
HAL Id: tel-02086404
https://pastel.hal.science/tel-02086404

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-model coupling for fluid structure interaction
Alexandre Fernier

To cite this version:
Alexandre Fernier. Multi-model coupling for fluid structure interaction. Solid mechanics [physics.class-
ph]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLY001�. �tel-02086404�

https://pastel.hal.science/tel-02086404
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N

N
T:

2
0
1
9
S

A
C

LY
0
0
1

Couplage multi-échelle
pour l’interaction

fluide-structure en
dynamique rapide

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’École Nationale Supérieure de

Techniques Avancées (ENSTA)

École doctorale n◦ 579 - Sciences mécaniques et
énergétiques, matériaux et géosciences (SMEMaG)

Spécialité de doctorat: Mécanique des Solides

Thèse présentée et soutenue au CEA Saclay, le 25 Janvier 2019, par

Alexandre Fernier

Composition du jury:

Florian De Vuyst – Professeur

LMAC, Sorbonne Universités, Université de Technologie Compiègne Président du jury
Dominique Eyheramendy – Professeur

LMA, CNRS, Aix-Marseille Université, Centrale-Marseille Rapporteur
Anthony Gravouil – Professeur

LaMCoS, CNRS, Université de Lyon, INSA Lyon Rapporteur
Régis Cottereau – Chargé de recherche CNRS

HDR, LMA, CNRS, Aix-Marseille Université, Centrale Marseille Examinateur
Christian Tenaud – Directeur de recherche CNRS

LIMSI, CNRS Examinateur
Eric Deletombe – Maître de recherche

HDR, ONERA Examinateur
Olivier Jamond – Ingénieur-chercheur

CEA Encadrant
Vincent Faucher – Expert Senior

HDR, CEA Directeur de thèse



2



3

Are you a map ?
Gilles Fournerie





Remerciements

Ce manuscrit de thèse marque la fin de trois années de travail qui n’auraient eu lieu
ni pu s’accomplir sans de nombreuses personnes que je tiens à remercier ici.

En premier lieu, je tiens à remercier Vincent, mon directeur de thèse, qui m’a fait
confiance pour effectuer ce travail ainsi que pour son soutien permanent. J’ai beaucoup
apprécié la qualité de nos échanges qui ont toujours été productifs et intéressants. Je
tiens évidemment à remcercier chaleureusement Olivier pour ces trois années passées
ensemble. Les mots me manquent pour décrire la chance que j’ai eu de t’avoir comme
encadrant: un grand merci pour tous les moments passés ensemble qui ont ont large-
ment dépassé le cadre du travail comme en témoignent les nombreuses anecdotes qui
me sont restées. Un grand merci également aux membres du Laboratoire DYN qui
m’a très bien accueilli (et nourri). Ce fut un vrai plaisir de passer ces trois années
dans une aussi bonne ambiance et je leur témoigne ici toute mon amitié. J’ai na-
turellement une pensée pour mes partenaires de coinche pour tous nos fou-rire, mais
également à Thierry dont la sagesse n’a d’égal que son grand âge. Une mention spécial
à Robert, alias Bob, qui m’a non seulement beaucoup aidé dans mon travail (bien que
ce ne soit pas dans ses prérogatives) mais également pour m’avoir appris les paroles de
l’Internationale et ce que c’est que d’être un vrai résistant. Enfin, je tiens à féliciter
Marwa et Gianluca qui ont réussi à me supporter au quotidien dans notre bureau.

Je souhaite témoigner ma profonde gratitude aux membres de mon jury pour
l’intérêt porté à mon travail. Je tiens à remercier en particulier Dominique Eyher-
amendy et Anthony Gravouil pour avoir accepté d’être rapporteurs de mon travail et
pour leur remarques judicieuses. Je tiens également à remercier Florian De Vuyst qui
a accepté d’être président de mon jury.

Tout travail nécessite une forme d’équilibre/d’hygiène de vie afin d’être effectué
sainement. Je tiens donc à profiter de cette page de remerciements pour exprimer ma
profonde gratitude à tous ceux qui m’ont entouré pendant ces trois dernières années,
mais également plus généralement toutes les personnes qui m’ont permis de devenir la
personne que je suis. Ma première pensée va naturellement à Jenna, qui égaie mon
quotidien depuis quelques années déjà et qui m’a beaucoup aidé dans le processus de
rédaction de mon travail. Je pense naturellement aussi à ma famille et mes cousins
(trop nombreux pour être cités) avec qui j’ai grandi. Je pense aussi à mes amis, que
ce soit les copains des scouts; les copains des soirées festives (la secte, les copains de
l’ENSTA), les copains de randonnées (Tanzanie, Tadjikistan ou lors de weekends plus
ou moins improvisés); les copains du foot du lundi, du mercredi, du dimanche voir du
mardi, jeudi ou samedi occasionnel; ou les copains de toujours avec qui l’on se retrouve
moins régulièrement, par simple plaisir de se voir (Camille, Gael, Adrien, Maylis, Célie,
etc). Vous avez tous, d’une certaine façon, contribué à ce travail et je vous en remercie.

5





Contents

List of Figures 11

List of Tables 15

Introduction 17

1 Arlequin method for structural dynamics 33
1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.1.1 Continuous mono-model problem formulation . . . . . . . . . . 34
1.1.2 Continuous Arlequin problem formulation . . . . . . . . . . . . 35
1.1.3 Discretized problem . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.1.4 Mass lumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.1.5 Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2 Stability of differential algebraic system . . . . . . . . . . . . . . . . . . 40
1.2.1 Energy-based stability analysis . . . . . . . . . . . . . . . . . . 41
1.2.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.3 Impact of the Arlequin weights on the critical time step . . . . . . . . . 44
1.3.1 Impact on a single element . . . . . . . . . . . . . . . . . . . . . 44
1.3.2 qα-control approach . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.3.3 Averaged weight approach . . . . . . . . . . . . . . . . . . . . . 47
1.3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.3.5 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.4.1 A 2D consistency test . . . . . . . . . . . . . . . . . . . . . . . 51
1.4.2 Geometric discrepancy: a holed plate . . . . . . . . . . . . . . . 54

1.5 Similar stability issues in other works . . . . . . . . . . . . . . . . . . . 57
1.5.1 Presentation of stability issues in explicit dynamics with XFEM 57
1.5.2 Comparison of the methodology . . . . . . . . . . . . . . . . . . 58

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Multi-model approach for convective transport 61
2.1 Mono-model formulation for the convective transport equation . . . . . 62

2.1.1 Continuous formulation of the transport equation . . . . . . . . 62
2.1.2 Discretized formulations . . . . . . . . . . . . . . . . . . . . . . 63
2.1.3 Discrete mono-model problem formulation . . . . . . . . . . . . 63

2.2 Multi-model approaches for convective transport . . . . . . . . . . . . . 64
2.2.1 A Chimera formulation of the transport equation . . . . . . . . 65
2.2.2 An Arlequin formulation of the transport equation . . . . . . . . 67

7



8 CONTENTS

2.2.3 A hybrid formulation of the transport equation . . . . . . . . . 69
2.3 Study of the stability of the multi-model approaches . . . . . . . . . . . 71

2.3.1 Strategy for the stability study of the multi-model approaches . 71
2.3.2 Influence of the coupling matrices on the critical time step . . . 72
2.3.3 Influence of Chimera-like boundary conditions . . . . . . . . . . 73
2.3.4 Influence of the weight functions on the stability . . . . . . . . . 73

2.4 Study of the accuracy of multi-model approaches . . . . . . . . . . . . 80
2.4.1 Local introduction of a fixed cylinder . . . . . . . . . . . . . . . 80
2.4.2 Local change of the advection velocity . . . . . . . . . . . . . . 86

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Stability study of multi-model fluid dynamics 91
3.1 Mono-model formulation for the Euler equations . . . . . . . . . . . . . 92

3.1.1 Continuous formulation for the mono-model problem . . . . . . 92
3.1.2 Discretized problem . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Multi-model formulations for the Euler equations . . . . . . . . . . . . 94
3.2.1 Extension of the Arlequin method to the momentum equation . 95
3.2.2 A Full Arlequin approach for the Euler equations . . . . . . . . 97
3.2.3 An Archimera approach for the Euler equation . . . . . . . . . . 97

3.3 Stability study of multi-model approaches . . . . . . . . . . . . . . . . 97
3.3.1 Mono-model wave equation problem formulation . . . . . . . . . 98
3.3.2 Study of the influence of the multi-model frameworks on the

stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.3 Analysis of α̃p for specific elements . . . . . . . . . . . . . . . . 102
3.3.4 Illustration of previous results on test cases . . . . . . . . . . . . 104
3.3.5 Extension to the Euler equations . . . . . . . . . . . . . . . . . 109

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Accuracy study of multi-model fluid dynamics 113
4.1 Steady state case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2 Analysis of divergence-free force terms . . . . . . . . . . . . . . . . . . 114

4.2.1 Continuous formulation . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Applications and examples . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4 Local introduction of a fixed cylinder . . . . . . . . . . . . . . . . . . . 118

4.4.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.3 Study of the accuracy of the multi-model approaches . . . . . . 121

4.5 Local insertion of a channel between chambers . . . . . . . . . . . . . . 123
4.5.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.2 Multi-model solutions . . . . . . . . . . . . . . . . . . . . . . . 124
4.5.3 Convergence study . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.4 Influence of the size of the coupling zone on the accuracy . . . . 131

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Conclusion 133



CONTENTS 9

A FSI modelling in EPX 135
A.1 Time integration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Structural component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 Fluid component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4 FSI link conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Presentation of the Arlequin method 139
B.1 Presentation of the objectives and principles of the Arlequin method . . 139
B.2 Making of an Arlequin formulation . . . . . . . . . . . . . . . . . . . . 141

B.2.1 Formulation of a mono-model formulation for static structural
mechanics applications . . . . . . . . . . . . . . . . . . . . . . . 141

B.2.2 Formulation of a multi-model static structural problem in the
Arlequin framework . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.3 Extension of the Arlequin method to structural dynamics applications . 145
B.3.1 Mono-model formulation for structural dynamics applications . 145
B.3.2 Multi-model Arlequin formulation for structural dynamics appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C Initial conditions for DAS 149
C.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.2 Solution for constrained initial conditions . . . . . . . . . . . . . . . . . 150
C.3 Solution for unconstrained initial conditions . . . . . . . . . . . . . . . 151
C.4 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D Elementary time step with mid step velocity 153
D.1 Problem formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.2 Amplification matrix for each formulation . . . . . . . . . . . . . . . . 154

D.2.1 Amplification matrix and stability of Problem D.1 . . . . . . . . 154
D.2.2 Amplification matrix and spectral stability of Problem D.2 . . . 155
D.2.3 Determination of the eigenvalues of the generalized eigenvalue

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E Analysis of the weight function for triangles 157
E.1 Shape functions for a triangle . . . . . . . . . . . . . . . . . . . . . . . 157
E.2 Value of α̂p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

E.2.1 Value of the denominator . . . . . . . . . . . . . . . . . . . . . 158
E.2.2 Value of the numerator . . . . . . . . . . . . . . . . . . . . . . . 159
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Introduction

In the nuclear industry, the study of the various operational states is decisive when
designing nuclear plants [1] [2]. These operational states can be divided into three
categories [2]. A first category, called normal operation occurrences, includes operations
within specified operational limits and conditions. Another one, called Anticipated
Operational Occurrences (AOO) refers to occurrences that are deviating from normal
operations but that, with appropriate design, can not cause any significant damage nor
lead to accident conditions. They are expected to occur at least once during the lifetime
of the facility and do not prevent the structure from operating. The last category
corresponds to accidents, which are defined as deviations from normal operations that
can put in jeopardy the operating of the facility.

The study of accident scenarios is essential to demonstrate that the facility design
meets the acceptance criteria1 defined by national agencies2. Accidents scenarios that
are critical in showing that the design is appropriate are called Design Basis Accidents
(DBA). For DBA, the most fundamental criterion is that there should be no, or at most
very limited, radiological consequences to the public [2]. Examples of DBAs are the
Loss Of Cooling Accidents (LOCA) [6] [7] [8] and Reactivity Initiated Accidents (RIA)
[5] [9] [10] for Pressurized Water Reactors (PWRs) and Core Disruptive Accidents
(CDA) [11] [12] [13] for Fast-Breeder Reactors (FBR).

In order to evaluate if designs meet acceptance criteria, numerical simulations of
DBAs have become essential. At the Dynamics Laboratory3 (DYN) of the Commis-
sariat á l’Énergie Atomique et aux Energies Alternatives (CEA), Europlexus4 soft-
ware, hereafter abbreviated EPX, is used to simulate DBAs such as LOCA and CDA
at the reactor scale. Yet, simulating accidents still faces difficulties such as taking into
account localized geometric details which need to be modelled through other means
[14]. Another difficulty is due to mesh generation which can be very costly, especially
for such large systems. Hence, modifying the mesh to optimize the position or shape
of a specific component can be prohibitive. Instead, numerical zooms are a possible
way to consider such local details. In the nuclear industry, such numerical zooms are
very useful as they allow to (1) test if the modelling of local geometries/phenomenons
is accurate, (2) locally change the modelling for specific applications or (3) optimize
the shape and position of specific components. Additionally, numerical zooms would

1These criteria aim to minimize the possible consequences of operating nuclear plants [3] [4] [5]
and thus have direct consequences on the design.

2For example l’Agence de Sûreté Nucléaire (ASN) for France and the United States Nuclear Reg-
ulatory Commission (US NRC) for the United States of America.

3CEA/DEN/DANS/DM2S/SEMT/DYN.
4 EPX is a fast transient dynamics program jointly owned by the French Commissariat à l’Energie

Atomique et aux Energies Alternatives and the Joint Research Center of the European Commission
(http://www-epx.cea.fr).
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allow to do all these deeds at reduced human cost and computer resources.

In the following section, we briefly present LOCA and CDA and illustrate how numer-
ical zooms can improve the modelling in EPX simulations. Based on these examples,
we establish the specifications of the numerical tool to be implemented in EPX. Next,
we review existing methods and point out why they do not, in their current state,
fulfill all the specifications previously established. Finally, we describe the scientific
approach adopted in this work.

Underlining the use of numerical zooms in Design Basis Acci-
dents
In this section, we present representative LOCA and CDA scenarios and explain why

the current modelling in EPX fails to represent certain aspects. For each example, we
then show how numerical zooms can improve the modelling in EPX simulations and
thus lead to more accurate evaluations of acceptance criteria in the design of nuclear
plants.

Presentation of Loss Of Coolant Accidents

The Loss Of Coolant Accident (LOCA) in Pressurized Water Reactor (PWR) refers
to any scenario5 that results in the brutal opening6 of one of the main coolant pipes
and of its consequences. In accordance with the ASN, the French nuclear authority,
the quadratic addition of LOCA and earthquake effects is considered as the reference
accident to design the vessel internals. In the following, we present, without loss of
generality, a particular scenario corresponding to a large break as it leads to the most
significant mechanical consequences7.

We assume for example that, initially, a guillotine break occurs between the reactor
coolant pump and the reactor vessel (see Figure 1). The break provokes a steep drop
in the pressure, from 155 bar to 90 bar. At the same time, the core is emptied out and
rapidly shuts down due to the drop of control rods and the resulting negative reactivity.
The injected coolant still leaks through the break so that the stored energy causes the
temperature inside the vessel to rise from 300◦C to about 800◦C. This is called the
blowdown period (0 to 30 s).

Then, once the pressure has sufficiently decreased, low-pressure injection systems
activate and water is efficiently injected into the system. While the lower plenum fills
with water, the core is still not cooled down and continues to heat up. During that
period, called the refill period (30 to 40 s), some fuel rods can burst or break, limiting
the pathway through which the rising water will be able to go through.

Once the plenum is filled, the core water injected begins to cool down the core. This
is called the reflood period (40 to 200 s). The quenching front moves upward, cooling

5The different scenarios are usually categorized into large break LOCA (flow areas larger than
0.1 m2 in diameter) and small break LOCA (flow area typically between 2.5 cm2 and 950 cm2 in
diameter).

6sometimes referred to as a guillotine break.
7 Intermediary breaks are currently being studied when it comes to studying the consequences on

the fuel.
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the bottom part of the core and thus decreasing the heating velocity. Eventually, the
peak cladding temperature is reached at around 1080◦C. Then, the cooling overcomes
the heating and the core is efficiently cooled down.

Figure 1: PWR primary system arrangement [15].

During a LOCA, the main mechanical loadings on the reactor and the vessel inter-
nals occur rapidly due to the rarefaction wave initiated by the break. These loadings
are particularly high when the rarefaction wave impacts the core barrel and in its
subsequent propagation through the core. In the latter case, when the wave spreads
between the Lower Core Plate and the Upper Core Plate, it can either go through
the core center, containing the fuel assemblies, or go through the by-pass behind the
baffle plates (see Figure 2). The travel time differs in both paths yielding pressure
forces on the baffle. These forces need to be evaluated in order to ensure that LOCA
has no consequence on the integrity of the core during the accident. In particular, the
influence of the perforated reinforcement plates attached to the baffle on time delays
needs to be evaluated in order to precisely quantify the resulting pressure forces (see
Figure 2).

At DYN, EPX software is used for LOCA simulations [16] [17]. In these simula-
tions, the 3D effects of the perforated plates are approximated by impedance relations
applied at the nodes of the domain8. These relations are calibrated on experimental

8The impedance actually approximates all the localized geometric details that have a significant
influence on the fluid flow, such as cavities, orifice plates, sudden enlargements/narrowings in the
pipes or perforated plates.



20 INTRODUCTION

Figure 2: PWR vessel and internal components (Right), baffle (Center) and perfo-
rated plates (Left) [16].

results and representative, locally scaled, simulations [17]. However, the influence of
the reinforcement plates needs to be assessed at the reactor scale. As impedance re-
lations are being used, these plates are not meshed in EPX simulations and it would
require both human and computational resources to adequately modify the existing
mesh. This is why a numerical tool that allows for the superimposition of indepen-
dently meshed reinforcement plates is necessary. Moreover, for additional flexibility,
that numerical tool should allow for the main mesh and the one representing the plates
to be non conforming (see Figure 3).

Figure 3: The reinforcement plates (circled in black) are independently meshed. We
propose to superimpose that mesh in the domain representing the reactor (mesh on
the left) in order to evaluate the accuracy of the impedance relations.
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Presentation of Core Disruptive Accidents

The Core Disruptive Accident refers to scenarios resulting in the melt down of the core
of a Fast Breeder Reactor (FBR). In accordance with the Western European Nuclear
Regulators Association (WENRA), the study of CDAs is necessary in order to reduce
potential radioactive releases in the environment [18]. Although there are no known
scenario that can realistically lead to a core melt and that there is a very low probability
of such an event happening in FBRs, the analysis of CDAs is still used for the design
of FBRs as part of the so-called defense-in-depth. That is why CDAs are sometimes
referred to as Beyond Design Basis Events [13]. In the following, we present a possible
chain of events during a CDA.

Initially, a large amount of energy is released in the vicinity of the core due to a
primary nuclear power excursion caused by, for example, an Unprotected Loss of Flow
(ULOF) [19]. This energy release causes the vaporization of the fuel and coolant which
then form, along with gas resulting from chemical reactions into a core bubble. The
bubble then expands, generating pressure waves in every directions, causing plastic
deformations on the surrounding structures. Because of the presence of cover gas
space above the sodium free level, there are less resistance for the sodium to move
upwards. Hence, a net force develops in the downward direction so that the main
vessel is pulled-down (0 to 50 ms).

The sodium accelerated upwards eventually reaches the top shield (around t = 100
ms). During this "sodium slug impact", the kinetic energy of the moving sodium creates
an upward force. Consequently, the pressure in the cover gas as well as in the sodium
increases steeply, resulting in an impact force on the top shield in the upward direction
and causing further overall plastic deformation on the main vessel (100 to 150 ms).

Then, the fuel may melt due to the stored energy which can ignite local nuclear
reactions and/or cause secondary power excursions. If the energy released is significant
enough, melted fuel is scattered in the sodium so that UO2 − Na interactions occur.
The latter are very similar to steam explosions so that it has the same effects as the
core bubble, only with greater intensity. Eventually, the core cools down and there are
no more power excursions (150 to 900 ms).

During the slug impact (both after the primary and secondary excursion), the bolts
of top shield components elongate and the seals may fail. As a result, sodium may
penetrate the top shield and leak to the Reactor Containment Building (RCB). The
leaked sodium catches fire so that the temperature and the pressure rise in the RCB.
It is very important to quantify the quantity of sodium leaked as it is one of the
parameters taken into account when designing the RCB.

In CDA simulations by EPX, the seals are considered impervious so that it is
necessary to change the modelling. Thus, a numerical tool able to locally superimpose
a model containing a gap between, for example, the intermediate heat exchangers and
the top shield (see Figure 5) would save both human and computer resources.

Main objectives of the proposed research

Through these two examples, we asserted the need for a numerical tool able to locally
change the modelling when simulating fluid structure interaction phenomenons in fast
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Figure 4: Example of a FBR internal components [20].

transient dynamics. We hereafter recall the specificities the numerical tool we want to
implement in EPX needs to have.

1. It needs to be able to simulate fluid structure interaction (FSI) phenomenons.
Indeed, in the examples observed, strong shocks propagate and the response of
the surrounding structures is critical when simulating the different accidents.

2. It should not alter the initial, global mesh9 and allow for the superimposed do-
mains to have non conforming meshes.

3. It needs to be compatible with explicit time integration. Indeed, the software
EPX uses such time-integrators in order to simulate these accidents which are
conditionally stable. Thus, the numerical tool implemented needs to remain
stable when they are used.

9This requirements implies that re-meshing techniques [21] [22] [23] [24] are not considered.
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Figure 5: A gap between the top shield and equipment going through the shield is
modelled (circled in red) and superimposed in the main global domain (mesh on the
right) for reactor prototype ASTRID.

Now that the characteristics of the numerical tool are specified, we present existing
methods that aim to tackle similar issues. In order to give a comprehensive review, we
chose to present a review of multi-modelling methods and underline if and how they
are suitable to the applications considered here.

Bibliography

The field of multi-modelling has been a topic of significant interest since the 1960s
and the work of Volkov who introduced overset grids, or patches, in order to obtain
better solutions in corner points of a domain for the Laplace equation [25] [26]. Since
then, the expansion of multi-model coupling techniques has been closely related to
research made in multi-scale modelling. Thus, it is not surprising that many multi-
modelling techniques have multi-scale applications and vice-versa. We can distinguish
three different fields of research: the determination of solutions on multiple grids,
enriched finite element methods and superimposition methods. Note that these three
fields of research are not an exhaustive overview of the research in multi-modelling.
However, it does give a general idea of the main research fields being explored. In
particular, we focused on methods which bring refinement in the modelling and/or
permits local numerical zooms.
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Computation on multiple grids

The first family of approaches propose to solve the equations of the problem on dif-
ferent grids. For these approaches, two scales are usually considered. The first one,
macroscopic, represents the global behaviour of the domain while the second one, mi-
croscopic, includes specific characteristics of the model. These approaches take into
account each scale by representing them on different, independent grids and by cou-
pling them through dedicated operators. These operators allow for the transfer of
information from one grid to another, that is, from on scale to another. Generally,
these operators are built using principles very similar to those of homogenisation [27]
[28] [29].

Multi-grid methods [30] [31] are a very efficient10 iterative computation strategy,
initially proposed for elliptic problems [30]. These methods rely on the fact that iter-
ative relaxation methods [33] quickly compute the high frequency components of the
solution but fail to obtain the lower ones in less than a few iterations. The idea is
then to compute the solution on a series of coarser grids in order to obtain, through
relaxation methods, all the frequency components of the discrete solutions. The com-
putation iterations usually follow V- or W-shaped cycles, alternating between fine and
coarse meshes. The transfer of the solution from one grid to the other is done through
operators that either interpolate or project the solution. It allowed, for example, Fish
and Belsky to study the behaviour of periodical composite structure [34] [35].

While the standard theory of multi-grid methods generally assumes ellipticity [31],
it was extended to hyperbolic systems by Ni [36]. The idea is to accelerate the wave
propagation on multiple grids by using larger time steps on coarse grids without violat-
ing the CFL condition. Thus, low frequency components are rapidly expelled through
the outer boundary while higher ones are locally damped by the smoother [37] [38]. The
method has proved particularly efficient for the simulation of the Euler equations [39]
[40] [41] and was extended to convection problems [42] and hyperbolic conservations
laws [38]. The multigrid methods can thus be used, locally, to introduce a specific
modelling. However, they are mainly used in order to obtain steady state solution
and their use for the simulation of evolution problems such as shocks is thus limited.
Moreover, they require specific features to handle local changes in the geometry of the
domain.

Hierarchical Dirichlet Projection Methods (HDPM) also tackle the issue of multi-
modelling through computation on multiple grids [43] [44]. First, a hierarchy of the
physics of the problem is set up, ranging from the coarsest description to the most
detailed one. This approach then proposes to compute a first solution u0 on the coarsest
scale. Then, error estimates identify the cells where the solution is not precise enough
[44]. The value of the solution is then corrected by localized computations at finer
grid levels. Indeed, on each critical region, a new solution u1 is computed and uses
the solution u0 as its boundary condition. Finally, it projects the fine scale solution
on the coarse scale grid. If a posteriori estimates of the projected solution are still
too high, the process is repeated for larger cells so that in the worst case scenario, the
fine scale is used for the entire domain, ensuring the convergence of the method [43].

10The computational work is proportional to the number of unknowns [32].
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This method allowed Oden et al. to model the behaviour of heterogeneous composite
structures [45].

A variety of techniques were developed that use the same methodology: a coarse
solution is computed on a coarse grid and finer grid are used, locally, to take into
account local changes in behaviour. This is the case, for instance, of the EF 2 method
[46]. It proposes, in identified integration points, to introduce a fine finite element grid
that best describes the physics of the problem. Computation on this local grid yields
the value of the integrated physical quantity at that integration point. This method
allowed Feyel et al. to describe the elastoviscoplastic behaviour of composite materials
[46] [47] and Ramiere et al. to simulate the behaviour of heterogeneous nuclear fuel
[48]. Another multi-scale method was designed by Loehnert and Belytschko in order
to simulate crack growth [49] [50]. Projection methods were also developed in fluid
mechanics. For instance, a Cartesian grid projection method was developed in order
to solve the incompressible Euler equations in complex geometries [51]. For example,
the solution is first computed on a coarse grid for one time step. Then, the solution is
computed on smaller grid with multiple, smaller, time steps until the two solutions can
be synchronized [52]. Finally, the method allows for local change in modelling and, in
particular, for changes in geometries [53].

These projection methods allow for changes in geometry and local refinement. How-
ever, as noted in [54], these techniques have yet to tackle dynamic problems such
as wave propagation and multi-physics coupled field problems such as fluid-structure
interaction. Moreover, they are not well suited for explicit dynamics and unsteady
problems.

Computation on multiple grids are an effective way to take into account local be-
haviours, in particular for steady states. However, it is not well suited neither for
evolution problems such as the propagation of waves nor for the adding of new ele-
ments outside the main domain.

Enriched finite elements

In the standard finite element method, it is rather difficult to capture quick oscillations
or strong gradients without refined meshes. In explicit dynamics, tiny elements imply
smaller time step due to the Courant-Friedrichs-Levy condition and thus a higher
computational cost. Hence, the second family of approaches propose to enrich the
already existing vector space with special functions that reproduce these high frequency
phenomenons. This way, the global solution is obtained by the sum of the standard
finite element method and a corrective term yielded by the special functions.

A few difficulties arise from this formulation. First, if the corrective term is com-
puted on each element independently, then the global solution can be discontinuous
and special treatment is needed to remedy to that issue. Secondly, as the corrective
term reproduces, by construction, high frequency phenomenons, special care in the
integration process is needed. Finally, there is no guarantee that the standard solution
vector space and the enriched vector space are linearly independent so that the stiffness
and mass matrices need extra work to be well conditioned.



26 INTRODUCTION

The multiscale variational method introduced by Hughes is based on this reasoning
[55] [56]. In this method, the corrective term is computed using analytical formu-
las. For example, when applied to the Poisson equation with homogeneous Dirichlet
boundary conditions and a bounded domain, the analytical corrective term is equal to
−
∫

Ω g(x, y)r(u)(y) dy where x is the position, g is the Green function for the Laplace
operator and r the residual of the finite element solution. In order to implement this
formula, the green function is approximated by small finite element grids11. More-
over, in order to ensure the continuity of the function and the fact that the vector
spaces need to be linearly independent, Hughes proposes to nullify the corrective term
on each element’s border. The corrective term then appears as local bubble-shaped
contributions.

The multiscale variational method has had many applications in acoustics, electro-
magnetic [56] but especially in computational fluid dynamics [57]. Indeed, the method
has been found to be useful in the simulation of laminar and turbulent incompressible
flows [58] [59] [60]. They are particularly used in Large Eddy Simulations (LES) [61]
[62]. However, the multiscale method is not well suited for the simulation of shocks.
Moreover, as seen for the Poisson problem, it is also not well suited for modelling
alterations across elements.

Another set of enriched methods were developed thanks to the general framework of
the Partition of Unity Method (PUM) proposed by Babuska and Melenk [63] [64]. In
the PUM, the corrective term is computed using special functions (fj)1≤j≤M adapted to
the enrichment considered. In order to guarantee the continuity of the solution across
the entire domain, the solution are weighted by finite element shape function (φi)1≤i≤N
so that the corrective term equals ∑i

∑
j bijfjφi. By construction, the shape functions

form a partition of unity, that is ∑i φi = 1, which gave the name to the method. The
choice of the special functions is critical and gave rise, amongst others, to two methods
[65]: the Generalized Finite Element Method (GFEM) [66] and the eXtended Finite
Element Method (XFEM) [67] [68].

The GFEM improves the physical description of the domain by choosing special
functions that are either asymptotic developments, specific modes, polynomial func-
tions or solution of locally obtained, finite element methods solution [69] [70]. The
XFEM addresses mechanical problems under the assumption of small perturbations
and uses Heaviside functions as their special functions. These Heaviside functions are
usually used to represent cracks. They are determined thanks to signed-distances func-
tions defined through level-sets techniques [71] [72]. Both these methods are widely
used for a wide range of applications, among which, propagation of cracks [73] [74],
the introduction of holes in a global domain [75] and fracture problems [69] [70]. Al-
though the methods are mostly used in statics or quasi-statics, it was extended to crack
dynamics with explicit time integration [76] [77] [78] [79].

These methods, although very efficient, has not yet been extended to the simula-
tion of fluid mechanics and particularly to the propagation of shocks. Moreover, the
XFEM can be computationally costly for complex geometries as it introduces addi-
tional degrees of freedom for every element the method is applied to. Nonetheless,
a few ingredients, such as the weighting by functions that form a partition of unity,

11This method also belongs to the family of approaches that compute the solution on multiple grids.
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were used in other methods for the simulation of structural and fluid mechanics (see
hereafter).

Superimposition techniques

The last set of approaches concerns superimposition techniques and can be identified
as part of the more general field of decomposition domains. In the following, we focus
on the two superimposition techniques that offer the most general framework for the
applications considered. But first, we briefly mention other techniques not considered
in the following.

In particular, we do not present surface coupling methods such as the mortar
method [80] [81] [82] as they do not allow for overlapping domains but instead re-
quire the boundaries of the two models to be compatible (but not necessarily con-
forming). Yet, many of these techniques rely on Lagrange multipliers to impose link
conditions [83] which can give strategy hints for the coupling of overlapping domains.
Other methods not presented here but worth mentioning are the superimposition tech-
niques developed to couple atomistic/molecular models with continuum ones. They
constitute a wide field of research and have led to the development of many methods,
amongst which the quasi-continuum method [84] [85], the handshake method [86] [87],
the bridging domain method [88] [89] [90] and the bridging scale method [91] [92].

The first superimposition technique presented here is called the Arlequin method
and was first introduced by Ben Dhia in the late 1990s [93] [94] [95] [96] [97] [98]. He
conceived an approach for the resolution of superimposed models with non conforming
meshes and/or different modelling for static and quasi-static cases [94], [93]. The author
uses a partition of unity approach for the superimposition of models and introduces
weight parameters in order to split the energy between each model. In [97], he studies
the computational specificities of the application of the Arlequin framework to the
finite element methods. In particular, he describes a method for the computation of
the coupling matrices as well as the integration of the weight parameters. He was then
able to study the behaviour of beams [94] and the propagation of cracks [97] but also
to simulate contact problems [99].

Rateau, working with Ben Dhia, extended the Arlequin framework to the fitting
of 3D modelling with plates and hulls [100] [96]. In particular, Rateau studied the
influence of both Arlequin parameters and refinement differences across models on the
solution. For instance, he showed that for basic tests, it was suitable to project the
mediator space on the coarser meshed model. Indeed, it prevents locking phenomenons
from appearing and lets both models contribute with their own specificity. Moreover,
he showed that on the coupling zone, if the arlequin weights are chosen to be constant,
giving more weight to the model whose modelling best describes the problem12 yields
a more precise solution.

Prudhomme, Bauman et al. extended the Arlequin method to problems that in-
volved both an atomistic model and a continuum model [101] [102] [103] [104]. In [103],
they mathematically prove that problems are well-posed for certain coupling norms
only. For example, the L2 norm coupling is shown not to meet the Babuska-Brezzi
condition [105]. Moreover, they studied the influence of the solution of the size of the

12for example the model with the finer mesh or whose modelling include more physical phenomenons.
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coupling zone (negligible variations) as well as the influence of the distance between
the coupling zone and the alteration. The influence of the latter on the solution was
observed to be exponentially decreasing with the distance [101] [102]. It allowed them
to study the equilibrium of cracks and square lattices [101] [102] as well as large-scale
hybrid molecular-continuum statics problems for the manufacturing of semiconductors
[103] [104].

Chamoin et al. also analysed the influence of the Arlequin framework for the
coupling of an atomistic model and a continuum model [106] [107]. They identified
four possible sources of instability when coupling continuum models with atomistic
ones [107] that are not restricted to atomistic/continuum problems. The first one is
the appearance of oscillating solutions, or free modes, when discontinuous arlequin
weights are used for models with significantly different discretization size. Secondly,
instabilities may appear at both ends of the coupling zone because of ghost forces.
Finally, a local loss of the coercive property may appear if the arlequin weight assigned
to the particles gets to zero too quickly13.

Chuzel-Marmot et al. and later Caleyron et al. applied the Arlequin framework
to the coupling of a SPH model and a finite element one in structural dynamics [108]
[109] [110] [111] [112] [113]. Chuzel-Marmot observed small perturbations can appear
in the solution due to reflections on the coupling zone. However, he did not justify the
fact that the method remains stable in the Arlequin framework, nor did he mention
if the simulations were obtained for optimal time steps [109] [112]. Caleyron et al.
noticed that the type of arlequin weights (piecewise constant, linear or cubic) did not
impact the solution. In particular, they observed that contrary to other works [114]
[112], no reflections on the coupling zone appeared. They used the Arlequin method
to simulate fluid structure interaction applications [113] and evaluate the constraint
caused by impacts on large structures [109].

Ghanem extended the Arlequin framework to the explicit-implicit time integration
of structural dynamics [115] [116]. He analysed the influence of the coupling on the
solution. in particular, he proved that by using a linear interpolation of the Lagrange
multipliers obtained on the implicitly integrated domain, no energy was added to the
system. This way, he was able to extend the Arlequin framework to heterogeneous time
integrators with multi time steps while ensuring total energy conservation. It allowed
him to simulate rotating machinery phenomenons while superimposing 1D models on
3D ones [116].

Although the influence of the coupling operator on the solution was studied in many
works [97] [103] [116], Guidault and Belytshko [114] accomplished an extensive study of
the H1 and L2 coupling operators. Although problems have been theoretically proven
to be well posed for a H1 coupling operator but not the L2 one. Yet, they advise that
the latter should still be considered as it yields more accurate solutions. In particular,
they show that use of the L2 coupling operator merely implied more restrictions on the
components of the Arlequin method, such as the need for continuous weight functions.
Ben Dhia et al. and Guidault et al. also showed that for both H1 and L2 coupling
operators, the Lagrange multipliers should be projected on the coarser mesh. Indeed,
locking phenomenons can appear otherwise and the authors even advise to use a mesh
coarser than the ones of both models.

13As is the case for cubic arlequin weights.
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The second main approach considered in this work, called the Chimera method, was
first introduced by Steiger et al in 1983 in order to couple two models with overlapping
domains for the simulation of aerodynamics [117] [118] [119]. In the Chimera method,
the information is transmitted from one grid to another through interpolation tech-
niques. Thus, the user needs to determine the degrees of freedom (for instance, nodal
values or values at elementary integrations points) of each domain where the solution
is interpolated. Let us consider, as an example, a domain B fully embedded inside
another domain A. The so-called interpolated degrees of freedom of domain B are the
ones on its boundary. In this case, domain A is called the giving grid while domain B
is called the receiving grid. Indeed, the value of the quantities on grid B are assigned
through the interpolation of these quantities on grid A. The degrees of freedom of grid
A that are used to interpolate the value on grid B form the stencil of the interpolation.
Similarly, degrees of freedom need to be defined on grid A so that information can be
transmitted from grid B to grid A.

The Chimera method offers many advantages. First, it can be used for simplified
mesh generation as it allows for each region of the domain to be independently meshed
[119] [120]. Secondly, it allows for local refinements [121] [122] as local areas can be
refined, which offers an alternative to codes that do not handle adaptivity. It is also an
efficient way to simulate moving components [123] [124] [125] as the independent mesh
can move freely with respect to each other, preventing mesh distortions. Finally, the
Chimera method is very efficient in configuration optimization [126] as the independent
mesh can be moved freely around the domain. The Chimera method and more generally
the use of overlapping grids have had many applications in CFD. For instance, it was
used to simulate the airflow around aircraft [127] [128] [129] and space shuttles [130]
[131]. Moreover, it was used to solve the Euler equations [132] [39] [133] as well as the
Navier-Stokes equations [123] [134].

Berger gave a definition for the concept of global conservation for multi-grid systems
in order to propose conservative interpolation techniques for multi-grid systems [135].
The definition states that a multi-grid system is globally conservative if, for a constant
flow14 on the outside boundary of the global domain, the numerical approximation of∫

Ω u(x, t)dΩ (u is the exact solution) is also independent of time. Benoit [136] analysed
conservative interpolation schemes and concluded that none of them were stable. He
advised that a compromise between stability and convergence should be made and
that, more specifically, discontinuities should not propagate over superimposed regions.
Wu also showed that a conservative treatment of the boundary leads to marginally
stable solutions [137]. Other approaches proposed to change the discretization in the
overlapping zone in order to ensure global conservation while maintaining stability. For
instance, Wang et al. [138] [139] and Brenner [140] chose to create a new mesh formed
by the intersection of the overlapping meshes while Kao et al. [121] and Berglind
[141] opted for a re-meshing of the entire overlapping zone. However, both methods
are particularly costly, especially of the grid represent objects in relative motions.
Moreover, the intersection of the meshes can lead to irregular elements and/or small
elements unfit for explicit time integration.

