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Abstract
Mechanical and physical properties of complex heterogeneous materials are de-

termined on one hand by the composition of their constituents, but can on the other
hand be drastically modified by their microstructural geometrical shape. Topology op-
timization aims at defining the optimal structural or material geometry with regards to
specific objectives under mechanical constraints like equilibrium and boundary condi-
tions. Recently, the development of 3D printing techniques and other additive manu-
facturing processes have made possible to manufacture directly the designed materials
from a numerical file, opening routes for totally new designs. The main objectives of
this thesis are to develop modeling and numerical tools to design new materials using
topology optimization. More specifically, the following aspects are investigated. First,
topology optimization in mono-scale structures is developed. We primarily present a
new evolutionary topology optimization method for design of continuum structures
with smoothed boundary representation and high robustness. In addition, we propose
two topology optimization frameworks in design of material microstructures for ex-
treme effective elastic modulus or negative Poisson’s ratio. Next, multiscale topology
optimization of heterogeneous materials is investigated. We firstly present a concurrent
topological design framework of 2D and 3D macroscopic structures and the underlying
three or more phases material microstructures. Then, multiscale topology optimization
procedures are conducted not only for heterogeneous materials but also for mesoscopic
structures in the context of non-separated scales. A filter-based nonlocal homogeniza-
tion framework is adopted to take into account strain gradient. Finally, we investigate
the use of topology optimization in the context of fracture resistance of heterogeneous
structures and materials. We propose a first attempt for the extension of the phase-field
method to viscoelastic materials. In addition, phase-field methods for fracture able to
take into account initiation, propagation and interactions of complex both matrix and
interfacial micro cracks networks are adopted to optimally design the microstructures
to improve the fracture resistance.
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Résumé
Les propriétés effectives mécaniques et physiques des matériaux hétérogènes dépen-

dent d’une part de leurs constituants, mais peuvent également être fortement modi-
fiées par leur répartition géométrique à l’échelle de la microstructure. L’optimisation
topologique a pour but de définir la répartition optimale de matière dans une struc-
ture en vue de maximiser un ou plusieurs objectifs tels que les propriétés mécaniques
sous des contraintes telles que la masse de matière. Récemment, les développements
rapides de l’impression 3D ou d’autres techniques de fabrication additive ont rendu
possible la fabrication de matériaux avec des microstructures "à la demande", ouvrant
de nouvelles perspectives inédites pour la conception de matériaux. Dans ce contexte,
les objectifs de cette thèse sont de développer des outils de modélisation et de sim-
ulation numériques pour concevoir des matériaux et des structures hétérogènes ayant
des propriétés optimisées basés sur l’optimisation topologique. Plus précisément, nous
nous intéressons aux points suivants.

Premièrement, nous proposons des contributions à l’optimisation topologique à
une seule échelle. Nous présentons tout d’abord une nouvelle méthode d’optimisation
topologique avec évolution pour la conception de structures continues par descrip-
tion lisse de bords. Nous introduisons également deux techniques d’homogénéisation
topologique pour la conception de microstructures possédant des propriétés effectives
extrêmes et des « meta propriétés » (coefficient de Poisson négatif). Dans une seconde
partie, des techniques multi échelle basées sur l’optimisation topologique sont dévelop-
pées. Nous proposons d’une part une approche concourante de structures hétérogènes
dont les microstructures peuvent posséder plus de deux matériaux. Nous développons
ensuite une approche d’optimisation topologique dans un cadre d’homogénéisation
pour des échelles faiblement séparées, induisant des effets de gradient.

Enfin dans une troisième partie, nous développons l’optimisation topologique pour
maximiser la résistance à la fracture de structures ou de matériaux hétérogènes. La
méthode de champs de phase pour la fracture est combinée à la méthode BESO pour
concevoir des microstructures permettant d’augmenter fortement la résistance à la rup-
ture. La technique prend en compte l’initiation, la propagation et la rupture complète
de la structure.
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Chapter 1

Introduction

In this first Chapter, the background and motivations of the thesis are presented in Sec-
tion 1.1. Literature review on related subjects, including topology optimization meth-
ods, material design and multiscale optimization, fracture resistance design are given
in Section 1.2. Outline of the thesis is presented lastly in Section 1.3.

1.1 Background and motivations

Topological optimization has been an active research topic in the last decades and has
become a subject of major importance with the growing development of additive man-
ufacturing processes, which allow fabricating workpieces like lattice structures with
arbitrary geometrical details. In that context, topology optimization [15, 3] aims to de-
fine the optimal structural or material geometry with regards to specific objectives (e.g.
maximal stiffness, minimal mass, or maximizing other physical/mechanical proper-
ties), under mechanical constraints like equilibrium and boundary conditions. The key
merit of topology optimization over conventional size and shape optimization is that
the former can provide more design freedom, consequently leading to the creation of
novel and highly efficient designs. By the topology optimization technique, designers
can make the best use of limited materials and guide the concept design of various
practical structures, especially in automotive and aerospace engineering.

In the recent years, there is an increasing use of high-performance heterogeneous
materials such as fibrous composite, concrete materials, 3D printed materials etc. Me-
chanical and physical properties of complex heterogeneous materials are determined
on one hand by the composition of their constituents, but can on the other hand be
drastically modified, at a constant volume fraction of heterogeneities, by their geomet-
rical shape and by the presence of interfaces. Topological optimization of microstruc-
tures can help designing materials with higher effective properties while maintaining
the volume fraction of constituents, or to obtain new properties which are not natu-
rally available (metamaterials). Recently, the development of 3D printing techniques
or additive manufacturing processes have made possible to manufacture directly the
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designed materials from a numerical file, opening routes for totally new designs, as
is shown in Fig. 1.1. It is no exaggeration to say that "additive manufacturing" and
"topology optimization" are the best couple for each other. To this end, systematic and
comprehensive research on topological design of complex heterogeneous materials is
of great significance for academic research and engineering applications.

(a)

(b)

FIGURE 1.1: 3D printed lattice materials: (a) cubic and (b) cylindrical
configurations [115].

However, in topology optimization applied to material modeling, the assumption
of scale separation is often assumed. This assumption states that the characteristic
length of the microstructural details are much smaller than the dimensions of the struc-
ture, or that the characteristic wavelength of the applied load is much larger than that
of the local fluctuation of mechanical fields [58]. In additive manufacturing of architec-
tured materials like lattice structures, the manufacturing process might induce limita-
tions on the size of local details, which can lead to a violation of scale separation when
the characteristic size of the periodic unit cell within the lattice is not much smaller
than that of the structure. In such case, classical homogenization methods may lead to
inaccurate description of the effective behavior as non local effects, or strain-gradient
effects, may occur within the structure. On the other hand, using a fully detailed de-
scription of the lattice structure in an optimization framework could be computation-
ally very costly. One objective of this thesis work is to develop multiscale topology
optimization procedures not only for heterogeneous materials but also for mesoscopic
structures in the context of non-separated scales.

On the other hand, fatigue or failure characteristics of engineering structures are
another subject of great concern, as shown in Fig. 1.2. Microcracking is known as
significant factor affecting the mechanical properties and the long term behavior of
engineering facilities. The accurate modelling of these phenomena including their cou-
pled effects have then to receive a special attention. In addition, topology optimization
design of composite materials accounting for fracture resistance is a rather challenging
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(a) (b)

FIGURE 1.2: Damage phenomena in engineering: (a) macroscopic struc-
ture; (b) cracks [122].

task. It is desired to improve the fracture resistance of heterogeneous materials in terms
of the required mechanical work, through an optimal placement of the inclusion phase,
taking into account the cracks nucleation, propagation and interaction. However, this
research remains relatively unexplored so far with the following reasons. Firstly, there
is lack of robust numerical methods for fracture propagation in presence of complex
heterogeneous media until recently, especially when interface effects are presented.
Secondly, these numerical simulation models should be formulated in a context com-
patible with topological optimization scheme. For these reasons, there has been very
limited research in the literature on topology optimization for maximizing the fracture
resistance of heterogeneous materials before the recent works from the author and his
collaborators [173, 46].

1.2 Literature review

In the following, Section 1.2.1 provides a brief literature review on the developments of
topology optimization methods. Section 1.2.2 reviews material microstructure design
and extension to multiscale topological optimization with or without scale separation.
Section 1.2.3 presents the newly proposed fracture resistance design framework, by
combing the phase field method to take into account the heterogeneities and their in-
terfaces in the material.

1.2.1 Topology optimization methods

Over the past decades, topology optimization has undergone a tremendous develop-
ment since the seminal paper by [15]. The key merit of topology optimization over
conventional size and shape optimization is that the former can provide more design
freedom, consequently leading to the creation of novel and highly efficient designs. So
far, various topology optimization methods have been proposed, e.g., density-based
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methods [14, 191, 17], evolutionary procedures [179, 180], level-set method (LSM) [138,
164, 5], hybrid cellular automaton [154] and phase field method [24]. All of these meth-
ods are based on finite element analysis (FEA) where the design domain is discretized
into a number of finite elements. With such a setting, the optimization procedure is
then to determine which points of the design domain should be full of material (solid
elements) and the others void (or soft elements), as shown in Fig. 1.3. According to the
update algorithm, these methods can be categorized in general into two groups: den-
sity variation and shape/boundary variation. So far, topology optimization technique
has already become an effective tool for both academic researches and engineering ap-
plications. A general review of various methods and their applications has been pre-
sented by [49]. Regarding their strengths, weaknesses, similarities and dissimilarities,
a critical review and comparison on different approaches is also given by [146].

Level-set method (LSM) is a typical shape/boundary variation approach which
maintains the capability of topological change. It describes the structural topology
implicitly by the iso-contours of a level-set function. By LSM, a fixed rectilinear spa-
tial grid and a finite element mesh of a given design domain are constructed sepa-
rately, which allows the separation of the topological description from the physical
model. With the merits of the flexibility in handling complex topological changes
and the smoothness of boundary representation, LSM has been successfully applied to
an increasing variety of design problems, involving e.g., multi-phase materials [163],
shell structures [128], geometric nonlinearities [102], stress minimization [4] and con-
tact problem [117]. The reader is referred to the comprehensive review in [51] for more
theoretical details of different LSMs for structural topology optimization.

Design region

?

FIGURE 1.3: Illustration for structure topology optimization.

Density-based methods are the most commonly used topology optimization ap-
proaches, such as the popular solid with isotropic material with penalization (SIMP)
method. The SIMP method uses continuous design variables for topology optimiza-
tion, which can be interpreted as material pseudo densities [14, 191, 113]. The physical
justification of SIMP was provided by [16]. A popular 99-line topology optimization
Matlab code using the SIMP method was developed in [141] for education purposes.
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As a successor of the 99-line code, a more efficient 88-line Matlab code was also pro-
vided by Andreassen et al. [12] with high computational efficiency and alternative
filter implements. More details including theory, numerical methods and applications
on the SIMP method can be found in [17].

As another important branch of topology optimization, evolutionary structural op-
timization (ESO) [179, 180, 151] and its later version bidirectional ESO (BESO) [76] have
shown promising performance when applying to a wide range of structural design
problems. ESO-type methods use a simple heuristic scheme to evolve the structural
topology towards an optimum by gradual removing redundant or inefficient materi-
als. The BESO method allows not only material removal, but also material addition,
showing efficient and reliable performance in various design problems [78, 77, 74, 168,
169, 171, 79, 161, 41]. The early development of ESO-type methods was summarized
by Xie and Steven [180]. The development of the BESO method and its various appli-
cations up to year 2010 can been founded in [77].A comprehensive review on the BESO
method for advanced design of structures and materials was recently presented by Xia
et al. [175].

As an extension to the original BESO method, the author and his collaborators have
proposed a new evolutionary topology optimizatio (ETO) method [44] to design con-
tinuum structures, by introducing a sensitivity-based level-set function (LSF). The pro-
posed ETO method identifies the topology far beyond elements, and it does not in-
volve the removal/addition of elements during the optimization process, resulting in a
smoothed boundary representation and high robustness. The smooth structural topol-
ogy has been extended to the robust topology optimization of continuum structures
under loading and material uncertainties in [105]. Inspired by the ETO method, the
material removal scheme of the evolutionary-type methods has been combined with
LSM to nucleate holes in the structure for optimization design of heat conduction [176].

Recently, a new computational framework for structural topology optimization based
on the concept of moving morphable components is proposed [65]. The basic idea of
this method is to use a set of deformable components as the basic building block of
optimization structures, so as to tailor the structure topology through deformation,
merge and overlap operations between components. Therefore, the design variables of
the method are reduced during the topology optimization process, and the topological
geometries of the structure can be presented explicitly [189, 67, 188].

1.2.2 Material design and multiscale optimization

Initially restricted to optimizing the geometry of structures, the topology optimization
techniques have been extended to optimizing the topology of the phase within mate-
rials, e.g. in periodic microstructures, to design high performance materials [144, 148,
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142, 183, 63, 62, 162, 11, 35, 79] or materials with properties not found in nature (nega-
tive Poisson’s ratio, zero compressibility, negative bulk modulus, etc. (see [166, 38, 43,
126]) or complex multiphysics problems [119, 118]. These techniques are based on op-
timizing the homogenized properties of the representative volume element, and using
numerical solving methods like finite elements to compute the homogenized proper-
ties [107, 72, 73, 10], given one geometry of the phases and their microscopic properties,
as is shown in Fig. 1.4. A review of topological optimization of microstructures in the
linear context can be found in e.g. [30].

(a) (b) (d)(c)

FIGURE 1.4: Material topologies with extreme elastic modulus and neg-
ative Poisson’s ratio: (a) and (b) show the geometries with maximum
bulk modulus, (c) shows the geometry with maximum shear modulus,

(d) shows the geometry with negative Poisson’s ratio [43]

Rather than pure material design, material microstructures have also been tailored
for a fixed [80] structure to maximize macroscopic performance under specific bound-
ary conditions, e.g. structural stiffness [42]. In order to fully release the design freedom
within multiscale optimization, Rodrigues et al. [135] first described a hierarchical com-
putational procedure for optimization of material distribution as well as the local ma-
terial properties of mechanical elements, which has later been extended to 3D in [40]
and to account for hyperelasticity. Via this design strategy, simultaneous structure and
materials design has been studied extensively, such as for composite laminate orienta-
tions [139, 140, 39], closed liquid cell materials [104], or multi-objective functions, e.g.
maximum stiffness and minimum resistance to heat dissipation in [90], or minimum
thermal expansion of the surfaces in [50]. Extensions to nonlinear materials [169], mul-
tiple phase materials [41] and optimization considering uncertainties [68, 182] have
been proposed recently.

In the context of non-separated scales, the effectiveness of the classical homogenization-
based multiscale topology optimization framework for periodic lattice structures has
been firstly investigated in [45]. The characteristic dimensions of the periodic unit cells
in the lattice are comparable with the dimensions of the whole structure such that the
two scales can clearly not be separated. The dimensions of the unit cell range from
large to small as compared with the dimensions of the whole structure to highlight the
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size effect. By assuming the material microstructures are infinitely small, the inverse
homogenization designs for macroscopic structural performance were compared with
the mono-scale topology optimization framework in [181, 192].

On the other hand, several computational homogenization methods modeling com-
plex heterogeneous media when scales are not separated are available (e.g. gradient
models in [130, 89], nonlocal elsticity theories in [53] and domain decomposition meth-
ods in [94]). Among which, the filter-based nonlocal homogenization technique devel-
oped in [185, 186, 152] has been adopted in [47] to develop a topology optimization
procedure for heterogeneous lattice materials in the context of non-separated scales,
taking into account the strain gradient effects. The technique generalizes the homoge-
nization theory by replacing spatial averaging operators by linear low-pass filters, and
the major advantage is that it can take into account an arbitrary level of strain gradient
without higher order elements, in a classical finite element framework.

(a) (b)

Figure 15: Illustration of the optimal half-wheel composed of the microscopic unit cell A periodically; (a)
with scale separation; (b) without scale separation.

(b) it.10(a) it.5 (c) it.25

Figure 16: Some middle topologies of the bridge-type structure during the evolution for the cases (Bi): the
top row, and case (Biii): the bottom row.

designed material microstructures are obtained for specific boundary conditions of the considered
structures with the quantitative material volume fraction. The presented numerical benchmark ex-
amples demonstrate the effectiveness and significance of the proposed multiscale design optimiza-
tion framework. Future developments will include a concurrent topology optimization procedure
of complex materials and structures to further release the design freedom within multiscale design

18

FIGURE 1.5: Illustration of the two-scale optimized structure composed
of the patterned microstructure periodically: (a) with scale separation;

(b) non-separated scales.

In the case of giving fixed/optimized microscopic periodic cells, multiscale topolog-
ical design of mesoscopic structures without scale separation has been firstly proposed
in [48]. The idea is to use a computational homogenization method which takes into
account the strain gradient effects combined with a topological optimization scheme of
mesoscopic structures, allowing the topological optimization problem to be performed
on a coarse mesh, instead of using the fully detailed description of the structure for
computational saving, as shown in Fig. 1.5. In addition, other studies, e.g. [187, 2]
have also been devoted to topology optimization of structures in the context of non-
separated scales.
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FIGURE 1.6: (a) structure containing both bulk cracks and interface
cracks, possibly occurring at the interfaces, (b) mechanical response of

the damageable structure [46].

1.2.3 Fracture resistance design

Optimization design of composite materials accounting for fracture resistance remains
relatively unexplored so far, mainly due to the lack of robust numerical methods for
simulation of fracture propagation in presence of complex heterogeneous media and
interfaces, until recently. In addition, these numerical simulation models should be
formulated in a context compatible with topological optimization (e.g. finite elements).
In [61], Gu et al. used a modified greedy optimization algorithm for composites made
up of soft and stiff building blocks to improve material toughness. San and Waisman
[136] explored the optimal location of carbon black particle to maximize the rupture re-
sistance of polymer composites by a genetic algorithm. In a recent work by the author
and his collaborators [173], topology optimization for maximizing the fracture resis-
tance of quasi-brittle composites has been introduced by combining the phase field
method and a gradient-based BESO algorithm. However, in the mentioned work, the
crack propagation resistance was only evaluated on the basis of phase distribution. In
most heterogeneous quasi-brittle materials (e.g. ceramic matrix composites, cementi-
tious materials), the interfacial damage plays a central role in the nucleation and prop-
agation of microcracks [158, 95, 125, 120]. Therefore, we further extended the design
framework developed in [173] for defining through topological optimization the opti-
mal phase distribution in a quasi-brittle composite with respect to fracture resistance,
taking into account crack nucleation both in the matrix and in the interfaces, as de-
scribed in Fig. 1.6. To the author’s best knowledge, such study is investigated in this
thesis for the first time.

Simulating interfacial damage and its interaction with matrix crack for complex
heterogeneous materials is a highly challenging issue for meshing algorithms. Many
numerical methods such as eXtended Finite Element Method (XFEM) [114, 149], Thick
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Level-set method (TLS) [18, 33], and Phase Field Method (PFM) [54, 108, 91], among
the most recent popular techniques, have been introduced to investigate this topic.

Based on the pioneer works of Marigo and Francfort [54], the phase field method
makes use of a variational principle framework for brittle fracture [25, 26, 26] and of
a regularized description of the discontinuities related to the crack front [116, 6]. The
method has been adapted to a convenient algorithmic setting by Miehe et al. in [111].
The main advantages of the method are: (a) the crack paths are mesh-independent; (b)
initiation and propagation of multiple, complex cracks patterns can be easily handled;
(c) the method is convergent with respect to the mesh size and not sensitive to the mesh
regularity; (d) it is stable due to its inherent gradient-based formulation. In this thesis,
we use the extension of the phase field to interfacial damage as proposed in [123] to
take into account both bulk brittle fracture and interfacial damage.

While there do exist numerous researches on topology optimization including ma-
terial interface behavior (see e.g. [160, 96, 99, 13]), and with the enforcement of stress
constraints [52, 69, 177, 27, 101, 32, 31], local buckling constraint [150] or damage con-
straints [34, 8, 7, 83, 82, 85], topology optimization for maximizing the fracture re-
sistance, taking into account interactions between interfacial damage and bulk brittle
fracture for complete fracturing process is to our best knowledge explored for the first
time herein.

1.3 Outline of the thesis

The aim of this thesis is to study the topological design of complex heterogeneous
materials comprehensively and systematically, including material design, simultane-
ous multi-phase materials and structure design, multiscale optimization without scale
separation, phase field modeling and fracture resistance design, and newly proposed
topology optimization method. This thesis is organized as follows.

In contrast to conventional zigzag BESO designs and removal/addition of elements,
we develop a new topology optimizaton approach named ETO method in Chapter 2 to
design continuum structures with smoothed boundary representation. The proposed
ETO method determines implicitly the smooth structural topology by a level-set func-
tion (LSF) constructed by nodal sensitivity numbers. The analysis of the design model
is replaced by the FEA model with various elemental volume fractions, which are deter-
mined by the auxiliary LSF. The introduction of sensitivity LSF results in intermediate
volume elements along the solid-void interface of the FEA model, thus contributing to
the better convergence of the optimized topology for the design model. The content of
this Chapter has been published in [7].

In Chapter 3 we develop primarily a material design framework for inverse ho-
mogenization of material microstructures. Strain energy homogenization method is
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adopted to account the effective material properties of the complex heterogeneous ma-
terials. The discrete BESO method is first adopted to inversely tailor the material mi-
crostructures to achieve maximum effective elastic modulus. In addition, we firstly
introduce the implicit optimization method namely hybrid cellular automaton (HCA)
to material design. The values of elastic modulus of cellular automaton (CA) cells are
used as the design variables which are updated upon a local rule until stasfying the
optimum equilibrium. The numerical design framework is extended to obtain new
properties which are not naturally available, e.g. negative Poisson’s ratio. The content
of this Chapter is the part of published papers [5] and [6].

With the objective to further release design freedom within the inverse homogeniza-
tion framework presented in Chapter 3, we develop a so-called concurrent topology
optimization of structures and the underlying multi-phase material microstructures in
Chapter 4. This framework allows one to determine not only the best material lay-
out at the micro scale, but also the optimal use of the designed material at the macro
scale offering more design freedom on the two scales. We design the underlying three
or more phases material microstructures for both the solid and compliant composite
phases of the macroscale structures. Furthermore, we carry out the concurrent topol-
ogy optimization for both 2D and 3D materials and structures, which makes this work
distinguished from existing literatures on the related subjects. The generated interfaces
between different consitutive materials/composites are clear and distinctive which fa-
cilitates the manufacturing requirements. The content of this Chapter has been pub-
lished in [4].

We have so far adopted the assumption of scale separation between microscopic
materials and macroscopic structures. From Chapter 5, we focuse on multiscale topol-
ogy optimization in the context of non-separated scales. In this model, we primarily
present a topology optimization for periodic structures based on the classical homog-
enization. The dimensions of the unit cell range from large to small as compared with
the dimensions of the whole structure to highlight the size effect. Within the similar
established multiscale topology optimization framework without scale separation, we
employ a filter-based nonlocal homogenization method to take into account the effects
of strain gradient, allowing the topological optimization problem to be performed on a
coarse mesh, instead of using the fully detailed description of the structure for compu-
tational saving. In addition, the multiscale optimization model has been implemented
to design the geometry of mesoscopic structures with specific microscopic unit cells.
The microscopic RVE itself is defined as the design variable, and a stiffness interpola-
tion is introduced to derive the sensitivities in a clear manner. The second section of
this Chapter has been published in [3]. The rest has been given in papers [8] and [9].

Phase field modeling is extended in Chapter 6 and coupled to a linear viscoelastic
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behavior to mimic the creep of the heterogeneous materials. An energy-based formula-
tion is developed to express the equations governing viscoelastic mechanical and phase
field problems. A classical generalized Maxwell model is adopted for modelling this
viscoelastic behavior. Both 2D and 3D heterogeneous materials subjected to loading
with various durations are analyzed with regard to different crack patterns. The con-
tent of this Chapter has been given in [10].

In Chapter 7, we propose a topology optimization framework for optimizing the
fracture resistance of quasi-brittle composites through a redistribution of the inclusion
phases. A phase field method for fracture able to take into account initiation, prop-
agation and interactions of complex microcracks networks is adopted. This formula-
tion avoids the burden of remeshing problems during crack propagation and is well
adapted to topology optimization purpose. An efficient design sensitivity analysis is
performed by using the adjoint method, and the optimization problem is solved by an
extended BESO method. The sensitivity formulation accounts for the whole fractur-
ing process involving cracks nucleation, propagation and interaction, either from the
interfaces and then through the solid phases, or the opposite. The spatial distribution
of material phases is optimally designed using the extended BESO method to improve
the fractural resistance. We demonstrate through numerical examples that the fracture
resistance of the composite can be significantly increased at constant volume fraction of
inclusions by the topology optimization process. The first two sections of this Chapter
have been published in [1] and [2]. The last section is the part of the paper in prepara-
tion [11].

In Chapter 8, we conclude the thesis and give perspectives on future research.
Inspired by the work [141, 77, 12, 189, 172], we attach in Appendix A our Matlab

codes regarding topological design of continuum structures using the ETO method for
compliance minimization, which have been primarily provided in [7].

Note that the order of Chapters in this thesis is presented in a progressive and sys-
tematic way: from linear to nonlinear problems, from scale separation to non-separated
scales, and from stiffness design to fracture resistance optimization.
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Part I

Topology optimization of
mono-scale structures
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Chapter 2

Evolutionary topology optimization
of continuum structures with
smooth boundary representation

In this chapter, we develop an extended bi-directional evolutionary structural opti-
mization (BESO) method for topology optimization of continuum structures with smoothed
boundary representation. In contrast to conventional zigzag BESO designs and re-
moval/addition of elements, the newly proposed evolutionary topology optimization
(ETO) method, determines implicitly the smooth structural topology by a level-set
function (LSF) constructed by nodal sensitivity numbers. The projection relationship
between the design model and the finite element analysis (FEA) model is established.
The analysis of the design model is replaced by the FEA model with various elemen-
tal volume fractions, which are determined by the auxiliary LSF. The introduction of
sensitivity LSF results in intermediate volume elements along the solid-void interface
of the FEA model, thus contributing to the better convergence of the optimized topol-
ogy for the design model. The effectiveness and robustness of the proposed method
are verified by a series of 2D and 3D topology optimization design problems includ-
ing compliance minimization and natural frequency maximization. We show that the
developed ETO method is capable of generating a clear and smooth boundary rep-
resentation; meanwhile the resultant designs are less dependent on the initial guess
design and the finite element mesh resolution.

The remainder of this chapter is organized as follows: Section 2.1 presents the pro-
posed ETO design framework with the relationship between the FEA and the design
models as well as the construction of sensitivity LSF. Several typical topology opti-
mization problems including compliance minimization and natural frequency maxi-
mization are formulated. Section 2.2 gives numerical implementations of the devel-
oped ETO procedure. Section 2.3 presents a series of numerical validations of the ETO
method. Section 2.4 draws the conclusion. A Matlab code using the ETO method for
compliance minimization design is provided in Appendix A.
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2.1 ETO method framework

2.1.1 Design and FEA models

The conventional BESO method optimizes a structure by gradually removing and adding
finite elements upon their sensitivity numbers. That is to say that the element itself
is treated as a design variable and the structural topology is typically described via
element-wise constant, i.e. element pseudo density. This implementation results in de-
signs with zigzag boundaries, especially when a coarse FE mesh is used. In this work,
we propose an extended BESO method, namely evolutionary topology optimization
(ETO), aiming at obtaining optimized structures with smooth boundary. Since topol-
ogy optimization requires to update the structural shape iteratively, FEA of a smooth
structure can be ideally performed by using the remeshing technique after each design
iteration but computationally highly expensive. The simpler and efficient Area-fraction
(or volume-fraction in three dimensional cases) weighted Fixed Grid (AFG) method,
which has been widely used by spline and level-set based optimization methods [138,
57, 56, 165, 97, 100, 84], is adopted in the present work.

In the proposed ETO method, we separate the design model from the FEA model
and establish the project relationship between two models as shown in Figure 2.1. The
design model represents the smooth structural topology, which will be determined by
the constructed LSF in the later section. When the design model projects onto the back-
ground mesh with the fixed grid, the volume fraction of each element, V f

e , can be easily
calculated and three categories of elements are generated: void elements with V f

e = 0;
solid elements with V f

e = 1 and boundary elements with 0 < V f
e < 1. FEA will be

conducted on the fixed-grid model and material properties of elements will be defined
with

ρe(V
f
e ) = (1− V f

e )ρmin + V f
e ρ0 (2.1)

Ee(V
f
e ) = (1− V f

e )Emin + V f
e E0 (2.2)

where ρm and E are the density and Young’s modulus. The subscripts 0 and min

denote the solid and void materials, respectively. ρmin and Emin are small values in
order to avoid the singularity of mass and stiffness matrices. Thus, the analysis of the
design model can be replaced by the fixed-grid FEA model using the ersatz material
approach [164, 5] so as to avoid re-meshing after each iteration.
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Frequency optimization is of great importance in many
engineering field, e.g., aerospace and automotive industries.
The dynamic behavior of a structure can be represented by the
following general eigenvalue problem

K−ω2
jM

� �
u jð Þ ¼ 0 ð6Þ

where M is the global mass matrix, ωj is the j-th natural fre-
quency and u(j) is the eigenvector corresponding to ωj. ωj and
u(j) are related to each other by the following Rayleigh quotient

ω2
j ¼

u jð Þ� �T
Ku jð Þ

u jð Þð ÞTMu jð Þ ð7Þ

The topology optimization for maximizing a natural frequen-
cy can be mathematically defined based on the design model as

max : ω j ρð Þ
subject to : V ¼ ∫D ρdx ¼ V*

: ρ xð Þ ¼ 0 or 1; ∀x∈D
ð8Þ

where ωj of the design model is equal to that of the FEA model
calculated from (7).

2.2.2 Sensitivity analysis

Ideally, sensitivity analysis should be conducted based on the
design model against the design variable, ρ(x) at an arbitrary

point. However, the design model does not involve in analysis
and therefore sensitivity analysis is conducted based on the
FEA model instead. Although elemental volume fractions,

V f
i , are used in the FEAmodel for analyzing the design model,

they can not be used as the design variables for topology opti-

mization. The reason is that V f
i can not be freely varied within

the design domain and the intermediate volume fraction, 0 <

V f
i < 1 is only allowed on the boundary of the structural to-

pology. In other words, any design with intermediate elements
other than at boundary should be excluded from the solution
domain. Therefore, an artificial variable for the element of the
FEA model, xi, is introduced and the well-known SIMP model
(Bendsøe 1989; Zhou and Rozvany 1991; Bendsøe and
Sigmund 2003) is used for the material interpolation scheme as

E xið Þ ¼ xpi E0 ð9Þ
where p is the penalty factor. p > 1 is the necessary condition to
make sure the existence of 0/1 solution (Bendsøe and Sigmund
2003) and p = 3 is used in this paper. Here, the material interpo-
lation scheme in (9) is used to compute the sensitivity field for
topology optimization of the design model. xi= 1 means that the
ith element is solid and xi = xmin means that the ith element is
void. Different from the SIMP method (Bendsøe and Sigmund
2003), intermediate elements have no explicit value of xi and are

just viewed as the combination of solid (xi= 1) with V
f
i and void

(xi = xmin) with (1-V
f
i ). The material properties of those interme-

diate elements can be calculated according to (1).

(a)  Design model(structural topology ) and the projected background mesh (FEA)

(b) Element 1 ( ) (c) Element 2 (void) (d) Element 3 ( )

Fig. 1 Design model (structural topology) and the projected background mesh (FEA) result three categories of elements

2146 D. Da et al.

FIGURE 2.1: Design model (structural topology) and the projected back-
ground mesh (FEA) result three categories of elements.

2.1.2 Problem statements and sensitivity analysis

2.1.2.1 Problem statements

A typical topology optimization problem of structural compliance minimization (i.e.,
stiffness maximization) subject to a volume constraint based on the design model, is
firstly considered here as:

Find : {ρ} (2.3)

Minimize : C(ρ) (2.4)

Subject to : V (ρ) =

∫
D
ρ dx = V ∗ (2.5)

: ρ(x) = 0 or 1, ∀x ∈ D (2.6)

where C is the structural compliance and D is the design domain. V and V ∗ are the
structural volume and its constraint value. ρ(x) denotes the binary function at an arbi-
trary point within the design domain. ρ(x) = 1 means that the point is full of solid and
ρ(x) = 0 means void.

According to the relationship between the design model and the FEA model as
shown in Figure 2.1, the structural volume of the design model, V , can be expressed by

V =

N∑
e=1

V f
e Ve and 0 ≤ V f

e ≤ 1 (2.7)
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where Ve denotes the volume of the e-th element volume and N is the total element
number in the FEA model. It is assumed that an element in the FEA model corresponds
to a number of grid points ( 40× 40 in 2D cases in this paper) in the design model. The
element would be a solid element, V f

e = 1, when all corresponding grid points, xo,
in the design model are solid, or a void element V f

e = 0 when all points are void.
Otherwise, the element would be a boundary element, 0 < V f

e < 1, which contains
both solid and void grid points in the design model. Thus, the mechanical properties
of elements in the FEA model with regard to different volume fractions are calculated
according to Equations (2.1)-(2.2). The compliance of the design model should be equal
to that of the FEA model, which can be expressed by

C = F TU (2.8)

where F and U are the applied load and displacement vectors, respectively. The equi-
librium equation of the FEA model is

F = KU (2.9)

whereK is the global stiffness matrix.
Frequency optimization is of great importance in many engineering field, e.g., aerospace

and automotive industries. The dynamic behavior of a structure can be represented by
the following general eigenvalue problem:

(K − ω2
jM)u(j) = 0 (2.10)

where M is the global mass matrix, ωj is the j−th natural frequency and u(j) is the
eigenvector corresponding to ωj . ωj and u(j) are related to ech other by the following
Rayleigh quotient:

ω2
j =

(u(j))TKu(j)

(u(j))TMu(j)
(2.11)

The topology optimization for maximizing a natural frequency can be mathemati-
cally defined based on the design model as

Find : {ρ} (2.12)

Maximize : ωj(ρ) (2.13)

Subject to : V (ρ) = V =

∫
D
ρ dx = V ∗ (2.14)

: ρ(x) = 0 or 1, ∀x ∈ D (2.15)

where ωj of the design model is equal to that of the FEA model calculated from (2.11).



Chapter 2. Evolutionary topology optimization of continuum structures with smooth
boundary representation

17

2.1.2.2 Sensitivity analysis

Ideally, sensitivity analysis should be conducted based on the design model against
the design variable, ρ(x) at an arbitrary point. However, the design model is not in-
volved in the analysis and therefore sensitivity analysis is conducted based on the FEA
model instead. Although elemental volume fractions V f

e are used in the FEA model
for analyzing the design model, they cannot be used as design variables for topology
optimization. The reason is that V f

e can not be freely varied within the design domain
and the intermediate volume fraction, 0 < V f

e < 1 is only allowed on the boundary of
the structural topology. In other words, any design with intermediate elements other
than at boundary should be excluded from the solution domain. Therefore, an artificial
variable for the element of the FEA model, xe, is introduced and the well-known SIMP
model [14, 191, 17] is used for the material interpolation scheme as

E(xe) = xPe E0 (2.16)

where P is the penalty factor. P > 1 is the necessary condition to make sure the exis-
tence of 0/1 solution [17] and P = 3 is used in this section. Here, the material interpola-
tion scheme in (2.16) is used to compute the sensitivity field for topology optimization
of the design model. xe = 1 means that the e-th element is solid and xe = xmin means
that the e-th element is void. Different from the SIMP method [17], intermediate ele-
ments have no explicit value of xe and are just viewed as the combination of solid (
xe = 1 )with V f

e and void (xe = xmin) with (1 − V f
e ). The material properties of those

intermediate elements can be calculated according to Equations (2.1)-(2.2).
With the above material interpolation scheme, the sensitivity of structural compli-

ance on the design variable, xe, can be derived through the adjoint method [17], as

∂C

∂xe
= −PxP−1

e uTe k
0
eue (2.17)

where ue is the nodal displacement vector of the e-th element and k0
e denotes the stiff-

ness matrix of the solid element. The sensitivity number for compliance minimization
is defined as its sensitivity multiplied with a constant, -1/P, as [77]

αe = − 1

P

∂C

∂xe
= xP−1

e uTe k
0
eue (2.18)

When the e-th element is solid or void, the sensitivity number of the e-th element
can be explicitly written as

αe =

{
uTe k

0
eue , when xe = 1

xP−1
min u

T
e k

0
eue , when xe = xmin

(2.19)
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Since elements in the FEA model can be viewed as solid with V f
e and void with

(1 − V f
e ), the sensitivity number for the e-th element can be approximately estimated

with
αe = [xP−1

min (1− V f
e ) + V f

e ]uTe k
0
eue (2.20)

As for frequency optimization, a material interpolation scheme for density is also
required

ρ(xe) = xeρ0 (2.21)

Compared with the extensive research on stiffness optimization, topology opti-
mization for natural frequency is more challenging due to the possible localized modes
[77, 129]. To avoid artificial localized modes, we can keep the ratio between mass
and stiffness constants of void elements to be equal that of solid elements as [77], i.e.
ρmin/Emin = ρ0/E0. Using the adjoint method, the element sensitivity of natural fre-
quency on the design variable, xe, defined as [77]

∂ωj
∂xe

=
1

2ωj
u

(j)T
i [

1− xmin
1− xPmin

PxP−1
e k0

e − ω2
jm

0
e]u

(j)
e (2.22)

wherem0
e is the mass matrix of the solid element and therefore the sensitivity numbers

for solid and void elements are expressed explicitly as

αe =
1

P

∂ωj
∂xe

=


1

2ωj
u

(j)T
i [1−xmin

1−xPmin
k0
e −

ω2
j

P m
0
e]u

(j)
e , when xe = 1

1
2ωj
u

(j)T
i [1−xmin

1−xPmin
xP−1
min k

0
e −

ω2
j

P m
0
e]u

(j)
e , when xe = xmin

(2.23)

Thus, the sensitivity number for the e-th element with volume fraction V f
e is

αe =
1

2ωj
u

(j)T
i {1− xmin

1− xPmin
[V f
e + xminP−1(1− V f

e )]k0
e − ω2

jm
0
e}u(j)

e (2.24)

2.1.3 Nodal sensitivity numbers and level set function

In order to determine the smooth topology of the design model, we propose to con-
struct the level-set function based on the nodal sensitivity numbers of the FEA model.
It is well known that the topology optimization problem defined in Equations (2.3)-
(2.6) has no 0/1 solution. The reason is that the introduction of more holes, without
changing the structural volume, will generally increase the efficiency of a given struc-
ture [17]. In the limit of this process, one fails to obtain a 0/1 solution unless a specified
size constraint is specified. However, it is extremely challenging to impose an exact size
constraint in the topology optimization algorithm [64]. A most convenient and popular
way is to use the heuristic filter [147], which works as a low-pass filter that eliminates
structural components below a certain length-scale in the optimal design based on an
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image processing technique. Here, we adopt the filter scheme, which transfers sensi-
tivity numbers from elements to nodes as

α̂j =

∑M
e=1wejαe∑M
e=1wej

(2.25)

where α̂j denotes the sensitivity number at the j-th node. wej is a linear weight factor
with

wej = max(0, rmin − r(e, j)) (2.26)

where rmin is the prescribed filter radius and r(e, j) denotes the distance between ele-
ment e and node j. To further improve the convergence of the objective function, the
nodal sensitivity is further modified with its sensitivity history as we did for conven-
tional element sensitivity number in (3.14) [76]

(α̃j)l =
(α̂j)l + (α̂j)l−1

2
(2.27)

where the subscript l denotes the current iteration number. Thus, the updated sensitiv-
ity number includes sensitivity information of the previous iteration.

In the following, we develop the LSF for the design model. Different from the tra-
ditional LSF governed by the Hamilton-Jacobi equation [138, 56, 164, 5, 165, 97, 100,
84], the current LSF is constructed based on the nodal sensitivity numbers. Accord-
ing to the projection relationship as shown in Figure 2.1, the LSF value of the design
model is equal to the nodal sensitivity number of the FEA model, φj = α̃j . For an arbi-
trary point, o(ξo, ηo), within, e.g., rectangular element e, the LSF value can be linearly
expressed by

φ(o) =
4∑
j=1

Nj(o)φ
j
e (2.28)

where φje denotes the LSF value at the j-th node of element e. ξo and ηo are non-
dimensional coordinates of point o in the natural coordinate system as shown in Figure
2.2. Nj(o) denotes the standard interpolation function. In the 2D case, it is expressed as

Nj(ξo, ηo) =
1

4
[(1 + ξoξj) + (1 + ηoηj)] (2.29)

where ξj and ηj are local coordinates of the j-th node. The construction of the sensitivity-
based LSF can be similarly extended for 3D cases.
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With the level-set value S, the volume of the design model, V,
can be calculated as described above. By comparing the
values of V and Vl, the upper or lower bound is updated by

Supper ¼ S if V < Vl

or
Slower ¼ S if V > Vl

8<
: ð27Þ

The level-set value S, and its bounds Supper and Slower are
updated again and again until Supper and Slower are close
enough (e.g. Supper − Slower < 10−15). To the end, the structural
volume, V, infinitely approaches the target volume of the de-
sign model for the current iteration, Vl.

2.5 Convergence criterion

The optimization procedure will iteratively conduct FEA and
the update of topology until the volume constraint (V∗) is
reached and the following convergence criterion is satisfied.

j
�
∑Q

q¼1 objl−qþ1−objl−Q−qþ1

� �
j

∑Q
q¼1objl−qþ1

≤τ ð28Þ

here, obj denotes the objective function, e.g. C or ωj. l is the
current iteration number, Q is the integral number and set to be
5 in this paper, and τ is a specified small value. The conver-
gence criterion defined in (23) means that the value of the
objective function in 10 successive iterations almost keep to
be the constant. In the traditional element-based BESOmethod,
τ = 0.1% is normally used. Since the proposed ETO method
identifies the topology far beyond elements, a more strict con-
vergence criterion τ = 0.01% is used in the paper.

3 ETO procedure

The optimization iteration of the proposed ETO method is
briefly summarized as following:

1. Discretize the design domain using FE mesh for given
boundary and loading conditions. Assign the initial prop-
erty values of elements to construct initial design;

2. Perform fixed-grid FEA and calculate elemental sensitiv-
ity numbers;

3. Convert the elemental sensitivity numbers into nodal sen-
sitivity numbers by the filter and average with their histo-
ry information;

4. Determine the target volume for the next iteration and
construct LSF;

5. Calculate elemental volume fraction of the FEA model
and update the topology of the design model by the
level-set value, S;

Fig. 4 Dimensions of the design domain and boundary and loading
conditions of a cantilever beam

Fig. 3 An arbitrary point, o(ξo, ηo), within an rectangular element under
the natural coordinate system

(a)

(b)

(c)
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FIGURE 2.2: An arbitrary point, o(ξo, ηo), within an rectangular element
under the natural coordinate system.

shown in Fig. 1, the LSF value of the design model is equal to
the nodal sensitivity number of the FEA model, ϕ j ¼ ~α j. For

an arbitrary point, o(ξo, ηo), within, e.g., rectangular element i,
the LSF value can be linearly expressed by

ϕ oð Þ ¼ ∑
4

j¼1
N j oð Þϕ j

i ð21Þ

where ϕ j
i denote the LSF value at the jth node of element i.

ξo and ηo are non-dimensional coordinates of point o in
the natural coordinate system as shown in Fig. 3 . Nj(o)
denotes the standard interpolation function. Under 2D
cases, it is expressed by

N j oð Þ ¼ 1

4
1þ ξoξ j
� �þ 1þ ηoη j

� �� �
ð22Þ

where ξj and ηj are local coordinates of the jth node. The
construction of the sensitivity-based LSF can be equally
extended for 3D cases.

2.4 Update of structural topology

With the constructed nodal sensitivity-based LSF ϕ(o), the
LSM defines the design domain (D) of the design model as
solid regions (Ω), void regions (D\Ω) and boundaries (Γ) by
setting the level-set value as shown in Figs. 2 and 3.

ϕ oð Þ > S⇔o∈Ω
ϕ oð Þ ¼ S⇔o∈Γ

ϕ oð Þ < S⇔o∈DnΩ

8<
: ð23Þ

where S is the level-set value which is calculated iterative-
ly by using the bi-section method so as to satisfy the
target material volume at each iteration. Different from
the topology derived by the normal velocity of the bound-
ary in the traditional LSM (Sethian and Wiegmann 2000;
Garcia and Steven 1999; García et al. 2001; Wang et al.
2007; Lee and Kawak 2008; Luo et al. 2008; Jia et al.
2011), the update of topology in the proposed method is
realized by setting the level-set value in each iteration.

To calculate the level-set value, the target volume of the
design model for the current iteration, Vl, needs to be

determined first. Since the constraint volume V∗ could be
larger, smaller or equal to the volume of the initial guess de-
sign, the target volume in each iteration may decrease, in-
crease step by step, or keep constant so as to finally satisfy
the volume constraint, V∗. Given the volume of the last itera-
tion, Vl − 1, the target volume of the current iteration, Vl, can be
calculated according to

Vl ¼ max Vl−1 1−ERð Þ;V*� �
if Vl−1≥V*

min Vl−1 1þ ERð Þ;V*� �
if V l−1 < V*

�
ð24Þ

where ER is an evolution rate, e.g. 2% in this paper. Thus,
the volume of the design model gradually evolves to its
constraint value, V∗, in the framework of the evolutionary
optimization procedure.

Since the fixed-grid mesh is used in the FEA model, it
has three different types of elements, i.e., solid, void and
boundary elements when the smooth topology of the de-
sign model projects back to the FEA model. Therefore, it
needs to calculate the volume fraction of each element for
the FEA model as

V f
i ¼

1 when min ϕ j
i

� �
> S

0 when max ϕ j
i

� �
≤S

Nlp=Nap otherwise

8<
: ð25Þ

where ϕ j
i (j = 1, 2,…) denotes the LSF values at nodes of

element i. For a boundary element, 0 < V f
i < 1, the ele-

ment can be assumed to be divide into fine grids (40 × 40
in this paper) with the total Nap points. Nlp denotes the
total number of points whose LSF value is larger than the
level-set value, S. Thus, the volume of the design model,
V, can be calculated by the elemental volume fractions of
the FEA model according to (3).

The level-set value, S can be numerically determined by
using the bi-section method. In each iteration, the upper and
lower bounds of the level-set values, Supper and Slower, are
initially assigned with the maximum and minimum sensitivity
numbers, respectively. The level-set value, S, is then set as

S ¼ Supper þ Slower
2

ð26Þ

Fig. 2 Illustration of LSF, level-
set value and the corresponding
structural topology for a 2D case
a LSF and level-set value; b solid
region, Ω, void regions, D/Ω and
structural boundary, Γ
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FIGURE 2.3: Illustration of LSF, level set value and the corresponding
structural topology for a 2D case: (a) LSF and level-set value; (b) solid

region, Ω, void regions, D \ Ω and structural boundary, Γ.

2.1.4 Update of structural topology

With the constructed nodal sensitivity-based LSF φ(o), the LSM defines the design do-
main (D) of the design model as solid regions (Ω), void regions (D \Ω) and boundaries
(Γ) by setting the level-set value as shown in Figure 2.3.


φ(o) > S ⇔ o ∈ Ω

φ(o) = S ⇔ o ∈ Γ

φ(o) < S ⇔ o ∈ D \ Ω

(2.30)

where S is the level-set value which is calculated iteratively by using the bi-section
method so as to satisfy the target material volume at each iteration. Different from
the topology derived by the normal velocity of the boundary in the traditional LSM
[57, 138, 56, 164, 165, 97, 100, 84], the update of topology in the proposed method
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is realized by setting the level-set value in each iteration. To calculate the level-set
value, the target volume of the design model for the current iteration Vl, needs to be
determined first. Since the constraint volume V ∗ could be larger, smaller or equal to the
volume of the initial guess design, the target volume in each iteration will be changed
correspondingly so as to finally satisfy the volume constraint, V ∗. Given the volume of
the last iteration, Vl−1, the target volume of the current iteration, Vl, can be calculated
according to

Vl =

{
max(Vl−1(1− ER), V ∗) , if Vl−1 ≥ V ∗

min(Vl−1(1 + ER), V ∗) , if Vl−1 < V ∗
(2.31)

where ER is an evolution rate, e.g. 2% in this work. Thus, the volume of the design
model gradually evolves to its constraint value, V ∗, in the framework of the evolution-
ary optimization procedure.

