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RESUME

Les avantages de contrde de la machine asynchrone sans capteur de vitesse sont les
suivants : réduction de la complexité du matériel, moins d’exigences en termes d’entretien,
codt moindre et une fiabilitéaccrue. Cette these propose I'utilisation d'un modée harmo-
nique plus éevé du moteur ainduction qui prend en compte les effets de fente de rotor et
son utilisation pour le calcul de la vitesse du rotor des moteurs ainduction (IM). Elle se
caracté&ise par une trés faible sensibilit€aux variations des parameétres.

La theése éudie tout d’abord la relation entre les harmoniques afentes du rotor (RSHs)
et la vitesse du rotor instantané. Pour suivre directement I'RSH, les exigences du systéne
sont pleinement prises en compte.

Dans un deuxiéne temps, les travaux de thése ont permis de déselopper un systéme
sans capteur en fonction de boucle averrouillage de phase (PLL): La largeur de bande
centrale est r&ylé en ligne sur la base des valeurs de ré&ence, des fr&uences d'alimenta-
tion et de glissement prévues au convertisseur PWM, la PLL est ré&lé pour suivre le rotor
de la machine &RSH sans la néeessitéde toute injection de signal ahaute fréguence, ni en
rotation, ni de pulsation. Ce systéme d'estimation de vitesse, qui est appropri€pour le con-
trdeur scalaire, avait &éintéreéavec le lecteur scalaire, conduisant &un simple calcul peu
exigeant, afaible cott de I’entrainement de la machine a induction sans capteur a faible
coQ. Les résultats exp&imentaux montrent que le systéme est en mesure de suivre la vitesse
de la machine dans une plage de vitesse trés éendue.

Enfin, un systéme sans capteur amé&iorébasésur l'analyse de composant mineur
(MCA) neurones est déerit. Selon la théorie de Pisarenko, il a @éévé&ifiéque le MC qui se
trouve dans le sous-espace de bruit est orthogonale au sous-espace de signal, par consé
quent, les fréguences de signal contenues dans I'entré& peuvent &re calculées apartir d'un
polyn@Gme formépar la MC. Classiqguement, ce qui né&essitera la dé&omposition propre
encombrants, né@nmoins, la mé&hode de neurones proposeée dans cette thése peut resup&er
le MC de fagn re&eursive avec moins de calculs et des performances am@ioréss d'erreur (la

solution est sur un total de moins sens carré. En outre, I'estimateur de vitesse est appliquée



al'entramement scalaire avec vé&ification exp&imentale, I'ensemble du systéne se com-
porte bien, et la mé&hode MCA renforceée par réseaux neuronaux a fourni un bon potentiel
dans I'application des harmoniques ré&upé&er.

Mot clé: moteurs &induction, entramements &ectriques, PLL, analyse de composant

mineur, extraction des harmoniques



ABSTRACT

The advantages of speed-sensorless IM drives are reduced hardware complexity, fewer
maintenance requirements, lower cost and increased reliability. This thesis proposes the
use of a higher harmonic model of the induction motor which takes into account the rotor
slot effects and its use for the computation of the rotor speed of induction motors (IMs). It
is characterized by a very low sensitivity to the parameters variations.

The thesis first studies the relation between the rotor slot harmonics (RSHs) and the
instantaneous rotor speed. To directly track the RSH, the requirements of the system are
fully addressed.

Second, the thesis presents a sensorless scheme based on phase-locked loop (PLL): The
centre bandwidth is tuned on-line on the basis of the reference values of the supply and slip
frequencies provided to the PWM converter, the PLL is tuned to track the machine rotor
slotting harmonic without the need of any high frequency signal injection, neither rotating
nor pulsating. This speed estimation scheme, which is suitable for the scalar controller, had
been integrated with the scalar drive, leading to a simple, computationally not demanding,
low cost sensorless IM drives. The experiment results show that the system is able to track
the machine speed in a very wide speed range.

Finally, an improved sensorless scheme based on minor component analysis (MCA)
neurons is described. According to the Pisarenko’s theory, it has been verified that the MC
which lies in the noise subspace is orthogonal to the signal subspace, thus, the signal fre-
guencies contained in the input can be computed from a polynomial formed by the MC.
Conventionally, this will require the bulky eigen-decomposition, nevertheless, the neural
method proposed in this thesis can retrieve the MC recursively with less computation and
improved error performance (the solution is of total least square meaning). Moreover, the
speed estimator is applied to the scalar drive with experimental verification, the overall
system is well behaved, and the MCA method enhanced by neural networks has provided

a good potential in the application of harmonics retrieve.
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CHAPTER 1. INTRODUCTION

In high performance electrical drives with induction machine (IM) for traction appli-
cations, one of the key problems is the sensorless control of the speed and the position. The
advantages of speed-sensorless IM drives are reduced hardware complexity, fewer mainte-
nance requirements, lower cost and increased reliability. To replace the mechanical speed
sensor, information on the rotor speed is extracted from measured stator currents and volt-
ages at the motor terminals. Fundamental and anisotropy model based algorithms are used
for this purpose [1-12]. They differ with respect to accuracy, robustness, and sensitivity
against model parameter variations.

This research work explores the speed estimation algorithms based on tracking the ro-
tor slot harmonics (RSHs) of the IM, which are created by machine anisotropy and directly
related to the real-time rotor speed. Like the other anisotropy-model based approaches, they
are independent of machine parameters, like stator and rotor resistances, yet no extra signal
injection is required. Moreover, the proposed algorithms have been applied to a sensorless
drive, showing a good behavior in a very wide speed range from rated speed down to 2%

of the rated speed.

1.1 Sensorless Control of Induction Motors

Literature about sensorless control of IM drives is huge [1-37]. The sensorless tech-
niques for IM can be mainly divided into two categories: methodologies based on funda-

mental models and methodologies based on anisotropies models, see fig. 1-1.

Fundamental Wave Models Exploitation of Anisotropies
Observers . Saturation in the Slot Custom
Wl EMF Models LI el o Main Pass Asymmetries Designed

Fig 1-1 Classification of the sensorless control of machine
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The former, such as model reference adaptive system (MRAS) and observers in the
synchronous or stationary reference frame, present good results in the middle and high
speed regions, but they suffer problem at low speeds where the back EMF fade out, and the
IM becomes an unobservable system.

The latter have a better performance at very low and zero speed, they either exploit the
magnetic saliency by signal injection, or exploit the use of PWM switching signals, and
can be more efficient at low and zero speed than any other sensorless estimation due to its
uncorrelated property with the machine parameter. Yet the latter tends to fail at increasing
speed because of the necessary signal processing system (filtering etc.). In general, it can
be stated that they can hardly be adopted at rated or close to rated speed.

Some typical methods belong within the two categories as described in the following:

1.1.1 Model-Based Sensorless Approach

1.1.1.1 Open-Loop Speed Estimators

Various rotor speed and slip speed open-loop estimators can be obtained by rewriting
the stator and rotor equations of the IM. The accuracy of the algorithms is largely dependent
on the machine parameters; however, due to their simplicity and robustness, some of them
are also currently employed in commercial sensorless drives. In [1], five open-loop sensor-
less schemes are described, which are all based on the stator and rotor equations of the IM,
differing from one another by the reference frame in which the equations are expressed. In
practice, the choice among them is usually made according to the machine parameters at
hand.

If the stator flux-linkage has been estimated, one straightforward way for speed estima-
tion is to estimate the stator flux-linkage speed w,,s and the slip speed wgy; [1], and take

the difference as follows:
(1//st y/sQ/dt—gyst y/sD/dt) L, O'Trdis“;s /dt+is";s
: T |w|-otiiy

W, = Wps — Wy = (118.)

S SX

v

wms

Dsls

Or correspondingly, if the rotor flux-linkage has been estimated, then the rotor speed

cab be obtained as the sum of the speed of the rotor flux (w,,,- relative to the stator) and the

slip wg;y,
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(lr//rdd l//rq /dt_V/rqdl//rd /dt)_ Lm (_!//rqisD + lr//rdisQ)
— 2 2
\\vr Ti|w,

DOy W)y

O, =Wy — Wy, = (11b)

Where,
Ysp, Pso instantaneous values of the direct and quadrature axis stator flux linkages
expressed in the stator reference frame
Yra, Prq instantaneous values of the direct and quadrature axis rotor flux linkages

expressed in the rotor reference frame

Ps W
lsx s lsy

instantaneous values of the direct and quadrature axis stator current ex-

pressed in the stator flux-oriented reference frame

L., L, L, 3-phase magnetizing inductance, 3 phase total self-inductance of stator
and rotor respectively

o=1-12%/L,Ls global leakage factor

T, = L, /R, rotor time constant

In (1.1a), the stator flux-linkage speed is obtained by taking the derivative of the stator
flux-linkage angle 6,,,, with the division between the vector product of the stator flux-
linkage vector and its derivative and the square of the stator flux amplitude itself. The slip
speed (the speed of the stator flux-linkage space vector relative to the rotor) is obtained on
the basis of the direct and quadrature components of the stator current in the stator flux-
oriented reference frame. For this reason, a coordinate transformation is needed for this
estimator. While in (1.1b), the rotor flux-linkage speed is obtained with the division be-
tween the vector product of the rotor flux-linkage vector and its derivative and the square
of the rotor flux amplitude. The slip speed is obtained on the basis of the vector product of
the rotor flux and the stator current vectors. The rotor flux linkage, however, is usually
obtained from the stator flux linkage, and the stator flux linkages can be obtained by using
monitoring stator currents and voltages. From (1.1), it can be known that the accuracy of
the speed estimator depends greatly on the machine parameters, and the model used for the
estimation of the rotor flux linkage.

The correct field orientation is affected by the accuracy in estimating the angles 6,,,; or
0., that, depending on the open-loop flux estimation (see fig.1-2), suffer from both the

integration problem and the sensitivity to the stator resistance variation. Many literature
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papers refer improving the integration problem, i.e. the time derivation, parameter estima-
tion [13-16]. At low stator frequency, in particular, a reduction of the speed estimation
accuracy is to be expected in all these schemes due to a mismatch between the real and the
estimated flux linkage caused by a wrong model of the stator resistance. The poor
knowledge of the rotor time constant, on the contrary, mainly influences the estimation of

the slip speed and therefore is critical at high loads.

U 4 + Wy
I/s | Ll —

Is

Fig 1-2 Basic structure for determination of the flux of the IMs

1.1.1.2 Model Reference Adaptive Systems

Both the steady-state and transient accuracy of the speed estimation can be significantly
increased by adopting closed-loop speed estimation algorithms instead of the open-loop
ones. An important category is that of MRASs (model referencing adaptive systems), in
which an error vector is formed from the outputs of two models both dependent on different
state variables of the IM. The error is driven to zero by an adaptation mechanism, through
adjustment of a parameter that influences the adaptive model so that its output eventually
coincides with that of the reference model.

In [10][17-21], several MRAS schemes have been developed. They differ from one an-
other by the state variables being employed. Fig. 1-3 shows the basic scheme of a MRAS
based speed estimator, in this case, the parameters to be estimated is the rotor speed w;..
Some state variables, x4, x4(e.g. rotor flux-linkage components, 1,4, Y4, Or back e.m.f.
components, eq, e4, etc.) of the induction machine, which are obtained by using measured
guantities, are estimated in a reference model. Meanwhile, in the adjust model, the same
state variables are estimated using the measured quantities and the rotor speed. The corre-

sponding speed tuning signals ¢ are, respectively, e, = Im(Y.P.), €, = Im(eé&*), or
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*y

g, = Im[(e — &)is]: the quantities with ‘*” are related to the adaptive model and the

operator denotes the complex conjugate.

U
—| Reference
is »| model
ha
. | Adaptive
model
( - Adaption |

mechanism

Fig 1-3 Basic MRAS-based speed estimator scheme

In designing the adaptation mechanism for a MRAS, it is important to take account of
the overall stability of the system and to ensure that the estimated quantity will converge to
the desired value with suitable dynamic characteristic. The appropriate adaptation law can
be derived by the Popov’s hyperstability criterion [1].

If the classic MRAS scheme based on the rotor flux error is considered, the reference
model is described by the stator voltage equations in stator reference frame (DQ), re-written
here for the sake of simplicity:

OIl//—“’—i(usD —Rii,—ol Oli—SD)

dt *

Lm
dy, L :
=—(Uy, — Rl
dt Lm(sQ

(1.2)

d|
—ol, SQ)
dt

s'sQ

The adaptive model is based on the rotor equations in the stator reference frame, which

is the so-called current model:

dy, 1 .

Ve :_(Lm sD Wrd a)rTrlr//rq)

dt T, 13)
dl/}rq .

1 .
dt T (LmlsQ lr//rq+a)Tl//rd)
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The differences between the state variables estimated, respectively, with the reference
and adaptive models are fed to a speed tuning signal &, and then processed by a PI (propor-
tional integral) controller, whose output is the rotor speed. In this case, the speed is esti-

mated as

Cbr = Kp(l//rql/}rd _l//rdl/}rq) + KiI(qu‘/}rd _l//rdl/}rq)dt (14)

Fig. 1-4 shows the block diagram of the classic MRAS scheme. The MRAS structure
has numerous advantages: it is physically explicit and the PI controller in the adaptive loop
is easy to design for a given estimation bandwidth. The result is accurate except for very

low speeds when the voltage-model-derived flux vector becomes inaccurate.

kotKi/s ——»

Fig 1-4 Block diagrams of MRAS based on rotor flux error.

However, like the open-loop estimators, the MRASs depend on the stator machine
model: the block diagrams of the reference and adaptive models clearly highlight that the
reference model suffers from the open-loop integration problem: this problem was ad-
dressed in [17] by adopting an LPF (Low Pass Filter) instead of a pure integrator, which
causes, however, a poor flux amplitude and angle estimation as well as a poor speed esti-

mation at low frequency, around the cut-off frequency of the LPF (usually a few Hertz).
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This consideration highly limits the minimum working speed of the drive and the correct
field orientation, with consequent reduction of the torque performances at low speed. Al-
ternative solutions to be adopted for the open-loop flux integration have been shown in [2],
in particular the adaptive integration based on a linear neural network [22]. Furthermore,
at low speeds, the stator voltage amplitude is small, thus an accurate value of the stator
resistance is required by the model to have a satisfactory response.

Other attempts includes: A MRAS scheme based on the back emf error [10], where no
integration is needed so that satisfactory performance can be achieved even at low speeds,
with resulting wider bandwidth of the speed loop; A MRAS-based system with a linear
ANN (artificial neural network) adaptive model [23] has been presented which enhances
the stability. The closed-loop types of MRAS are described in [2] (p.282), where the char-
acteristics of a closed-loop flux observer (CLFO) are integrated with those of an MRAS,
including also a mechanical system model. In general, they improve the performance of the

speed estimation while increasing the complexity of the observer.

1.1.1.3 Adaptive Observers
For the open-loop estimators and MRAS described in the previous sections, the limit of

acceptable performance depends on how precisely the model parameters can be matched
with the corresponding parameters in the actual machine. The robustness against parameter
mismatch and signal noise, however, can be improved by employing an adaptive observer.
The observer based method aims at providing a real-time estimation of the state variables
of a system, using only the input and output signals, both of which are assumed to be known.
They can further be classified into two categories: the one based on the deterministic model,
such as the Luenberger observer [24], extended Luenberger observer [25], and sliding
model observer [26]; the other based on stochastic theory, such as Kalman filter and ex-
tended Kalman filter [27].

If the stator current and the rotor flux-linkage space-vectors are chosen as state variables,

the state equations of the IM in the stationary reference frame can be written as [2]

i A, A [ B
d s WX _[An A * |+| '|u,=Ax+Bu, (1.5)
dt| v, dt |Ay Ay Ly, 0

I, =Cx (1.6)
Where
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A, =—{R /(oL,) + (1-0c)/(cT, )}l xa,
Ay, =L (oL L)W T - 0,3} =a, {(1/T )1 - 0,3}

A, ={L, /T 1=a,l (1.7)
A, =—UTH + 0, =a,{(UT ) -0d}
B, =1/(cL,)1 =bl

With

is z[isD isQ]T ' us :[usD usQ]T’ \Ilr = [l//rd l//l’q]T’

c'=[o 1],c=|l 0],'=[(1) ﬂjzﬁ _ol}

In the above state representation, x = [is,\ll r] is the state vector, composed of the stator

current and rotor flux-linkage direct and quadrature components in the stationary reference
frame, us is the input vector composed of the stator voltage direct and quadrature compo-
nents in the stationary reference frame, A is the state matrix (4 <4 matrix) depending on
the rotor speed w,., B is the input matrix, and finally C is the output matrix.

The observer can be established by adding an error compensator to the machine model.
If a full-order Luenberger observer is considered, the state observer estimates the stator
current and the rotor flux, involving only the error vector on the stator current between the
measured and model output one, e,,. = (ig — i), as given in the following:

%:AX+BUS+G(fs—iS) (1.8)

Where *" means the estimated values, G is the observer gain matrix which is designed

so that the observer is stable [2]. The speed signal &, is required to adapt the matrixA.

The speed of IM, can be achieved by using a PI controller as

o, =K, (e,)+K; [ (e, Mt (1.9)

do, L,

” :oL—L[l//rq (i —1p) — W, (i - fSQ)] is the speed tuning

Where the error terme, =

signal found by utilizing Lyapunov’s theorem [2].

