the spurious transient frequency, and it takes typically many circles for the 

PLL to relock the phase.  

To improve the speed estimation performance, in this chapter, the slot frequency is 

estimated by ADALINEs and MCA EXIN Neural Networks. First, two cascaded ADA-

LINEs are used to extract the rotor slot harmonic from the input stator phase current, acting 

as adaptive filters and whose output consists only of the slot harmonic. Then, the MCA 

EXIN neurons are used to extract the eigenvector corresponding to the minimum eigen-

value of the autocorrelation matrix formed by the ADALINEs’ output sequence: as a matter 

of fact the slot frequency can then be estimated by finding all the roots of the polynomial 

equation formed from this eigenvector by using Pisarenko’s theory. Moreover not only can 

the proposed neural network work recursively sample by sample, but the computational 
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complexity and mean square frequency estimation errors are largely reduced. Finally, like 

the PLL observer, the rotor speed can then be computed by (2.5). 

 

5.1 Retrieval of Rotor Slot Harmonics 

5.1.1 ADALINE  

A linear adaptive neuron (ADALINE) is a single layer artificial neural network which 

can be used as a notch filter or a band filter [2][89-91]. This means that the neuron is either 

able to cancel a determined signal at a certain frequency (notch filter), or it is able to let a 

determined signal pass at a predefined frequency (band filter, where band stands for a band 

of signals in a very narrow range around a predefined frequency). 

Fig.5-1 shows the notch/band ADALINE with two adaptive weights. 
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Fig 5-1 Schematic representation of the ADALINE 

 

The network presents two inputs and two outputs: the primary input is the signal to be 

processed, which is assumed to be of any kind of signal; the reference input is a pure cosine 

wave ωc and its π/2vdelay, at the frequency of the primary input signal d(k) that should be 

eliminated or let pass; the two outputs give the notch and the band behaviour respectively.  

The sampled reference inputs are, 
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where C is the amplitude of the sinusoidal sequence with reference frequency ωc. 

The procedure for updating the weights is a Least-Squares Algorithm (LS), such as the 

LMS or the TLS algorithm [ 92][93 ]. The LMS is adopted here because of its low 

complexity, low computational demand, and high-speed of convergence, its learning laws 

are beneath: 
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where 

wi(k) the weight of the ith neuron at the kth time sample; 

μ  the learning rate; 

𝜀(𝑘) the difference between the primary input signal d(k) and the band filter out-

put y(k); ɛ(k) is also the notch filter output. 

It can be proved (see [89](p. 318), for the complete proof) that the notch transfer functions 

H(z) = ε(z)/d (z) and band K(z) = y(z)/d (z) are, 
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where ε(z)and d(z) are the z-transform of the sequences εk and dk; the transfer functions 

are therefore linear functions, and they represents typical second order adaptive filters, like 

the SOGI-FLL in [94][95]. The notch output and the band output are one complementary 

to the other. 

Moreover it can be further derived by a simple analysis on the poles and zeros of the 

function, that the quality factor of the filter is explicitly related to the parameters as follows 

[89]  
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The bandwidth and centre frequency of the filter can be adjusted respectively by the 

learning rate μ and ωc, and they completely define the dynamic and the filtering character-

istics of the ADALINE filter. 

 

5.1.2 The Retrieval of the RSH by ADALINEs 

To retrieve the harmonic current ih due to the PSH, the following structure is proposed: 
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Fig 5-2 ADALINE structure to track the RSH 

 

Fig. 5-2 depicts the overall PSH retrieval system based on two cascaded ADALINEs: 

one (ADALINE1) works in notch mode, the other (ADALINE2) works in band mode.  

ADALINE1 receives as input the normalized stator phase current ssA ki i/)(  given by 

   hhh

hn
n

knnssA kIkIki  

















 





coscos/)(
1

i   (5.7) 

Where ω1ref  is the supply fundamental angular frequency, Ih, ωh ,φh are respectively the 

amplitude, angular frequency and initial phase of the RSH, and In, ωn ,φn are respectively, 

the amplitude, angular frequency and initial phase of the harmonics not including the RSH. 

is is the stator's current space phasors. 

The output of ADALINE1 is the current is-is1, that is the normalized stator phase current 

without the fundamental frequency. 

The second ADALINE (ADALINE2) has this last signal as input as well as the estimated 

slot frequency 𝜔̃ℎ. which is computed by using ω1ref and the slip pulsation ω2ref as follows 

by using (2.2), 

refrrefrh qq 21)1(~       (5.8) 

ADALINE2 works in band mode and extracts the slot current ih 

 hhhh kIki   cos)(     (5.9) 

where Ih and φh are the extracted PSH amplitude and phase. 
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ω1ref is generally the supply fundamental frequency of the inverter, and its value is given 

in the framework of both scalar and vector controls.  

The structure shown in fig. 5-2 works properly if the RSH is the largest signal once the 

fundamental frequency has been cancelled. However, 𝜔̃ℎmust be provided quickly and in 

this thesis the idea is to estimate it on the basis of a simple rotor flux estimator, defined by 

(2.6). 

 

5.1.3 Design Criteria 

The learning rate μ has to be set to obtain a good trade-off between the bandwidth and 

the convergence speed; which is critical for the network performance, and the overall sta-

bility of the system. As a matter of fact, a slow convergence, corresponding to a lower value 

of μ and a resulting narrower band, introduces a delay that, in a feedback action, could be 

unacceptable. In addition, filter stability considerations impose the upper limit of μ on the 

basis of the maximum eigenvalue λmax of the autocorrelation matrix of the input signal, that 

is: 1/λmax > µ > 0. 

In particular, for the ADALINE in notch mode, the fundamental harmonic is expected 

to be eliminated. It is assumed that the supply pulsation reference ω1ref is close enough to 

the true fundamental frequency. Normally a greater μ is preferred, due to the resulting faster 

convergence and perfect elimination of the fundamental harmonic. This is not true however 

for low speed values and with heavy load: in these conditions, the PSH frequency is very 

close to the fundamental, and therefore a smaller μ can guarantee that the PSH be unaffected 

when the fundamental is cancelled. Fig.5-3 shows the frequency response of the ADALINE 

notch with respect to μ. 

For the ADALINE in band mode, the centre frequency is tuned according to the esti-

mated 𝜔̃ℎ, therefore the bandwidth has to be wide enough to compensate for the error be-

tween 𝜔̃ℎ and the true one, permitting the system to track the PSH properly even in the 

presence of variations of the value given by (5.8). Moreover they have better phase char-

acteristics around the band frequency. On the other hand, it is important that the harmonic 

and inter-harmonics outside the PSH be outside the bandwidth of the filter, and this requires 

a low value of μ. Since in real drive systems the PSH varies quickly according to the work-

ing conditions, and since the motor current signature is full of different time-variable har-

monics, the constraints for the ADALINE in band mode are of utmost importance. Fig 5-4 

shows the frequency response of the ADALINE in band mode with respect to μ. 
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Fig 5-3 Frequency response of the ADALINE notch with respect to μ, centered at 

2π*600rad/s.(f1=50Hz, s=7.14% the experimental motor) 

 

Fig 5-4 Frequency response of the ADALINE band with respect to μ, centered at 

2π*600rad/s.(f1=50Hz, s=7.14% the experimental motor) 

 

The performance of ADALINEs in the PSH retrieve system with respect to different 

choice of μ has been tested in the experimental platform, with the motor running at 10 rad/s 

with no-load (ωh≈260 rad/s). Figs 5-5 show respectively the frequency spectra at the input 

of ADALINEs (isA) and output of ADALINEs (ih), with different μ. They clearly show that 
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a better filtering effect results with a smaller μ. When μ=2e-4, other harmonics are clearly 

observed at the ADALINE output, meaning that the filter fails to work correctly for an 

inappropriate learning rate.  

 

 

a) μ =2e-5 

 

 

b) μ =5e-5 
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c) μ =2e-4 

Fig 5-5 The FFT results of current at the input of ADALINEs (isA) and output of ADA-

LINEs(ih) 

 

 

5.2 Frequency Estimation Based on MCA EXIN Pisarenko Method  

5.2.1 The Pisarenko’s Theory 

The noisy discrete-time measurements of the filtered slot harmonic can be represented 

as 

  )(cos)()()( kqkIkqkikx hhhh     (5.10) 

where ωh is the slot harmonics pulsation, and φ is a random variable uniformly distrib-

uted in [0, 2π). The noise q(k) is assumed to be a zero-mean white process with unknown 

variance σ2.The task is to find ωh from K samples of x(k) [96-101].  

One way to estimate frequency is using subspace methods, such as Pisarenko and MU-

SIC, which assume that the signal is a sum of harmonics and explore the orthogonality 

between the noise subspace and the signal subspace [102-107]. The frequency can be then 

computed simply by making an eigenvalue decomposition of the autocorrelation matrix of 

the input signal. 

Among them, Pisarenko is probably the most simple and computational efficient. In the 

Pisarenko method [102], it is assumed that the data sequence is a sum of p complex expo-

nentials in white noise, 



CHAPTER 5 Speed Estimation by ADALINEs and MCA EXIN Neural Networks 83 





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i nekx i

1

)()( 
A     (5.11) 

Where v(n) is a zero mean white noise with variance σ2, and  Ai, ωi are respectively the 

amplitude and the angular frequencies of the ith exponential. The amplitudes Ai are complex 

numbers as follows:  

ij

ii eA


A     (5.12) 

and the phases φi are considered uncorrelated random variables uniformly distributed 

over the interval [0, 2π). 

In the Pisarenko’s theory, the data sequence is considered to be a final length sequence 

of p+1 elements, therefore a (p+1)×(p+1)autocorrelation matrix can be constructed as fol-

lows (see Appendix B for details): 
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where rxx(k) is the kth input autocorrelation sequence Rxx can be decomposed into  

IRR 2 ssxx
    (5.14) 

where Rss is the autocorrelation matrix without noise.  

The autocorrelation matrix Rss is of rank p[102], but Rxx is of rank p+1 due to the pres-

ence of white noise, with eigenvalues σ2≤λp≤…≤λ1 and corresponding orthonormal eigen-

vectors zp+1 , zp,…, z1. In this choice, the dimension of noise subspace is equal to one, and 

it is spanned by the eigenvector corresponding to the minimum eigenvalue, λmin= σ2. De-

noting this noise eigenvector by vmin, it follows from (5.14) that  

0min vR ss      (5.15) 

And vmin is therefore orthogonal to each of the signal vectors, 

 Tjpjj

i
iii eee

 2
1e  [102]. Thus, the frequency can be estimated by finding all 

the roots of the following polynomial equation formed by the minimum eigenvector, 
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Consequently, the z-transform of the noise eigenvector, vmin, has p zeros on the unit cir-

cle, 
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corresponding to the p harmonics of the signal: the frequencies of the complex expo-

nentials can be therefore extracted from the roots of Vmin(z). 

When the original Pisarenko’s method is used to estimate the frequency, it is limited by: 

1) The estimation of the autocorrelation sequence: in real-time applications, the amount of 

data samples that one has to work with is never unlimited, actually most are computed on 

a limited number of samples, and this will lead up to an erroneous estimation. 2) The gen-

eral difficulties involved in determining the eigenvalues and eigenvectors of autocorrela-

tion matrix: the algorithm of SVD require O(N3) multiplications, for high-order problems, 

resulting in a lot of computation effort. 