Since the fixed-grid mesh is used in the FEA model, it has three different types of
elements, i.e., solid, void and boundary elements when the smooth topology of the
design model projects back to the FEA model. Therefore, it is needed to calculate the
volume fraction of each element for the FEA model as

V f
e =


1 , when min(φje) > S

0 , when max(φje) ≤ S
Nlp/Nap, otherwise

(2.32)

where φje (j = 1, 2, . . . ) denotes the LSF values at nodes of element e. For a boundary
element, 0 < V f

e < 1, the element can be assumed to be divided into fine grid ( 40× 40

in this work) with the total Nap points. Nlp denotes the total number of points whose
LSF value is larger than the level-set value, S. Thus, the volume of the design model,
V , can be calculated by the elemental volume fractions of the FEA model according
to (2.7). The level-set value, S, can be numerically determined by using the bisection
method. In each iteration, the upper and lower bounds of the level-set values, Supper
and Slower, are initially assigned with the maximum and minimum sensitivity numbers,
respectively. The level-set value, S, is then set as

S =
Supper + Slower

2
(2.33)

Given the level-set value S, the volume of the design model V can be calculated as
described above. By comparing the values of V and Vl, the upper or lower bound is
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updated by {
Supper = S if V < Vl

Slower = S if V > Vl
(2.34)

The level-set value S, and its bounds Supper and Slower are updated until Supper and
Slower are close enough (e.g. Supper−Slower < 10−15). When the convergence is reached,
the structural volume V , reaches the target volume of the design model for the current
iteration, Vl.

2.1.5 Convergence criterion

The optimization procedure iteratively conducts FEA and the update of topology un-
til the volume constraint ( V ∗) is reached and the following convergence criterion is
satisfied

|
∑Q

q=1

(
objiter−q+1 − objiter−Q−q+1

)
|∑Q

q=1 objiter−q+1

≤ τ. (2.35)

In (2.35), obj denotes the objective function, e.g. structural compliance C or natural
frequency ωj , l is the current iteration number, Q is the integral number and set to be
5 in this work, and τ is a specified small value. The convergence criterion defined in
(2.35) means that the value of the objective function almost stabilizes. In the traditional
element-based BESO method, τ = 0.1% is normally used. Since the proposed ETO
method identifies the topology far beyond elements, a more strict convergence criterion
τ = 0.01% is used in this work.

2.2 ETO procedure

The optimization iteration of the proposed ETO method is briefly summarized as fol-
lowing:

1. Discretize the design domain using FE mesh for given boundary and loading con-
ditions. Assign the initial property values of elements to construct initial design.

2. Perform fixed-grid FEA and calculate elemental sensitivity numbers.

3. Convert the elemental sensitivity numbers into nodal sensitivity numbers by the
filter and average with their history information.

4. Determine the target volume for the next iteration and construct LSF.

5. Calculate elemental volume fraction of the FEA model and update the topology
of the design model by the level-set value, S.
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6. Go back to Step 2 until the volume constraint and the convergence criterion solu-
tion are satisfied.

7. Output results.

The above ETO procedure is similar to that of the BESO method but it does not involve
the removal/addition of elements, which is the most important feature of the BESO
method. That is why we term it with a new name, ETO rather than BESO.

2.3 Numerical examples

2.3.1 Minimum compliance for a cantilever beam

The first example considers the stiffness maximization design of a cantilever beam un-
der a concentrated loading as shown in Figure 2.4. The design domain has length 60
mm, height 40 mm and thickness 1 mm, where the force is applied downward at the
center of the free end with the magnitude of 1 N. The material has Young’s modulus
of 1 MPa and Poisson’s ratio of 0.3. It is assumed that the available material can only
cover 50% volume of the design domain. In order to demonstrate the advantage of the
presented ETO method, a coarse mesh of size 30 × 20 is used to subdivide the design
structure. The ETO parameters are ER = 2% and rmin = 2. The final topology is shown
inFigure 2.5(a) with the structural compliance 31.35 mm2/N. The above problem us-
ing the same meshes is solved using the ESO-type method given in [77] with same
design parameters. The final topology is shown in Figure 2.5(b) which is similar to
the above ETO topology in Figure 2.5(a) but has serrated boundaries. The compliance
is 32.59 mm2/N which is higher than that of the ETO method. The above problem is
also solved by the continuous density-based SIMP method with penalty factor P = 3,
filter radius rmin = 1.5 and sensitivity filtering. The final topology is shown in Figure
2.5(c) which is similar with above two results except there exist "grey" elements which
denote intermediate density material. The compliance is 36.77 mm2/N which is also
higher than 31.35 mm2/N of the ETO topology. This may be attributed to the over-
estimated strain energy of the intermediate density elements in the SIMP topology.

Figure 2.6 shows the evolution histories of the structural compliance and the vol-
ume fraction. The compliance increases as the material volume fraction gradually de-
creases. After the volume reaches the objective volume, the compliance is convergent
to an almost constant value. The evolution history of structural topology is shown Fig-
ure 2.7. As can be observed, there is barely topology change but boundary moving after
about 30 iterations, and the structure finally converges to Figure 2.7(f) after another 18
iterations.



Chapter 2. Evolutionary topology optimization of continuum structures with smooth
boundary representation

24

With the level-set value S, the volume of the design model, V,
can be calculated as described above. By comparing the
values of V and Vl, the upper or lower bound is updated by

Supper ¼ S if V < Vl

or
Slower ¼ S if V > Vl

8<
: ð27Þ

The level-set value S, and its bounds Supper and Slower are
updated again and again until Supper and Slower are close
enough (e.g. Supper − Slower < 10−15). To the end, the structural
volume, V, infinitely approaches the target volume of the de-
sign model for the current iteration, Vl.

2.5 Convergence criterion

The optimization procedure will iteratively conduct FEA and
the update of topology until the volume constraint (V∗) is
reached and the following convergence criterion is satisfied.

j
�
∑Q

q¼1 objl−qþ1−objl−Q−qþ1

� �
j

∑Q
q¼1objl−qþ1

≤τ ð28Þ

here, obj denotes the objective function, e.g. C or ωj. l is the
current iteration number, Q is the integral number and set to be
5 in this paper, and τ is a specified small value. The conver-
gence criterion defined in (23) means that the value of the
objective function in 10 successive iterations almost keep to
be the constant. In the traditional element-based BESOmethod,
τ = 0.1% is normally used. Since the proposed ETO method
identifies the topology far beyond elements, a more strict con-
vergence criterion τ = 0.01% is used in the paper.

3 ETO procedure

The optimization iteration of the proposed ETO method is
briefly summarized as following:

1. Discretize the design domain using FE mesh for given
boundary and loading conditions. Assign the initial prop-
erty values of elements to construct initial design;

2. Perform fixed-grid FEA and calculate elemental sensitiv-
ity numbers;

3. Convert the elemental sensitivity numbers into nodal sen-
sitivity numbers by the filter and average with their histo-
ry information;

4. Determine the target volume for the next iteration and
construct LSF;

5. Calculate elemental volume fraction of the FEA model
and update the topology of the design model by the
level-set value, S;

Fig. 4 Dimensions of the design domain and boundary and loading
conditions of a cantilever beam

Fig. 3 An arbitrary point, o(ξo, ηo), within an rectangular element under
the natural coordinate system

(a)

(b)

(c)
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FIGURE 2.4: Dimensions of the design domain and boundary and load-
ing conditions of a cantilever beam.

With the level-set value S, the volume of the design model, V,
can be calculated as described above. By comparing the
values of V and Vl, the upper or lower bound is updated by

Supper ¼ S if V < Vl

or
Slower ¼ S if V > Vl

8<
: ð27Þ

The level-set value S, and its bounds Supper and Slower are
updated again and again until Supper and Slower are close
enough (e.g. Supper − Slower < 10−15). To the end, the structural
volume, V, infinitely approaches the target volume of the de-
sign model for the current iteration, Vl.

2.5 Convergence criterion

The optimization procedure will iteratively conduct FEA and
the update of topology until the volume constraint (V∗) is
reached and the following convergence criterion is satisfied.

j
�
∑Q

q¼1 objl−qþ1−objl−Q−qþ1

� �
j

∑Q
q¼1objl−qþ1

≤τ ð28Þ

here, obj denotes the objective function, e.g. C or ωj. l is the
current iteration number, Q is the integral number and set to be
5 in this paper, and τ is a specified small value. The conver-
gence criterion defined in (23) means that the value of the
objective function in 10 successive iterations almost keep to
be the constant. In the traditional element-based BESOmethod,
τ = 0.1% is normally used. Since the proposed ETO method
identifies the topology far beyond elements, a more strict con-
vergence criterion τ = 0.01% is used in the paper.

3 ETO procedure

The optimization iteration of the proposed ETO method is
briefly summarized as following:

1. Discretize the design domain using FE mesh for given
boundary and loading conditions. Assign the initial prop-
erty values of elements to construct initial design;

2. Perform fixed-grid FEA and calculate elemental sensitiv-
ity numbers;

3. Convert the elemental sensitivity numbers into nodal sen-
sitivity numbers by the filter and average with their histo-
ry information;

4. Determine the target volume for the next iteration and
construct LSF;

5. Calculate elemental volume fraction of the FEA model
and update the topology of the design model by the
level-set value, S;

Fig. 4 Dimensions of the design domain and boundary and loading
conditions of a cantilever beam

Fig. 3 An arbitrary point, o(ξo, ηo), within an rectangular element under
the natural coordinate system

(a)

(b)

(c)
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FIGURE 2.5: Final topologies and structural compliance of the cantilever
beam using different methods with same coarse mesh.
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6. Go back to Step 2 until the volume constraint and the
convergence criterion solution are satisfied;

7. Output results.

The above ETO procedure is similar to that of the
BESO method but it does not involve the removal/
addition of elements, which is the most important feature

of the BESO method. That is why we term it with a new
name, ETO rather than BESO.

4 Numerical examples

4.1 Minimum compliance for a cantilever beam

The first example considers the stiffness maximization design
of a cantilever beam under a concentrated loading as shown in
Fig. 4. The design domain has length 60 mm, height 40 mm
and thickness 1 mm, where the force is applied downward at
the center of the free end with the magnitude of 1 N. The
material has Young’s modulus of 1 MPa and Poisson’s ration
of 0.3. It is assumed that the available material can only cover
50% volume of the design domain. In order to demonstrate the
advantage of the presented ETOmethod, a coarse mesh of size
30 × 20 is used to subdivide the design structure. The ETO
parameters are ER = 2% and rmin = 2. The final topology is
shown in Fig. 5a with the structural compliance 31.35 N mm.

The above problem using the same meshes is solved using
the ESO-typemethod given in (Huang andXie 2010) with same
design parameters. The final topology is shown in Fig. 5b which

Fig. 7 Evolution of the topology:
a iteration 5, and b iteration 10,
and c iteration 20, and d iteration
30, and e iteration 40, and f final
topology

Fig. 6 Evolutionary histories of the compliance and the volume fraction
for the cantilever beam
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FIGURE 2.6: Evolutionary histories of the compliance and the volume
fraction for the cantilever beam.

6. Go back to Step 2 until the volume constraint and the
convergence criterion solution are satisfied;

7. Output results.

The above ETO procedure is similar to that of the
BESO method but it does not involve the removal/
addition of elements, which is the most important feature

of the BESO method. That is why we term it with a new
name, ETO rather than BESO.

4 Numerical examples

4.1 Minimum compliance for a cantilever beam

The first example considers the stiffness maximization design
of a cantilever beam under a concentrated loading as shown in
Fig. 4. The design domain has length 60 mm, height 40 mm
and thickness 1 mm, where the force is applied downward at
the center of the free end with the magnitude of 1 N. The
material has Young’s modulus of 1 MPa and Poisson’s ration
of 0.3. It is assumed that the available material can only cover
50% volume of the design domain. In order to demonstrate the
advantage of the presented ETOmethod, a coarse mesh of size
30 × 20 is used to subdivide the design structure. The ETO
parameters are ER = 2% and rmin = 2. The final topology is
shown in Fig. 5a with the structural compliance 31.35 N mm.

The above problem using the same meshes is solved using
the ESO-typemethod given in (Huang andXie 2010) with same
design parameters. The final topology is shown in Fig. 5b which

Fig. 7 Evolution of the topology:
a iteration 5, and b iteration 10,
and c iteration 20, and d iteration
30, and e iteration 40, and f final
topology

Fig. 6 Evolutionary histories of the compliance and the volume fraction
for the cantilever beam

2150 D. Da et al.

FIGURE 2.7: Evolution of the topology: (a) iteration 5, (b) iteration 10, (c)
iteration 20, (d) iteration 30, (e) iteration 40, and (f) final topology.
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is similar to the above ETO topology in Fig. 5a but has serrated
boundaries. The compliance is 32.59Nmmwhich is higher than
that of the ETO method. The above problem is also solved by
the continuous density-based SIMP method with penalty factor
p = 3, filter radius rmin = 1.5 and sensitivity filtering. The final
topology is shown in Fig. 5c which is similar with above two
results except there exit “grey” elements which denote interme-
diate density material. The compliance is 36.77 N mm which is
also higher than 31.35 Nmm of the ETO topology. This may be
attributed to the over-estimated strain energy of the intermediate
density elements in the SIMP topology.

Figure 6a shows the evolution histories of the compliance and
the volume fraction. The compliance increases as the material
volume fraction gradually decreases. After the volume reaches
the objective volume, the compliance is convergent to an almost
constant value. The evolution history of structural topology is
shown Fig. 7. As can be observed, there is barely topology
change but boundary moving after about 30 iterations, and the
structure finally converges to Fig. 7f after another 18 iterations.

To further verify the developed ETO method, it is nec-
essary to numerically investigate the effect of the mesh

refinement of the considered structure. Here, different re-
fined meshes 90 × 60, 150 × 100 and 210 × 140 are
assigned for the cantilever. Boundary elements are
assigned with 40 × 40 level set grids in all cases. The
resulting topologies are displayed in Fig. 8b–d, respec-
tively. There is no visible difference as compared to
Fig. 7f, which indicates that the mesh refinement of the
structure has negligible effect on designs.

Fig. 9 Dimensions of the design domain and boundary and loading
conditions of a MBB beam

(a) Coarse mesh

(b) Regular mesh

(c) Fine mesh

Fig. 10 Mesh-independent solutions of the MBB beam: a 50 × 20; b
100 × 40; c 200 × 80

Fig. 8 Mesh-independent
solutions of the cantilever: a
30 × 20, b 90 × 60, c 150 × 100, d
210 × 140
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FIGURE 2.8: Mesh-independent solutions of the cantilever: (a) 30 × 20,
(b) 90× 60, (c) 150× 100, (d) 210× 140.

To further verify the developed ETO method, it is necessary to numerically inves-
tigate the effect of the mesh refinement of the considered structure. Here, different
refined meshes 90 × 60, 150 × 100 and 210 × 140 are assigned for the cantilever beam.
Boundary elements are assigned with 40 × 40 level set grids in all cases. The resulting
topologies are displayed in Figure 2.8(b)–(d), respectively. There is no visible difference
as compared to Figure 2.7(f), which indicates that the mesh refinement of the structure
has negligible effect on designs.

2.3.2 Minimum compliance for a MBB beam

In the second example, we consider the design problem for the Messerschmitt-Bölkow-
Blohm (MBB) beam sketched in Figure 2.9. The simple supported beam is loaded at its
up center by F = −1 N. The symmetric right half with the dimensions 100× 40 mm2 is
discretized into 50× 20, 100× 40 and 200× 80 four-node quadrilateral element meshes,
with the filter radii set to 3, 6, and 12, respectively. Suppose only 50% of the design do-
main volume material is available for constructing the final structure and the material
Young’s modulus is set toE = 1 MPa and the Poisson’s ratio is set to ν = 0.3. ER is also
set to 2%. Initially, the design domain is full of the material. The optimal topologies
are shown in Figure 2.10, in which all meshes converge to the same optimal topology
in terms of number of internal structural members, which further validates that the
proposed method is capable of providing mesh-independent designs. The evolution
histories of the compliance and the volume fraction of the MBB design using coarse



Chapter 2. Evolutionary topology optimization of continuum structures with smooth
boundary representation

27

is similar to the above ETO topology in Fig. 5a but has serrated
boundaries. The compliance is 32.59Nmmwhich is higher than
that of the ETO method. The above problem is also solved by
the continuous density-based SIMP method with penalty factor
p = 3, filter radius rmin = 1.5 and sensitivity filtering. The final
topology is shown in Fig. 5c which is similar with above two
results except there exit “grey” elements which denote interme-
diate density material. The compliance is 36.77 N mm which is
also higher than 31.35 Nmm of the ETO topology. This may be
attributed to the over-estimated strain energy of the intermediate
density elements in the SIMP topology.

Figure 6a shows the evolution histories of the compliance and
the volume fraction. The compliance increases as the material
volume fraction gradually decreases. After the volume reaches
the objective volume, the compliance is convergent to an almost
constant value. The evolution history of structural topology is
shown Fig. 7. As can be observed, there is barely topology
change but boundary moving after about 30 iterations, and the
structure finally converges to Fig. 7f after another 18 iterations.

To further verify the developed ETO method, it is nec-
essary to numerically investigate the effect of the mesh

refinement of the considered structure. Here, different re-
fined meshes 90 × 60, 150 × 100 and 210 × 140 are
assigned for the cantilever. Boundary elements are
assigned with 40 × 40 level set grids in all cases. The
resulting topologies are displayed in Fig. 8b–d, respec-
tively. There is no visible difference as compared to
Fig. 7f, which indicates that the mesh refinement of the
structure has negligible effect on designs.

Fig. 9 Dimensions of the design domain and boundary and loading
conditions of a MBB beam

(a) Coarse mesh

(b) Regular mesh

(c) Fine mesh

Fig. 10 Mesh-independent solutions of the MBB beam: a 50 × 20; b
100 × 40; c 200 × 80

Fig. 8 Mesh-independent
solutions of the cantilever: a
30 × 20, b 90 × 60, c 150 × 100, d
210 × 140
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FIGURE 2.9: Dimensions of the design domain and boundary and load-
ing conditions of a MBB beam.

mesh are given in Figure 2.11. It is noted that apparent bumps in the compliance are
caused due to significant topology variations. Thereafter, the compliance is recovered
and ensures that the topology develops in the correct direction. The evolution history
of topology is shown in Figure 2.12.

2.3.3 Minimum compliance for a roller-supported half-wheel

The above examples show that the ETO method is able to find the optimal topology
from the full material design. In this section, we conduct ETO starting from initial
guess designs whose volumes are close or equal to the objective volume. The obvious
advantage of this procedure is that only a portion of elements in the design domain
is involved in the analysis and therefore the computation time can be saved especially
for finely discretized models. In order to clarify this procedure, we solve the roller-
supported half-wheel design using full material design and two initial guess designs
as shown in Figure 2.13. The structure is loaded at its bottom center by F = −1 N.
Material Young’s modulus and Poisson’s ratio are set toE = 1 MPa and ν = 0.3, respec-
tively. ETO optimization parameters are set toER = 0.02, and rmin = 3. Final topologies
obtained from different initial designs are presented in Figure 2.14, which indicates that
their topologies and structural compliances are very close to each other. These calcula-
tions show that the present ETO method leads to a convergent design solution even for
largely different initial guess designs. Figure 2.15 shows the evolution histories of the
compliances and the volume fraction when ETO is starting from two initial guess de-
signs. It can be seen that the objective function decreases with the redistribution of the
50% of the material. The optimization algorithm is convergent after 60 and 101 design
iterations for initial guesses 1 and 2, respectively.
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is similar to the above ETO topology in Fig. 5a but has serrated
boundaries. The compliance is 32.59Nmmwhich is higher than
that of the ETO method. The above problem is also solved by
the continuous density-based SIMP method with penalty factor
p = 3, filter radius rmin = 1.5 and sensitivity filtering. The final
topology is shown in Fig. 5c which is similar with above two
results except there exit “grey” elements which denote interme-
diate density material. The compliance is 36.77 N mm which is
also higher than 31.35 Nmm of the ETO topology. This may be
attributed to the over-estimated strain energy of the intermediate
density elements in the SIMP topology.

Figure 6a shows the evolution histories of the compliance and
the volume fraction. The compliance increases as the material
volume fraction gradually decreases. After the volume reaches
the objective volume, the compliance is convergent to an almost
constant value. The evolution history of structural topology is
shown Fig. 7. As can be observed, there is barely topology
change but boundary moving after about 30 iterations, and the
structure finally converges to Fig. 7f after another 18 iterations.

To further verify the developed ETO method, it is nec-
essary to numerically investigate the effect of the mesh

refinement of the considered structure. Here, different re-
fined meshes 90 × 60, 150 × 100 and 210 × 140 are
assigned for the cantilever. Boundary elements are
assigned with 40 × 40 level set grids in all cases. The
resulting topologies are displayed in Fig. 8b–d, respec-
tively. There is no visible difference as compared to
Fig. 7f, which indicates that the mesh refinement of the
structure has negligible effect on designs.

Fig. 9 Dimensions of the design domain and boundary and loading
conditions of a MBB beam

(a) Coarse mesh

(b) Regular mesh

(c) Fine mesh

Fig. 10 Mesh-independent solutions of the MBB beam: a 50 × 20; b
100 × 40; c 200 × 80

Fig. 8 Mesh-independent
solutions of the cantilever: a
30 × 20, b 90 × 60, c 150 × 100, d
210 × 140
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FIGURE 2.10: Mesh-independent solutions of the MBB beam: (a) 50×20;
(b) 100× 40; (c) 200× 80.

4.2 Minimum compliance for a MBB beam

In the second example, we consider the design problem for the
MBB beam sketched in Fig. 9. The simple supported beam is
loaded at its up center by F = − 1 N. The symmetric right half
with the dimensions 100mm × 40mm is discretized into 50 × 20,
100 × 40 and 200 × 80 four-node quadrilateral element meshes,
with the filter radii set to 3, 6, and 12, respectively. Suppose only
50% of the design domain volume material is available for con-
structing the final structure and the material Young’s modulus is

set to E = 1 MPa and the Poisson’s ratio is set to ν = 0.3. ER is
also set to 2%. Initially, the material is full of the design domain.
The optimal topologies are shown in Fig. 10, in which all meshes
converge to the same optimal topology in terms of number of
internal structural members, which further validates that the pro-
posedmethod is capable of providingmesh-independent designs.
The evolution histories of the compliance and the volume frac-
tion of the MBB design using coarse mesh is given in Fig. 11. It
is noted that apparent bumps in the compliance are caused due to
significant topology variations. Thereafter, the compliance is re-
covered and assures that the topology develops in the right di-
rection. The evolution history of topology is shown in Fig. 12.

4.3 Minimum compliance for a roller-supported
half-wheel

The above examples show that the ETO method is able to find
the optimal topology from the full material design. In this sec-
tion, we conduct ETO starting from initial guess designs whose
volumes are close or equal to the objective volume. The most
advantage of this procedure is that only a portion of elements in
the design domain is involved in the analysis and therefore the
computation time can be saved especially for finely discretized
models. In order to clarify this procedure, we solve the roller-
supported half-wheel design using full material design and two
initial guess designs as shown in Fig. 13. The structure is

Fig. 12 Evolution of topology: a
iteration 5, and b iteration 10, and
c iteration 15, and d iteration 20,
and e iteration 30, and f iteration
40, and g iteration 50, and h final
topology

Fig. 11 Evolutionary histories of the compliance and the volume fraction
of the MBB beam
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FIGURE 2.11: Evolutionary histories of the compliance and the volume
fraction of the MBB beam.



Chapter 2. Evolutionary topology optimization of continuum structures with smooth
boundary representation

29

4.2 Minimum compliance for a MBB beam

In the second example, we consider the design problem for the
MBB beam sketched in Fig. 9. The simple supported beam is
loaded at its up center by F = − 1 N. The symmetric right half
with the dimensions 100mm × 40mm is discretized into 50 × 20,
100 × 40 and 200 × 80 four-node quadrilateral element meshes,
with the filter radii set to 3, 6, and 12, respectively. Suppose only
50% of the design domain volume material is available for con-
structing the final structure and the material Young’s modulus is

set to E = 1 MPa and the Poisson’s ratio is set to ν = 0.3. ER is
also set to 2%. Initially, the material is full of the design domain.
The optimal topologies are shown in Fig. 10, in which all meshes
converge to the same optimal topology in terms of number of
internal structural members, which further validates that the pro-
posedmethod is capable of providingmesh-independent designs.
The evolution histories of the compliance and the volume frac-
tion of the MBB design using coarse mesh is given in Fig. 11. It
is noted that apparent bumps in the compliance are caused due to
significant topology variations. Thereafter, the compliance is re-
covered and assures that the topology develops in the right di-
rection. The evolution history of topology is shown in Fig. 12.

4.3 Minimum compliance for a roller-supported
half-wheel

The above examples show that the ETO method is able to find
the optimal topology from the full material design. In this sec-
tion, we conduct ETO starting from initial guess designs whose
volumes are close or equal to the objective volume. The most
advantage of this procedure is that only a portion of elements in
the design domain is involved in the analysis and therefore the
computation time can be saved especially for finely discretized
models. In order to clarify this procedure, we solve the roller-
supported half-wheel design using full material design and two
initial guess designs as shown in Fig. 13. The structure is

Fig. 12 Evolution of topology: a
iteration 5, and b iteration 10, and
c iteration 15, and d iteration 20,
and e iteration 30, and f iteration
40, and g iteration 50, and h final
topology

Fig. 11 Evolutionary histories of the compliance and the volume fraction
of the MBB beam
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FIGURE 2.12: Evolution of topology: (a) iteration 5, (b) iteration 10, (c)
iteration 15, (d) iteration 20, (e) iteration 30, (f) iteration 40, (g) iteration

50, (h) final topology.
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loaded at its bottom center by F = − 1 N. Material Young’s
modulus and Poisson’s ratio are set to E = 1 MPa ν = 0.3, re-
spectively. ETO optimization parameters are set to ER = 0.02,
and rmin = 3. Final topologies obtained from different initial
designs are presented in Fig. 14, which indicates that their
topologies and structural compliances are very close to each
other. These calculations show that the present ETO method
leads to a convergent design solution even for largely different
initial guess designs. Figure 15 shows the evolution histories of
the compliances and the volume fraction when ETO starting
two initial guess designs. It can be seen that the objective func-
tion decreases with the redistribution of the 50%materials. The
optimization algorithm is convergent after 60 and 101 design
iterations for initial guesses 1 and 2, respectively.

4.4 Design of 2D structural natural frequency

We seek the topological design that maximizes the fundamental
frequency subject to a volume fraction constraint of 50% of a
clamped beam in this example. Design dimensions of the beam
is 140mm× 20mmwhich is clamped on both sides as shown in
Fig. 16a. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. A concen-
trate nonstructural massM = 1 × 10−3kg is placed at the center.
The rectangular design is divided into 140 × 20 four node plane

(a) Full material design 

(b) Initial guess design 1 

(c) Initial guess design 2 

Fig. 13 Dimensions of the design domain and boundary conditions of a
roller-supported half-wheel with different initial guess designs

(a) Final topology from full material design: 

(b) Final topology from initial guess design 1: 

(c) Final topology from initial guess design 2: 

Fig. 14 Final topologies from three different initial designs

Fig. 15 Evolutionary histories of the compliances and the volume
fraction when ETO starts from two initial guess designs
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FIGURE 2.13: Dimensions of the design domain and boundary condi-
tions of a roller-supported half-wheel with different initial guess de-

signs.
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loaded at its bottom center by F = − 1 N. Material Young’s
modulus and Poisson’s ratio are set to E = 1 MPa ν = 0.3, re-
spectively. ETO optimization parameters are set to ER = 0.02,
and rmin = 3. Final topologies obtained from different initial
designs are presented in Fig. 14, which indicates that their
topologies and structural compliances are very close to each
other. These calculations show that the present ETO method
leads to a convergent design solution even for largely different
initial guess designs. Figure 15 shows the evolution histories of
the compliances and the volume fraction when ETO starting
two initial guess designs. It can be seen that the objective func-
tion decreases with the redistribution of the 50%materials. The
optimization algorithm is convergent after 60 and 101 design
iterations for initial guesses 1 and 2, respectively.

4.4 Design of 2D structural natural frequency

We seek the topological design that maximizes the fundamental
frequency subject to a volume fraction constraint of 50% of a
clamped beam in this example. Design dimensions of the beam
is 140mm× 20mmwhich is clamped on both sides as shown in
Fig. 16a. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. A concen-
trate nonstructural massM = 1 × 10−3kg is placed at the center.
The rectangular design is divided into 140 × 20 four node plane

(a) Full material design 

(b) Initial guess design 1 

(c) Initial guess design 2 

Fig. 13 Dimensions of the design domain and boundary conditions of a
roller-supported half-wheel with different initial guess designs

(a) Final topology from full material design: 

(b) Final topology from initial guess design 1: 

(c) Final topology from initial guess design 2: 

Fig. 14 Final topologies from three different initial designs

Fig. 15 Evolutionary histories of the compliances and the volume
fraction when ETO starts from two initial guess designs
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FIGURE 2.14: Final topologies from three different initial designs.
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loaded at its bottom center by F = − 1 N. Material Young’s
modulus and Poisson’s ratio are set to E = 1 MPa ν = 0.3, re-
spectively. ETO optimization parameters are set to ER = 0.02,
and rmin = 3. Final topologies obtained from different initial
designs are presented in Fig. 14, which indicates that their
topologies and structural compliances are very close to each
other. These calculations show that the present ETO method
leads to a convergent design solution even for largely different
initial guess designs. Figure 15 shows the evolution histories of
the compliances and the volume fraction when ETO starting
two initial guess designs. It can be seen that the objective func-
tion decreases with the redistribution of the 50%materials. The
optimization algorithm is convergent after 60 and 101 design
iterations for initial guesses 1 and 2, respectively.

4.4 Design of 2D structural natural frequency

We seek the topological design that maximizes the fundamental
frequency subject to a volume fraction constraint of 50% of a
clamped beam in this example. Design dimensions of the beam
is 140mm× 20mmwhich is clamped on both sides as shown in
Fig. 16a. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. A concen-
trate nonstructural massM = 1 × 10−3kg is placed at the center.
The rectangular design is divided into 140 × 20 four node plane

(a) Full material design 

(b) Initial guess design 1 

(c) Initial guess design 2 

Fig. 13 Dimensions of the design domain and boundary conditions of a
roller-supported half-wheel with different initial guess designs

(a) Final topology from full material design: 

(b) Final topology from initial guess design 1: 

(c) Final topology from initial guess design 2: 

Fig. 14 Final topologies from three different initial designs

Fig. 15 Evolutionary histories of the compliances and the volume
fraction when ETO starts from two initial guess designs
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FIGURE 2.15: Evolutionary histories of the compliances and the volume
fraction when ETO starts from two initial guess designs.

2.3.4 2D Design for structural natural frequency

We seek the topological design that maximizes the fundamental frequency subject to a
volume fraction constraint of 50% of a clamped beam in this example. Design dimen-
sions of the beam are 140 × 20 mm. The beam is clamped on both sides as shown in
Figure 2.16 (a). Young’s modulus E = 1 MPa, Poisson’s ratio ν = 0.3 and mass density
ρm = 10−9 kg/mm3 are assumed. A concentrated nonstructural mass M = 1× 10−3 kg
is placed at the center. The rectangular design is divided into 140× 20 four node plane
stress elements. The ETO parameters are set to ER = 0.02, and rmin = 2. The optimal
design obtained using the ETO method is shown in Figure 2.16 (b). The optimization
converges after 61 design iterations and the fundamental frequency of the resultant
topology is ω = 21.75 rad/s. Figure 2.17 shows the evolution histories of the fundamen-
tal frequency as well as the volume fraction. It is seen that the volume fraction reaches
its constraint value 50% after about 35 design iterations and the first natural frequency
converges to a constant value after another 26 design iterations. This is because we set
a very strict stop criterion to ensure the structural topological convergence.

2.3.5 3D Design for structural compliance

The present ETO method can be straightforwardly extended to the 3D case. Figure 2.18
(a) shows support and loading conditions of a 3D cantilever beam with F = −1 N.
Young’s modulus E = 1 MPa, and Poisson’s ration ν = 0.3 are assumed. The objective
volume is only 50% of the design domain. The cubic design is divided into 60× 20× 4

eight node brick elements. ETO parameters areER = 0.02, and rmin = 3. The final topol-
ogy which satisfies the volume constraint and the convergence criterion is illustrated
in Figure 2.18 (b) with smooth boundaries. The objective function converges to 23.25
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stress elements. The ETO parameters are set to ER = 0.02, and
rmin = 2. The optimal design obtained using the ETOmethod is
shown in Fig. 16b. The optimization iteration converges after
61 design iterations and the fundamental frequency of the re-
sultant topology is ω1 = 21.75 rad/s. Figure 17 shows the evo-
lution histories of the fundamental frequency as well as the
volume fraction. It is seen that the volume fraction reaches its
constraint value 50% after about 35 design iterations and the
first natural frequency converges to a constant value after an-
other 26 design iterations. This is because we set a very strict
stop criterion to ensure the structural topological convergence.

4.5 Design of 3D structural compliance

The present ETO method can be straightforwardly extend-
ed to the 3D case. Figure 18a shows support and loading
conditions of a 3D cantilever beam with F = − 1 N.
Young’s modulus E = 1MPa, and Poisson’s ration ν = 0.3
are assumed. The objective volume is only 50% volume
of the design domain. The cubic design is divided into
60 × 20 × 4 eight node brick elements. ETO parameters
are ER = 0.02, and rmin = 3. The final topology satisfies
the volume constraint and the convergence criterion is

illustrated in Fig. 18b with smooth boundaries. The ob-
jective function converges to 23.25 N mm after only 63
iterations to satisfy the strict convergence criterion τ =
0.01%. Figure 19 shows the evolution histories of the
compliance and volume fraction.

4.6 Design of 3D structural natural frequency

It should be noted that the most time-consuming part of the
optimization process is for solving the equilibrium equations
in the FE analysis. Thus the computational efficiency is of
critical importance for large optimization problems, especially
for 3D structures. To further demonstrate the efficiency of the
present ETO method, we consider a 3D structural frequency
design starting from an initial guess design. The 3D design
dimensions of the beam is 60 × 10 × 10 which is clamped on
both sides as shown in Fig. 20a. A concentrate nonstructural
mass M = 1 × 10−3kg is attached to the center of the bottom

(a) design domain and boundary conditions of frequency optimization

(b) solution

Fig. 16 ETO design of a clamped
beam with a concentrated mass

(a) design domain and boundary conditions of a cantilever beam

(b) Solution

Fig. 18 ETO design of a 3D cantilever beam with a concentrated force
Fig. 17 Evolutionary histories of the first natural frequency and the
volume fraction
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FIGURE 2.16: ETO design of a clamped beam with a concentrated mass.

stress elements. The ETO parameters are set to ER = 0.02, and
rmin = 2. The optimal design obtained using the ETOmethod is
shown in Fig. 16b. The optimization iteration converges after
61 design iterations and the fundamental frequency of the re-
sultant topology is ω1 = 21.75 rad/s. Figure 17 shows the evo-
lution histories of the fundamental frequency as well as the
volume fraction. It is seen that the volume fraction reaches its
constraint value 50% after about 35 design iterations and the
first natural frequency converges to a constant value after an-
other 26 design iterations. This is because we set a very strict
stop criterion to ensure the structural topological convergence.

4.5 Design of 3D structural compliance

The present ETO method can be straightforwardly extend-
ed to the 3D case. Figure 18a shows support and loading
conditions of a 3D cantilever beam with F = − 1 N.
Young’s modulus E = 1MPa, and Poisson’s ration ν = 0.3
are assumed. The objective volume is only 50% volume
of the design domain. The cubic design is divided into
60 × 20 × 4 eight node brick elements. ETO parameters
are ER = 0.02, and rmin = 3. The final topology satisfies
the volume constraint and the convergence criterion is

illustrated in Fig. 18b with smooth boundaries. The ob-
jective function converges to 23.25 N mm after only 63
iterations to satisfy the strict convergence criterion τ =
0.01%. Figure 19 shows the evolution histories of the
compliance and volume fraction.

4.6 Design of 3D structural natural frequency

It should be noted that the most time-consuming part of the
optimization process is for solving the equilibrium equations
in the FE analysis. Thus the computational efficiency is of
critical importance for large optimization problems, especially
for 3D structures. To further demonstrate the efficiency of the
present ETO method, we consider a 3D structural frequency
design starting from an initial guess design. The 3D design
dimensions of the beam is 60 × 10 × 10 which is clamped on
both sides as shown in Fig. 20a. A concentrate nonstructural
mass M = 1 × 10−3kg is attached to the center of the bottom

(a) design domain and boundary conditions of frequency optimization

(b) solution

Fig. 16 ETO design of a clamped
beam with a concentrated mass

(a) design domain and boundary conditions of a cantilever beam

(b) Solution

Fig. 18 ETO design of a 3D cantilever beam with a concentrated force
Fig. 17 Evolutionary histories of the first natural frequency and the
volume fraction

2154 D. Da et al.

FIGURE 2.17: Evolutionary histories of the first natural frequency and
the volume fraction.
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stress elements. The ETO parameters are set to ER = 0.02, and
rmin = 2. The optimal design obtained using the ETOmethod is
shown in Fig. 16b. The optimization iteration converges after
61 design iterations and the fundamental frequency of the re-
sultant topology is ω1 = 21.75 rad/s. Figure 17 shows the evo-
lution histories of the fundamental frequency as well as the
volume fraction. It is seen that the volume fraction reaches its
constraint value 50% after about 35 design iterations and the
first natural frequency converges to a constant value after an-
other 26 design iterations. This is because we set a very strict
stop criterion to ensure the structural topological convergence.

4.5 Design of 3D structural compliance

The present ETO method can be straightforwardly extend-
ed to the 3D case. Figure 18a shows support and loading
conditions of a 3D cantilever beam with F = − 1 N.
Young’s modulus E = 1MPa, and Poisson’s ration ν = 0.3
are assumed. The objective volume is only 50% volume
of the design domain. The cubic design is divided into
60 × 20 × 4 eight node brick elements. ETO parameters
are ER = 0.02, and rmin = 3. The final topology satisfies
the volume constraint and the convergence criterion is

illustrated in Fig. 18b with smooth boundaries. The ob-
jective function converges to 23.25 N mm after only 63
iterations to satisfy the strict convergence criterion τ =
0.01%. Figure 19 shows the evolution histories of the
compliance and volume fraction.

4.6 Design of 3D structural natural frequency

It should be noted that the most time-consuming part of the
optimization process is for solving the equilibrium equations
in the FE analysis. Thus the computational efficiency is of
critical importance for large optimization problems, especially
for 3D structures. To further demonstrate the efficiency of the
present ETO method, we consider a 3D structural frequency
design starting from an initial guess design. The 3D design
dimensions of the beam is 60 × 10 × 10 which is clamped on
both sides as shown in Fig. 20a. A concentrate nonstructural
mass M = 1 × 10−3kg is attached to the center of the bottom

(a) design domain and boundary conditions of frequency optimization

(b) solution

Fig. 16 ETO design of a clamped
beam with a concentrated mass

(a) design domain and boundary conditions of a cantilever beam

(b) Solution

Fig. 18 ETO design of a 3D cantilever beam with a concentrated force
Fig. 17 Evolutionary histories of the first natural frequency and the
volume fraction
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FIGURE 2.18: ETO design of a 3D cantilever beam with a concentrated
force.

mm2/N after only 63 iterations to satisfy the strict convergence criterion τ = 0.01%.
Figure 2.19 shows the evolution histories of the compliance and volume fraction.

2.3.6 3D Design for structural natural frequency

It should be noted that the most time-consuming part of the optimization process is
for solving the equilibrium equations in the FEA. Thus the computational efficiency is
of critical importance for large optimization problems, especially for 3D structures. To
further demonstrate the efficiency of the present ETO method, we consider a 3D struc-
tural frequency design starting from an initial guess design. The 3D design dimensions
of the beam are 60 × 10 × 10. The beam is clamped on both sides as shown in Figure
2.20 (a). A concentrated nonstructural mass M = 1 × 10−3 kg is attached to the center
of the bottom surface. Young’s modulus E = 1 MPa, Poisson’s ration ν = 0.3 and mass
density ρm = 10−9 kg/mm3 are assumed. The objective volume is 30% of the design
domain and the initial guess design with 3000 elements which is less than twice the
volume constraint as shown in Figure 2.20 (b). The ETO parameters are ER = 0.02, and
rmin = 1.5. The topology is developed by gradually relocating solid elements follow-
ing the ETO procedure outlined in Section 2.2 until the objective volume is reached.
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surface. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. The ob-
jective volume is 30% of the design domain and the initial
guess design with 3000 elements which is less than twice
the volume constraint as shown in Fig. 20b. The ETO param-
eters are ER = 0.02, and rmin = 1.5. The topology is developed
by gradually relocating solid elements following the ETO
procedure outlined in Section 3 until the objective volume is
reached. The optimal designs from the initial guess design is
given in Fig. 20c. The total iteration numbers and the final
fundamental frequency is 95 and 312.58rad/s, respectively.
Figure 21 shows the evolution histories of the fundamental
frequency and the volume fraction when ETO starting the
initial guess design. In this case, the total volume of the model
decreases step by step until the objective volume is reached.

Then the volume is unchanged and the natural frequency in-
creases gradually until the convergence criterion is satisfied.
Therefore, the proposed method may start from guess designs
that are much small than the full design domain. This is of
important for optimizing 3D structures where the FEA takes
up a large portion of the computational time of optimization.

5 Conclusion and discussion

This paper has presented an evolutionary topology optimiza-
tion (ETO) method for topology optimization of continuum
structures. A nodal sensitivity-based level-set function (LSF)
is introduced to represent the structural topology implicitly with
smooth boundary representation. The structural topology is it-
eratively tailored by updating the constructed LSF and the
level-set value, which are also used for the calculation of ele-
mental volume fractions at each design iteration. The new ap-
proach is demonstrated on compliance minimization problems
and natural frequency maximization problems of 2D and 3D
continuum structures. In contrast to conventional density-based
topology optimization methods, the newly proposed ETO
method achieves optimized topologies with smooth boundary
representation, even when a coarse mesh is employed for FEA.
The introduction of LSF and the level-set value results in the
fine resolution of topology far beyond elements, thus contrib-
uting to the stable convergence of the solution. Numerical ex-
amples show that the developed ETO method is capable of
generating convergent and mesh-independent solutions with
smooth boundary representation, meanwhile the resultant de-
signs are less dependent on the initial guess topology.
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(b) initial gauss design
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Fig. 20 ETO design of a 3D beam with a concentrated mass

Fig. 19 Evolutionary histories of the compliance and the volume fraction
of the 3D cantilever beam

Fig. 21 Evolutionary histories of the first natural frequency and the
volume fraction when ETO starts from the initial guess design
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FIGURE 2.19: Evolutionary histories of the compliance and the volume
fraction of the 3D cantilever beam.

The optimal designs from the initial guess design is given in Figure 2.20 (c). The total
iteration numbers and the final fundamental frequency is 95 and 312.58 rad/s, respec-
tively. Figure 2.21 shows the evolution histories of the fundamental frequency and the
volume fraction when ETO starting the initial guess design. In this case, the total vol-
ume of the model decreases step by step until the objective volume is reached. Then
the volume is unchanged and the natural frequency increases gradually until the con-
vergence criterion is satisfied. Therefore, the proposed method may start from guess
designs that are much small than the full design domain. This is of important for opti-
mizing 3D structures where the FEA takes up a large portion of the computational time
of optimization.

2.4 Concluding remarks

In this section, we have presented an evolutionary topology optimization (ETO) method
for topology optimization of continuum structures. A nodal sensitivity-based level-set
function (LSF) is introduced to represent the structural topology implicitly with smooth
boundary representation. The structural topology is iteratively tailored by updating
the constructed LSF and the level-set value, which are also used for the calculation of
elemental volume fractions at each design iteration. The new approach is demonstrated
on compliance minimization problems and natural frequency maximization problems
of 2D and 3D continuum structures. In contrast to conventional density-based topology
optimization methods, the newly proposed ETO method achieves optimized topolo-
gies with smooth boundary representation, even when a coarse mesh is employed for
FEA. The introduction of LSF and the level-set value results in the fine resolution of
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surface. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. The ob-
jective volume is 30% of the design domain and the initial
guess design with 3000 elements which is less than twice
the volume constraint as shown in Fig. 20b. The ETO param-
eters are ER = 0.02, and rmin = 1.5. The topology is developed
by gradually relocating solid elements following the ETO
procedure outlined in Section 3 until the objective volume is
reached. The optimal designs from the initial guess design is
given in Fig. 20c. The total iteration numbers and the final
fundamental frequency is 95 and 312.58rad/s, respectively.
Figure 21 shows the evolution histories of the fundamental
frequency and the volume fraction when ETO starting the
initial guess design. In this case, the total volume of the model
decreases step by step until the objective volume is reached.

Then the volume is unchanged and the natural frequency in-
creases gradually until the convergence criterion is satisfied.
Therefore, the proposed method may start from guess designs
that are much small than the full design domain. This is of
important for optimizing 3D structures where the FEA takes
up a large portion of the computational time of optimization.

5 Conclusion and discussion

This paper has presented an evolutionary topology optimiza-
tion (ETO) method for topology optimization of continuum
structures. A nodal sensitivity-based level-set function (LSF)
is introduced to represent the structural topology implicitly with
smooth boundary representation. The structural topology is it-
eratively tailored by updating the constructed LSF and the
level-set value, which are also used for the calculation of ele-
mental volume fractions at each design iteration. The new ap-
proach is demonstrated on compliance minimization problems
and natural frequency maximization problems of 2D and 3D
continuum structures. In contrast to conventional density-based
topology optimization methods, the newly proposed ETO
method achieves optimized topologies with smooth boundary
representation, even when a coarse mesh is employed for FEA.
The introduction of LSF and the level-set value results in the
fine resolution of topology far beyond elements, thus contrib-
uting to the stable convergence of the solution. Numerical ex-
amples show that the developed ETO method is capable of
generating convergent and mesh-independent solutions with
smooth boundary representation, meanwhile the resultant de-
signs are less dependent on the initial guess topology.
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FIGURE 2.20: ETO design of a 3D beam with a concentrated mass.

surface. Young’s modulus E = 1N/mm2, Poisson’s ration ν =
0.3 and mass density ρ = 10−9kg/mm3 are assumed. The ob-
jective volume is 30% of the design domain and the initial
guess design with 3000 elements which is less than twice
the volume constraint as shown in Fig. 20b. The ETO param-
eters are ER = 0.02, and rmin = 1.5. The topology is developed
by gradually relocating solid elements following the ETO
procedure outlined in Section 3 until the objective volume is
reached. The optimal designs from the initial guess design is
given in Fig. 20c. The total iteration numbers and the final
fundamental frequency is 95 and 312.58rad/s, respectively.
Figure 21 shows the evolution histories of the fundamental
frequency and the volume fraction when ETO starting the
initial guess design. In this case, the total volume of the model
decreases step by step until the objective volume is reached.

Then the volume is unchanged and the natural frequency in-
creases gradually until the convergence criterion is satisfied.
Therefore, the proposed method may start from guess designs
that are much small than the full design domain. This is of
important for optimizing 3D structures where the FEA takes
up a large portion of the computational time of optimization.

5 Conclusion and discussion

This paper has presented an evolutionary topology optimiza-
tion (ETO) method for topology optimization of continuum
structures. A nodal sensitivity-based level-set function (LSF)
is introduced to represent the structural topology implicitly with
smooth boundary representation. The structural topology is it-
eratively tailored by updating the constructed LSF and the
level-set value, which are also used for the calculation of ele-
mental volume fractions at each design iteration. The new ap-
proach is demonstrated on compliance minimization problems
and natural frequency maximization problems of 2D and 3D
continuum structures. In contrast to conventional density-based
topology optimization methods, the newly proposed ETO
method achieves optimized topologies with smooth boundary
representation, even when a coarse mesh is employed for FEA.
The introduction of LSF and the level-set value results in the
fine resolution of topology far beyond elements, thus contrib-
uting to the stable convergence of the solution. Numerical ex-
amples show that the developed ETO method is capable of
generating convergent and mesh-independent solutions with
smooth boundary representation, meanwhile the resultant de-
signs are less dependent on the initial guess topology.
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FIGURE 2.21: Evolutionary histories of the first natural frequency and
the volume fraction when ETO starts from the initial guess design.
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topology far beyond elements, thus contributing to the stable convergence of the solu-
tion. Numerical examples show that the developed ETO method is capable of gener-
ating convergent and mesh-independent solutions with smooth boundary representa-
tion, meanwhile the resultant designs are less dependent on the initial guess topology.
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Chapter 3

Design of materials for maximum
effective elastic modulus and
negative Poisson’s ratio

Material design as a quite old research topic is one of the important branches of the
topology optimization applications. A seminal paper could be traced back to [144],
where the topology of material microstructures is tailored to achieve the prescribed
constitutive parameters, called an inverse homogenization scheme. In the past few
dacades, this research topic has been very active since it offers great design flexibility
to achieve high performance materials or materials with properties not found in the
nature. Several reviews on design of material microstructures have been recently pre-
sented in [30, 127, 172]. In pure material design, the previous research works [142, 74,
170] have indicated that many optimization factors such as used algorithms and param-
eters have influence on the optimal solution. In other words, there are multiple local
minima for the topological design of materials for extreme properties. Therefore, it is
important to attempt different or more concise algorithms to find much wider possible
solutions to material design. This Chapter is an attempt to use the strain energy method
to predict the effective material properties, combined with the implicit or explicit opti-
mization algorithms to tailor material microstructures so as to find the optimal topol-
ogy with the selected objective functions. The adoption of the strain energy-based ap-
proach instead of the asymptotic homogenization method significantly simplifies the
numerical implementation.

