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Soutenue le 10 décembre devant le jury composé de :
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RÉSUMÉ

Asymptotiques et fluctuations des plus grandes valeurs propres de matrices de covariance
empirique associées à des processus stationnaires à longue mémoire

by

Peng TIAN

Soit (Xt)t∈Z un processus stationnaire centré. Nous considérons la matrice d’autocovariance

empirique

QN :=
1

n
XNX

∗
N ,

où XN = (Xi,j) est une N × n matrice dont les colonnes X·,j = (X1,j , . . . , XN,j)
> sont des

copies i.i.d. du vecteur aléatoire (X1, . . . ,XN )>. Pour N fixé, lorsque n tend vers l’infini, et

sous certaines conditions, les valeurs propres de QN convergent vers les valeurs propres de

la matrice d’autocovariance sous-jacente. Cependant l’hypothèse N � n n’est bien souvent

pas justifiée, notamment si l’on travaille avec des données de grande dimension. Il est alors

plus réaliste de supposer que N est du même ordre que la taille de l’échantillon n, et donc

que N = Nn →∞ tel que limn→∞N/n =: r ∈ (0,∞). On s’intéresse alors le comportement

asymptotique du spectre de QN . Soit µQN la distribution spectrale empirique de QN , à

savoir

µQN =
1

N

N∑
i=1

δλi(QN )

où les λi(QN ) sont les valeurs propres deQN et δx la masse de Dirac au point x. Merlevède et

Peligrad [43] ont montré que si le processus (Xt)t∈Z est strictement stationnaire centré, dans

L2 satisfaisant des conditions faibles de régularité, alors presque sûrement, µQN convergeait

ii



étroitement vers une distribution non aléatoire µ ne dépendant que de la densité spectrale

du processus (Xt)t∈Z.

Ainsi, pour une très large variété de processus stationnaires, y compris ceux à longue

mémoire, la distribution spectrale empirique de la matrice d’autocovariance associée admet

toujours une limite ne dépendant que de la densité spectrale du processus sous-jacent. Ce

résultat s’applique en particulier aux processus linéaires Xt =
∑

j≥0 ajεt−j où (εj)j est une

suite de v.a. réelles i.i.d. centrées, dans L2 et (ak) ∈ `2.

Ce résultat montre aussi que si la densité spectrale est continue et bornée (ce qui est le

cas des processus linéaires dont les coefficients (ak) sont absolument sommables), alors la

distribution spectrale limite a un support compact. Par contre si le processus (Xt)t∈Z exhibe

de la longue mémoire (en particulier si les covariances ne sont pas absolument sommables),

le support de la loi limite n’est plus compact et des études plus fines du comportement des

valeurs propres sont alors naturelles afin de pouvoir étudier le ”degré” de longue mémoire

du processus sous-jacent. Notamment, nous nous intéresserons aux plus grandes valeurs

propres de QN .

Ainsi, motivé par l’étude des processus stationnaires à mémoire longue, nous étudions,

dans cette thèse, les asymptotiques et les fluctuations des m plus grandes valeurs propres

λ1(SN (T )), . . . , λm(SN (T )) (avec m un entier fixé arbitraire) de la matrice

SN (T ) =
1

n
T

1
2
NZNZ

∗
NT

1
2
N (0.1)

où ZN = (Zi,j) est une N ×n matrice ayant entrées i.i.d. réelles ou complexes centrées avec

la variance unitaire, et TN est une N×N matrice de Toeplitz réelle symétrique déterministe,

dont la norme spectrale tend vers l’infini. Nous nous intéresserons plus particulièrement

au cas où TN est la N -ième matrice d’autocovariance d’un processus stationnaire à long

mémoire, de sorte que SN peut être considéré comme une représentation linéaire de la

matrice d’autocovariance empirique du processus. Nous étudions ce problème dans le régime

N,n→∞ et Nn−1 → r ∈ (0,∞).

Nous sommes d’abord amenés à étudier les plus grandes valeurs propres ainsi que leurs

vecteurs propres associés de matrices de Toeplitz déterministes de dimensions croissantes.
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Dans le cas où

TN = (γ(i− j))N−1
i,j=0

avec

γ(h) := (1 + |h|)ρL(|h|)

pour un certain ρ ∈ (−1, 0) et une fonction L à variation lente à l’infini, nous décrivons le

comportement des m plus grandes valeurs propres de TN ainsi que celui des vecteurs propres

associés. En particulier, nous prouvons que les m plus grandes valeurs propres tendent vers

l’infini et satisfont une propriété de type trou spectral multiple. Nous prouvons également

une propriété de délocalisation pour les vecteurs propres associés.

Notre étude ne se limite pas au cas où les TN sont les matrices de Toeplitz symétriques

considérées ci-dessus. Nous considérerons également le modèle générique SN (Γ) défini par

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N ,

où ΓN est une N ×N matrice hermitienne semi-définie positive déterministe dont les plus

grandes valeurs propres λ1(ΓN ), . . . , λm(ΓN ) tendent vers l’infini. Nous étudions d’abord

l’asymptotique des plus grandes valeurs propres et nous montrons que sous de faibles condi-

tions, λj(SN (Γ)) ∼ λj(ΓN ) pour tout j = 1, . . . ,m. Nous étudions ensuite leurs fluctuations

dans différents cas. Dans tous ces cas, le vecteur aléatoire (λ1(SN (Γ)), . . . , λm(SN (Γ)))>

est asymptotiquement gaussien sous la normalisation λmax(ΓN )/
√
n, mais la matrice de

covariance de la distribution limite dépend fortement de ΓN .

Nous considérons d’abord le cas où ΓN est block-diagonale. Dans cette situation, le

résultat obtenu peut être appliqué pour étudier le comportement asymptotique des plus

grandes valeurs propres des matrices d’autocovariance empiriques associées aux processus

stationnaires et gaussiens à longue mémoire.

On considère ensuite le cas où ΓN = TN avec ρ ∈ (−3/4, 0). Dans ce cas, les fluctuations

ne dépendent que de EZ2
i,j . Ainsi, si les entrées Zi,j sont réelles de variance unitaire, ou

complexes avec EZ2
i,j = 0, les plus grandes valeurs propres fluctuent de façon complètement

universelle.
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Notons que si ρ < −1, le processus T
1/2
N ZN est alors un processus stationnaire à mémoire

courte et la plus grande valeur propre fluctue suivant la loi de Tracy-Widom (TW). Le cas

ρ = −1 représente donc la frontière entre la longue mémoire et la courte mémoire. Ainsi,

plus ρ se rapproche de −1 et plus on se rapproche du cadre de la courte mémoire.Nous con-

jecturons que lorsque ρ ∈ (−1,−3/4], le résultat asymptotique de fluctuations gaussiennes

reste vrai. Nous donnons une preuve partielle dans l’hypothèse (jusqu’ici non prouvée pour

TN ) que tous les vecteurs propres de TN sont uniformément délocalisés.
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ABSTRACT

Asymptotics and fluctuations of largest eigenvalues of empirical covariance matrices
associated with long memory stationary processes

by

Peng TIAN

Let (Xt)t∈Z be a centered stationary process, we consider the empirical autocovariance

matrix

QN :=
1

n
XNX

∗
N ,

where XN = (Xi,j) is a N × n matrix whose columns X·,j = (X1,j , . . . , XN,j)
> are i.i.d.

copies of the random vector (X1, . . . ,XN )>. For a fixed N , when n tends to infinity, and

under certain conditions, the eigenvalues of QN converge to the eigenvalues of the underlying

autocovariance matrix. However, the hypothesis N � n is not often satisfied, especially

when working with large data. It is then more realistic to assume that N is of the same

order as the sample size n, and hence N = Nn →∞ such that limn→∞N/n =: r ∈ (0,∞).

We are interested in the asymptotic behavior of the spectrum of QN . Let µQN be the

empirical spectral distribution of QN , recall that

µQN =
1

N

N∑
i=1

δλi(QN ),

where λi(QN ) are the eigenvalues of QN and δx is the Dirac mass at the point x. Merlevède

and Peligrad [43] showed that if the process (Xt)t∈Z is strictly stationary centered, in L2,

and satisfies some weak conditions of regularity, then almost surely, µQN converges weakly
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towards a non-random distribution µ, depending only on the spectral density of the process

(Xt)t∈Z.

Thus, for a very wide range of stationary processes, including those with long memory,

the empirical spectral distribution of the associated autocovariance matrix always has a

limit depending only on the spectral density of the underlying process. This result applies

in particular to linear processes Xt =
∑

j≥0 ajεt−j where (εj)j is a sequence of real i.i.d.

centered r.v, in L2 and (ak) ∈ `2.

This result also shows that if the spectral density is continuous and bounded (which

is the case of linear processes whose coefficients (ak) are absolutely summable), then the

limit spectral distribution has a compact support. To the contrary, if the process (Xt)t∈Z

exhibits the long memory (in particular if the covariances are not absolutely summable),

the support of the limit spectral distribution is no longer compact and finer studies of the

behavior of the eigenvalues are then natural, in order to study the ”degree” of long memory

of the underlying process. In particular, we will be interested in studying the asymptotic

behaviour of the largest eigenvalues of QN .

Motivated by the study of long memory stationary processes, we then study in this

thesis the asymptotics and the fluctuations of the m (with m an arbitrary fixed integer)

largest eigenvalues λ1(SN (T )), . . . , λm(SN (T )) of the matrix

SN (T ) =
1

n
T

1
2
NZNZ

∗
NT

1
2
N (0.2)

where ZN = (Zi,j) is a N × n matrix having i.i.d. centered real or complex entries with

variance one, and TN is a N × N deterministic real symmetric Toeplitz matrix, whose

spectral norm goes to infinity. More precisely, we are particularly interested in considering

TN as the Nth autocovariance matrix of a long range dependent stationary process, so that

SN can be viewed as a linear representation of sample autocovariance matrix of the process.

We study this problem in the regime N,n→∞ and Nn−1 → r ∈ (0,∞).

First we are led to study the largest eigenvalues and the associated eigenvectors of
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deterministic Toeplitz matrices of growing dimensions. For the case where

TN = (γ(i− j))N−1
i,j=0

with

γ(h) := (1 + |h|)ρL(|h|)

for some ρ ∈ (−1, 0) and some slowly varying function L at infinity, we give a complete

picture of the behavior of the m largest eigenvalues and the associated eigenvectors of

TN . In particular, we prove that the m largest eigenvalues tend to infinity, and satisfy a

multiple spectral gap property. We also prove a delocalization property for their associated

eigenvectors.

Our study is not limited to the case where TN ’s are the symmetric Toeplitz matrices as

considered above. We shall also consider the generic model SN (Γ) defined by

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N ,

where ΓN is a N × N deterministic positive semi-definite Hermitian matrix whose largest

eigenvalues λ1(ΓN ), . . . , λm(ΓN ) tend to infinity. We first study the asymptotics of the

largest eigenvalues and prove that, under some mild conditions, we have λj(SN (Γ)) ∼

λj(ΓN ) for any j = 1, . . . ,m. Then we study their fluctuations in different cases. In all

these cases, the random vector (λ1(SN (Γ)), . . . , λm(SN (Γ)))> is asymptotically gaussian

in the scale
√
nλ−1

max(ΓN ), but the covariance matrix of the limiting distribution strongly

depends on ΓN .

We first consider the case where ΓN is block-diagonal. In this situation, the obtained

result can be applied to study the asymptotic behavior of the largest eigenvalues of the

empirical autocovariance matrices associated with Gaussian long memory stationary process

(LMSP).

Then we consider the case where ΓN = TN with ρ ∈ (−3/4, 0). In this case the fluctu-

ations depend only on EZ2
i,j . So if the entries Zi,j are real with variance one, or complex

with EZ2
i,j = 0, the top eigenvalues fluctuate in a completely universal way.
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Notice that if ρ < −1, then the process T
1/2
N ZN is a short memory stationary pro-

cess (SMSP) and the limiting distribution of the largest eigenvalue suitably renormalized

follows the TW distribution. The case ρ = −1 represents the threshold between LMSP and

SMSP. Hence the extra-difficulty that arises when ρ ∈ (−1, 0) is close to minus one. We

conjecture that when ρ ∈ (−1,−3/4], the same result holds. We give a partial proof under

the assumption (so far unproved) that all eigenvectors of TN are uniformly delocalized.
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CHAPTER I

Introduction

1.1 Long memory stationary process and its sample covariance matrices

A stochastic process (Xt)t∈Z is (second order) stationary if the following conditions are

satisfied:

E|Xt|2 <∞, EXt = µX and Cov(Xt+h,Xt) = Cov(Xh,X0) = γ(h) ∀t, h ∈ Z

where Cov(Xt+h,Xt) = E(Xt+h−EXt+h)(Xt − EXt), µX is a constant and γ : Z→ C is some

positive definite function, usually called the autocovariance function of the process. Note

that γ(0) is positive and γ(−h) = γ(h) for all h ∈ Z. By stationarity, the autocovariance

matrices TN of the process

TN := Cov


Xt+1

...

Xt+N

 =



γ(0) γ(−1) . . . γ(−N + 1)

γ(1)
. . .

. . .
...

...
. . .

. . . γ(−1)

γ(N − 1) . . . γ(1) γ(0)


(1.1)

are positive semidefinite Hermitian Toeplitz matrices.

By Herglotz’s Theorem, there exists a finite positive measure α on (−π, π], whose Fourier

coefficients are exactly γ(h), i.e.

γ(h) =
1

2π

∫
(−π,π]

e−ihx dα(x) , ∀h ∈ Z .

1



Chapter I Introduction.

This measure α is usually called the symbol of the Toeplitz matrices TN .

The process is usually said to have short memory or to be short range dependent if∑
h∈Z |γ(h)| < ∞. Obviously in this case, the symbol α has a continuous density with

respect to the Lebesgue measure. However, there are several definitions of long range

dependance, all strongly related but not always equivalent, see for instance [45, Chapter

2]. For further discussion, we state them here. First we have to define the slowly varying

functions, and also the quasi-monotone functions.

Definition I.1 (Slowly varying function). A function L is slowly varying at infinity if it is

positive and, for any a > 0,

lim
x→∞

L(ax)

L(x)
= 1 .

Definition I.2 (Quasi-monotone function). A positive function f defined on [0,+∞) and

of locally bounded variation is said to be quasi-monotone if for some δ > 0,

∫ x

0
tδ| df(t)| = O(xδf(x)) .

For a nonnegative function, if it is non-decreasing, then it is quasi-monotone. But the

non-increasing property does not implies the quasi-monotonicity. However when a function

is slowly varying, then it is quasi-monotone whenever it is monotone. See for example

Section 2.7 of [14].

A stationary process (Xt)t∈Z is said to be long range dependent, or to have long memory

or long range dependence, with a long memory parameter d ∈ (0, 1/2), if one of the following

conditions hold.

C I The time series (Xt)t∈Z has a linear representation

Xt = µX +
∞∑
k=0

ψkZt−k

with (Zk)k∈Z a sequence of i.i.d. random variables, and (ψk)k≥0 a sequence of

numbers such that

ψk = (1 + |k|)d−1L1(|k|)

2
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where L1 is a slowly varying function at infinity.

C II The autocovariance function γ satisfies

γ(h) = (1 + |h|)2d−1L2(|h|)

with L2 a slowly varying function at infinity. Notice that ρ = 2d− 1 ∈ (−1, 0).

C III The autocovariance function γ is not absolutely summable

∑
h∈Z
|γ(h)| =∞ .

C IV The symbol α of autocovariance matrices TN has a density fα satisfying

fα(x) = |x|−2dL4(|x|−1) , 0 < |x| ≤ π ,

where L4 is a slowly varying function at infinity.

The above conditions have the following relations:

C I +3

?

�'

C II +3
KS

?
��

C III

C IV

6>

where ⇒ denotes the implication and
?⇒ assumes that the slowly varying function is quasi-

monotone.

Given a centered stationary process (Xt)t∈Z, (i.e. with µX = 0) one can study the

spectral properties of the sample covariance matrix

QN :=
1

n
XNX

∗
N =

1

n

n∑
j=1

X·,jX
∗
·,j (1.2)

where XN is a N × n random matrix whose columns (X·,j , 1 ≤ j ≤ n) are i.i.d copies of

the random vector X1:N = (X1, . . . ,XN )>. In particular, let µQN be the empirical spectral

3



Chapter I Introduction.

distribution (ESD) of QN , defined by

µQN :=
1

N

N∑
k=1

δλk(QN ) ,

one may be interested in the weak limit of µQN , called the limiting spectral distribution

(LSD). This has been treated for example in [43]. In particular, the authors proved that

if the underlying stationary process is regular then the LSD depends only on the spectral

density of the process. They characterized this limit in terms of Stieltjes transform via

a certain simple equation. No rate of convergence to zero of the covariances is imposed,

so, the underlying process can exhibit long memory. Note that if the stationary sequence

has trivial left sigma field, the regularity condition is satisfied and then their result holds

without any other additional assumptions. In particular, this is always true if the entries

are functions of an i.i.d. sequence.

Another problem is the behaviour of individual eigenvalues, especially the asymptotics

and fluctuations of the largest eigenvalues. Let

λ1(QN ) ≥ λ2(QN ) ≥ · · · ≥ λN (QN )

be the eigenvalues of QN arranged in decreasing order, and let m be a fixed positive integer.

We are interested in the study of the asymptotics and fluctuations of the random vector

(λ1(QN ), . . . , λm(QN ))>. With this aim, we are lead to investigate the asymptotic locations

`
(N)
1 , . . . , `

(N)
m of these eigenvalues, and to find proper normalizations a

(N)
1 , . . . , a

(N)
m such that

for any j = 1, . . . ,m,

a
(N)
j

(
λj(QN )− `(N)

j

)
converge in law to a non degenerate distribution (if possible) and to determine this distri-

bution.

If the process is Gaussian, then QN has the linear form SN (T ) defined by

SN (T ) :=
1

n
T

1
2
NZNZ

∗
NT

1
2
N (1.3)

4
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where TN is the Nth autocovariance matrix of the process, and ZN is a N×n random matrix

with i.i.d standard gaussian entries. This is a more classical model in the random matrix

theory, but here the Toeplitz nature of TN gives to this model some special perspectives.

It is well-known since Szegő’s theorem that if the symbol α has a bounded density

fα ∈ L∞(−π, π), called the spectral density of TN , then we have

lim
N→∞

1

N

N∑
k=1

ϕ(λk(TN )) =
1

2π

∫ π

−π
ϕ(fα(x)) dx , (1.4)

where ϕ : R 7→ R is a function continuous on the range of fα. Tyrtyshnikov and Zamarashkin

generalized in [55] the above result of Szegő and relaxed the condition on α. They proved

that the convergence (1.4) holds for general Radon measure α, and with fα ∈ L1(−π, π) the

density of the absolutely continuous part of α with respect to the Lebesgue measure dx on

(−π, π], and ϕ is a continuous function with compact support. In this case we can also call

fα the spectral density of TN .

The equality (1.4) can be interpreted as the vague convergence of probability measures

µTN to the measure ν defined by the integral formula

∫
ϕdν =

1

2π

∫ π

−π
ϕ(fα(x)) dx ∀ϕ ∈ Cb, (1.5)

where Cb denotes the space of all bounded continuous functions. The measure ν being a

probability, the sequence µTN is tight, and the vague convergence coincides with the weak

convergence.

From the above result we can see that in any case of covariance matrix TN , its ESD

µTN converges weakly. Moreover if its spectral density fα is not bounded, then the LSD

of TN is not compactly supported, thus the largest eigenvalues of TN tend to infinity. By

the definitions of long memory and their relations, we conclude that the above happens

under the condition C IV. It happens also under conditions C I and C II, provided that

the slowly varying functions L1, L2 are quasi-monotone.

Clearly studying the limiting distribution of the largest eigenvalues of the sample co-

variance matrix QN defined by (1.2) via the model (1.3) is restricted to the Gaussian case.

5
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However studying the generic sample covariance matrix SN (T ) defined by (1.3) where (Zij)

are i.i.d. but not necessarily Gaussian has an interest in itself since it corresponds to a

linear LMSP. We shall also consider the generic sample covariance matrix

SN (Γ) :=
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N (1.6)

where ΓN is a deterministic positive semidefinite hermitian matrix whose ESD µΓN con-

verge weakly and whose largest eigenvalues tend to infinity. We study the asymptotics and

fluctuations of the m (with m an arbitrary fixed integer) largest eigenvalues of SN (Γ), as

N,n → ∞ and N/n → r ∈ (0,∞). In the sequel, this regime will be denoted simply as

N,n→∞.

1.2 Some references on large empirical covariance matrices

The model SN defined in (1.6) is a classical model of sample covariance matrices in

the random matrix theory, and its spectral properties have been intensively studied in the

regime N,n→∞ in the last several decades.

At a global scale, the LSD of the ESD µSN = N−1
∑N

k=1 δλk(SN ) has been described in

the groundbreaking paper by Marčenko and Pastur [41]. In the important case where SN =

1
nZNZ

∗
N , sometimes referred to as the white noise model, the limiting spectral distribution

of µSN is known as Marčenko-Pastur distribution and admits the following closed-form

expression

PMP ( dλ) :=
(
1− r−1

)
+
δ0( dλ) +

√
[(λ+ − λ)(λ− λ−)]+

2πrλ
dλ , λ± =

(
1±
√
r
)2
,

where x+ := max(x, 0). Later, this result was improved by many others, see for instance

[56, 34, 59, 49, 48]. In [48], Silverstein proved that for the model SN (Γ) defined in (1.6),

if µΓN weakly converges to a certain probability ν supported on R+ (not necessarily with

compact support), then almost surely, the ESD µSN weakly converges to a deterministic

distribution µ, whose Stieltjes transform gµ is the unique solution with positive imaginary

6
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part of the equation

gµ(z) =

∫
1

s(1− r − rzgµ(z))− z
dν(s) ∈ C+, ∀z ∈ C+ . (1.7)

Central limit theorems have also been established for linear spectral statistics
∑N

i=1 f(λi(SN )),

see for instance [34, 32, 3, 44].

At a local scale, the convergence and fluctuations of individual eigenvalues have been

studied, with a special emphasis on the eigenvalues located near each edge of the connected

components (bulk) of the LSD of SN . The spiked eigenvalues, that is those which stay away

from the bulk of the LSD, have also attracted a lot of attention.

For the white noise model, the support of Marčenko-Pastur’s LSD is [(1−
√
r)2, (1+

√
r)2],

with {0} if r > 1. Geman [27] showed that λmax(SN ) → (1 +
√
r)2 almost surely under

moment conditions on the entries. Later, Bai et al. [60, 5, 8] showed that λmax(SN ) almost

surely converges to a finite limit if and only if the fourth moment E|Z(1)
1,1 |4 of the entries is

finite. Concerning the fluctuations of λmax(SN ), they were first studied by Johansson [32]

for standard Gaussian complex entries and by Johnstone [33] for standard Gaussian real

entries. They both established that

γN n
2/3
(
λmax(SN )− (1 +

√
rN )2

)
where rN =

N

n
and γN =

r
1/6
N

(1 +
√
rN )4/3

(1.8)

converges in distribution to TW distributions as N,n → ∞, introduced in [53, 54] to

describe the fluctuations of the largest eigenvalues of GUE and GOE random matrices.

For general sample covariance matrices (1.6), the condition that the spectral norm of

ΓN is uniformly bounded:

sup
N≥1
‖ΓN‖ = sup

N≥1
λmax(ΓN ) < ∞

implies that the LSD µ (defined by its Stieltjes transform gµ which satisfies (1.7)) has a

bounded support. In this case, El Karoui [25] and Lee and Schnelli [39] established Tracy-

Widom type fluctuations of the largest eigenvalue in the complex and real Gaussian case

respectively. By establishing a local law, Bao et al [11], and Knowles and Yin [37] extended

7
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the fluctuations of the largest eigenvalue for general entries.

The case of spiked models has been addressed by Baik et al [9, 10] where some eigenvalues

(the spikes) may separate from the bulk. In [9] where the so-called BBP phase transition

phenomenon is described, Baik et al. study the case where ΓN has exactly m non-unit

eigenvalues `1 ≥ · · · ≥ `m. For complex Gaussian entries, they fully describe the fluctuations

of λmax(SN ) for different configurations of the `i’s. Assume for instance that `1 is simple

(cf. the original paper for the general conditions) then (a) if `1 ≤ 1 +
√
r, λmax(SN ) has

asymptotically TW fluctuations at speed n2/3; (b) if `1 > 1 +
√
r, the sequence

√
n√

`21 − `21rN/(`1 − 1)2

(
λmax(SN )−

(
`1 +

`1rN
`1 − 1

))
(1.9)

is asymptotically Gaussian. In [10] Baik and Silverstein consider general entries and prove

the strong convergence of the spiked eigenvalues; Bai and Yao [6] consider the spiked model

with supercritical spikes (corresponding to the case (b) above) and general entries and

establish Gaussian-type fluctuations for the spiked eigenvalues. Other results are, non

exhaustively, in [12, 13, 23, 7].

To make a rough conclusion from these results, λmax(SN ) does not in general approach

the largest eigenvalue of λmax(ΓN ). Moreover, if λmax(SN ) converges to the bulk edge of

the LSD of µSN , then it often has Tracy-Widom fluctuation at the scale n2/3. If λmax(SN )

converges to a point outside the bulk, it often has Gaussian-type fluctuation at the scale

n1/2.

The previously mentionned results are limited to the case where λmax(ΓN ) is uniformly

bounded. There are however interesting cases where λmax(ΓN ) goes to infinity, see for

instance Forni et al. [26] in a context of econometrics.

Recently and mainly fostered by principal component analysis (PCA) in high dimension,

there has been a renewed interest in the case where a small number of spiked eigenvalues of

the population covariance matrix goes to infinity while the rest of the population eigenvalues

remains bounded. Let us mention in growing generality Jung and Marron [35], Shen et al.

[47], Wang and Fan [57], Cai et al. [20]. In the latter, a complete description of the various

scenarios of the spikes and their multiplicity is considered, and the fluctuations for the first

8
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non-spiked eigenvalue are described. In [38], Ledoit and Wolf consider a similar framework

referred to as the ‘’Arrow model”.

We complement the general picture by considering population covariance matrices with

unbounded limiting spectral distribution. Such a case arises in the context of long memory

stationary processes and is not covered by the existing results. In the framework considered

here, we are not in the case where a majority of the population eigenvalues remains bounded.

In particular, the assumptions in [57, 20] fail to hold.

1.3 Organization and some notations

This thesis is organized as follows. In Section 1.4, we give an overview of all the re-

sults we have obtained concerning not only the asymptotics and the fluctuations of the

largest eigenvalues of large covariance matrices but also the properties of the eigenvalues

and their associated eigenvectors of Toeplitz symmetric deterministic matrices. Chapter II

corresponds to the article Unbounded largest eigenvalue of large sample covariance matrices

by F. Merlevède, J. Najim and P.T. In this article we study the largest eigenvalue of SN (Γ)

defined by (1.6) when ΓN has the block-diagonal form, or in the case where the entries of

ZN are i.i.d. standard Gaussian variables. Chapter III corresponds to the article with the

same title Joint CLT for top eigenvalues of empirical covariance matrices of long memory

stationary processes by P.T. In this article we remove the Gaussian assumption on ZN and

the block-diagonal assumption on ΓN . But we still have to add a new technical assumption

on ΓN which does not cover all the autocovariance matrices TN of LMSP. In Chapter IV

we try to generalize the result of Chapter III for all the linear models SN (T ) corresponding

to LMSP, and we give a partial result.

In Chapters II and III, we keep the original notations of the articles. In other parts of

this thesis we also use some of the general notations appearing in the two articles. We list

these general notations below.

Given x ∈ R, denote by bxc the integer satisfying bxc ≤ x < bxc+ 1.

9
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For two real numbers x, y, we denote

x ∧ y := min(x, y) and x ∨ y := max(x, y) .

Given two integers a ≤ b, we write the set of integers between a and b by

[[a, b]] := {x ∈ Z : a ≤ x ≤ b} .

For a function f ∈ Lp or a vector v ∈ lp, we denote the Lp or lp norm by ‖ · ‖p. For a

matrix or a linear operator A, the norm of A induced by vector norm ‖ · ‖p is denoted by

‖A‖p, and we recall that ‖A‖p := sup‖v‖p=1 ‖Av‖p. We say that a function f or a vector v

is “normalized” or “unit length” when ‖f‖2 = 1 or ‖v‖2 = 1. When functions or vectors

are said to be “orthonormal”, they will be implicitely considered as elements of a Hilbert

space. The inner product of two elements u, v of a Hilbert space is denoted by 〈u, v〉.

For an hermitian operator or matrix A, we denote its real eigenvalues by decreasing

order as

λ1(A) ≥ λ2(A) ≥ . . .

We also denote the largest eigenvalue of A by λmax(A). The spectrum of A is denoted by

Spec(A). If A is a N ×N hermitian matrix, its Frobenius norm ‖A‖F is defined by

‖A‖F :=

√∑
i,j
|Ai,j |2 ,

and we recall that it satisfies

‖A‖F =

√∑N

i=1
|λi(A)|2 .

For a matrix or a vector A, we use A> to denote the transposition of A, and A∗ the

conjugate transposition of A; if A is a N ×N square matrix with real eigenvalues, we use

λ1(A) ≥ · · · ≥ λN (A) to denote its eigenvalues, and sometimes denote λ1(A) = λmax(A).

10
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The ESD µA of A is defined as

µA :=
1

N

N∑
k=1

δλk(A) ,

where δλ is the Dirac measure at λ.

For a N×n matrix M and integers a, b ∈ {1, · · · , N} and c, d ∈ {1, · · · , n}, the following

notations are used to deal with submatrices of M :

Ma:b,· = (Mi,j)a≤i≤b,1≤j≤n , M·,c:d = (Mi,j)1≤i≤N,c≤j≤d , Ma:b,c:d = (Mi,j)a≤i≤b,c≤j≤d .

(1.10)

Similarly we denote M¬i,· the submatrix of M obtained by deleting the ith row. And

M¬i,¬j denotes the submatrix of M obtained by deleting the ith row and the jth column.

By convention, these subscripts have higher priority than the transposition or conjugate

transposition, for example M∗a:b,c:d := (Ma:b,c:d)
∗ is the conjugated transposition of the

submatrix Ma:b,c:d.

Given two complex sequences xn, yn we denote

xn ∼ yn ⇔ lim
n→∞

(
xn
yn

)
= 1 and xn

.
= yn ⇔ lim

n→∞
(xn − yn) = 0 . (1.11)

The notations xn = o(1) and xn = O(1) respectively mean limn→∞ xn = 0 and limn→∞ |xn| <

∞. These notations are also applicable to functions with continuous arguments. If Xn, X

are random variables, the notation Xn = oP (1) means that limn→∞Xn = 0 in probability.