The block diagram of the full-order Luenberger adaptive observer is shown in Fig. 1-5.
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Fig 1-5 Block diagram of the full-order Luenberger adaptive observer

The full-order Luenberger observer based methods yield a reasonably accurate value for
the speed. In general, the robustness against parameter mismatch and signal noise can be
improved by employing stochastic observers for the estimation of the state variables, alt-
hough the algorithm and design complexity are increased. Among them, the Kalman filter,
although being computationally cumbersome, permits a joint estimation of state variables

and parameter providing a better accuracy at low speed.

1.1.1.4 Limitations of Model-Based Approach
Most of the fundamental model based schemes involve estimating both flux and speed

from the information available at the stator terminals, i.e., voltage and current. Such
schemes will always be marginally stable for zero excitation frequency, when the back
e.m.f. decreases to null or it is so low to be comparable with the voltage drop caused by the
stator resistance: the speed then becomes unobservable at the stator terminals and the con-
trollability at zero speed is expected only for a short time duration.

Furthermore, machine parameters are necessary for constructing the speed information,
which means that the performance of all model-based speed estimators degrades under in-
correct motor parameters. It is especially the stator resistance that determines the estimation
accuracy of the stator flux vector. Although a correct initial value of the stator resistance is
easily identified during initialization, considerable variations of the resistance take place

when the machine temperature changes at varying loads. Besides, the bad knowledge of the
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rotor time constant influences the estimation of the slip speed and therefore is critical at
high loads.

To further improve the performance of model-based methods, online parameter identi-
fication is required. Besides that, a more precise model of the PWM inverter and flux can

improve the accuracy at low speed range.

1.1.2 Anisotropy-Based Sensorless Approach

1.1.2.1 Signal Injection

Signal injection methods exploit machine anisotropy properties that are not employed
by the fundamental machine model. The injected signal usually excites the machine at a
much higher frequency than the bandwidth of the machine, and generates flux linkages that
close through the leakage paths in the stator and rotor, leaving the mutual flux linkage with
the fundamental almost unaffected [28-33].

Manufactured cage IMs usually do not have the inherited rotor saliency like permanent
magnet synchronous machines (PMSMs); The magnetic saliency, however, can be caused
by many reasons, such as discrete rotor bars in a cage rotor [28,29], saturation effect of the
leakage paths through the fundamental field [32][34]. Otherwise the saliency effect can
also be enhanced by using a custom designed rotor so as to exhibit periodic variations of
local magnetic or electrical characteristics within a fundamental pole pitch [30]. The inter-
action of the HF (high frequency) signal with the rotor magnetic saliency produces a rotor
position dependent signal that can be tracked by a properly designed observer [31-34].

Considering the case of saturation-induced saliency, the maximum flux density occurs
in the d axis of a field-oriented coordinate system. The fundamental field saturates the stator
and rotor iron close to d region, and therefore produces a higher magnetic impedance to the
local leakage paths, the stator and rotor currents in the conductors around the saturated d-
region excite leakage fluxes having a dominating g-component. The total leakage induct-

ance component L, then reduces, while the component L, of the unsaturated g axis re-

mains unaffected, leading to L;q < Lgq [35]

. {Lod 0}
L = (1.10)
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Being defined with reference to a coordinate system (X) that rotates at the speed of ani-
sotropy w, to be detected, the x axis coincides with the most saturated region.

To extract the speed information from the machine anisotropy, a poly-phase rotating
carrier at pulsation w, is usually added to the fundamental voltage generated by the pulse-

width modulation (PWM) system. The term is of the type,
u, =u.e’™ (1.11)

where u, is the amplitude of the revolving carrier.

The interaction of such a voltage component with the machine anisotropies causes the
presence of a current space-vector i, at carrier frequency w,. appearing as a component of
the stator current space-vector ig. To compute the resulting current space vector i, the car-
rier voltage has to be transformed into the same reference frame by multiplying it by exp(-
Jwy),

=X
L dic. (1.12)

X _ (o~ )t _
uc _uce - *o dt

This formula can be used to solve for i, considering that w, > w,, this leads to the

following solution:

- X — Ju, (0, -o)t “j(o,-o)t
I, =——"—|(L,+L_)e"* " +(L,—L,)e "™ 1.13
= e a) (Lu-Lae "] (13)
which is then transformed back to the stationary reference frame
. —ju (o oo ..
im0 L, + L)o@ (L — L )el =i i, (1.14)
20,L 4L,

This result shows the existence of a current space vector ip, rotating at carrier frequency
w. ina positive direction, and a space vector in that rotates at the angular velocity w,. — 2w,
in a negative direction. This last component has the information on the speed w, of the
anisotropy to be detected.

When carrier-signal excitation is used for sensorless control, the overall stator current
consists of the fundamental current and the positive and negative sequence carrier signal
currents. The separation of these components is necessary for both the fundamental current
regulator operation and the extraction of the spatial information from the negative-sequence

carrier signal. To be further processed by the speed estimation algorithm, the i, component
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is extracted by a heterodyning technique or a band-pass filter centred at the carrier fre-
quency, which separates it from both the fundamental current component and the high-
frequency components due to the switching. Fig.1-6 shows the basic structure of the signal
injection method.

Vector -+
u. Modulation Vae
o »1%&:. 4
A
Jol v LPF ? 2 Inverter
- i
e : S )
ESTIMATION OF i
THEROTOROR [«¢— / \
FLUX POSITON Induction
BPF Machine

Fig 1-6 Basic structure for the determination of the flux or rotor position
by using an injection method

Other methods in this category include high frequency pulsating carrier injection instead
of the rotating one [1][4], which introduces a voltage vector on one of the axes of an esti-
mated dq coordinate (synchronous frame). One of the problems of the signal injection tech-
nique is the low magnitude of the modulated signal. A method overcoming this is to impose
to the machine a set of repetitive short reversal PWM voltage vector [36]. Correspondingly,
the transient flux components cannot penetrate the rotor sufficiently to create a mutual flux

linkage, the response of this short-term voltage disturbance is therefore of high magnitude.

1.1.2.2 PWM Harmonics
In this method [37], the PWM harmonics are used as an ‘injected” HF excitation signal,

therefore no extra signal injection is needed. It was found that at low speed, the 2" PWM
carrier harmonic (denoted as PWM2) has the largest amplitude, so it has been used as the
‘injected” signal in the paper. The 2" PWM carrier harmonic can be actually described as
a pulsating vector, rotating approximately synchronously with the fundamental voltage

vector in the stator fixed aff frame as below,
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Vowmzas = é\%(sin(ﬂmAH asin(zms )+ a2 sin(zm. ))cos(2mpyyt)  (1.15)

Where V- is the DC voltage, m, = ;—Z’; (x=A, B, C), v,, wpyare respectively the
PWM output voltage and angular frequency.

Then, similar to HF pulsating injection approach, the resulting current PWM?2 carrier
harmonicip,,y,,,; together with the “injected” HF can be used for detecting the impedance
related to the rotor speed. However as the HF pulsating vector amplitude and phase are now
determined by the fundamental operation, the speed is retrieved from the impedance vector
but not the resulting current. Paper [37] has proposed a novel position observer shown in
the following (Fig. 1-7).

Fig.1-7 shows the demodulation block. The stator voltage and current vectors (Veg, iap)
are first band pass filtered with the centre frequency set to twice the PWM switching fre-
quency. The filtered signals are further demodulated by a heterodyning technique. The HF

carrier frequency component is removed by a discrete average filter. As a result only the

amplitude modulation signal v.,,,, and i,,,,of frequency fpwm2 are derived. An equiva-
lent impedance vector z,,,,,, can be defined on the basis of the demodulated voltage and

current PWM carrier harmonic vectors v, and ip,., as,

. V,
Zoywz =0 (1.16)
PWM2

COS( @ pyi2 L+@vpini2)
Vap . Vemas2as
i —B—A

coS Z’ J | N
( w PWM2 +(0 iPWf\’IZ)

Fig 1-7 Block diagram of PWM2 signal demodulation

Z ppas 2

To retrieve the flux angle information from the impedance vector, it is assumed that the

rotor bars (RB) cause a circular equivalent impedance modulation with the amplitude AZ ., .
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The angle 6, is the rotor bar position within one rotor bar period, which is the distance

between 2 adjacent rotor bars. The idea is to detect the asynchronous modulation due to the
conductor bars embedded in the rotor iron package of the machine. The resulting voltage

equation system for the demodulated PWM2 variables is given by,

V;’—’WMZ& — Z‘ - AZIIQB COS(QRB) AZ;QB Sln(eRB) il':’WMZzz (1 17)
AZ 5 SiN(Org)  Z +AZgg c0S(Ggg) '

Vewmzp lowmz2

The impedance vector is shown as an equivalent impedance vector with an offset Z’ and
a circular modulation with the radius AZ ., rotating backwards with Ggg + 2 Lipy,,,s 0CCUIS,

ZIPWMZ =Z _AZII?B COS(HRB + Zéilpwmzaﬁ) + jAZII?B Sin(gRB + ZZiI;’WMZaﬂ) (1.18)

After compensating for the offset [37], the additional 2/ip,,,., Phase modulation can

be easily removed since the HF current vector position 2.Zipy,,, is directly known. Fig.1-

8 shows the corresponding signal tracking algorithm. A basic look up table (LUT) com-

pensation scheme is implemented to extract only the desired rotor bar modulation. One PLL

(PLLZY) is used to track and filter the measured AzZpwers modulation, which contains the

rotor bar modulation signal. A second PLL (PLL2) is used to condition the final derived

rotor bar position signal and construct the speed information.

Zrmea  + + | Dy
PLL1 PLL2
- <
+ 62
i, —
X LUT 2
Li >
n A
Lipmy1as

Fig 1-8 Signal tracking PLL’s in the sensorless algorithm

1.1.2.3 Limitations of Anisotropy-Based Approach

Although problems at very low speed can be partly solved by these methods, in a real
machine, the stator current signature presents a great quantity of harmonics: e.g., the satu-
ration saliency resulting from the interaction of different fluxes in the machine will lead up
to secondary saturation space harmonics [31]; The discrete nature of the windings and the
non-ideal manufacturing process generally produce other space harmonics. The inherit high
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frequency PWM harmonics. Moreover, there is generally more than one anisotropy in an
IM with different spatial orientations: the response to an injected high-frequency signal
necessarily reflects all anisotropies, and therefore contains more than one resulting har-
monics close to each other. In order to separate the useful signals with noise, complicate
signal processing methods are needed. This is usually achieved by using a band-pass and a
band-stop filters, but they limit the bandwidth of both the current controller and the ob-
server.

The tracked saliency depends on the overall saturation effect and will shift under a load
[31]. Robust operation across the whole torque and low/zero frequency regions is not al-
ways possible. Besides, the modulating signal represents itself an additional harmonic of
high amplitude to be cancelled [35]: this will cause instability of the control system at the
extreme condition. Although PWM harmonic methods [37] do not have this problem, more

complicate signal processing is needed due to the low amplitude of the useful signal.

1.2 Contributions

Since the fundamental-model based method has limited performance due to the non-
observability of the model at low speed and sensitivity to the machine parameters, there
has recently been considerable interest in anisotropy-based methods for the sensorless con-
trol of AC machines. However, the anisotropy information is usually retrieved by signal
injection, where extra harmonics have to be introduced into the machine and complicate
signal processing is required to retrieve the speed information. Other problems are related
with the possible saliency shift problem, and finally the robustness of the method is not
always satisfactory. PWM harmonics methods, which do not have to inject extra signal to
the machine, alleviate the problem of signal injection, but their performance is highly de-
termined by the PWM inverter pattern.

Thus, extensive research has been carried out in the extraction of the speed related rotor
slot harmonics (RSHs) to estimate the speed. These algorithms require no extra signal in-
jection, are independent of machine parameters, like stator and rotor resistances, and are
mainly focused on the feasibility in steady-state or quasi steady-state. This thesis, on the
contrary, will develop methods for tracking the RSH which are able to work online with
high rejection ability to load torque changes. The proposed RSH speed estimators have also
been applied to the scalar control system, they can work in a wide speed range, yet the
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entire system is simple, computationally not demanding, and low cost. It is characterized
by a very low sensitivity to the parameters variations.

To directly track the RSH, the capability of the proposed system is tied to the following
features of the detection system:

1). High pull-in capability so as to track the RSH in the entire speed range of the machine,
where the loop gain at RSH frequency is high, while decreasing sharply as the frequency
deviates away;.

2). A flexible and selective bandwidth so as to simultaneously track the RSH in a wide
range of variation without permitting any noise to enter in the band of the detector.

These issues have been fully addressed and solved in the thesis. The proposed method
can continuously and accurately track the rotational speed of 1M at both dynamic or steady-
state conditions, and the centre frequency do not have to be changed manually at each com-

putation cycle.

1.3 Organization
This thesis considers the sensorless control of IMs using RSH in wide speed range, a

background introduction on RSHs and literature review are presented in Chapter 2. Issues
related to the RSH based speed estimator are discussed.

Chapter 3 presents the scheme of scalar control. It is not new, but it is included for the
sake of readability. Also some improvements are made on the basis of the conventional
scalar control scheme.

Chapter 4 describes RSH tracking method using the phase-locked loop, and the corre-
sponding sensorless scalar drive. Simulation and experimental results are presented to ver-
ify the algorithm.

Chapter 5 describes the framework of RSH speed estimator based on minor component
analysis, particularly by using the MCA EXIN neurons.

Finally, Chapter 6 summarizes and gives recommendations for future work.

In Appendix A, the IM model including the rotor slotting effect is presented. Its validity
has been verified in simulation.

In Appendix B, the eigen-decomposition of the autocorrelation matrix is discussed, it is
the fundamental of the Pisarenko’ method.

In Appendix C, a graphical User Interface for TLS EXIN neurons is included, with an
analysis of the MCA EXIN algorithm.
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Appendix D includes the generalization of linear regression problems, where the differ-

ences are described mathematically among the OLS, DLS, and TLS.
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CHAPTER 2. SPEED DETECTION USING ROTOR SLOT
HARMONIC

Rotor slot harmonics (RSHSs) are found in the stator current waveforms for most induc-
tion motors. Algorithms have long ago been developed to track the speed of a motor given
a dedicated stator current measurement, for example [38][39]. These methods are insensi-
tive to motor parameter changes with frequency, temperature, or any other external disturb-
ances. Besides being used for nonintrusive speed estimators, harmonic analysis has also
been applied to diagnostic detection of electro-mechanical faults such as rotor eccentricity
and damaged bearings [40].

In the control of an electric drive, accuracy and speed of response are the main two
criteria describing the performance of a speed sensor. This chapter introduces the RSHs
and issues around the extraction of RSH. Moreover, the limitations of previous literature
that use RSHs for speed tracking or sensorless drive will be fully addressed. The improved
methods developed in this thesis can estimate the speed with reduced time and improved
accuracy, and they are suitable for sensorless drives, which will be described in the next

chapters.

2.1 Rotor Slot Harmonics
2.1.1 Introduction

In an induction motor, the speed related RSHs present in the stator current signature
arise from the interaction between the permeance of the machine and the associated mag-
netomotive force (MMF). As the motor turns, the rotor slots alter the effective length of the
air-gap periodically, thereby the permeance of the machine. This behavior is visible in the
flux wave, which is the product of the MMF (the fundamental component) and the perme-
ance across the air-gap. The resulting harmonic components of the machine flux move with
respect to the stator and induce corresponding voltage harmonics and hence current har-

monics in the stator winding.

19
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Besides the fundamental MMF, the odd harmonics present in the stator and rotor current
introduce a series of space and time MMF harmonics, producing the additional RSH of
higher order.

Static and dynamic eccentricity harmonics also appear in the stator current as a result
from rotor rotating irregularly in relation to the stator axis.

These harmonics are essentially a function of the number of pole pairs, the number of

rotor slots per pole pair, and the speed, as it results from the following equation [41]:
fo=(ra, ¥n,/p)A-s)f, Fv (2.1)

Where

fi1 fundamental harmonic of the supply voltage;

s slip;

p number of pole pairs;

q, number of rotor slots per pole pair;

ng eccentricity order (ng = 0 in case of static eccentricity and n; = 1, 2, 3... in case
if dynamic eccentricity),

r order of the space harmonic, r =1, 3,5, ...;

v the order of the stator time harmonics present in the power supply driving the mo-
tor.v=1,3,5 ...

It is worth mentioning that the stator slots, on the other hand, also affect the air gap
permeance; the air-gap flux harmonics therefore result from the variation of the permeance
due to both rotor and stator slotting. However, it has been found that there is no time har-
monics in the air-gap field which is related to the stator slots. This means that the number
of stator slots affects only the space distribution of the flux harmonics relative to the sta-
tionary stator, and will not induce new frequencies in the current signature: a detailed dis-
cussion can be found in [42,53] .

The principal slot harmonic (PSH) which refers to the first and the prominent harmonic
in the RSH series, is obtained by (2.1), with r = 1 and n; = 0, v = 1 if the time harmonics
of the stator and rotor currents together with the static and dynamical eccentricities are

neglected. In this case the rotor slotting effects are located at frequencies:
fo=0a, fl(l_ S)1 f; (2.2)

For most of the data presented in this thesis, there is little rotor imbalance so the most
visible RSHs are given by (2.2), known as PSHs. However the motor is supplied by the
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inverter and the higher time harmonics cannot be neglected, so v can have higher values
than 1.
It should be noted, however, that the harmonics, as described by (2.2), are not present in
a real machine for any combination of the number of rotor slots and pole pairs [43-47]. The
time harmonics obtained with (2.2) result from the corresponding space harmonics of the
resulting MMF, which are of order - 1. Since gr = 3m =1, this also implies that one of the
two space harmonics is always a multiple of three, and therefore, it never induces a time
harmonic in a healthy machine (e.g., balanced three-phase winding). This will lead to the
fact that, the lower PSH (upper sign) in (2.2) exists in the stator current spectrum when g,
satisfies,
g, =3n—-1 n=0,12,.. (2.3)

The higher PSH (lower sign ) exists when g satisfies,
g, =3n+1 n=012,.. (2.4)

In the case under study, the adopted motors have 2 pole pairs, 36 stator slots (gs=18=3m,
as in most cases) and 28 rotor slots (qr =14=3n-1), meaning only the lower PSH frequency
IS noticeable in the stator current signature.

