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Résumé ix

Méthodes tangentielles pour les réductions de modèles et applications

Résumé

Les simulations à grande dimension jouent un rôle crucial dans l’étude d’une grande va-
riété de phénomènes physiques complexes, entraînant souvent des demandes écrasantes
sur les ressources informatiques. La gestion de ces demandes constitue la principale
motivation pour la réduction du modèle : produire des modèles de commande réduite
plus simples, qui permettent une simulation plus rapide et moins coûteuse tout en se
rapprochant avec précision du comportement du modèle d’origine. La présence des sys-
tèmes avec multiple entrées et multiple sorties (MIMO) rend le processus de réduction
encore plus difficile. Dans cette thèse, nous nous intéressons aux méthodes de réduction
de modèles à grande dimension en utilisant la projection sur des sous-espaces de Krylov
tangentielles. Nous nous penchons sur le développement de techniques qui utilisent
l’interpolation tangentielle. Celles-ci présentent une alternative efficace et intéressante
à la troncature équilibrée qui est considérée comme référence dans le domaine et tout
particulièrement la réduction pour les systèmes linéaire à temps invariants. Enfin, une
attention particulière sera portée sur l’élaboration de nouveaux algorithmes efficaces et
sur l’application à des problèmes pratiques.

Mots clés : réduction de modèle, interpolation, sous-espace de krylov

Tangential methods for model reductions and applications

Abstract

Large-scale simulations play a crucial role in the study of a great variety of complex
physical phenomena, leading often to overwhelming demands on computational re-
sources. Managing these demands constitutes the main motivation for model reduction:
produce simpler reduced-order models, which allow for faster and cheaper simulation
while accurately approximating the behaviour of the original model. The presence of
multiple inputs and outputs (MIMO) systems, makes the reduction process even more
challenging. In this thesis we are interested in methods of reducing large-scale models,
using projection on tangential Krylov subspaces. We are looking at the development of
techniques using tangential interpolation. These present an effective and interesting
alternative to the balanced truncation which is considered as a reference in the field
and especially for the reduction of linear time invariant systems. Finally, special atten-
tion will be focused on the development of new efficient algorithms and application to
practical problems.

Keywords: model reduction, interpolation, krylov subspace

LAMAI & LMPA
Maison de la Recherche Blaise Pascal – 50, rue Ferdinand Buisson – CS 80699
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Contributions de la thèse

L’objectif de cette thèse est la réduction des systèmes dynamiques linéaires à

grande dimension, avec multiple-entrées et multiple-sorties, en se basant sur la

projection sur les sous-espaces de Krylov tangentiels. La thèse peut être divisée

en quatre parties :

Partie I On présente une introduction générale sur les différents objectifs

autour de la réduction des modèles en décrivant les différents exemples des

systèmes dynamiques utilisés dans cette thèse.

Partie II Compsée de deux chapitres :

• Chapitre2 : Ce chapitre est consacré au rappel de quelques outils ma-

thématiques utilisés dans la théorie des systèmes dynamiques linéaires

invariants dans le temps (LTI).

• Chapitre3 : Dans ce chapitre, on présente des techniques connues dans

la littérature pour la réduction des modèles. La première est la méthode

de la troncature équilibrée basée sur l’utilisation des Grammians et sur la

méthode de la décomposition en valeurs singuliers (SVD). La deuxième

est la méthode de l’interpolation qui est basée sur des sous-espaces de

Krylov. La dernière technique combine les deux précédentes méthodes

pour profiter des avantages des deux.

Partie III On s’intéresse ici aux méthodes basées sur l’orthogonalité de type

Arnoldi. Cette partie se décompose en deux chapitres

• Chapitre4 : Dans ce chapitre, on propose une nouvelle technique pour

la réduction de modèles, en utilisant les méthodes de type Arnoldi, pour

1



2 Contributions de la thèse

construire une base orthonormale, à partir d’un sous-espace de Krylov

tangentiel. Ensuite on introduit des propriétés algébriques qui décrivent

la relation entre la base construite et la matrice du système d’origine.

Ces équations algébriques nous permettent aussi d’établir une nouvelle

expression de l’erreur. Finalement, des exemples numériques ont été don-

nés pour montrer l’efficacité de la méthode proposée. Ce travail a donné

lieu à un article accepté dans le journal "Computational and Applied

Mathematics (CAM)", sous le titre : An adaptive block tangential method

for multi-input multi-output dynamical systems.

• Chapitre5 : Dans ce chapitre, une autre approche basée sur les sous-

espaces de Krylov tangentiels a été proposée. On a donné ensuite un

nouvel algorithme utilisant la technique Globale. On dérive des équations

algébriques intéressantes pour le calcul des matrices réduites, ainsi que

pour le calcul de la norme de l’erreur. Ce chapitre se termine par des

exemples numériques qui illustrent l’efficacité de cet algorithme. Ceci

a donné un article publié sous la référence : "A Computational Global

Tangential Krylov Subspace Method for Model Reduction of Large-Scale

MIMO Dynamical Systems". Journal of Scientific Computing, 75(2018),

pp. 1614–1632.

Partie IV Cette partie est consacrée à l’introduction et l’étude de nouvelles

méthodes basées sur la bi-orthogonalité de type Lanczos. Elle se se décompose

en deux chapitres :

• Chapitre6 : Dans ce chapitre, on introduit un algorithme qui nous permet

de construire deux bases à partir d’un sous-espaces de Krylov tangentiel et

son dual. La construction se fait en utilisant le procédure de type Lanczos

classique pour rendre les bases bi-orthogonales. On donne des propriétés

algébriques qui nous permettent la construction des matrices réduites.

Les tests numériques montrent les avantages de notre algorithme en le

comparant à d’autres bien connus dans la littérature. Ce chapitre a donné

lieu à un papier accepté dans le journal " Applied and Computational

Mathematics", sous le titre : An adaptive tangential Lanczos-type method

for model reduction in large-scale dynamical system.
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• Chapitre7 : On s’est intéressé à une nouvelle technique dans laquelle on

projette les équations de lyapunov sur des sous-espaces de Krylov tangen-

tiels afin d’obtenir des équations de petite dimension. Ces équations de

lyapunov réduites sont maintenant faciles à résoudre, ce qui nous permet

de calculer les matrices réduites en utilisant la méthode de troncature

équilibrée. On a ensuite donné des équations algébriques qui nous ont

permis d’établir de nouveaux résultats théoriques. Une approche adapta-

tive est utilisée pour le choix des points d’interpolation et les directions

tangentielles. Finalement les expériences numériques montrent l’efficacité

de cette nouvelle technique.

Une conclusion générale a été donnée avec quelques perspectives pour le travail

futur.
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Première partie

General Introduction





Chapitre1
Introduction

Large-scale systems are present in many engineering fields such as : aerospace,

circuits, computational biology, building structure, automotive, weather forecas-

ting ...

The determination of a numerical solution (even approximated) of a nonlinear

and complex physical process (by its geometry or its multiphysical character

for example) still requires significant computational resources today, either in

computation time or in memory occupation. To set orders of magnitude for a

realistic problem, Spalart et al [41] estimate that for an airplane wing at cruising

flight conditions, it is necessary to employ about 1011 points and to integrate the

Navier-Stokes equations for approximately 5.106 time steps. It seems difficult,

with the numerical approaches currently used in fluid mechanics (finite ele-

7



8 CHAPITRE 1. Introduction

ments, finite volumes, ...). Ideally, we would like to reduce the large number of

degrees of freedom generally required to the dynamic description of the physical

system (108 grid points, for example, in the case of a yet academic channel

flow analyzed recently by Bewley, 2001) to some degrees of freedom in actual

interaction. Thus, by agreeing to pay the cost of one (or more) resolutions of the

detailed model, we could, for the same numerical cost, carry out a very large

number of simulations of the reduced dynamic model.

Given the importance of the issues, model reduction is a research direction that

has been, and remains, very active in many disciplinary fields. For example :

• In linear algebra (Antoulas, 2005) : Singular Value decomposition (SVD),

Krylov methods, Hankel decomposition.

• In turbulence (Aubry & al, 1988 ; Ukeiley & al, 2001) : the modeling of

turbulence consists precisely in replacing the Navier-Stokes equations

by simpler models to solve, models k-ε or LES, weak order dynamical

systems based on orthogonal decomposition to the Proper Orthogonal

Decomposition (POD) values.

• In statistics (Karhunen, 1946, Love, 1955) : decomposition of Karhunen-

Love.

• In Fluid Mechanics (Schlichting & Gersten, 2003) : boundary layer work in

which a classical approach is to replace the Navier-Stokes equations with

a combination of simpler models, Prandtl boundary layer equations near

solid walls and a non-viscous model far from them.

The general problem associated with model reduction is described schematically

in Figure (4.1a). Starting from any physical system, and from experimentally

or numerically evaluated data, the modeling phase consists in determining a

set of ordinary differential equations (ODEs) or partial differential equations

(PDEs) representative of the physical system. In the case where an PDE system

is obtained in the modeling phase, it is generally discretized in space in order

to obtain an ODE system which is subsequently called S . The model reduction

phase consists in determining a dynamic system Ŝ by appropriately reducing the

number of ODEs necessary for the description of the system. Finally, the reduced
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model Ŝ is used to simulate or control the system S . Eventually, the EDO system

is also discretized in time, thus leading to a discrete dynamic system.

Figure 1.1 – General problematic of model reduction.

Let T be the set of values taken by time (depending on the case, we can consider

T = R
+, R− or R for a continuous system in time, or T = Z

+, Z− or Z for a

discrete system). Considers that the system S can be written generically as a

system of first-order ODEs :

S :

 ẋ(t) = f (t,x(t),u(t))

y(t) = g(t,x(t),u(t))
(1.1)

where

• {x : T −→R
n} is the state vector.

• {u : T −→R
m} is the input or command vector.

• {y : T −→R
p} is the output or the observable vector.

where f and g are correctly scaled vector functions. The S system can therefore

be represented by Figure 1.2 :
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Figure 1.2 – Schematic representation of the dynamic system S .

The main goal of the model reduction is to replace the system (1.1) with :

Ŝ :

 ˙̂x(t) = f̂ (t, x̂(t),u(t))

ŷ(t) = ĝ(t, x̂(t),u(t))
(1.2)

where,

• {x̂ : T −→R
r} with r � n.

• {ŷ : T −→R
p}.

Often in practice, the nonlinear system S is linearized around an equilibrium

solution. We determine thus a linear system whose parameters are variable

in time that we can still note SLP T V where LP T V means Linear, Parameter,

Time-Varying. This system is given by :

SLP T V :

 ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

where A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m.

Finally, if the system parameters do not depend on time, we obtain the sys-

tem SLT I where LT I means here Linear Time-Invariant. This system is then

represented by :

SLT I :

 ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The SLP T V and SLT I systems have been extensively analyzed by automation spe-

cialists or mathematicians (Zhou et al., 1996, for example). In the case of linear
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systems, many results exist on the reduction of models of large dynamic systems

and research is still active in this field, as evidenced by many publications on

the subject (Antoulas, 2005 ; Benneretal., 2005 ). According to Antoulas (2005),

three large classes of approximation methods exist (see table below) :

1) Those based on Singular Value Decomposition (SVD).

2) Those based on a method of Krylov.

3) Finally, iterative methods combine some aspects from a Singular Values De-

composition method and others from a Krylov method.

Figure 1.3 – Classification of model reduction methods.

1.1 Formulation of the Problem

The systems considered in this thesis have the following form :

Σ :=


x(0) = x0

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

(1.3)

the transfer function of the system (1.3) defined as

H(ω) := C(ωIn −A)−1B ∈Rp×q. (1.4)
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In this mathematical formalism, the vector x(t) ∈Rn represents the state of the

system. he is called the state vector in theory of control. In mechanics, the state

vector contains all the unknown physical quantities (pressure, displacement,

speed, temperature, density ...). The matrix A ∈ R
n×n represents in general

the semi-discretisation of partial differential equations (PDEs) that model the

physical phenomenon studied. The vector u ∈ R
p is called the input vector.

The term Bu(t) with B = [b1, ...,bp] ∈Rn×p is the source term or second member

of the model. For example, it corresponds to external forces or forces control

(imposed constraints, pressure fields, gravity, aerodynamic forces ...). The vector

y ∈ Rq is called the vector of the outputs (output vector). The term y = Cx(t)

with C ∈Rq×n represents the physical quantities of interest that are observed. In

mechanics, it can be the observation of the solution at the level of some sensors,

particular characteristics of the flow or the structure. This system is said to be

autonomous because the matrices A, B and C are assumed to be independent

of time. It is first-rate and continuous in time. Finally x0 is the initial condition.

We talk about standard state space system or LTI system (Linear Time Invariant

system). This type of system models the behavior of linear systems controlled

by inputs/outputs. To specify the nature of the system, we speak respectively

of SISO, SIMO, MISO or MIMO (S : Single, M : Multi, I : Input, O : Output)

according to the number of inputs and outputs of the system. For example :

• if p = q = 1 the system is called SISO,

• if p = 1 and q > 1 the system is called SIMO,

• if p > 1 and q = 1 the system is called MISO,

• if p > 1 and q > 1 the system is called MIMO.

When the dimension n of the original system is very large, it is not practical

to use the complete system for simulation or execution control. The goal of

model reduction techniques is to produce a much smaller order system with the

state-space form

Σm :=

 ẋm(t) = Amxm(t) +Bmu(t)

ym(t) = Cmxm(t),
(1.5)
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and its transfer function

Hm(ω) := Cm(ωIm −Am)−1Bm ∈Rp×q, (1.6)

where Am ∈ R
m×m, Bm ∈ R

m×p and Cm ∈ R
p×m, (with m � n), such that the

reduced system (1.5) will have an output ym(t) as close as possible to the one of

the original system to any given input u(t), which means that for some chosen

norm, ‖y−ym‖ should be small. The reduced system (1.5) is always an LTI system,

but much smaller in size than the original system (1.3). The problematic can also

be formulated by working in the frequency space with the transfer function. The

introduction of model reduction methods is in fact also motivated by the finding

that it is not conceivable to calculate the transfer function H for problems large

scale as this would solve an infinity of linear systems of very large large size

(for each heartbeat). The formation of the transfer function is actually limited to

models that can be expressed analytically. Given the matrix of transfer function

H(ω), the goal is to construct a transfer function matrix Hm(ω), which is close to

H(ω).

1.2 Other systems

The spatial semi-discretization of PDEs can lead to other forms of matrix system.

The two examples that are often encountered and can be formally Brought back

to the standard system, so to the whole theory as a result.

1.2.1 Generalized LTI system

A large number of spatially discretized physical models can be reduced to

systems in the more general form :
x(0) = x0

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

The matrix E ∈Rn×n is usually called mass matrix. When the matrix E is regular,
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it is enough to invert it to get back to the standard system (1.3). Sometimes E is

singular and then we speak of a descriptor system or of generalized state space

system. The descriptor systems certainly represent the most general form to

describe linear physical models. The mathematical and numerical treatment of

these systems, however, is more complicated.

1.2.2 Second order system

Linear PDEs modeling structures (plates, shells, beams ...) are often second

order in time. The spatial semi-discretization of its models by a method of finite

elements leads to systems that write in the form :
q(0) = q0

q̇(0) = q1

Mq̈(t) + Dq̇(t) + Kq(t) = Pf (t)

y(t) = Lq(t),

where M is the mass matrix, D is the damping matrix and K the stiffness matrix.

When the source term Pf (t) is null, the system is said to be free, otherwise, it is

said forced. The generalized LTI system is obtained by putting x(t) = (q̇(t),q(t)),

we will treat this later in details.

In the following of the thesis, we will always try to reduce to the standard system

(1.3), to benefit from the theoretical justifications of the control formalism.

1.3 Motivating examples for model reduction

In this part we describe some benchmark examples for model reduction that we

used in the numerical example linear time-invariant systems.

1.3.1 Compact Disc player example

It is the well known CD-Player example from the SLICOT 1 collection that has

been frequently used as a test example in the literature. The control task is to

1. 5http ://www.slicot.org/index.php?site=examples
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follow the trace, which is to show Laser point to trace the pits on the spinning

CD. The mechanism treated here, consists of a pivoting arm on which a lens

is mounted by means of two horizontal leaf springs. The rotation of the arm

in the horizontal plane allows the reading of spiral-shaped disc strips, and the

suspended lens is used to focus the spot on the disc.

Figure 1.4 – Schematic view of CD mechanism.

Because of the fact that the disc is not perfectly flat, and because of the irregu-

larities in the spiral of the pits on the disc, the challenge is to find a low cost

controller that can make the servo system faster and less sensitive to external

shocks [44]. The model contains 60 vibration modes.

1.3.2 The MNA example

The MNA model was obtained from NICONET [32]. To obtain the matrix of

a multiport, the voltage sources are connected to the ports[36]. The multiport,

with these sources, constitutes the equations of modified nodal analysis (MNA) : Eẋn = Axn +Bup
ip = Cxn
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The ip and up vectors denote the port currents and voltages, respectively, and

A =

 −N −G
GT 0

 , E =

 L 0

0 H

 , xn =

 vi
 ,

where v and i are the MNA variables corresponding to the node voltages, in-

ductance and voltage source currents, respectively. The matrices n×n A and E

represent the conductance and susceptance matrices, while −N , L and H are

the matrices stamps for resistors, capacitors and inductances, respectively. G

consists of 1, -1 and 0, which represent the common variables in KCL equations.

Provided the original N -port is composed only of passive linear elements, L, H

and −N are symmetric non-negative defined matrices. This implies that E is also

symmetrical and not negative. Since this is an N-port formulation, where the

only sources are the N voltage sources port nodes, B = CT . The matrices E all

have several singular modes. We have five sparse examples :

The file name Dimension n
MNA1 n = 578
MNA2 n = 9223
MNA3 n = 4863
MNA4 n = 980
MNA5 n = 10913

1.3.3 FDM Semi-Discretized Heat Equation

The finite differences semi-discretized heat equation will serve as the most basic

test example here. Its corresponding matrix A, is obtained from the centered

finite difference discretization of the operator,

LA(u) = ∆u − f (x,y)
∂u
∂x
− g(x,y)

∂u
∂y
− h(x,y)u,
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on the unit square [0,1]× [0,1] with homogeneous Dirichlet boundary conditions

with 
f (x,y) = log(x+ 2y + 1)

g(x,y) = ex+y

h(x,y) = x+ y.

The matrices B and C were random matrices with entries uniformly distributed

in [0,1]. The advantages of this model are :

• It’s easy to understand.

• The discretization using the finite difference method (FDM) is easy to imple-

ment.

• It allows for simple generation of almost arbitrary size test problems.

1.3.4 The RAIL model

This example is a simplified linear model of a nonlinear problem obtained from

a cooling process, which is part of the method of manufacturing steel rails[42].

The temperature of the rail is lowered by the water sprayed through several

nozzles on its surface. Since the problem is "frozen" with respect to a spatial

dimension and symmetric with respect to another, it suffices to consider the

problem related to half of the cross-section of the rail, where the homogeneous

limit of Neumann conditions are imposed on the artificial boundary segment Γ7
(see Figure 1.5). The pressure of the the nozzles can be oriented independently

for different sections Γ1, ..., Γ6 of the surface. That corresponds the control of

the limits of a two-dimensional unsteady heat equation in x = x(τ, ξ1, ξ2). The

nozzle pressures provide the input signals ui = ui(τ), which form the right side of

the boundary conditions of the third type (20). The output signals of this model

are given by the temperature in several interior observation points marked by

small circles in Figure 1.5. After an appropriate scaling of the physical quantities
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we get the parabolic differential equation

∂
∂τ
x =

∂2

∂ξ2
1

x+
∂2

∂ξ2
2

x, (ξ1,ξ2) ∈Ω,

x+
∂2

∂~n
x = ui , (ξ1,ξ2) ∈ Γi , i = 1, ...,6

∂2

∂~n
x = 0, (ξ1,ξ2) ∈ Γ7.

(1.7)

The finite element discretization of the problem is obtained by using the Matlab

PDE Toolbox. Figure 1.5 shows the initial triangularization. The actual trian-

Figure 1.5 – Cross section of the steel rail and initial triangularization.

gularization is the result of two steps of regular mesh refinement, i.e., in each

refinement step all triangles are split into four congruent triangles.
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1.3.5 The ISS model : International Space Station.

The assembly and operation of the International Space Station (ISS) poses unique

control challenges because of its complex, variable flexible structure as well as

variety of operational modes and control systems. I (it is estimated that more

than 40 Space Shuttle flights will be required to complete the assembly). In

addition, each module is described in terms of n ≈ 103 state variables. In this

case, the controllers will be needed to reduce the oscillatory motion or to set the

orientation of the space station relative to a desired direction. It is well known

that generically a controller of a given plant has the same dimension as the

plant. Since these controllers must be implemented on board, they must have

low complexity due to hardware, radiation, throughput or test limits [4]. Thus,

reduced-order models are very useful for the development of reduced-order

controllers. A brief overview of structural flexibility during assembly is shown

in Figure 1.6.

Figure 1.6 – ISS : Evolution of the frequency response as more components are
added (Data : Draper Labs).

The figure shows particular steps of the assembly sequence of the space station

and a frequency response curve thruster commands (Roll, Pitch, Yaw) to filtered

Rate Gyro sensor. It is obvious that the complexity and size of the flex models
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grows as new structural elements are added. Therefore, to perform controller

flex structure dynamic interaction assessment, it becomes necessary to reduce

the flex models in order to complete the analysis in a timely manner that meets

the assembly schedule.