In the following, in Section 3.1 we first introduce the principle of the stain energy-
based method to predict the effective material properties, followed by the formulation
of topological design model with the sensitivity analysis as well as the numerical im-
plementation. The discrete bi-directional evolutionary structural optimization (BESO)
algorithm is adopted to the inverse design of porous materials. Finally, several 2D and
3D numerical examples are given to illustrate the optimal topology with the extreme
effective elastic moduli.
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In Section 3.2, a new approach for the topological design of materials with selected
desired properties is presented. The method is based on hybrid cellular automaton
(HCA), which is an implicit optimization technique that uses local rules to update de-
sign variables iteratively until meeting the prescribed optimality conditions. By means
of an energy-based homogenization approach, the effective properties of the consid-
ered material are calculated in terms of element mutual energies. By this method, no
sensitivity information is required to find the optimal topology for the considered de-
sign objectives: maximum bulk or shear modulus, and negative Poisson’s ratio. The
proposed method is validated by a series of numerical examples.

3.1 Design of materials using the BESO

This section is an attempt to employ the strain energy method and the BESO method
to tailor material microstructures so as to find the maximum effective elastic modu-
lus. Even though the BESO method has been employed in [74] for material design,
the adoption of the strain energy-based method further simplifies the numerical imple-
mentation. A number of interesting and valid material microstructures are obtained to
find much wider possible solutions to material design.

3.1.1 Principle of the strain energy-based method and sensitivity analysis

When a porous material is composed of periodic unit cells, its effective elasticity prop-
erties of this porous material can be calculated by the strain energy-based method. In
this method, a unit test strain ε0

ij is prescribed on the boundaries of an associated Rep-
resentative Volume Element (RVE) to the unit cell, and it satisfies the average strain
theorem for elastic bodies [70, 190]: ε̄ij = ε0

ij , where ε0
ij are constant strains. The aver-

age strain-stress relationship is obtained as:

σ̄ij = C̄Hijklε̄ij (3.1)

where C̄Hijkl is the effective elastic modulus. The strain energies stored in the RVE can
be written as:

Es =
1

2
C̄Hijklε̄ij ε̄klV (3.2)

where V denotes the volume of the RVE. For 2D orthotropic materials, the effective
elastic matrix is given by

C̄H =

C̄
H
1111 C̄H1122 0

C̄H2222 0

sym C̄H1212

 (3.3)
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Four constant strains ε̄1 = (1 0 0)T , ε̄2 = (0 1 0)T , ε̄3 = (0 0 1)T , and ε̄4 = (1 1 0)T

are used to calculate four components of the effective elastic matrix. In the first test,
suppose the average strain of the RVE is ε̄1 = (1 0 0)T , the average stress is then σ̄1 =

(C̄H1111 C̄
H
1122 0)T correspondingly. Therefore, the parameter C̄H1111 can be calculated as:

C̄H1111 = 2E1
s , where E1

s denotes the strain energy of the first test [190]. It is seen that
the remaining components of the C̄H can be obtained through other three different test
strain fields. The extension of computation of the effective elastic modulus to 3D is
straightforward.

Material interpolation scheme with penalization introduced in [16] is adopted here
to derive the sensitivities of the effective properties with respect to the design variable:

Ke = K0(ρe)
P (3.4)

where K0 indicates the stiffness matrix of solid element. Ke and ρe are the stiffness
matrix and the relative density of an arbitrary element e, respectively. P is the penalty
exponent. The finite element equilibrium equation of the RVE is

KU = F (3.5)

where U and F are the displacement vector and force vector respectively. K is the
global stiffness matrix which is assembled by Ke. Thus, the sensitivity of the strain
energy with respect to the design variable ρe can be expressed as:

∂Es
∂ρe

=
1

2
UT ∂K

∂ρe
U =

1

2
P (Ue)

T (ρe)
P−1K0Ue = P

(Es)e
ρe

(3.6)

It is observed from Equation (3.6) that the sensitivity of the strain energy or effective
elastic modulus with respect to design variable only depends on the element relative
density and the strain energy. Therefore, the used strain energy-based method is rel-
atively concise and extremely convenient for programming. In addition, it is straight-
forward to incorporate it with topological design of porous materials or composites for
extreme material properties.

3.1.2 Topological design optimization model and numerical implementa-
tion

It is well known that effective properties of composite materials are highly dependent
on microscopic structural architecture/topology. To obtain heterogeneous materials
with extreme properties, the goal, put simply, is to find an optimal material layout
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within the given domain (i.e. RVE in material design) for specified boundary condi-
tions and constraints. Therefore, the topology optimization problem of porous materi-
als for extreme elastic modulus can be mathematically written as:

Find : {ρe} (3.7)

Maximize : f = ωijklC̄
H
ijkl (3.8)

Subject to : KU = F (3.9)

: Vreq =
N∑
e=1

Veρe (3.10)

: ρe = ρmin or1 (3.11)

where Vreq denotes the target volume of solid material and Ve denotes the volume of
the e-th element in the RVE. Binary design variable ρe is the relative density of the e-th
element, where ρe = 1 indicates that the element is filled with solid material and ρe =

ρmin means a void element. ωijkl is the weight factor and different objectives can be
defined when ωijkl takes different values. For example, in 2D cases, the maximization
of the material bulk modulus K corresponds to the objective function f = 1

4(C̄H1111 +

2C̄H1122 + C̄H2222) and the maximization of the material shear modulus G corresponds to
f = C̄H1212. Using the Equation (3.6), the sensitivity information of the selected objective
function with respect to design variables can be calculated correspondingly.

In this work, the BESO algorithm is used to inversely optimize the topology of the
material RVE. To avoid the common issue as checkerboard pattern in topology opti-
mization, the above formulated sensitivity numbers are firstly smoothed by means of
a filtering scheme [23, 28, 141]

αe =

∑Ne
j=1wejαj∑Ne
j=1wej

, (3.12)

where wej is a linear weight factor defined as:

wej = max(0, rmin −∆(e, j)), (3.13)

determined according to the prescribed filter radius rmin and the element center-to-
center distance ∆(e, j) between elements e and j. Due to the discrete nature of design
variables (solid (ρe = 1) or void phase (ρe = ρmin)) in the BESO method, the current
sensitivity numbers are further smoothed along history evolution to avoid spurious
oscillations [76] as:

α(iter)
e =

(α
(iter)
e + α

(iter−1)
e )

2
, (3.14)
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where iter is the current iteration number, thus, the updated sensitivity number in-
cludes all sensitivity information in the previous iterations.

With the modified sensitivity information, the considered structure can be tailored
together with the target material volume at the current iteration V(iter). The target ma-
terial volume can be set as

V(iter) = max
{
Vreq, (1− cer)V(iter−1)

}
, (3.15)

where cer is an evolutionary volume ratio which can be set by designer to determine
the amount of material to be removed from the previous design iteration. Once the
volume constraint of the solid material Vreq is reached, the volume is kept constant at
the prescribed value.

The optimization procedure iteratively conducts the finite element analysis (FEA)
to determinate the sensitivity numbers and the update of topology in the RVE and the
following convergence criterion is satisfied [76]:

|
∑Q

q=1 (fiter−q+1 − fiter−Q−q+1) |∑Q
q=1 fiter−q+1

≤ τ. (3.16)

In the above, Q is s an integer and τ is a specified small tolerance value.

3.1.3 Numerical examples

In this section, several 2D and 3D numerical examples of porous material design for
maximizing effective bulk or shear modulus are presented. It is assumed that the solid
material is isotropic with Young’s modulus E = 1 MPa and Poisson’s ratio ν = 0.3 in
both 2D and 3D examples. The RVE is discretized into 100×100 four-node quadrilateral
(Q4) elements for 2D examples and 26 × 26 × 26 brick elements (C3D8 in ABAQUSr)
for 3D examples.

3.1.3.1 2D example for maximizing the shear modulus

The objective of this example is to maximize the shear modulus of 2D porous materials.
Three different initial designs of the RVE as shown in Figure 3.1 are considered. Initial
design A is full solid material except four center elements, initial design B is full solid
material except for four corner elements, and initial design C with eight elements at
mid-sides of RVE for soft phase. Final volume fractions of solid material are set to 0.5
in all three cases.

Figure 3.2 shows three final topologies of material RVE and their corresponding
effective elasticity matrices obtained from different initial designs. It is seen that soft
phases are separated by the surrounding solid materials to maximize the effective shear
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modulus. The effective shear moduli for these three microstructures are 0.1394 MPa,
0.1392 MPa and 0.1394 MPa. They are very close to each other even though their topo-
logical configurations seem totally different. In fact, topologies shown in Figures 3.2 (a)
and (b) are identical if the RVE extends towards horizontal and vertical directions peri-
odically. In other words, the RVE shown in Figure 3.2 (b) obtained from initial design B
is the same as the structure inside the orange square box in Figure 3.2 (a) (middle). Fur-
thermore, the resulting RVE obtained from initial design C is similar with the structure
inside the green square box in Figure 3.2 (a). The results are consistent with the knowl-
edge in inverse homogenization design [144] that different topologies of the RVE can
possess the same effective elasticity property, and the initial design of the RVE affects
the final result.

Figure 3.3 plots the iteration process of shear modulus and volume fraction of solid
phases within the RVE starting with three different initial guesses.It can be noted that
the evolution histories of the shear modulus starting from initial designs A, B and C
are very similar. The total iteration counts are respectively 44, 45 and 46 which in-
dicates that the proposed topology optimization method has good stability and high
computational efficiency.

(a) (b) (c)

Fig. 2. Initial designs: (a) initial design A; (b) initial design B; (c) initial design C.
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Fig. 3.Microstructures and effective elasticity matrices of 2D porous materials with maximum
shear modulus: (a) the resulted RUC from initial design A (above), 3 3 RUCs (middle) and
effective elasticity matrix (below); (b) the resulted RUC from initial design B (above), 3 3
RUCs (middle) and effective elasticity matrix (below); (c) the resulted RUC from initial design C
(above), 3 3 RUCs (middle) and effective elasticity matrix (below).

FIGURE 3.1: (a) Initial design A; (b) initial design B; (c) initial design C.

3.1.3.2 2D example for maximizing the bulk modulus

In this section, the optimization objective is selected as the bulk modulus of a 2D porous
materials, and the initial design A shown in Figure 3.1 is used. Figure 3.4 shows the
final microstructures and the corresponding effective elasticity matrixes when volume
constrains of solid materials are set to be 60%, 50%, 40% and 30%. The fan-like topolo-
gies are generated with the reduction of volume fraction of solid material. The total
iteration counts are 40, 49, 58 and 70, and the bulk moduli are 0.2396 MPa, 0.1796 MPa,
0.1304 MPa, and 0.0891 MPa, respectively. The Hashin–Shtrikman (HS) bounds [71] can
be used to predict the maximum and minimum effective elastic modulus that a com-
posite material could achieve. As for the porous materials, the void phase properties
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(a) (b) (c)

Fig. 2. Initial designs: (a) initial design A; (b) initial design B; (c) initial design C.
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Fig. 3.Microstructures and effective elasticity matrices of 2D porous materials with maximum
shear modulus: (a) the resulted RUC from initial design A (above), 3 3 RUCs (middle) and
effective elasticity matrix (below); (b) the resulted RUC from initial design B (above), 3 3
RUCs (middle) and effective elasticity matrix (below); (c) the resulted RUC from initial design C
(above), 3 3 RUCs (middle) and effective elasticity matrix (below).

FIGURE 3.2: Optimized topologies of RVE and the effective elasticity ma-
trix: columns (a), (b) and (c) compare the results when the optimization

procedure starts from initial designs A, B, and C respectively.

Fig. 4. Iterative process of shear modulus and volume fraction of solid materials for maximizing
shear modulus of 2D porous materials.
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Fig. 5. RUC, 3 3 RUCs and effective elasticity matrices of 2D porous materials with maximum
bulk modulus for different volume fractions (a) 60%; (b) 50%; (c) 40%; and (d) 30%.

FIGURE 3.3: Iterative process of shear modulus and volume fraction of
solid material for maximizing shear modulus.

are equal to zero and the upper bound of bulk modulus can be expressed as [153]:

K∗ ≤
VfK

SGS

(1− Vf )KS +GS
(3.17)



Chapter 3. Design of materials for maximum effective elastic modulus and negative
Poisson’s ratio

45

where KS and GS are the bulk and shear modulus of solid materials respectively. K∗

is the bulk modulus of the considered porous material and Vf is the volume fraction of
solid phases in the porous material. Figure 3.5 draws the curve of the HS upper bound
as the volume fraction of solid phase which shows a good agreement with the present
solutions.
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 FIGURE 3.4: Optimized topologies of RVE and the effective elasticity
matrix for maximum bulk modulus: (a) 60%, K∗ = 0.2396; (b) 50%,

K∗ = 0.1796; (c) 40%, K∗ = 0.1304; and (d) 30%, K∗ = 0.0891.

Fig. 6. Comparison between the present solutions and HS bounds.
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Fig. 7. RUC, 2 2 2  RUCs and effective elasticity matrices of 3D porous materials with
maximum shear modulus for different volume fractions (a) 35%; (b) 25%; (c) 15%.

FIGURE 3.5: Comparison between the present solutions and HS bounds.
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3.1.3.3 3D example for maximizing the shear modulus

In the following example, the optimization objective is to maximize the effective shear
modulus of 3D porous materials. The optimization procedure starts from an initial de-
sign which is fully composed of solid material except for eight center elements of the
representative cubic cell. Figure 3.6 shows the final RVE, 2 × 2 × 2 RVEs and effec-
tive elasticity matrices when the volume constraints are set to be 35%, 25% and 15%,
respectively. As can be observed, cross sections of obtained 3D microstructures are sim-
ilar with the 2D microstructures. The corresponding effective shear moduli are 0.0664
MPa, 0.0387 MPa and 0.0164 MPa and the total number of iterations are 41, 51 and 54,
respectively. It is worthwhile noting that the iteration numbers are all less than 55 even
though the volume constraint is as low as 15 %.

Fig. 6. Comparison between the present solutions and HS bounds.
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Fig. 7. RUC, 2 2 2  RUCs and effective elasticity matrices of 3D porous materials with
maximum shear modulus for different volume fractions (a) 35%; (b) 25%; (c) 15%.

FIGURE 3.6: Optimized topologies of RVE and the effective elasticity
matrix for maximum 3D shear modulus: (a) 35%, (b) 25%, and (c) 15%.

3.1.3.4 3D example for maximizing the bulk modulus.

Topological design of 3D porous materials for the bulk modulus is considered here. The
optimization process starts from the initial design where eight elements at the corner
of cubic unit cell are assigned as void element. The volume fractions of solid materials
are set to be 55%, 35% and 15% of the whole design domain. The final microstructural
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topologies of the RVE and their 2 × 2 × 2 RVEs and effective elasticity matrixes are
shown in Figure 3.7. The total number of iterations are 42, 40 and 66, and the final bulk
moduli are 0.2551 MPa, 0.1192 MPa and 0.0265 MPa. As in the previous examples, the
microstructural topologies keep consistency with the decrease of the volume fraction
of solid material.

Fig. 8. Iterative process of shear modulus and volume fraction of solid materials for maximizing
shear modulus of 3D porous materials.
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Fig. 9. RUC, 2 2 2  RUCs and effective elasticity matrices of 3D porous materials with
maximum bulk modulus for different volume fractions (a) 55%; (b) 35%; (c) 15%.

FIGURE 3.7: Optimized topologies of RVE and the effective elasticity
matrix for maximum 3D bulk modulus: (a) 55%, K∗ = 0.2551; (b) 35%,

K∗ = 0.1192; and (c) 15%, K∗ = 0.0265.

3.2 Design of materials using the hybrid cellular automata

The hybrid cellular automata (HCA) method is a biologically-inspired technique which
is actually not explicitly an optimization approach [155]. One of the first application
of cellular automata (CAs) to structural design was presented by [81], and the basic
idea of this method is that the overall behavior of a particular cell is governed by
its neighbors. The physical quantities at all lattices are then updated simultaneously
based on the local rules such that the material or structural topologies can be tailored
to achieve the selected objectives [87]. During the past decade, structural optimization
using the HCA has undergone a remarkable development [1, 139, 140, 20], and it has
been demonstrated that the HCA is an efficient and robust method in solving topology
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optimization problems [156, 132]. The merits of the HCA include effectiveness, gra-
dient free and easy implementation with other numerical analysis methods [21]. This
section aims to extend the HCA to the design of periodic microstructures of porous
materials with extreme elastic properties and negative Poisson’s ratio.

3.2.1 Optimization model

The idea of the CA requires decomposition of the considered design domain (RUC
herein) into a set of cells which is also the basic idea of the finite element (FE) method.
The CA cells and the FE meshes are coincident in this work. The values of elastic
moduli of cells or elements are used as the design variables which are updated upon a
local rule until convergence is met. Similar to topology optimization of homogeneous
structures, the modulus at a cell/element e is defined using the modified solid isotropic
material with penalization (SIMP) approach:

E(ρe) = Emin + ρPe (E0 − Emin), (3.18)

where E0 is the Young’s modulus of solid cell and Emin is the Young’s modulus of
void cell which is a very small value to avoid the singularity of the stiffness matrix. P
is the penalization exponent which is artificially introduced to make sure the material
distribution converges to a black and white design. ρe takes values between 0 and 1,
and these limits denote the void cells and solid cells, respectively.

The optimization model using the HCA for extreme material properties can be for-
mulated as follows:

Find : {ρe} (3.19)

Maximize : f = ωijklC̄
H
ijkl (3.20)

Subject to : KU = F (3.21)

: Se = Ēe − E∗e = 0 (3.22)

: 0 < ρe ≤ 1 (3.23)

The objective f is a function of the homogenized material constitutive components as
formluated in Section 3.1.2. In Equation (3.22), E∗e is the local strain energy target and
Ēe is an average element strain energy value. This value is calculated as the average
within a fixed proximity of each element in the design domain [157] as

Ēe =
Ee +

∑Nca
j=1Ej

Nca + 1
, (3.24)
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where Ej corresponds to the strain energy of a neighboring element and Nca is the
number of neighbors defined in the CA neighborhood. von Neumann neighborhood
is employed in this work as illustrated in Figure 3.8, and Nca equals to 4. The Ee is de-
fined as the element strain energy and also viewed as the element contribution to the
objective function. For instance, when the objective function is chosen as bulk modulus
K, the Ee denotes the element strain energy which corresponds to the bulk modulus.
While it comes to maximizing material shear modulus G, Ee denotes the element con-
tribution to the shear modulus. Therefore, using the energy-based homogenization
approach, the global homogenized material properties formulated in Equation (3.20) is
governed by discrete elements that interact with their neighbors. The use of average
element strain energy instead of an actual value is analogous to the filter technique
in classic topology optimization to avoid numerical instabilities such as checkerboard
phenomenon and mesh dependency. Equation (3.22) achieves the zero-error condition
between the average value of the strain energies and their optimum value, indicating
that elements which are not void are saturated. When the Equation (3.22) is not sat-
isfied, a local rule of HCA algorithm formulated in following sub-section updates the
density design variable ρe to make this condition true.

 

  

(a) (b) 

 
FIGURE 3.8: Two CA neighborhood layouts; (a) Empty Nca = 0; (b) von

Neumann Nca = 4.

Under the assumption of periodic boundary conditions (PER), the global displace-
ment field of the design domain (RVE) is evaluated by solving the equilibrium problem
subjected to the uniform strain fields (three unit test strains for 2D cases, and six unit
strains for 3D cases). The PER in the FE model is directly imposed by constraining the
nodal displacements on two opposite faces of the RUC, as in [178]. More details about
the numerical implementation of the energy-based homogenization using the PER con-
dition to account for material constituent parameters can be found in [170].

As can be seen in the optimization model, the HCA method drives the internal
strain energy density of solid cells/elements in design domain to a saturated state.
Then, the topology optimization problem considered here can be solved as finding the
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optimal layout of solid materials so that the extreme effective properties of material
are satisfied. Note that the volume constraint of solid materials is implicitly presented
in optimization model, and a post-processing step given in [146] can be employed to
adjust the final volume fraction.

3.2.2 Updating rule and convergence criterion

In this work, a local rule in the HCA approach is adopted to update the density design
variables ρe iteratively, and the material which is composed of final relative density
distribution processes the extreme material property. The updating rule of the element
relative density is 

ρ
(iter+1)
e = ρ̄e

(iter) + ∆ρ
(iter)
e

∆ρ
(iter)
e = cP × S(iter)

e

ρ̄
(iter)
e =

ρ
(iter)
e +

∑Nca
j=1 ρ

(iter)
j

Nca+1

(3.25)

where iter is the iteration number; ρ̄e denotes the effective value of the density design
variable which is averaged with neighborhood elements in the same way as it is done
for the element strain energy in Equation 3.24. ∆ρe presents the local control strategy
which is the proportion control in the HCA approach. It can be seen that the local rule
3.25 controls the material distribution in the design domain according to the feedback
signal Se in Equation (3.22). cP is a constant named as the proportional gain. Other
updating control rules such as integral and derivative control methods can be found in
[93].

Typically, the convergence criteria for topology optimization using the HCA algo-
rithm are based on the change in density design variable. Since the structural volume
of the current design is determined by density design variable, the iterative optimiza-
tion process converges when no further change in volume is possible [156]. This state
can be expressed by

|∆V iter|+ |∆V iter−1|

2× V0
≤ τ, where ∆V iter = V iter − V (iter−1) (3.26)

where V0 and V iter are the structural volumes of the initial design and of the iter-th
iteration step, respectively. τ is a specified small tolerance value.

3.2.3 Numerical examples

As mentioned before, there is no unique solution for topological design of materials
with extreme properties, and the used algorithms and parameters have influence on
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the final results. An RVE with dimensions 100×100 mm is discretized into 100×100 4-
node quadrilateral plane stress elements. Following [9, 74], four elements and a circular
region (radius equals to 100

6 ) with void phase at the center of the RVE are named initial
design 1 and 2, respectively. Young’s modulus and Poisson’s ratio of the solid phase
are set to E = 1 MPa and ν = 0.3, respectively.

In order to design the material with the maximum bulk modulus, two initial designs
of the RVE are employed, and the penalization exponent P is set to 5. The iterative op-
timization processes converge with the volume fractions of the solid materials 0.493
and 0.575 starting from initial designs 1 and 2, respectively. As for the result starting
from initial design 1, we used a post-processing step given in [146] to satisfy the vol-
ume fraction constraint 0.5. The final RVEs, corresponding to periodic microstructures
and their constitutive matrices obtained from two different initial designs are shown in
Figure 3.9, and the total iteration numbers are 156 and 152, respectively. The bulk mod-
uli from initial designs 1 and 2 are, respectively, 0.180 MPa and 0.224 MPa. To verify
the developed method, the above problem is solved using the same parameters using
the SIMP method [170] with density filtering and filter radius rmin = 2. When the vol-
ume fractions of solid materials are set to 0.5 and 0.575, the resulted bulk moduli are
0.164 MPa and 0.210 MPa, respectively, which are both lower than that of the proposed
method. The corresponding Hashin-Strickman (HS) upper bounds [71] are 0.185 and
0.229 show a very good agreement with the present solutions.

For optimal microstructures with maximum shear modulus, the initial design 1 is
employed. Two different penalization exponents 5 and 3 are considered. The itera-
tive processes converge with the volume fractions 0.391 and 0.406, respectively. Figure
3.10 shows the final microstructures and corresponding effective elasticity matrices in-
dicating both solutions with clearly identifiable topology layouts. The total iteration
numbers are 37 and 50 and the shear moduli are 0.099 and 0.107, respectively.

In order to design the material with negative Poisson’s ratio (NPR), we follow the
relaxed function of NPR proposed in [170] as

f = C̄H1122 − βiter(C̄H1111 + C̄H2222) (3.27)

where β is a fixed parameter defined as 0.8 and the exponent iter is the iteration step.
Apart from the βiter, the three remainder items in above objective function are all ho-
mogenized material constitutive parameters. Therefore, the same strategy is employed
to design materials with negative Poisson’s ratio as for bulk or shear modulus. The
penalization exponent is set to 3 here, and the convergence tolerance changes from 1%
to 0.1%. The numerical procedure starting from initial design 2 converges to Figure
3.11 after 57 iterations, and the final volume fraction and Poisson’s ratio are 0.388 and
-0.590, respectively. The iteration histories of the objective function and of the volume
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neighborhood elements in the same way as it is done for the
element strain energy in Eq. (8). Δρi(t) presents the local
control strategy which is the proportion control in the HCA
approach. It can be seen that the local rule controls the material
distribution in the design domain according the feedback sig-
nal Si(t) in Eq. (10). cP is a constant named as the proportional
gain. Other updating control rules such as integral and deriv-
ative control methods can be find in (Kulakowski et al. 2007).

Typically, the convergence criteria for topology optimiza-
tion using the HCA algorithm is based on the change in

density design variable. Since the structural volume of the
current design is determined by density design variable, the
iterative optimization process converges when no further
change in volume is possible (Tovar et al. 2007). This state
can be expressed as

ΔV tð Þ
���þ

���ΔV t−1ð Þ
���

���
2� V0

≤τ where ΔV tð Þ

¼ V tð Þ−V t−1ð Þ ð12Þ
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Fig. 3 Optimized RUC
topologies (left), corresponding
periodic microstructures (middle),
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(right) of materials with
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two initial designs. a Initial design
1. b Initial design 2
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Fig. 4 Optimized RUC
topologies (left), corresponding
periodic microstructures (middle),
and effective constitutive matrix
(right) of materials with
maximum shear modulus with
two different penalization factors
P. a P= 5. b P= 3

Da et al.

FIGURE 3.9: Optimized RVE topologies (left), corresponding periodic
microstructures (middle), and effective constitutive matrix (right) of ma-
terials with maximum bulk modulus starting form two initial designs:

(a) initial design 1; (b) initial design 2.

fraction are illustrated in Figure 3.12.

3.3 Concluding remarks

In this Chapter, we have proposed two topology optimization frameworks for the de-
sign of material microstructures for extreme effective elastic modulus or negative Pois-
son’s ratio. Several 2D and 3D numerical examples have been presented to demon-
strate their effectiveness of the proposed topological design framewoks. A series of
interesting material microstructures have been obtained to give some solutions for ma-
terial design with high-performance or "exotic" material properties. Compared with
the existed theoretical bounds for bulk moduli of porous materials, the resulting mate-
rials satisfy the maximum bulk modulus with different topologies and different volume
fractions of solid phases. In addition, the generated structural topologies with desired
material properties are described clearly. Furthermore, a series of optimization pa-
rameters which could affect the final results have been fully studied, e.g. initial guess
designs of the RVE, volume fractions of solid phase, value of penalization factor, etc.
In the following Chapter, the optimization model will be extended to consider struc-
tural performance at macro scale rather than material properties, by tailoring also the
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neighborhood elements in the same way as it is done for the
element strain energy in Eq. (8). Δρi(t) presents the local
control strategy which is the proportion control in the HCA
approach. It can be seen that the local rule controls the material
distribution in the design domain according the feedback sig-
nal Si(t) in Eq. (10). cP is a constant named as the proportional
gain. Other updating control rules such as integral and deriv-
ative control methods can be find in (Kulakowski et al. 2007).

Typically, the convergence criteria for topology optimiza-
tion using the HCA algorithm is based on the change in

density design variable. Since the structural volume of the
current design is determined by density design variable, the
iterative optimization process converges when no further
change in volume is possible (Tovar et al. 2007). This state
can be expressed as
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FIGURE 3.10: Optimized RVE topologies (left), corresponding periodic
microstructures (middle), and effective constitutive matrix (right) of ma-
terials with maximum shear modulus with two different penalization

factors P : (a) P = 5; (b) P = 3.

where V(t) and V0 are the structural volume of t-th iteration
step and of initial design, respectively. τ is the convergence
tolerance which is set to be 0.01% in this work.

3 Numerical examples

As mentioned in the introduction, there is no unique
solution for topological design of materials with extreme
properties, and the used algorithm and parameters have
influence on the final results. This work considers two
initial guesses of the design domain (RUC) as shown in
Fig. 2. Following (Huang et al. 2011; Amstutz et al.
2010), four elements and a circular region with void
phase at the center of the RUC are named initial design
1 and 2, respectively. The RUC with dimensions
100 × 100 is discretized into 100 × 100 4-node quadrilat-
eral plane stress elements. Young’s modulus and
Poisson’s ration of solid phases are set to E = 1 and
μ= 0.3, respectively.

3.1 Materials with maximum bulk modulus

Two initial designs of the RUC are employed here, and the
penalization exponent P is set to 5. The iterative optimization
processes converge with the volume fractions of the solid
materials 0.493 and 0.575 starting from initial design 1 and
2, respectively. As for the result starting from initial 1, we used
a post-processing step given in (Sigmund and Maute 2013) to
satisfy the volume fraction constraint 50%. The final RUCs,
corresponding periodic microstructures and their constitutive
matrices obtained from two different initial designs are shown
in Fig. 3, and the total iteration numbers are 156 and 152,
respectively. The bulk moduli from initial designs 1 and 2
are, respectively, 0.180 and 0.224. To verify the developed
method, the above problem using the same parameters is
solved using the SIMP method (Xia and Breitkopf 2015) with
density filtering and filter radius r=2. When the volume frac-
tions of solid materials are set to 0.5 and 0.575, the resulted
bulk moduli are 0.164 and 0.210, respectively, which are low-
er than that of the proposed method. The corresponding
Hashin-Strickman (HS) upper bounds (Hashin and

0.089 0.053 0

0.053 0.089 0

0 0 0.004

Fig. 5 Materials with negative
Poisson’s ratio starting from
initial design 2: final topology
(left), corresponding periodic
microstructure (middle), and
effective constitutive matrix
(right)

Fig. 6 Iteration histories of the
objective function, volume
fraction, and intermediate
microstructural topologies for the
negative Poisson’s ratio (NPR)

Design of materials using hybrid cellular automata

FIGURE 3.11: Materials with negative Poisson’s ratio: RVE topology
(left), corresponding periodic microstructure (middle), and effective con-

stitutive matrix (right).

architecture/topology of the material RVE.
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FIGURE 3.12: Iteration histories of the objective function, volume frac-
tion, and intermediate microstructural topologies for the negative Pois-

son’s ratio (NPR).
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Part II

Multiscale topology optimization
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Chapter 4

Concurrent topological design of
structures and multi-phase materials

Following the topological design model employed for pure material design in Chap-
ter 3, a concurrent topology optimization framework of macroscopic structure and the
underlying material microstructures is extended in this Chapter. Concurrent topology
optimization allows one to determine not only the best material layout at the micro
scale, but also the optimal use of the designed material at the macro scale offering
more design freedom on the two scales, and is called here multiscale topological de-
sign. A hierarchical topology optimization scheme of structure and element-based tai-
loring porous material has been firstly proposed in [135]. This hierarchical framework
has been extended to 3D elastic structures in [40]. In order to address the geometri-
cal and physical nonlinearities at material scale, the concurrent design of material and
structure within FE2 nonlinear multiscale analysis framework has been developed in
[169].

These works assumed that the materials/composites used in macrostructural con-
struction are varied pointwisely, thus requiring large amount of computational efforts.
The most commonly used strategy is designing a uniform material microstructure or
RVE at the microscopic scale for a concurrently changed macrostructure. Via this strat-
egy, concurrent optimization design has already been extended to tailoring structure
and the underlying porous material simultaneously for macroscopic structural perfor-
mance, e.g. stiffness [90] or fundamental frequencies [193]. However, there are only
a few works on the concurrent topological design of composite structures and their
multi-phase materials. In comparison with porous materials, composites consisting of
two or more phase materials are more attractive and advantageous from the perspec-
tive of engineering application. A review of recent advances on mechanics of multi-
functional multi-phase composite materials and structures can be found in [60].

Based on the classical topology optimization with single isotropic material, Bend-
søe and Sigmund [16] proposed a multi-phase material mixture model within the SIMP
scheme. Such a model has been extended to various topology optimization problems,
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e.g. material design [59] or multiphysic problems [143, 19]. Recently, different types
of topology optimization methods were employed to design multi-phase material and
structures like level set-based methods [163, 103, 167, 66] and the BESO method [75,
182, 134]. This Chapter is based on the earlier work [75] on multiple material design
of mono-scale structures, where the constituent phases are divided into several groups
by the BESO method to perform the topology optimization. The key contribution of
this Chapter is to integrate the BESO method, homogenization and multi-phase ma-
terial interpolation scheme to carry out multiscale topology optimization of materials
and structures. Comparing with only two phase materials employed at microscopic
scale in [182], we design the underlying three or more phases material microstructures
for both the solid and compliant composite phases of the macroscale structure. The ef-
fective elastic constitutive parameters of multi-phase composites are evaluated by the
numerical homogenization analysis. In addition, we have carried out the concurrent
topology optimization for both 2D and 3D materials and structures to demonstrate the
advantages of the proposed framework.

The remainder of this Chapter is organized as follows: concurrent topology opti-
mization model of composite macrostructure and its multi-phase materials is drawn
in Section 4.1. Section 4.2 formulates the multi-phase material interpolation scheme
and gives the sensitivity analysis on both macro and micro design variables. The BESO
method and numerical implementation procedure are introduced in Section 4.3. Sec-
tion 4.4 presents several 2D and 3D numerical examples and discussions. Finally, con-
clusion part is given in Section 4.5.

4.1 Concurrent optimization design formulation

structural topology or material layout at the macrostructural scale,
but also the optimal local use of the porous material or composite
at the microstructural scale. Rodrigues at al [29] described a hier-
archical computational procedure for optimization of material dis-
tribution as well as the local material properties of mechanical
elements. Coelho at al [30] presented an extension of this hierar-
chical model for topology optimization to 3D structures. Ferreira
et al. [31] performed the hierarchical optimization in laminated
composite structures. Xia et al. [32–34] addressed concurrent
design of material and structure within the FE2 nonlinear multi-
scale analysis framework and applied lately in [35] a reduced data-
base model [36] to circumvent the intensive computational cost.
These works assumed that the materials/composites used in
macrostructural construction vary pointwisely and require in gen-
eral large amount of computational efforts.

The most commonly used strategy is designing a uniform mate-
rial microstructure or RUC at the microscopic scale for a concur-
rently changed macrostructure at the macroscopic scale. Via this
design strategy, concurrent design has been used for tailoring
macrostructure and its material microstructures with minimum
systematic mean compliances in [37,38], maximum fundamental
frequencies in [39,40], and multi-objective functions, e.g. maxi-
mum stiffness and minimum resistance to heat dissipation [41],
minimum structural compliance and minimum thermal expansion
of the surfaces [42], and minimum structural mean compliance
and material thermal conductivity [43]. Concurrent robust design
and optimization considering load uncertainties was investigated
in [44]. Concurrent design of composite macrostructure and cellu-
lar microstructure under random excitations was studied in [45].
But there is litter work on the concurrent topological design of
composite structures and their multi-phase materials. In compar-
ison with porous materials, composites consist of two or more
phase materials are more attractive and advantageous from the
perspective of engineering application. Designing new structures
that are composed of multi-phase composite has already attracted
much attentions, and a review of recent advances on mechanics of
multi-functional composite materials and structures has been
given in [46]. Based on the concept of topology optimization, Bend-
søe and Sigmund [47] proposed a multi-phase material mixture
model in SIMP, and such a model has been extended to various
topology optimization problems [48–51]. Recently, different topol-
ogy optimization methods were employed to design multi-phase

material structures like level set-based methods [52–55] and the
BESO method [56–58].

This paper builds on the earlier work [56] on multiple material
design of monoscale structures using the BESO method where the
constituent phases are divided into different groups. This model
has already been extended for the design of multi-phase material
microstructures [58]. The key contribution of this work is to inte-
grate the BESO method, homogenization and multi-phase material
interpolation scheme to carry out multiscale topology optimization
with the consideration of multi-phase material microstructures at
the lower scale, which has been rarely examined in the literature
yet according to our best knowledge. Comparing with only two
phase materials employed at microscopic scale in [57], we
designed the underlying multi-phase material microstructures for
both the solid material phase and the compliant material phase
of the macroscale structure. The effective constitutive parameters
of three or more materials are evaluated by the numerical homog-
enization analysis [59,60]. In addition, we have carried out the con-
current multi-phase topology optimization for both 2D and 3D
cases, which makes this work distinguished from existing refer-
ences. The remainder of this paper is organized as follows: concur-
rent optimization model of composite macrostructure and its
multi-phase materials are drawn in Section 2. Section 3 formulates
the material interpolation and gives the sensitivity analysis on
macro and micro variables. The BESO method and numerical
implementation procedure are introduced in Section 4. Section 5
presents several 2D and 3D numerical examples and discussions.
Finally, conclusion part is given in Section 6.

2. Concurrent optimization formulation

The concurrent topology optimization problem considers a
macrostructure composed of multi-phase materials with periodic
microstructures illustrated in Fig. 1. Composite formulation is
applied to both the macrostructure and material microstructures.
The present work considers the macrostructure is composed of
two nonzero periodic composites that both have three or more
phase materials. Each multi-phase composite serves as a phase in
the macrostructure. Then, there are totally three finite element
(FE) models which include one macro model for the macrostruc-
ture and two micro models for the material RUCs correspondingly.
RUC of the periodic multi-phase composite serves as the design

Fig. 1. An arbitrary macrostructure composed of periodic microstructures.

2 D.C. Da et al. / Computers and Structures 179 (2017) 1–14

FIGURE 4.1: An arbitrary macrostructure composed of periodic mi-
crostructures.
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In this Chapter, the concurrent topology optimization problem considers a macrostruc-
ture composed of multi-phase materials with periodic microstructures as illustrated in
Figure 4.1. The macrostructure is composed of two periodic composites which both
have three or more phase constitutive materials. Each multi-material composite serves
as a phase in the macrostructure. Then, there are in total three finite element (FE) mod-
els which include one macro model for the macrostructure and two micro models for
the material RVEs correspondingly. The RVE of the periodic multi-phase composite
serves as the design domain in each micro model. The optimization objective is to min-
imize the structural compliance (or maximize the structural stiffness) by finding the
optimal macrostructural topology and the optimal designs of the multi-phase compos-
ites used in macrostructural construction. Similar to the classical mono-scale topology
optimization, the volume constraints are employed in macro or micro model, defining
the target volume of each composite phase or constitutive material, respectively. It is
assumed that each composite phase consists of n kinds of base materials with equal
Poisson’s ratio while Young’s moduli are sorted descending, i.e. E1

1 > E1
2 · · · > E1

n

and E2
1 > E2

2 · · · > E2
n, where the superscript indicates the number of micro model

and the subscript is the number of base materials in each micro model. Such a con-
current topological design problem of macrostrcture and the underlying multi-phase
microstructures for compliance minimization can be formulated as follows:

Find : {ρmacm , ρmic,1ij , ρmic,2ij } (4.1)

Minimize : f = FTU (4.2)

Subject to : KU = F (4.3)

: V mac
1 =

M∑
m=1

Vmx
mac
m (4.4)

:

N∑
i=1

Viρ
mic,1
ij − V mic,1

j∗ −
j−1∑
i=1

V mic
i∗ = 0, (j = 1, 2, ..., n) (4.5)

:
N∑
i=1

Viρ
mic,2
ij − V mic,2

j∗ −
j−1∑
i=1

V mic
i∗ = 0, (j = 1, 2, ..., n) (4.6)

: ρmacm = ρmin or 1; ρmic,1ij = ρmin or 1; ρmic,2ij = ρmin or 1 (4.7)

where U and F are the displacement and external force vectors, respectively. M and
N are the total numbers of finite elements in macro and micro FE models, respectively.
The design variables in (4.1) consist of three subsets: macro design variable ρmacm repre-
sents the layout of two composites in the macrostructure; micro design variables ρmic,1ij

and ρmic,2ij represent the distribution of employed base materials in micro models 1 and
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2, respectively. Note that the micro design variable ρmic,1ij represents the microstructure
for macro elements ρmacm = 1, and ρmic,2ij for macro elements ρmacm = ρmin. ρmin is a
predetermined small value. Without special indication, the design variables ρmic,1ij and
ρmic,2ij will be consistently denoted as ρmicij in the following for simplicity. Therefore,
ρmicij indicates the relative density of the i-th element for the j-th base material in micro
models which can be expressed by

ρmicij =

1, for E ≥ Ej
ρmin, for E < Ej+1

(4.8)

where E is the Young’s modulus of the i-th element. ρmicij = 1 is adopted when the el-
ement is filled with the base material j or the base materials with larger Young’s mod-
ulus than j, and ρmicij is equal to ρmin otherwise. Therefore, the term

∑N
i=1 Viρ

mic,1
ij in

Equation (4.5) represents total volumes of the j-th base material and stiffer base mate-
rials (1, . . . , j − 1) in the first micro model. The prescribed volume of j-th base material
is denoted as V mic,1

j∗ which can be defined by designers. Similarly,
∑N

i=1 Viρ
mic,2
ij and

V mic,2
j∗ are the corresponding terms in the second micro model. Vi denotes the volume

of the i-th element in the micro models, and Vm denotes the element volume in the
macro model. V mac

1 in (4.4) is the prescribed volume of the first phase (ρmacm = 1) in the
macro model.

4.2 Material interpolation scheme and sensitivity analysis

4.2.1 Material interpolation scheme

Material interpolation scheme is an essential part to perform the sensitivity analysis
in topology optimization framework. In this section, the modified SIMP model intro-
duced in [14, 191, 145] is employed. For topological design problem with three or more
phase materials in the micro models considered in this work, it is straightforward to
interpolate the material properties between two neighboring phases (i.e. Ej and Ej+1)
[75], as

E(ρmicij ) = (ρmicij )PEj + [1− (ρmicij )P ]Ej+1, (4.9)

where P is the penalization exponent. Under this scheme, the elasticity matrix C in the
micro models can be expressed as

C(ρmicij ) = (ρmicij )PCj + [1− (ρmicij )P ]Cj+1 (4.10)
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where Cj and Cj+1 are respectively the elasticity matrix of the base materials j and
j + 1. As for the macro model, the m-th element elasticity matrix can be expressed as:

C(ρmacm ) = (ρmacm )P C̄H,1 + (1− (ρmacm )P )C̄H,2 (4.11)

where C̄H,1 and C̄H,2 are the effective elasticity matrices computed by the homogeniza-
tion implementation in the micro models 1 and 2, respectively. Based on the classical
homogenization method [73, 72], the C̄H,1 and C̄H,2 can be respectively computed as:

C̄H,1 =
1

|Y|

∫
Y

C1(I− bu)dY (4.12)

and
C̄H,2 =

1

|Y|

∫
Y

C2(I− bu)dY (4.13)

where |Y | is the total volume of the RVE, I is the identity matrix and b is the strain-
displacement matrix. C1 and C2 are the elasticity matrices at a point with relative
densities ρmic,1ij and ρmic,2ij in Equation (4.10), respectively. u is the fluctuation of dis-
placement fields caused by imposing uniform strain fields over the RVE, for instance,
{1, 0, 0}T , {0, 1, 0}T and {0, 0, 1}T in 2D problems.

4.2.2 Sensitivity analysis

In order to calculate the structural compliance as well as conduct the sensitivity analy-
sis, the FE analysis is also performed for the structures at the macro scale. In the macro
FE model, the structural compliance is obtained by Equation (4.2), and the sensitivity
of the compliance with respect to the macro design variable, ρmacm , can be written as

αmacm =
∂f

∂ρmacm

= −UT ∂K

∂ρmacm

U = −P (ρmacm )P−1(UT
mK1

mUm −UT
mK2

mUm) (4.14)

where Um is the displacement vector of the m-th element in the macro model. K1
m

and K2
m are the m-th element stiffness matrices calculated by using C̄H,1 and C̄H,2,

respectively. The computation of the K1
m and K2

m can be expressed as

K1
m =

∫
Vm

BT C̄H,1BdVm (4.15)

and
K2
m =

∫
Vm

BT C̄H,2BdVm (4.16)

As for the micro models, the design variables ρmic,1ij and ρmic,2ij are respectively re-
lated to all first phase (ρmacm = 1) and second phase (ρmacm = ρmin) in the macro model.
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Therefore, the sensitivity number of the objective function with respect to the first mi-
cro design variables ρmic,1ij is equal to summation of the derivatives of objective function
over all first phase (ρmacm = 1) as:

αmic,1ij =
∂f

∂ρmic,1ij

= −
M∑
m=1

(ρmacm )PUT
m

∂Km

∂ρmic,1ij

Um

= −
M∑
m=1

(ρmacm )PUT
m

∫
Vm

BT ∂C̄H

∂ρmic,1ij

BdVmUm (4.17)

Similarly, the sensitivity number of the objective function on the second micro design
variable ρmic,2ij is equal to summation of the derivatives of the objective function over
all second phase (ρmacm = ρmin) in the macro model as:

αmic,2ij =
∂f

∂ρmic,2ij

= −
M∑
m=1

(1− ρmacm )PUT
m

∂Km

∂ρmic,2ij

Um

= −
M∑
m=1

(1− ρmacm )PUT
m

∫
Vm

BT ∂C̄H

∂ρmic,2ij

BdVmUm (4.18)

With the help of material interpolation scheme in Equations (4.9) and (4.10), the deriva-
tive of homogenized elasticity matrices with respect to the design variables ρmic,1ij and
ρmic,2ij can be expressed as following using the adjoint variable method [88]:

∂C̄H,1

∂ρmic,1ij

=
1

|Y|

∫
Y

(I− bu)
∂C1

ρmic,1ij

(I− bu)dY

= −
P (ρmic,1ij )P−1

|Y|

∫
Y

(I− bu)(C1
j −C1

j−1)(I− bu)dY (4.19)

and

∂C̄H,2

∂ρmic,2ij

=
1

|Y|

∫
Y

(I− bu)
∂C2

ρmic,2ij

(I− bu)dY

= −
P (ρmic,2ij )P−1

|Y|

∫
Y

(I− bu)(C2
j −C2

j−1)(I− bu)dY (4.20)

It is worth noting that the effective material properties calculated from the micro mod-
els by the numerical homogenization are integrated to the macrostructural FE analysis
to bridge the macroscopic and microscopic scales. On the other hand, the sensitivity
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numbers in the micro models use the displacement fields of the macrostructure, indi-
cating that the macrostructural response affects the optimal design of multi-phase ma-
terial microstructures reversely. As a result, all three FE analysis models interact with
each other, and the topological design of composite macrostructure and the underlying
multi-phase material microstructures are carried out concurrently.

4.3 BESO method and numerical implementation

4.3.1 Sensitivity numbers

The sensitivity information in the BESO method can be used to represent a relative
ranking of each individual element. Thus, the sensitivity number of the m-th element
in the macro model for minimizing the structural compliance can be re-written as

αmacm = − 1

P

∂f

∂ρmacm

(4.21)

Similarly, the two sensitivity numbers in the micro models can be re-written as

αmic,1ij = − 1

P

∂f

∂ρmic,1ij

(4.22)

and
αmic,2ij = − 1

P

∂f

∂ρmic,2ij

(4.23)

Using Equations (4.14)-(4.20), the three sensitivity numbers can be obtained correspond-
ingly.