The notations Xn
D−→ X and Xn

P−→ X respectively denote convergence in distribution and

in probability. If µ, µn are measures, we denote with a slight abuse of notation µn
D−→ µ for

the weak convergence of µn to µ.

For two probability measures P and Q on Rm, we denote their Lévy-Prokhorov distance

by dLP(P,Q) which is defined by

dLP(P,Q) := inf{ε : P (A) ≤ Q(Aε) + ε,Q(A) ≤ P (Aε) + ε, ∀A ∈ B(Rm)}, (1.12)

11



Chapter I Introduction.

where Aε is defined by

Aε := {x ∈ Rm : ∃y ∈ A, s.t. ‖x− y‖ < ε}.

It is well known that this distance metrizes the weak convergence. For two random variables

X,Y ∈ Rm and two probability measures µX , µY such that X ∼ µX and Y ∼ µY , we some-

times write dLP(X,Y ), dLP(X,µY ) or dLP(µX , Y ), all these notations denote dLP(µX , µY ).

Given a random variable Y or a sub-algebra G, we denote by EY (X) and EG(X) the

conditional expectation of the random variable X with respect to Y and to G.

We denote by NR(m,σ2) the real Gaussian distribution with mean m and variance σ2;

we refer to NR(0, 1) as the standard real Gaussian distribution. A complex random variable

Z is distributed according to the standard complex Gaussian distribution if Z = U + iV

where U, V are independent, each with distribution NR(0, 1/2). In this case we denote

Z ∼ NC(0, 1). For a symmetric semidefinite positive matrix T , denote by NR(0, T ) the

distribution of a centered Gaussian vector with covariance matrix T . However we also use

the notation N to denote the Gaussian distribution in two circonstances: we may profit

from the ambiguity and we denote the standard Gaussian distribution by N (0, 1), which

can be either real or complex; we may also use N (0, T ) to denote the Gaussian distribution

in a case without ambiguity, for example if a vector V can only be real and we write

V ∼ N (0, T ), then V is real Gaussian.

The cardinal of a set B is denoted by #B. In the proofs we use C to denote a constant

that may take different values from one place to another.

In the proofs we use C to denote a constant that may take different values from one

place to another.

1.4 Main results

1.4.1 Asymptotic spectral properties of Toeplitz matrices

It is clear that the individual eigenvalues of SN (T ) are tightly related to the correspond-

ing eigenvalues of TN . During our study, we discovered that sometimes they are also related

12
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to the associated eigenvectors of TN . So we are led to study the asymptotic behaviours of

the largest eigenvalues of TN as well as of their associated eigenvectors.

We choose the condition C II as the definition of long memory stationary process. On

one hand this definition is relatively general because the conditions C I, C III imply C II

with or without the quasi-monotone condition on the slowly varying function; on the other

hand the condition C II allows us to describe completely the behaviours of eigenvalues and

eigenvectors of TN .

In this section we collect our main results on Toeplitz matrices. They appeared initially

in our papers [42] and [52], which are the object of Chapter II and Chapter III respectively.

Let us consider TN a Toeplitz matrix defined by

TN := (γ(i− j))Ni,j=1 (1.13)

with γ : Z→ R a function of the form

γ(h) = (1 + |h|)ρL(|h|), ∀h ∈ Z, (1.14)

where L is a slowly varying function at infinity and ρ = 2d − 1 ∈ (−1, 0). Let K(ρ) be the

operator defined on L2(0, 1) by

(K(ρ)f)(x) =

∫ 1

0
|x− y|ρf(y) dy , for f ∈ L2(0, 1) . (1.15)

We will describe the eigenvalues and eigenvectors of TN with help of the operator K(ρ),

so we first establish a theorem on the spectral properties of this operator.

Theorem I.3. The operator K(ρ) is compact and positive semidefinite. It has infinitly many

positive eigenvalues. All its nonzero eigenvalues are simple, and the associated eigenfunc-

tions are continuous on [0, 1].

We note that K(ρ) is self-adjoint so for any nonzero eigenvalue λ, its algebraic multiplic-

ity equals to its geometric multiplicity, which is defined as dim ker(λI − K(ρ)). For more

information about algebraic multiplicity, see [40]. So here we say that a nonzero eigenvalue
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λ is simple to mean that

dim ker
(
λI −K(ρ)

)
= 1 .

In the next theorem, we describe the limiting behaviour of the eigenvalues λj(TN ) and

provide a quantitative description of their associated eigenvectors.

Theorem I.4. For any j ≥ 1, we have

lim
N→∞

λj(TN )

Nγ(N)
= λj(K(ρ)) . (1.16)

Moreover let fj be the normalized eigenfunction of K(ρ) associated with λj(K(ρ)), then for

any N , we can choose a normalized eigenvector uj = (u1,j , . . . , uN,j)
> of TN associated with

λj(TN ), such that

lim
N→∞

sup
1≤i≤N

{∣∣∣∣√Nui,j − fj ( i

N

)∣∣∣∣} = 0 . (1.17)

Combining Theorem I.3 and I.4 we get the following two important consequences. The

first consequence is that for any fixed integer m ≥ 1, the m largest eigenvalues of TN

tend to infinity at the same speed, and after normalization by Nγ(N), the m quantities

λ1(TN )/(Nγ(N)), . . . , λm(TN )/(Nγ(N)) converge to m distinct finite limits. In the sequel,

such a property will be called separate limiting property of these eigenvalues. Precisely, a

group of sequences
(
α

(n)
1

)
n
, . . . ,

(
α

(n)
m

)
n

admit the separate limiting property if there exists

a normalizing sequence β(n) > 0 such that the sequences

α
(n)
1

β(n)
, · · · , α

(n)
m

β(n)

converge to m distinct finite limits.

The second consequence is the delocalization of the eigenvector uj associated with

λj(TN ) for any fixed j ≥ 1. Indeed by (1.17), for large N , we have

‖uj‖∞ ≤
1 + ‖fj‖∞√

N
,
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and by Theorem I.3 we have ‖fj‖∞ <∞. Thus we conclude that

‖uj‖∞ = O
(

1/
√
N
)
−−−−→
N→∞

0 .

The next proposition provides a comparison between the global behaviour of TN ’s eigen-

values (trTN or trT 2
N ) and λmax(TN ).

Proposition I.5. Let TN be defined as above.

1. If ρ ∈ (−1/2, 0) or equivalently d ∈ (1/4, 1/2), then TN satisfies

lim
N→∞

trTN√
Nλmax(TN )

= 0 . (1.18)

2. If ρ ∈ (−3/4,−1/2] or equivalently d ∈ (1/8, 1/4], then TN satisfies

lim
N→∞

trT 2
N√

Nλ2
max(TN )

= 0 . (1.19)

In general, we have

Proposition I.6. Let TN be defined as above, for any ρ ∈ (−1, 0) or equivalently d ∈

(0, 1/2), there exists an integer q ≥ 1 such that

lim
N→∞

trT qN√
Nλqmax(TN )

= 0 . (1.20)

1.4.2 Asymptotics of largest eigenvalues of SN (Γ)

Keeping in mind the spectral properties of the Toeplitz matrix TN provided in Section

1.4.1, we consider now the generic covariance matrix SN (Γ). The assumptions made on ΓN

are directly inspired from TN ’s properties.

Let m be a fixed positive integer. We state our results on sample covariance matrix

SN (Γ) under some of the following assumptions:
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A1 (Model setting) Let SN (Γ) be N ×N random matrices defined as

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N

where ZN =
(
Z

(N)
i,j

)
1≤i≤N,1≤j≤n

are N×n matrices whose entries Z
(N)
i,j are i.d. random

variables for all i, j,N , and independent across i, j for each N , satisfying

EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1 and E|Z(N)

i,j |
4 <∞,

and ΓN are N ×N positive semidefinite Hermitian deterministic matrices.

A2 (Asymptotic spectral structure of ΓN ) Given a sequence of N ×N positive semidefinite

deterministic matrices ΓN , the empirical spectral distribution

µΓ̃N :=
1

N

N∑
k=1

δ λk(ΓN )

λmax(ΓN )

of the normalized matrix Γ̃N := ΓN/λmax(ΓN ) converges weakly to δ0.

Example I.7. If µΓN D−→ ν with ν a non-compactly supported probability on R+, then we

have λmax(ΓN )→∞ and one can prove that A2 holds.

A3 The spectral norm λ1(ΓN ) is bounded away from zero, and there exists a constant

κ > 0 such that

λm(ΓN ) ≥ κλ1(ΓN ).

A4 (Subarray assumption on ZN ) For each N , ZN = Z1:N,1:n is the top-left submatrix of

an infinite matrix Z = (Zi,j)i,j≥1, with Zi,j i.i.d random variables satisfying

EZi,j = 0, E|Zi,j |2 = 1 and E|Zi,j |4 <∞.

Proposition I.8. Under A1, A2 and A3, we have

λj(SN (Γ))

λj(ΓN )

P−−−−−→
N,n→∞

1 .
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Chapter I Introduction.

If moreover either the random variables Z
(N)
i,j are standard (real or complex) Gaussian or

Assumption A4 holds, then the above convergence holds almost surely.

The proof of Proposition I.8 is in Appendix A.2. See also Proposition II.3 and II.11 for

the result of the particular case where the largest eigenvalue is studied.

1.4.3 CLT for largest eigenvalues of SN (Γ)

A5 (Multiple spectral gap conditions) For any i = 1, . . . ,m, we assume that

lim
N→∞

λi+1(ΓN )

λi(ΓN )
< 1.

A6 (Block-diagonal structure of ΓN ) For all N , ΓN has the block-diagonal form

ΓN =

Ξm 0

0 ΓN−m

 ,

where Ξm is a m × m diagonal matrix having eigenvalues λ1(ΓN ), . . . , λm(ΓN ) and

ΓN−m is a (N −m)× (N −m) matrix having eigenvalues λm+1(ΓN ), . . . , λN (ΓN ).

A7

lim
N→∞

tr ΓN√
Nλmax(ΓN )

= 0 and E|Zi,j |4 <∞.

A8

lim
N→∞

tr Γ2
N√

Nλ2
max(ΓN )

= 0 and E|Zi,j |8 <∞.

We define

Λm(ΓN ) :=
√
n



λ1(SN (Γ))
λ1(ΓN ) − 1− 1

n

∑
k 6=1

λk(ΓN )
λ1(ΓN )−λk(ΓN )

...

λj(SN (Γ))
λj(ΓN ) − 1− 1

n

∑
k 6=j

λk(ΓN )
λj(ΓN )−λk(ΓN )

...

λm(SN (Γ))
λm(ΓN ) − 1− 1

n

∑
k 6=m

λk(ΓN )
λm(ΓN )−λk(ΓN )


. (1.21)
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We define Λm(TN ) similarly by replacing ΓN with TN and replacing SN (Γ) by SN (T ).

The following theorem is a slight generalization of Theorem II.4 and II.12. By the

discussion in Chapter II, Theorem II.4 is a corollary of Theorem II.12. Note that Theo-

rem II.12 studies the CLT of the largest eigenvalue λmax(SN (Γ)) in the case where ΓN is

block-diagonal, i.e. the particular case with m = 1 of Theorem I.9. With the same method

it is easy to generalize Theorem II.12 and get the following result.

Theorem I.9. We assume A1, A2, A3, A5, and A6. Then we have

Λm(ΓN )
D−−−−−→

N,n→∞
N (0, (E|Z1,1|4 − 1)Im) . (1.22)

From the above result, we can see for example, when Zi,j are i.i.d standard real Gaussian

variables and ΓN are real symmetric matrices, or when Zi,j are i.i.d standard complex

Gaussian variables and ΓN are hermitian matrices, then ΓN can be diagonalized and we get

Λm(ΓN )
D−−−−−→

N,n→∞
N (0, σ2Im)

where σ2 = 2 if Zi,j are real, and σ2 = 1 if Zi,j are complex.

But if the entries Zi,j are not Gaussian, and if ΓN ’s do not fulfill the assumption A6,

the above theorem fails to apply. In order to generalize the above result, and mainly to

relax the block-diagonal condition on ΓN in non-Gaussian case, we developpe the following

theorem.

Theorem I.10. We assume A1, A3, A5, and either A7 or A8. Then we have

dLP(Λm(ΓN ),N (0,Σ(N)
m )) −−−−−→

N,n→∞
0 , (1.23)

where dLP denotes the Lévy-Prokhorov distance, Σ
(N)
m = Im + (σ

(N)
i,j )mi,j=1 with

σ
(N)
i,j =

(
E|Z1,1|4 − |EZ2

1,1|2 − 2
) N∑
k=1

|uk,i|2|uk,j |2 + |EZ2
1,1|2

∣∣∣∣∣
N∑
k=1

uk,iuk,j

∣∣∣∣∣
2

. (1.24)

and uj := (uj,1, . . . , uj,N )> is a normalized eigenvector associated with λj(ΓN ).
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This theorem corresponds to Theorem III.4. Note that under the assumptions of The-

orem I.10, if moreover ΓN satisfies the block-diagonal condition A6, we recover the result

of Theorem I.9. In another case, if ΓN are real symmetrix matrices and the eigenvectors

associated to the m largest eigenvalues of ΓN are delocalized, i.e.

‖uj‖∞ ≤
K√
N

for some constant K > 0 and for j = 1, . . . ,m, then

Σ(N)
m −−−−−→

N,n→∞
(1 + |EZ2

i,j |2)Im ,

and thus we get

Λm(ΓN )
D−−−−−→

N,n→∞
N (0, (1 + |EZ2

i,j |2)Im) .

Moreover if Zi,j are real, or if Zi,j are complex with EZ2
i,j = 0, then Λm(ΓN ) fluctuates in

the same way as the Gaussian case.

1.4.4 Applications to long memory stationary processes

In this section, we give the corollaries of the previous results in case where ΓN is a

Toeplitz matrix as defined in (1.13).

Let SN (T ) be defined as (1.3) where TN is defined as (1.13) and ZN is a N × n matrix

with i.i.d entries Z
(N)
i,j such that

EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1, and E|Z(N)

i,j |
4 <∞ .

Combining the above results we obtain the following theorem.

Theorem I.11. As N,n→∞, for any integer m ≥ 1, for any j = 1, . . . ,m, we have

lim
N→∞

λj(SN (T ))

λj(TN )
= 1

in probability. Moreover, if one of the following conditions holds
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1. The parameter ρ belongs to (−1/2, 0) or equivalently d ∈ (1/4, 1/2), and E|Z(N)
i,j |4 <

∞;

2. The parameter ρ belongs to (−3/4,−1/2] or equivalently d ∈ (1/8, 1/4], and E|Z(N)
i,j |8 <

∞,

then we have

Λm(TN )
D−−−−−→

N,n→∞
N (0, (1 + |E(Z

(N)
i,j )2|2)Im) .

When the long memory stationary process (Xt)t∈Z is Gaussian (real or circularly sym-

metric complex, which will be defined below), as the sample covariance matrix QN defined

by (1.2) has the linear representation SN (T ), we can apply the above results on QN .

Definition I.12. We say that a complex Gaussian process (Xt)t∈Z is circularly symmetric

if for any N ∈ N the Gaussian vector X1:N := (X1, . . . ,XN )> is circularly symmetric, i.e.

for any φ ∈ R, the vector eiφX1:N has the same distribution as X1:N .

Corollary I.13. Let (Xt)t∈Z be a Gaussian stationary process either real or circularly com-

plex and satisfying satisfying C II with long memory parameter d ∈ (0, 1/2). Let QN be

defined by (1.2), and TN be the autocovariance matrix. Then for any j ≥ 1, we have

lim
N,n→∞

λj(QN )

λj(TN )
= 1 a.s.

and for any m ≥ 1, we have

√
n


λ1(QN )
λ1(TN ) − 1− 1

n

∑
k 6=1

λk(TN )
λ1(TN )−λk(TN )

...

λm(QN )
λm(TN ) − 1− 1

n

∑
k 6=m

λk(TN )
λm(TN )−λk(TN )

 D−−−−−→
N,n→∞

N (0, σ2Im)

where σ2 = 1 if the process is complex gaussian and circularly symmetric , and σ2 = 2 if

the process is real gaussian.

20



Chapter I Introduction.

1.4.5 Extension of the results for large covariance matrices close to short mem-

ory

For the model SN (T ) with non-gaussian entries Z
(N)
i,j , when the parameter d approaches

to the threshold of short memory, i.e. d ∈ (0, 1/8], or equivalently ρ ∈ (−1,−3/4], the

fluctuations of largest eigenvalues are not yet solved. However we have the following partial

result: if we can prove that the eigenvectors of TN are uniformly delocalized, then with some

other assumptions, the result of Theorem I.11 still holds. We denote uj := (uj,k)1≤k≤N the

normalized eigenvector associated with λj(ΓN ).

Definition I.14. We say that two random variables X,Y match to order k if for any

integers α, β ≥ 0 s.t α+ β ≤ k, we have

EXαXβ = EY αY β.

A9 The entries Z
(N)
i,j have all finite moments, i.e.

E|Z(N)
i,j |

k <∞

for any k ≥ 1. Moreover we assume that Z
(N)
i,j matches with a standard real or complex

Gaussian variable G up to order 3.

A10 There exists an integer q ≥ 1 such that

lim
N→∞

tr ΓqN√
Nλqmax(ΓN )

= 0 .

A11 We assume that the eigenvectors of ΓN are uniformly delocalized, i.e. there exists a

constant K independent of j and N , such that

‖uj‖∞ ≤
K√
N
.
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Theorem I.15. Under A1, A3, A5, and in addition A9-A11, then the fluctuations

√
n


λ1(SN (Γ))
λ1(ΓN ) − 1− 1

n

∑
k 6=1

λk(ΓN )
λ1(ΓN )−λk(ΓN )

...

λm(SN (Γ))
λm(ΓN ) − 1− 1

n

∑
k 6=m

λk(ΓN )
λm(ΓN )−λk(ΓN )

 D−−−−−→
N,n→∞

N (0, (1 + |EZ(N)2
1,1 |

2)Im)

hold.

The proof of this theorem will be given in Chapter IV. It is very technical and use a

combination of the Lindeberg’s method together with a fine analysis of some moments with

the help of techniques coming from graph theory and combinatorics.

If ΓN is the Toeplitz matrix TN as defined in (1.13) and (1.14) with long memory

parameter d ∈ (0, 1/8] or ρ ∈ [−3/4, 0), in addition to A2 and A3, TN satisfies also (A10)

(see Proposition I.6). However, to know if TN does satisfy A11 remains an open question.

From simulations results, we conjecture that it may be true.

Conjecture I.16. The result of Theorem I.11 holds for all SN (T ) with parameter d ∈

(0, 1/2) or equivalently ρ ∈ (−1, 0).
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CHAPTER II

Unbounded largest eigenvalue of large sample covariance

matrices: Asymptotics, fluctuations and applications

This chapter corresponds to the article with the same title Unbounded largest eigen-

value of large sample covariance matrices: Asymptotics, fluctuations and applications by F.

Merlevède, J. Najim and P.T. This article has been submitted to Linear Algebra and its

Applications for publication. See [42].

2.1 Abstract

Given a large sample covariance matrix SN = 1
nΓ

1/2
N ZNZ

∗
NΓ

1/2
N , where ZN is a N × n

matrix with i.i.d. centered entries, and ΓN is a N × N deterministic Hermitian posi-

tive semidefinite matrix, we study the location and fluctuations of λmax(SN ), the largest

eigenvalue of SN as N,n → ∞ and Nn−1 → r ∈ (0,∞) in the case where the empirical

distribution µΓN of eigenvalues of ΓN is tight (in N) and λmax(ΓN ) goes to +∞. These

conditions are in particular met when µΓN weakly converges to a probability measure with

unbounded support on R+.

We prove that asymptotically λmax(SN ) ∼ λmax(ΓN ). Moreover when the ΓN ’s are

block-diagonal, and the following spectral gap condition is assumed:

lim sup
N→∞

λ2(ΓN )

λmax(ΓN )
< 1,

where λ2(ΓN ) is the second largest eigenvalue of ΓN , we prove Gaussian fluctuations for
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Chapter II Unbounded largest eigenvalue of sample covariance matrices.

λmax(SN )/λmax(ΓN ) at the scale
√
n.

In the particular case where ZN has i.i.d. Gaussian entries and ΓN is the N × N

autocovariance matrix of a long memory Gaussian stationary process (Xt)t∈Z, the columns

of Γ
1/2
N ZN can be considered as n i.i.d. samples of the random vector (X1, . . . ,XN )>.

We then prove that ΓN is similar to a diagonal matrix which satisfies all the required

assumptions of our theorems, hence our results apply to this case.

2.2 Introduction

The model.

In this paper we consider the following model of sample covariance matrix

SN =
1

n
Γ

1/2
N ZNZ

∗
NΓ

1/2
N (2.1)

where ZN =
(
Z

(N)
i,j

)
is a N × n matrix whose entries Z

(N)
i,j are real or complex random

variables identically distributed (i.d.) for all i, j,N and independent across i, j for each N ,

satisfying

EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1 and E|Z(N)

i,j |
4 <∞ , (2.2)

and ΓN is a N ×N deterministic Hermitian positive semidefinite matrix with eigenvalues

0 ≤ λN (ΓN ) ≤ · · · ≤ λ1(ΓN ) := λmax(ΓN ) .

We consider the case where λmax(ΓN ) goes to infinity as N →∞ while the empirical spectral

distribution (ESD) µΓN associated with ΓN ,

µΓN :=
1

N

N∑
k=1

δλk(ΓN ) ,

forms a tight sequence of probabilities on R+ := [0,∞). These conditions encompass the

important case where µΓN converges to a limiting distribution with unbounded support on

R+.
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In this context, our aim is to study the location and fluctuations of the largest eigenvalue

λmax(SN ) in the asymptotic regime where

N,n→∞ and
N

n
→ r ∈ (0,∞) . (2.3)

The regime (2.3) will be simply refered to as N,n→∞ in the sequel.

The model SN defined in (2.1) is a classical model of sample covariance matrices in

the random matrix theory, and its spectral properties have been intensively studied in the

regime (2.3) in the last several decades.

At a global scale, the LSD of the ESD µSN = N−1
∑N

k=1 δλk(SN ) has been described in

the groundbreaking paper by Marčenko and Pastur [41]. In the important case where SN =

1
nZNZ

∗
N , sometimes referred to as the white noise model, the limiting spectral distribution

of µSN is known as Marčenko-Pastur distribution and admits the following closed-form

expression

PMP ( dλ) :=
(
1− r−1

)
+
δ0( dλ) +

√
[(λ+ − λ)(λ− λ−)]+

2πrλ
dλ , λ± =

(
1±
√
r
)2
,

where x+ := max(x, 0). Later, this result was improved by many others, see for instance

[56, 34, 59, 49, 48]. In [48], Silverstein proved that for the model SN defined in (2.1), if µΓN

weakly converges to a certain probability ν supported on R+ (not necessarily with compact

support), then almost surely, the ESD µSN weakly converges to a deterministic distribution

µ, whose Stieltjes transform gµ is the unique solution with positive imaginary part of the

equation

gµ(z) =

∫
1

s(1− r − rzgµ(z))− z
dν(s) ∈ C+, ∀z ∈ C+ . (2.4)

Central limit theorems have also been established for linear spectral statistics
∑N

i=1 f(λi(SN )),

see for instance [34, 32, 3, 44].

At a local scale, the convergence and fluctuations of individual eigenvalues have been

studied, with a special emphasis on the eigenvalues located near each edge of the connected

components (bulk) of the LSD of SN . The spiked eigenvalues, that is those which stay away

from the bulk of the LSD, have also attracted a lot of attention.
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For the white noise model, the support of Marčenko-Pastur’s LSD is [(1−
√
r)2, (1+

√
r)2],

with {0} if r > 1. Geman [27] showed that λmax(SN ) → (1 +
√
r)2 almost surely under

moment conditions on the entries. Later, Bai et al. [60, 5, 8] showed that λmax(SN ) almost

surely converges to a finite limit if and only if the fourth moment E|Z(1)
1,1 |4 of the entries is

finite. Concerning the fluctuations of λmax(SN ), they were first studied by Johansson [32]

for standard Gaussian complex entries and by Johnstone [33] for standard Gaussian real

entries. They both established that

γN n
2/3
(
λmax(SN )− (1 +

√
rN )2

)
where rN =

N

n
and γN =

r
1/6
N

(1 +
√
rN )4/3

(2.5)

converges in distribution to Tracy-Widom (TW) distributions as N,n→∞, introduced in

[53, 54], to describe the fluctuations of the largest eigenvalues of GUE and GOE random

matrices.

For general sample covariance matrices (2.1), the condition that the spectral norm of

ΓN is uniformly bounded:

sup
N≥1
‖ΓN‖ = sup

N≥1
λmax(ΓN ) < ∞

implies that the LSD µ (defined by its Stieltjes transform gµ which satisfies (2.4)) has a

bounded support. In this case, El Karoui [25] and Lee and Schnelli [39] established Tracy-

Widom type fluctuations of the largest eigenvalue in the complex and real Gaussian case

respectively. By establishing a local law, Bao et al [11], and Knowles and Yin [37] extended

the fluctuations of the largest eigenvalue for general entries.

The case of spiked models has been addressed by Baik et al [9, 10] where some eigenvalues

(the spikes) may separate from the bulk. In [9] where the so-called BBP phase transition

phenomenon is described, Baik et al. study the case where ΓN has exactly m non-unit

eigenvalues `1 ≥ · · · ≥ `m. For complex Gaussian entries, they fully describe the fluctuations

of λmax(SN ) for different configurations of the `i’s. Assume for instance that `1 is simple

(cf. the original paper for the general conditions) then (a) if `1 ≤ 1 +
√
r, λmax(SN ) has
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asymptotically TW fluctuations at speed n2/3; (b) if `1 > 1 +
√
r, the sequence

√
n√

`21 − `21rN/(`1 − 1)2

(
λmax(SN )−

(
`1 +

`1rN
`1 − 1

))
(2.6)

is asymptotically Gaussian. In [10] Baik and Silverstein consider general entries and prove

the strong convergence of the spiked eigenvalues; Bai and Yao [6] consider the spiked model

with supercritical spikes (corresponding to the case (b) above) and general entries and

establish Gaussian-type fluctuations for the spiked eigenvalues. Other results are, non

exhaustively, [12, 13, 23, 7].

To make a rough conclusion from these results, λmax(SN ) does not in general approach

the largest eigenvalue of λmax(ΓN ). Moreover, if λmax(SN ) converges to the bulk edge of

the LSD of µSN , then it often has Tracy-Widom fluctuation at the scale n2/3. If λmax(SN )

converges to a point outside the bulk, it often has Gaussian-type fluctuation at the scale

n1/2.

The previously mentionned results are limited to the case where λmax(ΓN ) is uniformly

bounded. There are however interesting cases where λmax(ΓN ) goes to infinity, see for

instance Forni et al. [26] in a context of econometrics.

Recently and mainly fostered by principal component analysis (PCA) in high dimension,

there has been a renewed interest in the case where a small number of spiked eigenvalues of

the population covariance matrix goes to infinity while the rest of the population eigenvalues

remains bounded. Let us mention in growing generality Jung and Marron [35], Shen et

al. [47], Wang and Fan [57], Cai et al. [20]. In the latter, a complete description of

the various scenarios of the spikes and their multiplicity is considered, and the first non-

spiked eigenvalue’s fluctuations is established. In [38], Ledoit and Wolf consider a similar

framework referred to as the ”Arrow model”.

In this article, we complement the general picture by considering population covariance

matrices with unbounded limiting spectral distribution. Such a case arises in the context

of long memory stationary processes and is not covered by the existing results. In the

framework considered here, we are not in the case where a majority of the population

eigenvalues remains bounded. In particular, the assumptions in [57, 20] fail to hold.
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Description of the main results.

Let SN be defined in (2.1) and assume that (µΓN ) is tight with limN→∞ λmax(ΓN ) =∞,

then we establish in Proposition II.3 that

λmax(SN )

λmax(ΓN )
−−−−−→
N,n→∞

1 (2.7)

in probability. This convergence can be improved to an almost sure convergence if either

the Z
(N)
i,j ’s are standard (real or complex) gaussian, or stem from the top left corner of an

infinite array (Zi,j , i, j ∈ N) of i.i.d. random variables.

In order to describe the fluctuations of λmax(SN ), we assume in addition that (ΓN )

satisfies the following spectral gap condition

lim
N→∞

λ2(ΓN )

λmax(ΓN )
< 1 , (2.8)

where λ2(ΓN ) is the second largest eigenvalue of ΓN , and that either the Z
(N)
i,j ’s are standard

Gaussian or the ΓN ’s have a block-diagonal structure

ΓN =

λmax(ΓN ) 0

0 ΓN−1

 . (2.9)

In this case, the following fluctuation result, stated in Theorem II.4, holds:

√
n

(
λmax(SN )

λmax(ΓN )
− 1− 1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )

)
D−−−−−→

N,n→∞
N (0, σ2) (2.10)

where “
D−→” denotes the convergence in distribution, σ2 = E|Z1,1|4 − 1 and N stands for

the real Gaussian distribution.

These results are then applied to long memory stationary processes.
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Long memory stationary process.

A process (Xt)t∈Z is (second order) stationary if the following conditions are satisfied:

E|Xt|2 <∞ , EXt = EX0 and Cov(Xt+h,Xt) = Cov(Xh,X0) = γ(h) ∀t, h ∈ Z

where Cov(Xt+h,Xt) = E(Xt+h−EXt+h)(Xt − EXt) and γ : Z→ C is some positive definite

function, usually called the autocovariance function of the process. Note that γ(0) is positive

and γ(−h) = γ(h) for all h ∈ Z. By stationarity, the covariance matrices TN (γ) of the

process

TN (γ) := Cov


Xt+1

...

Xt+N

 =



γ(0) γ(−1) . . . γ(−N + 1)

γ(1)
. . .

. . .
...

...
. . .

. . . γ(−1)

γ(N − 1) . . . γ(1) γ(0)


(2.11)

are positive semidefinite Hermitian Toeplitz matrices.

By Herglotz’s Theorem, there exists a finite positive measure α on (−π, π], the symbol

of TN (γ), whose Fourier coefficients are exactly γ(h), i.e.

γ(h) =
1

2π

∫
(−π,π]

e−ihx dα(x) , ∀h ∈ Z .

Depending on the context, we may write TN (γ) or TN [α].

Tyrtyshnikov and Zamarashkin generalized in [55] a result of Szegö and proved that the

following equality holds

lim
N→∞

1

N

N∑
k=1

ϕ(λk(TN (γ))) =
1

2π

∫ π

−π
ϕ(fα(x)) dx , (2.12)

where ϕ : R 7→ R is continuous with compact support and fα ∈ L1(−π, π) is the density of

the absolutely continuous part of α with respect to the Lebesgue measure dx on (−π, π],

called the spectral density of TN (γ). The equality (2.12) can be interpreted as the vague

convergence of probability measures µTN (γ) to the measure ν defined by the integral formula
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∫
ϕdν =

1

2π

∫ π

−π
ϕ(fα(x)) dx ∀ϕ ∈ Cb, (2.13)

where Cb denotes the space of all bounded continuous functions. The measure ν being a

probability, the sequence µTN (γ) is tight, and the vague convergence coincides with the weak

convergence.