1.3.6 Chemical Reactors : Controling the Temperature of an In-

flowing Reagent

The next example is a system appearing in the optimal heating/cooling of a fluid

flow in a tube. An application could be the temperature regulation of certain

reagent inflows in chemical reactors. The model equations are :

∂x
∂t
−κ∆x+ v.∇x = 0, inΩ

x = x0, on Γin
∂x

∂~n
= σ (u − x), on Γheat1 ∪ Γheat2

∂x

∂~n
= 0, on Γout

(1.8)

HereΩ is the rectangular domain shown in Figure 1.7. The inflow Γin is at the left

Figure 1.7 – A 2d cross-section of the liquid flow in a round tube.

part of the boundary and the outflow Γout the right one. The control is applied

via the upper and lower boundaries. We can restrict ourselves to this 2d-domain

assuming rotational symmetry, i.e., non-turbulent diffusion dominated flows.
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The test matrices have been created using the COMSOL 2 Multiphysics software

and have dimension 1090.

1.3.7 Eady example

This is a model of the atmospheric storm track (for example the region in the

midlatitude Pacific). The mean flow is taken to be in a periodic channel in the

zonal x-direction, 0 < x < 12π, the channel is taken to be bounded with walls

in the meridional y-direction located at y = ±π2 and at the ground, z = 0, and

the tropopause, z = 1. The mean velocity is varying only with height and it

is U (z) = 0.2 + z. Zonal and meridional lengths are non dimensionalized by

L = 1000km, vertical scales by H = 10km, velocity by U0 = 30m/s and time is

nondimensionalized advectively, i.e. T = L
U0

, so that a time unit is about 9h.

In order to simulate the lack of coherence of the cyclone waves around the Earth’s

atmosphere, an observed characteristic of the Earth’s atmosphere, we introduce

linear damping at the storm track’s entry and exit region. The perturbation

variable is the perturbation geopotential height (i.e. the height at which surfaces

of constant pressure are located).

The perturbation equations for single harmonic perturbations in the meridional

(y) direction of the form φ(x,z, t)eily are :

∂φ

∂t
= ∇−2

[
−z∇2Dφ− r(x)∇2φ

]
,

where ∇2 is the Laplacian ∂2

∂x2 + ∂2

∂z2 −l2 andD = ∂
∂x . The linear damping rate r(x) is

taken to be r(x) = h
(
2− tanh[(x − π4 )/δ] + tanh[(x − 7π

2 )/δ]
)

(h = 2.5,δ = 1.5). The

boundary conditions are expressing the conservation of potential temperature

(entropy) along the solid surfaces at the ground and tropopause :

∂2φ

∂t∂z
= −zD

∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 0,

∂2φ

∂t∂z
= −zD

∂φ

∂z
+Dφ− r(x)

∂φ

∂z
at z = 1.

2. https ://www.comsol.de
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Note that these equations are the same for perturbation evolution in a Couette

flow with free boundaries. We write the dynamical system in generalized velocity

variablesψ = (−∇2)
1
2φ so that the dynamical system is governed by the dynamical

operator :

A = (−∇2)
1
2∇−2

(
−zD∇2 + r(x)∇2

)
(−∇2)

−1
2 ,

where the boundary equations have rendered the operators invertible. We refer

to [15] for more details, including the type of discretization that was used.
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Chapitre2
LTI systems theory

In this chapter, some general elements about LTI systems theory are recalled and

the associated notations introduced. The material is standard and can be found

in many books such as Zhou et al [45].

2.1 Representation of LTI dynamical models

Time-domain representation

We consider the multi-input and multi-output (MIMO) linear time invariant

(LTI) dynamical system in (1.3) which represented in the time-domain by a

state-space This form

Σ :=


x(0) = x0

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

The LTI dynamical system above is usually denoted as

Σ :=

 A B

C 0

 . (2.1)

25
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The temporal solution of this system is established by applying the variation of

constants method,

y(t) = Cx(t) = C
[
eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ
]
,

where etA expresses the exponential of the matrix tA. It is defined by the absolu-

tely convergent series etA = In +
∞∑
i=1

ti

i!
Ai .

As a recall, the exponential matrix satisfies the following properties :

et1Aet2A = e(t1+t2)A.

d
dt

(etA) = AetA = etAA.

If AB = BA, etAetB = et(A+B).

ePAP
−1

= P eAP −1.

where t1, t2 ∈ R and P is an invertible matrix. The solution of a problem with

initials values not controlled (Bu(t) = 0) is simply expressed in the form :

y(t) = Ce(t−t0)Ax0.

Frequency-domain representation

The transfer function H(ω) represents the model Σ in the frequency-domain

and it’s obtained by applying the Laplace transform to (1.3) with a null initial

conditions (x0 = 0), which yields to : ωX(ω) = AX(ω) +BU (ω)

Y (ω) = CX(ω),
(2.2)

where X(ω), Y (ω) and U (ω) are the Laplace transform of x(t), y(t) and u(t),

respectively. If we re-arranging terms in the previous equation we obtain Y (ω) =

H(ω)U (ω), where H(ω) is the transfer function of the system (1.3) defined as in
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(1.4) by :

H(ω) := C(ωIn −A)−1B ∈Rp×q.

The main advantage of working directly with the transfer function is based on

the fact that a distance ‖.‖ can be defined between the transfer function of the

original model and that of the reduced model. Indeed, the matrices Hm(ω) and

H(ω) are of the same size. The definition of such a norm for the transfer function

is a way of estimating the error made when a reduced system is built. It is thus

possible to evaluate and guarantee the quality of the model reduced with respect

to the defined norm. Of course, the approximation quality of the reduced system

also depends on the choice of the considered norm.

2.2 Basic properties of the LTI systems

The dynamic and numerical properties of the LTI system are closely related to

the properties of the matrix A. We assume for simplicity that the matrix is with

real coefficients.

2.2.1 Stability

Stability is defined in relation to the free response of the system (uncontrolled

system). We say that the system is stable if the solution x(t) for u = 0 and for any

initial condition remains bounded when t→∞. The stability of the system can

be analyzed directly from its modal representation. For matrix A to be stable,

all the real parts of the eigenvalues need to be strictly negative. This remains

valid if the real part is null on condition that any eigenvalue with real part null

is simple. For example, if matrix A is negative definite then the system is stable.

Stable matrices are also called Hurwitz matrices. The LTI dynamical system (1.3)

is asymptotically stable, if and only if A is stable (Λ(A) ⊂C
−).

2.2.2 Passivity

The system is passive if it can not generate energy. In other words, the energy

of the system can not increase. In theory, passivity is checked using one of the
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following equivalent properties relating to the transfer function :

• H is analytic in C
+ := {ω ∈C, R(ω) > 0}.

• H(ω) =H(ω), ∀ω ∈C.

• H(ω) +H(ω)T > 0, ∀ω ∈C+.

Passivity is a characteristic stronger than stability. The energy of a stable system

can indeed grow very well on short time.

2.2.3 Preconditioning the system

It is sometimes possible to improve the numerical properties of the system by

applying a regular matrix P such that,

Pẋ(t) = PAx(t) + PBu(t),

The matrix P is called the preconditioner of the system. The construction of a

pre-conditioner aims to improve the numerical conditioning of a matrix. Without

going into the details, let’s just say that the ultimate goal of a preconditioning is

to get a PA matrix who :

• Be less sensitive to various numerical perturbations.

• Accelerate the convergence of numerical algorithms.

These improvements are largely due to the modification of the PA product spec-

trum compared to the spectrum of A. The application of such a preconditioner

implies the work on the generalized LTI system. Unfortunately, the construction

of such a matrix P is not easy in general.

2.2.4 Controllability and Observability Gramians

The concepts of controllability and observability are very important for the

study of dynamic systems control and estimation problems. Indeed the notion of

controllability is closely related to the existence of a "feasible" command, and the

notion of observability is related to the possibility of estimating state variables

from measurements.

Definition 2.1 (Controllability) Given a LTI dynamic system,
• The state x0 of a linear system is said to be controllable at a moment t0, if there is
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an entry (i.e. a command) u(t) that transfers the initial state x0 = x(t0) to any other
state in a finite time t1 > t0.
• The system is controllable at the moment t0 if this is true for any initial state x(t0).
• The system is said to be totally controllable if this is true for all moment t0 and any
initial state x(t0).

Proposition 2.1 (Controllability) The LTI dynamical system (1.3) is controllable
if and only if the controllability matrix

C =
[
B AB A2B ... An−1B

]
,

is of full rank, i.e rank(C) = n. In this case the pair (A,B) is said to be controllable. If
rank(C) = k < n, then n−k is the number of the uncontrollable modes (the eigenvalues
of the matrix A satisfying rank([λI −AB]) < n ). If all uncontrollable modes are stable
then the system is said to be stabilizable.

Example : Given the followig system, ẋ1

ẋ2

 =

 −1 0

0 −2

 x1

x2

+

 2

1

u,
the controllability matrix is given by,

C =

 2

1

  −1 0

0 −2

 2

1

 =

 2 −2

1 −2

 ,
rank(C) = 2, the system is controllable.

Definition 2.2 (Observability) Given a LTI dynamic system,
• The state x0 = x(t0) of a linear system is said to be observable at a moment t0 if it
can be determined by the knowledge of u(τ) and y(τ) for t0 < τ < t1 with t1 is finite
time.
• The system is observable at the moment t0 if this is true for any initial state x(t0).
• The system is said to be totally observable if this is true for all moment t0 and any
initial state x(t0).
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Proposition 2.2 (observability) The LTI dynamical system (1.3) is observable if
and only if the observability matrix

O =
[
CT , ATCT , (A2)TCT , ..., (An−1)TCT

]
,

is of full rank, i.e rank(O) = n. In this case the pair (A,C) is said to be observable. If
rank(O) = l < n, then n− l is the number of the unobservable modes (the eigenvalues
of the matrix A satisfying rank([λI −ATCT ]) < n ).

Example : Given the followig system, ẋ1

ẋ2

 =

 −1 0

0 −2

 x1

x2

+

 2

1

u, y =
[

1 0
] x1

x2


the observability matrix is given by,

O =

 1

0

  −1 0

0 −2

 1

0

 =

 1 −1

0 0

 ,
rank(O) = 1 , 2, the system is not observable.

Definition 2.3 (Controllability & Observability Gramians) Given a stable LTI
dynamical system (1.3). The associated controllability Gramian, denoted by P , is
defined as

P =
∫ ∞

0
etABBT eA

T tdt, (2.3)

and the observability Gramian Q is defined as

Q =
∫ ∞

0
eA

T tCTCetAdt. (2.4)

In the frequency domain, we get the formulations

P =
1

2π

∫ ∞
−∞

(jωIn −A)−1BBT (jωIn −A)−T dω, (2.5)

and
Q =

1
2π

∫ ∞
−∞

(jωIn −A)−TCTC(jωIn −A)−1dω. (2.6)
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The two Gramians can be computed by solving two equations. In fact, P and Q
are the unique solutions of the following Lyapunov matrix equations

AP +PAT +BBT = 0, (2.7)

and

ATQ+QA+CTC = 0. (2.8)

Theorem 2.1 The LTI system (1.3) is controllable if and only if the solution P of
(2.7) is positive definite, it is observable if and only if the solutionQ of (2.8) is positive
definite.

Lemma 2.2.1 The LTI system in (1.3) is minimal if and only if (A,C) is observable
and (A,B) is controllable.

2.2.5 Norms of systems

Various norms can be used to verify the quality of the reduced order model. Here

we recall the well known H2 and H∞ norms of a transfer function.

TheH2 norm

Definition 2.4 Given a LTI dynamical model as in (1.3) with the associated transfer
function H , the H2-norm of H is defined as

‖H ‖2H2
=

1
2π

∫ ∞
−∞

tr
(
H(jω)H(−jω)T

)
dω. (2.9)

Theorem 2.2 Given a stable LTI dynamical system Σ, with the associated Gramians
P and Q, the H2-norm of H is given by

‖H ‖2H2
= tr(CPCT ),

= tr(BTQB).
(2.10)



32 CHAPITRE 2. LTI systems theory

TheH∞ norm

We present below the definition of the H∞-norm of a LTI dynamical model. For

MIMO models, it is the maximum singular value of the transfer function across

all frequencies.

Definition 2.5 Given an asymptotically stable LTI dynamical mod. The H∞-norm
of the transfer function H is defined by

‖H ‖H∞= max
ω∈R

σmax(H(jω)), (2.11)

where σmax denotes the maximum singular values.

2.3 The Krylov subspaces

Before defining the Krylove subspaces, let us first recall the definition of the

Singular Value Decomposition.

2.3.1 The Singular Value Decomposition

The singular value decomposition (SVD), has become since a few decades a fun-

damental tool for studying linear problems. The decomposition was discovered

over a hundred years ago by Beltrami, but has only become a numerical tool

since the late of 1960s, when G. Golub showed how it could be calculated stably

and efficiently. We state the main theorem in the case of real matrices.

Theorem 2.3 Let A ∈Rm×n be a matrix of rank r. There are two orthogonal matrices
U ∈Rm×m, (UTU =UUT = I) et V ∈Rn×n, (V TV = VV T = I) such that :

A =UDV T , D =

 Dr 0

0 0

 (2.12)

where D ∈Rm×n, Dr =Diag(σ1,σ2, ...,σr) et σ1 ≥ σ2 ≥ ... ≥ σr > 0
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2.3.2 Krylov subspaces

The concept is named after Russian applied mathematician and naval engineer

Alexei Krylov, who published a paper about it in 1931[29]. The basis for its

subspaces can be found in the Cayley-Hamilton theorem, which says that the

inverse of a matrix A is expressed in terms of a linear combination of powers of

A.

Definition 2.6 Given A ∈ R
n×n, b ∈ R

n, the m order Krylov Km subspace is the
linear subspace spanned by the images of bunder the first m-1 powers of A, that is :

Km(A,B) = Range{b, Ab, A2b, ...,Am−1b}.

The Krylov subspaces form a croissant family of subspaces, necessarily limited.

We will note mmax, the maximum dimension of Krylov subspaces, for a given

vector b ∈Rn.

Lemma 2.3.1 If Amb ∈ Km, then Am+kb ∈ Km for all k > 0.

Proof The demonstration is by recurrence. If for k > 0, Am+kb ∈ Km, then :

Am+kb =
m−1∑
l=0

αlA
lb

therefore :

Am+k+1b =
m−1∑
l=0

αlA
l+1b

=
m−2∑
l=0

αlA
l+1b+αm−1

m−1∑
l=0

βkA
lb

=
m−1∑
l=0

γlA
lb

Theorem 2.4 The dimension of the Krylov subspace Km is m, if and only if the
grade of b associated to A is greater than m− 1, which means :

dim(Km) =m⇐⇒ grade(b) ≥m,
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dim(Km) =min {m,grade(b)} .

Where grade(b) is the degree the minimal polynomial of A associated to the

vector b i.e :

p(A)b = 0.

2.4 The Arnoldi & Lanczos methods

In this section we recall the definition of the Arnoldi and Lanczos methods using

to construct the Krylov subspaces, with their properties.

2.4.1 The Arnoldi algorithm

The Arnoldi algorithm is a method to construct a Krylov subspace through an

orthonormal basis. The principle is simple : we start by a initial normalized

vector, the vectors of the Krylov subspace are produced one after the other by

multiplication by the system matrix and orthonormal by using theGramSchmidt

procedure.

Algorithm 1 .

1. Choose a vector v1 of an unitary norm.

2. For j = 1 :m

3. Set w := Avj .

4. For i = 1 : j

5. hij =< w,vi >.

6. w := w − hijvi .

7. End

8. hj+1,j =‖ w ‖.

9. If hj+1,j = 0, then stop, else,

10. vj+1 =
w

hj+1,j
.

11. End.
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12. Output {v1,v2, ...,vm+1}.

1) Suppose that at themth step, the algorithm does not stop, the vectors v1,v2, ...,vm
form an orthonormal basis of the Krylov subspace :

Km(A,v1) = Range
{
v1, Av1, A

2v2, ..., A
m−1v1

}
.

2) Let Vm be the matrix of (n×m) whose columns are the vectors v1,v2, ...,vm ; let

H̃m, be the Hessenberg matrix defined by the algorithm, and letHm be the square

matrix obtained from H̃m by eliminating its last line, we have the following

relations :
AVm = VmHm + hm+1,mvm+1e

T
m,

= Vm+1H̃m.

V T
mAVm = Hm.

(2.13)

In other words, this algorithm calculates the projection of the matrix A in the

space defined by the Krylov vectors.

3) The Arnoldi algorithm stops at step j if and only if the minimal polynomial

of v1 is of degree j.

2.4.2 Block Arnoldi algorithm

In many cases, it is preferable to work with a block of vectors instead of a single

vector, because the matrix A that’s operates on a group of vectors, can be more

efficient using block Krylov methods. There are several algorithm versions of

block Arnoldi, here we will just recall one.

Algorithm 2 .

1. Inputs A ∈Rn×n, V1 ∈Rn×p.

2. For j = 1 :m

3. Set W := AVj .

4. For i = 1 : j.

5. Hij = V T
i W .
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6. W :=W −ViHij .

7. End.

8. W = Vj+1Hj+1,j , QR decomposition.

9. End.

10. Output Vm+1 = [V1,V2, ...,Vm+1] ∈Rn×mp.

The blocks [V1,V2, ...,Vm+1] constructed in the algorithm 2 are orthogonal. The

following relation, which is analogous to relation (2.13), can be easily proved :

AVm = VmHm +Vm+1Hm+1,mE
T
m.

where Hm is the Hessenberg matrix, and Em is last mp × p block of the identity

matrix Imp.

2.4.3 Lanczos algorithm

Lanczos methods are iterative projection methods of the Krylov subspaces, that

solve a large linear sparse systems. In 1950 and 1952, Lanczos [30, 31] proposed

two processes for reduce a matrix A to a tridiagonal matrix T similar to A and

build the bases of the desired Krylov subspaces. However, if the matrix A is

symmetric the Lanczos process can be deduced from the Arnoldi process. A

version equivalent to this algorithm has been introduced by M. Hestnes E. steifel

[26] is the Conjugate gradient (CG) method. In the non-symmetric case of matrix

A, Lanczos proposed a biorthogonalization process, which is distinct in principle

from that of the Arnoldi algorithm. The algorithm proposed by Lanczos for

non-symmetric matrices consists in transforming an A ∈ R
n×n matrix into a

similar tridiagonal matrix, and allows to construct a pair of biorthonormal bases

{v1,v2, ...,vm} and {w1,w2, ...,wm} for the following two Krylov subspaces :

Km(A,v1) = Range
{
v1, Av1, A

2v2, ..., A
m−1v1

}
.

Km(AT ,w1) = Range
{
w1, A

Tw1, (AT )2w2, ..., (AT )m−1w1

}
.

The biorthogonalization algorithm of Lanczos [31, 38] is given as follows :
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Algorithm 3 .

1. Choose two vectors v1 and w1 such as < v1,w1 >= 1.

2. Set β1 = γ1 = 0, w0 ≡ v0 ≡ 0.

3. For j = 1 :m

4. αj =< Avi ,wj >.

5. ṽj+1 = Avj −αjvj − βjvj−1.

6. w̃j+1 = ATwj −αjwj −γjwj−1.

7. γj+1 = | < w̃j+1, w̃j+1 > |
1
2 , if γj+1 = 0, then stop, else

8. βj+1 =
< w̃j+1, w̃j+1 >

γj+1
.

9. vj+1 =
ṽj+1

γj+1
, wj+1 =

w̃j+1

βj+1

10. end

11. Output {v1,v2, ...,vm+1}, {w1,w2, ...,wm+1}.

Lanczos vectors can be generated by three recurrence terms. These recurrences

can be indicated compactly in matrix form as follows :

AVm = VmTm +γm+1vm+1e
T
m.

ATWm =WmT
T
m + βm+1wm+1e

T
m.

W T
mAVm = Tm, W T

mVm = In,

where Im is the identity matrix, Vm, Wm and Tm are matrices given by :

Vm = [v1,v2, ...,vm] , Wm = [w1,w2, ...,wm] ,
α1 β2

γ2 α2
. . .

. . . . . . βm
γm αm


.
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Chapitre3
Different model reduction techniques

Introduction

The model reduction methods of large dynamical systems are mainly divided

into two families, methods that do not use projection and those that use it. Only

the second family of methods is considered here because it responses better to the

numerical requirements of large systems. The problem of projection reduction

is expressed as follows :

Problem 1

Given the system Σ in (1.3) to reduce, the main goal here is to find two projection

matrices Vm,Wm ∈Rn×m (m� n) biorthogonal (W T
mVm = Im) such as the matrices

of the Σm in (1.5) model are written :

Am =W T
mAVm, Bm =W T

mB and Cm = CVm.

In the following, we present some well knowing methods for model reduction

using projection.

3.1 Balanced truncation method

The balanced truncation method for model reduction was first introduced by

Mullis & Roberts [35] and later in systems and control theory by Moore and

39
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Glover, see [33, 20]. If we assume that the LTI system (1.3) is stable, controllable

and observable, in this case we call it also stable and minimal, then the control-

lability and observability Gramians are unique positive definite. The balanced

truncation of a LTI dynamical model Σ is obtained by applying a nonsingular

matrix transformation T ∈Rn×n to get,

Ã = T −1AT , B̃ = T −1B, C̃ = CT .

Hence, the associated controllability and observability Gramians P̃ and Q̃ are

expressed as

P̃ = T −1PT −T , Q̃ = T TQT .

The aim of the balanced truncation method is to find the transformation T such

that the new Gramians P̃ and Q̃ are diagonal,

P̃ = Q̃ = diag(σ1, ...,σn), (3.1)

where the σi , i = 1, ...,n are called the Hankel singular values. For controllable,

observable and stable systems, they can be computed as,

σi =
√
λi(PQ).

Notice that the Hankel singular values are invariant by transformation, contrary

to the Gramians. Now we show how to obtain the Gramians P̃ and Q̃ that verify

(3.1). First we compute directly the lower Cholesky factorization of the Gramians

P and Q,

P = LcL
T
c , Q = LoL

T
o ,

then we compute the singular value decomposition of the matrix LTo Lc,

LTo Lc =UDV T , (3.2)
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where D is the diagonal matrix containing the Hankel singular values of the

system (1.3). The balanced transformation is given by,

T = LcVD−
1
2 , T −1 =D−

1
2UT LTo .