Fig.2-1 depicts how the PSH follows slip changes at constant speed. The experimental
motor is operating in steady-state at mechanical speed of 10rad/s with a scalar controller,
under load varying from 0 to 30% of rated value. It can be observed that the fundamental
and the time harmonics frequencies increase with the slip. The PSH however, overlap with
the time harmonics under some condition, e.g. the PSH lies higher than the 11*" harmonic,
and approaches the 7" at 30% load, making it difficult to be tracked dynamically. From

(2.2) the frequencies where PSH meets the other harmonics can be further calculated when

fn = 11f;,7f1, f1, whereby the slips are s==, =, - respectively. On the other hand, the am-

N
Slw
Slo

plitude of the RSH fades as the load decreases, since the slot permeance hardly changes
with the load, so the slot current is almost proportional to the fundamental current.

Fig. 2-2 illustrates how the PSH changes with the motor speed. The adopted machine
runs at low speed range, under no load condition. The operating speed varies from 1 t010
rad/s. It is shown that the PSH decreases with the machine speed; in particular at very low

speed, isolating the PSH from the other harmonics is really challenging as the PSH become
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closer to the other time harmonics. This difficulty is even harder considering that the work-

ing condition of the machine is unpredictable.
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Fig 2-1 Current signature of the experimental motor runs at 10 rad/s, under different
load
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Fig 2-2 Current signature of the experimental motor at low speed from1-10 rad/s, at no

load

2.1.2 Experimental results

A more complete harmonic analysis on the stator current signature has been performed

at different operating speeds as well as at no load and with load. This has been done with
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the goal to verify which are the limits of the observer to properly extract only the RSH from
the whole stator current signature. The experimental harmonic analysis has been made by
employing the Real Time Signal Analyser Tektronics RSA5103A instrument, which
permits the frequency range and the frequency accuracy to be analyzed even at very low
frequency.

The Real Time Signal Analyser Tektronics RSA5103A has been equipped with an
attenuator of 40 dB to measure the voltage signals coming from current sensors; to obtain
the amplitude of the measured current, the value read on the screen is to be added to 43 dB

(the presence of the attenuator of 40dB+3dB to convert the RMS into amplitude).

13 dB/div
-36.22@16Hz 38Hz/div

/ RBW: 3Hz

-72.30@208Hz

-79.63@176Hz /

» Start: 2 Hz = Stop: 380 Hz

Fig 2-3a. Spectrum of the stator current signature at constant speed of 50 rad/s with no
load
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Fig. 2-3b. Spectrum of the stator current signature at constant speed of 50 rad/s with

10 Nm load torque
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Fig.s 2-3 a and b show the stator current signature spectrum, measured with the above
cited instrument, obtained at steady-state during a constant speed of 50 rad/s, respectively
at no-load and at rated load (10 Nm torque). The RSH at no-load is correctly detected by
the system at 13-50/7=208 Hz, while it moves to 207 Hz at rated load according to (2.2),
maintaning the working speed at 50 rad/s with a slip pulsation of w,=13 rad/s. At this
working speed, the closest harmonic to RSH is the 11", which lies at 176 Hz at no-load,

while it moves to 197 Hz at load.

MZ 77 07 dBv 9 dB/di‘r
-41.45@3Hz 10Hz/div

77 07@36Hz RBW:1Hz
-73.11@41Hz
nﬂ/\

i
o Start: -3 Hz © Stop: 102 Hz

Fig 2-4a. Spectrum of the stator current signature at constant speed of 10 rad/s with no
load

-32.16(@5Hz 9 dB/div

10 Hz/div

-83.47@34Hz RBW:1Hz
£ g -61.81@39Hz

J M%w/\

© Start: -3 Hz © Stop: 102 Hz

Fig. 2-4b. Spectrum of the stator current signature at constant speed of 10 rad/s with
10 Nm load torque

Fig.s 2-4 a and b show the current signature spectrum obtained at steady-state during a
constant speed of 10 rad/s, respectively at no-load and at rated load (10 Nm torque). The

RSH at no-load is correctly detected by the system at 13-10/7=41 Hz, while it moves to 39



CHAPTER 2 Speed Detection Using Rotor Slot Harmonic 25

Hz at rated load according to eq. (2.2), maintaning the working speed at 10 rad/s with a
load slip pulsation of w,=11.41 rad/s. At this working speed, the closest harmonic to RSH

is the 11" at no-load, which lies at 36 Hz, while it is the 7" at load, which lies at 34 Hz.
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10Hz/div
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Fig 2-5a. Spectrum of the stator current signature at constant speed of 5 rad/s with no
load
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Fig. 2-5b. Spectrum of the stator current signature at constant speed of 5 rad/s with 10

Nm load torque

Fig.s 2-5 a and b show the current signature spectra obtained at steady-state during a
constant speed of 5 rad/s, respectively at no-load and at rated load (10 Nm torque). The
RSH at no-load is correctly detected by the system at 13-5/7=20 Hz, while it moves to 18
Hz at rated load according to eg. (2.2), maintaning the working speed at 5 rad/s with a load
slip pulsation of w,=15 rad/s. At this working speed, the closest harmonic to RSH is the

11" at no-load, which lies at 16 Hz, while is the 5™ at load, which lies at 20 Hz.
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All these results are summarized in Table 2-1. It can be found that all the slot harmonics
appear at frequencies in accordance with the theoretical values calculated from (2.2). For
example, while at no-load the closest harmonic to RSH is the 11", as expected, at rated
load the closest harmonic remains the 11™ at 50 rad/s, while it becomes the 7" at 10 rad/s
and the 5" at 5 rad/s. This can be explained, considering that at low speed and high load,
the slip pulsation w, becomes comparable or higher than the fundamental one;

correspondingly the 7" or 5" harmonic can become closer to RSH than the 11",

TAB 2-1 AMPLITUDE AND FREQUENCIES OF RSH AT VARIOUS SPEED

fi f (closest harmonic.) frsH
f [Hz] I [A] f [Hz] I [mA] f [Hz] I [mA]

5 rad/s

2 1.38 16( 11™) 53 20 123
no load
5 rad/s

4 7.31 20(51) 611 18 404
10Nm
10 rad/s

3 2.39 36(111) 39 41 62
no load
10 rad/s

5 6.96 34(7M) 19 39 229
10 Nm
50 rad/s

16 4.36 176( 11™) 29 208 69
no load
50 rad/s

18 7.85 197(11™) 31 207 323
10 Nm

2.2 Review of Literatures on Speed Estimation via RSH

When the location of the speed dependent PSH is found, the speed of the electric motor
can be computed rather easily: assuming f;, is known, from (2.2), the rotor speed (expressed
in electrical rad/s) is given by,
2n(f, + 1) o+

Q  q

(2.5)

&, = 24,(1—5) =

Thus, the difficulty of speed estimation via PSH lies in the retrieve of PSH, for in a

healthy machine the air-gap field and the stator current signal present a great quantity of
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harmonics caused by winding distribution, slotting effect, air gap eccentricity, PWM supply,
etc [42][48-52]. Among all these harmonics, PSH is located at rather high ranges in the
stator current spectrum, but it moves toward the fundamental frequency when the slip in-
creases. Especially at low speed, the slip s increases dramatically even if the load torque
remain constant (considering the slip frequency f, = sf; remain constant, at low speed f;
decreases, thus s will increase), the PSH could lie at the same region of the 1", 5" and 7%
harmonics, see tab.2-1 for example. Thus, in practical drives, the PSH varies in a very wide
range (from a few hertz to hundreds of hertz) and rapidly (it is dependent of the applications,
normally within a few milliseconds) and moreover the retrieval of PSH is made harder by
the other harmonics arising both from the inverter and the motor itself.

As far as the direct RSH tracking is concerned, two main approaches have been followed
in literature:

A. Frequency domain methods, which are mainly based on FFT (Fast Fourier Trans-
form)-like approaches;

B. Time domain methods, which are mainly based on PLL (Phase-Locked Loop)-like

approaches.

2.2.1 Frequency Domain Methods

As for the frequency domain approaches, the main contributions are the [53-58].

A pioneering work has been made in [53], where a speed detector based on fast Fourier
transform (FFT) has been described. As shown in fig. 2-6, the conditioned phase current is
first decomposed into frequency components by using FFT. Then the algorithm search the
location of supply frequency f; within the range close to the fundamental inverter frequency
fo- Following (2.2), the component found is then used to define another two harmonic index
ranges where the slot harmonics component might be located. The first range, [18(f,/Af),
19 (fo/Af )-1], allows for under-load condition and the second one, [18( f,/Af ),
19(f,/Af)+1], for near no-load condition (s = 0), where Af is the frequency resolution of
the algorithm. The load condition is determined by setting a threshold on the amplitude of
the RSH. The isolated RSH component and fundamental component are used to compute
the rotor speed using (2.5). The FFT approach has shown a good estimation accuracy and
can effectively work in a wide range with the help of fast digital signal processing. However,
the resolution of the FFT depends on the data sampling frequency f; and the data block
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length N (or f;/N exactly), its speed of response is very limited due to the long data records
required to produce a good frequency resolution. Fast tracking of RSHSs, particularly during
high slew rate transients, is a real challenge. As consistently shown in the paper, a single
cycle speed estimation (including data acquisition, spectral estimation, harmonic extraction,
etc.) time reaches about 3s at 10-kHz sampling rate.

Fundamental Inverter frequency

window f
ia Pre Dat. "_|
- . ata v »| Fi -
— P -
Process Buffer % find | Speed
»{ Calculation
RSH Track Scheme Find f,
Based on FFT

Fig 2-6 FFT based speed detector

Some modern spectral estimation methods (mainly parametric methods), such as the
covariance method [54], the Prony method [55], have been used to improve the speed of
response of FFT, with the accuracy of FFT being retained. An example can be found in
[56], where Hurst proposed a speed estimation algorithm employing maximum entropy
spectral estimation (MESE) method [57]. Many improvements have been made compared
to the FFT approach: a notch filter is added to eliminate the fundamental current (see fig.
2-7); Down-sampling of the current sequence is used to increase the effectiveness of sub-
sequent filtering operations; Before the MESE, a 26th-order band-pass filter is used to elim-
inate all spectral harmonics outside the range containing expected RSH, etc. The main im-
provement, however lies in the MESE itself, which is based on linear prediction model
whose impulse response best matches the data, by least-square minimization. It is able to
compute the frequency with less points of data (36 points as used in the paper), as a conse-
quence, it largely reduces the required sampling time and provides increased robustness to
noise. Yet the drawbacks is obvious as well: the model order p has to be selected a priori
with the experience of the author, it is required that the machine operates at a certain speed
range, so the harmonics close to PSH is predictable. Besides that, the ratio between sam-
pling frequency and fundamental frequency remain fixed, resulting in a long converging

time at low speed.
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Fig 2-7 Speed detection algorithm based on spectral estimation.

Apart from the modern spectral estimation approach, some papers have exploited the
use of other types of transformation. One example can be found in [58], where the harmonic
analysis of the machine current is taken by means of the chirp-Z transform (CZT). Com-
pared to the FFT, the frequency transformation is limited to certain restricted frequency
bands. In the case of RSH tracking, they are frequency bands centered at the fundamental
inverter frequency f;, and the expected RSH frequency f,. Thanks to this constraint, the
frequency resolution increases to f,,/N, where f;, is the bandwidth of the selected window,
and N is the data length. It has been shown in the paper that, Chirp-Z transform reduces
sampling and process time to 1.5s from 4.1s of the standard FFT approach with the same
resolution. Despite this improvement, the response time remains too long for a real-time
speed detector. Moreover, a shorter observation window is required for the CZT, if the RSH
frequency jumps out of the expected frequency range, the algorithm fails.

With all the frequency domain approaches under consideration, they generally provide
good accuracy and linearity over a very wide speed range and load conditions, but a com-
promise has to be made between the required frequency resolution, to allow speed detection,
and the response time versus changes of speed. A desired high frequency resolution im-
poses the acquisition of a large amount of samples and a corresponding high acquisition
time. It means that the information on the RSH estimation can be updated only when the
sampling window is completed. Besides that, the spectral analysis algorithm can only work
with the help of band-pass filters: In steady-state, these filters will only increase the com-
putation burden, but as long as the transient is concerned, the band of the filters has to be

adapted according to the expected frequency of PSH, the transient of these filter during the
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parameters changing stage is complicate, together with the sensitive frequency analysis

method, this implies that speed tracking during transients could provide insignificant results.

2.2.2 Time Domain Methods
As far as the time domain approach is concerned, the main contributions are the follow-
ing [59-61].

The speed identifier, which was proposed in [59], has used an adaptive digital filter to
estimate the frequency of RSH (see fig. 2-8). The phase current is first pre-filtered by a
high pass and band pass filter so that only the harmonics close to RSH are left, the cut-off
frequencies of these filters are tuned online based on the fundamental inverter frequency fo
and slip s, which is estimated by torque current iq (it is very closely proportional to slip
frequency for operation up to base speed). fsn is then computed as follows: by tuning the
centre frequency of an infinite impulse response (IIR) notch filter to minimize the remain-
der of the filtered output spectrum, so at steady-state, the center frequency of this notch
filter will be equal to the RSH frequency fsh. This method provides a sample by sample
estimation of the rotor speed, and since the RSH is defined directly by the notch filter pa-
rameters but not its output, it is claimed that the RSH frequency can be identified in 0.2 ms
at 5-kHz sampling rate. The computational burden of this method is low as well. However,
one difficulty might be the redesign of band-pass filter, because the motor speed changes
fast, and the centre frequency of this filter has to adapt with the expected location of RSH.
Unlike the frequency domain method, [59] highly relies on the on-line tuning of filter pa-
rameters, and such tuning often requires comprehensive understandings of the convergence
properties of filters and increases the amount of computation considerably.

A similar RSH frequency detection approach using filtering has been proposed in [60],
where a digital 1IR band-pass filter is used to let only the PSH pass through. The cut-off
frequency of the filter is directly linked with its parameters, so it can be tuned quickly
online. The frequency of the extracted RSH is determined by counting the number of zero-
crossing, meaning the computation burden will be largely decreased, however with de-
graded accuracy. Although the idea of the easy tuning filter is novel, in practice, a sole
band-pass filter is hardly able to isolate the RSH from the other harmonics, unsurprisingly,

large oscillation of the estimated speed can be found in the results.
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Fig 2-8 Speed detection algorithm based on adaptive filter

A frequency tracking method based on frequency demodulation approach, which is
actually an opened-loop PLL has been introduced in [61]. Since it implements in complex
domain, a complex current vector is first formed by phase currents, it is then fed to the
frequency-demodulation block as shown in fig. 2-9, where the resulting RSH frequency is
the sum of two component: the expected slot frequency fsno and the correcting term frn.
Given the parameters are well tuned, the output fsnn should be accuracy and response fast,
and the local oscillator frequency permits the band-pass filter to be properly tuned with
constant bandwidth. One major drawbacks is that, the frequency of the local oscillator has
to be chosen a priori, on the knowledge of RSH under constant (rated) supply frequency.
As a consequence, such a method cannot be used in a variable speed drive case, since it
requires an on-line adaptation of the local oscillator frequency according to the drive refer-
ence speed. This is the reason why results are presented only at rated or close to rated speed.
Moreover, to guarantee the validity of this method, the instantaneous RSH should be clearly
the largest signal in the varying frequency span between the rated and the current work

condition, this is not always true in practical platform due to the presence of harmonics.
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Fig 2-9 Speed detection algorithm based on a frequency modulation method ([61])
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The time domain method provides a better real time performance than the frequency
domain method, although the accuracy of the result will be affected by the noise level. They
generally behave like such a band-pass filter: the gain is very large at the RSH frequency
and very small away the RSH frequency, they usually need a better prior knowledge of the
location of expected RSH frequency, so that the system operates only around a small band.
If this band is not chosen correctly, this method fails. Therefore there is always the possi-
bility of line frequency harmonics or harmonics from other sources being mistaken with
RSH.

Considering all the pros and cons, this thesis mainly focused on the time domain
method, making it better suited for real-time applications. Yet improvements have to be
made on both the resolution and the on-line tuning, so that the system can work robustly in

a very wide range.

2.3 Practical Tuning of the Observation Window

As stated earlier the current signature has a variable bandwidth directly related to the
supply frequency f1 and slip s. For high efficiency induction motors, the slip s usually does
not exceed 5% and possibly less. This assumption leads to interesting simplifications when
searching for the PSH. If the PSH was confined to a frequency window under the practical
limitations of slip, there would be no ambiguity in determining the window in which the
PSH is located. This is not always true however, at low frequency. This is because the
output torque is proportional to slip frequency (f;, = sf;), the rated slip increases as f; de-
creases. It has not taken into the consideration the imperfect behavior of the controller, in
practice, the slip can be large at low speed.

