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First-principles study of

piezoelectric (Ba,Ca)TiO3-Ba(Ti,Zr)O3 solid solutions

Abstract. High-performance piezoelectrics are key components of various smart devices

and, recently, it has been discovered that (Ba,Ca)(Ti,Zr)O3 (BCTZ) solid solutions show ap-

pealing electromechanical properties. Nevertheless, the microscopic mechanisms leading to such

features are still unclear and theoretical investigations of BCTZ remain very limited. Accord-

ingly, this thesis analyzes the properties of various compositions of (Ba,Ca)TiO3-Ba(Ti,Zr)O3

solid solutions by means of first-principles calculations, with a focus on the lattice dynamics

and the competition between different ferroelectric phases. We first analyze the four parent

compounds BaTiO3, CaTiO3, BaZrO3 and CaZrO3 in order to compare their properties and

their different tendency towards ferroelectricity. Then, the core of our study is a systematic

characterization of the binary systems (Ba,Ca)TiO3 and Ba(Ti,Zr)O3 within both the virtual

crystal approximation (VCA) and direct supercell calculations. When going from BaTiO3 to

CaTiO3 in (Ba,Ca)TiO3, the main feature is a gradual transformation from B-type to A-type

ferroelectricity due to steric effects that largely determine the behavior of the system. In par-

ticular, for low Ca-concentration we found out an overall weakened B-driven ferroelectricity

that produces the vanishing of the energy barrier between different polar states and results

in a quasi-isotropic polarization. A sizable enhancement of the piezoelectric response results

from these features. When going from BaTiO3 to BaZrO3 in Ba(Ti,Zr)O3, in contrast, the

behavior is dominated by cooperative Zr-Ti motions and the local electrostatics. In particular,

low Zr-concentration produces the further stabilization of the R3m-phase. Then, the system

shows the tendency to globally reduce the polar distortion with increasing Zr-concentration.

Nevertheless, ferroelectricity can be locally preserved in Ti-rich regions. We also found out an

unexpected polar activation of Zr as a function of specific atomic ordering explained via a basic

electrostatic model based on BaZrO3/mBaTiO3 superlattice. A microscopic factor behind the

enhanced piezoelectric response in BCTZ, at low concentration of Ca and Zr, can thus be the

interplay between weakened Ti-driven and emerging Ca-driven ferroelectricity, which produces

minimal anisotropy for the polarization. In addition, our comparative study reveals that the

specific microscopic physics of these solid solutions sets severe limits to the applicability of the

virtual crystal approximation (VCA) for these systems.

Keywords: lead-free compounds, piezoelectricity, ferroelectricity, lattice dynamics, ab-

initio calculations



Étude ab-initio de

solutions solides piézoélectriques (Ba,Ca)TiO3-Ba(Ti,Zr)O3

Résumé. Les piézoélectriques à haute performance sont des composants clés pour les dis-

positifs agiles. Il a été démontré récemment que les solutions solides (Ba,Ca)(Ti,Zr)O3 (BCTZ)

présentent des propriétés électromécaniques prometteuses. Cependant, les mécanismes mi-

croscopiques conduisant à de telles caractéristiques restent à éclaircir, et les investigations

théoriques de BCTZ demeurent trés limitées à ce jour. En conséquence, cette thése pro-

pose d’étudier les propriétés de différentes compositions de solutions solides (Ba,Ca)TiO3-

Ba(Ti,Zr)O3 au moyen de calculs de premiers principes, en mettant l’accent sur la dynamique

du réseau et sur la compétition entre différentes phases ferroélectriques . Nous nous intéressons

d’abord aux quatre composés parents BaTiO3, CaTiO3, BaZrO3 et CaZrO3, afin de comparer

leurs propriétés et leurs différentes tendances à la ferroélectricité. Ensuite, le cœur de notre

étude est une caractérisation systématique des systèmes binaires (Ba,Ca)TiO3 et Ba(Ti,Zr)O3

en utilisant à la fois l’approximation du cristal virtuel (VCA) et des calculs directs sur supercel-

lules. Lorsqu’on passe continument de BaTiO3 à CaTiO3 dans (Ba,Ca)TiO3, la caractéristique

principale est une transformation progressive de la ferroélectricité de type B en type A en

raison d’effets stériques, lesquels déterminent en grande partie le comportement du système.