The process is usually said to have short memory or short range dependence if
∑

h∈Z |γ(h)| <

∞. Otherwise, if ∑
h∈Z
|γ(h)| =∞ ,

the process (Xt) has long memory or long range dependence1.

In this article we require that the autocovariance function γ of a long memory stationary

process satisfies

γ(h) =
L(h)

(1 + |h|)1−2d
, ∀h ∈ Z (2.14)

for some d ∈ (0, 1/2) and a function L : R→ R slowly varying at∞, that is a function such

that L(y) > 0 for |y| large enough such that

lim
y→∞

L(xy)

L(y)
= 1 ∀x > 0 .

In this case γ is real and even and L is an even function as well. Matrix TN (γ) is real

symmetric and (Xt) is a long memory process. In addition, λmax(ΓN ) −−−−→
N→∞

∞, see for

instance Theorem II.8.

The largest eigenvalue associated to a long memory stationary Gaussian pro-

cesses.

Given a centered stationary process (Xt)t∈Z with autocovariance function defined by

(2.14), one can study the spectral properties of the sample covariance matrix

QN :=
1

n
XNX

∗
N =

1

n

n∑
j=1

X·,jX
∗
·,j (2.15)

1There are several definitions of long range dependance, all strongly related but not always equivalent,
see for instance [45, Chapter 2].
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where XN is a N ×n random matrix whose columns (X·,j , 1 ≤ j ≤ n) are i.i.d copies of the

random vector X1:N = (X1, . . . ,XN )>.

Let TN (γ) be the covariance matrix of (Xt), it has been recalled that µTN (γ) weakly

converges. Since the process is Gaussian, QN can be written in the form of SN in (2.1) with

ΓN = TN (γ) and the ESD µQN weakly converges with probability one to a deterministic

probability measure µ by [48, Theorem 1.1].

In order to study the behavior of λmax(QN ) and to apply the results already presented,

note that the process being gaussian, the matrix model (2.1) has the same spectral properties

as a model where ΓN is replaced by the diagonal matrix obtained with ΓN ’s eigenvalues.

In particular, the block-diagonal structure condition (2.9) is automatically satisfied. It

remains to verify the spectral gap condition (2.8) and that λmax(TN (γ)) goes to infinity. In

Theorem II.8, we describe the asymptotic behaviour of the individual eigenvalues λk(TN (γ))

and prove that for any k ≥ 1, there exist nonnegative numbers ak with a1 > 0 such that

λk(TN (γ)) ∼ akNγ(N) and lim
N→∞

λ2(TN (γ))

λmax(TN (γ))
=
a2

a1
< 1 ,

hence the spectral gap condition (2.8) holds. Moreover, standard properties of slowly vary-

ing functions [14, Prop. 1.3.6(v)] yield that Nγ(N) → ∞ hence λmax(TN (γ)) → ∞. As a

corollary, we obtain the asymptotics and fluctuations of the largest eigenvalue λmax(QN ) for

Gaussian long memory stationary processes with autocovariance function defined in (2.14).

We now point out two references of interest: In the (non-Gaussian) case where the sym-

bol α is absolutely continuous with respect to the Lebesgue measure and under additional

regularity conditions on (Xt), Merlevde and Peligrad [43] have established the convergence

of the ESD µQN toward a certain deterministic probability distribution. In a context of a

stationary Gaussian field, Chakrabarty et al. [22] studied large random matrices associated

to long range dependent processes.

Organization.

Our paper is organized as follows. In Section 2.3 we state the assumptions and main re-

sults of the article: Proposition II.3 and Theorem II.4 are devoted to the limiting behaviour

31



Chapter II Unbounded largest eigenvalue of sample covariance matrices.

and fluctuations of λmax(SN ); the spectral gap condition for a Toeplitz matrix ΓN is stud-

ied in Theorem II.8; finally Corollary II.10 builds upon the previous results and describes

the behaviour and fluctuations of covariance matrices based on samples of stationary long

memory Gaussian processes. In Section 2.4, we provide examples, numerical simulations

and mention some open questions. Section 2.5 and Section 2.6 are dedicated to the proofs

of the main theorems.
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2.3 Notations and main theorems

2.3.1 Notations and assumptions

Notations.

Given x ∈ R, denote by bxc the integer satisfying bxc ≤ x < bxc+ 1. For vectors u, v in

RN or CN , 〈u, v〉 =
∑N

i=1 uiv̄i denotes the scalar product and ‖u‖ the Euclidean norm of u.

For a matrix or a vector A, we use A> to denote the transposition of A, and A∗ the

conjugate transposition of A; if A is a N ×N square matrix with real eigenvalues, we use

λ1(A) ≥ · · · ≥ λN (A) to denote its eigenvalues, and sometimes denote λ1(A) = λmax(A).

The ESD µA of A is defined as

µA :=
1

N

N∑
k=1

δλk(A) ,

where δλ is the Dirac measure at λ. For a N × n matrix M and integers a, b ∈ {1, · · · , N}

and c, d ∈ {1, · · · , n}, the following notations are used to deal with submatrices of M :

Ma:b,· = (Mi,j)a≤i≤b,1≤j≤n , M·,c:d = (Mi,j)1≤i≤N,c≤j≤d , Ma:b,c:d = (Mi,j)a≤i≤b,c≤j≤d .

(2.16)

By convention, these subscripts have higher priority than the transposition or conjugate

transposition, for example M∗a:b,c:d := (Ma:b,c:d)
∗ is the conjugated transposition of the
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submatrix Ma:b,c:d. For a matrix A, we write its operator norm as ‖A‖ = sup‖v‖=1 ‖Av‖

and its Frobenius norm ‖A‖F =
√∑

i,j |Ai,j |2.

If c = (ck)k∈Z is a sequence of complex numbers, the N ×N Toeplitz matrix (c(i− j))

is denoted by TN (c). If moreover the sequence (ck) is a positive-definite function c : Z→ C

and admits by Herglotz’s theorem the representation

ck =
1

2π

∫
(−π,π]

e−ikx dα(x) ,

then α is called the symbol of TN (c) which will sometimes be written TN [α]. If moreover

α admits a density with respect to Lebesgue’s measure, i.e. dα(x) = f(x) dx, TN (c) will

occasionnally be denoted by TN [f ]. Notice that if TN (c) is the covariance matrix of a

stationary process as in (2.11) then f(x) (if it exists) is called the spectral density of the

process.

Given two complex sequences xn, yn we denote

xn ∼ yn ⇔ lim
n→∞

(
xn
yn

)
= 1 and xn

.
= yn ⇔ lim

n→∞
(xn − yn) = 0 . (2.17)

The notations xn = o(1) and xn = O(1) respectively mean limn→∞ xn = 0 and limn→∞ |xn| <

∞. These notations are also applicable to functions with continuous arguments. If Xn, X

are random variables, the notations Xn = o(1) and Xn = oP (1) respectively mean that

limn→∞Xn = 0 almost surely and in probability. The notations Xn
D−→ X and Xn

P−→ X

respectively denote convergence in distribution and in probability. If µ, µn are measures,

we denote with a slight abuse of notation µn
D−→ µ for the weak convergence of µn to µ.

Given a random variable Y or a sub-algebra G, we denote by EY (X) and EG(X) the

conditional expectation of the random variable X with respect to Y and to G.

We denote by NR(m,σ2) the real Gaussian distribution with mean m and variance σ2;

we refer to NR(0, 1) as the standard real Gaussian distribution. A complex random variable

Z is distributed according to the standard complex Gaussian distribution if Z = U + iV

where U, V are independent, each with distribution NR(0, 1/2). In this case we denote

Z ∼ NC(0, 1). For a symmetric semidefinite positive matrix T , denote by NR(0, T ) the
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distribution of a centered Gaussian vector with covariance matrix T .

In the proofs we use C to denote a constant that may take different values from one

place to another.

Assumptions.

We state our results under one or several of the following assumptions:

A1 (Model setting) Let SN be N ×N random matrices defined as

SN =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N

where ZN =
(
Z

(N)
i,j

)
1≤i≤N,1≤j≤n

are N × n matrix whose entries Z
(N)
i,j are i.d. random

variables for all i, j,N , and independent across i, j for each N , satisfying

EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1 and E|Z(N)

i,j |
4 <∞,

and ΓN are N ×N positive semidefinite Hermitian deterministic matrices.

A2 (Asymptotic spectral structure of ΓN ) Given a sequence of N ×N positive semidefinite

deterministic matrices ΓN , the empirical spectral distribution

µΓN :=
1

N

N∑
k=1

δλk(ΓN )

forms a tight sequence on R+, and the largest eigenvalue λmax(ΓN ) tends to ∞ as

N →∞.

Example II.1. If µΓN D−→ ν with ν a non-compactly supported probability on R+, then

A2 holds.

Example II.2. Consider ΓN = diag(`
(n)
1 , · · · , `(n)

m , 1, · · · , 1) where m = m(n) is such that

m(n)
n → 0 and where `

(n)
i ↗ ∞ (1 ≤ i ≤ m), then A2 holds. The illustrative and simpler

case where ΓN = diag(`
(n)
1 , 1, · · · , 1) will be used hereafter.
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A3 (Subarray assumption on ZN ) For each N , ZN = Z1:N,1:n is the top-left submatrix of

an infinite matrix Z = (Zi,j)i,j≥1, with Zi,j i.i.d random variables satisfying

EZi,j = 0, E|Zi,j |2 = 1 and E|Zi,j |4 <∞.

A4 (Spectral gap condition on ΓN ) The two largest eigenvalues λmax(ΓN ) and λ2(ΓN )

satisfy

lim
N→∞

λ2(ΓN )

λmax(ΓN )
< 1.

Notice that this spectral gap condition already appears in [47, 57, 20].

A5 (Block-diagonal structure of ΓN ) For all N , ΓN has the block-diagonal form

ΓN =

λmax(ΓN ) 0

0 ΓN−1

 ,

where ΓN−1 is a (N − 1)× (N − 1) semidefinite positive Hermitian matrix.

2.3.2 Main results

We now present the main results of this article. Proposition II.3 and Theorem II.4

describe the limiting behaviour and fluctuations of λmax(SN ) under generic assumptions.

Theorem II.8 and Corollary II.10 specialize the previous results to Toeplitz covariance ma-

trices and Gaussian long memory stationary processes.

Proposition II.3. Let SN be a N ×N matrix given by (2.1) and assume that A1 and A2

hold. Then

λmax(SN )

λmax(ΓN )

P−−−−−→
N,n→∞

1 .

If moreover either the random variables Z
(N)
ij are standard (real or complex) Gaussian or

Assumption A3 holds, then the above convergence holds almost surely.

This result already appears under different assumptions in [38, Prop. 7.3], [20, Th. 2.1].
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Remark 1 (consistency with the bounded case ‖ΓN‖ <∞). Consider the simple case where

ΓN = diag(`1, 1, · · · , 1), where `1 > 1 +
√
r is fixed - see for instance (2.6). Then it is well

known (cf. [10]) that

λmax(SN )
P−−−−−→

N,n→∞
`1 +

r `1
`1 − 1

.

Notice in particular that λmax(SN )
`1

= 1 + r
`1−1 + oP (1), which is heuristically consistent with

Proposition II.3 if one lets `1 go to infinity.

Theorem II.4. Let SN be a N × N matrix given by (2.1) and assume that A1, A2 and

A4 hold. Assume moreover that one of the following conditions is satisfied:

(i) Assumption A5 holds,

(ii) The random variables Z
(N)
ij are standard complex Gaussian,

(iii) The random variables Z
(N)
ij are standard real Gaussian and matrices ΓN are real

symmetric.

Consider the quantities

βN :=
1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )
and FN :=

√
n

(
λmax(SN )

λmax(ΓN )
− 1− βN

)
. (2.18)

Then

FN
D−−−−−→

N,n→∞
N (0, σ2) , (2.19)

where σ2 = E|Z(N)
1,1 |4 − 1.

Counterparts of Theorem II.4 appear under the assumption that the (λi(ΓN ))’s are

bounded for i ≥ K and K = o(N), see [57, Th. 3.1], [20, Th. 2.2]. In this latter case,

the quantity βN above can be replaced by n−1
∑N

K+1 λi(ΓN )/(λmax(ΓN )−λi(ΓN )). Beware

however that under our assumption, the full summation is required because there is no

natural threshold K if one does not assume boundedness on the majority of the population

eigenvalues.

Remark 2. Notice that if E|Z(1)
1,1 |4 = 1 then σ2 = 0 in the previous theorem, hence

FN
P−−−−−→

N,n→∞
0 . Simulation 3 in Section 2.4.2 (see also Fig. 2.3(b)) supports this fact.
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Remark 3. Under A2 and A4, we have βN −−−−−→
N,n→∞

0. Indeed, by the spectral gap condition

A4 and the fact that N = O(n)

βN =
1

n

N∑
k=2

λk(ΓN )/λmax(ΓN )

1− λk(ΓN )/λmax(ΓN )
≤ C

N

N∑
k=2

λk(ΓN )

λmax(ΓN )
.

Since µΓN is tight, for any ε ∈ (0, 1) there exists M > 0 s.t. |{k, : λk(ΓN ) > M}|/N < ε

where |{·}| denotes the cardinality of a set. Hence

lim
N,n→∞

βN ≤ C lim
N

M

λmax(ΓN )
+ Cε = Cε ,

where we use the fact that λmax(ΓN )→∞ as N →∞ for the last equality. Notice however

that
√
nβN may not go to zero as N,n→∞.

Remark 4 (consistency with the bounded case ‖ΓN‖ <∞, continued). Consider again the

case where ΓN = diag(`1, 1, · · · , 1) with `1 > 1 +
√
r then

βN =
N − 1

n

1

`1 − 1
=

rN
`1 − 1

+O

(
1

n

)
.

In the case where `1 →∞, FN in (2.18) writes

FN =
√
n

(
λmax(SN )

`1
−
(

1 +
rN

`1 − 1

))
+O

(
1√
n

)

and has Gaussian fluctuations. This formula is consistent with (2.6) which can be rewritten

√
n√

1 +O(`−2
1 )

(
λmax(SN )

`1
−
(

1 +
rN

`1 − 1

))
.

Example II.5 (various behaviours of
√
nβN ). Consider ΓN = diag(`

(n)
1 , 1, · · · , 1) where

`
(n)
1 ↗∞, then

√
nβN =

√
n×

(
N − 1

n

)
×
(

1

`1 − 1

)
−−−−−→
N,n→∞


∞ if `

(n)
1 �

√
n ,

r/a if `
(n)
1 = a

√
n ,

0 if `
(n)
1 �

√
n .
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2.3.3 Application to large sample covariance matrices associated with long

memory processes

In order to apply the above results to Gaussian stationary processes with long memory,

we need to verify the spectral gap condition of their autocovariance matrices. We first recall

some definitions.

Definition II.6 (Regularly/Slowly varying functions). A measurable function R : R → R

is regularly varying at infinity if R(y) > 0 for |y| large enough and if there exists a real

number ρ s.t. for any x > 0,

lim
y→∞

R(xy)

R(y)
= xρ.

The number ρ is called the index of the regular variation. If ρ = 0, then we say that the

function (often denoted by L in this case) is slowly varying.

A sequence of real numbers (ck)k∈Z is regularly (resp. slowly) varying if y 7→ cbyc is a

regularly (resp. slowly) varying function.

With Definition II.6, long memory (long range dependence) stationary processes can be

defined as follows.

Definition II.7. A stationary process (Xt)t∈Z has long memory or long range dependence

if its autocovariance function γ is regularly varying with index ρ ∈ (−1, 0).

Remark 5. Notice that this definition is compatible with the definition of the autocovariance

function provided in (2.14). In fact, assume that γ(h) is given by (2.14) then it is regularly

varying with index ρ = 2d− 1 ∈ (−1, 0). Conversely, assume that γ(h) is an even regularly

varying sequence with ρ ∈ (−1, 0). Set d = ρ+1
2 , then L(y) = γ(byc)(1 + |y|)1−2d is a slowly

varying function with d ∈ (0, 1/2) and

γ(h) =
L(h)

(1 + |h|)1−2d
.

Remark 6. Notice that definitions II.6 and II.7 enable to consider complex processes (Xt),

however the associated autocovariance function is necessarily real and cannot be complex.
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Remark 7. The above definition coincides with Condition II in [45] where the autocovariance

function γ satisfies (2.14).

In this context, the spectral gap condition on autocovariance matrices of a long memory

stationary process is ensured by the following theorem:

Theorem II.8. Suppose that c = (ch)h∈Z is an even (ch = c−h for all h ∈ Z) regularly

varying sequence of index ρ ∈ (−1, 0), then for any fixed k ≥ 1 the limit

a
(ρ)
k = lim

N→∞

λk(TN (c))

NcN

exists and is finite. Moreover, a
(ρ)
1 > a

(ρ)
2 ≥ 0. In particular,

λmax(TN (c)) ∼ a(ρ)
1 NcN →∞ and lim

N→∞

λ2(TN (c))

λmax(TN (c))
=
a

(ρ)
2

a
(ρ)
1

< 1 .

Definition II.9. We say that a complex Gaussian process (Xt)t∈Z is circularly symmetric

if for any N ∈ N the Gaussian vector X1:N := (X1, . . . ,XN )> is circularly symmetric, i.e.

for any φ ∈ R, the vector eiφX1:N has the same distribution as X1:N .

Remark 8. Notice in particular that such a process is centered and satisfies that EX1:NX>1:N =

0, for all N ≥ 1.

As a canonical example, a standard complex Gaussian vector X = (X1, · · · , XN )> where

the Xi’s are i.i.d. and NC(0, 1)-distributed is circularly symmetric with

EXX∗ = IN and EXX> = 0 .

For such a vector X, we will denote X ∼ NC(0, IN ).

As a by-product of the above theorems, we have the following result on the largest

eigenvalue of sample covariance matrices of a Gaussian long memory stationary process

(recall that such a process admits a real autocovariance function).

Corollary II.10. Suppose that (Xt)t∈Z is a real centered (resp. complex circularly symmet-

ric) Gaussian stationary process with long range dependence in the sense of definition II.7.
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Let

QN =
1

n
XNX

∗
N

where XN are N × n random matrices whose columns are i.i.d copies of the random vector

X1:N = (X1, . . . ,XN )>. Then

λmax(QN )

λmax(TN )

a.s.−−−−−→
N,n→∞

1 (2.20)

and

√
n

(
λmax(QN )

λmax(TN )
− 1− 1

n

N∑
k=2

λk(TN )

λmax(TN )− λk(TN )

)
D−−−−−→

N,n→∞
N
(
0, σ2

)
, (2.21)

where TN = TN (γ) is the autocovariance matrix of the process defined in (2.11) and where

σ2 =
E|X 4

1 |
γ2(0)

− 1 =

 2 if X1 is real

1 if X1 is complex
.

Corollary II.10 being an easy consequence of Proposition II.3 and Theorems II.4 and

II.8, we provide its proof hereafter.

Proof. Let X be a centered N -dimensional random vector either real or circularly symmetric

complex gaussian with (real) covariance matrix T . Then X writes X = T 1/2Z where

Z ∼ NR(0, IN ) or NC(0, IN ) depending on whether X is real or complex. In fact, if T is

invertible then Z = T−1/2X has the required properties.

If not, T = O diag(d1
1, · · · , d2

p, 0 · · · )O> with O orthogonal and di > 0. Let Y =

(0, . . . , 0, Yp+1, . . . , YN )> with Yk i.i.d. standard Gaussian random variables, either real

or complex (depending on X), and independent from X. Let

Z = O diag(d−1
1 , · · · , d−1

p , 0 · · · )O>X +OY

then Cov(Z) = IN and if X is complex, then EZZ> = 0. In particular, Z is a standard

gaussian random vector and a covariance computation yields

Cov(X − T 1/2Z) = 0 ,
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which implies that X = T 1/2Z almost surely.

Then for any N and almost surely, the representation QN = 1
nT

1/2
N ZNZ

∗
NT

1/2
N holds

with (TN ) the autocovariance matrices of process (Xt)t∈Z. In Section 2.2 we have noticed

that µTN converges weakly, and by Theorem II.8, λmax(TN ) → ∞ and (TN ) satisfy the

spectral gap condition. By Proposition II.3 and Theorem II.4, the results follow.

2.4 Additional applications and simulations

2.4.1 Additional applications to Gaussian stationary processes

Although Definition II.7 is a common definition of long memory, it can seem restrictive

as it requires that the autocovariance function has at most a finite number of nonpositive

values. In the first example hereafter we consider Gaussian processes with autocovariance

functions either complex or with alternate signs. In the two subsequent examples, we

relate our results with other definitions of long memory, via linear representation or via the

autocovariance density.

Covariance matrices with alternating signs of entries.

Let (Xt)t∈Z be a centered Gaussian stationary process with autocovariance function γX .

Let θ ∈ (−π, π], θ 6= 0 be fixed and consider the process (Yt = eitθXt)t∈Z. This process is a

Gaussian stationary process with autocovariance function γY(t) = eitθγX (t) and

Y1:N = ΣθX1:N

where Σθ = diag(eikθ, 1 ≤ k ≤ N) is a unitary matrix. Notice that if (Xt) is complex

circularly symmetric, then so is (Yt) but if (Xt) is real then (Yt) is either complex Gaussian

but not circularly symmetric if θ 6= π or real Gaussian with alternate signs if θ = π.

Let XXN (resp. XYN ) a N × n matrix whose columns are i.i.d. copies of the vector X1:N

(resp. Y1:N ) and assume that the process (Xt) fulfills the assumptions of Corollary II.10.
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Then

QYN =
1

n
XYn (XYn )∗ =

1

n
ΣθXXn (XXn )∗(Σθ)∗ = ΣθQXN (Σθ)∗ where QXN =

1

n
XXn (XXn )∗ .

In particular, λmax(QYN ) = λmax(QXN ) satisfies (2.20) and (2.21). In this example the posi-

tivity constraint of the autocovariance function is relaxed.

Linear processes with long memory.

If the process (Xt)t∈Z has a linear representation

Xt =
∞∑
j=0

ψjεt−j

where (εt)t∈Z is a sequence of i.i.d real valued standard Gaussian r.v.’s and ψj ∼ jd−1L(j)

as j →∞ with d ∈ (0, 1/2) and L a slowly varying function at∞, then it is well known (c.f.

for example [45, Corollary 2.2.10]) that its autocovariance function γ is regularly varying

with index ρ = 2d− 1, and more precisely we have

γ(h) ∼ h2d−1L2(h)B(1− 2d, d)

where B(1 − 2d, d) =
∫ 1

0 x
−2d(1 − x)d−1 dx is the beta-function. Corollary II.10 can be

applied in this case.

Long range dependence defined through spectral density

Among the various definitions of long range dependence, there is an important one which

defines the long range dependence through the spectral density, that is, if the symbol of the

autocovariance matrices TN has a density f : (−π, π]→ R+ satisfying

f(x) = |x|−2dL

(
1

|x|

)
, x ∈ (−π, 0) ∪ (0, π], (2.22)

with d ∈ (0, 1/2), and L a slowly varying function defined on [1/π,+∞). (cf. Condition IV

in [45]). If a (real centered or complex circularly) Gaussian stationary process (Xt)t∈Z has
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long memory in this sense, then the LSD of the covariance matrices TN [f ] is not compactly

supported and in particular λmax(TN [f ])→∞ and (2.20) in Corollary II.10 holds. Moreover

if L in (2.22) is quasi-monotone, then the process is also a long memory process in the sense

of Definition II.7 (see for instance [45, Corollary 2.2.17]) with index ρ = 2d − 1. More

precisely we have

γ(h) ∼ 2h2d−1L(h)Γ(1− 2d) sin(dπ) as h→∞

where Γ(t) :=
∫∞

0 xt−1e−x dx denotes the gamma-function. Hence by Theorem II.8, TN

satisfies the spectral gap condition, and applying Theorem II.4 we get the same result as

Corollary II.10.

2.4.2 Numerical simulations

Simulation 1: Limiting behaviour of λmax(SN ).

To illustrate Proposition II.3, we take

SN =
1

n
Γ

1
2
NZNZ

>
NΓ

1
2
N

with ZN a N × n matrix having i.i.d standard real Gaussian entries, and ΓN = TN (γ) is

the Toeplitz matrix dertermined by γ(h) = 1
(1+|h|)3/4 . Let N take all the values in the finite

sequence {100, 150, 200, . . . , 3000}, and let n = b5N/4c. We plot the simulation results in

Figure 2.1.

Simulation 2: Fluctuations of λmax(SN ).

To illustrate the fluctuations of λmax(SN ), we fix N = 1000 and n = 1250 and let ΓN =

diag(λk(T1000(γ))) with γ as in the previous simulation. We take 900 independant samples

of S1000, plot the histogram of F1000 defined in (2.18) and compare with the density of the

theoretical limiting law. In Figure 2.2(a) we simulate the model S1000 with Z1000 having

i.i.d. real Gaussian entries, the limiting law, according to Theorem II.4, is N (0, 2); while

in Figure 2.2(b), Z1000 has i.i.d. standardized exponential entries, i.e. Z
(1000)
i,j ∼ E(1) − 1.

The limiting law is N (0, 8).
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(a) (b)

Figure 2.1: Convergence of λmax(SN )/λmax(ΓN ) to 1. In 2.1(a), the values λmax(SN ) and
λmax(ΓN ) are plotted as crosses and solid points respectively; in 2.1(b) the
values of the ratio λmax(SN )/λmax(ΓN ) are plotted as crosses, compared with
the constant 1.

(a) (b)

Figure 2.2: Fluctuations of λmax(S1000), with Z1000 having Gaussian entries in 2.2(a) and
standardized exponential entries in 2.2(b). Simulation with 900 samples.
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Simulation 3: Concentration.

We now address the case E|Z(N)
1,1 |4 = 1. Consider a matrix ZN with i.i.d. symmetric

Bernoulli variables taking values in {−1, 1}. As previously we take ΓN = diag(λk(TN (γ)))

with γ(h) = 1
(1+|h|)3/4 . In this case, Theorem II.4 asserts that

√
n

(
λmax(SN )

λmax(ΓN )
− 1− 1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )

)
P−−−−−→

N,n→∞
0 .

In Figure 2.3(a) we plot the fluctuations of λmax(S1000) with n = 1250 and notice that the

corresponding F1000 are far more concentrated around 0 than the previous simulations, as

predicted by the theorem.

An interesting phenomenon occurs in Figure 2.3(b), where the same matrix Z1000 is

considered while we do not diagonalize Γ1000 and just take Γ1000 = T1000(γ). In this case,

the concentration phenomenon disappears, and the obtained histogram is very close to that

in Figure 2.2(a). This simulation suggests that some universality holds in the fluctuations

of λmax(SN ) if the (ΓN )’s are Toeplitz matrices. This will be explored in a forthcoming

work.

(a) (b)

Figure 2.3: Fluctuations of λmax(SN ) in the case of symmetric Bernoulli entries. ΓN is
diagonal in 2.3(a) and nondiagonal in 2.3(b).
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2.4.3 Open questions

At the border between long memory and short memory.

An interesting regime is when ρ = −1. In this case, the autocovariance function γ(h) =

(1 + |h|)−1L(h) can be summable or not depending on the slowly varying function L. For

example if L(h) = log−1−ε(2 + |h|) with ε > 0 then γ is absolutely summable and the

process has short memory. If L(·) = 1 then one can prove that λmax(TN (γ)) = O(logN),

and that the spectral gap condition no longer holds. In this case, the asymptotics (2.20)

remains true as Proposition II.3 does not rely on the spectral gap condition but only on the

condition λmax(TN (γ)) → ∞. The question whether the fluctuations (2.21) together with

their normalization and the limiting distribution hold remains open.

Non-Gaussian long memory stationary processes.

A Gaussian long memory stationary process admits a linear representation X1:N =

T
1/2
N (γ)Z1:N , where TN (γ) is a hermitian Toeplitz matrix and Z1:N is a standard Gaussian

vector. This representation is key in the analysis of the top eigenvalue of the corresponding

large covariance matrix of samples of the process but does not hold anymore if the process is

not Gaussian. The question whether it is possible to perform the same eigenvalue analysis

in the case of non-Gaussian long memory stationary process is open.

Correlation structure of the top eigenvalues.

Beyond the top eigenvalue λmax(SN ), it would be interesting to understand the asymp-

totic correlation structure and the fluctuations of the (many) largest eigenvalues (λmax(SN ), λ2(SN ), · · · , λk(SN ))

for a fixed k ≥ 1.

Behaviour of the eigenvectors associated to the top eigenvalues.

For bounded spiked models (by bounded we mean supN ‖ΓN‖ < ∞) the structure of

the eigenvectors associated to the top eigenvalues has been studied and carries interesting

information, see for example [13]. A similar study would be interesting in the general context

of unbounded population covariance matrices where λmax(ΓN )→∞ and of (Gaussian) long
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memory stationary processes. In this latter case, one needs to have a good understanding

of the Toeplitz matrix’ TN (γ) eigenvectors.

Universality for non-Gaussian linear stationary processes with long memory.

In the case where ΓN is required to be (block-)diagonal, the variance of the limiting

distribution depends on the fourth moment of the entries ZNi,j and may be equal to zero

if E|Z(1)
1,1 |4 = 1. However when ΓN is a Toeplitz matrix (2.11) with γ satisfying (2.14),

this dependence is weakened and Simulation 3 in Section 2.4.2 strongly suggests that some

universality occurs depending on the population covariance matrix ΓN , see in particular

Figures 2.3(a) and 2.3(b). This question will be addressed in a forthcoming work.

2.5 Proofs of Proposition II.3 and Theorem II.4

2.5.1 A short reminder of results related to large covariance matrices

Given a probability measure µ on R, define its Cauchy-Stieltjes transform as

mµ(z) :=

∫
dµ(s)

z − s
, ∀z ∈ C+ := {z ∈ C : =z > 0}

Notice that mµ(z) is the opposite of the Stieltjes transform gµ(z) =
∫ dµ(s)

s−z .

For a random matrix SN given by (2.1), we will often consider its companion matrix

SN =
1

n
Z∗NΓNZN , (2.23)

which shares the same non-zero eigenvalues with SN . In particular, λmax(SN ) = λmax(SN ).

Recall that rN := N
n and let µSN , µSN be the ESD of SN and SN respectively, then the

following relation holds:

µSN = (1− rN )δ0 + rNµ
SN . (2.24)

Limiting spectral distribution.