In order to avoid the common numerical instabilities such as checkerboard pattern
and mesh-dependency in topology optimization process, the filter scheme is employed
to smooth the elemental sensitivity as:

αmacm =

∑Ne
q=1wmqα

mac
q∑Ne

q=1wmq
, wmq = max(0, rmacmin −∆(m, q)) (4.24)

where wmq is a linear weight factor determined according to the prescribed filter ra-
dius rmacmin and the element center-to-center distance ∆(m, q) between elements m and
q. To improve the convergence of the proposed method, the sensitivity numbers can be
further averaged with their historical information in previous iteration step [76]:

(αmacm )(iter) =
(αmacm )(iter) + (αmacm )(iter−1)

2
, (4.25)
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Note that the micro sensitivity numbers αmic,1ij and αmic,2ij can also be filtered accord-
ing to Equation (4.24) with filter radius rmicmin and averaged with their corresponding
historical information in the same way.

4.3.2 Variables updating

In the presented BESO method for multi-phase topology optimization, the volume con-
straints of the different constitutive phases/composites in the micro and macro models
are satisfied iteratively. In the macro model, the target volume of the first composite
phase for the current iteration can be defined as

(V mac)iter = max
{
V mac

1 , (1− cer)V
(iter−1)

}
, (4.26)

where cer is the evolution rate which can be pre-decided by designers, and V mac
1 is the

prescribed volume for the first composite phase.
For the micro models, the sensitivity numbers αmic,1ij and αmic,2ij are denoted as αmicij

in the following for convenience. Note that the sensitivity number αmicij is defined in the
whole domain of the RVE even though it is only used for interchanging base materials
j and j + 1. Consider n ordered base materials used in each micro model, there are
n − 1 ordered groups of materials and n − 1 groups of sensitivity numbers to make
adjustments between neighboring base materials. Taking n = 3 as an example, the
value of j can take vaule of 1 and 2 which means there are two groups of sensitivity
numbers in each micro model named as αmici1 and αmici2 . The optimization procedure
in micro design models starts from an initial design which is nearly full base material
1 but with small amounts of base material 2. The transitions of base materials 1 and 2
are performed according to the sensitivity number αmici1 and the target volume of base
material 2 for the current iteration as

(V mic
2 )iter = min

{
V mic

2∗ , (1 + cer)(V
mic

2 )(iter−1)
}
, (4.27)

where V mic
2∗ denotes the prescribed volume of phase 2 in the micro models. From the

Equation (4.27), it is seen that the volume fraction of phase 2 increases until the pre-
scribed volume of phase 2 is satisfied. Then, the volume fraction of phase 2 remains
unchanged and the volume fraction of phase 1 continues to decrese which means that
the volume fraction of phase 3 begins to increase. As previously mentioned, the ma-
terial interchange only occurs between two neighboring phases, i.e. the transition be-
tween phases 1 and 3 is interchanged through phase 2 firstly. The transition of phases
2 and 3 in the micro models is performed according to the sensitivity number αmic,1i2

and the target volume of phase 3 for the current iteration. The target volume fraction
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of phase 3 for the current iteration can be defined in the same way as phase 2 in Equa-
tion (4.27). Therefore, the volume fraction of phase 3 is monotonically increasing until
the prescribed volume fraction of phase 3 is satisfied. The interchanging process is
terminated when the volume constraints of all phases are satisfied. In addition, when
the number of phases n is larger than 3, a similar procedure can be applied to make
adjustment between phases [75].

To sum up, the optimization procedure iteratively conducts the FEA in the micro
and macro models to update the material distribution in the RVEs and macrostructures
until the volume constraints in both models are reached and the following convergence
criterion is satisfied [76]:

|
∑Q

q=1 (fiter−q+1 − fiter−Q−q+1) |∑Q
q=1 fiter−q+1

≤ τ. (4.28)

where f denotes the objective function, Q is the integral number and τ is a specified
small tolerance value.

4.3.3 Numerical implementation

Taking n = 3 as an example, the whole numerical implementation procedure for the
concurrent topological design of composite macrostructures and the underlying multi-
phase material microstructures in this work is outlined as follows. It is worth noting
that when the number of phases n is larger than 3, a similar procedure can be applied
to make adjustment between material phases in the micro models.

1. Define design parameters such as materials properties of the phases, prescribed
volume of stiffer phase at macro scale V mac

1 , prescribed volumes of base materials
V mic,1
j∗ and V mic,2

j∗ (j = 1, 2, 3) at micro scale, the filter radii rmacmin and rmicmin at two
scales. Construct initial designs of the macrostructure and of the multi-phase
material RVE, respectively.

2. Carry out the numerical homogenization on material RVEs and calculate the ef-
fective elasticity matrices C̄H,1 and C̄H,2 based on Equations (4.12) and (4.13),
respectively.

3. Substitute the obtained homogenized materials properties into the macroscopic
FEA model. Solve the FE equilibrium equation in Equation (4.3) to obtain the
objective function f .

4. Computer the sensitivities of the objective function with respect to the macro and
micro design variables, i.e. αmacm by using (4.14) and αmic,1i1 and αmic,2i1 by using
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Equations (4.17) and (4.18), respectively. Calculate sensitivity number αmici2 if the
target volume fraction of phase 2 at micro scale is satisfied.

5. Process all calculated sensitivity numbers in both macro and micro models with
filtering and history-averaging as formulated in Section 4.3.1.

6. Update design variables according to the elemental sensitivities and target vol-
umes for the current iteration in each model. If all volume constraints of compos-
ite phases at macro scale and of constitutive materials at micro scale are satisfied
as well as the convergence criterion as shown in Equation (4.28) is met, output
results and stop. If not, go to Step 2.

4.4 Concurrent optimization for structural stiffness

In this section, several 2D and 3D numerical examples are presented to demonstrate
the validity of the proposed framework for concurrent topology optimization of com-
posite macrostructures and their multi-phase materials. The RVEs are discretized into
100× 100 four-node quadrilateral (Q4) elements for the 2D cases and 30× 30× 30 brick
elements for the 3D cases. The filter radii for the micro models rmicmin are set to 7 and 2
in 2D and 3D examples, respectively. The elements in 2D and 3D macrostructures are
assigned with the dimensions 1×1 mm2 and 1×1×1 mm3, respectively. The filter radii
in 2D and 3D macro models are set to 6 and 3, respectively. All base materials used in
two micro models have the same Poisson’s ratio as ν = 0.3.

4.4.1 Design of a 2D cantilever beam

F

L

H

FIGURE 4.2: Geometrical dimension and boundary conditions for a 2D
cantilever beam.

In the first example, we design a 2D cantilever beam and the underlying multi-
phase material microstructures comcurrently. The dimension of the macrostructural
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cantilever beam is L × H = 100 × 60 mm2 as shown in Figure 4.2. Assuming three-
phase material design is addressed in both two micro models, thus there are totally
six phases taking part in the concurrent design process. The Young’s moduli of three
material phases in the micro model 1 areE1

1 = 100 MPa,E1
2 = 10 MPa andE1

3 = 1 MPa,
and the Young’s moduli in micro model 2 are E2

1 = 0.1 MPa, E2
2 = 0.01 MPa and E2

3 =

0.001 MPa, respectively. These materials are named as the first group of phases in the
following. The prescribed volume constraints of phases 1, 2 and 3 in each micro model
are all set to be one-third of the design domain. The target volumes of each phase in the
macro model are also set to 50%. It is noted that with the presented concurrent design
optimization model, any volume fraction of each constituent material/composite in the
micro and macro models can be choosed by the designers.

 

(a) 

Case Macrostructure Mean compliance 

(1) 

 

3.216 

(2) 

 

3.299 

(b) 

Case 
Composite 1 (RVE, 3 3  unit cells and 

elasticity matrix) 

Composite 2 (RVE, 3 3  unit cells and 

elasticity matrix) 

(1)  
36.6897 1.5206 0

1.5206 3.6551 0

0 0 2.0225

 
 
 
  

 

 

 
0.0152 0.0107 0

0.0107 0.0166 0

0 0 0.0100

 
 
 
  

 

 

(2)  
36.5635 1.5497 0

1.5497 4.1643 0

0 0 1.9042

 
 
 
  

 

 

 
0.0154 0.0112 0

0.0112 0.0164 0

0 0 0.0102

 
 
 
  

 

 

Fig. 4. Summary of two concurrent designs of the 2D cantilever beam considering two different 

initial configurations: (a) macrostructures and compliances; (b) microstructures and elasticity 

matrices. 

 
Fig. 5. Iteration processes of microstructural topology and volume fractions. 

 

FIGURE 4.3: Summary of two concurrent designs of the 2D cantilever
beam considering two different initial configurations: (a) macrostruc-
tures and compliances; and (b) microstructures and elasticity matrices.

Before performing the concurrent topological design, two initial guess designs are
considered: initial design 1 is full of first constitutive material/composite except for
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four center elements for second constitutive material/composite, as illustrated in Fig-
ure 3.1 (a); initial design 2 shows the design domain is full of first constitutive mate-
rial/composite except for four corner elements for second constitutive material/com-
posite as shown in Figure 3.1 (b). Figure 4.3 shows a summary of two final designs of
the 2D cantilever beam and material microstructures by considering two different ini-
tial designs. The two cases in Figure 4.3 are: (1) the initial design 1 is adopted for both
macrostructure and microscopic RVEs before the optimization procedure; (2) the initial
design 2 is adopted for both models. Optimal designs of two-phase macrostructures
with the resulted structural compliance f are shown in Figure 4.3 (a), where first phase
(composite 1) is shown in black and second phase (composite 2) in light yellow. The
optimal designs of two kinds of three-phase composite microstructures together with
the homogenized elasticity matrices are given in Figure 4.3 (b), where phase 1 is shown
in red, phase 2 in green and phase 3 in yellow.

variables are either 1 or xmin, a simple scheme can be devised to
update the design variables. For instance, elemental relative densi-
ties in the macro model may change from amac

m ¼ 1 to amac
m ¼ xmin

for holding lower sensitivity numbers and from amac
m ¼ xmin to

amac
m ¼ 1 for holding higher sensitivity numbers.

4.2. Variables updating

With the above updating scheme, the volumes of two phases in
the macro model are gradually changed according the sensitivity
number amac

m and the target volume of first or second phase for
the next iteration. The target volume of first phase in the macro
mode for the next iteration can be defined as

ðVmacÞkþ1 ¼ ðVmacÞkð1� ERÞ ð23Þ

where ER is the evolution rate which can be determined by design-
ers. When the current volume of first phase in the macro model,

ðVmacÞk, is larger than the prescribed volume Vmac
1 , a minus sign is

applied in Eq. (23). If the obtained ðVmacÞkþ1 is less than Vmac
1 , then

ðVmacÞkþ1 is set to Vmac
1 . Similarly, the plus sign is applied in Eq.

(23) when ðVmacÞk is less than the target volume Vmac
1 . If the obtained

ðVmacÞkþ1 is larger than Vmac
1 , then ðVmacÞkþ1 is set to Vmac

1 .
At the micro models, firstly, the sensitivity numbers of design

variables amic;1
ij and amic;2

ij are uniformly denoted as amic
ij for conve-

nience in the following. Note that the sensitivity number amic
ij is

defined in the whole area of the RUC even though it is only used
for interchanging base materials j and jþ 1. Consider n ordered
base materials used in each micro model, there are n� 1 ordered
groups of materials and n� 1 groups of sensitivity numbers to

make adjustments between neighboring base materials. Take
n ¼ 3 as an example, the value of j can take 1 and 2 which means
there are two groups of sensitivity numbers in each micro model
named as amic

i1 and amic
i2 . The optimization procedure of topological

design of multi-phase materials’ microstructures starts from a
nearly full design with base material 1, and small amounts of base
material 2. After the sensitivity analysis with respect to the design
variable xmic

i1 , transitions of base materials 1 and 2 in the micro
models are executed according to the sensitivity number amic

i1

and the target volume of base material 2 for the next iteration.

Fig. 4. Summary of two concurrent designs of the 2D cantilever beam considering two different initial configurations: (a) macrostructures and compliances and (b)
microstructures and elasticity matrices.

Fig. 5. Iteration processes of microstructural topology and volume fractions.
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FIGURE 4.4: Iteration processes of microstructural topology and volume
fractions.

We can see from the Figure 4.3 that the optimal design of the macrostructure is
independent on initial configurations, while they affect the final distribution of the
consitutive materials in the RVEs. Even so, the homogenized elasticity matrices of two
composites in case (1) are similar with the corresponding terms in the case (2). This
result is consistent with the common knowledge of the inverse homogenization design
that different microstructures can possess the same physical properties [144], as also
can been observed in Chapter 3.1.3. In addition, the final structural compliances in the
two cases are approximately equal to each other. The iteration processes of RVEs and
volume fractions of phases in case (1) are illustrated in Figure 4.4. It is seen that at the
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earlier stage of the whole optimization procedure, the volume fraction of phase 3 goes
to zero until the volume constraint of phase 2 is satisfied. Then, the volume fraction
of phase 2 remains constant and the volume fraction of phase 3 increases. Finally, all
volume fractions of different phases converge to the same final value equal to one-third.

4.4.2 Design of a 2D MBB beam

In this second example, we study the design a 2D Messerschmitt-Bölkow-Blohm (MBB)
beam and its multi-phase material microstructures concurrently. As shown in Figure
4.5, the geometrical dimensions of the MBB beam are L × H = 200 × 50 mm. Firstly,
we solve the concurrent design problem with three-phase materials in the micro mod-
els, and the Young’s moduli of all phase materials are exactly the same as in the first
example in Section 4.4.1. In addition, the volume constraints in both micro and macro
models are also the same as in the first example. To start the concurrent optimiza-
tion procedure, initial design 1 as formulated in Section 4.4.1 (see also in Figure 3.1)
is adopted for both micro models, and the macrostructure is fill with first phase. The
summary of optimization results for both macroscopic structures and micro RVEs is il-
lustrated in Figure 4.6. It is seen that the optimal RVEs and microstructures in this case
are all anisotropic, comparing with the optimal results in the first example where the
final microstructures are orthotropic. It illustrates that the macrostructural responses
or boundary conditions affect the optimal result of the material microstructures. In this
case, the whole concurrent design procedure converges after 69 iterations.

LH

F

FIGURE 4.5: Geometrical dimension and boundary conditions for a 2D
MBB beam.

In order to investigate the effect of inhomogeneity degree of the adopted consiti-
tutive materials, a second group of phase materials with different elastic contrast is
considered here. In this group, Young’s moduli of three phases in micro model 1 are
E1

1 = 4 MPa, E1
2 = 2 MPa and E1

3 = 1 MPa, Young’s moduli in micro model 2 are
E2

1 = 0.5 MPa, E2
2 = 0.25 MPa, E2

3 = 0.125 MPa, respectively. The volume constraints
in the micro and macro models are set the same as before. The summary of optimal
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Fig. 6. Iteration processes of compliances, volume fraction and macrostructural topology. 

 

 

Fig. 7. Geometrical dimension and boundary conditions for a 2D MBB beam. 

 

 

(a) 

Macrostructure Mean compliance 

 

4.287 

(b) 

Composite 1 Composite 2 

RVE and elasticity 

matrix 
3 3  unit cells 

RVE and elasticity 

matrix 
3 3  unit cells 

 
31.0421 3.4318 2.1746

3.4318 9.0327 3.9556

2.1746 3.9556 4.2094

 
 
 
  

 

 

 
0.0047 0.0014 0.0003

0.0014 0.0367 0.0003

0.0003 0.0003 0.0017

 
 
 
  

 

 

Fig. 8. Summary of final designs for the 2D MBB beam with first group base materials. (a) 

macrostructure and compliance; (b) microstructures and elasticity matrices. 

 

 

FIGURE 4.6: Summary of final designs for the 2D MBB beam with first
group of base materials: (a) macrostructure and compliance and (b) mi-

crostructures and elasticity matrices.

results for both three-phase RVEs and the concurrently changed MBB beam are shown
in Figure 4.7. It is seen that the distribution of constitutive materials in the RVEs and of
the resulting composites in the macrostructures are totally different as compared with
those in Figure 4.6. This results are reasonable since the load-bearing abilities of all
phase materials are changed, resulting in different optimal distributions of constitutive
materials or phases. In this case, the whole concurrent design optimization procedure
is converged after 64 iterations.

To further illustrate the proposed concurrent design framework, two composite
phases in the macrostructure composed of four constitutive materials are considered
here. The Young’s moduli of four phase materials in the micro model 1 are E1

1 = 16

MPa, E1
2 = 8 MPa, E1

3 = 4 MPa. and E1
4 = 2 MPa, Young’s moduli in the micro model

2 are E2
1 = 1 MPa, E2

2 = 0.5 MPa, E2
3 = 0.25 MPa. and E2

4 = 0.125 MPa, respectively.
Therefore, there are in total eight material phases taking part in the concurrent design
process in this case. In the micro models, each material phase is distributed with the
same volume fraction, i.e. volume fractions of four phases are all specified as 25%. The
volume usages for the first and second composite phases in the macro model are also
set to equal to each other as 50%. After 80 iterations, the final designs in this case are
shown in Figure 4.8. The optimal design of the macrostructure is shown in Figure 4.8
(a), where the second phase of macrostructure is shown in light blue. In Figure 4.8 (b),
the phases 1, 2, 3 and 4 in each micro model are respectively shown in dark blue (dark-
est region), light blue, yellow and red. The two kinds of four-phase composites are both
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Fig. 9. Summary of final designs for the 2D MBB beam with second group base materials. (a) 

macrostructure and compliance; (b) microstructures and elasticity matrices. 
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Fig. 10. Summary of final designs for the 2D MBB beam with eight base materials. (a) 

macrostructure and compliance; (b) microstructures and elasticity matrices. 

 

FIGURE 4.7: Summary of final designs for the 2D MBB beam with sec-
ond group of base materials: (a) macrostructure and compliance; and (b)

microstructures and elasticity matrices.

anisotropic as can be observed from their effective elasticity matrices. Comparing with
the final results in the last example, the distribution of two composite phases in the
macrostrucure is similar, and the stiffer constitutive materials in the first micro model
are also distributed in horizontal direction to resist the concentrated load.
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Fig. 10. Summary of final designs for the 2D MBB beam with eight base materials. (a) 

macrostructure and compliance; (b) microstructures and elasticity matrices. 

 

FIGURE 4.8: Summary of final designs for the 2D MBB beam with eight
phases: (a) macrostructure and compliance; and (b) microstructures and

elasticity matrices.
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4.4.3 Design of a 3D cantilever beam

In this example, we study the design of a 3D cantilever beam and its underlying multi-
phase materials. The design dimensions of the macrostructure are L × H × W =

60 × 20 × 4 as shown in Figure 4.9. The left side of the macrostructure is fixed, and
a unit concentrated load is applied at the middle point of right bottom edge. The first
group of phases given in the first example (see Section 4.4.1) is employed, and the vol-
ume fractions of phases 1, 2 and 3 are respectively prescribed as 50%, 30% and 20% in
each micro model. In the macro model, volume fraction of the first composite phase in
the macrostructure is set to be 50%. To start the concurrent optimization procedure, an
initial design which is fully composed of first constitutive material/composite except
for eight center elements for second constitutive material/composite is adopted both
for macro and micro models. The optimal design of the macrostructure is given in Fig-
ure 4.10, where the first and second phases of the macrostructure are shown in green
and blue, respectively. Note that the geometry of the first composite phase shown in
Figure 4.10 (b) is similar with the result obtained from traditional topological design of
the same cantilever beam [98]. The final structural compliance is f = 0.144 mm2/N.
Optimal designs of three-phase composites 1 and 2 together with the corresponding
homogenized elasticity matrices are given in Figures 4.11 and 4.12 respectively, where
the phases 1, 2 and 3 are respectively shown in red, blue and green. As can be ob-
served, the stiffest phase materials are mainly distributed in x- and y- directions to
resist the concentrated load, and laminated plate structures are generated. Finally, the
whole concurrent design process for the 3D cantilever beam is convergent after only 44
iterations.

H

W

L

FIGURE 4.9: Geometrical dimension and boundary conditions for a 3D
cantilever beam.
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material 2 remains constant and the volume fraction of base mate-
rial 3 is gradually increase. Finally, all base materials’ volume frac-
tions converge to the same final value which is equal to one third
of the design domain. The iteration processes of objective compli-
ances under two cases, together with the volume fraction of first
phase and the macrostructure in case (1) are given in Fig. 6. It is
seen that the histories of the objective compliance of case (1)

and (2) are very similar, and both of them become convergent after
68 iterations.

5.2. 2D MBB beam

The second example is to design the topology of a 2D MBB beam
and its multi-phase materials concurrently. As shown in Fig. 7, the
geometrical dimension of the macro design domain is 200� 50.
Because of the symmetry, only right half of the MBB beam is con-
sidered in FE analysis of the beam. Firstly, assume three-phase
composite design is addressed in both two micro models and the
Young’s moduli of all used base materials are exactly the same as
Section 5.1. In addition, the volume constraints in both micro
and macro models are the same as Section 5.1 as well. To start
the concurrent optimization procedure, initial design 1 shown in
Fig. 3(a) is adopted for both two micro models, and the
macrostructure is full with first phase. The summary of optimiza-
tion results is illustrated in Fig. 8, as can be observed, microstruc-
tures of the 2D MBB beam are totally anisotropic which is differ
from the results in Section 5.1. It indicates the characteristic that
constructing with anisotropic composite microstructures result
the macro 2D MBB beam with the minimum compliance. The
whole concurrent design procedure is convergence after 69
iterations.

In order to investigate the effect of the degree of inhomogeneity
of the homogeneous base materials on final results, second group

Fig. 11. Iteration processes of compliance and volume fractions.

Fig. 12. Geometrical dimension and boundary conditions for a 3D cantilever beam.

Fig. 13. Optimal design of macrostructure for the 3D cantilever beam.
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FIGURE 4.10: Optimal design of macrostructure for the 3D cantilever
beam.

Fig. 14. Optimized material microstructures of composite 1 for the 3D cantilever beam; (a) micro RUC (b) base material 1 only; (c) base material 2 only; (d) base material 3
only; (e) 2� 2� 2 unit cells; and (f) homogenization elasticity matrix.

Fig. 15. Optimized material microstructures of composite 2 for the 3D cantilever beam; (a) micro RUC (b) base material 1 only; (c) base material 2 only; (d) base material 3
only; (e) 2� 2� 2 unit cells; and (f) homogenization elasticity matrix.

10 D.C. Da et al. / Computers and Structures 179 (2017) 1–14

FIGURE 4.11: Optimized material microstructures of composite 1 for the
3D cantilever beam: (a) micro RVE (b) phase 1 only; (c) phase 2 only; (d)
phase 3 only; (e) 2 × 2 × 2 unit cells; and (f) homogenization elasticity

matrix.

4.4.4 Design of a 3D MBB beam

In this example, the concurrent design of a 3D MBB beam and its multi-material mi-
crostructures subject to multiple external forces is given. The dimensions of the macrostruc-
ture are L×H ×W = 80× 20× 12 mm shown in Figure 4.13. Here, there are four unit
concentrated forces loaded at the top face of the considered macrostructure. The first
group of phases formulated in the Section 4.4.1 are still considered here, and the ma-
terial volume fractions of phases 1, 2 and 3 in each micro model are restricted to 30%,
40% and 30%, respectively. Volume constraint of the first phase in the macro model is
set to 30%. To start the concurrent optimization procedure, the same initial design in
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Fig. 14. Optimized material microstructures of composite 1 for the 3D cantilever beam; (a) micro RUC (b) base material 1 only; (c) base material 2 only; (d) base material 3
only; (e) 2� 2� 2 unit cells; and (f) homogenization elasticity matrix.

Fig. 15. Optimized material microstructures of composite 2 for the 3D cantilever beam; (a) micro RUC (b) base material 1 only; (c) base material 2 only; (d) base material 3
only; (e) 2� 2� 2 unit cells; and (f) homogenization elasticity matrix.

10 D.C. Da et al. / Computers and Structures 179 (2017) 1–14

FIGURE 4.12: Optimized material microstructures of composite 2 for the
3D cantilever beam; (a) micro RVE (b) phase 1 only; (c) phase 2 only; (d)
phase 3 only; (e) 2 × 2 × 2 unit cells; and (f) homogenization elasticity

matrix.

the last example is adopted for the macrostructure and material RVEs. After 71 itera-
tions, all phases target volumes are well satisfied and the macrostructural compliance
converges to f = 1.653 mm2/N. The optimal design of the macrostructure is given
in Figure 4.14 (a), and the generated geometry of the first phase in the macrostructure
shown in Figure 4.14 (b) is comparable with the final result from mono-scale design
of the same structure [98]. The optimal distribution of adopted constitutive materials
in composites 1 and 2 are illustrated in Figures 4.15 and 4.16, respectively. It is seen
that the material distribution in composites 1 and 2 are totally different, and distinctive
interfaces between different constitutive materials in both macrroscopic structure and
micro RVEs emerged.

FIGURE 4.13: Geometrical dimension and boundary conditions for a 3D
MBB beam.
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of base materials with different elastic contrast compared with the
first group are considered in this example. In this group, Young’s
moduli of three base materials in micro model 1 are E1

1 ¼ 4,

E1
2 ¼ 2 and E1

3 ¼ 1, in micro model 2 are E2
1 ¼ 0:5, E2

2 ¼ 0:25,

E3
2 ¼ 0:125, respectively. The elastic contrasts of two neighboring

base materials are equal to 2 while the volume constraints in micro
and macro models are also the same as before. The summary of
final optimization results is shown in Fig. 9. It is seen that the final
results of both macrostructure and material microstructures are
distributed in different pattern comparing with those in Fig. 8,
which is reasonable because the load-bearing abilities of base
materials are changed. The whole concurrent design procedure is
convergence after 64 iterations.

To further demonstrate the proposed topology optimization
method in concurrent design of macrostructures and the underly-
ing multi-phase materials, each phase in the macrostructure com-
poses of four base materials is considered here. The Young’s moduli
of four base materials in micro model 1 are E1

1 ¼ 16, E1
2 ¼ 8, E1

3 ¼ 4

and E1
4 ¼ 2, in micro model 2 are E2

1 ¼ 1, E2
2 ¼ 0:5, E3

2 ¼ 0:25 and

E3
4 ¼ 0:125, respectively. There are totally eight base materials

which take part in the concurrent design process in this case. In
the micro models, each base material is isovolumetric distributed

Fig. 16. Geometrical dimension and boundary conditions for a 3D MBB beam.

Fig. 17. Optimal design of macrostructure for the 3D MBB beam.

Fig. 18. Optimized material microstructures of composite 1 for the 3D MBB beam; (a) micro RUC (b) base material 1 only; (c) base material 2 only; (d) base material 3 only;
(e) 2� 2� 2 unit cells; and (f) homogenization elasticity matrix.
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FIGURE 4.14: Optimal design of macrostructure for the 3D MBB beam..

FIGURE 4.15: Optimized material microstructures of composite 1 for the
3D MBB beam; (a) micro RVE (b) phase 1 only; (c) phase 2 only; (d) phase
3 only; (e) 2× 2× 2 unit cells; and (f) homogenization elasticity matrix.

4.5 Concluding remarks

In this Chapter, we have extended the topology optimization to concurrent design of
composite structures and the underlying multi-phase material microstructures. Con-
figurations of the composite macrostructures and of the material RVEs are optimized
concurrently such that the resulting macrostructure has the minimum compliance. Sev-
eral 2D and 3D numerical examples have shown that the presented concurrent design
framework can provide efficient composite macrostructures with underlying three or
more phases material microstructures in terms of stiffness. The generated interfaces be-
tween different constitutive materials/composites are clear and distinctive which po-
tentially facilitates the manufacturing requirements. The present framework has also
shown high stability during the design procedure and requires a small number of it-
erations for convergence. It is also worth mentioning that the presented concurrent
optimization model can be extended to the topological design of composite structures
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FIGURE 4.16: Optimized material microstructures of composite 2 for the
3D MBB beam; (a) micro RVE; (b) phase 1 only; (c) phase 2 only; (d)
phase 3 only; (e) 2 × 2 × 2 unit cells; and (f) homogenization elasticity

matrix.

and the underlying multi-functional materials, which are normally composed of multi-
phase materials, for different objectives or multi-objective functions. In the next Chap-
ter, rather than assuming that the macroscopic and microscopic scales are separated,
the topology optimization will be extended to multiscale design of materials and struc-
tures without scale separations.
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Chapter 5

Multiscale topology optimization in
the context of non-separated scales

In topology optimization applied to material or multiscale design modeling, the ho-
mogenization method is often adopted to link the microscopic and macroscopic scales.
However, the assumption of scale separation is often assumed in the classical homoge-
nization theory. This assumption states that the characteristic length of the microstruc-
tural details are much smaller than the dimensions of the structure, or that the charac-
teristic wavelength of the applied load is much larger than that of the local fluctuation
of mechanical fields [58]. In additive manufacturing of architecture materials like lat-
tice structures, the manufacturing process might induce limitations on the size of local
details, which can lead to a violation of scale separation when the characteristic size of
the periodic unit cells within the lattice are not much smaller than that of the structure.
In such case, classical homogenization methods may lead to inaccurate description of
the effective behavior as non local effects, or strain-gradient effects, may occur within
the structure. On the other hand, using a fully detailed description of the lattice struc-
ture in an optimization framework could be computationally very costly.

In Section 5.1 we first develop a multiscale topology optimization procedure for
periodic structures based on the classical homogenization theory in the context of non-
separated scales. The dimensions of the unit cell range from large to small as compared
with the dimensions of the whole structure to highlight the size effect.

In Section 5.2, the objective is to develop a new multiscale topology optimization
procedure, by using a nonlocal filter-based homogenization scheme, for heterogeneous
materials such as lattice materials in the context of non-separated scales. The adopted
nonlocal homogenization method takes into account the strain gradient effects com-
bined with a topological optimization scheme of unit cells, in contrast with the opti-
mization scheme based on the classical homogenization in Section 5.1.

In Section 5.3, we present the topological optimization of mesostructures with pre-
defined or optimally designed microscopic unit cells without scale separation. The
consistent nonlocal filter-based homogenization method introduced in Section 5.2 is
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adopted to take into account the heterogeneities within RVEs and to link the two differ-
ent scales. The microscopic RVE itself, rather than particular isotropic materials within
the finite element in the RVE, is considered as the design variable in the proposed opti-
mization model. A simple stiffness interpolation scheme is introduced to simplify the
sensitivity analysis of objective function with respect to the defined design variable.

5.1 Size effect analysis in topology optimization for periodic
structures using the classical homogenization

In this section, the size effect in classical homogenization-based topology optimization
for periodic structures is investigated, with the size of the periodic cell ranging from
large to small as compared with the characteristic length of the whole structure. More
specifically, a relocalization scheme is proposed based on the homogenization method
to link the two scale fields, allowing performing the topological optimization problem
on a coarse mesh. A corresponding reference solution is obtained by fully meshing the
heterogeneities in the whole structure. In the following, the classical homogenization
technique is reviewed in Section 5.1.1. Details of numerical computation of effective
material properties as well as the relocalization scheme are provided. Presented topo-
logical optimization model and procedure are given in Section 5.1.2. Numerical exper-
iments are conducted in Section 5.3.2 to fully investigate the size effect of the periodic
unit cells.

5.1.1 The classical homogenization method

In this section, the computation of effective or homogenized material properties of het-
erogeneous composite in the context of linear elasticity is reviewed. The local problem
at microscopic scale with different types of boundary conditions is firstly introduced,
followed by the numerical implementation to evaluate the effective elastic matrix by
means of the classical finite element method (FEM).

5.1.1.1 Localization problem

A heterogeneous structure composed of two-phase composite is considered here as de-
scribed in Figure 5.1 (a). The RVE shown in Figure 5.1 (b) is associated with a domain Ω

and boundary ∂Ω. The objective is to define the effective or homogenized elastic tensor
C̄H . The constitutive material phases are assumed isotropic with constant elastic prop-
erties, and the interfaces between the different constitutive phases are assumed to be
perfect. Therefore, the local problem assuming that the RVE is subject to homogeneous
strains is formulated as follows. Applying a constant macroscopic strain ε̄, find the
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FIGURE 5.1: Illustration of a heterogeneous structure composed of pe-
rioidc unit cells: (a) heterogeneous structure; (b) RVE; (c) homogenized

material.

displacement field µ(x) in Ω satisfying:

∇ · (σ(x)) = 0 in Ω (5.1)

and
σ(x) = C(x) : ε(x) (5.2)

with
〈ε〉 = ε̄ in Ω (5.3)

where C(x) is the constant fourth-order elasticity tensor associated with different phases,
∇·(·) denotes the divergence operator, and 〈·〉 denotes the space averaging over Ω. Fol-
lowing [184], the split of local strain field into a constant macroscopic strain field ε̄ and
a remaing local fluctuation ε̃ is assumed:

ε(x) = ε̄(x) + ε̃(x) (5.4)

Taking average of the above equation, we have

〈ε(x)〉 = ε̄+ 〈ε̃(x)〉 = ε̄+
1

|Ω|

∫
Ω
ε̃(x)dΩ = ε̄+

1

2|Ω|

∫
Ω
{∇(ũ(x)) +∇T (ũ(x))}dΩ (5.5)

where ũ is the unknown fluctuation displacement as ũ = u(x)− ε̄x. Using the diver-
gence theorem, we have

〈ε(x)〉 − ε̄ =
1

2|Ω|

∫
∂Ω
{ũ(x)⊗ n + n⊗ (ũ(x)}dΓ (5.6)
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Note that the condition (5.3) can be satisfied by solving the present local problem
Equations (5.1)-(5.2) with appropriate boundary conditions. In other words, the right-
hand side of Equation (5.6) should be equal to zero. It can be verified with the following
two possible conditions:

ũ(x) = 0 on ∂Ω or ũ(x) is periodic on ∂Ω (5.7)

Following [184], the corresponding two types of boundary conditions can be ob-
tained by integrating Equation (5.4) with repect to x. The first is called Kinematically
Uniform Boundary Conditions (KUBC) and is expressed as

u(x) = ε̄x,∀x ∈ ∂Ω (5.8)

where the displacement is imposed directly at boundary points. In the second type
of boundary conditions which is named Periodic Boundary Condition (PER), the dis-
placement field over the boundary ∂Ω takes the form

u(x) = ε̄x+ ũ,∀x ∈ ∂Ω (5.9)

where the fluctuation term ũ(x) is periodic on ∂Ω, i.e. it takes the same values on two
points of opposite faces over ∂Ω. It should be mentioned that an alternative localization
problem assuming that the RVE is subjected to a constant stress field can also be used
to predict the effective material properties. For detailed information about stress aver-
aging theorem as well as the corresponding boundary conditions one can refer to [184].
In this work, the second type of boundary conditions is adopted to solve the present
localization problem. It is also worth noting that even though only two-phase RVE
are considered here, the procedure can be straightforwardly extended to an arbitrary
number of phases.

5.1.1.2 Definition and computation of the effective material properties

With the superposition principle, the solution of the local problem in Equations (5.1)-
(5.2) can be viewed as a linear combination of 3 independent components of the strain
tensor in 2D:

u(x) = u(11)(x)ε̄11 + u(22)(x)ε̄22 + 2u(12)(x)ε̄12 (5.10)

where u(ij)(x) is the displacement field obtained by solving the local problem (Equa-
tions (5.1)-(5.2)) together with the PER (Equation (5.9)) using

ε̄ =
1

2
(ei ⊗ ej + ej ⊗ ei) (5.11)
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where ei (i = 1, 2) are unitary basis vectors. To be specific, u(11), u(22) and u(12) are
respectively obtained by solving the local problem with

ε̄ =

[
1 0

0 0

]
, ε̄ =

[
0 0

0 1

]
, ε̄ =

[
0 1/2

1/2 0

]
(5.12)

Setting ε(ij)(x) = ε(u(ij)(x)), we have:

ε(x) = ε(11)(x)ε̄11 + ε(22)(x)ε̄22 + 2ε(12)(x)ε̄12 (5.13)

This expression can be re-written in a compact form as

ε(x) = A(x) : ε̄, ∀x ∈ Ω (5.14)

where A(x) is the fourth-order localization tensor relating microscopic and macro-
scopic strains with

Aijkl(x) = ε
(kl)
ij (x) (5.15)

Using the classical Hooke’s law, we have

σpq(x) = Cpqij(x)Aijkl(x)ε̄(kl) (5.16)

or
σ(x) = C(x) : Aijkl(x) : ε̄ (5.17)

By taking the spatial average over Ω, the constitutive relationship at macroscopic scale
can be formulated as:

σ̄ = C̄H : ε̄ (5.18)

with
C̄H = 〈C(x) : A(x)〉 (5.19)

Using classical displacement-based FEM, a matrix U containing in each row the
nodal displacement solution of the above 3 local problems in one element is defined.
Therefore, the matrix form of the localization tensor A in Equation (5.14) or (5.15) can
be written as

A(x) = B(x)U (5.20)

where B is the strain matrix. The matrix form of the effective elasicity tensor C̄H in
Equation (5.19) is then given by:

C̄H =
1

V

∫
Ω
C(x)B(x)UdΩ (5.21)
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5.1.1.3 Numerical implementation for the local problem with PER

Following [184], a technique based on Lagrange multipliers to enforce the PER in 2D
cases is presented here. From Equation 5.9, the displacement on the opposite faces of
the RVE is expressed as {

uk+
i = ε̄ijx

k+
j + ũ∗i

uk−i = ε̄ijx
k−
j + ũ∗i

(5.22)

where superscripts "k+" and "k−" denote nodes on the pair of opposite surfaces of
the cell. ũ∗i is the periodic fluctuation field which can be eliminated by comparing the
difference between the displacements:

uk+
i − u

k−
i = ε̄ij(x

k+
j − x

k−
j ) = Rk+k− (5.23)

Therefore, in order to enforce the periodic boundary conditions using the Lagrange
multipliers method, the constraint equations can be written as following :

Pu−R = 0 (5.24)

The discrete form is written as

Ck+k−
i = Pijuj −Rk+k−

i = 0 (5.25)

where P is a matrix relating the whole indices of coupled nodes on opposite faces of
the RVE, which is completely filled with the numbers 1, 0 and -1. It is noted that there
are two constraint equations for each pair of nodes on the boundaies in the case here.
The constrained minimization problem then can be stated as

inf
u

Ci=0, i=1,...,nc

1

2
uTKu (5.26)

where u is the global vector of required displacement, and nc is the number of con-
straint equations. Introducing the vector of Lagrange multipliers Λ associated with the
adopted periodicity constraints, the above equation can be re-written as

L =
1

2
uTKu+ Λ · (Pu−R) (5.27)

The stationary of L is found by {
DδuL = 0

DδΛL = 0
(5.28)
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Therefore, we have: {
δuTKu+ Λ · P δu = 0

δΛTPu = δΛTR
(5.29)

Since the arbitrariness of δu and δΛ, the following linear system can be obtained:[
K P T

P 0

][
u

Λ

]
=

[
0

R

]
(5.30)

whereK is the global stiffness matrix after dicretizing the elastic problem (5.1) without
enfocring the Dirichlet boundary conditions, and the vectorR can be trivially obtained
through Equation (5.23).

5.1.2 Topology optimization model and procedure

5.1.2.1 Optimization model and sensitivity number

In this work, the macroscopic structure is assumed to be composed of microscopic sub-
structures/RVEs periodically. Effective material properties of the considered heteroge-
neous microstructures are calculated based on the above formulated homogenization
method, even though the length scale of the microscopic RVE is comparable to the
higher scale structures. The topology of the RVE is tailored by means of topology opti-
mization such that the obtained structure has the optimal stiffness with certain amount
of materials. The final goal is to inverstigate the size effect of the RVE when micro
and macro scales are clearly non-separated. Therefore, this work aims to answer the
following question: When the ratio between the size of the RVE and the size of the
real macrostructure is used, the classical homogenization method can be used as an
effective tool for multiscale topology optimization of periodic structures without scale
separation. This topology optimization problem can be stated mathmatically as fol-
lows:

Find : {ρ(1), . . . ,ρ(Ns)} (5.31)

Minimize : fc(ρ, ū) = F̄T ū (5.32)

Subject to : K̄ū = F̄ (5.33)

: V (ρ) =
∑

ρ(k)
e v(k)

e = Vreq, k = 1, . . . , Ns (5.34)

: ρ(1)
e = · · · = ρNs

e , e = 1, . . . , Ne (5.35)

: ρ(k)
e = ρmin or 1, e = 1, . . . , Ne, k = 1, . . . , Ns (5.36)
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where fc is the objective function of macrostructural compliance. F̄ and ū are the global
load and displacement vectors, respectively. Vreq is the required/prescribed volume
of solid material in each RVE. Ns is the number of the periodic unit cells within the
structure. Note that the constraint ρ(1)

e = · · · = ρNs
e , e = 1, . . . , Ne is prescibed to make

sure the structure is composed of periodic microstructures with the existence of the
RVE, which means that the pseudo densities of elements (ρmin or 1 in Equation (5.36))
at the corresponding locations in each substructure are the same. Ne is the number of
finite elements in each RVE.

During the process of evolutionary-type structural optimization, the elements are
removed or added based on their sensitivity numbers. Therefore, the elements at the
same locations in different substructures are removed or added simultaneously. How-
ever, the strain/stress distribution in different substructures/microscopic unit cells
may not be the same in most cases. To enforce the periodic array of the microscopic unit
cells, the element sensitivity numbers at the same location in each unit cell need to be
consistent. They are then defined as the summation of the sensitivity of corresponding
elements in all unit cells. In conventional evolutionary structural optimization method
(see e.g. [37] and [76]), the element sensitivity number is defined as the change of the
structural compliance or total strain energy since the removal of that element which is
then equal to the elemental strain energy. Therefore, the elemental sensitivity number
in this scheme can be expressed as the variation of the overall structural compliance
due to the removal of e−th elements in all substructures:

αclae =

{ ∑Ns
k=1

∫
Ωke
σcla(x)εcla(x)dΩk

e , for ρ
(k)
e = 1

0 , for ρ
(k)
e = ρmin.

(5.37)

where σcla(x) and εcla(x) are the re-localized stress and strain fields based on the clas-
sical homogenization method. Details about computation of the re-localized stress and
strain as well as the assembly of global stiffness matrix K̄ in (5.33) are formulated in
the next section.

5.1.2.2 Finite element meshes and relocalization scheme

In order to assemble the stiffness matrix K̄ in Equation (5.33) at the macroscopic scale,
the local problem (5.1)-(5.3) should be solved to obtain the effective material properties
at the lower scale. In this scheme, a fine mesh is adopted at microscopic scale to account
for all heterogeneous details within the RVE. However, coarse meshes are used to carry
out the finite element analysis for macrostructure so as to save computational expense.
Specific finite element meshes for both macroscopic and microscopic problems can be
seen in the section of numerical examples. It is noted that the sensitivity number in
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Equation (5.37) is formulated at the finest microscopic mesh, therefore, a relocalization
process is required after solving the structural problem based on coarse meshes at the
higher scale to obtain the sensitivities in (5.37).

With the calculated effective material properties C̄H of the RVE (see Section 5.1.1),
the global stiffness matrix K̄ can be assembled in a standard finite element way as:

K̄ =
∑
k

∫
Ωk
BT (x)C̄HB(x)dΩ, (5.38)

whereB and C̄H are the strain matrix and the effective elastic matrix within the coarse
mesh element at the macro scale, respectively. With the solution of the macroscopic
problem based on the coarse mesh at hand, the microscopic strain and stress fields can
be reconstructed by using the localization operator in each RVE as

εcla(x) = A(x) : ε̄(ū(x)), ∀x ∈ Ω (5.39)

and
σcla(x) = C(x) : A(x) : ε̄(ū(x)), ∀x ∈ Ω (5.40)

where the strain value ε̄(ū(x)) is defined as ε̄(ū(x)) = 1
2(∇(ū(x)) + ∇T (ū(x))). The

localization operator A has been obtained previously by solving the RVE problem (5.1)-
(5.3) (see Section 5.1.1). Therefore, the sensitivity number formulated in (5.37) can be
calculated to perform the topology optimization. We note that the sensitivity number
can be naturally obtained by a reference solution when all heterogeneities are fully
meshed. However, this could result in a huge amount of calculations, especially in
topology optimization where the finite element analysis needs to be carried out in each
iteration. In the section of examples, the optimized topologies of RVE as well as the
resulted stiffness based on the presented method and on the reference solution will be
compared to investigate the size effect of the RVE, with the size ranging from large to
small as compared with the structure dimensions.

5.1.2.3 Optimization procedure

The BESO method starts from an initial guess of the design domain and tailors the
topology according to the sensitivity numbers iteratively. In this work, the structural
problem is solved on the coarse mesh to save the computational cost, and a relocalized
scheme based on the classical homogenization is adopted to relocalize the microscopic
fields so as to compute the sensitivity number from Equation (5.37). Overall optimiza-
tion procedure of the multiscale topology optimization for periodic structures in the
context of non-separated scales using the classical homogenization scheme is formu-
lated as follows.
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1. Set a coarse mesh associated with the structure, such that each substructure/unit
cell is meshed with the same number of coarse elements. Set another fine mesh
related to the microscopic scale to discretize the RVE microstructure.

2. Assign the pesudo densities (ρmin or 1) to fine mesh elements in the RVE to con-
struct an initial design before optimization.

3. Perform the classical homogenization method on the RVE to obtain the localiza-
tion tensor A and the effective elastic tensor C̄H , as summarized in Section 5.1.1.

4. Solve the structure problem on the coarse mesh with the effective material prop-
erty.

5. Based on the solution from the structure problem, relocalize the microscopic strain
and stress fields by (5.39) and (5.40), respectively.

6. Compute the elemental sensitivity number using (5.37), and process the sensi-
tivity number with filtering and history-averaging as Equations (3.12) and (3.14),
respectively.

7. Remove inefficient materials from the RVE according to the modified sensitivity
number to satisfy the volume constraint at the current iteration as Equation (3.15).

8. Repeat 3-7 until the material constraint Vreq is satisfied and the convergence cri-
terion as (3.16) is reached:

It is worth noting that the present homogenization method allows starting the op-
timization process from a homogeneous design with ρe = 1,∀e, since the microscale
fields are relocalized at the nodes of the coarsh mesh of the higher scale. As a result,
there is no mandatory requirement to set one or several holes for initiating the proce-
dure which is the case in most inverse homogenization schemes for topological design
of material microstructures [144, 193, 170, 79].

5.1.3 Numerical examples

In this section, several numerical experiments are presented to investigate the size ef-
fect of unit cell in the classical homogenization-based topology optimization of lat-
tice/periodic structures. The dimensions of the unit cell ranges from large to small as
compared with the dimensions of the structure in different cases. The examples con-
sist in comparing the optimized topologies by the presented homogenization method,
which is solved on the coarse mesh, with the reference solution where all heterogeneities
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are fully meshed. Regular meshes with 4-node elements have been adopted for all ex-
amples. Plane stress conditions are assumed. At the initiation of the topology optimiza-
tion, the material distribution is homogeneous with ρe = 1,∀e within the RVE. The ma-
terial constituting the architectured structure is assumed to be isotropic, with Young’s
and Poisson’s coefficients given respectively by Em = 1000 MPa and νm = 0.3. Dur-
ing the topology optimization procedure, the interior of emerged holes is meshed with
highly compliant material to maintain regular meshes, and fictitious material proper-
ties for the holes are taken as Ei = 10−6 MPa and νi = 0.3. The target volume fraction
for the optimized topology of the RVE in all examples is 0.5.

5.1.3.1 Doubly-clamped elastic domain

In this first example, we investigate the topology optimization of periodic doubly-
clamped square elastic domain as illustrated in Figure 5.2. The horizontal and vertical
displacements of both left and right ends of the beam are fixed. A concentrated force
F = 100 N is loaded on the centre point of this beam. The side of the square beam is
L = 1000 mm. The structure is a lattice composed ofNs = η×η unit cells repeated peri-
odically, with η represents the number of unit cells along each space direction. A coarse
mesh composed of 5 × 5 elements is associated to the unit cells at the structural scale.
The fine mesh on the RVE is composed of 40×40 elements to solve the local problem. 5
cases are studied: (i) η = 2; (ii) η = 4; (iii) η = 8; (iv) η = 16; (v) η = 20. These different
cases correspond to the following coarse meshes for the structure: (i) 10× 10 elements;
(ii) 20 × 20 elements; (iii) 40 × 40 elements; (iv) 80 × 80 elements; and (v) 100 × 100

elements. The reference solution is obtained by discretizing the structure with the fine
mesh for accouting for all heterogeneities, resulting into the following regular meshes
for the different studied cases: (i) 80×80 elements; (ii) 160×160 elements; (iii) 320×320

elements; (iv) 640 × 640 elements; and (v) 800 × 800 elements. It is reminded that the
present homogenization method allows re-localizing the microscopic fileds. Then, the
homogenization-based topological optimization procedure only uses the values at the
nodes of the coarse mesh, reducing drastically the computational time.