En particulier, pour les petites concentrations en calcium, nous avons mis en évidence que la

ferroélectricité guidée par le site B est globalement affaiblie, conduisant à la disparition de

la barrière d’énergie entre différents états polaires et à une polarisation quasi-isotrope. Une

amélioration considérable de la réponse piézoélectrique résulte de ces caractéristiques. En pas-

sant de BaTiO3 à BaZrO3 dans Ba(Ti,Zr)O3, en revanche, le comportement est dominé par

les mouvements coopératifs Zr-Ti et l’électrostatique locale. En particulier, la phase R3m est

stabilisée significativement pour les faibles concentrations en zirconium. Sous l’effet d’une aug-

mentation de la concentration en zirconium, le système montre une tendance à la réduction de la

distorsion polaire; néanmoins, la ferroélectricité peut être préservée localement dans les régions

riches en titane. Grâce à un modèle électrostatique basé sur un super-réseau BaZrO3/mBaTiO3,

nous avons également découvert un’activation polaire inattendue pour Zr, en fonction d’un or-

dre atomique spécifique. Un facteur microscopique expliquant la réponse piézoélectrique exaltée

dans BCTZ, pour de faibles concentrations en Ca et Zr, peut donc résider dans l’interaction

entre la ferroélectricité affaiblie induite par Ti et la ferroélectricité émergente induite par Ca,

interaction produisant une anisotropie minimale pour la polarisation. En outre, notre étude

comparative révèle que la physique microscopique spécifique de ces solutions solides limite

sévèrement l’applicabilité de l’approximation du cristal virtuel (VCA) à ces systèmes.

Mots-clés: composés sans plomb, piézoélectricité, ferroélectricité, dynamique du réseau,

calcul ab-initio
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Introduction

Piezoelectric devices have successfully relied on lead zirconate titanate (PZT) materials for

several decades. Since 2003, the European Union has restricted the use of certain hazardous

substances [40], such as Pb, which has driven the search for alternative lead-free piezoelectric

compounds. In this respect, BaTiO3-based solid solutions appear as interesting candidates,

whose potential for piezoelectric applications has been known since the sixties [26, 31, 160].

Among possible combinations, the partial homovalent substitution of Ba by Ca and Ti by Zr at

the A- and B- sites of BaTiO3 (Ba1−xCaxTi1−yZryO3 hereafter BCTZ) is of special interest. In

their seminal paper, Liu and Ren [44] reported a high piezoelectric coefficient of 620 pC/N for

the ceramic system (Ba0.7Ca0.3)TiO3-Ba(Ti0.8Zr0.2)O3. This has been ascribed to the presence

of a special point in the phase diagram in which the tetragonal and rhombohedral ferroelectric

phases meet the paraelectric cubic one. Subsequently, Keeble et al. [51] revisited this phase

diagram and observed an intermediate ferroelectric orthorhombic phase that also meets the

three previous ones.

As in the case of Pb-based systems, the achievement of high piezoelectric response in BCTZ

is believed to be linked to the existence of a so-called phase convergence region, in which the

lack of energy barriers between different ferroelectric states makes the landscape isotropic and

the polarization free to rotate [52]. However, no theoretical confirmation of this picture has

been provided yet for this system. In fact, although a large number of experimental studies have

been reported [44, 51, 106, 161], the number of theoretical investigations of BCTZ compounds

remain comparatively very limited and, to the best of our knowledge, no comprehensive study

based on direct Density Functional Theory (DFT) has been carried out so far.

In order to fill in this gap, here we report a systematic first-principles DFT study of

(Ba,Ca)(Ti,Zr)O3-type compounds with the intent to clarify the evolution with composition

of their ferroelectric, piezoelectric and related properties. We proceed step-by-step. Thus, we

first address carefully the four parent compounds. Then, starting from BaTiO3, we investigate

separately the evolution of the properties in (Ba,Ca)TiO3 and Ba(Ti,Zr)O3 solid solutions in

order to disentangle the role of individual atomic substitutions at the A- and B-sites. We

use both the Virtual Crystal Approximation (VCA) and explicit ordered supercells of differ-

ent compositions. In each case, starting from the reference high-symmetry paraelectric phase,

we identify and characterize the existing phonon instabilities. Then, comparing the energy of

various possible distorted phases obtained from the condensation of unstable modes, we search

and characterize the structural ground state. All along this work, a special emphasis is put on

the analysis of the real-space interatomic force constants in order to rationalize the evolution of

the properties with composition. Through such quantitative analysis and comparisons of prop-

erties between the parent compounds and their related solid solutions, our work reveals the

distinct underlying microscopic mechanisms activated by A- and B-sites atomic substitutions.

At the same time, it points out and explains strong limitations of the VCA approach for the

9
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(Ba,Ca)TiO3 and Ba(Ti,Zr)O3 systems.

The thesis is organized as follows. In Chap. 1, we introduce the concept of piezoelectricity

and related functionalities. In Chap. 2, we present an overview on the fundamental properties

of ABO3 perovskites, being the class of compounds of interest all along our study, and in the

following Chap. 3 we present the basic of the Density Functional Theory, being the method

used for our theoretical investigation. In Chap. 4, then, specific technical details of our DFT

calculations are presented. The description of the obtained results thus follows. In detail, in

Chap. 5, we carefully analyze the four parent compounds. Next, in Chap. 6 and Chap. 7,

we address separately (Ba,Ca)TiO3 and Ba(Ti,Zr)O3 solid solutions of different compositions.