We recall results from [48, Theorem 1.1]. For any probability ν in R+ and any r ∈

(0,+∞), there exists a unique probability measure µ = µ(r, ν) whose Cauchy-Stieltjes
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transform mµ satisfies the equation:

mµ(z) =

∫
dν(s)

z − s(1− r + rzmµ(z))
for any z ∈ C+ .

If the probability measure ν is the ESD µA associated with a matrix A, we simply write

µ = µ(r,A) instead of µ = µ(r, µA). Similarly, there exists a unique probability measure

µ = µ(r, ν) with Cauchy-Stieltjes transform mµ satisfying

z =
1

mµ(z)
+ r

∫
s dν(s)

1− smµ(z)
for any z ∈ C+ . (2.25)

As previously, we will write µ(r,A) instead of µ(r, µA). If moreover µΓN D−−−−→
N→∞

ν, then

µSN
D−−−−−→

N,n→∞
µ a.s. and µSN

D−−−−−→
N ;n→∞

µ a.s. (2.26)

Spectrum confinement.

By ”spectrum confinement”, we refer to the phenomenon where the empirical spectrum

of the eigenvalues ”concentrates” near the support of the limiting spectral distribution. In

the specific case of model (2.1) under assumption supN ‖ΓN‖ < ∞ and the convergence

(2.26), spectrum confinement can be roughly expressed (in the absence of spikes) as: for

every ε > 0, almost surely,

supp(µSN ) ⊂ supp(µ) + (−ε, ε)

for N large enough.

A more accurate description of spectrum confinement relies on the deterministic equiv-

alent of µSN defined as µ
N

:= µ(rN ,ΓN ) (cf. (2.25) with ν = µΓN ). Assume that A3 holds.

By [1, Theorem 1.1], if there exists ε > 0 and an interval [a, b] such that

[a, b] ∩
(

supp(µ
N

) + (−ε, ε)
)

= ∅

48



Chapter II Unbounded largest eigenvalue of sample covariance matrices.

for N large enough, then almost surely

supp(µSN ) ∩ [a, b] = ∅ (2.27)

for N large enough. In particular, if a > 0 there is no eigenvalue of SN in [a, b] for N large

enough.

The description of the support of a probability distribution defined via a fixed-point

equation (2.25) is given in [50, Theorems 4.1 and 4.2]. Based on these results, we now state

a necessary and sufficient condition for which a real number x lies outside the support of

µ
N

= µ(rN ,ΓN ). Let

BN := {y ∈ R : y 6= 0, y−1 6= λk(ΓN ), ∀k = 1, . . . , N} , (2.28)

and define

xN (y) :=
1

y
+ rN

∫
s dµΓN (s)

1− sy
for y ∈ BN . (2.29)

A real number x ∈ R lies outside the support of µ
N

if and only if

∃ y ∈ BN , x = xN (y) and x′N (y) = − 1

y2
+ rN

∫
s2 dµΓN (s)

(1− sy)2
< 0 .

Exact separation.

Let [a, b] be an interval eventually outside the support of µ
N

= µ(rN ,ΓN ), assume that

µΓN → ν and let µ = µ(r, ν). ”Exact separation” is a phenomenon that expresses the fact

that (almost surely and eventually) the interval [a, b] separates the empirical eigenvalues of

matrix SN exactly in the same proportions as [1/mµ(a), 1/mµ(b)] separates those of matrix

ΓN .

This expression has been coined in the article [2] by Bai and Silverstein, from which we

recall the result of interest to us, that is mainly [2, Theorem 1.2(2)]: Assume in addition

to the assumptions of [1, Theorem 1.1] (and in particular to assumption A3) that the

conditions mµ(b) > 0 and r(1− ν({0})) ≤ 1 hold. For N large enough, let iN be an integer
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such that

λiN (ΓN ) >
1

mµ(b)
and λiN+1(ΓN ) <

1

mµ(a)
.

Then almost surely, λiN (SN ) > b and λiN+1(SN ) < a for N large enough. This result will

be used in the particular case where ν = δ0. In this case, mµ(x) = 1
x and r(1− δ0(0)) = 0.

2.5.2 Reduction to the bounded model

When studying λmax(SN ) under A2, the main difficulty is to handle the unboundedness

of λmax(ΓN ). In order to circumvent this issue, we define

S̃N =
1

n
Γ̃

1/2
N ZNZ

∗
N Γ̃

1/2
N where Γ̃N :=

ΓN
λmax(ΓN )

.

In particular, notice that λmax(S̃N ) = λmax(SN )
λmax(ΓN ) . Thus, in order to establish the results stated

in Proposition II.3 and Theorem II.4, we only need to prove the corresponding results for

S̃N .

Using the definition of Γ̃N , the tightness of (µΓN ) and the fact that λmax(ΓN )→∞, we

immediatly deduce the following properties for Γ̃N :

λmax(Γ̃N ) = 1 and µΓ̃N D−−−−→
N→∞

δ0 .

In particular, the spectral norm of Γ̃N is bounded and many classical results, for instance

those of Bai and Silverstein [48, 1] can be applied to S̃N . Considering this fact, we state and

prove below Proposition II.11 and Theorem II.12 which are the counterparts of Proposition

II.3 and Theorem II.4.

A2(b) Given a sequence of N × N positive semidefinite deterministic matrices ΓN , the

following properties hold:

λmax(ΓN ) = 1 ∀N ≥ 1 and µΓN D−−−−→
N→∞

δ0 .
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Proposition II.11. Let SN be a N × N matrix given by (2.1) and assume that A1 and

A2(b) hold. Then

λmax(SN )
P−−−−−→

N,n→∞
1. (2.30)

If moreover either the random variables Z
(N)
ij are standard (real or complex) Gaussian or

Assumption A3 holds, then the above convergence holds almost surely.

Theorem II.12. Let SN be a N × N matrix given by (2.1) and assume that A1, A2(b)

and A4 hold. Assume moreover that one of the following conditions is satisfied:

(i) Assumption A5 holds,

(ii) The random variables Z
(N)
ij are standard complex Gaussian,

(iii) The random variables Z
(N)
ij are standard real Gaussian and matrices ΓN are real

symmetric,

then
√
n

(
λmax(SN )− 1− 1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )

)
D−−−−−→

N,n→∞
N (0, σ2), (2.31)

where σ2 = E|Z(1)
1,1 |4 − 1.

In order to prove Proposition II.3 and Theorem II.4, we only need to apply the above

theorems to S̃N .

2.5.3 Proof of Proposition II.11

We first prove the theorem under assumption A3. We first establish that

lim
N,n→∞

λmax(SN ) ≤ 1a.s. (2.32)

Recall the definition of the set BN in (2.28). Due to the spectrum confinement property

(2.27), we only need to prove that for any ε > 0, the interval [1 + ε,+∞) eventually stays

outside the support of µ
N

= µ(rN ,ΓN ). Relying on the caracterization of a point x outside

supp(µ
N

), this will be the consequence of the following property

∀x ∈ [1 + ε,∞), ∃ y ∈ BN , x = xN (y) and x′N (y) < 0
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that we now prove.

Since λmax(ΓN ) = 1 under A2(b), notice that (0, 1) ⊂ BN . Consider a real number η

such that

η ∈
(

1

1 + ε
, 1

)
.

For s ≤ 1, we have |1− sη| ≥ 1− η > 0, therefore by the definition (2.29) of xN , and by the

fact that µΓN −−−−→
N→∞

δ0, we have

xN (η) −−−−−→
N,n→∞

1

η
< 1 + ε and x′N (η) −−−−−→

N,n→∞
− 1

η2
< 0 .

So for N large enough, we have xN (η) < 1 + ε, and x′N (η) < 0. For such N ’s, note that

xN is continuous on (0, η) and that xN (y) → +∞ as y → 0+. We have proved so far

that [1 + ε,∞) ⊂ xN ((0, η)). Notice finally that x′N is increasing on (0, η), in particular

x′N (y) ≤ x′N (η) < 0 for all y ∈ (0, η). Therefore xN ((0, η)) and thus [1 + ε,∞) eventually

lie outside the support of µ
N

. Equation (2.32) is established.

We now prove that

lim
N,n→∞

λmax(SN ) ≥ 1, a.s. (2.33)

by an exact separation argument.

As µ = δ0, we have 1/mµ(a) = a, 1/mµ(b) = b for any a, b > 0. We intend to

find some constant interval of the form [a, 1 − ε], for small ε > 0 which separates the

eigenvalues of matrix ΓN into two non-empty parts. This is not always possible because

even if λmax(ΓN ) = 1 and µΓN → δ0, there might be some intermediate eigenvalues among

the (λi(ΓN ))’s for i ≥ 2 eventually lying in (0, 1). In order to circumvent this issue, we

introduce the auxiliary matrices

ŜN :=
1

n
Z∗NΘNZN and ŜN :=

1

n
Θ

1
2
NZNZ

∗
NΘ

1
2
N ,

where ΘN is obtained from the spectral decomposition of ΓN as:

ΘN := UN diag(1, 0, · · · )U∗N where ΓN = UN diag(1, λ2(ΓN ), · · · )U∗N .
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Using [50, Theorems 4.1 and 4.2], we conclude that for any 0 < ε < 1/2, the interval

[ε, 1 − ε] is eventually outside the support of probability µ(rN ,ΘN ), obtained from (2.25)

with parameters rN and ΘN . Notice in particular that

λmax(ΘN ) = 1 and λi(ΘN ) = 0 for i = 2 : N .

Applying [2, Theorem 1.2] to ŜN with separating interval [ε, 1−ε] for arbitrary ε ∈ (0, 1/2),

we conclude that almost surely, λmax(ŜN ) > 1− ε for N large enough. We have proved so

far that

lim
N,n→∞

λmax(ŜN ) ≥ 1

almost surely. Now, since

SN − ŜN =
1

n
Z∗NUN diag(0, λ2(SN ), · · · , λN (SN ))U∗NZN

is nonnegative definite, we have limN,n→∞ λmax(SN ) ≥ limN,n→∞ λmax(ŜN ) ≥ 1. Therefore

Proposition II.11 with assumption A3 is proved.

As a byproduct of the above proof, we can easily prove λmax(SN )
P−→ 1 without imposing

A3. Suppose that SN = 1
nΓ

1/2
N ZNZ

∗
NΓ

1/2
N satisfies A1 and A2(b) and construct Ž =

(Ži,j)i,j≥1 with Ži,j i.i.d random variables identically distributed as the entries of ZN . Let

S′N = 1
nΓ

1/2
N Z ′NZ

′∗
NΓ

1/2
N with Z ′N the top-left N × n submatrix of Ž. Then according to the

above proof, λmax(S′N ) converges to 1 almost surely, hence in probability. Since λmax(SN )

and λmax(S′N ) have the same distribution, we have also λmax(SN )
P−→ 1.

Finally, we prove that if the entries Z
(N)
i,j are i.d standard Gaussian variables, and i.i.d

for all 1 ≤ i, j ≤ N , the convergence (2.30) holds almost surely without the need of as-

sumption A3. This mainly relies on a concentration argument. Recall that we already have

λmax(SN )
P−→ 1. Using [19, Theorem 5.6], we prove the following concentration inequality:

for all N ≥ 1 and all ε > 0,

P(|
√
λmax(SN )− E

√
λmax(SN )| > ε) < 2e−CNε

2
(2.34)
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where C > 0 is a proper fixed constant. Indeed it suffices to show that the function s

defined by

s : ZN 7→
√
λmax(SN ) =

√
λmax

(
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N

)
is 1√

CN
-lipschitz, where we consider the N × n matrix ZN as a vector in Euclidean space

RNn when Z
(N)
i,j are real Gaussian, and in R2Nn when the entries are complex Gaussian.

Note that the Euclidean norm of the vector ZN is the same as the Frobenius norm ‖ZN‖F

of the matrix ZN . So for any two matrices ZN and ẐN , we have

|s(ZN )− s(ẐN )| = 1√
n

∣∣∣‖Γ1/2
N ZN‖ − ‖Γ1/2

N ẐN‖
∣∣∣ ≤ 1√

n
‖Γ1/2

N (ZN − ẐN )‖

≤ 1√
n
‖Γ1/2

N (ZN − ẐN )‖F
(a)

≤ 1√
n
‖Γ1/2

N ‖‖ZN − ẐN‖F
(b)
=

1√
n
‖ZN − ẐN‖F ,

where (a) follows from the Frobenius norm inequality ‖AB‖F ≤ ‖A‖‖B‖F , and (b) from

the fact that ‖Γ1/2
N ‖ =

√
λmax(ΓN ) = 1. Thus s is 1/

√
n-lipschitz, and the concentration

inequality (2.34) is proved. Using Borel-Cantelli lemma, we have

√
λmax(SN )− E

√
λmax(SN )→ 0a.s. (2.35)

Together with
√
λmax(SN )

P−→ 1, we then obtain that E
√
λmax(SN ) → 1. By (2.35) again,

it follows that

λmax(SN ) −−−−−→
N,n→∞

1a.s.

The proof of Proposition II.11 is complete.

2.5.4 Proof of Theorem II.12

We first prove the fluctuation of λmax(SN ) under A1, A2(b), A4 and A5. Under these

assumptions, ΓN is of the form

ΓN =

1 0

0 ΓN−1

 ,
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where (ΓN−1) is a sequence of semidefinite positive Hermitian matrices satisfying µΓN−1
D−→

δ0, and

lim
N→∞

λmax(ΓN−1) = lim
N→∞

λ2(ΓN ) = lim
N→∞

λ2(ΓN )

λ1(ΓN )
< 1

by assumption A4. We set d = limN→∞ λmax(ΓN−1). For convenience, in this section we

omit all the subscript N of matrices, for example we write S = n−1Γ
1
2ZZ∗Γ

1
2 . In the

following of this section we write λmax(SN ) as λmax if it does not cause any ambiguity.

Recall the submatrix notations introduced in (2.16) and consider the following block

decomposition of matrix S:

S =

 S1,1 S1,2:N

S2:N,1 S2:N,2:N

 =
1

n

 Z1,·Z
∗
1,· Z1,·Z

∗
2:N,·Γ

1
2

Γ
1
2Z2:N,·Z

∗
1,· Γ

1
2Z2:N,·Z

∗
2:N,·Γ

1
2

 . (2.36)

Denote

S2:N,2:N :=
1

n
Z∗2:N,·ΓZ2:N,· and rN =

N − 1

n
.

Analog to µ(rN ,ΓN ) defined in (2.25), we define the probability measure µ(rN , ΓN−1) whose

Cauchy-Stieltjes transform m satisfies the equation

z =
1

m(z)
+

1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )m(z)
, ∀z ∈ C+.

Also, for all y ∈ BN := {y ∈ R : y 6= 0, y−1 6= λk(ΓN ), ∀k = 2, . . . , N}, we define

xN (y) :=
1

y
+

1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )y
=

1

y
+ rN

∫
s

1− sy
dµΓN−1(s). (2.37)

Consider in particular

θN = xN (1) = 1 +
1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )
. (2.38)

Let ε > 0 be small enough. Thanks to the assumption µΓN−1
D−→ δ0 and d = limλmax(ΓN−1) <
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1, one can adapt the first part of the proof of Proposition II.11 to obtain that eventually

sup suppµ(rN , ΓN−1) < d+ ε .

Let ε < 1−d
2 so that d+ ε < 1− ε and consider the family of events ΩN defined as

ΩN := {λmax(S2:N,2:N ) < d+ ε < 1− ε < λmax}. (2.39)

According to the spectrum confinement property [1, Theorem 1.1] and to Proposition II.11,

one has

P(ΩN ) −−−−−→
N,n→∞

1 .

In particular, for any sequence of events AN , we have P(AN )−P(AN ∩ΩN )→N→∞ 0, which

can be written

P(AN )
.
= PΩ(AN )

if one writes PΩ(·) for P( · ∩ΩN ) and recall the notation x
.
= y for x− y → 0. Hence, with

no loss of generality, we will assume below that ΩN holds.

Let λmax ∈ ΩN . Using the bloc decomposition (2.36) of S together with the determinan-

tal formula based on Schur complements (see for instance [30, Section 0.8.5]), the eigenvalue

λmax satisfies the equation:

det(λmaxI − S)

=
(
λmaxI − S1,1 − S1,2:N (λmaxI − S2:N,2:N )−1S2:N,1

)
det(λmaxI − S2:N,2:N ) = 0 .

Since det(λmaxI − S2:N,2:N ) 6= 0 on ΩN , we have

λmax = S1,1 + S1,2:N (λmaxI − S2:N,2:N )−1S2:N,1 ,

=
Z1,·Z

∗
1,·

n
+
Z1,·Z

∗
2:N,·Γ

1
2

n

(
λmaxI −

1

n
Γ

1
2Z2:N,·Z

∗
2:N,·Γ

1
2

)
Γ

1
2Z2:N,·Z

∗
1,·

n
,

=
Z1,·
n

(
I +A∗ (λmaxI −AA∗)A

)
Z∗1,· .

(
A = n−1/2 Γ

1
2Z2:N,·

)
(2.40)
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Using the equality I + A∗(λI − AA∗)−1A = λ(λI − A∗A)−1 for all scalar λ and all matrix

A such that λI −AA∗ and λI −A∗A are invertible, the equation (2.40) is equivalent to

1 =
1

n
Z1,·(λmaxI − S2:N,2:N )−1Z∗1,· . (2.41)

As θN = xN (1) ≥ 1 lies outside the support of µ(rN , ΓN−1) for large N , [50, Theorem 4.2]

yields

m(θN ) = m(xN (1)) = 1 .

This can be regarded as a “deterministic” version of (2.41), which indicates that λmax and

θN are comparable.

In order to prove the Gaussian fluctuations of λmax, we need to prove that for all b ∈ R

P (λmax ≤ ηN ) −−−−−→
N,n→∞

Φ(b, σ) (2.42)

where

ηN := θN +
b√
n
, Φ(x, σ) :=

1

σ
√

2π

∫ x

−∞
e−

t2

2σ2 dt and σ2 = E
∣∣∣Z(1)

1,1

∣∣∣4 − 1 .

Note that on ΩN the function

Υ(λ) :=
1

n
Z1,·(λI − S2:N,2:N )−1Z∗1,·

is decreasing on (d+ ε,+∞). Let N large enough so that ηN > d+ ε.

Taking into account the fact that Υ(λmax) = 1 due to (2.41), we have

PΩ(λmax ≤ ηN ) = PΩ (Υ(ηN ) ≤ 1) = PΩ

(√
n (Υ(ηN )−m(ηN )) ≤

√
n(1−m(ηN ))

)
.

(2.43)

We first prove that
√
n(1−m(ηN )) = b+ o(1) . (2.44)

Taking into account the fact that m(θN ) = 1 and performing a Taylor expansion on m
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around θN yields

√
n(1−m(ηN )) =

√
n(m(θN )−m(ηN )) = −bm′(θN )−m′′(ξN )

b2√
n

where ξN is between θN = xN (1) and ηN . The assumptions µΓN−1
D−→ δ0 and d =

limλmax(ΓN−1) < 1 yield

θN , ηN −−−−−→
N,n→∞

1 .

Similarly, one proves that x′N (1) −−−−−→
N,n→∞

−1. By [50, Theorem 4.2], equality m(xN (y)) = y

holds for any y /∈ suppµrN ,ΓN−1 . Differentiating, we get

m′(xN (y))x′N (y) = 1 and m′(xN (1)) =
1

x′N (1)
−−−−−→
N,n→∞

−1 .

Finally, for large N , we have supN suppµ(rN , ΓN−1) < d+ ε < 1− ε < min(ηN , θN ) which

implies

|m′′(ξN )| = 2

∣∣∣∣∫ dµ(rN , ΓN−1)(s)

(ξN − s)3

∣∣∣∣ ≤ 2

(1− d− 2ε)3
.

Plugging this into the Taylor expansion finally yields (2.44).

We now go back to (2.43) and handle the quantity
√
n(Υ(ηN )−m(ηN )). More precisely,

we prove in the sequel that

√
n(Υ(ηN )−m(ηN )) =

√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) . (2.45)

In order to proceed, we need the following estimates, valid under the assumptions of Theo-

rem II.12.

Proposition II.13. Assume that A1, A2(b), A4 and A5 hold, then

(a)
√
n
(

1
n tr

(
ηNI − S2:N,2:N

)−1 −m(ηN )
)

P−−−−−→
N,n→∞

0 ,

(b)
√
n

ηN

(
1
nZ1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· − 1

n tr(ηNI − S2:N,2:N )−1S2:N,2:N

) P−−−−−→
N,n→∞

0 .
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Proof of Proposition II.13 is postponed to Section 2.5.4.1. We have

√
n(Υ(ηN )−m(ηN ))

=
√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
+

1

n
tr
(
ηNI − S2:N,2:N

)−1 −m(ηN )

)
=
√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
)

+ oP (1) (2.46)

by the first part of Proposition II.13. We now apply the resolvent identity A−1 − B−1 =

A−1(B −A)B−1 to A = ηN − S2:N,2:N and B = ηNI and obtain

√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
)

=

√
n

ηN

(
1

n
Z1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· −

1

n
tr(ηNI − S2:N,2:N )−1S2:N,2:N

)
+

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
=

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) (2.47)

where the last equality follows from the second estimate of Proposition II.13. Notice that

by the standard Central Limit theorem,

√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
=
√
n

 1

n

n∑
j=1

|Z1,j |2 − 1

 D−−−→
n→∞

N (0,Var |Z1,1|2)

where Var |Z1,1|2 = E|Z1,1|4 − 1. Since ηN → 1, one has

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
=
√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) .

Plugging this last estimate into (2.47) and (2.46) finally yields (2.45). We can now conclude
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the proof of the CLT:

P(λmax ≤ ηN )
.
= PΩ(λmax ≤ ηN )

(a)
= PΩ

(√
n (Υ(ηN )−m(ηN )) ≤ b+ o(1)

)
(b)
= PΩ

(√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) ≤ b

)
.
= P

(√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) ≤ b

)
(2.48)

where (a) follows from (2.43) and (2.44) and (b) follows from (2.45). We can now get rid of

the term oP (1) in (2.48) by Slutsky’s theorem and finally obtain the desired result:

P(
√
n(λmax − θN ) ≤ b) = P(λmax ≤ ηN ) −−−−−→

N,n→∞
Φ(b, σ) , σ2 = E|Z1,1|4 − 1 .

This completes the proof of Theorem II.12 under condition (i).

Assume now that Z
(N)
ij ∼ NC(0, 1) and consider the eigen-decomposition ΓN = UNDNU

∗
N ,

where UN is unitary and DN = diag(λ1(ΓN ), . . . , λN (ΓN )). Then SN can be written as

SN =
1

n
UND

1
2
N (U∗NZN ) (Z∗NUN )D

1
2
NU
∗
N =

1

n
UND

1
2
N Z̃N Z̃

∗
ND

1
2
NU
∗
N where Z̃N = U∗NZN

and has the same eigenvalues as the matrix RN = n−1D
1
2
N Z̃N Z̃

∗
ND

1
2
N . It remains to notice

that Z̃N has i.i.d. NC(0, 1) entries. In particular, RN satisfies A1, A2(b), A4 and A5,

and the desired result follow for SN . Theorem II.12 is established under condition (ii).

Assume now that Z
(N)
ij ∼ NR(0, 1) and that ΓN is real symmetric. In this case, ΓN ’s

eigen-decomposition writes ΓN = ONDNO
>
N , where matrix ON is orthogonal. It remains to

notice that O>NZN has i.i.d NR(0, 1) entries and to proceed as in the complex case to prove

Theorem II.12 under condition (iii).

Proof of Theorem II.12 is completed.
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2.5.4.1 Proof of Proposition II.13

We first establish item (a). Denote by

∆N (x) =
1

n
tr
(
xI − S2:N,2:N

)−1 −m(x) .

We will first establish that n∆n(ηN ) is tight and then, as an easy consequence, we will

deduce the desired convergence:
√
n∆N (ηN )

P−−−−−→
N,n→∞

0.

If x ≥ 1− ε is fixed with 1− ε > d+ ε, then the tightness of n∆N (x) is a consequence

of Bai and Silverstein’s peripheral results of their CLT paper [3], see also [4, Chapter 9]. In

fact,

∆N (x) =

∫
f(x, λ)µS2:N,2:N (dλ)−

∫
f(x, λ)µ(rN , ΓN−1)(dλ) where f(x, λ) =

1

x− λ
.

Notice that for any x ≥ 1− ε, λ 7→ f(x, λ) is analytic in a neighbourhood of [0, d+ ε] which

contains the support of µ(rN , ΓN−1). According to [4, Theorem 9.10(1)] and to the remark

at the end of page 265 in [4] which tightens the interval where the function f(x, ·) needs to

be analytic, we immediatly obtain the tightness of (n∆N (x)).

The case where x = ηN ≥ 1 − ε for N large necessitates some adaptation. We closely

follow [4, Chapter 9]. Denote by

MN (z) = n
(
mS2:N,2:N (z)−m(z)

)

and by C+ the contour defined by (δ, u > 0 fixed)

C+ = C` ∪ Cup ∪ Cr where


C` = {z = (−δ, y) , y ∈ [0, u]}

Cup = {z = (x, u) , x ∈ [−δ, d+ ε]}

Cr = {z = (d+ ε, y) , y ∈ [0, u]}

.

Consider the truncated version M̂N (z) of MN (z) as defined in [4, (9.8.2)] then

∫
C

1

ηN − z

(
M̂N (z)−MN (z)

)
dz

a.s.−−−−−→
N,n→∞

0 where C = C+ ∪ C+
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and {M̂N (·)} forms a tight sequence on C. Consider now the mapping

ΓN : M̂N (·) 7−→ 1

2iπ

∫
C

1

ηN − z
M̂N (z) dz .

ΓN is a continuous mapping from C(C,R2) to C. Applying Prohorov’s theorem (see for

instance [36, Theorem 16.3]) and the continuous mapping theorem [36, Theorem 4.27], we

conclude that ΓN (M̂N ) is tight. It remains to notice that

n∆N (ηN ) = ΓN (M̂N ) +
(

ΓN (M̂N )− ΓN (MN )
)

︸ ︷︷ ︸
→0 a.s.

to conclude that n∆N (ηN ) is tight. Now let δ > 0 be fixed, then

P(|
√
n∆N (ηN )| > δ) = P(|n∆N (ηN )| >

√
nδ) −−−−−→

N,n→∞
0

by tightness, hence the convergence of
√
n∆N (ηN ) to zero in probability. Part (a) of Propo-

sition II.13 is proved.

We now prove part (b) of Proposition II.13 and rely on the lemma on quadratic forms

[4, Lemma B.26]. Denote by

PN =
√
n

(
1

n
Z1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· −

1

n
tr
{

(ηNI − S2:N,2:N )−1S2:N,2:N

})

and apply the lemma on quadratic forms with p = 2: There exists a constant C such that

EZ2:N,·(|PN |
2) ≤ C

n
E(|Z(1)

1,1 |
4) tr

{
(ηNI − S2:N,2:N )−2 S2

2:N,2:N

}
.

Taking into account the facts that

lim
n→∞

ηN = 1 , lim
N
λmax(S2:N,2:N )

P
≤ d and µS2:N,2:N

D−−−−−→
N,n→∞

δ0 a.s. ,
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we obtain that

1

n
tr
{

(ηN − S2:N,2:N )−2S2
2:N,2:N

}
=

∫
s2

(ηN − s)2
µS2:N,2:N ( ds)

P−−−−−→
N,n→∞

0 .

Thus EZ2:N,·(|PN |2) converges to zero in probability, from which we deduce that for δ > 0,

EZ2:N,·(1|PN |2>δ) ≤
1

δ
EZ2:N,·

(
|PN |21|PN |2>δ

) P−−−−−→
N,n→∞

0 .

Finally

P(|PN |2 > δ) = EEZ2:N,·(1|PN |2>δ) −−−−−→N,n→∞
0 ,

which completes the proof of Proposition II.13.

2.6 Proof of Theorem II.8

In order to study the spectral gap associated to the family of Toeplitz matrices and

to prove Theorem II.8, we follow the method used in [16]. The main idea is to interpret

the eigenvalues of the Toeplitz matrix TN as eigenvalues of an operator KN using Widom-

Shampine’s Lemma, and then analyse the convergence of this operator, correctly normalized.

In this section, for p ∈ [1,∞], the Lp norm of a function f is denoted by ‖f‖p, and the

Lp → Lp norm of an operator K is denoted by ‖K‖p. Recall that ‖K‖p := sup‖f‖p=1 ‖Kf‖p.

2.6.1 Widom-Shampine’s Lemma and convergence of operators

We first recall Widom-Shampine’s Lemma, see [16] for a proof.

Lemma II.14 (Widom-Shampine). Let A = (ai,j)
N−1
i,j=0 be a matrix with complex entries

ai,j, and let G be the integral operator on L2(0, 1) defined by

(Gf)(x) =

∫ 1

0
abNxcbNycf(y) dy, x ∈ (0, 1).

Then a nonzero complex number λ is an eigenvalue of A of a certain algebraic multiplicity

if and only if λ/N is an eigenvalue of G of the same algebraic multiplicity.
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Let c = (ck)k∈Z be the sequence in Theorem II.8, and ρ ∈ (−1, 0) be the index, then

the function R(h) := cb|h|c is even and regularly varying and R(k) = ck. By Definition

II.6, R(N) 6= 0 for large enough N ∈ N, for convenience we can suppose that R(N) 6= 0

for all N ∈ N without loss of generality. By Widom-Shampine’s Lemma, for each N , the

matrix TN (c)/(NR(N)) has the same nonzero eigenvalues (with the same multiplicities) as

the integral operator K(ρ)
N defined on L2(0, 1) by

(K(ρ)
N f)(x) =

∫ 1

0

R(bNxc − bNyc)
R(N)

f(y) dy . (2.49)

We will prove that the operators K(ρ)
N converge in the operator norm to the operator K(ρ)

defined on L2(0, 1) by

(K(ρ)f)(x) =

∫ 1

0
|x− y|ρf(y) dy. (2.50)

For this we need the following Lemma II.15 which is a special case of the uniform convergence

theorem of regularly varying functions.

Lemma II.15 ([14, Theorem 1.5.2]). If R is regularly varying with index ρ < 0, then for

every a > 0

sup
x>a

∣∣∣∣R(xy)

R(y)
− xρ

∣∣∣∣ −−−→y→∞
0 .

The following description of the asymptotic integral of regularly varying functions will

also be useful in the sequel.

Lemma II.16 ([14, Proposition 1.5.8]). If R is regularly varying with index ρ > −1, and

suppose that R is locally bounded, then

∫ y

0
R(x) dx ∼ yR(y)

1 + ρ
(y → +∞).