Figure 5.3 shows the different optimized topologies of the lattice structure for sev-
eral numbers of unit cells along each direction to inversigate the size effect of the unit
cell. Figure 5.3 (a) shows the final optimized geometry of the lattice obtained by the
reference solution while Figure 5.3 (b) shows the final optimized geometry of the lat-
tice obtained by the present homogenization method. Figure 5.3 (c) and (d) show the
optimized geometry of one unit cell for comparison. Along rows (i) - (v), the number
of unit cells repeated along each direction is increased and the ratio between the di-
mensions of the unit cells and the dimensions of the whole structure are decreased. We
observe from Figure 5.3 (i) to (v) that the optimized topology converges rapidly. We can
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F

L

FIGURE 5.2: Doubly-clamped square elastic domain composed of peri-
odic microscale unit cells: geometry and boundary conditions.

also note that even for the case (i) where the two scales can clearly not be separated,
both methods lead to the same topology, which was not expected. To further illustrate
the size effect of unit cell, we compare the compliances for optimized geometries of the
lattice when using the reference solution or present homogenization-based method in
Figure 5.4 (a). We can see that with the decrease of the unit cell size, the gap in resulted
compliances is getting smaller and smaller. We also note that when the number of unit
cells is large, both methods lead to the same compliance. To quantify the computa-
tional saving, the numbers of degree of freedoms (DOFs) to be solved in two different
solutions are compared in Figure 5.4 (b). It is observed that the number of DOFs in
the homogenization method is almost negligible compared with the reference solution,
especially when the number of unit cells is large. Even so, the homogenization method
could generate the optimized lattice structures with the same topology as well as the
same stiffness as the reference solution.

5.1.3.2 L-shaped structure

In the previous example, the boundary conditions of the macrostructure were symmet-
rical, resulting in the optimal topological configuration of RVE being orthogonal and
in a fast convergence. In this example, a more complicated L-shaped structure is inves-
tigated. The geometry of the problem is depicted in Figure 5.5, where the dimension
of the macroscopic structure is L = 1000 mm. The top end of the L-shape structure
is fixed, and the concentrated force is taken as F = 100 N (see Figure 5.5). The mesh
used at the fine scale within the RVE is composed of 40 × 40 elements. A coarse mesh
composed of 5× 5 is associated to the unit cells at the structural scale. As in the previ-
ous example, the number of unit cells composing the beam is varied to study the size
effect of the unit cell. Then, the following numbers of unit cells along each direction
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FIGURE 5.3: Optimized topologies for the double-clamped beam:
columns (a), (b) compare the global lattice topologies when using the
reference solution or homogenization-based method; columns (c) and
(d) show the corresponding unit cell. Rows (i) to (v) correspond to in-

creasing the number of unit cells in the lattice.
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(a) (b)

FIGURE 5.4: Resulted compliance and solved DOFs by topological op-
timization using reference solution (blue curve) and homogenization
method (red curve). Results are plotted as a function of the number of

unit cells.

are investigated: (i) 2 × 2; (ii) 4 × 4; (iii) 8 × 8; (iv) 16 × 16; and (v) 20 × 20. Since
the structure is not square, the number of unit cells in x− and y− directions is not the
same, e.g. there are only three unit cells for the case (i). Then, the following numbers
of DOFs are solved, respectively: (i) 3554; (ii) 4044; (iii) 5924; (iv) 13,284; (v) 18,764.
As a comparison, the numbers of DOFs need to be solved using reference meshes are
respectively: (i) 9922; (ii) 39,042; (iii) 154,882; (iv) 616,962; (v) 963,203. We can note that
using the present technique, the topology optimization procedure only uses the nodal
values of the coarsh mesh, thus drastically reducing the computational costs.

As in the first example, Figure 5.6 shows the different optimized topologies of the
lattice structure for several number of unit cells along each direction using reference so-
lution and homogenization method. We can observe from Figures. 5.6 (i) and (v) that
the optimized topologies have huge difference between two different solutions. How-
ever, with the large number of unit cells, the topology of optimized structure by the
homogenization method is also convergent to the reference solution. We compare the
compliance for the optimized geometries of the lattice using two solutions in Figure 5.7
(a). In this case, using the homogenization method, the obtained resulting compliance
is much larger than the reference solution for the case (i). As expected, the compliance
converges to the same value with the decrease of unit cell size. As an illustration, the
DOFs need to be solved in two optimized models are compared in Figure 5.7 (b). Here
again, the homogenization topology optimization method based on the coarse meshes
reduces computational time significantly.

5.1.3.3 MBB beam

In this last example, we investigate the topology optimization of a periodic Messerschmitt-
Bölkow-Blohm (MBB) beam subjected to a concentrated load, where the aspect ratio
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FIGURE 5.5: L-shaped beam composed of periodic microscale unit cells:
geometry and boundary conditions.

of the beam is chosen as 4. The geometry of the problem is depicted in Figure 5.8.
The concentrated force load is applied at the centre of the bottom end of the domain
with a magnitude F = 100 N. The dimensions are L × H = 4000 × 1000 mm. Since
the symmetry of boundary conditions, only the right half of the MBB beam is investi-
gated. Therefore, assuming that the half structure consists of Ns = sx × sy unit cells
repeated periodically, with sx and sy denoting the number of unit cells along x− and
y− directions, respectively. In this example, we keep sx = 2sy. 6 cases are studied:
(i) sx × sy = 2 × 1; (ii) sx × sy = 4 × 2; (iii) sx × sy = 8 × 4; (iv) sx × sy = 16 × 8;
(v) sx × sy = 20 × 10; (vi) sx × sy = 24 × 12. These different cases correspond to the
following coarse meshes for the structure: (i) 10× 5 elements; (ii) 20× 10 elements; (iii)
40 × 20 elements; (iv) 80 × 40 elements; (v) 100 × 50 elements; (vi) 120 × 60 elements.
As in the previous examples, the topology optimization problem of periodic structure
is solved using the reference mesh (fully accounting for the heterogeneities). In the ref-
erence model, the different cases have the following fine meshes for the structure: (i)
80×40 elements; (ii) 160×80 elements; (iii) 320×160 elements; (iv) 620×320 elements;
(v) 800× 400 elements; (vi) 960× 480 elements, respectively.

Figure 5.9 shows the different optimized topologies of the lattice structure for sev-
eral number of unit cells along each direction, using the homogenization-based and
reference methods. Here again, the optimized topologies are different in the first few
cases, while both methods lead to the same topology with the large number of unit
cells. We also compare the compliances for optimized geometries of the lattice using
the homogenization-based and reference solutions. It is observed that obtained result-
ing compliance using classical homogenization is much larger than reference solution
for the case (i) where the scales can clearly not be separated. However, as expected,
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FIGURE 5.6: Optimized topologies for the L-shaped beam: columns (a),
(b) compare the global lattices topologies when using the reference solu-
tion or homogenization-based method; columns (c) and (d) show the
corresponding unit cell. Rows (i) to (v) correspond to increasing the

number of unit cells in the lattice.
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(a) (b)

FIGURE 5.7: Resulted compliance and solved DOFs by topological op-
timization using reference solution (blue curve) and homogenization
method (red curve). Results are plotted as a function of the number of

unit cells.

LH

F

F

FIGURE 5.8: MBB beam composed of periodic microscale unit cells: ge-
ometry and boundary conditions.
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FIGURE 5.9: Optimized topologies for the half MBB beam: columns (a),
(b) compare the global lattice topologies when using the reference so-
lution and homogenization-based method; columns (c) and (d) show
the corresponding unit cell. Rows (i) to (v) correspond to increasing the

number of unit cells in the lattice.

both methods lead to the same value of the compliance when the number of unit cell
in short side is larger than 8. We also compare the DOFs solved in two methods in
Figure 5.10. It is then suggested that the present classical homogenization method can
be chosen for topology optimization of periodic structures with large number of unit
cells.

5.2 Topology optimization of periodic structures taking into
account strain gradient

This section presents a new multiscale topology optimization for periodic structures,
by using a consistent nonlocal filter-based homogenization scheme to account for strain
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(a) (b)

FIGURE 5.10: Resulted compliance and number of DOFs using reference
solution (blue curve) and homogenization method (red curve). Results

are plotted as a function of the number of unit cells.

gradient effects when the two scales are non-separated. Whereas several computational
homogenization methods taking into account strain gradient effects are available (see
e.g. [53, 131, 89]), we have used the technique developed in [185, 186, 152]. The ma-
jor advantage of this technique is that it can take into account an arbitrary level of
strain gradient without higher order elements, in a classical finite element framework.
A review of the computational homogenization techniques used to take into account
the strain gradient effects based on least-square polynomial filters is provided in Sec-
tion 5.2.1. The procedure combining this nonlocal homogenization method with the
topological optimization procedure is described in section 5.2.2. The nonlocal homoge-
nization method is validated in Section 5.2.3 and the proposed methodology is applied
to lattice structures in Section 5.2.4 to study the gain of taking into account the strain
gradient effects as compared to a topology optimization combined with classical ho-
mogenization in the context of non-separated scales.

5.2.1 Nonlocal filter-based homogenization for non-separated scales

5.2.1.1 Definition of local and mesoscopic fields through the filter

In this section, we first briefly review the homogenization method that we use to take
into account strain gradient effects. The method, called filter-based homogenization
method, was introduced in [185] and later extended in [186, 152]. The main idea is
to construct a mesoscopic non local homogenized model using computations on the
Representative Volume Element (RVE) by replacing averaging operators in the homog-
enization theory by linear numerical filters. In this framework, a convenient numerical
model based on a coarse mesh of the heterogeneous structure can be constructed, while
keeping the possibility of re-localizing all microstructural mechanical fields.
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FIGURE 5.11: (a) Coarse mesh covering the structure and unit cells; (b)

Fine mesh over the unit cell.

We consider two scales, one called microscopic scale, associated to fine scale strain
and stress fields ε(x) and σ(x), and another one called mesoscopic scale, associated to
strain and stress fields at the upper scale, denoted by ε̂(x) and σ̂(x). Note that the
mesoscopic fields have a characteristic wavelength which is not necessarily much larger
than that of the microscopic fluctuations fields. As illustrated in Figure 5.11, structures
considered in the present work are assumed to be composed of periodic substructures
or unit cells. The length scale of microscopic unit cell is comparable to the structural
length scale such that the scale separation cannot be assumed. A coarse mesh is associ-
ated with the whole structure, and each substructure/unit cell is meshed with the same
number of coarse elements. In addition, the microscopic structure (unit cell) is meshed
using a fine mesh related to the microscopic scale. The mesoscopic strain and stress
fields ε̂ and σ̂ are then approximated on the coarse mesh (see Figure 5.11(a)), whereas
the microscopic fields ε and σ are evaluated on the fine mesh (see Figure 5.11(b)). The
size of the fine grid is assumed to be small enough to catch all the fluctuations of the
microstructure at the smallest scale.

Mesoscopic and microscopic fields are related by:ε̂ = F{ε(x)},

σ̂ = F{σ(x)},
(5.41)

where F is a linear operator, acting as a low-pass filter on the fine scale fluctuations.
This operator is associated to a characteristic length h related to the field fluctuations
observed at the mesoscopic scale. In order to construct a theory able to describe con-
tinuously mesoscopic fields from the microscale up to the macroscale, and precisely
overcome the limitations of scale separation, the following properties are required for
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the filter [185, 186, 152]: 
lim
h→0
F{h, ε(x)} = ε(x),

lim
h→∞

F{h, ε(x)} = 〈ε(x)〉,

F {F{ε(x)}} = F{ε(x)},

(5.42)

where 〈.〉 denotes averaging operator.
A least-square polynomial filter introduced in [186], which consists in a least-square

projection of the microscopic strain field over a piece-wise polynomial basis, is adopted
in this work. By this filter process, the mesoscopic fields are expressed asε̂ij(x) =

∑P
p=1M

p(x)ε̂pij ,

σ̂ij(x) =
∑P

p=1M
p(x)σ̂pij ,

(5.43)

where Mp(x) are piecewise polynomial basis (e.g. finite element shape functions) as-
sociated to nodes p, p = 1, ..., P of a coarse mesh covering the domain where the mi-
croscopic fields are described. Given the fine scale strain field on a discrete fine mesh
composed of N nodes xm,m = 1, 2, ..., N , the unknown coefficients ε̂pij are required to
minimize the distance between the approximation and the given fine scale strain field
in the least-square sense. Let us define U such that

U =
N∑
m=1

 P∑
p=1

Mp(xm)ε̂pij − εij(x
m)

2

. (5.44)

Optimality conditions give

dU

dε̂qij
= 0, q = 1, 2, ..., N, (5.45)

leading to

2
N∑
m=1

M q(xm)(
P∑
p=1

Mp(xm)ε̂pij − εij(x
m)) = 0, q = 1, 2, .., N, (5.46)

or
P∑
p=1

(
N∑
m=1

Mp(xm)M q(xm)

)
ε̂pij =

∑
m

M q(xm)εij(x
m). (5.47)

Then the coefficients εpij , p = 1, 2, ..., N are found by solving the following system:

Au = b, (5.48)
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where

Apq =
N∑
m=1

Mp(xm)M q(xm), bq =
N∑
m=1

Mp(xm)εij(x
m), (5.49)

and where u = [ε̂1
ij , ε̂

2
ij , ..., ε̂

N
ij ].

5.2.1.2 Microscopic unit cell calculations

Let us consider a unit cell Ω ⊂ Rd as defined in Section 2.1, d being the dimension
of the space, with boundary ∂Ω. The unit cell is related to microscopic scale where
the fields are described at the finest scale. The local problem on the unit cell for non-
separated scales is defined as follows: assuming known an applied non-constant meso-
scopic strain field ε̂(x), find ε(x) satisfying;

∇ · (σ(x)) = 0 in Ω (5.50)

and
σ(x) = C(x) : ε(x), (5.51)

with
F{ε(x)} = ε̂(x) in Ω, (5.52)

where C(x) is a fourth-order elasticity tensor, and ∇ · (.) denotes the divergence oper-
ator. Instead of requiring that the spatial average of the strain fields matches the meso-
scopic one as in the classical homogenization, the condition (5.52) states that the filtered
part of the compatible strain field must match the given non-uniform mesoscopic strain
field ε̂(x). This problem is then different from the local problem in classical homoge-
nization.

Following [185], the microscopic strain field is split into a filtered (mesoscopic) part
and a remaining fluctuation ε̃(x):

ε(x) = ε̂(x) + ε̃(x). (5.53)

Introducing (5.51) and (5.53) into (5.50) and using the property (5.42)(c), the new
localization problem is obtained as:

∇ · (C(x) : ε̃(x)) = −∇ · (C(x) : ε̂(x)) in Ω (5.54)

with
F{ε̃(x)} = 0 in Ω. (5.55)
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To enforce the non-trivial condition (5.52), an auxiliary strain field e(x) is defined
by ε̃(x) = e(x)−F(e(x)). Invoking again the property (5.42)(c), we have:

F{ε̃(x)} = F {e(x)−F{e(x)}} = F{e(x)} − F {F{e(x)}} = 0. (5.56)

The new local problem (5.54) then can be re-written by seeking e(x) satisfying

∇ · (C(x) : [e(x)−F{e(x)}]) = −∇ · (C(x) : ε̂(x)) in Ω. (5.57)

Condition (5.55) implies that
〈ε̃(x)〉 = 0 (5.58)

which is satisfied for any value of the spatial average 〈e(x)〉. So, we choose 〈e(x)〉 = 0,
and this equation is classically verified for the two possible sets of boundary conditions:

ue(x) = 0 on ∂Ω, (5.59)

or
ue(x) = 0 periodic on ∂Ω, (5.60)

where ue is a compatible displacement field such that e(x) = ε(ue(x)), with ε(.) =
1
2(∇(.) +∇T (.)).

To summarize, the new problem is defined by Eq.(5.54) with boundary conditions
(5.59) or (5.60). In the present work, the first set of boundary conditions is adopted.
The presence of the nonlocal operator in the left-hand term of (5.57) induces a numer-
ical difficulty, as the stiffness matrix associated with this linear operator is fully popu-
lated. Following [186, 152], the following iterative scheme is defined to alleviate this
difficulty: starting from an initialized solution e0(x), e.g. e0(x) = 0, we seek the field
en+1(x) at each iteration n of the following scheme:

∇ · (C(x) : en+1(x)) = ∇ · (C(x) : F{en(x)} − ∇ · (C(x) : ε̂(x)) (5.61)

until a convergence criterion is reached. At convergence, the strain field is recovered as
follows:

ε(x) = ε̂(x) + en+1(x)−F{en+1(x)}. (5.62)

Following [152], we assume that the mesoscopic strain field derives from a meso-
scopic displacement field û(x) related to the mesoscopic scale as follows:

ε̂ij(x) =
1

2

(
∂ûi(x)

∂xj
+
∂ûj(x)

∂xi

)
. (5.63)
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The mesoscopic displacement field is interpolated on the coarse mesh by finite ele-
ment shape functions as:

ûi(x) '
∑
p

Mp(x)ûpi , (5.64)

where Mp(x) is the finite element shape function associated with the node p and ûpi are
the nodal components of û(x) on the coarse mesh. Then, the corresponding strain field
is given by:

ε̂ij(x) '
P∑
p=1

1

2

(
∂Mp(x)

∂xj
ûpi +

∂Mp(x)

∂xi
ûpj

)
, (5.65)

where P is the number of nodes on the coarse mesh of the unit cell. This equation can
be re-written as:

ε̂ij(x) '
P∑
p=1

1

2

(
∂Mp(x)

∂xj
δik +

∂Mp(x)

∂xi
δjk

)
ûpk. (5.66)

From the superposition principle, the solution of the local problem is then a linear
combination of the components of nodal displacements components ûpk on the coarse
mesh:

εij(x) '
P∑
p=1

Dpijk(x)ûpk. (5.67)

Introducing the vector forms for the second-order tensors ε andσ: [ε] = [ε11, ε22, 2ε12]T ,
[σ] = [σ11, σ22, σ12]T , Eq. (5.67) can be re-written into the matrix form in 2D as follows:

[ε](x) =
∑
p

D
p
11(x) Dp

12(x)

Dp
21(x) Dp

22(x)

Dp
31(x) Dp

32(x)

[ûp1
ûp2

]
, (5.68)

where the column [Dp
11(x), Dp

21(x), Dp
31(x)] is the strain vector obtained from solving

the local problem with ε̂(x) given by the expression (5.66) with ûp1 = 1 and ûp2 = 0. The
column [Dp

12(x), Dp
22(x), Dp

32(x)] is the strain vector obtained from solving the local
problem with ε̂(x) given by the expression (5.66) with ûp1 = 0 and ûp2 = 1. We show
how to compute the Dp(x) in the following.

The corresponding weak form of the localization problem expressed in (5.61) can
be formulated as: find u(x) satisfying periodic boundary condition (5.59), such that
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∀δu ∈ H1(Ω): ∫
Ω
ε
(
[ue]n+1

)
: C(x) :ε(δu(x))dΩ =∫

Ω
F
{
ε
(
[ue]n+1(x)

)}
: C(x) : ε(δu(x))dΩ−

∫
Ω
ε̂(x) : C(x) : ε(δu(x))dΩ,

(5.69)

where H1(Ω) is the usual Sobolev space. Using a classical FEM discretization over the
fine mesh, we have:

KUn+1 = fn + f̂ , (5.70)

with
K =

∫
Ω

BT (x)C(x)B(x)dΩ, (5.71)

where B denotes the matrix of shape functions derivatives, C is the matrix form associ-
ated with the fourth-order tensor C(x) in (5.51) and f̂ is the body force vector associated
to the prescribed non-uniform strain ε̂(x), which corresponds to an unitary displace-
ment of one node of the coarse mesh as follows:

f̂ = −
∫

Ω
BT (x)C(x)[ε̂(x)]dΩ (5.72)

where [ε̂(x)] is the vector form associated with ε̂(x) and

fn =

∫
Ω

BT (x)C(x) [F {ε ([ue]n(x))}] dΩ. (5.73)

Note that in all 2×P problems as well as for all iterations of the iterative procedure,
the same stiffness matrix K is involved, which then only needs to be computed and
decomposed once. Finally, we obtain:D

p
11(x) Dp

12(x)

Dp
21(x) Dp

22(x)

Dp
31(x) Dp

32(x)

 =

ε
(1)
11 (x) ε

(2)
11 (x)

ε
(1)
22 (x) ε

(2)
22 (x)

ε
(1)
12 (x) ε

(2)
12 (x)

 . (5.74)

Then, we have the following relationships:

[ε(x)] =

P∑
p=1

Dp(x)ûp, (5.75)

[σ(x)] =
P∑
p=1

C(x)Dp(x)ûp. (5.76)
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Applying the linear filter F , we have

[σ̂(x)] =
∑
p

Ĝp(x)ûp, (5.77)

with
Ĝp(x) = F{C(x)Dp(x)}. (5.78)

As a result, the obtained constitutive relationship at the mesoscopic scale has been
derived by a fully microscopically-based framework without any empirical assump-
tions. A simple classical displacement-based finite element strategy is adopted to im-
plement the numerical scheme without requiring higher-order elements.

The overall algorithm for the microscopic unit cell computations is summarized as
follows:

For each point p of the coarse mesh covering the unit cell:

1. Solve the local problem (5.57) with boundary conditions (5.59) by using the FEM
discretization over the fine mesh until convergence is reached.

2. Compute microscopic strain field ε(x) using (5.62).

3. Compute Dp(x) using (5.74) and store it.

4. Compute Ĝp(x) using (5.78) and store it. Only nodal values of Ĝp(x) at the
nodes of the coarse mesh need to be stored. The full spatial description in the
unit cell can be recovered through finite element shape functions as: Ĝp(x) =∑

iM
i(x)[Ĝp]i, where [Ĝp]i are the nodal values of Ĝp(x) on the coarse mesh.

Once these tensors computed and stored, for an arbitrary distribution of nodal val-
ues of the mesoscopic displacement field ûp over the coarse mesh, we can compute:

1. The reconstructed local stress field σ(x) using (5.76).

2. The mesoscopic stress field σ̂(x) using (5.77)-(5.78).

5.2.1.3 Mesoscopic structure calculations

Let us consider a mesoscopic structure defined in a domain Ω̂ ⊂ Rd with boundary ∂Ω̂.
The structure is associated to the mesoscopic scale, that is, the strain and stress fields
are described at the characteristic wavelength associated to the filter F allowing to de-
fine them on the coarse mesh. The structure is subdivided into periodic substructures
corresponding to unit cells Ωk(k = 1, ..., Ns), with Ns the number of substructures,
as depicted in Figure 5.11. The boundary ∂Ω̂ is composed of Dirichlet and Neumann
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parts, denoted respectively ∂Ω̂u and ∂Ω̂t, where the displacements and tractions are
prescribed.

The equilibrium equation is expressed by

∇ · (σ̂(x)) + f̂ = 0 in Ω̂ (5.79)

with boundary conditions as:

û(x) = ud on ∂Ω̂u (5.80)

and
σ̂ · n = fd on ∂Ω̂t (5.81)

completed with the mesoscopic constitutive law (5.77)-(5.78), where ud and fd are re-
spectively the prescribed displacement and forces.

The weak form corresponding to the mesoscopic problem (5.79)-(5.81) is given as
follows: find û ∈ H1(Ω) satisfying the boundary condition (5.80) such that∫

Ω̂
[σ̂(û)] · [ε̂(δû)]dΩ =

∫
∂Ω̂t

F̂ · δûdΓ +

∫
Ω̂

f̂ · δûdΩ = δŴ ext (5.82)

where ε̂(δû) is approximated on the coarse mesh using classical FEM shape functions

[ε̂](δû) = Bδûe (5.83)

and δûe are nodal values of δû on the coarse mesh. Then we have∑
k

∫
Ω̂k

∑
p∈Ω̂k

Ĝp(x)ûp ·B(x)δûedΩ = δŴ ext, (5.84)

which leads to the linear system of equations

K̂û = F̂ (5.85)

with
K̂ =

∑
k

∑
p∈Ω̂k

∫
Ω̂k

BT (x)Ĝp(x)dΩ (5.86)

and
F̂ =

∫
∂Ω̂

NT · f̂dΩ +

∫
∂Ω̂t

NT · F̄dΓ. (5.87)

The mesoscopic problem can be solved on a coarse mesh only, but the technique can
provide all re-localized fine scale fields in the heterogeneous structure, as described in
Section 5.2.1.2.
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5.2.2 Topology optimization procedure

5.2.2.1 Model definition and sensitivity numbers

In this section, the BESO method for topology optimization is extended to strain gra-
dient effects by incorporating the non-local model presented in the previous section,
and applied to lattices structure composed of periodic unit cells. Then, the topology
of all unit cells is the same, but takes into account the response of the whole structure
to maximize its stiffness. The structural stiffness maximization problem can be formu-
lated using the design variable ρ(k)

e , where k and e denote the substructure number and
the element number in each substructure, respectively, as

Find : {ρ(1), . . . ,ρ(Ns)} (5.88)

Minimize : fc(ρ, û) = F̂T û (5.89)

subject to : K̂û = F̂, (5.90)

: V (ρ) = Ns

∑
ρ(k)
e v(k)

e = Vreq, (5.91)

: ρ(1)
e = · · · = ρ(Ns)

e , e = 1, . . . , Ne, (5.92)

: ρ(k)
e = ρmin or 1, e = 1, . . . , Ne, k = 1, . . . , Ns (5.93)

where fc is known as the compliance functional, and F̂ and û are respectively the ap-
plied load and displacement vectors defined at the mesoscopic scale in section 5.2.1.3.
The above stiffness matrix K̂ is assembled using (5.86), where Ĝp is obtained using
(5.78). It should be noted that the computation of both tensors Ĝp and D̂p in (5.78) is
both based on a fully microscopic framework accounting for all heterogeneities at the
microscale. In (5.91), v(k)

e is the volume of the e−th element in the k−th unit cell, and
Ne is the number of elements in the microscale fine mesh for each substructure. Simi-
lar to the optimization model defined in Section 5.1 using the classical homogenization
method, the condition ρ(1)

e = · · · = ρ
(Ns)
e , e = 1, . . . , Ne ensures that the pseudo densi-

ties (ρmin or 1) of elements at the corresponding locations in each substructure are the
same. Therefore, the sensitivity number in this scheme can also be expressed as the
variation of the overall structural compliance due to the removal of e−th elements in
all substructures:

αe =

{ ∑Ns
k=1

∫
Ωke
σ(x)ε(x)dΩk

e , for ρ
(k)
e = 1

0 , for ρ
(k)
e = ρmin,

(5.94)

where σ and ε are respectively microscopic stress and strain fields in the e−th element
of the k−th substructure Ωk

e , which are evaluated directly from the obtained meso-
scopic displacement field on the coarse mesh as formulated in section 5.2.1. By the
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presented nonlocal homogenization scheme, the re-localized strain and stress fields
are obtained using (5.75) and (5.76). Then, only computations on the coarse mesh are
required, but all local fields can be reconstructed. As shown in the Section 5.1, this is
highly advantageous by reducing the computational costs in the topology optimization
procedure, using only the coarse mesh nodal values of displacements.

5.2.2.2 Overall optimization procedure

To summarize, the objective function is computed by solving the mesoscopic prob-
lem on a coarse mesh only and the microscopic strain and stress fields (fine scale) are
re-localized by means of the localization operators calculated on the unit cells. The
microstructural topology of the RVE is tailored to find the optimal material layout at
microscale such that the resulting overall structure has the maximum stiffness within
a prescribed amount of material. Finally, the overall multiscale topology optimization
procedure for designing the periodic microscopic structures without scale separation
using a filter-based homogenization scheme is described as follows.

1. Set a coarse mesh associated with the structure, such that each substructure/unit
cell is meshed with the same number of coarse elements. Set another fine mesh
related to the microscopic scale to discretize the microstructure of RVE .

2. Assign the pseudo densities (ρmin or 1) to fine mesh elements in the RVE to con-
struct an initial design before optimization.

3. Perform the microscopic unit cell computations as described in Section 5.2.1.2.

4. Solve the mesoscopic structure problem as summarized in Section 5.2.1.3.

5. Based on the nodal displacement solution from the mesoscopic problem on the
coarse mesh, evaluate the local strain field by (5.75) and the local stress field by
(5.76).

6. Compute the elemental sensitivity number using (5.94) and modify it by using
(3.12) and (3.14).

7. Update the structural topology in RVE with (3.15).

8. Repeat 3-7 until the material constraint Vreq is satisfied and the convergence cri-
terion (3.16) is reached.

5.2.3 Validation of the nonlocal homogenization approach

Even though the nonlocal approach described in section 5.2.1 has been validated through
various examples in previous works (see e.g. [152]), we present in this section a short
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(a)

(b)

FIGURE 5.12: Cantilever lattice structure composed of periodic unit cells
subjected to distributed force: (a) geometry and boundary conditions of

the beam; (b) coarse and fine meshes associated to the unit cell.(b)(a)
FIGURE 5.13: Meshes of the whole structure for computing (a) the meso-

scopic problem and (b) the reference solution.

validation test for the sake of self-consistency of the thesis. The validation test consists
in comparing the re-localized field obtained by the present non-local homogenization
method on a coarse mesh with a reference solution where all heterogeneities are fully
meshed. We consider a structure depicted in Figure 5.12 (a). The dimensions of the
structure are L×H = 200× 100 mm. The boundary conditions are described in Figure
5.12 (a). The prescribed force is F = 2 kN. The unit cell is depicted in Figure 5.12 (b).
The central hole radius is such that the porosity is equal to 0.6. The material constitut-
ing the architectured structure is assumed to be isotropic, with Young’s and Poisson’s
coefficients given respectively by Em = 1000 MPa and νm = 0.3. As the topology op-
timization is more conveniently applied with a regular mesh, the interior of the hole
is meshed and associated with a fictive, highly compliant material with Young’s and
Poisson’s coefficients given respectively by Ei = 10−6 MPa and νi = 0.3. Plain stress
are assumed.

The unit cell is discretized with 50× 50 regular four-node bilinear elements for the
fine scale mesh. A coarse 5 × 5 mesh is used to construct the localization operators of
the nonlocal homogenized model, as described in section 5.2.1.2. The structure is dis-
cretized by a coarse mesh including 10 × 5 nodes. The reference solution is obtained
by discretizing the structure with a regular 100× 50 bilinear elements mesh (see Figure
5.13 (b). The results are presented in Figures. 5.14 and 5.15, where the ε11 and σ11 com-
ponents of the strain and stress fields are plotted for both reference solution and for the
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FIGURE 5.14: (a) Reference solution and (b) re-localized strain field ε11
obtained from the nonlocal homogenization method (computed on the

coarse mesh).(b)(a)
FIGURE 5.15: (a) Reference solution and (b) re-localized stress field σ11
obtained from the nonlocal homogenization method (computed on the

coarse mesh).

re-localized fields obtained by the homogenized model (solved on the coarse mesh).
We can note a satisfying agreement between both solutions, illustrating that the nonlo-
cal homogenized model can be employed for the topology optimization for taking into
account strain gradients while only relying on a coarse mesh. Such procedure will be
described in the next section.

5.2.4 Numerical examples

In this section, several numerical examples are presented to illustrate the capabilities of
the proposed topology optimization in a strain gradient context. For all next examples,
regular meshes with 4-node elements have been used. The plane stress assumption
has been adopted. Here again, to maintain regular meshes during the topology op-
timization procedure, the regular mesh covers the holes and the related elements are
associated to highly compliant properties. It is noted that even though the present
method was validated in the last section, the reference solution is adopted during the
optimization process to cooperatively adjust the direction of topology evolution. The
Young’s and Poisson’s ratio for the material (ρe = 1) are respectively Em = 1000 MPa
and νm = 0.3. The fictitious material properties for the holes (ρe = ρmin) are taken
as Ei = 10−6 MPa and νm = 0.3. At the initiation of the topology optimization, the
material distribution is homogeneous with ρe = 1.
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FIGURE 5.16: Cantilever beam lattice structure composed of periodic
microscale unit cells: geometry and boundary conditions.

5.2.4.1 Cantilever beam with a concentrated load

In this first example, we investigate the topology optimization of a periodic lattice
structure subjected to concentrated load. To study the influence of strain gradient ef-
fects, the dimensions of the unit cell range from large to small as compared with the
dimensions of the structure. The geometry of the problem is described in Figure 5.16.
The x− and y− displacements of the left end of the beam are both fixed.

A concentrated force load is applied on the bottom corner of the right end of the
domain with a magnitude F = 100 N. The aspect ratio of the cantilever beam is chosen
as 2 to highlight the strain gradient effects. The dimensions areL×H = 2000×1000 mm.
The structure is a lattice composed ofNs = s1×s2 unit cells repeated periodically along
each space direction, with s1 and s2 denoting the number of substructures along x− and
y− directions, respectively. A coarse mesh composed of 5× 5 elements is associated to
the unit cells at the mesoscopic scale. The fine scale mesh on the RVE is composed of
50×50 elements to perform the microscopic unit cell computations. In this example, we
keep s1 = 2s2 (see Figure 5.17). 5 cases are studied: (i) s1×s2 = 2×1; (ii) s1×s2 = 4×2;
(iii) s1 × s2 = 8 × 4; (iv) s1 × s2 = 16 × 8; (v) s1 × s2 = 20 × 10 (Figure 5.17). These
different cases correspond to the following coarse meshes for the structure: (i) 10 × 5

elements; (ii) 20 × 10 elements; (iii) 40 × 20 elements; (iv) 80 × 40 elements; and (v)
100 × 50 elements. It is worth reminding that the present homogenization method
allows re-localizing the microscale fields. As a result, the total sensitivity number can
be reduced by using the local operators in each subdomain. The target volume fraction
for the optimized topology of the unit cells is 0.5.

Figure 5.17 shows different optimized topologies of the lattice structure for several
numbers of unit cells along each direction and using the present method to take into
account strain gradient and classical homogenization. Figure 5.17 (a) shows the final
optimized geometry of the lattice taking into account strain gradient while Figure 5.17
(b) shows the final optimized geometry of the lattice without taking into account the
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strain gradient. Figure 5.17 (c) and (d) only shows the optimized geometry of a sin-
gle unit cell for comparison. Along rows (i) - (v), the number of unit cells repeated
along each direction is increased and the ratio between the dimensions of the unit cells
and the dimensions of the whole structure are decreased. Then for row (i) the scales
are not separated while for row (v) the scales can be considered as separated. We can
observe from Figures. 5.17 (i) and (v) that both topological strategies taking into ac-
count the strain gradient or not lead to different geometries of unit cells. We can also
note that when scales are separated (row (v)), both methods lead to the same topology,
which is expected. To quantify the gains obtained by the present method, we com-
pare the compliances for optimized geometries of the lattice when the strain gradient
is taken into account or not in Figure 5.18. We can see that using the present nonlocal
homogenization method, the obtained resulting compliance is lower than using classi-
cal homogenization (then ignoring strain gradient effects), inducing a significant gain
in the resulting stiffness of the lattice. We also note that when the number of unit cells
is large, then both methods lead to the same compliance, which is also consistent as the
scale are in this case separated.

In this work, standard BESO method is adopted to solve the proposed optimization
problem. This method updates the topology of the RVE by removing certain amount
of material step by step, in order to finally meet the volume constraint. Normally, the
evolutionary volume ratio is set to 2% [76, 77] which means that 2% solid elements
within the design domain are deleted from the previous design iteration. This value
cannot be too large to avoid accidentally deleting too many solid elements at each it-
eration [76, 77]. However, if it is too small, more iterations are needed from the initial
design to reach the final volume constraint. Taking the case (i) in this numerical exper-
iment as an example, when we set the evolutionary volume ratio as 1%, the different
optimized topologies of the lattice structure using the present method and classical ho-
mogenization are shown in Fig. 5.19. We can see that there is no noticeable difference
of the topologies in Fig. 5.19 and Fig. 5.17 row (i). However, the solution in Fig. 5.19
requires twice the number of iterations since a small value of evolutionary volume ra-
tio is adopted. In addition, a specified small number τ given in Eq. (3.16) is used to
stop the optimization procedure when the volume constraint is satisfied and objective
function is kept constant. In this case, when we set a smaller τ 0.1%, the optimized
topologies for the cantilever beam lattice structure are shown in Fig. 5.20. We can see
no change in the topology and thus no sensitivity on τ in this case.

As an illustration, we depict in Figure 5.21 the evolution of the microstructure
topology for the case of non-separated scales (1 × 2 unit cells) using the present ho-
mogenization method for taking into account strain gradient effects. These evolutions
correspond to different iterations in the topology optimization procedure. It is worth
reminding that the present optimization method is able to start from an initial guess
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FIGURE 5.17: Optimized topologies for the cantilever beam lattice struc-
ture: columns (a), (b) compare the global lattices topologies when tak-
ing into account strain gradient or not in the optimization procedure;
columns (c) and (d) show the corresponding unit cell. Rows (i) to (v)
correspond to increasing the number of unit cells in the lattice leading to

(i) non-separated scales; (v) separated scales.
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FIGURE 5.18: Compliance obtained by topological optimization when
taking into account strain gradient effects (blue curve) and without tak-
ing into account strain gradient (red curve). Results are plotted as a func-
tion of the number of unit cells, and large number of unit cells leads to

scale separation.

a significant gain in the resulting stiffness of the lattice. We also
note that when the number of unit cells is large, then both
methods lead to the same compliance, which is also consistent as
the scale are in this case separated.

In this work, standard BESO method is adopted to solve the
proposed optimization problem. This method updates the topology
of the RVE by removing certain amount of material step by step, in
order to finally meet the volume constraint. Normally, the
evolutionary volume ratio is set to 2% [8,41] which means that

2% solid elements within the design domain are deleted from the
previous design iteration. This value cannot be too large to avoid
accidentally deleting too many solid elements at each iteration
[8,41]. However, if it is too small, more iterations are needed from
the initial design to reach the final volume constraint. Taking the
case (i) in this numerical experiment as an example, when we
set the evolutionary volume ratio as 1%, the different optimized
topologies of the lattice structure using the present method and
classical homogenization are shown in Fig. 9. We can see that there

Fig. 8. Cantilever beam with a concentrated load, volume fraction 0.5. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Optimized topologies for the cantilever beam lattice structure using small evolutionary volume ratio cer: columns (a), (b) compare the global lattice topologies when
taking into account strain gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 10. Optimized topologies for the cantilever beam lattice structure using small s: columns (a), (b) compare the global lattice topologies when taking into account strain
gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 11. Evolution of the optimized topology of the unit cell for the cantilever beam lattice with Ns ¼ 2� 1 periodic cells: (a) iteration 0; (b) iteration 10; (c) iteration 20; (d)
iteration 30; (e) iteration 40 (final topology).

Fig. 12. Cantilever beam with a concentrated load, volume fraction 0.6. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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FIGURE 5.19: Optimized topologies for the cantilever beam lattice struc-
ture using small evolutionary volume ratio cer: columns (a), (b) compare
the global lattice topologies when taking into account strain gradient or
not in the optimization procedure; columns (c) and (d) show the corre-

sponding unit cell.

a significant gain in the resulting stiffness of the lattice. We also
note that when the number of unit cells is large, then both
methods lead to the same compliance, which is also consistent as
the scale are in this case separated.

In this work, standard BESO method is adopted to solve the
proposed optimization problem. This method updates the topology
of the RVE by removing certain amount of material step by step, in
order to finally meet the volume constraint. Normally, the
evolutionary volume ratio is set to 2% [8,41] which means that

2% solid elements within the design domain are deleted from the
previous design iteration. This value cannot be too large to avoid
accidentally deleting too many solid elements at each iteration
[8,41]. However, if it is too small, more iterations are needed from
the initial design to reach the final volume constraint. Taking the
case (i) in this numerical experiment as an example, when we
set the evolutionary volume ratio as 1%, the different optimized
topologies of the lattice structure using the present method and
classical homogenization are shown in Fig. 9. We can see that there

Fig. 8. Cantilever beam with a concentrated load, volume fraction 0.5. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Optimized topologies for the cantilever beam lattice structure using small evolutionary volume ratio cer: columns (a), (b) compare the global lattice topologies when
taking into account strain gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 10. Optimized topologies for the cantilever beam lattice structure using small s: columns (a), (b) compare the global lattice topologies when taking into account strain
gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 11. Evolution of the optimized topology of the unit cell for the cantilever beam lattice with Ns ¼ 2� 1 periodic cells: (a) iteration 0; (b) iteration 10; (c) iteration 20; (d)
iteration 30; (e) iteration 40 (final topology).

Fig. 12. Cantilever beam with a concentrated load, volume fraction 0.6. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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FIGURE 5.20: Optimized topologies for the cantilever beam lattice struc-
ture using small τ : columns (a), (b) compare the global lattice topologies
when taking into account strain gradient or not in the optimization pro-

cedure; columns (c) and (d) show the corresponding unit cell.
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a significant gain in the resulting stiffness of the lattice. We also
note that when the number of unit cells is large, then both
methods lead to the same compliance, which is also consistent as
the scale are in this case separated.

In this work, standard BESO method is adopted to solve the
proposed optimization problem. This method updates the topology
of the RVE by removing certain amount of material step by step, in
order to finally meet the volume constraint. Normally, the
evolutionary volume ratio is set to 2% [8,41] which means that

2% solid elements within the design domain are deleted from the
previous design iteration. This value cannot be too large to avoid
accidentally deleting too many solid elements at each iteration
[8,41]. However, if it is too small, more iterations are needed from
the initial design to reach the final volume constraint. Taking the
case (i) in this numerical experiment as an example, when we
set the evolutionary volume ratio as 1%, the different optimized
topologies of the lattice structure using the present method and
classical homogenization are shown in Fig. 9. We can see that there

Fig. 8. Cantilever beam with a concentrated load, volume fraction 0.5. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Optimized topologies for the cantilever beam lattice structure using small evolutionary volume ratio cer: columns (a), (b) compare the global lattice topologies when
taking into account strain gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 10. Optimized topologies for the cantilever beam lattice structure using small s: columns (a), (b) compare the global lattice topologies when taking into account strain
gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 11. Evolution of the optimized topology of the unit cell for the cantilever beam lattice with Ns ¼ 2� 1 periodic cells: (a) iteration 0; (b) iteration 10; (c) iteration 20; (d)
iteration 30; (e) iteration 40 (final topology).

Fig. 12. Cantilever beam with a concentrated load, volume fraction 0.6. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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FIGURE 5.21: Evolution of the optimized topology of the unit cell for
the cantilever beam lattice with Ns = 2 × 1 periodic cells: (a) iteration
0; (b) iteration 10; (c) iteration 20; (d) iteration 30; (e) iteration 40 (final

topology).

a significant gain in the resulting stiffness of the lattice. We also
note that when the number of unit cells is large, then both
methods lead to the same compliance, which is also consistent as
the scale are in this case separated.

In this work, standard BESO method is adopted to solve the
proposed optimization problem. This method updates the topology
of the RVE by removing certain amount of material step by step, in
order to finally meet the volume constraint. Normally, the
evolutionary volume ratio is set to 2% [8,41] which means that

2% solid elements within the design domain are deleted from the
previous design iteration. This value cannot be too large to avoid
accidentally deleting too many solid elements at each iteration
[8,41]. However, if it is too small, more iterations are needed from
the initial design to reach the final volume constraint. Taking the
case (i) in this numerical experiment as an example, when we
set the evolutionary volume ratio as 1%, the different optimized
topologies of the lattice structure using the present method and
classical homogenization are shown in Fig. 9. We can see that there

Fig. 8. Cantilever beam with a concentrated load, volume fraction 0.5. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Optimized topologies for the cantilever beam lattice structure using small evolutionary volume ratio cer: columns (a), (b) compare the global lattice topologies when
taking into account strain gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 10. Optimized topologies for the cantilever beam lattice structure using small s: columns (a), (b) compare the global lattice topologies when taking into account strain
gradient or not in the optimization procedure; columns (c) and (d) show the corresponding unit cell.

Fig. 11. Evolution of the optimized topology of the unit cell for the cantilever beam lattice with Ns ¼ 2� 1 periodic cells: (a) iteration 0; (b) iteration 10; (c) iteration 20; (d)
iteration 30; (e) iteration 40 (final topology).

Fig. 12. Cantilever beam with a concentrated load, volume fraction 0.6. Compliance
obtained by topological optimization when taking into strain gradient effects (blue
curve) and without taking into account strain gradient (red curve). Results are
plotted as a function of the number of unit cells, and large number of unit cells leads
to scale separation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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FIGURE 5.22: Compliance obtained by topological optimization when
taking into strain gradient effects (blue curve) and without taking into
account strain gradient (red curve). Results are plotted as a function of
the number of unit cells, and large number of unit cells leads to scale

separation.

without holes, which is not the case in most multiscale optimization methods available
which require one or several holes for initiating the procedure.

It is noted that any volume fraction constraint can be selected by the designer in
the present optimization procedure. In this example, when we set the volume fraction
value to 0.6, the compliances for optimized geometries of the lattice when the strain
gradient is taken into account or not are compared in Fig. 5.22. We can see that using
the present nonlocal homogenization method, the obtained resulting compliance in this
case is also lower than using classical homogenization, resulting in a higher stiffness of
the structure. In addition, when the number of unit cells is large, then both methods
lead to the same compliance, which is also consistent with the case when the volume
constraint is set as 0.5.
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FIGURE 5.23: Four-point bending beam lattice structure composed of
periodic unit cells: geometry and boundary conditions.

5.2.4.2 Four-point bending lattice structure

In this second example, a lattice structure is subjected to four-point bending. The geom-
etry of the problem is depicted in Figure 5.23. The dimensions of the lattice structure
along x− and y− are L = 3000 mm and H = 1000 mm, respectively. The left and
right bottom corner nodes are fixed in both x− and y− directions. On the upper end
concentrated forces are applied (see Figure 5.23).

The loading force is taken as F = 100 N. The mesh used for the fine scale within
the RVE is composed of 40 × 40 elements. The target volume fraction for the opti-
mized topology of unit cells is 0.6. As in the previous example, the number of unit
cells composing the lattice is varied to study the effects of the scale separation. Then,
the following numbers of unit cells along each directions are investigated: (i) 3× 1; (ii)
6 × 2; (iii) 15 × 5; (iv) 30 × 10; and (v) 48 × 16. The corresponding coarse meshes are
composed of respectively (i) 15 × 5 elements; (ii) 30 × 10 elements; (iii) 75 × 25 ele-
ments; (iv) 150 × 50 elements and (v) 240 × 80 elements. It is worth noting that in the
last case, solving the topology optimization problem with a direct meshing of the mi-
crostructure would involve 2,462,722 degrees of freedom. Using the present technique,
the topological optimization procedure only uses the nodes of the coarse mesh through
the homogenized nonlocal model and then drastically reduces the computational costs.
For the last case, the coarse mesh only contains 39, 042 degrees of freedom.

As in the previous example, Figure 5.24 shows the different optimized topologies
of the lattice structure for several number of unit cells along each direction and using
on one hand the present method to take into account strain gradient and classical ho-
mogenization. We can observe from Figures. 5.24 (i) and (v) the different topologies
when strain gradient is taken into account or not. Here again, when scales are sepa-
rated (row (v)), both methods lead to the same topology. We compare the compliances
for optimized geometries of the lattice when the strain gradient is taken into account or
not in Figure 5.25. Using the present nonlocal homogenization method, the obtained
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FIGURE 5.24: Optimized topologies for the four-point bending beam
lattice structure: columns (a), (b) compare the global lattices topologies
when taking or not into account strain gradient in the optimization pro-
cedure; columns (c) and (d) show the corresponding unit cell. Rows (i) to
(v) correspond to increasing the number of unit cells in the lattice leading

to (i) non-separated scales; (v) separated scales.

resulting compliance is here again lower than using classical homogenization (then ig-
noring strain gradient effects), inducing a significant gain in the resulting stiffness (or a
decrease in the compliance) of the lattice. The evolution of the topology of the unit cell
for the case (v) is shown in Figure 5.26. The whole multiscale topological design pro-
cess converges after 34 iterations in this case. These results show that when scales are
not separated, the present topology optimization based on a homogenization method
taking into account strain gradient brings an added value by inducing a larger stiffness
of the final lattice.