It is proved in [1] that if the system (1.3) is stable and minimal, and having the

new equivalent LTI dynamical system Σ̃,

Σ̃ :=

 T −1AT T −1B

CT 0

 ≡

A11 A12 B1

A21 A22 B2

C1 C2 0

 ,
with P̃ = Q̃ = diag(σ1, ...,σm,σm+1, ...,σn), then,

‖H(.)−Hm(.) ‖H∞≤ 2(σm+1 + ...+ σn). (3.3)

Inequality (3.3) shows that the dynamical system (1.3) can be represented by a

reduced order LTI system Σ̃m, if the singular values σm+1, ...,σn are small enough,

Σ̃m ≡
 A11 B1

C1 0

 .
Let us now construct the reduced model Σm. First we define the following

matrices,

Vm = LcVmD
− 1

2
m , Wm = LoUmD

− 1
2

m ,

where Dm, Um and Vm correspond to the first m columns of the matrices D, U

and V in (3.2). Then the reduced model Σm is given as

Σm ≡
 Am Bm
Cm 0

 ,
where Am =WT

mAVm, Bm =WT
mB and Cm = CVm.

Algorithm 4 .

1. Inputs : A, B, C, m.
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2. Solve AP +PAT +BBT = 0.

3. Solve ATQ+QA+CTC = 0.

4. P = LcLTc , Q = LoLTo . ( lower Cholesky factorizations)

5. LTo Lc =UDV T . (SVD decomposition)

6. Set T = LcVD−
1
2 , T −1 =D− 1

2UT LTo .

7. Apply projector Σ̃ :=

 T −1AT T −1B

CT

 .
8. Truncation : Am =WT

mAVm, Bm =WT
mB and Cm = CVm.

The transformation T constructed in Algorithm 4 (step 6), verify the condition

in (3.1), in fact :

T −1PT −T = D− 1
2UT LTo PLoUD−

1
2

= D− 1
2UT LTo LcL

T
c LoUD−

1
2

= D.

Similarly,
T TQT = D− 1

2V T LTc QLcVD−
1
2

= D− 1
2V T LTCLoL

T
o LcVD−

1
2

= D.

3.2 Interpolation or (moment matching) methods

We first give the following definition.

Definition 3.1 (Moments) Given the system Σ, its associated transfer function
H(ω) = C(A−ωI)−1B can be decomposed through a Laurent series expansion around
a given σ ∈C (shift point), as follows

H(ω) =
∞∑
i=0

η
(σ )
i

(ω − σ )i

i!
, (3.4)

where η(σ )
i ∈R

p×p is called the i-th moments at σ associated to the system and defined
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as follows

η
(σ )
i = C(A− σIn)−(i+1)B = (−1)i

di

dωi
H(ω)|ω=σ . (3.5)

In the case where σ =∞ the moments are called Markov parameters and are given by

ηi = CAiB.

3.2.1 Rational interpolation

Given Σ as in (1.3), the interpolation problem is to find a reduced model Σm,

such that Hm(s) interpolates H(s) in certain number of its moments at σ in

the complex plane. A more general definition of approximation by moment

matching is related to rational interpolation. By rational interpolation we mean

that the reduced order system matches the moments of the original system at

multiple interpolation points. The goal here is to produce a low order transfer

function, Hm(s), that approximates the large order transfer function, we want

Hm(ω) ≈H(ω) withm� n. Various model reduction methods for MIMO systems

have been explored these last years. Some of them are based on rational Krylov

subspace Interpolation methods. One could select a set of points {σi}mi=1 ⊂ C and

then seek a reduced order transfer function, Hm(ω), such that

Hm(σi) =H(σi), f or i = 1, ...,m

see [6, 7, 12, 13]. The rational Krylov subspace is defined as :

Km(A,b)R = Range{(σ1I −A)−1b, ..., (σmI −A)−1b},

where b is a vector in R
n and σ1, ...,σm are some selected complex shifts. The

block rational Krylov subspace is defined as :

Km(A,B)R = Range{(σ1I −A)−1B, ..., (σmI −A)−1B},

where B is block of size n × p. In the following we give a theorem that was

presented in [22] for SISO systems, and is extended to the MIMO case in [18]. It

shows how to construct the bi-orthogonal bases Vm and Wm so that the transfer
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function Hm(ω) of the reduced order model Σm in (1.5) has to interpolate the

transfer function H(ω) of the original system Σ in (1.3) and its first derivative at

the interpolation points {σi}mi=1.

Theorem 3.1 Let {σi}mi=1 be such that (σiI−A) are invertible for i = 1, ...,m. Let Vm =

[V1, ...,Vm], Wm = [W1, ...,Wm] ∈ Rn×mp be two matrices with full-rank obtained as
follows :

Range {V1, ...,Vm} = Range
{
(σ1I −A)−1B, ..., (σmI −A)−1B

}
,

Range {W1, ...,Wm} = Range{(σ1I −A)−TCT , ..., (σmI −A)−TCT },

where WT
mVm = Imp. Then, the reduced order transfer function Hm(ω) = Cm(ωIm −

Am)−1Bm obtained in (1.6) interpolates H(ω) and its first derivative at {σi}mi=1.

The question then is how to choose the interpolation points σi so as to have a

good approximant of the initial model (in other words the reduced order model

that solve the following problem) :

Hm(ω) = arg
(

min
H̃(ω) stable

JH2
(H̃(ω))

)
,

where,

JH2
(H̃(ω)) = ‖H(ω)− H̃(ω)‖H2

.

This problem has been partially solved in [24] by proposing an iterative proce-

dure to achieve a reduced model satisfying the optimal approximation. The idea

is to select the interpolation points as being the mirror images of the eigenvalues

of the matrix Am at previous iteration (see Algorithm 5, step 7).

Algorithm 5 (Iterative Rational Krylov Algorithm IRKA) .

1. Inputs : A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, an initial selection of interpolation
points σ (0) = {σ (0)

1 , ..,σ
(0)
m } ∈ Cm.

2. Construct Vm = [(σ (0)
1 In −A)−1B, ..., (σ (0)

m In −A)−1B].

3. Construct Wm = [(σ (0)
1 In −AT )−1CT , ..., (σ (0)

m In −AT )−1CT ].

4. Set Wm = Wm(WT
mVm)−T .
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5. While the algorithm has not converged.

6. Am = W
T
mAVm.

7. i←− i + 1

8. σ
(i)
j = −λj(Am).

9. Construct Vm = [(σ (i)
1 In −A)−1B, ..., (σ (i)

m In −A)−1B].

10. Construct Wm = [(σ (i)
1 In −AT )−1CT , ..., (σ (i)

m In −AT )−1CT ].

11. Set Wm = Wm(WT
mVm)−T .

12. End.

13. Output : Am = W
T
mAVm, Bm = W

T
mB, Cm = CVm.

• Steps 4 and 11 serve to make Vm and Wm biorthogonal, i.e. WT
mWm = Imp.

• A possible stopping test may be the stagnation of interpolation points σ (i)
j .

Although it is extremely rare to obtain unstable models, this technique does not

guarantee the stability of the reduced model, and no bound on the approximation

error has yet been proposed. Although the theory of rational interpolation

applies indifferently to the cases of SISO and MIMO systems, the latter pose

problems in practice insofar as the construction of the projection matrices Vm
and Wm must be done by block and in a numerically stable way.This is very

complex in practice where rank losses are observed, it is then preferable to

consider the framework of the tangential interpolation which is more adapted to

the case of MIMO systems.

3.2.2 Tangential interpolation

The difficulty of applying rational interpolation to the case of MIMO systems

comes from the fact that the interpolation conditions are not restrictive enough.

With tangential interpolation, in addition to the interpolation points, interpo-

lation directions are provided to avoid this problem. Hence the problem of the

tangential interpolation :

Problem 2
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Given a full-order model (1.3) and the system of matrices A, B, and C and given :

• Left interpolation points {µi}mi=1 ⊂C and left tangent directions {li}mi=1 ⊂C
p.

• Right interpolation points {σi}mi=1 ⊂C and right tangent directions {ri}mi=1 ⊂
C
p.

The problem is to find a reduced-order model (1.5) through identification of re-

duced system matrices Am, Bm, and Cm such that the associated transfer function,

Hm in (1.6) is a tangential interpolant to H , i.e.

lTi Hm(µi) = lTi H(µi) and Hm(σi)ri =H(σi)ri , f or i = 1, ...,m. (3.6)

The interpolation points and tangent directions are selected to realize the condi-

tions of optimality of the first order that are expressed here through Theorem

3.2. They were formulated by Van Dooren and al[24].

Theorem 3.2 Let λi , di et gi , i = 1, ...,m, be the eigenvalues, the right and left eigen-
vectors of the reduced model Σm respectively :

Amdi = λidi gTi Am = λig
T
i . (3.7)

The left and right tangential directions li and ri can then be defined as :

li = Cmdi rTi = gTi Bm. (3.8)

The following equations are satisfied, if and only if Hm(s) has only single poles and
minimizes JH2

:
lTi H(−λi) = lTi Hm(−λi)
H(−λi)ri = Hm(−λi)ri
lTi H

′
(−λi)ri = lTi H

′
m(−λi)ri

(3.9)

We want to interpolate H without ever computing the quantities to be matched

since these numbers are numerically ill-conditioned, as provided in [16] for

single-input/single-output dynamical systems. This can be reached by using

Petrov-Galerkin projections with carefully choosing the projection subspaces.

The tangential Krylov subspace is defined as follows :

KTm(A,B) = Range{(σ1I −A)−1Br1, ..., (σmI −A)−1Brm}. (3.10)
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We give the following result presented in [2].

Theorem 3.3 Let σ,µ ∈R be such that As = (A− sI) is invertible for s = σ and s = µ.
Let Vm,Wm ∈ Rn×m be two matrices with full-rank. Let r, l ∈ Rp be some chosen
tangential vectors. Then we have the following properties :

1. If (A− σI)−1Br ∈ Range{Vm}, then H(σ )r =Hm(σ )r.

2. If (A−µI)−TCT l ∈ Range{Wm}, then lTH(µ) = lTHm(µ).

3. If both (1) and (2) hold, and if σ = µ, then lTH ′(σ )r = lTH ′m(σ )r.

In the following we present, the Iterative T angential Interpolation Algorithm

(IT IA) suggested by Van Dooren and al[24]. It takes the structure of Algorithm

5 a few points close :

Algorithm 6 ( Iterative Tangential Interpolation Algorithm ITIA) .

1. Inputs : A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, an initial selection of interpolation
points and tangent directions, r(0) = {r(0)

1 , ..., r
(0)
m } ∈Rp×m, l(0) = {l(0)

1 , ..., l
(0)
m } ∈

R
p×m σ (0) = {σ (0)

1 , ...,σ
(0)
m } ∈Rm.

2. Construct Vm =
[
(σ (0)

1 In −A)−1Br
(0)
1 , ..., (σ (0)

m In −A)−1Br
(0)
m

]
.

3. Construct Wm =
[
(σ (I)

1 In −AT )−1CT l
(0)
1 , ..., (σ (0)

m In −AT )−1CT l
(0)
m

]
.

4. Set Wm =Wm(W T
mVm)−T .

5. While the algorithm has not converged.

6. Am =W T
mAVm.

7. i←− i + 1

8. σ
(i)
j = −λj(Am).

9. Compute tangential directions as in (3.8).

10. Construct Vm =
[
(σ (i)

1 In −A)−1r
(i)
1 , ..., (σ

(i)
r In −A)−1Br

(i)
m

]
.

11. Construct Wm =
[
(σ (i)

1 In −AT )−1CT l
(i)
1 , ..., (σ

(i)
m In −AT )−1CT l

(i)
m

]
.

12. Set Wm =Wm(W T
mVm)−T .

13. End.
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14. Outputs : Am =W T
mAVm ,Bm =W T

mB, Cm = CVm.

• Steps 2, 3, 10 and 11 of constructing the bases Vm and Wm now include the

tangential directions.

• At each iteration, the new tangential directions are calculated as in the equa-

tions (3.7) and (3.8).

Tangential interpolation applies well to MIMO systems, but it has the same

drawbacks as rational interpolation, namely the absence of a guarantee on the

stability of the reduced model and the absence of a bound on the norm of the

error. To overcome this, work has been done to combine approaches based on

interpolation and approaches based on Lyapunov equations (such as balanced

truncation) to extract the benefits. These are the mixed methods or SVD-Krylov

methods (see e.g.Gugercin [3]).

3.3 Mixed methods or (SVD-Krylov methods)

Many procedures attempt to couple the advantages of balanced truncation with

those of the Krylov subspaces (see Antoulas [7]), but here only those directly

derived from interpolation methods are discussed. They are based on using

one of the Gramians (P or Q) for the construction of one of the projectors. The

other is generated in the same way as before, i.e by using a Krylov subspace.

The first algorithm using this approach was proposed by Gugercin[4] and takes

the form of the IRKA algorithm, it is called Iterative SVD-Rational Krylov

Algorithm (ISRKA). The only difference with IRKA lies in the construction of

one of the projectors. For example, if the Gramian Q is used, the projector Wm is

constructed as follows :

Wm =QVm(V T
mQVm)−1 (3.11)

The use of a Gramians can guarantee the stability of the reduced model and

also to make the algorithm directly applicable to MISO and SIMO systems

according to the Gramians used. For MIMO systems, on the other hand, it is

better to use tangential interpolation to generate the first projector, it is for this

purpose that the algorithm Iterative SVD T angential Interpolation Algorithm
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(ISTIA ) has been proposed by Poussot-Vassal [15] (see Algorithm 7). Because

of the use of a Gramian to form the second projector, only a portion of the first

order optimality conditions can be satisfied. Thus, the SVD-Krylov methods are

in theory less efficient than the methods based only on interpolation, but they

guarantee the stability of the reduced model and are more robust compared to

the choice of the initial interpolation points σ (0).

Algorithm 7 ( Iterative SVD Tangential Interpolation Algorithm ISTIA) .

1. Inputs : A ∈Rn×n, B ∈Rn×p, C ∈Rp×n, σ (0) = {σ (0)
1 , ...,σ

(0)
m } ∈ Cm, {r1, ..., rm} ∈

R
p×m.

2. Compute the observability Gramians Q.

3. Construct Vm = [(σ (0)
1 In −A)−1Br

(0)
1 , ..., (σ (0)

m In −A)−1Br
(0)
m ].

4. Set Wm =QVm(V T
mQVm)−1.

5. While the algorithm has not converged.

6. Am =W T
mAVm ,Bm =W T

mB, Cm = CVm.

7. i←− i + 1

8. Compute the interpolation points σ (i)
j and tangential directions r(i)

j .

9. Vm = [(σ (i)
1 In −A)−1Br

(i)
1 , ..., (σ

(i)
m In −A)−1Br

(i)
m ].

10. Set Wm =QVm(V T
mQVm)−1.

11. End

12. Outputs : Am =W T
mAVm, Bm =W T

mB, Cm = CVm.
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Chapitre4
An adaptive block tangential method

for MIMO dynamical systems

In this Chapter, we present a new approach for model order reduction in large-

scale dynamical systems, with multiple inputs and multiple outputs (MIMO).

This approach will be named : Adaptive Block Tangential Arnoldi Algorithm

(ABTAA) and is based on interpolation via block tangential Krylov subspaces

requiring the selection of shifts and tangent directions via an adaptive procedure.

We give some algebraic properties and present some numerical examples to show

the effectiveness of the proposed method.

4.1 Introduction

Various model reduction methods for MIMO systems, such as Padé approxi-

mation [16, 40], balanced truncation [34], optimal Hankel norm [19, 21] have

been used for the reduction of large scales dynamical systems. The most popular

techniques used for model reduction these last years are based on interpolation

methods [11, 10, 28]. Those methods use block Krylov subspace

Km(A,B) = Range{B,AB, ...,Am−1B},

53
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or rational block Krylov subspace defined in Chapter 3,

K
R
m(A,B) = Range{(σ1I −A)−1B, ..., (σmI −A)−1B},

where σ1, ...,σm are some selected complex shifts. The purpose of those methods

is to produce a reduced order model with a moderate space dimension, by pro-

jecting the original problem onto Km(A,B) or KR
m(A,B), see [5, 17, 27].

In the present chapter we considered another approach based on a work of

Druskin and Simoncini [13], as well as some theory in [2], by using the tangential

Krylov subspaces. For this approach, we considered the tangential directions

as blocks of p × s size with s ≤ p and we used the block Arnoldi procedure to

generate orthogonormal bases of the desired projection subspaces,

K
T
m = Range{(σ1I −A)−1BR1, ..., (σmI −A)−1BRm}. (4.1)

The computation of the parameters (σi ,Ri) will be done in an adaptive way.

Throughout the thesis we use the following notations : The field of values of A is

defined by

W (A) = {xTAx, x ∈Cn,‖x‖ = 1},

where ‖.‖ is the Euclidean vector norm. We assume thatW (A) is a subset of C−.

4.2 The block tangential Arnoldi-like method

Let the original transfer function H(ω) = C(ωI −A)−1B be expressed as H(ω) =

CX where X is such that

(ωIn −A)X = B. (4.2)

Hence, approximating H(ω), for a fixed ω such that ωI −A is nonsingular, is

equivalent to approximate the solution X of the multiple linear systems (4.2).

This will be done as follows : Given a system of matrices {V1, . . . ,Vm} where

Vi ∈Rn×s, the approximate solution Xm of X is computed, at step m, such that

Xim ∈ Range{V1, ...,Vm}, (4.3)
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and

RiB(ω) =⊥ Range {V1, ...,Vm} , i = 1, ...,p (4.4)

where Xim and RiB are the i-th columns of Xm and RB = B− (ωIn −A)Xm, respecti-

vely. If we set Vm = [V1, . . . ,Vm], then from (4.3) and (4.4) , we obtain

Xm = Vm(ωIms −Am)−1
V
T
mB,

which gives the following approximate transfer function

Hm(ω) = Cm(ωIms −Am)−1Bm,

where Am = V
T
mAVm, Bm = V

T
mB and Cm = CVm. Notice that the residual can be

expressd as

RB(ω) = B− (ωIn −A)Vm(ωIms −Am)−1
V
T
mB. (4.5)

Next, we introduce the block tangential Arnoldi algorithm that allows us to

compute an orthonormal basis of some specific matrix subspace and we derive

some algebraic relations related to this algorithm.

4.2.1 Block tangential Arnoldi algorithm

We present here the block tangential Arnoldi algorithm (BTAA) for computing

an orthonormal matrix Vm = [V1, ...,Vm] such that

Range{V1, ...,Vm} = Range
{
(σ1In −A)−1BR1, ..., (σmIn −A)−1BRm

}
, (4.6)

where σ = {σi}mi=1 is a set of interpolation points and {Ri}mi=1 is a set of tangential

matrix directions, where Ri ∈Rp×s. The algorithm is summarized as follows :

Algorithm 8 (Block Tangential Arnoldi Algorithm BTAA) .
– Inputs : A, B, C, σ = {σi}m+1

i=1 , R = {Ri}m+1
i=1 , Ri ∈Rp×s.

– Output : Vm+1 = {V1, ...,Vm+1}.

1. Set Ṽ1 = (σ1In −A)−1BR1.

2. Compute Ṽ1 = V1H1,0, QR decomposition.
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3. Initialize : V1 = [V1].

4. For j = 1,...,m

5. If σj+1 ,∞, Ṽj+1 = (σj+1In −A)−1BRj+1, else Ṽj+1 = ABRj+1.

6. For i = 1,...,j

• Hi,j = V T
i Ṽj+1,

• Ṽj+1 = Ṽj+1 −ViHi,j ,

7. End.

8. Ṽj+1 = Vj+1Hj+1,j , QR Decomposition.

9. Vj+1 =
[
Vj , Vj+1

]
,

10. End

In Algorithm 8, we assume that the interpolation points σ = {σi}m+1
i=1 and tangen-

tial directions {Ri}m+1
i=1 are given. At each iteration j, we use a new interpolation

point σj+1 and a new tangential direction Rj+1, j = 1, ...,m and we initialize the

subsequent tangential subspace by setting Ṽj+1 = (σj+1In −A)−1BRj+1 if σj+1 is

finite and Ṽj+1 = ABRj+1 if σj+1 =∞. The matrices Hi,j constructed in Step 6 are

of size s × s and they are used to construct the block upper Hessenberg matrix

H̃m =
[
H̃

(1), ...,H̃(m)
]
∈R(m+1)s×ms, where

H̃
(j) =



H1,j
...

Hj,j
Hj+1,j

0


, f or j = 1, ...,m,

and we define the (m+ 1)s × s matrix H̃
(0) as

H̃
(0) =

 H1,0

0

 .
where 0 is the zero matrix of size (m− j)× s. The upper Hessenberg matrix Hm is
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the ms ×ms matrix obtained from H̃m by deleting its last row

H̃m =

 Hm

Hm+1,m(eTm ⊗ Is)

 .
The next proposition gives some algebraic properties corresponding to the ma-

trices derived from Algorithm 8.

Proposition 4.1 Let Vm+1 be the orthonormal matrix of Rn×(m+1)s constructed by
Algorithm 8. Then we have the following relations

AVm+1H̃m = Vm+1K̃m −BR̃m+1, (4.7)

Am = V
T
mAVm =

[
Km −BmR̃m+1 −V T

mAVm+1Hm+1,m(eTm ⊗ Is)
]
H
−1
m , (4.8)

and
Tm+1 = Vm+1Gm+1, (4.9)

where Km is the ms ×ms matrix obtained from K̃m = H̃m(Dm ⊗ Is), by deleting its
last row, Dm = Diag{σ2, ...,σm+1}, Tm+1 =

[
(σ1I −A)−1BR1, ..., (σm+1I −A)−1BRm+1

]
,

R̃m+1 = [R2, ...,Rm+1], and Gm+1 =
[
H̃

(0)
H̃m

]
is a block upper triangular matrix of

(m+ 1)s × (m+ 1)s. The matrix Hm is assumed to be non singular.