Finally, Chap. 8 is devoted to a global discussion and conclusions.

Contents of Chap. 4, Chap. 5, part of Chap. 6, and Chap. 7 are published in D. Amoroso,

A. Cano, and Ph. Ghosez, Phys. Rev. B, 97, 174108 (2018).
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Scientific Background



Chapter 1

Piezoelectricity

In one sentence, a piezoelectric device can be thought as a “translator” between mechanical

and electrical energy [1]. Piezoelectricity, in fact, is the manifestation of a linear coupling

between electrical and mechanical fields [2], namely production of electric charges on the surface

as a consequence of exerted mechanical stress. The induced charges are proportional to the

mechanical stress. Such property has been thus named according to its phenomenon; in fact,

the word piezoelectricity is composed by the Greek verb πιέζειν (piezein), that means to press,

and the word electricity, that is related to the Greek word ήλεκτρoν (electron), which means

amber. In fact, ancient Greeks where the first to notice the manifestation of electricity in the

attraction of small objects by rubbed amber.

The discovery of piezoelectricity dates back to 1880 by the French brothers Pierre and

Jacques Curie. Specifically, they found this property in quartz crystal observing the develop-

ment of an electric polarization after the compression of such material. This is what is called

“direct piezoelectric effect”. Later in 1881 Gabriel Lippmann hypothesized the “inverse piezo-

electric effect”, then demonstrated by the Curie brothers. In this case the opposite phenomenon

is observed, that is the occurrence of expansion or contraction of the material, i.e. geometric

strain, proportional to an applied electric field [3, 4]. Therefore, piezoelectric materials exhibit

both the direct and inverse phenomena: the polarity associated to the generated surface charges

depends on the direction of the exerted stress, that is compressive or tensile; conversely, de-

pending on the direction of the applied electric field, the material either contracts or expands

[2].

The linear relationships between the induced electric polarization P ind along the direction

i and the exerted stress σ, and, conversely, the strain ξ to the applied electric field E are

P ind
i = dijσj

ξj = dijEi (1.1)

where the stress σj and piezoelectric dij coefficients are expressed in Voigt notation, with i =

1, 2, 3 and j = 1, 2, 3, 4, 5, 6, being a second-rank and third-rank tensor respectively. Actually,

12



CHAPTER 1. PIEZOELECTRICITY 13

the link between the electrical and mechanical properties in piezoelectric materials can be

represented via various parameters, including the piezoelectric charge or strain coefficient (dij),

piezoelectric voltage or strain coefficients (gij), electromechanical coupling coefficient (kij) and

mechanical qualify factor (Qm). All of them are represented in Voigt notation, being the

piezoelectric response represented by a third rank tensor as it relates the second rank mechanical

and first rank electrical variables. Depending on the type of applications of interest, one

can focus on the behavior of one parameter than the others. These key material parameters

are referred as figures of merit for piezoelectric devices. Nevertheless, the primary parameter

considered by experimentalists is the piezoelectric coefficient dij, which gives access directly

to the intrinsic piezoelectric response of the material ([dij ] = [pC/N ] = [pm/V ] for the direct

and inverse effect respectively). Detailed descriptions of all such interlocked parameters are

provided in Refs. [3, 1], while an explicit formulation of the linear response between the stress

and induced polarization will be given in Sec. 2.4.2.

From the symmetry point of view, a material can exhibit piezoelectricity only if its structure

is non-centrosymmetric, that is it does not have an inversion center. This is directly linked to the

fact that piezoelectricity represents the linear coupling between stress and electric polarization

as well between as electric field and strain 1.1. In a centrosymmetric structure, in fact, dij has

to be equal to −dij . Therefore, the only solution is that the piezoelectric coefficient is zero. This

does not apply to structure lacking inversion symmetry. Therefore, of the 32 crystal classes,

21 are non-centrosymmetric, but 20 of these exhibit piezoelectricity. The non-centrosymmetric

point group O(432) makes an exception due combinations of associated symmetry operations.

Among these, 10 are polar crystal classes, which show a spontaneous dipole moment and ex-

hibit pyroelectricity, i.e. change in the polarization proportional to change in temperature.

Switchability of such spontaneous polarization via an external electric field makes the material

also ferroelectric. Therefore, ferroelectrics form a subgroup of the pyroelectric materials [5, 6].

1.1 Applications

The capability offered by the piezoelectric materials to couple mechanical and electrical prop-

erties, such as mechanical output in response to a voltage input, and alternatively, a voltage

output in response to a mechanical input, is widely exploited in various so-called piezo-devices.