On the basis of the above discussion, the observing window should be further refined to
exclude the other harmonics, permitting a better robustness and faster convergence, the
real-time slip pulsation w, can be estimated, in this case, on the basis of a simple rotor flux
estimator, defined by the following equations written in the stator reference frame (see [1]
p. 414):

m
@,

= (i — Wi )= ot 2.6
Tr|‘Pr|2(l//d Q l//q D) 3|"P |2 ( )

where isp, isq are the stator currents components in the stator reference frame, |y| is the

amplitude of the rotor flux and wrd, wirq its components in the stator reference frame, te is
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the electromagnetic torque, Lm and T, are respectively the three-phase magnetizing
inductance and the rotor time constant. This simple flux estimator requires the knwoledge
of just two electrical parameters and does not requires any computationally demanding
vector rotation.

The slip pulsation calculated by (2.7) and the fundamental inverter freuquency can be
used to update an estimated location of RSH by using (2.2), then it can be used as the center
frequency of the observing window. The bandwidth of this window, should be as small as
possible, to eliminate the disturbance of other harmonics.

2.4 Effect of Eccentricity of the Motor

One important issue to be considered is the influence on the rotor speed estimation of a
potential dynamic eccentricity. In case of dynamic eccentricity, it is well known in litera-
ture that the stator current signature exhibits a couple of main sidebands, derived from (2.1)
with ng=1, r=1 and v=1:

f, =(a, TYP)f, 71, (2.7)

Where f; is the rotor speed expressed in Hz, if (2.5), without considering any dynamic
eccentricity, is adopted for speed estimation, an error on the estimated speed occurs. This
error can be written as:

Af, o f f, +f, fh+f1J1 1
r — r r — — — = 51/27 (28)
f f (qri]/p q. fr Pa, -1

r r

With £,/ the rotor speed considering dynamic eccentricity. The percentage speed esti-
mation error, with the 2 pole pairs and 14 rotor slots for pole pair machine, is constant and
about 3.7 %. This error poses the sidebands out of the normal searching range, which means
that the speed could not be properly estimated.

To overcome this problem, one way is to increase the searching range of the extraction
algorithm. This, however, implies a worse performance, since other harmonics can easily
enter the predefined bandwidth, and it is difficult to distinguish the RSH from the others

Another solution is, whenever it is known that a dynamic eccentricity occurs, to adopt
a speed estimation formula directly taking into consideration the eccentricity, differently
from (2.5), as:
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~

_ a)h +a)1ref
=
q, -Vp

The adoption of (2.9) instead of (2.5) permits the correct computation of the speed and

2.9)

consequently the correct on-line tuning of the centre RSH bandwidth.

2.5 Determination of the Number of Rotor Slot

The number of rotor slots, if unknown, can be determined by generating a set of stator
current data records at rated supply frequency and under increasing load levels. A visual
inspection in the spectrum reveals the speed-dependent harmonic as a component increas-
ing in amplitude and decreasing in frequency. From the frequency of this component and
the knowledge of the slip (only approximate value is needed), the number of rotor slots is
easily determined according to (2.2). A long enough data records has to be used to guaran-
tee the frequency resolution, so that the PSH can be easily distinguished.

A Matlab script can be designed to compute the number of rotor slot from the measured
stator current. So long as the fundamental frequency is known, it is not difficult to compute
the possible PSH range according to an estimated load condition. All the other time har-
monics related to the fundamental can be excluded firstly, then the possible PSHs in the
range can be selected by setting a threshold on the amplitude. With the help of those har-
monics which comply with the selection criteria, the number of rotor slot can be determined
by trying (2.2) with a reasonable integer rotor slots iteratively. Since most machines have
a number of stator slots defined by their size and pole number, rotor slots are then margin-

ally greater or less than this number.


app:ds:approximate
app:ds:value

CHAPTER 3. SCALAR CONTROL SCHEME

Control techniques of induction machines (IMs) can be divided into two main categories:
scalar and vector controls[2][4][62-66]. Scalar control is based on the steady-state model
of the IM and therefore permits regulating at steady-state only the magnitudes and fre-
quency of the stator voltages, currents, flux linkages, and electromagnetic torque. Since it
does not act on the angular position of the space vectors of the control variables, it does not
permit the best dynamic performance to be achieved. On the contrary, vector controls are
based on the dynamic model of the machine; they permit the drive to achieve its best dy-
namic performance in terms of electromagnetic torque control, thanks to their feature to
take into consideration the instantaneous angular position of the stator voltages, currents as
well as of the flux linkages.

Although vector control can provide higher dynamic performance, some kinds of me-
chanical loads exist which do not require a high dynamic performance. Typical examples
are fans and pumps where it is sufficient to regulate the speed of the IM with adequate
efficiency over a wide speed range. This implies that it is sufficient to use the steady-state
model of the IM instead of the dynamic one, as far as the control system design is concerned.
The machine is supposed to be supplied by a pulse width modulation (PWM) voltage source
inverter (VSI), able to generate a set of three-phase voltages whose fundamental component
is characterized by the desired amplitude and frequency. Scalar control of IMs was born
with the idea to use as a simple control method for regulating the speed of an AC machine
[67-69].

3.1 Steady-State modeling and V/f Control
3.1.1 Steady-State Modeling

The open loop voltage/frequency (V/f) control (scalar control) is described in numerous
papers in literature [2][62][70][71], the main idea is described here for coherence.
The steady-state per-phase equivalent circuit of a symmetrical three-phase operation in-

duction machine in steady-state is shown in fig. 3-1 [62]

35
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Fig 3-1 Steady-State per-phase equivalent circuits of IM

Where -Ug, E; are the phasors of supply voltage, air gap voltage respectively,
-1, I, I} are the phasors of stator, mutual, rotor current,
-Rg, R, Ly, Lsy, are the resistance, leakage inductance of stator and rotor,
- X545, Xorrepresents stator and rotor reactance,
-w; represents the supply frequency in electrical rad/s,
- s=slip,
- variables with a superscript (*) are rotor variable referred to the stator.

For simplicity’s sake the core losses have been neglected.
Starting from the steady-state space-vector equations of the 1M, the air-gap electromag-

netic torque is related to the mechanical power and air gap power as

12

P.@-s Il R
Te:i: oo ):3 (3.1)

o, @l-9) @S

Where Pm and Pgap are the mechanical and air gap power, and w,, is the rotor mechanical
speed (in electrical radians).
The current can be obtained from fig. 3-1 as

U

& :(1+as){Rs+R;/s+js'[x05/(1+as)+x;rj} (3.2)

X -
Where o, = X—"S Is the stator leakage factor.

m

Thus by substitution of egn. (3.2) into eqgn. (3.1), the electromagnetic torque can be ex-

pressed in terms of the machine parameters as,
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U 2 .
. :i | S| - 'Rr /S > (33)
o (1+0,)" (R, +R /5)? + X
Where
X'=X;f+ Xos (3.4)
1+o

S

is the transient rotor reactance of the induction machine.
It follows from (3.3), that by assuming the machine parameters constant, the electro-
magnetic torque is proportional to the square amplitude of the stator voltage for a given

slip. By equaling the first derivative of (3.3) with respect to the slip to zero, dT, /ds =0, the
critical slip (breakdown slip) is given by

+R

N2 (3.5)
(RZ + X *)*
This slip corresponds to the maximum torque given by:
3(|uY
o \1+o0
T (3.6)

e 2[R5 +(R? + x'z)%]

Within (3.5) and (3.6), the ‘positive’ corresponds to the maximum motoring torque,
which is also referred to as breakdown torque, the ‘negative’ is referred to as maximum

generating torque. It can be seen that the maximum torque is proportional to the square of

the stator voltage and it is inversely proportional to the transient rotor reactance X of the

IM. Considering only the motoring condition, it follows from (3.3) and (3.6) that the ratio
of the torque and the breakdown torque can be expressed as

T _ 2(1+k) - 2

T (S/Spax +Smax /S+2K) s/s

emax

(3.7)

max

Where
R
3 0 (3.8)

Ks——5~=
(RZ+X )"

Equation (3.7) implies that the steady-state torque, for the same value of the supply fre-
guency and voltage, depends only on the slip; this relationship is almost linear for small

values of the slip, where speed is close to the synchronous speed. In this case,
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Temaxp
e EZS—S (39)

T

max

Fig. 3-2 shows a typical torque-slip curve of IM in steady state for negative and positive
slip s.

emaxp

N
RN
Wy

Fig 3-2 Torque-slip characteristic of an IM at steady-state

On the other hand, the flux linkage of an IM is related to air gap voltage as

E
Y. =- g (3.10)
Jo,

The flux linkage can be maintained constant by keeping the ratio between air gap voltage
and supply angular frequency constant. The rotor current can be rewritten from fig. 3.1 as
a function of E,

: E

I =—— (3.11)
R, .

5

Meanwhile the expression for torque under the assumption of constant¥ ., can be re-

written as,

so,R

XA S ] L S S L
- o o

(3.12)
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Where the superscript Eg/f denotes the assumption of constant flux linkage applied to

(3.12). The slip at maximum torgue can be given following the same procedure as (3.5)

+R
sholf = — (3.13)
a)l I-Ir

And the maximum torque is equal to

2
3 \E \ 1
TR/ 2 = 3.14
emax 2[6{)1 Llr ( )

A revised version of equation (3.9) under constant ¥, at speed close to the synchronous

speed yields:
2
T ¥,
TE/ 22 emaxs:§| ,| (3.15)
Sinax 2 R

Equation (3.14) shows that the maximum torque is only dependent of the ratio Eg/f , and

hence remains the same for constant Eg/f.
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Fig 3-3 Torque-speed characteristic of an IM under constant Eg/f

Fig. 3-3 shows a set of the steady-state torque-speed characteristics of an IM under con-

stant flux linkage for a 2.2kW machine, the parameters of this machine can be found in
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chapter 4, section “test set-up”. This figure clearly shows that the higher the supply fre-
quency, the higher the synchronous speed of the machine, as expected. Moreover, the lower
the supply frequency, the higher the starting torque as long as the maximum torque is kept

constant. The maximum torque remains almost constant while varying the frequency.

3.1.2 Open-Loop Scalar Control

Since it is impossible to control the air gap voltage Eq directly with a voltage-fed inverter,
the practical way to control the speed of the IM is to open-loop regulate its supply frequency
while simultaneously keeping constant the Us/f ratio. So long as Eq is high enough, it is
acceptable to ignore the voltage drop in the stator resistance and leakage inductance, and

then to consideru, ~ E, : this happens for sufficiently high speeds.

Fig. 3-4 shows the block diagram of an open-loop scalar control scheme [2][72][73]. In
this scheme, the gradient limiter reduces the bandwidth of the stator frequency reference.
The band-limited stator frequency reference then generates the stator voltage reference
magnitude while its integral determines the phase angle. The amplitude and phase of the
reference stator voltage space-vector constitute the input of the space vector PWM system

that, in turn, establishes the switching pattern of the inverter synthesizing the reference

voltages.
- Vector -
Uff =const. Modulation T Ve T
|Usref|
, L \—> 3
mref i %‘ ﬁL’ _
Gradient VY v
Limiter o 1 arg(Usrer) dc Inverter
S .
i labe 3{
Current
Limiter
Induction
Machine

Fig 3-4 Block diagram of the open-loop scalar control.

The |Us|/w1 ratio defines the rate of change of the linear function in fig. 3-4 and is usually
set equal to the rated stator flux amplitude of the machine, |Us|/w1= |Wsrat|, when the motor

speed remains below the rated one. Above the rated speed, field weakening can be simply
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achieved by limiting the voltage amplitude to the rated voltage of the machine, |Us| = |Usrat-
At very low stator frequency, there is a pre-set minimum value of the supply stator voltage
S0 as to account for the resistive stator voltage drop, |Us| = |Us min|. This is due to the fact
that, because of a non-null value of the stator resistance, as long as the supply frequency
reduces, the stator flux amplitude decreases too. A compensator can be deployed to take
account of this voltage deeply as explained in 3.2.2.

Even if theoretically no stator current sensor is needed, since no direct current control is
performed, in practical terms, it is frequently mounted to inhibit the switching of the in-

verter power devices for overload protection in the presence of over currents.

3.2 Closed-Loop Scalar Control

3.2.1 Closed-loop Scalar Control

Section 3.1 corresponds to varying only the synchronous speed of the drive, while main-
taining Us /w1 ratio constant, without the need of measuring the machine speed on the one
hand, but without the possibility to compensate any variation of the speed caused by the
load torque on the other hand. Thus, when more speed accuracy is required, the closed-loop
control strategy should be adopted. The closed-loop control of the rotor speed can be
achieved with the scheme in Fig. 3-5, where the speed P1 controller employs the speed error

signal to compensate the slip frequency.

Vector -—
Modulation

|Usref|
a)m rer T T a)2 f;,\ / —L> 3 J
— )—» Pl —»r\ | i ‘—% 4»/
- A + A
@, @y Gradient [
Limiter M‘—> Ve Inverter

K fabe 3/

Current
Limiter

U/f =const.

(/)|r—‘

Induction
Machine

Fig 3-5 Block diagram of the closed-loop scalar control
with impressed voltages

In Fig. 3-5 to compensate for the slip frequency, the speed signal should be detected.

The reference speed wmref IS compared with the measured one wm, and the error is then
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processed by a P1 controller. The output of such a controller is the reference slip speed waret
which, added to the measured speed, provides the stator pulsation reference wiret. The ref-
erence slip speed must be properly limited to the range where the speed/torque relationship
is almost linear, to avoid pull-out phenomena. Then the same structure explained in 3.2.2

is adopted.

3.2.2 Improved Closed-Loop Scalar Control

As explained in 3.1.2, the presumption that Us=Eg is not always true especially at low
speed range, where Eq is not high enough, the voltage drop in the stator windings should
also be considered. As a comparison, Fig 3-6 shows the torque-speed characteristics of the
same 2.2 kW machine with constant Us/w:.

From fig. 3-6, for a given supply frequency, it is clear that the breakdown slip is smaller
than those in constant E¢/w: condition and moreover the maximum torque cannot be kept
constant; finally, the slip range corresponding to linear torque-slip characteristic becomes

narrower. This becomes even worse at low speeds.
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Fig 3-6 Torque-speed characteristic of an IM under constant Ug/f

A boost voltage is therefore required at low frequencies to compensate this voltage drop.
However, if this voltage is high enough to give rated torque at standstill, when the excitation

frequency is equal to the slip frequency, it will be too high however to allow the motor to
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operate on no-load at this same excitation frequency for long periods, without excessive
heating. In many drives this problem is circumvented by a special 'starting' procedure which
applies a high boost voltage for only the few seconds required to start the motor while the
running boost voltage is lower.

A more sophisticated method [68] is to correct the stator voltage reference on the basis
of such a relationship, compensating the stator resistance ohm drop:

U, ;‘I’m{a}l+%a)2} (3.16)

r

where P is the space-vector of the steady-state magnetizing flux, «, is the slip pulsa-

tion, Rs and Ry are the stator and rotor resistances. On the basis of (3.16), the following
simple stator resistance voltage drop compensation method has been adopted, to maintain
the magnetizing flux amplitude constant, even under heavy load [68]:

rne]
a)1+R—a)2 |
U |= d =2 "o + *w,=U_ +U

R 1) o, R
|: a)lrat + s 602 lrat lrat' ‘r
R

r

scomp = U stot (3'17)

This method relies on the realistic assumption that the rated pulsation in the denominator
of the second term is much higher than the component dependant on the slip pulsation. The
third term indicates that for low speeds the voltage component dependent of the slip pulsa-

tion is added.
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Fig 3-7 Block diagram of the improved scalar drive
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Fig. 3-7 shows the block diagram of the proposed improved scalar controlled induction
motor drive. The main difference here is that the voltage compensation part is introduced

into the scheme.

3.3 Controller Design

The closed loop scalar control refers to the scheme of controlling the motor torque and
speed by proportionally varying the voltage with supply frequency to keep the air-gap flux
constant and achieve up to rated torque at any speed by controlling the slip pulsation. Equa-
tion (3.12) clearly shows that 7 is in proportional to the slip pulsation sem, = w,, if Eg /w1 is
kept constant. Thus, the torque developed by the machine could be controlled by acting on

the slip pulsation w,. The closed-loop scalar control using a Pl regulator can be modeled

as in fig. 3-8:
lT[
a)mref * X E = _T-"ﬂ’d + 1 .
Kt s T Orraea C Js+ D -

Fig 3-8 System model of IM with scalar controller

where J is the inertia of the motor and D is the friction coefficient The open loop transfer
function of the machine under constant |Eq | /w1, assuming load torque T.=0, is then given

by the transfer function of the mechanic equation of the motor

K
G(s)=— (3.18
(s) Js+D )

Where K _ T

a)2rated
The design of the Pl is therefore a simple exercise of compensation for linear system

and any traditional compensator design technique can be used [74][75].



CHAPTER 4. SENSORLESS SCALAR CONTROL BY PLL
SPEED ESTIMATOR

Extensive research has been done in sensorless control by using the retrieval of RSH.
As far as the direct RSH tracking is concerned, two main approaches have been followed
in literature [53][56][58-61][76-80]: Frequency domain methods, mainly based on FFT
(Fast Fourier Transform)-like approaches, and time domain methods, most of which are
PLL (Phase-Locked Loop)-like approaches. The sensorless techniques proposed in litera-
ture hardly comply with wide speed range operation, and actually results are usually pre-
sented only at rated or close to rated speed.