Proof : From Algorithm 8, we have

Vj+1Hj+1,j = (σj+1In −A)−1BRj+1 −
j∑
i=1

ViHi,j j = 1, ...,m. (4.10)

Multiplying (4.10) on the left by (σj+1In −A) and re-arranging terms, we get

A
j+1∑
i=1

ViHi,j = σj+1

j+1∑
i=1

ViHi,j −BRj+1 j = 1, ...,m,
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which gives

AVj+1


H1,j
...

Hj,j
Hj+1,j


= σj+1Vj+1


H1,j
...

Hj,j
Hj+1,j


−BRj+1, j = 1, ...,m,

also be written as

AVm+1



H1,j
...

Hj,j
Hj+1,j

0


= σj+1Vj+1



H1,j
...

Hj,j
Hj+1,j

0


−BRj+1, j = 1, ...,m, (4.11)

where 0 is the zero matrix of size (m− j)× s. Then we have

AVm+1H̃
(j) = σj+1Vj+1H̃

(j) −BRj+1, j = 1, ...,m. (4.12)

Therefore, we can deduce from (4.12), the following expression

AVm+1

[
H̃

(1), ...,H̃(m)
]

= Vm+1

[
H̃

(1), ...,H̃(m)
]
(Dm ⊗ Is)−BR̃m+1,

which ends the proof of (4.7).

For the relation (4.8), we have from (4.7),

AVmHm +AVm+1Hm+1,m(eTm ⊗ Is) = VmKm + σm+1Vm+1Hm+1,m(eTm ⊗ Is)−BR̃m+1.

Multiplying on the left by V
T
m gives

V
T
mAVmHm = Km −V T

mBR̃m+1 −V T
mAVm+1Hm+1,m(eTm ⊗ Is).

Therefore

Am = V
T
mAVm =

[
Km −BmR̃m+1 −V T

mAVm+1Hm+1,m(eTm ⊗ Is)
]
H
−1
m .
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For the proof of (4.9), we first use (4.10) to obtain

j+1∑
i=1

ViHi,j = (σj+1In −A)−1BRj+1 j = 1, ...,m,

which gives

Vm+1



H1,j
...

Hj,j
Hj+1,j

0


= (σj+1In −A)−1BRj+1, j = 1, ...,m.

It follows that

Vm+1

[
H̃

(1), ...,H̃(m)
]

=
[
(σ2In −A)−1BR2, ..., (σm+1In −A)−1BRm+1

]
,

Since V1H1,0 = (σ1In −A)−1BR1, we have

Vm+1

[
H̃

(0),H̃(1), ...,H̃(m)
]

=
[
(σ1In −A)−1BR1, (σ2In −A)−1BR2, ..., (σm+1In −A)−1BRm+1

]
,

which ends the proof of (4.9).

Theorem 4.1 Let σ ∈C be such that (σI −A) is invertible. Let Vm = [V1, ...,Vm] have
full-rank, where the Vi ∈Rn×s. Let R = [r1, ..., rs] ∈Rp×s be a chosen tangential matrix
direction. Then,

1. If (σI −A)−1Bri ∈ Range{V1, ...,Vm} for i = 1, ..., s, then

Hm(σ )R =H(σ )R.

2. If in addition A is symmetric and C = BT , then,

RTH ′m(σ )R = RTH ′(σ )R.

Proof : 1) We follow the same techniques as those given in [2] for the non-block
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case. Define

Pm(ω) = Vm(ωIm −Am)−1
V
T
m (ωI −A),

and

Qm(ω) = (ωI −A)Pm(ω)(ωI −A)−1 = (sI −A)Vm(ωIm −Am)−1
V
T
m .

It is easy to verify that Pm(ω) and Qm(ω) are projectors. Moreover, for all ω in a

neighborhood of σ we have

Vm = Range{V1, ...,Vm} = Range(Pm(ω)) = Ker(I −Pm(ω)).

Observe that

H(ω)−Hm(ω) = C(ωI −A)−1(I −Qm(ω))(ωI −A)(I −Pm(ω))(ωI −A)−1B. (4.13)

Evaluating this expression at ω = σ and multiplying by ri from the right, yields

the first assertion.

2) IfA is symmetric andC = BT , we have V⊥m = Ker(Qm(ω)) = Range(I−Qm(ω)).

Notice that

((σ + ε)I −A)−1 = (σI −A)−1 − ε(σI −A)−2 +O(ε2),

and

((σ + ε)Im −Am)−1 = (σIm −Am)−1 − ε(σIm −Am)−2 +O(ε2).

Therefore, evaluating (4.13) at s = σ + ε, multiplying by rTj and ri , from the left

and the right respectively, for i, j = 1, ..., s, we get

rTj H(σ + ε)ri − rTj Hm(σ + ε)ri =O(ε2).

Now notice that since rTj H(σ )ri = rTj Hm(σ )ri , we have

lim
ε−→0

[1
ε

(rTj H(σ + ε)ri − rTj H(σ )ri)−
1
ε

(rTj Hm(σ + ε)ri − rTj Hm(σ )ri)
]

= 0,
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which proves the second assertion.

Proposition 4.2 Let RB(ω) be the residual RB(ω) = B− (ωIn −A)VmQm(ω) as given
in (4.5), where Qm(ω) = (ωIms −Am)−1

V
T
mB. We have the following new expression

given by
RB(ω) = (In −VmV T

m )B+ (AVm −VmAm)Qm(ω). (4.14)

Proof : We have

RB(ω) = B−ωVmQm(ω) +AVmQm(ω)

= B+AVmQm(ω)−Vm(ωIms −Am)(ωIms −Am)−1
V
T
mB

−VmAm(ωIms −Am)−1
V
T
mB

= B+AVmQm(ω)−VmV T
mB−VmAmQm(ω)

= (In −VmV T
m )B+ (AVm −VmAm)Qm(ω),

which proves (4.14).

Proposition 4.3 Let Tm =
[
(A− σ1I)−1BR1, ..., (A− σmI)−1BRm

]
= VmGm, where

Gm and Vm are obtained by the Block Tangential Arnoldi Algorithm (BTAA). Let
Rm = [R1, ...,Rm], then

AVm −VmAm = −
(
In −VmV T

m

)
BRmG

−1
m , (4.15)

and
RB(ω) =

(
In −VmV T

m

)
B
(
Ip −RmG−1

m Qm(ω)
)
. (4.16)

Proof : Let Σm = [diag(σ1, ...,σm)⊗ Is], then from the fact that

A(σiI −A)−1BRi = −BRi + σi(σiI −A)−1BRi ,

it follows that

AVm = ATmG
−1
m = (−BRm +TmΣm)G−1

m .

Since Am = V
T
mAVm = G

−T
m T

T
mATmG̃

−1
m , we have

AVm −VmAm = −BRmG−1
m +TmΣmG

−1
m −VmV T

mAVm,

= −BRmG−1
m +TmΣmG

−1
m −VmV T

m (−BRm +TmΣm)G−1
m ,

= −BRmG−1
m +TmΣmG

−1
m +VmV

T
mBRmG

−1
m −VmV T

mTmΣmG
−1
m .
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Now, as Tm = VmGm, we have VmV
T
mTmΣmG

−1
m = TmΣmG

−1
m and then

AVm −VmAm = −BRmG−1
m +VmV

T
mBRmG

−1
m

= −(In −VmV T
m )BRmG−1

m .

The expression in (4.16) will be used in the next section in order to reduce the

cost when computing the residual.

4.3 Choice of the interpolation points and tangent

directions

In this section we use an adaptive strategy for choosing the interpolation points

and tangent directions. This technique was first proposed in [12] to choose the

shifts for the rational Krylov subspaces. The iterative rational Krylov algorithm

(IRKA) was proposed in [2], where an initial set of interpolation points is given

and a new set of interpolation points is chosen as a set of the mirror images of

the eigenvalues of Am, i.e σi = −λi(Am), i = 1, ...,m. In [43] the iterative tangential

interpolation algorithm (ITIA) was also proposed, with the same strategy as the

one of IRKA, and the tangential directions are selected as defined in (3.8). In

this chapter we use an adaptive approach, inspired by the work given in [14].

Our choice of this approach, is justified by the main disadvantage of the iterative

methods, that requires the construction of many Krylov subspaces, which will

not be used in the final model, only the last subspace is used.

In the adaptive approach, we seek to extend our subspace

Vm = Range{(σ1In −A)−1BR1, ..., (σmIn −A)−1BRm},

by a new block defined by

Vm+1 = (σm+1In −A)−1BRm+1, (4.17)

which means that, at each iteration, we seek to define a new interpolation point

σm+1 and a new tangent direction Rm+1.
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They will be computed as follows

(Rm+1,σm+1) = arg max
ω ∈ Sm

R ∈Rs×s ,‖R‖2 = 1

‖RB(ω)R‖2. (4.18)

Here Sm ⊂C
+ is the convex hull of {−λ1, ...,−λm}where {λi}mi=1 are the eigenvalues

of Am.

Now we explain how to solve the problem (4.18). First we compute the interpo-

lation point σm+1, by maximizing the residual norm on the convex hull Sm, i.e

we solve the following problem,

σm+1 = argmax
ω∈Sm
‖RB(ω)‖2. (4.19)

In the case of small to medium systems, this is done by computing the norm of

RB(ω) for eachω in Sm and the tangent direction Rm+1 is computed by evaluating

(4.18) at ω = σm+1

Rm+1 = arg max
R∈Rs×s,‖R‖=1

‖RB(σm+1)R‖2 . (4.20)

Notice that the tangential matrix direction Rm+1 = [r(m+1)
1 , ..., r

(m+1)
s ], can be de-

termined such that r(m+1)
i are the right singular vectors corresponding to the s

largest singular values of RB(σm+1).

In the case where the problem is large, the expression (4.5) of the residual given

in Proposition 4.2

RB(ω) =
(
In −VmV T

m

)
B
(
Ip −RmG−1

m Qm(ω)
)
,

allows us to reduce the computational cost, while seeking for the next inter-

polation point and tangent direction. Applying the skinny QR decomposition

(In −VmV T
m )B =QL, we get

‖RB(ω)‖2 =
∥∥∥∥L(Ip −RmG−1

m Qm(ω)
)∥∥∥∥

2
. (4.21)

This means that, solving (4.18) requires only the computation of matrices of
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size ms ×ms for each value of ω. Next, we present the adaptive block tangential

Arnoldi algorithm (ABTAA). The algorithm is summarized as follows :

Algorithm 9 ( Adaptive Block Tangential Arnoldi Algorithm ABTAA) .
– Given A, B, C m, ω(1)

0 ∈R, R1 ∈Rs×s.
– Outputs : Am = V

T
mAVm, Bm = V

T
mB and Cm = CVm.

• Set σ1 =ω(1)
0 , Ṽ1 = (σ1In −A)−1BR1.

• Compute Ṽ1 = V1H1,0 (QR decomposition), initialize : V1 = [V1].
• For k = 1 :m− 1

1. If σ̄k−1 , σk ∈C then σk+1 = σ̄k else compute {λ1, ...,λks} eigenvalues of Ak.

2. Determine Sk, the convex hull of {−λ1, ...,−λks,ω
(1)
0 , ω̄

(1)
0 } and solve (4.19).

3. Compute the right vector Rk+1 by solving (4.20).

4. If σk+1 ,∞, Ṽk+1 = (σk+1In −A)−1BRk+1 else Ṽk+1 = ABRk+1 .

5. For i = 1,...,k
• Hi,k = V T

i Ṽk+1,
• Ṽk+1 = Ṽk+1 −ViHi,k,

6. End.

7. Ṽk+1 = Vk+1Hk+1,k, (QR Decomposition).

8. Vk+1 = [Vk , Vk+1].

• End

Algorithm 9, allows us to compute a low dimensional dynamical system by

computing the reduced matrices Am = V
T
mAVm, Bm = V

T
mB and Cm = CVm. The

interpolation points and the tangent directions are computed in an adaptive

way.

Proposition 4.4 Let Vk = [V1, ...,Vk], be the orthonormal matrix obtained by Algo-
rithm 9 at the iteration k, then settingMk = Range{V1, ...,Vk , (σk+1In −A)−1BRk+1},
we have

Range(Mk) = Range{V1, ...,Vk , (σk+1In −A)−1RB(σk+1)Rk+1},

and
dim(Mk) = k + 1 if and only if RB(σk+1)Rk+1 , 0.
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Proof : We have,

RB(σk+1)Rk+1 = B(σk+1)Rk+1 − (σk+1In −A)Vk(σk+1Ijs −Ak)−1BkRk+1.

Multiplying the last equality on the left by (σk+1In −A)−1, gives

(σk+1In −A)−1RB(σk+1)Rk+1 = (σk+1In −A)−1BRk+1 −Vk(σk+1Iks −Ak)−1BkRk+1,

which proves the first assertion.

If RB(σk+1)Rk+1 = 0, then dim({V1, ...,Vk , (σk+1In −A)−1BRk+1}) = k.

Now assume that RB(σk+1)Rk+1 , 0, then we only need to prove that

Y = (I −VkV T
k )

(
(σk+1In −A)−1RB(σk+1)Rk+1

)
, 0.

We observe that,

(RB(σk+1)Rk+1)T Y = (RB(σk+1)Rk+1)T (σk+1In −A)−1RB(σk+1)Rk+1)

− (RB(σk+1)Rk+1)TVkV
T
k ((σk+1In −A)−1RB(σk+1)Rk+1).

Using the fact that the residual RB(ω) is orthogonal to [V1, ..,Vk], we get

RB(σk+1)Rk+1)TVkV
T
k ((σk+1In −A)−1RB(σk+1)Rk+1 = 0,

and then

(RB(σk+1)Rk+1)T Y = (RB(σk+1)Rk+1)T (σk+1In −A)−1RB(σk+1)Rk+1),

which gives for 1 ≤ i, j ≤ s,

(RB(σk+1)Rk+1)T Y =
[
(RB(σk+1)r(k+1)

i )T (σk+1In −A)−1RB(σk+1)r(k+1)
j

]
, 0.

In fact we know thatW (σk+1In−A)−1 ⊂C
+. Hence Y , 0, which proves the second

assertion.

Proposition 4.5 Let Am+1 = V
T
m+1AVm+1 =

[
a:,1, ..., a:,m+1

]
, where a:,i ,∈ R

(m+1)s×s
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are the i-th block column of the (m+1)s×(m+1)smatrixAm+1, and H̃m =
[
H̃

(1), ...,H̃(m)
]

is the upper Hessenberg matrix obtained from Algorithm 9. The, for j = 1, ...,m, we
have

a:,j+1 =
[
σj+1H̃

(j) −
[
a:,1, ...a:,j

]
H̃

(j)
1:js,: −Bm+1Rj+1

]
H−1
j+1,j . (4.22)

Proof : We have from Algorithm 9

Vj+1Hj+1,j = (σj+1In −A)−1BRj+1 −
j∑
i=1

ViHi,j j = 1, ...,m.

Multiplying on the left by (σj+1In −A), and re-arranging terms, we get

AVj+1Hj+1,j = σj+1

j+1∑
i=1

ViHi,j −A
j∑
i=1

ViHi,j −BRj+1,

which gives the following relation

AVj+1Hj+1,j = σj+1Vm+1H̃
(j) −AVjH̃

(j)
1:js,: −BRj+1.

Multiplying now on the left by V
T
m+1, we obtain

a:,j+1Hj+1,j = σj+1H̃
(j) −

[
a:,1, ...a:,j

]
H̃

(j)
1:js,: −Bm+1Rj+1,

which gives the desired result

a:,j+1 =
[
σj+1H̃

(j) −
[
a:,1, ...a:,j

]
H̃

(j)
1:js,: −Bm+1Rj+1

]
H−1
j+1,j .

Proposition 4.5 allows us to compute the matrix Am+1 without computing the

inverse of the (m+1)s× (m+1)s matrix Hm+1 as in (4.8), we only need the inverse

of small matrices Hj+1,j , j = 1, ...,m.

4.4 Numerical experiments

In this section, we give some numerical examples to show the effectiveness of

our adaptive block tangential Arnoldi method (ABTAA). All the experiments
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presented in this paper were carried out using the CALCULCO computing plat-

form, supported by SCoSI/ULCO (Service Commun du Système d’Information

de l’Université du Littoral Côte d’Opale). The algorithms were coded in Matlab

R2017a. We used the following functions from LYAPACK [37] :

• lp_lgfrq : Generates a set of logarithmically distributed frequency sam-

pling points.

• lp_para : Used for computing the initial first two shifts.

• lp_gnorm : Computes ‖H(jω)−Hm(jω)‖2.

We used various matrices from LYAPACK and from the Oberwolfach collection 1.

These matrix tests are reported in Table 4.1 with different values of p and the

used values of s.

Model n p s
CDplayer n = 120 p = 2 s = 1
ISS n = 270 p = 3 s = 2
RAIL3113 n = 3113 p = 6 s = 2
MNA2 n = 9223 p = 18 s = 6
FLOW n = 9669 p = 5 s = 3
FDM10000 n = 10 000 p = 9 s = 3
MNA5 n = 10 913 p = 9 s = 3
RAIL20209 n = 20 209 p = 7 s = 3
RAIL79841 n = 79 841 p = 7 s = 3
FDM40000 n = 40 000 p = 9 s = 3
FDM90000 n = 90 000 p = 9 s = 3

Tableau 4.1 – Matrix Tests

Example 1 : The model of the first experiment is a model of stage 1R of the

International Space Station (ISS). It has 270 states, three inputs and three outputs,

for more details on this system, see [35]. Figure 4.1a shows the singular values

of the transfer function and its approximation. In Figure 4.1b, we plotted the

2-norm of the errors ‖H(jω)−Hm(jω)‖2 versus the frequencies ω ∈ [10−6, 106]

for m = 15.

1. Oberwolfach model reduction benchmark collection 2003.
http ://www.imtek.de/simulation/benchmark
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Figure 4.1 – The ISS model.

Example 2 : In this example we used the CDplayer model, that describes the

dynamics between a lens actuator and the radial arm position in a portable

CD player. The model is relatively hard to reduce. For more details on this

system, see [26]. Figure 4.2a, represents the sigma-plot (the singular values of

the transfer function) of the original system (dashed-dashed line) and the one of

the reduced order system (solid line). In Figure 4.2b, we plotted the error-norm

‖H(jω)−Hm(jω)‖2 versus the frequencies ω ∈ [10−6, 106].
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Figure 4.2 – The CDplayer model.

Example 3 : In this example we compared the ABTAA algorithm with the Itera-

tive Rational Krylov Algorithm (IRKA [24]) and the adaptive tangential method

represented by Druskin and Simonsini (TRKSM) see for more details [13]. We
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used seven models : FDM, MNA2, MNA5, RAIL3113, RAIL20209, RAIL79841

and FLOW. The FDM model is described in paragraph(1.3.3) where in this

example, the number of inner grid points in each direction was n0 = 100 i.e the

dimension of A is n = n2
0 = 10000.
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(a) ABTAA (solid line), IRKA (dashed-
dotted line) & TRKSM ( dashed-dashed
line), m = 20.
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Figure 4.3 – The FDM model.

The MNA2 and MNA5 models were obtained from NICONET (for more details

see paragraph (1.3.2). Figures 4.4a and 4.4b represent the exact error-norm

‖H(jω) − Hm(jω)‖2 versus the frequencies for ABTAA (solid line) and IRKA

(dashed-dotted line) with m = 20.
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Figure 4.4 – ABTAA (solid line) & IRKA (dashed-dotted line).
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The models RAIL3113 (n = 3113, p = 6) and Flow (n = 9669, p = 5) are from the

Oberwolfach collection (see paragraph(1.3.4)). Figures 4.5a and 4.5b illustrate

the error-norm ‖H(jω)−Hm(jω)‖2 versus the frequencies for m = 20. The execu-

tion time for the RAIL3113 is as follows : ( ABTAA : 0.59 seconds, TRKSM : 2.17

seconds, IRKA : 15.21 seconds) and for the Flow model ( ABTAA : 1.69 seconds,

TRKSM : 7.39 seconds, IRKA : 42.50 seconds).
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(a) The RAIL3113 model, m = 20.
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(b) The Flow model, m = 20.

Figure 4.5 – ABTAA (solid line), IRKA (dashed-dotted line) & TRKSM ( dashed-
dashed line).

In the plots below, we used RAIL20209 (n=20209, p=6) and RAIL79841 (n=79841,

p=6) models with a fixed m = 12, the matrices B and C were random. Figures

4.6a and 4.6b represent the exact error ‖H(jω)−Hm(jω)‖2 versus the frequencies

of the tree methods ABTAA ( solid line), IRKA ( dashed-dotted line) and TRKSM

( dashed-dashed line). The execution time for the RAIL20209 example is the

following : (ABTAA : 2.92 seconds, TRKSM : 9.92 seconds, IRKA : 44.08 seconds)

and for RAIL79841 model is : (ABTAA : 32.69 seconds, TRKSM : 80.93 seconds,

IRKA : 247.64 seconds).

Example 4 : In this example, we used the FDM model : (n = 40.000 and n =

90.000 with p = 9). In Table 4.2, we compared the execution times and the H∞
norm ‖ H −Hm ‖H∞ for ABTAA, IRKA and TRKSM algorithms with different

values of m. We notice that the obtained timing didn’t contain the execution

times used to obtain the errors. As can be seen from the results in Table 4.2, the

cost of IRKA and TRKSM methods is much higher than the cost required with
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Figure 4.6 – ABTAA (solid line), IRKA (dashed-dotted line) & TRKSM ( dashed-
dashed line).

the adaptive block tangential Arnoldi method.

