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PREFACE 

 

All this work started in 2010, from an informal discussion in a Cape Verde restaurant in 

Paris. After having drunk just enough caipirinhas to let the craziest scientific ideas be born, a very 

simple question appeared in the discussion: do lizards dream? After a short night with memory 

consolidation and a quick bibliography, the question changed a bit, to become: do reptiles show 

paradoxical sleep? Followed by, which animals show paradoxical sleep? And, slow wave sleep? Is 

slow wave sleep and paradoxical sleep proper to warm blooded animal? Finally, other kinds of 

questions were raised: what is paradoxical sleep, what is slow wave sleep? How to define these 

states? The idea stayed in mind for a bit of time, the time to read and the time to start building 

the project. One idea was: if mammals and birds, species with the most complex cognitive abilities 

have paradoxical sleep then we should study a “clever” reptile. “Clever” and big, because 

proportionally to their size, reptiles have a relatively small brain. Then the argentine tegu 

appeared to be the perfect candidate, “clever”, big enough, and not aggressive (relatively). Yet, if 

we wanted to characterized sleep in a new species we should record all the parameters that allow 

to differentiate the two sleep states in mammals. It was a very naïve thing to think that it would 

be easy. Indeed, no brain atlases were available, no stereotactical frame existed for this species, 

no system allow us to monitor the behavior synchronized with the physiology and the brain 

activity.  As these animals are poikilotherms (cold blooded species), their temperature follows the 

ambient temperature, so at which temperature should we record them? In which animal facilities? 

This dissertation is the fruit of 8 years of passionate work and of fixing every problem one by one 

in order to answer to a quite simple question “do lizards dream?”. 
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GLOSSARY 

 

AW: active wake 

CA1: Cornu ammonis 1 

CSF: Cerebrospinal fluid 

CT: Computed tomography 

DVR: Dorso ventricular ridge 

EEG: Electroencephalogram 

ECG: Electrocardiogram 

EOG: Electrooculogram 

EMG: Electromyogram 

HShW: High-voltage sharp wave 

LFP: Local field potential 

MC: Medial cortex 

MRI: Magnetic resonance imaging 

NS: Nucleus sphericus 

PGO: Ponto-geniculo occipital 

PS: Paradoxical sleep 

PSD: Power spectrum density 

QW: quiet wake 

REM sleep: Rapid eye movement sleep 

S1: Sleep 1 

S2: Sleep 2 

SCN: Suprachiasmatic nuclei 

SLS: sleep like state 

SWA: Slow wave activity 

SWS: Slow-wave sleep 

hSWP-R: hippocampal Sharp wave ripples complex 
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Phylogénie du sommeil chez les tétrapodes :  

Analyse de pattern évolutifs, études électrophysiologiques et 
comportementales chez deux espèces de squamates et nouvelles 

perspectives méthodologiques 

 

RESUME 

Le sommeil constitue un comportement vital complexe, identifié chez la quasi-totalité des 

animaux étudiés. Sur la base d’études princeps dans les années 50 chez le chat et l’homme, le 

sommeil a pu être séparé clairement en deux états distincts : le sommeil lent et le sommeil 

paradoxal. Ces deux états ont ainsi été caractérisés sur la base de critères 

électroencéphalographiques, physiologiques et comportementaux. Basé sur une définition 

mammalienne, il a ainsi été montré que les mammifères terrestres et les oiseaux, tous deux 

homéothermes, possédaient ces deux états de sommeil. Cependant, l'origine évolutive de ces deux 

états reste inconnue et nous ne savons toujours pas s’ils ont évolué de façon indépendante ou 

s’ils ont été hérités d'un ancêtre commun. Les amphibiens et les reptiles, positionnés à la base des 

tétrapodes et des amniotes constituent par conséquent, des taxons clés dans la compréhension 

de l'évolution de ces deux états de sommeil. Afin de mieux comprendre la phylogénie de ces deux 

états, nous avons réalisé dans un premier temps une revue et méta-analyse de la littérature du 

sommeil chez ces espèces. Dans un second temps, et dans le but de pouvoir conduire des 

approches comparatives et ainsi mieux décrire la plasticité du sommeil, nous avons développé un 

dispositif miniature sans fil permettant d’enregistrer simultanément l’électrophysiologie, la 

physiologie, la température et le comportement en laboratoire et en milieu naturel. Enfin, nous 

avons conduit une étude électrophysiologique, physiologique, pharmacologique et 

comportementale chez deux espèces de squamates (Salvator merianae et Pogona vitticeps). Cette 

étude nous a permis de montrer que deux états électroencéphalographiques de sommeil existaient 

chez ces espèces. Cependant, elles ont aussi révélé des divergences phénotypiques importantes au 

sein même des lézards, ainsi qu’avec le sommeil des mammifères et des oiseaux, démontrant ainsi 

une origine commune mais complexe des deux états de sommeil.  

Mot clés : sommeil, évolution, tétrapodes, squamates, sommeil lent, sommeil paradoxal, 

Pogona Vitticeps, Salvator merianae.  
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Phylogeny of sleep in tetrapods  
Analysis of evolutionary patterns, electrophysiological and behavioral 
studies in two squamates species and new methodological perspectives 

 

ABSTRACT 

Sleep is a vital and complex behavior, identified in nearly all animals. Based on studies on 

cats and humans conducted in the 50’s, sleep was separated into two distinct sleep states: slow 

wave sleep and paradoxical sleep (or REM sleep). Those two states were identified based on 

electroencephalographic, physiological and behavioral parameters. Based on this mammalian 

definition, it has been demonstrated that those two states exist in terrestrial mammals and birds, 

both homeotherms. However, the evolutive origin of these sleeps states remains unknown and 

we do not know whether they evolved independently or if they were inherited from a common 

ancestor. Amphibians and reptiles are respectively positioned at the base of the tetrapod and the 

amniote tree. Therefore, they constitute key taxa in the understanding of the origin of these 

states. In order to understand the phylogeny of these states, we first performed an exhaustive 

review and meta-analysis of the sleep literature in these groups. Next, in order to be able to 

conduct comparative approaches and better understand the sleep plasticity, we developed a 

standalone miniature device to record electrophysiology, physiology, temperature, and behavior 

simultaneously and this under both lab and field conditions. Finally, we conducted an 

electrophysiological, physiological, pharmacological and behavioral study of two squamates 

species (Salvator merianae and Pogona vitticeps). This study revealed that two electro-

encephalographical sleep states exist in these species. However, they also showed that the 

phenotype of these states diverged between the two lizards and between the lizards on the one 

hand and mammals and birds on the other hand. This would suggest a common, but complex, 

origin of these two sleep states; 

  

Keywords: sleep, evolution, Tetrapoda, squamates, slow wave sleep, REM sleep, paradoxical 

sleep, Pogona vitticeps, Salvator merianae.  
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GENERAL INTRODUCTION 

 

From a behavioral point of view, sleep could be considered as a “simple” rest. One can easily 

understand that, when there is nothing to do (absence of light for diurnal species for example) 

or when environmental factors are not beneficial, sleep could be an excellent way to save energy. 

But, interestingly, when the need arises to be active for a prolonged period of time, why can an 

organism not resist the irremediable pressure to sleep? Why do all animals experience this daily 

rest, unconscious from their environment, and often times exposed to predation? Conserved over 

millions of years of evolution, this would certainly mean that sleep serves a core function. But, 

what function? Or what functions? Is the role of sleep the same for each species? In addition, how 

was this universal and apparently essential behavior selected for by natural selection? One way to 

understand why we all sleep, is to look at the diversity of the sleep phenotypes across species with 

different morphologies, life styles, diets, and ancestry … and try to make parallels, comparisons, 

and correlations. An evolutionary perspective through studies of the current diversity of sleep 

phenotypes, is key to have a better and more complete understanding of what is sleep and of why 

all animals sleep. But, let’s start at the beginning. 

(1) History, characterization and organization of the sleep states in mammals 

In 1875, the British physician, Richard Caton (Caton, 1875) discovered the electrical nature 

of the brain, by recording with a galvanometer the electrical current generated. In 1877, Caton 

reported that ‘[…] a variation of the current frequently occurred when the rabbit awoke from 

sleep,[…]’ (Caton, 1877).  This was the first report of an EEG variation related to sleep. Then in 

1913, the French psychologist, Henri Piéron, in his book ‘le probleme physiologique du sommeil’ 

produce an extensive study defining and characterizing sleep from a behavioral and physiological 

point of view. He defined sleep as a period of sustained inactivity, with a species specific posture, 

in a specific location, associated with a high arousal threshold, and a reversibility after an intense 

stimulation (Piéron, 1913). A behavioral definition that is still used to identify sleep. But sleep 

research really emerged after the first human sleep electroencephalogram which was recorded by 

Hans Berger in 1929 (Berger, 1929). Then, in 1935, Alfred lee Loomis (Loomis, Harvey, & 

Hobart, 1935a, 1935b) identified variations in the human EEG across sleep and proposed the 

first human sleep state classification. Now, the EEG is the tool of reference used to diagnose/ 

describe/ score sleep in human as well as animals. In the 50’s, another important discovery 
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marked sleep research. Indeed, even if preliminary signs of its presence was reported before (for 

a review see Gottesmann, 2001), a new sleep state was clearly identified, in 1953. First in humans 

by Eugen Aserinsky and Nathaniel Kleitman (Aserinsky & Kleitman, 1953) and later in the cat 

in 1958 by William Dement (Dement, 1958). This state was found to be related to dream content 

(Aserinsky & Kleitman, 1953; Dement & Kleitman, 1957) and was named Rapid Eye Movement 

Sleep (REM sleep). It is characterized by the presence of active phenomena, like rapid eye 

movements (Aserinsky & Kleitman, 1953), an irregular heart rate (Aserinsky & Kleitman, 1953; 

Snyder et al., 1964) and breathing rate (Aserinsky & Kleitman, 1953), motor automatisms 

(Gassel, Marchiafava, & Pompeiano, 1964), and an awake-like cortical brain activity (Aserinsky 

& Kleitman, 1953; Jouvet, Michel, & Courjon, 1959a). Moreover, in 1959 Michel Jouvet and 

collaborators identified that this state was moreover specifically associated with a muscular atonia 

and named this state Paradoxical sleep (PS). They also discovered the presence of pontine waves 

during PS in the cat (Jouvet, Michel, & Courjon, 1959b), and that the brainstem was sufficient 

to generate the state (Jouvet, Michel, & Courjon, 1960). During this state thermoregulatory 

processes including shivering, pilo erection, sweating are abolished (Parmeggiani, 2003). In 

opposition to the active nature of the PS, the rest of the sleep period is characterized by reduced 

physiological processes and was named non-REM sleep or Slow wave sleep (SWS). Non-REM 

sleep is mainly associated with high amplitude slow frequencies in the cortical EEG (Loomis, 

Harvey, & Hobart, 1938; Steriade, 1993). Even if most of the dream recalls seem to occur during 

PS, some of them have been reported after an awakening during Non-REM sleep, (Cavallero et 

al., 1992).  In humans, Non-REM sleep is subdivided into 3 sub-states N1, N2 and N3. N1 

indicates the sleep onset and is characterized by the presence of theta oscillations (4—7Hz). Some 

slow eye movements may occur. This explains why, in 1938, Loomis characterized PS as N1 

(Loomis et al., 1938). N2 is light sleep and is scored when spindle oscillations (12—14Hz) and K-

complex waves appear with the theta rhythm. Finally, N3, also named deep sleep, is characterized 

by the presence of delta slow oscillations (0.5—3Hz). N3 is mainly equivalent to the SWS scored 

in animals. In humans, sleep occurs in cycles of around 90 minutes and lasts 8 hours on average. 

The beginning of the night contains more N1, N2 and N3 stages, whereas at the end of the sleep 

cycle, PS become more prominent and replaces N3 progressively. In most of the species studied 

it appears that PS always follows a non-REM sleep period and is always followed by an arousal. 
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(2) The two processes model of sleep regulation. 

 In 1982, Alexander Borbély introduced the two process model of sleep regulation (Borbély, 

1982; Borbély et al., 2016). The model explains that sleep is regulated by the interaction of a 

homeostatic process (process S) with a circadian process (process C) (see Fig 1). The process S is 

represented by the pressure of sleep after a sleep deprivation or, in other words, a sustained period 

of wake. The amplitude of the slow waves, or the slow wave activity (SWA), is the principal marker 

of the process. During the recovery period following a sleep deprivation the SWA is greatly 

increased compared to a normal SWA without sleep deprivation. Note that PS is also 

homeostatically regulated (Benington & Heller, 1994). Core body temperature and hormonal 

release (principally melatonin) are the marker of the C process. This process is under the control 

of the circadian clock and driven by the suprachiasmatic nuclei (SCN). The circadian regulation 

as well as the homeostatic regulation are considered as a key points to identify sleep (Tobler, 

1995).  

 

Fig 1.Schematics of the two-process model, extract from Borbély et al. 2016 
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(3) Ontogeny of sleep  

It is well established that the quantities of sleep covary with the aging process. The 

development is accompanied by a continuous decrease in the total sleep time, PS time and an 

increase in the waking and Non-REM sleep percentage. Associated with the fact that precocial 

species show similar quantities of Non-REM sleep and PS as adults (Jouvet-Mounier, Astic, & 

Lacote, 1969; Ibuka, 1984; Scriba et al., 2013b), and that PS is present in great quantities during 

the development,  this lead researchers to proposed a role of sleep in development (Roffwarg, 

Muzio, & Dement, 1966; Blumberg, 2013).  

 

Fig 2.Sleep ontogeny across phylogeny. Flies, fish and worms all exhibits developmentally 

regulated changes to sleep amount in as mammals. (Extracted from Kayser & Biron, 2016)  

 

(4) Phylogeny of sleep 

From a behavioral point of view, and including the homeostatic and circadian criteria in the 

definition of sleep, it is commonly accepted that all animals sleep (Campbell & Tobler, 1984; 

Siegel, 2008; Nath et al., 2017). However some studies report the absence of sleep or the absence 

of inactivity periods (Van Twyver, 1973; Kavanau, 1998). These reports of absence or periodic 
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reduction of sleep quantities can be caused by environmental conditions, that favor the fitness of 

the species, like parental care (Lyamin et al., 2005) or mating success, for example (Lesku et al., 

2012). Currently, the existence of non-sleeping species remains to be demonstrated. However, 

these examples of periodic reduction of sleep suggests that the time allocated to sleep likely 

constitutes a tradeoff with the reproductive success of an individual. The unilateral sleep 

experienced by cetaceans (Lyamin et al., 2008) and birds (Rattenborg, Lima, & Amlaner, 1999) 

is also an example showing how selection on both sleep and other functions resulted in the 

capacity of some animals  to “sleep while awake”. 

SWS and PS have been identify in all terrestrial mammals studied so far (Campbell & Tobler, 

1984). Cetaceans constitute an exception in mammals as PS has not been clearly identified in 

these species (Lyamin et al., 2008). These states have also been identified in birds (Rattenborg et 

al., 1999; Roth et al., 2006). In birds, as in mammals, a higher amplitude and a slower activity in 

the EEG characterizes SWS (Klein, Michel, & Jouvet, 1964; Amlaner & Ball, 1994). PS episodes 

in birds are much shorter than in mammals, and the muscle atonia is not always visible in the 

EMG. The EEG looks like an awake EEG, and eye movements co-occur. The homeostatic 

regulation of sleep with an increase in the slow wave activity is also present in birds (Rattenborg, 

Martinez-Gonzalez, & Lesku, 2009), as are the greater quantities of PS during development 

(Scriba et al., 2013b). But, what about reptiles including crocodilians, chelonians and 

lepidosaurians, species that share a common ancestor with mammals and birds. The presence of 

these two states is less clear in these species. Indeed, only a few studies were conducted mainly in 

the 70’s. Some authors identified periods with eye movements occurring during the behavioral 

sleep and proposed these periods to be a PS-like state (Tauber, Rojas-Ramírez, & Hernández 

Peón, 1968; Peyrethon & Dusan-Peyrethon, 1969; Vasilescu, 1970; Romo, Cepeda, & Velasco, 

1978; Ayala Guerrero, 1987; Huntley, 1987, 1987; Ayala-Guerrero & Vargas Reyna, 1987; Ayala-

Guerrero, Calderon, & Perez, 1988; Ayala-Guerrero & Mexicano, 2008b). Regarding the 

presence of SWS it is even less clear as only rare studies reported slow waves in the EEG during 

sleep (Hermann, Jouvet, & Klein, 1964; Peyrethon & Dusan-Peyrethon, 1969; Romo et al., 1978; 

Meglasson & Huggins, 1979). However multiple authors recorded high amplitude waves in the 

EEG during behavioral sleep (Tauber, Roffwarg, & Weitzman, 1966; Karmanova, Belekhova, & 

Churnosov, 1971; Flanigan, 1973, 1974; Van Twyver, 1973; Walker & Berger, 1973; Flanigan, 

Wilcox, & Rechtschaffen, 1973; Flanigan et al., 1974; Ayala Guerrero, 1987; Ayala-Guerrero & 

Vargas Reyna, 1987; Ayala-Guerrero et al., 1988; Ayala-Guerrero & Huitron Resendiz, 1991; 

Eiland, Lyamin, & Siegel, 2001; Ayala-Guerrero & Mexicano, 2008b). As a summary, sleep in 
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reptiles remains poorly understood and the presence of PS and SWS remains an open question. 

In non-amniotes species like amphibians, fishes, or invertebrates, sleep seems to be quite 

homogenous and stable. Only few studies reported active processes during behavioral sleep, like 

color change in cuttlefishes (Frank et al., 2012) or antenna twitches in bees (Klein et al., 2008). 

As a conclusion, sleep across the phylogeny of living organisms displays a certain stability in the 

behavioral aspects, but regarding the electrophysiological aspects of sleep and the separation into 

sleep states, things becomes less clear.  

(5) The need to conduct comparative work to understand sleep 

Why does evolution separate sleep into two sleep states in mammals and birds? What is the 

respective role of these states? Why do we experiment sleep with dreams? Is this a meaningless 

artefact of a mechanism occurring in our brain or is it an overview of internal constructive 

processes? If yes, which processes? A comparative approach could help us to understand these 

phenomena. Indeed, if not all animals experience sleep in this manner, the differences between 

species could help us understand the selective pressures on sleep. This will help to understand 

the origin of these sleep states, as well as the morphology and physiology that has favored these 

sleep states. More interestingly, this would give insights into the characteristics of these states that 

support a core function, if there is one. The two sleep states have been clearly identified in 

terrestrial mammals and birds, identified, yes! But based on a mammalian definition. Then, if a 

phenomenon does not have the same signature in a different species, does that mean that this is 

not the same phenomenon? If a wing does not have any feathers, does that mean that bats do not 

have wings? If a foot does not have toes, does that mean that a horse’s hoof does not serve the 

same function? Should we define a phenomenon based on its phenotype or on its function? If 

the phenotypes are different and if we do not know their role how can we define it? One way to 

deal with these issues, is to describe as broadly as possible the phenomenon, forget our initial 

mammalian definition, and screen as many species as possible. In the case of the evolution of 

sleep states, amphibians and non–avian reptiles (turtles, lizards and snakes and crocodiles) are 

positioned respectively at the base of the tetrapod and amniotes tree. The non–avian reptiles 

share a common ancestor with mammals and birds. Therefore, they become the perfect choice 

to start describing the phylogenetic diversity of sleep and sleep states. Interestingly, amphibians 

and non–avian reptiles are poikilotherms, meaning that they are not producing internal heat to 

maintain a constant body temperature as homeotherms (mammals and birds) do. Because of the 
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difference in thermoregulatory physiology, the presence or absence of the two sleep states could 

provide new cues to the role of SWS and PS. 

The present project started by conducting an as exhaustive as possible review of the literature 

on sleep in amphibians and non-avian reptiles. In order to try to trace back ancestral sleep traits, 

we computed a preliminary analysis of the phylogeny of behavioral and electrophysiological 

features of sleep. In this first chapter, we also highlight the difficulties to infer homologies in 

species that have a different anatomy (three-layer cortex, poikilothermy, muscle anatomy, …) and 

life style. 

In a second chapter, we describe a new wireless methodology we developed to record sleep 

for comparative studies. Indeed, one of the main difficulties to infer homologies based on the 

existing literature on sleep in amphibians and non-avian reptiles is the limitation of the number 

of parameters recorded to identify sleep and sleep states. The device allows to record 

simultaneously most of the parameters used to characterize (identify) sleep states in mammals, 

like EEG, EMG, ECG. In addition, the system allows one to evaluate the arousal threshold and 

the sleep homeostasis thanks to an embedded miniature arousal device. We also added the 

possibility to record movements, and the ambient, brain and body temperature.  

Finally, we choose one species of lizard, the argentine tegu (Salvator merianae), and conducted 

behavioral, electrophysiological, pharmacological and sleep homeostasis studies in order to 

determine whether this lizard displays one or more sleep states and whether it shares features 

common to mammalians sleep states. In parallel, we also replicated recently published recordings 

for another lizard species (Pogona vitticeps) allowing us to compare these two species and to 

describe the diversity of sleep states observed. 
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ABSTRACT 

Despite the ubiquitous nature of sleep, its functions remain a mystery. In an attempt to 

address this, many researchers have studied behavioural and electrophysiological phenomena 

associated with sleep in a diversity of animals. The great majority of vertebrates and invertebrates 

display a phase of immobility that could be considered as a sort of sleep. Terrestrial mammals 

and birds, both homeotherms, show two sleep states with distinct behavioural and 

electrophysiological features. However, whether these features have evolved independently in 

each clade or were inherited from a common ancestor remains unknown. Unfortunately, 

amphibians and reptiles, key taxa in understanding the evolution of sleep given their position at 

the base of the tetrapod and amniote tree, respectively, remain poorly studied in the context of 

sleep. This review presents an overview of what is known about sleep in amphibians and reptiles 

and uses the existing data to provide a preliminary analysis of the evolution of behavioural and 

electrophysiological features of sleep in amphibians and reptiles. We also discuss the problems 

associated with analysing existing data, as well as the difficulty in inferring homologies of sleep 

stages based on limited data in the context of an essentially mammalian-centric definition of 

sleep. Finally, we highlight the importance of developing comparative approaches to sleep 

research that may benefit from the great diversity of species with different ecologies and 

morphologies in order to understand the evolution and functions of sleep. 

Key words: sleep, amphibian, reptile, REM sleep, paradoxical sleep, slow-wave sleep, active 

sleep, quiet sleep, evolution. 
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I. INTRODUCTION 

In the following review, we first provide a brief overview of how sleep is defined, where it is 

observed in the animal kingdom, and what its possible functions may be. Excellent reviews on 

these topics are available (Kovalzon, 1976; Hartse, Kristyna M., 1994; Tobler, 1995; Siegel, 2005; 

Rattenborg et al., 2007; Cirelli & Tononi, 2008; Siegel, 2008; Mignot, 2008; Lesku et al., 2008; 

Siegel, 2009; Hartse, 2011) and, thus, we only briefly touch upon these matters here. A detailed 

review of the literature on sleep in amphibians and non-avian reptiles is then provided, including 

a discussion of the behavioural and electrophysiological indicators of sleep in these taxa. We then 

provide a preliminary quantitative analysis of these data in a phylogenetic framework, and discuss 

the evolution of sleep in reptiles and amphibians in the context of the evolution of sleep in 

vertebrates more generally. In doing so, we place specific emphasis on the difficulties encountered 

in defining sleep or sleep stages in reptiles and amphibians based on either behavioural or 

electrophysiological data. Finally, we discuss the need to develop comparative and developmental 

analyses to understand sleep in its evolutionary context and to identify its function(s). We also 

emphasize the need for additional studies on taxa such as reptiles and amphibians, and raise the 

question of the presence of a paradoxical sleep-like state in reptiles and amphibians. 

(1) What is sleep? 

Together with reproduction and feeding, sleep appears to be one of the fundamental 

requirements of all vertebrates. Most of the vertebrates studied to date display a daily period of 

prolonged immobility that can be considered as a sleep-like state. A behavioural definition of 

sleep was proposed just over a century ago and can be used to study the presence or absence of 

sleep in different organisms (Piéron, 1913). The behavioural features of sleep include: (1) the 

spontaneous use of a stereotypic or species-specific posture during periods of immobility, (2) the 

maintenance of behavioural immobility, (3) an elevated behavioural response threshold to arousal 

stimuli, and (4) a rapid behavioural state reversibility upon stimulation. After the discovery of 

variation in brain waves related to vigilance in animals (Caton, 1877) and in man (Berger, 1929), 

electrophysiological criteria were added to the definition of sleep (Loomis et al., 1938). 

A sleep state associated with rapid eye movements (REM sleep) was identified first in man 

and later in the cat (Aserinsky & Kleitman, 1953; Dement, 1958). Jouvet, Michel & Courjon 

(1959) showed that a muscle atonia appears during this state in the cat. They referred to this state 

as "paradoxical sleep" because the electroencephalogram (EEG) pattern resembles the EEG of an 
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awake animal. After these discoveries, electroencephalography, electromyography (EMG), and 

electro-oculography (EOG) were accepted as valid methods to identify sleep in mammals. These 

techniques subsequently allowed the identification of two distinct sleep states in birds as well 

(Klein et al., 1964; Ookawa & Gotoh, 1964). Consequently, two main states are now recognized 

in both birds and mammals: slow-wave sleep, also called non-REM sleep, or quiet sleep, and 

paradoxical sleep, also known as REM sleep, or active sleep. The specific physiological and 

behavioural correlates associated with these two sleep states are detailed below. In the following 

review we use the terms ‘quiet sleep’ and ‘active sleep’ to avoid the confusion induced by naming 

sleep states based on only a single feature. This terminology is often used in ontogenetic studies 

when talking about sleep in newborn animals. The active sleep of newborns and embryos contains 

many twitches and motor automatisms and is defined as such without the electrophysiological 

criteria typically used for adults (Corner, 1977; Blumberg & Lucas, 1996). We use the terms ‘rest’ 

or ‘quiescence’ when we do not postulate a true homology with mammalian sleep. This also 

pertains to the term ‘quiet wakefulness’. 

Adult mammalian quiet sleep is characterized by a relatively low-frequency, large-amplitude 

EEG signal. However, this state is composed of many specific electrophysiological patterns 

including hippocampal sharp waves, sleep spindles, K-complexes, and delta waves (Sirota & 

Buzsáki, 2005). As a consequence, human quiet sleep has been separated into as many as three 

different states. Hippocampal sharp waves are an important feature of quiet wakefulness and 

quiet sleep, and have been recorded in the CA1 region of the hippocampus. Hartse et al. (1979) 

refer to these waves in the cat as ventral hippocampal spikes. Sharp waves begin during quiet 

wakefulness and appear in bursts when an animal falls asleep. These hippocampal sharp waves 

are also associated with high-frequency (200 Hz) fusiform waves called ripples in rats and mice 

(Ylinen et al., 1995). During quiet sleep heart rate, respiratory rate, and muscle tone are reduced 

compared to the waking state. Metabolism is maintained at a lower level, but thermoregulatory 

mechanisms such as shivering, sweating, piloerection, and vasomotion are maintained 

(Parmeggiani, 2003). Brain temperature, on the other hand, decreases.  

Mammalian active sleep is characterized by an EEG signal with lower amplitude than during 

quiet sleep. A hippocampal regular oscillation at 4–9 Hz also exists in rodents and cats. EEG 

patterns called ponto-geniculo occipital (PGO) waves can be recorded in the pons, lateral 

geniculate nuclei, and in the occipital cortex of cats (Jouvet et al., 1959; McCarley, Nelson, & 

Hobson, 1978). During active sleep the animal displays atonia of the postural muscles (Jouvet et 
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al., 1959) and eye movements (Aserinsky & Kleitman, 1953). Twitches of the limbs or the tail are 

often present as well, and remain the main component of active sleep in newborns (Blumberg & 

Lucas, 1996). Penile and clitoral erections are also characteristic of this state (Schmidt et al., 

1994). Finally, thermoregulation mechanisms such as vasomotion, piloerection, shivering, and 

sweating are not maintained, and an increase of the brain temperature has been reported in 

rabbits, cats, rats and mice (Parmeggiani, 2003). 