They can be grouped in three main kinds of application: actuators, sensors and energy harvest-

ing. The first being mostly related to the “inverse piezoelectric effect”, while the latter ones

to the “direct piezoelectric effect”. Nevertheless, devices which rely concurrently on both the

effects have been also widely developed. Out of these, there are also piezo- lighters and injec-

tors. It is worth noting that together with the geometric deformation of the material related

to the indirect effect, an other exploited effect is the associated generation of vibrations prop-

agating as mechanical waves with specific frequencies. Therefore, certain piezoelectric crystals

or ceramics can be used as source of sonic and ultrasonic waves. As a result, in a reverse way,
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piezoelectrics can also behave as detector of external mechanical vibrations.

A huge number of works about piezoelectric materials and their transferring into applications

exist. In the following a few examples of the well-established and impending applications have

been extracted and listed. Reviews of reference among others are [3, 1, 5, 16, 17, 18, 19].

Daily life uses

Maybe we do not think about this, but we experience piezoelectricity everyday in our daily life

at home, in the office and even in the path to the working place, and as well as in our free time

when attending for instance a concert, a public manifestation or simply listening music etc. In

fact, piezoelectricity is the working functionality in

• quartz clock: a quartz crystal (SiO2) is used as resonator, producing oscillations of very

precise frequency after being distorted by the applied voltage through an electrode, which

in turn detects the produced electric signal;

• lighters: a spark is created by pressing a piezoelectric crystal, which generates an electric

arc, igniting a flammable fluid or gas;

• fuel injectors: in direct injection engine, the fuel is injected into the combustion chamber

via piezoelectric valves, which allows for fine electronic control over the fuel injection time

and quantity;

• inkjet printing: a piezoelectric material behind each nozzle in a ink-filled chamber

causes the stream of liquid into droplets at regular time intervals by means of the induced

mechanical vibration. Such printing method is called “drop-on-demand”;

• microphones: basically they convert sound into an electric signal in order to be recorded

and/or reproduced; therefore, a piezoelectric material is used in the piezo-microphone,

relying on its detection of acoustic waves, i.e. sound vibration, which in turn produce the

voltage output. This functionality is the opposite of loudspeakers, which convert an

electrical signal into sound. Therefore, piezoelectric materials, now working in the inverse

regime, can be still used.

Laboratory apparatus

Piezoelectricity is also at the basis of the operation of some instrumental techniques thanks to

the possibility to move and drive object with high accuracy via the strain effect induced by

applied voltage.

• AFM (Atomic Force Microscopy): it is used for force measurement, imaging, and ma-

nipulation of different specimens thanks to the direct forces interacting between sample

and tip. The precise movements of sample and tip are driven in x, y and z directions
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by the so-called piezo-scanner, exploiting the reverse piezoelectric effect. The cantilever,

which sustains the tip, can also be composed by a small piezoelectric element in order to

oscillate around its resonance frequency, in the tapping-mode regime. It is worth to note

that a variant functionality of the AFM is the PFM (Piezoresponse Force Microscopy)

which allows imaging and manipulation of piezoelectric materials. Such characterization

is achieved by using a conductive probe tip, which thus applies a current to the sample

causing strain deformations of it.

• STM (Scanning Tunneling Microscopy): it is used for imaging surface at atomistic scale.

It is based on the quantum tunneling effect, which occurs between the tip and the sample

surface via an applied bias. As in the AFM, the surface scanning by the tip is driven by

a piezoelectric;

• ultrasonic cleaners: they are used to clean many different type of objects going from

samples, medical instruments to mechanical components via propagating ultrasonic waves

in an appropriate cleaning solvent. The source of such ultrasound is thus a piezoelectric

crystal or ceramic, which vibrates in response to the applied AC voltage.

Biomedical devices

The rising interest in developing noninvasive, biocompatible techniques in medical procedures

makes piezoelectric materials good candidates for applications used for the real-time monitoring

and adjustments of the health status of patients. Piezoelectrics thus result helpful in various

steps of medical diagnosis procedures and treatment. Some examples are:

• ultrasonography: this technique includes all medical instruments using ultrasound for

diagnostic imaging, generally named ecography. In this case a piezo-transducer, included

in a probe, behaves both as source and detector of mechanical vibrations. The basic and

general operation is that the waves generated by the piezo in response to the electrical

input propagate into the body, being a probe in contact with the patients skin. Then, the

echo caused by tissues and other body’s parts are received by the same piezo-transducer,

which converts it in electrical signals, in turns converted in images. It is noteworthy that

the ultrasound themselves with varying frequencies can be used as medical treatment

especially in orthopedics and traumatology;

• biosensors: they typically rely on the change of the initial vibration frequency of the

piezoelectric material with the changing of the surrounding physiological parameters, in

particular via the binding of any mass to the piezo-element. Therefore, sensitivity in

micrograms is necessary to appreciate measurable change in oscillations. In the specific

case of biodetectors, proteins, enzymes, cells or other organic structures chosen to act as

bio-recognition components are attached to the piezo-transducer in order to interact/bind
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with the specific chemical constituent (analyte) of interest to be detected. This interaction

is so measured by the transducer, affecting the vibration of the piezo-element. The piezo-

platform used for the biosensor construction is thus the so-called microbalance, which

can be also used to detect microgram quantities in other fields than biomedical;

• drug delivery: via combined piezo-micropumps and microneedles drugs can enter the

body via transdermal way at therapeutically useful rates.