To adaptively compute the generated eigenvector associated with the smallest eigen-

value of an autocorrelation matrix. A number of algorithms have been proposed in the 

framework of Pisarenko theory. These algorithms can mainly be divided into two catego-

ries: The first category involves stochastic-type adaptive algorithms. Thompson [108] first 

proposed an adaptive algorithm that is used to extract a single minor component and can 

be applied to find the Pisarenko solutions. Other similar algorithms have also been reported 

in [109],[110], they usually require O(N) computational complexity. The second category 

algorithms are called the recursive total least squares (RTLS) algorithms. They are devel-

oped on the basis of recursive least square (RLS) method, in the RTLS algorithm however, 

the observation vector is also assumed to be corrupted by noise. In general, the RTLS al-

gorithms have O(N2) computational complexity per iteration, whereas the fluctuations in 

the estimation parameter are reduced. Examples can be found in [126][127], they can 

quickly track the eigenvector associated with the smallest eigenvalue of the augmented 

correlation matrix. 
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Obviously the algorithms in the first category are more appropriate to implement on-

line due to the reduced computation. However, the inherent limitation of the learning pro-

cess necessitates a compromise between the requirement of fast convergence rate and small 

mean square frequency estimation error (MSFE) (the MSFE are of order O(α), being α the 

learning rate [118](p.251)). One interesting approach for the stochastic-type adaptive algo-

rithms is, to adaptively select the values of the learning rate in accordance with some crite-

rion, which can provide an approximate measure of the adaptation process state. Such an 

algorithm is, even imperative when one tries to apply it in the real-time case. Many heuristic 

methods has been directed to vary the step size for the gradient based algorithm such as 

LMS, RLS, and back propagation [111],[112], they can all work effectively in their own 

field, but are not directly applicable to the MCA neurons.  

In the following the recursive frequency estimation algorithms using the original MCA 

EXIN and two improved MCA EXIN method under the framework of Pisarenko will be 

discussed. The MCA EXIN neuron, which deals with the recovery of eigenvectors of the 

data sequence’s autocorrelation matrix, as proposed in [92][113][114], can be adopted for 

finding the minimum eigenvalue and eigenvector to be used in Pisarenko method. Thus, 

the estimation algorithm can become iterative and deal with each data sample instead of 

the whole data block, meanwhile, the overall solution is of TLS meaning (see appendix D). 

 

5.2.2 The MCA EXIN Pisarenko method 

A recursive total least squares neural network (MCA EXIN) can be used to compute 

the TLS solution of the minimum eigenvector required by Pisarenko’s method; the algo-

rithm requires only O(N) multiplication at each iteration. Fig. 5-6 shows the scheme of the 

neural networks. 

 

Z-1

y

x(n)
Z

-1 Z-1

 

Fig 5-6 The recursive linear total least square neural network 
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In the following a brief summary of the MCA EXIN neuron is given as in [113].  

Let a linear neuron be considered with a real input vector x(t) = [x1(t),…, xM(t)]T and real 

output y(t) (see appendix C for details):  


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i

ii

T txtwttty
1

)()()()()( xw    (5.18) 

where w(t) = [w1(t),…, wM(t)]T is the weight vector. 

In order that the neural weights converge to the minimum eigenvector, the updates of 

weights should follow the minimization of the Rayleigh quotient (RQ), 

   
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xxrJE  ,    (5.19) 

By employing a gradient descent method for minimizing this function, the gradient flow 

of E[J] is given by 
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with 
2

  the Euclidean norm of a vector. This equation is the average version of the 

continuous time differential equation, 
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The EXIN neuron, one of the best learning laws in terms of stability and converging 

time, whose averaging gradient flow (ODE) is directly derived from the discretization of 

the sequential version of the exact gradient flow of RQ, is given by 
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where α(t) is the learning rate.  

Let Rxx be the n×n autocorrelation matrix of input data. If w(0) satisfies 0)0( M

T
zw  

(being Mz the orthonormal eigenvector corresponds to the smallest eigenvalue), it holds  
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Mt zww
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Then this weight vector, which converges to the eigenvector corresponds to the smallest 

eigenvalue (MC), can be used in (5.17) for computing the frequencies.  

It should be noted that in (5.11) the signal is assumed to have p complex-valued expo-

nential: the required dimension of autocorrelation matrix and number of MCA neurons are 

M=p+1. It is obvious that for p real-valued sinusoidal (cos(𝜔𝑡) = (𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡) 2⁄ ); thus 

the required dimensions is M=2p+1 correspondingly. For the real-valued data stream from 

the ADALINEs (5.10) M=2p+1=3 neurons are required, so it is considered that the output 

of the ADALINE is only one harmonic, i.e. the PSH. 

 

5.2.3 The rMCA EXIN Pisarenko method 

If the signal to be processed is real-valued, the symmetry property can be used to accel-

erate the convergence. Consider a stream of signals 𝑥 ∈ ℝ2𝑝+1 where 2p is the number of 

harmonics in the signal (p complex frequencies). Define 𝐑𝑥𝑥 = 𝐸(𝑥𝑥𝑇) as the associated 

covariance matrix. 

Define: 
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which is (2𝑝 + 1)  ×  (𝑝 + 1), where 𝐼𝑝 is the 𝑝 ×  𝑝 identity matrix and 𝐽𝑝 is the 𝑝 ×

 𝑝 anti-diagonal matrix: 
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Consider the "projected stream" of vectors 𝒚 = 𝑄1
𝑇𝒙, which results as : 
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with 𝑝 + 1 components (reduced space). 

Find the eigenvector 𝛾1 associated to the smallest eigenvalue for the projected stream 

𝑦. 



88  Binying YE, Ph.D. Thesis, 2015 

The true eigenvector is given by 

11γc Q      (5.27) 

Then the eigenvector for the Pisarenko's method is given by the corresponding unit vec-

tor. This MCA EXIN with reduced space is named rMCA EXIN. With regard to MCA 

EXIN, the convergence is accelerated and the computational complexity is reduced by p. 

For the signal given in (5.10), it is considered that only one slot harmonic is present; 

hence, M=p+1=2 neurons are required. 

 

5.2.4 The Adaptive MCA EXIN Pisarenko method 

The learning rate of the MCA EXIN is normally assumed to be constant or exponen-

tially decreasing to zero [115-118]. However, a data-driven adaptive learning rate can be 

used in the conventional gradient MCA algorithm. This new algorithm, gives faster track-

ing and smaller mean square error. 

Recall the learning process, 

𝐰(𝑡 + 1) = 𝐰(𝑡) − 𝛼(𝑡)∇(𝐰(𝑡))   (5.28) 

 

where ∇(𝐰(𝑡)) is the gradient flow and has been given in (5.20). Consider the averaged 

continuous equation and expand it around the critical directions, {z1 , z2,…, zM}. The aver-

aged gradient flow vanishes at these critical directions, i.e. at 𝒘𝒊
∗ such that ∇̅(𝒘𝒊

∗) = 0. It 

follows 

𝑑𝐰(𝑡)

𝑑𝑡
= −𝛼(𝑡)∇̅(𝐰(𝑡)) ≅ −𝛼(𝑡)𝑯𝑖

∗[𝐰(𝑡) − 𝒘𝒊
∗] (5.29) 

 

where 𝒘𝒊
∗, 𝑯𝑖

∗ (i=1,…M) are, respectively, the weight vector and the Hessian matrix at 

the critical direction i, i.e., i=M, which corresponds to the optimal solution (MC). 

Suppose an eigenvector v of the matrix𝑯𝑖
∗, satisfying  

𝒗𝑻𝑯𝑖
∗ = 𝜆𝒗𝑻    (5.30) 

 

and define [119][120]  

𝜉(t) = 𝒗𝑻∇̅(𝐰(𝑡)) ≅ 𝒗𝑻𝑯𝑖
∗[𝐰(𝑡) − 𝐰𝒊

∗]   (5.31) 
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where the average gradient flow ∇̅ is projected into a unique direction v. The idea is to 

choose a good direction v such that it is sufficient to observe the whole dynamics of the 

flow only along this projection, whereas any computation of the Hessian matrix itself can 

be avoided.  

Hence the dynamics of 𝜉(t) can be approximately represented as  

𝑑

𝑑𝑡
 𝜉(t) = −𝜆𝛼(𝑡)𝜉(t)    (5.32) 

 

By using 𝜉(t), the discrete and continuous modification of the rule for 𝛼(𝑡) is given by 

[119] 

𝛼(𝑡) = 𝛼(𝑡) + 𝑙𝛼(𝑡)[𝑚| 𝜉(t)| − 𝛼(𝑡)]   (5.33) 

𝑑

𝑑𝑡
 𝛼(𝑡) = 𝑙𝛼(𝑡)[𝑚| 𝜉(t)| − 𝛼(𝑡)]   (5.34) 

 

where l, m are constants. The asymptotic solutions of equation (5.32) and (5.34) are 

given by 

𝜉(t) =
1

𝑚
(

1

𝜆
−

1

𝑙
)

1

𝑡
, 𝛼(𝑡) =  

1

𝜆

1

𝑡
   (5.35) 

 

This 1/t-convergence rate is the optimal order of any estimator 𝐰(𝑡) converging to 𝐰∗. 

An important problem concerns the choice of a good direction v of projection. It should 

be noted that any direction can be valid except the one which is orthogonal to the gradient 

flow. Here it is assumed that all the critical directions are sufficiently different from each 

other. It exists a learning rate such that, at the critical direction, the learning becomes 

𝐰𝒊
∗ − 𝐰(𝑡) = −𝛼(𝑡)∇̅(𝐰(𝑡))   (5.36) 

 

Together with (5.31), it follows 

1

𝛼(𝑡)
∇̅(𝐰(𝑡)) = 𝑯𝑖

∗∇̅(𝐰(𝑡))   (5.37) 

 

From (5.37), it follows that by properly choosing the learning rate, the average instan-

taneous gradient flow can be forced to be one of the eigenvector of 𝑯𝑖
∗, with the corre-

sponding eigenvalue inversely proportional to the learning rate. Hence the projection di-

rection can be approximated by  
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𝒗 =
∇̅(𝐰(𝑡))

‖∇̅(𝐰(𝑡))‖
    (5.38) 

and it can be adopted : 

𝜉(t) = 𝒗𝑻∇̅(𝐰(𝑡)) = ‖∇̅(𝐰(𝑡))‖  (5.39) 

 

(5.38) and (5.39) represent the most possible efficient projection direction.  Eq. (5.33) 

can be computed by only using the knowledge of instantaneous flow. The learning process 

converges to the critical direction with 1/t optimal rate. The critical direction is unstable 

toward the directions associated to smaller eigenvalues [113], because the considered equi-

librium direction is a local maximum (in RQ) for the directions with smaller eigenvalues: 

the fact that the algorithm is a gradient descent implies that the equilibrium has to be un-

stable in this direction. Hence, the weights converge to the critical direction corresponding 

to the minimum eigenvalue. 

From [113], the eigenvalues of the Hessian matrix are given by 

𝑯𝑖
∗𝒛𝑗 = {

0                         𝑖 = 𝑗

(𝜆𝑗 − 𝜆𝑖)𝒛𝑗       𝑖 ≠ 𝑗
    (5.40) 

 

Hence, it has the same eigenvectors as Rxx, but with different eigenvalues. Compared to 

the Hessian matrix at the minimum, the Hessian matrix at the other critical directions has 

smaller spectra, and the one corresponding to the largest eigenvalues has the smallest spec-

trum. As 𝜆 in the asymptotic solution (5.35) is one of the eigenvalues of 𝑯𝑖
∗, the term 

1

𝜆
 in 

(5.35) decreases as the neural networks converge towards the eigenvector corresponding to 

the minimum eigenvalue of Rxx. When the weight vector is in the same direction of the 

eigenvector corresponding to the minimum eigenvalue (MC), 
1

𝜆
 will be the smallest possi-

ble one, and the learning rate 𝛼(𝑡) decreases continuously along the 
1

𝜆

1

𝑡
 curve as shown in 

(5.35). 