Recall that for an operator defined by (Kf)(x) =
∫ 1

0 K(x, y)f(y) dy, we have

‖K‖1 ≤M1 and ‖K‖∞ ≤M∞ ,
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where

M1 := ess sup
y∈[0,1]

∫ 1

0
|K(x, y)| dx, M∞ := ess sup

x∈[0,1]

∫ 1

0
|K(x, y)|dy. (2.51)

If the kernel K is symmetric for x and y, then M1 = M∞. In this case and if M1 =

M∞ <∞, then by the RieszThorin interpolation theorem (cf. [24, Theorem 2.2.14], taking

p0 = q0 = 1, p1 = q1 =∞), for all p ∈ [1,+∞], we have

‖K‖p ≤M1 = M∞. (2.52)

We are now ready to prove the theorem. As mentioned above, we first prove the following

convergence of operators.

Lemma II.17. Let ρ ∈ (−1, 0), then for any p ∈ [1,∞] and any N ∈ N, the fomulas (2.49)

and (2.50) define bounded operators K(ρ)
N and K(ρ) on Lp(0, 1). Moreover we have

lim
N→∞

‖K(ρ)
N −K

(ρ)‖p = 0

for any p ∈ [1,∞].

Proof. Let K
(ρ)
N : [0, 1]2 → R and Kρ : [0, 1]2 → R be the integral kernels defining respec-

tively K(ρ)
N and K(ρ), that is,

K
(ρ)
N (x, y) =

R(bNxc − bNyc)
R(N)

, K(ρ)(x, y) = |x− y|ρ.

Recall that since R is even, the considered kernels are symmetric and the two essential

supremums in (2.51) of each kernel are equal. Moreover, for each N , K
(ρ)
N is bounded on

[0, 1]2 as it takes only a finite number of values, hence

ess sup
x∈[0,1]

∫ 1

0
|K(ρ)

N (x, y)| dy = ess sup
y∈[0,1]

∫ 1

0
|K(ρ)

N (x, y)| dx <∞ .

For ρ ∈ (−1, 0), easy calculations yield

ess sup
x∈[0,1]

∫ 1

0
|x− y|ρ dy = ess sup

y∈[0,1]

∫ 1

0
|x− y|ρ dx =

2−ρ

(1 + ρ)
<∞ .

65



Chapter II Unbounded largest eigenvalue of sample covariance matrices.

So by (2.52), for all p ∈ [1,+∞] we have

‖K(ρ)
N ‖p <∞ and ‖K(ρ)‖p ≤

2−ρ

(1 + ρ)
.

Also by (2.52), we have

‖K(ρ)
N −K

(ρ)‖p ≤ ess sup
y∈[0,1]

∫ 1

0

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx . (2.53)

We now prove that ‖K(ρ)
N − K(ρ)‖p → 0 by showing that the right handside (RHS) of

(2.53) goes to 0 as N → ∞. Taking an arbitrary ε ∈ (0, 1), we set Aε := {(x, y) ∈ [0, 1]2 :

|x − y| > ε} and for y ∈ [0, 1], we set Aε(y) := {x ∈ [0, 1] : (x, y) ∈ Aε} = {x ∈ [0, 1] :

|x− y| > ε}.

By the inequality

|x− y| − 1

N
≤ |bNxc − bNyc|

N
≤ |x− y|+ 1

N
(2.54)

and the uniform continuity of the function x 7→ xρ on [ ε2 ,+∞), we can take N1 = N1(ε) ∈ N

such that for N > N1 and (x, y) ∈ Aε we have

|bNxc − bNyc|
N

>
ε

2
(2.55)

and ∣∣∣∣ |bNxc − bNyc|ρNρ
− |x− y|ρ

∣∣∣∣ < ε

2
. (2.56)

Then applying Lemma II.15 with a = ε/2, we can find N2 = N2(ε) ∈ N such that for

N > N2 and for all c satisfying |c| ≥ ε/2, we have

∣∣∣∣R(cN)

R(N)
− |c|ρ

∣∣∣∣ < ε

2
. (2.57)

For all N > max(N1, N2) and (x, y) ∈ Aε, let c = bNxc−bNyc
N then by (2.55) we have
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|c| > ε/2. Moreover

∣∣∣∣R(bNxc − bNyc)
R(N)

− |bNxc − bNyc|
ρ

Nρ

∣∣∣∣ < ε

2
(2.58)

by (2.57). Combining (2.56), (2.58) and the triangle inequality, we have

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ < ε

for all N > max(N1, N2) and (x, y) ∈ Aε. Then for N large enough, we have

ess sup
y∈[0,1]

∫
Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx < ε . (2.59)

On the other hand, for all y ∈ [0, 1], we have

∫
[0,1]\Aε(y)

|x− y|ρ dx ≤
∫ ε

−ε
|x|ρ dx =

2ε1+ρ

1 + ρ
. (2.60)

Hence we just need to control the integral

∫
[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx .

Notice that both R and |R| are even, locally bounded and regularly varying with index ρ.

By Lemma II.16, we have

∫
[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx ≤
∫ y+ε

y−ε

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx

(a)
=

∫ ε

−ε

∣∣∣∣R(bNx+ (Ny − bNyc)c)
R(N)

∣∣∣∣ dx

=

∫ Nε

−Nε

∣∣∣∣R(bx+ (Ny − bNyc)c)
NR(N)

∣∣∣∣ dx

≤
∫ Nε+1

−Nε−1

∣∣∣∣ R(bxc)
NR(N)

∣∣∣∣ dx

(b)∼ 2

∣∣∣∣R(Nε+ 1)

R(N)

∣∣∣∣ ε

1 + ρ

(c)∼ 2ε1+ρ

1 + ρ
(2.61)

as N →∞, where (a) follows from a change of variable and the fact that bxc+h = bx+hc
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for every h ∈ Z, (b) follows from Lemma II.16 and (c) from Lemma II.15. Notice that the

controls (2.60) and (2.61) are independent of y, hence for N large enough, we have

ess sup
y∈[0,1]

∫
[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx <

5ε1+ρ

1 + ρ
. (2.62)

Combining (2.59) and (2.62), and taking ε→ 0, we finally obtain

‖K(ρ)
N −K

(ρ)‖p −−−−→
N→∞

0

for all p ∈ [1,∞].

As a consequence of Lemma II.17, we conclude that K(ρ) is compact on Lp(0, 1) for all

p ∈ [1,∞], because it is the limit in operator norm of finite dimensional operators K(ρ)
N .

We will complete the proof of Theorem II.8 in the next section.

2.6.2 Convergence of eigenvalues and simplicity of the largest eigenvalue

For a fixed k = 1, 2, . . . , let a
(ρ)
k be the k-th largest eigenvalue of K(ρ) and a

(ρ)
N,k =

λk(TN (c))/(NR(N)) be the k-th largest eigenvalue of K(ρ)
N . From the convergence ‖K(ρ)

N −

K(ρ)‖2 → 0 we deduce that a
(ρ)
N,k → a

(ρ)
k as N → ∞. In fact, as K(ρ)

N and K(ρ) are compact

and self-adjoint, by the Min-Max Formula (see also [51, Theorem 4.12]) we have

a
(ρ)
N,k = min

dimU=k−1
max
u∈U⊥
‖u‖2=1

〈u,K(ρ)
N u〉

≤ min
dimU=k−1

max
u∈U⊥
‖u‖2=1

〈u,K(ρ)u〉+ ‖K(ρ)
N −K

(ρ)‖2 = a
(ρ)
k + ‖K(ρ)

N −K
(ρ)‖2 .

Symmetrically, we also have a
(ρ)
k ≤ a

(ρ)
N,k + ‖K(ρ)

N −K(ρ)‖2, from which we deduce

|a(ρ)
N,k − a

(ρ)
k | ≤ ‖K

(ρ)
N −K

(ρ)‖2

for all N and k. This implies the convergence of each eigenvalue a
(ρ)
N,k toward a

(ρ)
k .

We now prove that a
(ρ)
1 is a simple eigenvalue of K(ρ). Let u ∈ L2(0, 1) be an eigenfunc-
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tion of a
(ρ)
1 , then by the mini-max formula a

(ρ)
1 = maxf∈L2,‖f‖2=1〈f,K(ρ)f〉, we have

a
(ρ)
1 =

∫ 1

0

∫ 1

0
|x− y|ρu(x)u(y) dx dy ≤

∫ 1

0

∫ 1

0
|x− y|ρ|u(x)u(y)|dx dy ≤ a(ρ)

1

which implies ∫ 1

0

∫ 1

0
|x− y|ρ(|u(x)u(y)| − u(x)u(y)) dx dy = 0.

Hence |u(x)u(y)| = u(x)u(y) for (x, y) ∈ [0, 1]2 dx dy-a.e. This implies that for almost all

y ∈ [0, 1], the equality |u(x)u(y)| = u(x)u(y) holds for almost all x ∈ [0, 1]. Let y0 be such

that u(y0) 6= 0 and c = u(y0)/|u(y0)| = eiϕ0 . Then for almost every x ∈ [0, 1], we have

u(x) =
|u(x)u(y0)|
u(y0)

= c|u(x)|.

So up to a nonzero constant multiplier we can suppose that u ≥ 0 on [0, 1]. Therefore

a
(ρ)
1 u(x) =

∫ 1

0
|x− y|ρu(y) dy ≥

∫ 1

0
u(y) dy > 0 .

This implies that a
(ρ)
1 > 0 and u(x) > 0 for all x ∈ [0, 1]. Then for any other function

v ∈ L2(0, 1) s.t. 〈u, v〉 = 0, v cannot be an eigenfunction of the eigenvalue a
(ρ)
1 . Otherwise

following the same line of reasoning as previously we may write v = |v|eiϕ̃0 where |v| is

also an eigenfunction associated to a
(ρ)
1 , |v| > 0 on [0, 1] and 〈u, |v|〉 = e−iϕ̃0〈u, v〉 = 0. But

u, |v| > 0 contradict the orthogonality

〈u, |v|〉 =

∫ 1

0
u(x)|v(x)| dx = 0 .

Finally recall that if R is regularly varying of index ρ ∈ (−1, 0), then NR(N) → ∞ as

N →∞ by [14, Prop. 1.3.6(v)]. Combining Widom-Shampine’s lemma and the convergence

of eigenvalues, we obtain

a
(ρ)
N,1 =

λmax(TN (c))

NR(N)
−−−−→
N→∞

a
(ρ)
1 and a

(ρ)
N,2 =

λ2(TN (c))

NR(N)
−−−−→
N→∞

a
(ρ)
2 .
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Hence λmax(TN (c)) ∼ a(ρ)
1 NR(N)→∞ and

λ2(TN (c))

λmax(TN (c))
−−−−→
N→∞

a
(ρ)
2

a
(ρ)
1

< 1 .

Proof of Theorem II.8 is now completed.
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CHAPTER III

Joint CLT for top eigenvalues of empirical covariance

matrices of long memory stationary processes

This chapter corresponds to the article with the same title Joint CLT for top eigenvalues

of empirical covariance matrices of long memory stationary processes by P.T. This article

has been submitted to Annals of applied probability.

3.1 Abstract

In this paper we study the joint CLT of them largest eigenvalues λ1(SN (T )), . . . , λm(SN (T ))

of the matrix

SN (T ) =
1

n
T

1
2
NZNZ

∗
NT

1
2
N

where ZN = (Zi,j) is a N × n matrix having i.i.d. centered entries with variance one, and

TN is a N × N deterministic real symmetric Toeplitz matrix. More precisely, TN is the

Nth autocovariance matrix of a long range dependent stationary process, so that SN can

be viewed as a linear representation of sample autocovariance matrix of the process. As

N,n→∞ and Nn−1 → r ∈ (0,∞), we prove the convergence in distribution of the vector

(λ1(SN (T ), · · · , λm(SN (T ))> to a Gaussian vector at scale
√
nλ−1

max(TN ), whose covariance

matrix only depends on EZ2
i,j , the second non-absolute moment of the entries Zi,j . This

result substantially extends our previous result in [42], where we studied the fluctuations of

λ1(SN (T )) in the case where the Zi,js were gaussian.

In order to establish this CLT, we are led to study the asymptotics of the m largest
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eigenvalues (and their associated eigenvectors) of deterministic Toeplitz matrices of growing

dimensions. In particular, we prove multiple spectral gap properties for these largest eigen-

values and a delocalization property for their associated eigenvectors. During our studies,

we also establish a CLT for the top eigenvalues of a generic model of a large empirical

covariance matrix

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N ,

where ΓN is a N×N deterministic positive semi-definite Hermitian matrix with unbounded

spectral norm. This general CLT is of interest on its own.

3.2 Introduction

In this article we study the joint CLT of the m (with m a fixed positive integer) largest

eigenvalues of

SN (T ) :=
1

n
T

1
2
NZNZ

∗
NT

1
2
N , (3.1)

in the regime N,n → ∞ and Nn−1 → r ∈ (0,∞) (in the sequel, we simply denote this

regime as N,n → ∞), where ZN = (Zi,j) is a N × n random matrix with i.i.d. centered

entries Zi,j with variance one, and TN is a N × N deterministic real symmetric Toeplitz

matrix. More precisely, TN is the Nth autocovariance matrix of a long range dependent

stationary process.

Recall that a process (Xt)t∈Z is (second order) stationary if

E|Xt|2 <∞ , EXt = EX0 and Cov(Xt+h,Xt) = Cov(Xh,X0) = γ(h) ∀t, h ∈ Z

where γ : Z → C is a positive definite function, called the autocovariance function of the

process, which satisfies γ(−h) = γ(h). In this paper the process will be said to have long

memory, or to be long range dependent, if its autocovariance function γ is real and of the

form

γ(h) =
L(|h|)

(1 + |h|)1−2d
, ∀h ∈ Z, (3.2)

where d ∈ (0, 1/2) is called the long memory parameter and L is a slowly varying function
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at infinity (c.f. for example Chapter 2 of [45]). Recall that a real function L is said to be

slowly varying at infinity, if it is asymptotically positive, and for any c > 0,

lim
x→∞

L(cx)

L(x)
= 1 .

Note that in this case, γ satisfies ∑
h∈Z
|γ(h)| =∞ .

If to the contrary a stationary process satisfies
∑
|γ(h)| < ∞, then it is a short memory

process.

Given a long memory process (Xt)t∈Z, assumed to be centered, i.e. EXt = 0 for all t ∈ Z,

its autocovariance matrices TN are defined as

TN := Cov


Xt+1

...

Xt+N

 =



γ(0) γ(−1) . . . γ(−N + 1)

γ(1)
. . .

. . .
...

...
. . .

. . . γ(−1)

γ(N − 1) . . . γ(1) γ(0)


. (3.3)

Note that TN are real symmetric Toeplitz matrices. From the same process, we can also

construct its sample autocovariance matrix

QN :=
1

n

n∑
j=1

XjX
∗
j , (3.4)

where X1, . . . , Xn are i.i.d. observations of the random vector (X1, . . . ,XN )>. We are

interested in the spectral properties of QN . After considering the global behaviour of the

ESD µQN := 1
N

∑N
k=1 δλk(QN ) (see for example [43]), it is natural to study the individual

eigenvalues, especially the largest ones. If the process is Gaussian, then QN has the linear

form SN given in (3.1). In this case, a full description of the asymptotic behaviour and the

fluctuations of λmax(QN ) has been provided in [42]. In the present paper, we extend these

results in the following two directions:

1. We extend our previous result to nongaussian linear models.
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2. We extend the fluctuations of one top eigenvalue to the joint fluctuations of several top

eigenvalues, and describe in particular the asymptotic correlation structure of these

top eigenvalues.

In the non-Gaussian case, a sample autocovariance model QN in (3.4) may not admit the

linear representation SN (T ) defined in (3.1). In this article, we restrict our attention to the

study of SN (T ) in the non-Gaussian case, and prove that, for any fixed integer m ≥ 1, the

m largest eigenvalues of TN tend to infinity at the same speed, and after normalization by

Nγ(N), the m quantities λ1(TN )/(Nγ(N)), . . . , λm(TN )/(Nγ(N)) converge to m distinct

finite limits. In the sequel, such a property will be called separate limiting property of

these eigenvalues. Precisely, a group of sequences
(
α

(n)
1

)
n
, . . . ,

(
α

(n)
m

)
n

admit the separate

limiting property if there exists a normalizing sequence β(n) > 0 such that the sequences

α
(n)
1

β(n)
, · · · , α

(n)
m

β(n)

converge to m distinct finite limits.

On this basis, we prove that for the TN ’s with parameter d ∈ (1/8, 1/2), the m largest

eigenvalues of SN (T ) satisfy the following CLT

√
n


λ1(SN (T ))
λ1(TN ) − 1− 1

n

∑
k 6=1

λk(TN )
λ1(TN )−λk(TN )

...

λm(SN (T ))
λm(TN ) − 1− 1

n

∑
k 6=m

λk(TN )
λm(TN )−λk(TN )

 D−−−−−→
N,n→∞

N (0, (1 + |EZ2
1,1|2)Im) (3.5)

where
D−→ denotes the convergence in distribution. The case where d ∈ (0, 1/8] is still

an open question by the time of submission of this article. Note that the value d∗ = 0

represents the threshold between short memory process (where one may expect Tracy-

Widom fluctuations) and long memory process, and the more d gets closer to d∗ the harder

it is to establish Gaussian fluctuations.

From the above results, we can see that the model SN (T ) unveils a number of original

properties with respect to more standard large empirical covariance matrices. Among these

properties, we mention the following:

74



Chapter III Joint CLT for top eigenvalues of empirical covariance matrices.

1. For anym ≥ 1, with high probability, them largest eigenvalues λ1(SN (T )), . . . , λm(SN (T ))

satisfy the separate limiting property with normalizing sequence λmax(TN ). This is a

corollary of (3.5) together with the separate limiting property of largest eigenvalues

of TN . Note that by the same argument of Remark 3 in [42], one can prove that

1

n

∑
k 6=i

λk(TN )

λi(TN )− λk(TN )
−−−−−→
N,n→∞

0 , for i = 1, . . . ,m .

2. For any m ≥ 1, the m largest eigenvalues of SN , when properly normalized, are asymp-

totically independent Gaussian random variables. They fluctuate in an analogous way

as spiked eigenvalues in classical sample covariance matrix models.

3. The fluctuation result is universal: Unlike the model with block-diagonal population

covariance matrix described in our previous paper [42], where the fluctuations depend

on E|Z1,1|4, we can see that here they depend only on EZ2
1,1. So if the entries Zi,j

are real with variance one, or complex with EZ2
i,j = 0, the top eigenvalues fluctuate

in a completely universal way. For a numerical illustration of this difference see

Simulation 3 in Section 3.2 of [42].

We hope that the techniques developed to establish these properties could inspire further

research on the general model QN .

The proof of the CLT in (3.5) divides into two parts. In the first part, we study the

asymptotic behaviour of the top eigenvalues of Toeplitz matrices TN and the associated

eigenvectors. We prove the separate limiting property for the top eigenvalues of TN , and

the delocalization of the associated eigenvectors. In the second part, we develop a CLT for

the m largest eigenvalues of generic sample covariance matrix

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N (3.6)

where ΓN is a deterministic hermitian matrix whose assumptions are designed to fulfill TN ’s

properties.

For almost a century the Toeplitz matrices have been studied by many mathematicians.
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The early pioneers include G. Szegő, U. Grenander, M. Kac, H. Widom. In recent decades

this topic has been greatly developed by many others like S. M. Grudsky, J. M. Bogoya,

A. Bttcher etc. Some excellant textbooks can be found, for example [28, 15, 18]. Their

results have been widely applied in many areas. As we have seen, this kind of matrices

appear naturaly in the stationary processes. However, If the underlying process exhibits

long memory, the associated Toeplitz matrices usually have unbounded symbols, so their

top eigenvalues are unbounded. In this case, much less is known about their behaviour.

In [42], we established the asymptotics of the jth largest eigenvalue λj(TN ) for any fixed

j, and proved that

λj(TN )

Nγ(N)
→ λj(K(ρ)) (3.7)

where we denote ρ = 2d− 1, and K(ρ) is a compact operator acting on L2(0, 1) defined by

(K(ρ)f)(x) =

∫ 1

0
|x− y|ρf(y) dy . (3.8)

We also proved that λ1(K(ρ)) is simple, so the two largest eigenvalues of TN have separate

limiting property.

In the present paper, we prove that λj(K(ρ)) is simple for all j ≥ 1, which implies the

separate limiting property for any finite number of top eigenvalues of TN . Moreover, we

prove that the eigenfunction of K(ρ) associated with λj(K(ρ)) is continuous on [0, 1], and

that the eigenvectors of TN associated with λj(TN ) approximate the eigenfunction of K(ρ)

in some sense, see Theorem III.2. This implies the delocalization of eigenvectors of TN .

Using the above properties of Toeplitz matrices TN , we can study the fluctuations of top

eigenvalues of SN (T ). The key tool is a CLT for the m largest eigenvalues of generic sample

covariance matrix SN (Γ) defined in (3.6), assuming that ΓN , the population covariance

matrix, satisfies some crucial properties of Toeplitz matrices, including

1. The m largest eigenvalues of ΓN tend to ∞ at the same speed.

2. The m+1 largest eigenvalues of ΓN satisfy multiple spectral gap conditions, i.e. there
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exists a constant c < 1 such that for any j = 1, . . . ,m,

λj+1(ΓN )

λj(ΓN )
≤ c .

3. ΓN satisfies the following condition:

tr Γ2
N√

Nλ2
max(ΓN )

→ 0

(See Remark 11 for some comments on this condition).

Under these assumptions, we prove that the m largest eigenvalues of the generic model (3.6)

fluctuate as Gaussian variables. More precisely, let

Λm :=
√
n


λ1(SN (Γ))
λ1(ΓN ) − 1− 1

n

∑
k 6=1

λk(ΓN )
λ1(ΓN )−λk(ΓN )

...

λm(SN (Γ))
λm(ΓN ) − 1− 1

n

∑
k 6=m

λk(ΓN )
λm(ΓN )−λk(ΓN )


then we prove that

dLP(Λm,N (0,Σ(N)
m ))→ 0 , (3.9)

as N,n→∞, where dLP is the Lévy-Prokhorov distance, and

Σ(N)
m = Im + (σ

(N)
i,j )mi,j=1

with

σ
(N)
i,j =

(
E|Z1,1|4 − |EZ2

1,1|2 − 2
) N∑
k=1

|uk,i|2|uk,j |2 + |EZ2
1,1|2

∣∣∣∣∣
N∑
k=1

uk,iuk,j

∣∣∣∣∣
2

(3.10)

where uj := (u1,j , . . . , uN,j)
> the eigenvector of ΓN associated with λj(ΓN ). This formula,

in the case where Zi,j and ΓN are real with convergent entries σ
(N)
i,j , has already appeared

in the context of principal component analysis (PCA) in other papers, see for example [20].

Here we do not assume that σ
(N)
i,j converges, so we state our result in term of a distance
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metrizing the weak convergence. Note that our generic CLT takes simpler forms in the

following two situations:

1. If the eigenvectors (uj)1≤j≤m are real and delocalized, i.e. uj ∈ Rm and ‖uj‖∞ → 0

as N →∞, then we have

Σ(N)
m −−−−→

N→∞
(1 + |EZ2

1,1|2)Im

2. If ΓN is diagonal, then we have

Σ(N)
m = (E|Z1,1|4 − 1)Im,

which is consistent with [42].

This general CLT, although primarily designed to address the study of the top eigen-

values of the model SN (T ) in (3.1), also provides new perspectives in the study of generic

sample covariance matrices, with population covariance matrices with unbounded spectral

norm.

The spectral properties of generic sample covariance matrix SN (Γ) defined by (3.6)

has been intensively studied in the last several decades. In the groundbreaking work of

Marčenko and Pastur [41], the authors studied the LSD of SN (Γ) in the case where ΓN is

a diagonal matrix with i.i.d. diagonal entries which are independent of the entries of ZN ,

and they discovered the so-called Marčenko-Pastur Distribution. After that, many works

on the LSD of SN (Γ) with different configuration of ΓN have appeared, see for instance

[56, 34, 59, 49, 48]. We mention that Silversteins result [48] applies to our model SN (T )

and combined with variations of Szegő’s theorem [55] describes the LSD of SN (T ).

Apart from the behaviour of LSD, people are also interested in individual eigenvalues

of SN (Γ), especially the extreme eigenvalues. Unlike the global scale, the extreme eigen-

values are more sensitive to the eigenstructure of ΓN . For example, Baik et al. [9] studied

λmax(SN (Γ)) with several different configurations of ΓN and discovered the so-called BBP

phase transition. Even for the white noise model where ΓN = IN , the fluctuations of

λmax(SN (Γ)) are different between the cases where ZN has real entries or complex entries
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(see Johansson [32] and Johnstone [33]). All these works show that it is not realistic to build

a universal result for the fluctuations of individual eigenvalues for general ΓN . People have

to study case by case. For instance El Karoui [25], Lee and Schnelli [39], Bao et al. [11],

and Knowles and Yin [37] established the Tracy-Widom fluctuation of the largest eigenvalue

in the case where λmax(ΓN ) is bounded and sticks to the upper bound of the bulk of the

LSD of ΓN , while Bai and Yao [6, 7] studied the spiked eigenvalues and established the

Gaussian-type fluctuations.

Recently several models of matrices SN (Γ) with ΓN having a small number of divergent

eigenvalues have been considered, in the context of principal component analysis (PCA)

[35, 47, 57, 20] and long memory processes [42]. Although the assumptions in these various

works differ, many results coincide (see Remark 13).

Organizations. This paper is organized as follows. In Section 3.3 we state our main

theorems. This section is divided in three parts. In 3.3.1, we state the results on Toeplitz

matrices TN , whose proofs are given in Section 3.4. In 3.3.2, we state the general CLT,

whose proof is in Section 3.5. In 3.3.3 we state the CLT for top eigenvalues of long memory

sample covariance matrix SN (T ) which is a direct corollary of the previous results.

Notations. For an hermitian operator or matrix A, we denote its real eigenvalues by

decreasing order as

λ1(A) ≥ λ2(A) ≥ . . .

We also denote the largest eigenvalue of A by λmax(A). For a matrix or a vector A, we use

A> to denote the transpose of A, and A∗ the conjugate transpose of A.

The kernel of a linear operator A : X → X, is denoted by kerA and defined by

kerA := {u ∈ X : Au = 0} .

The spectrum of A is denoted by Spec(A).

For a matrix A, we denote Ai,· the ith row of A, and A¬i,· the submatrix of A obtained

by deleting the ith row. Similarly A¬i,¬j denotes the submatrix of A obtained by deleting
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the ith row and the jth column. When using these subscripts, we do not indicate the

dependence on N . By convention, these subscripts have higher priority than the transpose

or conjugate transpose, for example M∗i,· := (Mi,·)
∗ is the conjugated transposition of the

submatrix Mi,·.

We denote the Lp or lp norm by ‖ · ‖p. For a matrix or a linear operator A, the

norm of A induced by vector norm ‖ · ‖p is denoted by ‖A‖p, and we recall that ‖A‖p :=

sup‖v‖p=1 ‖Av‖p. We say that a function f or a vector v is “normalized” or “unit length”

when ‖f‖2 = 1 or ‖v‖2 = 1. When functions or vectors are said to be “orthonormal”, they

will be implicitely considered as elements of a Hilbert space. The inner product of two

elements u, v of a Hilbert space is denoted by 〈u, v〉.

For two probability measures P and Q on Rm, we denote their Lévy-Prokhorov distance

by dLP(P,Q) which is defined by

dLP(P,Q) := inf{ε : P (A) ≤ Q(Aε) + ε,Q(A) ≤ P (Aε) + ε, ∀A ∈ B(Rm)}, (3.11)

where Aε is defined by

Aε := {x ∈ Rm : ∃y ∈ A, s.t. ‖x− y‖ < ε}.

It is well known that this distance metrizes the weak convergence. For two random variables

X,Y ∈ Rm and two probability measures µX , µY such that X ∼ µX and Y ∼ µY , we some-

times write dLP(X,Y ), dLP(X,µY ) or dLP(µX , Y ), all these notations denote dLP(µX , µY ).

Given x ∈ R, we denote by bxc the integer satisfying bxc ≤ x < bxc + 1. For two real

numbers x, y, we denote

x ∧ y := min(x, y) and x ∨ y := max(x, y) .

Given two sequences of nonnegative numbers xn, yn, we denote

xn ∼ yn ⇔ lim
n→∞

(
xn
yn

)
= 1 , xn � yn ⇔ lim

n→∞

xn
yn

= 0 and xn � yn ⇔ lim
n→∞

yn
xn

= 0 .
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The notations xn = o(1) and xn = O(1) respectively mean limn→∞ xn = 0 and limn→∞ |xn| <

∞. If Xn, X are random variables, the notation Xn = oP (1) means that limn→∞Xn = 0

in probability. The notations Xn
D−→ X and Xn

P−→ X respectively denote convergence in

distribution and in probability. If µn, µ are measures, we denote with a slight abuse of

notation µn
D−→ µ for the weak convergence of µn to µ.

The cardinal of a set B is denoted by #B. In the proofs we use C to denote a constant

that may take different values from one place to another.
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3.3 Statement of the main theorems

3.3.1 Spectral properties of Toeplitz matrices

Let TN be a Toeplitz matrix defined by

TN := (γ(i− j))Ni,j=1 (3.12)

with γ : Z→ R a function in the form

γ(h) = (1 + |h|)ρL(|h|), ∀h ∈ Z, (3.13)

where L is a slowly varying function at infinity and ρ = 2d − 1 ∈ (−1, 0). Let K(ρ) be the

operator defined on L2(0, 1) by

(K(ρ)f)(x) =

∫ 1

0
|x− y|ρf(y) dy , for f ∈ L2(0, 1) . (3.14)

We will describe the eigenvalues and eigenvectors of TN with help of the operator K(ρ),

so we first establish a theorem on the spectral properties of this operator.
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Theorem III.1. The operator K(ρ) is compact and positive semidefinite. It has infinitly

many positive eigenvalues. All its nonzero eigenvalues are simple, and the associated eigen-

functions are continuous on [0, 1].

We note that K(ρ) is self-adjoint so for any nonzero eigenvalue λ, its algebraic multiplic-

ity equals to its geometric multiplicity, which is defined as dim ker(λI − K(ρ)). For more

information about algebraic multiplicity, see [40]. So here we say that a nonzero eigenvalue

λ is simple, it means that

dim ker
(
λI −K(ρ)

)
= 1 .

In the next theorem, we describe the limiting behaviour of the eigenvalues λj(TN ) and

provide a quantitative description of their associated eigenvectors. Note that the formula

(3.15) has already appeared in our previous article [42].

Theorem III.2. For any j ≥ 1, we have

lim
N→∞

λj(TN )

Nγ(N)
= λj(K(ρ)) . (3.15)

Moreover let fj be the normalized eigenfunction of K(ρ) associated with λj(K(ρ)), then for

any N , we can choose a normalized eigenvector uj = (u1,j , . . . , uN,j)
> of TN associated with

λj(TN ), such that

lim
N→∞

sup
1≤i≤N

{∣∣∣∣√Nui,j − fj ( i

N

)∣∣∣∣} = 0 . (3.16)

Combining Theorem III.1 and III.2 we get the following two important consequences.