One characteristic that the two sleep states have in common is their homeostatic regulation 

(Tobler, 2011). After a quiet sleep or active sleep deprivation, a recovery of the deprived state is 

observed. An increase of the power of the slow waves during quiet sleep after deprivation has also 

been reported and is referred to as an increase in slow-wave activity (SWA) in mammals (Franken 

et al., 1991) and birds (Rattenborg et al., 2009). 

However, the electrophysiological criteria and physiological correlates of sleep are not 

universal, with different patterns being present in some adult mammals (Siegel, 2009), neonate 

mammals (Blumberg & Lucas, 1996), and some birds (Rattenborg et al., 2011). An alternative 

EEG manifestation, associated with unihemispheric quiet sleep, has been observed in some 

species of birds, cetaceans, manatees, and otarid seals. This sleep state is characterized by a 

unilateral slow-wave activity EEG signal while the animal maintains a waking EEG pattern in the 

contralateral cortex. The occurrence of this type of sleep has been suggested to be related to the 

need to remain vigilant in areas with high predation pressure in birds (Rattenborg et al., 1999), 

and to the need to resurface for breathing in marine mammals (Lyamin et al., 2008). Additionally, 

cetaceans do not exhibit active sleep (Lyamin et al., 2008). The arousal threshold is also not 

uniform across mammals, being lowest during active sleep in humans, but highest during this 

state in rats and most other mammals (Siegel, 2009). Brain temperature changes are also not 

uniform across mammals, increasing in rat, cat, sheep, rabbit, and dog during active sleep, 

whereas in monkeys and humans a decrease in brain temperature has been reported (Denoyer et 

al., 1991). Interestingly, in some basal mammals and birds (i.e. the platypus; Ornithorhynchus 

anatinus, the echidna; Tachyglossus aculeatus, and the ostrich; Struthio camelus), eye movements and 

a reduced muscle tone appear to be associated with ‘cortical’ slow waves characteristic of quiet 

sleep (Siegel et al., 1996; Lesku et al., 2011) and sometimes also with a ‘typical’ active sleep EEG 

(Nicol et al., 2000; Lesku et al., 2011). The amount of active and quiet sleep decrease continuously 

across the life of nearly all species studied (Roffwarg et al., 1966) and neonate mammals do not 
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present the EEG features typically associated with quiet and active adult mammalian sleep (Seelke 

& Blumberg, 2008). 

Other states of prolonged immobility exist across vertebrates. They are referred to as 

dormancy states, often called hibernation, torpor, or aestivation. These particular states present 

the same behavioural characteristics as sleep, but in mammals and birds they are mainly associated 

with a reduction in body temperature and metabolic rate (Geiser, 1988, 2004). At an 

electrophysiological level, mammals in torpor cease active sleep below 25°C, yet the EEG still 

displays slow-wave oscillations like those observed during typical quiet sleep, even if these waves 

tend to decrease with temperature until a hibernation state with little EEG activity is observed 

(Walker et al., 1977). Another interesting feature of these states is the rebound of slow-wave sleep 

after daily torpor (Deboer & Tobler, 2000, 2003), which suggest a distinct difference between 

dormancy and sleep, even if a continuum between sleep and torpor likely exists (Walker et al., 

1983; Berger, 1984). 

(2) Who sleeps?  

Even if some authors reported that some fish, frogs, turtles, and crocodiles never sleep 

(Hobson, 1967; Van Twyver, 1973; Kavanau, 1998), the current consensus is that virtually all 

animals, including insects, nematodes, scorpions, spiders, and vertebrates, show some form of 

sleep, or at least sleep-like states (Campbell & Tobler, 1984; Hartse, Kristyna M., 1994; Siegel, 

2008). Both quiet sleep and active sleep have been clearly identified in terrestrial mammals, seals, 

manatees, and birds. The presence of these two states in amphibians and non-avian reptiles 

remains debated and is discussed later in this review (Fig. 1). Cetaceans, by contrast, do not 

display electrophysiological features of active sleep, but short periods of muscle jerks and eyelid 

movements have been reported during the resting period in some species (Lyamin et al., 2008). 

It has also been demonstrated recently that migratory birds can fly continuously for over six 

months (Liechti et al., 2013), raising the question of whether they sleep during this period, or not 

(Rattenborg, 2006b). Unihemispheric sleep could be a solution to long-term migration, even if it 

has never been demonstrated using EEG recordings during migrant flight. However, some 

laboratory studies have been performed during the migration period and show a clear reduction 

in the quantity of sleep and brief naps of uni- or bihemispheric sleep have been reported 

(Rattenborg et al., 2004; Fuchs et al., 2009). When considering the diversity of species studied, it 

becomes clear that the types of sleep observed and the characteristics of sleep at a behavioural 

and electrophysiological level may differ dramatically even among closely related species. 
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Moreover, it is important to consider sleep also in an ontogenetic context as the quantity of sleep 

and active sleep are greater at the beginning of life in all species studied in this context. Yet, 

studies examining the evolution of sleep typically focus on sleep in mature animals only. 

 

Fig. 1.  Simplified cladogram illustrating the relationships among extant vertebrate groups and the sleep 
states currently accepted to be present. Question marks indicate that the presence of some sleep states in 
this group remains controversial. Sleep states AS (active sleep), QS (quiet sleep) and US (unihemispheric 
sleep) are based on behavioural criteria only. States in parentheses including rapid eye movement (REM) 
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sleep, slow-wave sleep (SWS), and unihemispheric slow-wave sleep (USWS) are defined based on 
electrophysiological criteria. Cladogram based on Pyron & Wiens  (Pyron & Wiens, 2011) and (Chiari 
et al., 2012). Picture credits: tree frog (Litoria sp.), Helmut Hess; sleepy lizard (Tiliqua rugosa), Lachlan 
Sear; love birds (Agapornis roseicollis), Ansgar Trimborn; Japanese macaque (Macaca fuscata), Trey 
Ratcliff. 

(3) Why sleep? 

Whereas the functions of the main waking behaviours, like reproduction, locomotion, 

feeding, and foraging are obvious and needed to maximize the lifetime reproductive success 

(fitness) of all living animals, the role of being inactive, unconscious of the environment and by 

consequence exposed to predation, remains unclear. If sleep is not necessary for an animal, this 

state would likely have been eliminated by natural selection, at least in some species 

(Rechtschaffen, 1998; Cirelli & Tononi, 2008; Siegel, 2008). However, most animals spend a 

significant proportion of their life asleep. As a consequence, sleep must provide real benefits for 

the organism, but its functions currently remains unclear and highly debated (Rechtschaffen, 

1998; Siegel, 2005; Mignot, 2008). Some authors assert that sleep is simply a way to pass time 

that cannot be spent performing waking-related functions (Meddis, 1975; Rial et al., 2007), 

however, it is generally accepted that sleep has vital and important functions. Indeed, many 

physiological changes occur during sleep, and sleep is also associated with changes in gene 

expression. Moreover, cognitive changes are observed as the result of sleep deprivation. 

Consequently, many theories have been proposed to explain why animals sleep. These theories 

can be classified based on the three main suggested functions: restorative, cognitive, and 

developmental. 

Firstly, some sleep researchers have proposed that sleep may be beneficial for energy 

conservation or restoration. These hypotheses are mainly based on the fact that temperature 

decreases during sleep in endotherms. Berger & Phillips (1995) proposed that sleep could serve 

to conserve energy. Bennington & Heller (1995) proposed a function for quiet sleep in the 

replenishment of cerebral glycogen depleted during the waking state. Still others have proposed 

that sleep serves a role in molecular biosynthesis or gene expression (Mignot, 2008). 

Secondly, molecular, anatomical, and behavioural data suggest a role for sleep in brain 

function and memory. It has been proposed that during sleep, and particularly during quiet sleep, 

a synaptic downscaling occurs in order to reorganize synaptic connectivity (Tononi & Cirelli, 

2006). Others have suggested a role of sleep in memory consolidation (Stickgold & Walker, 2005; 
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Stickgold, 2005) and a specific role of quiet and active sleep in contextual and emotional memory, 

respectively (Walker, 2010).  

Lastly, based the fact that the amount of sleep, particularly active sleep, is greater during the 

juvenile stages of many animals (Roffwarg et al., 1966; Astic & Jouvet-Mounier, 1968), and that 

juveniles display a greater quantity of this state during the first few days of their lives (Jouvet-

Mounier et al., 1969), some authors proposed a role of active sleep in brain maturation by 

promoting brain and neuromuscular development (Roffwarg et al., 1966; Blumberg, 2010). This 

hypothesis is also supported by the fact that behavioural patterns of active sleep, like spontaneous 

motility are also present in ovo and in utero in all species studied, even if those species do not 

display an active sleep-like state as adults (Corner, 1977; Blumberg & Lucas, 1996). 

To test some of these hypotheses, correlation analyses relating sleep duration and sleep 

fragmentation to body mass, metabolism, diet, brain size, etc., across different species of mammals 

have been performed (Zepelin & Rechtschaffen, 1974; Zepelin, 2000; Lo et al., 2004; Lesku et 

al., 2006, 2008; Capellini et al., 2008). However, these correlative approaches reveal some 

contradictions due to the different methods employed, and no clear consensus has emerged. In 

2014, Schmidt (Schmidt, 2014) proposed a unifying theory of the function of sleep based on 

results from comparative, ecological, metabolic, cellular, phylogenetic, and ontogenetic data. This 

‘energy allocation model’ proposes that the wake/sleep cycle constitutes a trade-off of temporal 

utilization of energy to maximize fitness. This model proposed a specific role of mammalian active 

sleep to enhance energy allocation to somatic and central nervous system processes. Surprisingly, 

despite its ubiquitous nature and our understanding of the various processes and physiological 

changes associated with sleep across phylogeny and ontogeny, we still do not know exactly why 

we sleep. 

(4) The evolution of sleep 

Although many papers have discussed the evolution of sleep, relatively few have done so in 

a quantitative and phylogenetically informed way (Lesku et al., 2006; Roth et al., 2006; Capellini 

et al., 2008). In general, it is considered that all vertebrates sleep or show sleep-like states. Quiet 

sleep with slow waves is thought to be present only in mammals and birds, however. As 

mammalian active sleep has not been demonstrated unequivocally in amphibians or reptiles, it is 

often considered to have evolved independently in mammals and birds. Moreover, it is thought 

that this convergent evolution is accompanied by the appearance of homeothermy (Kavanau, 
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2002). Berger (1984) raised the possibility that mammalian active sleep could be a ‘vestige of a 

reptilian ectothermic state of inactivity’ based on the loss of thermoregulation in mammals during 

this state (Berger, 1984, p. 320). Karmanova (1982) developed comparative studies to understand 

the evolution of sleep in vertebrates and postulated that amphibians and fish display a 

‘protosleep’ or ‘primary sleep’. This state is manifested by three forms of rest or sleep-like states 

(SLS): cataleptic (plastic muscle tone) or SLS1, catatonic (rigid muscle tone) or SLS2, and 

cataplectic sleep (atonia) or SLS3. The SLS1 state appears mainly during the day when the eyes 

are open, whereas SLS3 and SLS2 are observed during nighttime rest periods. The arousal 

threshold increases relative to the type of SLS, and the heart rate decreases accordingly. 

Karmanova’s research group refers to the resting periods (SLS) of reptiles as intermediate sleep, 

this state containing mainly SL1 and SL3. They further suggest that SLS3 sleep is the evolutionary 

precursor of mammalian and bird quiet sleep, and that SLS1 and SLS2 are precursors of quiet 

wakefulness. They described periods of motor automatisms in amphibians and reptiles, 

sometimes associated with high-voltage sharp waves and with an EEG similar to that observed 

during the awake state. They proposed that these activation phases are an ancient form of 

mammalian active sleep (Karmanova & Lazarev, 1979; Karmanova, 1982). Others have proposed 

based on the presence of slow waves during the awake state in some reptiles that the awake state 

of reptiles evolved into the slow-wave sleep observed in mammals (Rial et al., 2010).  

(5) Amphibians and non-avian reptiles, key but challenging taxa in understanding 

the functions and evolution of sleep 

Amphibians evolved during the Devonian some 370 million years ago. Extant amphibians 

are composed of three major groups (Fig. 1); Anura (frogs and toads), Caudata (salamanders and 

newts), and Gymnophiona (caecilians). Of these, the Anura make up 88% of all species. 

Amphibians live in a wide variety of habitats and range from fossorial, terrestrial, and arboreal, 

to entirely aquatic. Due to their pivotal placement at the transition from water to land at the base 

of the tetrapod tree, these animals may provide important clues to the changes that occurred 

during the transition to a terrestrial habitat. Non-avian reptiles are a heterogeneous group of 

amniotes including crocodiles, turtles, and lepidosaurians (lizards, snakes, and 

rhynchocephalians) (Fig. 1). Among these groups, lepidosaurians are the most diverse with 9,413 

species (www.reptile-database.org). Turtles are much less numerous with 328 identified species, 

and extant crocodilians contain only 25 species, despite their evolutionary abundance in the fossil 
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record. Like amphibians, reptiles are extremely diverse and have invaded all possible niches 

ranging from the marine environment to species that are exclusively fossorial. 

Sleep is clearly related to thermoregulation, metabolism, cognition, and development, and 

its description is mainly based on work using mammals as a model system. In consequence, the 

phylogenetic position of amphibians and non-avian reptiles, their ectothermy, and their precocial 

lifestyle at birth make them important taxa in understanding the function and origin of sleep. 

With respect to the special case of active sleep, their position becomes even more crucial as only 

terrestrial mammals and birds appear to display this sleep state. Moreover, if active sleep is related 

to maturation (Roffwarg et al., 1966; Blumberg, 2010) then this state is likely only present during 

the developmental phase of these species and may no longer be present in the adult. This raises 

the importance of studying sleep throughout ontogeny when trying to infer homologies between 

sleep states. However, most work on amphibians and reptiles involves adults despite the fact that 

phasic twitches are present in ovo in many amphibians and reptiles (Corner, 1977). Studying sleep 

in amphibians and reptiles remains challenging, however. Many have relatively small brains, are 

often aquatic or semi-aquatic, and the literature on their neuroanatomy is sparse. Moreover, the 

currently accepted mammalian-centric definition of sleep which is mostly based on cortical 

electrophysiological patterns may impose difficulties when applied to other taxa. For example, 

brain waves are related to neuronal networks and are influenced by temperature. As a 

consequence, the poikilothermic nature and the absence of a neocortex in amphibians and non-

avian reptiles constitute an important hurdle when attempting to draw parallels with sleep in 

mammals. These difficulties may also explain why the behavioural and electrophysiological data 

available for amphibians and non-avian reptiles are rather sparse. 

In the context of the present review we first provide an overview of what is known about 

sleep in amphibians and non-avian reptiles. We present for each clade the experimental 

conditions in which animals have been recorded including the light cycle, temperature, and the 

environment in which experiments were conducted. Next, we review the behaviour patterns 

related to sleep including continuous immobility, arousal threshold, and the presence of eye 

movements, and motor automatism during sleep. We then review the electrophysiological 

patterns associated with sleep including what is known about EEG frequency and amplitude 

variations relative to the EEG during the awake state, the muscle tone, the heart and respiratory 

rates, and the presence of high-voltage sharp waves (HShW). Finally, we present data on sleep 

deprivation, where investigated, and the possible mammalian sleep–state homologies discussed 
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in the literature. We discuss the limitations and problems associated with these data and 

subsequently provide a preliminary analysis of the evolution of associated sleep traits in reptiles 

and amphibians and highlight the difficulties of proposing hypotheses pertaining to the evolution 

of sleep without simultaneously integrating behavioural, neuroanatomical, molecular, and 

electrophysiological aspects of sleep. 

 

 AMPHIBIANS 

With over 7,235 described species (www.amphibiaweb.org), amphibians are probably the 

most poorly studied taxa among tetrapods with sleep–wake data existing for only a handful of 

species (0.14% of all known species). Whereas sleep data exist for only 0.15% of all species of 

salamanders, fewer data are available for frogs (0.14%) and caecilians (0%). Moreover, existing 

data for frogs are highly skewed towards derived taxa such as bufonids, hylids, and ranids, 

effectively leaving most of the ecological and phylogenetic diversity unexplored. Below we 

describe the behavioural and electrophysiological information available for the different taxa 

studied. Data for all amphibians are summarized in Tables 1–4. 

(1) Caudata  

(a) Experimental conditions 

One specie of salamanders has been studied in the context of sleep, the tiger salamander 

(Ambystoma tigrinum; Lucas & Sterman, 1969).  Neither the light cycle, nor the temperature and 

recording duration were reported. 

(b) Behavioural evidence 

The only investigation in salamanders was performed on 27 Ambystoma tigrinium (Lucas & 

Sterman, 1969) and showed that they display rhythmic behavioural activity with a 4 h rest–activity 

cycle.  

(c) Electrophysiological evidence 

The EEG analysis in Ambystoma tigrinium revealed a decrease in frequency and amplitude 

during prolonged resting periods. The absence of clear neck atonia and distinct eye movements 

obviated the identification of any state analogous to mammalian active sleep.  

(d) Summary 
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In the only species of salamander studied to date, arousal threshold and sleep deprivation 

were not evaluated. Based on this experiment we can conclude, however, that at least one species 

of salamander display a rest–activity cycle during which the rest phase could potentially represent 

sleep. A. tigrinium displays slower brain activity during prolonged resting versus the awake state. 

 

(2) Anura 

(a) Experimental conditions 

Nine different species of anuran have been studied in the context of sleep: two species of 

bufonids, the western toad [Anaxyrus (Bufo) boreas; Huntley, Donnelly & Cohen, 1978], and the 

common African toad [Amietophrynus (Bufo) regularis; Laming, 1982], however, this last species was 

studied only relative to its behavioural activity. Three species of hylids were also studied: the tree 

frogs Osteopilus (Hyla) septentrionalis, Hyla squirella, and Hyla cinerea (Hobson, Goin, & Goin, 

1968); and four species of ranids: the European common frog (Rana temporaria; Aristakesyan & 

Karmanova, 1998, 2007; Belich, 1984; Karmanova, 1982; Karmanova & Lazarev, 1979; Laming, 

1982; Lazarev, 1978a), the American bullfrog (Lithobates (Rana) catesbeianus; Hobson, 1967), the 

marsh frog (Pelophylax (Rana) ridibunda; Karmanova, 1982) and the Emei music frog (Babina 

daunchina; Fang et al., 2012). One third of these experiments did not report recording duration 

and only half reported a recording duration greater or equal to 24 h. The light cycle was specified 

as a natural cycle or as a 12 h:12 h light:dark cycle for half of these experiments. Ambient 

temperature was described as constant in most of these studies but was not reported in four cases. 

Hobson et al. (1968) were the only authors to make behavioural observations and an arousal 

threshold evaluation in the field as well as under laboratory conditions. 

(b) Behavioural evidence 

All anuran species studied to date, in which frequency rate and heart rate has been recorded, 

display a specific posture of immobility with a decrease in of those parameters (Hobson, 1967; 

Hobson et al., 1968; Lazarev, 1978b; Karmanova, 1982; Belich, 1984). Karmanova reported that 

Pelophylax (Rana) ridibunda spends most of its time in a resting state (80–90% of a 24 h period) 

and was also able to identify three kinds of resting states (sleep-like states). An SLS3 with eyes 

closed was observed in some animals during less than 10% of the 24 h period. This state was 

characterized by a slowing of the heart and respiratory rate. Arousal threshold was examined in 

only three publications. Although Anaxyrus boreas showed an increased arousal threshold to gentle 
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handling during rest (Huntley, Donnelly, & Cohen, 1978), there was no such change in Lithobates 

catesbeianus in response to electrical stimulation between the awake and resting states (Hobson, 

1967). Three species of hylid studied by Hobson et al. (1968) showed a higher arousal threshold 

to gentle handling in laboratory compared to field conditions. In laboratory conditions no 

differences in arousal threshold were observed between awake and resting states, indeed they 

stated that: 'frogs are inert and non reactive unless heavily stimulated' (p. 386). Studies by Russian 

authors (Karmanova & Lazarev, 1979; Karmanova, 1982) associated the three SLS categories with 

an increased arousal threshold. However, we could not find any specific details of the experiments 

performed. Rhythmic movements of the feet during sleep-like states were reported only in Rana 

temporaria (Lazarev, 1978a, 1978b; Belich, 1984). 

(c) Electrophysiological evidence 

Huntley et al. (1978) and Lazarev (1978a) reported a decrease in EEG frequency and 

amplitude for Anaxyrus boreas and Rana Temporaria in a sleep-like state compared to when awake. 

Hobson et al. (1968) and Fang et al. (Fang et al., 2012) report decreased EEG amplitude in the 

three tree frogs and Babiba daunchina, respectively. The factorial analysis study of Fang et al. (2012) 

found a statistical link between EEG band, vigilance state, and electrode placement. A fusiform 

oscillation at 12–14 Hz during the resting state was also observed; this was not present in the alert 

state. Karmanova & Lazarev (1979) reported a polymorphic and irregular EEG with a low 

amplitude in passive wakefulness similar to the waking state in Rana temporaria, whereas during 

the cataplexy state (SLS3), slow-wave activity was present on the EEG (0.5–2 Hz) (Lazarev, 1978a; 

Karmanova & Lazarev, 1979). 

(d) Sleep deprivation 

The only sleep deprivation study on an amphibian (Rana temporaria) reported a decrease of 

wakefulness during the recovery phase (20% awake in baseline to 5% during recovery) after 6 h 

of sleep deprivation using a gentle handling method (Aristakesyan & Karmanova, 1998). Similar 

to mammals and birds, for the first 2 h after rest deprivation the EEG of the frog during the 

deepest sleep state showed a statistically significant increase in the low-frequency power and an 

inhibition of the faster frequency component as compared to the baseline signal.  

(e) Summary 

For anurans, two main trends can be inferred from the EEG recordings: (1) high-voltage slow 

waves are more prominent during the awake state than during rest, and (2) a slight enhancement 
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in slow-wave activity may occur during the deepest sleep state (Karmanova et al., 1971; 

Aristakesyan & Karmanova, 1998). Another feature of the EEG during the resting state in 

amphibians is the presence of EEG fusiform activity correlated with respiration, a finding 

reported in all studies to date that have recorded respiratory rate. Despite conflicting results from 

some studies, we conclude that the amphibian species studied to date display behavioural 

characteristics of sleep. Moreover, high-voltage sharp waves (HShW; often referred to as sharp 

waves or spike waves in the reptilian sleep literature) were only reported by Lazarev (1978a,b) for 

Rana temporaria. These HShW were 30–50 μV in amplitude with a duration of 80–110 ms and 

were recorded mostly in the optic tectum and more rarely in the medial cortex (generally accepted 

to be the homologue of the mammalian hippocampus). Lazarev (1978a,b) noted that these 

patterns sometimes coincided with a brief rise in electromyogram (EMG) amplitude and that the 

spectral EEG during these waves was almost identical to that of wakefulness. The majority of 

studies did not report complete atonia or eye movements during the resting state suggesting the 

absence of an active sleep state in amphibians. However, Karmanova & Lazarev (1979) did report 

an ‘activation phase’ with an EEG similar to that observed during the awake state, motor 

automatisms, and a phasic transitory heart rate increase associated with HShW in R. temporaria. 

It should be noted, however, that only one study recorded electro-oculographic activity and only 

four reported electromyographic data. 

 

 NON-AVIAN REPTILES 

Data on sleep are available for only 0.24% of all reptiles. Whereas 12% of all crocodilian 

species have been examined, data are available for only 2.43% of all turtles, and a mere 0.12% of 

all lizards. Taxa such as crocodilians are key to our understanding of the evolution of avian sleep, 

however, given that extant species of birds are most closely related to crocodiles. Although the 

position of turtles in the amniote tree remains debated, turtles are generally considered to be the 

sister taxon to both crocodilians and birds based on large-scale molecular analyses (Crawford et 

al., 2012). The most important, yet least studied, group of reptiles – given their position at the 

base of the reptilian tree – is clearly the Lepidosauria. Data on non-avian reptiles are critical to 

the evaluation of hypotheses on the origin of sleep and its potential convergence in mammals 

and birds (Rattenborg et al., 2011). Unfortunately, data for reptilian species are scarce, but the 

available information is summarized in Tables 5-8. 
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(1) Turtles 

(a) Experimental conditions 

Nine species of turtles and tortoise were studied in the context of sleep, the yellow-footed 

tortoise (Chelonoidis denticulata; Walker & Berger, 1973), the red-footed tortoise (Chelonoidis 

carbonaria; Flanigan, 1974), Kinosternon sp. (Ayala Guerrero, 1987), the box turtle (Terrapene 

carolina; Eiland, Lyamin & Siegel, 2001; Flanigan et al., 1974), the European pond turtle (Emys 

orbicularis; Belich, 1984; Karmanova et al., 1971; Vasilescu, 1970), the bolson tortoise (Gopherus 

flavomarginatus; Ayala-Guerrero, Calderon & Perez, 1988), the marginated tortoise (Testudo 

marginata; Hermann, Jouvet, & Klein, 1964), the Russian tortoise (Testudo horsfieldi; Aristakesyan, 

2009), and the aquatic loggerhead sea turtle (Caretta caretta; Susic, 1972). Half of the studies 

recorded animals during 24 h or more in a chamber at constant temperature. However, a third 

of the papers report a constant illumination during the experiment. 

(b) Behavioural evidence 

All chelonians studied to date display a state of prolonged immobility, different from 

basking, with the eyes closed, the plastron resting on the ground, and the head fully relaxed. All 

studies that recorded heart rate and/or respiratory rate noted a diminution of these parameters 

during sleep. Of Interest is that half of the studies report eyes movements and/or twitchs during 

sleep-like states. Four publications report arousal thresholds in turtles (Walker & Berger, 1973; 

Flanigan, 1974; Flanigan et al., 1974; Ayala Guerrero, 1987). Except for the study of Walker & 

Berger (1973) where no differences in arousal threshold were detected for Chelonoides denticulata, 

longer response latencies were found. Ayala-Guerrero (1987) evaluated arousal threshold by 

gentle handling; the three other studies used electric shocks. Walker & Berger (1973) 

administered electric shocks at different intensities every 10 min during a 6–8 h period of sleep 

for three to four days, whereas Flanigan (1974) and Flanigan et al. (1974) administered shocks at 

an intensity which generated arousal in 50% of cases observed, with at least one stimulation every 

60 min.  

(c) Electrophysiological evidence 

Of the ten experiments reporting EEG activity, five reported no changes in EEG frequency 

and amplitude between wakefulness and resting or sleep-like states. These experiments involved 

the aquatic Caretta caretta (Susic, 1972) and the terrestrial Chelonoidis denticulate, Ch. carbonaria 

and Terrapene carolina (Walker & Berger, 1973; Flanigan, 1974; Flanigan et al., 1974; Eiland et 
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al., 2001). Susic (1972) did not report HShW, but the four other experiments cited above noted 

the presence of HShW during the resting period, including quiet wake as well as sleep. Three 

other experiments also reported HShW during rest (Karmanova et al., 1971; Ayala Guerrero, 

1987; Ayala-Guerrero et al., 1988). Ayala-Guerrero et al. (1988), Ayala-Guerrero (1987) and 

Karmanova et al. (1971) noted a diminution in EEG amplitude and a decrease in EEG frequency 

in Gopherus flavomarginatus, Kinosternon sp., and Emys orbicularis associated with reduced vigilance. 

By contrast, Vasilescu (1970) reported only a decrease in EEG frequency in Emys orbicularis. 

Hermann et al. (1964) was the only experiment to report an increase in EEG amplitude but a 

decrease in EEG frequency during sleep (in Testudo marginata), thus concluding that turtle sleep 

is similar to mammalian slow-wave sleep. 