Moreover, the critical directions corresponding to different eigenvalues represent differ-

ent learning stages of the neural networks, i.e. the weight vector is still far from the MC if 

it is in the directions corresponding to the largest eigenvalues, and it is the final solution if 

it is in the same direction of MC, which corresponds to the smallest eigenvalue. They 

should be treated differently by the adaptive mechanism. The averaged instantaneous cost 

function  
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𝐽 ̅ =<
𝐰𝑇(𝑡)𝐱(𝑡)𝐱𝑇(𝑡)𝐰(𝑡)

𝐰𝑇(𝑡)𝐰(𝑡)
>    (5.41) 

 

can be adopted, since from the property of RQ, at the critical direction it holds that the 

eigenvalues of input correlation matrix𝜆𝑖 ≈ 𝐽.̅ When 𝐽 ̅is large, it means the neurons are 

still far from the final solution, and are possibly approaching towards the critical direction 

associated to a larger eigenvalue. Therefore, the new adapting rule is given by considering 

the RQ as, 

𝛼(𝑡 + 1) = 𝛼(𝑡) + 𝑛𝐽𝛼̅(𝑡)[𝑚| 𝜉(t)| − 𝛼(𝑡)]  (5.42) 

 

where l in (5.33) is replaced by 𝑛𝐽,̅ being n a constant which scales the product to a 

reasonable range.  

If the term 𝑛𝐽 ̅varies much slower than the learning rate itself, i.e. (5.41) is averaged 

over a large number of iterations, then it still holds the solution in (5.35), and l in the solu-

tion is replaced by 𝑛𝐽.̅ Thus, the term (
1

𝜆
−

1

𝑛𝐽
)̅ in (5.35) is larger at the beginning, and it 

decreases as 𝐽 ̅converges. The global convergence becomes faster.  

An upper bound of learning rate can be used to enhance the convergence of the adaptive 

MCA EXIN algorithm under all conditions, the derivation of this bound in detail has been 

included in appendix E for the simplicity’s sake. 

  

5.2.5 Numerical Simulation of the MCA EXIN and rMCA EXIN 

5.2.5.1 Methods to be compared 

A. PLL 

The phase locked loop (PLL) is chosen as one of the methods to be compared [121]. The 

structure of the main PLL topology can be found in chapter 4 (see fig.4-2 inside the dashed 

box).  

 

B. Cross correlation based method 

The cross correlation matrix based method (COR) proposed in [122] is chosen as another 

method to be compared. In [122], the cross-correlation matrix is used to replace the auto-

correlation matrix used in the Pisarenko type method, where the estimation of autocorrela-
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tion sequence is usually biased for short data samples. The recursive version of COR algo-

rithm (recCOR), which avoids matrix inversion, is also described in the paper, and it can 

be used to track time-variant frequencies.  

The only parameter to be adjusted in the recCOR is a forgetting coefficient ρ. For there 

is not much discussion about the choice of ρ in the original paper, in this simulation, ρ =0.9 

is used by which a best simulation performance, in terms of rapidity and variance, can be 

achieved. 

 

5.2.5.2 Some Definitions 

A. SNR  

The signal to noise ratio is given by [123], 











2
log20

A
SNR      (5.43) 

where A is the amplitude of the signal, σ is the standard deviation of the noise.  

 

B. The mean-square frequency estimation error 

 The mean-square frequency estimation error (MSFE), which is used to evaluate the 

frequency estimation error, is given as below [124], 

N
MSFE

N

i

ee




 1

2*)(

log10



   (5.44) 

Where e  is the estimated frequency, *

e is the value of the true frequency, N is the 

number of iterations over which the algorithm has been evaluated.  

 

C. CRLB 

The CRLB, which is the lowest MSFE that can be achieved by any unbiased estimator 

is given in [103][125] 
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5.2.5.3 Simulation Results 

The performances of the MCA EXIN Pisarenko’s method have been evaluated using 

Matlab/Simulink, the objective of the simulation study is to investigate the realization of 

the MCA EXIN Pisarenko method and highlight the characteristics of the MCA EXIN 

Pisarenko method. It has been applied to estimate the frequency in various conditions: as 

the proposed method is aimed to estimate the frequency of the rotor slot harmonics (RSH) 

in an induction machine, which varies in a very wide range (from a few hertz to hundreds 

of hertz), and rapidly (it is dependent of the target system, normally within a few millisec-

onds). The simulation conditions are designed based on the characteristics of RSH, The 

sampling frequency is 2 kHz, the typical value for the learning rate is in the range 

0.001~0.05. The initial weight modulus are 0.5~0.8.  

Comparisons are made among the proposed MCA EXIN and rMCA EXIN algorithms 

with learning rate α=1e-3, the PLL, the correlation method (COR), the recursive type cor-

relation method (recCOR) (ρ =0.9), and the original Pisarenko’s harmonic decomposition 

method (PSH). The estimator is aimed to have a good performance for the extraction of 

RSH, whose frequency possibly lies in a wide range, so the MSFE has to be tested in full 

range. Meanwhile the RSH frequency could be quite low compared to the sampling fre-

quency, it is necessary to specify the performance at low frequency.  

 

A. Comparason of MCA EXIN and rMCA EXIN 

In this part, the converging speed of MCA EXIN and rMCA EXIN are compared: the 

MCA EXIN and rMCA EXIN start from the same initial condition, and end when the same 

stop criterion is met, the stop criterion is that the error of instantaneous RQ ׀λ(t+1)- λ(t) 

 threshold for 30 consecutive iterations. The MCA EXIN and rMCA EXIN have been>׀

applied to single, two real-valued, and three real-valued frequencies cases respectively, un-

der noise level SNR=10dB, 20dB, 30dB and 40dB. 

The results are summarized in Tabs. 5-1 to 5-3, they illustrate respectively the results 

for single, two real-valued, and three real-valued frequencies estimation results. Among 

them, the number of iterations, elapsed time, and stop rho(2) show the dynamic of neuron, 
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while the mean value, variance, and MSFE, which are computed over 100 iterations, sug-

gest the steady-state performance of the neuron.  

From Tab 5-1 to Tab 5-3, they show that the rMCA EXIN converges faster than MCA 

EXIN in all the cases, with less time and computation burden. Although the MSFE of MCA 

EXIN is a littler larger than rMCA EXIN, it is acceptable for the significant improvement 

in the speed of convergence. 

 

Tab 5-1 Single sinusoid, A2= 2.963, ω=0.159π 

SNR (dB) 10 20 30 40 

 
MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

Elapsed(1) time(μs) X2 X 645 388 513 360 509 303 

Stop rho(3) (dB) X X -56,08 60,08 51,40 62,51 50,63 51,26 

Number iterations X X 195 119 155 111 154 93 

Mean frequency 0,4986 0,4983 0,4995 0,4994 0,4995 0,4995 0,4995 0,4995 

MSFE (dB), 36,28 34,26 47,40 44,08 57,52 53,95 67,50 63,91 

 

Tab 5-2 Two sinusoids A1
2=2, A2

2=3, ω1 =0.5 π, ω2=0.8 π 

SNR (dB) 10 20 30 40 

 
MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

Elapsed(1) 

time(μs) 
X X 1393 828 1159 619 1074 551 

Stop rho 

(dB) 
X X -47,03 -62,76 -43,19 -40,34 -39,32 -35,31 

Number it-

erations 
X X 416 252 348 188 314 168 

Mean value 
1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57 

2,5135 2,5134 2,5133 2,5133 2,5133 2,5133 2,5133 2,5133 

MSFE(dB) 
-44,32 -40,92 -54,33 -49,80 -64,26 -59,49 -74,18 -69,41 

-44,58 -41,16 -53,21 -48,56 -63,00 -58,15 -72,90 -68,13 
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Tab 5-3 Three sinusoids A1
2=2, A2

2=3, A3
2=4, ω1 =0.5 π, ω2 =0.8 π, ω3 =0.7 π 

SNR (dB) 10 20 30 40 

 
MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

MCA 

EXIN 

rMCA 

EXIN 

Elapsed1 

time(μs) 

X X 1738 1454 1603 852 1261 750 

Stop 

rho(dB) 
X X -31,21 -41,46 -29,63 -26,32 -23,51 -23,47 

Number it-

erations 
X X 518 443 478 258 373 225 

Mean fre-

quency 

1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57 

2,20 2,21 2,20 2,20 2,20 2,20 2,20 2,20 

2,5214 2,5093 2,5157 2,5084 2,5134 2,5127 2,5131 2,5133 

MSFE(dB) 

-36,77 -32,70 -45,60 -40,22 -54,96 -49,34 -64,40 -59,09 

-24,88 -20,16 -30,71 -24,73 -39,52 -33,66 -49,25 -43,91 

-27,38 -23,24 -33,43 -27,26 -42,25 -36,25 -52,05 -46,68 

1. The test platform for elapsed time is: intel core i5-3320M, 2.6Ghz, matlab 7.9.0 

2. X means the stop criterion is not met even in steady-state 

3. 
N

ww

rho

M

i

ii




 1

*)(

log10   is used as an indicator for estimation accuracy. M is the di-

mension of neurons, wi are the components of the neuron weight vector and 𝑤𝑖
∗are the components 

of the true value, the neuron weights are normalized according to the minimum eigenvector for 

comparison. 

 

B. MSFE versus estimated frequency(normalized) 

Fig. 5-7a shows the MSFE results versus frequency at SNR=20dB, which is computed 

by (5.44) over 100 iterations.  

As shown in the figure, the MSFE of MCA and rMCA EXIN have the smallest MSFE 

in the whole range, and their performance are comparable to CRLB. It should be noted that 

their performance is acceptable even at very low frequency, i.e. ω approaches 0 and π, this 

verifies that they are suitable for frequency estimation over a wide range. The original COR 
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outperforms the original Pisarenko’s method (PSH) in the medium frequency range, how-

ever, it degrades dramatically as the frequency approaching 0 and π. The same phenomenon 

can be observed in its recursive version, but with a much higher MSFE, especially at low 

frequency. Compared to the other algorithms, the results of PLL is more flat, making its 

performance at low frequency notable. 

The mean frequency estimation error is illustrated in fig.5-7 b. It is found that the biases 

of all the algorithm are small except when frequency is close to 0 or π. Among them, the 

COR and recCOR have the largest bias, MCA and rMCA EXIN have the smallest bias for 

most of the frequencies, the exceptions happen if ω is close to 0 or π, where the PLL has 

the lowest error. 

 

 

a) MSFE 

 

b) Mean frequency estimation error 

Fig 5-7 Frequency estimation performance of the algorithms under consideration at 

different frequencies, with A= √2, SNR=20dB and N=100 
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C. MSFE versus SNR 

Fig.5-8a illustrates the MSFE results versus SNR level, the signal frequency ω=0.1 π, 

fig.5-8 b) shows the corresponding mean frequency estimation error. 