Other applications

Basically, the piezo-based devices and instrumentations, like the ones previously presented, rely

on the capability of the piezoelectric materials to behave like transducers, and so to be used

as detectors and sensors. Therefore, a quite widespread range of other possible applications

exist, going from piezo-motors, vibration reductors to sensors monitoring and assessing civil

infrastructures etc.

Energy Harvesting

Mechanical vibrations source of mechanical energy that could be converted into electricity are

everywhere around us: voluntary and involuntary human body motion/activity, vehicles in

motion, working machines and instruments in mechanical industries, natural phenomena like

wind, ocean/sea waves, earthquakes and so on. Actually, the scavenging of such wasted energy

is quite challenging. Nevertheless, feasible solutions relying on the use of piezoelectric materials

have begun to arise from different fields.

The biggest challenge in recent years is exploiting the human motion to power both portable

devices and those which involve integration with the human body itself such as drug delivery,

artificial/electronic tissues for robotics, health monitors etc. With respect to the latter, for

instance, researches aimed to develop biocompatible nanogenerators for in-vivo self-powered

devices avoiding surgical procedures to replace depleted batteries are running. Examples of

various working small applications, are shoes based on piezo-soles, e-textiles based on piezo-

yarns, nanogenerators and so on.

Large-scale applications of piezoelectricity for energy harvesting is then even more challeng-

ing. Nevertheless, since last decade, different interesting projects have been successfully led

from collaborations between Universities and companies to develop “smart” floors and roads

[20, 21, 22]. In the first case, the mechanical energy produced by substantial number of human

steps in crowed places is reused to produce electricity, and so to illuminate the surrounding

area itself. Such technology of energy floors has been adopted, for instance, in a dance club in

Rotterdam and the subways in London and Tokyo as well as in occasion of the Olympic Games

2012. In the second case, instead, the idea is to make a piezo-asphalt in order to harvest energy

from the motion of vehicles.
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1.2 Materials

We have previously seen that the human body activity can be source of reusable energy by

the help of piezo-transducers. Amazingly, the body reaction to human emotion can be a direct

source of unexpected piezoelectric materials. People, in fact, usually manifest the reaction

both to happiness and sadness by crying, and tears have been found to be piezoelectric. Such a

feature, actually, has to be ascribed to a specific antibacterial enzyme, the lysozyme, contained

in tears as well as in other organic secretions, milk and egg white, that exhibit piezoelectricity

[7]. The discovery of lysozyme due to its bacteriolytic properties traces back to early 1900s (so

even well before the discovery of BaTiO3 as we will see later) by A. Flaming [8], the discoverer

of penicillin. Then, only recently, its piezoelectric properties have been demonstrated [9, 10].

Actually, the lysozyme is not the only case of piezoelectric of biological origin, but also other

proteins as elastin or collagen, the latter forming bones and tendons, or amino acids, forming

proteins, exhibit piezoelectricity [11, 12, 13, 14]. In particular, for instance, piezoelectricity

in bones was already known since the 1950s [15]. Nevertheless, the piezoelectric response

exhibited by these biological materials is generally low, and so limiting their use in technological

applications. Such a behavior is then opposite in a wide variety of inorganic materials among

which the most used quartz (SiO2), barium titanate (BTO), lead zirconate titanate (PZT) and

polyvinylidene fluoride (PVDF).

1.2.1 A brief overview on inorganic piezoeletric materials

As mentioned at the beginning, piezoelectricity was discovered in quartz single crystal in 1880,

but only the need of ultrasonic sonar and technologies for military purposes during the World

Wars boosted the search for other materials with enhanced dielectric, piezoelectric and ferro-

electric properties. Various titanates, including BaTiO3, CaTiO3, SrTiO3, PbTiO3 and PbZrO3

among others, have been thus synthesized between the 1940s and 1950s. In particular, BaTiO3

was discovered independently by US, Japan and Russia during the World War II for its high

permittivity. Only after few years, such high dielectric properties have been associated to its

ferroelectric nature [23]. Later on, different set of measurements accompanied by the phe-

nomenological theory approach of Devonshire shed light on its piezoelectric and related prop-

erties [24, 25, 26]. Nevertheless, in order to increase the Curie temperature of BTO, i.e. the

temperature of transition from the cubic to the ferroelectric tetragonal phase, to higher value

than 120◦ C and to lower the transition temperature to the orthorhombic ferroelectric phase,

various cations replacements were studied. The aim was thus to enlarge the range of operating

temperature. These trials led to the discovery of Pb(Zr,Ti)O3 system by Japanese researcher

groups [27, 28]. Then, the determination of its phase diagram [29] and superior piezoelectric

properties [30] followed. It is noteworthy to mention that, in the same period, McQuarrie and