5.3 Topology optimization of structures with fixed periodic mi-
crostructures

This section extends the topology optimization to structural design with fixed/given
periodic cells at the microscopic scale in the context of non-separated scales. The non-
local filter-based homogenization method introduced in Section 5.2 is adopted to deal
with the heterogeneities of the given RVE and perform the multiscale computations.
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FIGURE 5.25: Compliance obtained by topological optimization when
taking into strain gradient effects (blue curve) and without taking into
account strain gradient (red curve) for the four-point bending beam. Re-
sults are plotted as a function of the number of unit cells, and large num-

ber of unit cells leads to scale separation.

using classical homogenization, resulting in a higher stiffness of
the structure. In addition, when the number of unit cells is large,
then both methods lead to the same compliance, which is also con-
sistent with the case when the volume constraint is set as 0.5.

5.2. Four-point bending lattice structure

In this second example, a lattice structure is subjected to four-
point bending. The geometry of the problem is depicted in Fig. 13.
The dimensions of the lattice structure along x� and y� are
L ¼ 3000 mm and H ¼ 1000 mm, respectively. The left and right
bottom corner nodes are fixed in both x� and y� directions. On
the upper end concentrated forces are applied (see Fig. 13).

The loading force is taken as F ¼ 100 N. The mesh used for the
fine scale within the RVE is composed of 40� 40 elements. The tar-
get volume fraction for the optimized topology of unit cells is 0.6.
As in the previous example, the number of unit cells composing the
lattice is varied to study the effects of the scale separation. In this
example, larger number of unit cells was adopted to explain that
the number of involved degrees of freedom in the proposed
method is significantly reduced against direct meshing. Then, the
following numbers of unit cells along each directions are investi-
gated: (i) 3� 1; (ii) 6� 2; (iii) 15� 5; (iv) 30� 10; and (v)
48� 16. The corresponding coarse meshes are composed of respec-
tively (i) 15� 5 elements; (ii) 30� 10 elements; (iii) 75� 25 ele-
ments; (iv) 150� 50 elements and (v) 240� 80 elements. It is
worth noting that in the last case, solving the topology optimiza-

tion problem with a direct meshing of the microstructure would
involve 2,462,722 degrees of freedom. Using the present technique,
the topological optimization procedure only uses the nodes of the
coarse mesh through the homogenized nonlocal model and then
drastically reduces the computational costs. For the last case, the
coarse mesh only contains 39,042 degrees of freedom.

As in the previous example, Fig. 14 shows the different opti-
mized topologies of the lattice structure for several number of unit
cells along each direction and using on one hand the present
method to take into account strain gradient and classical homoge-
nization. We can observe from Fig. 14(i) and (v) the different
topologies when strain gradient is taken into account or not. Here
again, when scales are separated (row (v)), both methods lead to
the same topology. We compare the compliances for optimized
geometries of the lattice when the strain gradient is taken into
account or not in Fig. 15. Using the present nonlocal homogeniza-
tion method, the obtained resulting compliance is here again lower
than using classical homogenization (then ignoring strain gradient
effects), inducing a gain in the resulting stiffness (or a decrease in
the compliance) of the lattice. The evolution of the topology of the
unit cell for the case (v) is shown in Fig. 16. The whole multiscale
topological design process converges after 34 iterations in this
case. These results show that when scales are not separated, the
present topology optimization based on a homogenization method
taking into account strain gradient brings an added value by induc-
ing a larger stiffness of the final lattice.

6. Conclusions

In this paper, we have presented a topological optimization
method for lattice structures in the case when scales are not sepa-
rated, i.e. when the characteristic dimensions of the unit cells are
not much lower than the dimensions of the structure. This case
can occur in many situations, as the additive manufacturing pro-
cesses can lead to very large times to produce the lattice structures
if the unit cell dimensions are very small. To avoid solving the full
problem involving all degrees of freedom and possibly large com-
putational times within topology optimization framework, we use
a strain gradient homogenization method for each periodic cell.
The strain gradient homogenization method is based on the filter
based homogenization as proposed in [40]. In this technique, the
total number of degrees of freedom in the topological optimization
problem is reduced by using a coarse mesh which parameterizes
the local fields. We have applied the proposed method to lattice
structures submitted to different loads, with different number of
periodic cells, from low to large, to show the influence of the size
effects. When size effects are pronounced, i.e. when the dimen-
sions of the elementary cells are not too small as compared with
the dimensions of the structure, we show that the present method,
leads to a topology inducing a higher stiffness of the structure
(lower compliance) as compared with classical homogenization
method.

Fig. 15. Compliance obtained by topological optimization when taking into strain
gradient effects (blue curve) and without taking into account strain gradient (red
curve) for the four-point bending beam. Results are plotted as a function of the
number of unit cells, and large number of unit cells leads to scale separation. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 16. Evolution of the optimized topology of the unit cell for the four-point bending beam with Ns ¼ 48� 16 periodic cells: (a) iteration 0; (b) iteration 5; (c) iteration 10;
(d) iteration 20; (e) iteration 34 (final topology).
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FIGURE 5.26: Evolution of the optimized topology of the unit cell for the
four-point bending beam with Ns = 48 × 16 periodic cells: (a) iteration
0; (b) iteration 5; (c) iteration 10; (d) iteration 20; (e) iteration 34 (final

topology).
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The topology optimization framework defining the microscopic RVE itself as the de-
sign variable is defined. Therefore, the local/microscopic computation only needs to
be performed once over the RVE to account for the full microscopic heterogeneities,
and topology of considered mesostructures is tailored in terms of the stiffness. In the
following, the topology optimization model and the sensitivity analysis are given in
Section 5.3.1. In Section 5.3.2, several numerical examples are presented to validate the
proposed multiscale topology optimizaiton framework for designing the mesoscopic
structures.

5.3.1 Optimization model and procedure

In this Section, the optimization problem aims to find the optimal topology of meso-
scopic structure or the layout of previously defined substructures/microscopic unit
cells so as to maximize the overall structural stiffness for the given amount of the sub-
structures. It is assumed that the stiffness matrix of each subtructure is dependent on a
binary design variable ρk, where ρk is equal to 1 or ρmin, corresponding to existing or
void substructure in the mesoscopic model, respectively. Therefore, the substructural
stiffness can be expressed as

K̂k(ρk) = (ρk)
P K̂0 (5.95)

where K̂0 is the stiffness matrix for the solid substructures, P is the exponent of pe-
nalization. Note that the above interpolation is similar/identical to the SIMP model
[141] except that the referred model is applied to isotropic materials, while the interpo-
lation model in this work is defined directly on the substructure. This is because the
substructure itself is defined as the design variable rather than the particular material-
s/elements. Therefore, with the volume constraint of previously defined substructures,
the structural stiffness maximization problem herein can be formulated using the de-
sign variable ρk as

Find : {ρk} (5.96)

Minimize : fc(ρk, û) = F̂T û (5.97)

subject to : K̂û = F̂ (5.98)

: V (ρk) =
∑
k

ρkvk = Vreq (5.99)

: ρk = ρmin or 1, k = 1, . . . , Ns (5.100)

where fc is known as the compliance functional, F̂ and û are respectively the applied
load and displacement vectors defined at the mesoscopic scale. The global stiffness
matrix K̂ can be assembled from the stiffness of substructure K̂k shown in (5.95) in a
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standard finite element way. The term vk is the volume of the k− substructure, and Vreq

is the target volume of the solid substructures depending on the number of the solid
substructures over the whole mesoscopic structure.

In order to solve the above topology optimization problem, the sensitivity of the
objective funtion fc with respect to the design variable ρk should be explicited. With
the help of the stiffness interpolation scheme (5.95), the derivation of the structural
compliance against the design variable ρk can be expressed as

∂fc

∂ρk
= F̂T ∂û

∂ρk
= F̂T K̂−1

(
∂F̂

∂ρk
− ∂K̂

∂ρk
û

)
= −ûT

∂K̂

∂ρk
û = −P (ρk)

P−1ûTk K̂0ûk (5.101)

where ûk is the displacement vector of the k−th substructure in the mesoscopic model.
As mentioned, the stiffness matrix K̂0 of solid subtructures is obtained by a fully
microscopically-based framework with heterogeneous details over the RVE (see Sec-
tion 5.2.1.2).

Then, the substructural sensitivity number in (5.101) can be obtained after further
carrying out the mesoscopic structural computations on the coarse mesh (see also def-
inition in Section 5.2.1.3). In order to adopt the evolutionary-type structural optimiza-
tion methods, the obtained substructural sensitivity number, which denotes the rank-
ing of substructures for updating the design variable ρk, is firstly modified by multi-
plying by a constant − 1

P

αk = − 1

P

∂fc

∂ρk
= (ρk)

P−1ûTk K̂0ûk (5.102)

In order to avoid checkerboard patterns, the above formulated sensitivity number is
smoothed by means of a filtering scheme 3.12. Due to the discrete nature of the design
variable, and to avoid oscillations in evolutionary history of the design objective value
so as to improve the convergence, the current sensitivity number is further averaged
with its historical information as in 3.14.

Before executing the evolutionary procedure based on the computed substructural
sensitivity number, the target volume of solid substructures for the current iteration
needs to be assigned as 3.15. Once the volume constraint Vreq is reached, the volume
fraction of substructures will be kept constant and the optimization algorithm alters
only the topology. The optimization procedure will iteratively conduct the mesoscopic
structural computations and update the topology of mesoscopic structure until the vol-
ume constraint Vreq is reached and the convergence criterion 3.16 is satisfied.

To sum up, the overall multiscale topology optimization procedure for designing
the mesoscopic heterogeneous structures with fixed microscopic unit cells in the con-
text of non-separated scales is described as follows.
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1. Give the geometry of the RVE, set a fine mesh to discretize the RVE at the micro-
scopic scale. Set another coarse mesh associated with the heterogeneous struc-
ture, such that each substructure/unit cell is meshed with the same number of
coarse elements.

2. Solve once the microscopic/local probelm over the RVE to establish the consitu-
tive law and link the microscopic and mesoscopic scales as summarized in Sec-
tion 5.2.1.2.

3. Solve the mesoscopic structure problem as summarized in Section 5.2.1.3.

4. Based on the stiffness matrix of solid substructures/unit cells and the nodal dis-
placement solution from the mesoscopic problem over the coarse mesh, evaluate
the sensitivity of each substructure/unit cell by (5.101).

5. Modify the substructural sensitivity number by Equation (5.102) and smooth it
by using Equations (3.12) and (3.14).

6. Update the topology of considered mesoscopic structure according to (3.15).

7. Repeat 3-6 until the volume constraint Vreq is satisfied and the convergence crite-
rion (3.16) is reached.

5.3.2 Numerical examples

In this section, several numerical examples for designing the topology of heteroge-
neous mesostructures using predefined microscopic substructures/unit cells are pre-
sented. Before starting the whole optimization procedure, the geometry of microscopic
RVE should be firstly provided. For all adopted microscopic cells in this work, the local
solid material and void phases at the micro scale are treated as isotropic with Young’s
coefficients Es = 1000 MPa and Ei = 10−6 MPa, respectively. Poisson’s coefficient is
ν = 0.3. In order to ensure the consistency of all numerical examples and fairly com-
pare the resultant designs, the volume fractions of the solid materials in all adopted
RVEs are set as 60%. At the higher scale, the volume fraction of the solid microscopic
cells gradually decreases from an initial 100% to target 50%, which means that the lo-
cal solid isotropic material occupies 30% of the whole structural domain area for the
resultant designs. Plane stress condition is assumed for all examples.

5.3.2.1 A double-clamped beam

The boundary conditions of the mesoscopic double-clamped beam in this first example
are depicted in Figure 5.3 in Section 5.1. The structure is made up of a square domain,
where the left and right ends are both fixed. A concentrated force F = 1 KN is located
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(a) (b) (c)

FIGURE 5.27: Illustration of three microscopic unit cells for the double-
clamped beam:(a) unit cell A; (B) unit cell B; (c) unit cell C.

at the centre point of the double-clamped beam, and the side of the beam is L = 1000

mm. To start the developed design optimization model, three guess designs of the
microscopic RVE are considered as illustrated in Figure 5.27: unit cell A is full of solid
material except for a centered hole with diameter corresponding to the volume fraction
of solid phases 60%; unit cell B is an anisotropic structure with four void rectangles to
meet the same volume fraction of solid phases; unit cell C is a simple crossed structure.
For each microscopic unit cell, a coarse mesh 4×4 is associated at the mesoscopic scale,
while the microscopic mesh is composed of 40×40 regular four-node bilinear elements.
Firstly, the considered double-clamped structure is initially divided into Ns = sx × sy
repeatable unit cells, where sx and sy denote the number of substructures along x− and
y− directions, respectively. In this example, three cases with the following numbers of
sx × sy unit cells are considered: (i) 20 × 20; (ii) 40 × 40; (iii) 80 × 80. Therefore, these
configurations correspond to coarse meshes for the whole structure of 80×80 elements,
160 × 160 elements, and 320 × 320 elements, respectively. Therefore, at the end of the
design optimization, the number of solid microscopic cells for the resultant structures
should be respectively 200, 800, and 3200 to meet the target volume fraction 50%.

Figure 5.28 shows the optimized double-clamped beam using specific microscopic
unit cells with different coarse meshes at the mesoscopic scale, i.e. different numbers of
substructures adopted. Each row in Figure 5.28 shows the final optimized geometries
of the double-clamped beam, with the increased numbers of unit cells repeated along
each direction, while each column shows the final optimized geometries of the double-
clamped beam using different microscopic unit cells. As shown in Figures 5.28 (Ai),
(Bi), and (Ci), the resultant topologies are totally different since different microscopic
cells are adopted. The symmetrical mesostructures are generated when adopting mi-
croscopic cells A and C, while the resultant structure is asymmetric with unit cell B.
This phenomenon is reasonable since the cell B itself is not symmetrical. With increas-
ing the number of microscopic cells, the optimized designs with unit cells A and C are
kept the same as a cross structure. It is noted that the final optimized geometries are
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(Ai) (Aii) (Aiii)

(Bi) (Bii) (Biii)

(Ci) (Cii) (Ciii)

Unit cell A

Unit cell B

Unit cell C

FIGURE 5.28: Optimized heterogeneous double-clamped structures us-
ing specified unit cells and different coarse meshes at mesoscopic scale.

(a) (b) (c)

FIGURE 5.29: Illustration of three microscopic unit cells for the cantilever
beam:(a) unit cell A; (B) unit cell B; (c) unit cell C.

totally different for cases (Ai) and (Aii), which demonstrates the necessity of subdivid-
ing the mesostructure using different numbers of microscopic cells. The same effect is
observed for optimized geometries in Figures (Bi) and (Bii).
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5.3.2.2 A cantilever beam

The second example aims to topologically design a mesoscopic cantilever beam sub-
jected to a concentrated load with different microscopic cells. The problem geometry
of the mesoscopic beam is shown in Figure 5.5. The left side of the considered beam is
fixed and a concentrated force F = 100 N is located on the bottom point of the right
end of the domain. The dimensions of the beam are L×H = 2000× 1000 mm. Similar
to the previous example, three RVEs are considered as shown in Figure 5.29. Unit cells
A and B have respectively a circle and rectangle area as void phase to meet the vol-
ume fraction of solid phase of 60%, and unit cell C is optimally obtained by the design
procedure in the Section 5.2 for the periodic cantilever beam with the same volume
constraint of the solid phase.

The mesh of microscopic RVE is composed of 50 × 50 square shaped bilinear ele-
ments at the microscale and 5× 5 elements at the mesoscopic scale. In order to demon-
strate the proposed design framework, the following numbers of substructures sx × sy
are separately considered here: (i) 20 × 10; (ii) 40 × 20; (iii) 80 × 40. As the succes-
sive increasing number of periodic unit cells in each direction, the above cases reduce
to coarse mesh with (i) 100 × 50 elements; (ii) 200 × 100 elements; (iii) 400 × 200 ele-
ments at the mesoscopic scale, respectively. The optimized geometries of mesoscopic
cantilever beam with specific microstructures for above different cases are given in Fig-
ure 5.30. It is seen that the geometries of optimized mesostructures are totally different
with the adoption of different microscopic RVEs, which further demonstrates the ef-
fectiveness of the proposed mutiscale design framwork. The final compliances of the
optimized structures are shown also in Figure 5.30. As expected, with the same num-
ber of unit cells in each direction, the mesostructures composed of optimally designed
microscopic cell C always have the higher stiffness than other solutions. Figure 5.31
shows the evolution of the topology of the mesoscopic cantilever beam for the case
(Cii). These evolutions correspond to different iterations in the topology optimization
procedure, and the whole design optimization process converges after 40 iterations in
this case.

5.4 Concluding remarks

In this section, we have presented a topological optimization method for lattice struc-
tures in the case when scales are not separated, i.e. when the characteristic dimensions
of the unit cells are not much lower than the dimensions of the structure. This case can
occur in many situations, for example in additive manufacturing processes where very
large times can be necessary to produce lattice structures with very small dimensions.
In this context, the assumption of scale separation might be violated. Firstly, we have
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(Ai)

Unit cell A

(Aii) (Aiii)

(Bi)

Unit cell B

(Bii) (Biii)

(Ci)

Unit cell C

(Cii) (Ciii)

FIGURE 5.30: Optimized heterogeneous cantilever beams using speci-
fied unit cells and different coarse meshes at mesoscopic scale.

(a) (b) (c)

(d) (e) (f)

FIGURE 5.31: Evolution of the optimized cantilever beam for the case
(Cii): (a) iteration 0; (b) iteration 5; (c) iteration 10; (d) iteration 20; (e)

iteration 30; (f) iteration 40 (final topology).

proposed a topology optimization for periodic structures based on the classical homog-
enization method but in the context of non-separated scales. The present method uses a
coarse mesh corresponding to a homogenized medium based on the classical numerical
homogenization, allowing reducing the micro fields to perform the topology optimiza-
tion. On the other hand, topology optimization using a fully detailed description of the
heterogeneous structure is performed as a comparison. Size effect of the periodic unit
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cell is investigated to analyse the effectiveness of the present topology optimization
based on classical homogenization method. We have shown that the present topology
optimization will lead to optimized structure with higher compliance when the scales
can clearly not be separated (few number of unit cells). Furthermore, with the increase
of number of unit cells, the number of degrees of freedom to be solved can be dras-
tically reduced as compared with the reference solution. In other words, for a large
number of unit cells, the present method takes less time to obtain the optimized lattice
structure without losing any stiffness. In addition, we have proposed another similar
topology optimization framework which is also based on a coarse mesh to reduce the
computational times, while taking into account all structural details and the strain gra-
dient effects by a non-local homogenization method. We have shown that taking into
account strain gradient effects can lead to a significant increase in the stiffness of the
lattice associated with the optimized topology.

Finally, we have extended the topology optimization framework to design the ge-
ometry of mesoscopic structures with specific microscopic unit cells. The microscopic
substructure/RVE can be selected through existing materials, artificial definitions, or
optimal designs. Several interesting mesoscopic structures composed of customized
RVEs are obtained for specific volume constraints and boundary conditions. Numeri-
cal examples have shown that structural geometries of the predefined RVE have major
influence on the optimal solutions of the mesoscopic structures, demonstrating the ef-
fectiveness and significance of the proposed topological design framework. In order
to further release design freedom within multiscale design scheme, the design model
could be extended to a concurrent topology optimization framework for heterogeneous
materials and structures in the context of non-separated scales, involving the topologi-
cal design of the microscopic unit cells simultaneously.
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Part III

Phase field modeling and fracture
resistance design
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Chapter 6

Phase field for crack propagation in
linear viscoelastic materials

Heterogeneous materials like concrete are important constitutive materials of civil struc-
tures whose main role is to ensure high level of performance regarding the required
middle to long-term containment function. As such, creep and microcracking are known
as significant factors affecting the mechanical properties and the long term behavior of
concrete, and may reduce the safety of civil facilities. The accurate modelling of these
phenomena including their coupled effects have then to receive a special attention. We
propose in this Chapter to apply the relatively recent method making use of a phase
field approach to reproduce the initiation and propagation of microcracking in hetero-
geneous materials. This method relies on a diffuse description of the microcrack sur-
faces by one scalar variable whose values result from a specific balance equation. As a
main contribution, it is extended here and coupled to a linear viscoelastic behavior to
mimic the creep (and possibly shrinkage) of the heterogeneous materials. A classical
generalized Maxwell model is adopted for modelling this viscoelastic behavior.

In the following, an energy-based formulation is first developed in Section 6.1 to ex-
press the equations governing both viscoelastic mechanical and phase field problems.
In this first attempt, only cracking due to extensions is considered. In Section 6.2, the
classical generalized Maxwell model is adopted for modelling this viscoelastic behav-
ior. The overall algorithm using the staggered solution scheme for phase field crack
propagation is given in Section 6.3. Finally, several 2D and 3D numerical examples of
heterogeneous concrete samples made up of elastic aggregates dispersed in a mortar
matrix concentrating the viscoelastic behavior are presented in Section 6.4.

6.1 Extension of the phase field method to viscoelasticity

In this section we describe an extension of the phase field model for fracture to linear
viscoelastic materials. An energy-based formulation is first developed in Section 6.1.1.
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Viscoelastic mechanical and phase field problems are formulated in Section 6.1.2 and
6.1.3, respectively.

6.1.1 Variational principle

For a viscoelastic cracked body defined in a domain Ω ⊂ R3 containing sharp cracks
denoted collectively as Γ, we define the total energy of the system as:

E =

∫
Ω

Ψ(ε, αV ,Γ)dΩ +

∫
Ω
φV (α̇V )dΩ +Gc

∫
Γ
dΓ (6.1)

where Ψ(ε, αV ,Γ) is the elastic strain density function, φV (α̇V ) is a dissipative po-
tential and Gc is the critical energy release rate in the sense of Griffith. The associated
regularized form is given by:

E =

∫
Ω

Ψ(ε, αV , d)dΩ +

∫
Ω
φV (α̇V )dΩ +Gc

∫
Ω
γ(d,∇d)dΩ (6.2)

where γ is a crack density function, and

Ψ = g(d)Ψ̃+(ε+) + Ψ̃−(ε−), φV = g(d)φ̃V (6.3)

where g(d) is a degradation function such that g(0) = 1, g(1) = 0 and g′(1) = 0

and Ψ̃+(ε+) and Ψ̃+(ε−) denote parts of the strain density related to tensile and com-
pressive parts of the strain tensor, respectively (see [108]). We define the set of internal
variables αV =

{
εV1 , ε

V
2 , ..., ε

V
N

}
,

Such that

εe = ε−
N∑
i=1

εVi (6.4)

where εVi denote dissipative viscous strains. The driving forces associated with εVi are
defined as

Ai =
∂Ψ

∂εVi
(6.5)

or

Ai = −∂φ
V

∂ε̇Vi
(6.6)

Combining both above equations, we obtain:

∂Ψ

∂εVi
+
∂φV

∂ε̇Vi
= 0 (6.7)

The variational approach to fracture as proposed in Bourdin, Francfort and Marigo
[54, 25, 26] and developed in a convenient algorithmic setting by Miehe [108] is adopted
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here. The phase field formulation implies: (a) minimization of the total energy with re-
spect to the displacement field u and (b) minimization of the energy with respect to
the scalar field d describing the crack surface in a smooth manner. This second min-
imization is subjected to an inequality constraint: ḋ ≥ 0. To formulate this minimization
problem in a simpler setting, we introduce a time-stepping T =

{
t0, t1, ..., tn, tn+1, ..., tN

}
.

At each time step tn+1, the problem is to find the displacement fields un+1 and dn+1

such that

un+1, dn+1 = Argmin
u∈KA

0≤dn≤dn+1

E (6.8)

where KA is a set of kinematically admissible fields. One possible algorithm to solve
this problem is to use sequential solving of both minimization problems as

DδuL = 0 (6.9)

DδdL = 0, 0 ≤ dn ≤ dn+1 (6.10)

where Dδvf(u) is the Gateaux derivative.
The first equation (6.9) defines the mechanical problem while the second one (6.10)

defines the phase field problem. These two problems are coupled as both involve the
fields u and d.

6.1.2 Mechanical problem

Eq. (6.9) can be developed as∫
Ω

∂Ψ

∂ε
(ε, αV , d) : ε(δu))dΩ = 0 (6.11)

where

σ =
∂Ψ

∂ε
(ε, αV , d) (6.12)

and (6.7) can be used to define the evolution law for αV . The Euler -Lagrange equation
associated with (6.11) is given by:

∇ · σ = 0, σn = F over ∂ΩF , u = u over ∂Ωu (6.13)

6.1.3 Phase field problem

The first equation in (6.10) can be developed as:
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∫
Ω

∂Ψ

∂d
δd dΩ +

∫
Ω

∂φV

∂d
δd dΩ +Gc

∫
Ω
DδdγdΩ = 0 (6.14)

Choosing

γ =
1

2`
d2 +

`

2
∇d · ∇d (6.15)

we obtain ∫
Ω

{
∂Ψ

∂d
δd+

∂φV

∂d
δd+

Gc
`

(dδd+ `∇d · ∇(δd))

}
dΩ = 0, (6.16)

or ∫
Ω

{(
∂Ψ

∂d
+
∂φV

∂d
+
Gc
`
d

)
δd+ `Gc∇d · ∇(δd)

}
dΩ = 0 (6.17)

=

∫
Ω

{(
g′(d)

[
Ψ̃+ + φ̃V

]
+
Gc
`

)
δd+ `Gc∇d · ∇(δd)

}
dΩ = 0 (6.18)

Choosing g(d) = (1− d)2, we obtain:

=

∫
Ω

{(
−2(1− d)

[
Ψ̃+ + φ̃V

]
+
Gc
`
d

)
δd+Gc`∇d · ∇(δd)

}
dΩ = 0 (6.19)

or

∫
Ω

(
2
[
Ψ̃+ + φ̃V

]
+
Gc
`

)
dδd+Gc`∇d · ∇(δd)dΩ =

∫
Ω

2
[
Ψ̃+ + φ̃V

]
δddΩ (6.20)

The associated Euler-Lagrange equations are given by:

(
2
[
Ψ̃+ + φ̃V

]
+
Gc
`

)
d− `Gc∆d = 2

[
Ψ̃+ + φ̃V

]
, ∇d · n = 0 over ∂ΩG, d = 1 over Γ

(6.21)
where ∆d denotes the Laplacian operator. Enforcing the irreversibility condition can be
prescribed in several ways (see e.g. [92, 108], e.g. by enforcing the Dirichlet condition
d = 1 at the nodes where the phase field has reached a value of d = 1. In addition,
we adopt the formulation of Miehe [108] by introducing a history function H which
substitutes Ψ̃ to handle loading and unloading and defined as:

H(x, t) = max
τ∈[0,t]

{
Ψ̃+ (x, τ) + φ̃+ (x, τ)

}
(6.22)
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which leads to:(
2H+

Gc
`

)
d+ `Gc∆d = 2H, ∇d · n = 0 on ∂ΩG d = 1 on Γ (6.23)

6.2 Generalized Maxwell viscoelastic model

We now specify the equations of the generalized Maxwell model. For the sake of sim-
plification, we do not consider here tensile and compressive decomposition of the strain
tensor (i.e. assume that the loads do not induce auto-contact within the cracks). In ad-
dition, still for for the sake of simplification, the model used here mixes both deviatoric
and hydrostatic parts within the same model, while in more realistic models deviatoric
and hydrostatic parts of the viscous strains are separated for the strain tensor, or only
the deviatoric part is involved. With these simplifications in mind, we define:

Ψ =
1

2
(1− d)2C : (ε−

n∑
i=1

εVi ) : (ε−
n∑
i=1

εVi ) (6.24)

The dissipative potential is given by:

φV = g(d)φ̃V , φ̃V =
n∑
i=1

φVi (6.25)

where

φVi = µiτi
∣∣ε̇Vi ∣∣2 (6.26)

Then,

∂φVi
∂ε̇Vi

= (1− d)22µiτiε̇
V
i (6.27)

and

∂Ψ

∂εVi
= −(1− d)2C : (ε−

n∑
i=1

εVi ) (6.28)

Using (6.7), we have:

2µiτiε̇
V
i = C : (ε−

n∑
i=1

εVi ) (6.29)

which provides an evolution law for ε̇Vi .
Defining:
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ε̇Vi =

{
εVi
}n+1 −

{
εVi
}n

∆t
(6.30)

we obtain:

{
εVi
}n+1

=
{
εVi
}n

+
C : (εn+1 −

∑n
i=1

{
εVi
}n

)

2µiτi
∆t (6.31)

6.3 Overall algorithm

The overall algorithm to solve the problem of fracture in a viscoelastic solid is defined
as follows. At each loading step tn, given:

{
εVi
}n and dn:

1. Solve the mechanical problem (6.11) for un+1;

2. Compute
{
εVi
}n+1 using (6.31);

3. ComputeHn+1 usig (6.22);

4. Solve the phase field problem (6.20) for dn+1;

5. Set dn = dn+1,
{
εVi
}n

=
{
εVi
}n+1, un = un+1.

6.4 Numerical examples

6.4.1 A homogeneous 2D plate

The problem setting of a 2D plate with one pre-existing crack notch is illustrated in
Fig. 6.1(a). The plate is homogeneous with material properties given in Table 6.1. The
dimensions of the plate are 50 × 100 mm which is uniformly discretized into 60 × 120

square shaped bilinear elements. Plane strain conditions are adopted. The lower end
of the plate is fixed vertically and free horizontally, while the left bottom corner node
is fixed in both directions to avoid rigid body motions. The upper end of the plate
incremental displacement ∆ū = 0.002 mm is prescribed for each loading/time step.
Different time intervals, i.e., ∆t = 0.25s, ∆t = 0.5s, and ∆t = 1s, are respectively
defined to investigate the time effects on the considered viscoelastic cracked body. The
incremental loading process continues until the reaction forces is below a prescribed
criterion value indicating that the structure is completely broken.

The final crack patterns of the above formulated three cases as well as the corre-
sponding load-displacement curves are given in Fig. 6.2. For a specific displacement
value of the upper end of the plate, for instance, Ū = 0.106 mm, the corresponding
crack patterns of the three cases are illustrated in Fig. 6.3. For a specific time point after



Chapter 6. Phase field for crack propagation in linear viscoelastic materials 130

50

100

12.5

50

(a) (b)

Crack

FIGURE 6.1: A plate with one pre-existing crack notch subjected to in-
cremental traction loads: (a) problem geometry; (b) initial crack.

loading, for instance, T = 16.25s, the corresponding crack patterns of the three cases
are illustrated in Fig. 6.4.

TABLE 6.1: Material properties

Name Symbol Value Unit
Young’s modulus E 3 GPa

Poisson’s ratio ν 0.3 [-]
Fracture toughness Gc 3.3× 10−3 KN/mm

Relaxation time τ 5.882 s

6.4.2 A heterogeneous 2D composite plate

The problem setting of this example is the same as the previous one, while the consid-
ered plate is composed of two different materials, i.e. matrix and inclusion phases, as
shown in Fig. 6.5. The material properties of two phases are given in Table 6.2. The
incremental displacement load is set as ∆ū = 0.005 mm, and these cases with differ-
ent time intervals ∆t = 0.25s, ∆t = 0.5s, and ∆t = 1s are defined, respectively. The
final crack patterns as well as the corresponding load-displacement curves are given in
Fig. 6.6. For a specific displacement value of the upper end of the plate, for instance,
Ū = 0.165 mm, the corresponding crack patterns are illustrated in Fig. 6.7. For a spe-
cific time point after loading, for instance, T = 12s, the corresponding crack patterns
are illustrated in Fig. 6.8.

6.4.3 A heterogeneous 3D composite plate

The problem setting of a 3D plate with one pre-existing crack notch surface is shown in
Fig. 7.16. The material properties are given in Table 6.3. The dimensions of the 3D plate
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FIGURE 6.2: (a) Force-displacement curves for three cases, (b) final crack
pattern for ∆t = 0.25s, (c) final crack pattern for ∆t = 0.5s, (d) final

crack pattern for ∆t = 1s.(a) (b) (c)
FIGURE 6.3: Three crack patterns for a specific Ū (Ū = 0.106 mm): (a)

∆t = 0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s.(a) (b) (c)
FIGURE 6.4: Three crack patterns for a specific T (T = 16.25s): (a) ∆t =

0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s.
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FIGURE 6.5: A composite plate with pre-existing crack notch subjected
to incremental traction loads: (a) problem geometry; (b) initial crack.(a) (b) (c) (d)

FIGURE 6.6: (a) Force-displacement curves for three cases, (b) final crack
pattern for ∆t = 0.25s, (c) final crack pattern for ∆t = 0.5s, (d) final

crack pattern for ∆t = 1s.(a) (b) (c)
FIGURE 6.7: Three crack patterns for a specific Ū (Ū = 0.165 mm): (a)

∆t = 0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s.
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TABLE 6.2: Material properties of matrix and inclusion phases

Name Symbol Value Unit
Young’s modulus of inclusion Einc 20 GPa

Young’s modulus of matrix Emat 3 GPa
Poisson’s ratio ν 0.3 [-]

Fracture toughness of matrix Gmat
c 3.3× 10−3 KN/mm

Fracture toughness of inclusion Ginc
c 4.5× 10−3 KN/mm

Relaxation time of both phases τ 5.882 s(a) (b) (c)
FIGURE 6.8: Three crack patterns for a specific T (T = 12s): (a) ∆t =

0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s..

are 50× 100× 6.67 mm, and the whole volume domain is discretized into 60× 120× 8

eight-node cubic elements. The lower end of the plate is fixed vertically while free
horizontally. The central node on the right end edge is fixed in all directions to avoid
rigid body motions. The upper end of the plate incremental displacement loads with
∆ū = 0.005 mm for each loading/time step is prescribed. Different times intervals,
i.e. ∆t = 0.25s, ∆t = 0.5s, and ∆t = 1s are defined to investigate the time effects of
the considered viscoelastic cracked body, respectively. The incremental loading process
continues until the reaction forces is below a prescribed criterion value indicating that
the structure is completely broken.

The final crack patterns of the above formulated three cases as well as the corre-
sponding load-displacement curves are given in Fig. 6.9. For a specific displacement
value of the upper end of the plate, for instance, Ū = 0.13 mm, the corresponding crack
patterns are illustrated in Fig. 6.10. For a specific time point after loading, for instance,
T = 7s, the corresponding crack patterns are illustrated in Fig. 6.11.
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FIGURE 6.9: (a) Force-displacement curves for three cases, (b) final crack
pattern for ∆t = 0.25s, (c) final crack pattern for ∆t = 0.5s, (d) final

crack pattern for ∆t = 1s.(a) (b) (c)
FIGURE 6.10: Three crack patterns for a specific Ū (Ū = 0.13 mm): (a)

∆t = 0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s.
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TABLE 6.3: Material properties of matrix and inclusion phases for a 3D
plate

Name Symbol Value Unit
Young’s modulus of inclusion Einc 20 GPa

Young’s modulus of matrix Emat 3 GPa
Poisson’s ratio ν 0.3 [-]

Fracture toughness of matrix Gmat
c 3.3× 10−3 KN/mm

Fracture toughness of inclusion Ginc
c 7.5× 10−3 KN/mm

Relaxation time of both phases τ 5.882 s(a) (b) (c)
FIGURE 6.11: Three crack patterns for a specific T (T = 7s): (a) ∆t =

0.25s, (b) ∆t = 0.5s, and (c) ∆t = 1s..

6.5 Concluding remarks

In this Chapter, we have proposed a first attempt for the extension of the phase field
method to viscoelastic materials. An energy-based formulation has been developed to
express the equations governing viscoelastic phase field problems, and a classical gen-
eralized Maxwell model has been implemented for modelling the viscoelastic behavior.
Both 2D and 3D heterogeneous materials subjected to loading with various durations
have been analyzed with regard to different crack patterns. The presented work can
be effectively extended to combine the topological design framework of heterogeneous
materials proposed in Chapter 7, aiming to maximize the fracture resistance of linear
viscoelastic materials.
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Chapter 7

Topology optimization for
maximizing the fracture resistance

Mechanical and physical properties of complex heterogeneous materials are determined
on one hand by the composition of their constituents, but can on the other hand be dras-
tically modified, at a constant volume fraction of heterogeneities, by their geometrical
shape and by the presence of interfaces. As shown in Chapter 3, topological optimiza-
tion of microstructures can help designing materials with higher effective properties
while satisfying the prescribed volume fraction of constituents, or to obtain new prop-
erties which are not naturally available (metamaterials). Recently, the development of
3D printing techniques and other additive manufacturing processes have made pos-
sible to manufacture directly the designed materials from a numerical file, opening
routes for totally new designs (see e.g. [133]). Among all properties of interest, account-
ing for material failure is of essential importance in the design of composite materials.
As illustrated in Fig. 7.1, it is desired to improve the fracture resistance in terms of the
required mechanical work for complete failure through an optimal placement of the
inclusion phase. However, optimization design of composite materials accounting for
fracture resistance remains relatively unexplored so far, mainly due to the lack of ro-
bust numerical methods for fracture propagation, until recently. One major challenge
is to use topological optimization to improve the fracture resistance of heterogeneous
materials, taking into account the heterogeneities and their interfaces in the material.

In Section 7.1, we first propose a numerical framework for optimizing the fracture
resistance of quasi-brittle composites through a modification of the topology of the
inclusion phase. The phase field method to fracturing is adopted within a regularized
description of discontinuities, allowing to take into account cracking in regular meshes,
which is highly advantageous for topology optimization purpose. A computationally
efficient adjoint sensitivity formulation is derived to account for the whole fracturing
process, involving crack initiation, propagation and complete failure of the specimen.
The effectiveness of developed framework is illustrated through a series of 2D and 3D
benchmark tests.



Chapter 7. Topology optimization for maximizing the fracture resistance 137

Fracture

Energy

L
o

a
d

DisplacementMatrix Inclusion

Peak Load

FIGURE 7.1: Illustration of a pre-cracked composite and fracture energy.

In Section 7.2, we present a topology optimization of particle-matrix composites
for optimal fracture resistance taking into account interfacial damage. A phase field
method for fracture capable of describing interactions between bulk brittle fracture
and interfacial damage is adopted within a diffuse approximation of discontinuities.
Efficient design sensitivity analysis is performed by using the adjoint method, and the
optimization problem is solved by an extended BESO method. The sensitivity formula-
tion accounts for the whole fracturing process involving cracks nucleation, propagation
and interaction, either from the interfaces and then through the solid phases, or in the
opposite direction. The spatial distribution of material phases is optimally designed
to improve the fractural resistance. We demonstrate through several examples that the
fracture resistance of the composite can be significantly increased at constant volume
fraction of inclusions by the topology optimization process.

In Section 7.3, we extend the topology optimization framework proposed in Sec-
tion 7.2 to maximizing the fracture resistence of periodic composites. The optimization
problem aims to find the optimal material distribution of constant volume fraction of
inclusions within the periodic unit cell, so as to maximize the fracture resistence of the
periodic composites. Therefore, element sensitivity number in a single cell is defined as
the summation of the sensitivity of corresponding elements in all cells to acount for the
fracture response of whole periodic composite structure. Numerical examples demon-
strate that the fracture resistance of the periodic composite structures can be improved
significantly by redistributing the inclusion phases within the unit cell. In addition, the
optimized inclusion phase is applied to larger periodic samples to further demonstrate
the effectiveness of the proposed topology optimization framework.
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FIGURE 7.2: Illustration of phase field crack modeling: (a) a sharp crack
surface Γ embedded within the solid Ω; (b) the regularized representa-

tion of the crack by the phase field d(x).

7.1 Topology optimization for optimal fracture resistance of quasi-
brittle composites

This section presents a topological design framework for fracture resistance of quasi-
brittle composites, accounting for complete fracturing process. Extended BESO method
is formulated and employed to find the optimal distribution of inclusion phase, given
a target volume fraction of inclusion and seeking a maximal fracture resistance. In the
following, Section 7.1.1 first reviews the phase field method for the modeling of crack
propagation as developed by Miehe et al. [108, 110]. Section 7.1.2 presents the topology
optimization method for design of quasi-brittle composites with fracture resistance.
Section 7.1.3 validates the proposed design framework through a series of 2D and 3D
benchmark tests.

7.1.1 Phase field modeling of crack propagation

Let Ω ∈ RD be an open domain describing a cracked solid as depicted in Fig. 7.2 ,
with D ∈ [2, 3] being the space dimension. The external boundary of Ω is denoted by
∂Ω ∈ RD−1. Cracks which may propagate within the solid are collectively denoted
by Γ . In this work, we adopt the framework proposed in [116, 6, 111, 108, 110] for a
regularized representation of discontinuities. In this regularized framework, the prop-
agating cracks are approximately represented by an evolving scalar phase field d(x, t),
where the diffusion is characterized by a length scale parameter `.

7.1.1.1 Phase field approximation of cracks

The scalar crack phase field d(x, t) can be determined through solving the following
boundary value problem subject to Dirichlet boundary conditions (d = 1) on the crack
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(see [111] for more details):
d(x, t)− `2∇2d(x, t) = 0, in Ω

d(x, t) = 1, on Γ

∇d(x, t) · n = 0, on ∂Ω,

(7.1)

where ∇2(.) is the Laplacian operator, ` is a length scale parameter that governs the
width of the regularization zone and gives for ` → 0 the exact sharp crack in Γ in
(7.1), and n is the unit outward normal vector to ∂Ω. In the following, we denote the
crack phase field d(x, t) by d to alleviate the notations. It has been shown that the
system of equations (7.1) corresponds to the Euler-Lagrange equation associated with
the variational problem:

d = Arg{ inf
d∈S

Γ (d)}, Γ (d) =

∫
Ω
γ(d) dV, (7.2)

where S = {d | d(x) = 1,∀x ∈ Γ}, and γ is the crack surface density function per unit
volume defined by:

γ(d) =
1

2`
d2 +

`

2
∇d · ∇d. (7.3)

The functional Γ (d) represents the total length of the crack in 2D and the total crack
surface area in 3D. A detailed explanation of (7.63) can be found in [111].

7.1.1.2 Thermodynamics of the phase field crack evolution

The variational approach to fracture mechanics provided by Francfort and Marigo [54]
introduces the following energy functional for a cracked body:

J(u, Γ ) =

∫
Ω
Wu(ε(u)) dV +

∫
Γ
gc dA, (7.4)

in which Wu is the energy density function where ε = 1
2(∇u +∇Tu) are the strain and

u the displacement fields. The first term on the right hand side of (7.4) corresponds to
the elastic energy stored in the cracked solid. The second term on the right hand side
of (7.4) corresponds to the energy required to create the crack according to the Griffith
criterion with gc the critical fracture energy density, also named as Griffith’s critical
energy release rate.

In the adopted regularized framework, the phase field d(x) is introduced for the
representation of cracks. Then above functional (7.4) is substituted by the following
one:

J(u, d) =

∫
Ω
Wu(ε, d) dV +

∫
Ω
gcγ(d) dV, (7.5)
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where γ(d) is the surface density defined in (7.63). From (7.5), the energy potential or
free energy W can be identified as:

W (ε, d) = Wu(ε, d) + gcγ(d). (7.6)

Following [111], the elastic energyWu is defined in the following form that assumes
isotropic elastic behavior of the solid and accounts for damage induced by traction only,
through:

Wu(ε, d) = ((1− d)2 + κ)ψ+(ε) + ψ−(ε), (7.7)

where κ� 1 is a small positive parameter introduced to prevent the singularity of the
stiffness matrix due to fully broken parts, ψ+ and ψ− are the tensile and compressive
strain energies,

ψ± = λ〈tr[ε]〉2±/2 + µtr[ε±]2, (7.8)

with λ and µ the Lamé coefficients of the solid. Only tensile damage degradation is
taken into account in the elastic energy (7.7) through a decomposition of the elastic
strain ε into tensile and compressive parts [111]:

ε = ε+ + ε− with ε± =
3∑
i=1

〈εi〉±ni ⊗ ni. (7.9)

In the above, 〈x〉± = (x± |x|)/2, and εi and ni are the eigenvalues and eigenvectors
of ε. The evolution of the damage variable d(x, t) can be determined by the variational
derivative of the free energy W . In a rate-independent setting with the consideration
of the reduced Clausius-Duhem inequality, the evolution criterion is provided by the
Kuhn-Tucker conditions [111, 124]:

ḋ ≥ 0; −δdW ≤ 0; ḋ[−δdW ] = 0, (7.10)

yielding
− δdW = 2(1− d)ψ+(ε)− gcδdγ = 0, (7.11)

with the functional derivative [111]

δdγ = d/`− `∆d. (7.12)

Following [108], the maximum tensile strain energy is stored to account for load-
ing and unloading histories and the damage evolution criterion (7.11) can then be ex-
pressed in the following form:

gc
`

[d− `2∇2d] = 2(1− d) max
t∈[0,T ]

{ψ+(x, t)}. (7.13)
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The criterion (7.13) is a monotonously increasing function of the strain ε(x, t) that
induces unnecessary stress degradation even at low strain values. To avoid this issue,
an energetic damage evolution criterion with threshold has been introduced in [110,
112, 109], yielding

ψc[d− `2∇2d] = (1− d) max
t∈[0,T ]

{〈ψ+(x, t)− ψc〉+}, (7.14)

in which ψc is a specific fracture energy density of the solid, which can be further re-
lated to a critical fracture stress σc by:

ψc =
1

2E
σ2
c , (7.15)

where E is the Young’s modulus (see more details in [110]). The above crack evolution
criterion (7.14) can be further stated as

ψc[d− `2∇2d] = (1− d)H(x, t), (7.16)

with the introduction of a strain energy history function [109]

H(x, t) = max
t∈[0,T ]

{〈ψ+(x, t)− ψc〉+}. (7.17)

7.1.1.3 Weak forms of displacement and phase field problems

In the absence of body forces, the linear momentum balance equation for the solid
medium reads

∇ · σ = 0, (7.18)

where according to the definitions in (7.7) and (7.8), the stress tensor σ equals

σ =
∂Wu

∂ε
= {(1− d)2 + κ}{λ〈tr[ε]〉+1 + 2µε+}+ λ〈tr[ε]〉−1 + 2µε−, (7.19)

in which 1 is the second-order identity tensor and κ � 1 is a small positive parameter
introduced to prevent the singularity of the stiffness matrix due to fully broken parts.
Multiplying the governing equation (7.18) by kinematically admissible test functions
for the displacement δu, integrating the resulting expression over the domain Ω, and
using the divergence theorem together with boundary conditions yields the associated
weak form: ∫

Ω
σ : ε(δu) dV =

∫
∂Ωt

t̄ · δu dA, (7.20)

in which t̄ is the applied traction on the Neumann boundary ∂Ωt (see Fig. 7.2). The
weak form (7.20) is completed with Dirichlet boundary conditions defined on ∂Ωu.
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The associated weak form for the crack phase field evolution (7.16) can be obtained
in a similar fashion:∫

Ω
{{H+ ψc}dδd+ ψc`

2∇d · ∇(δd)}dV =

∫
Ω
HδddV, (7.21)

in which δd ∈ H1
0 (Ω), d ∈ H1(Ω) and satisfying the Dirichlet boundary conditions on

Γ .

7.1.1.4 Finite element discretization

In this work, we adopt the same finite element discretization for the approximation
of the displacement field u and the crack phase field d. We can express the two finite
element approximate fields (uh, dh) as:

uh(x) = Nu(x)du, d
h(x) = Nd(x)dd (7.22)

and their gradients as

∇uh(x) = Bu(x)du, ∇dh(x) = Bd(x)dd, (7.23)

where Nu and Bu denote matrices of shape functions and shape functions derivatives
associated to displacements, and Nd and Bd denote matrices of shape functions and
shape functions derivatives associated to phase field variable. Here, {du,dd} denote
the vectors of the nodal values of the finite element mesh for displacement and crack
phase fields, respectively.

Introducing the above discretization into the weak form (7.20), we obtain the fol-
lowing discrete system of equations:

Kudu = fu, (7.24)

with the external force vector fu

fu =

∫
∂Ωt

Nut̄ dA, (7.25)

and the stiffness matrix Ku

Ku =

∫
Ω

BT
uDBu dV, (7.26)

where D is the constitutive matrix corresponding to the definition in (7.19), given by:

D =
∂[σ]

∂[ε]
= (1− d)2{λR+[1][1]T + 2µP+}+ {λR−[1][1]T + 2µP−}, (7.27)
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where [σ] and [ε] are the vector forms corresponding to the second order tensors of
stress σ and strain ε. R± and P± are two operators for the decomposition of strain into
the tensile and compressive parts (see e.g., [124]). The matrices P± are such that:

[ε+] = P+[ε] and [ε−] = P−[ε]. (7.28)

The discretization of the phase field problem (7.21) leads to the following discrete
system of equations:

Kddd = fd (7.29)

where
Kd =

∫
Ω
{{H+ ψc}NT

dNd + ψc`
2BT

dBd} dV (7.30)

and
fd =

∫
Ω

NT
dH dV, (7.31)

in whichH is strain energy history function defined in (7.72).
In the present work, a staggered solution scheme is employed following [108],

where at each time increment the phase field problem is solved for fixed displacement
field known from the previous time step tn. The mechanical problem is then solved
given the phase field at the new time step tn+1. The overall algorithm is described as
follows:

1. Set the initial fields d(t0),u(t0), andH(t0) at time t0.

2. Loop over all time increments: at each time tn+1:

(a) Given d(tn),u(tn), andH(tn):

(b) Compute the history functionH(tn+1) according to (7.72).