Starius was the first to study the stability of hyperbolic differential equations for
computations on multiple grid [142] [143]. He proved that the composite mesh dif-
ference methods (CMDM) for one dimensional problems was stable. Later, Wu et al.

14with respect to time.
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studied the conservation and convergence of composite grid methods in computational
dynamics and used the GKS-theory [144] to study their stability [145] [146]. In partic-
ular, Wu concludes that ensuring stability is more desirable than using a conservative
treatment of the boundaries. Indeed, they point out that a non conservative treatment
of the boundary does not exclude conservative solutions, as observed in other works
[147]. Moreover, he showed that using sufficiently dissipative schemes (such as TVD,
ENO) and the normal interpolation interface condition ensured conservative solutions
in a stable way. Lions, Pironneau et al. proved the convergence of the Chimera method
for different cases [148] [149].

Peron, in [150], underlines a few practical hints when using the Chimera method.
First, she showed that it is more desirable to have meshes of the same size in the
overlapping region, and more specifically in the stencil region of a domain and in the
corresponding interpolated region of the other domain. Moreover, the interpolation
order should be greater or equal to the order of the numerical scheme. Indeed, if both
conditions are not met, then the numerical error will be imposed by the interpolation
error and not by the numerical scheme. Peron, based on work by Jameson et al. [132],
also noted that in explicit dynamics, the overlapping area needs to have a minimal size.
Indeed, in explicit dynamics, all the quantities at time step tn+1 are determined from
quantities at time step tn. Thus if the stencil is larger than the overlapping zone, then
a degree of freedom of grid A that needs to be interpolated from grid B can also be in
the stencil used for the interpolation of a degree of freedom of grid B. This is clearly
not feasible so that the user needs to ensure that the overlapping zone is larger than
the stencil.

Remark. These different sets of approaches are not mutually exclusive and can be
combined together. For example and to name just a few, Ben Dhia and Jamond com-
bined the eXtended finite element method with the Arlequin method in order to simulate
crack propagation [74] [151]; the multiscale variational method can also be considered
as a multiple grid approach [57].

Partial Conclusion

Numerous methods allow for a change in the modelling without altering the initial
mesh. Among those methods, superimposing techniques provide the most flexibility
for the development of the numerical tool previously described. In particular, the
Chimera and Arlequin methods have proven to accurately simulate wave propagations
in structural and fluid dynamics. Moreover, they allow for the local modification to
be independently meshed which simplifies mesh generation and makes it easier to test
different configurations. However, to the best of my knowledge, these methods were
neither extended to the explicit time integration for structural dynamics nor to the
simulation of fluid structure interaction multi-modelling for which both the structure
and the fluid are locally changed. Finally, the influence of the Arlequin framework on
the stability in explicit dynamics still needs to be studied.

These shortcomings of the Chimera and Arlequin methods justify the work presented
in this work. It consists in developing a numerical tool able to superimpose two different
models when simulating fast transient, fluid structure interaction phenomena with
explicit time integration.
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Presentation of the scientific approach of this work
The first step is to develop a multi-model formulation of the structural component

of the domain. Starting with the structural component rather than the fluid one is
justified by the fact that the momentum equation of the Euler equations is very sim-
ilar to the equation of structural dynamics15. Thus, the conclusions of the study of
structural dynamics can give practical hints for the modelling of the fluid component.
In order to model the structural component, we chose to extend the Arlequin frame-
work to structural explicit dynamics for reasons explained earlier. First, we establish
the continuous and discrete formulations of structural elastodynamics in the Arlequin
framework. Then, we study the stability of the multi-model formulation in order to en-
sure that its simulation is computationally feasible. Next, the approach is implemented
to simulate wave propagations in elastic structures. Finally, we study the accuracy of
the approach in order to ensure the relevance of the proposed method (Chapter 1).
Part of the work presented in this was chapter was published [152].

The next step is to develop a multi-model approach for the fluid component of the
domain for FSI oriented applications. It is accomplished over the next three chapters.

The fluid component is modelled by the Euler equations and different discretiza-
tion are used for each equation16. Indeed, the momentum equation is treated in its
non conservative form using the Finite Element Method (FEM) while the other two
conservations equations are treated by a Finite Volume scheme. Thus, the first goal
is to determine the possible multi-model approaches that can be used to model the
conservation of mass and energy equations. In order to do so, we propose different
multi-model approaches for the simulation of transport phenomenons. First, we estab-
lish their continuous and discrete formulation. Then, we study the stability of these
approaches so as to determine which approaches are stable and computationally feasi-
ble. Then, we study the accuracy of each stable approach by measuring the difference
between the solution yielded by these approaches with a reference one (Chapter 2). The
stable and most accurate approaches can then be used to model the Euler equations
when simulating multi-model fluid dynamics.

The next step is then to use the former approaches in order to formulate different
multi-model approaches for the Euler equations. Once formulated, we studied the sta-
bility of each approach in order to determine whether or not they are computationally
feasible. Yet, the stability of the Euler equations is associated to the acoustic waves.
Thus, for each approach, we establish the continuous and discrete formulations of the
corresponding, multi-model, wave equation problem. The wave equation problem is
considered in its mixed form in order to be representative of the Euler equations for-
mulation17. Next, the stability of each corresponding wave problem is studied so as to
determine the influence of the multi model frameworks on the critical time step. Fi-
nally, we infer, from the latter study, stability results for the Euler equations (Chapter
3).

The last step in developing a multi-model approach for fluid dynamics was to study
the convergence of the multi-model approaches for the Euler equations. To do so, we

15For the applications proposed, the momentum equation is discretized using the FEM, see Appendix
A.

16See Appendix A.
17This is equivalent to linearizing about the motionless state, see [153] and [154].
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established the continuous and discrete formulations for each multi-model approach
taking into account the practical hints from the studies of the previous chapters. Next,
we design test cases with various geometries and initial conditions and defined refer-
ence solutions. Convergence studies of the multi-model approaches were completed for
different gas laws and for each test case (Chapter 4). The work presented in the last
two chapters was synthesized in an article to be submitted.

A final step would have been to develop a multi-model approach for the simulation
of fluid structure interaction phenomenons. However, this work was not completed
because of a lack of time.

N.B. In this work, every vector is expressed through the column matrix of its com-
ponents in a fixed orthonormal basis of the 3D Euclidian space {~ei}i∈{1,2,3}. Such a
column matrix is denoted with a single underline. The second order tensors are ex-
pressed through the matrix of their components in the basis {~ei ⊗ ~ej}(i,j)∈{1,2,3}2 . Such
a matrix is denoted with a double underline. The matrices and column vectors related
to discrete systems are also denoted with double and single underline, respectively.



Chapter 1

Multi-model Arlequin method for
transient structural dynamics with
explicit time integration
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The objective of this work is to develop a multi-model approach able to account for
local effects in transient FSI1 simulations. The first step towards achieving this goal is
to develop a multi-model approach for transient structural dynamics with explicit time
integration. There are a few reasons for doing so. Firstly, transient FSI simulations
have both a fluid and structural component so that the multi-model approach to be
developed has to be practical for overlapping structures. Secondly, in our applications2,
the behaviour of the structural component is modelled by a single equation while the
fluid is modelled by three coupled equations. Moreover, both the equilibrium equation
describing structural dynamics and the momentum equation in the fluid description
are treated using the finite element method while the other two equations describing
the fluid3 are discretized differently. Thus, developing a multi-model formulation for
structural dynamics may give practical hints for the momentum equation.

As explained in the introduction, among the different methods developed in the field
of multi-modelling, the Arlequin method provides a suitable framework for structural
dynamics. We thus start by extending the Arlequin method to the simulation of transient

1Fluid Structure Interaction.
2See Appendix [REF] for the description of the modelling of transient FSI phenomenons in Euro-

plexus (Epx).
3the conservation of mass equation and the conservation of total energy equation.
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structural dynamics. To do so, we introduce the continuous and discrete mono-model
and multi-model Arlequin problem formulations of an elastodynamics problem using
the FEM. In particular, we propose a mass matrix lumping technique in the Arlequin
framework and recall the energy balance formulas (section 1.1). Then, we study the
influence of the Arlequin framework on the stability of the time-integrator in order to
ensure that the formulations are computationally feasible. Thus, the theoretical impact
on the stability of both the Lagrange multipliers (section 1.2) and the weight functions
(section 1.3) are examined. As the weight functions are found to possibly jeopardize the
stability, we propose two approaches to mitigate their influence, which are then validated
on a consistency test case (section 1.3). Next, we compare the solutions obtained by
the multi-model approaches with a reference one in order to evaluate their accuracy
(section 1.4). The work presented in this chapter was published as is in [152]. Later,
we came upon works from other fields that faced similar issues to those dealt with in
this chapter. We briefly present these works and compare their methodologies with the
one adopted in this work (section 1.5).

1.1 Governing equations
In order to present a comprehensive study of the Arlequin problem, we consider the

following representative elastodynamics problem.

1.1.1 Continuous mono-model problem formulation
We consider an isotropic elastic body occupying a bounded, regular domain Ω1 ∈ Rd.

Let u, u̇ and ü denote the displacement, velocity, and acceleration fields while u0 and
u̇0 are the initial displacement and velocity. The boundary ∂Ω1 of Ω1 is partitioned
into two parts, Γu and Γh, such that Γu ∩ Γh = ∅. The body is submitted to volume
forces g ∈ L2(Ω1), prescribed displacements up on Γu 6= ∅ and prescribed boundary
forces h on Γh. Let ρ be the material density, σ the Cauchy stress tensor, and ε the
infinitesimal strain tensor. The strain tensor is given by ε = ∇Su = 1

2(∇u+∇Tu) while
the stress tensor is given by Hooke’s law : σ = D : ε where D is the elastic tensor.

The weak mono-model formulation of this problem reads as follows:

Given g, h, up, u0 and u̇0, find u(t) ∈ V , t ∈ [0, T ] such that

∀v ∈ V0, m(u(t), v) + k(u(t), v) = f(v) (1.1)

with 

m(u(t), v) =
∫

Ω1
ρ
d2u

dt2
(t) · v dΩ1

k(u(t), v) =
∫

Ω1
σ(u(t)) : ε(v) dΩ1

f(v) =
∫

Ω1
g(t) · v dΩ1 +

∫
Γh

h(t) · v dΓh

(1.2)

where V = {u(t) ∈ H1(Ω1)d | u = up on Γu} is the trial function space and V0 = {w ∈
H1(Ω1)d | w = 0 on Γu} is the test function space.
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Remark 1.1.1. This work focuses on the influence of the Arlequin framework on the
stability of the central difference time-integrator. To address the most detrimental case
for stability and unless specified, no damping is considered.

Now that a reference, mono-model, problem formulation was established, we intro-
duce the equivalent multi-model problem in the Arlequin framework.

1.1.2 Continuous Arlequin problem formulation
The Arlequin method is a flexible modelling framework which consists of two or

more defined sub-domains with overlapping zones. Each sub-domain can have its own
physical model, numerical model, and scale. Although this method allows as many sub-
domains as needed, for the sake of clarity, we will restrict ourselves to two sub-domains,
Ω1 and Ω2, without any loss of generality.

In this study a local model, Ω2, is superimposed to the global model, Ω1, in the
neighbourhood of an area of interest. We assume that Ω2 is strictly embedded in
Ω1. Sub-domain Ω2 is partitioned into two regular, non-overlapping domains: the
coupling zone Ωc and the free zone Ωf (see Figure 1.1). In the first partition the
models are coupled so that they have to be quite similar, while in the second the
models are superimposed, but free from each other so that they can have very different
characteristics.

Ω1

Ω2 Ωf
Ωc

Figure 1.1: Model zones – The global model, Ω1, is represented in light grey, and the
second model domain Ω2 is represented in dark gray (upper right). The second model
domain, Ω2, is divided into two zones: the coupling zone Ωc and the free zone Ωf , which
contains a local alteration represented in yellow. Examples of possible local alterations
include a hole or source of energy.

The two models are combined together using a partition of energy through weight
functions αi (i = 1, 2) and a coupling operator c, leading to a continuous Arlequin
formulation of the problem. For simplicity, the quantities corresponding to each sub-
domain have the subscript i = 1, 2.
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The weak formulation of the Arlequin problem reads:

Given g, h, up, u0 and u̇0, find (u1(t), u2(t), λ(t)) ∈ V1×V2×M, t ∈ [0, T ] such that
∀ v1 ∈ V1

0 , m1(u1(t), v1) + k1(u1(t), v1) + c(v1, λ(t)) = f1(v1)
∀ v2 ∈ V2

0 , m2(u2(t), v2) + k2(u2(t), v2)− c(v2, λ(t)) = f2(v2)
∀ µ ∈M, c(µ, ü1(t)− ü2(t)) = 0

(1.3)

with (i=1,2) 

mi(u(t), v) =
∫

Ωi

αiρ
d2u

dt2
(t) · v dΩi

ki(u(t), v) =
∫

Ωi

αi σ(u(t)) : ε(v) dΩi

fi(v) =
∫

Ωi

αi g(t) · v dΩi +
∫

Γfi

αi h(t) · v dΓfi

c(µ,w(t)) =
∫

Ωc

µ · w(t) + L2 ε(µ) : ε(w(t)) dΩc

(1.4)

where V i = {w(t) ∈ H1(Ωi)d | w = up on Γdi
} and V i0 = {w ∈ H1(Ωi)d | w = 0 on Γi}.

M = {λ ∈ H1(Ωc)d} is called the mediator space, L is a strictly positive parameter
homogeneous to a length (typically the thickness of the coupling zone), and w ∈ V =
H1(Ωc)d is an acceleration gap field.

Remark 1.1.2. The scope of this work is to apply the Arlequin framework to the central
difference time-integrator. We chose to impose the coupling through the acceleration
variable as it is the natural choice in explicit dynamics. Note that by time integration,
if the initial conditions (1.5)

∀µ ∈M,

{
c(µ, u1(0)− u2(0)) = 0
c(µ, u̇1(0)− u̇2(0)) = 0 (1.5)

are true, then the third equation of system (1.3) implies

∀t ∈ [0, T ], ∀µ ∈M,

{
c(µ, u1(t)− u2(t)) = 0
c(µ, u̇1(t)− u̇2(t)) = 0 (1.6)

Remark 1.1.3. Note that although Ω2 is strictly embedded in Ω1, new boundaries and,
thus, prescribed boundary forces and displacements, may appear inside the free zone Ωf .
For example, one can think of a hole on whose boundary some tractions are applied
(see section 1.4.2 for example).

The internal energy weight parameter functions αi, i = 1, 2, are defined in the whole
domain Ω1. They are assumed to be independent of time and satisfy (see Figure 1.2):

αi ∈ [0, 1] in Ω1
α1 + α2 = 1 in Ω1
α1 = 1 in Ω1\Ω2
∃ α0 > 0, αi ≥ α0 in Ωf

(1.7)

Remark 1.1.4. The constant α0 has to be arbitrarily small for the Arlequin method
to be relevant [98].
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α1

Ω1\Ω2

1

α0

α2

Ω1\Ω2Ωc ΩcΩf

Figure 1.2: Weight functions – An example of the internal energy weight parameter
functions where cubic continuous functions were chosen in the coupling zone.

This subsection outlined two mathematical results concerning the Arlequin method
for static elastic problems. We assume that these two results still hold true for the
dynamics problem (1.3)-(1.7). Note that from now on, for clarity purposes, the global
domain, Ω1, will be referred to as the substrate and Ω2 as the patch.

• The mixed Arlequin problem defined in [95] was analysed mathematically and
proved to be well-posed in [98] and [95], but under more stringent conditions on
the weight function, which did not allow them to be regular.

• Even though the physical properties or the geometry in the substrate restricted to
the free zone Ω1|Ωf

do not match those of the patch Ω2|Ωf
, [98] shows that when

the weight function of the patch tends towards one in the free zone (α2|Ωf
→ 1),

the solution of the Arlequin problem tends towards the patch. Thus, a change can
be introduced in the patch only. This result, proved and assessed by previously
published numerical tests [98], is used in the following for a flexible construction
of the discrete Arlequin problems.

1.1.3 Discretized problem
In this section we consider the discrete formulation of the continuous problems pre-

viously introduced. The mono-model and both models of the Arlequin problem are
integrated in time by the central difference time-integrator described in the next sub-
section.

1.1.3.1 Discrete time-integrator

The time interval [0, T ] is subdivided into N steps ∆t = T
N
. Let Un

i , U̇
n

i and Ü
n

i

denote, respectively, the discrete displacement, velocity and acceleration of model i
at time instant tn = n∆t, n ∈ J0, NK. In this study we consider the explicit central
difference time-integrator defined by:

Given U0 and U̇0, {
Un+1 = Un + ∆tU̇n + 1

2∆t2 Ün

U̇
n+1 = U̇

n + 1
2∆t(Ün+1 + Ü

n)
(1.8)

1.1.3.2 Discrete mono-model problem formulation

The equations of motion for linear structural dynamics for the mono-model problem
(1.2) are discretized using the finite element method. It reads:
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Given initial conditions U0
1 and U̇0

1, ∀ n ∈ J0, NK

MÜ
n +KUn = F n (1.9)

where M and K are, respectively, the mass and stiffness matrices on Ω1 while F is the
load vector applied on domain Ω1.

1.1.3.3 Discrete Arlequin problem formulation

The discrete equations of motion for linear structural dynamics problem (1.3)-(1.7)
then read:

Given initial conditions U0
i and U̇0

i for i = 1, 2 and ∀n ∈ J0, NK
M1Ü

n

1 +K1U
n
1 + CT

1 λ
n = F n

1
M2Ü

n

2 +K2U
n
2 − CT

2 λ
n = F n

2
C1Ü

n

1 + C2Ü
n

2 = 0
(1.10)

where M
i
, K

i
are, respectively, the mass and stiffness matrices on sub-domain Ωi. F i

is the load vector applied on sub-domain Ωi, while CT
i

and λ are, respectively, the
coupling matrix and the Lagrange multiplier vector in the coupling zone Ωc.
Remark 1.1.5. Note that in system (1.10), the coupling equations are applied to the
time-discretized accelerations, with no right-hand side. It is shown in [155] that ve-
locities or displacements could be chosen in the general case to express the coupling at
next time step. Doing so produces a right-hand side in the coupling equations due to
the link, through the time-integration scheme, between the actually coupled variables
(for instance velocities or displacements) and the variables used for the system solution
(which are always accelerations). This choice is known to possibly affect the solution
of the system when the constraints are only weakly satisfied (for instance in the case of
time subcycling) or if some numerical perturbations occur in the system (see Remark
1.2.1 for some details on this particular topic). However, it is demonstrated in section
1.2 that under reasonable initial conditions always valid in this work, the coupling equa-
tions are strongly verified and simultaneously valid for all discrete kinematic variables.
Thus, the potential right-hand side is always null whatever the chosen coupled variable.

This system of equations can be rewritten as a differential algebraic system (DAS):(
M CT

C O

)[
Ü
n

ν̈n

]
+
(
K 0
0 0

)[
Un

νn

]
=
(
F n

0

)
(1.11)

where
M =

(
M1 0
0 M2

)
, K =

(
K1 0
0 K2

)
, C = [C1,−C2] (1.12)

and
Un = [Un

1 , U
n
2 ]T , F n = [F n

1 , F
n
2 ]T , ν̈n = λn (1.13)

Remark 1.1.6. Note that in (1.10), the Lagrange multipliers λn can be eliminated
such that we have, using definitions (1.12):

MÜ
n +K∗Un = F n∗ (1.14)

where K∗ = SK, F n∗ = SF n, S = I − (CM−1CT )−1CM−1 and I the identity matrix.
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1.1.4 Mass lumping
As is usual in explicit time integration, the mass matrix of every model should be

lumped4. In the Arlequin framework one has to deal with weighed densities, which
can be non-uniform on an element. Although the density ρ is uniform, if the Arlequin
weight α is not uniform on the element then the weighted density αρ will also not be
uniform. Thus, the Arlequin weights have to be taken into account in the lumping
technique of the mass matrix in order to conserve the overall mass.

By definition, the consistent mass matrix in the Arlequin framework is given by:

M
i,j

=
∫

Ω
αρNT

η(i)Nη(j) dΩ (1.15)

where Nk is the shape function for node k, η is the numbering mapping function that
connects degree of freedom i to its node number η(i), ρ is the density, α is the Arlequin
weight, and Ω is the global domain. For the lumped matrix, we propose the following
definition:

ML
i,j

=

 0 if i 6= j

mi =
∫

Ω
αρNη(i) dΩ otherwise (1.16)

with the same notations as before. This formula takes into account the heterogeneity
of the density within the element and preserves the global mass.

In this paper all presented computations make use of lumped matrices. For mono-
model computations, the lumping technique defined in (1.16) is used with α = 1 on
the entire domain.

1.1.5 Energy balance
The conservation of energy for the continuous formulation of both the mono-model

and Arlequin problem was demonstrated in previous work [155], [115]. For specific
time-integrators, the energy term associated with the constraints is zero.

The discrete conservation of energy was also studied in both cases. For the mono-
model problem (1.2) with a central difference time-integrator, the discrete energy bal-
ance reads:

[T n + V n] = Eext (1.17)

where 
[Xn] = Xn+1 −Xn,

V n = 1
2(U̇n)TKU̇n

T n = 1
2(Ün)TAÜn with A = M − 1

4∆t2K
Eext = 1

∆t [U̇
n]T [F n]

(1.18)

4The use of consistent matrices does not always improve precision and always requires more com-
putation time [156].
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For the multi-model problem with a central difference time-integrator, the discrete
energy balance reads:

[T n + V n] = Eext + Ecoupling (1.19)
where we used the same notations as in (1.18) and definitions (1.12) and (1.13). A new
term Ecoupling is introduced and represents the contribution of the Lagrange multipliers:

Ecoupling = 1
∆t [λ

n]TC[U̇n] (1.20)

We observe that if the time-integrator and the problem properties are such that
C[U̇n] = 0, then Ecoupling = 0 and the energy is conserved. For the central difference
time-integrator (1.22), we have:

[U̇n] = 1
2∆t(Ün+1 + Ü

n) (1.21)

Furthermore, in the Arlequin problem (1.11) the constraint is imposed on acceleration
such that CÜn = 0 is verified at every time step. Thus, for the Arlequin problem (1.11)
and the central difference time-integrator, Ecoupling = 0 and the energy is conserved.

Remark 1.1.7. It can be shown that T n + V n = En
p + En

c + En
z , where En

p =
1
2U

nKUn and En
c = 1

2 U̇
n
MU̇

n are the potential and kinetic energy, respectively, while
En
z = −1

8∆t2Ün
MÜ

n is an extra term, whose variation is usually negligible.

In this study we focus on the stability of the multi-model problem (1.3)-(1.7), and on
the two components of the Arlequin method likely to affect it: the Lagrange multipliers,
used for coupling the two sub-domains, and the weight functions. The next two sections
focus on the impact of these two components on the stability of the Arlequin method.

1.2 Stability of differential algebraic system
There are two main approaches to study the stability of a model writtenMÜ+KU =

F . The first one, called spectral analysis, evaluates the spectral radius of the the
amplification matrix A of the chosen time-integrator in order to ascertain under which
condition it becomes greater than one [157], [158]. The second one, an energy-based
analysis, uses the mathematical properties of the mass and stiffness matrices in order
to show whether or not the kinematic quantities are bounded [159].

If the spectral radius is strictly inferior to one (spectral analysis) or if the kinematic
quantities always stay confined (energy-based analysis), the time-integrator is said to
be unconditionally stable. If the spectral radius is greater or equal to one (spectral
analysis) or if at least one of the kinematic quantities is not bounded (energy-based
analysis), the time-integrator is said to be conditionally stable, except in the case where
a specific constraint on the time step is verified. In any other cases, the time-integrator
is said to be unstable.

For the central difference time-integrator, the two approaches show that it is con-
ditionally stable under the condition:

∆t < ∆tc =
√

2
ω2
max

(1.22)
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where ∆tc is the critical time step and ωmax is the maximum eigenfrequency of the
generalized eigenvalue problem of K and M . However, this result is only valid for
a differential system with the right properties (K is not singular and A is positive
definite). For the differential algebraic system (1.11), further analysis must be done.

In the following subsections, we examine the influence of the coupling on both ap-
proaches.

1.2.1 Energy-based stability analysis
In this section, we demonstrate that for the central difference time-integrator, the

kinematic quantities are bounded. In the previous section we proved that for the
Arlequin problem (1.11), the energy is conserved. As is usual in stability analyses, we
will not consider external forces as they do not affect it [155].

From [159], we have the following lemma:

Lemma 1.2.1. For the central difference time-integrator, if A is positive definite and
K is not singular and if the energy is conserved, then U̇n and Ün are uniformly bounded.

We can thus prove the following result:

Proposition 1.2.2. For the central difference time-integrator, if

• The coupling matrix C is of maximal rank.

• A is positive definite

• The energy is conserved

• K is not singular

• CU̇0 = 0 and CU0 = 0.

then λn and Un are also bounded.

Proof. By hypothesis, K is not singular so that we can multiply the equation of
structural dynamics (1.10) by CK−1 which yields:

CK−1MÜ
n + CUn = CK−1CTλn (1.23)

By induction, it can be shown that, for the central difference time-integrator, if CU̇0 =
0 and CU0 = 0 then CUn = 0 at every time step. Thus, equation (1.23) becomes:

‖CK−1CTλn‖ ≤ ‖CK−1M‖‖Ün‖ (1.24)

By hypothesis, we can use Lemma 1.2.1 so that Ün is bounded. Thus, CT has maximal
rank, and the Lagrange multipliers are bounded. Finally, the equation of structural
dynamics yields

‖Un‖ ≤ ‖K−1‖(‖M‖‖Ün‖+ ‖CTλn‖) (1.25)
which completes the proof.
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In this study, K is not singular and the rank of CT is maximal by hypothesis, while
A is positive definite if (1.22) is verified. Thus, both Lemma 1.2.1 and Proposition
1.2.2 can be applied, and all kinematic quantities are, therefore, bounded. The central
difference scheme is, thus, conditionally stable for the differential algebraic system
(1.11).

In conclusion, the energy-based stability analysis shows that coupling models does
not have an adverse impact on the stability. In other words, the critical time step for the
Arlequin problem is greater or equal to that of the uncoupled problem MÜ +KU = F
as defined in equations (1.12)–(1.13).

1.2.2 Spectral analysis
In this section we analyse the stability of coupled problem through the spectral

approach. We use the results and method detailed in [158] to reach the same conclusion
as that of the previous section.

In this analysis the time step ∆t is set and A(ω2∆t2) is the amplification matrix of
the chosen time-integration algorithm applied to a single degree of freedom oscillator
and defined for the complete state vector [q,∆tq̇,∆t2q̈]:

q̈ + w2q = 0 (1.26)

From [158], we have the following result:

Proposition 1.2.3. The stability of a time-integrator applied to the DAS equations
(1.11) is governed by the spectral radius of A0 = A(0) for null frequencies.

For the central difference time-integrator, we have:

A0 = 1
2

 2 2 1
0 2 1
0 0 0

 (1.27)

which has three eigenvalues: µ1 = 0 and µ2 = µ3 = 1. The latter is defective and
therefore A0 is not diagonalizable. By induction, or using the Jordan Form, it can be
shown that the nth power of A0 is equal to:

An0 = 1
2

 2 2n n
0 2 1
0 0 0

 (1.28)

The above expression of An0 implies that the zero frequencies:

• do not contribute to the second time-derivative field.

• have a constant contribution to the first time-derivative field.

• introduce a weak instability in the zero time-derivative field (linear growth).
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As explained in [158], this result is not surprising because the constraint is applied on
the second derivative. Therefore, one would expect to observe such a rigid body motion.
However, for a differential algebraic system, this rigid body motion does not correspond
to global structural rigid body modes. Thus, in order to assess the conditional stability
of the differential algebraic system, these zero frequencies should be filtered out. In
[158], the following result is proved:

Proposition 1.2.4. If the differential algebraic system and the time-integrator algo-
rithm is such that

CÜ
n = 0 =⇒ CUn = 0 (1.29)

then the algebraic constraints (1.29) filter out the zero frequencies from the displacement
solution.

For the central difference time-integrator, it can be shown by induction that con-
dition (1.30) implies (1.29), so that we can state the following result:

Proposition 1.2.5. The central difference time-integrator is conditionally stable for
the differential algebraic system (1.11) if

CU̇
0 = 0 and CU0 = 0 (1.30)

The critical time step is then greater or equal to the critical time step of the uncoupled
problem.

In summary, the spectral stability for the central difference time-integrator is the
same for both the Arlequin problem and the classical unconstrained dynamic equations
of motion. Indeed, they are both conditionally stable under condition (1.30).

Remark 1.2.1. Note that if condition (1.30) is true and ∀n, CÜn = 0 is imposed, then
∀n, CUn = 0 and CU̇n = 0. But if, for any reason, numerical perturbations appear
such that at a given time step n0, CU̇

n0 6= 0, these perturbations will be integrated in
time and lead to a linear drift of the displacements of both models. Yet, it is still possible
to tackle this issue by using a more sophisticated discrete coupling condition (even with
variable time step due to nonlinear materials5) to filter out these perturbations. :

∀n > 0, CÜn = − 2
∆t2

(
CUn + ∆tCU̇n−1 + ∆t2

2 CÜ
n−1

)
(1.31)

Conclusion In the last two sections, we saw that both the energy and spectral ap-
proach lead to the same conclusion: if (1.30) is verified, then the Lagrange multipliers
do not prejudice the stability. Moreover, condition (1.30) means that the speed and
displacement of both models must be set equal in the overlapping zone. This is the
case in practice, as it is advised to use the same physical properties and behaviour in
the overlapping zone to achieve better results. The critical time step is then at least
equal to that of the uncoupled system (1.22). In other words, the coupling matrices do
not affect the stability.

5If such a case, (1.31) becomes ∀n > 0, CÜn = −2
∆tn(∆tn+∆tn−1) (CUn + ∆tnCU̇

n−1 +
∆tn∆tn1

2 CÜ
n−1).
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1.3 Impact of the Arlequin weights on the critical
time step

The other component of the Arlequin framework that can affect the stability is the
Arlequin weighting. In most industrial codes, instead of computing the maximum
eigenfrequency of the global problem to define the critical time step, as in (1.22), the
maximal eigenfrequency on each element is computed. Indeed, [155] states that:
Proposition 1.3.1. Let ωG be the highest frequency of the generalised eigenvalue prob-
lem of the global matrices of K and M as defined in equation (1.12). Let ωE be the
highest frequency of the generalised eigenvalue problem of K

E
and M

E
, the stiffness

and mass matrix of element E. We have then
ω2
G ≤ max

E
ω2
E (1.32)

Thus, if max ω2
E is substituted to ω2

G in the computation of the critical time step
(1.22), then the time-integrator remains stable. Such a computed critical time step
is noted ∆Etc and we thus have ∆Etc ≤ ∆tc. In this analysis, in order to study the
impact of the weighting on ω2

E, we will consider a single element.

1.3.1 Impact on a single element
It is not always possible to ensure that the Arlequin weights are constant on an

element, such as when linear or cubic weight functions are used in the overlapping
zone, or when the meshes of different models do not match. In this section, we will
consider a one dimensional element in which the Arelquin weight is piecewise constant,
as shown in Figure 1.3.

The goal of this simplified case is to identify the parameters that influence the
critical time step and use any relevant conclusions for higher dimension computations.
In this scope, the parameter δ represents the location of the weight function discon-
tinuity within the element. It is important to note that when dealing with 2D or 3D
meshes that do not match, the position of the discontinuities can not be controlled
and, therefore, δ is arbitrary and can take any value in its range.

α1,1

1

δL

α1,2

0 L

Figure 1.3: Model of a one dimensional elastic beam with Young modulus E and
density ρ following Hooke’s law. The weight function is piecewise constant and linear
shape functions are used.

The beam of length L is assumed to be elastic with density ρ and Young modulus
E so that σ = Eε. The weight function is piecewise constant equal to α1 on [0, δL] and
equal to α2 on [δL, L] where δ ∈ [0, 1] is the previously introduced geometric parameter.
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The critical time step was determined using a formal algebra software and is given
by (1.33):

∆tc = γ(qα, δ) ∆̃tc (1.33)
with 

γ(qα, δ) =

√
q2
α + 2qα(1− qα)δ + (1− qα)2(2δ3 − δ4))

qα + (1− qα)δ
qα = α1,2

α1,1

∆̃tc =
√
ρ

E

where ∆̃tc is the critical time step of the unweighed problem.

It is interesting to note that the critical time step depends on only two variables:
parameter δ and the ratio of the two weights qα. As the function has symmetry6, we
can consider that 0 < qα < 1. Function γ is plotted in Figure 1.4.
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Figure 1.4: Evolution of γ, the normalized critical time step, as a function of δ and qα.

First of all, we observe that function γ, and, thus, the critical time step can drop
significantly. Assuming that δ is arbitrary and can take any value, the critical time
step drastically drops when qα is small. Secondly, we note that if δ = 0, δ = 1, or
qα = 1, that is, if the weight is constant on the element, the critical time step is not
altered. We thus propose two approaches to circumvent situations in which the critical
time step significantly drops. They are detailed in the next two subsections.

1.3.2 qα-control approach
1.3.2.1 Limiting qα

We observed that the critical time step drops when parameter qα, which can be
partially controlled by the user, is very small. From Figure 1.4, we can expect that

6It can be shown that γ( 1
qα
, 1− δ) = γ(qα, δ).
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if qα is high enough, the drop in the critical time step is small regardless of the value
of δ. The value of β = min

δ
γ(δ, qα) for a set qα was numerically determined and is

shown in Figure 1.5. We can see that the highest possible value of β corresponds to

q
α

0 0.2 0.4 0.6 0.8 1

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.5: Evolution of β = min
δ
γ(δ, qα) for a set qα.

a constant weight on the element. Also, we see that qα = 0.5 implies β > 0.985. In
other words, if the user ensures that no element’s weight varies by more than half, then
the critical time step will drop by less than 2%, which is acceptable. Similarly, if the
maximum value of the weight on an element is ten times that of its minimum, then
the critical time step drops by 15% (if qα ∼ 0.1, then β ∼ 0.85), which allows feasible
computations.

1.3.2.2 Choice of the coupling zone

In the Arlequin framework, due to the partition of unity, the value of qα can not be
set on both models at the same time. In this section we describe an approach that
ensures that the qα of any element of any model is always above a minimum value,
qmin, which is high enough for the critical time step not to drop significantly.

First of all, by using piecewise constant weight functions, the only elements in which
the weights will vary are the ones crossed by the coupling zone’s borders. By setting
the weights of both models to 1

2 in Ωc, we ensure that qα ≥ 1
2 on elements split between

the coupling zone and the zone where the model is prevailing (that is, α equal or close
to 1).

However, when elements of the substrate are split between the coupling zone and
the free zone, where it is not prevailing, qα can drop quite low. In order for the Arlequin
method to be relevant, α0 needs to be as small as possible, and, therefore, qα is also
low. In order to bypass this problem, we propose to align the external border of the
coupling zone, ∂Ωc \ ∂Ωf , with the mesh of the patch and the internal one, ∂Ωf , with
the mesh of the substrate (see Figure 1.6). This way there is no element in both the
free and the coupling zones. Thus, on every element we have qα ≥ 1

2 . The preceding
study then establishes that the critical time step drops by at most 2.5%.
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α11

0 L

α2

α0

Ωc ΩcΩf

Figure 1.6: qα-control approach – The outermost border cuts through an element of
the substrate (in blue) so that qα = 0.5 on that element. The internal one cuts an
element of the brown domain so that qα ≥ 0.5 on it. The critical time thus only drops
by 2.5%.

In this section, we showed that the drop in the critical time step can be limited
by controlling the parameter qα. As in the Arlequin framework, there is only partial
control over that parameter, we optimized the position of the coupling zone’s borders in
order to ensure a feasible time step. In the next section, an averaged weight approach
is introduced.

1.3.3 Averaged weight approach
In section 1.3.1, we observed that if the Arlequin weight is constant on an element,

then the critical time step is not altered. One can easily check if, given any element
(2D, 3D, any shape functions), the Arelquin weight is constant and ∆Etc remains
unaltered. The critical time step is determined by the frequencies of the eigenvalue
problem det(K

E
− ω2

EME
) = 0. As the weight is constant on the element, we have:

det(K
E
− ω2

EME
) = αdofE

E det(K̃
E
− ω2

EM̃E
) (1.34)

where αE is the weight, dofE is the number of degrees of freedom of the element and •̃
denotes unweighed quantities. Therefore, if the Arlequin weights are constant on every
element then the critical time step is not altered. Thus, we propose another approach
in which an averaged weight is defined on every element.

The way the average weight is computed should not modify the physical properties
of the problem. Thus, we recommend using an average weight that conserves the mass
of the element, which leads to the following definition of the averaged weight ᾱE:

ᾱE =

∫
ΩE

αρ dΩE∫
ΩE

ρ dΩE

(1.35)

Moreover, note that the definition is consistent, such that when α is constant, ᾱE = α.
Remark 1.3.1. Note that the density ρ is usually considered constant inside an element
so that definition (1.35) is equivalent to

ᾱE = 1
|ΩE|

∫
ΩE

α dΩE (1.36)

where |ΩE| is the volume of element E.
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This approach maintains an optimal critical time step, is very easy to implement,
and ensures that no geometric parameter affects the stability. However, the partition
of unity in equations (1.7) is no longer verified on elements in which the weight would
normally vary (see Figure 1.8). Thus, one can expect a loss in accuracy.

1.3.4 Validation
In order to validate the two methods previously presented, we consider a consistent

test case in which the patch does not bring any new features. If the patch does not
bring any modification to the substrate, then the solution should not be altered. After
describing the consistent test case, an error measurement is introduced to compare
the solution of the two approaches with the mono-model solution. The last paragraph
discusses the results.

1.3.4.1 Consistency test case presentation

Let Ω1, the substrate’s domain, be composed of a hundred elements of unit length,
of constant density ρ, and constant Young’s modulus E. The patch’s sub-domain, Ω2,
is made of twenty elements of unit length, and has the same physical properties as the
substrate. The patch is centered on the substrate and then slightly translated from the
center of the substrate by a distance, δ, in order to introduce a mesh incompatibility
between the patch and the substrate. The substrate is clamped on its far left end and
a constant external force, F , is applied on its far right end during a set time, ∆tF . The
initial kinematic conditions are null.

The weight functions for the qα-control approach and the averaged weight approach
are shown in Figure 1.7 and Figure 1.8. As prescribed, the Arlequin weight functions
are piecewise constant and equal to 0.5 in the coupling zone.

α11 α2

α0

δ

Figure 1.7: Zoom on the overlapping zone for the qα-control approach.