The first consequence is the separate limiting property of any m (with m ≥ 1) largest eigen-

values λ1(TN ), . . . , λm(TN ), with normalizing sequence Nγ(N). The second consequence is

the delocalization of the eigenvector uj associated with λj(TN ) for any fixed j ≥ 1. Indeed

by (3.16), for large N , we have

‖uj‖∞ ≤
1 + ‖fj‖∞√

N
,
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and by Theorem III.1 we have ‖fj‖∞ <∞. Thus we conclude that

‖uj‖∞ = O
(

1/
√
N
)
→ 0 .

The next proposition provides a comparison between the global behaviour of TN s eigen-

values (trTN or trT 2
N ) and λmax(TN ).

Proposition III.3. Let TN be defined as above.

1. If ρ ∈ (−1/2, 0) or equivalently d ∈ (1/4, 1/2), then TN satisfies

lim
N→∞

trTN√
Nλmax(TN )

= 0 . (3.17)

2. If ρ ∈ (−3/4,−1/2] or equivalently d ∈ (1/8, 1/4], then TN satisfies

lim
N→∞

trT 2
N√

Nλ2
max(TN )

= 0 . (3.18)

3.3.2 A general CLT

Let

SN (Γ) =
1

n
Γ

1
2
NZNZ

∗
NΓ

1
2
N

where ZN is a N × n random matrix with i.i.d. entries Zi,j such that

EZi,j = 0, E|Zi,j |2 = 1, for all 1 ≤ i ≤ N and 1 ≤ j ≤ n ,

and ΓN is a N × N deterministic positive semidefinite hermitian matrix. For 1 ≤ i ≤ N ,

let ui = (u1,i, . . . , uN,i)
> be an eigenvector of ΓN associated with λi(ΓN ).
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Given an integer m ≥ 1, we define

Λm(ΓN ) :=
√
n



λ1(SN (Γ))
λ1(ΓN ) − 1− 1

n

∑
k 6=1

λk(ΓN )
λ1(ΓN )−λk(ΓN )

...

λj(SN (Γ))
λj(ΓN ) − 1− 1

n

∑
k 6=j

λk(ΓN )
λj(ΓN )−λk(ΓN )

...

λm(SN (Γ))
λm(ΓN ) − 1− 1

n

∑
k 6=m

λk(ΓN )
λm(ΓN )−λk(ΓN )


. (3.19)

We establish the CLT for the vector Λm(ΓN ) under the following assumptions:

A1 The spectral norm λ1(ΓN ) is bounded away from zero, and there exists a constant

κ > 0 such that

λm(ΓN ) ≥ κλ1(ΓN ).

A2 (Multiple spectral gap conditions) For any i = 1, . . . ,m, we assume that

lim
N→∞

λi+1(ΓN )

λi(ΓN )
< 1.

Remark 9. Note that the multiple spectral gap conditions assumed in A2 ensures that

the m eigenvalues λ1(ΓN ), . . . , λm(ΓN ) are asymptotically simple, so that the denominators

in the definition of Λm(ΓN ) are nonzero for large N , thus Λm(ΓN ) is asymptotically well

defined.

Remark 10. Note also that if the m + 1 nonnegative eigenvalues λ1(ΓN ), . . . , λm+1(ΓN )

satisfy the so-called separate limiting property, then A2 holds. In fact if there exists a

sequence βN such that λj(ΓN )/βN → `j for j = 1, . . . ,m + 1 with `j distinct with each

other, then `1 > · · · > `m+1 ≥ 0 and λj+1(ΓN )/λj(ΓN )→ `j+1/`j < 1 for j = 1, . . . ,m.

A3

lim
N→∞

tr ΓN√
Nλmax(ΓN )

= 0 and E|Zi,j |4 <∞.

A4

lim
N→∞

tr Γ2
N√

Nλ2
max(ΓN )

= 0 and E|Zi,j |8 <∞.
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Remark 11. For a positive semidefinite hermitian matrix ΓN , if we consider the normalized

matrix Γ̃N := ΓN/λmax(ΓN ) and its ESD µΓ̃N = N−1
∑

k δλk(Γ̃N ), then the condition A3

(resp. A4) says exactly that the first (resp. second) moment of µΓ̃N is of order o(1/
√
N).

Note that the eigenvalues of Γ̃N are in [0, 1], so the general inequality

lim
N→∞

tr Γ2
N√

Nλ2
max(ΓN )

≤ lim
N→∞

tr ΓN√
Nλmax(ΓN )

holds. Note also that by Chebyshev’s inequality, if the first or second moment of µΓ̃N

converges to 0, then µΓ̃N D−→ δ0.

Theorem III.4. Under A1, A2, and either A3 or A4, we have

dLP(Λm(ΓN ),N (0,Σ(N)
m )) −−−−−→

N,n→∞
0 , (3.20)

where Σ
(N)
m = Im + (σ

(N)
i,j )mi,j=1 with

σ
(N)
i,j =

(
E|Z1,1|4 − |EZ2

1,1|2 − 2
) N∑
k=1

|uk,i|2|uk,j |2 + |EZ2
1,1|2

∣∣∣∣∣
N∑
k=1

uk,iuk,j

∣∣∣∣∣
2

. (3.21)

and uj := (uj,1, . . . , uj,N )> is a normalized eigenvector associated with λj(ΓN ).

Remark 12. In view of the expression (3.21), it is not clear that the covariance matrix Σ
(N)
m

converges. In order to avoid any cumbersome assumption enforcing this convergence, we

express the CLT with the help of Lévy-Prokhorovs distance. If however it happens that

Σ
(N)
m converges to some matrix Σm, then we conclude the CLT in the following usual form

Λm(ΓN )
D−−−−−→

N,n→∞
N (0,Σm).

3.3.3 The CLT for covariance matrices of long memory processes

Let TN be defined as in Section 3.3.1, assume in addition that γ is positive definite,

this implies that TN is positive semidefinite for all N . By Polya Theorem (c.f. [31, The-

orem 3.5.22]), a simple example of positive definite function is γ : h 7→ (1 + |h|)ρ with

ρ ∈ (−1, 0). Let SN (T ) = n−1T
1
2
NZNZ

∗
NT

1
2
N with ZN = (Zi,j) the same as in SN (Γ).
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For an arbitrary integer m ≥ 1, we define analogously Λm(TN ) as in (3.19) by replacing

SN (Γ) with SN (T ), and ΓN with TN . And by Theorem III.2, any finite number of top

eigenvalues of TN have separate limiting property, thus Λm(TN ) is asymptotically well

defined.

Theorem III.5. Let TN and SN (T ) be defined as before. If one of the following is satisfied:

1. The parameter ρ belongs to (−1/2, 0) or equivalently d ∈ (1/4, 1/2), and E|Zi,j |4 <∞;

2. The parameter ρ belongs to (−3/4,−1/2] or equivalently d ∈ (1/8, 1/4], and E|Zi,j |8 <

∞,

then we have

Λm(TN )
D−−−−−→

N,n→∞
N (0, (1 + |EZ2

i,j |2)Im) .

Theorem III.5 is a direct corollary of Theorem III.1, III.2, Proposition III.3 and Theo-

rem III.4. Note that by Theorem III.1, III.2 the Toeplitz matrices TN satisfy the assump-

tions A1 and A2, and Proposition III.3 ensures that TN satisfies A3 or A4 for different

ρ. Thus Theorem III.4 applies to the model SN (T ). The limit of covariance matrices Σ
(N)
m

can be determined by the asymptotics of eigenvectors of TN in Theorem III.2, from which

we have

Σ(N)
m → (1 + |EZ2

1,1|2)Im ,

and the result follows.

Remark 13. Comparing the assumptions of Theorem III.4 and those of [20], we can see

that [20] requires that all the eigenvalues of ΓN , except for K of them with K � N1/6, are

uniformly bounded by a fixed constant C. This condition cannot be fulfilled by most of TN .

Indeed, let us take the third example in Section 3.1 of [42], where

TN :=

(
1

2π

∫ π

−π
|x|−2dei(j−k)x dx

)N
j,k=1

with d ∈ (0, 1/2), i =
√
−1. This Toeplitz matrix has an unbounded spectral density

f(x) = |x|−2d, so by a result of Tyrtyshnikov and Zamarashkin [55], for any fixed bound
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C > 0, the number of eigenvalues of TN larger than C is asymptotically (π−1C−
1
2d )N . Note

that this is always of order O(N) no matter how large C is.

Inversely, we can also find some models which satisfy the assumptions in [20] but not

the assumptions in the present paper. For instance let ΓN be a N × N hermitian matrix

such that λmax(ΓN ) = logN but all other eigenvalues equal to 1. Then SN (Γ) satisfies all

assumptions in [20] but not ours.

3.4 Proofs of the theorems on Toeplitz matrices

3.4.1 Some preparation

Recall that the Toeplitz matrix TN is defined in Section 3.3.1 as

TN := (γ(i− j))Ni,j=1 where γ(h) = L(|h|)(1 + |h|)ρ

with L a slowly varying function at infinity and ρ ∈ (−1, 0). Note that by the definition of

slowly varying function, γ(N) is positive for N sufficiently large.

For p ∈ [1,∞], and for N sufficiant such that γ(N) 6= 0, we define a finite-rank operator

K(γ)
N acting on Lp(0, 1) by

(K(γ)
N f)(x) =

∫ 1

0

γ(bNxc − bNyc)
γ(N)

f(y) dy . (3.22)

The operator K(ρ) in (3.14) is also well-defined for any f ∈ Lp(0, 1) by the integral

formula:

(K(ρ)f)(x) =

∫ 1

0
|x− y|ρf(y) dy . (3.23)

The operators K(γ)
N and K(ρ) acting on Lp(0, 1) are bounded, see [42, Lemma 5.4]. Moreover,

from Lemma 5.4 of [42], we have the convergence

‖K(γ)
N −K

(ρ)‖p → 0 as N →∞, ∀p ∈ [1,∞] . (3.24)

The above convergence (3.24) has many useful consequences in this proof. The first conse-
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quence is that the operator K(ρ) is compact on Lp(0, 1) for any p ∈ [1,∞].

For each p ∈ [1,∞], K(ρ) (resp. K(γ)
N ) has its spectrum as an operator acting on Lp(0, 1).

The following proposition shows that its nonzero eigenvalues and the associated eigenfunc-

tions are invariant as p changes.

Proposition III.6. The nonzero eigenvalues and the associated eigenfunctions of K(ρ) :

Lp(0, 1)→ Lp(0, 1) and K(γ)
N : Lp(0, 1)→ Lp(0, 1) do not change when p runs accross [1,∞].

Proof. We only prove the result for K(ρ). For the other operator K(γ)
N one can prove in the

same way.

We only need to prove that, for any p ∈ [1,∞), the operator K(ρ) : Lp(0, 1) → Lp(0, 1)

has the same nonzero eigenvalues and associated eigenfunctions as K(ρ) : L∞(0, 1) →

L∞(0, 1). As we have already noticed that K(ρ) is compact on Lp(0, 1) and on L∞(0, 1), the

desired result is a direct application of Theorem 4.2.15 in [24].

Indeed, we recall that two Banach spaces B1 and B2 or their associated norms are said to

be compatible if B = B1∩B2 is dense in each of them, and the following condition is satisfied:

if fn ∈ B, ‖fn−f‖B1 → 0 and ‖fn−g‖B2 → 0, then f = g ∈ B. The operators Ai : Bi → Ci

with i = 1, 2 and C1, C2 two Banach spaces, are said to be consistent if A1f = A2f for all

f ∈ B1∩B2. Then we can verify that Lp(0, 1) and L∞(0, 1) are compatible, and K(ρ) defined

by an integral formula is obviously consistent. Then Theorem 4.2.15 in [24] applies.

According to the above proposition, when we talk about the nonzero eigenvalues and

the associated eigenfunctions of these operators, we do not need to specify the space.

3.4.2 Proof of Theorem III.1

Compacity and semidefinite positivity, infinitly many positive eigenvalues. The

compacity of K(ρ) is already proved by the convergence (3.24). Also by this convergence,

we prove the positivity semidefinite of K(ρ) on L2(0, 1). Indeed, taking L ≡ 1, by Polya

Theorem, TN
Nγ(N) are positive semidefinite for any N , it does not have negative eigenvalues.

Hence K(γ)
N does not have negative eigenvalues, since by Widom-Shampine Lemma [42,

Lemma 5.1], TN/(Nγ(N)) has the same nonzero eigenvalues as K(γ)
N ,. Then for any f ∈
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L2(0, 1), we have

〈K(γ)
N f, f〉 ≥ 0 .

Let N →∞, from (3.24) we have

〈K(ρ)f, f〉 ≥ 0 .

The fact that K(ρ) has infinitely many positive eigenvalues is implicitly implied by

Widom’s formula in [58], which writes (after some calculation and rearrangement)

λj(K(ρ)) ∼ 4π−ρ
Γ(ρ)

Γ
(ρ

2

)
Γ
(
−ρ

2

) 1

j1+ρ
as j →∞ .

Continuity of eigenfunctions associated with nonzero eigenvalues. Let λ 6= 0

be an eigenvalue of K(ρ) and f be an associated eigenfunction. We now prove that f is

continuous on [0, 1].

Note that f satisfies the equation

f(x) = λ−1

∫ 1

0
|y − x|ρf(y) dy ,

and from Proposition III.6, f also belongs to L∞(0, 1). So for any x0 ∈ [0, 1], one has

|f(x)−f(x0)| ≤ λ−1‖f‖∞
∫ 1

0
||y − x|ρ − |y − x0|ρ| dy ≤ λ−1‖f‖∞

∫ 1

−1
||y − x+ x0|ρ − |y|ρ| dy ,

and the integral on the RHS tends to 0 when |x− x0| → 0.

Simplicity of nonzero eigenvalues. We prove that all nonzero eigenvalues of K(ρ) are

simple. We need the following key lemma. It says that any normalized eigenfunction of

K(ρ) associated with a nonzero eigenvalue, taken at x = 1, has the absolute value
√

1 + ρ.

Lemma III.7. Let λ > 0 be a nonzero eigenvalue of K(ρ), and let f be a normalized

eigenfunction associated with λ. Then f satisfies

|f(1)| =
√

1 + ρ . (3.25)
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A result similar to the above lemma first appeared in [46] for a general but square

integrable kernel k(x− y), see Theorem 3 of [46]. Note that thanks to the explicite formula

of K(ρ), the result of Lemma III.7 is stronger than [46]. Directly using Theorem 3 of [46],

we can only conclude that for ρ ∈ (−1/2, 0), for any nonzero eigenvalue λ of K(ρ), there

exists a group of orthonormal eigenfunctions fλ,1, . . . , fλ,m associated with λ, where m is

the multiplicity of λ, such that

|fλ,i(1)| =
√

1 + ρ .

However we will notice later that this result is not sufficient to our need.

Whenever Lemma III.7 is proved, we can prove the simplicity of any nonzero eigenvalue

λ of K(ρ) by contradiction. Assume to the contrary that λ > 0 had multiplicity m ≥ 2,

then we could choose two orthonormed eigenfunctions fλ,1, fλ,2 associated with λ. From

Lemma 3.25, without loss of generality we can assume that fλ,1(1) = fλ,2(1) =
√

1 + ρ.

Then the function

fλ :=
1√
2
fλ,1 +

1√
2
fλ,2

is also a normalized eigenfunction of K(ρ). But this function satisfies

fλ(1) =
√

2(1 + ρ) 6=
√

1 + ρ ,

which is a contradiction to Lemma III.7.

Proof of Lemma III.7. We follow the outline of the proof in [46]. For any τ > 0, we define

K(ρ)
τ the operator on L2(0, τ) by

(K(ρ)
τ f)(x) =

∫ τ

0
|x− y|ρf(y) dy . (3.26)

By a change of variable, it is easy to see that a function f ∈ L2(0, 1) is an eigenfunction of

K(ρ) associated with an eigenvalue λ if and only if f( ·τ ) is an eigenfunction of K(ρ)
τ associated

with the eigenvalue λτ1+ρ. By this fact, a positive number λ is an eigenvalue of K(ρ) with

multiplicity m if and only if λτ1+ρ is an eigenvalue of K(ρ)
τ with the same multiplicity m for

all τ > 0.
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Suppose that f is a normalized eigenfunction of K(ρ) associated with nonzero eigenvalue

λ > 0. Then for any τ > 1 we have the following two equations

λτ1+ρf
(x
τ

)
=

∫ τ

0
|x− y|ρf

(y
τ

)
dy , for x ∈ (0, τ) (3.27)

and

λf(y) =

∫ 1

0
|x− y|ρf(x) dx , for y ∈ (0, 1). (3.28)

We define the function g on [0,∞) by

g(y) =
1

λ

∫ 1

0
|x− y|ρf(x) dx , for y ∈ [0,∞),

then g is a continuous extension of f on [0,∞). Multiply the two sides of (3.27) by f(x),

and integrate for x ∈ [0, 1], we get

λτ1+ρ

∫ 1

0
f
(x
τ

)
f(x) dx =

∫ 1

0

∫ τ

0
|x− y|ρf

(y
τ

)
f(x) dy dx . (3.29)

Note that by the boundedness of f , Fubini Theorem applies to the RHS, thus changing the

order of two integrations and taking into account the definition of g, we get

τ1+ρ

∫ 1

0
f
(x
τ

)
f(x) dx =

∫ τ

0
g(y)f

(y
τ

)
dy . (3.30)

It is easy to see from (3.30) that

(
τ1+ρ − 1

τ − 1

)∫ 1

0
f
(x
τ

)
f(x) dx =

∫ τ
1 g(y)f

( y
τ

)
dy

τ − 1
. (3.31)

Letting τ → 1+ on the two sides of (3.31), and noting that the continuity of f on [0, 1]

implies the uniform convergence of f(xτ ) to f(x), we get

1 + ρ = |f(1)|2 (3.32)

and the result follows.
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3.4.3 Proof of Theorem III.2

For any j ≥ 1, the convergence (3.15) was already proved in [42, Theorem 2.3]. So we

only have to prove the asymptotic behaviour (3.16) of eigenvectors.

By Theorem III.1, we have λj(K(ρ)) > 0. Also according to the simplicity of nonzero

eigenvalues, we have λj−1(K(ρ)) > λj(K(ρ)) > λj+1(K(ρ)). Let fj be a normalized eigen-

function associated with λj(K(ρ)). In the sequel, we shall rely on the spectral projections

(to be defined later) to construct an eigenvector of TN associated with λj(TN ) and prove

that such an eigenvector approximates fj in the sense of (3.16).

Let ε = 1
2 min(λj−1(K(ρ))−λj(K(ρ)), λj(K(ρ))−λj+1(K(ρ))) and C be the circle centered

at λj(K(ρ)) and of radius ε on complex plane. We take N sufficiently large such that

‖K(γ)
N − K(ρ)‖∞ < ε. So we have |λk(K

(γ)
N ) − λk(K(ρ))| < ε for all 1 ≤ k ≤ N , which

implies that only the eigenvalues λj(K(γ)
N ) and λj(K(ρ)) are enclosed by C and all the other

eigenvalues are outside C. We define the spectral projections

PN :=
1

2πi

∫
C

(z −K(γ)
N )−1 dz and P :=

1

2πi

∫
C

(z −K(ρ))−1 dz. (3.33)

By Riesz decomposition Theorem (c.f. for example [24, Theorem 1.5.4 and Theorem 4.3.19]),

PN (resp. P ) is a projection onto the eigenspace of K(γ)
N (resp. Kρ)) corresponding to

λj(K(γ)
N ) (resp. λj(Kρ)). To those who are unfamiliar with Riesz’ Theorem, we explain the

arguments with K(ρ) and P . Indeed, from Riesz’ Theorem, P is a finite rank projection

which commutes with Kρ. Let R(P ) be the range of P , then R(P ) is an invariant space

of K(ρ) (due to the commutativity of the projection P and K(ρ)), and the restriction of

K(ρ) to R(P ) is self-adjoint (because K(ρ) is self-adjoint) and has spectrum {λj(K(ρ))},

then from the finite dimensional linear algebra, R(P ) is spanned by the eigenfunctions of

K(ρ) associated with λj(K(ρ)). Therefore, recall that fj is a normalized eigenfunction of

K(ρ) associated with λj(K(ρ)), we have Pfj = fj . The same argument shows that PN is a

projection to the eigenspace of K(γ)
N and thus PNfj is an eigenfunction of K(γ)

N associated

with λj(K(γ)
N ), in condition that PNfj 6= 0.
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We prove that ‖PN − P‖∞ → 0. Indeed we have

‖PN − P‖∞ ≤
1

2π

∫
C

‖(z −K(γ)
N )−1 − (z −K(ρ))−1‖∞|dz|.

Thus the main task is to uniformly control ‖(z − K(γ)
N )−1 − (z − K(ρ))−1‖∞ in term of

‖K(γ)
N − K(ρ)‖∞ for z ∈ C. As (z − K(ρ))−1 is analytic outside of Spec(K(ρ)), there exists

C > 0 such that supz∈C ‖(z − K(ρ))−1‖∞ ≤ C. Let N be sufficiently large such that

‖K(γ)
N −K(ρ)‖∞ < 1/(2C). Then we have

∥∥∥(z −K(γ)
N )−1 − (z −K(ρ))−1

∥∥∥
∞

=
∥∥∥(z −K(ρ) −K(γ)

N +K(ρ))−1 − (z −K(ρ))−1
∥∥∥
∞

=

∥∥∥∥(z −K(ρ))−1

[(
I − (K(γ)

N −K
(ρ))(z −K(ρ))−1

)−1
− I
]∥∥∥∥
∞

=

∥∥∥∥∥(z −K(ρ))−1
∞∑
k=1

((K(γ)
N −K

(ρ))(z −K(ρ))−1)k

∥∥∥∥∥
∞

≤
∞∑
k=1

Ck+1

2k−1Ck−1
‖K(γ)

N −K
(ρ)‖k∞

= 2C2‖K(γ)
N −K

(ρ)‖∞.

Thus as N →∞ we have

‖PN − P‖∞ ≤
1

2π

∫
C

‖(z −K(γ)
N )−1 − (z −K(ρ))−1‖∞| dz| ≤ 2εC2‖K(γ)

N −K
(ρ)‖∞ → 0.

From this convergence we have

‖PNfj − fj‖∞ = ‖PNfj − Pfj‖∞ −−−−→
N→∞

0 . (3.34)

Then from (3.34) we obtain

‖PNfj‖2 −−−−→
N→∞

‖fj‖2 = 1 . (3.35)

Combining (3.34) and (3.35) we conclude

∥∥∥∥ PNfj
‖PNfj‖2

− fj
∥∥∥∥
∞
−−−−→
N→∞

0 . (3.36)
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Notice that the range of K(γ)
N consists of step functions

f(x) =
N∑
k=1

vk1[ k−1
N

, k
N

)(x) ,

so the eigenfunctions of K(γ)
N must also have this form. Notice also that a N -dimensional

normalized vector v = (vk)
N
k=1 is an eigenvector of TN associated with λj(TN ) if and only if

the normalized function

f(x) =
√
N

N∑
k=1

vk1[ k−1
N

, k
N

)(x) (3.37)

is an eigenfunction of K(γ)
N associated with λj(K(γ)

N ) = λj(TN )/(Nγ(N)). Since Pfj/‖Pfj‖2

is a normalized eigenfunction of K(γ)
N , we construct the eigenvector of TN from Pfj/‖Pfj‖2

by the relation (3.37). So we define

uk,j :=
(PNfj)(

k−1
N )

√
N‖PNfj‖2

(3.38)

and let uj = (u1,j , . . . , uN,j)
>, then uj is a normalized eigenvector of TN associated with

λj(TN ). From (3.36) we get the desired result (3.16).

3.4.4 Proof of Proposition III.3.

First we prove Item 1. Assume ρ ∈ (−1/2, 0), from Theorem III.2, we have

λmax(TN ) ∼ λmax(K(ρ))N1+ρL(N) .

Since N1/2+ρL(N)→∞, we have

trTN√
Nλmax(TN )

=

√
Nγ(0)

λmax(TN )
∼ γ(0)

λmax(K(ρ))N1/2+ρL(N)
→ 0 .

Then we prove Item 2. Assume ρ ∈ (−3/4,−1/2]. Note that

trT 2
N = ‖TN‖2F ≤ 2N

N∑
k=0

|γ(k)|2 .

94



Chapter III Joint CLT for top eigenvalues of empirical covariance matrices.

Also from Theorem III.2, we have λ2
max(TN ) ∼ λ2

max(K(ρ))N2+2ρL2(N)� N1/2+ε for some

ε > 0. We then have

trT 2
N√

Nλ2
max(TN )

�
∑N

k=0 |γ(k)|2

N ε
≤ 1

N ε/2

(
γ(0) +

N∑
k=1

|γ(k)|2

kε/2

)
.

Since |γ(k)|2 ∼ L2(k)k2ρ ≤ L2(k)k−1, it follows that

∞∑
k=1

|γ(k)|2

kε/2
≤
∞∑
k=1

L2(k)

k1+ε/2
<∞ .

Hence

trT 2
N√

Nλ2
max(TN )

� 1

N ε/2

(
γ(0) +

∞∑
k=1

L2(k)

k1+ε/2

)
→ 0 .

The proof is complete.

3.5 Proof of Theorem III.4

3.5.1 Some preparation and outline of the proof

In order to prove that the sequence
(
dLP(Λm(ΓN ),N (0,Σ

(N)
m ))

)
N≥1

converges to 0, it

suffices to prove that from any subsequence we can extract a subsequence converging to 0.

Since by the definition of Σ
(N)
m its components are uniformly bounded, from any subsequence

of the m×m matrix sequence
(

Σ
(N)
m

)
N≥1

we can extract a subsequence whose components

converge. Without loss of generality we can assume that Σ
(N)
m → Σm and prove that

Λm(ΓN )
D−−−−−→

N,n→∞
N (0,Σm) , (3.39)

which is equivalent to

dLP(Λm(ΓN ),N (0,Σm))→ 0 ,

and because dLP(N (0,Σ
(N)
m ),N (0,Σm))→ 0, then the convergence (3.20) follows.

Now to prove the convergence (3.39), it suffices to prove that for any fixed vector
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(b1, . . . , bm)> ∈ Rm, we have

P
(√

n(λ̃i − θi) < bi for 1 ≤ i ≤ m
)
−−−−−→
N,n→∞

P (Gi < bi for 1 ≤ i ≤ m) , (3.40)

where we define

λ̃i =
λi(SN (Γ))

λi(ΓN )
, and θi = 1 +

1

n

∑
k 6=i

λk(ΓN )

λi(ΓN )− λk(ΓN )
, (3.41)

and

(G1, . . . , Gm)> ∼ N (0,Σm) .

Let Ei,N be the event

Ei,N := {
√
n(λ̃i − θi) < bi} .

Then the event EN := {
√
n(λ̃i − θi) < bi for 1 ≤ i ≤ m} can be written as

EN =

m⋂
i=1

Ei,N .

Let

Yi,N :=
√
n

(
u∗iZNZ

∗
Nui

n
− 1

)
where we recall that u1, . . . , um are orthonormal eigenvectors of ΓN associated with its m

largest eigenvalues, and let

YN := (Y1,N , . . . ,Ym,N )> . (3.42)

In order to prove (3.40) we will prove the following two lemmas. The first lemma allows

to rewrite the event EN in term of YN , and the second one establishes a CLT for YN .

Lemma III.8. Let 1 ≤ i ≤ m be a fixed number. Under the assumptions of Theorem III.4,

as N,n→∞, the events Ei,N can be rewritten as

Ei,N = {Yi,N + oP (1) < bi} . (3.43)
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Lemma III.8 allows to transform the fluctuations of eigenvalues (λ̃1, . . . , λ̃m) to the

fluctuations of quadratic forms (Y1,N , . . . ,Ym,N ), i.e.

P
(√

n(λ̃i − θi) < bi, 1 ≤ i ≤ m
)

= P (Yi,N + oP (1) < bi, 1 ≤ i ≤ m) .

Then we only need to study the fluctuations of quadratic forms (Y1,N , . . . ,Ym,N ). This is

the goal of the following lemma.

Note that the proof of the above lemma is the main difficulty of Theorem III.4. Precisely,

we have to study the fluctuations of a quadratic form Υ(λ) = n−1Yi,·(λI − Ŝ¬i,¬i)
−1Y ∗i,·

defined in (3.49), where Yi,· is a one-row matrix, and Ŝ¬i,¬i is a (N − 1)× (N − 1) matrix.

We will see that the two matrices are dependent thus the method that we have used in [42]

no longer works.

Lemma III.9. Let YN be defined by (3.42) with Z = (Zi,j) and ui the same meaning as

before. Let Σ
(N)
m be defined as in Theorem III.4. If

Σ(N)
m −−−−→

N→∞
Σm

and if

EZi,j = 0, E|Zi,j |2 = 1, E|Zi,j |4 <∞ ,

then we have

YN
D−−−−−→

N,n→∞
N (0,Σm) . (3.44)

This will complete the proof because from the above two lemmas we have

P
(√

n(λ̃i − θi) < bi, 1 ≤ i ≤ m
)

= P (Yi,N + oP (1) < bi, 1 ≤ i ≤ m)

→ P (Gi < bi, 1 ≤ i ≤ m) ,

where in the last convergence we used Slutsky’s Theorem.

Thus in the following we prove Lemma III.8 and III.9.
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3.5.2 Proof of Lemma III.8

The method used here is based on the proof of Proposition 2.1 and Theorem 2.2 in [42]

with some necessary adaptions. All through this proof i will denote a constant integer fixed

in the statement of lemma. We mention that some notations in the proof may depend on

i. To simplify the notation we keep the dependence on i implicite if it does not cause any

ambiguity.

We normalize ΓN and SN (Γ) with λi(ΓN ), and set

Γ̃N :=
ΓN

λi(ΓN )
, and SN (Γ̃) :=

1

n
Γ̃

1
2
NZNZ

∗
N Γ̃

1
2
N =

SN (Γ)

λi(ΓN )
.

Then λi(Γ̃N ) ≡ 1 and λi(SN (Γ̃)) = λ̃i. Furthermore the combination of A1 and either A3

or A4 gives

µΓ̃N D−−−−→
N→∞

δ0, and λj(Γ̃N ) ∈ [c, C] for some 0 < c < C <∞ and all 1 ≤ j ≤ m.

Now we write dj := λj(Γ̃N ) for j = 1, . . . , N and let DN := diag(d1, . . . , dN ). Recall

that UN = (u1, . . . , uN ) with uj the eigenvectors of ΓN , then we have Γ̃N = UNDNU
∗
N . Let

YN := U∗NZN , and

ŜN :=
1

n
D

1
2
NYNY

∗
ND

1
2
N = U∗NSN (Γ̃)UN ,

then ŜN has the same eigenvalues as SN (Γ̃), so λi(ŜN ) = λ̃i.