Model ABTAA IRKA TRKSM
Time Err-H∞ Time Err-H∞ Time Err-H∞

FDM40.000 m=10 9.30s 5.39× 10−4 126.28s 2.24× 10−5 34.89s 7.9× 10−4

m=20 13.29s 3.87× 10−5 269.3s 1.06× 10−4 36.82s 1.93× 10−5

m=30 19.15 3.08× 10−7 382.70s 3.30× 10−4 37.48s 7.84× 10−7

FDM90.000 m=10 43.29 6.49× 10−4 354.12s 1.55× 10−4 126.97s 1.25× 10−4

m=20 52.72 1.46× 10−4 725.17s 1.44× 10−4 128.20s 9.83× 10−5

m=30 64.24 1.90× 10−5 1025.68s 6.48× 10−5 127.88s 2.15× 10−5

Tableau 4.2 – The computation time & the Err-H∞ error-norm

4.5 Conclusion

In the present paper, we proposed a new approach named block tangential

Arnoldi method based on block tangential Krylov subspaces, to obtain reduced

order dynamical systems, that approximate the initial large scale dynamical sys-

tems with multiple inputs and multiple outputs (MIMO). The method constructs

sequences of orthogonal blocks from matrix tangential Krylov subspaces using

the block Arnoldi approach. The interpolation shifts and the tangential direc-
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tions are selected in an adaptive way by maximizing the residual norms. We

gave some new algebraic properties and present some numerical experiments

on some benchmark examples showing that the proposed method returns good

results, as compared to some well known methods for large problems.



Chapitre5
A computational global tangential

Krylov subspace method

In this paper, we present another approach for model order reduction problems,

with multiple inputs and multiple outputs (MIMO), named : Adaptive Global

Tangential Arnoldi Algorithm (AGTAA). This method is based on a generaliza-

tion of the global Arnoldi algorithm. The selection of the shifts and the tangent

directions are done with an adaptive procedure as before. We give some algebraic

properties and present some numerical examples to show the effectiveness of

the proposed algorithm.

5.1 The global method

5.1.1 Definitions

We begin by recalling some notations that will be used later. We define the

inner product 〈Y ,Z〉F = tr(Y TZ), where tr(Y TZ) denotes the trace of the matrix

Y TZ such that Y ,Z ∈Rn×p. The associated norm is the Frobenius norm denoted

by ‖.‖F . The matrix product A⊗B = [ai,jB] denotes the well known Kronecker

product of the matrices A and B which verifies the following properties :

1. (A⊗B)(C ⊗D) = (AC ⊗BD).

2. (A⊗B)T = AT ⊗BT .

73
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3. (A⊗B)−1 = A−1 ⊗B−1, if A and B are invertible.

We also use the matrix product � defined in [9] as follows.

Definition 5.1 Let A = [A1, ...,Am] and B = [B1, ...,Bl] be matrices of dimension
n×mp and n× lp, respectively, where Ai and Bj (i = 1, ...,m j = 1, ..., l) are Rn×p. Then
the Rm×l matrix AT �B is defined by :

AT �B =


〈A1,B1〉F 〈A1,B2〉F . . . 〈A1,Bl〉F
〈A2,B1〉F 〈A2,B2〉F . . . 〈A2,Bl〉F

...
...

. . .
...

〈Am,B1〉F 〈Am,B2〉F . . . 〈Am,Bl〉F


Remark

1. If p = 1, then AT �B = ATB.

2. If p = 1, m = 1 and l = 1, then setting A = u ∈Rn and B = v ∈Rn, we have

AT �B = uT v ∈R.

3. The matrices A = [A1, ...,Am] and B = [B1, ...,Bm] are F-biorthonormal if

and only if AT �B = Im, i.e.,

tr(ATi Bj) = δi,j =

 0 if i , j

1 if i = j
i, j = 1, ...,m. (5.1)

4. If X ∈Rn×p, then XT �X = ‖X‖2F .

The following proposition gives some properties satisfied by the above product.

Proposition 5.1 [9] Let A, B, C ∈ Rn×ps, D ∈ Rn×n, L ∈ Rp×p and ∈ R. Then we
have,

1. (A+B)T �C = AT �C +BT �C.

2. AT � (B+C) = AT �B+AT �C.

3. (αA)T �C = α(AT �C).

4. (AT �B)T = BT �A.

5. (DA)T �B = AT � (DTB).

6. AT � (B(L⊗ Is)) = (AT �B)L.

7. ‖AT �B‖F ≤ ‖A‖F‖B‖F .
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5.2 The global tangential Arnoldi method

In this section, we introduce the global tangential Arnoldi algorithm that allows

us to compute an F-orthonormal basis of some specific matrix subspace and we

derive some algebraic relations related to this algorithm.

5.2.1 The global tangential Arnoldi algorithm

The global tangential Arnoldi algorithm allows us to construct an F-orthonormal

basis of the matrix subspace

Vm = Span{(σ1In −A)−1BR1, ..., (σmIn −A)−1BRm}, (5.2)

where σ = {σi}mi=1 is a set of interpolation points and R = {Ri}mi=1 is a set of

tangential matrix directions, where Ri ∈Rs×s, A ∈Rn×n and B ∈Rn×s.
The global tangential Arnoldi algorithm is summarized as follows :

Algorithm 10 (Global Tangential Arnoldi Algorithm GTAA) .
– Inputs : A, B, C, σ = {σi}m+1

i=1 , R = {Ri}m+1
i=1 , Ri ∈Rs×s.

– Output : Vm+1 = {V1, ...,Vm+1}.
• Set Ṽ1 = (σ1In −A)−1BR1.
• Construct V1 such that ‖V1‖F = 1.
• Initialize : V1 = [V1].
• For j = 1,...,m

1. If σj+1 ,∞, Ṽj+1 = (σj+1In −A)−1BRj+1, else Ṽj+1 = ABRj+1.

2. For i = 1,...,j
• hi,j = tr(V T

i Ṽj+1),
• Ṽj+1 = Ṽj+1 − hi,jVi ,

End.

3. hj+1,j = ‖Ṽj+1‖F ,

4. Vj+1 =
Ṽj+1
hj+1,j

,

5. Vj+1 =
[
Vj , Vj+1

]
,

• End
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In Algorithm 10, we assume that the interpolation points σ = {σi}m+1
i=1 and tangen-

tial directions {Ri}m+1
i=1 are given. At each iteration j, we use a new interpolation

point σj+1 and a new tangential direction Rj+1, j = 1, ...,m and we initialize the

subsequent tangential subspace by setting Ṽj+1 = (σj+1In −A)−1BRj+1 if σj+1 is

finite and Ṽj+1 = ABRj+1 if σj+1 =∞. We notice that if at some step j, hj+1,j = 0,

then (σj+1In − A)−1BRj+1 is written as a linear combination of the computed

blocks Vi , i = 1, ..., j,

(σj+1In −A)−1BRj+1 =
j∑
i=1

hi,jVi ,

and in this case, we drop the interpolation point σj+1 and tangent direction Rj+1,

replace them by the new ones σj+2 and Rj+2 respectively, and go to the following

step.

Algorithm 10 constructs also an upper Hessenberg matrix H̃m whose elements

are the hi,j ’s. The upper Hessenberg matrixHm is them×mmatrix obtained from

H̃m by deleting its last row :

H̃m =

 Hm
hm+1,me

T
m

 .
Let K̃m be the matrix defined as follows

K̃m =

 HmDm
σm+1hm+1,me

T
m

 ,
where Dm is the diagonal matrix Dm = diag(σ1, ...,σm) containing the interpola-

tion points. The following theorem derives some useful results that will be used

later.

Theorem 5.1 Let Vm+1 be the F-orthonormal matrix of Rn×(m+1)s constructed by
Algorithm 10. Then, for A ∈Rn×n and B ∈Rn×s, we have the following relations

AVm+1(H̃m ⊗ Is) = Vm+1(K̃m ⊗ Is)−BR̃m+1, (5.3)
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and

Tm = VTm �AVm =
[
HmDm −VTm �BR̃m+1 − hm+1,m(VTm �AVm+1)eTm

]
H−1
m , (5.4)

where

R̃m+1 =Rm+1

 ImeTm
⊗ Is, (5.5)

and Rm+1 = [R1, ...,Rm+1].

Proof : From Algorithm10, we have

hj+1,jVj+1 = (σj+1In −A)−1BRj+1 −
j∑
i=1

hi,jVi j = 1, ...,m. (5.6)

Multiplying (5.6) on the left by (σj+1In −A) and re-arranging terms, we get

A
j+1∑
i=1

hi,jVi = σj+1

j+1∑
i=1

hi,jVi −BRj+1 j = 1, ...,m, (5.7)

which gives the following relation

AVm+1(H̃m ⊗ Is) = Vm(HmDm ⊗ Is) + σm+1hm+1,mVm+1(eTm ⊗ Is)−BR̃m+1.

Hence

AVm+1(H̃m ⊗ Is) = Vm+1(K̃m ⊗ Is)−BR̃m+1.

For the proof of the expression (5.4), we have

AVm+1(H̃m ⊗ Is) = Vm(HmDm ⊗ Is) + σm+1hm+1,mVm+1(eTm ⊗ Is)
−BRm+1(eTm ⊗ Is)−BRm(Im ⊗ Is),

which gives

AVm(Hm ⊗ Is) = Vm(HmDm ⊗ Is) + σm+1hm+1,mVm+1(eTm ⊗ Is)−BRm(Im ⊗ Is)

−BRm+1(eTm ⊗ Is)− hm+1,mAVm+1(eTm ⊗ Is).
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This implies that

AVm =
[
Vm(HmDm ⊗ Is) + σm+1hm+1,mVm+1(eTm ⊗ Is)−BRm(Im ⊗ Is)
−hm+1,mAVm+1(eTm ⊗ Is)

]
(Hm ⊗ Is)−1.

Multiplying on the left by VTm with the diamond product, we get

VTm �AVm =
[
VTm � Vm(HmDm ⊗ Is) + hm+1,mVTm �Vm+1(eTmDm ⊗ Is)
−VTm �BR̃m+1 − hm+1,mVTm �AVm+1e

T
m)

]
H−1
m .

Finally, we obtain

VTm �AVm =
[
HmDm −VTm �BR̃m+1 − hm+1,mVTm �AVm+1e

T
m

]
H−1
m .

The following result gives a recursion for computing Tm+1 = VTm+1�AVm+1 without

requiring additional matrix-matrix products with A.

Proposition 5.2 Let Tm+1 = VTm+1 �AVm+1 =
[
t:,1, ..., t:,m+1

]
and H̃m =

[
h:,1, ...,h:,m

]
,

where t:,i , h:,i ∈Rm+1 are the i-th column of the (m+ 1)× (m+ 1) matrix Tm+1 and the
(m+ 1)×m upper Hessenberg matrix H̃m obtained from Algrorithm 10, respectively.
Then for j = 1, ...,m

t:,j+1 =
1

hj+1,j

[
σj+1

(
e

(m+1)
1 , ..., e

(m+1)
j+1

)
h1:j+1,j − t:,1:jh1:j,j −VTm+1 � (BRj+1)

]
.

Proof : Using (5.6) and re-arranging terms, we get

hj+1,jAVj+1 = σj+1

j+1∑
i=1

hi,jVi −A
j∑
i=1

hi,jVi −BRj+1 j = 1, ...,m,

which gives the following relation,

AVj+1 =
1

hj+1,j

[
σj+1[V1, ...,Vj+1](h1:j+1,j ⊗ Is)−A[V1, ...,Vj](h1:j,j ⊗ Is)−BRj+1

]
,

Multiplying on the left by VTm+1 and using the properties of the �-product, we
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obtain

VTm+1 �AVj+1 =
1

hj+1,j

[
σj+1

(
VTm+1 � Vj+1

)
h1:j+1,j − t:,1:jh1:j,j −VTm+1 � (BRj+1)

]
,

hence,

t:,j+1 =
1

hj+1,j

[
σj+1

(
e

(m+1)
1 , ..., e

(m+1)
j+1

)
h1:j+1,j − t:,1:jh1:j,j −VTm+1 � (BRj+1)

]
.

5.3 The adaptive global Arnoldi method

The performance of the tangential approach depends on the choice of the poles

and the tangent directions. The authors in [43] proposed an adaptive method

for choosing the interpolation points and the tangential directions. The main

objective of this method is the fact that at each iteration, new interpolation

points and tangent directions are computed by minimizing the norm of a certain

approximation of the error. Here, we will use a similar approach for our proposed

global tangential-based method.

Next, let us see how to approximate the transfer function H(ω) = C(ωIn −A)−1B

when using global-type methods.

Setting H(ω) = CX, where X ∈Rn×s is the solution of the following linear system

(ωIn −A)X = B. (5.8)

An approximate solution Xm ∈ Span{V1, ...,Vm} of the solution of (5.8) (assuming

that ωIn−A is nonsingular), can be determined by imposing the Petrov-Galerkin

condition

RB(ω) ⊥F Span{V1, ...,Vm}

where the residual RB(ω) is given by

RB(ω) = B− (ωIn −A)Xm.

Therefore,

Xm = Vm
[
(ωIm − Tm)−1(VTm �B)⊗ Is

]
.
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Using the properties of the Kronecker product, we get

Xm = Vm(ωIms − (Tm ⊗ Is))−1((VTm �B)⊗ Is),

and then the approximated transfer function Hm(ω) is defined by

Hm(ω) = CXm,

which gives

Hm(ω) = CVm(ωIms − (Tm ⊗ Is))−1((VTm �B)⊗ Is)
= Cm(ωIms −Am)−1Bm,

(5.9)

where

Am = ((VTm �AVm)⊗ Is) ∈Rms×ms, Tm = VTm �AVm ∈Rm×m,
Bm = ((VTm �B)⊗ Is) ∈Rms×s, Cm = CVm ∈Rs×ms.

The residual can be written as

RB(ω) = B− (ωIn −A)Vm(ωIms −Am)−1Bm. (5.10)

In the following, we describe an adaptive approach for choosing interpolation

points and tangent directions.

Using the expression of the transfer function (4.9), where Vm = [V1, ...,Vm] has

F-orthonormal block columns, we want to extend the subspace Span{V1, ...,Vm}
by

Vm+1 = (σm+1In −A)−1BRm+1,

with the tangent direction Rm+1 ∈Rs×s, ‖Rm+1‖2 = 1 and with the new interpola-

tion point σm+1 ∈ Sm. Here Sm ⊂ R
+ is a set defined similarly as in [12, 13], i.e.,

the convex hull of {−λ1, ...,−λm} where {λi}mi=1 are the eigenvalues of Am.

The interpolation point σm+1 and tangent direction Rm+1 are computed as follows

(Rm+1,σm+1) = arg max
ω ∈ Sm

R ∈Rs×s ,‖R‖2 = 1

‖RB(ω)R‖2, (5.11)
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where the RB(ω) is residual given by (5.10). The idea of this choice of poles and

directions comes from the result of the following proposition.

Proposition 5.3 Let Vm ∈ Rn×ms be the F-orthogonal matrix generated by the glo-
bal tangential Arnoldi algorithm (GTAA), A ∈ Rn×n, B ∈ Rn×s and C ∈ Rs×n. The
following relation holds

‖H(ω)−Hm(ω)‖2 ≤ ‖C(ωIn −A)−1‖2‖RB(ω)‖2. (5.12)

Proof : Using the expression of transfer functions H(ω) and Hm(ω), we have

‖H(ω)−Hm(ω)‖2 = ‖C(ωIn −A)−1B−Cm(ωIms −Am)−1Bm‖2,

= ‖C(ωIn −A)−1(B− (ωIn −A)Vm(ωIms −Am)−1Bm)‖2,

= ‖C(ωIn −A)−1RB(ω)‖2,

≤ ‖C(ωIn −A)−1‖2‖RB(ω)‖2.

The parameters σm+1 and tangential direction block Rm+1 are computed as fol-

lows. We first compute σm+1 by maximizing the norm of the residual on the

convex hull Sm,
σm+1 = argmax

ω∈Sm
‖RB(ω)‖2, (5.13)

For small to medium problems, this is done by computing the norm of RB(ω) for

each ω in Sm. The tangent direction Rm+1 is computed by solving the problem

Rm+1 = arg max
R∈Rs×s,‖R‖=1

‖RB(σm+1)R‖2. (5.14)

The tagential matrix direction Rm+1 = [r(1)
m+1, ..., r

(s)
m+1], can be determined such

that r(i)
m+1 are the right singular vectors corresponding to the s largest singular

values of RB(σm+1).

Notice that as the adaptive tangential interpolation approximation becomes

exact when

max
ω∈Sm
‖RB(ω)‖2 = 0,

it is reasonable to stop the process when ‖RB(σm+1)‖2 is small enough.
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Proposition 5.4 Let Am = (VTm �AVm)⊗ Is , then the residual RB(ω) is expressed as

RB(ω) = (I −Pm)(B) + (AVm −VmAm)Ym(ω), (5.15)

where Ym(ω) = (ωIms −Am)−1Bm, Vm = [V1, ...,Vm] and Pm(B) = Vm
[
(VTm �B)⊗ Is

]
.

Proof : We have

RB(ω) = B+AVmYm(ω)−ωVmYm(ω),

= B+AVmYm(ω)−Vm(ωIms −Am)(ωIms −Am)−1Bm,

−VmAm(ωIms −Am)−1Bm,

= B+AVmYm(ω)−VmBm −VmAmYm(ω),

= B−Pm(B) + (AVm −VmAm)Ym(ω),

= (I −Pm)(B) + (AVm −VmAm)Ym(ω).

Next we give a result obtained, by using the global tangential Arnoldi algorithm

(GTAA).

Proposition 5.5 Let Rm = [R1, ...,Rm] and let Vm and Hm be the F-orthonormal and
the upper Hessenberg matrices obtained at step m of the global tangential Arnoldi
algorithm. Then

AVm −VmAm = −(I −Pm)(BRm)× (H−1
m ⊗ Is), (5.16)

and
RB(ω) = (I −Pm)(B)− (I −Pm)(BRm)× (H−1

m ⊗ Is)Ym(ω), (5.17)

where Pm(BRm) = Vm
[
(VTm �BRm)⊗ Is

]
.

Proof : Let Km = [(σ1I −A)−1BR1, ..., (σmI −A)−1BRm]. Then from the global tan-

gential Arnoldi algorithm, we can show that Km = Vm(Hm ⊗ Is). Setting Dm =

diag(σ1, ...,σm), and using the fact that A(σiI −A)−1BRi = −BRi +σi(σiI −A)−1BRi ,

it follows that

AVm = AKm(Hm ⊗ Is)−1 = [−BRm +Km(Dm ⊗ Is)] (Hm ⊗ Is)−1. (5.18)
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Therefore replacing Am = (VTm �AVm)⊗ Is and Km = Vm(Hm ⊗ Is) in (5.18) , we get

AVm −VmAm = [−BRm +Vm(Hm ⊗ Is)(Dm ⊗ Is)] (Hm ⊗ Is)−1 −Vm
[
(VTm �AVm)⊗ Is

]
,

= −BRm(Hm ⊗ Is)−1 +Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1

−Vm
[
(VTm � (−BRm +Vm(Hm ⊗ Is)(Dm ⊗ Is))(Hm ⊗ Is)−1)⊗ Is

]
.

It follows that

AVm −VmAm = −BRm(Hm ⊗ Is)−1 +Vm
[
(VTm � (BRm)(Hm ⊗ Is)−1)⊗ Is

]
+Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1

−Vm
[
(VTm � (Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1))⊗ Is

]
,

= −BRm(Hm ⊗ Is)−1 +Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1

−Vm
[
(VTm � (Vm(Hm ⊗ Is)(Dm ⊗ Is)(H−1

m ⊗ Is)))⊗ Is
]

+Vm
[
((VTm � (BRm(H−1

m ⊗ Is))⊗ Is
]
.

Using the relation

Pm(BRm(H−1
m ⊗ Is)) =

[
(VTm � (BRm(H−1

m ⊗ Is))⊗ Is
]

=
[
((VTm �BRm)×H−1

m )⊗ Is
]

=
[
(VTm �BRm)⊗ Is

]
× (H−1

m ⊗ Is)

= Pm(BRm)× (Hm ⊗ Is)−1,

we obtain

AVm −VmAm = −(I −Pm)(BRm)(Hm ⊗ Is)−1 +Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1

− Vm
[
(VTm � (Vm(HmDmH

−1
m ⊗ Is))⊗ Is

]
,

= −(I −Pm)(BRm)(Hm ⊗ Is)−1 +Vm(Hm ⊗ Is)(Dm ⊗ Is)(Hm ⊗ Is)−1

− Vm
[
((VTm � Vm)HmDmH

−1
m )⊗ Is

]
,

= −(I −Pm)(BRm)× (H−1
m ⊗ Is).

The expression of RB(ω) given in (5.17) allows us to reduce the computational
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cost while seeking for the next pole and direction. Solving max
ω∈Sm
‖RB(ω)‖ for a

large sample of values for ω requires the computation of the tall matrix RB(ω) at

each value of ω. Proposition 5.5 shows that computational cost can decrease, as

ω varies. In fact, consider the skiny QR decomposition of (I −Pm)(B) =Q1L1 and

(I −Pm)(BRm) =Q2L2, it follows that

‖RB(ω)‖2 ≤ ‖L1‖2 + ‖L2(H−1
m ⊗ Is)Ym(ω)‖2.