α11 α2

α0

δ

Figure 1.8: Zoom on the overlapping zone for the averaged weight approach.

The reference solution is the substrate by itself, as described in the previous para-
graph.
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For numerical applications, the physical properties are set to that of steel (E =
200 GPa and ρ = 8000 kg.m−1), the parameter δ to 0.1, the time step to 1.0 10−4 s
and the Arlequin parameter α0 to 1. 10−3. The load ||F || = 4 108N is applied during
a time ∆tF = 5.0 10−3 s. The solution is computed for a total time of 0.4 s, equal to
10 round trips of the wave.

1.3.4.2 Error measurement

In order to evaluate how precise the two approaches are, we compare them to the
mono-model solution. To make the comparison, we introduce the following error mea-
surement:

Eu(t) =
||ur(t)− ua(t)||L2(Ω1)

max
τ
||ur(τ)||L2(Ω1)

(1.37)

where u is the displacement. The subscript ′r′ denotes the reference, mono-model
solution while ′a′ denotes the Arlequin solution (ua = α1u1 + α2u2).

The error is normed by max
τ
||ur(τ)||L2(Ω1) and not ||ur(t)||L2(Ω1) because ur equals

zero each time the wave reaches the free end.

1.3.4.3 Results

The elementary critical time step, ∆Etc, and the global critical time step, ∆tc, were
calculated for each approach. The global critical time step was calculated using def-
inition (1.22) and the generalised eigenvalue problem of K∗ and M , as defined in
(1.12)–(1.14). The results are given in Table 1.1. As expected, both the mono-model

Monomodel qα-control Averaged weights Patch-aligned Ωc

∆tc 2.000 1.999 2.000 1.031
∆Etc 2.000 1.993 2.000 0.941

Table 1.1: Critical time step in 10−4 s for different approaches.

and the averaged weight approaches yield the same critical time step while, the critical
time step yielded by the qα-control approach is slightly inferior. It is interesting to
note that if both the inner and outer border of the coupling zones are aligned with
the patch, which is a more natural choice, and no weight is averaged, then the critical
time step drops more significantly (48.5% drop for ∆tc and 52.9% for ∆Etc). This
last approach is named patch-aligned Ωc in Table 1.1. These results demonstrate the
effectiveness of the the qα-control approach.
Remark 1.3.2. Note that the value of α0 greatly impacts the drop in the critical time
steps ∆tc and ∆Etc for the patch-aligned Ωc approach. In agreement with our study,
any value lower than 1.0 10−3 makes that drop more significant.

The averaged weight and the qα-control approaches were implemented and compared
to the mono-model solution. Three depictions of the displacement of the beam are
represented for all three computations in Figure 1.9. We observe that the wave fronts
of all three computations are in very good agreement, even after ten round-trips.



50 CHAPTER 1. ARLEQUIN METHOD FOR STRUCTURAL DYNAMICS

x
0 20 40 60 80 100

D
is

p
la

c
e
m

e
n
t 
(m

)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
T = 0.0125 s

Monomodel
q
α

-control

Averaged weights

x
0 20 40 60 80 100

D
is

p
la

c
e
m

e
n
t 
(m

)

0

0.01

0.02

0.03

0.04

0.05

0.06
T = 0.0225 s

Monomodel
q
α

-control

Averaged weights

x
0 20 40 60 80 100

D
is

p
la

c
e

m
e

n
t 

(m
)

0

0.01

0.02

0.03

0.04

0.05

0.06
T = 0.2609 s

Monomodel
q
α

-control

Averaged weights

x
0 20 40 60 80 100

D
is

p
la

c
e
m

e
n
t 
(m

)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
T = 0.3914s

Monomodel
q
α

-control

Averaged weights

Figure 1.9: Snapshots of the displacement of the beam at different times – Top left:
the wave is on its way forward (moving left) on its first round-trip. – Top right: the
wave is reflecting on the left clamped edge for the first time. – Bottom left, the wave
is reflecting on the left clamped edge after 5 round-trips – Bottom right: the wave is
on its way back (moving right) during the tenth round-trip.

The error measurement is shown in Figure 1.10. The results show that both ap-
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Figure 1.10: Error Eu as defined by equation (1.37) over time for both approaches.
The qα-control approach is in blue while the averaged weight approach is in black.
The stopping time corresponds to 10 round trips of the wave (left) and one round trip
(right).

proaches lead to precise solutions, with the qα-control approach yielding a slightly
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better solution. After the wave completes 10 round trips, the error is still negligible
(less than 0.15%). Both methods are, thus, validated.

The error measure is shown in Figure 1.10. The results show that both approaches
lead to precise solutions, with the averaged weight approach yielding a slightly better
solution. After the wave completes 10 round trips, the error is still negligible (less than
0.6%). Both methods are, thus, validated. We also observe three different behaviours
of the error over time. At first, the error can be considered zero. Since the wave has
not reached the patch, it is not surprising that the solutions are identical. Then, at
time t1 = 8.0× 10−3 s, the wave enters the patch and there is a relatively quick rise in
the error (while remaining small). This increase was proven to be independent of the
force’s value or its duration. Then, no matter how many times the wave is reflected
and goes through the patch, the error increases regularly, but slowly, over time.
Remark 1.3.3. When the two meshes match (δ = 0 or 1), the order of magnitude
of the error (1.37) between the mono-model solution and the Arlequin one is 10−12.
Therefore, the error in Figure 1.10 is attributable to the fact that the meshes do not
match, rather than the Arlequin framework.
Remark 1.3.4. In additional computations, various parameters were independently
modified (including the size of the coupling zones, different values of δ ∈]0, 1[, and α0),
and found that the order of magnitude of the error remained the same.

1.3.5 Partial conclusion
Sections 1.2 and 1.3 analyzed of the influence of the Arlequin framework on the

stability for linear structural dynamics, and revealed that the weight functions affect
the stability. Further analysis showed that the effects were due to varying weights on
an element. We proposed two approaches to circumvent these practical issues, and
validated them on a consistency test case.

Both of these methods require the use of piecewise constant weight functions. This
is not a significant constraint as, to the best of our knowledge, the type of weight
function used does not affect the precision of the solution for finite element problems.

In the upcoming section we check whether the method extends to higher dimension
and present a relevant example.

1.4 Numerical examples
In this section we first test the averaged weight and qα-control approaches on a 2D

consistent case. We then consider a 2D example in which the patch adds a feature to
the substrate.

1.4.1 A 2D consistency test
1.4.1.1 Presentation

In this section we consider a quarter of a thick-walled tube, as represented in Figure
1.11. We assume the tube to be made of steel (E = 200 GPa, ν = 0, 3 and ρ =



52 CHAPTER 1. ARLEQUIN METHOD FOR STRUCTURAL DYNAMICS

8000 kg.m−3) and use plane strain. The horizontal (bottom) and vertical (left) sides
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Figure 1.11: Figure of the meshes and the boundaries of the coupling zone (left), and a
zoom on the frontiers (right). The substrate (and mono-model) mesh is in black, and
the patch mesh is in red. The blue line represents the inner boundary of the coupling
zone for the averaged weights approach, and the green line represents that of the qα-
control approach. The outer boundary of the coupling zone is in black, and is common
to both approaches.

of the tube are clamped in their normal direction, but free to move in their tangential
direction. A constant, uniform force, ||F || = 4 108N , is applied on the inner side of
the tube in the normal direction during a time ∆tF = 3.0 10−4 s. The time step is set
to 1.0 10−5 s and the simulation lasts for 0.014 s, which is about ten round trips of
the wave. A small, linear damping equal to 5.0 10−3 is also implemented in order to
observe neater solutions.

For the Arlequin models, parameter α0 is set to 1.0 10−3, while α1 = α2 = 0.5 in
the coupling zone (before averaging for the Averaged weights approach).

The mono-model mesh is unstructured, as represented in black in Figure 1.11. Let
the substrate, Ω1, be the exact same mesh as that of the mono-model and let the
patch, Ω2, be a circular, unstructured mesh with elements similar in size to those of
the substrate. The patch is superimposed in the middle of the substrate. The latter
two meshes are shown in Figure 1.11.

1.4.1.2 Results

As in section 1.3.4.3, we first study the critical time steps ∆tc and ∆Etc. In line with
Remark 1.3.2, we see that for the patch-aligned Ωc approach, the critical time step
should strongly decrease with α0 while the two approaches proposed should maintain
a high value of ∆Etc and thus of ∆tc. The evolution of both critical time steps as a
function of α0 for the current meshes is depicted in Figure 1.12.

In Figure 1.12, we can see that both the Averaged weight approach and the qα-control
approach are independent of α0. However, for the patch-aligned approach, both critical
time steps drop drastically (the graph needs to be read from right to left) with α0. The
evolution of ∆Etc is particularly interesting for that approach (figure on the right). At
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Figure 1.12: Evolution of the global critical time step ∆tc and the elementary critical
time step ∆Et − c as a function of α0, the value of the Arlequin weight in the free
zone. Their value for the mono-model problem, the Averaged weights approach, the
qα-control approach and the patch-align Ωc approaches are represented in black, blue,
red and green respectively. We have ∆tc = 1.813s and ∆Etc = 1.102s for the mono-
model problem.

first, for high values7 of α0, the element that yields the lowest time step is the smallest
of the two meshes and is located in the substrate, outside the coupling zone. This is
consistent with our study as for high values of α0, qα is close to one and only the size of
the element matters. As α0 decreases, we observe a first drop around α0 ≈ 10−3. For
these values of α0, the lowest time step is obtained for an element in the coupling zone
which is also consistent with our study. Indeed, this element is partly in the coupling
zone and in the free zone so that its qα is low and its geometry is equivalent8 to a low
δ. The second drop that appears for values of α0 below 10−6 corresponds to a third
element with the same qα but with a smaller volume and a lower δ.

The evolution of ∆tc does not present these jumps. Yet, we can see that, consistent
with formula (1.32), computing the global critical time step yields higher value than
computing the elementary one.

As in previous sections, both the averaged weight and the qα-control approaches
were implemented and compared to the mono-model solution. Depictions of the dis-
placement are represented in Figure 1.13. After ten round trips, the displacements are
all very similar. The only noticeable difference is that the wave fronts of the Arlequin
solutions are not as smooth, especially in the patch, as compared to the mono-model
solution.

The error computation using the error measurement (1.37) confirms good agreement
between the Arlequin solutions and the mono-model solution. Figure 1.14 shows that
both Arlequin approaches yield a very small error that steadies around 0.5%, validating
them.

7right part of the graph.
8the relative area of the element in the coupling zone is close to 0.
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Figure 1.13: Snapshots of the displacement (in meters) in the tube for all three ap-
proaches: mono-model on the left, qα-control in the middle, and the averaged weight
on the right. The wave is expanding outward after completing ten round trips.
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Figure 1.14: Error, Eu, as defined by equation (1.37), plotted over time for both
approaches. The qα-control approach is in blue, and the averaged weight approach is
in black.

1.4.2 Geometric discrepancy: a holed plate

1.4.2.1 Presentation

In this section we consider a square plate containing a hole. The plate is of constant
density, constant Young’s modulus, is assumed to be made of steel (E = 200 GPa,
ν = 0, 3 and ρ = 8000 kg.m−3), and plane stress is used.

First, we consider the Arlequin models. Let the substrate, Ω1, be a square plate
of side length 100m, composed of 50 × 50 square elements of side 2m. Let the patch,
Ω2, be a web shaped mesh with a hole in it. The outer radius is 20 m, and the inner
one is 4 m. The patch is superimposed in the center of the substrate. The reference
mono-model is constructed such that it is identical to the substrate in its outer part
and is fairly close to the patch in its center. The meshes of the Arlequin models and
the mono-model are shown in Figure 1.15 and Figure 1.16. In Figure 1.16, we see that
the holes from both the mono-model and the Arlequin formulation are fairly similar,
reducing the risk of discrepancies due to mesh differences.
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Figure 1.15: Representation of the meshes of the substrate (black) and the patch (red).
The right figure is a zoom on the patch region, and shows the coupling zone’s borders.
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Figure 1.16: The mono-model mesh (left) and a comparison of the holes as meshed in
both formulations (right): the mono-model mesh is in black and the Arlequin model
mesh is in red.

The left side of the square plate is clamped on the x (horizontal) axis and free to
move on the y (vertical) axis. A constant, uniform force, ||F || = 4 108N , is applied on
the right side of the plate in the x direction during a time ∆tF = 5.0 10−3 s. The time
step is set to 1.0 10−5 s and the simulation lasts for 0.08 s, which equals two round
trips of the wave. A small linear damping equal to 5.0 10−3 was also implemented.

For the Arlequin models, parameter α0 is set to 1.0 10−3, while α1 = α2 = 0.5 in
the coupling zone (before averaging for the Averaged weights approach).

1.4.2.2 Error measurement

In order to compare the two solutions, the difference in the shape of the hole was
evaluated using a similar error measurement as in previous sections, but is instead
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measured on the hole boundary:

Eu(t) =
||ur(t)− ua(t)||L2(∂ΩH)

max
τ
||ur(τ)||L2(∂ΩH)

(1.38)

with the same notations as before and where ∂ΩH is the hole’s boundary.

1.4.2.3 Results

The solutions of the mono-model, the averaged weights, and the qα-control ap-
proaches were implemented to calculate displacement across time (see Figure 1.17).
The left column of figures show the wave before it enters the patch, and the middle

Figure 1.17: Snapshots of the displacement (in meters) of the plate for three ap-
proaches: mono-model in the top row, qα-control in the middle row, and the averaged
weights in the bottom row. The displacement is represented at three different time
steps. The left column of figures shows the wave just before it enters the patch. In the
center column, the wave has entered the patch and hit the hole. In the right column,
the wave bounced off the left boundary and is moving back towards the hole.

column shows the displacement when the wave has hit the the hole. The right col-
umn shows the displacement right after the wave has bounced. For each time step, all
computations are in good agreement.

Figure 1.18 confirms that the solutions of the Arlequin models agree. Both ap-
proaches yield low error measures. The error seems to steady around 0.5%, and does
not exceed 0.8%, once more validating both approaches.
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Figure 1.18: Error Eu as defined by equation (1.38) over time for both the qα-control
approach (blue) and the averaged weight one (black).

For this test case, we do not consider the influence of parameter α0 on the critical
time step for geometrical reasons. Indeed, the critical time step is always determined by
the elements around the hole, which are a lot smaller than those in the coupling zones.
Computations show that both ∆tc and ∆Etc are optimal for all three multi-model
approaches, independently of the value of α0.

1.5 Similar stability issues in other works
After this analysis was completed, we found out that similar issues were faced when

using the eXtended Finite Element Method (XFEM) with explicit time integration.
The issues faced are not quite the same but the solutions implemented are worth being
mentioned.

1.5.1 Presentation of stability issues in explicit dynamics with
XFEM

The XFEM uses a local partition of unity to incorporate discontinuities so that the
mesh does not have to be conformed with the geometrical support of the discontinuities
[67] [68] [160] [74]. The XFEM is widely used for the simulation of crack propagations
in two and three dimensions [161] [162] [163] as well as for applications such as creating
holes and inclusions [75] [164] [165]. The discontinuities are usually introduced by en-
riched functions such as the Heavyside function or the generalized Heavyside function.
An example of the Heavyside function H on a one dimensional element of size L is as
follows.

H(x) =
{

1 if x < δL
0 if x > δL

(1.39)

where δ ∈ [0, 1]. An analogue of this enriched function in the Arlequin framework is an
element with piecewise constant weight functions equal to 0 if x < δL and 1 if x > δL.
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A major difference however is that in XFEM, enriched functions correspond to new,
or added, degrees of freedom while in the Arlequin framework the weight functions are
introduced for existing ones.

When studying XFEM, it was soon noticed that the use of these enrichment func-
tions in explicit dynamics could cause a null critical time step, especially when the
discontinuity is close to a node [166]. This issue is very similar to the one analysed in
section 1.3.1 for which qα = 0 and δ is close to 0.

In the XFEM community, the first solutions proposed were to use implicit time
integrators [167] [168] or to impose that the crack does not get too close to a node [169]
[170]. Then, Menouillard et al. proposed mass lumping schemes to ensure non zero
critical time steps, independently of the geometry [76] [77]. Their work was generalized
from Heavyside functions to arbitrary ones by Gravouil et al. in order to simulate three
dimensional crack propagation [79] [78].

In both [76] and [79], the critical time step is shown not to drop below a non zero
bounded value. In [77], they use a block diagonal lumping technique in order to ob-
tain optimal stability (the enriched functions do not alter the critical time step) for the
Heavyside enrichment function only while in [78], optimal stability for arbitrary enrich-
ment functions is obtained thanks to an improved explicit time integrator introduced
in [171].

1.5.2 Comparison of the methodology

It is interesting to note that all these works share a similar methodology. First,
the problem is restricted to an analysis at the element level, thanks to the argument
presented in Proposition 1.32. Thus, for each type of element, a specific study needs to
be done. Next, all enriched nodes of the element are assumed to have equal enriched
mass, denoted m. Finally, the value of m is scaled.

In this work, we also restricted our study to an analysis at the element level (see
Proposition 1.32). The methodology followed for the Averaged weights approach differs
from the qα-control one.

On the one hand, in the Averaged weights approach (section 1.3.3), the implemen-
tation proposed implies that all nodes have the same weight so that its influence on
the nodal mass contribution is the same for all nodes. This is similar to the proposed
XFEM solution in which the same enriched mass contribution is assigned to all en-
riched nodes of an element. In the Averaged weights approach, the constant weight is
defined so that the mass of the element remains constant after averaging. In XFEM
works however, the enriched mass is defined so that the discrete kinetic energy for rigid
body motions remains constant after the lumping is applied [76] [78].

The qα−control approach (section 1.3.2) on the other hand, does not impose for all
nodes to have equal masses. Instead, we impose that the boundaries of the coupling
zone are compatible with the appropriate mesh. Such a solution was not found in the
XFEM literature. This is because it would be equivalent to imposing that the path
of the crack is compatible with the mesh, which defeats the purpose of using enriched
functions in the first place.
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Although in this work we limited our study of the impact of Arlequin weights to
a one dimensional element, Menouillard et al. did the calculations for 2D and 3D
elements9. They too, showed that for 1D elements the critical time step drops to zero
with δ = ∆L

L
(see section 1.3.1). They showed that for 2D elements and 3D elements,

similar results were obtained with δ = ∆S
S

and δ = ∆V
V

respectively, in agreement with
our reasoning.

1.6 Conclusion
In this chapter, we developed and implemented a multi-model approach for the sim-

ulation of transient structural dynamics with explicit time integration. In order to do
so, we established the multi-model problem formulation for explicit structural dynamics
in the Arlequin framework. As the time-integrator is explicit and thus the formula-
tion conditionally stable, our main focus was to study the influence of the Arlequin
framework on the stability.

We first studied the influence of the coupling matrices and showed that for the central
difference scheme, the explicit scheme has a weak instability. Yet, the algorithm remains
stable as long as the initial kinematic conditions of both models agree on the overlapping
zone. Then, we studied the influence of the Arlequin weights on the critical time step.
We introduced a simplified case to assess the adverse effect of the Arlequin weights on
the critical time step. From this test case, we derived a reasoning whereas to why the
Arlequin weights deteriorates the stability and deduced two approaches to circumvent
this issue. The approaches were validated on a consistent test case and then applied
to two 2D applications. For the later, the approaches showed good agreement with
reference results.

Now that a stable and accurate multi-model approach has been developed for the
structural component, the same must be done for the fluid component. It is achieved
in the next chapters.

9In our study, the study of 2D and 3D elements was not necessary and the 1D study merely served
the purpose of identifying the main factors.
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The objective of this thesis is to develop a multi-model approach able to account for
local effects in transient FSI1 simulations. In the first chapter, we developed a multi-
model approach for overlapping structures. Over the next three chapters, we develop
a multi-model approach for the fluid component, described by the Euler equations. A
possible way to numerically model fluid structure interaction (FSI) is to use a Finite
Element discretization for the structure and a hybrid Finite Element/Finite volume
discretization for the fluid [172] [173]. To do so offers the advantage that both the
fluid and structural kinematic variables are located at the nodes of their respective grid.
Thus, a simple framework is provided to impose link conditions between the two entities.
This is the modelling adopted in this work.

Such a modelling implies that the momentum equation is treated by the Finite Ele-
ment Method (FEM) in its non-conservative form. Its treatment is then very similar
to that of the equilibrium equation of structural dynamics studied in Chapter 1. The
Arlequin framework is thus a natural choice for the treatment of this equation. The
other two equations, namely the equation of conservation of mass and total energy, are
discretized by the Finite Volume Method. Although multi-model approaches, such as the

1Fluid Structure Interaction.

61
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Chimera method [117] [150], have already been proposed for Finite Volume Methods,
other methods are worth being explored. This is why, in this chapter, we focus on the
study of suitable multi-model frameworks for the treatment of such equations.

In order to do so, we first introduce a reference problem for the convective transport
of a scalar quantity q which is representative of both the conservation of mass equation
and the conservation of energy equation (section 2.1). Then, we propose different
multi-model approaches (section 2.2) and study their respective stability (section 2.3)
and accuracy (section 2.4). Finally, we conclude by determining which approaches are
admissible to model the convective transport equations of the fluid component.

2.1 Mono-model formulation for the convective trans-
port equation

In order to present a comprehensive study of the multi-model approaches for the
convective transport equation, we consider the following representative problem. The
latter describes the convective transport of a scalar quantity q for a single model. If
q = ρ, where ρ is the density, then we obtain the conservation of mass equation.
Similarly, if q = ρE, where E is the specific total energy, then the conservation of energy
equation is obtained. The solution of the multi-model approaches later proposed will
aim to converge towards the solution obtained by this reference problem formulation.

2.1.1 Continuous formulation of the transport equation
We consider a body occupying a bounded, regular domain Ω1 ∈ Rd. Let q and v

denote the transported quantity and the velocity fields while q0 = q(t = 0) denotes the
initial value of q. The velocity v is imposed and assumed to be independent of time.
Let Γinflow ⊂ ∂Ω1 be the part of the boundary of the domain for which inflow boundary
conditions are necessary. The continuous formulation of the transport equation reads
(see [154])

Given q0, v and inflow boundary conditions on Γinflow, find q(t), t ∈ [0, T ], such
that:

∀ Ω ⊂ Ω1,
∫

Ω

∂q

∂t
dΩ +

∫
Ω

div(φqv) dΩ = 0 (2.1)

where f = φqv is called the flow.

Remark 2.1.1. If q = ρ, then φq = ρ and problem (2.1) is representative of the
conservation of mass equation. If q = ρE, then φq = ρE + p with p the pressure and
problem (2.1) is representative of the conservation of energy equation.

Remark 2.1.2. In this work and unless specified, we consider domains Ω1 in R2.
Thus, two adjacent elements of the discretized domain are separated by an edge. Yet,
all results still hold for domains in R and R3, in which case elements are separated by
nodes and faces respectively.
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2.1.2 Discretized formulations
In this section we give the discrete formulation of the continuous problem previously

introduced. First, we describe the time-integrator considered for the integration of the
transport equation. Then, we introduce the discrete mono-model formulation.

2.1.2.1 Discrete time-integrator

The time interval [0, T ] is subdivided into N steps ∆ti. Let qn and q̇n denote the
discrete quantity q and its derivative at time tn = ∑n

i=1 ∆ti, n ∈ J0, NK. As the
velocity is assumed to be independent of time, we denote by v its value throughout the
integration. In this study, we consider the Forward Euler explicit time-integrator.

Given q0,
qn+1 = qn + ∆tnq̇n (2.2)

2.1.3 Discrete mono-model problem formulation
2.1.3.1 Finite Volume discretization

A Finite Volume scheme with a first order upwind scheme is used for the discretiza-
tion of the transport equation (see [154]). Let us denote by T1 the mesh representing
Ω1 and by SE the set of elements of T1. We can write, on every element E ∈ SE
occupying ΩE and at every time step n

∫
ΩE

(
∂q

∂t

)n
dΩE +

∫
ΩE

div(φnq v) dΩE = 0 (2.3)

In the Finite Volume scheme considered2, the quantity q is averaged on every ele-
ment such that the left hand side of (2.3) can be rewritten:

∫
ΩE

(
∂q

∂t

)n
dΩE = d

dt

∫
ΩE

qn dΩE

= q̇nE|ΩE|
(2.4)

where qnE =
∫
ΩE
qndΩE is the averaged value of qn on element E and |ΩE| is the volume

of element E. The second term of the left hand side of (2.3) is not, in practice,
computed as is. Instead, we use the Green-Ostrogradski formula and the following
approximation:

∀E ∈ SE,
∫

ΩE

div(φnq v) d∂ΩE = −
∫
∂ΩE

φnq v · n dΩE

≈ −
∑
e∈SE

e

φnq,e

∫
e
v · n de (2.5)

where SEe is the set of edges of E, φnq,e is the upwind value of φnq at edge e and n
the outward normal to edge e of element E. Let e be one of these edges so that it is

2See for instance [154].
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between E and another element E∗. The first order upwind scheme implemented [154]
reads:

φnq,e =


φnq (E) if

∫
e v · n de > 0

φnq (E∗) if
∫
e v · n de < 0

0 otherwise
(2.6)

The discrete mono-model formulation then reads

Given {q0
E}E∈SE

, v and inflow boundary conditions on Γinflow, find ∀n ∈ J0, NK,
{qnE}E∈SE

such that

∀E ∈ SE, qn+1
E = qnE −

∆t
|ΩE|

∑
e∈E

φnq,e

∫
e
v · n de (2.7)

2.1.3.2 FEM-like description

The problem (2.7) can be written using shape-like functions, which will prove useful
hereafter. The idea is that considering that qn is averaged on every element is the
equivalent to considering that qn can be written

qn(x) =
∑
E∈SE

qnEN̄E(x) with
{
N̄E(x) = 1 if x ∈ ΩE

N̄E(x) = 0 otherwise (2.8)

Let us denote by V ⊂ L2(Ω) the space of functions that can be written this way. The
FEM-like discrete formulation of (2.7) is then:

Given q0, v and inflow boundary conditions on Γinflow, find ∀n ∈ J0, NK, qn such
that

∀w ∈ V ,
∫

Ω1
q̇nw dΩ1 +

∫
Ω1

div(φnq v)w dΩ1 = 0 (2.9)

Remark 2.1.3. Note that both (2.7) and (2.9) can be written in matrix form:

MQ̇
n + F n = 0 (2.10)

with Qn = [qn1 , ..., qnNE
]T , M = diag(|ΩE1 |, ..., |ΩENE

|) where NE is the number of ele-
ments in SE and F n is the vector representing the divergence terms. Moreover, if φq
is a linear combination of qn then we have3 F n = KQn.

Now that we have defined a discretized formulation for the reference problem, the
next section is dedicated to establishing multi-model approaches for the treatment of
convective transport.

2.2 Multi-model approaches for convective trans-
port

We use the same notations than in section 1.1.2 which are recalled hereafter. We
thus consider a first body, referred to as the substrate, occupying a bounded, regular

3This is the case for the conservation of mass equation for which φρ = ρ.
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domain Ω1 ∈ R2. We also consider a second body, referred to as the patch, occupying
a bounded, regular domain Ω2 ∈ R2 and assumed to be strictly embedded in Ω1, as
shown in Figure 1.1. Quantities relative to the substrate are denoted by a subscript
equal to 1 while those relative to the patch are denote by a subscript equal to 2.

The different multi-model approaches proposed in this chapter all have in common
that they transmit the information from one body, or domain, to the other in an area
called the coupling zone, denoted by Ωc and delimited by two boundaries, represented
in blue and red in Figure 1.1. The free zone, denoted Ωf , is the inner area of Ω2, where
the solution is given by the patch. The multi-model approaches proposed here only
differ by the way the information is transmitted between domains. They are introduced
hereafter.

Remark 2.2.1. We recall that, in this work, the boundaries of the coupling zone can
either be compatible with the mesh of the substrate or with that of the patch. As the
patch is assumed to be strictly embedded in the substrate, the outer boundary (in, red
in Figure 1.1) is always assumed to be compatible with the mesh of the patch. We will
see that for one of the multi-model approaches proposed here the inner boundary can be
aligned with either mesh (see section 2.2.2) while for the other two proposed approaches
it is assumed4 to be aligned with the mesh of the substrate (see sections 2.2.1 and 2.2.3).

2.2.1 A Chimera formulation of the transport equation
For the treatment of the transport equation, the Chimera method is the most natural

choice. Indeed, the method has proven to be precise and efficient in multi-model fluid
dynamics and has been widely studied [139] [134]. Thus, we propose a first multi-model
approach that uses the Chimera method for the discrete transport equation (2.7).

In the Chimera method, the information is transmitted between domains through
interpolation techniques. In order to do so, two boundaries across which the informa-
tion is transmitted need to be defined. A first boundary, Γ1→2 (in red in Figure 1.1),
determines where the information is transmitted from Ω1 to Ω2. The other boundary,
Γ2→1 (in blue in Figure 1.1), determines where the information is transmitted from Ω2
to Ω1.

For both models, the convective transport equation is discretized by the finite vol-
ume method with an upwind scheme (see section 2.1.3) except at the boundaries Γ1→2
and Γ2→1. In the following, Γ1→2 is assumed to be conformed with the mesh of the
patch while Γ2→1 is assumed to be conformed with the mesh of the substrate. At each
edge e of model j aligned with boundary Γi→j, a value of the flow φnq,ev needs to be
computed.

Let us first consider an edge e of an element E of the patch and aligned with
boundary Γ1→2. If the velocity on that edge is such that

∫
e v · n de > 0, then the

upwind value of φnq,e is computed on the element E, as is done is the mono-model
formulation. However if

∫
e v · n de < 0, φnq,e must be defined upstream where there

are no elements of the patch. A so-called ghost element is thus created upstream and
its overlapping volumes with elements of the substrate are computed. The upstream
value of φnq,e is then defined as the volume average of φnq of each overlapped elements.

4by construction.
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Figure 2.1: Left – The meshes of the substrate (in black), of the patch (in red) and
of the ghost elements of the patch (in blue) are represented. The coupling zone Ωc is
represented in light yellow (and includes the element filled in red) while its boundaries,
Γ1→2 and Γ2→1 are represented in brown and dark green respectively. We consider the
edge (in bright green) of the element of the patch filled in red. Right – If v·n is positive
(arrow in red), then upwind corresponds to a region in Ωc where both models are equally
relevant. We arbitrary choose the patch in order to save computing resources. Indeed,
choosing the substrate would require creating more ghost elements and compute more
mesh intersections. The value of φq,e is then equal to φnq (red). However, if v · n is
negative (arrow in blue), then upstream corresponds to a region where the substrate
is the only model relevant. Thus, a ghost element is generated (element E) and the
overlap volume with elements of substrate are computed ((VE,k)k∈[|1,4|] on the figure).
The quantity φnq,e is then defined as its volume average on these elements, that is,
φnq,e = 1

VE
(φnq (1)VE,1 + φnq (2)VE,2 + φnq (3)VE,3 + φnq (4)VE,4).

Symmetric computations are accomplished for edges of the substrate aligned with Γ2→2.
This entire process is illustrated in Figure 2.1.

Remark 2.2.2. The distance between the two boundaries needs to be larger than the
stencil defined to interpolate φnq [150]. In our case, our equivalent of the stencil is, at
most, the size of one element. Thus, we ensure that an element of either domain can
not be cut by both boundaries.

Remark 2.2.3. In practice, the size of the ghost element introduces new parameters.
In this work, ghost elements are exclusively rectangles of which one side is an edge of
the element. The width of that element is defined as half the shortest length of all the
elements of the problem5.

Remark 2.2.4. On Ωf , the patch is the only model relevant so that the solution is not
computed for the substrate in that area. Instead, the degrees of freedom of the substrate
are either deleted or are artificially maintained constant over time.

5for clarity purposes, it is not the case in Figure 2.1.
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2.2.2 An Arlequin formulation of the transport equation
In order to establish an Arlequin formulation6, we first have to determine where the

weight functions fit in the FEM-like formulation (2.9). Then, we choose an appropriate
coupling operator and finally, we choose the type of weight function.

2.2.2.1 Weight functions for the convection term

The first step towards formulating an Arlequin formulation for the transport equa-
tion is to determine where the weight functions fit in the convection term, that is,∫

Ω div(φqv)w dΩ. In order to do so, we consider the continuous equations and aim
to write the mono-model convective transport equation (2.1) in a form to which the
Arlequin framework can be applied. We have∫

Ω
div(φqv)w dΩ =

∫
Ω

div(φqwv)− (φqv) · (∇w) dΩ

=
∫
∂Ω
φqwv · n d∂Ω−

∫
Ω

(φqv) · (∇w) dΩ
(2.11)

so that the equation of convective transport (2.1) can be rewritten as follows:
∫

Ω

∂q

∂t
w dΩ−

∫
Ω

(φqv) · (∇w) dΩ =
∫

Ω
φqwv · n dΩ (2.12)

which is of the form ∫
Ω

∂q

∂t
w dΩ +

∫
Ω
σ(q) : (∇w) dΩ =

∫
∂Ω
f d∂Ω (2.13)

We can thus apply the Arlequin framework to equation (2.12) which yields the following
problem formulation7.

Given q0
1, q

0
2, v and inflow boundary conditions on Γinflow, find (q1(t), q2(t)) ∈ V ×V

such that, ∀(w1, w2, µ) ∈ V × V ×Mq,

∫
Ω1
α̂q1
∂q1

∂t
w1 dΩ1 −

∫
Ω1
αq1φq1v · (∇w1) dΩ1 + ct(w1, λ) =

∫
∂Ω1

α̃q1φq1w1v · n d∂Ω1

∫
Ω2
α̂q2
∂q2

∂t
w2 dΩ2 −

∫
Ω2
αq2φq2v · (∇w2) dΩ2 − ct(w2, λ) =

∫
∂Ω2

α̃q2φq2w2v · n d∂Ω2

ct(q̇1 − q̇2, µ) = 0
(2.14)

where ct is a coupling operator to be defined,Mq is the mediator space and (α̂q1, α̂q2),
(αq1, αq2) and (α̃q1, α̃q2) are sets of weight functions as defined in section 1.1.2.

The transport equations are not treated as such as it would be computationally
costly. Instead, we impose (α̃q1, α̃q2) = (αq1, αq2) so that we can do the reverse calculations
done in (2.11) and obtain the following problem formulation.

6see Appendix B.
7see Appendix B.
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

∫
Ω1
α̂q1
∂q1

∂t
w1 dΩ1 +

∫
Ω1

div(αq1φq1v)w1 dΩ1 + ct(w1, λ) = 0

∫
Ω2
α̂q2
∂q2

∂t
w2 dΩ2 +

∫
Ω2

div(αq2φq2v)w2 dΩ2 − ct(w2, λ) = 0

ct(q̇1 − q̇2, µ) = 0

(2.15)

Note that the global solution for quantity q is then obtained by q = α̂q1q1 + α̂q2q2.

In this formulation, we can see that the weight function for the convection term
appears in the divergence term which was not, a priori, obvious.

Remark 2.2.5. In [110], Caleyron uses the work of Guidault et al. [114] to establish
strong formulations for equations including divergence terms. Through an energy anal-
ysis, they then reach the same conclusion, that is, that the weight functions fit inside
the divergence term.

Note that the discretized system (2.15) can be written in matrix form as D1 0 CT
1

0 D2 CT
2

C1 C1 0


 Q̇

n

1
Q̇
n

2
λ

 =

 F n
1

F n
2

0

 (2.16)

where C1 and C2 are the coupling the matrices (see section 2.2.2.2). We have, ∀i ∈
{1; 2},

(D
i
)jk =

∫
Ωi

α̂qi N̄
i
jN̄

i
k dΩi =

(∫
Ωj

α̂qdΩj

)
δjk

(F n
i )j = −

∫
Ωj

N̄ i
j div(αqiφnqi

vi) dΩj = −
∑
e∈Sj

e

φnqi,e

∫
e
αqi vi · n de

(C
i
)jk =

∫
Ωk

N̄ i
jN̄

λ
k dΩk

(2.17)

where N̄λ
k are the shape functions associated to the mediator space.

Moreover, if φnqi,e
is a linear function of Qn

i
, then we can write F n

i = K
i
Qn
i
so that

we have
DQ̇

n +K∗Qn = 0 (2.18)

withD = diag(D1, D2) is the mass-like matrix, C = [C1, C2]T ,K∗ = (I−(CD−1CT )−1CD−1)
diag(K1, K2) and Qn = [Qn

1 , Q
n
2 ]T .

2.2.2.2 Choice of the coupling operator

In this work, we use a first order upwind scheme and a Finite Volume discretization
for the transport equations. Hence, there is no immediate definition of ∇q so that using
a L2 coupling operator is the most natural choice. Therefore, the continuous coupling
operator ct is defined as

∀(q, µ) ∈ V ×Mq, ct(q, µ) =
∫

Ωc

qµ dΩc (2.19)
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In [103], the authors failed to prove that an L2-coupling operator always leads to
well posed problem and thus advice not to use it. In [114], the authors argue that an
L2-coupling operator can be implemented if specific conditions are met such as the use
of continuous weight functions. Moreover, in both works, they observed that using a
L2-coupling operator leads to more accurate solutions than a H1-coupling one.

2.2.2.3 Choice of the weight parameter

However, just like for the Chimera approach, a value for an inward upwind flow needs
to be defined for an edge e of the patch compatible with ∂Ω2 (see Figure 2.1). In the
Arlequin approach, the flow is equal to

∫
e αφq,ev · n de (see section 2.2.2.1). Thus, if

the weight function α ≡ 0 on the entire edge, then, no matter what the value of φq,e
is, the flow is null. Hence, the actual value of φq,e does not need to be computed and
there are no need to generate ghost elements.

In the rest of this work, we impose that the weight function αq2 is globally continuous,
linear on Ωc and equal to 0 on ∂Ω2. By symmetry, we impose that αq1 is globally
continuous, linear on Ωc and equal to α0 on ∂Ωf (see examples in section 2.4). The
choice of linear weight functions for the divergence term is also compatible with the
choice of a L2 coupling operator, as previously explained.

In 1D, linear weight parameters can be simply defined. In higher dimensions how-
ever, it can be more difficult8. In this work, the weight parameter αq in Ωc is defined as
follows. For every point in Ωc, the distance to both the outer and the inner boundaries
of Ωc, Lout and Lin respectively, is computed. The value of αq is then:

αq1(x) = 1− 1− α0

Lin(x) + Lout(x)Lout(x)

αq2(x) = (1− α0)− 1− α0

Lin(x) + Lout(x)Lin(x)
(2.20)

Remark 2.2.6. The Chimera method implemented here requires the generation of ghost
elements which can be computationally costly. Although the choice of weight functions
in the Arlequin formulation circumvents this issue, the coupling matrices induce the
resolution of a linear problem which can also be computationally costly.