(c) Compute the crack phase field d(tn+1) by solving (7.29).

(d) Compute u(tn+1) with the current crack d(tn+1) by solving (7.24).

(e) (.)n ← (.)n+1 and go to (a).

3. End.

7.1.2 Topology optimization model for fracture resistance

The extended bi-directional evolutionary structural optimization (BESO) method de-
veloped in [55, 174] for the design of elastoplastic structures is adopted in this work
to carry out topology optimization. Composites made of two material phases, matrix
phase and inclusion phase, are considered. The spatial layout of inclusion phase is
optimized by the extended BESO method to yield composite with a higher fracture
resistance.
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7.1.2.1 Model definitions

The design domain Ω is discretized into Ne finite elements and each element e is as-
signed with a topology design variable ρe. The Ne-dimensional vector containing the
design variables is denoted as ρ = (ρ1, . . . , ρNe)

T . Following [75], the design variables
and the multiple material interpolation model are defined as

ρe = 0 or 1, e = 1, 2, . . . , Ne (7.32)

and Ee = ρeEinc + (1− ρe)Emat

σc,e = ρeσc,inc + (1− ρe)σc,mat,
(7.33)

where Ee and σc,e are the Young’s modulus and the critical fracture stress of the e-th
element. {Einc, σc,inc} and {Emat, σc,mat} are the Young’s moduli and the critical fracture
stresses of the inclusion and the matrix phases, respectively. Attention needs to be re-
called that “Einc > Emat” is assumed when carrying out topology optimization with
multiple materials using the BESO method [75]. The Poisson’s ratios of the two mate-
rial phases are assumed identical. The design variables can thus be interpreted as an
indicator such that the value of one corresponds to the inclusion phase, whereas zero
corresponds to the matrix phase.

For stability considerations, it is conventional to adopt displacement-controlled
loading for nonlinear designs (e.g., [106, 137, 78, 55, 174]). For a prescribed displace-
ment load, the fracture resistance maximization is equivalent to the maximization of
the mechanical work expended in the course of the fracturing process as illustrated in
Fig. 7.1. In practice, the total mechanical work J , is approximated by numerical inte-
gration using the trapezoidal rule, i.e.

J ≈ 1

2

nload∑
i=1

(
f (i)
u + f (i−1)

u

)T
∆d(i)

u . (7.34)

Here nload is the total number of displacement increments, ∆d
(i)
u is the i-th increment

of the nodal displacement vector and f
(i)
u is the external nodal force vector (comprising

surface tractions and reaction forces) at the i-th load increment.
During the optimization process the volume fraction of the inclusion phase is pre-

scribed. Then the optimization problem discretized can be formulated as [e.g., 78, 55,
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174]
max
ρ

: J(ρ,du,dd)

subject to : K
(i)
u d

(i)
u = f

(i)
u , i = 1, . . . , nload

: V (ρ) =
∑
ρeve = Vreq

: ρe = 0 or 1, e = 1, . . . , Ne.

(7.35)

Here ve is the volume of the e-th element, V (ρ) and Vreq are the total and required
material volumes, respectively. The stiffness matrix K

(i)
u at the i-th load increment is

constructed following (7.26) and (7.27).
It may be recalled that by this model the discrete topology design variable ρe ∈

{0; 1} indicates merely the associated material phase (matrix/inclusion) of the e-th
element. This assumption omits naturally the definition of supplementing pseudo-
relationships between intermediate densities and their constitutive behaviors as is the
case in density-based models (e.g., [137, 22, 86]) resulting in algorithmic advantages
(see also [55, 174]).

7.1.2.2 Sensitivity analysis

In order to perform the topology optimization, the sensitivity of the objective function
J with respect to topology design variables ρ needs to be provided. Following the
“hard-kill” BESO procedure [75, 175], the topology evolution is driven merely by the
sensitivities of the solid phase (ρ = 1, the inclusion phase in the current context), whilst
the sensitivities of the void phase with (ρ = 0, the matrix phase) are set to zero.

The derivation of the sensitivity requires using the adjoint method (see, e.g., [29,
36]). Lagrange multipliers µ(i), λ(i) of the same dimension as the vector of unknowns
du are introduced in order to enforce zero residual r at times ti−1 and ti for each term
of the quadrature rule (7.34). Then the objective function J can be rewritten in the
following form without modifying the original objective value as

J∗ =
1

2

nload∑
i=1

{(
f (i)
u + f (i−1)

u

)T
∆d(i)

u +
(
λ(i)

)T
r(i) +

(
µ(i)

)T
r(i−1)

}
. (7.36)

Due to the asserted static equilibrium the residuals r(i) and r(i−1) have to vanish.
The objective value is, thus, invariant with respect to the values of the Lagrange multi-
pliers λ(i) and µ(i) (i = 1, . . . , nload), i.e.

J∗
(
ρ;
{
λ(i),µ(i)

}
i=1,...,nload

)
= J (ρ) . (7.37)
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This equivalence holds also for the sensitivity with respect to changes of the topol-
ogy design variable ρe on element e

∂J∗

∂ρe
=
∂J

∂ρe
. (7.38)

In the following the derivative ∂J∗/∂ρe is computed with properly determined val-
ues of λ(i) and µ(i) leading to certain simplifications of the derivation. To formally
describe these derivations, we introduce a partitioning of all degrees of freedom (DOF)
into essential (index E; associated with Dirichlet boundary conditions) and free (index
F; remaining DOF) entries. For a vector w and a matrix M we have

w ∼

[
wE

wF

]
and M ∼

[
MEE MEF

MFE MFF

]
(7.39)

In the present context, the displacements du,E on the Dirichlet boundary are pre-
scribed and, hence, they are independent of the current value of ρ. This implies that

∂∆du
∂ρe

=
∂

∂ρe

[
∆du,E

∆du,F

]
=

[
0

∂{∆du,F}/∂ρe

]
(7.40)

holds for arbitrary load time increments, i.e. for du = d
(i)
u or du = d

(i−1)
u . The compo-

nents fu,F of the force vector fu vanish at all load time increments and the only (possi-
bly) non-zero components are the reaction forces fu,E

f (i)
u =

[
f

(i)
u,E

0

]
(7.41)

Equations (7.40) and (7.41) imply

{f (j)
u }T

∂∆d
(i)
u

∂ρe
= 0. (7.42)

Hence for arbitrary load increment indices i, j = 1, . . . , nload, we have

∂

∂ρe
{{f (j)

u }T∆d(i)
u } = {∂f

(j)
u

∂ρe
}T∆d(i)

u . (7.43)

With the property of (7.43) at hand, the derivative of the modified design objective
in (7.38) is given by:

∂J∗

∂ρe
=

1

2

nload∑
i=1

{∂{f
(i)
u + f

(i−1)
u }T

∂ρe
∆d(i)

u + {λ(i)}T ∂r(i)

∂ρe
+ {µ(i)}T ∂r(i−1)

∂ρe
}. (7.44)



Chapter 7. Topology optimization for maximizing the fracture resistance 147

Recall the equilibrium equation at each load time increment is given by (7.105), the
derivatives of r(j) at the equilibrium of the j-th load increment with respect to ρe can
be expanded as

∂r(j)

∂ρe
=
∂f

(j)
u

∂ρe
− ∂K

(j)
u

∂ρe
d(j)
u −K(j)

u

∂d
(j)
u

∂ρe
. (7.45)

With the expression (7.45), (7.109) can be reformulated as

∂J∗

∂ρe
=

1

2

nload∑
i=1

{
{∂f

(i)
u

∂ρe
}T {∆d(i)

u + λ(i)}+ {∂f
(i−1)
u

∂ρe
}T {∆d(i)

u + µ(i)}

− {λ(i)}T {∂K
(i)
u

∂ρe
d(i)
u + K(i)

u

∂d
(i)
u

∂ρe
} − {µ(i)}T {∂K

(i−1)
u

∂ρe
d(i−1)
u + K(i−1)

u

∂d
(i−1)
u

∂ρe
}
}
.

(7.46)

As mentioned previously, the aim is to find proper values of the Lagrange multipli-
ers λ(i) and µ(i) such that the sensitivities can be explicitly and efficiently computed.
From the consideration of (7.41), the first two terms can be omitted by setting

λ
(i)
E = −∆d

(i)
u,E and µ

(i)
E = −∆d

(i)
u,E. (7.47)

Accounting further for the structure of the sensitivities of du in (7.40) and for the
symmetry of the stiffness matrices we have

∂J∗

∂ρe
= −1

2

nload∑
i=1

{
{λ(i)}T ∂K

(i)
u

∂ρe
d(i)
u + {K(i)

u,FEλ
(i)
E + K

(i)
u,FFλ

(i)
F }

T
∂∆d

(i)
u,F

∂ρe

+ {µ(i)}T ∂K
(i−1)
u

∂ρe
d(i−1)
u + {K(i−1)

u,FEµ
(i)
E + K

(i−1)
u,FF µ

(i)
F }

T
∂∆d

(i−1)
u,F

∂ρe

}
.

(7.48)

In order to avoid the evaluation of the unknown derivatives of d
(i)
u,F and d

(i−1)
u,F , the

values of λ(i)
F and µ(i)

F are sought as following by solving the adjoint systems with the
prescribed values λ(i)

E = −∆d
(i)
u,E and µ(i)

E = −∆d
(i)
u,E at the essential nodes:

λ
(i)
F = {K(i)

u,FF}
−1K

(i)
u,FE∆d

(i)
u,E, (7.49)

and
µ

(i)
F = {K(i−1)

u,FF }
−1K

(i−1)
u,FE ∆d

(i)
u,E. (7.50)

The two relations (7.49) and (7.50) together with (7.47) completely determine the
values of the Lagrange multipliers λ(i) and µ(i). It is obvious that the first adjoint
system of (7.49) is in fact self-adjoint such that no additional calculation is needed and
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λ(i) = −∆d
(i)
u . Note in addition that because the proportional loading is increased at a

constant rate, i.e.

∆d
(i)
u,E =

∆t(i)

∆t(i−1)
∆d

(i−1)
u,E , (7.51)

the solution of the second linear system (7.50) can also be omitted by means of the
recursion formula

µ
(i)
F =

∆t(i)

∆t(i−1)
λ

(i−1)
F . (7.52)

Substituting the two Lagrange multipliers into (7.48), the objective derivative ∂J∗/∂ρe
can be eventually computed via

∂J∗

∂ρe
=

1

2

nload∑
i=1

{
{λ(i)}T ∂K

(i)
u

∂ρe
d(i)
u + {µ(i)}T ∂K

(i−1)
u

∂ρe
d(i−1)
u

}
(7.53)

in which
∂K

(j)
u

∂ρe
= k

(j)
e,inc − k

(j)
e,mat, j = 1, 2, . . . , nload (7.54)

according to the defined multiple material interpolation model in (7.33), where k
(j)
e,inc

and k
(j)
e,mat are the element stiffness matrices at the j-th load time calculated from using

Young’s moduli Einc and Emat, respectively.

7.1.2.3 Extended BESO method

The extended BESO method recently developed in [174] augments the original propo-
sition in [78] through an additional damping treatment of sensitivity numbers, so as
to improve the robustness and the effectiveness of the method, particularly in dealing
with nonlinear designs in presence of dissipative effects.

By the extended BESO method, the target volume of material V (k) at the current
design iteration (k-th) is determined by

V (k) = max
{
Vreq, (1− cer)V

(k−1)
}
, (7.55)

in which the evolutionary ratio cer determines the percentage of material to be removed
from the design of the previous iteration. Once the final required material volume Vreq

is reached, the optimization algorithm alters only the topology but keeps the volume
fraction constant.

At each design iteration, the sensitivity numbers which denote the relative ranking
of the element sensitivities are used to determine material phase exchange. When uni-
form meshes are used, the sensitivity number for the considered objective is defined as
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following using the element sensitivity computed from (7.53)

αe =

{
{∂J∗

∂ρe
}η, for ρe = 1

0 , for ρe = 0.
(7.56)

in which η is a numerical damping coefficient (the same as the one applied in the Opti-
mality Criteria method for density-based methods [141]). When η = 1, we recover the
conventional sensitivity numbers for linear elastic designs [77, 175]. In the presence of
dissipative effects, the sensitivity numbers vary by several orders of magnitude result-
ing in instabilities of the topology evolution process, especially when removing certain
structural branches (see, e.g., [55, 174]). For this reason, the sensitivity numbers are
damped in this work with “η = 0.5” as suggested in [174].

In order to avoid mesh-dependency and checkerboard patterns, sensitivity num-
bers are firstly smoothed by means of a filtering scheme [141]

αe =

∑Ne
j=1wejαj∑Ne
j=1wej

, (7.57)

where wej is a linear weight factor

wej = max(0, rmin −∆(e, j)), (7.58)

determined according to the prescribed filter radius rmin and the element center-to-
center distance ∆(e, j) between elements Ωe and Ωj . Attention needs to be recalled
that the filter (7.57) is also responsible for material exchange from the matrix phase
(ρe = 0) to the inclusion phase (ρe = 1) by attributing filtered sensitivity number values
to design variables that are associated to the matrix phase.

Due to the discrete nature of the BESO material model, the current sensitivity num-
bers need to be averaged with their historical information to improve the design con-
vergence [76]

α(k)
e ←

(α
(k)
e + α

(k−1)
e )

2
. (7.59)

The update of the topology design variables is realized by means of two threshold
parameters αth

del and αth
add for material removal and addition, respectively [78, 55]

ρ(k+1)
e =


0 if αe ≤ αth

del and ρ
(k)
e = 1,

1 if αth
add < αe and ρ

(k)
e = 0,

ρ
(k)
e otherwise.

(7.60)
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The present scheme indicates that inclusion elements are exchanged to matrix el-
ements when their sensitivity numbers are less than αth

del and matrix elements are re-
versed to inclusion elements when their sensitivity numbers are greater than αth

add. The
parameters αth

del and αth
add are obtained from the following iterative algorithm which

was first proposed in [78] and recently adopted in [55, 174]:

1. Let αth
add = αth

del = αth, where the value αth is determined iteratively such that the
required material volume usage is met at the current iteration.

2. Compute the admission ratio car, which is defined as the volume of the recovered
elements (ρe = 0→ 1) divided by the total volume of the current design iteration.
If car ≤ cmax

ar , the maximum admission ratio, then skip the next steps; otherwise,
αth

del and αth
add are redetermined in the next steps.

3. Determine αth
add iteratively using only the sensitivity numbers of the matrix ele-

ments (ρe = 0) until the maximum admission ratio is met, i.e., car ≈ cmax
ar .

4. Determine αth
del iteratively using only the sensitivity numbers of the inclusion el-

ements (ρe = 1) until the required material volume usage is met at the current
iteration.

The introduction of cmax
ar stabilizes the topology optimization process by controlling

the number of elements reversed from matrix to inclusion. In the present work, cmax
ar

is set to a value greater than 1% so that it does not suppress the merit of the reverse
procedure.

7.1.3 Numerical examples

In this section, we show the performance of the proposed design framework through
a series of 2D and 3D benchmark tests. In all 2D examples, uniform meshes of quadri-
lateral bilinear elements with the plane strain assumption are employed. Similarly,
uniform mesh of eight-node cubic elements are adopted for the 3D design case. The
same finite element discretization is adopted for both displacement and crack phase
fields. The characteristic length scale parameter for the phase field regularization ap-
pearing in (7.1) is set to be twice that of the typical finite element size ` = 2he. For the
sake of clear visualization, only the crack phase field with the values over 0.4 is plot-
ted. The material properties of the inclusion and the matrix phases are given in Table
7.1 according to [123].

With regard to topology optimization, all parameters involved in the extended
BESO method as presented in Section 7.1.2.3 are held constant in all following exam-
ples. The evolutionary rate cer, which determines the relative percentage of material to



Chapter 7. Topology optimization for maximizing the fracture resistance 151

be removed at each design iteration, is set to cer = 4% (exception for the third example
cer = 6%). The maximum admission ratio corresponding to the maximum percentage
of recovered material that is allowed per iteration is set to cmax

ar = 2%. The filter radius
is set to be twice that of the typical finite element size rmin = 2he.

TABLE 7.1: Material properties of the inclusion and the matrix [123].

Name Symbol Value Unit
Young’s modulus of inclusion Einc 52 GPa

Young’s modulus of matrix Emat 10.4 GPa
Poisson’s ratio of both phases ν 0.3 [-]

Critical fracture stress of inclusion σc,inc 30 MPa
Critical fracture stress of matrix σc,mat 10 MPa

7.1.3.1 Design of a 2D reinforced plate with one pre-existing crack notch

The problem setting of the 2D plate with one pre-existing crack notch is illustrated in
Fig. 7.3(a). The dimensions of the plate are 50× 100 mm. The whole plate is uniformly
discretized into 60 × 120 square shaped bilinear elements. Plane strain assumption is
adopted. The lower end of the plate is fixed vertically while free horizontally. The left
bottom corner node is fixed in both directions to avoid rigid body motions. The upper
end of the plate incremental displacement loads with ∆ū = 0.01 mm for the first five
load increments and ∆ū = 0.002 mm for the following load increments are prescribed.
The incremental loading process continues until the reaction force is below a prescribed
criterion value indicating that the structure is completely broken.

Fig. 7.3(b) is the initial guess design with the inclusion phase occupying 10% of the
domain area. By the extended BESO method, the inclusion phase area is gradually
reduced to a target area fraction, 5% of the domain area. The pre-existing crack notch is
simulated by prescribing Dirichlet conditions on the crack phase field with d = 1 along
the crack. The surrounding area of the initial crack notch (up to 2 times of the length
scale parameter `) is treated as a non-designable region to avoid nonphysical designs
with the inclusion material added within the already existing crack. The evolution
of inclusion typologies together with their final crack patterns and the design objective
history are shown in Fig. 7.4. It can be observed from Fig. 7.4 that the fracture resistance
of the composite structure gently improves whilst the area fraction of the inclusion
phase gradually decreases from initial 10% to 5%. It means that for the same fracture
resistance performance, the required usage of inclusion phase can be largely saved via
an optimal spatial distribution design.

Detailed propagation of the phase field crack of the optimally designed composite
structure with a single pre-existing crack notch subject to incremental traction loads is
given in Fig. 7.5. The crack propagates into the inner supporting structure made of the
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FIGURE 7.3: A 2D plate with one pre-existing crack notch subject to in-
cremental traction loads: (a) problem depiction, (b) initial guess design.

FIGURE 7.4: History of the evolution of inclusion typologies and their
final crack patterns.

inclusion phase during the initial incremental loads. Two other cracks initiate around
the upper and lower left corners of the inner supporting structure and continue to
propagate horizontally until the structure is fully broken.

The fracture resistance of the optimally designed composite structure is validated
through a comparison study. Starting from the same initial guess design (Fig. 7.3(b)),
topology optimization using the same parameter setting has been carried out consider-
ing only linear elastic behavior without accounting for crack propagation, i.e. linear de-
sign, yielding two parallel bars along the vertical loading direction from the left design
in Fig. 7.6. A complete fracturing simulation is carried out then on the linearly designed
composite structure accounting for crack propagation. From both load-displacement
curves and design objective values, the crack design is 15% more resistant to fracture
than the linear design.
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FIGURE 7.5: Crack propagation of the optimally designed composite
structure with a single pre-existing crack notch subject to incremental
traction loads: (a) ū = 0 mm, (b) ū = 0.060 mm, (c) ū = 0.076 mm, (d)

ū = 0.082 mm, (e) ū = 0.092 mm.

FIGURE 7.6: Fracture resistance comparison of two composite structures
with a single pre-existing crack notch subject to incremental traction

loads.

We would like to recall that the adopted BESO method is a heuristic scheme which
does not necessarily guarantee a global optimum design. In the case of linear elasticity,
the method has been proved to be insensitive to the two chosen initial starting topolo-
gies for structural stiffness maximization design [76]. However, such independency is
not guaranteed when it comes to severe nonlinear problems as in the current case, i.e.,
different starting topologies may lead to different local optimum designs. Meanwhile,
though the BESO method allows for both material removal and addition, their efficien-
cies are different. As stated in Section 7.1.2.3, sensitivity numbers are only evaluated
for the inclusion elements and are set to zero for the matrix elements. It is only due to
the filtering scheme (7.57) that sensitivity numbers on the matrix elements neighboring
to inclusion-matrix interface are evaluated. Therefore, it is in usual more efficient to
perform a gradual material reduction starting from a larger initial domain. Meanwhile
the recovery/addition serves as a complementary mechanism for minor adjustment
[175].
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FIGURE 7.7: Evolution of inclusion topologies from an inital guess de-
sign with the inclusion phase occupying 20% area fraction of the domain

and the final crack pattern.

FIGURE 7.8: Evolution of inclusion topologies from an inital guess de-
sign with the inclusion phase occupying 2% area fraction of the domain

and the final crack pattern.

For the purpose of comparison, we have redesigned the first example from two al-
ternative initial topologies as shown in Figs. 7.7 and 7.8. For both cases, the resulted fi-
nal inclusion topologies are local optimum designs and are different from the previous
design in Fig. 7.4. Note that in order to start with initial guess B with a lower inclusion
area fraction, (7.57) needs to be modified for material addition and the maximum ad-
mission ratio αth

add should be exempted from the design. By comparing the values of
the required work for complete fracture, a larger initial inclusion domain would result
in a better design, however at the expense of a higher computing effort.

7.1.3.2 Design of a 2D reinforced plate with two pre-existing crack notches

A 2D plate with two pre-existing crack notches in Fig. 7.9(a) is considered for design.
Apart from the two pre-existing crack notches, the other problem settings are defined
the same as in the previous example. An initial guess design with the inclusion phase
occupying 15% of the domain area is assumed as shown in Fig. 7.9(b). It is expected
to optimally reduce the inclusion phase area fraction from 15% to 8% by using the
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FIGURE 7.9: Illustration of a 2D plate with two pre-existing crack
notches subject to incremental traction loads: (a) problem depiction, (b)

initial guess design.

FIGURE 7.10: History of the evolution of inclusion typologies and their
final crack patterns.

developed method. The pre-existing two crack notches are simulated by prescribing
Dirichlet conditions with d = 1 along the crack. The surrounding area of the two initial
crack notches is treated as a non-designable region to avoid nonphysical designs with
the inclusion material added within the already existing crack. .

Fig. 7.10 shows the evolution of inclusion topologies together with their final crack
patterns and the design objective history. Similar to the previous example, the fracture
resistance of the composite structure gently improves whilst the area fraction of the
inclusion gradually decreases from initial 14.67% to 8%, indicating that for the same
fracture resistance performance, the required usage of inclusion phase material can be
largely saved via an optimal spatial distribution design. Due to the anti-symmetry of
the problem setting, cracks appear anti-symmetrically in the upper and lower parts
of the structure. Fig. 7.11 shows detailed propagation of the phase field crack of the
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FIGURE 7.11: Crack propagation of the optimally designed composite
structure with two pre-existing crack notches subject to incremental trac-
tion loads: (a) ū = 0 mm, (b) ū = 0.060 mm, (c) ū = 0.072 mm, (d)

ū = 0.080 mm, (e) ū = 0.094 mm.

optimally designed composite structure with two pre-existing crack notches subject to
incremental traction loads. The two initial cracks propagate into the inner support-
ing structure made of the inclusion phase during the initial incremental loads. Then,
two other cracks initiate at the upper and lower left surfaces of the inner supporting
structure. All four cracks then continue to propagate until the structure is fully broken.

Similar to the previous example, a comparison study is also performed to vali-
date the performance of the fracture resistance of the optimally designed composite
structure. Topology optimization is carried out considering only linear elastic behavior
without accounting for crack propagation starting from the same initial guess design
(Fig. 7.9(b)) and using the same design parameters. Linear design without accounting
for crack propagation results in two longer parallel bars compared to the linear de-
sign obtained in the previous example (due to increased inclusion usage) as shown in
Fig. 7.12. The linearly designed composite structure is then subjected to a full fractur-
ing simulation and its load-displacement curve is compared with the one of the crack
design. From both load-displacement curves and design objective values, the fracture
resistance of the crack design has been obviously increased by over 40% in comparison
to the linear design.

7.1.3.3 Design of a 2D reinforced plate with multiple pre-existing cracks

This example addresses a multi-objective design using the developed method to im-
prove the fracture resistance of a 2D reinforced plate trying to accommodate the geom-
etry of the inclusion to several different distributions of cracks, and at the same time to
deal with possible random creation of cracks within the structures. For the illustrative
purposes, only 3 configurations are used here as shown in Fig. 7.13. All problem set-
tings are defined the same as in the previous two examples except for the use of a finer
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FIGURE 7.12: Fracture resistance comparison of two composite struc-
tures with two pre-existing crack notches subject to incremental traction

loads.

FIGURE 7.13: Three 2D plates with multiple pre-existing cracks (cases
1-3 from left to right).

finite element discretization. Considering the simulation accuracy involving multiple
cracks, a finer discretization with 100× 200 square shaped bilinear elements is adopted
in this design. Following the same design procedure as presented in the first two ex-
amples, the area fraction of inclusion is gradually reduced from initial 28% to 8%. The
initial distribution of inclusion phase is assumed to be a square shape enveloping all
inner cracks of three cases as shown by the dashed lines in Fig. 7.13.

The optimally designed distribution topology of inclusion phase is given in Fig. 7.14
and their final crack patterns are shown in Fig. 7.15. It can be observed that the inclu-
sion phase is distributed preferably at places such that can prevent the further prop-
agation of critical cracks. Attention needs to be recalled that due to the regularized
description of cracks using the phase field method, the surrounding region of all initial
cracks is assumed to be non-designable. Otherwise the inclusion phase would fill all
fictitious cracks, resulting in nonphysical designs.
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FIGURE 7.14: Optimally designed inclusion distribution topology for
three 2D plates with multiple pre-existing cracks (cases 1-3 from left to

right).

FIGURE 7.15: Final crack patterns of the three optimally designed 2D
plates with multiple pre-existing cracks and their load-displacement

curves.

7.1.3.4 Design of a 3D reinforced plate with a single pre-existing crack notch sur-
face

A 3D plate with a single pre-existing crack notch surface as shown in Fig. 7.16 is con-
sidered for design to further validate the developed method. The dimensions of the 3D
plate are 50×100×6.67 mm. The whole volume domain is discretized into 60×120×8

eight-node cubic elements. Similar to the 2D case in Section 7.1.3.1, the lower end of
the plate is fixed vertically while free horizontally. The central node on the right end
edge is fixed in all directions to avoid rigid body motions. The upper end of the plate
incremental displacement loads with ∆ū = 0.01 mm for first seven load increments
and ∆ū = 0.002 mm for the following load increments are prescribed. The incremental
loading process continues until the reaction force is below a prescribed criterion value
indicating that the structure is completely broken. The pre-existing crack notch surface
is simulated by prescribing Dirichlet conditions d = 1 along the crack surface. The sur-
rounding volume of the initial crack surface (up to 2 times the length scale parameter
`) is treated as a non-designable region to avoid nonphysical designs.
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FIGURE 7.16: A 3D plate with a single pre-existing crack notch subject
to a traction load: (a) problem depiction, (b) initial guess design.

Fig. 7.16(b) gives the initial guess design with the inclusion phase occupying 10%
of the domain volume. By the developed method, the inclusion phase area is gradually
reduced to the target volume fraction, 5% of the domain volume. The evolution of the
spatial distribution topology of inclusion phase together with their final crack patterns
and the design objective history are given in Fig. 7.17. The resultant hollow distribu-
tion topology design is similar to the one obtained in the 2D case in Section 7.1.3.1. It
can be observed from Fig. 7.17 that unlike the 2D cases, the fracture resistance of the
composite structure in the 3D case is obviously improved during the removal of mate-
rial volume. From the 3D design, it is more obvious that for the same or even higher
fracture resistance performance, the required usage of inclusion phase can be largely
saved via an optimal spatial distribution design. This is because there exist much more
inefficient material in the 3D case than the 2D case, such as within the hollow, which
could be clearly removed without weakening the fracture resistance of the composite
structure. Detailed phase field crack propagation of the optimally designed 3D com-
posite structure is given in Fig. 7.18, where the crack propagation trajectory is similar
to the corresponding 2D case in Section 7.1.3.1.

7.2 Topology optimization for optimal fracture resistance tak-
ing into account interfacial damage

It is observed in last section that the crack propagation resistance was only evaluated
on the basis of phase distribution. In most heterogeneous quasi-brittle materials (e.g.
ceramic matrix composites, cementitious materials), the interfacial damage plays a cen-
tral role in the nucleation and propagation of microcracks [95, 158, 125, 120]. In this
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FIGURE 7.17: History of the evolution of inclusion typologies and their
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FIGURE 7.18: Crack propagation of the optimally designed 3D compos-
ite structure with a single pre-existing crack notch subject to incremental
traction loads: (a) ū = 0.084 mm, (b) ū = 0.088 mm, (c) ū = 0.094 mm,

(d) ū = 0.010 mm, (e) load-displacement curve.

section, the main objective is to extend the framework developed in the last section
for defining through topological optimization the optimal phase distribution in a two-
phase composite with respect to fracture resistance, taking into account crack nucle-
ation both in the matrix and in the interfaces. The layout of this section is organized
as follows. Section 7.2.1 gives the detailed phase field framework incorporating bulk
fracture and cohesive interface. Numerical details and FEM discretization details are
presented. In Section 7.2.2, we formulate the topology optimization model, containing
detailed sensitivity derivation as well as the updating scheme with a damping on the
sensitivity numbers. In Section 7.2.3, several numerical benchmark tests are presented
to demonstrate the potential of the proposed method.
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FIGURE 7.19: Illustration of the regularized representation of cracks
and interfaces: (a) a solid containing interfaces and cracks; (b) regular-
ized representation of the interfaces; (c) regularized representation of the

cracks.

7.2.1 Phase field modeling of bulk crack and cohesive interfaces

In this section we describe the numerical method which is used by the topological
optimization algorithm to obtain the fracture energy of the sample. The technique is
based on the phase field model for fracture extended to interfacial damage by Nguyen
et al. [123], and allows simulating the initiation and propagation of a multiple cracks
network in heterogeneous microstructures. The main concepts and details are recalled
in the following.

7.2.1.1 Regularized representation of discontinuous field

LetΩ ∈ Rd be an open domain describing a solid with external boundary ∂Ω. The solid
contains internal material interfaces between different phases, collectively denoted by
Γ I . During the loading, cracks may propagate within the solid and can pass through
the material interfaces as depicted in Fig. 7.19 (a). The crack surfaces are denoted by Γ c.
In this work, we adopt smeared representations of both cracks and material interfaces,
i.e., the cracks are approximated by an evolving phase field d(x, t). Interfaces between
different material phases are described by a fixed scalar phase field β(x). The material
interfaces do not evolve during the loading. The regularized parameters describing the
actual widths of the smeared cracks and material interfaces are respectively denoted
by `d and `β . In the following, the same regularization length ` = `β = `d is adopted
for cracks and material interfaces for the sake of simplicity.

Given a non-evolving sharp crack defined on a surface Γ c, a regularized (smeared)
representation of the corresponding damage d(x) (see Fig. 7.19 (c)) can be obtained by
solving the Equation (7.1).

In Nguyen et al. [123], an interface phase field has been introduced to describe in
the same manner the discontinuities related to the damage of interfaces, obtained by
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solving the problem: 
β(x)− `2∇2β(x) = 0, in Ω

β(x) = 1, on Γ I

∇β(x) · n = 0, on ∂Ω.

(7.61)

Eq. (7.61) corresponds to the Euler-Lagrange equation associated with the varia-
tional problem

β(x, t) = Arg{ inf
β∈Sβ

Γ β(β)}, Γ β(β) =

∫
Ω
γβ(β) dΩ (7.62)

where Sβ = {β | β(x) = 1, ∀x ∈ Γ I}, Γ β represents the total interface length, and γβ is
defined by

γβ(β) =
1

2l
β(x)2 +

`

2
∇β(x) · ∇β(x). (7.63)

For ` → 0 the above variation principle leads to a sharp interface description. This
function will be used as an indicator to particularize the damage model to the interfaces
or to the bulk in the formulation described in following sections.

In addition, it is necessary to introduce an approximation for the displacement jump
at the interfaces, to associate a damage model specific to the interfaces and different
from the bulk. For this purpose, the following approximation has been proposed [123]
using Taylor expansion of the displacement field around a point x located on the inter-
face:

[[u(x)]] ' w(x) = u(x +
h

2
nI)− u(x− h

2
nI) = h∇(u(x))nI, (7.64)

where w(x) denotes the smoothed displacement jump approximation and nI is an ap-
proximation of the normal to the interface Γ I at a point x. Several techniques are possi-
ble to define this normal. For example, in [123], a level-set technique has been proposed
(see more details in the mentioned paper). In [159], another definition using the possi-
ble modification of the interface by the damage related to bulk cracks was introduced.

7.2.1.2 Energy functional

The following total energy functional is introduced for the solid body related to both
cracks and interfaces:

E =

∫
Ω
W e
u(εe(u, β), d)dΩ +

∫
Ω

[1− β(x)]gcγd(d)dΩ +

∫
Ω
ψI(w)γβ(β)dΩ, (7.65)

where gc is the toughness and ψI is a strain density function depending on the dis-
placement jump across the interface Γ I . Above, εe is the bulk part of the infinitesimal
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strain tensor εwhich satisfies the following relationship:

ε = εe + ε̄, (7.66)

where ε̄ is the strain part induced by the smoothed jump at the interfaces such that ε̄→
0 away from the interfaces (see [159]), in which case we recover the energy functional
for a cracked body without considering the interface behavior:

E =

∫
Ω
W e
u(εe(u), d)dΩ +

∫
Ω
gcγd(d)dΩ. (7.67)

From Eq. (7.65), the free energy W can be identified as

W = W e
u(εe(u, β), d) + [1− β(x)]gcγd(d) + ψI(w,α)γβ(β). (7.68)

The principle of maximum dissipation requires that dissipation Aḋ attains maxi-
mum under the constraint, i.e. ḋ > 0, F = 0. Therefore,

F = −∂W
∂d

= −∂W
e
u

∂d
− (1− β)gcδγ(d) = 0 (7.69)

with the functional derivative [108]

δγ(d) =
d

`
− `∆d. (7.70)

It follows that when ḋ > 0, then

− 2(1− d)ψ+
e + (1− β)gcδγ(d) = 0, (7.71)

To handle loading and unloading, the strain history function adopted in [108, 123]
is employed here:

H(x, t) = max
τ∈[0,t]

{ψ+
e (x, t)} (7.72)

and (7.71) is substituted by

− 2(1− d)H+ (1− β)gcδγ(d) = 0. (7.73)
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7.2.1.3 Displacement and phase field problems

Using (7.70), the evaluation of the crack field d(x, t) can be determined by solving the
following phase field problem

2(1− d)H− (1− β)gc` (d− `2∇2d) = 0, in Ω

d(x) = 1, on Γ c

∇d(x) · n = 0, on ∂Ω.

(7.74)

The associated weak form is obtained as (see [123]):∫
Ω

{
(2H+ [1− β]

gc
`

)dδd+ [1− β]gc`∇d · ∇(δd)
}
dΩ =

∫
Ω

2HδddΩ. (7.75)

Using the variational principle for minimizing the total energy E with respect to
the displacement u, the weak form associated with the displacement problem can be
formulated as∫
Ω

∂W e
u

∂εe
: εe(δu)dΩ+

∫
Ω

∂ψI(w)

δw
·∂wγβ(β)dΩ =

∫
Ω

f ·δudΩ+

∫
∂ΩF

F̄ ·δudΓ = δW ext.

(7.76)
In the absence of body forces, Eq.(7.76) can be re-written as∫

Ω
σe : εe(δu)dΩ + t(w) · δwγβ(β)dΩ −

∫
Ω
σe : ∇sδudΩ = 0, (7.77)

where σe = ∂we
∂εe is the Cauchy stress, and t(w) is the traction vector acting on the

interface Γ I oriented by nI and δw = h∇(δu)nI . Using σen = t, the above equation
can be further re-written as∫

Ω
σe : {εe(δu) + n⊗ δwγβ(β)−∇sδu} dΩ (7.78)

which is satisfied for an admissible strain field:

εe = ∇su− n⊗Swγβ (7.79)

where (∇su)ij = (ui,j + uj,i)/2 and (n⊗Sw)ij = (niwj + winj). ε̄ can be identified as
ε̄ = n⊗Swγβ .

With the above description of strain energy function, the Cauchy stress now reads:

σe =
∂ψ+

e

∂εe
[g(d) + k] +

∂ψ−e
∂εe

= [(1− d)2 + k]
{
λ〈trεe〉+1 + 2µεe+

}
+ λ〈trεe〉−1 + 2µεe−.

(7.80)
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FIGURE 7.20: Illustration of the cohesive model for the interfaces.

The general form of the traction vector t(w) in Eq. (7.77) is given by

t(w) = [tn, tt]
T (7.81)

where tn and tt denote respectively normal and tangential parts of the traction vector
t across the interface oriented by its normal nI . In the presented work, a simplified
nonlinear elastic cohesive model is used. We have shown that the framework proposed
in [123] allows avoiding the use of internal variables related to the interface damage to
handle loading and unloading by exploiting the damage phase field itself as the history
variable. In addition, by only taking into account the normal traction, i.e. t(w)·nI = tn,
the cohesive law can be written as

tn = gIc (
wn

δn
)exp(−w

n

δn
) (7.82)

where wn = w ·nI . For this model, we obtain KI = ∂t(w)
∂w . The relationship between δn,

the toughness gIc and th fracture strength tu is given by δn = gIc/(tue), with e = exp(1)

(see Fig. 7.20).
Even though the phase field problem is linear in the staggered scheme, i.e. for

a fixed value to u, it should be mentioned that for a fixed crack phase field value d,
the mechanical problem (7.76) is nonlinear since the computation of eigenvalues of εe

and the interface cohesive model in (7.82). A linear procedure to solve this nonlinear
problem by the Newton method is introduced in the following. From (7.76) and (7.80),
the balance equation can be rewritten as

R =

∫
Ω
σe : εe(δu)dΩ+

∫
Ω
γβ(x)t(w, α)·δwdΩ−

∫
Ω

f ·δudΩ−
∫
∂ΩF

F̄·udΓ = 0, (7.83)
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where εe(δu) = ∇sδu − n⊗Swγβ . In a standard Newton method, the displacements
are updated for each loading by solving the following tangent equation:

D∆uR(uk, d) = −R(uk, d) = 0, (7.84)

where uk is the displacement solution from the k-th iteration. The displacements at the
current iteration are given by

uk+1 = uk + ∆u. (7.85)

From (7.84), we obtain

D∆uR(uk) =

∫
Ω

∂σe

∂εe
: εe(∆ε) : εe(δε) +

∫
Ω

∂t(w)

∂w
: ∆w : δwdΩ (7.86)

with
∆w(x) = h∇∆u(x)

∇φ(x)

||∇φ(x)||
(7.87)

and

∂[σe]

∂[εe]
= C(u, d) = [(1−d)2 +k]

{
λR+[1]T [1] + 2µP+

}
+
{
λR−[1]T[1] + 2µP−

}
(7.88)

where [σe] and [εe] are the vector forms for the second-order tensors σe and εe, respec-
tively and C is the matrix form corresponding to the fourth-order tensor C.

7.2.1.4 Finite element discretization and numerical implementation

A staggered solution procedure is adopted in this work, where the phase field and
the mechanical problems are solved alternatively. At each increment, given the dis-
placement field from the mechanical problem, the phase field problem is linear using
a shifted algorithm (see more details in [124]). Using FEM, the phase field and phase
field gradient in one element are approximated by:

d(x) = Nd(x)de,∇d(x) = Bd(x)de, (7.89)

where de are nodal phase field values in one element, Nd(x) and Bd(x) are matrices of
shape functions and of shape functions derivatives associated to phase field variable,
respectively. Introducing the above FEM discretization into the weak form (7.75), the
following linear discrete system of equations can be obtained:

Kdd̃ = Fd (7.90)
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where
Kd =

∫
Ω

{
(
gc
`

(1− β) + 2H)NT
d Nd + (1− β)gc`B

T
dBd

}
dΩ (7.91)

and
Fd =

∫
Ω

2NT
dH(un)dΩ. (7.92)

Similarly, the displacement field and incremental displacement field can be ex-
pressed using the FEM approximations

u = Nue,∆u = N∆ue (7.93)

where N denotes the matrix of shape functions associated to displacement variables,
ue and ∆ue are nodal displacement components and nodal incremental displacement
components in one element. Furthermore, we have

[ε](∆u) = Bu∆ue (7.94)

where Bu is a matrix of shape function derivatives. From (7.64), the diffuse jump ap-
proximation vector and its incremental counterparts can be discretized as

w = hNB̃uu
e,∆w = hNB̃u∆ue (7.95)

where

N =

[
n1 n2 0 0

0 0 n1 n2

]
, (7.96)

and n1 and n2 are the x− and y− components of the normal vector. The smoothed
jump strain at the interfaces is defined by

[ε̄] =

 ε̄11

ε̄22√
2ε̄12

 = γβ(x)

 ω1n1

ω2n2

1√
2
(ω1n2 + ω2n1)

 . (7.97)

Then
[ε̄(∆u)] = hγβ(x)MB̃u∆ue (7.98)

with

M =

 n2
1 n1n2 0 0

0 0 n1n2 n2
2

1√
2
n1n2

1√
2
n2

2
1√
2
n2

1
1√
2
n1n2

 . (7.99)
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With the above FEM discretization, the tangent problem reduces to the following
linear system of algebraeic equations

Ktan∆ũ = −R(ũk), (7.100)

where

Ktan =

∫
Ω

[BT
u−hγβ(x)B̃T

uMT ]C(x)[Bu−hγβ(x)B̃uM]dΩ+

∫
Ω
h2γβ(x)B̃T

uNTKINB̃udΩ,

(7.101)
and

R =

∫
Ω

[BT
u − hγβ(x)B̃T

uMT ]C(x)[Bu − hγβ(x)B̃uM](ue)kdΩ

+

∫
Ω
hγβ(x)B̃T

uNT t(wk)dΩ +

∫
Ω

fNTdΩ +

∫
Ω

F̄NTdΓ.

(7.102)

The overall algorithm is described as follows.

1. Set the initial displacement field u0(x), the phase field d0(x), and the strain-
history functionH0.

2. Compute the phase field β(x).

3. For all loading increments: (at each time tn+1), given dn,un, andHn(x).

(a) Compute the history functionH(tn+1) according to (7.72).

(b) Compute the crack phase field dn+1(x) by solving linear problem (7.90).

(c) Compute un+1(x) :

i. Initialize uk = un

While ||∆uk+1|| > ε, ε� 1:

ii. Compute ∆uek+1 by (7.100).

iii. Update uk+1 = uk + ∆uek+1.

iv. (.)n+1 → (.)n and go to (a).

End

End

7.2.2 Topology optimization method

In this section, we present the topological optimization method based on the bi-directional
evolutionary structural optimization (BESO) [76]. In the proposed procedure, the ge-
ometry of constant volume of inclusion phases is optimized so as to maximize the frac-
ture resistance of the sample. This procedure involves evaluating the sensitivity of the
whole fracturing process (initiation of multiple cracks, propagation and complete fail-
ure of the sample) with respect to changes in the geometry.



Chapter 7. Topology optimization for maximizing the fracture resistance 169

7.2.2.1 Model definitions

Similar to Section 7.1.2, the total number of finite elements in the considered domain
Ω is denoted as Ne and each element e is assigned with a topology design variable ρe.
Following the multiple material interpolation model in [75, 41], we have

Ee = ρeEinc + (1− ρe)Emat (7.103)

where Einc and Emat are the Young’s moduli of the inclusion and matrix phases, re-
spectively. The density value takes zero or one corresponding to the matrix and the
inclusion phase, respectively.

Following the Eq. (7.34), the objective function J equivalent to the total mechanical
work during the fracturing process is calculated by using numerical integration, i.e.

J ≈ 1

2

nload∑
n=1

(
f

(n)
ext + f

(n−1)
ext

)T
∆u(n), (7.104)

and will be used as our definition of fracture resistance in the following. Above, nload

is the total number of displacement increments, ∆u(n) is the n-th nodal displacement
component and fnext is the external nodal force at the n-th load increment.

During the design optimization, the material volume fractions of matrix and of in-
clusion phases are prescribed. Then, the topology optimization problem subjected to
balance equation and inclusion volume constraint can be formulated as

max
ρ

: J(ρ,u,d,β)

subjected to : R = 0

: V (ρ) =
∑
ρeve = Vreq

: ρe = 0 or 1, e = 1, . . . , Ne.

(7.105)

In the above, ve is the volume of e-th element, V (ρ) and Vreq are the total and re-
quired material volumes, respectively andR denotes the nodal residual force:

R = fext − fint. (7.106)

In (7.106), fint is defined in each element as the internal force vector given in terms
of the associated topology design variable ρe and the Cauchy stress as:

fint =

Ne∑
e=1

ρe

∫
Ωe

BTσedΩe. (7.107)
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7.2.2.2 Sensitivity analysis

In order to compute the sensitivity of the objective function J with respect to topology
design variables ρ, two Lagrangian multipliers µ(n), λ(n) are introduced to enforce
zero residual R at time tn−1 and tn for each term of the total mechanical work (7.104).
Similar to Section 7.1.2, the two Lagrangian multipliers have the same dimension as
the vector of unknowns u. Therefore, the objective function J can be rewritten in the
following form without modifying the original objective value as

Ĵ =
1

2

nload∑
n=1

{(
f

(n)
ext + f

(n−1)
ext

)T
∆u(n) +

(
λ(n)

)T
R(n) +

(
µ(n)

)T
R(n−1)

}
. (7.108)

Introducing a partitioning of all degrees of freedom (DOF) into essential (index E;
associated with Dirichlet boundary conditions) and free (index F; remaining DOF) en-
trie and following the same procedure in Section 7.1.2, the derivative of the modified
design objective in (7.108) can be rewritten as:

∂Ĵ

∂ρe
=

1

2

nload∑
n=1


(
∂f

(n)
ext

∂ρe
+
∂f

(n−1)
ext

∂ρe

)T
∆u(n) +

(
λ(n)

)T ∂R(n)

∂ρe
+
(
µ(n)

)T ∂R(n−1)

∂ρe

 .