(d) Sleep deprivation 

Only three studies investigated sleep deprivation. Flanigan et al. (1974) and Flanigan (1974) 

report an increase in the quantity of sleep during the recovery phase after 48 h of constant arousal. 

However, Susic (1972) found no increase in the quantity of rest following 12 h of constant arousal 

in the fully aquatic Caretta caretta. Flanigan et al. (1974) and Flanigan (1974) also noted an 

increase in the quantity of HShW during the recovery period after sleep deprivation. 

(e) Sleep state homologies 

Three publications describe the presence of two sleep-like states, including the presence of a 

mammalian active sleep-like state (Vasilescu, 1970; Ayala Guerrero, 1987; Ayala-Guerrero et al., 

1988). They based their conclusions on the presence of eye movements and motor twitches 

during sleep. Vasilescu (1970) also reported atonia during a state that he called ‘paradoxical 

sleep’. In contrast to the above, neither Susic (1972) nor Walker & Berger (1973) reported 

changes in the EEG and Walker & Berger (1973) report no change in the arousal threshold 

response, concluding that Caretta caretta and Chelonoidis denticulata do not sleep. They 

consequently suggested that prolonged resting periods in reptiles should be considered as an 

inactive behaviour rather than true sleep. Walker & Berger (1973) was the only study included 

in this review to record oxygen consumption over a 4–6 h period. Oxygen consumption was 

related to EMG activity but the ‘spike rate’ (presumably meaning the sharp wave rate) was not 

correlated to oxygen consumption resulting in the following observation: ‘The absence of 

negative correlations between spiking and O2 consumption indicates that in this respect spiking 

is not analogous to SWS’ (Walker & Berger, 1973, p. 462). 
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Eiland et al. (2001) made unit recordings in the brainstem to search for evidence of active-

sleep-specific activity. Although specific pontine neurons in the mammalian locus coeruleus and 

dorsal raphe cease discharging during active sleep while other cholinergic neurons increase in 

activity during this state, Eiland et al. (2001) found that most recorded brainstem neurons 

discharged only when the animal was active and reduced their discharge rates with immobility. 

Thus, they were unable to identify neurons related to a specific vigilance state that could be 

homologous to those observed during active sleep in mammals. Of note is the presence of EMG 

potentials during sleep that resemble mammalian active-sleep-related twitches (Eiland et al., 

2001). However, these authors were unable to confirm this finding using simultaneous 

polygraphic and video records. 

(f) Summary 

Data on sleep in turtles are sparse but a consensus suggests that they show an immobility 

state associated with a reduction of heart and respiratory rates. This state may represent a sleep 

state as the arousal threshold was usually higher in this state when investigated. The 

electrophysiological results are more difficult to interpret. Five studies reported no change in 

EEG variables related to the diminution of vigilance, three reported a decrease in EEG amplitude 

and frequency, one a decrease only in frequency, and one an increase in amplitude and decrease 

in frequency. HShW have been reported to be more prominent during sleep in half of the studies 

on turtles. Three studies reported the presence of a mammalian active sleep-like state, and one 

the presence of mammalian quiet sleep-like state. The only study on a fully aquatic turtle species 

(Susic, 1972) concluded the absence of sleep in that species based on an unchanged EEG during 

immobility and the absence of a recovery period after continuous arousal. 

 

(2) Crocodilians 

(a) Experimental conditions 

Three species of Crocodylia were studied, the American alligator (Alligator mississipiensis;Van 

Twyver, 1973), the spectacled caiman (Caimans sclerops; Flanigan, Wilcox & Rechtschaffen, 1973; 

Meglasson & Huggins, 1979; Parsons & Huggins, 1965a,b; Rechtschaffen, Bassan & Ledecky-

Janecek, 1968; Warner & Huggins, 1978), and the broad-snouted caiman (Caiman latirostris; 

Peyrethon & Dusan-Peyrethon, 1969). Of these eight papers, two (Parsons & Huggins, 1965a, 

1965b) investigated the effect of temperature on EEG variables, but outside of the context of 
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sleep. Of the remaining six, only three reported recordings lasting equal or longer than 24 h, and 

only three reported the use of a day/night light cycle. The others gave no information on the 

light cycle used, or used constant illumination. The ambient temperature was reported in most 

cases but was too low for normal behaviour in half of the studies where it was reported. Warner 

& Huggins (1978) were the only authors to record animals in a breeding colony. Flanigan et al. 

(1973) reported that animals took days to fall asleep under laboratory conditions, even when they 

were isolated in a sound-attenuated chamber. By contrast, Warner & Huggins (1978) found that 

sleep was easy to identify in the same species under semi-natural conditions with higher 

temperature. This suggests that unnatural laboratory conditions may influence the sleep–wake 

cycle and that provision of an environment more similar to the natural environment may be 

required in studies of sleep in reptiles and amphibians. 

(b) Behavioural evidence 

Three species of crocodiles have been studied behaviourally in relation to vigilance states. 

For Caiman sclerops (Rechtschaffen, Bassan, & Ledecky-Janecek, 1968; Flanigan et al., 1973; 

Warner & Huggins, 1978; Meglasson & Huggins, 1979) all reports describe a prolonged resting 

stage involving total immobility with the eyes closed. The three studies (on C. sclerops and C. 

latirostris) that quantified respiratory rate and heart rate reported a decrease in both parameters 

during sleep (Peyrethon & Dusan-Peyrethon, 1969; Flanigan et al., 1973; Warner & Huggins, 

1978). Only Peyrethon et al. (1969) reported fast twitchs of the anterior limbs, fingers and eyes 

movement during sleep-like state in C. latirostris. Three arousal threshold evaluation tests on 

juvenile C. sclerops gave variable results: whereas Rechtschaffen et al. (1968) found that the 

animal was always easily aroused, Flanigan et al. (1973) highlight some difficulties to evaluate 

correctly the arousal response because the animals adapted rapidly adapted to the stimuli, and 

Meglasson & Huggins (1979) reported a higher arousal threshold during sleep. 

(c) Electrophysiological evidence 

In contrast to other reptilian species, most studies reported a slight increase in EEG 

amplitude and a decrease in EEG frequency in the sleep-like state. However, Flanigan et al. (1973) 

noted a decrease in both amplitude and frequency and Van Twyver (1973) reported no change 

in EEG activity. The latter study concluded that Alligator mississippiensis do not sleep as the eyes 

were rarely closed during periods of immobility. Four studies investigated the relationship 

between HShW and vigilance. Van Twyver (1973) and Flanigan et al. (1973) reported a negative 

correlation between the number of HShW and overall activity level. Meglasson & Huggins (1979) 
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reported that HShW were present during all activity states (quiescence, arousal, and diving). 

Peyrethon & Dusan-Peyrethon (1969), by contrast, reported these features only during active 

wakefulness and suggested a positive relationship between HShW and attention level in C. 

latirostris. Peyrethon & Dusan-Peyrethon (1969) provide the only report of a mammalian active 

sleep-like state in one individual in the form of short phases lasting 50 s on average during which 

the animal displayed rapid eye movements with the eyelids closed. However, the nuchal muscle 

tone did not change compared to the other sleep stages, and the EEG was similar to that of the 

awake state. Fast twitches of the anterior limbs and toes were also reported. 

(d) Sleep deprivation 

Flanigan et al. (1973) performed a gentle handling sleep deprivation study on four animals 

over periods varying between 24 and 48 h. They reported an increase in the duration of 

immobility periods after sleep deprivation, and a substantial increase in the number of HShW 

which they referred to as a ‘spike rebound’. 

(e) Summary 

Despite the low number of publications concerning sleep in crocodiles we can concluded 

that all studies report a behavioural sleep except one study on A. mississippiensis. The authors of 

this study concluded that this species does not sleep based on the fact that the animal rarely 

closed the eyes and that the EEG did not change throughout the day. In contrast to other reptilian 

species, the EEG amplitude and frequency during sleep like states in crocodiles appears to change, 

similar to what is observed during mammalian quiet sleep. Only one study reports eye movements 

and motor automatisms during behavioral sleep not associated with muscle atonia. The presence 

of HShW during quiescence has been reported in only two studies. Sleep deprivation studies 

were preformed only once but showed an increase in the immobility period and the number of 

HShW of normal sleep during the recovery period. 

(3) Squamates 

(a) Experimental conditions 

Most studies on squamates (lizards and snakes) report both behavioural and 

electrophysiological data, and most involved iguanians. Only two publications deal with more 

actively foraging species and include a varanid, the desert monitor (Varanus griseus; Karmanova et 

al., 1971), and a glass lizard (Ophisaurus apodus; Aristakesyan, 2009). 45% of the experiments 

report recordings lasting less than 24 h, and 55% did not report the light cycle or used constant 
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illumination. Constant temperatures were used in most experiments, often selected to 

approximate natural conditions, including the provision of a higher temperature basking spot in 

three studies. 

(b) Behavioural evidence 

All studies reported behavioural immobility with the eyes closed; there were no reports 

concluding that these animals do not sleep. All studies which measured heart and respiratory 

rates reported a decrease in these parameters related to quiescence. Ten experiments evaluated 

the arousal threshold during sleep in squamates, albeit including either gentle handling or electric 

shocks. All report a higher arousal threshold or an increase in latency of response to stimulation 

during sleep (Ayala-Guerrero & Huitron-Resendiz, 1991; Ayala-Guerrero & Mexicano, 2008a; 

Ayala-Guerrero & Vargas Reyna, 1987; Flanigan, 1973; Huntley & Cohen, 1980; Huntley, 1987; 

Peyrethon & Dusan-Peyrethon, 1969; Stropes, 1975; Tauber, Rojas-Ramirez & Hernandez Peon, 

1968).  

(c) Electrophysiological evidence 

Comparing the basic sleep-like state with the awake state, six experiments reported a decrease 

in both EEG amplitude and frequency, and seven studies reported a decrease in EEG frequency 

alone. Romo, Cepeda & Velasco (1978) found an increase in EEG amplitude but a decrease in 

EEG frequency for the regal horned lizard (Phrynosoma solare), concluding that there was a clear 

parallel with the slow-wave sleep of mammals. Peyrethon & Dusan-Peyrethon (1969) reported no 

change in EEG variables of the green iguana (Iguana iguana) during different behavioural states, 

and a decrease in EEG frequency in the only snake studied to date (Python sebae; Peyrethon & 

Dusan-Peyrethon, 1969). Tauber et al. (1968) found no correlation between the number of 

HShW and behaviour in the Mexican spiny-tailed iguana (Ctenosaura pectinata). Huntley (1987), 

Huntley & Cohen (1980) and Stropes (1975), however, reported a greater HShW occurrence 

during wake compared to sleep in the desert iguana (Dipsosaurus dorsalis) and the chuckawalla 

(Sauromalus obesus), respectively. Nine publications reported an increase in the number of HShW 

during quiescence. Peyrethon & Dusan-Peyrethon (1969) and Flanigan (1973) for Iguana iguana, 

Python sebae and Ctenosaura pectinata reported a correlation between respiratory rate and the 

presence of EEG fusiform oscillations. An interesting behavioural observation involved the 

presence of asynchronous eye closure in the western fence lizard (Sceloporus occidentalis; Mathews 

et al., 2006) which the authors suggested was correlated with predation risk. Other studies have 
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reported unilateral eye closure in reptiles (Flanigan, 1973, 1974; Flanigan et al., 1974; Peyrethon 

& Dusan-Peyrethon, 1969; Tauber, Roffwarg & Weitzman, 1966; Tauber et al., 1968; Warner & 

Huggins, 1978). For a detailed review on unihemispheric sleep see Rattenborg, Amlaner & Lima 

(1999). The presence of unihemispheric sleep in reptiles remains, however, unclear. 

(d) Sleep deprivation 

Two studies reported the use of a 48 h sleep-deprivation study to test for a homeostatic 

response (Ayala-Guerrero & Mexicano, 2008a; Flanigan 1973). Both noted the presence of a 

recovery period (in Iguana iguana and Ctenosaura pectinata). Flanigan (1973) also reported a 

substantial increase in the number of HShW after deprivation, similarly to his results on sleep-

deprived chelonians (Flanigan, 1974; Flanigan et al., 1974) and crocodilians (Flanigan et al., 

1973). 

(e) Sleep state homologies 

Nine publications report electrophysiological data suggesting the presence of two sleep states 

in lizards. Three of these identified a sleep stage with high-amplitude slow waves and a second 

stage with low-amplitude fast waves (Romo et al., 1978; Stropes, 1971, 1975). Other authors 

propose a homology of this second sleep-like state with mammalian active sleep based on the 

presence of nuchal muscle atonia (Huntley, Donnelly & Cohen, 1977; Huntley, 1987), eye 

movements (Ayala-Guerrero & Huitron-Resendiz, 1991; Ayala-Guerrero & Mexicano, 2008a; 

Ayala-Guerrero & Vargas Reyna, 1987; Tauber et al., 1966), motor automatisms (Ayala-Guerrero 

& Huitron-Resendiz, 1991; Ayala-Guerrero & Mexicano, 2008a; Ayala-Guerrero & Vargas 

Reyna, 1987), or EEG activity (Romo et al., 1978). Tauber et al. (1966) studied two species of 

chameleon (Trioceros (Chamaeleo) jacksoni, Trioceros (Chamaeleo) melleri) that demonstrate a high 

degree of eye mobility and visual acuity during wakefulness. They found that eye movements of 

chameleons during sleep are disconjugate but not associated with atonia, motor twitches, or 

changes in EEG pattern. They proposed homology with eye movement during sleep in humans 

but did not suggest homology with mammalian active sleep (Tauber et al., 1966). Stropes (1971, 

1975) also reported eye movements during sleep, in Sauromalus obesus and the finged-toed lizard 

(Uma notata), but these eye movements were present during both of the two electrophysiological 

sleep-like states identified.  

(f) Summary 
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All studies agree on the presence of sleep-like states in squamates, but the diversity of findings 

prevents clear conclusions regarding the electrophysiological nature of sleep in these animals. 

Interestingly, however, just under half of the studies on squamates report eye movements during 

sleep, and three studies describe muscle atonia. Moreover, six studies report motor automatisms 

during sleep, and half of all studies agree on the presence of two sleep states. Finally, five studies 

concluded the presence of a sleep state homologous to mammalian active sleep. Unfortunately, 

none of the studies on squamates performed to date have examined all of the electrophysiological 

and physiological traits that allow the characterization of active sleep in mammals. 

 

 LIMITATIONS OF THE DATA 

Any review aiming to synthesize the existing literature is limited by the quality and quantity 

of the available data. With respect to sleep in amphibians and reptiles, these limitations are 

significant. Below we list the principal limitations encountered in trying to derive a broader 

understanding on the evolution of sleep from these data. 

(1) Methodological limitations 

In mammals it has been shown that sleep is strongly influenced by environmental variables 

such as lighting conditions and temperature (Berger & Phillips, 1995). Due to the poikilothermic 

nature of amphibians and reptiles, these species are strongly influenced by environmental 

conditions such as light and temperature. Unfortunately, only a few studies have explicitly tested 

the influence of temperature on the activity–rest cycle and on EEG amplitude or high-amplitude 

EEG wave distribution in amphibians and reptiles, and not necessarily in the context of sleep. In 

general, these studies report a reduction of EEG amplitude and a decrease in EEG frequency in 

relation to ambient temperature (De Vera, Gonzalez & Rial, 1994; Hunsaker & Lansing, 1962; 

Huntley, 1987; Parsons & Huggins, 1965b; Van Twyver, 1973) as has also been shown in 

mammals (Deboer, 1998).  In sleep studies where HShW were recorded, their number appears 

to decrease with decreasing temperature (Flanigan et al., 1973; Huntley & Cohen, 1980; Huntley, 

1987; Van Twyver, 1973). The most complete study on the effect of temperature and seasonal 

light cycle duration on sleep was performed by Huntley (1987) on Dipsosaurus dorsalis who 

recorded EEG patterns in these lizards at 10°C, 20°C and 30°C during spring, autumn, and 

winter. He reported that the proportion of sleep decreased slightly with duration of the night. 

He also found that the occurrence of HShW diminished, and that the EEG amplitude and 
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frequency decreased with temperature suggesting that light cycle and temperature fluctuations 

have a strong impact on the sleep cycle (Huntley, 1987). However, most studies on amphibian 

and reptilian sleep report experiments that were performed under constant light and temperature 

conditions. Moreover, about half of the studies monitored animals for less than 24h or did not 

report this parameter, thus imposing strong limitations on the use of these data in a broader 

comparative context.  

Another important factor that may bias sleep patterns is the age of the animal. In mammals 

and birds, sleep duration, and particularly active sleep duration, is known to decrease with age 

(Jouvet-Mounier & Astic, 1966; Scriba et al., 2013). To our knowledge, there are no studies 

exploring the effects of age on sleep patterns in amphibians and reptiles. However, all crocodiles 

studied to date were juveniles, all turtles were adults, and the lizards included both juveniles and 

adults. If an age effect is present as in mammals and birds, then this may bias attempts at 

comparative analyses of sleep using these data. Similarly, although all amphibians studied were 

non-larval, their exact ages were not reported. If the developmental hypothesis of Roffwarg et al. 

(1966) holds for non-avian reptiles and amphibians, active sleep may be present only in ovo during 

the maturation phase of the animal and may disappear soon after hatching. Corner (1977) 

reviewed data on motility cycles in early life and during development in the context of sleep and 

reported that brief movement patterns during periods of relative inactivity were found in all 

species studied including arthropods, molluscs, fishes, amphibians, birds and mammals. This 

underlines the importance of investigating the role of development in sleep studies. 

The ability of an animal to interact with its environment is also known to influence sleeping 

patterns. For example, Rattenborg et al. (2008) showed that sloths (Bradypus variegatus) sleep 40% 

less when recorded in their natural environment compared to laboratory conditions., Warner & 

Huggins (1978) noted that animals recorded in a semi-natural environment appear to fall asleep 

faster than animals recorded in isolation in laboratory conditions. This suggests the importance 

of factors such as social context, when working on gregarious species as has been demonstrated 

for mice. Febinger et al. (2014) reported that mice housed in a group have shorter bouts of active 

sleep and quiet sleep during the light phase and more active sleep during the dark phase. 

Moreover, a recent field study focusing on the link between predation and sleep showed that high 

predation risk may influence the timing of sleep, but not the amount of sleep in sloths (Voirin et 

al., 2014). It has been shown that simulated predator encounters reduced the amount of sleep in 

wild rats due to a lower number of sleep episodes (Lesku et al., 2008a). Further investigations 
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pertaining to the ecological context of sleep are required for non-avian reptiles and amphibians 

(Capellini et al., 2008; Lima et al., 2005; Revell & Hayes, 2009). 

In our overview of the literature, we also observed methodological differences in the 

evaluation of the arousal threshold response. Flanigan et al. (1973) identified the problem of 

animals habituating to the presentation of cutaneous stimuli. In subsequent studies these workers 

switched to the use of electric shocks calibrated to a 50% awakening threshold, with sufficient 

time between shocks to avoid habituation (Flanigan, 1973). However, others did not note a 

difference in the arousal threshold when using shocks of varying intensity (Walker & Berger, 

1973). Unfortunately, shocks in that study were administered at very short intervals (every 10 

min on average), potentially rendering their results on arousal threshold questionable. The same 

reservations may apply to the study of Hobson (1967) on Lithobates catesbeianus where stimuli 

were administered at very short intervals. Arousal threshold has been evaluated in 22 experiments 

on amphibians and reptiles, of which 18 report an elevated arousal threshold when animals were 

in behavioural sleep. Of the four studies reported no change in arousal threshold during 

behavioural sleep, two used manual stimulation of which one noted probable habituation 

(Flanigan et al., 1973; Rechtschaffen et al., 1968), and the two others used electric shocks but 

with very short latencies (Hobson, 1967; Walker & Berger, 1973). 

Another potential confounding factor in comparing data recorded using different protocols 

is the type of recording device. Two kinds of electrodes are typically used for recording brain 

waves: wires and screws. Wire electrodes, because of their smaller contact surface area, record 

more-local electrical fields in the brain. By contrast, EEGs recorded using screws are averaged 

over a larger surface area and local activity may be less detectable, resulting in different patterns. 

About half of the studies in reptiles and amphibians used screw electrodes while the others used 

wire electrodes, representing a potentially confounding difference. Another important feature of 

the electrode is the nature of the metal used; the conductivity and the impedance of an electrode 

are related both to the metal used and to the size of the electrode tip. These properties affect how 

brain waves are measured especially amplitude measurements, and may thus hinder comparative 

analyses. Moreover, brain waves are specific to the neuronal organization of the study organism, 

its neuroanatomy, and neuronal connectivity (Bullock, 1997; Bullock & Basar, 1988; Buzsaki, 

Anastassiou & Koch, 2012). The positioning of the electrodes thus may influence the 

measurement of brain waves, and as a consequence homology in the nature and origin of the 

high-amplitude EEG waves reported by different authors is questionable. As no detailed neuro-
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anatomical atlas exists for reptiles and amphibians, and as electrode placements are often not 

verified histologicaly, comparisons among species and studies are rendered difficult. 

Electromyographic recordings may also be influenced by interspecific differences in muscle fibre-

type composition. In contrast to many mammals, the dorsal nuchal musculature in many 

amphibians and reptiles is not postural in nature and thus may be a very poor indicator of muscle 

atonia in these animals. In fact, the slow-twitch muscle fibres, which are important in the 

maintenance of head posture, are present in reptiles, but positioned deep, adjacent to the 

vertebral column (Schilling, 2011). The superficial muscles such as the m. spinalis capitis and m. 

obliquus capitis (Herrel & De Vree, 1999), which are easily recordable, contain mostly fast-twitch 

fibres and typically are recruited for phasic movements such as cranial elevation during feeding 

(Gans, Carrier & De Vree, 1985; Herrel, Cleuren & Vree, 1996). It is thus possible that many 

electromyographic recordings in reptiles may be affected by the positioning of electrodes in non-

postural muscles, yet this remains to be verified. 

(2) Limitations of mammalian-centred definitions of sleep 

Another important limitation when trying to compare sleep in different groups of vertebrates 

is the definition of sleep. The criteria used to define sleep and its different stages are principally 

based on work in mammals. At a behavioural level, parameters are more easily generalized as they 

involve the presence of a stereotypic posture, immobility, rapid state reversibility, an elevated 

arousal threshold, eye closure, and phasic motor automatisms. However, when working with 

physiological and electroencephalographic parameters, criteria that are used to identify sleep and 

its different stages cannot be generalized so easily, particularly since these parameters are linked 

to the lifestyle, neuroanatomy, and metabolism of a species. In consequence dormancy states have 

often been considered as independent from sleep states. As ectothermic animals have a body 

temperature that is dependent on the environment and behaviourally regulated, the classical 

mammalian sleep definition may be limited when working with non-homeothermic species. As a 

result, the establishment of homology of sleep based on these classical criteria is tenuous. 

Moreover, the variability of these phenomena is large in a phylogenetic and ontogenetic context, 

thus rendering broad-scale interpretations difficult.  

Thus, evaluating the presence of mammalian active sleep, or its equivalent, in amphibians 

and non-avian reptiles is extremely difficult. All studies regarding the presence of an active sleep-

like state in reptiles raise the question as to whether their results potentially represent an 

alternative state such as a short waking event rather than true mammalian active sleep. Yet, 
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reptiles possess pontine structures homologous to those of mammals (Ayala-Guerrero & 

Mexicano, 2008b; Medina et al., 1993; Northcutt, 2002), and periventricular hypothalamic 

peptides such as orexin and melanine-concentrating hormone (Cardot, Fellmann & Bugnon, 

1994; Dominguez et al., 2010) involved in the regulation of active sleep in mammals (Luppi, 

Peyron & Fort, 2013; Saper et al., 2010). Basal birds and mammals also have the largest amounts 

of behavioural active sleep (Lesku et al., 2011; Siegel et al., 1996, 1999) suggesting that this may 

be an ancestral trait. Phasic motility also appears to exist during the development of reptiles, 

raising the possibility that this type of sleep may have been present in a common ancestor, still 

present in early ontogenetic stages. This raises questions about the real nature, origin and 

functions of active sleep across species and its evolutionary and developmental origins. 

Ayala-Guerrero & Mexicano (2008a) attempted to test arousal threshold during a supposed 

active sleep state. They were able to demonstrate an elevated arousal threshold suggesting that 

these animals were not awake. Whether EEG activity, muscle atonia or the presence of eye 

movements are better indicators of the presence of an active sleep homologue in amphibians or 

non-avian reptiles remains unresolved. Because of these limitations, we believe that it is essential 

to base comparative analyses of sleep, especially in ectothermic animals, on a combination of 

behavioural, physiological, electroencephalographic, neuro-anatomical, developmental, and 

ecological variables. Clearly, behavioural features of sleep are more easily interpreted and could 

be the first to be evaluated in a broad comparative context. 

 

 DISCUSSION 

(1) Phylogenetic analysis 

In an attempt to infer common sleep features at the origin of tetrapods and amniotes using 

data on sleep available in the literature, we reconstructed ancestral character states using 

maximum likelihood methods (Pagel, 1999). In doing so, we attempt to infer patterns rather than 

processes or function. We focused our analysis on behavioural and electrophysiological 

parameters given their wider availability in the literature. We could not used sleep and wake 

quantities as parameters because of the environmental bias. 

(a) Behavioural patterns 
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Despite differences in environmental conditions during recording and non-continuous 

monitoring it appears that all amphibians and non-avian reptiles studied to date display a daily 

phase of immobility with stereotypic postures that involve eye closure (except in species lacking 

eyelids). The heart rate and respiratory rate, when measured, show a tendency to decrease when 

amphibians and reptiles are in a sleep-like state. The evolution of other traits is less clear, but our 

maximum likelihood estimates may be informative in inferring evolutionary patterns. The 

likelihood that an increase in the arousal threshold during quiescence (Fig. 2) is an ancestral 

feature of tetrapods is high (0.90). Similarly, the likelihood that an increased arousal threshold is 

an ancestral feature of non-avian reptiles is very high (0.99). A similar analysis of the presence of 

‘sleep homeostasis’, i.e. the presence of a sleep-like recovery state after sleep deprivation (Fig. 3) 

gave a high likelihood of this being an ancestral feature for tetrapods (0.98) and non-avian reptiles 

(0.99). The only species that appears to have lost this physiological trait is the only fully aquatic 

species recorded: the loggerhead sea turtle (C. caretta). This exception suggests constraints 

imposed by an aquatic environment on the evolution of sleep, as also has been suggested for 

mammals (Lyamin et al., 2008; Madan & Jha, 2012). Of the behavioural features typically 

associated with mammalian and avian active sleep, twitches and motor automatisms during sleep 

(Fig. 4) have a high likelihood (0.99) that they were present in the ancestor of reptiles. The 

presence of eye movements during periods of behavioural sleep (Fig. 5) is a feature commonly 

linked to mammalian active sleep. The analysis shows that the likelihood of this being a shared 

feature of tetrapods is low (0.31) although the likelihood of this feature being ancestral for non-

avian reptiles (0.53) and present in the ancestor of archosaurs and chelonians is higher (0.80). 

Together, these results are consistent with the premise that behavioural sleep is present in 

amphibians and reptiles, but the behavioural distinction between quiet sleep and active sleep is 

more difficult despite the probable presence of some features of mammalian active sleep at the 

base of non-avian reptiles (Fig. 1). 

(b) Electrophysiological patterns 

A feature often thought to characterize active sleep in mammals is the presence of periods of 

complete muscle atonia. However, the presence of this feature at the base of the reptilian tree 

(Fig. 6) is unlikely (0.03). This feature has formed the basis of arguments over the presence of 

active sleep in reptiles. Due to the bias caused by the different brain regions recorded and by the 

different methodologies used to record brain waves, we chose to quantify the variation in 

frequency and amplitude during sleep relative to the awake state. EEG frequency decreases during 
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sleep-like states in nearly all amphibians and reptiles where it has been measured (Fig. 7). 