 

 

a) MSFE 

 

b) Mean frequency estimation error 

Fig 5-8 Frequency estimation performance of the algorithms under consideration 

versus SNR, A=√2, ω=0.1 π and N=100 

 

As shown in the figure, the best MSFE can be obtained by using the MCA and rMCA 

EXIN: if SNR is not so small, their results are comparable to CRLB. The performance of 

COR diverges according to the noise levels, and it has an acceptable result only at high 

SNR. This can be explained by the fact that, compared to the autocorrelation, the cross-

relation matrix framework has larger forgetting factor, thus it has a low bias but larger 

variance. Meanwhile, the recCOR has even larger MSFE in most of the cases. What is more, 
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like in fig. 5-7, although PLL is outperformed by other methods at high SNR, it has a good 

performance at very low SNR, the closed-loop framework makes the PLL has a more flat 

MSFE in respect to noise level and frequencies.  

 

D. Tracking of Step Change. 

The tracking features of the MCA EXIN method, rMCA EXIN method, PLL and rec-

COR with respect to step change is investigated in this part in the conditions 1) the fre-

quency steps down from 50Hz to 49.5Hz at 0.1s, then steps up to 50Hz at 0.35s. SNR=60dB. 

2) The frequency steps down from 200 Hz to 100Hz and steps up, SNR=40dB 

Fig.5-9 shows the result for condition 1). At steady-state, the estimated frequencies for 

all methods are accurate. The MCA EXIN tracks the new frequency within 0.01s, no oscil-

lation is observed as it approaches the actual frequency, and the rMCA EXIN converges 

even faster, although the oscillations is larger than MCA EXIN. The PLL response rapidly, 

but it has an overshoot and bias which die out slowly. That results from the linear nature of 

PLL, whereby it will either have a fast response with large ripples at steady-state, or a slow 

response with small ripples; it is difficult to find a proper bandwidth which satisfies both 

requirements. MCA EXIN and rMCA EXIN algorithm however follow the direction of 

gradient descent, once they arrives at the minimum component, a large ‘inertia’ will prevent 

it from overshoot. The recCOR has a good steady-state performance, but the transient is 

not good enough, although the dynamic could be accelerated by using a smaller forgetting 

factor, the oscillation increases in the same way.  

 

 

Fig 5-9 Tracking capability of the MCA EXIN method with respect to step change in 

frequency of the input signal (small step). 
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The results of step change in condition 2) are shown in fig.5-10. They have the similar 

response pattern as fig.5-9, but the oscillation and estimation errors increase for all the 

methods, this is as a consequence of the change in SNR. However, the rMCA EXIN and 

MCA EXIN still have the fastest response and smallest oscillation. 

 

 

 

E. The estimation of two sinusoidal simultaneously 

The capability to track two real valued sinusoidal signals at the same time is investigated 

in this part. The harmonics signal is given by )2502sin(5.0)502sin()( tttx   . A 5% 

step in frequency occurs at t=0.1s to one harmonic. Since the PLL cannot estimate two 

frequencies at the same time, the simulation is done only with the MCA EXIN, rMCA 

EXIN and recCOR method. 

Fig. 5-11 shows that the MCA EXIN and rMCA EXIN method track the change properly 

within 0.02s, but the whole recovery process takes 0.1s for MCA EXIN and 0.05s for rMCA 

EXIN. The recCOR tracks the reference in about 0.16s, and the transient of the recCOR 

method is not as smooth as the EXIN method. For this case, the MCA EXIN has a dimen-

sion of 5 (2p+1) instead of 3 in the single frequency case, and the rMCA EXIN has a di-

mension of 3(p+1). The improvement on the speed of converging of rMCA EXIN relative 

to the MCA EXIN is bigger than in the single frequency case. 

 

Fig 5-10 Tracking capability of the MCA EXIN method with respect to step change 

in frequency of the input signal (big step) 
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Fig 5-11 Tracking capability of the MCA EXIN method with two sinusoids 

 

 

5.2.6 Numerical Simulation of the Adaptive MCA EXIN 

The performance of the proposed adaptive MCA EXIN method have been evaluated 

using Matlab/Simulink environment. It was compared with the variable forgetting factor 

RTLS algorithm in [126] and RLS in [127]. Both of them require O(N2) computational 

complexity, but the proposed algorithm has only O(N). They are not originally built to es-

timate the frequency, but have been integrated into the Pisarenko’s theory, thus the three 

can be compared using the frequency estimation results with same conditions.  

Tab.5-4 shows the parameters in the simulation unless they are indicated elsewhere. The 

name of the parameters are compact with their original paper. It should be noted that for 

the proposed algorithm, m generally controls the MSFE at steady-state, while the term 𝑛𝐽 ̅

mainly control the adapting speed. It is already known that 𝐽 ̅converges to the minimum 

eigenvalue, thus it will stabilizes at different values which are dependent of SNR, a single 

value n is not always the best choice unless 𝐽 ̅is normalized according to SNR, this can be 

done by adding another subspace tracking process, here however, only the constant 𝑛 is 

used.  
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Tab 5-4 Parameters used in the simulation of adaptive MCA EXIN 

Algorithm Parameters 

Proposed Algorithm α(0)=0.01,n=10,m=0.04, 𝐽 ̅ = 𝑚𝑒𝑎𝑛(𝑟(𝑘)), 𝑘 = 𝑡, … , 𝑡 − 9,  

RLS α=0.3, β=0.99, μ=0.04,ω(0)=0.98 

RTLS μ=0.95, λ(0)=0,π(0)=0,gM=0,𝒈̅M=0, 

 

A. The MCA EXIN with constant learning rate 

Fig.5-12 shows the MSFE results versus learning rate. The MCA EXIN algorithm has 

been implemented with different learning rate, but always been initiated by the same initial 

weights. As expected, a smaller   enables the proposed algorithm to track the system fre-

quency more accurately (lower MSFE) but at the expense of slower convergence, and vice 

versa. This is due to the fact that the MCA EXIN employs a stochastic gradient approach 

to recursively minimize the RQ of input autocorrelation matrix, and the learning rate con-

trols the trade-off between the convergence speed and steady state estimation accuracy. 

This trade-off, however, is a common problem faced by all the gradient based algorithms.  

 

 

Fig 5-12 Frequency estimation performance of the MCA EXIN algorithm for variant 

learning rate, with SNR=40dB and, 𝜔 = 0.1𝜋 initiated by the same conditions 

 

B. The overall performance verification 
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In this evaluation, the overall performance of the proposed algorithm are compared with 

the RLS and RTLS algorithms. The input frequency switches between 𝜔𝑟𝑒𝑓 = 0.3𝜋 and 

0.5𝜋 every 250 iterations. The input of the signal is perturbed by zero mean Gaussian white 

noise, SNR=20dB. Due to the trade-off between converging speed and steady-state MSFE, 

any separate investigation of either tracking speed or MSFE will be meaningless. The fol-

lowing figures will show this two aspect of results in the same time, using the same param-

eter setting. 

The tracking performance of the algorithms are shown in fig. 5-13a, where the corre-

sponding tracking errors are shown in fig.5-13b. These results show that all of them can 

track the target properly. However, it can be observed from fig.5-13b the RLS method, 

although its transient are fast and with less fluctuations, is biased at steady-state. This is 

due to fact that the noise also present in the observation vector, which is unfortunately not 

taken into consideration by the RLS algorithm. The proposed algorithm, on the other hand, 

tracks the frequency variation faster than the RTLS. Because they consider the errors both 

in the data matrix and observation vector, their bias is very low. 

The square frequency estimation errors are shown in fig.5-13c, they are of the same 

order of magnitudes. It should be noted however, the RLS and RTLS achieve the results 

with a much higher computation burden.  

Fig.5-13d shows the adaption of learning rate for the proposed method, the global con-

verging of learning rate is in accordance with the theoretical analysis.  

 

a) The estimated frequencies for the three method 
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b) The frequency estimation error 

 

 

c) The square frequency estimation error 
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d) The adaption of learning rate 

Fig 5-13 Results of adaptive MCA EXIN, tracking of the frequency switching, 𝜔𝑟𝑒𝑓 =

{0.3𝜋, 0.5𝜋} and SNR=20dB 

 

 

 

5.3 Simulation Results of the Proposed Speed Estimator 

The proposed speed estimator (with ADALINES + MCA EXIN Pisarenko structure) has 

been studied in Matlab/Simulink® environment. The space-vector dynamic model of the 

IM including rotor slotting effects, which was proposed in [41] is used for the simulation 

part, with the parameters shown in tab.5-5. 

The speed estimation performance is verified in the framework of the measured speed 

based vector control system: a VSI direct rotor-flux oriented vector control [field oriented 

control (FOC)] in which current control is performed at the field reference frame level 

[1][2], the proposed speed estimator is connected on-line along with the main vector control 

loop (as shown in fig. 5-14), the variables ω1ref and ω2ref, which are used for the reference 

of ADALINEs, are respectively taken from the PWM supply frequency and estimated by 

(5.11). The output of the estimator is shown together with the measured speed for compar-

ison. 
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Tab 5-5 Parameters of the induction machine 

Rated power Prated [kW] 2.2 

Rated voltage Urated [V] 220 

Rated frequency frated [Hz] 50 

Pole-pairs 2 

Stator resistance Rs [] 2.9 

Stator inductance Ls [mH] 223 

Rotor resistance Rr [] 1.52 

Rotor inductance Lr [mH] 229 

3-phase magnetizing inductance Lm [mH] 217 

Moment of inertia J [kgm2] 0.0048 
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Fig 5-14 Implement field oriented scheme and speed estimation scheme 

 

The following figures show the results of the proposed ADALINEs plus MCA EXIN 

pisarenko speed estimator.  
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Figs. 5-15~18 show the speed tracking performance at low speed range, at different 

loads. In fig. 5-15 and fig.5-16, the reference speed steps up from 5 rad/s to 10 rad/s, with 

a load of 5 Nm, while in fig.5-17 and fig.5-18 the reference speed steps down from 10 rad/s 

to 5 rad/s at no load.  

Fig.5-15a shows that the estimated speed tracks the measured speed properly: even dur-

ing the transient, the estimated speed converges to the true one, and the speed of response 

is fast. Fig.5-15 b shows the corresponding estimated slot frequencies.  

Fig. 5-16 shows the current at the input and output of the ADALINEs. The slot current 

is well extracted from the stator current. In the simulation, the inductance caused by slotting 

effect is constant, thus the amplitude of the slot current after normalization remains almost 

constant.in the simulation. Although the machine current consists only of the slot harmonic 

and the fundamental one, nevertheless, the absence of other machine harmonics makes the 

choice of parameters easily coherent with the theoretical analysis, and it can provide a good 

guidance for the experimental part.  

Fig. 5-17 shows respectively the estimated speed, measured speed and RSH frequency 

when the reference speed steps down at no load. Fig.5-18 shows the corresponding currents. 

The overall behavior is similar to the one in the step down test, which shows that the pro-

posed speed estimator is able to work at these conditions. 

 

 

Fig 5-15 speed tracking result when speed steps up from 5 rad/s to 10 rad/s at 5Nm 
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Fig 5-16 Normalized stator phase current isA and the output of ADALINE2 ih when 

speed step up at 5Nm-load condition 

 

 

Fig 5-17 speed tracking result when speed steps down from 10 rad/s to 5 rad/s at no 

load 
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Fig 5-18 Normalized stator phase isA and the output of ADALINE2 ih when speed step 

down at no load condition, from 10 to 5 rad/s 

 

Figs. 5-19 and 5-20 show the speed tracking performance in the high speed range, with 

load of 10Nm. It can be observed in fig. 5-19a that the estimated speed follows the meas-

ured one closely, the speed tracking results at high speed is very accurate. Fig. 5-20 also 

shows that the slot harmonic is well-extracted by the ADALINEs, the frequency of it lies 

at higher range. 