In the following, we propose a third alternative for the treatment of convective trans-
port.

2.2.3 A hybrid formulation of the transport equation
The main idea behind this third alternative is to combine both the Chimera and

Arlequin frameworks. In this third approach, hereafter referred to as the Chimix
approach, information is transferred between domains throughout the coupling zone
Ωc. We consider here the Finite Volume description of the transport equation as defined
in (2.7).

Let us consider an edge inside the coupling zone that separates two elements E1
and E2 of the substrate. The flow f between the two elements is approximated by
f ≈ φnq,e

∫
e v · n de. Let us now assume that the flow is such that E1 is the upwind

8see for instance the test case presented in section 2.4.1.
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element. In the Chimix approach, the term φnq,e has two contributions. The first
contribution is equal to φnq (E1)

∫
e α

q
1 de. The second contribution is obtained using a

Chimera-like approach (see section 2.2.1).
The intersections of E1 with overlapping elements of the patch are computed and the

volume average of φnq , denoted φpq is calculated (see Figure 2.1). The second contribution
is then equal to φpq

(
1−

∫
e α

p
q de

)
. Such an approach is illustrated in Figure 2.2 for a

1D problem.

αq
1

Ω1\Ω2

1 αq
2

Ω1\Ω2Ωc ΩcΩf

A B

C

v

αe

δ 1-δ

Figure 2.2: We consider the 1D multi-model problem. The substrate is represented in
blue while the patch is represented in green. We assume that the velocity is uniformly
equal to v = +1m.s−1 and consider the edge e (edges are nodes in 1D) of the patch in
red in the figure. The quantity φnq,e is the sum of two terms. The first term represents
the contribution of the patch and is equal to αeqn2 (C) while the second, representing
the contribution of the substrate, is equal to (1 − αe)(qn1 (A)δ + qn1 (B)(1 − δ)). This
process is repeated for all edges inside the coupling zone.

Using this approach presents two advantages. First, weight functions are used so
that, similarly to the Arlequin approach, no ghost elements need to be generated on
the outer boundary of the patch. The second advantage is that no coupling matrices
are required so that the integration in time can be completed element by element9 and
no linear system needs to be solved. One drawback of the Chimix approach is that the
intersection between elements in the coupling zone of each model needs to be calculated.
However, when dealing with the Euler equations, the equation of momentum will be
treated using the Arlequin framework so that these intersections are computed anyway
(see Chapter 3).

Remark 2.2.7. Let us consider the strong form of the mono-model problem (2.1):

∂

∂t
q + div(φqv) = 0 (2.21)

When introducing the weight parameters for the Chimix formulation, we can either
9For higher computational performances, the treatment of such equations is usually completed

edge by edge. In the current Chimix approach, the absence of coupling matrices ensures that that
treatment holds.
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include them in the divergence term or outside. If the former case, we thus have
∂

∂t
(αq1q1) + div(αq1φq1v) = 0

∂

∂t
(αq2q2) + div(αq2φq2v) = 0

(2.22)

whose sum yields

∂

∂t
(αq1q1 + αq2q2) + div((αq1φq1 + αq2φq2)v) = 0 (2.23)

which is of the form of (2.21) with q = αq1q1 + αq2q2 and φq = αq1φq1 + αq2φq2.
If the weight parameter is introduced outside the divergence term, we have

∂

∂t
(αq1q1) + αq1 div(φq1v) = 0

∂

∂t
(αq2q2) + αq2 div(φq2v) = 0

(2.24)

whose sum, after calculations, yields:

∂

∂t
(αq1q1 + αq2q2) + (αq1φq1 + αq2φq2) div(v) + (αq1∇φq1 + αq2∇φq2) · v = 0 (2.25)

which is not of the form of (2.21). Thus, in line with previous results, the weight
parameter should indeed be inside the divergence term.

2.3 Study of the stability of the multi-model ap-
proaches

2.3.1 Strategy for the stability study of the multi-model ap-
proaches

The use of the explicit time integrators defined in section 2.2 implies that the problem
formulation is conditionally stable [174]. In fact, for the mono-model formulation (2.9),
it was shown that the time step ∆tn needs to verify the following condition:

∆t < ∆tc = 1
max ω (2.26)

where the ω are the eigenvalues of the generalized eigenvalue problem of M and K
(defined in section 2.1.3) and ∆tc is called the critical time step.

As the stability is conditional, the influence of multi-model components on the sta-
bility need to be studied in order to ensure that the critical time step is not adversely
altered and thus that the approaches proposed are computationally feasible. These
components are (1) the Chimera-like treatment of the flow at the boundaries of the
coupling zone, (2) the coupling matrices of the Arlequin framework and (3) the weight
functions. They are considered in the next sections.
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Example 2.3.1. Let us consider an Arlequin approach for the multi-model convective
transport as introduced in section 2.2.2. Let us assume that the flow is a linear function
of the convected quantity q so we can write the problem as in (2.18). By definition, the
critical time step of the Arlequin multi-model problem is defined by

∆tArlequinc = 1
max ω (2.27)

where ω are the eigenvalues of the generalized eigenvalue problem of K∗ and D. In
order for the problem to be computationally feasible, the critical time step ∆tArlequinc

can not be too small. We recall that K∗ = (I − (CD−1CT )−1CD−1)K and that both
D and K are functions of the weight functions αq. We can thus observe that both the
coupling matrices C and the weight functions can influence the critical time step.

Remark 2.3.1. In practice, the elementary time step is computed as follows:

∆t = csta × min
E∈SE

LE
|vE|

(2.28)

where LE is a characteristic length of the element E, |vE| a norm of the velocity in
that element and csta a positive coefficient lower or equal to 1. In this work we refer
to csta as the security coefficient.

2.3.2 Influence of the coupling matrices on the critical time
step

We showed, in section 1.2, that for the case of elastodynamics, the dual management
of additional kinematic constraints through Lagrange Multipliers does not adversely
affect the stability of the explicit time integration scheme. The same results would
hold for convective transport equation for which the convective term exhibits a linear
dependency from the convective quantity, as is the case in (2.18). An example of such
linear dependency is the conservation of mass equation taken alone.

The extension of this result to the general case can be obtained by considering the
physical interpretation of the practical stability condition given in (2.3.2), commonly
known as the Courant-Friedrich-Levy (CFL) condition for the explicit time integration
of propagative systems. In fact, the CFL condition associates the integration stability
to the way the scheme propagates information. Indeed, it states that there are no
unstable accumulation of truncation error as long as the convected information does
not cross more than one element within one single time step.

We can apply the same physical interpretation logic to the management of kine-
matic constraints and conclude that they do not adversely affect the stability in the
general case. Indeed, introducing additional unknowns computed at each time step
with no prediction through the time integration scheme do not produce extra accu-
mulation of truncation error. Therefore, the dual management of such constraints
through Lagrange multipliers is always safe regarding the integration stability and can
be excluded from the dedicated analyses led in this work.

Remark 2.3.2. The dual management of kinematic constraints can also be seen as an
implicit way to evaluate the reaction forces associated to the constraints, which leads
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to the unconditional stability conclusions expressed above for this particular feature.
This treatment of the kinematic constraints can be directly opposed to the primary
management of constraints, through penalty coefficients for instance, where the reaction
forces conserve their explicit nature and are known to have a significant influence on
the global integration stability [175].

2.3.3 Influence of Chimera-like boundary conditions
The treatment of Chimera-like boundaries has been of considerable interest, espe-

cially for finite differences discretizations [144] [176]. Hereafter, we recall the following
guidelines found in literature in order to ensure stability [150].

• The size of the overlapping zone should be greater than the stencil,

• In the overlapping zone, the size of elements of both domains should be similar,

• The interpolation order for the transfer of information between domains should
be greater or equal to the order of the numerical scheme.

In this work, we assume that as long as these guidelines are respected, the stability
of the Chimera approach is guaranteed.

2.3.4 Influence of the weight functions on the stability
The weight functions have shown to affect the critical time step10 and their influence

on the stability needs to be studied. As seen previously (see section 1.3), the eigen-
values of the generalized eigenvalue problem are, in practice, not computed. Instead,
eigenvalues for the generalized eigenvalue problem of every element are computed and
their maximum is generally used in definition (2.26). From Proposition 1.32, we can
deduce that substituting maxE∈SE

ωE for ωG in (2.26) is conservative. Such a critical
time step is hereafter referred to as the elementary critical time step. Hence, if we
can ensure that the weight functions do not cause the elementary critical time step to
significantly drop, then the formulation is bound to be stable.

2.3.4.1 Study of the influence of the weight functions on a single element

Let E be an element and q0 an eigenvector of the elementary generalized eigenvalue
problem, that is, we assume that ∃ ω such that (see (2.17)):(∑

e∈E

∫
e
αqφnq v · n de

)
q0 = ω

(∫
ΩE

α̂q dΩE

)
q0 (2.29)

which immediately yields11

ω =

∑
e∈E

∫
e
αqφnq v · n de∫

ΩE

α̂q dΩE

(2.30)

10See section 1.3 or [152].
11q0 6= 0 as it is an eigenvector.
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Note that the eigenvalue for a mono-model formulation element is obtained by im-
posing α̂q = αq = 1 in (2.30), that is:

ωmono = 1
|ΩE|

∑
e∈E

∫
e
φnq v · n de (2.31)

One way to ensure that the critical time step does not drop is to guarantee that
ω = ωmono. As only the value of αq has already been set in expression (2.30), conditions
can be imposed on α̂q. Thus, we first propose to impose α̂q to be set to:

∑
e∈E

∫
e
αqφnq v · n de∑

e∈E

∫
e
φnq v · n de

(2.32)

This definition (2.32) of α̂q ensures that the critical time step is optimal. However,
it is dependent of time as it is a function of the flow φnq v and thus needs to be computed
at every time step, which is computationally costly. Moreover, as the term φnq v·n can be
negative, this definition does not ensure positivity for α̂q nor does it ensure a partition
of unity for the set (α̂q1, α̂q2) and is thus not satisfactory (see section 1.7). Instead, we
choose to impose a uniform α̂q on the element, whose value is set to:

α̃q = 1
|∂ΩE|

∑
e∈E

∫
e
αq de (2.33)

where |∂ΩE| is the size of the boundary of element E. Imposing α̂q = α̃q ensures both
the positivity and the partition of unity of the weight functions (see section 1.1.2), in
the sense that if an element of the substrate, denoted Es, perfectly overlaps one of the
patch, denoted Ep, then we clearly have α̂q(Es) + α̂q(Ep) = 1.

It is interesting to note that with this definition, the value of α̂q is determined by
the value of αq on the border of the element only. In the next section, we compare that
definition with a more natural one, that is, a volume integration of αq.

2.3.4.2 Analysis of α̂q for specific elements

In this section we compare α̃q proposed in (2.33) with ᾱq, the value resulting from
the numerical integration of αq on the entire element:

ᾱq = 1
|ΩE|

∫
ΩE

αq dΩE (2.34)

The goal is to underline why using α̃q to define α̂q is preferable. We recall that the
critical time step is proportional to the value of the weight function associated to q̇
(either α̃q or ᾱq) so that the higher its value is, the more stable the approach is.

1D element
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Let us consider a one dimensional element of size L connecting two nodes 1 and
2 and a piecewise linear weight function αq such that αq(1) = α1,1 and αq(2) = α1,2
and α1,1 > α1,2. We then consider three possible cases for the evolution of the weight
function αq inside an element12. They are introduced hereafter and represented in
Figure 2.3.

Case A: The weight function is linear all throughout the element.

Case B: The weight function is constant on [0, δL] and then linear on [δL, L].

Case C: The weight function is linear on [0, δL] and then constant on [δL, L].

α1,1

1

δL

α1,2

0 L

α1,1

1

α1,2

α1,1

1

α1,2

Case A

Case B

Case C

Figure 2.3: The three different 1D cases for elements whose weight function changes.
The value of ᾱq depends on the behaviour of the weight function inside the element
and is equal to the area below the weight function. The value of α̃q is independent of
the behaviour of the weight function inside the element and is equal to the area in blue
for all three cases.

For all three cases, the value of α̃q is the same and equal to 1
2(α1,1 +α1,2). The value

of ᾱq, on the other hand, differs. We have:
Case A: ᾱqA = 1

2(α1,1 + α1,2) so that ᾱqA = α̃q

Case B: ᾱqB = 1
2(α1,1(1 + δ)L+ α1,2(1− δ)L) so that ᾱqB > α̃q

Case C: ᾱqC = 1
2(α1,1(1− δ)L+ α1,2(1 + δ)L) so that ᾱqB < α̃q

(2.35)

We can see that definition (2.34) is very dependent on the geometrical configuration
and although it sometimes leads to a higher critical time step than definition (2.33)

12Elements on which αq is uniform yields trivial results.
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(Case B), it can also lead to a critical time step almost equal to 0 (Case C with a small
value of δ). Thus, using α̃q is more more preferable than using ᾱq. This can easily be
explained by the fact that using α̃q is equivalent to imposing a linear weight αq on the
entire element. Note that, as a consequence, when using α̃q, the partition of unity is,
in a way, locally breached, as can be seen in Figure 2.4.

αq
1

Ω1\Ω2

1 αq
2

Ω1\Ω2Ωc ΩcΩf

A BC

Figure 2.4: Weight functions (αq1, αq2) for two overlapping 1D models (in solid line).
Using α̃q is equivalent to using the dashed lines for the weight functions, which clearly
breaches the local partition of unity (see elements A, B and C). If ᾱq is used, the
elementary critical time step is proportional to the area below the weight function.
Thus if the boundaries of the coupling zone are adequate (left coupling zone), then
ᾱq > α̃q (the area corresponding to α̃q is represented in solid for elements A, B and
C). If the boundaries of the coupling zone are not adequate (right coupling zone), then
ᾱq < α̃q as can be observed for element B.

Yet, if we can ensure that there are no elements in which the behaviour of αq
corresponds to Case C, then using ᾱq is preferable. In the following, we show how that
can be achieved.

First of all, notice that for elements whose weight function is entirely uniform or
linear (Case A), α̃q = ᾱq so that neither expression is more advantageous. Thus, it
is only on elements whose weight function αq is partly uniform and partly linear that
the two expressions are worth being compared. These elements are the ones cut by the
boundaries of the coupling zone. For clarity, we assume that an element can not be
cut by the two boundaries simultaneously, and are thus restricted to the three cases
previously introduced. Hereafter, we denote by Γout the outer boundary (Γ1→2 in the
Chimera framework) and by Γin the inner one (Γ2→1 in the Chimera framework).

On the one hand, Γout is naturally aligned with ∂Ω2, that is, with the mesh of the
patch. Thus, for elements of the patch whose edge is aligned with Γout, αq is linear.
These elements correspond to the "Case A" configuration previously mentioned. As
the meshes of the substrate and the patch are not conforming, Γout is bound to cut
elements of the substrate. Hence, the part of the element in the coupling zone is linear
while the one in Ω1 \Ωc is equal to 1 so that these elements are representative of "Case
B" configurations. For these elements, using ᾱq instead of α̃q yields a higher critical
time step.

On the other one hand, there are no natural choice for which mesh Γin should be
aligned with, if any. First, we assume that Γin is aligned with the mesh of the patch.
Elements of the patch on either side of the boundary have either a uniform weight or a
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linear one so that for these elements α̃q = ᾱq and neither choice is detrimental. As in
the previous paragraph, elements of the substrate are bound to be cut by Γin, except
that this time part of the element in the coupling zone is linear while the one in Ωf is
equal to α0. These elements are thus in the "Case C" configuration which is detrimental
to the stability. Thus, Γin should not be aligned with the mesh of the patch if ᾱq is to
be used.

Let us now assume that Γin is aligned with the mesh of the substrate. Elements
of the substrate on either side of the boundary have either a uniform weight or a
linear one so that for these elements α̃q = ᾱq and neither choice is detrimental. This
time however, it is elements of the patch that are bound to be cut by Γin. For these
elements, part of the element in the coupling zone is linear while the one in Ωf is equal
to 1−α0. These elements are thus in the "Case B" configuration which is advantageous
with regards to stability. Thus, Γin should be aligned with the mesh of the substrate
if ᾱq is to be used.

Note that if the user decides to align Γout with the mesh of the substrate, similar
stability issues as when Γin is aligned with the mesh of the patch will arise.

In conclusion, for the 1D element considered, using ᾱq rather than α̃q yields a higher
critical time step as long as the boundaries of the coupling zone are aligned with the
appropriate mesh.

Remark 2.3.3. The above analysis reaches similar conclusions as those obtained for
structural dynamics (see section 1.3). Indeed, using α̃q is an analogue of the Aver-
aged weights approach as an optimal critical time step is obtained no matter where the
boundaries of the coupling zone are but at the cost of a local breach of the partition of
unity. Similarly, using ᾱq is an analogue of the qα-control approach as it respects the
partition of unity but only maintains an optimal critical time step if Γout is aligned with
the mesh of the patch and Γin with that of the substrate.

2D and 3D elements

The aim of this section is to show that what was true for 1D elements, that is,
that there is a way for the user to use ᾱq rather than α̃q to define α̂q, does not hold
for 2D/3D elements. The previous statement is hereafter illustrated on a triangular
element.

We thus consider a triangular element cut by the boundary of the coupling zone
so that the element is in one of the three cases A, B or C represented in Figure 2.5.
We make the assumption that the weight parameter αq is piecewise planar. Although
unrealistic, this assumption will prove useful as it simplifies calculations.

Under the previous assumption and for the elements of Figure 2.5, we have ᾱq = α̃q

in all three cases. It then seems that using ᾱq rather than α̃q is not detrimental.
However, this is due to the fact that we only considered cases for which the element
is cut by a straight line. Let us consider the elements presented in Figure 2.6 and
2.7. Moreover, we assume that αq is piecewise planar and that αq is the same along
the edges for Cases B.A, B.B and B.C and Cases C.A, C.B and C.C. We thus have
α̃qB.A = α̃qB.B = α̃qB.C = α̃qB and α̃qC.A = α̃qC.B = α̃qC.C = α̃qC respectively.
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Case A Case B Case C

1

α0

Figure 2.5: Example of weight functions αq for a 2D triangular element. For cases B
and C, the area where the weight function is uniform and the one where it is planar
are separated by a dashed line.

Case B.A Case B.B Case B.C

1

α0

Figure 2.6: Examples of a weight function αq for 2D triangular elements in the config-
uration of the bottom case B of Figure 2.5. The value of αq is allegedly the same along
the edge for all three cases.

Case C.A Case C.B Case C.C

1

α0

Figure 2.7: Examples of a weight function αq for 2D triangular elements in the config-
uration of the bottom case C of Figure 2.5. The value of αq is allegedly the same along
the edge for all three cases.

We then have:
Case B.A: ᾱqB.A = α̃qB
Case B.B: ᾱqB.B > α̃qB
Case B.C: ᾱqB.C < α̃qB

and


Case C.A: ᾱqC.A = α̃qC
Case C.B: ᾱqC.B > α̃qC
Case C.C: ᾱqC.C < α̃qC

(2.36)

First, let us recall that in both Case B and Case configurations, the value of of α̃q
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is independent of the inner evolution of αq and, a priori, does not approach zero. Let
us now analyse whether definition ᾱq can be more feasible than α̃q.

The analysis of Case C configurations shows that ᾱq can not be ensured to be
higher than α̃q. In fact, the Case C.C configuration shows that ᾱq can tend to 0. The
reasoning done for 1D elements would suggest that aligning the inner boundary Γin
with the mesh of the substrate would prevent Case C configurations from happening
and ensure a feasible time step when using ᾱq. However, doing so is not sufficient.
Indeed, Case B configurations can still occur and, in particular, any element in a Case
B.C configuration would lead to a lower value of ᾱq when compared to α̃q. Nevertheless,
it is important to note that although we have ᾱqB.C < α̃qB.C for such elements, ᾱqB.C
can not drop to a near null value for these elements. In fact, we can easily show that
ᾱqB.C > α̃qA.

Note that this is also true for α̃q. Indeed, we clearly have α̃qB > α̃qA > α̃qC so that
aligning Γin with the mesh of the substrate would ensure that any element for which
the weight is not uniform has a weight parameter α̂q greater or equal to α̃A.

Thus, although these calculations assume that the weight functions are piecewise
planar, we recommend systematically aligning Γin with the mesh of the substrate. The
previous observations are illustrated in the following representative example.

Example 2.3.2. We consider the overlapping two unstructured meshes represented in
Figure 2.8. The outer boundary (in red) of the coupling zone is aligned with the mesh of
the patch (in red) while the inner one (in blue) is aligned with the mesh of the substrate
(in black). The geometry and meshes are such that elements of the patch are randomly
cut by the inner boundary of the coupling zone. In Figure 2.8, the weight function is
represented for two such elements.

1

α0

Figure 2.8: Two unstructured meshes are overlapped. In order to ensure stability, the
boundaries of the coupling zone are such that Γout (in red) is aligned with the mesh
of the patch (in red) while Γin (in blue) is aligned with the mesh of the substrate (in
black). The inner boundary Γin thus randomly cuts elements of the patch. The weight
function for two elements is also represented.

The top element considered is cut in a "Case B.B" configuration (see Figure 2.6)
so that using ᾱq rather than α̃q leads to a higher critical time step. The lower element
however, is cut in a "Case B.C" configuration (see Figure 2.6) so that using ᾱq rather
than α̃q leads to a lower critical time step which can drop to a near null value. On the
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other hand, using α̃q ensures that the time step is not dependent of the behaviour inside
the element. Thus, regardless of how the boundaries of the coupling zone are placed,
the user should always use formula (2.33) to define the weight function associated to
the time derivative of q.

Partial conclusion

We compared the proposed definition (2.33) for α̂q with a volume integration. We
observed that for one dimensional elements, a volume integration can lead to a more
stable problem as long as the boundaries of the coupling zone are adequately defined.
However, for 2 and 3 dimensional elements, expression (2.33) should always be used as,
although it does not guarantee an optimal time step13, it is the only one to guarantee a
computationally feasible time step critical time step, in the sense that it can not drop
to zero.

2.4 Study of the accuracy of multi-model approaches
In this section, we consider the transport of a quantity q such that φq = q, that is,

∀w̄ ∈ V ,
∫

Ω

∂q

∂t
w̄ dΩ +

∫
Ω

div(qv)w̄ dΩ = 0 (2.37)

An example of physical phenomenon described by equation (2.37) is the conservation
of mass, for which q = ρ.

2.4.1 Local introduction of a fixed cylinder
2.4.1.1 Presentation

We consider a closed square domain with a rigid, fixed, cylinder as shown in Figure
2.9. The domain is 100m long while the cylinder has a 4m wide diameter. The velocity
is assumed to be independent of time and was chosen such that it is divergence free
(see Figure 2.9). As can be seen in the figure, quantity q has a slip condition on the
center cylinder as well as on the top and bottom side. On the left side, an inward
boundary condition qLv is imposed while quantity q flows outward on the right side.

In one region (in blue in Figure 2.9), the initial value of quantity q is qR = 1. In
the second region, left of the cylinder (in brown in Figure 2.9), the value of quantity q
is qL = 10.

The reference solution is computed on a mono-model mesh and is represented in
Figure 2.11. Away from the cylinder, the mesh is made of 2m × 2m square quadrangles.
The quadrangles progressively diminish in size towards the cylinder so that the cylinder
is discretized by 40 edges. The multi-model meshes are represented in Figure 2.10.
The main domain, referred to as the substrate and in black in the figure, is uniformly
composed of the same 2m × 2m square quadrangles. The local domain, referred to as
the patch and in red in the figure, models the cylinder. Its mesh is in the shape of

13Expression (2.33) is an approximation of the optimal value given by (2.32).
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Figure 2.9: Mono-model mesh (left), the initial norm of the velocity in m.s−1(center)
and initial condition q0 (right).

a web, which is adapted to circles, and is designed so that the cylinder has a similar
discretization as in the mono-model mesh (see Figure 2.10). On the farthest ring of
the mesh, the elements are about the same size as those of the substrate. The weight
functions are also represented in Figure 2.10.

Figure 2.10: From left to right: the multi-model meshes as well as the boundaries of
the coupling zone (in red and blue) are represented. – The meshes of the mono-model
and the patch are compared near the hole. – The value of αq is represented for the
substrate and the patch.

For all these computations, we imposed csta = 0.9 and, when relevant, α̂q = α̃q and
αq = 1.0 × 10−6 in the free zone. For the Arlequin computations and unless specified
differently, the Mediator space is discretized as the patch.

2.4.1.2 Solution

The solution for q are represented in Figures 2.13, 2.12 and 2.14 for the Arlequin
approach14, the Chimera one and the Chimix approach respectively. As the vector field
for the velocity is divergence free and given the initial conditions, the solution should
evolve towards a stationary state with q = 10 everywhere. Such a behaviour can be
observed on the reference solution represented in Figure 2.11.

Two observations can be made for the multi-model approaches. First, the Chimera
and the Arlequin approaches yield accurate solution while instabilities can be observed
for the the Chimix approach. In fact, the value of q reaches 30 in parts of the domain

14For the solution presented hereafter, the mediator space was discretized as the patch.
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Figure 2.11: Mono-model solution for quantity q at, from left to right and top to
bottom, instant t0 = 0s, t1 = 2s, t2 = 4s, t3 = 6s, t4 = 8s, t5 = 10s, t6 = 12.5s and
t7 = 25s.

while it should, theoretically, never be greater than 10. Secondly, we observe that in
all multi-model approaches, the quantity q slowly accumulates around the hole. This
can not be blamed on the different multi-modelling framework has they appear in the
free zone Ωf . In fact, this accumulation of q is due to the fact that the velocity is not
perfectly divergence free in that area15.

Figure 2.12: Chimera solution for quantity q at, from left to right and top to bottom,
instant t0 = 0s, t1 = 2s, t2 = 4s, t3 = 6s, t4 = 9s, t5 = 12.5s, t6 = 25s and t7 = 50s.

2.4.1.3 Error measures of the solution

In order to quantify the gap between the multi-model approaches and the reference
solution, we choose to compare the solution downstream so as to measure the influence
of the multi-model approaches on the accuracy. We thus consider the following error

15the divergence free velocity field is obtained numerically on the mono-model mesh.
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Figure 2.13: Arlequin solution for quantity q at, from left to right and top to bottom,
instant t0 = 0s, t1 = 2s, t2 = 4s, t3 = 6s, t4 = 9s, t5 = 12.5s, t6 = 25s and t7 = 50s.
The Mediator space is discretized on the patch.

Figure 2.14: Chimix solution for quantity q at, from left to right and top to bottom,
instant t0 = 0s, t1 = 2s, t2 = 4s, t3 = 6s, t4 = 9s, t5 = 12.5s, t6 = 25s and t7 = 50s.

measure on elements such that x = 34m (second to last column of elements).

Err(x, t) = qm(x, t)− qr(x, t)
maxτ qr(τ, x) (2.38)

where qm refers to the solution of a multi-model approach while qr refers to the reference
solution. The error measure over time is represented in Figure 2.15.

We can see that, as observed previously, the Chimix approach diverges behind the
hole16. The Arlequin and the Chimera approaches, however, are stable and converge
towards the steady solution. Yet, the Arlequin approach seems to yield a better solution
on two points:

• the maximum error over time is smaller than that of the Chimera approach;
16Note that simulations were run with lower csta values (down to 0.05) and they all diverged.
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Figure 2.15: Error measure Err for the Arlequin approach (left), the Chimera approach
(center) and the Chimix approach (right).

• the steady solution seems to be closer to the reference solution.

In order to quantify those observations, we introduce the following error measure:

E(t) =
∫
x=34m

|Err(x, t)| dx (2.39)

where Err is defined in expression (2.38). The results are represented in Figure 2.16.
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Figure 2.16: Error measure E for the Arlequin approach (in blue), the Chimera ap-
proach (in red) as well as the Chimix one (in yellow).

We can see that the observations made are confirmed.

2.4.1.4 Influence of the mediator space on accuracy

When considering the Arlequin formulation, there are two natural choices for the
discretization of the mediator: the discrete space of the substrate (restricted to the
coupling zone) or the discrete space of the patch (restricted to the coupling zone). If
the former is chosen, we will say that the mediator space is discretized as the substrate
and if the latter is chosen that it is discretized as the patch.

In Figure 2.13, the mediator space is discretized as the patch. The solution for a
mediator space discretized as the substrate is represented in Figure 2.17.
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Figure 2.17: Arlequin solution for quantity q at, from left to right and top to bottom,
instant t0 = 0s, t1 = 2s, t2 = 4s, t3 = 6s, t4 = 9s, t5 = 12.5s, t6 = 25s and t7 = 50s.
The mediator space is discretized on the substrate.

We can observe that, if the mediator space is discretized as the substrate, variations
appear in the coupling zone. These variations are due to both the discretization of
q, considered uniform on an element, and the difference in size of the elements in the
coupling zone (the mesh of the substrate is slightly coarser than that of the patch).
Let us consider two elements of the patch in the coupling zone, namely Ep

1 and Ep
2 ,

that overlap a single element of the substrate Es (also in the coupling zone). If the
mediator space is discretized on the patch then the element of the coupling imposes
that all three elements should have the same q. Indeed, we have, at each instant n > 0,{

qn(Ep
1) = qn(Es)

qn(Ep
2) = qn(Es) ⇔ qn(Ep

1) = qn(Ep
2) = qn(Es). (2.40)

If the mediator space is discretized on the substrate, then the coupling imposes that
the average of the value of q on the elements of the patch has to be equal to the value
of q from the substrate, that is,

qn(Es) = qn(Ep
1) + qn(Ep

2) (2.41)

which is less constrained than (2.40) and can lead to variations. In general, choosing
the coarser discretization for the mediator space leads to perturbations. Nonetheless,
choosing the finer mesh can also lead to significant perturbations (see for instance [98]).

In order to quantify if those variations have an influence on the solution somewhere
other than the coupling zone, we consider the two error measures (2.38) and (2.39).
They are represented in Figure 2.18.

We can see that discretizing the mediator space as the substrate leads to a higher
error measure than when it is discretized as the patch. Moreover, discretizing the
mediator space as the substrate leads to a steady solution downstream with a higher
error than any other approach.

In the current test case, discretizing the mediator space on the finer mesh leads to a
more precise solution.
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Figure 2.18: Error measure Err for the Arlequin approach with a mediator space
discretized as the substrate (left) as well as E for different approaches.

2.4.2 Local change of the advection velocity
In this next example, we locally change the convective velocity in the patch and

study the convergence of each multi-model approach.

2.4.2.1 Presentation

We consider the one dimensional domain 32m long represented in Figure 2.19. The
initial conditions for q as well as the convective velocity are also represented in Figure
2.19. The velocity is uniform in two different zones and presents a slowdown zone and
a speed up zone of equal size (2m). Quantity q is free to flow outward on the right
boundary and the boundary condition q = 0 is imposed on the left boundary. The
simulation lasts for 50s, the time necessary for all of quantity q to flow out of the
domain.

1

x10 Lx2 x3

v

0 Lx2 x3

v1

q0

1

0

0

1
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α1

x4 x7

1

0
x5 x6

α2

v2

Figure 2.19: Mono-model problem (left) and multi-model problem (right). The velocity
v, v1 and v2 are represented and we can see that the change in velocity is introduced
by the patch. The initial condition q0 is also represented. Note that we have x1 = 5m,
x2 = 10.33m, x3 = 21.33 and L = 32m while the slowdown and the speed-up zones
are both 2m long. Moreover, x4 = 7.33m and x7 = 24.33m while x5 ∈]x4, x2[ and
x6 ∈]x3, x7[ determine the inner boundary of the coupling zone.
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The reference solution is shown in Figure 2.20 at different instants. At first, the
quantity q moves at constant speed towards the left side of the domain (top left in
the figure). Then, the front reaches the slowdown zone and thus starts to accumulate
(top right in the figure) and eventually forms a new rectangle, twice as high and half
as wide, moving at reduced speed (middle left in the figure). Next, the front reaches
the speed-up zone and spreads (middle right in the figure) until it forms its original
shape (bottom left in the figure). Finally, it flows out of the domain until nothing is
left (bottom right in the figure).

The reference solution was numerically obtained on a mono-model problem made
up of 12, 288 elements of same size. The time step was computed with csta = 1.
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Figure 2.20: Reference solution for quantity q every four seconds (from left to right,
top to bottom).

2.4.2.2 Convergence study

Two different convergence studies are led in this section. In all of them, the meshes of
both models are refined so that elements of both models have the same size. The sub-
strate occupies the entire domain and its velocity v1 is uniformly equal to 1m.s−1. The
patch occupies the domain [x4, x7] = [7.33m, 24.33m] is superimposed on the substrate
and accurately models the velocity of the reference problem. They are represented in
Figure 2.19 (right side) along with the weight functions and their respective velocity.
Just like in the previous case, the time step was computed with a security coefficient set
to csta = 1. For the Arlequin computations, we imposed α̂q = α̃q and αq = 1.0× 10−6

in the free zone. The outer boundary of the coupling zone Γout is aligned with the
mesh of the patch and, symmetrically, the inner one, Γin is aligned with the mesh of
the substrate. As elements of the two models have the same size and the two models
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have symmetric roles, the choice of the mediator to space does not matter. It was
arbitrarily chosen to be discretized as the substrate.

In the first study led, the number of elements (2.5 elements) in the coupling zone
remains constant while in the second one, it is the size of the coupling zone that remains
constant ((x5, x6) = (9m, 22m)). A total of eight different meshes are considered with,
respectively, 32, 64, 128, 256, 512, 1024, 2048 and 4096 degrees of freedom (for the
substrate).

The Arlequin and Chimera solutions are represented in Figures 2.21 and 2.22 respec-
tively for the finest test case (4096 degrees of freedom) and a coupling zone including
2.5 elements. We can see that both approaches accurately reproduce the solution.
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Figure 2.21: Arlequin solution (in red) for the slow down case every four seconds from
t = 4s (top left) to t = 32s (bottom right). The reference solution is also represented
in dashed black.

In the Arlequin approach however, we observe an overshoot when the front penetrates
the coupling zone at t = 8s. Yet, when the entire quantity has left the patch (t = 32s),
the solution for the Arlequin approach has travelled at the same speed as the reference
solution while the Chimera one went slightly faster as can be seen in Figure 2.23,
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Figure 2.22: Chimera solution (in red) for the slow down case every four seconds from
t = 4s (top left) to t = 32s (bottom right). The reference solution is also represented
in dashed black.
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Figure 2.23: Zoom on the Arlequin (left) and Chimera (right) solutions at t = 32s.
The reference solution is also represented in dashed black. We can observed that the
reference and Arlequin approach are centered on the same axis while the Chimera
solution is slightly ahead the reference one.

In order to evaluate how precise the multi-model approaches are, we compare them
with the reference solution through the following error measurement.

Error = 1
NT

NT∑
n=1


1
L

∫ L

0
|qnm − qnr | dx

max
n0
|qn0
r |

 (2.42)

where NT is the number of instants at which the solutions are compared, qnr is the
reference solution at instant tn, qnm the multi-model approach solution at instant tn
and L the size of the domain.

The error measurement was computed for each solution and is represented in Figure
2.24. We can observe that both the Arlequin and the Chimera approaches yield the
same convergence rate which is about the same as the Mono-model convergence right
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Figure 2.24: Error measure for all three multi-model approaches with a number of
elements NE constant in the coupling zone (top figures). Comparison of the error mea-
sure with a coupling zone whose size |Ωc| remains constant for the Arlequin approach
(bottom left) and the Chimera approach (bottom right).

(top left figure). While the solution yielded by the Arlequin approach seems to be
independent of the size of the coupling zone (bottom figures), it seems that for the
Chimera approach, the coupling zone should be as small as is permitted by stability.
The Chimix approach on the other hand significantly diverges (top right).

2.5 Conclusion
In this chapter, we considered three different multi-model approaches for the treat-

ment of convective transport type equations. Because explicit time integrators are used,
the impact of the different multi-model frameworks on the stability was studied. In par-
ticular, it was shown that for the Arlequin approach to be stable, the weight associated
to the time derivative should not be integrated on the volume of the element but instead
on its edges.

Then, the different approaches proposed were implemented and tested on two test
cases. While the Chimix method was observed to diverge, both the Chimera and Ar-
lequin approaches were shown to yield accurate solutions. Yet, none proved to have
significantly better convergence properties. Thus, both approaches are considered for
the treatment of the convective transport equations of the Euler equations. This is
accomplished in the next two chapters.
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The objective of this thesis is to develop a multi-model approach able to account for
local effects in transient FSI1 simulations. In the first chapter, we developed a multi-
model approach for overlapping structures. It also served the purpose of giving practical
hints for the treatment of the momentum equation of the Euler equation discretized with
the finite element method. In the second chapter, we proposed multi-model approaches
for the treatment of convective transport equations using a Finite Volume discretiza-
tion. Thus, we have all the ingredients to develop multi-model approaches for the Euler
equations.

In order to do so, and as usual, we first introduce a reference problem for the Euler
equations (section 3.1). Then, we propose different multi-model approaches taking into
account the results of the previous chapters (section 3.2). Next, we study the stability
of these approaches. As the stability of the Euler equations is linked to the acoustic
waves, we focus our study on the equivalent acoustic problems (section 3.3). Finally,
we conclude by discussing the advantages of using either approaches (section 3.4).

Note that this chapter uses results and reasonings from the previous chapter.

1Fluid Structure Interaction.

91
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3.1 Mono-model formulation for the Euler equa-
tions

In order to present a comprehensive study of the multi-model approaches for the
Euler equations, we consider the following representative, mono-model problem. This
mono-model formulation yields the reference solution towards which the multi-model
approaches should converge.

3.1.1 Continuous formulation for the mono-model problem
We consider a fluid occupying a bounded, regular domain Ω1 ∈ Rd. Let v and a = v̇

denote the velocity and acceleration fields. Let ρ, p, e and E denote respectively the
density, the pressure, the internal energy and the total energy of the fluid. The fluid is
submitted to prescribed velocities on Γv ( ∂Ω1. Finally, the superscript 0 on quantities
denotes their initial value. The weak continuous mono-model problem formulation for
the Euler equations then reads:

Given ρ0, p0, v0, find u(t) = (v(t), ρ(t), E(t)) ∈ H1 × V × V , t ∈ [0, T ] such that
∀ w ∈ H1

0,∀ Ω ⊂ Ω1,

∫
Ω1
ρ
∂v

∂t
· w dΩ1 +

∫
Ω1

(v · ∇)v · w dΩ1 =
∫

Ω
pI : ∇w dΩ1∫

Ω1

∂ρ

∂t
dΩ1 +

∫
Ω

div(ρv) dΩ1 = 0∫
Ω1

∂(ρE)
∂t

dΩ1 +
∫

Ω1
div([ρE + p]v) dΩ1 = 0

(3.1)

These equations are completed with an equation of state p = f(ρ, e).

Remark 3.1.1. Note that this formulation, as explained earlier, approximates the
momentum equation (top equation of (3.1)) in a non-conservative finite element form.
The conservative form would be as follows.