Consequently, the likelihood that this is an ancestral feature for amniotes (0.96) and 

lissamphibians (0.99) is high. The pattern with respect to EEG amplitude is different, however 

(Fig. 8). Whereas the likelihood for a decrease in EEG amplitude during sleep-like states to be 

ancestral for lissamphibians is high (0.90), the likelihood for decreased amplitude to be an 

ancestral state is much lower at the base of the amniotes (0.40). The condition of no change in 

EEG amplitude relative to the vigilant state is the more likely at the base of amniotes. Finally, the 

ancestral character state reconstruction of the presence of HShW at the base of the reptilian tree 

is also equivocal (0.5; see Fig. 9).  

(2) The evolution of sleep 

The above review suggests that although some reptilian and amphibian features of sleep are 

different from sleep characteristics observed in mammals and birds, there are also similarities, 

suggesting either a common origin or a strong convergence in the evolution of behavioural sleep. 

However, the origin of the separation of mammalian sleep into two distinct states remains 

unclear. During active sleep birds display phases of eye movements and occasional twitching 

(Rattenborg et al., 2011b). The EEG patterns of birds during quiet sleep and active sleep are 

similar to those of mammals. However, some characteristics of mammalian brain activity during 

sleep, such as thalamocortical spindles, hippocampal sharp wave ripples, and hippocampal theta 

waves, have not been observed in birds (Rattenborg et al., 2011b) suggesting subtle but potentially 

important differences. The presence of atonia in postural muscles during active sleep has been 

reported in birds (Dewasmes et al., 1985), but it is not as clearly defined as in mammals (Amlaner 

& Ball, 1994; Rattenborg et al., 2011b), meaning that conclusions regarding homology cannot be 

drawn. The same issue concerns changes in sleep during development: in newborn rats an 

activated EEG, rapid eye movements, muscle atonia, inhibition of the thermoregulatory response, 

and hippocampal theta waves are not observed during active sleep. Such considerations raise 

concern regarding the use of only electrophysiological features to identify sleep homologies. 

Moreover, although the presence of HShW during episodes of behavioural quiescence has been 

proposed as a marker of quiet sleep in reptiles (Hartse, 2011), HShW have been reported in 

amphibians only in the optic tectum of Rana temporaria (Lazarev, 1978a,b). In reptiles, studies on 

the presence of HShW are sparse. Some pharmacological experiments in turtles revealed that 

HShW react in the same way to a pharmacological agent as do ventral hippocampal sharp waves 

in mammals (Hartse & Rechtschaffen, 1982). The origin of HShW in reptiles, however, remains 
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unknown, despite the fact that some in vitro and in vivo local field potential recordings in brain 

areas like the thalamus, medial and dorsal cortex, and the optic tectum have been performed 

(Gaztelu, Garcia-Austt & Bullock, 1991; Lorenzo, Macadar & Velluti, 1999; Servit, Strejckova & 

Volanschi, 1971). Thus, additional studies are needed to understand better whether reptilian 

HShW are generated by structures homologous to those observed in mammals. 

The integration of neuroanatomy with brain activity may provide a more comprehensive 

understanding on sleep-state homologies and evolution. For example, Rattenborg (2006b) 

postulated that the origin of the slow oscillations recorded during sleep in birds could be 

explained by their higher degree of cortico-cortical (i.e. pallio-pallial) connectivity. He proposed 

that the origin of these slow waves could be linked to convergent evolution of a higher degree of 

cortico-cortical connectivity in both mammals and birds. Such observations reveal the challenges 

of inferring homologies for species that do not possesses the neocortical organization necessary 

for generating the slow waves characteristic of mammalian active sleep.  

A high level of variation of active sleep is observed in relation to ambient temperature 

(Sokoloff & Blumberg, 1998). In addition, the proportion of active sleep is greatest early in 

development and greatest when animals are at a thermoneutral temperature (Szymusiak & 

Satinoff, 1981). Consequently, development, the temperature dependence of active sleep, and 

the mammalian-centric definition mostly based on electrophysiological patterns may prevent its 

identification in adult reptiles and amphibians. However, our phylogenetic analysis shows that 

twitches and eye movements were likely present during behavioural sleep at the stem of the 

reptilian tree. These behavioural patterns of active sleep coupled with the presence of phasic 

motility in ovo in non-avian reptiles, makes the presence of active sleep at the base of the amniote 

more than likely even if it might display an electrophysiological phenotype different from that of 

mammals. 

What does this mean for the evolution of sleep? If mammals and birds do not show the same 

sleep states as their more basal reptilian ancestors, this would suggest convergent evolution of 

sleep in these two taxa, potentially associated with their homeothermic physiology and higher 

energy requirements. An alternative hypothesis is that all tetrapods share similar sleep states and 

neuronal sleep generators, but that the electrophysiological correlates of sleep are induced by 

differences in neuroanatomy and by consequence result in differences in brain activity. In that 

case sleep would be ancestral for tetrapods with modification of brain connectivity in mammals 

and birds driving the differences in brain signatures observed. Thus, all living tetrapods may share 
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a common ancestral type of sleep, but the features common to this ancestral sleep have not yet 

been identified. Irrespective of the hypothesis to be tested, data on sleep in amphibians and 

reptiles are crucial to be able to discriminate among them. 

 

 CONCLUSIONS 

Most amphibians and reptiles display behavioural criteria of sleep, including stereotypic 

postures, maintenance of behavioural immobility, an elevated behavioural response threshold to 

arousal stimuli, eye closure, and homeostatic regulation of sleep. Twitches or motor automatisms 

and eye movements during sleep are likely present in reptiles, but their significance and origin 

remain poorly understood. 

The respiratory rate and heart rate appear to decrease in reptiles and amphibians during 

sleep-like states as is the case in mammals and birds. The decrease in EEG frequency in sleep-like 

states compared to the awake state is likely an ancestral feature in tetrapods. However, the 

amplitude of the EEG is more variable across amphibians and non-avian reptiles than in 

mammals during sleep. High-voltage sharp waves, considered a marker of sleep in mammals, 

cannot be clearly related to sleep in either amphibians or reptiles, raising the question of whether 

their presence is really related to sleep. 

The combination of all behavioural and electrophysiological patterns typically associated 

with mammalian active sleep has never been reported in amphibians. However, the behavioural 

characteristics of mammalian active sleep are likely to have been present at the stem of reptiles. 

It is not possible to link these features clearly to active sleep in mammals because of the variability 

in electrophysiological features in reptiles.  

Studying sleep in a comparative context is essential, using as many behavioural, physiological, 

and electrophysiological variables as possible to gain better insights into the nature and evolution 

of sleep in non-avian reptiles and amphibians. The poikilothermic lifestyle of these groups is 

associated with important differences in physiology and behaviour when compared to mammals 

or birds. The parameters typically used to describe sleep in mammals parameters may not apply 

to animals with such a different physiology, neuroanatomy, and behaviour. The diversity of 

mechanisms implicated in the control of sleep–wake physiology, as well as the variety of 

epiphenomena related to sleep observed across vertebrates, may partly explain the lack of 
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consensus regarding the function, evolution, and nature of sleep. Any analysis of the ontogenetic 

and phylogenetic features of sleep encounters the difficulty of identifying homologous features 

across species, which may hinder phylogenetic inferences on the evolutionary origins of sleep 

states (Blumberg, 2013). Despite this, comparative and developmental approaches remain 

essential to understanding sleep in all of its manifestations. Indeed, the time lost by sleeping 

rather than being invested in reproduction, parental care, or foraging suggests an essential role 

for sleep. Finally, the variability in duration, fragmentation, and physiological modifications of 

sleep across the animal kingdom reveal its adaptive nature, making it both interesting and crucial 

to draw parallels among species in an evolutionary context.  
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 FIGURES ET TABLES 

 

Fig. 2.  Maximum-likelihood-based ancestral character state reconstruction of the presence of an elevated 
arousal threshold during quiescence. Black squares indicate the presence of an elevated arousal threshold 
in terminal taxa. Shading along the branches illustrate the reconstructed ancestral states. Numbers 
indicate the likelihood of the presence of the character at a given node. Phylogeny based on Pyron & 
Wiens (2011) for amphibians, Chiari et al. (2012) for amniotes, Pyron et al. (2013) for squamates 
and Guillon et al. (2012) for turtles. All branches are set to unit lengths as branch lengths were not 
available for all taxa. 
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Fig. 3.  Maximum-likelihood-based ancestral character state reconstruction of the presence of ‘sleep 
homeostasis’ (i.e. an increase in sleep-like state duration after sleep deprivation). Black squares indicate 
the presence of sleep homeostasis in terminal taxa. Other details are as in Fig. 2.  



51 

 

 

Fig. 4.  Maximum-likelihood-based ancestral character state reconstruction of the presence of twitches and 
motor automatisms during sleep-like states. Black squares indicate the presence of twitches or motor 
automatisms during sleep-like states. Other details are as in Fig. 2.  
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Fig. 5.  Maximum-likelihood-based ancestral character state reconstruction of the presence of eye 
movements during sleep-like states. Black squares indicate the presence of eye movements during sleep-
like states in terminal taxa. Other details are as in Fig. 2.  
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Fig. 6.  Maximum-likelihood-based ancestral character state reconstruction of the presence of muscle atonia 
during sleep-like states. Black squares indicate the absence of muscle tone during sleep-like states in 
terminal taxa. Other details are as in Fig. 2.  
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Fig. 7.  Maximum-likelihood-based ancestral character state reconstruction of the presence of a decrease in 
EEG frequency during sleep-like states. Black squares indicate a decrease in EEG frequency in terminal 
taxa. Other details are as in Fig. 2.  
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Fig. 8.  Maximum-likelihood-based ancestral character state reconstruction of EEG amplitude during sleep-
like states. Black squares indicate the presence of an decreased EEG amplitude; white squares indicate 
no change in EEG amplitude, and green squares indicate an increase in EEG amplitude in terminal 
taxa. The black number at each node is the likelihood of a decrease in EEG amplitude; the green one 
represents the likelihood of an increase in EEG amplitude. Other details are as in Fig. 2. 
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Fig. 9.  Maximum-likelihood-based ancestral character state reconstruction of the presence of high-voltage 
sharp waves during quiescence. Black squares indicate the presence of high-voltage sharp waves during 
quiescence in terminal taxa. Other details are as in Fig. 2. 
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ABSTRACT 

Background: Sleep is an inactive state of reduced environmental awareness shared by all 

animals. When compared to wakefulness, sleep behavior is associated with changes in physiology 

and brain activity. The nature of these changes varies considerably across species, and therefore 

is a rich resource for gaining insight into the evolution and functions of sleep. A major obstacle 

to capitalizing on this resource is the lack of a small device capable of recording a high number 

of biological parameters for extended periods of time both in the laboratory and the field.  

New method: ONEIROS is a new tool designed for conducting sleep research on small, 

freely moving animals. The miniature, standalone system is capable of recording 

electrophysiological signals (up to 26 electroencephalogram (EEG), electromyogram (EMG), 

electrooculogram (EOG), electrocardiogram (ECG)), metabolic (3 temperature channels) and 

behavior via a3D accelerometer for several days. In addition, the device is equipped with a 

vibrating motor which can be used to assess arousal thresholds and to disrupt sleep. The system 

is available in a wireless or a datalogger configuration useable in the field.  

Results: To demonstrate the efficacy of this tool, we simultaneously recorded for the first 

time, EEG, hippocampal local field potential, EMG, EOG, brain, body and ambient temperature, 

and 3D accelerometry. In addition, we selectively deprived rats of paradoxical sleep by triggering 

the vibrating motor after online recognition of the state. Finally, by successfully recording a 

pigeon in an 8 m3 aviary in a social context with the device in the logger configuration, we 

demonstrate the feasibility of using the device in the field. 

Keywords: Wireless, telemetry, datalogger, electrophysiology, sleep, pigeon, sleep deprivation 
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I. INTRODUCTION 

Sleep is a vital and complex behavioral state that competes with the time allocated to 

foraging, courtship, parental care, and vigilance (Rattenborg et al., 1999; Lesku et al., 2012; 

Rattenborg et al., 2016). From a behavioral standpoint, sleep is traditionally defined as an inactive 

state with reduced responsiveness to environmental stimuli (i.e. elevated arousal threshold) that 

is rapidly reversible in response to sufficient stimulation. In many species, sleep occurs in a 

species-specific posture and at specific times of the day (Fig. 1. ). The duration and intensity of 

sleep increases following sleep deprivation, indicating that it is homeostatically regulated (Piéron, 

1913; Campbell & Tobler, 1984). Initially identified in mammals, two electrophysiological sleep 

states can be defined during behavioral sleep: paradoxical sleep (PS) or rapid eye movement sleep 

(REM sleep) and slow wave sleep (SWS) or non-REM sleep (NREM sleep) (Aserinsky & Kleitman, 

1953; Jouvet et al., 1959). SWS is distinguished from wakefulness and PS by the presence of high 

amplitude, low frequency waves in the electroencephalogram (EEG), reduced heart and 

respiratory rate, reduced brain and body temperature, reduced muscle tone (compared to 

wakefulness), and the scarcity of eye movements. Environmental awareness is lower compare to 

resting wakefulness (Fig. 1. ). During PS, the EEG exhibits a desynchronized (low-amplitude, high-

frequency) wake-like pattern. In contrast to wakefulness, PS is associated with tonic skeletal 

muscle atonia (Jouvet et al., 1959). This atonia is phasically interrupted by rapid eye movements 

(Aserinsky & Kleitman, 1953) and other forms of muscular twitching, particularly in young 

mammals (Corner, 1977). In addition, heart and respiratory rates become irregular during PS 

(Snyder et al., 1964). Brain temperature increases, but all thermoregulatory mechanisms (i.e. 

muscle tone, pilo-erection, sweating, and shivering) are abolished (Jouvet et al., 1959; 

Parmeggiani, 2003). Finally, both SWS and PS are homeostatically regulated. Total sleep 

deprivation is compensated by an increase in the quantity and intensity of SWS (Borbély & 

Neuhaus, 1979), and selective PS deprivation is also followed by a recovery period with more PS 

(Dement, 1960).  
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Fig. 1.  Table illustrating the main behavioral, electrophysiological and metabolic parameters that covary 
with the quiet states (Quiet wake, slow wave sleep and paradoxical sleep) in mammals. 

Whereas it is largely accepted that sleep is present in animals ranging from jelly fish to the 

more complex animals (Campbell & Tobler, 1984; Raizen et al., 2008; Siegel, 2008; Omond et 

al., 2017; Nath et al., 2017), it is less clear whether all animals display two sleep states. Of the 

non-mammalian animals investigated, unequivocal evidence of mammalian-like SWS and PS was 

only found in birds (Klein et al., 1964; Heller, Graf, & Rautenberg, 1983; Dewasmes et al., 1985; 

Rattenborg et al., 2009). Nonetheless, some reports of a PS like state in non-avian reptiles (Shein-

Idelson et al., 2016; Libourel & Herrel, 2016), or twitches during behavioral sleep in cuttlefishes 

(Frank et al., 2012) or in bees (Klein et al., 2008) suggest that two sleep states could also be present 

in other species.  

Classically, sleep is studied in laboratory animal models (rats, mice, cats, dogs, fruitflies, and 

zebrafish) at various levels of analysis, including genetic, molecular, neuroanatomical, 

physiological, or cognitive. Several tools are available to assess these aspects of sleep; for example: 

optogenetic, immunohistochemical, behavioral tests, neuronal activity recordings, LFP, EEG, 

EMG, ECG, EOG, and temperature measurements. However, of the species in which sleep has 

been studied (less than 200 of the approximately 66 000 vertebrates), most of them were studied 

in to the lab via a tethered device that recorded EEG and EMG. A weakness of this approach is 

that using a tether could induce stress by reducing the animal’s freedom of movement and 

precluding the use of sleeping shelters (Tang et al., 2004). Therefore, wireless alternatives are 

obviously required to reduce stress and foster more natural sleep patterns. Since 2000, one logger 

(Vyssotski, 2005; Vyssotski et al., 2009; http://www.vyssotski.ch/neurologger.html) and several 

telemetric systems with a limited transmission range (Tang & D. Sanford, 2002; Weiergräber et 

al., 2005; Lapray et al., 2008; Zayachkivsky et al., 2013) have been developed to record sleep-

related EEG and EMG activity in rodents. The telemetry devices could record 1 or 2 channels at 
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a low sampling rate (<1 kHz) for periods lasting from days to months, in the case of devices with 

capacitive wireless transmission (Tang & D. Sanford, 2002). Other systems can record more 

channels (>32) at a higher sampling rate (>10kHz) needed to record neuronal activity (Hawley et 

al., 2002; Mohseni et al., 2005; Sodagar et al., 2009; Harrison et al., 2011; Yin et al., 2014). 

Nevertheless, with a battery of an acceptable size for a laboratory rodent to carry, these systems 

can only record for a few hours, which is insufficient for most sleep studies wherein disturbing 

the animals should be minimized. In general, it is essential that a sleep recording device records 

for at least 48 hours. Moreover, for comparative studies of species that do not exhibit sleep states 

readily comparable to mammalian SWS and/or PS based on EEG and EMG activity alone, it is 

important to record as many parameters as possible to facilitate comparison with mammals. 

Consequently, in the case of comparative sleep studies, behavioral, electrophysiological and 

metabolic parameters should be recorded in order to provide more informative features regarding 

how an animal sleeps. Unfortunately, none of the existing devices has enough channels to record 

multiple EEG, EMG, ECG and EOG channels, LFPs, and brain and body temperature for at 

least 48 hours, Moreover, none incorporates a means to evaluate the behavioral criteria of sleep, 

such as arousal threshold, reversibility, and homeostasis. Another important constraint is the 

weight and the size of the device. Obviously, all devices could record for a month with large 

batteries. However, most species are small and cannot carry heavy systems. Therefore, to increase 

autonomy, the power consumption of the system should be minimized. 

In addition to these constraints, if the aim is to record the animal in the wild, other 

parameters are needed to describe sleep behavior. In the lab we often record video in conjunction 

with the electrophysiology, but in the wild, this cannot be done easily. An alternative is to record 

the animal’s head movement with accelerometry along the three axes (Rattenborg et al., 2017). 

Moreover, as the quantity of sleep and the presence of topor/hibernation are temperature 

dependent, it is also important to record naturally occurring changes in ambient temperature in 

the wild. However, the major difference between recording in the lab and the wild is the manner 

in which the data is stored. In the lab, movement is usually restricted to a small space from which 

data can be transferred and stored on a computer via wireless transmission. However, in the field 

or in large enclosures (Lesku et al., 2011) that exceed the transmission range of small telemetry 

devices, the data needs to be logged on the device (Rutz & Hays, 2009). Currently, only one 

device available in various versions (http://www.vyssotski.ch/neurologger.html), is small enough, 

to record EEG and EMG combined with 3D accelerometry for sleep studies (Vyssotski, 2005). 

This device has been used successfully to record sleep-related electrophysiology and behavior in 
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the field in sloths (Rattenborg et al., 2008; Voirin et al., 2014), sandpipers (Lesku et al., 2012), 

barn owl chicks (Scriba et al., 2013a), and even frigatebirds in flight (Rattenborg et al., 2016). 

Although this device opened the door for the first field-based sleep studies and remains a 

powerful tool for many field-based sleep studies, the low number of channels (four) and the 

absence of a device for assessing arousal thresholds and disrupting sleep limits the scope of the 

questions that can be addressed with this device. 

In summary, sleep is a universal and complex state, characterized by behavioral, 

electrophysiological and metabolic changes from wakefulness. Currently, multiple tools can assess 

some features of its phenotype in lab or more rarely in the wild, but none of them can measure 

the behavioral, electrophysiological, and metabolic features of sleep at the same time, in small 

species, for long periods. A device with these capabilities is needed for comparative and ecological 

experiments aimed at understanding the evolution and functions of sleep. Therefore, we 

developed ONEIROS (ONE Instrument for Recording Our Sleep), a wireless/datalogger system 

designed for sleep studies. This system is small enough to be worn by rats. The device can record 

26 referential channels of electrophysiology (EEG, EMG, ECG, EOG or LFP), three temperature 

channels, and 3-axial accelerometry. Moreover, to evaluate the arousal threshold of to enforce 

sleep deprivation, the system includes a lightweight, vibrating motor. ONEIROS weighs less than 

10g, when configured with a battery capable of recording for more than 48 hours. To validate 

the system, we simultaneously recorded for the first time the EEG, EMG, EOG, 6 LFPs in the 

hippocampus, the brain and body temperature, and 3D head acceleration of a rat. We also 

performed selective PS deprivation on a rat for 6 hours by activating the vibrating motor fixed on 

the device when PS was automatically detected via a custom online sleep scoring algorithm 

(Libourel et al., 2015). We compared the effect of the deprivation with published data obtained 

with gentle handling and automated deprivation methods. Finally, to demonstrate the feasibility 

of recording in the wild, we recorded a pigeon in a large aviary with other birds. 

 METHODS 

(1) Surgery and experimental recording conditions 

(a) Ethical considerations 

All experiments were conducted with the 3R principles in animal experimentation and in 

accordance to the European Community Council Directive for the use of research animals 

(86/609/EEC and 2016/63/EU). 
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(b) Rat baseline 

Under ketamine-xylazine anaesthesia (100mg.kg-1 - 10mg.kg-1 respectively, I.P.), one Sprague 

Dawley male adult rat (230g, Charles River Laboratories, France) was placed on a stereotaxic 

frame (David Kopf Instruments, USA) and implanted for with sensors for recording the EEG, 

EMG, and EOG, as well as body and cerebral temperatures. Following incision of the scalp and 

removal of the skin, holes were drilled in the skull. EEG monitoring: two stainless steel screws 

(Bilaney, Plastics One, Germany) were fixed in the parietal (from bregma: anterior-posterior (AP), 

-4mm; medial-lateral (ML), +3mm) and frontal (AP, +3mm; ML, + 1mm) parts of the skull and 

two above the cerebellum (AP, -12mm; ML, +3mm) served as references. In addition, a 4-electrode 

bundle was placed in the hippocampus for LFP recordings. It was composed by 4-tungsten wires 

(35μm in diameter, Scientific Wire Company, England) with different lengths (500μm of 

difference for each). The bundle was inserted with the following coordinates: AP, - 3.8mm; ML, 

+1.8mm, and dorsal-ventral, -4mm, to record from the lower part of the dentate gyrus (longest 

wire) to the CA1 region (shortest wire) of the hippocampus. The screwscrews and bundle were 

fixed on the skull and electrically insulated from one another using acrylic Superbond (Sun 

Medical Co, Japan). EMG monitoring: two gold-coated electrodes were inserted into the neck 

muscles. EOG monitoring: two wires with gold-coated thin ball ends (1mm in diameter) were 

bilaterally placed under the eyelid, close to each eye. The wires were fixed on the skull with 

Superbond. Cerebral temperature monitoring: one additional hole was drilled in the occipital 

part of the skull and a thermistor (GA100K6MCD1, Measurement Specialties) was inserted close 

to the brain. The hole was filled with bone wax. Body temperature monitoring: one thermistor 

was inserted deeply between the neck muscles and secured with a suture. All wires were then 

connected to a head connector (Electronic Interface Board-36-PTB Neuralynx), which was 

secured to the skull using Superbond acrylic. Next, dental Paladur cement (Heraeus Kuzler) was 

applied around the head connector to protect all of the wires and the connector.  At the end of 

the implantation procedure, the rat received a non-steroidal anti-inflammatory injection 

(carprofene, 5mg.kg-1, S.C.) and was allowed to recover for 7 days, during which it was weighed 

and monitored daily. Then, the rat was housed in a Plexiglas barrel (30cm in diameter, Blox 

Usinage Plastique, France) with bedding, food and water ad libitum placed in a recording chamber 

with a 12h/12h light-dark cycle, ventilation, and a 23°C ambient temperature. ONEIROS was 

plugged into the animal's implant and baseline recordings started after 2 days’ habituation to the 

device and the new environment. Signals were collected using DaqReverse, a custom Matlab 

(Mathworks, matlab r2016b) program, and were sampled at 256 Hz except for the temperature 
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and accelerometer which were sampled at 64 Hz. Vigilance states were scored using SlipAnalysis 

a custom Matlab program with a 5-s sliding time frame window according to the following criteria: 

Active wake (AW) was characterized by desynchronized and irregular low-voltage and high-

frequency (5-9 Hz) EEG activity, sustained EMG neck muscle tone, and movement detected by 

the accelerometer. EEG activity was similar during AW and Quiet wake (QW), but QW was 

differentiated from AW by the absence of movement. Slow-wave sleep (SWS) was characterized 

by high-voltage slow-waves (1.5-4 Hz) combined with low muscle tone similar to QW. Paradoxical 

sleep (PS) was characterized by a very regular theta rhythm (5-9 Hz) associated with muscle atonia 

(absence of muscle tone and accelerometer activity). 

(c) Rat Paradoxical Sleep deprivation 

One Sprague Dawley adult rat (male, 270g) was used. The surgical procedure was the same 

as previously described. Briefly, four screws for EEGs were fixed on the skull bilaterally over 

parietal and frontal cortices and two screws over the cerebellum for references. Two EMG and 

two EOG electrodes, and brain and body thermistors were also implanted. At the end of the 

implantation procedure, the rat received a non-steroidal anti-inflammatory injection (carprofene, 

5mg.kg-1, S.C.) and was allowed to recover for 7 days, during which it was weighed and monitored 

daily. The rat was first placed in the recording chamber for baseline recording. Data were sampled 

at 128 Hz except for temperature and accelerometry which were sampled at 64 Hz. The baseline 

signals were scored and template parameters for each state were extracted from the EEG and 

EMG for online sleep scoring (Libourel et al., 2015). To enforce PS deprivation (PSD), we used 

an online algorithm to detect PS (Libourel et al., 2015) and a vibrating motor embedded on the 

ONEIROS device (Fig. 2. A) to awaken the rat when PS was detected. The vibration intensity was 

set to 100% and the stimulation duration was 700 ms. After a 6-h period of PSD, the rat was 

recorded for an additional 6-h recovery (PS recovery - PSR). The time spent in each vigilance state 

was quantified during baseline, PSD, and PSR. 

(d) Pigeon baseline 

One adult pigeon (one female, Columbia livia, 250 g) was anesthetized using 

isoflurane, then placed in stereotactic device (David Kopf Instruments, USA) and 

instrumented for EEG, EMG, EOG recordings. For EEG monitoring, four gold-plated, round-

tipped (0.5 mm diameter) electrodes (Bürklin, Germany) were placed over the anterior and 

posterior hyperpallium (Wulst), a primary visual area. The electrodes were symmetrically placed, 

4 mm apart along the AP axis and 2.5 mm and 3 mm from the midline for the anterior and 
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posterior electrodes, respectively. Two electrodes were placed above the left and right sides of the 

cerebellum served as references for the ipsilateral EEG electrodes. For EOG monitoring, two 

electrodes were placed in the porous bone cavity behind the top of the eye; the electrodes did not 

enter the orbit. After positioning, the EEG and EOG electrodes were secured with dental acrylic. 

For EMG monitoring, two wire electrodes were inserted into the nuchal neck muscles. To ensure 

a good adhesion between the dental acrylic and the bone, small holes were drilled through the 

top layer of the cranium, which allowed the acrylic to infiltrate the bone. The electrodes, cables 

and the connector were embedded in dental acrylic. At the end of the implantation procedure, 

the bird received an intramuscular injection of meloxicam (Metacam 2mg/kg) for post-operatory 

analgesia. The pigeon was allowed to recover for 24 hours before attaching the data transmitter 

to the connector on its head. For the recordings, the device was equipped with a 1 Gb SD card 

and was attached to the connector on the bird’s head. The pigeon was then placed in an all-

female group aviary (2 m x 2 m x 2 m) together with another three uninstrumented birds. The 

aviary was equipped with an infrared camera for video monitoring (Axis M20 Network Camera 

Series). The EEG, EMG, EOG and 3-axis accelerometry were recorded in logger mode at 256 Hz 

for 24 hours. At the end of the recordings, the bird was recaptured, the device was removed and 

the data collected from the SD card. All animals had ad libitum access to food and water. The 

aviary had a 12h/12h light-dark cycle and an ambient temperature of 20°C. 