 

 

Fig 5-19 speed tracking result when speed steps up from 50 to 100 rad/s at 10Nm load 
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Fig 5-20 Normalized stator phase isA and the output of ADALINE2 ih when speed step 

up at 10Nm condition from 50-100rad/s 

 

Fig. 5-21 shows the results at steady-state at very low speed range: the drive is with load 

of 10Nm, the speed is 2, 4, 6, 8, 10 rad/s. It is apparent that the estimation speeds are in 

accordance with the measured ones.  

 

 

Fig 5-21 Speed estimation results at steady-state, 5Nm load 
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5.4 Experiment Results 

The employed test set-up consists of: 

 A three-phase induction machine with parameters shown in Tab.4-1, with 36 stator and 

28 rotor slots. 

 An 8 kVA, three-phase VSI for the control of the machine side inverter.  

 A torque controlled brushless Interior Mounted Permanent Magnet (IMPM) machine 

drive for the load of 1.5kW. 

 A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a floating-point DSP 

TMS320F240 for the control of the machine side inverter. 

 

Like in the simulations, to verify the proposed speed estimation algorithm, the measured 

speed (from the encoder) is used as feedback in the framework vector control, while the 

proposed speed estimation scheme is connected on-line along with the main vector control 

loop. The test is made for different loads and speed conditions. The RSH frequency varies 

from hundreds of hertz to only a few hertz, when the speed reference changes from 150 

rad/s (rated) to 1 rad/s (1% rated), the sampling frequency for the MCA EXIN Pisarenko 

method is kept at 2.5k Hz. The following part only shows the results of the most challenging 

tests at low speed. 

The tracking capability results when the speed steps up with 5Nm-load are shown in fig. 

5-22 and fig.5-23.  

Fig.5-22 a shows the corresponding estimated speed and the measured speed, respec-

tively. Both the steady-state and transient performance are satisfactory. Remark that the 

estimated speed tracks the measured speed within 0.01s. Fig. 5-22 b shows the estimated 

RSH frequency from which the speed is computed. Compared to the simulation results, the 

oscillation of the estimated speed in experiment are larger, this is because of the presence 

of the machine harmonics, but the estimated speed always converge to the measured one. 

Fig.5-23 presents the normalized phase current of the motor in the test. It can be observed 

from fig.5-23a that the stator phase current is full of harmonics, but it contains only the slot 

harmonics in the output of ADALINEs, with the waveform ih stable and smooth.  



CHAPTER 5 Speed Estimation by ADALINEs and MCA EXIN Neural Networks 111 

 

Fig 5-22 Tracking capacity when speed step up at 5Nm load condition 

 

 
Fig 5-23 Normalized phase current isA and the output of filter ih when speed step up at 

5Nm-load condition 

 

The tracking capability results when speed steps down are presented from fig. 5-24 and 

fig. 5-25, from 10 rad/s to 5 rad/s, at no load. 

Fig.5-24a and b show the corresponding estimated speed and the estimated RSH fre-

quency, respectively. The results show that the proposed algorithm can track the measured 

one properly, and the behavior is similar to the step up test. 
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The corresponding current waveform can be found in fig. 5-25. 

 

Fig 5-24 Tracking capacity when speed step down at no-load 

 

Fig 5-25 Normalized phase current isA and the output of filter ih when speed steps 

down at no-load 

 

The steady-state performance of the MCA EXIN Pisarenko method is shown in fig.5-26 

and fig.5-27.  

In fig. 5-26, the machine operates at no-load, the reference speed is around the values 2, 

4, 6, 8, 10 rad/s. The measured speeds and the estimated speeds are shown comparatively: 

the estimated speeds track the measured ones accurately, for the very low speeds; even if 
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the measured speeds behave worse in terms of oscillation, nevertheless, the estimated 

speeds follows the change of the measured ones. 

In fig. 5-27, the machine is 5Nm-loaded, the reference speed varies from 10 rad/s to 2 

rad/s. The results are similar to the no-load case. However, it has to be stressed that the bias 

is larger at 2 rad/s, since when the machine is loaded, the actual RSH frequency has lower 

values, and the other harmonics are very close to the RSH, which is in the output of the 

ADALINEs can appear. Moreover, at 2 rad/s, the RSH frequency is just a few hertz, and 

like most of the frequency estimation methods, the mean square estimation error will in-

crease. This can be improved by adopting a smaller sampling frequency, and a slower re-

sponse is to be expected. 

 

 

Fig 5-26 Speed estimation results at steady-state no load 

 



114  Binying YE, Ph.D. Thesis, 2015 

 

Fig 5-27 Speed estimation results at steady-state 5Nm load 

 

5.5 Summary 

In this chapter, the speed related rotor slot harmonic is extracted from the stator phase 

current by two ADALINEs: one works in notch mode in order to eliminate the fundamental 

current, the other works in band mode thus its output consists only of the slot harmonic. 

The frequency of this harmonic is then estimated by using MCA EXIN neural networks 

based on Pisarenko theory: The neural weights converge to the eigenvector corresponding 

to the minimum eigenvalue of the input autocorrelation matrix, which is the output of ADA-

LINEs in this case, thus the frequency can be estimated by finding all the roots of the pol-

ynomial equation formed by this eigenvector in Pisarenko theory. However, compared to 

the original Pisarenko’s method, the computational complexity and mean square frequency 

estimation error are largely reduced, and the proposed frequency estimator can work recur-

sively sample by sample. The overall speed estimation algorithm is fast and accurate, its 

performance has been verified both in the simulation and in the experiment. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This thesis proposed the techniques using a higher harmonic model of the induction 

motor which takes into account the rotor slot effects and its use for the computation of the 

rotor speed of induction motors (IMs). It is characterized by a very low sensitivity to the 

parameters variations. The proposed algorithms fulfill the requirements of steady-state ac-

curacy and transient behavior. 

Conclusions in specific areas are summarized in the following sections. 

 

6.1 Speed Detection by Tracking Rotor Slot Harmonics 

It was already known from the previous literatures that the rotor slot harmonics are 

detectable, and are related to the instantaneous rotor speed. Several investigative studies 

have been taken in this thesis, and this thesis proposed to divide the RSH tracking ap-

proaches into two main categories:  

1). Frequency domain methods, which are mainly based on FFT (Fast Fourier Trans-

form)-like approaches;  

2). Time domain methods, which are mainly based on PLL (Phase-Locked Loop)-like 

approaches.  

The former generally provides good accuracy and linearity over a very wide speed 

range and load conditions, but a compromise has to be made between the required fre-

quency resolution, to allow speed detection, and the response time versus changes of speed. 

The latter can provides a better real time performance than the frequency domain method, 

although the accuracy of the result will be affected by the noise level. It generally behaves 

like such a band-pass filter: the gain is very large at the RSH frequency and very small 

away the RSH frequency, thus it usually needs a better prior knowledge of the location of 

expected RSH frequency.  

Considering all the pros and cons, this thesis focused on the time domain method, mak-

ing it better suited for real-time applications. On the basis of that, two main approaches 

have been proposed 
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1) A phase-locked loop (PLL) structure. The centre bandwidth of PLL was tuned on-

line on the basis of the reference values of the supply and slip frequencies provided to the 

PWM converter, tracking the machine rotor slotting harmonic without the need of any high 

frequency signal injection, neither rotating nor pulsating, this results in tracking the ma-

chine speed in a very wide speed range (from rated speed down to as much as 2% of it).  

Meanwhile, the frequency of the slot harmonic is available directly in the framework of 

PLL. 

2) The ADALINEs plus MCA EXIN Neural Networks structure. First, two cascaded 

ADALINEs were used to extract the rotor slot harmonic from the input stator phase current, 

acting as adaptive filters and whose output consists only of the slot harmonic. Then, the 

MCA EXIN neurons were used to extract the eigenvector corresponding to the minimum 

eigenvalue of the autocorrelation matrix formed by the ADALINEs’ output sequence: as a 

matter of fact, the slot frequency can then be estimated by finding all the roots of the poly-

nomial equation formed from this eigenvector by using Pisarenko’s theory. Moreover not 

only can the proposed neural networks work recursively sample by sample, but the compu-

tational complexity and mean square frequency estimation errors are largely reduced. 

 

6.2 Sensorless Scalar Drive by PLL Speed Detector 

The proposed PLL speed estimator has been applied to a scalar controlled drive. The 

speed estimation performed on the basis of a PLL algorithm is of a particular interest in 

terms of a potential industrial applications: with the aim of developing a low cost, compu-

tationally light sensorless drive, where the number of parameters to be tuned, both in the 

controller and in the estimator, is very limited in comparison with more performing sensor-

less drives. In particular, as for the control algorithm, only the PI control is to be tuned and 

only the stator and rotor resistances are to be known (only if voltage drop compensation is 

to be performed). As far as the PLL speed estimator is concerned, the only tuning parame-

ters are the PLL gain and the cut-off frequency of its low pass filter while the only machine 

parameter to be known is the number of rotor slots per phase and per pole. This makes the 

methodology easily exportable to several other types of drives. 
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6.3 Improved Frequency Estimation Algorithms  

According to the Pisarenko’s theory, it has been verified that the minor component 

which lies in the noise subspace is orthogonal to the signal subspace, thus, the signal fre-

quencies contained in the input can be computed from a polynomial formed by the MC. 

When the original Pisarenko’s method is used to estimate the frequency, it is limited by: 1) 

the estimation of the autocorrelation sequence, 2) the general difficulties involved in deter-

mining the eigenvalues and eigenvectors of autocorrelation matrix.  

This thesis has improved the Pisarenko’s method by using the MCA EXIN neurons, 

which deals with the recovery of eigenvectors of the data sequence’s autocorrelation matrix. 

Thus, the estimation algorithm can retrieve the MC recursively with less computation and 

improved error performance (the solution is of total least square meaning). 

Moreover, two improvements have been made to the original MCA EXIN methods.  

1) The rMCA EXIN. Consider a stream of signals 𝑥 ∈ ℝ2𝑝+1 where 2p is the number 

of harmonics in the signal (p complex frequencies), then the input signal has been projected 

to a reduced space 𝑦 ∈ ℝ𝑝+1, thus, the convergence rate is accelerated and the computa-

tional complexity is reduced by p.  

2) The adaptive MCA EIXN. The learning rate of the MCA EXIN is normally assumed 

to be constant or exponentially decreasing to zero, however, on the basis of convergence 

study on the conventional gradient MCA algorithm, this thesis proposed a data-driven adap-

tive learning rate. This new algorithm, gives faster tracking and smaller mean square error. 

 

6.4 Directions for Future Work 

Future work could proceed efficiently in several directions: 

1) The speed estimation algorithm which combines the signal injection algorithm with 

the proposed slot harmonics based algorithm: either the two algorithms work in parallel, or 

the slot harmonics tracking algorithm works in the high speed range, while the signal in-

jection works in the low speed range. Thus, the sensorless algorithm can works efficiently 

in a wider range (from rated speed down to zero speed theoretically). 

2) Experiment verification of the proposed speed detection algorithms both in scalar 

controlled and vector controlled drives.  
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3) The gradient based frequency estimation with improved converging speed and re-

duced frequency estimation error. To achieve this, a better learning rate adaptive mecha-

nism has to be adopted. Meanwhile, the non-linear type MCA algorithms can be developed 

to increase the noise rejection ability. 