This chapter proposes a very simple sensorless technique based on a phase-locked loop
(PLL) structure, suited for scalar controlled induction motor drives, where the centre band-
width is tuned on-line on the basis of the reference values of the supply and slip frequencies
provided to the PWM converter. The PLL is tuned to track the machine rotor slotting har-
monic without the need of any high frequency signal injection, neither rotating nor pulsat-
ing. This results in tracking the machine speed in a very wide speed range (from rated speed
down to as much as 2% of it) with a proper on-line adaptation of the centre frequency of
the PLL. This has been made on the basis of the reference values of the fundamental supply
pulsation and the on-line estimation of the slip pulsation. The methodology has been ap-
plied to a scalar controlled drive, with the aim of developing a low cost, computationally
light sensorless drive, where the number of parameters to be tuned, both in the controller
and in the estimator, is very limited in comparison with more performing sensorless drives.
In particular, as for the control algorithm, only the PI control is to be tuned and only the
stator and rotor resistances are to be known (only if voltage drop compensation is to be
performed). As far as the PLL speed estimator is concerned, the only tuning parameters are
the PLL gain and the cut-off frequency of its low pass filter while the only machine param-

eter to be known is the number of rotor slots per phase and per pole.

45
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4.1 PLL Based Sensorless Scalar Control System
4.1.1 Phase-Locked Loop (PLL)

A PLL [81-88] is a circuit or software used heavily in communications engineering,

radar, sonar, control engineering and many other applications. It makes an output signal
synchronize with a reference input signal both in frequency and in phase. More precisely,
the PLL is simply a servo system, which controls the phase of its output signal in such a
way that the phase error between output phase and reference phase reduces to a minimum,
so that the output and reference signal can operate at the same frequency.

A typical PLL is composed of a phase detector (PD), a low-pass filter (LPF), and a
voltage-controlled oscillator (VCO) (see Fig. 4-1).

V.
i :
— PHASE Ve LOW-PASS Ve VOLTAGE Vo
CONTROLLED
DETECTOR > FILTER > >
> OSCILLATOR
> (PD) (LPF) (VCo)
Vo

Fig 4-1 General Structure of PLL

The PD compares the reference signal vi with the feedback signal vo, producing a signal
Ve that depends on the phase error between vi and vo. In this thesis a multiplier type PD is
adopted, but other types of PD can be used [81].The PD is then followed by a low-pass
filter (LPF), which eliminates higher frequency terms, so that only the DC component and
lower harmonics ve are left. The VCO generates an output signal vo with frequency w, which
is dependent on the input voltage vc. In general, without any input, the VCO generates by
itself a signal of frequency wc, called centre frequency. When an input ve is given, the VCO
deviates from its central frequency wc, typically with a linear law, so that the output fre-
quency is given by w=w_.+Kv,. The output signal v, will be then be v =V sin(wt+¢). Thus
the complete system produces an output signal vo synchronized in phase and frequency with
the reference signal vi once the PLL is in steady-state. Often the feedback signal vo is a unit
amplitude sinusoidal signal [81].

PLLs are often used because they provide filtering of a signal that is similar to what is
provided to voltage or current waveforms by ordinary filters. The designer has some control
over the manner in which the phase (or frequency) of the VCO follows a changing reference
phase (or a changing reference frequency): the loop can be made to follow quickly or to
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follow sluggishly, which is particularly valuable in removing the effects of noise on the
reference. Actually PLLs can provide filtering that ordinary filters cannot do, because PLLS
can follow a signal whose frequency varies slowly, that is, it acts like an adaptive filter that
can track the signal frequency in a large range by adapting its center frequency, while re-
jecting all the noise provided that it is separated sufficiently in frequency from the signal.

In this chapter, PLL is introduced with carefully designed loop parameters and band-
width so as to extract the rotor slot harmonics. Then a speed estimator based on it is adopted
to estimate the rotor speed.

4.1.2 PLL Based Speed Estimator

The proposed PLL based speed estimator is based on processing the stator current wave-
form to track the rotor speed: the overall idea is to extract the rotor speed from the rotor
slot harmonic fn, as discussed in chapter 2. The centre bandwidth of the PLL is tuned on-
line on the basis of the reference values of the synchronous and slip pulsation and is applied
to the scalar control of induction motor drives, in which the supply and slip pulsation fre-
quencies are obtained in the control loop (see chapter 3). The tuning of centre bandwidth is
realized by changing the centre frequency of the VCO, like in conventional PLLs.

From eqn. (2.2), rewritten here for easy reference,

f,=q, fl(l_ 5)1 f; (4-1)

the RSH appears at a certain frequency connected with the synchronous pulsation @
and the slip pulsation a». Considering that the rotor speed in electrical angle per second is
given by w, = w;(1-s), then the estimated mechanical rotor speed for a given RSH is given
by,

I B e (4.2)
P PG

Where an is the estimated mechanical rotor speed (the symbol ” refers to estimated) ,
the an is the reference supply pulsation, and p is the pole pairs Thus, a PLL speed estimator

as the one shown in fig. 4-2 can be used to track the rotor speed.
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Fig 4-2 Block diagram of the PLL speed estimator

The induction motor stator current of one phase, including the slot harmonic, is firstly
normalized to obtain a quantity of unitary amplitude. The PLL operates as a filter with a

tunable band center @, , computed by using the @uretand the estimated slip pulsation prer

on the basis of the following expression, directly derived by (2.2) using the lower rotor slot

harmonic :

~

@, = (qr _1)(01ref =0, @, (43)

In particular, a constant term equals to 1 is added to the variable a, obtained by the output
of the low pass filter amplified by K. This sum is practically equal to the VCO of a common
PLL, as seen in fig. 4-1 and accounts for the deviation from the central frequency: indeed

this sum is denormalized by multiplication of the @, , the central frequency, and is

connected to the variation of the slot harmonics due to the speed variation. The output of

this “VCO?’ is the estimated pulsation @, of the slot harmonics. The mechanical rotor speed

is then computed on the basis of (4.2).

The only tuning parameters in the PLL are the gain K and the cut-off frequency of the
low pass filter, while the only machine parameter to be known is gr, number of rotor slots
per phase and pole. The choice of gain K in fig.4-2 is critical for the PLL to work in a
proper lock range narrow enough for including the slot harmonic frequency while rejecting
the other harmonics as will be more clearly explained in section 4.2.2. As for the filter, a
4-order low-pass Butterworth filter has been chosen in this PLL scheme. Whenever the

reference fundamental frequency wuref coming from the scalar control part changes, or apres
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changes because of the load condition, the PLL adapts itself to a new working band, but
the loop gain and the cut-off frequency of the low-pass filter remain constant.
The whole PLL speed estimator is based on the PLL output which is the estimated

frequency of the RSH @, , independently of the presence of the load and its amplitude, as
well as of the drift of the machine parameters. Once the mechanical rotor speed @, is

computed on the basis of eq. (4.2), it is then given to the scalar control algorithm as the
feedback signal.

4.1.3 PLL Based Sensorless Scalar Control Drive
Fig 4-3 shows the scheme of the adopted sensorless scalar control scheme based on PLL
estimator. The scheme is exactly the same as the one in fig. 3-7 except that the measured

speed is replaced by the proposed PLL speed estimator output.
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Fig 4-3 Scheme of Scalar Control Drive based on PLL

However, in the scheme, a);ef is not the one at the output of PI controller(see fig. 4-3

@,. ), but has been estimated using eq. (2.6) (see [1] pag. 414):

1 2R
p 3|‘Pr|2 e

*

— m
6()2 ref

1
PTIF 4

(‘//rd isQ - ‘//rq isD ) =
where isp, isq are the stator currents components in the stator reference frame, |y| is the
amplitude of the rotor flux and wrd, wrq its components in the stator reference frame, te is

the electromagnetic torque, Lm and T, are respectively the three-phase magnetizing
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inductance and the rotor time constant. It should be noted that this flux estimator requires

the knowledge of just two electrical parameters [2](p205).
It should further be noted that, in principle, the ,,4 signal is already available at the
output of the speed controller of the scalar control scheme. This signal cannot, however, be

used in eq. (4.3) for the centre bandwidth adaptation since, otherwise, it would be used

twice: 1) for the adaptation of the centre of the bandwidth, 2) for the compensation of the

load torque in the control scheme. This means that the slip reference pulsation @, would

be used to compute the estimated speed, by adapting the centre-band of the PLL, whose
value would be then exploited to close the speed loop and therefore to compute the @,
itself. As a result, the centre frequency of the PLL does not follow the slot harmonic, mak-

ing then the PLL tracking a frequency which is not the correct one: thus the drive would

have a weak load torque rejecting capacity.

4.2 PLL Mathematical Analysis
4.2.1 PLL Mathematical Description
As shown in Fig.4-2, the core of the PLL speed estimator includes a multiplier, a low-

pass (LP) filter, and a pulsation produced by the signal isc and by the unit vector. In this
case, a current controlled oscillator (ICO) rather than a VCO is to be envisaged.
The normalized phase stator current i /|ig| (which is a periodical signal with maximal

unit amplitude) can be expressed in steady state in harmonic form as:

i, /i) = Zn:ak cos(m,t +6,) |+a, cos(w,t +6,) (4.5)
k=1

k=h

Where a;, wy, 6;, are the amplitude, frequency, and initial phase of the slot harmonic
respectively; ay, wy, 8 are the same parameters for all of the harmonics, excluding the slot
harmonic. At the start of the PLL action, if the central frequency @, is close enough to wy,
so that the PLL is inside the pull-in region and locks in (see below) , the feedback signal
isto, IS given by:

isfb = COS[(&')n + Aéz‘)h)t + ¢0] = COS(C()Ct + Q)O) (46)
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Where @y is the centre pulsating frequency, Awyis the correction of PLL (A@w, = awy,
where ais the normalized correction of the PLL), w, = @y + A®y, and ¢o is the initial
phase for t=0. After multiplication between i;/|is| and ism , the signal ise can be obtained
as follows:

ise:%Z”:{akcos[(a)k—a)c)uek—(po] }

=2, cod(@, + o, )t + 6, + @, ]
#

4.7)
L1 {ah cod(@, — @, )t +6, — o, | }

2 |+a,cod(a, + @, )t + 6, + ]

When the PLL locks in, then w, » w;, which means that, if the LP filter cut-off
frequency is chosen low enough, all harmonic components of the first term of (4.7) and
second component of the second term are cancelled out, and only the first component of
the second term is present, since it is a DC component. The output of the LP filter is

therefore.

Ise = % Kea, COS[(a)h - a)c)t +6, _%] (4.8)

Where Kt is the gain of the LP filter.

The correction term a, once the PLL locks in at steady state (sS) is:

asszéahKKfcos(Hh — @) (4.9)

During transient the correction term is simply:

a =Ky (4.10)

From (4.6), it results that the feedback signal at steady state is

isfp = cos[(@y +a%*@p)t + o] (4.11)
In transient

W, = By + ABy, = By, + aSBy, = @y, + Kig @y, (4.12)
and in the steady state (w, = wp,)

apKKy

> cos(6, —py)  (4.13)

wp = Gh + assﬁh = Gh + ng‘gﬁh = ﬁh + (Dh

From (4.13), the phase difference between input and the feedback signal can be

expressed as
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Wy, _E‘-’h

—n h (4.14)
%a,K; Ko,

-1
@, =6, —cos

This means that when, for example, wy, is exactly equal to the central frequencydy,

Qo =06, — g S0 0, — @y = g or that the real slot harmonic is in quadrature with the feed-
back signal (4.11). From (4.14), it is obvious that if w; — @) exceeds the overall loop

gain @ the PLL cannot work.

4.2.2 PLL System Analysis

In the case under study, the output of the PLL éh is the sum of terms, one depending on

the PLL input 6}, the other depending on the center band frequency EJh . Correspondingly,

if the linearized system is represented as in Fig.4-4, two transfer functions can be defined

as follows:

w(s)= () __FOIK(@, /2o, (4.15a)
6.(s) s+F(s)K(a,/2)m,

W, (s) = 208 = _ (4.15b)
o,(s) s+ F(s)K(a,/2)w,

@,
6,(s) )
v /2 »  F(S) o, K % (9/'(2

Fig 4-4 Linearized equivalent PLL transfer function

On this application a 4-th order Butterworth (Btw) LP IIR filter has been chosen as the
low pass filter of the PLL, and the transfer function of the squared amplitude is given by:
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FSF(Cs)=— (4.16)

8
1+(5- )
Jo,

Where wn = 30 rad/s is the cut off frequency of the loop filter, Ki=1 is the gain of the
filter. It should be noted that the choice of adopting a 4" order Butterworth filter instead of
a simple 1% order one, as in the theoretical analysis shown above, is due to the necessity to
obtain a stronger attenuation of the filter beyond its cut-off frequency. It does not in any
case affect the reliability of the resulting analysis. The choice of a 4" order Butterworth
filter is due to a trade-off between quick on-line and good high frequency attenuation.

The hold-in range is the span of frequencies from the centre frequency to the frequency
where the PLL will remain locked after having been initially locked. This range can be
shown to be in the region where the steady-state phase error remains linear. In the case

under study the following relationship holds [81]:
Adyyy = (8, 12) KK, @, (4.17)

where Ki=1 (gain of the 4" order Butterworth filter), K=0.04 (PLL gain) and a,=0.05
(the amplitude of the fundamental of the measured stator current space-vector is equal to 1
and the RSH amplitude is almost as much as 2.5% of the fundamental).

The pull-in range is the span of frequencies from the centre frequency to the frequency
where the system will initially lock in. This is a transient condition which is not easy to
calculate exactly. For a type-lI PLL with low-pass filter and sinusoidal phase detector, as

the one adopted here, it can be approximated as follows [81]:
Aoy, = 3g\/,/0.423+1.2§4 ~1.09222 Ay, (4.18)

where ¢ is the damping ratio of the equivalent closed-loop 2" order system.

Both Awpe1q and Aw,,y,; are very important parameters of the PLL. It is desirable to
have those parameters as low as possible, to guarantee a suitable selectivity of the PLL: no
other harmonics than the RSH should enter inside the band of the PLL. However, the lower
the values of these parameter, the lower is the convergence speed of the PLL [81]. A trade-
off between these two opposite exigencies should be then found.

In the case under study, Awp,;4 and Aw,,,;; are both functions depending on the motor
speed wm (Fig. 4-5). As expected, both of them increase linearly with the machine speed:

at zero or close-to zero speed the hold-in range is almost null, which is the limit of PLL. At



o4 Binying YE, Ph.D. Thesis, 2015

rated speed the pull-in range is about 2 rad/s and the hold-in range is almost 1.3 times the
pull-in one. The fact that the hold-in range reduces with the machine speed is an important
issue, since the lower the machine speed, the closer to the RSH are the other harmonics: in
this situation, a narrower hold-in range is desirable.

As for the dynamic behaviour of the proposed PLL, figs. 4-6, 4-7 show the Bode dia-
grams of the Wi(s), W2(s) transfer functions. As for W1(s), it should be noted that, because
of the variability of centre bandwidth, the cut-off frequency of the PLL and consequently
its dynamics, varies with the supply frequency of the motor, ranging from 0.08 rad/s at f;=1
Hz to 7 rad/s at f1=50 Hz. This means that the capability of the PLL to work in a wide speed
range is paid with the reduction of its dynamic behaviour at very low speed. As for Wa(s),
it should be noted that the presence of a variable centre bandwidth introduces a constant
proportionality gain between 8,, and &;, which attenuates only when the PLL is out of its

operating frequency region.

T
—Pull

—Hold

. . . .
—‘PSO -100 -50 50 100 150

® Pad/s)

m (

Fig 4-5 Awpgiq and Awy,,,; versus @,

Bode Diagram

Magnitude (dB)
1
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L | f =50Hz
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Phase (deg)

Frequency (rad/sec)

Fig 4-6 Bode diagram of the W1(s) transfer function
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Bode Diagram
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Fig 4-7 Bode diagram of the W-(s) transfer function

4.3 Simulation and Experiment Results
4.3.1 Test Set-up
The employed test set-up (see fig. 4-8) consists of:

e A three-phase induction machine with parameters shown in Table 4-1.
An 8 kVA, three-phase VSI for the control of the machine side inverter.
e A torque controlled brushless Interior Mounted Permanent Magnet (IMPM) machine
drive for the load of 1.5kW.
e A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a floating-point DSP
TMS320F240 for the control of the machine side inverter.

,\\
N

Fig 4-8 Photograph of the test set-up
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Tab 4-1 Parameters of the induction machine

Rated power Prated [KW] 2.2
Rated voltage Urated [V] 220
Rated frequency frated [HZ] 50
Pole-pairs p 2
Stator resistance Rs [©2] 2.9
Stator inductance Ls [mH] 223
Rotor resistance Ry [Q] 1.52
Rotor inductance Ly [mH] 229
3-phase magnetizing inductance L [mH] 217
Moment of inertia J [kg-m?] 0.0048

4.3.2 Simulation Results

The proposed PLL based scalar control system has been studied and tested in
Matlab/Simulink environment and the same parameters of tab. 4-1 have been used. The
space-vector dynamic model of the IM including rotor slotting effects, which was proposed
in [41] is used for the simulation part (see Appendix A).

The simulation part is organized as follows. In part A, the proposed PLL speed estimator
has been evaluated in the framework of the scalar control with measured speed feedback
system (see fig. 3-7). Secondly, in part B, the measured speed was replaced by the PLL
estimated one to close the loop so as to test the whole sensorless scalar drive system in a
wide speed range with different load conditions (see fig 4-3).