(2) A new device to quantify sleep 

(a) Embedded system for data acquisition 

ONEIROS was designed to provide a flexible set of tools, fitting in a tiny device, for the 

analysis of sleep in small animals. It includes an integrated, low-power electrophysiology frontend 

to measure up to 26 biosignals, 3 temperature signals, and 3 accelerometer axes. An additional 

vibrating motor can be connected to the system and controlled using either real-time or 

predefined sequences of variable durations and intensities of vibration to assess arousal 

thresholds or prevent sleep.  The system can be used either as a data logger, by using an embedded 

media storage, or as a telemetry device for real-time monitoring and analysis of the signals. The 

overall hardware architecture and software embedded on the system were developed to ensure 

that it would match the requirements (number of channels needed and bandwidth) of various 

possible experimental conditions and animal species. The size of the entire electronic system is 9 

mm x 16 mm x 25 mm and it weighs 4 g. Together with a small 3 Volts, 150 mAh Li/MnO2 

primary battery of 1.4 g (CP251525, GMB Company Ltd.) it can be encapsulated in a 28 mm x 
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18 mm x 15 mm plastic enclosure (Fig. 2. B). The addition of the vibration motor requires an 

additional width of 2 mm on one side of the enclosure and a weight of 1 g.  

  

 

Fig. 2.  A. Picture of the device showing the stack of boards with circular vibrating motor connected. B. 
Picture of a rat with the enclosed wireless device on its head. 

(b) Hardware boards 

To enable rapid changes and optimizations of the main system functions, we designed small 

printed circuit boards which can be stacked together to form a functional measurement system 

(Fig. 2. A). The boards are interchangeable allowing adaptation of the system to specific 

experiment conditions. This modularity also allows for future improvements of the main 

functions. In the current version, four boards form a fully working system: a power stage, which 

provides independent power from the battery for the analog and digital boards; a communication 

stage which consists of either an embedded memory storage board, or a wireless data transfer 

board; an analog stage which contains the frontend for the acquisition of biosignals; and, finally, 

a digital stage which controls and synchronizes data acquisition from the analog stage and transfer 

to the communication stage. The connection between each stage is made by stackable connectors 

on a single side or on both side of the board depending on the position of the board in the system 

(for example, the power board contains connectors only on the bottom side as it is the upper 

stage of the system). The global interconnection between all boards is shown on Fig. 3. Any board 

can be replaced by any other one of the same type, as long as the connectors’ placement and 

pinout is retained. To minimize noise on the analog signals, the analog power supply and the 

serial bus to the analog frontend are placed on the first stack of connectors. The digital power 

supply, control lines and serial bus to the digital boards are placed on the second stack of 

connectors at the opposite of the circuit board. The overall functional diagram of the current 

version of the system is shown on Fig. 3.  
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Fig. 3.  Diagram of the interconnection between hardware modules 

(c) Power board 

The power board is placed at the top of the system stack, together with the battery. The 

electronic circuit is mainly composed of a dual channel boost-converter (LTC3535, Linear 

Technology Corporation) to provide constant voltages for analog and digital power supplies from 

the voltage of the battery, which can vary from 3.2 V down to 2 V at the end of the battery life. 

Due to the voltages required by the communication and analog frontend stages, the boost-

converter is configured to output 3.3 V for the digital power supply with up to 100 mA output 

current (required in case of the use of a micro-SD card in the communication stage). On the 

other hand, the second channel of the boost-converter is configured to output 3.6 V for the 

analog power supply, which is subsequently fed into a 3.3 V low-noise, low-dropout regulator 

(LDO). The dedicated LDO (LP5907, Texas Instruments Inc.) is used to minimize the output 

ripple of the boost-converter on the analog power supply, as the amplifier stage of the analog 

frontend board can be very sensitive to power supply variations and noise. The power board also 

contains a light indicator (low power LED) connected to the digital connector stack and can be 

controlled by the microcontroller and used to indicate the state of the device. The power switch 

is a Hall Effect, bidirectional latch (AN48846B-NL, Panasonic Corporation) which can be opened 

and closed using a proximity magnet. This enables control of the power board even when the 

system is enclosed in a waterproof housing. 

 

(d) Communication board 
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Two communication boards have been developed and can be exchanged depending on the 

environmental conditions of the measurement as well as the requirements of the experiment. 

The first board is composed of a micro-SD card interface, and enables the embedded recording 

of acquired data on a memory card. With this board, the system is used as an autonomous data-

logger system mounted on the animal; the data is retrieved from the memory card after the 

experiment. The second board developed is composed of a 2.4 GHz transceiver (nRF24L01p, 

Nordic Semiconductors) and an associated radio-frequency (RF) circuit and ceramic chip 

antenna. When assembled with the RF communication board, the system is used as a wireless 

telemetry system and the data are collected in real-time by using a base-station receiver connected 

to a computer via a Universal Serial Bus (USB) cable. As described, the modularity of the system 

enables it to record in laboratory conditions, with real-time acquisition of the data, as well as in 

a natural or semi-natural environment where the animal can freely move with the device in the 

data-logger configuration. 

(e) Analog Frontend board 

The analog frontend board is intended to be placed at the lower stage of the board stack, as 

the connector (Omnetics, Dual Row Nano Strip series, 32 contacts) is located on the bottom side 

of the board for linking the electronic interface board (EIB) to the electrodes and temperature 

sensors on the animal. The board is based on the RHD2132 (Intan Technologies, LLC.) digital 

electrophysiology interface chip. This low-power, integrated circuit contains a 16-bit 

analog/digital converter (ADC), a 32 channels low-noise amplifier with programmable 

bandwidths and 3 additional auxiliary inputs. The 3 auxiliary channels are used for temperature 

measurements with negative-temperature coefficient thermistors of 100 kOhm at 25 °C. Due to 

hardware (EIB connector) and software limitations, only 26 amplified channels are used for 

electrophysiology measurements which make a total of 32 channels when combined with 

temperature (3 channels) and three accelerometer axes. Data acquisition is triggered 

independently for each channel, and the ADC result is retrieved using the serial communication 

bus connected to the micro-controller board. This enables each channel to be independently 

sampled at different rates as described in the software section. This flexibility allows the user to 

adjust the power consumption of the device through changing the sampling rate required for 

each biosignal, temperature, and accelerometer axis. 

 

(f) Microcontroller board 
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The microcontroller board contains the microcontroller unit (MCU) and the digital 

accelerometer integrated chip, as well as a driver for the vibrating motor. The accelerometer is an 

ADXL362 (Analog devices, Inc.), a 3-axis MEMS accelerometer with a resolution of 12 bit and 

an average active consumption of 2 μA. The microcontroller used in the system is a 

MSP430FR5969 (Texas Instrument, Inc.). This microcontroller was selected due to its very low-

power consumption of 100 μA/MHz and its flexibility in terms of power management (1 active 

and 3 low-power modes of operation). The software embedded on the microcontroller is 

described in the section (g). The microcontroller is connected to three communication serial 

buses using the Serial Protocol Interface (SPI) to control and transfer data from the accelerometer, 

the analog frontend board, and the communication board. Additionally, the microcontroller is 

directly connected to a universal haptic drive (DRV2603, Texas Instruments Corporation) which 

controls an 80 mA vibration motor that can be connected directly to the microcontroller board. 

 

Fig. 4.  Functional diagram of the complete instrumentation 

(g) Software embedded on the microcontroller 

The software embedded on the microcontroller was developed using the Code Composer 

Studio integrated development environment (Texas Instrument, Inc.). The software was written 

in C language, compiled using the TI compiler and transferred to the microcontroller with an 

EZ-FET programmer for the MSP430 microcontroller family. The role of this software is to 

provide flexibility and adaptability of the instrumentation to the specific needs of each 

experiment (i.e. the number of channels used among the 32 channels available, and a dedicated 

sampling frequency for each individual channel). As a result, this method of acquisition has the 
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advantage of minimizing the power consumption of the entire system when less channels or lower 

sampling rates are required, thus extending the autonomy of the device for longer experiments. 

At startup, the first task of the software is to detect whether the telemetry or the logger board 

is used for recording data and to configure the peripherals accordingly. Then the program enters 

an infinite loop where three different states are executed sequentially: a) retrieving the sampling 

rate of each channel, b) generating an acquisition sequence based on the table of sampling 

frequencies, and then c) indefinitely acquiring and transferring samples (following the generated 

sequence) until the system is stopped by power down or configuration change. If using a telemetry 

configuration, where data are transmitted to a remote computer, the software is able to receive 

real-time orders to control the vibration motor. In that case, an algorithm executed on the remote 

computer can automatically use the data received from the system to, for example, classify awake 

or sleep states of the animal and then send back vibration commands to induce sleep deprivation 

or to assess arousal threshold. Fig. 5. illustrates the overall execution of the program with 

annotations regarding wireless or logger specific usages. 

 

Fig. 5.  Flowchart of the embedded software on the microcontroller unit 

(h) Signals description and acquisition 

The device enables the acquisition of 32 different channels of three different types: a) 26 

channels for biosignals, including a reference channel, b) 3 channels for temperature based on 

negative temperature coefficient (NTC) thermistors, c) 3 channels for accelerometry based on a 
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3-axis digital accelerometer. Due to limited wireless bandwidth, and also to limited power 

consumption when using the logger configuration, the overall maximum sampling frequency is 

set to 8192 samples per second (sps). This maximum sampling rate can be split over the different 

channels via software (Fig. 6. ) in any combination as long as the sum of all frequencies is equal 

to or lower than 8192 Hz (for example, 1 channel sampled at 8192 sps or 8 channels sampled at 

1024 sps). Based on the sampling rate defined for each channel individually, the embedded 

software automatically generates a sequence of acquisition at a fixed clock rate with respect to 

every channel frequencies. For timing precision, a 32.768 kHz crystal oscillator is used with a 

drift of only 20 ppm or less. Then every possible sampling frequency that is an integer divisor of 

this clock (8192, 4096, 2048, 1024, etc.) can be set. When sent using wireless communication, 

data are collected using a RF remote receiver connected to a remote computer using a USB 

connection. The remote receiver is composed of the same transceiver chip (nRF24L01p) as the 

transmitter, and is associated to a PSoC 5LP (Cypress Semiconductors) microcontroller unit 

which transmits sampling rate configurations to the system and collects data frames which are 

subsequently sent to the computer through USB port. On the host computer, a dedicated driver 

as well as graphic user interface have been developed using Matlab (The Mathworks) to facilitate 

configuration, real-time visualization and control, as well as storage of the data (Fig. 6. ). 
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Fig. 6.  Screen shot of the configuration tool design on Matlab for allocating the sampling rates to the 
different channels.  

(i) Biosignals 

The 26 unipolar channels for biosignal measurements are acquired through the analog 

frontend which contains one instrument amplifier (referred to a reference electrode) for each 

channel with a fixed gain of 192 V/V. The output of all amplifiers can be multiplexed to the 

input of a single 16-bit analog to digital converter. These channels are meant to measure 

biosignals, such as EEG, ECG, EMG, EOG and LFP. Each channel has a digital precision of 

0.195 μV and total voltage range of +/- 6.39 mV. Integrated and configurable analog bandpass 

filters prevent aliasing effects and enable DC removal. 

(j) Temperatures 

The analog frontend contains three auxiliary (not amplified) analog channels used to acquire 

temperature measured with NTC, 100kOhm thermistors. The thermistors (GA100K6MCD1, 

Measurement Specialties) are polarized with voltage from a voltage divider by using a 100kOhm 

resistor (Fig. 7. ). Auxiliary inputs are sampled through the same analog to digital converter as the 

biosignals, but with a voltage range of 0 – 2.4V. When using the voltage divider to polarize the 
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thermistor, the linearity error is lower than 1% in the range 15 – 40°C, and variations lower than 

0.002 °C can be measured. 

 

Fig. 7.  Temperature measurement circuit diagram 

(k) Accelerometry 

A 3-axis, 12-bit digital accelerometer is used to assess movement of the animal’s head. By 

using a range of +/- 1g, the accuracy of the measurement is 0.001g. Internal bandwidth can be 

configured depending on the sampling frequency to avoid aliasing. Data are directly retrieved by 

the microcontroller through a serial peripheral interface (SPI). 

(l) Electrical characteristics 

Although analog signal processing, analog to digital conversion, and digital interfaces with 

the microcontroller contribute to the overall power consumption of the system, for the most part, 

the autonomy of the system will depend on the communication board. Whether it uses RF 

communication or SD-Card storage, this stage has much higher power consumption when 

handling data. Hence, its consumption depends on the amount of data collected by the system; 

i.e. the total sampling rate of the configuration. In order to predict the autonomy of the system, 

the overall consumption has been accurately measured for different sampling frequencies (Fig. 8. 

). 
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Fig. 8.  Power consumption of the system with a 3V supply voltage and expected autonomy with a 
150mAh primary battery. 

 RESULTS 

(1) Multiple parameters recorded in baseline condition with ONEIROS (wireless 

version) in rat 

To validate the design of our system (size, weight, signal quality, and autonomy), we first 

monitored a rat in standard lab conditions. Here, for the first time we were able to record at the 

same time most of the electrophysiological parameters that covary with the different states of 

vigilance. Fig. 9. A. illustrates 90s of raw signal recorded with ONEIROS and Fig. 9. B. shows 

10s of each state. The characteristics and quantity of each state were consistent with previously 

published data (Fig. 10. ). During active wake (AW: dark blue), EEG and hippocampal activity is 

desynchronized, with the later also showing a sustained theta frequency (around 6Hz, see time 

frequency plot) characteristic of periods of locomotion (see also Fig. 9.  and Fig. 10. D.) (Sławińska 

& Kasicki, 1998). The EMG, EOG, and the accelerometer show bursts of intense activity. The 

brain and nuchal temperature are at high levels. During QW (light blue), the animal stops 

moving, as reflected in the EMG and accelerometry recordings. Eye movements become less 

frequent and the EEG tends to increase in amplitude and decrease in frequency when compared 

to AW (Fig. 10. B). During SWS (red), the EEG is dominated by large slow waves (Fig. 9. and 

Fig. 10. D). During SWS, the EMG remains at a low level, the accelerometry shows little variation, 

indicating the absence of movement, and eye movements are nearly absent. Both temperatures 

tend to decrease during SWS. When the animal falls into PS (green), the parietal EEG and 

hippocampal recording show typical activity in the theta band (Fig. 9. and Fig. 10. D), eye 

movements occur, the EMG becomes atonic, the brain temperature increases to wake levels, but 
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body (nuchal) temperature continues to decline (Fig. 9., Fig. 10. C). A small nuchal “twitch” is 

also visible on the accelerometer signal (Fig. 9. B). Although high voltage waves were observed 

when the animal knocked the device against the cage wall, the signals were usually free of artefacts, 

even during grooming and locomotion. 

 

 

Fig. 9.  Raw signals obtained with ONEIROS in wireless mode from a rat during different vigilant states. 
A. 90 second recording of all signals. From the top to the bottom; hypnogram illustrating the wake/sleep 
scoring (active wake in dark blue, quiet wake in light blue, slow wave sleep in red, and paradoxical sleep 
in green); parietal EEG; time frequency representation of the hippocampal local field potential (color 
coded from -131 dB in blue to -73 dB in red); EMG with a high pass filter (cutoff frequency 10Hz, 
order 2); EOG; brain temperature; nuchal temperature; ambient temperature; 3 axial accelerometry. B. 
Representative 10 second examples of the parietal EEG, hippocampal LFP, EMG, EOG and 
acceleration along x axis, occurring during the four states. 
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Fig. 10.  Results over 24 hours obtained from wireless recordings in a rat. A. Quantification of the vigilant 
states over 24 hours. B. Number of eye movements per minute per state. C. Distribution of the muscle 
tone per epoch for each state. D. Power spectrum in each state computed for parietal EEG and 
hippocampal LFP. 

(2) Selective paradoxical sleep deprivation in a rat using ONEIROS 

The vibrating motor embedded in the ONEIROS device (Fig. 2. A.) was used to evaluate its 

efficacy in suppressing PS for several hours and inducing a homeostatic increase in PS during 

post-deprivation recovery. We performed selective PS deprivation for 6 hours by using a 

probabilistic online sleep scoring algorithm (Libourel et al., 2015). Fig. 11. illustrates the raw 

signals during the PS deprivation (PSD) experiment. After a few seconds of PS (see atonia and 

EEG desynchronization), the algorithm sends a stimulation (white bar on the bottom bar) that 

immediately awakens the animal. The latency to detect PS was around 3-4 seconds. Fig. 11. B. 

shows the percentage of PS per hour during and after the deprivation (in green) compared to 
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baseline conditions (in blue). The deprivation reduced the quantity of PS for 6 hours by 60% 

(58% in baseline to 23% during PSD). Moreover, PSD also induced a rebound of PS (PSR) 

quantity during the recovery period with an increase of 85% over baseline levels (14% in baseline 

vs 26% during PSR, Fig. 11. D.). Compared to 4 hours of PSD via gentle handling (Ravassard et 

al., 2016), Fig. 11. E) and unpublished data from our lab using a mechanical shaking device 

(Viewpoint S.A., (Libourel et al., 2015), the quantity of remaining PS during PSD with ONEIROS 

is higher (5% with ONEIROS compared to 2.6% and 2.7% with the other methods). This is due 

to the presence of PS episodes during which the stimulations didn’t immediately awaken the 

animal. However, PS quantities during the recovery were consistent with those obtained with the 

other methods. 
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Fig. 11.  Paradoxical Sleep deprivation efficiency. A. Hypnogram showing vigilance states (wake in blue, 
Slow wave sleep (SWS) in red, and Paradoxical Sleep (PS) in green), raw EMG signal, EEG time 
frequency and the associated raw EEG signal, and accelerometry. The bottom black bar shows when a 
stimulation was sent to awaken the animal (white bar). B. Percent time spent in PS per hour over the 
12-hour baseline (in light blue 8h-14h and dark blue 14h-20h), PS deprivation period (from 8 to 14h 
in light green), and PS recovery period (from 14h to 20h in dark green). B. the histogram shows the mean 
quantity in minutes of PS during 6-hour baseline (left) compared to the remaining quantity of PS during 
PSD (right). C. The histogram illustrates the increase in PS after deprivation by showing the percentage 
of PS during 6 hours of baseline (left) compared to the 6 hours after the deprivation (right). D. the table 
compares the residual quantities of PS during PSD and PSR, during 4 hours of PS deprivation enforced 
via gentle handling (Ravassard et al., 2016), 6 hours of automated PS deprivation induced by a custom 
shaking device (Libourel et al., 2015), and ONEIROS PS deprivation.  



89 

 

(3) Multiple parameters recorded in baseline condition with ONEIROS (wireless 

logger) in a pigeon 

The electrophysiological and behavioral aspects of sleep recorded with ONEIROS in the 

pigeon were similar to those recorded in birds using other methods. 0illustrates raw recordings 

with alternating periods of QW and AW, followed by SWS. The periods of AW were 

characterized by increased muscle activity and increased motion (visible on the accelerometry 

channels), and desynchronized EEG activity. The two peaks at 12 Hz and 24 Hz present on the 

power spectrum of AW (0A) resulted from head scratching. The periods of QW were 

characterized by low muscle activity (0B), comparatively small and infrequent changes in the 

accelerometry signal, generated by the birds’ head movements, and desynchronized EEG activity. 

During SWS the EEG showed increased low frequency activity, when compared to all other 

states, increased Delta/Gamma ratio (0C) and the near absence of motion. Muscle tone usually 

remained at a level comparable to QW. 

PS was characterized by EEG activation and behavioral signs of reduced muscle tone (e.g. 

head dropping as shown in the accelerometry recordings). As in other studies on pigeons and 

other avian species, the nuchal EMG rarely showed a reduction in activity, despite the behavioral 

signs of reduced tone. The number of eye movements increased during PS when compared to 

SWS. As previously described in pigeons and other birds (e.g. Dewasmes et al., 1985; Tobler and 

Borbély, 1988), eye movements included saccades, as well as faster oscillations (at 25-30 Hz). 

Unlike saccades which rarely occurred during SWS, the fast oscillations occurred during all sleep 

and waking states. They are thought to disperse oxygen and nutrients in the vitreous humor of 

the avian eye by moving a membrane (pecten) that protrudes inside the vitreous humor 

(Pettigrew, Wallman, & Wildsoet, 1990). 

Overall, the duration and timing of sleep bouts, as well as the amount of each state was 

typical for pigeons (0E). During the 12-h night, the bird spent 82.9% and 9.5% of the time in 

SWS and PS, respectively (0D). 
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Fig. 12.  Raw signals obtained with ONEIROS in logger mode from a pigeon during different vigilant 
states. A. Pigeon wearing ONEIROS (logger version) in the aviary during recording B. Raw signal 
illustrating the transition from wake to slow wave sleep (SWS). C. Raw signal illustrating one 
paradoxical sleep (PS) episode preceded and succeeded by SWS. From the top to the bottom; hypnogram 
illustrating the wake/sleep scoring (active wake in dark blue, quiet wake in light blue, SWS in red, and 
PS in green); EMG with a high pass filter (cutoff frequency 10Hz, order 2); right EEG; for B. only - 
time frequency representation of the left EEG; EOG; 3-axial accelerometry. 
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Fig. 13.  Characteristics of wakefulness and sleep obtained from 12h night recordings of a pigeon with the 
ONEIROS logger. A. Power spectrum in each state computed for right EEG. B. Distribution of the 
muscle tone per epoch for each state. C. Distribution of the Delta/Gamma ratio for each state. D. 
Percentage of time spent in each state during 12h night recordings. E. Mean episode duration for each 
state. AW – active wakefulness; QW – quiet wakefulness; SWS – slow wave sleep; PS – paradoxical 
sleep. Accelerometry axis direction: x – forward-backwards, y – lateral, z – vertical. 
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 DISCUSSION 

(1) Recording electrophysiology, behavior and temperature using a miniature 

instrument 

One of the main reasons for developing ONEIROS was to combine in one small, light 

wireless device all of the electronics required to record multiple parameters related to sleep for 

long periods of time in small animals. Technically, the main constraints are size, weight, and 

autonomy. By coupling a frontend designed to record electrophysiology, an integrated digital 

accelerometer, a circuit to record temperature from multiple thermistors, and a low power 

microcontroller, we were able to build a system for studying sleep in small animals. Our 

recordings in baseline conditions in a rat, demonstrated that the size, weight, and autonomy of 

the system meet the requirements for recording sleep in the laboratory setting. Indeed, for the 

first time we were able to record without artefact in a freely moving animal most of the 

physiological and metabolic parameters that covary with sleep states (EEG, EMG, EOG, ECG, 

LFPs, and brain and body temperature). Moreover, we were also able to record the posture and 

the acceleration of the head via a 3 axis accelerometer, as well as ambient temperature. Our results 

and analysis demonstrate that an overall view of the classical features of sleep can be obtained 

with a single device. For example, the system can simultaneously record 10 electrophysiological 

channels at 256 Hz, three temperatures, and three acceleration channels at 64 Hz, for 35 hours 

with a 150 mAh battery; or 64 hours with 4 EEG, 1 temperature and 1 acceleration at 128Hz; an 

infinite number of other recording configurations are also possible. To our knowledge, in 

contrast to other commercial and/or published devices, ONEIROS is the only one that provides 

such flexibility in the configuration of the channels number and sampling rate, allowing users to 

completely customize data acquisition according to their needs. 

In terms of limitation, while the system is small enough to be worn by rats, it is too large to 

be used on smaller animals such as mice. We estimate that the device is only suitable for animals 

over 100g. Future efforts should be directed toward reducing the size and weight of the device 

further, maybe with some compromises in term of capability and flexibility. Regarding the fields 

of application, although the system was designed for recording sleep, it could be used for other 

neuroscience applications. Behavioral tasks such as mazes, novel object recognition, and fear 

conditioning that require freely moving animals, might also benefit from the use of ONEIROS. 

Moreover, the device might be useful in studies using animal models of epilepsy wherein long-

term recordings are needed to capture seizure related brain activity and behaviors. 
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(2) Sleep deprivation with ONEIROS 

For the first time a vibration motor integrated in a wireless recording device has been used 

to perform automated, real-time PS deprivation. Our results indicated that the stimulation was 

intense enough to awaken the animal and thereby induce sleep deprivation. The system effectively 

reduced PS across a 6-hour period, and induced a homeostatic increase in PS following 

deprivation similar to that observed using other methods, such as gentle handling and shaking 

the floor of the animal’s cage. However, the remaining quantity of PS during PSD was a bit higher 

compared to the other methods, likely because the stimulation was less intense compared to 

gentle stimulation or cage shaking. This also suggests that it might be difficult to awaken the 

animal with the device and settings used during longer term sleep deprivations. Possible solutions 

to this problem would be either to increase the duration of the stimulations (700ms in our 

experiments) or randomized the pattern of the stimulations. Another possibility would be to 

encapsulate the vibrating motor inside the dental cement, directly over the head of the animal.  

(3) Evaluation of the arousal thresholds with ONEIROS 

In addition to the main parameters that characterized sleep (electrophysiology, posture, 

temperature), including its homeostatic regulation, arousal threshold is also an important feature 

of sleep. With ONEIROS, the intensity, occurrence, and duration of the vibrating motor 

stimulation can also be specified, allowing for the systematic assessment of arousal thresholds. 

(4) Recording sleep in semi natural environment with ONEIROS 

By changing the wireless transmission stack to the logger stack, the device can be quickly 

transformed from a lab-based device to a logger suitable for recording sleep in the field. In this 

regard, ONEIROS does not need any additional systems to store the data (receiver, computer), 

as the signals are stored directly on an integrated SD card. In the logger configuration, sleep can 

be recorded in wild using methods previously employed with data loggers having fewer 

capabilities (Rattenborg et al., 2016). To demonstrate the feasibility of recording sleep in the field, 

we implanted a pigeon and recorded its vigilance states in an aviary where other birds were also 

housed. The instrumented bird displayed normal behavior including short flights in the 2 x 2 x 

2 m aviary. Thus the system could be used in a completely natural environment, as previously 

done with a logger with fewer recording capabilities (Vyssotski et al., 2009; Lesku et al., 2012; 

Rattenborg et al., 2016). In comparison to this system, ONEIROS includes the capacity to record 

temperature, a useful parameter for evaluating the relationship between ambient temperature, 
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body temperature, and sleep (SWS and PS) and hibernation or torpor under natural conditions. 

In addition, it can record more channels, which is necessary when recording sleep in a species for 

the first time. ONEIROS provides more sleep parameters combined in a single miniature device 

than other devices used for recording into the wild. Future improvements of ONEIROS will 

include a recording scheduler, in order to define specific recording periods. For example, this 

could be used to exclude the post-operative recovery period, and thereby extend the recording 

duration capability of the device. Moreover, we plan to develop waterproofing and other 

protections necessary for recording in the wild. 

 

 CONCLUSION 

ONEIROS was developed to record multiple aspects of sleep (behavior, electrophysiology, 

metabolism) from animals in the lab and the wild. The goal was to provide researchers with a 

tool that overcomes the limitations of existing wireless devices. The system provides high 

flexibility in terms of number of channels and sampling rate with low power consumption, 

allowing long-term recordings in small animals (from 100g). By wirelessly recording a rat under 

baseline conditions, performing a paradoxical sleep deprivation experiment in a rat, and logging 

data under semi-natural conditions in a pigeon, we demonstrated that ONEIROS is a useful tool 

for recording sleep under diverse conditions. For the first time EEG, EMG, EOG, ECG, LFPs, 

3D acceleration, brain, body and ambient temperature recording, as well as homeostatic and 

arousal threshold experiments, can be conducted with the same system in the lab and in the wild 

on small animals. By facilitating comprehensive comparative and ecological studies of sleep, this 

device may lead to new perspectives regarding the evolution and functions of sleep.  