4) Instead of estimating the frequency in the presence of noise under the framework 

of Pisarenko’s theory, the minor space analysis (MSA) neural networks can be used to 

estimate the frequency under the framework of MUSIC theory, thus the mean square esti-

mation error can be reduced.  

5) Algorithms that are able to determine the model order of the Pisarenko’s method 

and MUSIC’s method automatically by using some criterion, such as Akaike information 

criterion (AIC), yet the computational complexity remains as low as possible. 
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APPENDIX A SPACE VECTOR MODEL OF IM INCLUDING THE RO-

TOR SLOTTING EFFECTS 

The full-state space-vector model of the induction machine, including rotor slotting 

effects was given in [41] as, 
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Where  

Ls, Lr, Lm, Lh  are respectively the stator and rotor inductance without slotting, magnetiz-

ing inductance, and the slot inductance; 

qs , qr  are the number of stator and rotor slots per pole pair; 

θr  angular position of rotor a-phase with respect to stator a-phase (positive if counter-

clockwise); 

is,, us and 
'

rψ  are respectively the stator current space vectors, stator voltage space vector 

and the rotor flux linkage space vectors in the stator reference frame. 

The upper sign refers to the case qr=3n−1, qs=3m−1and the lower one to the case qr = 

3n + 1. qs = 3m + 1, with n, m ∈ N  

In the Matlab/Simulink environment, an IM model including rotor slot effect has been 

built, the validity of the space-vector dynamic model of IM has been verified, at different 

supply voltage, and load conditions. 

The IM model including slot effect has been tested at different supply voltage with con-

stant V/f. At each supply voltage, different values of load torque have been applied to the 

machine. The corresponding stator current harmonics have been examined according to (eq. 
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2.2) at each condition, to verify the validity of the model. Some of those results are shown 

below: 

Figs. A-1 and A-2 show the waveforms of stator current and its spectrum when the sup-

ply voltage is 50Hz (rated), respectively under no-load and full-load; the corresponding 

rotor speed is also shown. Figs. A-3 and A-4 show respectively the waveform of the rotor 

speed, the stator current and its current spectrum and for 15Hz supply voltage at no-load 

and full load. Some key information obtained from figs. A-1 to A-4 are listed on table A-1 

for comparison. 

 

 

 

 

Fig A-1 Current Signature at 50 Hz supply frequency and no load 

 

 

 
 

Fig A-2  Current signature at 50 Hz supply frequency and full load 
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Fig A-3  Current signature at 15 Hz supply frequency and no load 

 

 

 

 

Fig A-4  Current signature at 15 Hz supply frequency and full load 

 

Table A-1 Results of the Stator Current Signature Test 

 f1 fRSH ωm 

Conditions 
Frequency 

(Hz) 

Amplitude 

(A) 

Frequency 

(Hz) 

Amplitude 

(A) 
(Rad/s) 

50Hz 

No-Load 
50 4.6 650 0.2 156.7 

50Hz 

10Nm-Load 
50 6 636 0.24 154 

15 Hz 

No-Load 
15 4.6 195 0.23 47.1 

15Hz 

10Nm-Load 
15 5.78 180 0.35 43.8 
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It can be found that all the slot harmonics appear at frequencies in accordance with the 

theoretical values calculated from (2.2), which verifies the validity of the simulation IM 

model. It should be noted that in the simulation model, the IM presents no other harmonics 

except the RSH, which is apparently not the case in practice. 

Remark that, at full load, decreasing the supply voltage and frequency, the amplitudes 

of the first and slot harmonic increase. The variations in harmonic magnitude do not affect 

the algorithm as long as the slot harmonics are above the noise level. 
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APPENDIX B PROF OF PISARENKO’S THEORY  

(Eigen-Decomposition of the Autocorrelation Matrix ) 

It is assumed that the data sample is a sum of p (usually considered known) complex 

exponentials in white noise, 
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Where v(n) is zero mean white noise with variance σ2; Ai, ωi are respectively the com-

plex amplitude, and the principal argument of the angular frequency of the ith exponential. 

The complex amplitudes Ai are given by,  

ij

ii eA


A      (B.2) 

Where iA is the amplitude, while the phases φi are considered uncorrelated random 

variables uniformly distributed over the interval [0, 2π). 

Given the process (B.1), the auto correlation function is easily shown to be 
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Let Pi=Ai
2 denote the power of the ith sinusoid, then the M×M autocorrelation matrix for 

M>p is given by 
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Where  TMjjj

i
iii eee

 )1(2
1


 e is the signal vector. The set of { ie } 

i=1,2…,p form a linearly independent vector spanning ℝ M. Rxx is the autocorrelation ma-

trix of the signal, Rss is the autocorrelation matrix of the signal without noise. (B.4) can 

also be written in matrix form as follows: 

IRIEPER
22   ss

H

xx
    (B.5) 

Where E=[e1,…,ep] is an M × p matrix containing the p signal vectors ei, and 

P=diag[P1,…,Pp] is the diagonal matrix containing the signal powers.  
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From (B.5), Rxx is the sum of the signal autocorrelation matrix Rss and the noise auto-

correlation matrix Rvv= I
2 . Rxx is of rank p because it is the sum of p diagonal products. 

The total autocorrelation matrix Rxx is, however, full rank due to the inclusion of the I2  

term. It can be easily proved [102], [128] that the eigenvalues of Rxx are {λ1+σ2, … , λp+σ2, 

σ2,…, σ2} where { λ1,…, λp}are the eigenvalues of Rss and λ1≥ λ1≥…≥ λp≥0. Since the auto-

correlation matrix Rss is semi-definite positive. Then the first p eigenvalues of Rxx are 

greater than σ2 and the last M-p eigenvalues are equal to σ2. The eigenvalues and eigenvec-

tors of Rxx may therefore be divided into two groups: the signal eigenvectors v1,…,vp that 

have eigenvalues greater than σ2,which span the p dimensional signal subspace, and the 

noise eigenvectors vp+1,…,vM that have eigenvalues equal to σ2and span the noise sub-

space. 

Thus, for p complex frequencies, a related eigen decomposition based on the eigenvec-

tors iv and eigenvalues i of Rxx produces, 
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Where the signal autocorrelation matrix has been replaced by  

p

i

H

iii1
vv and the de-

composition of I has been used. Now if the eigenvectors vp+1,…,vM of Rxx are considered, 

which span the noise subspace, then the following equation holds, 

jpjpxx   vvR
2   j=1,…,M-p,   (B.7) 

This together with (B.5),  
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Premultiplying by 
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Since P is positive definite it follows that 

0 jp
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Hence the signal vectors are orthogonal to all vectors in noise subspace as linked at 

above. This property forms the basis for the frequency estimation algorithm among which 

the Pisarenko method. In this method, M is chosen to be p+1 so the noise subspace has 

dimension of 1. (B.11) can be therefore rewritten in the more familiar form 

0)()(
0

1min 





kj

p

k

p

j iekeV


v  i=1,2,…,p  (B.12) 

Consequently, the z-transform of the noise eigenvector, minv , has p zeros on the unit 

circle, 
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corresponding to the p harmonics of the signal, the frequencies of the complex exponen-

tials can be extracted from the roots of )(min zV .  
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APPENDIX C MCA ALGORITHMS AND THE ASSESSMENT SOFTWARE 

1. The MCA Linear Neurons 

The minor component analysis (MCA) deals with the recovery of the eigenvector asso-

ciated to the smallest eigenvalue of the autocorrelation matrix of the input data and is a 

very important tool for signal processing and data analysis. It is almost exclusively solved 

by linear neurons. Fig. C-1 shows the structure of the MCA linear neurons. 
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Fig C-1 The structure of the MCA linear neurons. 

 

The linear neuron has a real number input vector x(t) = [x1(t),…, xN(t)]T and output 

y(t):  
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where w(t) = [w1(t),…, wN(t)]T is the weight vector. 

The update of the weights, following different gradient flows, are listed as below: 

A. The OJA’s Learning Laws 

  )()()()()()()1( ttyttyttt wxww     (C.2) 

B. The explicitly normalized version of Oja’s learning law (OJAn) 
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C. The Luo-Unbehauen-Cichocki’s learning law (LUO) 
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D.The Feng-Bao-Jiao’s Learning Law 
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E. The EXIN learning law 
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An evaluation software has been built in MATLAB/GUIDE, whose desktop is shown in 

fig. C-2. The MCA learning law with respect to different configuration can be studied in 

the software, i.e. the initial value, the learning rate, and the noise level of the training set. 

Meanwhile the performance of the results (weights, lambda, and rho) will be show graph-

ically in the plot.  

 

 

Fig C-2 Desktop of the MCA assessment software 

 

Some examples of the results taken from the evaluation software are shown below from 

fig. C-3 to fig. C-6. It can be seen from those figures that both the advantage and drawbacks 

of different leaning law is clearly shown in the desktop.  
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Fig C-3 One of the weights for different learning laws in the presence of white noise 

 

Fig C-4 Rho for different learning laws in the presence of white noise 

 

Fig C-5 One of the weight for different learning laws without noise 
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Fig C-6 Rho for different learning laws without noise 

 

 

In the following sections, a brief summary of the convergence of MCA EXIN neuron is 

given as in [113] 

 

2. Convergence and time constant of MCA EXIN 

Assume that Rxx is well behaved: the observation follows from the well-known second-

order ergodicity properties.  

The weight w(t) can be expressed as a function of the orthogonal vectors 
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Replace it into (C.6), and recalling the orthogonality of the eigenvectors, yields 
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Which gives 
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(C.13) shows )( sstw  is the eigenvector of xxR which corresponding to minimum eigen-

value n . 

Multiplying (5.23) by )(tT
w on the left yields 
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The symbol ‘=’ in (C.15) is different from (5.23) is a consequence of the fact that the 

learning law represents only as a first-order approximation. The constancy of the weight 

modulus holds from (C.14), it then follows: 

2
)0()(lim w


tfn

t
     (C.16) 












 0/)0(

0/)0(
)()(lim

2

2

n

T

n

n

T

n

ss
t

tt
zwwzw

zwwzw
ww   (C.17) 

(C.16) and (C.17) represent the convergence of the MC neurons. 
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From (C.11), in the approximation of modulus constancy (C.15), 
















2

2
)0(

)(exp)(
w

t
t ini   1,...,2,1  ni   (C.18) 

The time constant of the neuron is given by 

in 





2

2
)0(w

     (C.19) 

(C.19) represents the approximate converging time for the the proposed estimator: it 

depends on the signal to noise ratio (SNR) and the modular of initial weights. As no as-

sumptions on the SNR should be made, the time constant of the system can only be modi-

fied by the initial weights modulus.  

(C.19) also shows the extra 
2

2
)0(w  term make the MCA EXIN Pisarenko method pos-

sibly outperform some conventional gradient based method. The method has quicker con-

vergence in the beginning with small modulus, as we will discuss later, this implies a higher 

variance in the first temporal part of the weight time evolution, but the fluctuation will 

decrease as the evolution continues. 

 

3. Rayleigh Quotient and MCA EXIN learning law 

The Rayleigh quotient (RQ) is the function which assigns to any nonzero complex vector 

u the scalar quantity 











i

i

j k

kjjk

u

uuc

2
),(RQ)(RQ

uu

Cuu
Cuu   (C.20) 

Where  jkcC  

The most relevant properties of the RQ are the following (for proofs see[129-132]) 

 Homogeneity: 

),(RQ),(RQ CuCu      (C.21) 

 Translation invariance: 
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  ),(RQ),(RQ CuICu   (C.22) 

Boundedness: as u ranges over all nonzero vectors, RQ(u) fills a region in the complex 

plane which is called the field of values (also numerical range) of C. This region is closed, 

bounded and convex. If C=C*(self adjoint matrix), the field of values is the real interval 

bounded by the extreme eigenvalues  maxmin, . 