Taking into account the assumption A2, there exists a positive number ε > 0 such that

for N sufficiently large,

di+1 < 1− 3ε < di = 1 < 1 + 3ε < di−1 ,

where if i = 1 we do not have the last inequality. By a spectrum confinement argument

similar to the proof of Proposition 2.1 in [42] (see especially Section 4.1-4.3 of [42]), we can

prove that λ̃i → 1 in probability; and the event

Ω′N := {λi+1(ŜN ) < 1− 2ε < 1− ε < λ̃i < 1 + ε < 1 + 2ε < λi−1(ŜN )}
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occurs with high probability. Similarly, setting

Ŝ¬i,¬i :=
1

n
D

1
2
¬i,¬iY¬i,·Y

∗
¬i,·D

1
2
¬i,¬i,

which is a matrix obtained by removing the ith row and ith column from the matrix ŜN ,

then the event

Ω′′N := {λi(Ŝ¬i,¬i) < 1− 2ε < 1 + 2ε < λi−1(Ŝ¬i,¬i)}

occur with high probability. This is so because Ŝ¬i,¬i has the same nonzero eigenvalues as

the matrix

1

n
diag(d1, . . . , di−1, 0, di+1, . . . )

1
2U∗NZNZ

∗
NUN diag(d1, . . . , di−1, 0, di+1, . . . )

1
2 .

Then we set

ΩN := Ω′N ∩ Ω′′N

and we have P(ΩN )→ 1.

Now we prove that there exists a random variable Ri,N = oP (1), such that

Ei,N = {Yi,N +Ri,N + o(1) < bi} .

Outside ΩN , we can attribute to Ri,N the value
√
n(λ̃i − θi) − Yi,N . Let us now assume

that we are in ΩN . λ̃i being an eigenvalue of ŜN , it satisfies the equation

det(λ̃iI − ŜN ) = 0 . (3.45)

A similar decomposition and reformulation of determinant as in the proof of Theorem 4.2

in [42] (see Section 4.4 of that paper, especially the equations (40) and (41)) shows that for

all λ ∈ C\(Spec(Ŝ¬i,¬i) ∪ {0}), we have

det(λI − ŜN ) = λ

(
1− 1

n
Yi,·(λI − Ŝ¬i,¬i)−1Y ∗i,·

)
det(λI − Ŝ¬i,¬i) , (3.46)
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where

Ŝ¬i,¬i :=
1

n
Y ∗¬i,·D¬i,¬iY¬i,· .

From (3.45) and (3.46), we know that λ̃i satisfies the equation

1− 1

n
Yi,·(λ̃iI − Ŝ¬i,¬i)−1Y ∗i,· = 0 (3.47)

because λ̃i is not an eigenvalue of Ŝ¬i,¬i if ΩN occurs.

Let

ηi := θi + bi/
√
n (3.48)

and

Υ(λ) :=
1

n
Yi,·(λI − Ŝ¬i,¬i)−1Y ∗i,· , (3.49)

Note that for λ sufficiently large, all the three terms det(λI− ŜN ), (1−Υ(λ)) and det(λI−

Ŝ¬i,¬i) in (3.46) are positive. Note also that det(λI − ŜN ) and det(λI − Ŝ¬i,¬i) change sign

i− 1 times respectively on (1 + ε,∞), so we have

1−Υ(1 + ε) > 0,

and 1 − Υ(λ) changes sign in (1 − ε, 1 + ε) exactly at λ̃i. Let N,n sufficiently large such

that θi, ηi ∈ (1− ε, 1 + ε), then we have

Ei,N ∩ ΩN = {Υ(ηi) < 1} ∩ ΩN . (3.50)

We define

xi,N (y) :=
1

y
+

1

n

∑
k 6=i

dk
1− ydk

,

and µ
i

the probability measure whose Cauchy-Stieljes transform mi satisfies

xi,N (mi(z)) = z , ∀z ∈ C+ . (3.51)

Then we have θi = xi,N (1). From (3.50) and a similar argument as in the proof of Theo-
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rem 4.2 in [42] shows that for N and n sufficiently large, we have

Ei,N ∩ ΩN = {
√
n(Υ(ηi)−mi(ηi)) + o(1) < bi} ∩ ΩN . (3.52)

Using the resolvant formula A−1 −B−1 = A−1(B −A)B−1 for matrices or scalars, we have

√
n(Υ(ηi)−mi(ηi)) =

√
nη−1

i (
1

n
Yi,·Y

∗
i,· − 1)

+
√
nη−1

i

(
1

n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬iY

∗
i,· −

∫
s

ηi − s
dµ

i
(s)

)
.

Therefore we set

Ri,N =


√
n
(

1
nYi,·(ηiI − Ŝ¬i,¬i)

−1Ŝ¬i,¬iY
∗
i,· −

∫
s

ηi−s dµ
i
(s)
)

in ΩN

√
n(λ̃i − θi)−Yi,N outside ΩN .

(3.53)

Because ηi → 1, we have

Ei,N = {Yi,N +Ri,N + o(1)ηi < biηi} = {Yi,N +Ri,N + o(1) < bi} ,

where we have multiplied the two sides of inequalities by ηi, and noticed that o(1)ηi+bi(1−

ηi) = o(1).

To complete the proof of (3.43) we only need to prove that Ri,N = oP (1). In [42] we

proved and used a Proposition 4.3, to which the independence between Yi,· and Ŝ¬i,¬i is

crucial. In our present case, the entries of Yi,· and Ŝ¬i,¬i may be correlated because we

do not assume any structure feature on the eigenvectors. We have to develop some other

ways to handle this difficulty, and have to add some other technical conditions to ensure

the result.

Proposition III.10. Under the conditions of Theorem III.4, we have

Ri,N → 0

in probability as N,n→∞.
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Proof. As ΩN occurs with high probability, we only need to prove that Ri,N → 0 in proba-

bility in ΩN , under A3 and A4 respectively.

We assume A3, i.e. assume that

lim
N→∞

1√
N

N∑
k=1

dk = 0 , and E|Zi,j |4 <∞ ,

and prove that

√
n

(
1

n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬iY

∗
i,· −

∫
s

ηi − s
dµ

i
(s)

)
= oP (1) . (3.54)

Note that ηi defined in (3.48) has positive distances to the support of µ
i
(s) and to the

spectrum of Ŝ¬i,¬i for N sufficiently large. Therefore there exists C > 0 such that

∣∣∣∣∫ s

ηi − s
dµ

i
(s)

∣∣∣∣ ≤ C ∫ s dµ
i
(s) ,

and such that the following two matrices

CŜ¬i,¬i − (ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬i, CŜ¬i,¬i + (ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬i

are all positive semidefinite. The last fact shows that

∣∣∣Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬iY
∗
i,·

∣∣∣ ≤ CYi,·Ŝ¬i,¬iY ∗i,· = CYi,·
1

n
Y ∗¬i,·D¬i,¬iY¬i,·Y

∗
i,· .

We will prove under A3 that

1

n3/2
Yi,·Y

∗
¬i,·D¬i,¬iY¬i,·Y

∗
i,· = oP (1), and

√
n

∫
s dµ

i
(s) = o(1) .

Lemma III.11. The first moment of µ
i

is

∫
sdµ

i
(s) =

1

n

∑
k 6=i

dk . (3.55)
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Proof of Lemma III.11. Note that the complex function

1

z
mi

(
1

z

)
=

∫
dµ

i
(s)

1− zs

is analytic near 0. So for any z such that |z| is small enough, we have

1

z
mi

(
1

z

)
= 1 +

∞∑
j=1

zj
∫
sj dµ

i
(s) .

Then by the equation (3.51) satisfied by mi, we have

1 +
∞∑
j=1

zj
∫
sj dµ

i
(s) = 1 +

1

n

∑
k 6=i

mi

(
1
z

)
dk

1−mi

(
1
z

)
dk
.

Noting that mi

(
1
z

)
→ 0 as z → 0, and expanding the fraction on the RHS, we have

∞∑
j=1

zj
∫
sj dµ

i
(s) =

∞∑
j=1

zj

(1

z
mi

(
1

z

))j 1

n

∑
k 6=i

djk

 =
∞∑
j=1

zj

(∫ dµ
i
(s)

1− zs

)j
1

n

∑
k 6=i

djk

 .
(3.56)

Dividing the two sides by z, and letting z → 0, we obtain (3.55). This ends the proof of

Lemma III.11.

From Lemma III.11 it follows that under A3,

√
n

∫
s dµ

i
(s) =

1√
n

∑
k 6=i

dk → 0

as N,n→∞ and N = O(n).

To prove that the random part of Ri,N tends to 0 in probability, we compute its expec-

tation. Note that the columns of YN = U∗NZN are i.i.d. with covariance matrix equal to

identity, but the rows are not necessarily independent. We have

1

n3/2
EYi,·Y ∗¬i,·D¬i,¬iY¬i,·Y ∗i,· =

1√
n

∑
k 6=i

dkE(|Yi,1|2|Yk,1|2) . (3.57)

By simple algebra, or by the Remark 14 below, E(|Yi,1|2|Yk,1|2) is uniformly bounded. So
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under A3 we have indeed

1

n3/2
EYi,·Y ∗¬i,·D¬i,¬iY¬i,·Y ∗i,· → 0 .

Note that this random part is always nonnegative. Hence by Chebyshev’s inequality we

have

1

n3/2
Yi,·Y

∗
¬i,·D¬i,¬iY¬i,·Y

∗
i,· = oP (1) .

Remark 14. Here after we have to verify the uniform boundedness of expectations in the

form

E(|Yi1,1|α1 . . . |Yim,1|αm) .

To prevent complicated calculations, we can use Hölder’s inequality and obtain

E(|Yi1,1|α1 . . . |Yim,1|αm) ≤ (E|Yi1,1|α)
α1
α . . . (E|Yim,1|α)

αm
α ,

where α = α1 + · · · + αm. And then we use Lemma 2.1 in [1] to obtain the uniform

boundedness of each E|Yik,1|α, under the condition that E|Zi,j |α <∞.

We now assume A4, i.e.

lim
N→∞

1√
N

N∑
k=1

d2
k = 0 and E|Zi,j |8 <∞ ,

and prove (3.54). This time we can no longer separate the random part and the deterministic

part of Ri,N , and we have to prove that the difference between these two parts is small.

Notice that, by the resolvant formula again, we have

1√
n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬iY

∗
i,· −
√
n

∫
s

ηi − s
dµ

i
(s)

=
1

ηi

(
1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· −
√
n

∫
s dµ

i
(s)

)
+

1

ηi

(
1√
n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ

2

¬i,¬iY
∗
i,· −
√
n

∫
s2

ηi − s
dµ

i
(s)

)
.
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Under A4 we can still prove that

1√
n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ

2

¬i,¬iY
∗
i,· = oP (1), and

√
n

∫
s2

ηi − s
dµ

i
(s) = o(1) .

This is done analogously as the first part of proof. It suffices to prove that

1√
n
Yi,·Ŝ

2

¬i,¬iY
∗
i,· = oP (1), and

√
n

∫
s2 dµ

i
(s) = o(1) .

Lemma III.12. The second moment of µ
i

is

∫
s2 dµ

i
(s) =

1

n

∑
k 6=i

d2
k +

 1

n

∑
k 6=i

dk

2

. (3.58)

Proof of Lemma III.12. By (3.56) again, we have

∞∑
j=1

zj
∫
sj+1 dµ

i
(s) =

∫
dµ

i
(s)

1− zs

 1

n

∑
k 6=i

dk

− ∫ s dµ
i
(s)

+
∞∑
j=1

zj

(∫ dµ
i
(s)

1− zs

)j+1
1

n

∑
k 6=i

dj+1
k

 .
Taking into account (3.55), we have

∞∑
j=1

zj
∫
sj+1 dµ

i
(s) =

∫
zs dµ

i
(s)

1− zs

 1

n

∑
k 6=i

dk

+

∞∑
j=1

zj

(∫ dµ
i
(s)

1− zs

)j+1
1

n

∑
k 6=i

dj+1
k

 .
Dividing the two sides by z and letting z → 0, we obtain (3.58). This ends the proof of

Lemma III.12.

From Lemma III.12 and the inequality

 1

n

∑
k 6=i

dk

2

≤
(
N − 1

n

)
1

n

∑
k 6=i

d2
k ,
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under A4 we have
√
n

∫
s2 dµ

i
(s) = o(1)

as N,n→∞ and N = O(n).

By simple algebra, we have

E
1√
n
Yi,·Ŝ

2

¬i,¬iY
∗
i,· =

n− 1

n3/2

∑
k 6=i

E|Yi,1|2|Yk,1|2d2
k

+
1

n3/2

∑
k1,k2 6=i

E|Yi,1|2|Yk1,1|2|Yk2,1|2dk1dk2 .

(3.59)

Again we verify that E|Yi,1|2|Yk,1|2 and E|Yi,1|2|Yk1,1|2|Yk2,1|2 are uniformly bounded. Thus

under the assumption A4 the RHS of (3.59) tends to 0, and we have

1√
n
Yi,·Ŝ

2

¬i,¬iY
∗
i,· = oP (1) .

It remains to prove that

1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· −
√
n

∫
s dµ

i
(s) = oP (1) .

First, by (3.57) and Lemma III.11, we have

E
1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· −
√
n

∫
s dµ

i
(s)

=
1√
n

∑
k 6=i

dk(E|Yi,1|2|Yk,1|2 − 1)

=
1√
n

∑
k 6=i

dk

 N∑
j=1

|uj,i|2|uj,k|2(E|Z1,1|4 − E|Z2
1,1|2 − 2) +

∣∣∣∣∣∣
N∑
j=1

uj,iuj,k

∣∣∣∣∣∣
2

E|Z2
1,1|2

 .

To prove that this is small, it suffices to prove that 1√
n

∑
k 6=i dk

∑N
j=1 |uj,i|2|uj,k|2 = o(1)
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and 1√
n

∑
k 6=i dk

∣∣∣∑N
j=1 uj,iuj,k

∣∣∣2 = o(1). Changing the order of summations, we have

∑
k 6=i

dk

N∑
j=1

|uj,i|2|uj,k|2 =
N∑
j=1

|uj,i|2
∑
k 6=i

dk|uj,k|2

≤ d1

N∑
j=1

|uj,i|2
∑
k 6=i
|uj,k|2 ≤ d1 ,

and

∑
k 6=i

dk

∣∣∣∣∣∣
N∑
j=1

uj,iuj,k

∣∣∣∣∣∣
2

≤ d1

N∑
k=1

∣∣∣∣∣∣
N∑
j=1

uj,iuj,k

∣∣∣∣∣∣
2

= d1

N∑
k=1

 N∑
j=1

|uj,i|2|uj,k|2 +
∑

1≤j1 6=j2≤N
uj1,iuj1,kuj2,iuj2,k


= d1 + d1

∑
1≤j1 6=j2≤N

(
uj1,iuj2,i

N∑
k=1

uj1,kuj2,k

)
= d1 .

As d1 := λmax(ΓN )/λ̃i(ΓN ) is uniformly bounded according to A1, we have proved that

E
1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· −
√
n

∫
s dµ

i
(s) = O

(
1√
n

)
→ 0 .

Finally, to complete the proof, we need to prove that Var 1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· = o(1) so that

1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· − E

1√
n
Yi,·Ŝ¬i,¬iY

∗
i,· = oP (1). (3.60)
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By simple algebra, we have

Var

(
1√
n
Yi,·

1

n
Y ∗¬i,·D¬i,¬iY¬i,·Y

∗
i,·

)
=

1

n3

(
E(Yi,·Y

∗
¬i,·D¬i,¬iY¬i,·Y

∗
i,·)

2 − (EYi,·Y ∗¬i,·D¬i,¬iY¬i,·Y ∗i,·)2
)

=
1

n3

E(Yi,·Y
∗
¬i,·D¬i,¬iY¬i,·Y

∗
i,·)

2 − n2

∑
k 6=i

dkE(|Yi,1|2|Yk,1|2)

2
≤ 1

n2

∑
k1,k2 6=i

dk1dk2E|Yi,1|4|Yk1,1|2|Yk2,1|2

+
1

n

∑
k1,k2 6=i

dk1dk2 |EY 2
i,1Yk1,1Yk2,1|2

+
1

n

∑
k1,k2 6=i

dk1dk2 |E|Yi,1|2Yk1,1Yk2,1|2 .

As E|Yi,1|4|Yk1,1|2|Yk2,1|2 is uniformly bounded and 1
n2

∑
k1,k2 6=i dk1dk2 =

(
1
n

∑
k 6=i dk

)2
→ 0,

we only need to prove that

1

n

∑
k1,k2 6=i

dk1dk2 |EY 2
i,1Yk1,1Yk2,1|2 → 0, and

1

n

∑
k1,k2 6=i

dk1dk2 |E|Yi,1|2Yk1,1Yk2,1|2 → 0 .

(3.61)

We now prove the first convergence. By simple algebra, we have

EY 2
i,1Yk1,1Yk2,1 =

N∑
j=1

uj,i
2uj,k1uj,k2(E|Z1,1|4−|EZ2

1,1|2−2)+

 N∑
j=1

uj,i
2

 N∑
j=1

uj,k1uj,k2

 |EZ2
1,1|2 .

By the elementary inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, we only need to prove

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
N∑
j=1

uj,i
2uj,k1uj,k2

∣∣∣∣∣∣
2

→ 0, and
1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
N∑
j=1

uj,k1uj,k2

∣∣∣∣∣∣
2

→ 0 .

(3.62)
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To prove the first convergence in (3.62), we have

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
N∑
j=1

uj,i
2uj,k1uj,k2

∣∣∣∣∣∣
2

≤ d2
1

n

∑
k1,k2

∣∣∣∣∣∣
N∑
j=1

uj,i
2uj,k1uj,k2

∣∣∣∣∣∣
2

=
d2

1

n

∑
k1,k2

∑
j1,j2

uj1,i
2u2
j2,iuj1,k1uj2,k1uj1,k2uj2,k2

=
d2

1

n

∑
j1,j2

uj1,i
2u2
j2,i

(
N∑
k=1

uj1,kuj2,k

)2

=
d2

1

n

N∑
j=1

|uj,i|4 → 0 .

(3.63)

To prove the second in (3.62), we take an arbitrary small ε > 0. Then by the assumption

A4, we have

#{dk > ε} =

√
No(1)

ε2
. (3.64)

We write

dk,> :=


dk if dk > ε

0 otherwise.

and dk,≤ :=


dk if dk ≤ ε

0 otherwise.

Then we have

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
N∑
j=1

uj,k1uj,k2

∣∣∣∣∣∣
2

=
1

n

∑
k1,k2 6=i

(dk1,> + dk1,≤)(dk2,> + dk2,≤)

∣∣∣∣∣∣
N∑
j=1

uj,k1uj,k2

∣∣∣∣∣∣
2

.

By (3.64), we have

1

n

∑
k1,k2 6=i

dk1,>dk2,> ≤
Nd2

1o(1)

nε4
→ 0 .

We also have

1

n

∑
k1,k2 6=i

(2dk1,>dk2,≤ + dk1,≤dk2,≤)

∣∣∣∣∣∣
N∑
j=1

uj,k1uj,k2

∣∣∣∣∣∣
2

≤ 3d1ε

n

∑
k1,k2

∣∣∣∣∣∣
N∑
j=1

uj,k1uj,k2

∣∣∣∣∣∣
2

=
3d1ε

n

∑
j1,j2

(
N∑
k=1

uj1,kuj2,k

)2

= 3d1ε .
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Thus we have proved (3.62), implying the first part of (3.61).

We then prove the second part of (3.61). We have

E|Yi,1|2Yk1,1Yk2,1

=
N∑
j=1

|uj,i|2uj,k1uj,k2(E|Z1,1|4 − |EZ2
1,1|2 − 2) + δk1,k2

+

 N∑
j=1

uj,iuj,k1

 N∑
j=1

uj,iuj,k2

 |EZ2
1,1|2 ,

where δk1,k2 is the Kronecker symbol. Using the inequality |a+ b+ c|2 ≤ 3(|a|2 + |b|2 + |c|2)

we only need to prove

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
N∑
j=1

|uj,i|2uj,k1uj,k2

∣∣∣∣∣∣
2

→ 0 ,
1

n

∑
k 6=i

d2
k → 0 , (3.65)

and

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
 N∑
j=1

uj,iuj,k1

 N∑
j=1

uj,iuj,k2

∣∣∣∣∣∣
2

→ 0 . (3.66)

The first of (3.65) can be proved similarly as (3.63), the second of (3.65) is a consequnce of

A4. To prove (3.66), we have

1

n

∑
k1,k2 6=i

dk1dk2

∣∣∣∣∣∣
 N∑
j=1

uj,iuj,k1

 N∑
j=1

uj,iuj,k2

∣∣∣∣∣∣
2

≤ d2
1

n

∑
k1,k2

∑
j1,j2,j3,j4

uj1,iuj1,k1uj2,iuj2,k1uj3,iuj3,k2uj4,iuj4,k2

=
d2

1

n

∑
j1,j2,j3,j4

uj1,iuj2,iuj3,iuj4,i

(
N∑
k=1

uj1,kuj2,k

)(
N∑
k=1

uj3,kuj4,k

)

=
d2

1

n

 N∑
j=1

|uj,i|2
2

=
d2

1

n
→ 0 .

The second part of (3.61) is proved. So we have

Var

(
1√
n
Yi,·

1

n
Y ∗¬i,·DY¬i,·Y

∗
i,·

)
= o(1) .
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Thus we proved (3.60) and the proof of the proposition is complete.

3.5.3 Proof of Lemma III.9

We use Cramr-Wold device to prove the CLT of the m-dimensional vector YN . By a

direct calculation, the covariance matrix of YN is exactly Σ
(N)
m which tends to Σm as we

have assumed. Then we fix a deterministic vector a ∈ Rm, and prove that

〈a,YN 〉
D−→ N (0, a>Σma). (3.67)

If a>Σma = 0, it means that Var〈a,YN 〉 = a>Σ
(N)
m a→ 0. Then 〈a,YN 〉 = oP (1) and hence

(3.67) holds. Now we assume that a>Σma 6= 0 and prove that

〈a,YN 〉√
a>Σ

(N)
m a

D−−−−−→
N,n→∞

N (0, 1) . (3.68)

Because

〈a,YN 〉 =

m∑
i=1

aiYi,N =

n∑
j=1

∑m
i=1 ai(|Yi,j |2 − 1)√

n

with

Yi,j =

N∑
k=1

uk,iZk,j ,

for each N , 〈a,YN 〉 is a sum of n i.i.d. random variables. We can use Lindeberg’s CLT to

prove (3.68). To do so, we need to verify the Lindeberg condition

E

∣∣∣∣∣
m∑
i=1

ai(|Yi,1|2 − 1)

∣∣∣∣∣
2

1|∑m
i=1 ai(|Yi,1|2−1)|>ε√n → 0

as N,n→∞ for any ε > 0.

Since VarYi,1 = 1, for any ε > 0, the events

AN :=

{∣∣∣∣∣
m∑
i=1

ai(|Yi,1|2 − 1)

∣∣∣∣∣ > ε
√
n

}
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occur with low probability. By Minkowski’s inequality, we have

E

∣∣∣∣∣
m∑
i=1

ai(|Yi,1|2 − 1)

∣∣∣∣∣
2

1AN

 1
2

≤
m∑
i=1

|ai|
(
E
∣∣|Yi,1|2 − 1

∣∣2 1AN) 1
2
.

So we only need to prove that

E
∣∣|Yi,1|2 − 1

∣∣2 1AN = E|Yi,1|41AN − 2E|Yi,1|21AN + P(AN ) −−−−−→
N,n→∞

0 . (3.69)

Since P(AN ) → 0 and from the uniform boundedness of E|Yi,1|4 we have E|Yi,1|21AN → 0,

then (3.69) is equivalent to

E|Yi,1|41AN −−−−−→
N,n→∞

0 .

This is a corollary of the following lemma.

Lemma III.13. Let u = (u1, . . . , uN ) ∈ CN such that ‖u‖2 ≤ 1. Let (Zk)k≥1 be a sequence

of centered, reduced, i.i.d. random variables, satisfying E|Zk|4 <∞. Let AN be a sequence

of events such that P(AN )→ 0, then

lim
N→∞

E

∣∣∣∣∣
N∑
k=1

ukZk

∣∣∣∣∣
4

1AN = 0 .

Proof. We only prove the case where u and Zk are real. For the complex case, it can

be easily proved from the real case by separating real and complex parts, and then using

Minkowski’s inequality.

As all the random variables |Zk|4 are identically distributed and integrable, they are

uniformly integrable. Thus we have

max
k

E|Zk|41AN → 0.

Let (eN ) be a sequence of positive numbers tending to 0 such that

maxk
(
E|Zk|41AN

) 1
4

e2
N

→ 0 and Ne2
N →∞ as N →∞ .
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Note that from ‖u‖2 ≤ 1 we have

#{k : |uk| > eN} ≤
1

e2
N

.

We write
N∑
k=1

ukZk =

N∑
k=1

uk1|uk|>eNZk +

N∑
k=1

uk1|uk|≤eNZk =: P1 + P2 .

By Minkowski’s inequality, we have

(
E|P1 + P2|41AN

) 1
4 ≤

(
E|P1|41AN

) 1
4 +

(
E|P2|41AN

) 1
4 .

For the first part, using again Minkowski’s inequality and noting that |uk| ≤ 1, we get

(
E|P1|41AN

) 1
4 ≤ #{i : |uk| > eN}max

k

(
E|Zk|41AN

) 1
4 → 0.

For the second part, it suffices to prove that from any subsequence of
(
E|P2|41AN

)
we can

extract a subsequence tending to 0. From any subsequence of (
∑N

k=1 |uk|21|uk|<eN ), there

exists a convergent subsequence. So we can assume that

N∑
k=1

|uk|21|uk|<eN → σ2 ≤ 1.

Then if we can prove that

lim
M→∞

lim
N→∞

E|P2|41|P2|>M = 0 , (3.70)

the proof of the lemma will be complete due to the inequality

E|P2|41AN ≤ E|P2|41|P2|>M + E|P2|41AN∩{|P2|≤M} ≤ E|P2|41|P2|>M +M4P(AN ).

To prove (3.70), by the equality x4 = x4 ∧M4 + x4
1|x|>M −M4

1|x|>M for any x ∈ R
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and M > 0, we have

E|P2|41|P2|>M = E|P2|4 − E|P2|4 ∧M4 +M4P(|P2| > M) .

Let N →∞, since maxk{|uk|1|uk|≤eN } ≤ eN → 0, by Lindeberg’s Theorem we have P2
D−→

N (0, σ2). Let G ∼ N (0, σ2), then we have

E|P2|4 → 3σ4 = E|G|4, E|P2|4 ∧M4 → E|G|4 ∧M4, and P(|P2| > M)→ P(|G| > M),

where the first convergence is from direct calculation, the second and the third are from the

fact that P2
D−→ G and that the function x 7→ x4 ∧M4 is continuous and bounded. So we

have

lim
N→∞

E|P2|41|P2|>M = E|G|41|G|>M .

Finally we take M →∞ and see that (3.70) holds.

The proof of Theorem III.4 is finished.
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CHAPTER IV

Some extensions in case of large covariance matrices close to

short memory

4.1 Introduction

Notice that if the parameter d < 0, or equivalently ρ < −1, then the process T
1/2
N ZN

is a SMSP and TW fluctuations for the largest eigenvalue are expected. The case ρ = −1

represents the threshold between LMSP and SMSP. Hence the extra-difficulty appears

when ρ is close to −1.

In Chapters II and III we have established the fluctuations for the m largest eigenvalues

of SN (T ) with parameter d ∈ (1/8, 1/2), or equivalently ρ ∈ (−3/4, 0). Note also that if

the entries of ZN are i.i.d. standard Gaussian, then Theorem I.9 also gives the result for

the case where d ∈ (0, 1/2) or ρ ∈ (−1, 0).

In this chapter we try to study the non-Gaussian case with parameter close to the

threshold of short memory, that is, d ∈ (0, 1/8) or ρ ∈ (−1,−3/4). In this case, we prove

Proposition I.6 for TN . This proposition can be viewed as a generalization of Proposition I.5.

Proposition IV.1 (Proposition I.6). Let TN be defined as in Section 1.4, for any ρ ∈

(−1, 0) or equivalently d ∈ (0, 1/2). Then there exists an integer q ≥ 1 such that

lim
N→∞

trT qN√
Nλqmax(TN )

= 0 . (4.1)

The proof of this proposition is postponed to the appendix, see Appendix A.1.

Now the following fluctations’ result holds:
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Theorem IV.2 (Theorem I.15). Under A1, A3, A5, and in addition A9-A11, then the

fluctuations

√
n


λ1(SN (Γ))
λ1(ΓN ) − 1− 1

n

∑
k 6=1

λk(ΓN )
λ1(ΓN )−λk(ΓN )

...

λm(SN (Γ))
λm(ΓN ) − 1− 1

n

∑
k 6=m

λk(ΓN )
λm(ΓN )−λk(ΓN )

 D−−−−−→
N,n→∞

N (0, (1 + |EZ(N)2
1,1 |

2)Im)

hold.

With Proposition I.6 and other results on TN in hand, we can verify that all conditions

on ΓN in Theorem I.15 are satisfied by TN except A11. From simulation we believe that

A11 also holds for TN , so we raise the conjecture I.16 and hope that it will be solved

afterwards.

Conjecture IV.3 (Conjecture I.16). The result of Theorem I.11 holds for all SN (T ) with

parameter d ∈ (0, 1/2) or equivalently ρ ∈ (−1, 0).

4.2 Proof of Theorem I.15

The proof of this theorem is very technical and in addition to some arguments developed

in the proof of Theorem III.4, it uses a combination of the Lindeberg’s method together

with a fine analysis of some moments with the help of techniques coming from graph theory

and combinatorics.

We take the notations of that theorem and prove that Ri,N = oP (1), where Ri,N is

defined in (3.53). More precisely we prove

√
n

(
1

n
Yi,·(ηiI − Ŝ¬i,¬i)−1Ŝ¬i,¬iY

∗
i,· −

∫
s

ηi − s
dµ

i
(s)

)
= oP (1) (4.2)

under the restriction on ΩN .

Because of the lack of symbols for subscription we prove the above for i = 1 so that we

can release i for the use of a general subscription symbol. The general case can be proved

without any changes.

Using the resolvant formula, and the same argument as in the proof of Theorem III.4,
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this leads to prove that

√
n

(
1

n
Y1,·Ŝ

k

¬1,¬1Y
∗

1,· −
∫
sk dµ

1
(s)

)
= oP (1) (4.3)

for 1 ≤ k ≤ q, and to prove that

√
n

∫
sq dµ

1
(s) = o(1) . (4.4)

Note that in the case of Theorem III.4 we have q = 2. Note also that the combination of

(4.3) and (4.4) implies

1√
n
Y1,·Ŝ

q

¬1,¬1Y
∗

1,· = oP (1) .