We notice that, if we consider the case where the tangential subspace includes B

as a first block, then (I −Pm)(B) = 0 and hence

RB(ω) = −(I −Pm)(BRm)(H−1
m ⊗ Is)Ym(ω),

which shows that

‖RB(ω)‖2 = ‖L2(H−1
m ⊗ Is)Ym(ω)‖2.

this means that, for each value ofω, one has to only compute norms of matrices of

size ms ×ms. In the following, we present the adaptive global tangential Arnoldi

algorithm (AGTAA). This algorithm allows us to compute a low dimentional

dynamical system by computing the matrices Ammax = ((VTmmax � AVmmax) ⊗ Is),
Bmmax = ((VTmmax �B)⊗Is) and Cmmax = CVmmax for a fixed value ofmmax where Vmmax
is the F-orthonormal matrix obtained by applying Algorithm 10 . The algorithm

is summarized as follows :

Algorithm 11 (Adaptive global tangential Arnoldi algorithm AGTAA) .
– Given A, B, C mmax, ω

(1)
0 ∈R, R1 ∈Rs×s, mmax

– Outputs : Ammax = ((VTmmax �AVmmax)⊗ Is), Bmmax = ((VTmmax � B)⊗ Is) and Cmmax =

CVmmax .
• Set σ1 =ω(1)

0 , Ṽ1 = (σ1In −A)−1BR1.
• Construct V1 such that ‖V1‖F = 1, initialize : V1 = [V1].
• For m = 1 :mmax

1. If σ̄m−1 , σm ∈C then σm+1 = σ̄m else compute {λ1, ...,λms} eigenvalues of
Am.

2. Determine Sm, the convex hull of {−λ1, ...,−λms,ω
(1)
0 , ω̄

(1)
0 } and solve (5.13).
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3. Compute the right vector Rm+1 by solving (5.14).

4. If σm+1 ,∞, Ṽm+1 = (σm+1In −A)−1BRm+1 else Ṽm+1 = ABRm+1 .

5. For i = 1,...,m
• hi,m = tr(W T

i Ṽm+1).
• Ṽm+1 = Ṽm+1 − hi,mVi .

End

6. hm+1,m = ‖Ṽm+1‖F ,

7. Vm+1 = Ṽm+1
hm+1,m

.

8. Vm+1 = [Vm,Vm+1].

• End

At each iteration m, the total number of arithmetic operations is dominated

by the computation of the matrix Ṽm+1 at Step 4 of Algorithm 11 by solving

the multiple shifted linear system (σm+1In −A)V = BRm+1. For medium or large

structured problems, this is done by using the LU factorization of (σm+1In −A).

For large problems, one can also use a Krylov solver such as the block or standard

GMRES with a suitable preconditionner. We notice that the well known Iterative

Rational Krylov Algorithm (IRKA) algorithm needs, at each iteration, two LU

factorization. In all our numerical tests, we solved those shifted linear systems

using the LU factorization. We also need to compute, for each iteration m, the

block direction Rm+1 by solving the problem (5.14) which is done by computing

the leading s right singular vectors of the n× s matrix RB(σm+1).

5.4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of

the proposed approach. All the experiments were performed on a computer of

Intel Core i5 at 3.00GHz and 8Go of RAM. The algorithms were coded in Matlab

8.0.

Example 1 : The model of the first experiment is the model of stage 1R of

the International Space Station (ISS). Figure 5.1a shows the singular values vs

frequencies of the transfer function and its approximation. In Figure 5.1b, we
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plotted the 2-norm of the errors ‖H(jω)−Hm(jω)‖2 versus the frequencies for

m = 15. As can be shown from these plots, the AGTAA algorithm gives good

results with a small value of m.
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Figure 5.1 – The ISS model : n=270, p=3.

Example 2 : In this example, we applied the AGTAA method on 3 models : FDM,

RAIL3113 and RAIL821. The plots in Figure 5.2a, represent the sigma-plot (the

singular values of the transfer function) of the original system (dashed-dashed

line) and the one of the reduced order system (solid line) of the FDM model. In

Figure 5.2b, we plotted the error-norm ‖H(jω)−Hm(jω)‖2 versus the frequencies

ω ∈ [10−6, 106]. For this experiment, the value of m was m = 20.

In Figure 5.3a and Figure 5.3b, we considered the two models : RAIL821 and

RAIL3113. These models describe the steel rail cooling problem (order n = 821

and n = 3113, respectively). The plots in these figures represent the error-norm

‖H(jω)−Hm(jω)‖2 versus the frequencies.

Example 3 : In this example we compared the AGTAA algorithm with the Ite-

rative Rational Krylov Algorithm (IRKA)[2]. We used five models : CDplayer,

MNA1, MNA3 and Flow.

The figures : Figure 5.4a–Figure 5.5b illustrate the exact error-norm ‖H(jω)−
Hm(jω)‖2 versus the frequencies for AGTAA (solid line) and IRKA (dashed-

dotted line) with m = 20. In Figure 5.4b, the AGTAA returns good results for

small frequencies with a little advantage for IRKA for large frequencies. It is
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Figure 5.2 – The FDM model : n=10000, p=4.
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(a) The RAILl821 model : n=821, p=6
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(b) The RAIL3113 model : n=3113, p=6

Figure 5.3 – Error-norms vs frequencies.

clear that in all the presented plots, the AGTAA algorithm returns generally good

results as compared to the IRKA algorithm. We also compared the execusion

times of the two algorithms and we reported the obtained timings in Table 5.1.

The results of Table 5.1 show that the cost of IRKA method is much higher than

the cost of the adaptive global tangential Arnoldi method.
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(a) The MNA1 model : n=578, p=9
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(b) The CDplayer model : n=120, p=2

Figure 5.4 – AGTAA (solid line) and the IRKA (dashed-dotted line).
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(a) The MNA3 model : n=4863, p=22.
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(b) The Flow model : n=9669, p=5.

Figure 5.5 – AGTAA (solid line) and the IRKA (dashed-dotted line).

Model AGTAA IRKA
MNA1 0.15s 1.45s
MNA3 1.79s 19.2s
CDplayer 0.04s 0.12s
Flow 15.20s 51.82

Tableau 5.1 – The calculation time



5.5. Conclusion 89

5.5 Conclusion

In this chapter, we proposed a new global tangential Arnoldi method to get re-

duced order dynamical systems that approximate the initial large scale multiple

inputs and multiple outputs (MIMO) ones. The method generates sequences of

matrix tangential rational Krylov subspaces by selecting, in an adaptive way, the

interpolation shifts (poles) and tangential directions by maximizing the residual

norms. We gave some new algebraic properties and present some numerical

experiments on some benchmark examples.
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Chapitre6
An adaptive tangential Lanczos-type

method for model reduction

6.1 Introduction

In this chapter, we present a new approach for model reduction of MIMO

systems, named : Adaptive Tangential Lanczos Algorithm (ATLA). This method

based on tangential interpolation using two tangential Krylov subspaces for the

oblique projection of the original system, in order to solve the problem 2. We

used also the Lanczos-type method for generating two bi-orthonormal bases. We

give some algebraic properties and present some numerical examples to show

the effectiveness of the proposed method.

6.2 The tangential Lanczos-type algorithm

We present here a tangential Lanczos-type algorithm for constructing bi-orthogonal

bases {v1,v2, . . . , vm} and {w1,w2, . . . ,wm} of the following tangential Krylov sub-

spaces :

Range{(A− σ1In)−1Br1, ..., (A− σmIn)−1Brm},

and

Range{(A−µ1In)−TCT l1, ..., (A−µmIn)−TCT lm},

93
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respectively so that the tangential interpolation problem 2 is solved, i.e., the

reduced order model has to interpolate the original transfer function H(s) and

its first derivative as in (3.6).

The tangential Lanczos algorithm is summarized as follows :

Algorithm 12 (The Tangential Lanczos Algorithm TLA) .
– Inputs : A, B, C, σ = {σi}m+1

i=1 , µ = {µi}m+1
i=1 , r = {ri}m+1

i=1 , and l = {li}m+1
i=1 , ri , li ∈Rp.

– Output : Vm = {v1, ...,vm}, Wm = {w1, ...,wm}.

1. Set ṽ1 = (A− σ1In)−1Br1 and w̃1 = (A−µ1In)−TCT l1.

2. Set ṽ1 = h1,1v1 and w̃1 = g1,1w1 such that wT1 v1 = 1.

3. Initialize : V1 = [v1], W1 = [w1].

4. For k = 1 :m

5. if {σk+1 =∞}, ṽk = ABrk+1 else, ṽk = (A− σk+1In)−1Brk+1, End.

6. if {µk+1 =∞}, w̃k = ACT lk+1 else, w̃k = (A−µk+1In)−TCT lk+1, End.

7. hk =W T
k ṽk and gk = V T

k w̃k.

8. ṽk = ṽk −Vkhk, w̃k = w̃k −Wkgk.

9. ṽk = hk+1,kvk+1 and w̃k = gk+1,kwk+1, such that wTk+1vk+1 = 1.

10. Vk+1 = [Vk ,vk+1], Wk+1 = [Wk ,wk+1].

11. W T
k+1Vk+1 = PkDkQ

T
k (Singular Value Decomposition).

12. Vk+1 = Vk+1QkD
−1/2
k and Wk+1 =Wk+1PkD

−1/2
k .

13. End

In our setting we assume that we are given the sequences of shifts σ = {σi}m+1
i=1 , µ =

{µi}m+1
i=1 and the tangents r = {ri}m+1

i=1 , l = {li}m+1
i=1 . In the next section a procedure

will be defined to generate those sequences similarly to previous chapters.

In the tangential Lanczos-type algorithm (TLA), steps 5-6 are used to generate

the next Lanczos vectors. At each iteration k, we used a new interpolation point

σk+1 and the tangent direction rk+1, k = 1, ...,m and we initialize the subsequent

tangential Krylov subspace corresponding to this shift by ṽk = (A−σk+1In)−1Brk+1

if σk+1 is finite and ṽk = ABrk+1 if σk+1 =∞, and we do the same for the next left

shift µk+1 and tangent direction lk+1. To insure that the matrices Vk+1 and Wk+1
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generated in each iteration are bi-orthogonal, the SVD decomposition is used

(steps 11−12). The vectors hk and gk constructed in step 7 are in R
k and they are

used to construct the upper Hessenberg matrices H̃m, G̃m, K̃m, and T̃m where

H̃m =
[̃
h1, ..., h̃m

]
, G̃m = [g̃1, ..., g̃m] ∈R(m+1)×m respectively, where

h̃k =


hk
hk+1,k

0

 and g̃k =


gk
gk+1,k

0

 , f or k = 1, ...,m,

where 0 is the zero vector having m − k rows. K̃m and T̃m are defined as K̃m =

H̃mDm, T̃m = G̃mSm where Dm =Diag{σ2, ...,σm+1} and Sm =Diag{µ2, ...,µm+1}. We

define h̃0 and g̃0 as

h̃0 =

 h1,1

0

 and g̃0 =

 g1,1

0

 . (6.1)

The upper Hessenberg matricesHm and Gm are them×mmatrices obtained from

H̃m and G̃m, by deleting their last rows. The Theorem 6.1 gives an equations that

relate A, Vm+1, Wm+1 and the Hessenberg matrices constructed by Algorithm 12.

Theorem 6.1 Let Vm+1 and Wm+1 be the matrices generated by Algorithm 12. Then,
for A ∈Rn×n and B ∈Rn×p, we have the following relations

AVm+1H̃m = Vm+1K̃m +BR̃m+1, and

ATWm+1G̃m =Wm+1T̃m +CT L̃m+1.

where R̃m+1 = [r2, ..., rm+1] and L̃m+1 = [l2, ..., lm+1].

Proof : Replacing the expression of ṽk into the expressions of step 8 and step 9

yields the following relation

hk+1,kvk+1 = (A− σk+1I)
−1Brk+1 −Vkhk ,
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which can be written as

[Vk vk+1]

 hkhk+1,k

 = (A− σk+1I)
−1Brk+1, (6.2)

multiplying (6.2) on the left by (A− σj+1In) and re-arranging terms, we get

AVk+1

 hkhk+1,k

 = σk+1Vk+1

 hkhk+1,k

+Brk+1.

On the other hand, for k = 1, ...,m, we have

AVm+1 = [AVk+1,Avk+2, ...,Avm+1],

which gives,

AVm+1


hk
hk+1,k

0

 = σk+1Vm


hk
hk+1,k

0

+Brk+1,

where 0 is the zero vector having m− k rows. then,

AVm+1H̃m = Vm+1K̃m +BR̃m.

The same proof for the second relation.

Proposition 6.1 Let Vm+1 andWm+1 be the matrices generated by tangential Lanczos
algorithm (TLA), and let

Km+1 =
[
(A− σ1I)

−1Br1, ..., (A− σm+1I)
−1Brm+1

]
,

Tm+1 =
[
(A−µ1I)

−TCT l1, ..., (A−µm+1I)
−TCT lm+1

]
,

then we have
Km+1 = Vm+1Hm+1, (6.3)

Tm+1 =Wm+1Gm+1, (6.4)

where Hm =
[̃
h0 H̃m

]
and Gm =

[
g̃0 G̃m

]
are upper triangular matrices of (m+ 1)×
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(m+ 1).

Using the equation (6.2)

[Vk vk+1]

 hkhk+1,k

 = (A− σk+1I)
−1Brk+1, k = 1, ...,m,

which gives

Vm+1


hk

hk+1,k

0

 = (A− σk+1In)−1Brk+1, k = 1, ...,m,

it follows that

Vm+1

[̃
h1, ..., h̃m

]
=

[
(A− σ2In)−1Br2, ..., (A− σm+1In)−1Brm+1

]
,

Since h1,1v1 = (A− σ1In)−1Br1, we have

Vm+1

[̃
h0, h̃1, ..., h̃m

]
=

[
(A− σ1In)−1Br1, (A− σ2In)−1Br2, ..., (A− σm+1In)−1Brm+1

]
,

which ends the proof of (6.3). In the same manner we prove (6.4).

6.3 Adaptive choice of interpolation points and di-

rections

Setting H(ω) = CX(ω) = Y (ω)B, where X(ω), Y (ω)T ∈Rn×p are the solutions of

the following linear systems

(A−ωIn)X(ω) = B and (A−ωIn)T Y (ω)T = CT . (6.5)

An approximate solutions Xm ∈ Range{v1, ...,vm} and Y Tm ∈ Range{w1, ...,wm} of

the solution of (6.5) ( A−ωIn is assumed to be nonsingular), can be determined
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by imposing the Galerkin condition

RB(ω) ⊥ Span{w1, ...,wm} and RC(ω) ⊥ Span{v1, ...,vm},

where the residuals RB(ω) and RC(ω) are given by

RB(ω) = (A−ωIn)Xm −B and RC(ω) = (A−ωIn)T Y Tm −CT .

Therefore,

Xm(ω) = Vm(Am −ωIm)−1W T
mB and Ym(ω)T =Wm(Am −ωIm)−TV T

mC
T ,

wich gives this expression of the residuals :

RB(ω) = (A−ωIn)Vm(Am −ωIm)−1W T
mB−B, (6.6)

and

RC(ω) = (A−ωIn)TWm(Am −ωIm)−TV T
mC

T −CT . (6.7)

Which amounts to approximating H(ω) by Hm(ω) as

Hm(ω) = Cm(Am −ωIm)−1Bm,

where Am = W T
mAVm, Bm = W T

mB and Cm = CVm. The matrices Vm = [v1, ...,vm]

and Wm = [w1, ...,wm] are bi-orthonormal. The vi , wi ∈ R
n are a bases of m-

dimensional subspaces in R
n×p. In the adaptive approach, we seek to extend our

subspaces

Range (v1, ...,vm) = Range
(
(A− σ1In)−1Br1, ..., (A− σmIn)−1Brm

)
,

Range (w1, ...,wm) = Range
(
(A−µ1In)−TCT l1, ..., (A− σmIn)−TCT lm

)
,

by a new vectors defined as

(A− σm+1In)−1Brm+1,
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and

(A−µm+1In)−TCT lm+1,

respectively, which means at each iteration, we seek to calculate a new interpola-

tion points σm+1, µm+1 and a new tangent directions rm+1, lm+1. Our unknowns

are computed as follows

(rm+1,σm+1) = arg max
s ∈ Sm

d ∈Rp,‖d‖ = 1

‖RB(s)d‖. (6.8)

(lm+1,µm+1) = arg max
s ∈ Sm

d ∈Rp,‖d‖ = 1

‖RC(s)d‖, (6.9)

respectively, with the direction vectors rm+1, lm+1 ∈ R
p, ‖rm+1‖ = ‖lm+1‖ = 1

and with the poles σm+1,µm+1 ∈ Sm. Here Sm ⊂ R
+ is a set defined similarly as

in Chapter 4 and 5, i.e the convex hull of {−λ1, ...,−λm} where {λi}mi=1 are the

eigenvalues of Am. We have the following results.

Proposition 6.2 LetRB(ω) = (A−ωIn)VmNm(ω)−B,RC(ω) = (A−ωIn)TWmZm(ω)CT ,
where Nm(ω) = (Am −ωIm)−1W T

mB and Zm(ω) = (Am −ωIm)−TV T
mC

T , then we have
the following new expressions for RB(ω) and RC(ω) :

RB(ω) = (AVm −VmAm)Nm(ω)− (I −VmW T
m )B, (6.10)

and
RC(ω) = (ATWm −WmA

T
m)Zm(ω)− (I −WmV

T
m )CT . (6.11)

Proof : We have

RB(ω) = AVmNm(ω)−ωVmNm(ω)−B
= AVmNm(ω) +Vm(Am −ωI)(Am −ωI)−1W T

mB−VmAm(Am −ωI)−1W T
mB−B

= AVmNm(ω) +VmW T
mB−VmAmNm(ω)−B

= (AVm −VmAm)Nm(ω)− (I −VmW T
m )B,

which proves (6.10). The expression (6.11) for RC(s) can be proved in the same

way. The result above is valid, for any space spanned by the columns of Vm and

Wm. If we use the approximation space given by our rational Krylov space, the
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following result holds.

Proposition 6.3 Let Km =
[
(A− σ1I)−1Br1, ..., (A− σmI)−1Brm

]
and

Tm =
[
(A−µ1I)−TCT l1, ..., (A−µmI)−TCT lm

]
, and set Km = VmHm, Tm = WmGm

where Vm, Wm, Hm and Gm are obtained by the Tangential Lanczos Algorithm (TLA).
Let Rm = [r1, ..., rm], Lm = [l1, ..., lm], and we assume that Hm, Gm are nonsingular,
then

AVm −VmAm = (In −VmW T
m )BRmH−1

m , (6.12)

and
ATWm −WmA

T
m = (In −WmV

T
m )CT LmG−1

m . (6.13)

We also have
RB(ω) = (I −VmW T

m )B(RmH−1
m Nm(ω)− I), (6.14)

and
RC(ω) = (I −WmV

T
m )CT (LmG−1

m Zm(ω)− I). (6.15)

Let Dm = diag(σ1, ...,σm), then from the fact that A(A − σiI)−1Bri = Bri + σi(A −
σiI)−1Bri , it follows that AVm = AKmH−1

m = (BRm + KmDm)H−1
m . Using Am =

W T
mAVm = G−Tm T Tm AKmH−1

m we have

AVm −VmAm = BRmH−1
m +KmDmH−1

m −KmH−1
m G−Tm T Tm AVm

= BRmH−1
m +KmDmH−1

m −KmH−1
m G−Tm T Tm (BRm +KmDm)H−1

m

= BRmH−1
m +KmDmH−1

m −KmH−1
m G−Tm T Tm BRmH−1

m

−KmH−1
m G−Tm T Tm KmDmH−1

m

= BRmH−1
m −KmH−1

m G−Tm T Tm BRmH−1
m

= (In −VmW T
m )BRmH−1

m .

This proves the relation (6.12). The expression (6.13) can be obtained in the

same way. The relations (6.14) and (6.15) are directly derived from (6.10), (6.11)

and the expressions (6.12) and (6.13). These expressions allows us to reduce the

computational cost while looking for the next pole and direction. The problems

(6.8) and (6.9) are solved in the same way as in chapter 4 and 5. First we compute

the interpolation point σm+1, by maximizing the the residual norm on the convex
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hull Sm, i.e we solve the following problem,

σm+1 = argmax
ω∈Sm
‖RB(ω)‖2, (6.16)

this is done by computing the norm of RB(ω) for each s in Sm. Then the tangent

direction rm+1 is computed by evaluating (6.16) at s = σm+1 and solve the problem

rm+1 = arg max
d∈Rp,‖d‖=1

‖RB(σm+1)d‖2 . (6.17)

The tangential direction rm+1, can also be determined as the largest right singular

vector of the matrix RB(σm+1).

Solving max
ω∈Sm
‖RB(ω)‖ for a large sample of values for ω requires the computation

of the tall matrix RB(ω) at each value of ω. Proposition 6.3 shows that computa-

tional can be with small matrices, as ω varies. In fact, let Q1L1 = (I −VmW T
m )B be

the skinny QR decomposition of (I −VmW T
m )B. Then

σm+1 = argmax
ω∈Sm
‖RB(ω)‖

= argmax
ω∈Sm
‖L1(RmH−1

m Nm(ω)− I)‖,
(6.18)

where the computation of σm+1 here, requires an m×m matrix for each value of

ω. Then rm+1 is computed as

rm+1 = argmax
‖d‖=1
‖‖L1(RmH−1

m Nm(s)− I)d‖. (6.19)

With the same procedure let Q2L2 = (I −WmV
T
m )CT be the skinny QR decompo-

sition of (I −WmV
T
m )CT . Then

µm+1 = argmax
ω∈Sm
‖RC(ω)‖

= argmax
ω∈Sm
‖L2(LmG−1

m Zm(ω)− I)‖,
(6.20)

and lm+1 is computed as

lm+1 = argmax
‖d‖=1
‖L2(LmG−1

m Zm(s)− I)d‖. (6.21)
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In the following, we present an algorithm, that allows us to compute a low

dimensional dynamical system by computing the matrices Ammax =W T
mmaxAVmmax ,

Bmmax =W T
mmaxB and Cmmax = CVmmax , for a fixed value of mmax, where Vmmax and

Wmmax are the bi-orthonormal matrices obtained by applying Algorithm 12. This

algorithm will be called Adaptive Tangential Lanczos Algorithm (ATLA).