 Orthogonality: 

uIuCu ))(RQ(      (C.23) 

 Minimal residual: scalar  0u scalar  ,  

uICIuC )())(RQ(     (C.24) 

 Let C be a real symmetric n-dimensional matrix with eigenvalues 11    nn

and corresponding unit eigenvectors nzzz ,...,, 21 , Then  

),(RQmax1 Cu     (C.25a) 

),(RQmin Cun     (C.25b) 

More generally, the critical points and critical values of are the eigenvectors and 

eigenvalues for C.  

The Hessian matrix of the RQ is given by 

  IuuC
u

H RQ)grad(RQgrad(RQ)
2

2

2

 TT

r  (C.26) 

Where u is real and  

 uIC
u

RQ
2

grad(RQ)
2

2

   (C.27) 

It can be observed that, ni ,...,3,2,1  

 IC iizH )(RQ
   (C.28) 

Hence 

    0det)(det  ICzH iir    (C.29) 

Which implies that )(RQ izH  is singular iz . Furthermore 
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








jiz

ji
zz

jij

ji )(

0
)(RQ 

H    (C.30) 

So Hr, computed at the RQ critical points, has the same eigenvectors as C, but with 

different eigenvalues. Hr(u) is positive semidefinite only when u=zmin. 

Degeneracy proposition: The RQ critical points are degenerate because in these points 

the Hessian matrix is not invertible. Then the RQ is not a Morse function in every open 

subspace of the domain containing a critical point. 

 

4. The Rayleigh Quotient Gradient Flow 

Let : M be a smooth function defined on a manifold M; 

Let )(D : MTM   denote the differential, i.e., the section of the cotangent bundle 

MT  defined by 

      )()(,:  ww ww DDMTD   (C.31) 

Where   wD  is the Fréchet derivative of   at w. To be able to define the gradient 

vector field of , a Riemannian metric <,>w on M must be specified. Then the consequent 

gradient grad : MTM   is uniquely determined by the following two properties: 

1) Tangency condition 

;)(grad MwMTw w      (C.32) 

2) compatibility condition 

  .),()( MTwgradwD w    (C.33) 

If 
nM  is endowed with its standard Riemannian metric defined by

nT   ,,  , then the associated gradient vector is just  

T

n

w
w

w
w

w
w

w 
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


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















 )(),...,(),()(

21


    (C.34) 

If nnnwQ :)( is a symmetric matrix denoting a smooth map which represents the 

Riemannian metric, then 

)()()(grad 1 wwQw        (C.35) 

Which shows the dependence of )(grad w on the metric )(wQ . 
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Let  1|1 
ww

nnS  denote the unit sphere in
n . Denote 

1:),(RQ n

xx SRw  the restriction of the RQ of the autocorrelation matrix on the unit 

sphere.  

The unite vector
1 nSw , the Fréchet derivative of ),(RQ xxRw is the linear functional 

  1:|),(RQ n

xx STD wwRw  defined by 

   xx

T

xxxxD RwwRRw w 2,2)(|),(RQ    (C.36) 

In order to define the gradient on the sphere, the standard Euclidean inner product on 

1nSTw
is chosen as Riemannian metric on

1nS , i.e., up to a constant,  

1,2,  nT STw    (C.37) 

The gradient ),(RQ xxRw is then uniquely determined if it satisfies the tangency con-

dition and the compatibility condition 

  1),(2),,()(|),(  n

xx

T

xxxx STRQRQRQD ww RwRwRw   (C.38) 

Which together with (C.35), implies  

  0),( 
T

xxxxRQ wRRw    (C.39) 

From the definition of tangent space, it follows wwRRw  xxxxRQ ),(  with

RwwT , so that 0),(  xx

T RQ Rww to satisfy the tangency condition. Thus the gra-

dient flow for the RQ on the unit sphere Sn-1is 

  )(),( tRQ
dt

d
xxxx wIRwR

tw


）（
   (C.40) 

The RQ gradient flow restricted to the unit sphere extends to a flow on  0n : Deriv-

ing the expression of the RQ with regard to w to gives the Fréchet derivative of 

   0:),(RQ n

xxRw , which is 

     
T

xxxxxx RQRQD wRwwR
w

Rw w ),(
2

)(|),(
2

2

  (C.41) 

 Define a Riemannian metric on each tangent space   0nTw
: as  }0{,  nTw , 
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)(
1)(

2,
2

2

2

2
w
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w
w  

dt

tdT
  (C.42) 

Which is the ODE of the MCA EXIN neurons. Convergence and stability properties of 

gradient flows may depend on the choice of the Riemannian metric. In case of a nondegen-

erate critical point of , the local stability properties of the gradient flow around that point 

do not change with the Riemannian metric. However, in case of a degenerate critical point, 

the qualitative picture of the local phase portrait of the gradient around that point may well 

change with the Riemannian metric [130], [133]. 

As seen in the Degeneracy proposition [113], the RQ critical points are degenerate. As 

a consequence, the phase portrait of the gradient flow has only degenerate straight lines in 

the direction of the RQ eigenvectors, i.e., the critical points are not isolated. This funda-

mental observation, together with the above analysis, justifies the creation of MCA neurons.
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APPENDIX D GENERALIZATION OF THE LINEAR REGRESSION 

PROBLEMS 

If the vector b = [b1…bj…bm]T∈ ℝ m is considered as well as the matrix A∈ ℝ mxn com-

posed of m row vectors 𝐚𝑗
𝑇, then finding the weight vector x (the problem of linear param-

eter estimation) is generally equivalent to solving the following overdetermined set of lin-

ear equations, on the basis of the training set made up of the expanded matrix [A;b]: 

bAx       (D.1) 

Generally, A∈ ℝ mxn is called data matrix, and b∈ ℝ m is called observation vector. Sev-

eral different problems require finding the solution, according to the error consideration, 

there are generally three types of approaches to solve this equation [2,92]: 

 

1. Ordinary Least Squares (OLS) 

According to the classical ordinary least squares (OLS) approach, errors are implicitly 

assumed to be confined to the observation vector. The least-square solution is the one min-

imizing 

2

'

'
min bb
b


 m

with the constraint )('
Ab R   (D.2) 

Where )(AR  is the column space of A. When a minimum of '
b is found, every vector 

satisfying 

'' bAx       (D.3) 

is then called the OLS solution. It corresponds to the point minimizing the following 

cost function: 

)()()(E bAxbAx  T

OLS x    (D.4) 

 

2. Data Least Squares (DLS) 

The opposite case is the data least squares (DLS) problem, because the error is assumed 

to lie only in the data matrix A. The data least-square solution is the one minimizing 

Fnm

''

*''
min AA

A




 with constraint )( ''
Ab R  

where ||…||F is the Frobenius norm. Once a minimum A’’ is found, every x″satisfying 
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 bxA ''''
     (D.5) 

is called the DLS solution. It is proved that it corresponds to the minimization of the 

cost function 

xx

bxbx
T

T

DLS

AA
x

)()(
)(E


    (D.6) 

 

3. Total Least Squares (TLS) 

The total least squares (TLS) method is a technique devised to make up for the errors in 

both the data matrix and observation vector. The least-square solution is the one minimizing 

   
FA nm

bAbA
b

ˆ;ˆ;min
)1(*]ˆ;ˆ[




with constraint )ˆ(ˆ Ab R  (D.7) 

When a minimum of  bA ˆ;ˆ  is found, every x̂ satisfying 

bxA ˆˆˆ       (D.8) 

is called a TLS solution. It minimizes the sum of orthogonal squared distances (weighted 

residues squared sum): 

  

  2

2

2

2

1;
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xx

bAxbAx
  (D.9) 
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APPENDIX E CONVERGENCE BOUND OF THE ADAPTIVE LEARNING 

RATE 

Before studying the upper bound of the learning rate, consider again the learning pro-

cess (5.20) in the deterministic continuous time (DCT) system [115], and rewrite the learn-

ing process of EXIN neurons in the DDT system[116,117].  

𝐰(𝑘 + 1) = 𝐰(𝑘) −
𝛼(𝑘)

‖𝐰(𝑘)‖2
2 [𝐑𝒙𝒙𝐰(𝑘) − 𝑟(𝑘)𝐰(𝑘)] = 𝐺(𝒘(𝑘)) (E.1) 

Where r(k) =
𝐰𝑇(𝐤)𝐑𝒙𝒙𝐰(𝐤)

𝐰𝑇(𝐤)𝐰(𝐤)
is the Rayleigh quotient at the kth iteration, and it holds that 

λ𝑀 ≤ r(k) ≤ λ1 from the properties of the RQ. To avoid confusion, the time index term t 

is replaced by k in the following DDT analysis. 

It should be noted that (E.1) can also be obtained as the numerical integration of (5.20) 

via Euler’s method with step size α, however, in (E.1) the discrete learning process is pre-

served appropriately.  

At the equilibrium of MCA EXIN, {z1 , z2,…, zM}, it follows from (E.1), and without 

loss of generality, we simplify the term 𝐰(𝐭) to 𝐰, 

𝜕𝐺

𝜕𝑤
= 𝑰 − 𝛼𝑯 = 𝑰 −

𝛼

‖𝐰‖2 (𝑟𝑰 − 2
𝑟𝐰𝐰𝑻

‖𝐰‖2
2 −

𝐰𝑻𝑟𝐰𝐈 + 2𝐰𝐰𝑻𝒓

‖𝐰‖2
2 + 4

(𝐰𝑻𝑟𝐰)𝐰𝐰𝑻

‖𝐰‖2
4 ) 

= 𝑰 − 2𝛼
1

‖𝐰‖2
2 (𝐑 − ∇(𝑟)𝐰𝑻 − 𝐰 ∇(𝑟)𝑇 − 𝑟𝑰)   (E.2) 

 

Where H is the Hessian matrix of the RQ, and  

∇(𝑟) =
2

‖𝐰‖2
2 (𝐑𝒙𝒙 − 𝑟𝐈)𝐰   (E.3) 

is the gradient flow of RQ, being 𝐑𝒙𝒙 the autocorrelation matrix. 

It is easy to see that (E.2) has the same eigenvectors as Rxx, for the equilibrium w=zj, 

and recalling the properties of RQ, it follows 

𝜕𝐺

𝜕𝑤
|

𝑧𝑗

= 𝐼 − 2𝛼
1

‖𝐰‖2
2 (𝐑𝒙𝒙 − 𝜆𝑗𝑰) = 𝑱𝑗   (E.4) 

The term 
1

‖𝐰‖2
2 acts as a scaling term to the learning rate. 

Now the stability at point 𝒛𝑗(𝜆𝑗) will depend on the spectral analysis of 𝑱𝑗, whose ei-

genvalues are given by the eigenvalues of Rxx, 𝜆𝑖, following (E.4), 
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{
𝜆 = 1 −

2𝛼

‖𝐰‖2
2 (𝜆𝑖 − 𝜆𝑗),         𝑖 ≠ 𝑗      𝑎)

𝜆 = 1,                                        𝑖 = 𝑗      𝑏)
  (E.5) 

From the Lyapunov theory, an asymptotic stability at points 𝒛𝑗(𝜆𝑗) sufficient condition 

is |𝜆| < 1, ∀𝜆 𝑜𝑓 𝑱𝒋. It should be noted from (E.5b) that we cannot draw any conclusions 

of the global stability because one eigenvalue lies on the unit circle for 𝑖 = 𝑗, the equilib-

rium can be either stable or unstable, however (E.5a) provide the necessary information 

about the range where the learning rate does not diverge the original system. The verifica-

tion of the global convergence of MCA EXIN neurons, can be found in appendix D. 