A. The Verification of the Proposed PLL Speed Estimator

In this part, the speed tracking ability of the proposed PLL speed estimator has been
evaluated, in the framework of the measured speed based scalar control system (see fig. 3-
7): the PLL speed estimator is connected on-line along with the main scalar control loop,

the centre bandwidth of the PLL @), is calculated from w5, cand warer, Where wirer is the
supply frequency of PWM and wy,. ¢ is estimated by (4.4). The output of the PLL is shown

together with the measured speed for comparison. Both the robustness and the rapidity of

response are then discussed.
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However, to clearly illustrate the transient of the PLL estimator, a perturbation has been
introduced into the value of w,..r obtained with eq. (4.4) (at t=3.5s deliberately), to show
that the PLL is able to compensate the error. Moreover, since w5, is merely a value esti-
mated by eq. (4.4), and since this value can be disturbed by the noise, this test with a per-
turbation has also a real meaning. It should be noted that the slip pulsation in the output of
PI remains unchanged in this test.

Figs. 4-9 show the results for rated speed at 10Nm load condition. The corresponding
PLL estimator reference marer and w3, are shown in fig. 4-9 a, the measured rotor speed
wm and estimated rotor speed &,, are shown in fig. 4-9 b. Fig. 4-9 ¢ shows the intermediate

terms of the PLL estimator: the center bandwidth &, the estimated slot harmonics &, , the

real slot harmonic wn, and the corresponding correction term a .
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|
2 25 3 35 4 45 5
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c) PLL intermediate terms
Fig 4-9 Verification of the PLL speed estimator at rated speed, 10Nm load condition

In fig. 4-9 a, a 10% deviation is added to w3,..-0n purpose at t=3.5s: w3, steps down
immediately from 2.5 rad/s to 2.2 rad/s , the value of w1rer remains unchanged, to the value
of 153 rad/s at steady-state.

The magnified figure in fig. 4-9 b shows that the PLL estimated speed is very accurate
at steady-state, and it restores the true speed within 0.4s after the disturbance of w3, .

Fig. 4-9 c shows that the centre bandwidth @), is disturbed as much as 10 rad/s (0.3%),
the estimated &, however tracks wn within 0.4s, after the disturbance. Fig. 4-9 ¢ shows the
corresponding variation of the correction term a , which adjust itself after the perturbation
of the centre bandwidth to track the slot harmonic wn.

The results also show that wn lies in the hold-in range of PLL even after @;, is deviated,
and during the transient after this deviation, the value of a varies to compensate the per-
turbation of w3, (10% error in this case).

It should also be remarked that the hold-in and pull-in range of the PLL estimator cannot
be too wide, otherwise the PLL would lock in other harmonics. In this study @, is a linear
combination of wirer and w3, ¢, Or equivalently it is dependent on slip s. For small values
of s (and for not too low speed) w3, is small and has little impact on @y: only 0.3% in

the case under study (see fig. 4-9c, where @, =3910 rad/s and @, is 3900 rad/s). Since s is

not too large, the RSH harmonics is far from the other harmonics, it is then not difficult to

find a proper bandwidth for the PLL estimator.
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Figs. 4-10 show the results at reference speed of 10 rad/s, with 10Nm load. With such
low speed and load (great value of s) the RSH is much closer to the other harmonics, so
any strong perturbation can make the PLL lose lock, so a deviation of 5% is given in this
case.

Fig. 4-10a shows the waveform of PLL reference wiret and wy,., fig. 4-10b shows the
measured rotor speed @, and estimated rotor speed @, respectively, the center bandwidth

of PLL @, and estimated RSH @, are shown in fig. 4-10c, together with the corresponding
correction term a

From fig. 4-10a, w3, steps down from 2.7 rad/s to 2.6 rad/s at 3.5s, after a 5%
deviation is added, w1ref remains at 12.8 rad/s at steady-state.

Compared to the results at rated speed, the magnifying curve in fig. 4-10b) shows that
the PLL estimator output is still satisfactory but worse than the one at rated speed. The
restoring time of the PLL estimator is now near 0.7s in this case, which is slower than 0.4s
for the rated speed. This is caused by two reasons: 1) the bandwidth of the proposed PLL
estimator is smaller at low speed, 2) although w3, changes less, w1rer in this case is much
smaller, thus the disturbance introduced into @,, is about 2%, which is larger than the rated
case 0.3%.

Fig. 4-10c shows the value of @, and the estimated @, the PLL output is always ex-
actly equals to the real RSH frequency, which is at 254 rad/s in spite of the deviation of

W3ref, Which causes @y, shift from 256 rad/s to 259.8 rad/s. The corresponding correction
term a decreases simultaneously to compensate the error.

In the low speed range, any error in w5, Will affect @, significantly, and large ripples
can occur in @y. Thus on the one hand K should be increased to have a good Signal/Noise

ratio, but on the other hand, K should be kept small to avoid other harmonics to enter the
PLL: a compromise between these two aspects is therefore to be found.
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Fig 4-10 Verification of the PLL speed estimator at 10rad/s, 10Nm load condition
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B. The Performance of the Sensorless Scalar Drive Based on PLL Estimator

The sensorless scalar drive based on PLL estimator has been tested in a wide speed range
from 150 rad/s down to 2 rad/s, to evaluate the performance of the PLL based scalar control
scheme. In these tests, the PLL estimated speed has been used as the feedback signal, while
the measured speed has been shown in the figures for comparison.

The first set of tests refers to a speed step , both at no-load and full-load working
conditions.

Fig 4-11a shows the speed step result at high speed range: the reference speed steps up
from 50 rad/s to 100 rad/s at no load. The drive behaves properly: the rotor speed wm
converges to the reference speed wmrer, and the estimated speed @, tracks the measured
speed wm accurately in less than 0.5s.

The corresponding controller intermdiate terms, which are the supply pulsaton wxrer, the
slip pulsation waret (mechanical angular pulsation), the supply voltage Usi, the
compensating voltage Uscomp (See eq. (3.17)), and the compensated voltage Ustot ( the sum
of Us1 and Uscomp), are shown in fig. 4-11b and fig. 4-11c. This figure clearly shows that the
slip pulsation, very low at steady-state since at no load condition with only friction ( its
D=0.025), rises up during the transient. The supply Us: follows wiref, the compensating
voltage Uscomp IS Close zero at steady-state, so that the compensated voltage Ustot is practi-
cally equal to Us;.

a) reference,measured,and estimated speed
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Fig 4-11 Reference speed steps from 50 to 100 rad/s at no-load
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Fig. 4-12a , b and c¢ show results for the same speed step test, however, at full-
load(15Nm). From fig. 4-12a, the speed response curve is similar to the one for no-load
case, and the drive behaves well with full-load.

Figs 4-12 b, ¢ show the same test at full-load condition. In this case, waref and Uscomp are

not zero anymore because of slip.
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Fig 4-12 Reference speed steps from 50 to 100 rad/s at full-load

Figs 4-13 show the results for a speed step at low speed range, wmrer goes up from 5 rad/s
to 10 rad/s at no-load.

Fig. 4-13a shows that the drive works properly at steady-state, and during the transient
an error is spotted between the estimated and measured speed, which however becomes
almost null at steady-state. This behaviour is satisfactory since only the steady-state
perfomance is of importance, since a scalar control is dealt with.

The corresponding intermediate terms are shown in fig. 4-13b and fig. 4-13c: the PI
output warer is equals to zero and, correspondingly the zero compensating voltage.

Figs. 4-14 show the same results for full-load condition. Fig. 4-14a shows that the speed
tracking performance is similar to the one at no-load, with an overshoot resulting in a longer
settling time. However, the estimated speed converges to the measured speed before and

quickly. Figs.4-14b, c present the corresponding intermediate terms of the controller. The
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Pl output worer is about 5.5 rad/s at steady-state, meanwhile, the compensating voltage
increases because of the slip, along with the increase of woref. For the same reason, the

compensated voltage for the PWM is higher than the one for no-load.
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Fig 4-13 Reference speed steps from 5 to 10 rad/s at no-load
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The second set of drive tests refer to the speed reversal, both at high and low speed range.

Fig. 4-15a, shows the speed reversal at rated speed from150 to -150rad/s, at no load
condition. It can be found that the speed tracks the reference properly, although some
oscilations can be observed during the trasient: this is largely due to the small inertia of the
rotor; however no steady-state error is observed.

Figs. 4-15b and c¢ show the corresponding PI output which is null all the time since s~
0. The compensated voltage Ustot is simply a constant multiple of the supply frequency.
Actually the amplitude of the supply voltage remains constant before and after the reversal,
but the phase sequence changes after the reversal, which does not affect the voltage terms.
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Fig 4-15 Reference speed reverses from 150 to -150 rad/s at no-load

Figs. 4-16 show the results for low speed reversal, from -5 rad/s to 5 rad/s, at light load
(2Nm). Fig.4-16 a shows the esitmated speed &,,, and the measured speed wm oscillate but
they converge to the reference: &,,fluctuate more than the measured wm, making the speed
tracking performance is still quite satisfactory at low speed.

Fig. 4-16 b presents a small ripple in w2rer, which is in accordance with the waveform of
rotor speed response. The compensating voltage oscillates in the same way as woref, and
eventually it converges to 1.1rad/s at steady-state.

Figs. 4-17 show the results for low speed reversal, from -10 rad/s to 3 rad/s, lightly
loaded (2 Nm). The speed response performance is similar to the one from -5 rad/s to 5
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rad/s. However, fig.4-17b shows that at steady-state the slip increases when the rotor speed
decreases, while the slip pulsation remain wzret almost the same, i.e. under the assumption

of constant ym, the output torque is in propotional to the slip pulsation w2 =sw1.
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Fig 4-16 Reference speed reverses from -5 to 5 rad/s at 2Nm-load
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The third set of tests refer to rejection to load torque steps: different load torques have
been applied to the machine, operating at constant speed of 10 rad/s. The load torque steps
occur according to fig.4-19, and the amplitudes range from 0 to 10 Nm.

Figs 4-18 show respectively the estimated and measured rotor speed (@,,,, wm),and the
controller intermediate terms.

From fig. 4-18a, it can be found that the drive is robust to all the load torque step
variations, the estimated speed tracks the measured and reference speed properly in about
0.4s. The compensating voltage term presented in fig. 4-18c increases with the high slip
pulsation, which is exactly what was expected.

Even though the drive has a simple scalar control, fig. 4-19 shows that the electromagetic

torque of the machine te responds quickly to load torque variations. A small bias is present
due to friction.
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electromagnetic and load torque
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Fig 4-19 Electromagnetic and load torque at 10 rad/s reference speed during load steps

The last set of tests refers to the minimum possible working speeds of the drive.

Fig. 4-20 shows the reference, measured and the estimated speed during a constant speed

reference of 3 rad/s (2% of the rated speed), at no-load and 5Nm load. They show clearly a

very good behavior of the drive at 2% of the rated speed. The ripples for the full load

condition is larger due to the bigger ripples in the @, as discussed in part A.
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4.3.3 Experiment Results

The proposed scalar sensorless induction motor drive has been verified experimentally
on the test set-up presented in section 4.3.1. For the experimental implementation of the
PLL based speed estimator, the scalar control as well as the PLL have been implemented
in the discrete z domanin adopting a sampling frequency of fc=10 kHz. The PLL estimator
has been tested in a very wide speed range, from rated speed (150 rad/s) down to 3 rad/s (2
% of the rated speed), showing the capability of the PLL technique to track the rotor slotting
saliency in this very wide speed range. Moreover, the PLL estimator has been tested in both
no-load and full-load working conditions. In the following, all the tests have been
performed using the estimated speed as feedback signal, while the measured speed has been
used only for comparison.

The first test refers to a speed reversal at the rated speed of the machine.

Fig. 4-21 a shows the reference, measured and estimated speed during a speed reversal
from 150 to —150 rad/s (rated speed) at no load. It shows a very good behaviour of the drive,
with the estimated speed properly tracking the measured one during the whole transient.
Fig. 4-21 b presents the corresponding waveforms of the stator voltage amplitude terms,
that is the Us: term, the compensating term Uscomp and the compensated voltage Ustot as sum
of the two. These terms are multiplied for the sign of the speed, including the sign of the
voltage to be applied to counterbalance the back emf. It can be seen that the amplitude of
the voltage varies during the speed transient, and the compensation term is maximum dur-

ing the speed transient when the slip speed is maximum (maximum torque operation).

200 T T

— estimated
150 —— measured |{
------- reference

100~

50

(rad/s)

[0}
m

50
-100

-150 \/W

-200 ! L
-0.5 0 0.5 1

time (s)

a) reference, measured and estimated mechanical speed



CHAPTER 4. Sensorless Scalar Control by PLL Speed Estimator 69

U
400 \ scomp
200 \ Ya
s \
—a 0 1\ — Us1tot
=) \
—200( \ 4
N\
-40Q — ‘
205 0 0.5 1
time (s)
200
. - 2
@
§ 100- -
E o\
3
€ 100 R
3

|
n
19
oS
o
ol
04
o
-

time (s)

b) Stator voltage terms, supply and slip pulsations (mechanical)

Fig 4-21 The speed reversal test at no-load at high speed from 150 to -150 rad/s

The second test refers to the very challenging situation of a speed reversal at very low
speed.

Fig.s 4-22 a and b show the same waveforms obtained during a speed reversal at low
speed, from —5 rad/s to 5 rad/s (3.3 % of the rated speed), with a light load torque of 2 Nm
(corresponding to about 15 % of the rated torque). It can be seen that the drive is able to
accomplish the speed reversal at very low speed in almost 0.3 s, with an almost null speed
estimation error at steady-state and with a short time lag between the estimated and meas-
ured speed, due to the reduced bandwidth of the speed estimator at low speed, as expected.
It should be further noticed that such a speed reversal at low speed is particularly hard to
be accomplished, since, besides the voltage compensation term, the flux amplitude of the
machine at low speed reduces significantly and so does the torque capability of the machine
correspondingly. Furthermore, when the machine is at zero or close to zero speed, during
the transient, there is a time interval in which the flux amplitude is null. This explains the
reduction of the bandwidth of the speed estimator at low speed. It is then clearly observable
how the voltage compensation term is very useful in such a test at low speed, considering
that the main voltage term and the compensation one present a comparable amplitude.

Fig.s 4-23 a and b show the same waveforms obtained during another speed reversal at
low speed, from —10 rad/s to 3 rad/s (2 % of the rated speed), with a light load torque of 2
Nm (corresponding to about 15 % of the rated torque). Even these figures show the good-

ness of the proposed estimator, thanks to which the speed reversal at very low speed is
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performed in about 0.6 s, with an almost null speed estimation error at steady-state even at

0.3 rad/s. The same kinds of consideration of the previous test hold for this one.
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Fig 4-22 The speed reversal test with 2Nm at low speed from -5 to 5rad/s
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Fig 4-23 The speed reversal test with 2Nm at low speed from -10 to 3 rad/s

The third test refers to the application of a square waveform of load torques at low speed.
The drive has been given a constant low reference speed of 10 rad/s (6.6% of the rated
speed), and then two subsequent very fast load torque square waveforms of time interval
equal to 0.5 s and amplitude equal to 6 Nm and 10 Nm (rated torque). Fig.s 4-24a, b, c
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show respectively the speed, the torque and the voltage waveforms. The speed waveform
shows that the drive is able to properly counterbalance all the load torque step variations,
with the estimated speed tracking the measured one and the reference one, even after a long
speed transient with the speed of the machine assuming negative values during the
transient. The torque waveforms show that the electromagnetic torque of the machine is
able to track the load torque, with a very good dynamic performance, especially considering
that the induction motor drive is controlled with a very simple scalar controller. Finally, the
voltage waveforms show an increase of the voltage term Us: because of the increase of the
supply frequency and also a higher increase of the additional voltage term due to the very

high increase of the slip speed.

(rad/s)

[0
m
o
T

— estimated

—— measured

------- reference
.

I
0.5 1 15 2 25 3 35 4 45 5
time (s)

Fig. 4-24a. Reference, measured and estimated mechanical speed during the subse-
quent load torque steps at constant speed of 10 rad/s
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Fig. 4-24b. Electromagnetic and load torques during the subsequent load torque steps
at constant speed of 10 rad/s
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time (s)

Fig 4-24 c. Stator voltage terms, supply and slip pulsations during the subsequent load
torque steps at constant speed of 10 rad/s

The fourth test refers to the minimum possible operating speed of the drive. Fig. 4-25
shows the reference, the measured and the estimated speed during a constant speed refer-
ence equal to 3 rad/s (2 % of the rated speed), at no-load and at 5 Nm load torque. These
figures show clearly a very good behavior of the drive at 2 % of the rated speed, at both no-
load and half of the rated load. These figures show also an increasing ripple of the estimated
and measured speed, especially at load, due to the presence of other spectral lines than the

PSH: these enter the bandwidth of the PLL and so limit the PLL operation close to zero

speed.
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Fig 4-25 reference, measured and estimated speed during the constant speed operation
at 3 rad/s at no-load (up) and at 5 Nm load (down)

4.4  Summary
The simulation and experimental results show the PLL is able to properly track the ma-

chine speed in a very wide speed range; the results also show a proper behaviour of the
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scalar sensorless drive in a very wide speed range from rated speed down to 2% of the rated
speed, at no load and with load conditions. Moreover experimental results are in high ac-
cordance with the simulation ones and with the theoretical analysis.

The speed estimation has been performed on the basis of a PLL algorithm, whose centre
bandwidth is tuned on-line on the basis of the reference values of the supply and slip fre-
quencies provided to the PWM. The speed estimation performed on the basis of a PLL
algorithm is of a particular interest in terms of a potential industrial applications: if applied
to a simple scalar control it requires both a very limited numbers of tuning parameters (PI
of the speed control and the gain and cut-off frequency of the filter PLL), and the
knowledge of very few machine parameters (stator and rotor resistances, and the number
of rotor slots per phase and per pole). This makes the methodology easily exportable to
several other types of drives.