∂u

∂t
+∇ · F = 0 (3.2)

with u = [ρv, ρ, ρE]T and F = [ρv ⊗ v + pI, ρv, (ρE + p)v]T .

3.1.2 Discretized problem
In this section we give the discrete formulations of the continuous problem previously

introduced. We first describe the time-integrators considered for the Euler equations
and then we introduce the discrete mono-model formulation.

3.1.2.1 Discrete time-integrators

The time interval [0, T ] is subdivided into N steps ∆ti. Let vn+ 1
2 and v̇n denote the

discrete velocity and acceleration at times tn+ 1
2 = ∑n

i=1 ∆ti + 1
2∆tn+1, n ∈ J0, NK and

tn = ∑n
i=1 ∆ti. In this study, we consider the following time integrator for the velocity:
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Given v0,
vn+ 1

2 = vn−
1
2 + ∆tnv̇n (3.3)

Let ρn, (ρE)n, ρ̇n and ( ˙ρE)n denote, respectively, the discrete density, the discrete
energy density and their respective time derivative at time tn = ∑n

i=1 ∆ti, n ∈ J0, NK.
In this study, we consider the forward Euler scheme for their time integration, that is:

Given q0,
qn+1 = qn + ∆tnq̇n (3.4)

where ∀n ∈ J0, NK, qn = ρn or ∀n ∈ J0, NK, qn = (ρE)n.

3.1.2.2 Discrete mono-model problem formulation

We use a finite element discretization for the momentum equation and a Finite
Volume scheme with a first order upwind scheme for the other two equations2. Let
us denote by SE and SN the sets of elements and nodes respectively. Thus, the three
variables v, ρ and ρE are approximated spatially within an element so that we can
write 

v(x) =
∑
i∈SN

viN i(x)

ρ(x) =
∑
e∈SE

ρeN̄e(x)

ρE(x) =
∑
e∈SE

(ρE)eN̄e(x)
(3.5)

where (N i)i∈SN
are finite element shape functions while (N̄e)e∈SE

are the shape func-
tions defined in section 2.1.3.2. We introduce ρ = [ρ1, ..., ρNE

]T and (ρE) = [(ρE)1, ..., (ρE)NE
]T .

For the discrete velocity, we introduce the discrete vector3 v = [v1,1, v1,2, ..., vNN ,d].

At time step n, we then have,
Mn

v
v̇n + F n

v = 0
Dn
ρ
ρ̇n + F n

ρ = 0

Dn
ρE

˙(ρE)n + F n
ρE = 0

(3.6)

where, 

∀ j, k ∈ SN , (Mn
v
)jk =

(∫
Ω1
ρN̂j dΩ1

)
δjk

∀ j, k ∈ SE, (Dn
ρ
)jk =

∫
Ω1
N̄jN̄k dΩ1

∀ j, k ∈ SE, (Dn
ρE

)jk =
∫

Ω1
N̄jN̄k dΩ1

(3.7)

Mn
v
is the lumped mass matrix while Dn

ρ
and Dn

ρE
are diagonal ’mass’ matrices. In

practice, we have Dn
ρ

= Dn
ρE

= diag(|ΩEi
|) where |ΩEi

| is the volume of element Ei. In
this work, because we use an Eulerian description of the flow fluid, D

t
= Dn

ρ
= Dn

ρE

2See section 2.1.3 for a description of the upwind scheme implemented in this work as well as how
to put it in matrix form.

3The distinction between the continuous and discrete velocity will be given by context.
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are independent of time. Note that F n
v = F n

c + F n
p where F n

c represents convection
forces and F n

p the pressure forces while F n
ρ and F n

ρE represent the flow. Note that we
can write F n

c = Bnvn−
1
2 . The convection and pressure terms are then given by (see

[177]):
Bn = AE(Bn

jk
)E with ∀ j, k ∈ SN , (Bn

jk
)E =

∫
ΩE

Nj(vn−
1
2 · ∇)Nk dΩE

F n
p = AE(F n

p )Ej with ∀ j ∈ SE, (F n
p )Ej =

∫
ΩE

p(∇Nj) · xd(j) dΩE

(3.8)
where AE is denotes the assembly operator (see for instance [177]) and xd(j) is the unit
vector associated to the direction of the corresponding degree of freedom vj. The flow
terms are given by:

∀ j ∈ SE, (F n
ρ)j =

∑
e∈Sj

e

φnρ,e

∫
e
vn−

1
2 · n de

∀ j ∈ SE, (F n
ρE)j =

∑
e∈Sj

e

φnρE,e

∫
e
vn−

1
2 · n de

(3.9)

The discretized equation of state becomes, ∀j ∈ SE, pnj = f(ρnj , enj ).

3.2 Multi-model formulations for the Euler equa-
tions

As was done in sections 1.1.2 and 2.2, we consider a fluid occupying a bounded,
regular domain Ω1 ∈ Rd. A local model Ω2, called the patch, is superimposed to the
global model Ω1, called the substrate, in the neighbourhood of a zone of interest. We
assume for clarity that Ω2 is strictly embedded in Ω1, as shown in Figure 1.1. Quantities
relative to the substrate are denoted by a subscript equal to 1 while those relative to
the patch are denoted by a subscript equal to 2.

We recall that in the multi-model approaches proposed in this work, the momentum
equation is treated in a non conservative finite element form in order to efficiently im-
pose link conditions when dealing with FSI applications4. The Arlequin method offers
a general framework to simultaneously solve multiple model problems while imposing
link conditions between the different models. Moreover, as seen in Chapter 1, the Ar-
lequin framework was successfully used to develop stable multi-model approaches for
elastodynamics. Because of the equilibrium equation of elastodynamics and the mo-
mentum equation in its non conservative form bear similarities, the Arlequin method
is the most natural choice for the treatment of the momentum equation.

In chapter 2, we implemented two multi-model approaches for the treatment of
the convective transport equations that were both stable and accurate. Thus, two
multi-model approaches are studied in this chapter5. The first one, referred to as the
Full Arlequin approach, uses the Arlequin framework for the treatment of all three

4See Appendix A.
5In the next chapter, the solution yielded by the approaches proposed here are compared with

other approaches that do not necessarily use the Arlequin framework.
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equations. The second one, referred to as the Archimera approach6, uses the Arlequin
framework for the treatment of the momentum equation and a Chimera-like approach
for the treatment of convective transport equations.

As seen in Remark 2.2.1, we assume that the outer boundary of the coupling zone
is, for all multi-model approaches, always aligned with the mesh of the patch. For the
inner one, it can, when possible be aligned with the mesh of either model. For each
equation of the Euler equations, a choice of an inner boundary of the coupling zone
needs to be made7. In this work, we only consider cases for which the three equations
have the same inner boundary.

As both multi-model approaches proposed here use the Arlequin framework for the
treatment of the momentum equation, we first focus on that equation.

3.2.1 Extension of the Arlequin method to the momentum
equation

In order to establish the Arlequin formulation8, we have to determine where the
weight parameters fit in the formulation and choose a relevant coupling operator.

3.2.1.1 Weight functions for the momentum equation

In the previous chapter9, we saw that the weight parameters should appear inside
the divergence term. Yet, the momentum is not treated in its conservative form10 so
that special care is needed when introducing the weight functions.

Let us thus consider the strong, continuous Euler equations in their conservative
form. We assume that the same weight functions are used for all terms of every
equation. It reads, ∀i ∈ {1, 2}:

∂

∂t
(αiρivi) + div(αi(ρivi ⊗ vi + piI)) = 0

∂

∂t
(αiρi) + div(αiρivi) = 0

∂

∂t
(αiρiEi) + div(αi(ρiEi + pi)vi) = 0

(3.10)

Given the following
div(αiρivi ⊗ vi) = vi(vi · ∇(αiρi)) + αiρi(vi · ∇)vi + αiρivi(∇ · vi)

= vi(vi · ∇(αiρi) + αiρi(∇ · vi)) + αiρi(vi · ∇)vi
= vi(div(αiρivi)) + αiρi(vi · ∇)vi

(3.11)

and the fact that ∂
∂t

(αiρivi) = αiρi
∂
∂t
vi + vi

∂
∂t

(αiρi), the first equation of (3.10) can be
rewritten:

αiρi
∂

∂t
vi + αiρi(vi · ∇)vi + div(αipiI)) + vi

(
∂

∂t
(αiρi) + div(αiρivi)

)
= 0 (3.12)

6for mixed ARlequin/CHIMERA approach.
7when possible.
8See Appendix B.
9See section 2.2.2.1 and Remark 2.2.7.

10See Appendix A or problem (3.1).
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where we recognize the left hand side of the second equation in (3.10). We thus have:

αiρi
∂

∂t
vi + αiρi(vi · ∇)vi + div(αipiI) = 0 (3.13)

The previous reasoning served the purpose of understanding where the weight func-
tions fit in the non conservative treatment of the momentum equation. When designing
the multi-model approaches, we no longer assume that the weight function should be
the same for every term of every equations. Instead, for flexibility, we assume that a
different set of weight function can be introduce for each term of each equations.

The weak continuous Arlequin method applied to the discretized momentum equa-
tion then reads:

∀(w1, w2, µ) ∈ H1
0 ×H2

0 ×M,


∫
Ω1
α̂v1ρ

n
1 v̇

n
1 · w1 dΩ1 +

∫
Ω1
α̃v1ρ

n
1 (vn−

1
2

1 · ∇)vn−
1
2

1 · w1 dΩ1 −
∫

Ω1
αv1p

n
1I : ∇w1 dΩ1 + cm(w1, λ

n
v ) = 0∫

Ω2
α̂v2ρ

n
2 v̇

n
2 · w2 dΩ2 +

∫
Ω2
α̃v2ρ

n
2 (vn−

1
2

2 · ∇)vn−
1
2

2 · w2 dΩ2 −
∫

Ω2
αv2p

n
2I : ∇w2 dΩ2 − cm(w2, λ

n
v ) = 0

cm(v̇n1 − v̇n2 , µ) = 0
(3.14)

whereM is the mediator space for the momentum equation, cm is a coupling operator
to be defined, λnv the Lagrange multiplier and (α̂v1, α̂v2), (α̃v1, α̃v2) and (αv1, αv2) are three
sets of weight functions (see section 1.1.2). In this chapter, all sets of weight functions
are assumed to be independent of time. For now, we do not specify what type of weight
functions are used and, for generality, allow for the weight functions to be different for
each term of equation (3.14). Note that we used the Green-Ostrogradski formula to
obtain the pressure term.

3.2.1.2 Coupling operator

Many norms have been used to define the coupling operator cm [103] [114] [98]. For
the momentum equation, we use a H1 coupling operator for two reasons. First, it
was theoretically proven in structural mechanics that a H1 coupling allowed for a well
posed problem [103] [114] [98]. Secondly, the H1 coupling operator was shown to yield
precise solutions in structural elastodynamics, whose treatment is very similar to that
of the momentum equation [152]. The continuous coupling operator cm is thus defined
as

∀(v, µ) ∈ H1 ×M, cm(v, µ) =
∫

Ωc

v · µ+ L2∇sv : ∇sµ dΩc (3.15)

where L is a strictly positive parameter homogeneous to a length (typically the thick-
ness of the coupling zone).

3.2.1.3 Extension to the Euler equations

Now that the Arlequin method has been applied to the momentum equation, we focus
on the multi-model framework used for conservation of mass and energy equations. We
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recall that these equations are treated as the convective transport equation studied in
chapter 2 and thus led to two multi-model approaches.

3.2.2 A Full Arlequin approach for the Euler equations
We first consider the Arlequin framework for the treatment of both the conservation

of mass and the conservation of total energy equations.

3.2.2.1 Discrete formulation

We use the discretization and notations of chapter 2 so that the the discretized
convective transport equations can be written as follows.

∀(w1, w2, µ) ∈ V × V ×Mq,

∫
Ω1
α̂q1q̇

n
1 w1 dΩ1 +

∫
Ω1

div(αq1φnq1v
n− 1

2
1 )w1 dΩ1 + ct(w1, λ

n
q ) = 0∫

Ω2
α̂q2q̇

n
2 w2 dΩ2 +

∫
Ω2

div(αq2φnq2v
n− 1

2
2 )w2 dΩ2 − ct(w2, λ

n
q ) = 0

ct(q̇n1 − q̇n2 , µ) = 0

(3.16)

where ct is the L2 coupling operator defined in 2.2.2.2. The conservation of mass
equation is thus obtained with qi = ρi and φqi

= ρi while the conservation of total
energy equation is obtained with qi = ρiEi and φqi

= ρiEi + pi (i represents the model
the quantities belong to). We recall that for both equations, (αq1, αq2) are continuous
piecewise linear set functions, so that, with obvious notations, (αρE1 , αρE2 ) = (αρ1, αρ2).
The other weight functions however, namely α̂qi , do not have to be equal and are
determined later.

Remark 3.2.1. The complete discrete formulation for the Full Arlequin approach is
given in Appendix F.

3.2.3 An Archimera approach for the Euler equation
The second multi-model approach that we consider treats the conservation of mass

and energy equations with the Chimera-like approach introduce in section 2.2.1. This
approach, in which the momentum equation is treated by the Arlequin method and
the other two by the Chimera method will be referred to as the Archimera approach
for hybrid Arlequin/Chimera approach.

Two multi-model approaches have now been introduced. In the next section, we
study their stability in order to ensure that they are computationally feasible.

3.3 Stability study of multi-model approaches
The use of the explicit time integrators defined in section 3.1.2 implies that the

problem formulation is conditionally stable [174]. This implies that the time step
between two instants at which the solution is computed is bounded by a value called
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the critical time step. This critical time step depends on the different variables of the
problem and it is thus necessary to study the stability of each multi-model approach
in order to ensure that the critical time step does not drop and therefore that the
approaches are computationally feasible.

The stability of the Euler equations is associated to acoustic waves. Thus, one way
to study their stability is to study the equivalent wave equation problem formulation.
Thus, for each approach, we study the stability of the equivalent wave equation problem
formulation. In order for our study to be representative of the Euler equations, we
consider the wave equation in its mixed form, as was done in previous works [153].

3.3.1 Mono-model wave equation problem formulation
We consider a fluid occupying a bounded, regular domain Ω1 ∈ Rd. Let ṽ = v0 +v(t),

ã = ˙̃v, ρ̃ = ρ0 + ρ(t) and p̃ = p0 + p(t) denote the velocity, the acceleration, the density
and the pressure. We assume that the equation of state reads p(t) = c2ρ(t), where
c is the velocity of acoustic waves. Moreover, we assume that v0 = 0, ‖v(t)‖ << c,
‖p(t)‖ << ‖p0‖ and ‖ρ(t)‖ << ‖ρ0‖. Finally, the fluid is submitted to prescribed
velocities on Γv ( ∂Ω.

The weak discrete mono-model problem formulation for the wave equation in its
mixed form can be written:

Given ρ0, p0 and v0, find u(t) = (v(t), p(t)) ∈ H1×L2, t ∈ [0, T ] such that ∀ w ∈ H1
0

and ∀ Ω ⊂ Ω1 
∫

Ω1
ρ0
∂v

∂t
· w dΩ1 −

∫
Ω1
pI : ∇w dΩ1 = 0∫

Ω1

∂p

∂t
dΩ1 +

∫
Ω1
ρ0c

2 div(v) dΩ1 = 0
(3.17)

Remark 3.3.1. The problem (3.17) can also be obtained by linearizing problem (3.1)
around the motionless state (see [154]).

Using the same discretization as in section 3.1.2.2, we obtain the following linear
system:

MU̇
n +KUn = 0 (3.18)

where Un = [vn, pn]T , M = diag(M
v
,D

p
) with M

v
the lumped mass matrix, D

p
a

diagonal matrix while K is defined as follows:

K =

 0NN ,NN
K
p

K
v

0NE ,NE

 (3.19)

where K
v
the assembled pressure matrix such that K

v
pn yields the pressure forces at

time tn, K
p
the assembled transport matrix such that K

p
vn yields the flow at time tn

and 0
n1,n2

is the matrix of size n1×n2 with zeros everywheres. We recall that NE is the
number of elements of the mesh and NN the number of degrees of freedom associated
to the velocity. We have:
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

∀ j, k ∈ SN , (M
v
)jk =

(
ρ0

∫
Ω
N̂j dΩ

)
δjk

∀ j, k ∈ SE, (D
p
)jk = |Ωj|δjk

∀ j, k ∈ SE × SN , (K
v
)jk =

∫
Ωj

∂Nk

∂xd(k)
dΩj

∀ j, k ∈ SN × SE, (K
p
)jk =

∫
∂Ωk

ρ0c
2Njn · xd(j) d∂Ωk

(3.20)

where N the shape functions, N̂ are the lumped shape functions of N and where xd(j)
was earlier introduce as the unit vector associated to the direction of degree of freedom
vj.

Time is discretized as usual (see section 3.1.2.1). We assume that both velocity vn
and pressure p are time integrated using the following time integrator.

Un+1 = Un + ∆tU̇ (3.21)

Note that the time step ∆t stays constant over time as both matrices M and K are
independent of time (see (3.22)).

Remark 3.3.2. Note that in order to be representative of the way the Euler equations
are treated, the velocity should be integrated in time at mid time step ∀n ∈ n + 1

2 . In
this section, we use the above time integrator as it makes calculations easier. However,
the main results hold (see Remark 3.3.5 and Appendix D).

The use of this explicit time integrator (3.21) for both the velocity and the pressure
implies that the different problems are conditionally stable. In fact, for the mono-
model problem (3.18), it was shown that the time step ∆t needs to verify the following
condition [174] [177]

∆t < ∆tc = 2
max ω (3.22)

where ω are the eigenvalues of the generalized eigenvalue problem of M and K and
∆tc is called the critical time step.

The lower the critical time step, the more iterations are necessary to reach the
final T and thus the more computationally expensive the simulation is. This is why
it is necessary to ensure that both the Arlequin and the Chimera framework do not
adversely affect the critical time step.

Remark 3.3.3. In practice, the elementary time step is computed as follows:

∆t = csta × min
E∈SE

LE
|vE|+ c

(3.23)

where LE is a characteristic length of the element E, |vE| a norm of the velocity in
that element, c the velocity of the acoustic waves and csta a positive coefficient lower
or equal to 1.
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3.3.2 Study of the influence of the multi-model frameworks
on the stability

As the stability is conditional, the influence of multi-model components on the sta-
bility need to be studied in order to ensure that the critical time step is not adversely
altered and thus that the approaches proposed are computationally feasible. Such
components are (1) the Chimera-like treatment of the flow at the boundaries of the
coupling zone, (2) the coupling matrices of the Arlequin framework and (3) the weight
functions.

Example 3.3.1. Let us consider, for instance, the Full Arlequin approach. The Ar-
lequin framework applied to the wave equation problem in its mixed form can be written
as

MU̇
n +K∗Un = 0 (3.24)

where M = diag(M
v,1,M v,2, Dp,1, Dp,2), K∗ = (I − CT (CM−1CT )−1CM−1)K with

C = diag(C
m
, C

t
) and

K =



0N 1
N ,N

1
N

K
p,1

K
v,1 0N 1

E ,N
1
E

0N 1,N 2

0N 2,N 1

0N 2
N ,N

2
N

K
p,2

K
v,2 0N 2

E ,N
2
E


(3.25)

with N i = N i
N +N i

E the total number of degrees of freedom of model i. We also have,
∀i ∈ {1, 2}:

∀ j, k ∈ S iN , (M
v,i

)jk =
(
ρ0α̂

v
i

∫
Ω
N̂ i
j dΩ

)
δjk

∀ j, k ∈ S iE, (D
p,i

)jk = α̂pi |Ωi
j|δjk

∀ j, k ∈ S iE × S iN , (K
v,i

)jk = α̂vi

∫
Ωj

∂N i
k

∂xd(k)
dΩj

∀ j, k ∈ S iN × S iE, (K
p,i

)jk =
∫
∂Ωk

αpi ρ0c
2N i

jn · xd(j) d∂Ωk

(3.26)

Expression (3.24) is in the form of expression (3.18) so that the time step ∆ta for
the Full Arlequin formulation needs to verify (3.22) where ω are the eigenvalues of the
generalized eigenvalue problem of M and K∗ as defined earlier. We can clearly see that
the critical time step is, a priori, dependent on the coupling matrix C and the weight
functions (through M and K∗). Their influence thus needs to be analysed.

With regards to the influence of both Chimera-like boundary conditions and the
coupling matrices, the analysis done in the previous chapter11 so that neither adversely
affects the stability.

11see sections 2.3.3 and 2.3.2.
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3.3.2.1 Study of the influence of the weight functions

With regards to the influence of the weight parameters on the stability, we use the
same arguments as in the previous two chapters12 and focus on their influence on the
stability of an arbitrary element. Indeed, according to Proposition 1.3.1, if we can
ensure that the weight functions do not cause the critical time step computed for any
element to drop significantly, then the formulation is bound to be stable.

Let us then consider an element E and let UE = [v1, ..., vNN
, pE]T an eigenvector of

the generalized eigenvalue problem, that is, ∃ ω such that K
E
UE = ωM

E
UE. The

element thus has NN degrees of freedom associated to the velocity and only one as-
sociated to the pressure, in line with the discretization proposed in this work. The
components of UE thus verify:

ωρ0

(∫
ΩE

α̂vN̂i dΩE

)
vi =

(∫
ΩE

ᾱv
∂Ni

∂xd(i)
dΩE

)
pE, ∀i ∈ [|1,NN |]

ω
(∫

ΩE

α̂p dΩE

)
pE =

NN∑
i=1

(∫
∂ΩE

αpρ0c
2Ni n · xd(i) d∂ΩE

)
vi

(3.27)

where N̂i is the shape function associated13 to the lumped mass of degree of freedom
i, Ni are the shape functions associated to the velocity, xd(i) the unit vector associated
to the direction of degree of freedom vi and n the outward normal to element E. Note
that the system has been set for the Full Arlequin Approach as α̂p and αp appear.
However, all the computations done in this work are valid for Archimera and obtained
by imposing α̂p = αp = 1.

The first N equations give an expression of vi as a function of pE only. Thus, we
can substitute the value of vi in the last equation. We can simplify the expression14

which, after rearranging, yields

ω2 = 1(∫
ΩE

α̂p dΩE

) NN∑
i=1


∫

ΩE

ᾱv
∂Ni

∂xd(i)
dΩE∫

ΩE

α̂vρ0N̂iN̂i dΩE


(∫

∂ΩE

αpρ0c
2Ni n · xd(i) d∂ΩE

)

(3.28)

In expression (3.28), only the value of αp is already set (see section 3.2.2.1) so that
conditions can be imposed on the other three set of weight functions in order to ensure
that the eigenvalues are the same as those of the mono-model formulation15. In this
work we propose to ensure stability as follows.

First, and in line with stability results from other works [76] [77] [79], [152], we
impose α̂v and ᾱv to be uniform over each element and that α̂v = ᾱv = αv. The way
αv is chosen is arbitrary but has to be compatible with conditions (1.32). Formula

12see section 1.3 and 2.3.4.
13In [156], it is shown that you can associate a shape function to every lumping technique.
14if pE = 0 then UE = ~0 and UE can not be an eigenvector.
15the mono-model eigenvalues are obtained by replacing all the weight functions by 1 in (3.28) (see

equation (3.31)).
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(3.28) then becomes:

ω2 = 1(∫
ΩE

α̂p dΩE

) N∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

αpρ0c
2Ni n d∂ΩE

)
· xd(i) (3.29)

Note that for the Archimera approach, the study stops here as since α̂p = αp = 1.
Hence, for the Archimera approach, imposing α̂v = ᾱv = αv to be uniform on the
element is sufficient to guarantee stability.

In order to ensure stability, we thus impose α̂p uniform on the element and set to:

α̃p =

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

αpρ0c
2Nin d∂ΩE

)
· xd(i)

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

ρ0c
2Nin dΩE

)
· xd(i)

(3.30)

This way, the resulting eigenvalues are the same ones as for a mono-model formula-
tion:

ω2 = 1
|ΩE|

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

ρ0c
2Ni n dΩE

)
· xd(i) (3.31)

Remark 3.3.4. Note that in the case of the wave problem considered here, using α̃p
to define α̂p ensures hyperbolicity as the eigenvalues ω are exactly the same as those of
the mono-model problem. This was not the case for the transport equation studied in
chapter 2.

Remark 3.3.5. Note that when the velocity is integrated at mid time step (see Remark
3.3.2 and section 3.1.2), the calculations lead to the same conclusion (see Appendix D).

3.3.3 Analysis of α̃p for specific elements
As was done in the previous chapter, this section is dedicated to the comparison of

the definition of α̃p proposed in (3.30) with ᾱp, the value resulting from the numerical
integration of αp on the entire element:

ᾱp = 1
|ΩE|

∫
ΩE

αp dΩE (3.32)

The goal is to underline why using α̃p is, once again, preferable. We recall that the
critical time step is proportional to α̂p so that the higher its value, the more stable the
approach.
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3.3.3.1 A 1D element

Let us consider the one dimensional element presented in section 2.3.4.2 and repre-
sented in Figure 2.3. Once again, the value of α̃p is the samefor all considered cases
and equal to 1

2(α1,1 + α1,2). The value of ᾱp, on the other hand, differs.

Case A: ᾱpA = 1
2(α1,1 + α1,2) so that ᾱpA = α̂p

Case B: ᾱpB = 1
2(α1,1(1 + δ)L+ α1,2(1− δ)L) so that ᾱpB > α̂p

Case C: ᾱpC = 1
2(α1,1(1− δ)L+ α1,2(1 + δ)L) so that ᾱpB < α̂p

(3.33)

The analysis completed in section 2.3.4.2 is thus still valid for 1D elements. We
recall its conclusions:

• If the inner boundary of the coupling zone is aligned with the mesh of the substrate
and the outer one is aligned with the mesh of the patch, then ᾱp induces a critical
time greater or equal to the one induced by α̃p. Yet, that latter is computationally
feasible.

• In any other cases, expression α̃p should be used as it leads to a computationally
feasible critical time step, which ᾱp is not ensured to do.

Again, a parallel can be drawn with structural elastodynamics (see remark 2.3.3).

3.3.3.2 2D and 3D elements

Let us consider a triangular element with vertices (Si)i∈[|1;3|], crossed by the bound-
ary of the coupling zone so that the element is in one of the three cases A, B or
C aforementioned in section 2.3.4.2 and represented in Figure 2.5 for 2D triangular
elements.

First, we assume that the weight function is planar on the element so that αp is
linear on its edges. Under such an assumption, we can show16 that α̃p = 1

3(αp(S1) +
αp(S2) +αp(S3)) = ᾱp. We obtained the same result in the previous chapter for α̃q. In
fact, the reasoning done in section 2.3.4.2 still holds. Its conclusions are recalled here:

• There are no ways to ensure that ᾱp > α̃p for an arbitrary element so that α̂p should
always be set to α̃p.

• It is recommended to align the inner boundary of the coupling zone with the mesh of
the substrate as a preventive measure. Note that for the wave problem, this is not
necessary as imposing α̂p = α̃p ensures optimal stability. Yet, when extending to
the Euler equations, this practical measure should be enforced.

Interestingly enough, the value that needs to be assigned to α̂p is not quite the same
as the one found for α̂q in the previous chapter. Yet, they both only take into account
the value of the weight functions along the boundary of the elements. Note that in the
current case, such a value ensures optimal stability, that is, it leaves the critical time
step unaltered for the wave problem.

16For calculations, see Appendix E.
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Remark 3.3.6. Note that although we are assuming, throughout this study, that the
coupling zone are the same for both equations, the results hold if different coupling
zones are chosen.

Remark 3.3.7. The stability results suggests to impose α̂v to be constant on every
element. It is interesting to note that it was one of the approaches proposed for the
treatment of the equilibrium equations for elastodynamics (see chapter 1).

3.3.4 Illustration of previous results on test cases
3.3.4.1 Comparison between α̃p and ᾱp

In the following, we illustrate the importance of the previous results on the set of
test cases introduced hereafter. Let us consider a first regular mesh of size 20m by 20m
and made up of 1.0m by 1.0m quadrangles, as represented in Figure 3.1. The mesh of
the patch is of size 10m by 10m and also made up of 1.0m by 1.0m quadrangles. It is
overlapped in the center of the substrate and rotated by an angle θ, as represented in
Figure 3.1. As seen previously, the critical time step for the wave problem only depends
on the geometry and on the weight functions. Thus, when studying the stability, there
are no need to set initial conditions. We recall that the critical time step and the
elementary critical time steps are computed using definition 3.22.

θ

Figure 3.1: The substrate, in black, is 20m by 20m while the patch, in red, is 10m by
10m. Both are made up of unit quadrangles and the patch is rotated, with respect to
the substrate, by an angle of θ.

In the previous sections, we made three recommendations to ensure stability for the
Full Arlequin approach. First, we argued that aligning the boundaries of the coupling
zone with the appropriate mesh ensures that the elementary critical time step does
not tend to zero with α0, the value of the weight parameter for the substrate in the
free zone (see section 1.1.2). Secondly, we advised to impose a uniform weight on each
element for the momentum equation and finally, we showed that using expression (3.36)
to define α̂p ensured optimal stability. In order to show the relative efficiency of each
parameter, we consider all eight combinations of these parameters which leads to the
eight approaches numbered in Table 3.1.
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Approach # Γin α̂p α̂v

1 substrate boundary averaged
2 substrate boundary not averaged
3 substrate volume averaged
4 substrate volume not averaged
5 patch boundary averaged
6 patch boundary not averaged
7 patch volume averaged
8 patch volume not averaged

Table 3.1: Approaches numbering – The outer boundary of the coupling zone is always
assumed to be aligned with the mesh of the patch while the inner boundary, denoted
Γin, can be aligned with either one. The value of α̂p can either be defined on the
’volume’ by expression (3.32) or on the ’boundary’ using expression (3.36). Finally, α̂v
is either averaged or not (we assume that α̂v = ᾱv).

Two sets of test cases are considered. First, we consider the test case presented in
Figure 3.1 for θ = 7.5◦. For each approach, we compute the ratio of the critical time
step for the test case over the reference, optimal value of the test case17 for different
values of α0. The meshes and the weight functions are represented in Figures 3.2 and
3.3 for an inner boundary of the coupling zone aligned with the mesh of the substrate
and that of the patch respectively.

Figure 3.2: Multi-model mesh for the test case (left). The mesh of the substrate is
represented in black while that of the patch is represented in red. The boundaries of
the coupling zone are represented in blue. The weight functions are also represented,
first αv (center left) and then αp (right). In this example, α0 = 1.0× 10−3.

The computed ratios are represented in Figure 3.4. We can observe that only ap-
proaches 1 and 5, that is, the ones following our recommendations, yield an optimal
time step. All the other ones do not reach optimal time step and although approaches
2, 3 and 4 still maintain a reasonably high time step, there are no way predicting what
that values is or if it remains high for other problems. Note that approaches 6 to 8, for
which the coupling zone is aligned with the mesh of the patch, are the ones for which
the time step drops the most.

A second set of test case is now considered. The value of α0 is now set to 1.0×10−6 and
the angle θ varies from 0◦ to 45◦ (for symmetry reasons). A few of those configurations

17obtained with all weights functions set to 1.
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Figure 3.3: Multi-model mesh for the test case with boundaries of the coupling zone
aligned with the mesh of the patch (left). The mesh of the substrate is represented
in black while that of the patch is represented in red. The boundaries of the coupling
zone are represented in blue. The weight functions are also represented, first αv (center
left) and then αp (right). In this example, α0 = 1.0× 10−3.
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Figure 3.4: Evolution of the normalised elementary critical time step for different values
of α0 for all 8 approaches defined in Table 3.1.

are represented in Figures 3.5 and 3.6.

Figure 3.5: Multi-model meshes with boundaries of the coupling zone aligned with the
mesh of the patch for angles (from left to right) 10◦, 20◦, 30◦, 40◦ and 45◦. The mesh
of the substrate is represented in black while that of the patch is represented in red.
The boundaries of the coupling zone are represented in blue. The inner boundary of
the coupling zone is aligned with the mesh of the substrate.

For each approach and each configuration, we compute the ratio of the critical time
step for the test case over the reference, optimal value18. The results are represented

18obtained with all weights functions set to 1.
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Figure 3.6: Multi-model meshes with boundaries (in blue) of the coupling zone aligned
with the mesh of the patch for angles (from left to right) 10◦, 20◦, 30◦, 40◦ and 45◦.
The mesh of the substrate is represented in black while that of the patch is represented
in red.

in Figure 3.7.
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Figure 3.7: Evolution of the normalised elementary critical time step for different values
of θ for all 8 approaches defined in Table 3.1.

We can observe that the only approaches that yield an optimal value and are inde-
pendent of the geometry are approaches 1 and 5 which have in common that they follow
our recommendations. Interestingly enough, even when θ = 0, only the approaches 1
and 5 yield an optimal time step, as can be seen in Table 3.2. Note that as the mesh
of the patch and the substrate are conforming for θ = 0, approaches 1 and 5, 2 and 6,
3 and 7 and approaches 4 and 8 are the same.

Approach # 1-5 2-6 3-7 4-8
∆t/∆tr 1.000 0.926 0.955 0.970

Table 3.2: Normed value of the critical time step for each approach (θ = 0).

We can see that even when the meshes are conforming, the recommendations given
should be followed in order to ensure that the Arlequin framework does not alter the
time step.
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Remark 3.3.8. Note that it was verified that only approaches 1 and 5 guarantee an
optimal critical time step for triangular elements.

Remark 3.3.9. Note that all these computations were done for a proper integration
of the flow. Yet, if αp is averaged on each edge, similar results and behaviours are
obtained.

3.3.4.2 Comparison between α̃p and α̃q

We also compared the modified definition α̃p from expression 3.30 with α̃q from
expression 3.32, the one obtained in the previous chapter (see section 2.3.4) for the
convective transport equation alone. We consider the previous two tests introduced
in the previous section and compare α̃p and α̃q when α0 and θ vary. The different
approaches and their specificities are given in Table 3.3.

Approach # Γin α̂p α̂v

1 substrate α̃p averaged
A substrate α̃q averaged
B substrate α̃q not averaged
C patch α̃q averaged
D patch α̃q not averaged

Table 3.3: Approach numbering – The outer boundary of the coupling zone is always
assumed to be aligned with the mesh of the patch while the inner boundary, denoted
Γin, can be aligned with either one. The value of α̂p can either be set to α̃p or α̃q.
Finally, α̂v is either averaged or not (we assume that α̂v = ᾱv).

The results of the first study, for which α0 varies at a set θ = 7.5◦, are represented in
Figure 3.8. We observe similar results as in the previous section. Indeed, we can see
that (1) if α̂p is not set to α̂p then the optimal time step is not reached (for any value
of α0) and (2) aligning Γin with the substrate yields higher values of the time step than
with the patch. An interesting difference is that the time step is not monotonously
decreasing19 for approach D which has not been observed for any other approaches.
Finally, note that using α̃q yields higher time step than ᾱp.

The results of the second study, for which θ varies at a set α0 = 1.0 × 10−6, are
represented in Figure 3.9. The observations made for the first study hold. We can
see that although all the approaches imposing α̂p = α̃q only reach the optimal time step
occasionally. Moreover, we once again observe that when Γin is aligned the substrate
the critical time step drops, especially around θ = 23◦ and θ = 36◦. Finally, let us
mention that using α̃q seems preferable to ᾱp.

19when α0 decreases.
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Figure 3.8: Evolution of the normalised elementary critical time step for different values
of α0 for all 5 approaches defined in Table 3.3.

θ

0 5 10 15 20 25 30 35 40 45

∆
t/
∆

t
r

0

0.2

0.4

0.6

0.8

1

1

A

B

C

D

Figure 3.9: Evolution of the normalised elementary critical time step for different values
of θ for all 5 approaches defined in Table 3.3.

3.3.5 Extension to the Euler equations

The aim of this last section is to propose an extension of formula (3.30) to both
conservations equations of the Euler equations. In order to do so, we note that formula
(3.30) can be written:
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α̃p =

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

αpφpNin d∂ΩE

)
· xd(i)

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0N̂i dΩE


(∫

∂ΩE

φpNin dΩE

)
· xd(i)

(3.34)

with φp = ρ0c
2 an ’convected-like’ term. We thus propose to use the same formula for

both transport equations of the Euler equations by substituting φnq to φp in the above
formula. We then obtain:

α̂q(tn) =

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρnN̂i dΩE


(∫

∂ΩE

αqφnqNin d∂ΩE

)
· xd(i)

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

ρnN̂i dΩE


(∫

∂ΩE

φnqNin d∂ΩE

)
· xd(i)

(3.35)

with q = ρ or ρE.

However, with such a definition, the value of the weight function for the mass matrices
needs to be recalculated at every time step as it depends on both the flow φnq . In order
to circumvent this issue, we note that in formula (3.30), ρ0 and c are uniform and
constant over time so that we can rewrite the formula as

α̂pmodified =

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

N̂i dΩE


(∫

∂ΩE

αpNin dΩE

)
· xd(i)

NN∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dΩE∫

ΩE

N̂i dΩE


(∫

∂ΩE

Nin dΩE

)
· xd(i)

(3.36)

This formula no longer introduces the flow nor the density and is thus independent
of time. This is why, in this work, we chose to impose α̂q = α̂pmodified for q = ρ or ρE.
Let us note that this expression is none other than the one that guarantees an optimal
time step for the wave equation problem.

As seen previously, the inner boundary of the coupling zone should be aligned with
the mesh of the substrate as a preventive measure (see section 3.3.3.2). Finally, we
recall that, in practice, the time step for the Euler equations is computed as follows:

∆t = csta × min
E∈SE

LE
|vE|+ |cE|

(3.37)
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where LE is a characteristic length of the element E, |vE| a norm of the velocity in
that element, |cE| the norm of the speed velocity in the element and csta the security
coefficient.

Note that in all the simulations presented in the next chapter, the recommendations
detailed here were all followed and no stability issues were observed.

3.4 Conclusion
In this chapter, we formulated two multi-model approaches for the treatment of the

fluid component in view of FSI applications. In particular, this chapter put emphasis
on the stability of such multi-model approaches.

As the influence of the multi-model frameworks on the stability can not be studied
for the non linear Euler equations, we introduced the equivalent acoustic problem. A
recurring reasoning was led as we first recalled that it is sufficient to study the stabil-
ity of the problem on a single element. Then, we introduced the relevant generalized
eigenvalue problem whose eigenvalues define the critical time step. Next, we studied the
influence of the multi-model frameworks on those eigenvalues and, thus, on the critical
time step. Finally, we illustrated how the approaches proposed ensure a computationally
feasible time step, which is not, a priori, guaranteed.