For this purpose, the cases j=M and 𝑗 ≠ 𝑀 should be distinguished, where j=M corre-

sponding to the eigenvector associated with the minimum eigenvalue𝜆𝑀. 

Case 𝑗 ≠ 𝑀, considering the eigenvalues for 𝑖 ≠ 𝑗 in (E.5a),  

|1 −
2𝛼

‖𝐰‖2
2 (𝜆𝑖 − 𝜆𝑗)| < 1 ⇔ −1 < 1 −

2𝛼

‖𝐰‖2
2 (𝜆𝑖 − 𝜆𝑗) < 1 

   ⇔ (𝜆𝑖 > 𝜆𝑗) ∩ (
𝛼

‖𝐰‖2
2 <

1

𝜆𝑖−𝜆𝑗
)   (E.6) 

It is obviously from the definition that for i>j, 𝜆𝑖 ≤ 𝜆𝑗, which is in contradiction with 

(E.6). Therefore points 𝑗 ≠ 𝑀 are instable irrelevant to the choice of 𝛼, which is in accord-

ance with the convergence analysis in appendix D. 

Case j=M, and considering𝑖 ≠ 𝑗, from (E.5a) 

|1 −
2𝛼

‖𝐰‖2
2

(𝜆𝑖 − 𝜆𝑀)| < 1 ⇔ −1 < 1 −
2𝛼

‖𝐰‖2
2

(𝜆𝑖 − 𝜆𝑀) < 1 

                           ⇔ (𝜆𝑖 > 𝜆𝑀) ∩ (
𝛼

‖𝐰‖2
2 <

1

𝜆𝑖−𝜆𝑀
)           (E.7) 

Note that 
1

𝜆𝑖−𝜆𝑀
≥

1

𝜆1−𝜆𝑀
, so the maximal learning rate which does not diverge the orig-

inal system is given as, 

𝛼 < 𝛼𝑚𝑎𝑥 =
‖𝐰‖2

2

𝜆1−𝜆𝑀
    (E.8) 
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[94] Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R.S.; Etxeberria-Otadui, I.; Teodorescu, R.; 

Blaabjerg, F., “A Stationary Reference Frame Grid Synchronization System for Three-Phase 

Grid-Connected Power Converters Under Adverse Grid Conditions,” Power Electronics, 

IEEE Transactions on , vol.27, no.1, pp.99,112, Jan. 2012 

[95] Golestan, S.; Monfared, M.; Freijedo, F.D.; Guerrero, J.M., “Dynamics Assessment of Ad-

vanced Single-Phase PLL Structures,” Industrial Electronics, IEEE Transactions on , vol.60, 

no.6, pp.2167,2177, June 2013 

[96] M.R.Kun, F. Ling,D.Zhao-Yang,W.K. Po, B. Z.Qian, andX. H. Bo, “Dynamic phasor and 

frequency estimators considering decaying DC components,” IEEE Trans. Power Syst., vol. 

27, no. 2, pp. 671–681, May 2012. 

[97] Fedele, G.; Ferrise, A., "A Frequency-Locked-Loop Filter for Biased Multi-Sinusoidal Es-

timation," Signal Processing, IEEE Transactions on , vol.62, no.5, pp.1125,1134, March1, 

2014 

[98] He Wen; Siyu Guo; Zhaosheng Teng; Fuhai Li; Yuxiang Yang, "Frequency Estimation of 

Distorted and Noisy Signals in Power Systems by FFT-Based Approach," Power Systems, 

IEEE Transactions on , vol.29, no.2, pp.765,774, March 2014 

[99] Kia, S.H.; Henao, H.; Capolino, G.-A., "A High-Resolution Frequency Estimation Method 

for Three-Phase Induction Machine Fault Detection," Industrial Electronics, IEEE 

Transactions on , vol.54, no.4, pp.2305,2314, Aug. 2007 

[100] Dash, P.K.; Hasan, S., "A Fast Recursive Algorithm for the Estimation of Frequency, 

Amplitude, and Phase of Noisy Sinusoid," Industrial Electronics, IEEE Transactions on , 

vol.58, no.10, pp.4847,4856, Oct. 2011 

[101] Yong-Hwa Kim; Young-Woo Youn; Don-Ha Hwang; Jong-Ho Sun; Dong-Sik Kang, 

"High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in 

Induction Motors," Industrial Electronics, IEEE Transactions on , vol.60, no.9, 

pp.4103,4117, Sept. 2013 

[102] Hayes M H. Statistical digital signal processing and modelling [M]. John Wiley & Sons, 

2009. 



150  Binying YE, Ph.D. Thesis, 2015 

                                                                                                                                                  

[103] So H C, Chan K W, Chan Y T, et al. Linear prediction approach for efficient frequency 

estimation of multiple real sinusoids: algorithms and analyses[J]. Signal Processing, IEEE 

Transactions on, 2005, 53(7): 2290-2305. 

[104] Y. T. Chan, J. M. M. Lavoie, and J. B. Plant, “A parameter estimation approach to esti-

mation of frequencies of sinusoids,” IEEE Trans. Acoust. Speech, Signal Process., vol. 

ASSP-29, no. 2, pp. 214–219, Apr. 1981. 

[ 105 ] Pisarenko, V. F. (1973). The retrieval of harmonics from a covariance 

function.Geophysical Journal of the Royal Astronomical Society, 33(3), 347-366. 

[106] Stoica, Petre, Jian Li, and Xing Tan. "On spatial power spectrum and signal estimation 

using the Pisarenko framework." Signal Processing, IEEE Transactions on 56.10 (2008): 

5109-5119. 

[107] Kay, Steven M., and Stanley Lawrence Marple Jr. "Spectrum analysis—a modern 

perspective." Proceedings of the IEEE 69.11 (1981): 1380-1419. 

[ 108 ] P. A. Thompson, “Adaptive spectral analysis technique for unbiased frequency 

estimation in   the presence white noise,” in Proc. 13th Asilomar Conf. Circuits, Syst. 

Comput., 1979, pp. 529–533. 

[109] So H C, Chan K W. Reformulation of Pisarenko harmonic decomposition method for 

single-tone frequency estimation[J]. Signal Processing, IEEE Transactions on, 2004, 52(4): 

1128-1135. 

[110] J. F. Yang and M. Kaveh, “Adaptive eigen-subspace algorithms for directionor frequency 

estimation and tracking,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 

241–251, Feb. 1988. 

[111] Chen L H, Chang S. An adaptive learning algorithm for principal component analysis[J]. 

Neural Networks, IEEE Transactions on, 1995, 6(5): 1255-1263. 

[112] Aboulnasr T, Mayyas K. A robust variable step-size LMS-type algorithm: analysis and 

simulations[J]. Signal Processing, IEEE Transactions on, 1997, 45(3): 631-639. 

[113] Cirrincione, G.; Cirrincione, M.; Herault, J.; Van Huffel, S., “The MCA EXIN neuron 

for the minor component analysis,” Neural Networks, IEEE Transactions on , vol.13, no.1, 

pp.160,187, Jan 2002 

[114] G. Cirrincione and M. Cirrincione, “Linear system identification by using the TLS EXIN 

neuron,” Neurocomputing, vol. 28, no. 1–3, pp.53–74, Oct. 1999. 

[115] Ljung L. Analysis of recursive stochastic algorithms[J]. Automatic Control, IEEE 

Transactions on, 1977, 22(4): 551-575. 



Bibliography  151 

                                                                                                                                                  

[116] Yi Z, Ye M, Lv J C, et al. Convergence analysis of a deterministic discrete time system 

of Oja's PCA learning algorithm[J]. Neural Networks, IEEE Transactions on, 2005, 16(6): 

1318-1328. 

[117] Zufiria P J. On the discrete-time dynamics of the basic Hebbian neural network node[J]. 

Neural Networks, IEEE Transactions on, 2002, 13(6): 1342-1352. 

[118] Adali T, Haykin S. Adaptive signal processing: next generation solutions[M]. John Wiley 

& Sons, 2010. 

[ 119 ] Murata N, Müller K R, Ziehe A, et al. Adaptive on-line learning in changing 

environments[J]. 1997. 

[120] Murata N, Kawanabe M, Ziehe A, et al. On-line learning in changing environments with 

applications in supervised and unsupervised learning[J]. Neural Networks, 2002, 15(4): 

743-760. 

[121] Binying Ye; Cirrincione, M.; Cirrincione, G.; Pucci, M.; Vitale, G., “Improved sensorless 

scalar control by a PLL tracking rotor slotting effects,” Sensorless Control for Electrical 

Drives (SLED), 2012 IEEE Symposium on , vol., no., pp.1,5, 21-22 Sept. 2012 

[122]  Chan, Y.T.; Lavoie, J.; Plant, J. B., “A parameter estimation approach to estimation 

of frequencies of sinusoids,” Acoustics, Speech and Signal Processing, IEEE Transactions 

on , vol.29, no.2, pp.214,219, Apr 1981 

[123]  Terzija V, Cai D, Stanojevic V, et al. Frequency and power components estimation 

from instantaneous power signal[J]. Instrumentation and Measurement, IEEE Transactions 

on, 2011, 60(11): 3640-3649. 

[124]  So, H. C., Chan, K. W., Chan, Y. T., & Ho, K. C. (2005). Linear prediction approach 

for efficient frequency estimation of multiple real sinusoids: algorithms and analyses. 

Signal Processing, IEEE Transactions on, 53(7), 2290-2305. 

[125]  Klein J D. Fast algorithms for single frequency estimation[J]. Signal Processing, 

IEEE Transactions on, 2006, 54(5): 1762-1770. 

[126] Feng D Z, Zhang X D, Chang D X, et al. A fast recursive total least squares algorithm 

for adaptive FIR filtering[J]. Signal Processing, IEEE Transactions on, 2004, 52(10): 2729-

2737. 

[127] Leung S H, So C F. Gradient-based variable forgetting factor RLS algorithm in time-

varying environments[J]. Signal Processing, IEEE Transactions on, 2005, 53(8): 3141-

3150. 

 



152  Binying YE, Ph.D. Thesis, 2015 

                                                                                                                                                  

[128] Kay S M. Modern spectral estimation[M]. Pearson Education India, 1988. 

[129] F. Chatelin, Eigenvalues of Matrices. New York: Wiley , 1993. 

[130] U. Helmke and J. B. Moore, “Optimization and dynamical systems,” in Communications 

and Control Engineering. London, U.K.: Springer-Verlag, 1994. 

[131] B. N. Parlett, “The Rayleigh quotient iteration and some generalizations for nonormal 

matrices,” Math. Comput., vol. 28, pp. 679–693, 1974. 

[132] -- The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: Prentice-Hall, 1980. 

[133] D. Shafer, “Gradient vectorfields near degenerate singularities,” in Global Theory of Dy-

namical Systems. Ser. Lecture Notes in Mathematics 819, Z. Nitecki and C. Robinson, Eds. 

Berlin, Germany: Springer-Verlag, 1980, pp. 410–417. 