We use the Gaussian interpolation trick to achieve the proof of (4.3). Precisely, let

G = GN be a N × n matrix whose entries Gi,j are standard Gaussian random variables,

real or complex, and suppose that the entries of Z and G match to order 3. We rewrite the

left handside (LHS) of (4.3) as

1√
n
Y1,·(

1

n
Y ∗2:N,·D2:N,2:NY2:N,·)

kY ∗1,· −
√
n

∫
sk dµ

1
(s) = P1 + P2 + P3 + P4,

where

P1 :=
1√
n
Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,· − E

1√
n
Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,·;

P2 := E
1√
n
Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,· − E

1√
n
G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,·;

P3 := E
1√
n

tr(
1

n
G∗2:N,·D2:N,2:NG2:N,·)

k − 1√
n

tr(
1

n
G∗2:N,·D2:N,2:NG2:N,·)

k;

P4 :=
1√
n

tr(
1

n
G∗2:N,·D2:N,2:NG2:N,·)

k −
√
n

∫
sk dµ

1
(s) .

Note that by independence we have

E
1√
n
G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· = E

1√
n

tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
.
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To prove P1 = oP (1) we prove

Var
1√
n
Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,·−Var

1√
n
G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· = o(1).

(4.5)

and

Var
1√
n
G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· = o(1). (4.6)

Then using Lindeberg replacement trick we prove that

P2 = E
1√
n
Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,·−E

1√
n
G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· = o(1) .

(4.7)

The fact that P3 = oP (1) is ensured by proving

Var
1√
n

tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
= o(1). (4.8)

And by [3, Theorem 1.1(i)] we have already P4 = oP (1).

The particular convergence (4.4) will be proved by verifying

E
1√
n

tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)q
= o(1) (4.9)

and by considering P3 = oP (1) and P4 = oP (1). So we need to prove (4.5)-(4.9).

We have to expand the expectations and variations in these formulas as in the proof of

Theorem III.4. Since k is arbitrary, these expansions are arbitrarily complicated. Hence we

will need some tools from the graph theory.

First we need the following lemma, which is the core of the Lindeberg comparison.

Lemma IV.4. For each N ∈ N let Z = (Z1, . . . ,ZN )> and G = (G1, . . . ,GN )> be N -

dimensional random vectors whose entries Zi and Gi are respectively i.i.d random variables

and i.i.d standard Gaussian variables. Suppose that Z and G are independent between them.

Suppose also that the entries Zi are i.d across i,N and match with Gi to order 3, and all

the moments of Zi are finite. Let U be a N ×N orthonormal matrix, or unitary if Gi are

complex gaussian. Suppose that there exists a constant K s.t. |Ui,j | ≤ K/
√
N for any N
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and 1 ≤ i, j ≤ N . Let Y = UZ.

Then for any integer k ≥ 1, there is a constant Ck > 0 such that for any function

f(x1, x2, . . . , xs) := xα1
1 x1

β1 . . . xαss xs
βs

with αl, βl nonnegative integers s.t. α1 + β1 + · · ·+ αs + βs ≤ k, we have

|Ef(Yi1 , . . . ,Yis)− Ef(Gi1 , . . . ,Gis)| ≤
Ck
N

,

with any 1 ≤ i1, . . . , is ≤ N .

Proof. For any k, as the number of monomials of degree no greater than k with coefficient

1 is finite, we just need to verify the result for an arbitrary monomial of degree k. Without

loss of generality we suppose that f(x1, . . . , xk) = x1 . . . xk, for the other cases the principal

is the same. We will prove that there exists a constant Ck > 0 s.t.

|EYi1 . . .Yik − EGi1 . . .Gik | ≤
Ck
N
.

For any 1 ≤ i ≤ N and any 1 ≤ j ≤ N , we set

Y(j)
i := Ui,1Z1 + · · ·+ Ui,jZj + Ui,j+1Gj+1 + · · ·+ Ui,NGN

and

S(j)
i := Ui,1Z1 + · · ·+ Ui,j−1Zj−1 + Ui,j+1Gj+1 + · · ·+ Ui,NGN = Y(j)

i − Ui,jZj .

Then we have Y(0)
i = (UG)i and Y(N)

i = Yi. As UG has the same distribution as G, we have

|EYi1 . . .Yik − EGi1 . . .Gik)| ≤
N∑
j=1

|EY(j)
i1
. . .Y(j)

ik
− EY(j−1)

i1
. . .Y(j−1)

ik
|. (4.10)

To control each term of the sum, we write Y(j)
il

= S(j)
il

+Uil,jZj and Y(j−1)
il

= S(j)
il

+Uil,jGj ,
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then we have

EY(j)
i1
. . .Y(j)

ik
= E(S(j)

i1
+ Ui1,jZj) . . . (S

(j)
ik

+ Uik,jZj) = EPj(Zj)

and

EY(j−1)
i1

. . .Y(j−1)
ik

= E(S(j)
i1

+ Ui1,jGj) . . . (S
(j)
ik

+ Uik,jGj) = EPj(Gj)

where Pj is the polynomial Pj(x) := (S(j)
i1

+ Ui1,jx) . . . (S(j)
ik

+ Uik,jx) with random coeffi-

cients. We expand the polynomial Pj and get

Pj(Zj) = A0 +A1Zj +A2Z2
j +A3Z3

j +A4Z4
j + · · ·+AkZkj .

Note that the coefficient Al is a sum of
(
k
l

)
terms, each of which is typically a product of l

U -entries and k − l random variables S(j)
i ’s, i.e.

Al =
∑

1≤k1≤···≤kl≤k
Uik1

,j . . . Uikl ,j
∏

s 6=k1,...,kl

S
(j)
is
.

Note also that the random variables S(j)
i are independent of Zj and Gj . Thus because Zj

and Gj match to order 3 we have

EAlZ lj = EAlEZ lj = EAlEGlj = EAlZ lj , for l = 0, 1, 2, 3,

and for l = 4, . . . , k, we have

|EAlZ lj − EAlGlj | = |EAl||EZ lj − EGlj | ≤
KCk,l

N l/2
|EZ lj − EZ lj |, for l ≥ 4 , (4.11)

where Ck,l depends only on k and l. This is because of the uniform decay |Uj,l| ≤ K/N1/2,

and the uniform boundedness of

E
∏

s∈{1,...,k}\{k1,...,kl}

S
(j)
is

(4.12)

by a constant depending only on k and l. The latter fact is obtained from Hölder’s inequality
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and Lemma 2.1 in [1]. From (4.11) and (4.12) we have

|EPj(Zj)− EPj(Gj)| ≤
K
∑k

l=4Ck,l|EZ lj − EGlj |
N2

.

Finally we have

|EYi1 . . .Yik − EGi1 , . . . ,Gik | ≤
K
∑N

j=1

∑k
l=4Ck,l|EZ lj − EGlj |
N2

=
K
∑k

l=4Ck,l|EZ lj − EGlj |
N

=
Ck
N

where we note Ck = K
∑k

l=4Ck,l|EZ lj − EGlj |.

We will first prove the gaussian estimates (4.9), (4.8) and (4.6), and then we prove the

other two nongaussian estimates (4.7) and (4.5).

We begin with proving (4.9). The method used here is very similar with the classical

argument in the proof of Wigner’s Theorem (c.f. [29, Theorem 1.3] or [17, Lemma 2.5]).

For any integer q ≥ 1, we expand the trace and we have

1√
n
E tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)q
=

1

nq+1/2

∑
i1...iq∈[[2,N ]]

j1...jq∈[[1,n]]

di1 . . . diqP (ji) , (4.13)

where we recall that di is the normalized eigenvalue di = λi(ΓN )/λ1(ΓN ), and we denote

ji := (j1, i1, j2, i2, . . . , jq, iq) and P (ji) := EGi1,j1Gi1,j2Gi2,j2Gi2,j3 . . . Giq ,jqGiq ,j1 .

Note that ji is a sequence of 2q integers, the odd positions are integers in [[1, n]], and the

even positions are integers in [[2, N ]]. We will call such a sequence a ji-word. We say that

two ji-words ji and ji′ are equivalent iff for any integer l1, l2 ∈ [[1, q]], il1 = il2 ⇔ i′l1 = i′l2 and

jl1 = jl2 ⇔ j′l1 = j′l2 . For example if q = 2, the ji-words ji = (1, 2, 1, 3) and ji′ = (1, 3, 1, 2)

are equivalent, but they are not equivalent to ji′′ = (1, 2, 1, 2). For this example we have

P (ji) = EG2,1G2,1G3,1G3,1 = 1 ,

P (ji′) = EG3,1G3,1G2,1G2,1 = 1 ,
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and

P (ji′′) = EG2,1G2,1G2,1G2,1 = E|G1,2|4 .

We can see that if ji is equivalent to ji′, then P (ji) = P (ji′).

With each ji-word ji we associate an eulerien circuit Eu(ji) = (V (ji), C(ji)) whose set

of vertices is

V (ji) := {(j1,b), (i1,w), (j2,b), (i2,w), . . . , (jq,b), (iq,w)} ,

and whose steps of the circuit C(ji) is defined by

C(ji) := ((jl, il), (il, jl+1))ql=1 .

Here we color all the column labels jl in black (b) and all the row labels il in white (w).

We denote the colored vertices as jl := (jl,b) and il := (il,w). We use the convention

jq+1 := j1.

For example if q = 3, if ji = (1, 2, 3, 4, 4, 2), then i1 = i3 6= i2, and j1, j2, j3 are distinct,

the circuit (V (ji), C(ji)) can be represented by the following graph:

i1 = i3 = 2j1 = 1

j2 = 3

i2 = 4

j3 = 4

(4.14)

which begins with j1, and passes through the paths j1 → i1 → j2 → i2 → j3 → i3 → j1.

We define the multiplicity mv of a vertex v ∈ V (ji) by

mv :=
∑

l∈[[1,q]]

1v=il or v=jl .

For example, in the above graph the vertex i1 and i3 have multiplicity 2, and all others have

multiplicity 1. In other words, the multiplicity of a vertex is the number of visits (where
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a departure and an arrival are considered as a visit) to this vertex by the circuit. We call

every element of the sequence C(ji) a (directed) edge. We say that an edge e = (v1, v2) ∈

C(ji) is repeated if there is another edge e′ = (v′1, v
′
2) ∈ C(ji) s.t. v1 = v′1, v2 = v′2 or

v1 = v′2, v2 = v′1. We say that two eulerian circuits Eu(ji) = (V (ji), C(ji)) and Eu(ji′) =

(V (ji′), C(ji′)) are congruent iff there exists a bijection ϕ : V (ji) → V (ji′) s.t. C(ji′) =

((ϕ(jl), ϕ(il)), (ϕ(il), ϕ(jl+1)))ql=1. In this case we denote Eu(ji) ∼= Eu(ji′). Obviously two

eulerian circuits engendered by ji and ji′ are congruent iff the two ji-words ji and ji′ are

equivalent.

Inversely, a 2q-step eulerian circuit who begins and ends with a black vertex, and visits

alternatively white and black vertices is said eligible to the set of ji-words {ji}. The set of

all the eligible eulerian circuits is denoted by Eji,q. Here we do not distinguish two congruent

eulerian circuits. We can see easily that #Eji,q <∞ for any q.

Given an eulerian circuit Eu(ji) = (V (ji), C(ji)) we define its skeleton as a graph S(ji) =

(V (ji), E(ji)), where the set of edges E(ji) are defined as follows:

E(ji) = {{jl, il}, {il, jl+1}}ql=1.

In other words, the skeleton of an eulerian circuit is a graph obtained by removing all the

directions and repetitions of the edges. The skeleton of the eulerian circuit (4.14) is as

follows:

i1 = i3 = 2j1 = 1

j2 = 3

i2 = 4

j3 = 4

(4.15)

After associating a ji-word ji with an eulerian circuit Eu(ji), we can rewrite the expan-

sion (4.13) as

1√
n
E tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)q
=

1

nq+1/2

∑
Eu∈Eji,q

∑
Eu(ji)∼=Eu

 ∏
v=(i,w)∈V (ji)

dmvi

P (ji),
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where in the product
∏
v=(i,w)∈V (ji) d

mv
i the variable v = (i,w) runs across the distinct white

vertices in V (ji). Recall that by the definition of multiplicity, we have
∑

v=(i,w)∈V (ji)mv = q.

As the set Eji,q has a finite number of elements, we just need to prove, for each possible

Eu ∈ Eji,q, the sum 1
nq+1/2

∑
Eu(ji)∼=Eu

(∏
v=(i,w)∈V (ji) d

mv
i

)
P (ji) tends to 0.

By independence, P (ji) is zero unless all the edges of the eulerian circuit Eu(ji) are

repeated, so we only need to consider this kind of eulerian circuits. We fix such an eulerian

circuit Eu = (V,C) ∈ Eji,q and let S = (V,E) be its skeleton. Because all the edges are

repeated, we have #E ≤ q. By [29, Lemma 1.1], we have #V ≤ q + 1. So in V if there are

w white vertices, there are at most q+ 1−w black ones. Suppose without loss of generality

that the w distinct white vertices are visited after the steps 1, 3, 5, . . . , 2w − 1, and their

multiplicities are m1,m2, . . . ,mw, then for any Eu(ji) ∼= Eu, the distinct white vertices

are i1, . . . , iw with multiplicities m1, . . . ,mw. Since P (ji) are uniformly bounded, and since

j1, . . . , jq take values in [[1, n]], we have then

1

nq+1/2

∑
Eu(ji)∼=Eu

dm1
i1
. . . dmwiw P (ji) = O

√n
nq

∑
i1...iw∈[[2,N ]] distinct

dm1
i1
. . . dmwiw


≤ O

√n
nq

∑
i1...iw∈[[2,N ]]

dm1
i1
. . . dmwiw

 ,

By Hölder’s inequality and the assumption A10 we have

O

√n
nq

∑
i1,...,iw

dm1
i1
. . . dmwiw

 = O

(
√
n(

∑N
i=2 d

m1
i

n
) . . . (

∑N
i=2 d

mw
i

n
)

)
≤ O

(∑N
i=2 d

q
i√

n

)
→ 0

as N,n→∞. Therefore (4.9) is proved.

Remark 15. A consequence of the above proof is that for any integer k ≥ 1, we have in fact

1

n
E tr(

1

n
G∗2:N,·D2:N,2:NG2:N,·)

k ≤ O

(∑N
i=2 d

k
i

n

)
→ 0

as N,n→∞. This result will be used soon after.

Next we prove that (4.8) holds for any k ≥ 1. We also use the combinatorial tools as

in the proof of (4.9). Analogous ideas can be found in [29, Theorem 1.13] (part 4 of the
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proof), or [17, Lemma 2.7].

We expand the trace and the variance and we get

Var
1√
n

tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
=

1

n2k+1

(
E(tr(G∗2:N,·D2:N,2:NG2:N,·)

k)2 − (E tr(G∗2:N,·D2:N,2:NG2:N,·)
k)2
)

=
1

n2k+1

∑
i1...ik,i

′
1,...,i

′
k
∈[[2,N ]]

j1...jk,j
′
1...j

′
k∈[[1,n]]

di1 . . . dikdi′1 . . . di′k

(
P (ji, ji′)− P (ji)P (ji′)

)

≤ 1

n2k+1

∑
i1...ik,i

′
1,...,i

′
k
∈[[2,N ]]

j1...jk,j
′
1...j

′
k∈[[1,n]]

∣∣P (ji, ji′)− P (ji)P (ji′)
∣∣ ,

where P (ji, ji′) := EGi1,j1Gi1,j2 . . . Gik,jkGik,j1Gi′1,j′1Gi′1,j′2 . . . Gi′k,j′kGi′k,j′1 .

Similarly as the proof of (4.9), we associate the 2k-long ji-words ji and ji′ with eulerian

circuits Eu(ji) and Eu(ji′). Let the set of all the eligible eulerian circuits be Eji,k. Then we

have

Var
1√
n

tr

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
≤ 1

n2k+1

∑
Eu,Eu′∈Eji,k

∑
Eu(ji)∼=Eu,Eu(ji′)∼=Eu′

∣∣P (ji, ji′)− P (ji)P (ji′)
∣∣ .

For every pair Eu = (V,C),Eu′ = (V ′, C ′), let S = (V,E), S′ = (V ′, E′) be their skeletons.

We define the union of S and S′ by

S ∪ S′ = (V ∪ V ′, E ∪ E′).

By the independence, if S and S′ do not have edges in common, we will have P (ji, ji′) =

P (ji)P (ji′); if there is an edge which is not in common, i.e. e ∈ (E−E′)∪ (E′−E), and the

corresponding edge in Eu or Eu′ is simple, then we will have P (ji, ji′) = 0 = P (ji)P (ji′).

Hence we may restrict to the case where S∪S′ is connected, and each edge of S∪S′ is either

in common, or repeated in the original eulerian circuit. So we have #(E ∪ E′) ≤ 2k. By

[29, Lemma 1.1] again, we have #(V ∪V ′) ≤ 2k+1. But the case where #(V ∪V ′) = 2k+1

is impossible, because if it were true, S ∪ S′ would be a tree, and thus there should not be
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any cycle in S or S′, so S and S′ should be trees; then let e ∈ E ∩ E′, the corresponding

edges of e in Eu and Eu′ should be both repeated, implying that e should be repeated

at least 4 times in total in Eu and Eu′, and thus #(E ∪ E′) ≤ 2k − 1, this would imply

#(V ∪ V ′) ≤ 2k by [29, Lemma 1.1] and contradict with #(V ∪ V ′) = 2k+ 1. So in fact we

have #(V ∪ V ′) ≤ 2k. Hence by the uniform bound of P (ji, ji′), P (ji) and P (ji′), we have

1

n2k+1

∑
Eu(ji)∼=Eu,Eu(ji′)∼=Eu′

∣∣P (ji, ji′)− P (ji)P (ji′)
∣∣ ≤ O(1/n)→ 0

as N,n→∞ and N/n→ r ∈ (0,∞). Therefore (4.8) is proved for any k ≥ 1.

To prove (4.6), we write QG := G1,·(
1
nG
∗
2:N,·D2:N,2:NG2:N,·)

kG∗1,·. Then we have

Var
1√
n
QG =

1

n
EEG2:N,· |QG − EG2:N,·QG|

2 +
1

n
E|EG2:N,·QG − EQG|2.

Then applying [1, Lemma 2.7] with p = 2, and use the result in Remark 15, we have

1

n
EEG2:N,· |QG − EG2:N,·QG|

2 ≤ CE|G1,1|4

n
E tr(

1

n
G∗2:N,·D2:N,2:NG2:N,·)

2k = o(1).

For the other part, note that EG2:N,·QG = tr( 1
nG
∗
2:N,·D2:N,2:NG2:N,·)

k, so we have

1

n
E|EG2:N,·QG − EQG|2 = Var

1√
n

tr(
1

n
G∗2:N,·D2:N,2:NG2:N,·)

k = o(1)

according to (4.8).

In the following we focus on the proof of (4.7) and (4.5). In fact we will prove that

under the assumptions of Theorem I.15, for any k ≥ 1, we have

EY1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,· − EG1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· = o(1). (4.16)

We write

QY = Y1,·

(
1

n
Y ∗2:N,·D2:N,2:NY2:N,·

)k
Y ∗1,· and QG = G1,·

(
1

n
G∗2:N,·D2:N,2:NG2:N,·

)k
G∗1,· .
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Expanding the matrix multiplication we have

EQY =
1

nk

∑
i1,...,ik∈[[2,N ]]

j1,...,jk+1∈[[1,n]]

di1 . . . dikPY (ij)

where PY (ij) := EY1,j1Yi1,j1Yi1,j2 . . . Yik,jkYik,jk+1
Y1,jk+1

. We call ij := 1j1i1j2 . . . ikjk+11 a

ij-word. The difference between an ij-word and a ji-word defined in the proof of (4.9) is

that an ij-word begins and ends with a row-label, while a ji-word begins and ends with a

column-label. With each ij-word we associate an eulerian circuits Eu(ij) = (V (ij), C(ij))

defined as follows:

V (ij) := {(1, r), (i1,w), (j1,b), . . . , (ik,w), (jk+1,b)}

is the set of vertices, where we color the fixed row label “1” on red, the other vertices

are colored as before. The vertices are denoted as 1, il and jl. We use the convention

i0 = ik+1 = 1, then we define the sequence of steps

E(ij) := ((il, jl), (jl, il+1))kl=0.

Inversely we say a (2k + 2)-step eulerian circuit eligible to the set of ij-words {ij} if it

begins with a red vertex, then visits a black vertex, and then pass white and black vertices

alternatively, and it returns to the red vertex from a black vertex. The set of all eligible

eulerian circuits is denoted by Eij,k. For an egilible eulerian circuit Eu ∈ Eij,k, a black vertex

is said to be in the first class if all the edges out and into it are repeated; otherwise it is

said to be in the second class. Let w, c1, c2 denote the number of white vertices, first class

black vertices and second class vertices respectively. Then we use Lemma IV.5 (page 130)

to conclude that, if c2 = 0, we have w + c1 ≤ k + 1, and if c2 6= 0, we have w + c1 ≤ k.

Indeed when we apply Lemma IV.5 to Eu, we temporarily color the beginning and ending

vertex, i.e. the red vertex, on white. In this new graph we have w+ 1 white vertices. Then

from Lemma IV.5 we conclude that if c2 = 0, we have 1 + w + c1 ≤ k + 2, and if c2 6= 0,

we have 1 +w+ c1 ≤ k+ 1. Recoloring the beginning and ending vertex to red, we get the
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mentioned result.

Returning to the proof of (4.7), we have

EQY − EQG =
1

nk

∑
Eu∈Eij,k

∑
Eu(ij)∼=Eu

di1 . . . dik(PY (ij)− PG(ij)).

For a fixed Eu ∈ Eij and any Eu(ij) ∼= Eu, we assume without loss of generality that the

distinct white vertices are i1, . . . , iw with multiplicities m1, . . . ,mw and recall that m1+· · ·+

mw = k. As the columns of Y are independent, and each distinct black vertex corresponds

a column, we have

PY (ij) =
∏

(j,b)∈V (ij)

E

 ∏
((i,w),(j,b))∈C(ij)

Yi,j
∏

((j,b),(i,w))∈C(ij)

Yi,j

 .
We can decompose similarly PG(ij) as above. For each j := (j,b) ∈ V (ij), denote EY (j) :=

E
[∏

((i,w),(j,b))∈C(ij) Yi,j
∏

((j,b),(i,w))∈C(ij) Yi,j

]
and similarly EG(j) is the expectation ob-

tained from EY by replacing Y with G. By Lemma IV.4, we have EY (j)−EG(j) = O(1/N).

Now we estimate PY (ij) − PG(ij). According to the case of Eu, we consider respectively

two cases:

• Case 1: c2 6= 0. Then we have PG(ij) = 0, and from the decomposition above, we

have

PY (ij) = O(1/N c2).

and

n−k
∑

Eu(ij)∼=Eu

dm1
i1
. . . dmwiw |PY (ij)− PG(ij)| = O(nc1−k

∑
dm1
i1
. . . dmwiw )

= O(nc1+w−k(
1

n

∑
dm1
i ) . . . (

1

n

∑
dmwi )).

From Lemma IV.5, in this case we have w+c1 ≤ k, so by Assumption A10, the above

sum converges to 0.
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• Case 2: c2 = 0. Suppose that the distinct black vertices are j1, . . . , jc1 . We have then

PY (ij)−PG(ij) = [EG(j1)+O(1/N)) . . . (EG(jc1)+O(1/N))]−EG(j1) . . . EG(jc1) = O(1/N).

Hence

n−k
∑

Eu(ij)∼=Eu

dm1
i1
. . . dmwiw |PY (ij)− PG(ij)| = O(

1

nk−c1N

∑
da1
i1
. . . dawiw )

= O(nc1+w−k−1(n−1
∑

da1
i ) . . . (n−1

∑
dawi )).

From Lemma IV.5, in this case we have w + c1 ≤ k + 1, so by Assumption A2, the

above sum converges to 0.

The proof of (4.7) is now complete.

For (4.5), we write

Var
1√
n
QY −Var

1√
n
QG =

1

n
(EQ2

Y − EQ2
G)− (EQY − EQG)(

1

n
(EQY − EQG) +

2

n
EQG).

From (4.16) and Remark 15, we have (EQY − EQG)( 1
n(EQY − EQG) + 2

nEQG) → 0. Now

we prove that 1
n(EQ2

Y − EQ2
G)→ 0. We write

1

n
EQ2

Y =
1

n2k+1

∑
i1...i2k∈[[2,N ]]

j1...j2k+2∈[[1,n]]

di1 . . . di2kPY (ij1ij2)

where

PY (ij1ij2) := EY1,j1Yi1,j1Yi1,j2 . . . Yik,jk+1
Y1,jk+1

Y1,jk+2
Yik+1,jk+2

. . . Yi2k,j2k+1
Yi2k,j2k+2

Y1,j2k+2
.

We argue in the same way as the proof of (4.7). We consider the set of ij-words {ij1ij2},

and consider the set of eulerian circuits Eijij,k := {Eu(ij1ij2)} = {(V (ij1ij2), C(ij1ij2))},

where

V (ij1ij2) = {(1, r), (i1,w), . . . , (i2k,w), (j1,b), . . . , (j2k+2,b)},
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and

C(ij1ij2) = ((1, j1), ((jl, il), (il, jl+1))kl=1, (jk+1,1), (1, jk+2), ((jl, il+1), (il+1, jl+2))2k
l=k+1, (j2k+2,1)).

Let w, c1, c2 denote the number of white vertices, first class black vertices and second class

vertices respectively, where the definitions of first and second class black vertices is in the

proof of (4.7). Using Lemma IV.5, we conclude that if c2 = 0, we have w+ c1 ≤ 2k+ 2, and

if c2 6= 0, we have w+ c1 ≤ 2k+ 1. Then an argument analog to the proof of (4.7) leads to

the result. This complete the proof of Theorem I.15.

Lemma IV.5. Let E2k be the set of all 2k-step eulerian circuits beginning and ending with

a white vertex, and passing across black and white vertices alternatively. For an eulerian

circuit Eu ∈ E2k, we define first class and second class of black vertices as in the proof of

(4.7), and let w, c1, c2 be the numbers of white, first class and second class black vertices.

Then if c2 = 0, we have w + c1 ≤ k + 1; if c2 6= 0, we have w + c1 ≤ k.

Proof. If c2 = 0, i.e. all the edges are repeated, then the skeleton has at most k edges, so

there are at most k + 1 distinct vertices. We obviously have w + c1 ≤ k + 1.

If c2 6= 0, i.e. there is at least one simple edge, we prove the inequality w + c1 ≤ k by

induction on k. For k = 1, we have nothing to prove because in this case c2 = 0. Suppose

we have proved the inequality for all 2r-step eulerian circuits with r < k. Then for an

eulerian circuit Eu = (V,C) ∈ E2k such that c2 6= 0, if all the edges are simple, we have

c1 = 0 and w + c1 = w = k; if there is at least one repeated edge, say the edge connecting

i1 and j1. We remove two repetitions of this edge and we denote the remaining part as

Eu{i1,j1}. There are three possibilities:

• Case 1: Eu{i1,j1} is connected. In this case, as the degree of each vertex is still

even. By the famous Euler Theorem, we can still draw Eu{i1,j1} in a single trajectory

without lifting up the pen (but with changing the order and directions of edges if

necessary). And because each edge connects still white and black vertices, we have

Eu{i1,j1} ∈ E2k−2. Let w′, c′1, c
′
2 are the numbers of white vertices, first class black

vertices and second class black vertices respectively of Eu{i1,j1}. We have assumed
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that Eu has at least one simple edge, and this simple edge is obviously left in Eu{i1,j1},

so c′2 6= 0. Moreover, we have w′ = w, and all the black vertices except j1 remain in

the same class as in Eu, so we have c′1 ≥ c1− 1. By induction we have w+ c′1 ≤ k− 1,

thus w + c1 ≤ k.

• Case 2: i1 or j1 is disconnected from the other vertices. We remove this isolate vertex.

After doing that w or c1 decreases by one. Using Euler Theorem as in the first case,

it is easy to conclude from the induction.

• Case 3: Eu{i1,j1} is disconnected and is seperated into two connected components.

Using Euler Theorem again on the two components and inducing from these two

components we obtain the inequality for Eu.
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APPENDIX A

Some complementary proofs

A.1 Proof of Proposition I.6

Let γ(h) = (1+|h|)ρL(k) be the serie of first row entries, with L a slowly varying function

and ρ ∈ (0, 1). For the case where ρ ∈ (−3/4, 0), the result is prooved by Proposition I.5 and

the proof of that proposition can be found in Chapter III, Proposition III.3. We only need

to verify the result for ρ ∈ (−1,−3/4]. For these ρ, the length of the interval ( 1
2(1+ρ) ,

1
(1+ρ))

is greater than 1, so there must be an integer q ≥ 2 in this interval. For this q, let p = q
q−1 .

Then because −pρ > 1, we have γ ∈ lp. And we have also p ≤ 2, from Hausdorff-Young

Theorem (Theorem 2.3-ii of [61]), the symbol of these Toeplitz matrices f is in Lq. By

Theorem 2 of [21], we have

lim
N→∞

trT qN
N

=
1

2π

∫
(−π,π]

|f(x)|q dx <∞.

So we have

trT qN√
Nλqmax(TN )

= O

( √
N

(N1+ρL(N))q

)
→ 0

since (1 + ρ)q > 1
2 .
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A.2 Proof of Proposition I.8

Proposition II.11 has proved the case of the largest one eigenvalue. With some adaptions

the same method can prove the general case.

For a fixed j = 1, . . . ,m, let

SN,(j) :=
SN (Γ)

λj(ΓN )
.

The goal is to prove that λj(SN,(j))→ 1 in probability or almost surely. We denote

d1 ≥ · · · ≥ dN

the eigenvalues of ΓN/λj(ΓN ). let UN be a unitary matrix such that

ΓN = λj(ΓN )UN diag(d1, . . . , dN )U∗N .

Let also

ŜN,(j) :=
1

n
Z∗NUN diag(d1, . . . , dj , 0, . . . )U

∗
NZN ,

and

S̃N,(j) :=
1

n
Z∗NUN diag(d1 ∨ 2, . . . , dj−1 ∨ 2, dj , dj+1, . . . , dN )U∗NZN .

Then by the same argument of spectral confinement used in Proposition II.11, we have

1 = lim
N→∞

λj(ŜN,(j)) ≤ lim
N→∞

λj(SN,(j)) ≤ lim
N→∞

λj(SN,(j)) ≤ lim
N→∞

λj(S̃N,(j)) = 1

in probability or almost surely. The result follows.
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