CHAPTER 5. SPEED ESTIMATION BY ADALINES AND
MCA EXIN NEURAL NETWORKS

To retrieve the PSH, chapter 4 describes the PLL (phase-locked loop), whose centre
frequency adapts according to the working condition of the machine, and whose linearized

transfer function is,

w(s)= ) __FOK @, 123,

= = = (5.1)
6,(s) s+F(s)K(a,/2)w,

(see chapter 4 for the symbols)

The corresponding tracking error to a step of the PSH frequency, Asﬂ = SASﬂ, is given

by:

lime(t) =lims: A%S \w. (s)=0 (5.2)
S S

tow

Wi1e(s)=1-W1(s) is the error transfer function for (5.1).

From (5.2), it is obvious that the PLL has zero tracking error with input frequency steps.
However, under the framework of PLL, the frequency output become correct after the phase
is locked, this usually results in a longer settling time, or in worst case, ex. step of phase
angle, causes the spurious transient frequency, and it takes typically many circles for the
PLL to relock the phase.

To improve the speed estimation performance, in this chapter, the slot frequency is
estimated by ADALINEs and MCA EXIN Neural Networks. First, two cascaded ADA-
LINEs are used to extract the rotor slot harmonic from the input stator phase current, acting
as adaptive filters and whose output consists only of the slot harmonic. Then, the MCA
EXIN neurons are used to extract the eigenvector corresponding to the minimum eigen-
value of the autocorrelation matrix formed by the ADALINESs’ output sequence: as a matter
of fact the slot frequency can then be estimated by finding all the roots of the polynomial
equation formed from this eigenvector by using Pisarenko’s theory. Moreover not only can

the proposed neural network work recursively sample by sample, but the computational

75
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complexity and mean square frequency estimation errors are largely reduced. Finally, like

the PLL observer, the rotor speed can then be computed by (2.5).

5.1 Retrieval of Rotor Slot Harmonics
5.1.1 ADALINE

A linear adaptive neuron (ADALINE) is a single layer artificial neural network which

can be used as a notch filter or a band filter [2][89-91]. This means that the neuron is either
able to cancel a determined signal at a certain frequency (notch filter), or it is able to let a
determined signal pass at a predefined frequency (band filter, where band stands for a band
of signals in a very narrow range around a predefined frequency).

Fig.5-1 shows the notch/band ADALINE with two adaptive weights.

d@) d(k) -|- ( =
— = c(k
primary Synchronous '(}4 %
input samplers T, -

COS

. X, (k)
—>

(o|n—-

| LW

sin

Fig 5-1 Schematic representation of the ADALINE

The network presents two inputs and two outputs: the primary input is the signal to be
processed, which is assumed to be of any kind of signal; the reference input is a pure cosine
wave wcand its m/2vdelay, at the frequency of the primary input signal d(k) that should be
eliminated or let pass; the two outputs give the notch and the band behaviour respectively.

The sampled reference inputs are,

{xl(k) =Ccoskam, + @)

X, (K) = Csin(ka, + ¢) (5.3)

where C is the amplitude of the sinusoidal sequence with reference frequency wc.
The procedure for updating the weights is a Least-Squares Algorithm (LS), such as the
LMS or the TLS algorithm [92][93]. The LMS is adopted here because of its low
complexity, low computational demand, and high-speed of convergence, its learning laws

are beneath:
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{Wl(k +1) = wy (k) + 2ue (k) x, (k) (5.4)
W, (k +1) = w, (K) + 2416 (k) X, (k)

where

wi(k) the weight of the i'" neuron at the k™ time sample;

U the learning rate;

e(k) the difference between the primary input signal d(k) and the band filter out-

put y(k); e(k) is also the notch filter output.
It can be proved (see [89](p. 318), for the complete proof) that the notch transfer functions
H(z) = &(2)/d (z) and band K(z) = y(z)/d (z) are,

B 2.C*(zcos(w,) —1)
22 -2(1- 4C?)zcos(w,) +1—2,4C?
2> —2zc08(w,) +1

H(z) = (5.5b)
2° —2(1- 1C*)zcos(w,) +1-2uC?

K(2)

(5.5a)

where ¢(z)and d(z) are the z-transform of the sequences ex and dk; the transfer functions
are therefore linear functions, and they represents typical second order adaptive filters, like
the SOGI-FLL in [94][95]. The notch output and the band output are one complementary
to the other.

Moreover it can be further derived by a simple analysis on the poles and zeros of the
function, that the quality factor of the filter is explicitly related to the parameters as follows
[89]

_centerfrequency o

. °2 (5.6)
bandwidth 2uC

Q

The bandwidth and centre frequency of the filter can be adjusted respectively by the
learning rate 4 and w¢, and they completely define the dynamic and the filtering character-
istics of the ADALINE filter.

5.1.2 The Retrieval of the RSH by ADALINEs
To retrieve the harmonic current in due to the PSH, the following structure is proposed:



78 Binying YE, Ph.D. Thesis, 2015

Fig 5-2 ADALINE structure to track the RSH

Fig. 5-2 depicts the overall PSH retrieval system based on two cascaded ADALINES:
one (ADALINE1) works in notch mode, the other (ADALINE2) works in band mode.

ADALINEL receives as input the normalized stator phase current isA(k)/|is| given by

i (K)/is|=] D1, coslw,k+9,)|+1, coslmk +p,) (5.7)
n=1

n=h

Where wirer is the supply fundamental angular frequency, In, wn ,¢n are respectively the
amplitude, angular frequency and initial phase of the RSH, and In, wn ,¢n are respectively,
the amplitude, angular frequency and initial phase of the harmonics not including the RSH.
Is is the stator's current space phasors.

The output of ADALINEL is the current is-is1, that is the normalized stator phase current

without the fundamental frequency.

The second ADALINE (ADALINE?2) has this last signal as input as well as the estimated
slot frequency @y,. which is computed by using warer and the slip pulsation warer as follows

by using (2.2),
@y = (0, —D) Oyt — 0 Dy (5.8)
ADALINE2 works in band mode and extracts the slot current in
i, () = 1, coslark + ) (5.9)

where In and ¢n are the extracted PSH amplitude and phase.
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w1ref 1S generally the supply fundamental frequency of the inverter, and its value is given
in the framework of both scalar and vector controls.

The structure shown in fig. 5-2 works properly if the RSH is the largest signal once the
fundamental frequency has been cancelled. However, @, must be provided quickly and in
this thesis the idea is to estimate it on the basis of a simple rotor flux estimator, defined by
(2.6).

5.1.3 Design Criteria

The learning rate u has to be set to obtain a good trade-off between the bandwidth and
the convergence speed; which is critical for the network performance, and the overall sta-
bility of the system. As a matter of fact, a slow convergence, corresponding to a lower value
of x and a resulting narrower band, introduces a delay that, in a feedback action, could be
unacceptable. In addition, filter stability considerations impose the upper limit of x on the
basis of the maximum eigenvalue Amax Of the autocorrelation matrix of the input signal, that
is: 1/Amax > 1> 0.

In particular, for the ADALINE in notch mode, the fundamental harmonic is expected
to be eliminated. It is assumed that the supply pulsation reference wuref is close enough to
the true fundamental frequency. Normally a greater u is preferred, due to the resulting faster
convergence and perfect elimination of the fundamental harmonic. This is not true however
for low speed values and with heavy load: in these conditions, the PSH frequency is very
close to the fundamental, and therefore a smaller x« can guarantee that the PSH be unaffected
when the fundamental is cancelled. Fig.5-3 shows the frequency response of the ADALINE
notch with respect to .

For the ADALINE in band mode, the centre frequency is tuned according to the esti-
mated @y, therefore the bandwidth has to be wide enough to compensate for the error be-
tween @, and the true one, permitting the system to track the PSH properly even in the
presence of variations of the value given by (5.8). Moreover they have better phase char-
acteristics around the band frequency. On the other hand, it is important that the harmonic
and inter-harmonics outside the PSH be outside the bandwidth of the filter, and this requires
a low value of x. Since in real drive systems the PSH varies quickly according to the work-
ing conditions, and since the motor current signature is full of different time-variable har-
monics, the constraints for the ADALINE in band mode are of utmost importance. Fig 5-4

shows the frequency response of the ADALINE in band mode with respect to u.
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Fig 5-3 Frequency response of the ADALINE notch with respect to x, centered at

2n*600rad/s.(fi=50Hz, s=7.14% the experimental motor)
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Fig 5-4 Frequency response of the ADALINE band with respect to u, centered at

2n*600rad/s.(fi=50Hz, s=7.14% the experimental motor)

The performance of ADALINEs in the PSH retrieve system with respect to different
choice of x has been tested in the experimental platform, with the motor running at 10 rad/s
with no-load (wh=260 rad/s). Figs 5-5 show respectively the frequency spectra at the input
of ADALINEs (isa) and output of ADALINES (in), with different x. They clearly show that
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a better filtering effect results with a smaller . When u=2e-4, other harmonics are clearly

observed at the ADALINE output, meaning that the filter fails to work correctly for an

inappropriate learning rate.
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Fig 5-5 The FFT results of current at the input of ADALINES (isa) and output of ADA-
LINEs(in)

5.2 Frequency Estimation Based on MCA EXIN Pisarenko Method
5.2.1 The Pisarenko’s Theory

The noisy discrete-time measurements of the filtered slot harmonic can be represented
as

x(K) = i, (k) +q(K) = 1, coslak + @, )+ (k) (5.10)

where wn is the slot harmonics pulsation, and ¢ is a random variable uniformly distrib-
uted in [0, 2m). The noise q(Kk) is assumed to be a zero-mean white process with unknown
variance o2. The task is to find cwn from K samples of x(k) [96-101].

One way to estimate frequency is using subspace methods, such as Pisarenko and MU-
SIC, which assume that the signal is a sum of harmonics and explore the orthogonality
between the noise subspace and the signal subspace [102-107]. The frequency can be then
computed simply by making an eigenvalue decomposition of the autocorrelation matrix of
the input signal.

Among them, Pisarenko is probably the most simple and computational efficient. In the

Pisarenko method [102], it is assumed that the data sequence is a sum of p complex expo-
nentials in white noise,
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x(k) = Zp:Aiej“"” +o(n) (5.11)

Where v(n) is a zero mean white noise with variance o?, and A, wi are respectively the
amplitude and the angular frequencies of the i exponential. The amplitudes Ai are complex

numbers as follows:

A =|Ale’” (5.12)

and the phases ¢j are considered uncorrelated random variables uniformly distributed
over the interval [0, 2m).

In the Pisarenko’s theory, the data sequence is considered to be a final length sequence
of p+1 elements, therefore a (p+1)>(p+1)autocorrelation matrix can be constructed as fol-

lows (see Appendix B for details):

(@ @ - r(p)
R, —E(xd') = rXX:(l) rXXZ(O) rxx(p:)—l) (5.13)
re(P) re(p=1) - 1,(0)

where rx«(K) is the k™ input autocorrelation sequence Rxx can be decomposed into

R, =R+l (5.14)

where Rss is the autocorrelation matrix without noise.

The autocorrelation matrix Rssis of rank p[102], but Rxx is of rank p+1 due to the pres-
ence of white noise, with eigenvalues ¢°<Ap<...<A1 and corresponding orthonormal eigen-
vectors zp+1 , Zp,..., Z1. In this choice, the dimension of noise subspace is equal to one, and
it is spanned by the eigenvector corresponding to the minimum eigenvalue, imin= ¢°. De-
noting this noise eigenvector by Vmin, it follows from (5.14) that

R.V,..,=0 (5.15)

ss ' min

And  Vmin is therefore orthogonal to each of the signal vectors,
ei:[l eln el?e ... ej"""]T[102].Thus,thefrequencycan be estimated by finding all

the roots of the following polynomial equation formed by the minimum eigenvector,
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. P .
Vinin(€77) = 2_ Vi (k)& =0 (5.16)
k=0

Consequently, the z-transform of the noise eigenvector, vmin, has p zeros on the unit cir-

cle,

p

V. (2) :Zp:vmm(k)z’k =[Ja-e*z) (5.17)
k=0 k=0

corresponding to the p harmonics of the signal: the frequencies of the complex expo-
nentials can be therefore extracted from the roots of Viin(2).

When the original Pisarenko’s method is used to estimate the frequency, it is limited by:
1) The estimation of the autocorrelation sequence: in real-time applications, the amount of
data samples that one has to work with is never unlimited, actually most are computed on
a limited number of samples, and this will lead up to an erroneous estimation. 2) The gen-
eral difficulties involved in determining the eigenvalues and eigenvectors of autocorrela-
tion matrix: the algorithm of SVD require O(N®) multiplications, for high-order problems,
resulting in a lot of computation effort.

To adaptively compute the generated eigenvector associated with the smallest eigen-
value of an autocorrelation matrix. A number of algorithms have been proposed in the
framework of Pisarenko theory. These algorithms can mainly be divided into two catego-
ries: The first category involves stochastic-type adaptive algorithms. Thompson [108] first
proposed an adaptive algorithm that is used to extract a single minor component and can
be applied to find the Pisarenko solutions. Other similar algorithms have also been reported
in [109],[110], they usually require O(N) computational complexity. The second category
algorithms are called the recursive total least squares (RTLS) algorithms. They are devel-
oped on the basis of recursive least square (RLS) method, in the RTLS algorithm however,
the observation vector is also assumed to be corrupted by noise. In general, the RTLS al-
gorithms have O(N?) computational complexity per iteration, whereas the fluctuations in
the estimation parameter are reduced. Examples can be found in [126][127], they can
quickly track the eigenvector associated with the smallest eigenvalue of the augmented

correlation matrix.
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Obviously the algorithms in the first category are more appropriate to implement on-
line due to the reduced computation. However, the inherent limitation of the learning pro-
cess necessitates a compromise between the requirement of fast convergence rate and small
mean square frequency estimation error (MSFE) (the MSFE are of order O(a), being o the
learning rate [118](p.251)). One interesting approach for the stochastic-type adaptive algo-
rithms is, to adaptively select the values of the learning rate in accordance with some crite-
rion, which can provide an approximate measure of the adaptation process state. Such an
algorithm is, even imperative when one tries to apply it in the real-time case. Many heuristic
methods has been directed to vary the step size for the gradient based algorithm such as
LMS, RLS, and back propagation [111],[112], they can all work effectively in their own
field, but are not directly applicable to the MCA neurons.

In the following the recursive frequency estimation algorithms using the original MCA
EXIN and two improved MCA EXIN method under the framework of Pisarenko will be
discussed. The MCA EXIN neuron, which deals with the recovery of eigenvectors of the
data sequence’s autocorrelation matrix, as proposed in [92][113][114], can be adopted for
finding the minimum eigenvalue and eigenvector to be used in Pisarenko method. Thus,
the estimation algorithm can become iterative and deal with each data sample instead of

the whole data block, meanwhile, the overall solution is of TLS meaning (see appendix D).

5.2.2 The MCA EXIN Pisarenko method

A recursive total least squares neural network (MCA EXIN) can be used to compute
the TLS solution of the minimum eigenvector required by Pisarenko’s method; the algo-
rithm requires only O(N) multiplication at each iteration. Fig. 5-6 shows the scheme of the

neural networks.
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Fig 5-6 The recursive linear total least square neural network
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In the following a brief summary of the MCA EXIN neuron is given as in [113].
Let a linear neuron be considered with a real input vector x(t) = [X1(?), ..., xm(t)]" and real

output y(t) (see appendix C for details):

YO =W OXO = YO O (5.18)

where w(t) = [wi(2), ..., wm(t)]" is the weight vector.

In order that the neural weights converge to the minimum eigenvector, the updates of
weights should follow the minimization of the Rayleigh quotient (RQ),
w'R_ W

E[J]=r[w,R, ]= e

(5.19)

By employing a gradient descent method for minimizing this function, the gradient flow
of E[J] is given by

dw(n) _ 1 [Rm_w}wm (5.20)

dt |w)f w' (Hw(t)

with |e|, the Euclidean norm of a vector. This equation is the average version of the
continuous time differential equation,

dw(t):_ 1
e w);

w' ()x(t)x" (t)w(t)
w' (t)w(t)

{x(t)xT (t)- }W(t) (5.21)

The EXIN neuron, one of the best learning laws in terms of stability and converging
time, whose averaging gradient flow (ODE) is directly derived from the discretization of
the sequential version of the exact gradient flow of RQ, is given by

_wmy 2@y@® ], o y(Ow(t)
w(t+1) =w(t) ||W(t)||§ {X(t) i (t)W(t)} (5.22)

where a(t) is the learning rate.

Let Ry be the n>n autocorrelation matrix of input data. If w(0) satisfies w' (0)z,, =0

(being z,, the orthonormal eigenvector corresponds to the smallest eigenvalue), it holds



CHAPTER 5 Speed Estimation by ADALINEs and MCA EXIN Neural Networks 87

w(t) - +w(0)],z,, (5.23)

Then this weight vector, which converges to the eigenvector corresponds to the smallest
eigenvalue (MC), can be used in (5.17) for computing the frequencies.

It should be noted that in (5.11) the signal is assumed to have p complex-valued expo-
nential: the required dimension of autocorrelation matrix and number of MCA neurons are
M=p+1. It is obvious that for p real-valued sinusoidal (cos(wt) = (e/®t + e=/®t)/2); thus
the required dimensions is M=2p+1 correspondingly. For the real-valued data stream from
the ADALINEs (5.10) M=2p+1=3 neurons are required, so it is considered that the output
of the ADALINE is only one harmonic, i.e. the PSH.