Behnke were the first to synthesize the quaternary system (Ba,Ca)(Ti,Zr)O3 [31]; however,

the poor temperature stability of the associated piezoelectric properties and the breakthrough
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of PZT threw shadow on this and related solid solutions until last decades. From the 1960s,

then, relying on the high performances provided by PZT, an extensive production and char-

acterization of Pb-based piezoelectric solid solutions followed, like Pb(Mg1/3Nb2/3)O3 (PMN),

Pb(Zn1/3Nb2/3)O3 (PZN), Pb(Sn1/2Nb1/2)O3 (PSN) among many others and, later on, more

complex associated solid solutions via the combination of PbTiO3 (PT), like PMN-PT, PZN-PT

and PSN-PT. An extensive comparative description of such Pb-based systems and associated

list of references are provided in Ref. [32].

In 1969, interesting piezoelectric properties were also found in a completely different system,

the polymer polyvinylidene fluoride (PVDF). This discovery has to be once again ascribed to

Japanese researchers [33, 34]. Later, it was been found to be also pyroelectric and ferroelectric

[35]. Over the last decades, therefore, PVDF is facing increasing interest especially for the

development of wearable e-textile functionalities [36, 37, 38]. Piezoceramic-polymer composites

based on PZT-PVDF have been also developed, obtaining an enhancement of the piezoelectric

performances of the PVDF alone [39].

In the 21st century, a new boost in the search for new high-performing piezoelectric materials

has been due to “environmental concerns”, which have widely restricted the use of Pb and led

researchers to the search for alternative lead-free piezoelectrics. In particular, the discussion

about the toxicity of lead-containing ceramics is mostly related to the recycling process of the

lead-containing components, being metallic Pb and lead oxide PbO known to be toxic, even if

at different level (see Ref. [1] and references therein). In this respect, therefore, the European

Union (EU) has promoted various regulations to restrict the use of Pb and Pb-containing

materials in order to reduce their impact on health and environment. The two main sets of

rules by the EU are the directive on the restriction of the use of certain hazardous substances in

electrical and electronic equipment [40], abbreviated as RoHS, and the REACH (Registration,

Evaluation, Authorisation and Restriction of Chemical Substances) regulation (explanation

and regulation can be found in the official website of the European Chemicals Agency (ECHA)

[41].)

In this respect, the inspiring precursor work was likely the publication by Takenake et al. in

1991 about the Ba-modified bismuth sodium titanate (Bi1/2Na1/2)1−xTiO3-BaxTiO3 (BNT-BT),

in which he referred to the BNT-based solid solutions as a new group of lead-free piezoelectric

ceramics. [42]. Therefore, a huge number of works with renewed interest in investigating and

improving BNT-based systems followed. Then, another more recent stimulating work by Saito

et al. in 2004 about the enhanced piezoelectric properties in complex modified systems based

on (K,Na)NbO3 (KNN) [43] has boosted the interest in the investigation and development of

KNN-based materials. Later on in 2009, the outstanding piezoelectric properties found in Ca-

and Zr-modified barium titanate (Ba,Ca)(Ti,Zr)O3 (BCTZ) by Liu and Ren [44] has widely

renewed the interest in BTO-based materials. Detailed reviews about various lead-free materials

including the aforementioned ones are Refs. [45, 46, 2].
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Piezoelectricity and composition-induced phase boundaries

Figure 1.1: PTZ phase diagram
from [50]. Authors report in open cir-
cles data from B. Jaffe, W.R. Cook, and
H. Jaffe, Piezoelectric Ceramics (Academic
Press, London, 1971) and in solid symbols
the FT − FM and PC − FT transition tem-
peratures [50].

The common factor in all the aforementioned devel-

oped piezoelectric materials is the presence of the

so-called morphotropic phase boundary (MPB), a

compositional region separating two competing fer-

roelectric phases in the composition-temperature (x-

T) phase diagram [47]. The achievement of such

composition-induced phase transition thus typically

relies on the design of solid solutions, which have

compounds with different polar ground-states, typ-

ically being rhombohedral (R), orthorhombic (O)

or tetragonal (T) with spontaneous polarization P

along [111], [011] or [001] directions respectively, lo-

cated as parent end members. After the first observa-

tion of this feature in the phase diagram of PZT and

the observed connection with the enhanced piezo-

electricity, the search for the improved piezoelectric

materials has been thus based on the achievement

of the MPB. The understanding of the remarkable

piezoelectric properties of PZT is, in fact, the “po-

larization rotation” between the adjacent rhombo-

hedral R- and T- phases through one (or more) in-

termediate monoclinic phases [48, 49, 50, 51]. More generally then, the composition-induced