Now that we have defined two multi-model approaches for the treatment of the Euler
equations – and showed that they were stable when explicit time integrators are used –
we study the relative accuracy of each approach. This is done in the next chapter.
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The objective of this thesis is to develop a multi-model approach able to account for
local effects in transient FSI1 simulations. In the last chapter, we formulated two multi-
model approaches for the treatment of fluid dynamics. In order to ensure that they are
computationally stable, we led a stability study and gave practical recommendations.
In this chapter, we study the accuracy of the two multi-model approaches in order to
determine if one is more precise than the other and should therefore be preferred for
FSI applications.

In order to study the accuracy, we first consider a test case at equilibrium (section
4.1) and ensure that the fluid remains still (section 4.2)). Then, we introduce the
strategy for the study of accuracy and briefly introduce two test cases (section 4.3). A
convergence study is led on a test case for an ideal gas law as a first study of accuracy
4.4. Next, a precision study of these approaches is led on another test case for two gas
laws 4.5. Finally, we conclude by discussing the advantages of using either approaches
(section 4.6).

1Fluid Structure Interaction.
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4.1 Steady state case
An easy test case for testing an approach is to observe if it maintains a stable

equilibrium. Indeed, when at a stable equilibrium, the solution is supposed to remain
constant over time and it is thus easy to evaluate if the solution yielded by the multi-
model approaches is accurate.

We thus consider the test case presented in Figure 4.4 whose mesh is introduced in
section 4.4. We assume that both models are filled with a still fluid (no initial velocity)
at uniform pressure and density equal to p0 = 1.0 × 105 Pa and ρ0 = 1.30 kg.m−3

respectively. The heat capacity ratio is equal to γ = 1.402, which is representative of
typical atmospheric conditions.

Figure 4.1: Evolution of the velocity (top) and pressure (bottom) at times t0 = 0ms,
t1 = 1ms, t2 = 10ms and t3 = 100ms (from left to right).

We can observe in Figure 4.1 that the fluid does not remain still. In fact, velocities
of the order of magnitude of the speed of sound2 arise and variations of up to 50% of
p0 appear after3 10ms. The quantities ‖v‖L2(Ω)(t) and ‖p− p0‖L1(Ω)(t) are computed
for both multi-model approaches and represented in Figure 4.2.

4.2 Analysis of divergence-free force terms
Due to the introduction of the weight functions4 in the considered formulations, the

discrete Full Arlequin and Archimera problems are not able to cope with divergence-
free force terms such as a uniform pressure so that a specific treatment is then needed.
In order to illustrate this numerical phenomenon, let us consider, for instance, the case
of a cylinder with non-deformable boundaries introduced in the previous section.

It is clear that the addition of any uniform pressure field to the entire domain should
not alter the solution for the kinematic quantities. In the next sections, we show how

2An ideal gas law is used so that cs ≈ 328m.−1, see section 4.3.
3A shock wave would have had the time to travel 30m during that time.
4See section 3.2.
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Figure 4.2: Evolution of ‖v‖ and ‖p− p0‖ over time.

this is the case for the continuous formulation but not for the discrete one. Note that
as we only consider the momentum equation, the following is both valid for the Full
Arlequin and Archimera approaches.

4.2.1 Continuous formulation
We thus consider the following problem, for which the time is discretized5 but the

variables are continuous on the domain. For the sake of conciseness, we neglect the
convective terms.

Given {ρni , pni } , i ∈ {1, 2}, the accelerations on each model v̇n1 ∈ H1
0 (Ω1), v̇n2 ∈

H1(Ω2) and the Lagrange multiplier λv ∈ H1(Ωc) are solutions of :

∀w1 ∈ H1
0 (Ω1), ∀w2 ∈ H1(Ω2), ∀µ ∈ H1(Ωc),

∫
Ω1
α̂v1v̇

n
1 · w1 dx+ cm(w1, λv) =

∫
Ω1
ᾱv1p

n
1I : ∇w1 dx (4.1a)∫

Ω2
α̂v2v̇

n
2 · w2 dx− cm(w2, λv) =

∫
Ω2
ᾱv2p

n
2I : ∇w2 dx (4.1b)

cm(v̇n1 − v̇n2 , µ) = 0 (4.1c)

Then, if a uniform pressure field p0 is added to both p1 and p2, the accelerations
are unchanged and a new Lagrange multiplier λv + λ0 needs to be found such that:

∀w1 ∈ H1
0 (Ω1), ∀w2 ∈ H1(Ω2),


cm(w1, λ0) =

∫
Ω1
ᾱv1p0∇ · w1 dx (4.2a)

cm(w2, λ0) = −
∫

Ω2
ᾱv2p0∇ · w2 dx (4.2b)

As ᾱv1 + ᾱv2 = 1 and because ᾱv1 is uniformly equal to ᾱv1f on Ωf , equation (4.2b) gives:

∀w2 ∈ H1(Ω2),
5See section 3.1.2.
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cm(w2, λ0) = −
∫

Ω2
p0∇ · w2 dx+

∫
Ω2
ᾱv1p0∇ · w2 dx (4.3a)

= −
∫
∂Ω2

p0w2 · n dx+
∫

Ωc

ᾱv1p0∇ · w2 dx+
∫
∂Ωf

ᾱv1fp0w2 · n dx (4.3b)

Furthermore, ᾱv1 being uniformly equal to 1 on Ω1\Ω2 and uniform on Ωf , the equation
(4.2a) gives:

∀w1 ∈ H1
0 (Ω1),

cm(w1, λ0) = −
∫
∂Ω2

p0w1 · n dx+
∫

ΩC

ᾱv1p0∇ · w1 dx+
∫
∂Ωf

ᾱv1fp0w1 · n dx (4.4)

Assuming a sufficent regularity of the domain Ωc, there exist continuous extension
operators from H1(Ωc) to H1

0 (Ω1) and to H1(Ω2) (see, e.g., [178]). Besides, the re-
striction of an element of H1

0 (Ω1) or H1(Ω2) to Ω1 belongs to H1(Ωc). Then, the two
equations (4.2a) and (4.2b) are equivalent to:

∀wc ∈ H1(Ωc),

cm(wc, λ0) = −
∫
∂Ω2

p0wc · n dx+
∫

ΩC

ᾱv1p0∇ · wc dx+
∫
∂Ωf

ᾱv1fp0wc · n dx (4.5)

Then, cm being an inner product of H1(Ωc), and assuming that the right hand side is a
continuous linear functional ofH1(Ωc) with respect to wc, then the Riesz representation
theorem gives that there exists a unique λ0 ∈ H1(Ωc) solution of this equation. So, as
expected, the solution of the continuous arlequin problem for the kinematic fields are
not affected by the addition of a uniform component in the pressure field.

Remark 4.2.1. If the weight functions are chosen uniform in the coupling zone, then
expression (4.5) becomes:

∀wc ∈ H1(Ωc),

cm(wc, λ0) = (ᾱv1c − 1)
∫
∂Ω2

p0wc · n dx+
(
ᾱv1f − ᾱv1c

) ∫
∂Ωf

p0wc · n dx (4.6)

4.2.2 Discrete formulation
However, as observed in the representative example in section 4.1, the previous result

does not hold for the discrete problem. Let T1 and T2 be the meshes of each model
respectively. We now have w1 ∈ V1 ⊂ H1

0 (Ω1), w2 ∈ V2 ⊂ H1(Ω2) and λ0 ∈ M ⊂ V1
and equations (4.2a) and (4.2b) are no longer equivalent to equation (4.5). Then, there
is no guarantee that there a Lagrange multiplier exists such that (4.2a) and (4.2b) are
both verified. Hence, the accelerations can no longer be assumed to be null so that it
is as if ghost forces arise. In the following, we propose a way to handle these ghost
forces.
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Let us now consider the discrete system resulting from the discretization of (4.1)
(see Chapter 3 for notations):

Mn
v,1 0 CT

1
0 Mn

v,2 CT
2

C1 C2 0


 v̇n1
v̇n2
λ

 =

 F 1 + p0F
0
1

F 2 + p0F
0
2

0

 (4.7)

p0F
0
1 and p0F

0
2 represent the uniform component of the pressure field. Assuming that

the discretized equations (4.2a) and (4.2b) both have solutions denoted λ1 and λ2, that
is, CT

1 λ1 = p0F
0
1 and CT

2 λ2 = p0F
0
2, then the system can be written:

 M1 0 CT
1

0 M2 −CT
2

C1 −C2 0


 v̇n1
v̇n2
λ′

 =


F 1 + CT

1

(
λ1−λ2

2

)
F 2 + CT

2

(
λ1−λ2

2

)
0

 (4.8)

where λ′ = λ − 1
2(λ1 + λ2). We can observe that the perturbation at the right hand

side of the system due to the uniform component of the pressure field is proportional
to the difference between the solution of the discretized equations (4.2a) and (4.2b). A
simple way to filter out the uniform component of the pressure is to enrich the coupling
matrices as follows:

M1 0 CT
1 F 0

1
0 M2 −CT

2 F 0
2

C1 −C2 0 0
F 0T

1 F 0T
2 0 0



v̇n1
v̇n2
λ
η

 =


F 1 + p0F

0
1

F 2 + p0F
0
2

0
0

 (4.9)

which is equivalent to:
η = p0 (4.10a) M1 0 CT
1

0 M2 −CT
2

C1 −C2 0


 v̇n1
v̇n2
λ′

 =

 F 1
F 2
0

 (4.10b)

The computation of F 0
1 and F 0

2 is completed before the time integration is initiated
by creating a fictive motionless problem for a fluid at a uniform pressure. The η
unknown will then match the actual pressure uniform component in the coupling zone
at each time step. In the case of a problem with non fixed-wall boundaries, only the
degrees of freedom related to shape functions intersecting the coupling zone should be
kept in the computed F 0

1 and F 0
2. The values of the degrees of freedom located at the

non-fixed wall boundaries must then be set to zero.

Remark 4.2.2. This phenomenon is not restricted to the pressure field for fluid dy-
namics but, more generally, to any divergence-free component in a force/flux-like term.
Indeed, in the general case of a conservation equation, every divergence-free component
in the flux (which then should have no influence on the solution) will show the same
pathology for some given discretization due to the weight functions which make such a
component not divergence-free any more. For example, for explicit structural dynamics
problems considered in 1, the stress field will behave the same. Indeed, if at a stable
equilibrium, the solution is a uniform stress field on the domain, ghost forces will arise.
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Yet, it usually does not occur for structural problems as the stress field at equilibrium
is usually null6. Yet, special care should be taken when considering a residual stress
field or pre-stressed material. Note that this phenomenon is not limited to dynamics
and can occur for static structural computation within the Arlequin framework.

The stability study and the extension of the Arlequin framework to divergence-free
force terms are now complete. In the next section, we compare the accuracy of the
different multi-model approaches on two test cases.

4.3 Applications and examples
In the following test cases, the equation of state is assumed to be that of the ideal

gas law, that is, p = (γ− 1)ρe, where γ is the heat capacities ratio. It is representative
of how air behaves in normal conditions.

In the following two sections, we consider two test cases and for each one, we in-
troduce a quantity of interest to evaluate which of the two multi-model approaches
developed in this work is more accurate. A "Full Chimera" approach is also consid-
ered for which all three Euler equations are treated by a Chimera-like treatment. The
purpose of introducing such a method is to compare the accuracy of the multi-model
approaches developed in this work with the one yielded by a reference approach in the
literature. Finally, one last multi-model approach is considered which uses a Chimera-
like approach for the treatment of the momentum equation and the Arlequin framework
for the treatment of the convective transport equations. The aim of considering such
an approach, hereafter referred to as the Chimequin approach7, is to observe if trends
arise due to the framework used. The four multi-model approaches are recalled in
Table 4.1.

Momentum
Arlequin Chimera

Transport Arlequin Full Arlequin Archimera
Chimera Chimequin Full Chimera

Table 4.1: Multi-model approaches designation depending on the framework chosen
for the momentum equation and the one for the transport equations (conservation of
mass and energy equations).

4.4 Local introduction of a fixed cylinder

4.4.1 Presentation
We consider a closed square domain filled with a fluid. In its center lies a rigid, fixed,

cylinder as shown in Figure 4.3. The domain is 100m long while the cylinder has a 4m
6This is the case for the applications considered in 1 which is why ghost forces were not observed.
7for hybrid CHIMEra/ArlEQUIN approach.
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wide diameter. The fluid is assumed to slip on every wall of the domain, including the
cylinder. There are no initial motion in the domain8 and the fluid is assumed to be in
two different states. In one region (in blue in Figure 4.3), the initial density of the fluid
is ρL = 1.3 kg.m−3 and its initial pressure is pL = 1.0 × 105 Pa. In the second region
right of the cylinder (in brown in Figure 4.3), the density is of the fluid is ρR = 13
kg.m−3 and its initial pressure is pR = 1.0× 106 Pa.

Figure 4.3: The mesh of the mono-model problem formulation is represented (left) as
well as the initial conditions (right).

A shock wave is initiated at the boundary of the two zones (x = 24m). It spreads
leftward and hits the cylinder. As the wave advances past the cylinder, the wave
bounces off its right side and the pressure on its left side decreases. The wave continues
to propagate until it reaches the left wall which is when the simulation ends.

An example of a mono-model mesh is represented in Figure 4.3. Away from the
cylinder, the mesh is made of 2m × 2m square quadrangles. The quadrangles progres-
sively diminish in size towards the cylinder so that the cylinder is discretized by 40
edges. the reference solution is obtained on a mesh four times smaller than the one
in Figure 4.3, that is, with 0.5m × 0.5m quadrangles away from the cylinder and a
cylinder discretized with 169 edges.

The multi-model meshes are represented in Figure 4.4. The main domain, referred
to as the substrate and in black in the figure, is uniformly composed of the same 2m
× 2m square quadrangles. The patch, in red in the figure, models the cylinder. Its
mesh is in the shape of a web, which is adapted to circles, and is designed so that the
cylinder has a similar discretization as in the mono-model mesh (see Figure 4.4). On
the farthest ring of the mesh, the elements are about the same size as those of the
substrate. Finally, in Figure 4.4, we show the zones as well as the weight functions.

In all the simulations presented hereafter, we used a quadratic and linear artificial
viscosity9 set to 2.56 and 0.1 respectively while the security coefficient is set10 to csta =
0.45. When relevant, we imposed α̂ρ = α̂ρE = α̂p and α0 = 1.0 × 10−6. As usual, the
outer boundary of the coupling zone Γout is aligned with the mesh of the patch while the
inner one is aligned with the one of the substrate. The size of the coupling zone is such
that two at least one entire element of the patch is included in the radial direction for
every angle. For all three equations, the mediator space is discretized as the substrate.

8the velocity is uniformly equal to 0.
9See for instance [179]. Note that the artificial is necessary in order to handle the dissipated energy

by shocks.
10The use of artificial viscosity imposes the security coefficient to be inferior to 0.5.
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Figure 4.4: Top left – The multi-model meshes are represented as well as the bound-
aries Γ1→2 (red) and Γ2→1 (blue). Bottom left – Comparison of the discretization of
the cylinder for the multi-model mesh (red) and the mono-model one (black). As can
be observed, they are fairly similar. Center – Representation of the weight function
αv1 (top) and αq1 (bottom) for the substrate. Right – Representation of the weight
function αv2 (top) and αq2 (bottom) for the patch.

4.4.2 Solution
The solution for the norm of the velocity as well as the pressure are represented in the

following figures. The reference solution is presented in Figure 4.5 and the multi-model
ones in Figures 4.6 - 4.9.

Figure 4.5: Reference solution for the velocity v (top row) and the pressure p at instants
(from left to right) t0 = 0.0ms, t1 = 10.0ms, t2 = 40.0ms, t3 = 55.0ms, t4 = 90.0ms
and t0 = 120.0ms.

We can observe that, visually, the solutions yielded by the multi-model approaches
are very similar to the reference one.
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Figure 4.6: Full Arlequin solution for the velocity v (top row) and the pressure p at
instants (from left to right) t0 = 0.0ms, t1 = 10.0ms, t2 = 40.0ms, t3 = 55.0ms,
t4 = 90.0ms and t0 = 120.0ms.

Figure 4.7: Archimera solution for the velocity v (top row) and the pressure p at
instants (from left to right) t0 = 0.0ms, t1 = 10.0ms, t2 = 40.0ms, t3 = 55.0ms,
t4 = 90.0ms and t0 = 120.0ms.

Figure 4.8: Full Chimera solution for the velocity v (top row) and the pressure p at
instants (from left to right) t0 = 0.0ms, t1 = 10.0ms, t2 = 40.0ms, t3 = 55.0ms,
t4 = 90.0ms and t0 = 120.0ms.

4.4.3 Study of the accuracy of the multi-model approaches
In order to evaluate the accuracy of the multi-model approaches, we introduce the

following quantity of interest:

Fp(t) =
∫

cylinder
p(t) n · x dΩ (4.11)

where p denotes the pressure, n the normal to the cylinder and x the unit vector in the
horizontal direction. Fp, the resulting force along the x axis, is represented in Figure
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Figure 4.9: Chimequin solution for the velocity v (top row) and the pressure p at
instants (from left to right) t0 = 0.0ms, t1 = 10.0ms, t2 = 40.0ms, t3 = 55.0ms,
t4 = 90.0ms and t0 = 120.0ms.

4.10 for all multi-model approaches and compared with the reference solution.
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Figure 4.10: Fp is represented for all four approaches. On all figures, the reference
value of Fp, computed for the mono-model problem, is represented in blue.

A few observations can be made. First, we observe that, despite the use of artificial
viscosity, both multi-model approaches slightly oscillate after the front of the shock
has reached the cylinder. Also, both approaches present a small overshoot of Fp at its
peak (3.9% for the Full Arlequin approach and 2.9% for the Archimera one). The Full
Arlequin approach yields a more accurate solution than the Archimera when the force
stabilizes (after t = 60ms). Moreover, for the Archimera approach, the front of the
shock hits the cylinder slightly late.
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In order to quantify these observations, we introduce the following error measure:

EFp =

∫
t
|Fm
p (τ)− F r

p (τ)| dτ∫
t
|F r
p (τ)| dτ

(4.12)

where r refers to the reference solution and m to the multi-model approach being
compared. A convergence study was led for both multi-model approaches. Three
meshes of respectively 620, 2160 and 8000 degrees of freedom were considered. The
value of the error measure defined by expression (4.12) is represented for all three
meshes and all multi-model approaches in Figure 4.11.
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Figure 4.11: Convergence study for the error measure EFp for all four multi-model
approaches.

We can observe on that convergence study that the Full Arlequin presents better
convergence properties than the Archimera one. Indeed, not only does it have a faster
convergence rate but it yields solution with a lower error measure EFp . Yet, more cases
should be tested in order to claim that the Full Arlequin approach is more accurate
than the Archimera. However, for memory reasons we were not able to accomplish it.

Still, it is interesting to notice that both are more accurate than the Chimera-like
approach which implies (1) that the ghost forces due to the divergence free pressure
term was efficiently handled and (2) that both the Full Arlequin and the Archimera
approaches are worth being considered as an alternative to Chimera approaches.

Finally, we can note that the two most accurate multi-model approaches are the
ones that use an Arlequin coupling for the transport equations while the two least
accurate ones use a Chimera-like approach for them.

4.5 Local insertion of a channel between chambers

4.5.1 Presentation
We consider two different chambers of equal size but in different states, as shown in

Figure 4.12. The chambers are 4m apart and have equal size 20m × 10m. The fluid in
both chambers is assumed to be initially motionless. The fluid in the left chamber is at
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density ρL = 1.3 kg.m−3 and pressure pL = 1.0×105 Pa while the fluid in the right one
is at density ρR = 6.8 kg.m−3 and pressure pR = 5.0× 106 Pa. A 4m × 2m connecting
channel joins the two chambers. The discontinuity in fluid properties occurs in the
middle of the channel, as can be seen in Figure 4.12. The fluid is assumed to slip on
each wall of the domain. Finally, we used a quadratic and linear artificial viscosity (see
[179]) set to 2.56 and 0.1 respectively and a security coefficient11 set to csta = 0.45.

Figure 4.12: The mono-model mesh is represented discretized with quadrangle of same
size and such that six elements fit vertically in the channel (left). Initial conditions
for the channel test case is also represented (right). The domain in blue is at initial
conditions (pL, ρL) and the one in brown at initial conditions (pR, ρR). The initial
conditions are such that the temperature is uniform at t = 0s.

We only consider the first 120ms of the simulation, the time it takes for the shock
wave spreading left to bounce off the far left wall and reach the channel. During that
time the fluid in the right chamber pours into the left one and waves are initiated at
the discontinuity and spread through the chambers, as can be seen in Figure 4.13. In
the latter, the solution for the horizontal velocity v · x (top), the vertical velocity v · y
(bottom) and pressure are represented at instants t0 = 10ms, t0 = 18ms, t0 = 35ms,
t0 = 60ms, t0 = 90ms and t0 = 120ms. We can observe that a strong current is created
in the horizontal axis and goes from the channel to the far left wall. In the left chamber,
the fluid circles back along the top and bottom walls. In comparison, the right chamber
is rather motionless, except at the right end of the channel where the fluid accelerates
as it enters the channel. Yet, we can see a rarefaction wave propagating rightward as
the pressure in that chamber slowly decreases.

Remark 4.5.1. Note that as we are using a FEM discretization for the momentum
equation, it is difficult to ensure the slip condition for the different corners of the
channel. In this work, we chose to impose v ≡ 0 at every such corner. This implies
that there is a ’boundary layer’ effect around these corners and it is as if the fluid was
artificially viscous. The smaller the elements in these regions, the less intense this
effect is.

4.5.2 Multi-model solutions
The multi-model mesh is represented in Figure 4.14. The chambers (in black in

the figure) are made of square elements of length 2.3m while the channel is inserted
through the patch (in red in the figure). In Figure 4.14 the weight functions αv and αp
are also represented.

11The use of artificial viscosity imposes the security coefficient to be inferior to 0.5.
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Figure 4.13: Mono-model solution for the channel test case for the horizontal (top) and
vertical (middle) velocity as well as the pressure (bottom) at different instants (from
left to right, from top to bottom). The solution is represented for the mesh represented
in Figure 4.12.

Figure 4.14: The meshes of the substrate (black) and the patch (red) are represented
on the left. The weight functions αv (top) and αp (bottom) are represented in the
center (substrate) and the left (patch) figures. Here, only two elements fit vertically in
the channel so as to better assess the spatial evolution of the weight functions.

The solution obtained for the different multi-model approaches are represented here-
after. For those simulations, the patch is made up of the same elements as the mono-
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model mesh while the substrate is slightly coarser12 (so that the models are not com-
patible in Ωc). For all these computations, we used a quadratic artificial viscosity set
to 2.56 and a csta parameter set to 0.45. When relevant, we imposed α̂ρ = α̂ρE = α̃p

and α0 = 1.0×10−6. As always, the outer boundary of the coupling zone Γout is aligned
with the mesh of the patch and the inner one Γin is aligned with the mesh of the sub-
strate. The size of the coupling zone is such that two entire elements of both models
are inside the coupling zone in both directions. The mediator space is discretized as
the substrate for the momentum equation and as the patch for the transport equations.

Remark 4.5.2. There are actually two coupling zones, on the left and one on the
right. For the Full Arlequin and the Archimera approaches, we thus used two distinct
Lagrange multipliers to handle the ghost forces (see section 4.2).

Figure 4.15: Full Arlequin solution for the channel test case for the horizontal (top)
and vertical (bottom) velocities at different instants (from left to right, from top to
bottom).

We can see that, qualitatively, all the multi-model approaches yield a solution very
close to the mono-model solution obtained in section 4.5.1.

Remark 4.5.3. Note that in all the figures showing the solution of the multi-model
solutions, the exact solution in the coupling zone is not computed. Instead, the solution
of the patch was arbitrarily shown.

12To be exact, the length of the square elements is equal to 10
29m ≈ 0.345m.
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Figure 4.16: Archimera solution for the channel test case for the horizontal (top) and
vertical (bottom) velocities at different instants (from left to right, from top to bottom).

Figure 4.17: Full Chimera solution for the channel test case for the horizontal (top)
and vertical (bottom) velocities at different instants (from left to right, from top to
bottom).
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Figure 4.18: Chimequin solution for the channel test case for the horizontal (top) and
vertical (bottom) velocities at different instants (from left to right, from top to bottom).

Figure 4.19: Full Arlequin solution for the channel test case for the pressure at different
instants (from left to right, from top to bottom).

Figure 4.20: Archimera solution for the channel test case for the pressure at different
instants (from left to right, from top to bottom).
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Figure 4.21: Full Chimera solution for the channel test case for the pressure at different
instants (from left to right, from top to bottom).

Figure 4.22: Chimequin solution for the channel test case for the pressure at different
instants (from left to right, from top to bottom).
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4.5.3 Convergence study
In order to compare the accuracy of the multi-model approaches, a convergence study

was led. The meshes of both models are gradually refined. The number of elements in
the vertical direction of channel increases from 2 to 10 so that the patch is made up of
square elements of length of 2

Ne
m where Ne is the number of elements in the vertical

direction. The mesh of the substrate is made up of slightly coarser square elements13.
For all these computations, we used a quadratic artificial viscosity set to 2.56 and

a csta parameter set to 0.45. When relevant, we imposed α̂ρ = α̂ρE = α̃p and α0 =
1.0 × 10−6. As always, the outer boundary of the coupling zone Γout is aligned with
the mesh of the patch and the inner one Γin is aligned with the mesh of the substrate.
The mediator space is discretized as the substrate for all three equations.

The reference solution is computed on a mono-model mesh made up of 13, 312 square
elements of length 0.125m corresponding to 16 elements in the vertical direction of the
channel. For the reference solution, we also used a quadratic artificial viscosity set to
2.56 and a csta parameter set to 0.45.

In order to evaluate the accuracy of the multi-model approaches, we consider two
quantities of interest: the flow at the right end of the channel, denoted f(t) = ρ(t)v(t)L,
and the pressure forces on the left wall of the domain. We thus consider the following
two error measures:

Ef = 1
NT

NT∑
n=1

|fm(tn)− f r(tn)|
|f r(tn)| (4.13a)

ELW = 1
NT

NT∑
n=1

∫
x=−20m

|(pm(tn)− pr(tn))n · x| dx∫
x=−20m

|pr(tn)n · x| dx
(4.13b)

where r refers to the reference solution and m to the multi-model approach being com-
pared. The convergence study was led for both error measures. The results obtained
are represented in Figure 4.23.
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Figure 4.23: Convergence study of error measure Ef (left) and ELW (right) for all four
multi-model approaches as well as for the mono-model one.

13To be exact, the length of the square elements of the substrate is equal to 10
5Ne−1 .
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We can observe that all four multi-model properties seem to have similar convergence
properties and no multi-model approach should be preferred based on that criteria. In
the following sections, we consider other parameters that might influence the accuracy
of the multi-model approaches.

4.5.4 Influence of the size of the coupling zone on the accuracy
Hereafter, we study the influence of the size of the coupling zone on the solution.

We consider the multi-model discretization corresponding to 7 elements in the vertical
direction of the channel. While Γout is always aligned with the outer mesh of the patch,
we consider 5 positions of Γin, all represented in Figure 4.24. All positions of Γin are

Figure 4.24: Different Γin positions.

aligned with the mesh of the substrate with exactly 1, 2, 3, 4 and 5 entire elements of
the patch inside the coupling zone in every direction. They are represented in Figure
4.24 in blue, red, yellow, purple and green respectively. The relative error measures ef
and eLW , defined hereafter by expression 4.14, were computed for each position of Γin.
The results are represented in Figure 4.25 with
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Figure 4.25: Influence of the size of the coupling zone on the relative error measures
ef and eLW .

ef =
Em
f

Er7
f

and eLW = Em
LW

Er7
LW

(4.14)
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where m refers to the multi-model approach and r7 to the mono-model solution ob-
tained with square elements of size 2

7m ≈ 0.286m, corresponding to the discretization
of the elements of the patch in the multi-model discretization.

We can observe that the Full Chimera and Chimequin approaches are not affected
by the size of the coupling zone, except when exactly one entire element of the patch is
in the coupling zone. For both the Archimera and Full Arlequin approaches, the value
of eLW slowly increases with the size of the coupling zone. For ef on the other hand,
the error measure decreases with the coupling zone for the Full Arlequin Approach and
increases for the Archimera one. Yet, for all multi-model approaches, we can say that
the size of the coupling zone has little influence on the quantities of interest considered.

4.6 Conclusion
In this chapter, we studied the accuracy of the Archimera and Full Arlequin ap-

proaches. We first observed that ghost forces arise in both approaches so that stable
equilibriums can not be accurately simulated. We showed that it was due to the use of
weight functions in the momentum equations but also to the discretization of divergence-
free force terms. We proposed to filter the component of these ghost forces related to
the uniform component of the stress field at each time step by enriching the coupling
matrices.

Then, we compared the accuracy of both multi-model approaches on two test cases
representative of the applications presented in the Introduction. In each test case, we
compared their accuracy with a reference multi-model approach of the literature called
the Chimera approach. We observed that the multi-model approaches proposed in this
work yielded solutions whose accuracy is the same order of magnitude as the reference
solution. Although it proved to show similar, if not better, convergence properties as
the Chimera approach, more test cases and less naive implementations of the Chimera
approach should be considered. Yet, it shows that the two multi-model approaches pro-
posed in this work should be considered as an alternative to the Chimera approach when
implementing multi-model approaches for fluid dynamics applications. Moreover, both
the Full Arlequin and the Archimera approaches are all the more relevant alternatives
as they are better adapted to the algorithm implemented in Europlexus14. Finally,
we observed that the size of the coupling zone had little influence on the solution for
both multi-model approaches.

The next step is to extend the previous results to formulate multi-model approaches
in FSI simulations which is a perspective of this work.

14See Appendix A.



Conclusion

The objective of this thesis was to design a numerical tool able to superimpose
domains with different properties in transient fluid-structure interaction (FSI) phe-
nomenons. This numerical tool also had to be compatible with explicit time integration
and allow for the different domains to be discretized with non conforming mesh. Such
a numerical tool was then to be used to improve the modelling in simulations of Design
Basis Accidents (DBAs) in Europlexus.

In order to accomplish this objective, we proposed to design such a tool for superim-
posed elastic structures and superimposed fluid domains separately with the perspec-
tive of further combining them in order to deal with fluid structure interaction. After a
thorough study of the state of the art of multi-modelling methods, we chose to use the
Arlequin and Chimera methods as they had proven to yield accurate solutions when
simulating structural and fluid mechanics and presented the advantage of allowing for
meshes of different models to be independently meshed.

The first step was to tackle the issue of the superimposition of elastic structures
in transient dynamics, taking into account the final orientation of the proposed works
towards fluid structure interaction. We applied the Arlequin framework to superim-
position of elastic structure in explicit dynamics. Then, we analysed the influence of
the different Arlequin components on the critical time step in order to ensure that it
would not be adversely affected. We showed that special care was needed in order to
ensure a computationally feasible time step and proposed two approaches to this end.
As one of these approaches was inferred from a one dimensional example, we observed
that they still ensured a feasible time step for 2D cases. Finally, we showed that the
approaches proposed led to accurate solutions for representative transient test cases.

The second step was to design suitable superimposing techniques for transient fluid
dynamics. In view of FSI applications in Europlexus, the momentum equation was
treated in a non conservative form using the Finite Element Method (FEM) while a
Finite Volume scheme was used for the other two equations. The Arlequin method
was chosen for the treatment of the momentum equation as it allows to deal with
structure and fluid degrees of freedom in a unified way, which would be convenient in
a FSI context. For the other two equations, we proposed three different approaches
which we applied to the convective transport equation. We compared them on both
their stability and accuracy properties. Although one was shown not to yield accurate
solutions, the other two approaches proved to show good stability properties and yield
accurate solution on representative test cases. As none presented better converging
properties, both were considered so that two multi-model approaches were proposed for
the treatment of the Euler equations. The first one, called the Full Arlequin approach
uses the Arlequin framework for all three equations. The second one also uses the
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Arlequin framework for the momentum equation but uses a Chimera-like treatment
for the other two equations. Yet, both presented spurious effects when applied to the
Euler equations. We proposed a method to mitigate these effects. After analysing the
stability of the different approaches and showing how to ensure a feasible time step,
convergence studies were led on different test cases. Both approaches presented similar
convergence properties so that both should be considered for FSI applications.

The last step would is to design multi-modelling FSI approaches and will be handled
in future works.

There are three main ways in which this work could be continued. The first and
most obvious way is to apply the reasoning and results obtained in this work to fluid
structure interaction multi-modelling. A first step would be to treat such problem
would be to use a Lagrangian description for the fluid and compatible structure/fluid
interfaces in both models. This, way, only the FSI link conditions would have to be
dealt with. Then, the extension of the approaches implemented in this work to other
techniques, such as an Arbitrary Lagrangian Eulerian (ALE) description or Immersed
Boundaries Conditions (IBC) would be useful as they are used in Europlexus for the
simulation of DBAs.

A second prospect is to improve the numerical properties of the multi-modelling
approaches proposed for the structural and fluid components. For instance, using
higher order schemes may lead to more accurate solutions. Indeed, second order space
and time schemes in Europlexus have shown to yield more accurate solutions when
dealing with shock propagation [180]. Moreover, these solutions do not depend on the
value of the time step and in particular of the csta parameter. However, these results
rely on a fully conservative Finite Volume approach so that they do not hold for an
Arlequin formulation similar for both structure and non-conservative fluid transport.
A new formulation accounting for specific fluid links built between Finite Elements
and Finite Volumes will have to be entirely designed. Another example of a numerical
improvement is a higher order treatment of the ghost forces to mitigate even more their
consequences on the solution.

Finally, a last prospect is to extend the different multi-model approaches developed
to cases for which the two models are integrated in time using different time steps. This
would be particularly useful in cases for which the meshes have elements of different
sizes.



Appendix A

Presentation of Fluid Structure
Interaction modelling in Europlexus

In this appendix, we aim to briefly present the modelling of Fluid Structure Interaction
(FSI) in Europlexus, which is the basis of the work developed in this thesis.

A.1 Time integration scheme
The time is discretized at different instants tn such that tn = ∑n

i=0 ∆tn where ∆tn =
tn − tn−1 is called the time step. The time integration of the kinematic quantities is
carried out through the central difference explicit scheme for both the structure and the
fluid. From time step n to time step n+ 1, we have (we assume for clarity a constant
time step): 

u̇n+ 1
2 = u̇n + 1

2∆t ün
un+1 = un + ∆t u̇n+ 1

2

u̇n+1 = u̇n+ 1
2 + 1

2∆t ün+1

vn+ 1
2 = vn + 1

2∆t v̇n
vn+1 = vn+ 1

2 + 1
2∆t v̇n+1

(A.1)

where u is the displacement of the structure, v the velocity of the fluid and · denotes
the time derivative. Note that, hereafter, the superscript n on a variable denotes its
value at instant tn.

A.2 Structural component
The equation of motion describing the behaviour of the structural component is as

follows (in strong form):

ρ
∂2u

∂t2
− div[σ(ε)] + f

F→S = fS
vol

(A.2)

where ρ is the density, u the displacement of the structure, σ the Cauchy stress tensor,
ε the strain tensor, f

F→S the force exerted on the structure by the fluid and fS
vol

represents volume forces. The structure can be modelled by a variety of constitutive
laws, from elasticity to plasticity and damage. In this work however, we limit ourselves
to elasticity with no volume forces.
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The structural domain is discretized using the Finite Element Method (FEM). The
discretized equation of motion is then:

M
S
ün+1 = F n+1

S (A.3)

where M
S
is the mass matrix, made diagonal by mass lumping techniques1 while F n+1

S

represents internal forces.

A.3 Fluid component
The fluid is modelled by the Euler equations (strong form):

∂ρ

∂t
+ div(ρv) = 0 (conservation of mass equation)

∂ρv

∂t
+ ρ(v · ∇)v +∇p+ f

S→F = fF
vol

(conservation of momentum equation)
∂ρE

∂t
+ div[(ρE + p)v] = 0 (conservation of energy equation)

(A.4)
where u is the velocity of the fluid, p the pressure, E the total energy, f

S→F the
force exerted on the fluid by the structure and fF

vol
volume forces. Note that in the

present work we do not consider the latter.

The mass and energy conservation equations are treated with a Finite Element pro-
cedure. The momentum equation is treated in a non conservation form using the Finite
Element Method (FEM). Thus, the fluid velocity variables are located at the nodes of
the fluid grid so that link conditions with the structure, whose kinematic variables are
also located at the nodes, are easily imposed (see hereafter). The discretized momen-
tum equation can be written:

Mn+1
F

v̇n+1 = F n+1
F (A.5)

where Mn+1
F

is the mass matrix for the fluid while F n+1
F = F n+1

p + F n+1
t with F n+1

p

the forces resulting from the pressure and F n+1
t the force resulting from the convective

term in a finite element framework (see [177]).

A.4 FSI link conditions
The boundary between the fluid and the structure is treated through link conditions

on the accelerations of both component. It yields the following linear system to solve
at each time step:

(
M

S

Mn+1
F

)(
ün+1

v̇n+1

)
+
(
Cn+1
S

Cn+1
F

)T
λn+1 =

(
F n+1
S

F n+1
F

)

Cn+1
S

ün+1 + Cn+1
F

v̇n+1 = Bn+1

(A.6)

1See for instance [REF].
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where the matrices Cn+1
S

and Cn+1
F

account for kinematic constraints expressing bound-
ary conditions, fluid-structure interaction links and purely structural links, such as
unilateral contact. The variable λn+1 is called the Lagrange multiplier (see for example
[175]).





Appendix B

Presentation of the Arlequin
method

The Arlequin method is a general framework that allows for the superimposition
of models in computational mechanics. The aim of this appendix is to present the
Arlequin framework and show, on simple examples, how to build an Arlequin problem
formulation. First, we recall the objectives and principles of the method and illustrate it
on a basic example (section B.1). Then we present the three components of the method
for static structural problems. We focus on the latter because it is the type of problems
for which there are theoretical results for convergence (section B.2). Finally, we show
how this framework can be extended to structural dynamic applications (section B.3).

Note that the following is largely inspired from the thesis of Guillaume Rateau [100]
and is mostly a translation of his presentation of the Arlequin method.

B.1 Presentation of the objectives and principles of
the Arlequin method

The Arlequin Method was designed in order to locally change a global mechanical
model while saving human and machine resources. Indeed, in many structural me-
chanics applications, it is of primary importance to be able to introduce local defects
in a global, usually coarse, model; to be able to change the local behaviour or to re-
lax sound hypotheses like the classical continuum mechanics in the neighbourhood of
singularities or other critical points.

In those cases, different modelling in separate parts of the domain is required. Thus,
the objective of the method was to develop a general framework for the resolution of
structural mechanics problems in static for every part of the domain simultaneously.
To do so, each different part of the global domain is assigned a specific model.