Algorithm 13 (Adaptive Tangential Lanczos-type Algorithm ATLA) .
– Given A, B, C mmax, s

(1)
0 , s(2)

0 ∈C, r1, l1 ∈Rp, mmax.
– Outputs : Ammax =W T

mmaxAVmmax , Bmmax =W T
mB, Cmmax = CVmmax .

1. Set σ1 = s(1)
0 , σ2 = s(2)

0 and set ṽ1 = (A−σ1In)−1Br1 and w̃1 = (A−µ1In)−TCT l1.

2. Set ṽ1 = h1,1v1 and w̃1 = g1,1w1 such that wT1 v1 = 1.

3. Initialize : V1 = [v1], W1 = [w1].

4. For m = 1 :mmax

5. Set Am =W T
mAVm.

6. Compute σm+1, and µm+1

. if σ̄m−1 , σm ∈ C then σm+1 = σ̄m else Compute {λ1, ...,λm} eigenvalues of
Am.
. Determine Sm, convex hull of {−λ1, ...,−λm, s

(1)
0 , s

(2)
0 , s̄

(1)
0 , s̄

(2)
0 }.

. Solve (6.18). The same for µm+1.

7. Compute right and left vectors rm+1, lm+1 : Solve (6.19) and (6.21).

8. if {σm+1 =∞}, ṽm = ABrm+1 else, ṽm = (A− σm+1In)−1Brk+1, End.

9. if {µm+1 =∞}, w̃m = ACT lm+1 else, w̃m = (A−µm+1In)−TCT lm+1, End.

10. hm =W T
m ṽm and gm = V T

m w̃m.

11. ṽm = ṽm −Vmhm, w̃m = w̃m −Wmgm.

12. ṽm = hm+1,kvm+1 and w̃m = gm+1,kwm+1, such that wTm+1vm+1 = 1.

13. Vm+1 = [Vm,vm+1], Wm+1 = [Wm,wm+1].

14. W T
m+1Vm+1 = PmDmQTm (Singular Value Decomposition).

15. Vm+1 = Vm+1QmD
−1/2
m and Wm+1 =Wm+1PmD

−1/2
m .

16. End.
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Remark : For large problems, the total number of arithmetic operations after

mmax iterations is dominated by O(4
3mmaxn

3). This cost comes from LU factoriza-

tion for solving shifted linear systems with the shifted matrices (A− σiIn), (A−
µiIn)T (Lines 8 and 9 of Algorithm 13). We also need about O(2mmaxpn2) arith-

metic operations for computing an SVD decomposition at each iteration m = 1 :

mmax (Line 7 of Algorithm 13). Compared to the Iterative Rational Krylov Algo-

rithm (IRKA), whose computational complexity is of O(4
3m

2
maxn

3), our method is

numerically more reliable.

6.4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of

the proposed approach. All the experiments were performed on a computer of

Intel Core i3 at 1.3GHz and 3GB of RAM. The algorithms were coded in Matlab

8.0. We give some numerical tests to show the performance of the Adaptive

Tangential Lanczoc Algorithm (ATLA). These matrix tests used are reported in

Table 6.1.

Model n p
CD-player n = 120 p = 2
ISS n = 277 p = 3
rail821 n = 821 p = 6
MNA4 n = 980 p = 4
rail3113 n = 3113 p = 6
FDM n = 6400 p = 2

Tableau 6.1 – Matrix Tests

Example 1 : The Figure 6.1a represent the sigma-plot (the singular values of the

transfer function) of the original system of a CD-player[25] (red line) and for the

reduced order system (blue line). In the Figure 6.1b, we plotted the error-norm

‖H(jω)−Hm(jω)‖2 versus the frequencies ω ∈ [10−6 106]. For this experiment,

the value of m was m = 15.
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Figure 6.1 – The CDplayer model.

Example 2 : In this example, we applied the ATLA method on the FDM model.

The plots in Figure 6.2a, represent the sigma-plot (the singular values of the

transfer function) of the original system (red line) and the one of the reduced

order system (blue line). In Figure 6.2b, we plotted the error-norm ‖H(jω) −
Hm(jω)‖2 versus the frequencies ω ∈ [10−6, 106]. For this experiment, the value

of m was m = 20.
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Figure 6.2 – The FDM model.

Example 3 : In the third experiment, we used the rail3113 and rail821 models

with m = 20. The Figures 6.3a and 6.3b represent the exact error-norm ‖H(jω)−
Hm(jω)‖2 for different frequencies.
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Figure 6.3 – Error-norms vs frequencies.

Example 4 : In the last example we compared the ATLA algorithm with AORBL

(Adaptive Order Rational Block Lanczos [6]) and IRKA (Iterative Rational Krylov

Algorithm [2]). We used four models : MNA4, ISS, FDM and CDplayer. We com-

pared the exact error ‖H(jω)−Hm(jω)‖2 versus the frequencies ω ∈ [10−3, 103],

for m = 25. In all figures, the ATLA method (dashed-dashed line), the AORBL

method (dashed-dotted line) and the IRKA (solid line). It is clear that in the

all plots, the proposed algorithm gives good approximation as compared to the

other algorithms.
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Figure 6.4 – ATLA method (dashed-dashed line), the AORBL method (dashed-
dotted line) and the IRKA (solid line).
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Figure 6.5 – ATLA method (dashed-dashed line), the AORBL method (dashed-
dotted line) and the IRKA (solid line).

6.5 Conclusion

We have introduced the tangential method, for generating tangential Krylov-

type subspace for the reduction of dynamical linear systems, with multiple

inputs and multiple outputs (MIMO). The existence of many inputs and outputs,

changes the theoretical, and made the computational more difficult. The tangen-

tial interpolation, gives sufficient flexibility to overcome the inconvenient, of

dimensionality in MIMO problems, where we generate sequences of tangential

Krylov subspace by selecting the next interpolation point and tangential direc-

tion by maximizing the residual norm, and in the same time we are using the

Lanczos approach to bi-orthonormalize the subspaces. The numerical experi-

ments show that the proposed algorithm give good results compared to other

known methods.



Chapitre7
A tangential method for the Balanced

Truncation in model reduction

7.1 Introduction

In this chapter, we present a new approach for model reduction in large scale

dynamical systems with multiple inputs and multiple outputs (MIMO). This

approach is based on the projection of the initial problem onto tangential Krylov

subspaces to produce a simpler reduced-order model that approximates well the

behaviour of the original model. We present two algorithms named : Adaptive

Block Tangential Lanczos-type & Arnoldi-type algorithms (ABTL & ABTA). We

give some algebraic properties and present some numerical experiences to show

the effectiveness of the proposed algorithms.

Various model reduction techniques, such as Padé approximation [22, 39], balan-

ced truncation [43], optimal Hankel norm [21] and Krylov subspace methods,

[11, 10, 17, 28] have been used for large multi-input multi-output (MIMO) dy-

namical systems, see [5, 21, 27]. Balanced Truncation Model Reduction (BTMR)

method is a very popular method [1, 19], the method preserves the stability and

provides a bound for the approximation error. In the case of small to medium sys-

tems, (BTMR) can be implemented efficiently. However, for large-scale settings,

the method is quite expensive to implement, because it requires the computation

107
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of two Lyapunov equations, and results in a computational complexity of O(n3)

and a storage requirement of O(n2), see [1, 8, 23]. In this paper, we project the

Lyapunov equations using the block tangential Krylov subspaces almost similar

to the one defined in (4.1),

Range{B, (σ1In −A)−1BR1, ..., (σmIn −A)−1BRm},

Range{CT , (µ1In −A)−TCT L1, ..., (µmIn −A)−TCT Lm},

in order to obtain a small scale Lyapunov equations. The {σi}mi=1 and {µi}mi=1 are

the right and left interpolation points, the {Ri}mi=1 and {Li}mi=1 are the right and

left blocks tangent directions with Ri , Li ∈Rp×s with s ≤ p. Later, we will show

how to choose these tangent interpolation points and directions.

7.2 Tangential block Lanczos-type method for Lya-

punov matrix equations

Consider the following Lyapunov matrix equations,

AX(1) +X(1)AT +BBT = 0, (7.1)

and

ATX(2) +X(2)A+CTC = 0, (7.2)

where A ∈ R
n×n is non-singular, B ∈ R

n×p and C ∈ R
p×n. To extract low rank

approximate solutions to the Lyapunov equations (7.1) and (7.2), we project the

initial problems onto the following tangential block Krylov subspaces

K̃m(A,B) = Range{B, (σ1In −A)−1BR1, ..., (σmIn −A)−1BRm}, (7.3)

and

K̃m(AT ,CT ) = Range{CT , (µ1In −A)−TCT L1, ..., (µmIn −A)−TCT Lm}, (7.4)
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where {σi}mi=1 and {µi}mi=1 are the right and left interpolation points respectively

and {Ri}mi=1, {Li}mi=1 are the right and left tangent directions with Ri , Li ∈Rp×s.

A tangential Lanczos-type method consists in constructing two bi-orthonormal

bases, spanned by the columns of {V1,V2, . . . ,Vm} and {W1,W2, . . . ,Wm}, of the

tangential Krylov subspaces K̃m(A,B) and K̃m(AT ,CT ), respectively.

Let Vm = [V1,V2, . . . ,Vm] and Wm = [W1,W2, . . . ,Wm]. Then, we should have the

bi-orthogonality conditions for i, j = 1, . . . ,m : W T
i Vj = I, i = j,

W T
i Vj = 0, i , j.

(7.5)

The low rank approximate solutions X (1)
m and X (2)

m to the solutions of the Lyapu-

nov matrix equations (7.1) and (7.2), are defined as follows

X (1)
m = VmY

(1)
m V

T
m , X (2)

m = WmY
(2)
m W

T
m , (7.6)

such that the following Galerkin conditions are satisfied

W
T
mR1(X (1)

m )Wm = 0, V
T
mR2(X (2)

m )Vm = 0, (7.7)

where the residuals are given by

R1(X (1)
m ) = AX (1)

m +X (1)
m AT +BBT , (7.8)

and

R2(X (2)
m ) = ATX (2)

m +X (2)
m A+CTC. (7.9)

Replacing X (1)
m and X (2)

m in (7.7), we obtain

W
T
mAVmY

(1)
m +Y (1)

m V
T
mA

T
Wm +W

T
mBB

T
Wm = 0,

and

V
T
mA

T
WmY

(2)
m +Y (2)

m W
T
mAVm +V

T
mC

TCVm = 0,
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which gives the low-dimensional Lyapunov matrix equations

AmY
(1)
m +Y (1)

m ATm +BmB
T
m = 0, (7.10)

and

ATmY
(2)
m +Y (2)

m Am +CTmCm = 0, (7.11)

where Am = W
T
mAVm, Bm = W

T
mB and Cm = CVm.

The main problem now is the computation of the two bi-orthogonal bases

{V1,V2, . . . ,Vm} and {W1,W2, . . . ,Wm} of the tangential Krylov subspaces in (7.3)

and (7.4). The following Block Tangential Lanczos (BTL) algorithm allows us to

construct such bases. It is summarized in the following steps.

Algorithm 14 (The Block Tangential Lanczos (BTL) algorithm) .
– Inputs : A, B, C, σ = {σi}mi=1, µ = {µi}mi=1, R = {Ri}mi=1, L = {Li}mi=1, Ri , Li ∈Rp×s.
– Output : Vm+1 = [V1, ...,Vm+1] ,Wm+1 = [W1, ...,Wm+1] .

• Compute B = V1H1,0, CT =W1F1,0 (QR decomposition).
• Initialize : V1 = [V1], W1 = [W1].
• For j = 1,...,m

1. If σj ,∞, Ṽj+1 = (σjIn −A)−1BRj , else Ṽj+1 = ABRj .

2. If µj ,∞, W̃j+1 = (µjIn −A)−TCT Lj , else W̃j+1 = ACT Lj .

3. For i = 1,...,j
• Hi,j =W T

i Ṽj+1, – Fi,j = V T
i W̃j+1,

• Ṽj+1 = Ṽj+1 −ViHi,j , – W̃j+1 = W̃j+1 −WiFi,j ,

4. End.

5. Ṽj+1 = Vj+1Hj+1,j , W̃j+1 =Wj+1Fj+1,j , (QR decomposition).

6. W T
j+1Vj+1 = PjDjQ

T
j , (Singular Value Decomposition).

7. Vj+1 = Vj+1QjD
−1/2
j , Wj+1 =Wj+1PjD

−1/2
j .

8. Hj+1,j =D1/2
j QTj Hj+1,j , Fj+1,j =D1/2

j P Tj Fj+1,j .

9. Vj+1 =
[
Vj , Vj+1

]
, Wj+1 =

[
Wj , Wj+1

]
.

• End
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Here we suppose that we already have the set of interpolation points σ = {σi}mi=1,

µ = {µi}mi=1 and the tangential matrix directions R = {Ri}mi=1 and L = {Li}mi=1.

The upper block upper Hessenberg matrices H̃m =
[
H̃

(1), ...,H̃(m)
]

and F̃m =[
F̃

(1), ..., F̃ (m)
]
∈R(ms+p)×ms are obtained from the BTL algorithm, with

H̃
(j) =



H1,j
...

Hj,j
Hj+1,j

0


and F̃

(j) =



F1,j
...

Fj,j
Fj+1,j

0


, for j = 1, ...,m.

The matrices Hi,j and Fi,j constructed in Step 3 of Algorithm 14 are of size p × s
if i = 1 and are of size s × s otherwise. We define the (ms + p)× p matrices H̃

(0)

and F̃
(0) as

H̃
(0) =

 H1,0

0

 and F̃
(0) =

 F1,0

0

 ,
where 0 is the zero matrix of size (m−j)×s. We define also the following matrices,

D̃
(1)
m =

 Op Op,ms

Oms,p D
(1)
m ⊗ Is

 , D̃
(2)
m =

 Op Op,ms

Oms,p D
(2)
m ⊗ Is

 ,
where D(1)

m =Diag{σ1, ...,σm} and D(2)
m =Diag{µ1, ...,µm}. With all those notations,

we have the following theorem.

Theorem 7.1 Let Vm+1 and Wm+1 be the bi-orthonormal matrices of R
n×(ms+p)

constructed by Algorithm 14. Then we have the following relations

AVm+1 =
[
Vm+1Gm+1D̃

(1)
m −KB

m+1

]
G
−1
m+1, (7.12)

and
ATWm+1 =

[
Wm+1Qm+1D̃

(2)
m −KC

m+1

]
Q
−1
m+1. (7.13)

Let Tm+1 and Ym+1 be the matrices,

Tm+1 =
[
B, (σ1I −A)−1BR1, ..., (σmI −A)−1BRm

]
and
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Ym+1 =
[
CT , (µ1I −A)−TCT L1, ..., (µmI −A)−TCT Lm

]
,

then we have
Tm+1 = Vm+1Gm+1 and Ym+1 = Wm+1Qm+1, (7.14)

where K
B
m+1 = [−AB BRm], KC

m+1 =
[
−ATCT CTLm

]
, Rm = [R1, ...,Rm] and Lm =

[L1, ...,Lm]. Gm+1 =
[
H̃

(0)
H̃m

]
and Qm+1 =

[
F̃

(0)
F̃m

]
are block upper triangular

matrices of sizes (ms+ p)× (ms+ p) and are assumed to be nonsingular.

Proof : From Algorithm 14, we have

Vj+1Hj+1,j = (σjIn −A)−1BRj −
j∑
i=1

ViHi,j j = 1, ...,m. (7.15)

Multiplying (7.15) on the left by (σjIn −A) and re-arranging terms, we get

A
j+1∑
i=1

ViHi,j = σj

j+1∑
i=1

ViHi,j −BRj j = 1, ...,m,

which gives

AVj+1


H1,j
...

Hj,j
Hj+1,j


= σjVj+1


H1,j
...

Hj,j
Hj+1,j


−BRj , j = 1, . . . ,m,

that written as

AVm+1



H1,j
...

Hj,j
Hj+1,j

0


= σjVj+1



H1,j
...

Hj,j
Hj+1,j

0


−BRj , j = 1, . . . ,m, (7.16)
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where 0 is the zero matrix of size (m− j)× s. Then for j = 1, . . . ,m, we have

AVm+1H̃
(j) = σjVj+1H̃

(j) −BRj , (7.17)

Therefore, we can deduce from (7.17), the following expression

AVm+1

[
H̃

(1), ...,H̃(m)
]

= Vm+1

[
H̃

(1), ...,H̃(m)
]
(D(1)

m ⊗ Is)−BRm,

Now, since V1H1,0 = B, we get

AVm+1

[
H̃

(0),H̃(1), ...,H̃(m)
]

= Vm+1

[
H̃

(0),H̃(1), ...,H̃(m)
]
D̃

(1)
m − [−AB BRm] ,

which ends the proof of (7.12). The same proof can be done for the relation (7.13).

For the proof of (7.14), we first use (7.15) to obtain

j+1∑
i=1

ViHi,j = (σjIn −A)−1BRj j = 1, . . . ,m,

which gives

Vm+1



H1,j
...

Hj,j
Hj+1,j

0


= (σjIn −A)−1BRj , j = 1, . . . ,m.

It follows that

Vm+1

[
H̃

(0),H̃(1), ...,H̃(m)
]

=
[
B, (σ1In −A)−1BR1, ..., (σmIn −A)−1BRm

]
,

which ends the proof of the first relation of (7.14). In the same manner, we can

prove the second relation.

In the following theorem, we give the exact expression of the residual norms in

a simplified and economical computational form.
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Theorem 7.2 Let Vm = [V1, ...,Vm] and Wm = [W1, ...,Wm] be the bi-orthonormal
matrices obtained by Algorithm 14. Let X (1)

m = VmY
(1)
m V

T
m , X

(2)
m = WmY

(2)
m W

T
m , be

the approximate solutions of the Lyapunov matrix equations (7.1) and (7.2), then the
residuals norms are given as

‖ R1(X (1)
m ) ‖2=‖ S(1)

m J(S
(1)
m )T ‖2 and ‖ R2(X (2)

m ) ‖2=‖ S(2)
m J(S

(2)
m )T ‖2, (7.18)

where S(1)
m and S

(2)
m are the upper triangular matrices obtained from the skinny QR

decomposition of the matrices U(1)
m and U

(2)
m defined by

U
(1)
m =

[
VmY

(1)
m G

−T
m (VmW

T
m − In)KB

m

]
and U

(2)
m =

[
WmY

(2)
m Q

−T
m (WmV

T
m − In)KC

m

]
.

The matrix J is defined as J =

 0 I

I 0

 .

Proof : We know that

R1(X (1)
m ) = AX (1)

m +X (1)
m AT +BBT

= AVmY
(1)
m V

T
m +VmY

(1)
m V

T
mA

T +BBT .

Using the equation (7.12), we get

Am = W
T
mAVm =

[
GmD̃m−1 −WT

mK
B
m

]
G
−1
m ,

which gives

AVm = VmAm + (VmW
T
m − In)KB

mG
−1
m . (7.19)

It follows that

R1(X (1)
m ) =

[
VmAm + (VmWT

m − In)KB
mG
−1
m

]
Y (1)
m V

T
m

+VmY
(1)
m

[
VmAm + (VmWT

m − In)KB
mG
−1
m

]T
+BBT .

Using the fact that Y (1)
m solves the low dimensional Lyapunov equation (7.10),
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we get

R1(X (1)
m ) = (VmWT

m − In)KB
mG
−1
m Y

(1)
m V

T
m +VmY

(1)
m G

−T
m (KB

m)T (VmWT
m − In)

=
[
VmY

(1)
m G

−T
m (VmWT

m − In)KB
m

] 0 I

I 0

 G
−1
m Y

(1)
m V

T
m

(KB
m)T (VmWT

m − In)


= U

(1)
m J(U

(1)
m )T .

We proceed in the same way for the proof of the second relation.

7.3 An adaptive choice of the interpolation points

and tangent directions

In the section, we will see how to chose the interpolation points {σi}mi=1, {µi}mi=1

and tangential directions {Ri}mi=1, {Li}mi=1, whereRi , Li ∈Rp×s. here we adopted the

same approach used in the previous chapters, inspired by the work in [14]. We

recall that for this approach, we extend our subspaces K̃m(A,B) and K̃m(AT ,CT )

by adding new blocks Ṽm+1 and W̃m+1 defined as follows

Ṽm+1 = (σm+1In −A)−1BRm+1, and W̃m+1 = (σm+1In −A)−TCT Lm+1, (7.20)

where the new interpolation point σm+1, µm+1 and the new tangent direction

Rm+1, Lm+1 are computed as follows

(Rm+1,σm+1) = arg max
ω ∈ Sm
R ∈Rp×s

‖R‖2 = 1

‖RB(ω)R‖2, (7.21)

(Lm+1,µm+1) = arg max
ω ∈ Sm
L ∈Rp×s

‖L‖2 = 1

‖RC(ω)L‖2. (7.22)

Where

RB(ω) = B− (ωIn −A)Vm(ωIm −Am)−1W T
mB, (7.23)

RC(ω) = CT − (ωIn −A)TWm(ωIm −Am)−TV T
mC

T . (7.24)
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For solving the problem (7.21), we proceed in same way as in the previous

chapters, i.e we solve first the following problem,

σm+1 = argmaxω∈Sm‖RB(ω)‖2. (7.25)

Then the tangent direction Rm+1 is computed by evaluating (7.21) at ω = σm+1,

Rm+1 = arg max
R ∈Rp×s

‖R‖2 = 1

‖RB(σm+1)R‖2 . (7.26)

We can easily prove that the tangent matrix direction Rm+1 is given as

Rm+1 = [r(m+1)
1 , ..., r

(m+1)
s ],

where the r(m+1)
i ’s are the right singular vectors corresponding to the s largest

singular values of the matrix RB(σm+1). This approach of maximizing the residual

norm, works efficiently for small to medium matrices, but cannot be used for

large scale systems. To overcome this problem, we give the following proposition.