ferro-ferro transition causes the instability of the polarization state at the MPB region so that

the polarization direction can be easily rotated by external stress or electric field, resulting in

high piezoelectricity [52, 44]. In other words, such regions of the (x-T) phase diagram provide

the condition for minimal anisotropy with respect to directions of the polarization, being the

minima of the free energy associated to different polar states, i.e. P oriented along different

directions in space, degenerate. Such isotropic energy landscape, corresponding to a rather flat

energy barrier between different polar states, gives rise to a rotational instability in the spon-

taneous polarization, which in turn results in the enhancement of the piezoelectric response. It

should be also point out that the elastic softening, i.e. a strong coupling between the internal

degrees of freedom and strain in the system, is another key factor to get giant piezoelectric re-

sponse [52, 46]. Therefore, if the presence of bridging monoclinic phases is a necessary condition

for a large piezoelectric response is still matter of debate [53, 46]. Nevertheless, its appearance

seems naturally favored by the almost isotropic free energy associated to the original polar

ground-states of the parent end-members of the solid solutions [46].

Another important feature, which determines the technological relevance of the various
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Figure 1.2: (a) Phase diagram overlapped to the contour plot of the piezoelectric coefficient d33
and (b) behavior of d33 as a function of temperature in BCTZ. In the latter graph, authors mark with
dashed lines the peak positions indicating phase transitions. Adapted from Ref. [54].

piezoelectric materials, is the stability of the piezoelectric properties as a function of varying

temperature. With respect to the latter, it is the trend of the phase boundary line in the (x-T)

diagram to affect this feature, beyond the intrinsic change of the properties of the material

with temperature. PZT, for example, exhibits a nearly temperature-independent, i.e. vertical,

boundary line, as illustrated in Fig. 1.1 from Ref. [50]. In the ferroelectric community, such

nearly vertical transition line is the one properly termed morphotropic phase boundary (MPB),

while a phase boundary line showing substantial variation with temperature is termed instead

polymorphic phase boundary (PPB). The latter type results more typical of the BT-based

solid solution [46]. In particular, this is true for BCTZ, which appears a suitable candidate for

applications with usage temperature below 100◦ C [1, 106]. Phase diagram and trends of the

piezoelectric coefficient d33 in BCTZ reported in Ref. [54] are shown in Fig. 1.2. Moreover, a

particular and interesting characteristic of BCTZ is its biocompatibility, making it one of the

most promising piezoelectric materials to be used in the biomedical devices [55, 56, 57, 58].

A detailed review about piezoelectricity-MPB relationships is reported by Cordero [46].

1.3 Aim of the thesis

Among the BTO-based systems, BCTZ has appeared as the most attractive one, so that it

has been widely experimentally investigated. Several experimental works concerning synthesis,

structure, energetics and dielectric, piezoelectric, and elastic properties have been already car-

ried out and further works aimed at improving its properties are still ongoing. Nevertheless,

despite there are evidences of the fact that increasing Ca- and Zr- content deeply affects the

ferroelectric features of BTO, producing the (x-T) phase diagram and related properties of in-

terest, the physical mechanisms behind the occurrence of such quasi-isotropic energy landscape

remain still unclear. Up to now, in fact, theoretical characterizations of BCTZ are few and

mostly limited to reproduce the experimental evidences instead of understanding and discuss

the underlying physics. Results and details of the various experimental works on BCTZ are

reported in Acosta et al. [2] and references therein.
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In this respect, in the present thesis, we try to unravel the microscopic mechanisms tuning

the ferroelectric and piezoelectric properties of these solid solutions by means of a step-by-

step analysis and systematic comparisons, focusing on the distinct effects arising from the end

members (Ba,Ca)TiO3 (BCT) and Ba(Ti,Zr)O3 (BTZ) and related pure parent compounds.

Accordingly, in the following, in order to guarantee a complete understanding of the work, an

introduction to the main physical concepts affecting these systems and to the used method

precedes the presentation of the specific results.



Chapter 2

Fundamentals of Perovskite Oxides: a

general overview

In the previous chapter the concept of ferroelectricity has been introduced in relationship with

piezoelectricity, being a fundamental properties of most of the good piezoelectric materials. In

particular, this is true for BCTZ perovskites and its parent end members BCT and BZT, as

well as the building block BTO.

Figure 2.1: Schematic illustration
of a typical hysteresis loop. From
Ref. [59]. The spontaneous polariza-
tion is defined as Ps = (PB −PA)/2,
being a zero-field property [60].

Ferroelectric (FE) materials are insulating systems that

exhibit spontaneous macroscopic polarization, switchable

by an applied electric field. The concept of electric po-

larization is therefore the key to understand ferroelectricity.