  



95 

 

 

PART III : COMPARATIVE ANALYSIS OF 
SLEEP IN TWO SQUAMATES 

 

Partial homologies between sleep states in lizards, mammals, and birds suggest a 

complex evolution of sleep states in amniotes. 
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ABSTRACT 

It is crucial to determine whether Rapid Eye Movement sleep (REM) and Slow Wave Sleep 

(SWS) (or Non-REM sleep), identified in most mammals and birds, also exist in lizards, as they 

share a common ancestor with these groups. Recently, a study in the bearded dragon (Pogona 

vitticeps) reported states analogous to REM and SWS alternating in a surprisingly regular 80-

second period, suggesting a common origin of the two sleep states across amniotes. We first 

confirmed these results in the bearded dragon with deep brain recordings and EOG recordings. 

Then, to confirm a common origin and more finely characterize sleep in lizards, we developed a 

multiparametric approach in the tegu lizard, a species never recorded to date. We recorded EOG, 

EMG, heart rate, and local field potentials and included data on arousal thresholds, sleep 

deprivation, and pharmacological treatments with fluoxetine, a serotonin reuptake blocker that 

suppresses REM sleep in mammals. As in the bearded dragon, we demonstrate the existence of 

two sleep states in tegu lizards. However, no clear periodicity is apparent. The first sleep state 

showed high amplitude isolated sharp waves (S1 sleep) and the second sleep state (S2 sleep) 

displayed 15 Hz oscillations, isolated ocular movements, and a decrease in heart rate variability 

and muscle tone compared to S1. Fluoxetine treatment induced a significant decrease in S2 

quantities and in the number of sharp waves in S1. Because S2 sleep is characterized by the 

presence of ocular movements and is inhibited by a serotonin reuptake inhibitor, as is REM sleep 

in birds and mammals, it might be analogous to this state. However, S2 displays a type of 

oscillation never previously reported and does not display a desynchronized EEG as is observed 

in the bearded dragons, mammals, and birds. This suggests that the phenotype of sleep states and 

possibly their role can differ, even between closely related species. Finally, our results suggest a 

common origin of two sleep states in amniotes. Yet, they also highlight a diversity of sleep 

phenotypes across lizards demonstrating that the evolution of sleep states is more complex than 

previously thought. 

Keywords: Sleep, Lizards, Active Sleep, Quiet Sleep, Slow Wave sleep, REM sleep, evolution, 

reptiles   
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 INTRODUCTION 

(1) Behavioral sleep

Based on the 1913 behavioural definition (Piéron, 1913), sleep is characterized by sustained 

immobility, a species-specific sleep posture and location, and a high arousal threshold. In 

addition, it displays a circadian distribution and is homeostatically regulated. Based on these 

criteria, it has been shown that sleep occurs in all animals, from the simplest organism to the 

most complex ones (Campbell & Tobler, 1984; Cirelli & Tononi, 2008; Siegel, 2008; Nath et 

al., 2017). Such ubiquity of sleep indicates that it constitutes a fundamental need for all living 

organisms. 

 

(2) Two sleep states in mammals and birds   

In the 50’s, two distinct sleep states were described in humans and cats (Aserinsky & 

Kleitman, 1953; Jouvet et al., 1959). The first sleep state is slow-wave sleep (SWS) also known as 

non-REM sleep or quiet sleep. This state is characterized in mammals by the occurrence of cortical 

high amplitude slow delta waves (0.5–4Hz) (Steriade, 2006), hippocampal sharp wave ripple 

complexes (Girardeau et al., 2009; Buzsáki, 2015), and spindle oscillations (Berger, 1929; De 

Gennaro & Ferrara, 2003). During SWS, physiological processes are reduced, including heart 

rate, body temperature, eye movements, and muscle tone. In sharp contrast, the active sleep state 

named rapid eye movement (REM) or paradoxical sleep (Jouvet et al., 1959), commonly associated 

with dreaming in humans, is characterized by rapid eye movements and cortical 

desynchronization like the awake state, but without muscle tone (Aserinsky & Kleitman, 1953; 

Jouvet et al., 1959). REM sleep and SWS are also characterized by a high arousal threshold. 

During REM sleep, in contrast to SWS, thermoregulation processes including shivering, 

piloerection, and sweating are abolished (Parmeggiani, 2003), brain temperature increases and 

the heart and breathing rates become irregular (Snyder et al., 1964). Finally, toe, tail, limb, and 

whisker movements occur phasically (muscle twitches) during REM sleep (Gassel et al., 1964). 

SWS and REM sleep have been unequivocally identified to date only in terrestrial mammals and 

birds (Campbell & Tobler, 1984) (Fig 1A). Since these species are homeotherms, it has often 

been proposed that the two sleep states evolved together with homeothermia (Kavanau, 2002). 

However, the poikilothermic non-avian reptiles, including lizards and snakes, turtles, and 

crocodiles share a common ancestor with mammals and birds. Squamates (lizards and snakes) are 
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the group that shares the most ancestral features with the common ancestor of birds and non-

avian reptiles (Fig 1A). Therefore, to retrace the evolution of the two sleep states studying species 

in this group is essential. 

 

(3) Sleep in squamates (lizards and snakes) 

Despite its importance in understanding the evolutionary origins of these sleep states, less 

than 40 studies, mostly from the 70’s, have been devoted to the study of sleep in non-avian reptiles 

(Campbell & Tobler, 1984; Hartse, Kristyna M., 1994; Libourel & Herrel, 2016). Of them, 16 

were dedicated to squamates with only seven articles including more than three recorded animals 

(Tauber et al., 1968; Flanigan, 1973; Romo et al., 1978; Huntley, 1987; Ayala-Guerrero & Vargas 

Reyna, 1987; Ayala-Guerrero & Mexicano, 2008b; Shein-Idelson et al., 2016). In addition, these 

studies were performed in only six species, all belonging to the infra-order Iguania. They revealed 

that this lizard family displays behavioural sleep during the night, including a specific posture 

and, when examined, a high arousal threshold and a homeostatic response to sleep deprivation. 

The sleep period was often described as one large bout during the night. During the day, periods 

of activity intersected long phases of quiet wake. Sleep was also reported to be associated with a 

decrease of the heart and respiratory rates. Regarding the presence of one or multiple sleep states 

in lizards, the existence of a REM-like sleep state was already suggested in 1966 (Tauber et al., 

1968), mainly based on the presence of eye movements during sleep periods. However, these 

older studies failed to convince and no consensus was obtained because of limitations in 

methodology, recording conditions, and the absence of replication (Libourel & Herrel, 2016). 

However, in 2016 Shein-Idelson et al. provided convincing evidence for the existence of two 

electrophysiological sleep states (Shein-Idelson et al., 2016) in a species never previously recorded 

for this purpose, the bearded dragon (Pogona vitticeps). The authors observed, specifically during 

the night when the animal was lying on the floor of the cage with its eyes closed, a very regular 

alternation of periods characterized by the occurrence of “slow waves” and periods characterized 

by LFP desynchronization, similar to those observed during the awake state, and associated with 

isolated eye movements. The authors concluded that both SWS and REM sleep exist in this 

species with a very rhythmic periodicity. However, such a periodicity, as regular as a clockwork, 

is quite surprising and was never before reported in neither other non-avian reptiles nor in 

mammals and birds. Moreover, muscle tone, motor automatism, heart rate, and arousal threshold 

evaluation were missing to unequivocally demonstrated that the state identified as REM sleep did 



99 

 

not correspond to short periods of awakening known to be also characterized by desynchronized 

EEG and eye movements.  

Therefore, we decided to replicate the experiments of Shein Idelson and colleagues (2016) 

and to compare these data with data for another species of lizard from a different family to test 

the generality of these findings. We replicated data on one bearded dragon (Pogona vitticeps) (Fig 

1B) and developed a mutliparametric approach to examine sleep in the argentine tegu lizard, 

Salvator merianae (Fig 1B). We chose this species as it belongs to the Lacertoidea family for which 

sleep has never been recorded with the exception of three papers focusing on circadian rhythms 

(Milsom et al., 2008; Piercy et al., 2015; Sanders et al., 2015). Furthermore, this predatory species 

displays an active foraging life style, an omnivorous diet, and high cognitive abilities with one of 

the highest encephalization quotients across squamates (Platel, 1975). Consequently, it may have 

larger quantities of sleep and more specifically REM sleep than other lizards (Lesku et al., 2006). 

Six sub-adult Argentine Tegus (Salvator merianae) were studied. We recorded LFPs by means of 

35μm diameter tungsten electrodes implanted at different depths in four forebrain regions. We 

simultaneously recorded the nuchal EMG, EOG, and the ECG using a wireless system. All the 

animals were video monitored for 24 hours a day with four near infra-red cameras. As brain LFP 

amplitudes and frequencies covary with temperature (Deboer, 1998), we performed all the 

experiments at a constant temperature. Therefore, baseline conditions, the arousal threshold, 

and the effect of nine hours of sleep deprivation by means of gentle handling were recorded at 

28°C (body temperature). Finally, systemic injections of fluoxetine, a serotonin reuptake inhibitor 

known to suppress REM sleep in mammals (Slater, Jones, & Moore, 1978; Gao, Duncan, & 

Wehr, 1992), were performed at two different concentrations 

 

 MATERIALS AND METHODS 

(1) Animals 

We report data on one bearded dragon (Pogona vitticeps), six Argentine Tegus (Salvator 

merianae), five males and one female (#2), with an age of two years (+/-0.5), 3 +/- 0.7 kg. All tegus 

were bought from official breeders and were maintained individually in a 4 meters square area 

(2m x 2m). The bearded dragon was maintained and recorded in a smaller terrarium (90cm 

length, 50cm width, 40cm high). The tegus were fed with dead mice two to three times a week 

and the bearded dragon was fed with crickets and vegetables twice weekly. Water was provided 
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ad libitum. Prior to experiments, animals were maintained under a 12:12 light/dark cycle in a 

room maintained at 25°C with a hot spot at 45°C available between 11am and 6pm. Six infra-

red (850nm) panels (Viewpoint SA) were always on. A shelter transparent to infra-red wavelengths 

was used to monitor the animals during the dark phase. All the experiments were conducted in 

a room at 25°C after at least two days of habituation. A custom floor heating regulated at 30°C 

was used for the tegu. The nuchal temperature was measured for one animal of each species 

thanks to micro thermistor implanted in the nuchal muscles. The nuchal temperature measured 

on one animal was around 28°C for the tegu and 25°C for the bearded dragon. 

(2) Ethical considerations 

All experiments were conducted with the 3R principles in animal experimentation and in 

accordance to the European Community Council Directive for the use of research animals 

(86/609/EEC; http://ec.europa.eu/food/fs/aw/aw_legislation/scientific/86-609-eec_en.pdf 

and 2016/63/EU; 

http://ec.europa.eu/environment/chemicals/lab_animals/pdf/endorsed_awb-nc.pdf). 

Protocols and procedures used were approved by the local ethics committee for animal 

experimentation of the university Lyon 1 (N° BH2012-43). 

(3) Imaging and verification of the electrode position 

Prior to the surgery two 100μm diameter holes were drilled under anesthesia (cf. surgery part) 

in the anterior and posterior part of the parietal bone. These holes served as references during 

the surgery. MRI imaging was carried out on a 3T GEHC MR750 System using a 8-channel wrist 

coil. The head of the lizard was placed at the center of the coil. After a three plane localizer, two 

3D high spatial resolution MR imaging (HR-MRI) acquisition sequences were performed in the 

coronal plane. For both HR-MRI acquisitions, similar parameters were used: 59.2 mm slab 

thickness with 100 × 80 mm2 Field Of View (FOV), 148 x 448 × 384 acquisition matrix size, 592 

x 1024 x 768 reconstruction matrix leading to a slice thickness of 100um with an in-plane pixel 

of 97 × 97 μm2. First, a T1-weighted FSGGR sequence with 30° flip angle, 29.4 ms TR, 10.1 ms 

TE, +-7.8kHz receiver bandwidth with 22’15’’ scan time. Second, a FIESTA-C sequence with 70° 

flip angle, 10.8 ms TR, 3.6 ms TE, +-41.7kHz receiver bandwidth with 12’45’’ scan time. A few 

days later, a CT Scan was performed to image the skull. The experiments were done on a NVEON 

system (Siemens), with a tension of 80kV, a current of 500μA, and an exposure time of 900ms 

with 720 steps. The reconstruction of the final volume permits to obtain a voxel size of 55,62 
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μm3 in the three dimensions. The two modalities (MRI and CT Scan) were realigned by choosing 

at least 10 common landmarks and using a principal component analysis method for realignment 

(Avizo v7.0.1). Next, landmarks were put on the MRI slices at the targeted electrode positions. A 

custom script (Matlab r2016b, Mathworks, USA) was used to transform the targeted landmarks 

into the reference frame defined by the holes drilled on the skull. The coordinates obtained were 

those used for the surgery. This procedure was used for all animals of both species. One week 

after the surgery, a second CT scan was performed in order to check the electrode positions by 

realigning the last CT scan to the two pre-surgical images.  

(4) Perfusion 

Under surgical anesthesia (cf. surgery), after an electrocoagulation lesioning (2s 0.5mA), 

animals were perfused transcardially (Hoops, 2015) with a 400ml-Ringer-Lactate solution (Braun 

Medical, France)  followed by a 2000ml-4% paraformaldehyde fixative solution, with a perfusion 

pump (Gilson, France) set at a 55ml/min rate. Brains were removed and post-fixed for 2 days at 

4°C in the same solution. Brains were included in paraffin (LEICA ASP300, Germany) and 

mounted (Myr EC 350-2, Spain), and 7μm slices were cut with a microtome (Leica RM2245, 

Germany) for histochemistry processing. One slice every seven was kept. 

(5) Nissl staining 

The Nissl staining was done for the bearded dragon and tegu #2, #3, #4, #5, #6. The paraffin 

was removed from each slice with two 4 minute baths of methylcylohexane, then two 4-minute 

baths of 100% alcohol, followed by a 4-minute bath of water. The Nissl stain was performed by 

putting the slices successively into the following baths: 2 minutes of water, 4 minutes of Cresyl 

Violet acetate (1g/L) (Sigma Aldrich, USA), 1 minute of alcohol 75%, 30 seconds of alcohol 

95%, 15 minutes of alcohol 15%, 5 seconds of alcohol 100%, 5 seconds of alcohol 100%, 2 

minutes of OTTIX (MM France, France). Then slices were digitalized (Zeiss Axioscan Z1, 

Germany) with a 5X Fluar (ON 0.25) lens. 

(6) Surgery 

The animals were anaesthetized with a mixture of ketamine (66 to 100 mg/Kg) and 

medetomidine (100 to 200μg/kg) at 19°C injected intramuscularly and equally distributed in the 

four limbs (Barrillot et al., 2018). After every 6 hours, re-injections of half the previous dose were 

performed. Reflexes and respiratory rate were checked throughout the surgery. During tegu’s 
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surgery, two stainless steel electrodes were inserted bilaterally in the intercostal muscles for 

measuring heart rate, two others were also implanted in the neck muscles to assess muscle tone. 

For the tegus and the bearded dragon, two other electrodes, gold plated at the tip, were positioned 

behind each eye, under the eyelid, to record eye movements. The tegus were also implanted with 

three to four bundles of six 35μm diameter tungsten electrodes in different brain regions (dorsal 

ventricular ridge, nucleus sphericus, rostral medial cortex and/or caudal medial cortex). Only the 

DVR was implanted with this kind of bundle during the bearded dragon surgery. One screw was 

fixed on the skull between the two eyes for signal referencing for the tegu. The reference was 

inserted on the most caudal part of the parietal bone for the bearded dragon. To do so, lizards 

were placed in an adapted stereotactic frame. All wires were then connected to a head connector 

(EIB-36-PTB Neuralynx), which was secured over the skull using acrylic Superbond (Sun Medical 

Co.). Next, dental Paladur cement (Heraeus Kuzler) was applied around the head connector to 

protect all the wires and the connector. 

(7) Behavior 

The behavior of the animal was monitored with 4 cameras (Dragonfly2 DR2-HIBW, 

PointGrey) equipped with a band pass filter in the near infra-red wavelength. One camera was 

recording the full area, and the three others were dedicated to the animal shelter. The videos 

were recorded 24h a day (VPCore2, Viewpoint), and the actimetry which is the number of pixels 

changing more than 14 grey levels between two successive images, was evaluated online for each 

camera.  

(8) Arousal threshold 

The arousal threshold was evaluated for the argentine tegus. A micro rotor was fixed over 

the head of the animal for at least 4 days. The micro rotor was programmed with a custom device 

to rotate at the maximum power for 5 seconds every hour to avoid any habituation. When the 

rotor was activated a LED light was on. Using the 4 videos, any sign of awakening (like an eye 

opening, a leg or head movement) after a stimulation was recorded, as well as the latency thereof. 

The percentage of awakening after stimulation was evaluated for each hour for each animal. The 

mean percentage was then calculated for 5 animals (Fig 2A). 
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(9) In vivo electrophysiology 

For the tegus, the electrophysiological signals from at least 22 tungsten electrodes into the 

brain, 2 ECG, 2 EMG, 2 EOG, and in some animals a screw EEG, were recorded wirelessly (TBSI 

W32). A custom battery (3000mAh) for recording at least four days without changing the battery 

was used and fixed over the back of the animal with tape. The amplification of the system was 

1000 times. The digitalization was performed using a DAQ card (National Instruments USB 

6363) with a custom script (Matlab r2016b, Mathworks, USA). The data were sampled first at 20 

kHz, low pass filtered at 500 Hz and sub-sampled at 2 kHz online. The videos were synchronized 

with an output TTL to trig the start and the stop of each video. For the bearded dragon, the DVR 

LFP was recorded with 8 tungsten electrodes at different depth (-4 to -2 mm below the skull, at 

1.28mm caudal to the anterior part of the pineal hole and 1.94 mm lateral). 2 EOG were also 

recorded. The signals were recorded thanks to a custom wireless recording device at 128Hz and 

to a custom matlab script. 

(10) Sleep deprivation 

The sleep deprivation was performed on the argentine tegu by gentle handling without 

changing the light cycle from 7 pm to 4 am. The shelter was removed from the area and when 

the animal displayed a sign of sleep (mostly closing the eyes), the experimenter woke up the 

animal by pulling a rope attached to the animal’s tail. After deprivation, the animal was left for 

at least 24h without any human intervention. The sleep deprivation was performed on 4 animals 

and the recordings started during the baseline and ended at least 24h after the recovery. 

(11) Pharmacology 

Twelve ml of Fluoxetine (10, and 60 mg/kg - Interchim, France) or saline (vehicle) solutions 

were randomly injected intraperitoneally at 4 pm in the tegus. Animals were recorded during at 

least 48h after injections. Each injection was spaced at least 2 days apart for NaCl and 3 days after 

the Fluoxetine injections. 

(12) Preprocessing, visualization, and “shelter scoring” 

All the electrophysiological signals of the tegus were filtered with a zero phase-shift low pass 

filter (cut off frequency 100 Hz order 2) and sub-sampled at 250 Hz before any other treatments. 

Next, the electrophysiological signals, the actimetry and the video were imported into a custom 

software program (SlipAnalysis, developed under Matlab r2016b, Mathworks, USA). An empty 
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hypnogram was then created. The hypnogram was then manually filled per 5 seconds from the 

video with two states: animal inside the shelter or animal outside the shelter. All the analyses 

performed were also done with custom scripts (Matlab r2016b, Mathworks). 

(13) Automated vigilance states scoring 

For the argentine tegus, differential EOG calculated from the subtraction between the two 

EOGs was filtered with a low pass filter (Fc 10Hz, order 10). Then, the maximal value of the 

redressed signal was evaluated every second. Every eye movement occurrence and duration was 

extracted by taking any part of the signal higher than 30μV. Next, every epoch of the hypnogram 

during which the interval between eye movements was higher than 30s was scored as sleep. The 

other epochs were considered as quiet wake. The episodes of sleep spaced by less than two 

minutes were merged, and those lasting less than two minutes were removed. A differential EMG 

calculated from the subtraction between two EMGs was filtered with a high pass filter (Fc 10Hz, 

order 10) and the absolute value of the Hilbert transform was calculated. An average filter with a 

0.5 second window was applied and the mean value was evaluated for every one second bout. 

AW was scored when the processed EMG value was above 20μV. Every episode lasting less than 

5 seconds was ignored and episodes spaced by less than five seconds were merged (Fig 2D and 

Fig. S1). For the baseline experiments, the episodes scored as sleep in the automated hypnograms 

were compared with the “shelter scoring” (table S1). A mean correct rate of 0.873 was obtained 

on the six animals, with a mean sensitivity of 0.911 and a mean specificity of 0.874. 

(14) Electrode selection 

At least 22 electrodes were implanted in three to four regions in each tegu. In order to 

remove electrodes that were likely in the cerebrospinal fluid (CSF) we computed the mean power 

spectrum density (MPSD) into the 0.5–45 Hz band. For all animals, based on the imaging (MRI 

and post-surgery CT scan) we labeled the electrodes that were in the CSF, and those into the 

brain. A threshold was obtained by computing the mean plus one standard deviation from all 

MPSD of the CSF electrodes. Every electrode with MPSD below the threshold was removed from 

the analyses and considered as being into the CSF (Fig S2). In order to choose the best electrode 

to extract the S2 states, we computed the mean power spectrum density during the episodes 

scored as sleep. An interpolated spectrum was computed by removing the 10–20 Hz and keeping 

the value in 5–10 Hz and 20–25 Hz (Fig S3A–F). A spline interpolation was used to evaluate this 

interpolated spectrum. By this means, an electrode was chosen per animal by taking the electrode 
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with the maximal ratio between the interpolated and the real spectrum into the 10–20 Hz band. 

Animal two was removed from the S2 and HShW analysis because none of its electrodes had a 

ratio higher than 0.5%. As only the DVR was recorded, we choose the electrode with the highest 

amplitude for the Bearded dragon. 

(15) Clustering and S2 extraction 

We used the methodology of Shein Idelson et al. (Shein-Idelson et al., 2016). From the 

baseline experiments, between 9 pm and 2 am, the signal of the chosen electrode was whitened 

with an autoregressive algorithm. A multi-taper power spectrum between 0.5 and 30 Hz was 

computed for each 3-seconds epoch scored as sleep (windows 3 seconds, bandwidth 1 Hz, 5 

tapers, (Bokil et al., 2010)). Each power spectrum was normalized by the mean power spectrum. 

A correlation matrix of these power spectra was calculated. Then, a hierarchical clustering with 

two clusters was realized, based on an Euclidian distance of the correlation and using a Ward 

linkage (Fig 1D, 4C). A mean normalized power spectrum per animal was then calculated for 

each cluster (Fig 1D, 4D). For the figure 1, in the bearded dragon and in the tegu we used the 

ratio used by Shein Idelson et al. (δ/ β, [0.5–4Hz] / [11–30Hz]). But regarding our detail analysis 

on tegus, in order to extract the band power ratio that maximize the cluster detection, we detected 

the peak of each power spectrum of the state the maximum power into the 10–20 Hz band and 

the crossing frequency between the two normalized power spectra. Based on the means of these 

values, we defined the S2 detection Ratio (S2R), which is the mean power of the 10–22 Hz band 

divided by the sum of the 4–10 Hz and the 22–28 Hz band (S2R= [10–22 Hz] / ([4–10 Hz] + [22–

28 Hz]) ). This ratio was calculated for the 24h baseline of each animal on the chosen whitened 

electrode. A threshold was defined as the mean plus one standard deviation (Fig 3E). Every part 

of the signal above that threshold was considered as S2. If the S2 episodes were separated by less 

than two seconds, they were merged and the episodes lasting less than one second were removed. 

The auto correlation of the Figure 1E and 1F was computed as described in Shein-Idelson et al. 

(16) Physiological measurements 

The heart rate was extracted from the ECG electrode previously filtered with a high pass 

filter (Fc 10 Hz, order 10). A peak detection was made (threshold 100μV, min interval between 

peak 0.7 seconds). The instantaneous heart rate was then computed by measuring the interval 

between peaks. The muscle tone was extracted from differential EMG filtered with a high pass 

filter (Fc 10 Hz, order 10). The muscle tone is the absolute value of the Hilbert transform of the 
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signal was filtered with a mean filter (windows 0.5s). The eye movement density was calculated 

from the EOG channels. The signal was filtered with a low pass filter (Fc 10 Hz, order 10). Each 

part of the signal above 30μV was considered as an eye movement. The density of eye movements 

corresponds to the number of eye movements occurring per minutes per state. The figure 1F 

representing the phase histogram of the eye movements of the bearded dragon, was obtain by 

detecting the δ and β periods. The δ/β ratio was evaluated. Each δ periods were extracted when 

the ratio was higher than his average and β periods when the ratio was lower the average. Each 

cycle of δ- β periods were normalized between 0 and 2pi. Then the distribution of the occurrence 

of the ocular movements were evaluated relatively to this cycle.  

(17) Sharp Wave extraction 

For the tegus, the high amplitude sharp waves (HShWs) extraction was performed on all 

channels that were not considered as being in the CSF. The HShWs detection algorithm was 

adapted from the spike detection algorithm described by Quiroga et al. (Quiroga, Nadasdy, & 

Ben-Shaul, 2004). The HShWs were detected without any filter applied to the data. The threshold 

used was 10 times the signal to noise ratio, 50ms before and after the peak of the HShW was 

used for the waveform averaging. The channels kept for the analysis (baseline, sleep deprivation, 

and pharmacology) were the channels with the cleanest mean waveforms. The HShWs density 

was evaluated by dividing the number of HShWs during a state by the duration of that state. 

(18) Statistics 

All the statistics were performed using Matlab (Mathworks, USA). Wilcoxon signed-rank 

tests were used for single comparisons between mean parameters per state (Fig 1B, 1C, 1D, 3I, 

5B, 5C). For multiple conditions with balanced designs, an analysis of variance with two factors 

(ANOVA2) was used followed by post-hoc analysis using Fisher’s least significant difference 

procedure (Fig 3F, 3H, 4D, 4E, 4F, 5E, 5F, 5G, 5H). For unbalanced designs, Kruskal-Wallis tests 

were performed and followed by post-hoc analysis using Fisher’s least significant difference 

procedure. For the ANOVA2, the normality of the data was tested with a Lilliefors test. When 

data were not normal, a Gaussian normalization centered on 0 with a variability of 0.2 was applied 

before any statistical test. The homoscedasticity was verified when needed using a Bartlett’s test. 

A difference was considered significant if the p-value was lower than 0.05 (* for a P<0.05, ** for 

P<0.001, *** for P<0.0001). All data are expressed as mean ± standard error of the mean.  
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 RESULTS 

(1) Replication of the bearded dragon sleep experiments.

The signals obtained from tungsten electrodes implanted in the dorso-ventricular ridge 

(DVR) of a bearded dragon, a forebrain structure proposed to be homologous to the mammalian 

isocortex, the amygdala, and/or the claustral complex (Bruce & Neary, 1995; Aboitiz, 1999; 

Butler, Reiner, & Karten, 2011; Tosches et al., 2018) revealed different patterns across vigilance 

states (Fig 1C). During the dark period, the bearded dragon displays a stereotypical posture, with 

the head lying on the floor in a specific location of the terrarium. This posture was never seen 

during the light period as the animal always had its head up from the floor. During this period, 

two electrophysiological phases with distinct frequency content coexisted (Fig 1C, 1D). The first 

electrophysiological sleep state, rich in δ (0.5–4Hz) frequencies, was characterized by a signal 

containing 1 to 2 slow negative high amplitude sharp waves (HShW) per second, lasting around 

100–200 ms with an amplitude of 500 mV. The second electrophysiological sleep state contained 

frequencies in the β (11-30Hz) band, an oscillatory pattern that looked like the awake one (Fig 

1C). The δ/β  power ratio and the autocorrelation of the signal revealed a very regular alternance 

between periods with δ and periods with β  (Fig E). The periodicity of these cycles was around 90s. 

Finally, the extraction of the occurrences of the eye movements from the EOG showed that the 

second electrophysiological sleep state contained more ocular movements than the first one. Eye 

movements were mainly isolated and appeared mostly at the beginning of sleep state 2 (Fig 1F). 