5.2.3 The rMCA EXIN Pisarenko method
If the signal to be processed is real-valued, the symmetry property can be used to accel-
erate the convergence. Consider a stream of signals x € R??*! where 2p is the number of
harmonics in the signal (p complex frequencies). Define R,, = E(xxT) as the associated
covariance matrix.
Define:
1,/N2 0

1 (5.24)

Q= 0
S 9,142 0

whichis (2p + 1) x (p + 1), where I, is the p X p identity matrix and J,, is the p X

e I
bo={: - ], 3, =[: .. (5.25)
0 .. 1

p anti-diagonal matrix:

Consider the "projected stream™ of vectors y = QT x, which results as :

T
X, + X500 X, +X
( 1 2p1’ 2 2p ,".’Xp+1] (5.26)

V2o 2

with p + 1 components (reduced space).

Find the eigenvector y, associated to the smallest eigenvalue for the projected stream
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The true eigenvector is given by

C= Ql’Yl (5-27)

Then the eigenvector for the Pisarenko's method is given by the corresponding unit vec-
tor. This MCA EXIN with reduced space is named rMCA EXIN. With regard to MCA
EXIN, the convergence is accelerated and the computational complexity is reduced by p.

For the signal given in (5.10), it is considered that only one slot harmonic is present;

hence, M=p+1=2 neurons are required.

5.2.4 The Adaptive MCA EXIN Pisarenko method

The learning rate of the MCA EXIN is normally assumed to be constant or exponen-
tially decreasing to zero [115-118]. However, a data-driven adaptive learning rate can be
used in the conventional gradient MCA algorithm. This new algorithm, gives faster track-
ing and smaller mean square error.

Recall the learning process,

w(t+1) =w(t) — a(®)V(w(D)) (5.28)

where V(w(t)) is the gradient flow and has been given in (5.20). Consider the averaged
continuous equation and expand it around the critical directions, {z1 , z»,..., zm}. The aver-
aged gradient flow vanishes at these critical directions, i.e. at w; such that V(w}) = 0. It

follows
d - * *
T = —aOT(W() = —a(OH[W ~wj]  (529)
where w;, H; (i=1,...M) are, respectively, the weight vector and the Hessian matrix at
the critical direction i, i.e., i=M, which corresponds to the optimal solution (MC).
Suppose an eigenvector v of the matrixH7;, satisfying
v H; = 2T (5.30)

and define [119][120]
£ =vTV(w(t)) = vTH;[w(t) — wj] (5.31)
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where the average gradient flow V is projected into a unique direction v. The idea is to
choose a good direction v such that it is sufficient to observe the whole dynamics of the
flow only along this projection, whereas any computation of the Hessian matrix itself can
be avoided.

Hence the dynamics of £(t) can be approximately represented as

= £() = —2a(ti(®) (5.32)

By using & (t), the discrete and continuous modification of the rule for a(t) is given by
[119]

a(t) = a(®) + la(®)[m| §®)] — a ()] (5.33)

= a(t) = la(®)[m| £ — a(t)] (5.34)

where I, m are constants. The asymptotic solutions of equation (5.32) and (5.34) are
given by

1 1 11
l

FO=-(G-1)1e® =33 (5.35)

This 1/t-convergence rate is the optimal order of any estimator w(t) converging to w*.
An important problem concerns the choice of a good direction v of projection. It should
be noted that any direction can be valid except the one which is orthogonal to the gradient
flow. Here it is assumed that all the critical directions are sufficiently different from each

other. It exists a learning rate such that, at the critical direction, the learning becomes

w; —w(t) = —a(t)V(w(p)) (5.36)

Together with (5.31), it follows

5 V(w(®) = HiV(w(D) (5.37)

From (5.37), it follows that by properly choosing the learning rate, the average instan-
taneous gradient flow can be forced to be one of the eigenvector of H;, with the corre-
sponding eigenvalue inversely proportional to the learning rate. Hence the projection di-

rection can be approximated by
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_ _V(w®)
V= o wo] (5.38)
and it can be adopted :
£ =vTV(w(®) = ||[v(w®)| (5.39)

(5.38) and (5.39) represent the most possible efficient projection direction. Eq. (5.33)
can be computed by only using the knowledge of instantaneous flow. The learning process
converges to the critical direction with 1/t optimal rate. The critical direction is unstable
toward the directions associated to smaller eigenvalues [113], because the considered equi-
librium direction is a local maximum (in RQ) for the directions with smaller eigenvalues:
the fact that the algorithm is a gradient descent implies that the equilibrium has to be un-
stable in this direction. Hence, the weights converge to the critical direction corresponding
to the minimum eigenvalue.

From [113], the eigenvalues of the Hessian matrix are given by

7= [0 = 40

Hence, it has the same eigenvectors as Rxx, but with different eigenvalues. Compared to
the Hessian matrix at the minimum, the Hessian matrix at the other critical directions has
smaller spectra, and the one corresponding to the largest eigenvalues has the smallest spec-

trum. As A in the asymptotic solution (5.35) is one of the eigenvalues of H;, the term % in

(5.35) decreases as the neural networks converge towards the eigenvector corresponding to
the minimum eigenvalue of Rxx. When the weight vector is in the same direction of the

eigenvector corresponding to the minimum eigenvalue (MC), %Wi” be the smallest possi-

. . 11 .
ble one, and the learning rate a(t) decreases continuously along the 57 curve as shown in

(5.35).

Moreover, the critical directions corresponding to different eigenvalues represent differ-
ent learning stages of the neural networks, i.e. the weight vector is still far from the MC if
it is in the directions corresponding to the largest eigenvalues, and it is the final solution if
it is in the same direction of MC, which corresponds to the smallest eigenvalue. They
should be treated differently by the adaptive mechanism. The averaged instantaneous cost

function
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— T T
J=<¥ OxOxTOWE) (5.41)

wT (O)w(t)

can be adopted, since from the property of RQ, at the critical direction it holds that the
eigenvalues of input correlation matrixA; =~ J. When J is large, it means the neurons are
still far from the final solution, and are possibly approaching towards the critical direction
associated to a larger eigenvalue. Therefore, the new adapting rule is given by considering

the RQ as,
a(t+1) = a(®) + ja®)ml O] - a®)] (5.42)

where | in (5.33) is replaced by nJ, being n a constant which scales the product to a
reasonable range.
If the term nJ varies much slower than the learning rate itself, i.e. (5.41) is averaged

over a large number of iterations, then it still holds the solution in (5.35), and | in the solu-
tion is replaced by nj. Thus, the term G — ni]) in (5.35) is larger at the beginning, and it

decreases as J converges. The global convergence becomes faster.
An upper bound of learning rate can be used to enhance the convergence of the adaptive
MCA EXIN algorithm under all conditions, the derivation of this bound in detail has been

included in appendix E for the simplicity’s sake.

5.2.5 Numerical Simulation of the MCA EXIN and rMCA EXIN

5.2.5.1 Methods to be compared
A. PLL

The phase locked loop (PLL) is chosen as one of the methods to be compared [121]. The
structure of the main PLL topology can be found in chapter 4 (see fig.4-2 inside the dashed
box).

B. Cross correlation based method
The cross correlation matrix based method (COR) proposed in [122] is chosen as another
method to be compared. In [122], the cross-correlation matrix is used to replace the auto-

correlation matrix used in the Pisarenko type method, where the estimation of autocorrela-
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tion sequence is usually biased for short data samples. The recursive version of COR algo-
rithm (recCOR), which avoids matrix inversion, is also described in the paper, and it can
be used to track time-variant frequencies.

The only parameter to be adjusted in the recCOR is a forgetting coefficient p. For there
is not much discussion about the choice of p in the original paper, in this simulation, p =0.9
is used by which a best simulation performance, in terms of rapidity and variance, can be

achieved.

5.2.5.2 Some Definitions
A. SNR
The signal to noise ratio is given by [123],

SNR = 20Iog[\/_%j (5.43)
(e

where A is the amplitude of the signal, o is the standard deviation of the noise.

B. The mean-square frequency estimation error
The mean-square frequency estimation error (MSFE), which is used to evaluate the

frequency estimation error, is given as below [124],

N
D (0, - @)
MSFE =10Iogi:1T (5.44)

Where w, is the estimated frequency, e, is the value of the true frequency, N is the

number of iterations over which the algorithm has been evaluated.

C. CRLB
The CRLB, which is the lowest MSFE that can be achieved by any unbiased estimator

is given in [103][125]
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B 60’
AN -2)[(N-2)*-1]

(5.45)

5.2.5.3 Simulation Results

The performances of the MCA EXIN Pisarenko’s method have been evaluated using
Matlab/Simulink, the objective of the simulation study is to investigate the realization of
the MCA EXIN Pisarenko method and highlight the characteristics of the MCA EXIN
Pisarenko method. It has been applied to estimate the frequency in various conditions: as
the proposed method is aimed to estimate the frequency of the rotor slot harmonics (RSH)
in an induction machine, which varies in a very wide range (from a few hertz to hundreds
of hertz), and rapidly (it is dependent of the target system, normally within a few millisec-
onds). The simulation conditions are designed based on the characteristics of RSH, The
sampling frequency is 2 kHz, the typical value for the learning rate is in the range
0.001~0.05. The initial weight modulus are 0.5~0.8.

Comparisons are made among the proposed MCA EXIN and rMCA EXIN algorithms
with learning rate a=1e-3, the PLL, the correlation method (COR), the recursive type cor-
relation method (recCOR) (p =0.9), and the original Pisarenko’s harmonic decomposition
method (PSH). The estimator is aimed to have a good performance for the extraction of
RSH, whose frequency possibly lies in a wide range, so the MSFE has to be tested in full
range. Meanwhile the RSH frequency could be quite low compared to the sampling fre-

guency, it is necessary to specify the performance at low frequency.

A Comparason of MCA EXIN and rMCA EXIN

In this part, the converging speed of MCA EXIN and rMCA EXIN are compared: the
MCA EXIN and rMCA EXIN start from the same initial condition, and end when the same
stop criterion is met, the stop criterion is that the error of instantaneous RQ I1A(t+1)- A(t)
I<threshold for 30 consecutive iterations. The MCA EXIN and rMCA EXIN have been
applied to single, two real-valued, and three real-valued frequencies cases respectively, un-
der noise level SNR=10dB, 20dB, 30dB and 40dB.

The results are summarized in Tabs. 5-1 to 5-3, they illustrate respectively the results
for single, two real-valued, and three real-valued frequencies estimation results. Among

them, the number of iterations, elapsed time, and stop rho® show the dynamic of neuron,
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while the mean value, variance, and MSFE, which are computed over 100 iterations, sug-
gest the steady-state performance of the neuron.

From Tab 5-1 to Tab 5-3, they show that the IMCA EXIN converges faster than MCA
EXIN in all the cases, with less time and computation burden. Although the MSFE of MCA
EXIN is a littler larger than rMCA EXIN, it is acceptable for the significant improvement

in the speed of convergence.

Tab 5-1 Single sinusoid, A%= 2.963, »=0.1597
SNR (dB) 10 20 30 40
MCA rMCA MCA rMCA MCA rMCA MCA rMCA
EXIN EXIN EXIN EXIN EXIN EXIN EXIN EXIN
Elapsed® time(us) X2 X 645 388 513 360 509 303
Stop rho® (dB) X X  -56,08 60,08 5140 6251 5063 51,26
Number iterations X X 195 119 155 111 154 93
Mean frequency 0,4986 0,4983 0,4995 0,4994 0,4995 0,4995 0,4995 0,4995
MSFE (dB), 36,28 34,26 47,40 44,08 57,52 5395 67,50 63,91

Tab 5-2 Two sinusoids A1?=2, A?>=3, w1 =0.5 7, ©,=0.8 &
SNR (dB) 10 20 30 40
MCA rMCA MCA rrMCA MCA rMCA MCA rMCA
EXIN EXIN EXIN EXIN EXIN EXIN EXIN EXIN

Elapsed®
) X X 1393 828 1159 619 1074 551
time(us)
Stop rho
X X -47,03 -62,76 -43,19 -40,34 -39,32 -35,31
(dB)
Number it-
_ X X 416 252 348 188 314 168
erations
1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57
Mean value
2,5135 2,5134 25133 25133 2,5133 2,5133 2,5133 2,5133
-44,32 -40,92 -54,33 -49,80 -64,26 -59,49 -74,18 -69,41
MSFE(dB)

-4458 -41,16 -53,21 -48,56 -63,00 -58,15 -72,90 -68,13
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Tab 5-3 Three sinusoids A1?=2, A»?=3, As?=4, w1 =0.5 7, w2 =0.8 7, 03 =0.7
SNR (dB) 10 20 30 40
MCA rMCA MCA rMCA MCA rMCA MCA rMCA
EXIN EXIN EXIN EXIN EXIN EXIN EXIN EXIN

Elapsed* X X 1738 1454 1603 852 1261 750
time(us)
Stop
X 31,21  -4146 -29,63 -26,32 -23,51 -23,47
rho(dB)
Number it-
) X 518 443 478 258 373 225
erations
1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57
Mean fre-
2,20 2,21 2,20 2,20 2,20 2,20 2,20 2,20
quency

2,5214 25093 2,5157 2,5084 255134 25127 25131 12,5133
-36,77 -32,70 -4560 -40,22 -5496 -49,34 -64,40 -59,09
MSFE(dB) -24,88 -20,16 -30,71 -24,73 -39,52 -33,66 -49,25 -4391
-27,38  -23,24 -3343 -27,26 -42,25 -36,25 -52,05 -46,68
1. The test platform for elapsed time is: intel core i5-3320M, 2.6Ghz, matlab 7.9.0

2. X means the stop criterion is not met even in steady-state

z (Wi - W|*)

3. rh0:10Iog‘:1T is used as an indicator for estimation accuracy. M is the di-

mension of neurons, w; are the components of the neuron weight vector and w;"are the components
of the true value, the neuron weights are normalized according to the minimum eigenvector for

comparison.

B. MSFE versus estimated frequency(normalized)

Fig. 5-7a shows the MSFE results versus frequency at SNR=20dB, which is computed
by (5.44) over 100 iterations.

As shown in the figure, the MSFE of MCA and rMCA EXIN have the smallest MSFE
in the whole range, and their performance are comparable to CRLB. It should be noted that
their performance is acceptable even at very low frequency, i.e. @ approaches 0 and =, this

verifies that they are suitable for frequency estimation over a wide range. The original COR
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outperforms the original Pisarenko’s method (PSH) in the medium frequency range, how-
ever, it degrades dramatically as the frequency approaching 0 and z. The same phenomenon
can be observed in its recursive version, but with a much higher MSFE, especially at low
frequency. Compared to the other algorithms, the results of PLL is more flat, making its
performance at low frequency notable.

The mean frequency estimation error is illustrated in fig.5-7 b. It is found that the biases
of all the algorithm are small except when frequency is close to 0 or z. Among them, the
COR and recCOR have the largest bias, MCA and rMCA EXIN have the smallest bias for
most of the frequencies, the exceptions happen if w is close to 0 or z, where the PLL has

the lowest error.
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Fig 5-7 Frequency estimation performance of the algorithms under consideration at
different frequencies, with A= /2, SNR=20dB and N=100
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C. MSFE versus SNR
Fig.5-8a illustrates the MSFE results versus SNR level, the signal frequency »=0.1 =,

fig.5-8 b) shows the corresponding mean frequency estimation error.
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Fig 5-8 Frequency estimation performance of the algorithms under consideration
versus SNR, A=v/2, ©=0.1 7 and N=100

As shown in the figure, the best MSFE can be obtained by using the MCA and rMCA
EXIN: if SNR is not so small, their results are comparable to CRLB. The performance of
COR diverges according to the noise levels, and it has an acceptable result only at high
SNR. This can be explained by the fact that, compared to the autocorrelation, the cross-
relation matrix framework has larger forgetting factor, thus it has a low bias but larger

variance. Meanwhile, the recCOR has even larger MSFE in most of the cases. What is more,
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like in fig. 5-7, although PLL is outperformed by other methods at high SNR, it has a good
performance at very low SNR, the closed-loop framework makes the PLL has a more flat

MSFE in respect to noise level and frequencies.

D. Tracking of Step Change.

The tracking features of the MCA EXIN method, rMCA EXIN method, PLL and rec-
COR with respect to step change is investigated in this part in the conditions 1) the fre-
quency steps down from 50Hz to 49.5Hz at 0.1s, then steps up to 50Hz at 0.35s. SNR=60dB.
2) The frequency steps down from 200 Hz to 100Hz and steps up, SNR=40dB

Fig.5-9 shows the result for condition 1). At steady-state, the estimated frequencies for
all methods are accurate. The MCA EXIN tracks the new frequency within 0.01s, no oscil-
lation is observed as it approaches the actual frequency, and the rMCA EXIN converges
even faster, although the oscillations is larger than MCA EXIN. The PLL response rapidly,
but it has an overshoot and bias which die out slowly. That results from the linear nature of
PLL, whereby it will either have a fast response with large ripples at steady-state, or a slow
response with small ripples; it is difficult to find a proper bandwidth which satisfies both
requirements. MCA EXIN and rMCA EXIN algorithm however follow the direction of
gradient descent, once they arrives at the minimum component, a large ‘inertia’ will prevent
it from overshoot. The recCOR has a good steady-state performance, but the transient is
not good enough, although the dynamic could be accelerated by using a smaller forgetting

factor, the oscillation increases in the same way.
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Fig 5-9 Tracking capability of the MCA EXIN method with respect to 