(7.109)
Recalling the balance equation at each load time increment in (7.83), the deriva-

tives of R(m) at the equilibrium of the m-th load increment with respect to ρe can be
expanded as

∂Rm

∂ρe
=
∂fmext

∂ρe
−
∫
Ωe

BT (σe)(m)dΩe −K
(m)
tan

∂∆u(m)

∂ρe
(7.110)

where

K
(m)
tan = −∂R

(m)

∂u(m)
(7.111)

is the tangent stiffness matrix of the nonlinear mechanical system at the balance equa-
tion of the m−th load increment. With the expression (7.110), (7.109) can be reformu-
lated as

∂Ĵ

∂ρe
=

1

2

nload∑
n=1

{ (
∂f

(n)
ext

∂ρe

)T (
∆u(n) + λ(n)

)
+

(
∂f

(n−1)
ext

∂ρe

)T (
∆u(n) + µ(n)

)
−
(
λ(n)

)T (∫
Ωe

BT (σe)(n)dΩe + K
(n)
tan

∂∆u(n)

∂ρe

)

−
(
µ(n)

)T (∫
Ωe

BT (σe)(n−1)dΩi + K
(n−1)
tan

∂∆u(n−1)

∂ρe

)}
.(7.112)
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The first two terms in (7.112) can be omitted by setting

λ
(n)
E = −∆u

(n)
E and µ

(n)
E = −∆u

(n)
E . (7.113)

With the symmetry of the stiffness matrices, we have

∂Ĵ

∂ρe
=

1

2

nload∑
n=1

{
−
(
λ(n)

)T ∫
Ωe

BT (σe)(n)dΩe −
(
µ(n)

)T ∫
Ωi

BT (σe)(n−1)dΩi

−
(
K

(n)
tan,FEλ

(n)
E + K

(n)
tan,FFλ

(n)
F

)T ∂∆u
(n)
F

∂ρe

−
(
K

(n−1)
tan,FEµ

(n)
E + K

(n−1)
tan,FFµ

(n)
F

)T ∂∆u
(n−1)
F

∂ρe

}
. (7.114)

To avoid the evaluation of the unknown derivatives of u
(n)
F and u

(n−1)
F , i.e. elim-

inating the last two lines of (7.114), the values of λ(n)
F and µ(n)

F are sought as follow-
ing by solving the adjoint systems with the prescribed values λ(n)

E = −∆u
(n)
E and

µ
(n)
E = −∆u

(n)
E at the essential nodes:

λ
(n)
F =

(
K

(n)
tan,FF

)−1
K

(i)
tan,FE∆u

(n)
E , (7.115)

and
µ

(n)
F =

(
K

(n−1)
tan,FF

)−1
K

(n−1)
tan,FE∆u

(n)
E . (7.116)

The two relations (7.115) and (7.116) together with (7.113) fully determine the val-
ues of the Lagrange multipliers λ(n) and µ(n). Finally, the objective function gradient
∂Ĵ/∂ρe can be computed via

∂Ĵ

∂ρe
= −1

2

nload∑
n=1

{(
λ(n)

)T ∫
Ωi

BT (σe)(n)dΩi +
(
µ(n)

)T ∫
Ωi

BT (σe)(n−1)dΩi

}
. (7.117)

As shown also in Section 7.1.2, in order to improve the robustness and efficiency of
the method, especially in dealing with nonlinear designs, the above obtained sensitivity
numbers are firstly modified using an additional damping treatment as in Eq. (7.56).
To avoid checkerboard patterns, sensitivity numbers are further smoothed by means of
a filtering scheme as Eq. (7.57). Finally, due to the discrete nature of the BESO material
model, the current sensitivity numbers are needed to be averaged with their historical
information to improve the design convergence as in Eq. (7.59).

It is noted that the material volume fraction of reinforced inclusion phases in this
work is kept constant during the optimization process. Interfaces between different
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FIGURE 7.21: A plate with one pre-existing crack notch subjected to in-
cremental traction loads: (a) problem geometry; (b) initial guess design;

(c) final design.

material phases or even the topology of the reinforced inclusion materials will be tai-
lored through the redistribution of the quantitative inclusion phases. The extended
BESO method is adopted to solve the optimization problem by using the modified
sensitivity numbers, which account for the whole fracturing process, involving crack
nucleation, propagation and interaction until complete failure of the considered het-
erogeneous materials, so as to improve the fracture resistance of the specimens.

7.2.3 Numerical examples

In this section, several numerical examples are presented to demonstrate the potential
of the proposed topology optimization framework. In all tests, regular meshes using
quadrilateral bilinear elements are adopted, and plane strain condition is assumed. The
same finite element discretization is adopted for both displacement and crack phase
fields. The regularization parameter ` describing the width of smeared crack and in-
terface is chosen as two times the finite element size ` = 2`e. The material parameters
of each phase are taken as: Ei = 52 Gpa, Em = 10.4 Gpa, vi = vm = 0.3, where the
indices i and m correspond to the matrix and inclusion materials, respectively. These
parameters are those of a mortar composed of a cement paste (matrix) and sand (inclu-
sion). The toughness is gc = gIc = 1× 10−4 kN/mm and the interface fracture strength
is chosen as tu = 10−2 Gpa.

7.2.3.1 Design of a plate with one initial crack under traction

The geometry of this example is depicted in Fig. 7.21(a). The dimensions of the plate are
50× 100 mm, and the domain is uniformly discretized into 60× 120 square shaped bi-
linear elements. The boundary conditions are as follows: on the lower end, the vertical
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initial design

J = 5.30 mJ
final design

J = 7.89 mJ

(b)(a) (c)

initial design

J = 4.48 mJ

initial design

J = 3.97 mJ

initial design

J = 3.78 mJ

final design

J = 6.73 mJ

final design

J = 6.04 mJ

final design

J = 5.61 mJ

(d) (e) (f) (g) (h) (i)

FIGURE 7.22: Fracture resistance comparison of two composite struc-
tures with one initial crack subjected to incremental traction loads: (a)
load-displacement curves with different numbers of sub-iteration; (b)
ID with 2 s-it; (c) FD with 2 s-it; (d) ID with 3 s-it; (e) FD with 3 s-it;
(f) ID with 4 s-it; (g) FD with 4 s-it; (h) ID with 5 s-it; (i) FD with 5 s-it

(ID/FD:initial/final design,s-it:sub-iteration).
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(a) (b) (c) (d) (e)

FIGURE 7.23: Crack propagation of the final design composite structure
with a single initial crack subjected to incremental traction loads: (a)
Ū = 0 mm; (b) Ū = 0.05 mm; (c) Ū = 0.06 mm; (d) Ū = 0.08 mm; (e)

Ū = 0.095 mm.

displacements are fixed while the horizontal displacements are free, and the left bottom
corner node is fixed in both directions. On the upper end, the horizontal displacements
are free, while the vertical displacements are prescribed with monotonic displacement
increments Ū = 0.005 mm during the simulation. The incremental loading process con-
tinues until the reaction force is below a prescribed value indicating that the structure
is completely broken. It is worth noting that during the crack propagation, interfacial
damage can occur and interact with the propagation of the pre-existing matrix crack.

Fig. 7.21(b) is the initial guess design and consists of a single square inclusion oc-
cupying a volume fraction of 10% of the sample. In all next examples, the material
volume fraction of the inclusion phase is maintained constant during the optimization
process. By the extended BESO method, the inclusion phase will be redistributed based
on sensitivity numbers so as to improve the fracture resistance of the considered struc-
ture. The pre-existing crack notch is simulated by prescribing Dirichlet conditions on
the crack phase field with d = 1 along the crack. The surrounding area of the initial
crack notch (up to 2 times of the length scale parameter `) is treated as a non-designable
region to avoid non-physical designs with the inclusion material added within the al-
ready existing crack (see a discussion in [173]). The final structural topology of the
inclusion phase is shown in Fig. 7.21 (c). It can be observed that the material on the
right side of the reinforcement inclusion moves up and down on the left side, and holes
are generated to tailor the topology of the inclusion phases. The fracture resistance im-
provement of the resultant composite structure is evaluated by comparing the initial
and new designs response in Fig. 7.22. It is worth noting, that in the present work, a
staggered procedure has been employed for solving the coupled displacement-phase
field problems formulated in section 7.1.1. Then, for one load increment, the number of
sub-iterations, i.e. the number of times the displacement and phase field problems are
solved alternatively has an effect on the solution. It is worth noting that most authors
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(see e.g. [108], and also our own previous works, [124, 123], among many others) only
use one sub-iteration by assuming that the load increments are small enough, but this
requires a preliminary convergence study. In the following, we have studied the effects
of using 2, 3, 4 and 5 sub-iterations in the staggered scheme of the load-displacement
response of the structure.

In Fig. 7.22, we denote by "FD" and "ID" Final and Initial Designs, respectively,
and "s-it" means sub-iterations. We can observe from Fig. 7.22 (a) that the number
of sub-iterations in the whole optimization procedure does have an effect on the final
load-displacement curve but almost no effect on the final optimized shape (see Fig.
7.22 (b)-(i)). We note that for 4 sub-iterations, the load-displacement curve has roughly
converged. With these observations in mind, we then conduct the whole optimiza-
tion procedure for obtaining the final design with only 2 sub-iterations to reduce the
computational costs, as it has been seen that the number of sub-iterations as small in-
fluence on the final shape of the inclusion. Then, we use the obtained final design and
re-compute the load-displacement curve with 4 sub-iterations to avoid underestimat-
ing the fracture energy. In the present example, we can see from Fig. 7.22 that the total
required fracture energies for complete failure is 3.97 mJ for the initial design and 6.04
mJ for the final design, which means that the final structure is 52% more resistant to
fracture than the initial guess design.

Detailed propagation of the phase field crack of the final design composite struc-
ture with a single pre-existing crack notch subjected to incremental traction loads is
given in Fig. 7.23. The initial crack propagates into the inner supporting structure and
is blocked by the reinforced inclusion phase during the previous incremental loads.
Then, two interface cracks nucleate and propagate along the upper and lower material
interfaces. Inclusion materials which are redistributed up and down on the left side try
to prevent the vertical propagation of matrix crack. Finally, the interface and matrix
cracks intersect and propagat horizontally until the structure is fully broken.

7.2.3.2 Design of a plate without initial cracks for traction loads

The problem setting of this example is the same as in the last section except that there is
no initial crack. The geometry of the plate is depicted in Fig. 7.24 (a), where the inclu-
sion phase occupies a volume fraction of 5% of the sample. The optimized geometry
of the inclusion phase is depicted in Fig. 7.24 (b). Detailed propagations of the phase
field cracks of the initially and finally designed composite structures subjected to in-
cremental traction load are given in Fig. 7.25 and Fig. 7.26, respectively. The cracks are
firstly generated around the upper and lower material interfaces for the initial guess
design, while they nucleate in the middle of the inner inclusion phase as well as in
the interfaces for the new design. Then, similar interface cracks around the upper and
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FIGURE 7.24: A plate without initial crack subjected to incremental trac-
tion loads: (a) geometry of the initial design; (b) final design.

(a) (b) (c) (d) (e)

FIGURE 7.25: Crack propagation of the initial design composite struc-
ture without initial cracks subjected to incremental traction loads: (a)
Ū = 0 mm; (b) Ū = 0.025 mm; (c) Ū = 0.065 mm; (d) Ū = 0.085 mm; (e)

Ū = 0.105 mm.

(b)(a) (c) (d) (e)

FIGURE 7.26: Crack propagation of the final design composite structure
without initial cracks subjected to incremental traction loads: (a) Ū = 0
mm; (b) Ū = 0.035 mm; (c) Ū = 0.055 mm; (d) Ū = 0.075 mm; (e)

Ū = 0.105 mm.

lower material interfaces are generated. Finally, cracks propagate horizontally until the
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final design
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FIGURE 7.27: Fracture resistance comparison of two composite struc-
tures without initial crack subjected to incremental traction loads

(a) (b)

Matrix

Inclusion

100

1
0
0

33.33

15

FIGURE 7.28: A square plate without initial crack subjected to uniaxial
tension: (a) geometry of the initial design; (b) final design.

(a) (b) (c) (d)

FIGURE 7.29: Crack propagation of the initial design composite struc-
ture with without initial cracks subjected to uniaxial tension: (a) Ū = 0

mm; (b) Ū = 0.025 mm; (c) Ū = 0.04 mm; (d) Ū = 0.08 mm.

structure is fully broken in both cases. The final crack patterns, the total required frac-
ture energies for complete failure, and the load-displacement curves for the initial and
optimized designs are given in Fig. 7.27. In this example, the structure with optimal
design is 15% more resistant to fracture than the initial composite structure.
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initial design

J = 19.10 mJ
final design

J = 25.52 mJ

(b)(a) (c)

FIGURE 7.30: Fracture resistance comparison of two composite struc-
tures without initial cracks subjected to uniaxial tension.

7.2.3.3 Design of a square plate without initial cracks in tensile loading

This example aims to design a square composite plate without initial crack subjected to
uniaxial tension. The problem geometry of the square plate is depicted in Fig. 7.28 (a).
The dimensions of the plate are 100×100 mm2, and the domain is uniformly discretized
into 120 × 120 square bilinear elements. The boundary conditions are as follows: on
the upper and lower end, the vertical displacements are fixed while the horizontal dis-
placements are free. On the left and right end, the horizontal displacements are pre-
scribed by an increasing uniform value of Ū = 0.005 mm during the simulation. The
incremental loading process continues until the reaction force is below a prescribed
value indicating that the structure is fully broken. The initial guess involves an inclu-
sion representing 5% of the volume fraction as shown in Fig. 7.28 (a). The final design of
the inclusion phase is shown in Fig. 7.28 (b). The width of the final design is larger than
the initial guess to resist the x-directional tension, and the inclusion phase topology
is changed. Detailed propagation of the phase field crack in the composite structures
with optimal design is given in Fig. 7.29. Here, the interface cracks firstly initiate at the
interface (see Fig. 7.29 (b)). Subsequently, the left and right interface cracks propagate
vertically and merge. The complete fracture patterns and design objective values are
shown in Fig. 7.30 (b) for the initial design and in Fig. 7.30 (c) for the optimal design.
Both responses are compared in Fig. 7.30 (a). Here, the fracture resistance of the final
design structure has been increased by 33% as compared to the initial design.

7.2.3.4 Design of a plate with a single initial crack under three-point bending

The purpose of this example is to design a plate subjected to three-point bending with
one initial crack. The problem geometry of the square plate is depicted in Fig. 7.31 (a).
The dimensions of the plate are 50 × 100 mm. The domain is uniformly discretized
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FIGURE 7.31: A plate with one initial crack subjected to three-point
bending: (a) geometry and boundary condition; (b) geometry of the ini-

tial design and crack; (c) final design.

(a) (b)

(c) (d)

FIGURE 7.32: Crack propagation of the initial design composite struc-
ture without initial cracks subjected to three-point bending: (a) Ū = 0

mm; (b) Ū = 0.11 mm; (c) Ū = 0.14 mm; (d) Ū = 0.16.

into 60 × 120 square shape bilinear elements. The load consists into a prescribed dis-
placement at the center of the beam on the top edge. The left bottom corner node is
fixed, while node at the right bottom corner the y-displacement is fixed and the x-
displacement is free. For this case, an initial pre-existing crack is shown in Fig. 7.31 (b),
and the initial guess design with the inclusion phase occupying 10% volume fraction
of the domain area. The computation is performed with monotonic displacement in-
crements of Ū = 0.01 mm until the reaction force is below a prescribed criterion value.
The displacements are prescribed along the y-direction while the displacement along x
is free.

The pre-existing crack is simulated by prescribing Dirichlet conditions with d = 1
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 initial design

J = 5.24 mJ

 final design

J = 9.20 mJ

(b)

(c)

(a)

FIGURE 7.33: Fracture resistance comparison of two composite struc-
tures with one initial crack subjected to three-point bending.
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FIGURE 7.34: A plate containing multiple inclusions and a single initial
crack for tensile loads: (a) geometry and boundary condition; (b) geom-

etry of the initial design and crack; (c) final design.

along the crack. The surrounding area of the initial crack notch is treated as a non-
design region. Fig. 7.31 (c) shows the final design of inclusion topology. Detailed prop-
agation of the phase field crack of the finally designed composite structure with a single
pre-existing crack notch subjected to three-point bending with monotonic displacement
increments is shown in Fig. 7.32. The initial matrix crack firstly propagates vertically
and is blocked by the reinforced inclusion phase materials. During the next steps, it
tries to spread along the horizontal direction but is blocked by the inclusion material
redistributed by the proposed topological optimization method. Eventually, the matrix
crack propagates along the loading direction until the structure is fully broken. The
two load-displacement curves are compared in Fig. 7.33 (a). The final crack patterns as
well as the total required fracture energies for complete failure for the initial and final
designs are shown in Fig. 7.33 (b) and Fig. 7.33 (c), respectively. In this example, the
fracture resistance of the final design has been increased by 76% as compared to the
initial design.
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(a) (b) (c) (d)

FIGURE 7.35: Crack propagation of the final design composite structure
with one initial crack subjected to tensile loads: (a) Ū = 0.01 mm; (b)

Ū = 0.02 mm; (c) Ū = 0.05 mm; (d) Ū = 0.09 mm.
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final design

J = 14.94 mJ
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FIGURE 7.36: Fracture resistance comparison of two composite struc-
tures containing multiple inclusions and one initial crack subjected to

tensile loads

7.2.3.5 Design of a plate containing multiple inclusions

Finally, a plate containing 20 periodically distributed square inclusions is considered.
The plate is modeled as a square domain whose side is 100 mm. The length of the
inclusions is computed such that the volume fraction of inclusion phase is equal to
20%. The boundary conditions are the same as described in Section 4.3 and are shown
in Fig. 7.34 (a): on the lower and upper ends, the y-displacements are fixed, while
the x-displacements are free. On the left and right ends, the y-displacements are free,
while x-displacements are prescribed, with a uniform increasing value of Ū during the
simulation. The computation is performed with monotonic displacement increments
Ū = 0.005 mm until the structure is completely broken. Here again, the surrounding
region of the initial crack is assumed to be non-designable to avoid nonphysical de-
signs. The final design is presented in Fig. 7.34 (c). Detailed propagation of the phase
field crack of the final design of the considered composite structure containing multi-
ple inclusions and a single initial crack subjected to tensile loads is shown in Fig. 7.35.
It can be observed that the initial crack propagates vertically and new cracks around
intermediate interfaces of the structure are generated. The inclusion materials are re-
distributed to prevent further propagation of critical cracks. In the subsequent loading
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steps, the pre-existing crack meets the reinforced inclusion materials and is blocked at
the beginning. Then, both matrix and interface cracks propagate toward the vertical
direction as well as along the material interfaces until the structure is fully broken. The
comparisons of final crack paths, the total required fracture energies for complete fail-
ure and load-displacement curves between initial and optimal designs are provided in
Fig. 7.36. In this example, the fracture resistance has been increased by 53% in compar-
ison with the initial design.

It is worth noting that in such optimization process, the crack pattern can involve
multiple cracks, whose trajectories and number fully depends on the geometry of the
inclusion phases. Then, it is very difficult to guess a priori the optimal geometry of
inclusions to increase the fracture resistance. Finally, the main advantages of the phase
field method in topological optimization process are summarized as follows: (a) it is
easy to couple the phase field method with a topological optimization algorithm as
a fixed mesh can be employed for the fracture simulation; (b) initiation of cracks can
be included in the analysis, which would be not possible with techniques like XFEM
[114]; (c) including interfacial damage is simple in the present framework, using e.g.
extensions of the phase field as proposed in [123]. Using cohesive elements in that case
would make the analysis much more complex when defining the sensitivity with re-
spect to the material density in the topological algorithm. Then, the present framework
seems to be very promising to design new composite materials with enhanced fracture
resistance.

7.3 Topology optimization for maximizing the fracture resis-
tance of periodic composites

This section extends the topology optimization framework of optimal fracture resis-
tance to periodic composites, considering the heterogeneities and their interfaces in the
material. The phase field method presented in section 7.2.1 is adopted for modeling
fracture propagation in two-phase composites. The composite is assumed to be com-
posed of the substructure or repesentative volume element (RVE) periodically. There-
fore, the optimization is carried out only on the RVE, but takes into account the re-
sponse of the whole composite specimen to maximize its fracture resistence. Extended
BESO method is adopted to redistribute the inclusion phase in the RVE with constant
volume fraction. In the following, the topology optimization model for maximizing the
fracture resistence of periodic composites is proposed in section 7.3.1. Element sensitiv-
ity number acounting for complete fracturing process of the whole periodic structure
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is defined. Several numerical examples are presented in section 7.3.2 to show signifi-
cant improvement of the fracture resistence of the optimized periodic composites com-
pared to initial designs. In addtion, the optimized inclusion phase is applied to larger
samples, which contain a larger number of unit cells, to further validate the proposed
numerical design framework.

7.3.1 Topology optimization model

In this section, the optimization problem is solved to find the optimal material distribu-
tion or topology of the inclusion phase within the RVE so as to maximize the fracture
resistence of the resulting periodic composites. It is assumed that the total number of
substructures/RVEs in the composite is Ns. The fracture resistence maxmization prob-
lem can then be formulated using the design variable ρke , where k and e denote the
substructure number and the element number in each substructure, respectively, as:

Find : {ρ(1), . . . ,ρ(Ns)} (7.118)

Maximize : J(ρ,u,d,β) (7.119)

subjected to :R = 0 (7.120)

: V (ρ) = Ns

∑
ρ(k)
e v(k)

e = Vreq, (7.121)

: ρ(1)
e = · · · = ρ(Ns)

e , e = 1, . . . , Ne, (7.122)

: ρ(k)
e = 0 or 1, e = 1, . . . , Ne, k = 1, . . . , Ns. (7.123)

where J is known as the fracture energy which is calculated by using numerical inte-
gration (7.104). R denotes the nodal residual force (7.106). In (7.121), v(k)

e is the volume
of the e−th element in the k−th unit cell, and Ne is the number of elements in each
cell. Similar to the optimization model defined in Section 5.1 and 5.2 in Chapter 4, the
condition ρ(1)

e = · · · = ρ
(Ns)
e , e = 1, . . . , Ne ensures that the pseudo densities (0 or 1) of

elements at the corresponding locations in each substructure are the same. Following
the Equation (7.103) in Section 7.2.2, we have the same material interpolation model:

Ee = ρeEinc + (1− ρe)Emat (7.124)

where ρe takes the value of zero and one corresponding to the matrix and inclusion
phase, respectively.

Based on the sensitivity analysis as formulated in Section 7.2.2, the derivative of the
total mechanical work J with respect to the topology design variable ρe can be stated
as:



Chapter 7. Topology optimization for maximizing the fracture resistance 184

∂Ĵ

∂ρe
= −1

2

nload∑
n=1

{(
λ(n)

)T ∫
Ωi

BT (σe)(n)dΩe +
(
µ(n)

)T ∫
Ωe

BT (σe)(n−1)dΩi

}
. (7.125)

However, since the considered composites are periodic in this scheme, the opti-
mization process is carried out only within the substructure/RVE. Therefore, the ele-
ment sensitivity numbers at the same location in each substructure need to be consis-
tent to enforce the periodic array of the substructures. They are then defined as the
summation of the sensitivity of corresponding elements in all substructures, i.e. the
sensitivity number αe is formulated as:

αe =

Ns∑
k=1

∂Ĵ

∂ρ
(k)
e

(7.126)

As a result, the above sensitivity information takes into account the fracture response
of the whole periodic composite so as to maximize its fracture resistance.

Following Section 7.2.2, the sensitivity numbers associated with the relative ranking
of the element sensitivities are treated with the damping as (7.56). In order to avoid
checkerboard patterns, the above formulated sensitivity numbers are then smoothed
by means of a filtering scheme as (7.57). Due to the discrete nature of design variable
of the adopted method and to avoid oscillations in evolutionary history of the design
objective value, the current sensitivity number is further averaged with its historical
information as (7.59).

It is recalled that the material volume fraction of reinforced inclusion phases is kept
constant during the optimization process. However, the geometry of inclusions is op-
timized in substructure/RVE so as to maximize the fracture resistance of the result-
ing periodic composite sample. Extended BESO method formulated in Section 7.2.2
is adopted to solve the optimization problem (7.118)-(7.123) by using the above mod-
ified sensitivity numbers, which account for the whole fracturing process, involving
crack nucleation, propagation and interaction until complete failure of the considered
periodic composite.

7.3.2 Numerical examples

In this section, several numerical examples are presented to demonstrate the proposed
topology optimization framework for maximizing the fracture resistence of periodic
composites. In all tests, regular meshes using quadrilateral bilinear elements are adopted,
and plane strain assumption is adopted. The same finite element discretization is em-
ployed for both displacement and crack phase fields. The regularization parameter `
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(a) (b) (c)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b) (c)

(a) (b)

FIGURE 7.37: A periodic composite without initial crack subjected to
three-point bending: (a) geometry of the initial design; (b) final design.

describing the width of smeared crack and interface is chosen as twice the finite ele-
ment size ` = 2`e. In addition, material properties of both matrix and inclusion phases
are the same as shown in 7.2.3, and so are the toughness and the interface fracture
strength.

7.3.2.1 Design of a periodic composite under three-point bending

The problem geometry of the first example is depicted in Fig. 7.37 (a), where the com-
posite is composed of Ns = 7 × 3 unit cells periodically repeated along x− and y−
directions, respectively. In the initial guess design of the RVE as shown in Fig. 7.37
(a), inclusion phase covers the centered circle domain with diameter corresponding
to the volume fraction of 30%. The dimensions of the whole composite structure are
350 × 150 mm, and the domain is uniformly discretized into 350 × 150 square shaped
bilinear elements. The boundary conditions are as follows: the left bottom corner node
is fixed, while at the right bottom corner node the y-displacement is fixed and the x-
displacement is free. On the upper end, the load consists in a prescribed displacement
Ū at the center point. The displacement is prescribed along the y-direction while the
displacement along x is free. The computation is performed with monotonic displace-
ment increments of Ū = 0.01 mm until the reaction force is below a prescribed criterion
value indicating that the structure is completely broken.

During the optimization process, the material volume fraction of the inclusion phase
is maintained constant in all next examples. Based on their sensitivity numbers, the
inclusion phase will be redistributed within the periodic cell by the extended BESO
method so as to improve the fracture resistance of the whole periodic composite. Fig.7.37
(b) shows the final design of inclusion topology and the resulting composite structure.
It is observed that the material on the bottom side of the reinforcement inclusion phase
moves left and right, and the final design inclusion phases are interconnected in hori-
zontal cells to form a "wave" structure.
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(a) (b)

(c) (d)

FIGURE 7.38: Crack propagation in the initial periodic composite with-
out initial cracks subjected to three-point bending: (a) Ū = 0 mm; (b)
Ū = 0.11 mm; (c) Ū = 0.17 mm; (d) Ū = 0.20 mm; (e) Ū = 0.24 mm; (f)

Ū = 0.28 mm.

Detailed propagation of the phase field crack of the initial and finally designed pe-
riodic composite subjected to three-point bending with monotonic displacement incre-
ments is shown in Fig. 7.38 and Fig. 7.39, respectively. We can see that the trajectories,
numbers as well as propagation paths of the phase field cracks are totally different
since the geometry of the inclusion phases is changed. However, both crack patterns
are symmetric since we use the symmetric boundary conditions, and initial cracks are
both generated at the interface between different phases. Subsequently, one bulk crack
initiates and propagates along the force direction for the initial design, until the pe-
riodic structure is broken. For the optimal design, more interface cracks initiate and
propagate along the phase interfaces, resulting in an increase of interface damage of
the composite. Finally, bulk cracks propagate vertically as loading continues, until the
periodic structure is fully broken. The final crack patterns, the total required fracture
energies for complete failure, and the load-displacement curves for the initial and opti-
mal designs are given in Fig. 7.40. In this example, the periodic composite with optimal
design is 124% more resistant to fracture than the initial composite structure.

In the following, we use the optimized geometry of the inclusion phase for a larger
periodic sample which contains a much larger number of unit cells. The geometries of
the initial and optimal design periodic composites are depicted in Fig. 7.41 (a) and (b),
respectively. The dimensions of the two composites structures are 700×300 mm and are
both uniformly discretized into 700×300 square shape bilinear elements. The boundary
conditions are the same as in Fig. 7.37. However, the composites are herein composed
of Ns = 14 × 6 unit cells periodically, along x− and y− directions, respectively. The
computation is performed with monotonic displacement increments of Ū = 0.01 mm
until the reaction force is below a prescribed criterion value.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7.39: Crack propagation of the final design periodic composite
without initial cracks subjected to three-point bending: (a) Ū = 0 mm;
(b) Ū = 0.17 mm; (c) Ū = 0.23 mm; (d) Ū = 0.28 mm; (e) Ū = 0.32 mm;

(f) Ū = 0.37 mm.

(a) Initial design, J = 19.7 mJ 

(a) Final design, J = 44.2 mJ (c)

FIGURE 7.40: Fracture resistance comparison of two periodic composites
without initial cracks subjected to three-point bending.

In this case, the detailed propagation of the phase field crack in the initial and opti-
mal periodic composites is shown in Fig. 7.42 and Fig. 7.43, respectively. Again, crack
pattern involves multiple cracks, and its trajectory and number fully depend on the
geometry of the inclusion phases. The composite structure with optimized inclusion
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(a)

(b)
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FIGURE 7.41: A larger periodic composite without initial crack subjected
to three-point bending: (a) geometry of the initial design; (b) final design.

geometry is more damaged requiring larger mechanical energy for complete failure.
The comparisons of final crack paths, the total required fracture energies for complete
failure and load-displacement curves between initial and optimal designs are provided
in Fig. 7.44. For the larger sample, the resistance to fracture of final periodic composite
has been increased by 82.5% in comparison with the initial design.

7.3.2.2 Design of a periodic composite under non-symmetric three-point bending

This example aims to design a periodic composite subjected to non-symmetric three-
point bending without initial cracks. Comparing with the boundary condition shown
in Fig.7.37, the load in this case consists in a prescribed displacement at the center
point of the right half-beam on the top edge, as shown in Fig. 7.45 (a). The vertical
displacement is prescribed by an increasing uniform value of Ū = 0.01 mm during the
simulation, until the considered periodic composite is fully broken. The initial guess
design of the inclusion geometry is the same as in the last example, which means that
the inclusion phase occupies a volume fraction of 30% of the sample. The considered
composite is composed of Ns = 9× 3 unit cells repeated periodically along each space
directions. The dimension of the composite is 450 × 150 mm, and the domain is uni-
formly discretized into 450× 150 square shape bilinear elements. The redistribution of
the inclusion phase is carried out in a single unit cell based on the sensitivity informa-
tion which accounts for the fracture resistence response of the whole periodic structrue.

The optimized geometry of the inclusion phase as well as the resulting periodic
composites are depicted in Fig. 7.45 (b). Detailed propagation of the phase field cracks
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7.42: Crack propagation in the initial periodic composite with-
out initial cracks subjected to three-point bending: (a) Ū = 0 mm; (b)
Ū = 0.25 mm; (c) Ū = 0.35 mm; (d) Ū = 0.41 mm; (e) Ū = 0.44 mm; (f)

Ū = 0.59 mm.

(a) (b)

(c) (d)

(e) (f)

FIGURE 7.43: Crack propagation in the optimized design periodic com-
posite without initial cracks subjected to three-point bending: (a) Ū = 0
mm; (b) Ū = 0.39 mm; (c) Ū = 0.52 mm; (d) Ū = 0.57 mm; (e) Ū = 0.61

mm; (f) Ū = 0.72 mm.

of the initial and finally designed composite structures subjected to incremental trac-
tion load are given in Fig. 7.46 and Fig. 7.47, respectively. It is observed that the cracks
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(a) Initial design, J = 72.9 mJ 

(a) Final design, J = 129.4 mJ (c)

FIGURE 7.44: Fracture resistance comparison of two periodic composites
with larger number of cells subjected to three-point bending.

(a)

(b)

FIGURE 7.45: A periodic composite without initial crack subjected to
non-symmetric three-point bending: (a) geometry of the initial design;

(b) final design.

are both firstly generated around the material interface below the applied force. Then
only one bulk crack along the force direction is generated for the initial guess design,
while more complex cracks nucleate for the new design. Finally, cracks propagate ver-
tically until the structure is fully broken in both cases. We can see that the new design
periodic composite is more damaged, resulting in larger required fracture energy. The
final crack patterns, the total required fracture energies for complete failure, and the
load-displacement curves for the initial and final designs are given in Fig. 7.48. In this
example, the periodic composite with optimal inclusion geometry is 100.6% more re-
sistant to fracture than the initial composite.
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(a) (b)

(c) (d)

FIGURE 7.46: Crack propagation in the initial periodic composite with-
out initial cracks subjected to non-symmetric three-point bending: (a)

Ū = 0 mm; (b) Ū = 0.17 mm; (c) Ū = 0.24 mm; (d) Ū = 0.30 mm.

(a) (b)

(c) (d)

(e) (f)

FIGURE 7.47: Crack propagation in the optimized design periodic com-
posite without initial cracks subjected to non-symmetric three-point
bending: (a) Ū = 0 mm; (b) Ū = 0.17 mm; (c) Ū = 0.24 mm; (d) Ū = 0.33

mm; (e) Ū = 0.39 mm; (f) Ū = 0.44 mm.

Finally, we apply the optimized geometry of the inclusion phase obtained in the
first example for a larger periodic sample but subjected to non-symmetric three-point
bending. The dimensions as well as the boundary conditions of the initial and optimal
periodic composites are depicted in Fig. 7.49 (a) and (b), respectively. The structures are
both uniformly discretized into 900×300 square bilinear elements. The force is applied
to the top edge at a distance of 250 mm from the apex of the upper right corner. The
vertical displacement is also prescribed as an increasing uniform value of Ū = 0.01 mm
during the simulation unitl the reaction force goes below a prescribed value indicating
that the periodic composite is fully broken. The complete fracture patterns and design
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(a) Initial design, J = 18.0 mJ 

(b) Final design, J = 36.1 mJ 
(c)

FIGURE 7.48: Fracture resistance comparison of two periodic composites
without initial cracks subjected to non-symmetric three-point bending.
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FIGURE 7.49: A larger periodic composite without initial crack subjected
to non-symmetric three-point bending: (a) geometry of the initial design;

(b) final design.

objective values are shown in Fig. 7.50 (a) for the initial design and in Fig. 7.50 (b) for
the optimal design. Both responses are compared in Fig. 7.50 (c). Here, the fracture
resistance of the optimized design periodic composite has been increased by 135.4% as
compared to the initial design.
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(a) Initial design, J = 74.2 mJ 

(b) Final design, J = 135.4 mJ 
(c)

FIGURE 7.50: Fracture resistance comparison of two periodic compos-
ites with larger number of cells, subjected to non-symmetric three-point

bending.

7.4 Concluding remarks

In this section, we have firstly proposed a numerical design framework for fracture
resistance of composites, by an optimal design of the spatial distribution of inclusion
phase with a given target volume fraction. The phase field method model fractur-
ing with a regularized description of discontinuity has been adopted for the complete
fracturing process. One particular merit of the adopted phase field method is the reg-
ularized description of discontinuous fields, which avoids the burden of remeshing
during the crack propagation which is fully adapted to topology optimization. The
optimal design of the spatial distribution of inclusion phase is realized by means of
topology optimization using an extended bi-directional evolutionary structural opti-
mization method. Both 2D and 3D benchmark tests have demonstrated that significant
improvement of the fracture resistance of composites has been achieved for designs
accounting for full failure when compared to conventional linear designs. Compared
to previous studies in the literature on the subject, this work provides a much more
efficient alternative for the design of high fracture resistant composites. There exist
twofold merits of the developed design framework: on the one hand, the adoption of
topology optimization provides an uttermost design freedom, yielding higher fracture
resistant designs; on the other hand, limited number of iterations is required for the de-
sign as a result of gradient information, which is of essential importance dealing with
computationally demanding fracturing simulation.

Then, we have developed the topology optimization framework to improve frac-
ture resistance of composites through a redistribution of constant inclusion phases,
considering interactions between bulk brittle fracture and interfacial damage. The sole
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and unique phase field is employed to describe both bulk brittle fracture and inter-
face cracking, and thus allows interaction between the two types of cracks. Before
performing the topology optimization, a computationally efficient adjoint sensitivity
formulation is derived to account for the whole fracturing process, involving cracks nu-
cleation, propagation and interaction, either from the interfaces and then through the
solid phases, or the composite. Based on the determined sensitivity numbers, the con-
stant amount of reinforced inclusion materials is redistributed by using the extended
bi-directional evolutionary structural optimization method. Several benchmark tests
have been presented to demonstrate the potential of the proposed design framework.
It has been shown that significant improvement of the fracture resistance of the consid-
ered composite structures can be achieved for final designs accounting for full failure
when compared to the initial guess.

Finally, we have extended the topology optimization framework for maximizing
the fracture resistance to periodic two-phase composites. Optimization design domain
is defined in a single cell since the considered composite structure is periodic. Element
sensitivity number in the cell is then defined as the summation of the sensitivity of
corresponding elements in all cells, so as to account for the fracture response of the
whole periodic composite during the fracturing process. As a result, the topology op-
timization is allowed to be carried out in one single cell and the fracture resistence of
the whole composite structure is improved. Several numerical examples have demon-
strated that the fracture resistance of the considered periodic composite can be im-
proved significantly for final designs accounting for full failure when compared to the
initial guess designs. In addition, the optimized geometry of the inclusion phase can
be effectively applied to periodic samples which containt a larger number of unit cells.
As a conclusion, the presented topological optimization framework has big potential
to design new periodic composites with enhanced fracture resistance.

To our best knowledge, the topology optimization for fracture resistance taking into
account interactions between interfacial damage and bulk brittle fracture for complete
fracturing process has been done for the first time in this work. The presented method
then provides a very promising design tool to improve the fracture resistance of hetero-
geneous materials where both interfacial damage and matrix crack propagation occur,
and could constitute a basis for improving other physical properties involving interfa-
cial damages.
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Chapter 8

Conclusion and perspectives

In this thesis, we have introduced contributions to the modeling of heterogeneous ma-
terials by topology optimization, with special emphasis on: (a) materials with extreme
properties; (b) topology optimization in a multiscale context, including non-separated
scales and (c) topology optimization of heterogeneous materials to maximize their re-
sistance to fracture.

In the first part, we develop primarily in Chapter 2 a new evolutionary topology op-
timization method for continuum structures. The newly proposed method determines
implicitly the structural topology by a level-set function constructed by nodal sensitiv-
ity numbers, resulting in smoothed boundary representation and high robustness. In
Chapter 3, we firstly introduce the hybrid cellular automata technique to the design
of material periodic microstructures with extreme elastic properties or negative Pois-
son’s ratio. By this method, no sensitivity information is required to find the optimal
material geometries, and a local rule is adopted to update design variables iteratively
until meeting the prescribed optimality conditions. In the second part, we extend the
material design to simultaneous multi-phase materials and structure design in Chapter
4, introducing the underlying three or more phases material microstructures for both
the solid and compliant composite phases of the macroscale structures. In Chapter 5,
multiscale topology optimization in the context of non-separated scales is studied com-
prehensively. First, we use a coarse mesh corresponding to a homogenized medium
based on the classical numerical homogenization, allowing reducing the micro fields to
perform the topology optimization. Size effect of the periodic unit cell is investigated
to show that the present framework leads to an optimized structure with higher com-
pliance when the scales cannot clearly be separated. To this end, we develop a new
multiscale topology optimization procedure, by using a nonlocal filter-based homoge-
nization scheme to take into account all structural details and the strain gradient effects.
We have shown that taking into account strain gradient effects can lead to a significant
increase in the stiffness of the lattice associated with the optimized topology. Finally,
we extend the multiscale topology optimization framework to the design of the geom-
etry of mesoscopic structures with fixed microscopic unit cells. As expected, periodic
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unit cells have major influence on the optimal solutions of the mesoscopic structures.
To sum up, topological optimization and numerical homogenization scheme without
scale separation are combined in this Chapter, allowing the optimization problem to
be performed on a coarse mesh, instead of using the fully detailed description of the
structure for computational saving.

In the third part, we propose to investigate the use of topology optimization for
maximizing the fracture resistance of heterogeneous structures and materials. In view
of future extensions and applications to civil engineering materials, we have proposed
a first attempt for the extension of the phase field fracture method to viscoelastic ma-
terials in Chapter 6. Both 2D and 3D heterogeneous materials subjected to loading
with various durations have been analyzed with regard to different crack patterns. In
Chapter 7, we study the topology optimization of heterogeneous materials to maxi-
mize their resistance against fracture. The objective here is to maximize the required
mechanical work until complete failure of heterogeneous materials, involving cracks
nucleation, propagation and interaction. To our best knowledge, this part constitutes
the first contribution to propose a numerical design framework for fracture resistance
of quasi-brittle composites, by an optimal design of the spatial distribution of inclusion
phase with a given target volume fraction. The phase field method to fracturing with a
regularized description of discontinuity has been adopted for the modeling of complete
fracturing process. Secondly, we extend the design framework for taking into account
crack nucleation both in the matrix and in the interfaces. The material volume fraction
of reinforced inclusion phases is kept constant during the optimization process. Lastly,
we extend the topology optimization framework taking into account interfacial dam-
age to periodic composite. Numerical results show that it is easy to couple the phase
field method with a topological optimization algorithm as a fixed mesh can be em-
ployed for the fracture simulation. In addition, including interfacial damage is simple
in the present framework by the extensions of the phase field modeling. A series of nu-
merical examples demonstrate that the fracture resistance of the (periodic) composite
can be significantly increased by the proposed topology optimization process, compar-
ing with the initial designs. Therefore, the present topological optimization framework
seems to be very promising to design new composite materials with enhanced fracture
resistance.

Generally speaking, design of multiscale structures without scale saparation and
fracture resistance optimization are both new fields that remain relatively unexplored
so far, until recently. Combining (new) topology optimization techniques and additive
manufacturing processes, many potential developments can be carried out for engi-
neering problems. In the following we provide a few perspectives to the present thesis
work.
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(1) From the Chapter 2, the cellular automata method does not require sensitivity analy-
sis in the optimization process, resulting in a great convenience for structural topol-
ogy optimization, no matter in mono or multiscale design framework. Further re-
search based on the cellular automata method could be conducted to study the si-
multaneous heterogeneous materials and structures design in the context of non-
separated scales as in Chapter 5. This advantage could be further exploited in non-
linear multiscale topology optimization, such as the crashworthiness design of au-
tomotive graded structures.

(2) In the context of non-separated scales, improvements of connectivity between op-
timized periodic cells (see e.g. Fig. 5.17) can be investigated. In addition, the ma-
terial microstructures have been assumed to be periodic in this work, even though
this is not mandatory. Optimization design of non-periodic materials to fully re-
lease the design freedom within multiscale framework and achieve higher perfor-
mance structures could constitute an interesting future study. Furthermore, the de-
velopment and verification of advanced lattice structure by additive manufacturing
processes, while considering large deformation problems and multi-functional and
multi-physics behavior would have also great research prospects.

(3) Finally, we have initiated through Chapter 7 a wide field of study concerning topol-
ogy optimization for maximizing the fracture resistance. The preliminary results
presented in this thesis could be further investigated along the following lines: (a)
reducing the associated computational costs; (b) experimental validations of the pre-
dicted fracture resistance (using e.g. 3D printing, 3D micro tomography and in-
situ testing); (c) extension of such studies to other mechanical behaviors (fracture
in elastoplastic and viscoelastic materials) and (d) developing multiscale analysis in
this context to apply this methodology at the scale of a structure. Recent works [121]
could provide promising basis for such explorations.
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Appendix A

The ETO Matlab code

This appendix contains a Matlab code for optimal design of continuum structures
based on the evolutionary topology optimization (ETO) method proposed in Chap-
ter 2. The code comes primarily from [44], which is developed on top of the 88-line
code [12] with the implementation of the ETO method. The design domain is assumed
rectangular and discretized into square plane stress elements. The main program is
called form the Matlab prompt by the commands

eto(nelx, nely, volfrac, er, rmin, ctp)
where nelx and nely denote the total number of elements in the horizontal and vertical
directions respectively, volfrac is the prescribed volume fraction, er is the evolutionary
rate, rmin is the filter radius, and ctp specifies the case type of benchmark design. The
ctp takes values 1, 2, and 3 denoting three benchmark design cases of stiffness maxi-
mization design subject to volume fraction constraint: half-MBB beam design, clamped
cantilever design, and roller-supported halfwheel design.

1 function eto(nelx,nely,volfrac,er,rmin,ctp)

2 %% INITIALIZATION

3 vol = 1; change = 1; ij = 0; xmin = 1e-6;

4 vx = ones(nely,nelx);

5 %% MATERIAL PROPERTIES

6 E0 = 1; Emin = E0*xmin; nu = 0.3; pen = 3.0;

7 %% PREPARE FINITE ELEMENT ANALYSIS

8 A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];

9 A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];

10 B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];

11 B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];

12 KE = 1/(1-nu^2)/24*([A11 A12;A12’ A11]+nu*[B11 B12;B12’ B11

]);

13 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);

14 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1)

;
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15 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1]

-2 -1],nelx*nely,1);

16 iK = reshape(kron(edofMat,ones(8,1))’,64*nelx*nely,1);

17 jK = reshape(kron(edofMat,ones(1,8))’,64*nelx*nely,1);

18 %% ELEMENTAL NODES AND COORDINATES

19 nodelast = reshape(nodenrs(1:end-1,1:end-1),nelx*nely,1);

20 elenod = repmat(nodelast,1,4) + repmat([1 nely + [2 1] 0 ],

nelx*nely,1);

21 [nodex,nodey] = meshgrid(0:1:nelx,nely:-1:0);

22 %% DEFINE LOADS AND SUPPORTS

23 switch(ctp)

24 case 1 % HALF-MBB BEAM

25 F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);

26 fixeddofs = union(1:2:2*(nely+1), 2*(nely+1)*(nelx+1));

27 case 2 % CANTILEVER

28 F = sparse(2*(nely+1)*(nelx+1)-nely,1,-1,2*(nely+1)*(nelx

+1),1);

29 fixeddofs = (1:2*(nely+1));

30 case 3 % HALF-WHEEL

31 F = sparse(2*(nely+1)*(nelx/2+1),1,-1,2*(nely+1)*(nelx+1)

,1);

32 fixeddofs = union(2*nely+1:2*(nely+1), 2*(nely+1)*(nelx+1))

;

33 end

34 U = zeros(2*(nely+1)*(nelx+1),1);

35 alldofs = (1:2*(nely+1)*(nelx+1));

36 freedofs = setdiff(alldofs,fixeddofs);

37 %% PREPARE FILTER

38 iH = ones((nelx+1)*(nely+1)*(2*(ceil(rmin)+1))^2,1);

39 jH = ones(size(iH)); sH = zeros(size(iH)); k =0;

40 [elex,eley] = meshgrid(1.5:nelx+0.5,1.5:nely+0.5);

41 for i1 = 1:nelx+1

42 for j1 = 1:nely+1

43 e1 = (i1-1)*(nely+1)+j1;

44 for i2 = max(i1-ceil(rmin),1):min(i1+ceil(rmin)-1,

nelx)

45 for j2 = max(j1-ceil(rmin),1):min(j1+ceil(rmin)-1,

nely)

46 e2 = (i2-1)*nely+j2; k = k+1; iH(k) = e1;
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47 jH(k) = e2;

48 sH(k) = max(0,rmin-sqrt((i1-elex(j2,i2))^2+(j1-

eley(j2,i2))^2));

49 end

50 end

51 end

52 end

53 H = sparse(iH,jH,sH); Hs = sum(H,2);

54 %% START ITERATION

55 while change > 0.0001

56 ij = ij + 1; vol = max(vol*(1-er), volfrac);

57 if ij > 1; olddcnd = dcnd; end

58 %% FE-ANALYSIS

59 sK = reshape(KE(:)*(vx(:)’*E0+(1-vx(:))’*Emin),64*nelx*nely

,1);

60 K = sparse(iK,jK,sK); K = (K+K’)/2;

61 U(freedofs) = K(freedofs,freedofs)\F(freedofs);

62 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

63 ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);

64 c(ij) = sum(sum((vx.*E0+(1-vx).*Emin).*ce));

65 dc = ((1-vx)*xmin.^(pen-1)+vx)*E0.*ce;

66 %% FILTERING/MODIFICATION OF NODAL SENSITIVITIES

67 dcnd = reshape((H*dc(:)./Hs),nely+1,nelx+1);

68 if ij > 1; dcnd = (dcnd+olddcnd)/2.; end

69 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES

70 l1 = min(dcnd(:)); l2 = max(dcnd(:));

71 while (l2-l1)/abs(l1+l2) > 1.0e-9

72 ls = (l1+l2)/2.0;

73 dcth = dcnd(:)-ls;

74 for i = 1:nely*nelx

75 if min(dcth(elenod(i,:))) > 0

76 vx(i) = 1;

77 elseif max(dcth(elenod(i,:))) < 0

78 vx(i) = 0;

79 else

80 ngrid = 40;

81 [s,t] = meshgrid(-1+1/ngrid:2/ngrid:1-1/ngrid,-1+1/

ngrid:2/ngrid:1-1/ngrid);
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82 ps = (1 - s(:)).*(1 - t(:))/4 * dcth(elenod(i,1)) +

(1 + s(:)).*(1 - t(:))/4 * dcth(elenod(i,2))...

83 + (1 + s(:)).*(1 + t(:))/4 * dcth(elenod(i,3)) +

(1-s(:)).*(1 + t(:))/4 * dcth(elenod(i,4));

84 vx(i) = length(find( ps >= 0 ))/length(s(:));

85 end

86 end

87 if mean(vx(:)) - vol > 0;

88 l1 = ls;

89 else

90 l2 = ls;

91 end

92 end

93 %% PLOT RESULTS

94 if ij > 10; change = abs(sum(c(ij-9:ij-5))-sum(c(ij-4:ij)))

/sum(c(ij-4:ij)); end

95 fprintf(’It.:%3i Obj.:%8.4f Vol.:%4.3f ch.:%4.5f\n’,(ij),c(

ij),mean(vx(:)),change);

96 contourf( nodex,nodey, (dcnd-ls), [0 0] ); axis equal; axis

tight; axis off; pause(1e-6);

97 end

98 end
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