Our results obtained for one animal confirm the results reported by Shein-Idelson and coworkers. 

However, the same recordings and analysis performed on the argentine tegu revealed different 

electrophysiological patterns (Fig 1C). Indeed, even if two electrophysiological sleep states could 

be detected during the night resting phase (Fig 1D), the first sleep state did not contain slow 

negative high amplitude sharp waves as observed in the bearded dragon, and the second sleep 

state differed from the awake activity as an oscillation around 15Hz dominates this phase. Finally, 

the autocorrelation analysis suggested no periodicity of the δ/β  power ratio (Fig 1G). As the same 

protocol was performed on these two lizard species and as it revealed such different results we 

decided to characterize sleep in greater detail in the argentine tegu and developed a 

mutliparameter approach as described below. 
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Fig. 1.  The tegu lizard does not sleep like a bearded dragon. (A) Phylogenetic tree of amniotes 
representing the common origin of mammals, birds, and non-avian reptiles. The figure also illustrates 
that both REM sleep and SWS have been identified in mammals and birds, and more recently possibly 
also in a lizard, the bearded dragon (Pogona vitticeps). We investigated sleep in the argentine tegu 
(Salvator merianae) to determine whether the bearded dragon is the only lizard to display those two sleep 
states. (B) Pictures of the two species recorded. The animals were equipped with a recording device on 
their head. (C) Raw signal of one local field potential recorded in the dorso-ventricular ridge (DVR) with 
35μm diameter tungsten electrode in the two species, during sleep state 1 (sharing similarities with 
mammalian SWS) in bluish, sleep state 2 (sharing similarities with mammalian REM sleep) in red, 
quiet wake in light blue, and active wake in dark blue. The raw data illustrate the difference in all states 
of the DVR local field potential. (D) Dendrogram (left) and correlation map (right) obtained from the 
hierarchical clustering of the distance between the correlation of each LFP three second-window power 
spectrum between 9pm and 2am in both species. On the right of each correlation map, the normalized 
mean power spectra of the two clusters computed for one animal in each species, representing the two 
distinct sleep states identified, Sleep state 1 (S1) in bluish and Sleep state 2 (S2) in red. The comparison 
of the normalized power spectra of each state reveals a frequency profile that is clearly different between 
the two species, with a desynchronized activity (composed of all the frequencies higher than 5Hz) for the 
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bearded dragon during S2 and a power spectrum mainly composed of 15Hz oscillations for the tegu. (E) 
the band power ratio (δ (0.5–4Hz) / β (11–30Hz)) computed as in Shein-Idelson et al. (Shein-Idelson 
et al., 2016) for the bearded dragon. Each horizontal segment represents 30min of the ratio computed 
with a 10 second window and a step of 0.1 s. The value of the ratio is color coded, from 0 (blue) to 27 
(yellow). The figure from the top to the bottom represents the evolution of the ratio over 24 hours from 
6pm. A dark rectangle indicates the dark period. On the right, the normalized autocorrelation map of 
the ratio is illustrated. The autocorrelation was computed within 600s windows with a step of one 
second. Both figures reveal a rhythmic alternance with a period of around 90s across episodes with δ 
frequencies (yellow) and episodes with β  (blue) during the dark period, were the animal is lying on the 
floor with the eyes closed. (F) the distribution of the eye movements within each δ -β  cycle, the mean 
phase is represented with a black arrow. The red line is the mean δ/β  power ratio across the δ- -β  cycle. 
(G) This is the same figure as (E) for the argentine tegu. The figure reveals no clear cycle in the δ/β  power 
ratio over 24 hours. 

 

(2) Behavioral sleep in the tegu is characterized by a decrease in the number of eye 

movements and a higher arousal threshold. 

During the light period, the tegus remained outside of their shelter and displayed short 

periods of active behavior, with head movements, locomotion, drinking, and feeding intersected 

by periods of immobility (Quiet Wake, QW) where animals were lying on the floor, eyes closed, 

head down with the four limbs spread apart. We observed that all animals entered their shelter 

one hour (19h11±27min) before the onset of darkness (Fig 2A). Next, they curled up and kept 

their eyes closed and stayed in their shelter until 2h after light onset (10h10±23min). During this 

phase, repositioning and movements of the head, limbs, toes, or whole body rarely occurred and 

the eyes remained mostly closed. We also observed rare tongue flicking with the head slightly up 

and the eyes closed.  

To objectively demonstrate that the animals were sleeping we then measured for each hour 

the percentage of stimulations that induces an arousal and the associated number of eye 

movements and the heart rate. Between 6pm and 10am, the percentage of time spent in the 

shelter was significantly higher than between 10am and 6pm, while the number of stimuli that 

induced an awakening was significantly lower (P<0.01). In addition, the number of eye 

movements and the heart rate tended to decrease during the night (P=0.0556) (Fig 2A, 2C, 2D). 

In line with the behavioral definition of sleep, these results strongly suggest that the animals are 

awake between 10am and 6pm and are sleeping between 6pm and 10am. We then developed a 

custom script based on the number of eye movements (Fig 2F) and the muscle activity (Fig S1) to 

automatically score sleep (S), quiet wake (QW) and active wake (AW) (Fig 2E). We compared the 
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periods of time spent in the shelter with sleep periods scored with our algorithm and obtained 

87 % of correct assignments, a sensitivity of 0.91, and a specificity of 0.87 (table S1). Using such 

automatic scoring, we measured the percentage of time spent in each state over 24h: 6.4 ± 1% 

(AW), 29 ± 2% (QW) and 64.6 ± 2% (S) with a mean bout duration of 0.5 ± 0.1min (AW), 2.6 

± 0.2min (QW) and 18.3 ± 1.6min (S). 

 

Fig. 2.  Behavioral sleep and automated scoring in the Argentine Tegu (Salvator merianae). 
(A) The gray zone between 8PM and 8AM represents the dark phase. Representation over 24h of the 
time spent inside (black bars) the shelter for each of the five animals recorded (top); mean± SEM (line 
and gray zone) percentage of awakenings induced by a sensory stimulation made every hour (n= 5 
animals); the mean± SEM number of eye movements per hour; the mean± SEM heart rate per hour. 
Choosing a threshold of 50% of awakening induced by the stimulation, we defined wake (in orange) and 
sleep periods (in green). (B) The sleep period significantly matched with the time passed inside the shelter 
(P=0.0079), (C, D) A significant decrease of the number of eye movements per hour (P=0.0159) and 
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tendency of heart rate decrease (P=0.0556) occurred during sleep compared to wake. (E) Positions and 
behavior of an animal during the three behavioral states identified: behavioral sleep (green panel), with 
an animal in its shelter, the body curled up and eyes closed; Quiet wake (orange panel) with and animal 
outside the shelter lying on the floor, eyes often closed, and active wake (blue panel) with an animal 
moving. (F) Graph illustrating the eye movements (maximal value of the EOG for each 1s window 
during 5h). The red line indicates the threshold used to differentiate sleep (green) from wake (orange). 
The graph below represents the average of the absolute value of the EMG for the same period. The red 
line indicates the threshold used to differentiate quiet (orange) and active wake (blue). 

 

(3) Multisite LFPs recordings reveal the occurrence of slower frequencies during 

active wake compared to quiet wake and behavioral sleep. 

Baseline recordings of local field potentials (LFPs) were made during 24h at 30°C in the 

dorso-ventricular ridge (DVR), the rostral (rMC) and caudal medial cortex (cMC), homologous 

to the  mammalian hippocampus (Striedter, 2016), and the nucleus sphericus (NS) a vomeronasal 

region (Ulinski & Kanarek, 1973) caudal to the DVR (Fig 3D, C, E). A 3D reconstruction of the 

coordinates of the brain structures and of the skull was made for each animal using in vivo MRI 

and CT scans (Fig 3A) in order to accurately implant the targeted structures (Fig 3C, D). Bundles 

of 35μm tungsten electrodes (Fig 3B) were implanted in these structures. The electrode positions 

were verified using a post-implantation CT scan merged with the pre-implantation MRI and CT 

scans and post mortem histology (Fig 3C). The bundles consisted of four to eight electrodes 

covering 1500 μm dorso-ventrally (Fig S2). In addition to the LFPs, we also recorded the EMG of 

the deep nuchal muscles, the EOG of both eyes, and the heart rate (Fig 3E). 

During AW, a significantly higher muscle tone (P<0.001), a higher number of eye 

movements (P<0.001) and a higher heart rate (P<0.001) were recorded compared to QW and S. 

In addition, the LFP spectral power during AW was dominated by low frequencies (around 5Hz) 

(Fig 3E, 3F). When comparing QW and S, no significant difference was seen in muscle tone and 

heart rate variability. However, the heart rate significantly decreased during S compared to QW 

(29.4 ± 2.6 vs. 40.32 ± 1.2 bpm, P<0.001). The LFPs in all regions showed a high diversity of 

patterns during all states, and no obvious modifications of the mean power spectrum (Fig 3E, 3F) 

excepting a small peak around 15 Hz during S compared to QW in the DVR and rMC electrodes 

(Fig 3F). A large peak around 20Hz was also clearly visible during all states, primarily in the NS 

(Fig 3F). 
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Fig. 3.  Electrode placement and raw signals. (A) 3D sagittal reconstruction of a lizard skull (in 
yellow) and brain (in red) based on in vivo pre-surgical MRI and CT scans. Electrode bundles (in black) 
were reconstructed from post-surgery CT scans. The electrodes a-d are, respectively, in the dorso-ventricular 
Ridge (DVR), rostral medial cortex (rMC), nucleus sphericus (NS), and caudal medial cortex (cMC). 
(B) Pictures of one of the bundles composed of six tungsten wires of 35μm diameter spaced by 300μm 
vertically. (C) Left and middle: 7μm brain slices, labeled with a Nissl stain. Black arrow illustrates the 
lesions made by the electrodes implanted in the DVR. Right: corresponding electrode bundle 
reconstruction merged with the MRI. (D) Coronal, sagittal and transverse MRI sections of each region 
implanted (in blue). The positions of the bundles of electrodes reconstructed from a CT scan and merged 
with the presurgical MRI are shown in red. (E) Left: top to bottom: hypnogram of a period showing 
active (in blue) and quiet (in orange) wake states; the time frequency spectrogram representation of a 
DVR LFP recording (in blue the low power, in red the high power); the DVR LFP raw trace; the electro-
oculogram (EOG) filtered with a low pass filter at 10Hz; the electromyogram (EMG) filtered with a 
high pass filter at 10Hz; the electrocardiogram (ECG) filtered with a high pass filter at 10Hz. The 
horizontal scale bar represents 10 seconds and the vertical scale bars 200 μV. It shows that active wake 
(AW) is characterized by the predominance of low frequencies in the LFP, the presence of eye movements 
and an increase in muscle activity and heart rate. During quiet wake (QW) and sleep (S) states, the 
spectral composition is quite similar. (F) Mean± SEM, power spectra across animals, computed for each 
state (blue, active wake; orange, quiet waking; green, sleep) and each region. 
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(4) Tegu sleep is composed of two states, differentiated by sharp waves, 15 Hz 

oscillations, and eye movements  

In agreement with the power spectrum analysis, we observed on the raw signal (Fig 4A) as 

well as on the time/frequency representation (Fig 4B) the phasic occurrence during sleep of 

oscillations at a frequency of 15Hz. We first selected for each animal the electrode showing the 

highest power of this 15Hz frequency during sleep using an unsupervised method (Fig S3, S4). 

We then performed a hierarchical clustering of the sleep signals based on the correlations 

between each three second window power spectrum for each animal. This revealed the existence 

of two clusters of sleep (Fig 4C). These two clusters define two electrophysiologically distinct sleep 

periods; S1 periods not showing any predominant oscillation and S2 periods characterized by the 

presence of an oscillation around 15 Hz (Fig 4D). Based on the mean power spectra of S1 and S2 

computed for each animal, we extracted a power ratio (S2R) to automatically detect the periods 

with 15 Hz oscillations (S2R= [10–22Hz] / ([4–10 Hz] + [22–28Hz]) (Fig 4E). Periods displaying 

15 Hz oscillations mostly occurred during sleep (83.4 ± 2%) although some were observed during 

QW (16.4 ± 2 %). They were nearly absent during AW (0.09 ± 0.05%) (Fig 4F). The oscillations 

had a peak frequency of 15.3 ± 0.03 Hz, lasted on average 4.3 ± 0.1sec (but some episodes lasted 

1 to 32 ± 2.3 sec). They occurred 4.6 ± 0.1 times per minute (2229.6 ± 260 bouts over 24 hours) 

without a regular periodicity with an average individual variability of 3.4 oscillations per minute 

ranging between 0.02 and 16. Sleep periods with these oscillations (S2) constituted 17.2 ± 2.3 % 

of the total sleep time. No change in the power and the frequency of the oscillations was detected 

across the night. S2 periods occur preferentially at the beginning (18.9±0.9%) and at the end 

(18.4±2.4%) rather than in the middle (13±1.7%, P=0.0139 and P=0.0287, respectively) of the 

night (Fig 4G, 4H). Further, S2 was associated with a lower heart rate (P=0.0079, mean value; S1: 

28.39 Bpm; S2: 29.15 Bpm, S1-S2: -0.24 Bpm), lower hear rate variability (P=0.0079, mean value; 

S1 2.2 Bpm; S2: 1.79 Bpm; S1-S2: -0.41 Bpm), a small but significant decrease in muscle tone 

(P=0.0079, mean value; S1: 3.92μV; S2: 3.77μV, S1-S2: -0.15μV), and an increase of the number 

of eye movements compared to S1 sleep periods (P=0.0079, mean value; S1: 9.31min-1; S2: 13.13 

min-1; S1-S2: 3.82 min-1) (Fig 4I). Finally, the mean power spectra analysis revealed that the 15 Hz 

oscillations occurring during S2 were present in all regions except the NS (Fig 4J). 
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Fig. 4.  Two electrophysiological sleep states exist in the argentine tegu. (A) from top to bottom: 
the first line shows raw LFP data obtained from an electrode located in the DVR during a S1 sleep 
period in bluish with no preeminent oscillations and a S2 sleep period in red showing 15Hz oscillations. 
The lines below show an enlargement of the areas indicated by a square. The next lines show the 
corresponding muscle activity (EMG), heart rate (ECG) and electrooculogram (EOG). The vertical scale 
bars represent 100μV. (B) time frequency representation of 24 hours of recording of a whitened LFP 
DVR split in four 6-hour periods starting at 2pm (in blue the low power, in red the high power). The 
color bar above each time frequency illustrates the hypnogram obtained with automated scoring (blue for 
active wake, orange for quiet wake, and green for sleep). The phasic occurrence, mainly during sleep, of 
periods with oscillations around 15 Hz is clearly visible. In addition, the increase in low frequencies is 
clearly visible during active wake. (C) Dendrogram (left) and correlation map (right) obtained from the 
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hierarchical clustering of the distance between the correlation of a LFP three second-window power 
spectrum, between 9pm and 2am. (D) Mean power spectra of the two clusters computed for each animal, 
representing the two distinct sleep states identified, Sleep 1 (S1) in bluish and Sleep 2 (S2) in red. The 
black crosses are the frequency peaks of the mean power spectrum during S2 and the black circles the 
crossing between the power spectra of S1 and S2. The mean of these values is used to extract the S2 
detection ratio, S2R= [10–22Hz] / ([4–10 Hz] + [22–28Hz]). (E) Computation of the ratio S2R 
defined in (D) over 24 hours in one animal. The red line is the threshold (the mean + 1 std of S2R) used 
to detect S2 sleep. (F) Percentage of S2 periods automatically detected during the three vigilance states 
showing that S2 occurs mostly during behavioral sleep (N=5, S vs. QW P=0.0201 S vs. AW, P=0.0002, 
AW vs. QW P=0.0099). The grey lines represent the individual values for each animal. (G) Percentage 
of S2 periods per hour for each animal and the corresponding sleep periods above. In red mean percentage 
of S2 ± SEM, across animals per hour during 24h, showing that S2 periods tend to be more numerous 
at the beginning and at the end of the night than in the middle of it. (H) Histograms per 3 hours showing 
that S2 periods occur significantly more at the beginning and at the end of the sleep time (from left to 
right P=0.0139, P=0.0287, n=5). (I) Histograms showing from top to bottom a significant decrease of 
the heart rate variability (P=0.0079, n=5); an increase in the number of eye movements (P=0.0079, 
n=5), and a small decrease in muscle tone computed as the norm of the Hilbert transform (P=0.0079, 
n=5) between S2 (red) and S1 (bluish) for each episode lasting more than two seconds. The heart rate 
variability and the muscle tone are represented relative to the mean muscle tone between S1 and S2 for 
each animal. The grey lines show individual values. (J) Mean ± SEM power spectra across animals for 
each region during S1 (bluish) and S2 (red) showing that the oscillation around 15 Hz characterizing 
S2 (arrows) is present in the DVR as well as in the rostral medial cortex (rMC) and its caudal part 
(cMC). In contrast, the 15 Hz oscillation is not visible in the nucleus sphericus (NS) in which a 20Hz 
oscillation occurs both during S1 and S2. 

(5) High amplitude sharp waves occur specifically during S1 sleep periods  

High amplitude sharp waves (HShWs) were observed on LFPs from all structures (Fig 5A). 

They were extracted automatically from LFP signals using a spike sorter algorithm (Quiroga et al., 

2004) (Fig 5B, 5C). The HShWs displayed a mean amplitude of 635±124 μV and lasted less than 

50ms (Fig 5C). They were significantly more numerous in the middle of the night between 0am 

and 3am (1.1±0.2) than during the first (0.5±0.1) and last three hours of sleep (0.54±0.1) 

(p<0.001) (Fig 5B, 5D). They appeared mostly during S1 periods (72.8%) although some were 

visible during S2 (14.4%) and QW (5%) (Fig 5E, 5F).  
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Fig. 5.  Sharp waves during sleep. (A) LFP raw trace showing a high amplitude sharp wave (HShW) 
at low (horizontal scale bar represents 5s) and high magnification (horizontal scale bar represents 0.5s 
in the square area shown at the bottom) the vertical scale bar represents 400μV. (B) From top to bottom, 
hypnogram during 24 hours, raw traces of a DVR LFP. The grey line corresponds to the threshold used 
to detect the HShWs. Below, a raster plot of the HShWs detected is shown in gray. The number of 
HShWs per minute (in gray) and the percentage of S2 (in red) are shown. They appear to occur in 
antiphase. (C) All and mean waveforms of the HShWs detected by the automatic detection. (D) 
Histograms showing that HShWs occur more in the middle than at the beginning and at the end of the 
night (n=5), from top to bottom P=0.0026, P=0.0006, P=0.0087, P=0.0034, P=0.0007, P=0.0112). 
The grey lines represent individual values. (E) Histograms showing that HShWs occur mainly during S1 
(n=5, QW (in orange) vs. S1 (in bluish); P= 0.0002, QW vs. S2 (in red) P=0.0139, S1 vs. S2 
P=0.0088). (F) Density of HShWs is also higher during S1 (n=5, QW vs. S1 p< 0.0001, QW vs. S2 
P=0.0008, S1 vs. S2 P=0.0047). 

 

(6) Sleep deprivation and an antidepressant suppressed high amplitude sharp 

waves and 15Hz oscillations. 

To determine whether sleep homeostasis is present in lizards, a 9 hour gentle handling sleep 

deprivation was performed between 7 pm and 4 am (Fig 6A). During this sleep deprivation the 

sleep quantities (S1+S2) were reduced significantly by 84.7 ± 4.8 % compared to baseline 

conditions (Fig 6A, 6C) (P=0.0006 for S1 and P=0.0012 for S2). During sleep deprivation, the 

number of HShWs significantly decreased (Fig 6D, 6E) (P=0.0216)). After sleep deprivation, a 

significant increase of sleep (Fig 6B, increase of behavioral sleep: 8.96 ± 2.18 %) occurred during 
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the following 24 hours compared to the baseline (P=0.0302). The recovery of sleep was only 

significant for S1 (Fig 6B, 6C) (P=0.0245). The density of HShWs during sleep, was significantly 

increased during the 24hours following the sleep deprivation compared to the baseline condition 

(Fig 6F, 6G). 

We then tested the effect of fluoxetine on the occurrence of the 15Hz oscillation periods 

defined as S2 and HShWs to determine whether they showed similarities with mammalian REM 

sleep and hippocampal sharp waves, respectively. Indeed, it has been shown that both REM sleep 

in mammals and birds (Slater et al., 1978; Gao et al., 1992; Fuchs et al., 2006) and in vitro 

hippocampal sharp waves are inhibited by serotonin reuptake inhibitors (ul Haq et al., 2016).  

We injected fluoxetine (Fuller, Wong, & Robertson, 1991; Wong, Bymaster, & Engleman, 1995) 

at two concentrations (10mg/kg and 60mg/kg) and a saline solution as a control (Fig 7). Control 

injection of saline did not induce any effect on the total percentage of sleep, the number of sleep 

episodes or their duration compared to baseline (P>0.05). The lower concentration of fluoxetine 

did not affect the total amount of active wake, quiet wake, and S1 (Fig 7A, 7B) (P>0.05). 

Nevertheless, sleep episodes (S1+S2) were interrupted by short awakenings compared to baseline 

inducing a significant decrease of their mean duration (10mg/kg and 60mg/kg P=0.0366 and 

P=0.0255, respectively) and a significant increase in the number of sleep episodes (10mg/kg and 

60mg/kg P=0.0106 and P=0.0325, respectively). Regarding the specific effect on the 15Hz 

oscillations, their quantities were not significantly decreased with 10mg/Kg of fluoxetine, in 

contrast to 60mg/Kg strongly suggesting that the state of S2 is dramatically reduced (Fig 7A, 7B) 

(P=0.0096).  Regarding the effect on the HShw density (fig 7C, 7D, 7E, 7F), both doses tended 

to reduced it during the 24 hours after injection but it was only significant for 60mg/kg.   
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Fig. 6.  Effect of sleep deprivation. (A) Quantification over 9 hours of baseline (dark grey) and 9 hours 
of sleep deprivation (light grey) of the percentage occupied by all states, including active wake (AW), 
quiet wake (QW), sleep state 1 (S1) and sleep state 2 (S2), showing the efficiency of the sleep deprivation. 
S1 was scored automatically based on the decrease of the eye movement density associated with a low 
muscle tone, and S2 scored based on the 15Hz oscillations. (B) Quantification over 24 hours of baseline 
(dark grey) and the 24 hours following the sleep deprivation (light grey) of the percentage occupied by all 
states, showing the recovery of S1. (C) Representation of the individual (thin colored lines) and mean 
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+/- sem (large red line) percentage of S2 per hour, from the day before the sleep deprivation to the day 
after. The thin colored lines are the individual changes in such percentage. (D) Representation of the 
individual (thin colored lines) and means +/- sem (large red line) of the HShw density per hour, from the 
day before the sleep deprivation to the day after. (E) Histograms showing a significant reduction in the 
number of HShWs during sleep deprivation (n=4, P=0.0216), (F) No effect on the HShw density during 
the 6 hours of sleep following the sleep deprivation was detected, but a significant (G) increase was 
observed over 24hours after sleep deprivation. 

 

Fig. 7.  Effect of sleep of antidepressants on the tegu sleep. (A) Quantification over 24 hours of 
baseline (dark grey), following saline (middle grey), and fluoxetine injections (10mg/Kg) (light grey) of 
the percentage occupied by all states, including active wake (AW), quiet wake (QW), sleep state 1 (S1) 
and sleep state 2 (S2). S1 was scored automatically based on the decrease of the eye movement density 
associated with a low muscle tone, and S2 scored based on the 15Hz oscillations. (B) Quantification 
over 24 hours of baseline (dark grey), following saline (middle grey), and fluoxetine injections (60mg/Kg) 
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(light grey) of the percentage occupied by all states. (C) Individual (thin colored lines) and mean +/- sem 
(large red line) changes of the HShw density per hour during 24 hours of baseline, following saline, and 
fluoxetine (10mg/Kg) injection. (D) Histograms showing that no significant change occurs between 6pm 
and 10am in the number of HShWs after injection of NaCl or 10mg/Kg of fluoxetine at 5pm. (E) 
Individual (thin colored lines) and mean +/- sem (large red line) changes of the HShw density per hour 
during 24 hours of baseline, following saline, and fluoxetine (60mg/Kg) injection. (F) Histograms 
showing a significant decrease of the number of HShw after injection of 60mg/Kg of fluoxetine compared 
to baseline and saline injections between 6pm and 10am. 

 

 DISCUSSION 

In the present paper we confirm the findings of Shein-Idelson et al. on the bearded dragon 

(Shein-Idelson et al., 2016). Moreover, by coupling multisite LFPs, videos and physiological 

recordings both under baseline condition and during and after sleep deprivation and fluoxetine 

injections we were able to demonstrate the existence of two sleep states in the argentine tegu. 

Further, we provide evidence of similarities between these two states in the tegu and mammalian 

and avian SWS and REM sleep. However, the phenotype of these two states in the tegu differs 

strongly to that observed in mammals, birds, and more surprisingly, the bearded dragon.  

(1) Sleep in the bearded dragon 

(a) Behavioral Sleep 

Based on their posture and specific location, previous studies concluded that squamates 

display behavioral signs of sleep during the night. Yet, only four of these studies measured the 

arousal threshold (Tauber et al., 1968; Flanigan, 1973; Huntley, 1987; Ayala-Guerrero & 

Mexicano, 2008b) and only two used sleep deprivation experiments (Flanigan, 1973; Ayala-

Guerrero & Mexicano, 2008b). Even if arousal threshold and sleep deprivation were missing for 

the bearded dragon the animal displayed a stereotypical posture with the head on the floor, the 

eyes closed, in a specific location of the terrarium. Thus, we suggest that in accordance with Shein-

Idelson et al. the animal was sleeping during this period. 

(b) Electrophysiological sleep,  

In this replication experiment, we confirmed that the bearded dragon displays two 

electrophysiological patterns corresponding to two sleep states. The first one, rich in δ  
frequencies, explained by the presence of slow HShWs, was proposed to be homologue of the 

mammalian slow wave sleep. Indeed, this state is characterized by cortical delta waves and 

hippocampal sharp waves in mammals. However, whether those slow HShWs are similar to delta 
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or sharp waves or if those waves reflect a brain mechanism specific to the bearded dragon, remains 

unknown. Complementary experiments, including cognitive tests, and extracellular as well as 

intracellular recordings should be conducted. Moreover, describing the memory network of non-

avian reptiles, and specifically the implication of the DVR is necessary to understand the role of 

these waves and to test whether they have the same cognitive role as in mammals. Regarding the 

second sleep state described by Shein-Idelson et al., the DVR local field potential look like the 

awake state (Fig 1C) and isolated eye movements are more present during this phase. Based on 

these two features and the alternation with the SWS like state, Shein-Idelson et al. proposed that 

this state is homologous to mammalian and avian REM sleep. If the animal is indeed sleeping, 

then this would be the most parsimonious hypothesis. However, eye movements and a 

desynchronized brain activity are also present during quiet wake. An arousal threshold evaluation 

should be conducted to differentiate this putative REM-like sleep state from quiet wake in this 

species. Nevertheless, the study by Shein-Ideslon et al. provides credit to the hypothesis of the 

existence of a REM-like sleep state in squamates. The alternation between the two sleep states 

reported for the bearded dragon is also observed in mammals. However, a periodicity with a 

regularity like the one observed in the bearded dragon was never reported in either mammals or 

birds, questioning the nature thereof. Moreover, recent reports of artificial cyclical states with the 

same periodicity under urethane (Clement et al., 2008), or infra slow brain oscillations in the 

sigma band during mammalian slow wave sleeps suggest that other ultradian cycles could exist in 

mammals (Lecci et al., 2017), and possibly also squamates. Nevertheless, none of these cycles is 

associated with an increase in eye movements. Our replication confirms that the bearded dragon 

has two sleep states alternating with surprising regularity. However, at this point we cannot 

conclude about the nature and the homology of these states and other species should be 

investigated to test the generality of these results. 