The Arlequin method is based on three principles. The first one is that both models
are superimposed. The second principle is that the coupling of the different domains is
not done on interfaces but on a volume. Moreover, for both generality and flexibility,
a model’s boundaries do not have to be conforming with another model’s modelling
(for example, meshes are allowed to be non-conforming). Thus, in areas where two
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models coexists, that is, are superimposed, the global solution is obtained through the
mix of both modelling. In these areas where two models coexists, the total energy is
split between each model. This energy splitting is the third principle of the Arlequin
method. To split the energy across models, weight parameters are introduced for each
model. These weight parameters form a partition of unity so as to account for the total
energy adequately.

The Arlequin method and its three principles are illustrated in the following basic
example ([100], [93]). Let us consider an elastic cantilever beam with a uniform force
applied at its free end (static case), as represented in Figure B.1. For this specific
problem, we consider three different modellings which, in this case, correspond to
three different scales:

Figure B.1: We consider an elastic cantilever beam anchored on its left end and un-
dergoing a uniform vertical force at its free end (Image taken from [100]). We can
see that two types of overlapping are considered. When only parts of the two models
overlap, we call such problems about junction problems (Ωbeam and Ωbc for instance).
When one model is strictly embedded in the other, it is referred to as a zoom problem
(Ωsingularity in Ωbc for instance).

1. Away from the embedded side of the beam, the strain profile is linear across the
beam’s thickness. Thus, a one dimensional modelling is sufficient to describe the
beam’s behaviour in that region. This region is represented by domain Ωbeam in
Figure B.2.

2. Close to the embedded part of the cantilever, boundary layer effects appear.
they can be best modelled by a two dimensional model using the finite element
method. This region is represented by domain Ωbc in Figure B.2.

3. Finally, the sudden change of boundary conditions creates a singularity in the
solution at points A and B of the beam in Figure B.2. This last region needs
a discrete, fine modelling. This region is represented by domain Ωsingularity in
Figure B.2.

In the Arlequin framework, this problem is simultaneously solved for all models.
Thus, we solve for the solution field [ubeam, ubc, usingularity]T under the following condi-
tion: {

< ubeam − ubc > = 0 on Ωbeam ∩ Ωbc

< ubc − usingularity > = 0 on Ωsingularity
(B.1)
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ΩbeamΩbcΩsingularity

Figure B.2: The cantilever is now modelled by three distinct models corresponding to
different scales (Image taken from [100]).

where the mathematical operator < · > will be defined in the next section. Once the
solution field on each model is obtained, the global solution is then built thanks to the
energy splitting weight parameters (α where Ωbeam and Ωbc coexist and β where Ωbc

and Ωsingularity coexist). It is done in the following way.
ubeam on Ωbeam \ Ωbc

αubeam + (1− α)ubc on Ωbeam ∩ Ωbc

ubc on Ωbc \ (Ωbeam ∪ Ωsingularity)
βubc + (1− β)usingularity on Ωbc ∩ Ωsingularity

(B.2)

where α, β ∈ [0, 1].
In this section, we presented the objective and the principles of the Arlequin method.

In the next one, we detail the mathematical tools used to implement the method.

B.2 Making of an Arlequin formulation
In this section, we show how to obtain an Arlequin formulation of the equations de-

scribing a structural problem in static. For simplicity, but without loss of generality, we
will consider an elastic body. First, we present the formulation of a mono-model (one
model) for static structural applications (subsection B.2.1). Then, we show how to for-
mulate the corresponding multi-model problem in the Arlequin framework (subsection
B.2.2).

B.2.1 Formulation of a mono-model formulation for static struc-
tural mechanics applications

We consider an isotropic elastic body occupying a bounded, regular domain Ω ∈ Rd.
The boundary ∂Ω of Ω is partitioned into two parts, Γu and Γh, such that Γu∩Γh = ∅.
The body is submitted to volume forces g ∈ L2(Ω), prescribed displacements up on
Γu 6= ∅ and prescribed boundary forces h ∈ L2(Γh) on Γh. Let σ be the Cauchy stress
tensor and ε the infinitesimal strain tensor. The strain tensor is given by ε = ∇Su =
1
2(∇u +∇Tu) while the stress tensor is given by Hooke’s law : σ = D : ε where D is
the elastic tensor.

Let u be the displacement field such that the problem reads:
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Ωg

Γu

Γh

h

Figure B.3: A general structural mechanics problem.

Find u ∈ H1 so that
∀v ∈ H1, k(u, v) = f(v) (B.3)

where k are the internal virtual forces and f the external virtual ones.

∀u, v ∈ H1, k(u, v) =
∫

Ω
σ(u) : ε(v) dΩ

∀v ∈ H1
0, f(v) =

∫
Ω
g · v dΩ +

∫
Γh

h · v dΓh
(B.4)

The total energy then equals

∀v ∈ H1
0, E(v) = 1

2

∫
Ω
σ(v) : ε(v) dΩ−

∫
Ω
g · v dΩ−

∫
Γh

h · v dΓh (B.5)

Remark B.2.1. Note that problem B.3 is equivalent to the optimization problem [95]:

min
v∈H1

0

E(u) (B.6)

In the next section, we show how to obtain the multi-model formulation in the
Arlequin framework.

B.2.2 Formulation of a multi-model static structural problem
in the Arlequin framework

In this section, we restrain ourselves to two models without loss of generality and
the hypotheses and notations from the previous section hold. We formulate the two-
model problem in the Arlequin framework by focusing on the different principles of the
method.

Superimposition of models Let us consider two models defined on two open sets
Ω1 and Ω2. They form a partition of the global domain Ω = Ω1 ∪ Ω2 such that
S = Ω1 ∩ Ω2 6= ∅. For clarity, we assume that Γg and Γu are exclusively included in
the first and second model respectively (see Figure B.4). As S 6= ∅, the two models
coexist in this region. Moreover, if the modelling of both models is identical then so
should the mechanical states.
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Ω1

Γu

Γh

h

Ω2S

Figure B.4: An example of a 2-model Arlequin problem representative of the problem
in Figure B.3.

Volume coupling The two models now need to be coupled to each other.
On the region S, we define a gluing zone Sg such that Sg ⊂ S and Sg 6= ∅ on which

we activate ghost forces1 to enforce the mechanical states of both models to be equal.
The space of quantities (for example displacements, stress or strain) enforced to be
equal is called the mediator spaceM.

The mechanical state quantities of both models must then be projected unto the
mediator space. In order to do so, a mathematical operator, called the coupling oper-
ator must be defined. This operator can be built thanks to various scalar products.

Finally, as the Arlequin method uses a variational formulation, the mechanical
states are weakly enforced. To enforce them, ghost forces are introduced thanks to
Lagrange multipliers, the penalty method or a combination of both [181].

Splitting of the energy to each model In the gluing zone, both models coexist.
Thus each model contributes its energy to the global model so that the energy in
accounted for twice. This is why weight parameters, also called weight functions, that
form a partition of unity, are introduced. These weight functions can be different for
each energy contribution. For instance, a set of weight functions (α1, α2) can be used
for the work of internal forces while another one, say (β1, β2) can be used for the work
of external forces.

A set of weight functions are then defined by

∀(α1, α2), α1 : Ω1 → [0, 1];α2 : Ω2 → [0, 1];


α1 = 1 on Ω1 \ Ω2
α2 = 1 on Ω2 \ Ω1
α1 + α2 = 1 on Ω1 ∩ Ω2

(B.7)

Example of weight functions are presented in Figure B.5.

1Note that force is meant in a broad sense and depends on the mediator spaceM.
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Figure B.5: Example of piecewise constant (αc1, αc2) and linear (αl1, αl2) weight functions
for two 1D overlapped domains (in blue and green).

Let V1 and V2 be the eligible cinematic fields for each model. The weighted virtual
works are then equal to :

∀u1, v1 ∈ H1 ×H1
0, k1(u1, v1) =

∫
Ω1
α1σ(u1) : ε(v1) dΩ1

∀v1 ∈ H1
0, f1(v1) =

∫
Ω1
β1g · v1 dΩ1

∀u2, v2 ∈ H1 ×H1
0, k2(u2, v2) =

∫
Ω2
α2σ(u2) : ε(v2) dΩ2

∀v2 ∈ H1, f2(v2) =
∫

Ω2
β2g · v2 dΩ2 +

∫
Γh

h · v2 dΓh

(B.8)

The energy contribution of each model is then:

∀i = 1, 2 ∀vi ∈ H1
0, Ei(vi) = 1

2

∫
Ωi

αiσ(vi) : ε(vi) dΩi−
∫

Ωi

βig · vi dΩi−
∫
∂Ωi

h · vi d∂Ωi

(B.9)

Arlequin formulation In the following, we consider the mediator space M to be
the space of all eligible displacements fields, use Lagrange multipliers for the coupling
and denote by c the coupling operator (denoted < · > in equation B.1). The Arlequin
formulation then reads:

Find (u1, u2, λ) ∈ H1 ×H1 ×M so that

∀(v1, v2, µ) ∈ H1
0 ×H1

0 ×M,


k1(u1, v1) + c(v1, λ) = f1(v1)
k1(v2, v2)− c(v2, λ) = f2(v2)
c(u1 − u2, µ) = 0

(B.10)

Remark B.2.2. As en example, the coupling operator c can be defined as

c(v, λ) =
∫
Sg

v · λ+ L2ε(v) : ε(λ) dSg (B.11)

where L is homogeneous to a distance and is representative of the size of the gluing
zone Sg. Note that in this work and in most works found in the literature, the term
coupling zone is preferred to gluing zone.



B.3. EXTENSION OF THE ARLEQUIN METHOD TO STRUCTURAL DYNAMICS APPLICATIONS145

Remark B.2.3. As for the mono-model formulation (see remark B.2.1), the Arlequin
formulation B.10 is equivalent to a optimization problem [95] :

min
(v1,v2)∈H1

0×H
1
0

max
µ∈M
{E1(v1) + E2(v2) + c(v1 − v2, µ)} (B.12)

The methodology to obtain an Arlequin formulation was presented here for static
applications. It was done so because they are the type of problems for which there are
theoretical proof that the Arlequin formulation converges towards the solution of the
problem [93] [94] [95] [96] [100]. Nevertheless, the Arlequin method was extended to
structural dynamics [115] [116]. In the next section, we present the methodology for
the extension of the Arlequin method to structural dynamics.

B.3 Extension of the Arlequin method to structural
dynamics applications

In this section, for clarity and without loss of generality, we restrict ourselves to
the study of elastodynamics applications. As in the previous section, we first present
the mono-model formulation for structural dynamics (section B.3.1). Then, we extend
the Arlequin framework to structural dynamics applications. In order to do so, we
emphasize the changes induced by dynamics (section B.3.2).

B.3.1 Mono-model formulation for structural dynamics appli-
cations

We consider an isotropic elastic body occupying a bounded, regular domain Ω ∈ Rd.
Let u, u̇ and ü denote the displacement, velocity, and acceleration fields while u0 and
u̇0 are the initial displacement and velocity. The boundary ∂Ω of Ω is partitioned into
two parts, Γu and Γh, such that Γu ∩ Γh = ∅. The body is submitted to volume forces
g ∈ L2(Ω), prescribed displacements up on Γu 6= ∅ and prescribed boundary forces h on
Γh. Let ρ be the material density, σ the Cauchy stress tensor, and ε the infinitesimal
strain tensor. The strain tensor is given by ε = ∇Su = 1

2(∇u +∇Tu) while the stress
tensor is given by Hooke’s law : σ = D : ε where D is the elastic tensor.

The weak mono-model formulation of this problem reads as follows:

Given g, h, up, u0 and u̇0, find u(t) ∈ H1, t ∈ [0, T ] such that

∀v ∈ H1
0, m(u(t), v) + k(u(t), v) = f(v) (B.13)

with
m(u(t), v) =

∫
Ω1
ρ
d2u

dt2
(t) · v dΩ1

k(u(t), v) =
∫

Ω1
σ(u(t)) : ε(v) dΩ1

f(v) =
∫

Ω1
g(t) · v dΩ1 +

∫
Γh

h(t) · v dΓh

(B.14)

where H1 is the trial function space and H1
0 the test function space.
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The total energy then equals:

∀v ∈ H1
0, E(v) = 1

2

∫
Ω
ρv̇2 dΩ + 1

2

∫
Ω
σ(v) : ε(v) dΩ−

∫
Ω
g · v dΩ−

∫
Γh

h · v dΓh (B.15)

B.3.2 Multi-model Arlequin formulation for structural dy-
namics applications

In this section, we restrain ourselves to two models without loss of generality and
the hypotheses and notations from the previous section hold. The superimposition of
the two models in elastodynamics in is no different than in static cases. Thus, the
two features of the Arlequin framework that change are the volume coupling and the
splitting of the energy.

Volume coupling The only thing that changes is the mediator space. Indeed, the
ghost forces are still weakly enforced on the gluing zone Sg thanks to a coupling op-
erator. However, the mechanical states enforced to be equal does not have to be the
displacement field but can be, depending on the time integrator and resolution algo-
rithm, the displacement, velocity or acceleration fields. The most natural choice is the
acceleration field.

Splitting of the energy to each model A new term, the kinetic energy
∫

Ω
ρ‖v̇‖2 dΩ,

contributes to the total energy. This new term also needs to be split between the two
models so that a new (γ1, γ2) set of weight parameters needs to be introduced.

Arlequin formulation We thus have the following multi-model formulation for
structural elastodynamics.

Given g, h, up, u0 and u̇0, find (u1(t), u2(t), λ(t)) ∈ H1 × H1 ×M, t ∈ [0, T ] such
that 

∀ v1 ∈ H1
0, m1(u1(t), v1) + k1(u1(t), v1) + c(u1(t), λ(t)) = f1(v1)

∀ v2 ∈ H1
0, m2(u2(t), v2) + k2(u2(t), v2)− c(u2(t), λ(t)) = f2(v2)

∀ µ ∈M, c(µ, ü1(t)− ü2(t)) = 0
(B.16)

with (i=1,2)

mi(u(t), v) =
∫

Ωi

γiρ
d2u

dt2
(t) · v dΩi

ki(u(t), v) =
∫

Ωi

αi σ(u(t)) : ε(v) dΩi

fi(v) =
∫

Ωi

βi g(t) · v dΩi +
∫
∂Ωi

βi h(t) · v d∂Ωi

c(w(t), µ) =
∫

Ωc

w(t) · µ+ L2 ε(w(t)) : ε(µ) dΩc

(B.17)

M is the mediator space, L is a strictly positive parameter homogeneous to a length
(typically the thickness of the coupling zone), and w ∈ H1 is an acceleration gap field.
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The energy contribution of each model is thus:

∀v ∈ H1
0, Ei(v) = 1

2

∫
Ωi

γiρ‖v̇‖2 dΩi+
1
2

∫
Ωi

αiσ(v) : ε(v) dΩi−
∫

Ωi

βig·v dΩi−
∫
∂Ωi

βih·v d∂Ωi

(B.18)
so that the total energy equals [115]:

∀v ∈ H1
0, Etot = E1(v) + E2(v) + Ec(λ) (B.19)

where Ec is the coupling energy. In our case, it is the energy associated to the Lagrange
multipliers.





Appendix C

Example of the influence of initial
conditions on Differential Algebraic
System

The objective of this appendix is to underline the importance of condition (1.30) for
constrained problem. In order to do so, we consider the following constrained example
and show that if condition (1.30) is not met, a weak instability appears so that the
solution diverges, as expected.

C.1 Presentation
We consider two identical masses m on a frictionless floor. They are connected by a
spring k and one of the masses is also connected to a wall through another spring k.
We denote by x1 and x2 the displacement of each mass. This system is represented in
Figure C.1.

x1 x2

k k

m m

Figure C.1: A mass m at displacement x1 is connected to a wall and to another mass
through springs with a stiffness equal to k. The displacement of second mass is denoted
by x2 and the problem is assumed to stay in one dimension.

The mass matrix M and the stiffness matrix K of the system are given by

M = m

(
1 0
0 1

)
and K = k

(
2 −1
−1 1

)
(C.1)

We consider the constraint k(ẍ1 + ẍ2) = 0, that is, CẌ = 0 with X = (x1, x2)
and C = k[1 1]. The overall constrained system can thus be written as the following
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differential algebraic system.(
M CT

C 0

)[
Ẍ
n

ν̈n

]
+
(
K 0
0 0

)[
Xn

νn

]
=
(

0
0

)
(C.2)

This system corresponds to the type of problems studied in section 1.2. In the
following, we first consider initial conditions that meet (1.30) and obtain a bounded
solution. Then, we impose initial conditions that do not meet (1.30) and show that
the solution diverges.

C.2 Solution for constrained initial conditions
We impose (x1(0), x2(0)) = (1,−1) and (ẋ1(0), ẋ2(0)) = (−2, 2) so that conditions

(1.30) are met. The solution obtained is represented in Figure C.2.
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Figure C.2: Time evolution of the displacement (top left), the velocity (top right),
the acceleration (bottom left) and the Lagrange multipliers for initial conditions
(x1(0), x2(0)) = (1,−1) et (ẋ1(0), ẋ2(0)) = (−2, 2). When relevant, quantities rela-
tive to the first mass are in blue and those for the second mass are in green.

We can see that, consistent with what was shown in section 1.2, the kinematic
quantities are bounded over time. Moreover, the total energy remains constant, as can
be seen in Figure C.3.
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Figure C.3: Total energy of the system over time for constrained initial conditions
(left) and unconstrained initial conditions (right).

C.3 Solution for unconstrained initial conditions
Now, we assume that the initial conditions do not meet conditions (1.30) so that we

obtain the solution represented in Figure C.4.

In line with what was shown in section 1.2, the acceleration and the velocity are
bounded over time. Also, as expected, the displacement is diverging linearly. Thus, we
can see in Figure C.3 that the total energy diverges exponentially. It is also interesting
to note that the Lagrange multiplier also diverge linearly. In fact, we can show that
for this particular problem, we have ∀n, λn = −1

2x
n
1 which is exactly what we observe.

In the last two sections, we observed how initial conditions can influence the stability.
In particular, we saw that unconstrained initial conditions lead to a diverging total
energy. These results can also be obtained through a spectral analysis, as was done in
section 1.2.

C.4 Spectral Analysis
In this section, a spectral analysis is completed to show that certain initial con-

ditions can lead to a divergent solution. In order to do so, we consider the am-
plification matrix A of the system for all kinematic quantities, that is, for V n

ddl =
[xn1 , ẋ1

n, ẍ1
n, xn2 , ẋ2

n, ẍ2
n]T . A is thus defined such that V n+1

ddl = AV n
ddl. Hence, A

equals

A = 1
8



8 8 4 0 0 0
−6Ω2 8− 6Ω2 4− 3Ω2 4Ω2 4Ω2 2Ω2

−12Ω2 −12Ω2 −6Ω2 4Ω2 4Ω2 2Ω2

0 0 0 8 8 4
6Ω2 6Ω2 3Ω2 −4Ω2 8− 4Ω2 4− 2Ω2

12Ω2 12Ω2 6Ω2 −8Ω2 −8Ω2 −4Ω2


(C.3)
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Figure C.4: Time evolution of the displacement (top left), the velocity (top right),
the acceleration (bottom left) and the Lagrange multipliers for initial conditions
(x1(0), x2(0)) = (0, 1) et (ẋ1(0), ẋ2(0)) = (2,−1). When relevant, quantities relative to
the first mass are in blue and those for the second mass are in green.

Thanks to the software c©Maple, we obtain the six eigenvalues of the A:

λ1 = λ2 = 0; λ3 = f3(Ω2); λ4 = f4(Ω2); λ5 = λ6 = 1. (C.4)

The first two eigenvalues do not affect the stability. The absolute value of the third
and the fourth ones need to be lower than one, that is, |f3(Ω2)| < 1 and |f4(Ω2)| < 1,
which leads to stability conditions of type (1.22). Finally, as expected, 1 is an eigenvalue
with a geometrical multiplicity of only 1. The software c©Maple can also yield the
eigenvector Vd that spans the eigenset for eigenvalue 1.

V d =
[
−1, 1

2 , 0,−1, 1
2 , 0

]T
(C.5)

We can see that the components of the vector that are not equal to 0 are the ones
corresponding to the displacement and velocity of the masses, which is consistent with
the study of constraints completed in section (1.2).



Appendix D

Influence of the weight function on
the elementary critical time step
for the wave problem with velocity
integrated at mid time step

In this Appendix, we show that imposing α̂p = α̃p ensures optimal stability for the
wave problem, even if the discrete velocity is integrated at mid step.

D.1 Problem formulations
In the case the velocity v is integrated at every time step n, then the elementary
problem1 can be written2:
Problem D.1. ∀w ∈ H1

0,
∫

ΩE

ρ0α̂
vv̇n · w dΩE =

∫
ΩE

ᾱvpnI : (∇w) dΩE∫
ΩE

α̂pṗn dΩE =
NN∑
i=1

(∫
∂ΩE

αpρ0c
2vn · n d∂ΩE

) (D.1)

using notations of Chapter 3. The time integrator used is

Un+1 = Un + ∆tU̇n (D.2)
with Un = [vn, pn]T and ∆t the critical time step.

In the case the velocity ṽ is integrated at mid time step n+ 1
2 , then the elementary

problem can be written:
Problem D.2. ∀w ∈ H1

0,
∫

ΩE

ρ0α̂
v ˙̃vn+ 1

2 · w dΩE =
∫

ΩE

ᾱvpnI : (∇w) dΩE∫
ΩE

α̂pṗn+1 dΩE =
NN∑
i=1

(∫
∂ΩE

αpρ0c
2ṽn+ 1

2 · n d∂ΩE

) (D.3)

1We consider the Full Arlequin formulations as it is the most general case when analysing the
influence of the weight function.

2By hypothesis we do not consider the coupling matrices.
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using notations of Chapter 3. The time integrator used is

Ũ
n+1 = Ũ

n + ∆t ˙̃Un (D.4)

with Ũn = [ṽn+ 1
2 , pn+1]T and ∆t the critical time step.

Remark D.1.1. Note that in Problem D.1, both equations can be solved simultane-
ously while for Problem D.2, the equations need to be solved alternatively (the accel-
eration one at mid time step and the pressure one at time steps n).

D.2 Amplification matrix for each formulation
In order to show the main difference in the study of the stability of the two problem

formulations, we propose to introduce their respective amplification matrix3.

D.2.1 Amplification matrix and stability of Problem D.1
Equation (D.1) of Problem D.1 can be written, in matrix form as follows

MU̇
n +KUn = 0 (D.5)

where M = diag(M
v
,Dp) with M

v
the lumped mass matrix, Un = [vn1 , ..., vnNN

, pn]T
and K is defined as follows:

K =

 0NN ,NN
Kv

KT
p 0

 (D.6)

where Kv is the assembled pressure vector such that Kvp
n yields the pressure forces at

time tn, Kp the assembled transport matrix such that KT
p v

n yields the flow at time tn
and 0

n1,n2
is the matrix of size n1×n2 with zeros everywhere. We recall that NE is the

number of elements of the mesh and NN the number of degrees of freedom associated
to the velocity. We have:

(M
v
)jk =

(
ρ0

∫
Ω
α̂vN̂j dΩ

)
δjk ∀ j, k ∈ SN

Dp =
∫

ΩE

α̂p dΩE

(Kv)j =
∫

ΩE
ᾱv ∂Nj

∂xd(j)
dΩE ∀ j ∈ SN

(Kp)j =
∫
∂ΩE

ρ0c
2Njn · xd(j) d∂ΩE ∀ j ∈ SN

(D.7)

using notations from Chapter 3.

The amplification matrix of Problem D.1, A, is such that Un+1 = AUn. By multi-
plying by M−1 equation (D.5) and substituting the obtain formula for U̇n in the time
integrator (D.2), we obtain the following.

Un+1 = (I −∆tM−1K)Un (D.8)
3See section 1.2.



D.2. AMPLIFICATION MATRIX FOR EACH FORMULATION 155

so that we have A = I −∆tM−1K. The stability is then obtained by studying under
which condition, called CFL condition, the spectral radius of A is strictly lower than
1. We obtain4 the following condition.

∆t < 2
max ω̃ (D.9)

where the ω̃ are the eigenvalues of the generalized eigenvalue problem of M and ∆tK.

D.2.2 Amplification matrix and spectral stability of Problem
D.2

Equation (D.3) Problem D.2 can be written in matrix form as follows

M ˙̃Un +
(

0NN ,NN
Kv

KT
p 0

)(
ṽn+ 1

2

pn

)
= 0 (D.10)

using previous notations.

Contrary to the previous section, some work needs to be done to obtain the ampli-
fication matrix of Problem D.2 Ã. We use the time integrator for the velocity and
substitute it in the second term of the left hand side of (D.10). We then use the last
equation of (D.3) at time step n for the pressure and n − 1

2 for the velocity. Finally,
we obtain, after multiplying by M−1:

Un = (I −M−1K̃)Un−1 (D.11)

with
K̃ =

(
0NN ,NN

Kv

KT
p −∆tKT

pM
−1
v
Kv

)
(D.12)

so that we have A = I −∆tM−1K̃. The stability is then obtained by studying under
which condition, called CFL condition, the spectral radius of Ã is strictly lower than
1. We obtain5 the following condition.

∆t < 2
max ω (D.13)

where the ω are the eigenvalues of M and K̃.

D.2.3 Determination of the eigenvalues of the generalized eigen-
value problems

D.2.3.1 Eigenvalues for Problem D.1

The calculations were already made in section 3.3.2.1 and we found:

ω2 = 1(∫
ΩE

α̂p dΩE

) N∑
i=1


∫

ΩE

ᾱv
∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0α̂
vN̂i dΩE


(∫

∂ΩE

αpρ0c
2Ni n d∂ΩE

)
· xd(i) (D.14)

4See [154] or [174]
5See [154] or [174]
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D.2.3.2 Eigenvalues for Problem D.2

Let ŨE = [v1, ..., vNN
, pE] be an eigenvector of M and K̃. The components of ŨE

thus verify: 
ω̃aivi = bipE, ∀i ∈ [|1,NN |]

ω̃dpE =
NN∑
i=1

sivi +
NN∑
i=1

bi
ai
si

 pE (D.15)

with 

ai = ρ0

∫
ΩE

α̂vN̂i dΩE

bi =
∫

ΩE

ᾱv
∂Ni

∂xd(i)
dΩE

d =
∫

ΩE

α̂p dΩE

si =
∫
∂ΩE

αpρ0c
2Ni n · xd(i) d∂ΩE

(D.16)

The same calculations as in section 3.3.2.1 can be done. From the top equations
of (D.15), we have each vi as a function of pE so that after substitution in the last
equation, we obtain

ω̃2 = (1 + ω̃)(∫
ΩE

α̂p dΩE

) N∑
i=1


∫

ΩE

ᾱv
∂Ni

∂xd(i)
dΩE∫

ΩE

ρ0α̂
vN̂i dΩE


(∫

∂ΩE

αpρ0c
2Ni n d∂ΩE

)
· xd(i) (D.17)

Although the solutions of (D.17) for ω̃ are clearly different than those of (D.14) for
ω, we can see that we can annul the influence of weight functions in exactly the same
manner.



Appendix E

Computation of α̂p for triangular
elements with constant weights on
the edges.

In this appendix, we aim to show that if weight function is planar on a triangular
element, then we have α̂p = ᾱp, where α̂p and ᾱp are defined in section 3.3 and whose
expressions are hereby recalled:

α̂p =

N∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dx∫

ΩE

ρ0N̂i dx


(∫

∂ΩE

αpρ0c
2Ni n dx

)
· xd(i)

N∑
i=1


∫

ΩE

∂Ni

∂xd(i)
dx∫

ΩE

ρ0N̂i dx


(∫

∂ΩE

ρ0c
2Ni n dx

)
· xd(i)

ᾱp = 1
|ΩE |

∫
ΩE

αp dx

(E.1)

E.1 Shape functions for a triangle
Let us consider a triangle with summits A(xA, yA), B(xB, yB) and C(xC , yC). The

shape functions are as follows

NA(x, y) = 1− (yC − yB)(x− xA) + (xB − xC)(y − yA)
xA(yB − yC) + xB(yC − yA) + xC(yA − yB)

NB(x, y) = 1− (yA − yC)(x− xB) + (xC − xA)(y − yB)
xA(yB − yC) + xB(yC − yA) + xC(yA − yB)

NC(x, y) = 1− (yB − yA)(x− xC) + (xA − xB)(y − yC)
xA(yB − yC) + xB(yC − yA) + xC(yA − yB)

where NI , xI , yI are, respectively, the shape function such that NI(I) = 1, the x and
y coordinates of summit I.
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Note that the denominator of each shape function is none other than the volume
of the element |ΩE|. In fact, we have

∫
ΩE

N1(x, y) dΩE =
∫

ΩE

N2(x, y) dΩE =
∫

ΩE

N3(x, y) dΩE = 1
3 |ΩE|

We thus have:

∂NA

∂x
(x, y) = yB − yC

2|ΩE|
∂NB

∂x
(x, y) = yC − yA

2|ΩE|
∂NC

∂x
(x, y) = yA − yB

2|ΩE|

∂NA

∂y
(x, y) = xC − xB

2|ΩE|
∂NB

∂y
(x, y) = xA − xC

2|ΩE|
∂NC

∂y
(x, y) = xB − xA

2|ΩE|

E.2 Value of α̂p

E.2.1 Value of the denominator

The only term left to be determined in the expression of α̂p in E.1 is the term∑
ei

=
∫
ei
αei
n dx. First, the outer normed normal to the element needs to be defined.

We have: 
nAB = (yB − yA, xA − xB)
nAC = (yA − yC , xC − xA)
nBC = (yC − yB, xB − xC)

We then have:

∑
ei

∫
ei

NAn dx = 1
2(nAB + nAC)

= 1
2(yB − yC , xC − xB)

∑
ei

∫
ei

NBn dx = 1
2(nAB + nBC)

= 1
2(yC − yA, xA − xC)

∑
ei

∫
ei

NCn dx = 1
2(nBC + nAC)

= 1
2(yA − yB, xB − xA)
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Finally, we have:

(∫
ΩE

∂N1
∂x

dΩE∫
ΩE
N1 dΩE

)∑
ei

∫
ei

N1n dx · x = 3
4|ΩE|

(yB − yC)2∫ΩE

∂N1
∂y

dΩE∫
ΩE
N1 dΩE

∑
ei

∫
ei

N1n dx · y = 3
4|ΩE|

(xC − xB)2

(∫
ΩE

∂N2
∂x

dΩE∫
ΩE
N2 dΩE

)∑
ei

∫
ei

N2n dx · x = 3
4|ΩE|

(yC − yA)2∫ΩE

∂N2
∂y

dΩE∫
ΩE
N2 dΩE

∑
ei

∫
ei

N2n dx · y = 3
4|ΩE|

(xA − xC)2

(∫
ΩE

∂N3
∂x

dΩE∫
ΩE
N3 dΩE

)∑
ei

∫
ei

N3n dx · x = 3
4|ΩE|

(yA − yB)2∫ΩE

∂N3
∂y

dΩE∫
ΩE
N3 dΩE

∑
ei

∫
ei

N3n dx · y = 3
4|ΩE|

(xB − xA)2

whose sum is equal to:

3
4|ΩE|

(AB2 +BC2 + AC2) (E.2)

where AB is the length of the edge connecting summits A and B.

E.2.2 Value of the numerator

We thus consider that the weight functions are linear on each edge. We have:

∑
ei

∫
ei

αN1n dx = 1
6 [(2αA + αB)yB − (2αA + αC)yC + (αC − αB)yA;

(2αA + αC)xC − (2αA + αB)xB + (αB − αC)xA]

∑
ei

∫
ei

αN2n dx = 1
6 [(2αB + αC)yC − (2αB + αA)yA + (αA − αC)yB;

(2αB + αA)xA − (2αB + αC)xC + (αC − αA)xB]

∑
ei

∫
ei

αN3n dx = 1
6 [(2αC + αA)yA − (2αC + αB)yB + (αB − αA)yC ;

(2αC + αB)xB − (2αC + αA)xA + (αA − αB)xC ]
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From which we deduce:(∫
ΩE

∂N1
∂x

dΩE∫
ΩE
N1 dΩE

)∑
ei

∫
ei

αN1n dx · x = 1
4|ΩE|

(yB − yC)((2αA + αB)yB − (2αA + αC)yC + (αC − αB)yA))∫ΩE

∂N1
∂y

dΩE∫
ΩE
N1 dΩE

∑
ei

∫
ei

αN1n dx · y = 1
4|ΩE|

(xC − xB)((2αA + αC)xC − (2αA + αB)xB + (αB − αC)xA)(∫
ΩE

∂N2
∂x

dΩE∫
ΩE
N2 dΩE

)∑
ei

∫
ei

αN2n dx · x = 1
4|ΩE|

(yC − yA)((2αB + αC)yC − (2αB + αA)yA + (αA − αC)yB)∫ΩE

∂N2
∂y

dΩE∫
ΩE
N2 dΩE

∑
ei

∫
ei

αN2n dx · y = 1
4|ΩE|

(xA − xC)((2αB + αA)xA − (2αB + αC)xC + (αC − αA)xB)(∫
ΩE

∂N3
∂x

dΩE∫
ΩE
N3 dΩE

)∑
ei

∫
ei

αN3n dx · x = 1
4|ΩE|

(yA − yB)(2αC + αA)yA − (2αC + αB)yB + (αB − αA)yC)∫ΩE

∂N3
∂y

dΩE∫
ΩE
N3 dΩE

∑
ei

∫
ei

αN3n dx · y = 1
4|ΩE|

(xB − xA)((2αC + αB)xB − (2αC + αA)xA + (αA − αB)xC)

whose sum equals:

3
4|ΩE|

(AB2 +BC2 + AC2)
(
αA + αB + αC

3

)
(E.3)

Conclusion We thus obtain:

ᾱ = αA + αB + αC
3 (E.4)

E.3 Value of ᾱp

We assumed that the weight function αp is planar on the element so that it can be
written αp(x, y) = αANA(x, y)+αBNB(x, y)+αCNC(x, y). We recall that ᾱ =

∫
ΩE

α dx

|ΩE |
so that we have ∫

ΩE

α dx = 1
3 |ΩE|(αA + αB + αC)

We thus also find:
ᾱ = αA + αB + αC

3 (E.5)



Appendix F

Complete discrete fluid dynamics
formulation for the Full Arlequin
approach

The weak discrete formulation for the Full Arlequin approach reads:

Given ρ0
1, ρ

0
1, p

0
1, p

0
2, v

0
1 and v0

2, find u(t) = (v1(t), v2(t), λv, ρ1(t), ρ2(t), λρ, E1(t), E2(t), λρE) ∈
H1 ×H1 ×H1 × V × V × V × V × V × V, t ∈ [0, T ] such that,

∀(w1, w2, µv, w̄1, w̄2, µρ, w̃1, w̃2, µρE) ∈ H1
0 ×H1

0 ×H1
0 × V × V × V × V × V × V ,



∫
Ω1
α̂v1ρ

n
1 v̇

n
1 · w1 dΩ1 +

∫
Ω1
α̃v1ρ

n
1 (vn−

1
2

1 · ∇)vn
1
2

1 · w1 dΩ1 −
∫

Ω1
αv1p

n
1I : ∇w1 dΩ1 + cm(w1, λ

n
v ) = 0∫

Ω2
α̂v2ρ

n
2 v̇

n
2 · w2 dΩ2 +

∫
Ω2
α̃v2ρ

n
2 (vn−

1
2

2 · ∇)vn−
1
2

2 · w2 dΩ2 −
∫

Ω2
αv2p

n
2I : ∇w2 dΩ2 − cm(w2, λ

n
v ) = 0

cm(v̇n1 − v̇n2 , µv) = 0∫
Ω1
α̂ρ1ρ̇

n
1 w̄1 dΩ1 +

∫
Ω1

div(αρ1ρn1v
n+ 1

2
1 )w̄1 dΩ1 + ct(w̄1, λ

n
ρ) = 0∫

Ω2
α̂ρ2ρ̇

n
2 w̄2 dΩ2 +

∫
Ω2

div(αρ2ρn2v
n+ 1

2
2 )w̄2 dΩ2 − ct(w̄2, λ

n
ρ) = 0

ct(ρ̇n1 − ρ̇n2 , µρ) = 0∫
Ω1
α̂ρE1 ( ˙ρE)n1 w̃1 dΩ1 +

∫
Ω1

div(αρE1 (ρn1En
1 + pn1 )vn+ 1

2
1 )w̃1 dΩ1 + ct(w̃1, λ

n
ρE) = 0∫

Ω2
α̂ρE2 ( ˙ρE)n2 w̃2 dΩ2 +

∫
Ω2

div(αρE2 (ρn2En
2 + pn2 )vn+ 1

2
2 )w̃2 dΩ2 − ct(w̃2, λ

n
ρE) = 0

ct(( ˙ρE)n1 − ( ˙ρE)n2 , µρE) = 0
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Appendix G

Résumé

L’objectif de cette thèse est de concevoir un outil numérique capable de superposer
des domaines ayant des caractéristiques différentes dans le cadre de l’interaction fluide-
dtructure (IFS). Cet outil numérique doit être compatible avec l’intégration en temps
explicite et permettre aux maillages des différents domaines d’être non conformes.
Utilisé dans le logiciel Europlexus, ce dernier doit permettre une meilleure prise en
compte des effets locaux lors de la simulation d’accidents graves dans les réacteurs
nucléaires.

Afin d’atteindre un tel objectif, on propose, dans un premier temps, de développer
un tel outil pour la superposition de structures et de fluides séparemment puis de les
combiner pour le traitement de phénomènes d’interaction fluide-structure. Après une
étude approfondie de l’état de l’art des différentes méthodes multi-modèles, les méth-
odes Arlequin et Chimère ont été retenues car elles présentent l’avantage de permettre
aux différents domaines d’être maillés de manière indépendantes et ont déjà été utilisé
avec succès pour la simulation de phénomènes de mécanique.

La première étape a donc été de proposer une approche multi-modèle pour la super-
position de structures élastiques en dynamique rapide. Pour ce, la méthode Arlequin a
été retenue et étendue à l’intégration explicite. En particulier, on a analysé l’influence
des composants de la méthode Arlequin sur la stabilité. Après avoir montré que le pas
de temps critique tend vers 0 dans certaines configurations, rendant la méthode unitilis-
able, on a proposé deux approches qui permettent de contourner ce problème. Puisque
l’une d’entre elles est inspiré de résultats mono-dimensionnel, on l’a validé sur des ex-
amples en deux dimensions. Enfin, les deux approches proposées ont été appliquées à
des cas représentatifs des applications nucléaires considérées dans ce travail et observé
que celles-ci donnent des solutions précises, validant ainsi les deux approches.