Proposition 7.1 Let RB(ω) = B − (ωIn − A)VmUB
m(ω) and RC(ω) = CT − (ωIn −

A)TWmU
C
m (ω) be the residuals given in (7.23) and (7.24), where UB

m(ω) = (ωI −
Am)−1

W
T
mB and UC

m (ω) = (ωI − Am)−TV T
mC

T . Then we have the following new
expressions

RB(ω) = (VmW
T
m − In)KB

mG
−1
m U

B
m(ω), (7.27)

and
RC(ω) = (WmV

T
m − In)KC

mQ
−1
m U

C
m (ω). (7.28)

Proof : The residual RB(ω) can be written as

RB(ω) = B−ωVmUB
m(ω) +AVmUB

m(ω)

= B+AVmUB
m(ω)−Vm(ωIms −Am)(ωIms −Am)−1

W
T
mB

−VmAm(ωIms −Am)−1
W

T
mB

= B+AVmUB
m(ω)−VmWT

mB−VmAmUB
m(ω)

= (In −VmWT
m)B+ (AVm −VmAm)UB

m(ω),
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Since B ∈ Range{V1, ...Vm}, then (In −VmWT
m)B = 0. Using Equation (7.19), we get

AVm −VmAm = −KB
mG
−1
m +VmW

T
mK

B
mG
−1
m ,

which proves (7.27). In the same way we can prove (7.28).

The expression of RB(ω) given in Proposition (7.1) allows us to significantly

reduce the computational cost while seeking the next pole and direction, by

applying the skinny QR decomposition

(VmW
T
m − In)KmG

−1
m =QL,

we get the simplified residual norm

‖RB(ω)‖2 =
∥∥∥LUB

m(ω)
∥∥∥

2
. (7.29)

This means that, solving the problem (7.21) requires only the computation of

matrices of size ms ×ms for each value of ω.

The next algorithm, summarizes all the steps of the adaptive choice of tangent

interpolation points and tangent directions.

Algorithm 15 (The Adaptive Block Tangential Lanczos (ABTL) algorithm) .
– Given A, B, C, mmax, ε.
– Outputs : Z(1)

m , Z(2)
m .

1. Set B =H1,0V1 and CT = F1,0W1 such that W T
1 V1 = Ip.

2. Initialize : V1 = [V1], W1 = [W1].

3. For m = 1 :mmax

4. Set Am = W
T
mAVm, Bm = W

T
mB, Cm = CVm.

5. Compute σm, and µm
— Compute {λ1, ...,λm} eigenvalues of Am.
— Determine Sm, convex hull of {−λ1, ...,−λm}.
— Solve (7.25). The same for µm.

6. Compute right and left vectors Rm, Lm.

7. Ṽm = (σmIn −A)−1BRm, W̃m = (µmIn −A)−TCT Lm.
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8. For i = 1,...,m
– Hi,m =W T

i Ṽm+1, – Fi,m = V T
i W̃m+1,

– Ṽm+1 = Ṽm+1 −ViHi,m, – W̃m+1 = W̃m+1 −WiFi,m,

9. End.

10. Ṽm+1 = Vm+1Hm+1,m, W̃m+1 =Wm+1Fm+1,m. (QR decomposition).

11. W T
m+1Vm+1 = PmDmQTm. (Singular Value Decomposition).

12. Vm+1 = Vm+1QmD
−1/2
m , Wm+1 =Wm+1PmD

−1/2
m .

13. Hm+1,m =D1/2
m QTmHm+1,m, Fm+1,m =D1/2

m P TmFm+1,m.

14. Vm+1 = [Vm, Vm+1], Wm+1 = [Wm, Wm+1].

15. Solve (7.10) and (7.11) to get Y (1)
m and Y (2)

m .

16. If max(‖ R1(X (1)
m ) ‖2,‖ R2(X (2)

m ) ‖2) < ε Stop.

17. End.

18. Compute Z(1)
m , Z(2)

m as in (7.30).

In order to save memory, Algorithm 15 allows us to compute the approximations

X (1)
m = Z(1)

m (Z(1)
m )T and X (2)

m = Z(2)
m (Z(2)

m )T in a factored form, where

Z
(1)
m = VmŨ1Λ

1
2
1 Z

(2)
m = WmṼ1Γ

1
2

1 . (7.30)

The matrices Ũ1, Λ1, Ṽ1 and Γ1 are obtained via the eigenvalue decomposition of

the low rank solutions Y (1)
m = ŨΛŨT , Y (2)

m = Ṽ Γ Ṽ T and Ũ = [Ũ1 Ũ2], Ṽ = [Ṽ1 Ṽ2]

such that Λ = diag(Λ1,Λ2), Γ = diag(Γ1,Γ2) verify max(diag(Λ1)) > dtol and

max(diag(Γ1)) > dtol for some given tolerance dtol.

7.4 Adaptive Block Tangential Arnoldi (ABTA) al-

gorithm

Consider the following Lyapunov equation,

AX +XAT +BBT = 0. (7.31)
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The solution X is approximated by Xm such that

Xm = VmYmV T
m , (7.32)

and satisfying the Galerkin condition,

V
T
mR(Xm)Vm = 0, (7.33)

where the residual is given byR(Xm) = AXm+XmAT+BBT and Vm = [V1,V2, . . . ,Vm]

is a matrix obtained from the orthonormal basis Vm = Range{V1,V2, . . . ,Vm}
constructed from the following tangential subspaceRange{B, (σ1In−A)−1BR1, ..., (σmIn−
A)−1BRm}. From (7.32) and (7.33) ,Ym is obtained by solving the low-dimensional

Lyapunov matrix equation

AmYm +YmATm +BmB
T
m = 0,

where Am = V
T
mAVm, Bm = V

T
mB. Notice that, we consider here only one tangen-

tial subspace. All the results obtained in the previous section can be adapted for

the adaptive block Arnoldi method. For the computation of the residual norms,

we have the following result

Theorem 7.3 Let Vm = [V1, ...,Vm] obtained from BTAA. Let Xm = VmYmV T
m , be the

approximate solution of the Lyupunov matrix equation, then the residual norm is
given as

‖ R(Xm) ‖2=‖ SmJSm ‖2, (7.34)

where Sm is an upper triangular matrix obtained from the skinny QR decomposition
of the matrix

Um =
[
VmYmG−Tm (In −VmV T

m )KB
m

]
.

Proof : The proof is similar to the one given in the proof of Theorem 7.3.

The choice of the interpolation points and tangent directions is the same as in

the previous section,

(Rm+1,σm+1) = arg max
ω ∈ Sm
R ∈Rp×s

‖R‖2 = 1

‖RB(ω)R‖2. (7.35)
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where RB(ω) = B − (ωIn −A)Vm(ωIm −Am)−1Bm. The algorithm will be named

Adaptive Block Tangential Arnoldi (ABTA) and is summarized as follows.

Algorithm 16 (The Adaptive Block Tangential Arnoldi (ABTA) algorithm) .
– Inputs A, B, mmax, ε and dtol.

1. Set B =H1,0V1 and initialize : V1 = [V1].

2. For m = 1 :mmax

3. Set Am = V
T
mAVm, Bm = V

T
mB.

4. Compute the interpolation points σm and the directions Rm.

5. Ṽm = (σmIn −A)−1BRm.

6. For i = 1,...,m
— Hi,m = V T

i Ṽm+1,
— Ṽm+1 = Ṽm+1 −ViHi,m,

7. End.

8. Ṽm+1 = Vm+1Hm+1,m. (QR decomposition).

9. Vm+1 = [Vm, Vm+1].

10. Compute the approximate Ym.

11. If ‖ R(Xm) ‖2< ε, stop.

12. End.

13. Compute Zmmax .

7.5 Numerical experiments

In this section, we present some numerical examples to show the effectiveness

of the adaptive block tangential Arnoldi & Lanczos-types algorithms (ABTA &

ABTL). All the experiments were carried out using the CALCULCO computing

platform, supported by SCoSI/ULCO (Service Commun du Système d’Informa-

tion de l’Université du Littoral Côte d’Opale). The algorithms were coded in

Matlab R2017a.
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Example 1 : In this first experiment, we used the rail3113 model (n=3113,

p=6). Figures 7.1a and 7.1b represent the norm of the original transfer function

‖H(jω)‖2 and the norm of the reduced transfer function ‖Hm(jω)‖2 versus the

frequencies ω ∈ [10−6, 106] for both methods ABTL (left) and ABTA (right). The

dimension of the reduced model m=20.
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(a) ABTL method.
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(b) ABTA method.

Figure 7.1 – The RAIL3113 model : n=3113, p=6.

Example 2 : In this part, we compared the ABTA & ABTL algorithms with

(RKSM) that solves a large-scale Lyapunov matrix equation by means of the

adaptive Rational Krylov method with Galerkin condition for more see [13]

and (TRKSM) where the tangential approach is used [14]. The Matlab imple-

mentations of (RKSM) and (TRKSM) have been downloaded from Simoncini’s

web page 1. We used the FDM model. Different choices of columns for B and C

were performed. The number of inner grid points in each direction is n0 and

the dimension of A is n = n2
0, various value of n0 are used. Plots in Figures 7.2a

and 7.2b, represent the exact error ‖H(jω) −Hm(jω)‖2 versus the frequencies

ω ∈ [10−6, 106] of the four methods, the ABTA method (solid line), the ABTL

method ( dashed-dotted line), the RKSM (dashed-dashed line) and TRKSM (dot-

ted line). The matrices B and C were random, the stopping tolerance for the

Frobenius norm of the Lyapunov equation residual was set to 10−8. Plots in

Figure 7.2b represent the same thing but with the matrix C = BT .

1. http ://www.dm.unibo.it/ simoncin/software.html
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(b) B=rand(n,p), C = BT .

Figure 7.2 – The FDM model : n=4900, p=6.

We present below Table 7.1 that gives more information about the plots in

Figures 7.2a and 7.2b, where we present the execution time, the maximum space

dimension, the rank dimension, the H∞ and H2 error norms obtained by each

method. The maximum space dimension is the the dimension of the matrices

obtained after the stopping tolerance tol = 10−8 and the rank dimension is

dimension obtained as in (7.30).

n=4900 p=6 Time S. Dim Rank Err-H∞ Err-H2
ABTA 3.90s 96 96 2.5×10−9 5.7×10−9

B=rand(n,p) ABTL 5.67s 126 126 1.2×10−11 2.5×10−11

C=rand(p,n) RKSM 73.28s 66 60 3.1×10−4 3.4×10−3

TRKSM 2.59s 88 88 5.7×10−6 6.4×10−5

ABTA 3.11s 90 90 3.7×10−9 1.3×10−8

B=rand(n,p) ABTL 3.12s 96 96 5.5×10−10 2.2×10−9

C=BT RKSM 76.37s 60 66 4.4×10−5 4.9×10−4

TRKSM 2.56s 89 89 5.8×10−8 2.3×10−7

Tableau 7.1 – The calculation time and dimension of convergence

Example 3 : In this example we compared, the Rank dimension (Figure 7.3a),

the Err-H∞ norm (Figure 7.3b) and the execution time (Figure 7.4) as p the rank

of the matrix B is grown. In all plots of Figures (7.3a) to (7.4), the ABTL method

( solid line), the ABTA method ( dashed-dotted line), the RKSM ( dashed-dashed
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line) and TRKSM (black dashed-dotted line). We used the FDM model of size

n=10000 and the matrix B = A−1Ip with p ranging from 4 to 24.
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Figure 7.3 – The FDM model : n=22500, p=6.
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Figure 7.4 – FDM model : The execution time

Figure 7.3a shows that the four methods have the same rank dimension and

is growing with as p grows, in Figure 7.3b we notice that our both methods

and RKSM give better H∞-err norm than TRKSM method, but in Figure 7.4

we can see clearly that TRKSM have the best execution time, followed by our

both methods, and finally RKSM method with very bad execution time as shown



124CHAPITRE 7. A tangential method for the Balanced Truncation in model reduction

above. In short, we can say that, our both methods have the performance of the

RKSM method with a execution time near to that of the TRSKM method.

Example 4 : For this experiment, we used the FLOW matrix of size n = 9669,

from the Oberwolfach collection, we compared the four methods, the results are

reported in table 7.2 and implemented in Figure 7.5a and 7.5b. We notice that

for the RKSM method, the space dimension is so small compared to the other

methods, because RKSM achieved the stopping tolerance after two iterations,

which gives bad results as shown in the plots and the table and also still have

the the longest execution time.

FLOW p=6, s=p Time S. Dim Rank Err-H∞ Err-H2
ABTA 13.94s 132 132 3.07×10−5 1.22×10−4

B=rand(n,p) ABTL 13.01s 132 132 3.06×10−5 1.22×10−4

C=rand(p,n) RKSM 20.43s 12 8 6.82×10+5 4.88×10+6

TRKSM 8.85s 126 126 6.54×10−5 2.54×10−4

ABTA 10.00s 84 84 1.21×10−5 7.42×10−5

B=rand(n,p) ABTL 8.73s 84 84 1.21×10−5 7.42×10−5

C=BT RKSM 33.65s 12 8 4.08×10+4 1.99×10+5

TRKSM 6.38s 73 73 2.05×10−4 1.16×10−3

Tableau 7.2 – The execution time and dimension of convergence
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Figure 7.5 – The Flow model : n=9669, p=6.

Example 5 : In this experiment, we used the rail20209 and rail79841 models

with a fixed m = 20. These models describe the steel rail cooling problem and are
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also from the Oberwolfach collection. The plots below represent the exact error

‖H(jω)−Hm(jω)‖2 versus the frequencies of the tree methods ABTA ( solid line),

the ABTL ( dashed-dotted line) and TRKSM ( dashed-dashed line), the stopping

tolerance was set to 10−6.
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(a) The RAIL20209 model.
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(b) The RAIL79841 model.

Figure 7.6 – ‖H(jω)−Hm(jω)‖2 vs the frequencies.

Figure 7.6a represents the rail20209 model (n=20209, p=6), we notice that the

tree methods coincide, with an execution time almost the same (TRKSM : 9.26

seconds, ABTL : 9.76 seconds, ABTA : 10.45 seconds). Figure 7.6b represents

the rail79841 model (n=79841, p=6), the matrices B and C were random. The

execution time for this example is as follows : (ABTL : 85.99 seconds, ABTA :

99.45 seconds, TRKSM : 119.76 seconds).

Example 6 : In this last experiment, we present the Table 7.3 below, that contains

the execution time, space dimension, rank dimension, theH∞ andH2-err norms

of the FDM model with a large dimension (n=122500 & n=90000), the stopping

tolerance was set to 10−6. We notice that for this large scales system, our methods

are faster and give better error norms.

7.6 Conclusion

In the present chapter, we proposed a new approach based on block tangential

Krylov subspaces to compute low rank approximate solutions to large Lyapunov
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n=122500 p=6, s=6 Time S. Dim Rank Err-H∞ Err-H2
ABTA 151.57s 108 108 7.64×10−7 3.28×10−6

B=rand(n,p) ABTL 84.58s 102 102 1.53×10−6 7.36×10−6

TRKSM 596.04s 92 92 2.53×10−4 2.81×10−3

n=90000 p=6, s=3 Time S. Dim Rank Err-H∞ Err-H2
ABTA 108.13s 66 3 2.21×10−15 2.53×10−14

B=A−1Ip ABTL 64.82s 72 3 2.22×10−15 2.53×10−14

TRKSM 150.95s 60 3 2.03×10−15 2.33×10−14

Tableau 7.3 – The execution time and dimension of convergence

equations. These approximate solutions are given in factored forms and are used

to build reduced order models that approximate the initial large scale dynami-

cal systems with multiple inputs and multiple outputs (MIMO). The method

constructs sequences of orthogonal blocks from matrix tangential Krylov sub-

spaces using the block Lanczos-type or Arnoldi-type approaches. We construct

approximate Gramians which are used in the balanced truncation method. The

interpolation shifts and the tangential directions are selected in an adaptive way

by maximizing the residual norms. We gave some new algebraic properties and

compared our algorithms with well knowing methods to show the effectiveness

of this latter.



Chapitre8
Conclusions and perspectives

In this chapter, we provide a brief review of the main results on model order

reduction of large-scale dynamical systems described in the previous chapters.

Moreover we give some suggestions on future works that can develop new

techniques for model reduction.

8.1 Summary of result

The major contributions of this thesis are the development of new interpolation

techniques for the reduction of dynamical linear systems, with multiple inputs

and multiple outputs (MIMO), using projection methods onto tangential Krylov

subspaces. The different techniques developed in this thesis are summarized as

the following :

• In chapter 4, we proposed the adaptive block tangential Arnoldi method,

where we used the projection onto the block tangential krylov subspace,

this latter contain tangential matrix directions and interpolation points

obtained using the adaptive technique, and we generate an orthonormal

subspace from the tangential krylov subspace using the Arnoldi-type

algorithm.

• In chapter 5, we have based on the global approach that used the Krone-

cker and the diamond products. This technique allows us the devellope

a new algorithm called : Adaptive Global Tangential Arnoldi Algorithm

127



128 CHAPITRE 8. Conclusions and perspectives

(AGTAA) . New theorems and alegebriac properties are presented, and

the numerical experiments show the efectivness of this new approch.

• In chapter 6, we used the oblique projection for the original system onto

the tangential krylov subspaces and his dual. Then Lanczos-type pro-

cedure is used to generate two bi-orthonormal subspaces. Tha adaptive

approach is used for the selecting tof he next interpolation point and tan-

gential direction by maximizing the residual norm. The method proposed

here named : Adaptive Tangential Lanczos-type Algorithm (ATLA).

• In chapter 7, we projected the large Lyapunov equations onto block tan-

gential Krylov subspaces, to compute low rank approximate solutions.

These latter are used to build reduced order models that approximate

the initial large scale dynamical systems with multiple inputs and mul-

tiple outputs (MIMO). We used the adaptive for the choice of the inter-

polation points and the matrix tangential directions, and we used two

approaches for generating the projection bases. We present two algo-

rithms named : Adaptive Block Tangential Lanczos-type & Arnoldi-type

algorithms (ABTL & ABTA).

8.2 Perspectives

The main of this thesis was to provide efficient algorithms using the tangential

Krylov subspaces for the reduction of Linear Time-Invariant (LTI) large-scale

dynamical systems. One of the perspectives is to apply the techniques developed

in this dissertation, on a linear in state and parameterized dynamical systems,

with d parameters p = [p1, ...,pd]T ∈Ω ⊂ R
d (usually, Ω is a bounded domain)

defined as : E(p)ẋ(t,p) = A(p)x(t,p) +B(p)u(t)

y(t,p) = C(p)x(t,p)
with x(0,p) = 0,

where t ∈ [0,∞). The state-vector is denoted by x(t,p) ∈Rn. u(t) ∈Rm and y(t,p) ∈
R
q denote, respectively, the inputs (excitations) and outputs (observations or

measurements) of the model. The state-space matrices, then, have the dimensions
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E(p),A(p) ∈ Rn×n, B(p) ∈ Rn×m, and C(p) ∈ Rq×n. Another futures possibility, is

reducing or searching for a low-dim of non-linear dynamical system defined in

(1.1) as :  ẋ(t) = f (t,x(t),u(t))

y(t) = g(t,x(t),u(t))

by using the projection onto the tangential and the rational Krylov subspaces.
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Méthodes tangentielles pour les réductions de modèles et applications

Résumé

Les simulations à grande dimension jouent un rôle crucial dans l’étude d’une grande va-
riété de phénomènes physiques complexes, entraînant souvent des demandes écrasantes
sur les ressources informatiques. La gestion de ces demandes constitue la principale
motivation pour la réduction du modèle : produire des modèles de commande réduite
plus simples, qui permettent une simulation plus rapide et moins coûteuse tout en se
rapprochant avec précision du comportement du modèle d’origine. La présence des sys-
tèmes avec multiple entrées et multiple sorties (MIMO) rend le processus de réduction
encore plus difficile. Dans cette thèse, nous nous intéressons aux méthodes de réduction
de modèles à grande dimension en utilisant la projection sur des sous-espaces de Krylov
tangentielles. Nous nous penchons sur le développement de techniques qui utilisent
l’interpolation tangentielle. Celles-ci présentent une alternative efficace et intéressante
à la troncature équilibrée qui est considérée comme référence dans le domaine et tout
particulièrement la réduction pour les systèmes linéaire à temps invariants. Enfin, une
attention particulière sera portée sur l’élaboration de nouveaux algorithmes efficaces et
sur l’application à des problèmes pratiques.

Mots clés : réduction de modèle, interpolation, sous-espace de krylov

Tangential methods for model reductions and applications

Abstract

Large-scale simulations play a crucial role in the study of a great variety of complex
physical phenomena, leading often to overwhelming demands on computational re-
sources. Managing these demands constitutes the main motivation for model reduction:
produce simpler reduced-order models, which allow for faster and cheaper simulation
while accurately approximating the behaviour of the original model. The presence of
multiple inputs and outputs (MIMO) systems, makes the reduction process even more
challenging. In this thesis we are interested in methods of reducing large-scale models,
using projection on tangential Krylov subspaces. We are looking at the development of
techniques using tangential interpolation. These present an effective and interesting
alternative to the balanced truncation which is considered as a reference in the field
and especially for the reduction of linear time invariant systems. Finally, special atten-
tion will be focused on the development of new efficient algorithms and application to
practical problems.

Keywords: model reduction, interpolation, krylov subspace
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