(2) Sleep in the argentine tegu 

(a) Behavioral Sleep 

Thanks to the evaluation of the behavioral criteria of sleep we show for the first time that 

the argentine tegu, the only species of the Lacertoidae studied so far, also displays behavioral sleep 

at night. As the animal spent (in these conditions) more than 90% of its time with its eyes closed 

and lying on the floor it is difficult to differentiate sleep from quiet wake based on these features. 

We demonstrate here that behavioral sleep differs from QW by a higher arousal threshold, a 

decrease in the number of eye movements, and a lower heart rate in addition to the specific 
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location and posture typically observed. We also observed eye movements and occasionally small 

movements of the toes and the head. More often, large movements or repositioning of the animal 

during behavioral sleep was also observed in the tegu, as reported for other lizards (Libourel & 

Herrel, 2016). This would suggest that a state similar to REM sleep could be present in lizards. 

However the nature of REM sleep could not be strictly identified from eye and other movements 

as arousal also shows these features (Halasz et al., 2004).   

(b) Does S1 sleep correspond to SWS?  

Using our unsupervised, integrative and multi-parameter approach we were able to 

distinguish two sleep states in the tegu during behavioral sleep. S1 was characterized 

electrophysiologically by the absence of 15Hz oscillations during behavioral sleep. In addition, 

numerous isolated high amplitude sharp waves (HShWs) occur at a rate of 1 per minute in all 

structures recorded. The presence in the EEG of isolated sharp waves specifically during sleep 

has been already reported in other lizards (Flanigan, 1973; Ayala-Guerrero & Vargas Reyna, 1987; 

Ayala-Guerrero & Mexicano, 2008b). Isolated sharp waves have been also recorded during sleep 

in turtles and crocodiles (for review see (Libourel & Herrel, 2016)). Because of their morphology 

and their presence during sleep it has been suggested that those waves could be similar to the 

mammalian hippocampal Sharp wave ripples (hSWP-R, duration between 40-100ms, amplitude 

that can exceed 2.5mV and a variable occurrence of 1 to 60 per minute  (Buzsáki, 2015)). hSWP-

Rs are generated by a burst of activity in CA3 inducing a large depolarization in CA1 stratum 

radiatum associated with a fast oscillation in the CA1 pyramidal layer (Buzsáki, 2015). Their role 

in the mammalian memory consolidation processes is well described (Girardeau et al., 2009; 

Buzsáki, 2015). Therefore, their existence in a reptilian brain during sleep would have important 

consequences regarding the function of sleep in these animals. However, the shape of the HShWs 

is also consistent with cortical slow waves. In the tegu, as well as in the bearded dragon, HShWs 

were reported during behavioral sleep, just like hippocampal sharp waves and cortical slow waves 

in mammals. Regarding their morphology, the tegu and turtle HShWs show a similar duration, 

shorter than 50ms, with an amplitude between 0.2 and 1 mV and an occurrence of 1/min, similar 

to the mammalian hippocampal sharp waves. Interestingly, in contrast to the data reported in 

other lizards and non-avian reptiles, the bearded dragon showed slow HShWs occurring at a high 

rate of 60-120 per min (0.5-1 Hz) with a half width of 100 to 400 ms morphologically rather 

similar to mammalian slow waves. Moreover, the localization of the tegu HShWs also questions 

their true nature. Indeed, mammalian hippocampal sharp waves are recorded in the mammalian 
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hippocampus, subiculum, and entorhinal cortex(Buzsáki, 2015) and were not reported in birds 

(for review see (Rattenborg et al., 2011)). In contrast, slow waves have been recorded in most 

cortical regions in mammals (Massimini et al., 2004; Chauvette et al., 2011) and birds, as well  as 

well as in the avian DVR during anesthesia (Beckers et al., 2014). As HShWs were observed in all 

recorded regions in the tegu forebrain this could suggest that reptilian HShWs could be a 

precursor form of avian and mammalian slow waves. This hypothesis is also supported by a recent 

report of HShWs in the crocodilian DVR under anesthesia (Tisdale et al., 2018). In reptiles, 

pharmacological experiments have been also conducted. In the 70’s, injections of  atropine 

sulfate, amphetamine, nembutal, alpha-methyl-tyrosine, and parachlorophenylalanine, drugs 

known to modify the quantity of ventral hippocampal sharp waves in the cat, were shown to 

induce the same effects on turtle sharp waves (Geochelone carbonaria) (Hartse & Rechtschaffen, 

1974, 1982). This let the authors suggest that reptilian HShWs could be similar to mammalian 

sharp waves. However, some of the drugs that suppress mammalian hippocampal sharp waves 

also suppress cortical slow-waves. In the argentine tegu we demonstrated that the HShWs tend 

to disappear after fluoxetine injection. However, in mammals, little is known on the effect of 

serotonin on hippocampal ShWs. To our knowledge only one paper reported that serotonin 

block, in vitro, rodent hippocampal Sharp waves (ul Haq et al., 2016).  

As a conclusion, since the precise mechanism of the generation of HSWs has not been 

identified, their definition relies on a rather vague description based on their shape, state of 

occurrence, occurrence rate, and pharmacological responsiveness. Unfortunately, these 

properties do not allow us to differentiate between hSWP-Rs and slow waves, or another type of 

waves specific to lizards. However, as both hippocampal sharp waves and cortical slow waves are 

present during slow wave sleep in mammals this would suggest that S1 in the tegu is likely 

homologous to mammalian and avian slow wave sleep. Moreover, after fluoxetine injection the 

HShWs disappear (Fig 7), but the automated sleep scoring algorithm (fig 7A, 7B) suggests that 

the animal is able to sleep without these waves. This is further suggested by the typical sleep 

posture taken up by the animal inside its shelter. This suggests that the HShWs are only one 

feature of the complex phenotype sleep in reptiles. Moreover, these waves by themselves are not 

sufficient to characterize this sleep state in reptiles. 

(c) Does S2 sleep correspond to REM sleep?  

Based on the presence of active periods during sleep, the existence of REM sleep has been 

suggested in six of the seven previous studies on lizards. They mostly observed limb and eye 
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movements associated with an EEG with an awake-like activity. In the tegu, we reported a state 

(S2) which shares partial similarities with mammalian and avian REM sleep. It is 

electrophysiologically characterized by the presence of oscillations with a 15Hz frequency present 

in nearly all structures recorded during behavioral sleep. To our knowledge, such a type of 

oscillation has never been reported before during sleep in any lizard species. We demonstrated 

that S2 episodes preferentially appear at the beginning and at the end of the sleep period and 

lasted 4.3 seconds on average. The 2229.6 ± 261 episodes constituted 17.2 ± 2.3% of the total 

sleep time. Because some S2 episodes lasted more than 20s, it is unlikely that the oscillations 

correspond to sleep spindles, an oscillation appearing during NREM sleep in mammals in the 

same range of frequencies (between 10 and 18 Hz) and lasting between 0.4 and 1 second (Berger, 

1929; De Gennaro & Ferrara, 2003). In addition, we observed that a higher density of eye 

movements and a decrease in muscle tone occurred during S2 compared to S1. We also showed 

that the 15Hz oscillations but not behavioral sleep was suppressed after the injection of 

fluoxetine, a specific serotonin reuptake inhibitor (Fig 7). This suggests that S2 was suppressed 

after 60mg/Kg of Fluoxetine injection, although we cannot exclude that the drugs may have 

suppressed the oscillations but not the state.  Against such hypothesis, we were not able to identify 

periods after fluoxetine injection displaying an increase of eye movements and a decrease of 

muscle tone as seen during S2. In addition, no significant changes were observed when 

comparing the muscle tone and the eye movement density during behavioral sleep (S1+ S2) in 

the different conditions (EOG density during Baseline vs. Saline vs. Fluoxetine 60mg/Kg, 

P=0.6115; muscle tone P=0.416). Yet, even if the serotonin distribution in the brainstem is 

similar in lizards compared to mammals (Wolters et al., 1985) and despite the fact that some 

studies on lizards have suggested a similar effect of fluoxetine on aggression (Deckel, 1996), it 

remains unknown whether S2 state shares the same neuronal substrate with  mammalian REM 

Sleep. Importantly, the duration and regular occurrence of REM sleep reported in the bearded 

dragon does not match that seen for S2 in the tegu, nor that previously reported in birds and 

mammals. Indeed, in the tegu, the duration and temporal distribution of S2 is quite similar to 

that seen for REM sleep in most birds which display a short mean duration of episodes of 5 to 

10 seconds, and a percentage of around 10% of total sleep time (Roth et al., 2006). Another 

important feature of bird and mammalian REM sleep is the presence of ocular saccades. As 

reported here in the tegu from EOG recordings and in the bearded dragon based on unilateral 

video monitoring, more eye movements also occur specifically during the postulated REM sleep 

episodes. However, in both cases, the eye movements were isolated (Shein-Idelson et al., 2016) 
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and often unilateral in the tegu, in contrast to the rapid eye movements recorded in mammals 

which occurs in bursts (Vertes, 1984), illustrating that the phenotype of S2 is different from that 

of REM sleep in mammals and birds.  

Altogether, our results for the tegu and those obtained for the bearded dragon suggest that 

two different sleep states with partial similarities to REM and NREM sleep exist in two different 

species of lizard, even if an arousal threshold evaluation would be necessary in both species to 

clearly differentiate S2 from quiet wake. Yet the short duration of the REM-like sleep state in the 

tegu renders this extremely difficult from a practical point of view. However, these two states 

display a very different temporal distribution and type of oscillations in the two species. It 

therefore raises the question whether one or the other is the exception among lizards. The 

recording of additional lizard species is required to answer this question. Further, additional 

experiments are necessary to determine whether the structures generating REM-like sleep 

episodes in the bearded dragon and the tegu are the same as those generating REM sleep in birds 

and mammals. Moreover, the constant temperature used does not reflect the natural temperature 

fluctuations experienced by these animals and therefore constitutes a limitation of this study. 

Finally, we observed rare small and isolated twitches, or motor automatisms in the tegu during 

the night but without a strict association with the S2 state. It might be that these muscle twitches 

occur during short periods of awakening or that in tegu twitches are not associated to a specific 

sleep state. Another possibility is that they occur specifically during S2 only in young animals as 

it has been shown that they are more numerous during this stage in mammals (Roffwarg et al., 

1966; Jouvet-Mounier et al., 1969). In agreement with this hypothesis, more muscle twitches have 

been observed in juvenile lizards and even in ovo (Corner, 1977). To summarize, the two species 

of lizards recorded displayed two sleep states sharing some similarity with mammalian and avian 

REM and NREM, but diverged notably regarding the presence of twitches, the speed and number 

of the eye movements, and the absence of a wake-like EEG for the tegu compared to mammalian 

REM sleep. 

(d) Implications for the origin of the sleep states 

Our results demonstrate the existence of two different sleep states in the tegu and the 

bearded dragon, sharing features with mammalian and bird REM and NREM sleep. The 

existence of a REM-like sleep state in a lizard suggests that homeothermic animals are not the 

only ones to show two sleep states. However, even if some non-avian reptiles display two sleep 

states, the ancestral or convergent origin of these states remains unclear. In fact, too few studies 
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have been conducted in non-avian reptiles to fully conclude that a REM-like sleep state did not 

appear convergently. Moreover, around 75% of the studies on turtles and almost all of the studies 

on crocodiles (both groups being closely related to birds) did not report two sleep states. Whether 

the two sleep states originated at the base of the amniote tree or before also remains to be 

determined by means of new studies of sleep in other non-avian reptiles as well as amphibians 

and fish. Deciphering the origin of the two sleep states is complicated, and the “further” we move 

away from mammals, and the “classical definition” of sleep, the more difficult it will be to identify 

homologies. More than providing additional evidence for a reptilian REM-like sleep state, our 

results reveal the true diversity in sleep phenotypes, a diversity that should be explored through 

integrated and complementary approaches, without an underlying biased definition based on 

mammalian studies. Indeed, even in mammals and birds experiments on basal species show that 

those states could be mixed (Siegel et al., 1999; Lesku et al., 2011). Maybe the question should 

not be if non-avian reptiles show REM sleep and slow wave sleep, but how do these states appear 

and evolved along the different branches of the amniote tree. 

  

 SUPPLEMENTARY INFORMATION 
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Fig S1. Automated scoring over 24h in animal #1.The figure represents 4 days of automated scoring. 
From top to the bottom: the absolute EMG value in red and the threshold (black line) used for detecting 
active wake (AW) bouts; the maximal amplitude of eye movement for a 1sec window and the threshold 
used (in black) for detecting eye movements; the interval between eye movement and the threshold (in 
black) used to score quiet wake (QW) and sleep (S) periods; the hypnogram obtained from the automated 
scoring with QW and S; the final automated hypnogram including the three states; a manual hypnogram 
representing the position of the animal, outside or inside the shelter. 
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Fig S2. Electrode position from MRI and CT scan.Frontal, sagittal, and horizontal slices of pre-surgical 
MRI, merged with electrode segmented from a CT scan obtained after surgery for each brain region in 
each animal. 
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Fig S3. Electrode sorting. Representation of the mean power spectral density between 10 and 45Hz for 
all electrodes of all animals. On the left the electrodes that were identified from the MRI and CT scan 
as being into the cerebral spinal fluid (CSF). In the middle, the electrodes that are in the brain and at 
the right the electrodes with an undetermined position (ND). The black line represents the average plus 
one standard deviation of the power spectral density from the electrodes located in CSF. All electrodes 
with a cross are considered as not being in the brain and therefore were not considered for further 
processing. 
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Fig S4. Electrode choice for S2 calculation. Mean power spectrum during sleep for all electrodes (in blue) 
for all animals. In black, the values kept for the interpolation (red). A ratio that characterized the quantity 
of oscillation in the 10–20Hz is calculated for each electrode. To do so, the percentage of increase of the 
mean power spectrum between 10–20Hz is computed compared to the interpolated curve. The title for 
each axis contains the animal number, the region recorded (based on the MRI and CT scan), the electrode 
name and the ratio obtained. All electrodes considered as into the cerebral spinal fluid are labeled at the 
upper right corner of the axis by a cross, whereas a red circle represent the electrodes with the higher ratio, 
chosen for the analysis of S2. 

 

 

 

 

 

 

 

Table S1: Efficiency of the automated scoring 

The table presents the mean and individual efficiency of the automatic scoring. The correct 

rate, the sensitivity and the sensibility to score correctly sleep is presented. The sleep epochs of 

the automated hypnogram are compared with the epochs scored “shelter” of the manual 

hypnogram.  

 

  

 Correct Sensitivity Specificity 

#1 0.730 0.989 0.704 

#2 0.911 0.777 0.965 

#3 0.868 0.974 0.837 

#4 0.924 0.947 0.919 

#5 0.915 0.869 0.941 

#6 0.890 0.911 0.883 

Mean 0.873 0.911 0.875 
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PART IV : GENERAL CONCLUSIONS AND 
PERSPECTIVES 

 

I. CONLUSIONS 

(1) What are SWS and REM sleep? Limitations of the use of a mammalian 

definition in a comparative context. 

From a behavioral point of view, it is currently accepted that sleep could be defined by a 

reversible sustained immobility, a stereotypic posture, and a high arousal threshold. In addition 

to these points, sleep is also homeostatically regulated (Piéron, 1913; Campbell & Tobler, 1984). 

Based on that definition, it is highly probable that all animals sleep, including the most basal 

ones like worms and jellyfishes (Raizen et al., 2008; Siegel, 2008; Nath et al., 2017). Our 

preliminary phylogenetical analysis done on amphibians and non-avian reptiles in the first 

chapter, also support this hypothesis. Indeed the behavioral features of sleep analysed (arousal 

threshold and homeostasis after sleep deprivation), showed a high likelihood to be ancestral for 

all the tetrapods. However, regarding the presence of SWS and REM sleep, things become more 

complicated. Indeed, Slow wave sleep takes its name from the high amplitude slow waves present 

in the cortical EEG during this state. In mammals, these oscillations are generated by an 

alternance between Up (intense synaptic activity) and Down (silent) states in the cortico–thalamic 

network (Steriade, 1993). However, what about species with a different cortical organization, like 

birds with their non-laminar pallium (Rattenborg, 2006a), non–avian reptiles with their three–

layer cortex or amphibians without a cortical organization (Northcutt, 1981, 2002). Should we 

expect to have the same EEG signature if the neuronal substrate is not the same? Birds do have 

slow waves, but we still do not know if these waves are generated by the same mechanisms and 

share the same function in birds and mammals (Rattenborg, 2006a). Then, in the first chapter 

we highlights multiple methodological limitations (different ambient temperatures, electrodes 

types, recorded brain regions …) rendering difficult to interpret the reptilian and amphibian’s 

literature. Nevertheless, even with these limitations, it’s remain very probable that amphibians 

and reptiles do not show the same slow waves pattern in surface EEG during behavioral sleep 

than mammals and birds (see chapter1); therefore, we certainly cannot identify this state based 
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on this feature in these species. In mammals, the other name of this state is non–REM sleep, in 

opposition to REM sleep characterized by periods with rapid eye movements. In the first chapter, 

we showed that mainly all non-avian reptiles recorded with EOG displayed isolated eye 

movements during behavioral sleep. This could help us to identify two sleep states and indeed 

and this parameter or criterion was often used by researchers to postulate that non–avian reptiles 

have REM sleep. However, REM sleep is also characterized, by a wake-like cortical activity. Then, 

this raises the question: how to differentiate REM sleep from quiet wake? Another possibility 

could be to record EMG. In mammals, muscular atonia is one of the major features that helps 

investigators to score REM sleep. Moreover, this feature is thought by some researchers to be 

essential to prevent movements during the intense cortical activity observed during this state. 

But, muscle tone participates to the maintenance of a high body temperature in mammals and 

birds. In addition, the innervation as well as the muscle composition, could differs in vertebrates 

(Burgos Bretones et al., 1987; Luna, Daikoku, & Ono, 2015). Therefore, if there is no clear atonia 

in non-avian reptile reported during sleep (see Chapter1), this will not demonstrates that there is 

no REM sleep like state. In fact, these animals could be always atonic because of their 

thermoregulation strategy and a different muscular anatomy. Consequently, muscle atonia would 

not be also a major criterion to identify a putative REM sleep in poikilotherms species. Finally, 

since the discovery of two sleep states in mammals, there were several attempts, mainly in the 

70’s, to try to identify these two states in non–avian reptiles and amphibians (see chapter 1). 

However, none of these studies that reported a REM sleep like state, were given enough 

information to differentiate the putative REM sleep to a quiet wake or short awakening. And 

finally, maybe the question: “do SWS and REM sleep exist in those species?” is not the right one. 

Maybe the question should be: “how do these animals sleep?”. I strongly believe that evolution 

has “selected for” and conserved these two sleep states in mammals for a purpose. However, I do 

not know why the proposed functions in mammals (memory consolidation, synaptic plasticity, 

brain development, cleaning the brain, reinforcing the immune system …) would not have been 

useful for at least non–avian reptiles. Therefore, if the function of sleep is shared by all the 

amniotes, maybe the epiphenomena related to sleep states are simply different in poikilothermic 

species due to their different anatomy and physiology. If so, the only way to progress would be to 

develop a multi–parametric approach. 
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(2) Necessity to develop complementary approaches 

Sleep is a more complex state than a simple inactivity. Sleep has a behavioral definition that 

could be assessed by video monitoring, and/or accelerometry (Rattenborg et al., 2017). The 

arousal threshold and the homeostatic regulation could be evaluated only by the use of a stimulus 

to either prevent sleep (Borbély & Neuhaus, 1979; Rechtschaffen et al., 1989) or to evaluate the 

“sleep depth” (Bonnet & Johnson, 1978). In addition, the two mammalian sleep states were 

identified/characterized based on electrophysiological and physiological parameters, including 

EEG, EOG, EMG, ECG, body and brain temperature, as well as deep brain recordings. 

Therefore, in a comparative context most of the parameters that covary with behavioral sleep and 

sleep states should be recorded. However, classically, in most species studied for comparative 

purposes, only EEG and EMG have been recorded. This could be explained by the limited 

number of parameters that could be evaluated by the classical recording devices, or at least by the 

difficulty to record all these parameters at the same time. Moreover, animals were often recorded 

in lab conditions with a tethered device, limiting their movements, their space, and their access 

to a shelter (Aulsebrook et al., 2016; Rattenborg et al., 2017). In order to overcome most of these 

limitations, we developed ONEIROS, a miniature standalone device designed to record classical 

sleep parameters (see chapter 2). This system was tested for baseline recording in rats, pigeons, 

and lizards using both wireless recordings and dataloggers. The results show that the device could 

also be used into the wild. Arousal threshold as well as selective PS deprivation was also possible 

thanks to ONEIROS. Because of the multiple parameters recorded, this tool opens new 

opportunities to conduct comparative sleep studies in the lab and in the field. 

(3)  Lizard sleep 

In the third chapter, our work on lizard sleep raises more questions than it answers. Indeed, 

before we started our project, it was often mentioned in the literature that non–avian reptiles do 

not show REM sleep (see chapter 1). However, around 40% of the papers (mainly written in the 

70’s) claimed the existence of eye movements as well as movements during sleep periods in non–

avian reptiles (Libourel & Herrel, 2016). However, none of these papers was able to convincingly 

show that these movements were due to REM sleep and not due to short awakenings. The absence 

of clear slow waves, or a clear difference between wake and sleep EEG was also not helpful to 

identify the states. In our review, we raised the issues associated with the methodology and the 

bias induced by the mammalian definition of sleep. More recently, Shein Idelson et al. (2016) 

discovered a very curious sleep phenotype in an agama (the bearded dragon, Pogona vitticeps). 
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Using of state-of-the-art methods they observed a very stereotypic local field potential in a 

forebrain region supposed to be an associative structure. They reported a perfect alternance 

between two electroencephalographical states. One containing high amplitude Slow/Sharp waves 

and the other quite desynchronized, rich in high frequencies just like when the animal is awake. 

Moreover, this was associated with isolated eye movements under closed eye lids. In parallel, we 

were able to confirm these results in the same species but found a very different phenotype of 

sleep in another species the argentine tegu (Salvator mearianae). Indeed, in the third chapter, our 

experiments confirmed the existence of two sleep states in these two lizard species. But, the same 

brain regions do not have the same electrophysiological signatures. Even if we found some 

features similar to REM sleep in the argentine tegu like a decrease in muscle tone, eye movements, 

and a suppression of the sleep state with an antidepressant, we found also some divergent 

characteristics. The first sleep state does not show slow waves or slow frequencies, the second has 

slow and isolated eye movements instead of rapid ones, no clear atonia but rather a very slight 

decrease in the muscle tone, no strong variability in heart rate and only rare twitches. More 

curiously, a brain activity during the putative REM-like sleep state that does not look like the 

awake state. All together, these results illustrate that sleep in lizards, and potentially other non–

avian reptiles, is more complex than that described for mammals. In mammals, one can easily 

identify REM sleep by looking at the phasic features of this state (twitches, eye movements, 

whisker movements, irregular breathing rate … ), whereas in a lizard (tegus but bearded dragons 

as well) this becomes less clear, as the active phenomena are rare and isolated. What does this 

mean? Due to their energy regulation strategy, do they not have the same phenotype of REM 

sleep? Do they possibly have a more pronounced mammalian REM sleep like state during their 

development in ovo ? Why do two lizard species do not share the same sleep phenotype? Our 

results suggest that the emergence of two sleep states is certainly common to the amniotes but 

also raise questions about the less active nature of the lizard REM-like sleep state. Our work 

highlights the difficulties to draw parallels between different species and the potential bias 

inherent in defining sleep states based on a mammalian sleep phenotype. However, our results 

do change the quite stereotypic view of SWS and REM sleep that is common in the literature.  

 

 PERSPECTIVES 

Our results illustrate the complexity of sleep and the necessity to develop multiple 

approaches in term of models as well as methods. 
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(1) Models 

Thanks to this work, we were able to demonstrate that at least two species of lizards display 

two sleep states. However, this does not mean that all non–avian reptiles show two sleep states, 

neither that one or the other lizard displays the generic sleep phenotype of non–avian reptiles. 

This does also not inform us on the origin of the two sleep states. Indeed, other non-avian reptiles 

including crocodiles and turtles as well as other squamates should be studied. In order to optimize 

the phenotypic description of sleep in non–avian reptiles and to better understand its evolution 

one should sample species in each of the branches of the non–avian reptile sub–orders. Moreover, 

amphibian species, including anurans, salamanders, and caecilians need to be recorded to 

provide further insights into the possible earlier origin of these states. In addition, ontogenetic 

studies are also missing in non–avian reptiles. These experiments would inform us on the 

development of the states and would give information on the possible homology between states.  

(2) Methods 

In the third chapter, we demonstrated changes in the local field potential of the brain, in the 

physiology, the behavior, and in the response to drugs in relation to sleep behavior in lizards. 

These methods can be used simultaneously ( see chapters 2 and 3) and could reveal important 

differences across taxa. However, alone, they are not sufficient to reveal the full mystery of the 

origin of sleep states. Indeed, it is well known that the brainstem as well as hypothalamic nuclei 

are involved in the generation and in the maintenance of REM sleep in mammals (Jouvet & 

Mounier, 1960; Vertes, 1984; Steriade & McCarley, 2005; Luppi et al., 2012; Luppi, Peyron, & 

Fort, 2013). One can ask whether the same neurons exists in non–avian reptiles and whether 

they share the same role (Cardot, Fellmann, & Bugnon, 1994; Ayala-Guerrero & Mexicano, 

2008a). Moreover, by recording the local field potentials we only have a rather blurry picture of 

what happened in a specific region without any idea of the network and the role of the different 

regions involved in a state (Denker et al., 2011; Kajikawa & Schroeder, 2011; Gaucher, Edeline, 

& Gourévitch, 2012). We are also limited to the covered area. Complementary methods 

could/should be used to fully characterized sleep in these species. First the neuroanatomy and 

the connectivity of the sleep network should be described. In order to trace parallels between the 

sleep neuronal network of lizards and mammals we should also understand the functional 

connectivity of the sleep and wake cycle in reptiles. The brainstem organization seems to be quite 

well conserved across amniotes (Newman & Cruce, 1982; ten Donkelaar et al., 1987; Cruce, 

Stuesse, & Newman, 1988) and is known to be involved in the REM sleep regulation and 
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generation (Vertes, 1984; Wolters et al., 1986; Steriade & McCarley, 2005; Luppi et al., 2012). 

Consequently, this region could be the first target. With a first challenge: identifying the 

stereotactical location of the nuclei that discharge or stop to discharge specifically during REM 

sleep in mammals. The locus coeruleus, the dorsal raphe nucleus, the sublaterodorsal nucleus, 

the laterodorsal tegmentum, the pedunculopontine tegmentum could be the first nuclei to target. 

Recording their neuronal activity during vigilant states or modifying the activity of a specific 

neuronal pollution thanks to optogenetics or chemogenetics would inform us on the functional 

role of these nuclei and will help us to draw parallel between a reptilian REM-like sleep state and 

mammalian REM sleep. These methods could now be used because of the development of 

genome engineering tools like CRISPR CAS 9. One major feature of REM sleep is also the 

cortical activity (Renouard et al., 2015; Jones, 2016; Koike et al., 2017). Therefore, it becomes 

interesting to characterized the pallial activity in reptiles during sleep states (Shein-Idelson et al., 

2016). This could be done thanks to high-density multi-electrode recording in freely moving 

(Sirota & Buzsáki, 2005; Du et al., 2011; Shein-Idelson et al., 2016) or in restrained conditions 

with functional MRI (Logothetis, 2008; Duyn, 2011, 2012) with respective limitations in terms 

of spatial and temporal resolution.  

 

Sleep is a complex behavior that has been modified according to selective pressures during 

evolution in relation to anatomical and physiological changes in animals. Therefore, to 

understand the whole nature of sleep we have no other choice than combining comparative 

studies with multimodal methods and to forget the classical mammalian view of the two sleep 

states. Understanding why we humans sleep is understanding why and how all animals sleep. 
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