La deuxième étape a consisté à proposer une approche multi-modèle pour la dy-
namique explicite des fluides. En vue d’une implémentation dans Europlexus, l’équation
de conservation du moment a été traté par le formalisme des éléments finis. Les deux
autres équations, par ailleurs, sont traitées par un formalisme volumes finis. Le formal-
isme Arlequin a été utilisé pour le traitement de l’équation de conservation du moment
puisqu’il permet, dans un contexte d’IFS, de traiter les degrésde libertés du fluide et
de la structure de manière unifiée. Pour l’équation de conservation de la masse et de
l’énergie totale, trois approches ont été proposées et appliqué au problème du transport
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convectif. Des études de stabilité et de précision ont ainsi été menées. Alors qu’une
des approches ne permet pas d’obtenir de solutions précises, les deux autres, inspirées
du formalisme Arlequin et Chimère respectivement, présentent des propriétés de con-
vergence similaires. Les deux approches ont donc été considérées pour les équations
d’Euler. Deux approches multi-modèles ainsi proposées.

La première utilise un formalisme Arlequin pour le traitement des trois équations
tandis que la seconde utilise le formalisme Arlequin pour le traitement de l’équation
de conservation de la quantité de mouvement mais un formalisme Chimère pour le
traitement des équations de conservation de la masse et de l’énergie totale. Pour les
deux approches, des forces fantômes apparaissent et viennent perturber la solution. Une
approche a été proposée et implémentée avec succès pour minimiser leurs effets. Une
analyse de stabilité des différentes approches a permis de montrer comment choisir les
différents paramètres Arlequin pour garantir un pas de temps critique élevé. Les deux
approches proposées présentent des propriétes de convergence semblables de sortent
que les deux sont considérées pour le traitement de phénomènes d’IFS.

La dernirère étape, consistant à étendre les résultats précédents à l’IFS, fait l’objet
de travaux futurs.



Bibliography

[1] IAEA. Safety assessment and verification for nuclear power plants. Safety Guide,
IAEA, 2001.

[2] K. Pettersson et al. Nuclear fuel behaviour in loss of coolant accident (loca)
conditions. Technical report, Organisation for economic co-operation and devel-
opment, 2009.

[3] New acceptance criteria for emergency core-cooling systems of light-water-cooled
nuclear power reactors, 1974.

[4] US Nuclear Regulatory Commission et al. Acceptance criteria for emergency core
cooling systems for light-water nuclear power reactors. 10 Cfr 50.46, 1978.

[5] T. Nakajima. Ria criteria in japan. Technical report, OECD, 2003.

[6] C. Grandjean. A state-of-the-art review of past programs devoted to fuel behavior
under loca conditions. part one. clad swelling and rupture assembly flow blockage.
Technical report, Technical Report SEMCA 2005-313, IRSN, 2005.

[7] C. Grandjean. A state-of-the-art review of past programs devoted to fuel behavior
under loca conditions. part two. impact of clad swelling upon assembly cooling.
Technical report, Technical Report SEMCA 2006-183, IRSN, 2006.

[8] B. Tarride. Physique, fonctionnement et sûreté des REP: Maîtrise des situations
accidentelles du système réacteur. EDP sciences, 2013.

[9] A. J. Gomez, P. J. Garcia, A. Ortego, et al. Analysis of a reactivity initiated
accident (ria) in cofrentes npp, cold and hot conditions with retran-3d. In Pro-
ceedings of the 2005 water reactor fuel performance meeting, page 1236. Japan:
Atomic Energy Society of Japan, 2005.

[10] L. O. Jernkvist and A. R. Massih. Nuclear fuel behaviour under reactivity-initiated
accident (RIA) condition: State-of-the-art report. Nuclear Energy Agency, Or-
ganisation for Economic Co-operation and Development (OECD), 2010.

[11] A. L. Florence, G. R. Abrahamson, and D. J. Cagliostro. Hypothetical core
disruptive accident experiments on simple fast test reactor models. nuclear En-
gineering and Design, 38:95–108, 1976.

[12] J. F. Marchaterre. Overview of core disruptive accidents. Nuclear Engineering
and Design, 42:11–17, 1977.

165



166 BIBLIOGRAPHY

[13] P. Chellapandi, K. Velusamy, S. C. Chetal, S. B. Bhoje, Lal Harbans, and Sethi
V.S. Analysis for mechanical consequences of a core disruptive accident in pro-
toype fast breeder reactor. In Transactions of the 17th International Conference
on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, Czech Re-
public, 2003.

[14] V. Faucher. Méthodes numériques et algorithmes parallèles pour la dynamique
des systèmes fluide-structure fortement couplés. Technical report, Commissariat
à l’énergie atomique et aux énergies alternatives, CEA/Saclay 91191 Gif-sur-
Yvette Cedex France, 2014.

[15] U.S. Nuclear Regulatory Commission. Nuclear Power for Electrical Generation.
(Reactor Concepts Manual) USNRC Technical Training Center. U.S. Nuclear
Regulatory Commission, United States, 2012.

[16] V. Faucher, F. Crouzet, and F. Debaud. Mechanical consequences of loca in pwr:
Full scale coupled 1d/3d simulations with fluid-structure interaction. Nuclear
Engineering and Design, 270:359–378, 2014.

[17] V. Faucher, F. Crouzet, P. Piteau, P. Galon, and P. Izquierdo. Numerical and
experimental analysis of transient wave propagation through perforated plates
for application to the simulation of loca in pwr. Nuclear Engineering and Design,
253:1–11, 2012.

[18] WENRA. Wenra statement on safety objectives for new nuclear power plants.
Technical report, Western European Nuclear Regulators Association, 2010.

[19] T. Suzuki, Y. Tobita, K. Kawada, et al. A preliminary evaluation of unprotected
loss-of-flow accident for a prototype fast-breeder reactor. Nuclear Engineering
and Technology, 47(3):240–252, 2015.

[20] K. Aoto, P. Dufour, Y. Hongyi, et al. A summary of sodium-cooled fast reactor
development. Progress in Nuclear Energy, 77:247–265, 2014.

[21] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53(3):484–512, 1984.

[22] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. Journal of Computational Physics, 82(1):64–84, 1989.

[23] P. MacNeice, K. M. Olson, C. Mobarry, et al. Paramesh: A parallel adaptive mesh
refinement community toolkit. Computer Physics Communications, 126(3):330–
354, 2000.

[24] F. Casedei, P. Diez, and F. Verdugo. Adaptive 3d refinement and un-refinement of
8-node solid and fluid hexahedra in europlexus. Technical report, JRC European
Commission (Institute for the Protection and Security of the Citizen), 2011.

[25] E. A. Volkov. A finite difference method for finite and infinte regions with piece-
wise smooth boundaries. Docklady, 168(5):744–747, 1966.



BIBLIOGRAPHY 167

[26] E. A. Volkov. The method of composite meshes for finite and infinte regions with
piecewise smooth boundaries. Proceedings of the Steklov Institute of Mathematics,
96:145–185, 1968.

[27] E. Sánchez-Palencia. Non-homogeneous media and vibration theory. Lecture
notes in physics, 127, 1980.

[28] Stephen Whitaker. The method of volume averaging, volume 13. Springer Science
& Business Media, 2013.

[29] G. Artini and D. Broc. A homogenisation method for a fsi problem: Application
to a tube bundle row. In ASME 2017 Pressure Vessels and Piping Conference,
pages V005T11A026–V005T11A026. American Society of Mechanical Engineers,
2017.

[30] W Hackbusch. Multi-Grid Methods and Applications. Springer, 1985.

[31] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society
for Industrial and Applied Mathematics, 1999.

[32] S. R. Fulton, P. E. Ciesielski, and W. H. Schubert. Multigrid method for periodic
heterogeneous media. part 2: Mutliscale modeling and quality controll in mul-
tidimensional case. Computer Methods in Applied Mechanics and Engineering,
126:17–38, 1995.

[33] P. Lascaux and R. Théodor. Analyse numérique matriciellle appliquée à l’art de
l’ingénieur. Tome 2. Masson, 1987.

[34] J. Fish and V. Belsky. Multigrid method for periodic heterogeneous media. part
1: Convergence studies for one-dimensional case. Computer Methods in Applied
Mechanics and Engineering, 126:1–16, 1995.

[35] J. Fish and V. Belsky. Multigrid method for periodic heterogeneous media. part
2: Mutliscale modeling and quality controll in multidimensional case. Computer
Methods in Applied Mechanics and Engineering, 126:17–38, 1995.

[36] R. H. Ni. A multiple-grid scheme for solving the euler equations. In AIAA,
editor, Proceedings of the 5th Computational Fluid Dynamics Conference, pages
257–264, Palo Alto, CA, 1981.

[37] E. Katzer. Multigrid methods for hyperbolic equations. In Multigrid methods
III, pages 253–263, Basel, 1991. Birkhauser Verlag.

[38] S. Amarala and J. W. L. Wan. Multigrid methods for systems of hyperbolic
conservation laws. Multiscale Modeling and Simulation, 11(2):586–614, 2013.

[39] A Jameson. Solution of the euler equations for two-dimensional transonic flow
by a multigrid method. Journal of Computational and Applied Mathematics,
13:327–355, 1983.



168 BIBLIOGRAPHY

[40] A Jameson and S. Yoon. Multigrid solution of the euler equations using im-
plicit schemes. In Proceedings of the AIAA 23rd Aerospace Sciences Meeting
(Reno,NV), page 293, New York, 1985. American Institute of Aeronautics and
Astronautics.

[41] W. A. Mulder. Multigrid relaxation for the euler equations. Journal of Compu-
tational Physics, 60:235–252, 1985.

[42] W. A. Mulder. A new multigrid approach to convection problems. Journal of
Computational Physics, 83:303–323, 1989.

[43] J. T. Oden and T. I. Zohdi. Analysis and adaptive modeling of highly heteroge-
neous elastic structure. Computer Methods in Applied Mechanics and Engineer-
ing, 148:367–391, 1997.

[44] J. T. Oden, K. Vemaganti, and N. Moës. Hierarchical modeling of heterogeneous
solids. Computer Methods in Applied Mechanics and Engineering, 172(1-4):3–25,
1999.

[45] J. T. Oden and K. Vemaganti. Adaptive modeling of composite structures: Mod-
eling error estimation. In Texas Institute for Computational and Applied Mathe-
matics. Citeseer, 1999.

[46] F. Feyel and J-L. Chaboche. Fe2 multiscale approach for modelling the elasto-
viscoplatic behaviour of long fiber sic/ti composite materials. Computer Methods
in Applied Mechanics and Engineering, 183(3-4):309–330, 2000.

[47] F. Feyel and J-L. Chaboche. A multiple finite element method (fe2) to describe
the response of highly non-linear structures using generalized continua. Computer
Methods in Applied Mechanics and Engineering, 192(28-30):3233–3244, 2003.

[48] I. Ramiere, R. Masson, B. Michel, and S. Bernaud. Un schéma de calcul multi-
échelles de type éléments finis au carré pour la simulation de combustibles nu-
cléaires ht́érogènes. In 13eme Colloque National en Calcul des Structures, Giens,
France, 2017.

[49] S. Loehnert and T. Belytschko. A multiscale projection method for
macro/microcrack simulations. International Journal for Numerical Methods in
Engineering, 71(12):1466–1482, 2007.

[50] T. Belytschko, S. Loehnert, and J.-H. Song. Multiscale aggregating discontinu-
ities: a method for circumventing loss of material stability. International Journal
for Numerical Methods in Engineering, 73(6):869–894, 2008.

[51] A. S. Almgren, J. B. Bell, P. Colella, and T. Marthaler. A cartesian grid projec-
tion method for the incompressible euler equations in complex geometries. SIAM
Journal on Scientific Computing, 18(5):1289–1309, 1997.

[52] A. S. Almgren, J. Bell, P. Colella, and L. Howell. An adaptive projection method
for the incompressible euler equations. In 11th Computational Fluid Dynamics
Conference, page 3345, 1993.



BIBLIOGRAPHY 169

[53] D. P. Young, R. G. Melvin, M. B. Bieterman, et al. A locally refined rectangular
grid finite element method: application to computational fluid dynamics and
computational physics. Journal of Computational Physics, 92(1):1–66, 1991.

[54] M. Geers, V. Kouznetsova, and WAM Brekelmans. Multi-scale computational
homogenization: Trends and challenges. Journal of computational and applied
mathematics, 234(7):2175–2182, 2010.

[55] T. J. R. Hughes. Multiscale phenomena : Green’s functions, the dirichlet-to-
neumann for- mulation, subgrid scale models, bubbles and the origins of stabilized
methods. Computer Methods in Applied Mechanics and Engineering, 127:387–
401, 1995.

[56] T. J. R. Hughes, G.R. Feijo, L. Mazzei, and J.B Quincy. The variational multi-
scale method - a paradigm for computational mechanics. Computer Methods in
Applied Mechanics and Engineering, 166:3–24, 1998.

[57] T. J. R. Hughes, G. Scovazzi, and L. P. Franca. Multiscale and stabilized meth-
ods. Encyclopedia of Computational Mechanics Second Edition, 2004.

[58] V. Gravemeier. The variational multiscale method for laminar and turbulent
incompressible flow. Institut für Baustatik der Universität Stuttgart, Stuttgart,
Deutschland, 2003.

[59] V. Gravemeier, S. Lenz, and W. A. Wall. Variational multiscale methods for
incompressible flows. International Journal of Computing Science and Mathe-
matics, 1(2-4):444–466, 2007.

[60] N. Ahmed, T. C. Rebollo, V. John, and S. Rubino. A review of variational
multiscale methods for the simulation of turbulent incompressible flows. Archives
of Computational Methods in Engineering, 24(1):115–164, 2017.

[61] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the
variational multiscale method. Computing and Visualization in Science, 3(1-
2):47–59, 2000.

[62] U Rasthofer, W. A Wall, and V. Gravemeier. An extended algebraic variational
multiscale-multigrid-multifractal method for large-eddy simulation of turbulent
two-phase flow. In 10th International Workshop on Variational Multiscale and
Stabilized Finite Elements (VMS2015), 2015.

[63] I. Babuska and J. M. Melenk. The partition of unity method. International
Journal for Numericals Methods in Engineering, 40:727–758, 1997.

[64] J. M. Melenk and I. Babuska. The partition of unity finite element method: basic
theory and applications. Computer methods in applied mechanics and engineer-
ing, 139(1-4):289–314, 1996.

[65] T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite
element methods for material modeling. Modelling and Simulation in Materials
Science and Engineering, 17(4):043001, 2009.



170 BIBLIOGRAPHY

[66] T. Strouboulis, I. Babuska, and K. Copps. The design and analysis of the gen-
eralized finite element method. Computer Methods in Applied Mechanics and
Engineering, 181:43–69, 2000.

[67] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth
without remeshing. International journal for numerical methods in engineering,
46(1):131–150, 1999.

[68] J. Dolbow, N. Moës, and T. Belytschko. Discontinuous enrichment in finite
elements with a partition of unity method. Finite elements in analysis and design,
36:235–260, 2000.

[69] C. A. Duarte and D.-J. Kim. Analysis and applications of a generalized finite
element method with global–local enrichment functions. Computer Methods in
Applied Mechanics and Engineering, 197(6-8):487–504, 2008.

[70] D.-J. Kim, J. P. Pereira, and C. A. Duarte. Analysis of three-dimensional frac-
ture mechanics problems: A two-scale approach using coarse-generalized fem
meshes. International Journal for Numerical Methods in Engineering, 81(3):335–
365, 2010.

[71] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science,
volume 3. Cambridge university press, 1999.

[72] S. Osher and R. P. Fedkiw. Level set methods: an overview and some recent
results. Journal of Computational physics, 169(2):463–502, 2001.

[73] N. Sukumar, N. Moës, B. Moran, and T. Belytschko. Extended finite element
method for three-dimensional crack modelling. International Journal for Numer-
ical Methods in Engineering, 48(11):1549–1570, 2000.

[74] H. Ben Dhia and O. Jamond. On the use of xfem within the arlequin framework
fir the simulation of crack propagation. Computer Methods in Applied Mechanics
and Engineering, 199(21-22):1403–1414, 2010.

[75] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko. Modeling holes and
inclusions by level sets in the extended finite-element method. Computer methods
in applied mechanics and engineering, 190(46-47):6183–6200, 2001.

[76] T. Menouillard, J. Réthoré, A. Combescure, and H. Bung. Efficient explicit time
stepping for the extended finite element method (x-fem). International Journal
for Numerical Methods in Engineering, 68:911–939, 2006.

[77] T. Menouillard, J. Réthoré, N. Moës, A. Combescure, and H. Bung. Mass lump-
ing strategies for x-fem explicit dynamics: Application to crack propagation.
International Journal for Numerical Methods in Engineering, 74:447–474, 2008.

[78] T. Elguedj, A. Gravouil, and H. Maigre. An explicit dynamics extended fi-
nite element method. part 1: mass lumping for arbitrary enrichment functions.
Computer Methods in Applied Mechanics and Engineering, 198(30-32):2297–2317,
2009.



BIBLIOGRAPHY 171

[79] A. Gravouil, T. Elguedj, and H. Maigre. An explicit dynamics extended finite
element method. part 2: Element-by-element stable-explicit/explicit dynamic
scheme. Computer Methods in Applied Mechanics and Engineering, 198(30-
32):2318–2328, 2009.

[80] C. Bernardi. A new nonconforming approach to domain decomposition: the
mortar element method. Nonlinear partial equations and their applications, 1989.

[81] F. B. Belgacem, P. Hild, and P. Laborde. The mortar finite element method
for contact problems. Mathematical and Computer Modelling, 28(4-8):263–271,
1998.

[82] C. Bernardi, Y. Maday, and A. T. Patera. Domain decomposition by the mortar
element method. In Asymptotic and numerical methods for partial differential
equations with critical parameters, pages 269–286. Springer, 1993.

[83] K. C. Park and C. A. Felippa. A variational principle for the formulation of
partitioned structural systems. International Journal for Numerical Methods in
Engineering, 47(1-3):395–418, 2000.

[84] V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz. An
adaptive finite element approach to atomic-scale mechanics – the quasicontinuum
method. Journal of the Mechanics and Physics of Solids, 47(3):611–642, 1999.

[85] W. A. Curtin and R. E. Miller. Atomistic/continuum coupling in computational
materials science. Modelling and simulation in materials science and engineering,
11(3):R33, 2003.

[86] F. F. Abraham, J. Q. Broughton, N. Bernstein, and E. Kaxiras. Spanning the
length scales in dynamic simulation. Computer in Physics, 12(6):538–546, 1998.

[87] R. E. Rudd and J. Q. Broughton. Concurrent coupling of length scales in solid
state systems. Physica status solidi (b), 217(1):251–291, 2000.

[88] T. Belytschko and S. P. Xhiao. Coupling methods for continuum model with
molecular model. International Journal for Multiscale Computational Engineer-
ing, 1(1), 2003.

[89] S. P. Xiao and T. Belytschko. A bridging domain method for coupling con-
tinua with molecular dynamics. Computer Methods in Applied Mechanics and
Engineering, 193(17-20):1645–1669, 2004.

[90] M. Xu and T. Belytschko. Conservation properties of the bridging domain
method for coupled molecular/continuum dynamics. International Journal for
Numerical Methods in Engineering, 76(3):278–294, 2008.

[91] G. J. Wagner and Liu W. K. Coupling of atomistic and continuum simula-
tions using a bridging scale decomposition. Journal of Computational Physics,
190(1):249–274, 2003.



172 BIBLIOGRAPHY

[92] W. K. Liu, H. S. Park, D. Qian, et al. Bridging scale methods for nanomechanics
and materials. Computer Methods in Applied Mechanics and Engineering, 195(13-
16):1407–1421, 2006.

[93] H. Ben Dhia. Multiscale mechanical problems : the arlequin method. Comptes
Rendus de l’Académie des Sciences série IIb, Paris Série I, 326:899–904, 1998.

[94] H. Ben Dhia. Numerical modelling of multiscale problems: the arlequin method.
In ECCM, editor, CD Proceedings of ECCM’99, Munchen, Deutschland, 1999.

[95] H. Ben Dhia and G. Rateau. Contact problems in the arlequin framework.
Comptes Rendus de l’Académie des Sciences, Paris Série I, 332:649–654, 2001.

[96] H. Ben Dhia and G. Rateau. Application of the arlequin method to some struc-
tures with defects. Revue Européenne des éléments finis, 11:291–304, 2002.

[97] H. Ben Dhia and G. Rateau. The arlequin method as a flexible engineering design
tool. Numerical Methods in Engineering, 62(11):1442–1462, 2005.

[98] H. Ben Dhia. Further insights by theoretical investigations of the multiscale ar-
lequin method. International Journal for Multiscale Computational Engineering,
6(3):215–232, 2008.

[99] H. Ben Dhia and M. Zarroug. Mathematical analysis of the mixed arlequin
method. 3rd Contact Mechanics International Symposium, 2001.

[100] G. Rateau. Méthode Arlequin pour les problèmes mécaniques multi-échelles. PhD
thesis, École Centrale de Paris, 2003.

[101] S. Prudhomme, H. Ben Dhia, P. T. Bauman, et al. Computational analysis of
modeling error for the coupling of particle and continuum models by the arlequin
method. Computer Methods in Applied Mechanics and Engineering, pages 3399–
3409, 2008.

[102] S. Prudhomme, L. Chamoin, H. Ben Dhia, et al. An adaptive strategy for the
control of modeling error in two-dimensional atomic-to-continuum coupling sim-
ulations. Computer Methods in Applied Mechanics and Engineering, pages 1887–
1901, 2009.

[103] P. T. Bauman, H. Ben Dhia, N. Elkhodja, et al. On the application of the ar-
lequin method to the coupling of particles and continuum models. Computational
Mechanics, 42:511–530, 2008.

[104] P.T. Bauman, J. T. Oden, and S. Prudhomme. Adaptive multiscale modeling
of polymeric materials with arlequin coupling and goals algorithms. Computer
Methods in Applied Mechanics and Engineering, 198:799–818, 2009.

[105] I. Babuska. The finite element method with lagrangian multipliers. Numerische
Mathematik, 20(3):179–192, 1973.

[106] L. Chamoin, J. T. Oden, and S. Prudhomme. A stochastic coupling method
for atomic-to-continuum monte-carlo simulations. Computer Methods in Applied
Mechanics and Engineering, pages 3530–3546, 2008.



BIBLIOGRAPHY 173

[107] L. Chamoin et al. Ghost forces and spurious effects in atomic-to-continuum
coupling methods by the arlequin approach. International Journal for Numerical
Methods in Engineering, 83:1081–1113, 2010.

[108] Y. Chuzel. Caractérisation expérimentale et simulation numérique d’impacts de
glace à haute vitesse. PhD thesis, Institut National des Sciences Appliquées de
Lyon, Lyon, 2009.

[109] Y. Chuzel-Marmot, R. Ortiz, and A. Combescure. Three dimensional sph-fem
gluing for simulation of fast impacts on concrete slabs. Computers and Structures,
89:2484–2494, 2011.

[110] F. Caleyron. Simulation numérique par la méthode SPH de fuites de fluide con-
sécutives à la déchirure d’un réservoir sous impact. PhD thesis, Institut National
des Sciences Appliquées de Lyon, Lyon, 2011.

[111] F. Caleyron, Y. Chuzel-Marmot, and A. Combescure. Modeling of reinforced
concrete through sph-fe coupling and its application to the simulation of a pro-
jectile’s impact onto a slab. International Journal for Numerical Methods in
Biomedical Engineering, 27:882–898, 2011.

[112] Y. Chuzel-Marmot, A. Combescure, and R. Ortiz. Explicit dynamics "sph-finite
element" coupling using the arlequin method. European Journal of Computational
Mechanics/Revue Européenne de Mécanique Numérique, 17:5–7, 2012.

[113] F. Caleyron, A. Combescure, V. Faucher, et al. Sph modeling of fluid/solid
interaction for dynamic failure analysis of fluid-filled thin shells. Journal of Fluids
and Structures, 39:126–153, 2013.

[114] P. A. Guidault and T. Belytschko. On the l2 and the h1 couplings for an over-
lapping domain decomposition method using lagrange multipliers. International
Journal for Numerical Methods in Engineering, 70:322–350, 2007.

[115] A. Ghanem, M. Torkhani, N. Mahjoubi, et al. Arlequin framework for multi-
model, multi-time scale and heterogeneous time integrators for structural tran-
sient dynamics. Computer Methods in Applied Mechanics and Engineering,
254:292–308, 2012.

[116] A. Ghanem. Contributions à la modélisation avancée des machines tournantes
en dynamique transitoire dans le cadre Arlequin. PhD thesis, Institut National
des Sciences Appliquées de Lyon, Lyon, 2013.

[117] J. L. Steger and D. S. Chaussee. Generation of body-fitted coordinates using hy-
perbolic partial differential equations. SIAM Journal of Scientific and Statistical
Computing, 1(4):431–437, 1983.

[118] Joseph L. Steger, F.Carroll Dougherty, and John A. Benek. A chimera grid
scheme. American Society of Mechanical Engineers, Fluids Engineering Division
(Publication) FED, 5, 02 1983.



174 BIBLIOGRAPHY

[119] J. L. Steger and J. A. Benek. On the use of composite grid schemes in computa-
tional aerodynamics. Computer Methods in Applied Mechanics and Engineering,
64:301–320, 1987.

[120] Y. Zheng and M.-S. Liou. A novel approach of three-dimensional hybrid grid
methodology: Part 1. grid generation. Computer methods in applied mechanics
and engineering, 192(37-38):4147–4171, 2003.

[121] K.-H. Kao and M.-S. Liou. Advance in overset grid schemes-from chimera to
dragon grids. AIAA journal, 33(10):1809–1815, 1995.

[122] R. Meakin. An efficient means of adaptive refinement within systems of overset
grids. In 12th Computational Fluid Dynamics Conference, page 1722, 1995.

[123] P. Gamnitzer and W. A. Wall. An ale-chimera method for large deformation
fluid structure interaction. In European Conference on Computational Fluid Dy-
namics, Delft, Netherlands, 2006.

[124] E. L. Blades and D. L. Marcum. A sliding interface method for unsteady unstruc-
tured flow simulations. International Journal for Numerical Methods in Fluids,
53(3):507–529, 2007.

[125] C. Wolf. A chimera simulation method and detached eddy simulation for vortex-
airfoil interactions. PhD thesis, Georg-August-Universität, Göttingien, 2011.

[126] E. J. Nielsen and Diskin B. Discrete adjoint-based design for unsteady turbulent
flows on dynamic overset unstructured grids. AIAA journal, 51(6):1355–1373,
2013.

[127] R. L. Meakin. Moving body overset grid methods for complete aircraft tiltrotor
simulations. In 11th Computational Fluid Dynamics Conference, page 3350, 1993.

[128] T. Renaud, M. Costes, and S. Péron. Computation of goahead configuration with
chimera assembly. Aerospace Science and Technology, 19:50–57, 2012.

[129] T. Renaud, A. Le Pape, and S. Péron. Numerical analysis of hub and fuse-
lage drag breakdown of a helicopter configuration. CEAS Aeronautical Journal,
4(4):409–419, 2013.

[130] P. Buning, I. Chiu, S. Obayashi, Y. Rizk, and J. Steger. Numerical simulation
of the integrated space shuttle vehicle in ascent. In 15th Atmospheric Flight
Mechanics Conference, page 4359, 1988.

[131] R. Gomez and E. Ma. Validation of a large scale chimera grid system for the
space shuttle launch vehicle. In 12th Applied Aerodynamics Conference, page
1859, 1994.

[132] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the euler equa-
tions by finite volume methods using runge kutta time stepping schemes. In 14th
fluid and plasma dynamics conference, page 1259, 1981.



BIBLIOGRAPHY 175

[133] J. A. Benek, J. L. Steger, and F. C. Dougherty. A flexible grid embedding
technique with application to the euler equations. AIAA papers, pages 373–382,
1983.

[134] G. Houzeaux, B. Eguzkitza, R. Aubry, et al. A chimera method for the incom-
pressible navier-stokes equations. International Journal for Numerical Methods
in Fluids, 75:155–183, 2014.

[135] M. J. Berger. On conservation at grid interfaces. SIAM journal on numerical
analysis, 24(5):967–984, 1987.

[136] C. Benoît. Méthode d’adaptation de maillages au moyen d’algorithmes génétiques
pour le calcul d’écoulements compressibles. PhD thesis, ENSAM, Paris, 1999.

[137] Z.-N. Wu. Uniqueness of steady-state solutions for difference equations on over-
lapping grids. SIAM journal on numerical analysis, 33(4):1336–1357, 1996.

[138] Z. Wang, H. Yang, and A. Przekwas. Implicit conservative interfacing for 3d
overlapped chimera grids. In 12th Computational Fluid Dynamics Conference,
page 1683, 1995.

[139] Z. J. Wang. A fully conservative interface algorithm for overlapped grids. Journal
of Computational Physics, 122(1):96–106, 1995.

[140] P. Brenner. Simulation du mouvement relatif de corps soumis à un écoulement
instationnaire par une méthode de chevauchement de maillages. In AGARD
CONFERENCE PROCEEDINGS AGARD CP, pages 32–32. AGARD, 1996.

[141] T. Berglind. A hybrid structured-unstructured grid method for aerodynamic flow
simulations. In 33rd Aerospace Sciences Meeting and Exhibit, page 51, 1995.

[142] G. Starius. Composite mesh difference methods for elliptic and boundary value
problems. Numerische Mathematik, 28:243–258, 1977.

[143] G. Starius. On composite mesh difference methods for hyperbolic differential
equations. Numerische Mathematik, 35(3):243–258, 1980.

[144] B. Gustafsson, H.-O. Kreiss, and A. Sundström. Stability theory of difference
approximations for mixed initial boundary value problems. ii. Mathematics of
Computation, pages 649–686, 1972.

[145] A. Lerat and Z. N. Wu. Stable conservative multidomain treatments for implicit
euler solvers. Journal of computational physics, 123(1):45–64, 1996.

[146] Z.-N. Wu. Theoretical aspects of composite grid methods in computational fluid
dynamics. In Computational Fluid Dynamics 2000, pages 749–754. Springer,
2001.

[147] E. Pärt-Enander and B. Sjögreen. Conservative and non-conservative interpola-
tion between overlapping grids for finite volume solutions of hyperbolic problems.
Computers & fluids, 23(3):551–574, 1994.



176 BIBLIOGRAPHY

[148] F. Brezzi, J.-L. Lions, and O. Pironneau. Analysis of a chimera method. Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics, 332(7):655–660, 2001.

[149] F. Hecht, J.-L. Lions, and O. Pironneau. Domain decomposition algorithm for
computer aided design. In Applied nonlinear analysis, pages 185–198. Springer,
2002.

[150] S. Péron. Méthode d’assemblage de maillages recouvrants autour de géométries
complexes pour des simulations en aérodynamique compressible. PhD thesis,
École Nationale Supérieure d’Arts et Métiers, 2014.

[151] O. Jamond. Propagation numérique de zones critiques dans un pneumatique par
approches multi-modèles. PhD thesis, École Centrale Paris, 2011.

[152] A. Fernier, V. Faucher, and O. Jamond. Multi-model arlequin method for tran-
sient structural dynamics with explicit time integration. International Journal
for Numerical Methods in Engineering, 112(9):1194–1215, 2017.

[153] D. Boffi, A. Buffa, and L. Gastaldi. Convergence analysis for hyperbolic evolution
problems in mixed form. Numerical Linear Algebra with Applications, 20:541–
556, 2013.

[154] R. J. LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cam-
bridge university press, 2002.

[155] A. Gravouil. Méthode multi-échelles en temps et en espace avec décomposition
de domaines pour la dynamique non-linéaire des structures. PhD thesis, École
Nationale Supérieure de Cachan, 2000.

[156] E. Hinton, T. Rock, and O. C. Zienkiewicz. A note on mass lumping in the related
processes in the finite element method. Earthquake Engineering and Strucutral
Dynamics, 4:245–249, 1976.

[157] A. Cardona and M. Geradin. Time integration of the equations of motion in
mechanism analysis. Computers and Strucutures, 33(3):801–820, 1989.

[158] C. Farhat, L. Crivelli, and M. Geradin. Implicit time integration of a class of
constrained hybrid formulations - part i: Spectral stability theory. Computers
Methods in Applied Mechanics and Engineering, 125:71–107, 1995.

[159] T. J. R. Hughes and W. K. Liu. Implicit-explicit finite elements in transient
analysis: Stability theory. Journal of Applied Mechanics, 45:371–374, 1978.

[160] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities in
finite elements. International Journal for Numerical Methods in Engineering,
50(4):993–1013, 2001.

[161] T. Belytschko and T. Black. Elastic crack growth in finite elements with min-
imal remeshing. International journal for numerical methods in engineering,
45(5):601–620, 1999.



BIBLIOGRAPHY 177

[162] N. Moës, A. Gravouil, and T. Belytschko. Non-planar 3d crack growth by the
extended finite element and level sets – part i: Mechanical model. International
Journal for Numerical Methods in Engineering, 53(11):2549–2568, 2002.

[163] A. Gravouil, N. Moës, and T. Belytschko. Non-planar 3d crack growth by the
extended finite element and level sets – part ii: Level set update. International
Journal for Numerical Methods in Engineering, 53(11):2569–2586, 2002.

[164] C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. Arbitrary
branched and intersecting cracks with the extended finite element method. Inter-
national journal for numerical methods in engineering, 48(12):1741–1760, 2000.

[165] P. Rozycki, N. Moës, E. Bechet, and C. Dubois. X-fem explicit dynamics for con-
stant strain elements to alleviate mesh constraints on internal or external bound-
aries. Computer Methods in Applied Mechanics and Engineering, 197(5):349–363,
2008.

[166] T. Belytschko, H. Chen, J. Xu, and G. Zi. Dynamic crack propagation based on
loss of hyperbolicity and a new discontinuous enrichment. International journal
for numerical methods in engineering, 58(12):1873–1905, 2003.

[167] B. Prabel, A. Combescure, A. Gravouil, and S. Marie. Level set x-fem non-
matching meshes: application to dynamic crack propagation in elastic-plastic
media. International Journal for Numerical Methods in Engineering, 69(8):1553–
1569, 2007.

[168] J. Réthoré, A. Gravouil, and A. Combescure. An energy-conserving scheme for
dynamic crack growth using the extended finite element method. International
Journal for Numerical Methods in Engineering, 63(5):631–659, 2005.

[169] R. de Borst, J. J. C. Remmers, and A. Needleman. Mesh-independent discrete
numerical representations of cohesive-zone models. Engineering fracture mechan-
ics, 73(2):160–177, 2006.

[170] J. J. C. Remmers, R. de Borst, and A. Needleman. The simulation of dynamic
crack propagation using the cohesive segments method. Journal of the Mechanics
and Physics of Solids, 56(1):70–92, 2008.

[171] S.-Y. Chang. An explicit method with improved stability property. International
Journal for Numerical Methods in Engineering, 77(8):1100–1120, 2009.

[172] V. Faucher, M. Bulik, and P. Galon. Updated vofire algorithm for fast fluid-
structure transient dynamics with multi-component stiffened fas flows imple-
menting anti-dissipation on unstructured grids. Journal of Fluids and Structure,
74:64–89, 2017.

[173] O. Jamond and V. Faucher. Regularized immersed boundary-type formulation for
fast transient dynamics with fluid-structure interaction. Advances in Engineering
Software, 108:1–23, 2017.



178 BIBLIOGRAPHY

[174] G. Allaire. Analyse numérique et optimisation: Une introduction à la modélisa-
tion mathématique et à la simulation numérique. Editions Ecole Polytechnique,
2005.

[175] V. Faucher. Advanced parallel strategy for strongly coupled fast transient fluid-
structure dynamics with dual management of kinematic constraints. Advances
in Engineering Software, 67:70–89, 2014.

[176] F. Daude, J. Berland, T. Emmert, P. Lafon, F. Crouzet, and C. Bailly. A high-
order finite-difference algorithm for direct computation of aerodynamic sound.
Computers & Fluids, 61:46–63, 2012.

[177] J. Donea and A. Huerta. Finite element methods for flow problems. John Wiley
& Sons, 2003.

[178] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69. SIAM, 2011.

[179] J. Von Neumann and R. D. Richtmyer. A method for the numerical calculation
of hydrodynamic shocks. Journal of applied physics, 21(3):232–237, 1950.

[180] J. Galon, P.and Nunziati. Méthode des volumes finis dans europlexus - extension
du schéma à l’ordre deux en espace et en temps. Technical report, Commissariat
à l’énergie atomique, 07 2007.

[181] B. R. Feiring, D. T. Phillips, and G. L Hogg. Penalty function techniques: a
tutorial. Computers & industrial engineering, 9(4):307–326, 1985.





Titre: Couplage multi-modèle en dynamique rapide avec interaction fluide-structure
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Résumé: Dans l’industrie nucléaire, la simu-
lation de transitoires accidentels à l’échelle d’un
réacteur devient une composante d’importance
croissante de la démonstration de sûreté à des-
tination des agences de surveillance nationales.
Elle permet ainsi de limiter le recours à des ex-
périences complexes et coûteuses tout en facil-
itant l’évaluation des stratégies de mitigation.
Cependant, les modèles mis en jeu sont in-
évitablement volumineux et construits avec une
finesse de modélisation rendant difficile la prise
en compte de détails géométriques locaux pour-
tant susceptibles d’influencer significativement
la solution globale. Dans ce travail de thèse,

on propose ainsi des approches multi-modèles
pour l’intégration de tels détails dans un mod-
èle global sans modification du maillage initial
(on parle aussi de zoom numérique). Des tech-
niques sont proposées aussi bien pour les struc-
tures que pour les fluides, avec un souci de dé-
montrer la précision et la stabilité de la solu-
tion multi-modèles couplée comparée à une so-
lution de référence à une seule échelle. Ce travail
intègre deux spécificités propres, à savoir son
adéquation avec les contraintes de la dynamique
rapide avec intégration temporelle explicite et
l’objectif de traiter simultanément la superposi-
tion de modèles et l’interaction fluide-structure.

Title: Multi-model coupling for transient fluid structure interaction.

Keywords: Multi-model, Arlequin, Chimera, Explicit Integration, FSI.

Abstract: In nuclear industry, simulating ac-
cidental transient sequences at full reactor scale
is becoming an increasingly important feature of
the safety demonstration towards national agen-
cies. It thus allows limiting the number of com-
plex and costly experiments, while simplifying
and accelerating the evaluation of mitigation
strategies. However, the implemented numer-
ical models are inevitably heavy to build and
maintain, with a global modelling scale making
it difficult to account for local geometric details
yet able to significantly influence the physical
solution. To provide an answer to this prob-
lematics, this PhD work is dedicated to multi-

model approaches designed to integrate such de-
tails into bigger models with no modification at
the global level (techniques often designated as
numerical zoom techniques). Some methods are
proposed for both structures and fluids, with
special care given to the accuracy and stabil-
ity of the coupled multi-scale solution compared
to a single-scale reference solution. This work
handles two very specific topics, namely its com-
patibility with numerical features imposed by
fast transient dynamics with explicit time in-
tegration, and the general objective of simulta-
neously dealing with superimposed models and
fluid-structure interaction.
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