At equilibrium, a FE material is characterized by sponta-

neous polar atomic distortion. In particular, ferroelectric

perovskites exhibit a high-temperature paraelectric refer-

ence, which undergoes ferroelectric distortion at decreasing

temperature. The symmetry breaking between the para-

electric and ferroelectric phases can be described as a first-

or second-order structural phase transition within the Lan-

dau theory, where the polar lattice distortion is the primary

order parameter. Systems in which the polarization is a

second order parameter linearly coupled to nonpolar lattice

distortions or to the magnetization are called “improper” ferroelectrics.

The absolute bulk macroscopic polarization P of materials is not directly accessible, rather

most measurements give information about changes of polarization (i.e. its derivatives), such

as spontaneous polarization, permittivity, pyroelectric coefficient, piezoelectric tensor and Born

charges. Usually, the switching process in a ferroelectric material is associated with a hysteresis

curve of the electric polarization P as a function of the field strength E between opposite po-

larities, as illustrated in Fig. 2.1. The critical electric field necessary to reverse the polarization

is known as coercive field. Such electric bi-stability, that is the presence of spontaneous, non-

22
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volatile and switchable polarization, can be used for data storage. Furthermore, the transition

from the paraelectric to the ferroelectric phase depends on temperature leading to the defini-

tion of the Curie temperature Tc. As this temperature is approached, the dielectric constant

ǫ, which in most cases obeys the Curie-Weiss law, reaches large values useful for capacitor ap-

plications. Other important properties from the technological point of view are pyroelectricity

and piezoelectricity earlier introduced. In pyroelectrics, for instance, a temperature dependence

of the spontaneous polarization generates an electric current when both ends of the polarized

ferroelectric are short-circuited. Below Tc the pyroelectric effect becomes large and this feature

is useful in a variety of thermal-image sensors and infrared detectors. In piezoelectrics, electric

and mechanical properties are coupled: an applied stress generates polarization, whereas the

electric field causes strain in the material. Such piezoelectric responses are employed in actu-

ators, transducers, ultrasonic motors and other electromechanical devices, as widely analyzed

in Chap. 1.

In the following we will focus on the ferroelectric and related properties of the most studied

family of compounds known as perovskite oxides. In addition to the intent to introduce the

context, this will allow to introduce the main concepts investigated in this thesis.

2.1 ABO3 perovskites: generalities

A widely studied class of oxides is that known as perovskite oxides with general ABO3 formula

unit, where A and B represent cation elements. Originally, the name of perovskite had been

assigned to the mineral of calcium titanate (CaTiO3) discovered in the Ural Mountains in 1839

by Gustave Rose and named in honor of the Russian mineralogist Lev A. von Perovski. Then,

this name has been lent to the class of compounds showing the same type of crystal structure.

Although CaTiO3 shows as orthorhombic ground state, the name perovskite is often given to

the high-symmetry reference containing 5 atoms with space-group Pm3̄m (Oh
1 , No. 221). As

A B O

Figure 2.2: (Left) Schematic view of the 5 atoms unit cell of the ABO3 ideal cubic perovskite
structure: the B atom (green) sits at the center of corner-shared oxygen octahedra (blue), while A
atoms (red) occupies the enclosing holes. (Right) Schematic view of the simple cubic Brillouin zone
[62].
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illustrated in Fig. 2.2, a possible description of such a structure is: the A atom sits at the

corner of the cube, the B atom sits at the center and each oxygen occupies the center of each

face. Therefore, in the perovskite structure, the B atom is surrounded by 6 equidistant first

neighbors oxygens, arranged at the corners of a regular octahedron. The octahedra are corner-

shared, enclosing holes which are occupied by A atoms. Each A atom has 12 equidistant O

atoms. Each O atom has 2 B-type and 4 A-type atoms as first neighbors [61]. An alternative

description is that with the B atom at the corner and the A atom at the center of the cube.

Despite their apparent similarities, distinct members of the family can exhibit different

physical properties depending on composition and cationic ordering. Starting from the high-

temperature cubic reference, the majority of these compounds undergo polar and/or non-polar

structural phase transitions when the temperature is lowered. This means that the cubic phase

is unstable with respect to energy-lowering distortions. Most of the appearing distortions are

related to a structural frustration of the cubic perovskite structure. An empirical criterion

for predicting the tendency of the ABO3 cubic perovskite to be distorted and related type

of distortion is the tolerance factor based on the Goldschmidt’s rules [63]: the anion-cation

distance is obtained as the sum of their ionic radii being a cation surrounded only by as many

anions as can touch it [61]. Accordingly, the relationship defining the ideal cubic perovskite

structure is

rA + rO =
√
2(rB + rO) (2.1)

and the tolerance factor t provides the deviation from the latter, being defined as

t =
rA + rO√
2(rB + rO)

(2.2)

where rA, rB and rO are the ionic radii of the A-type, B-type and O atoms 1. When t > 1,

the B cation is too small for its site so that it will off-center. Such motion eventually produces

a polar distortion leading to a so called B-driven ferrolectricity, as in the case of BaTiO3.

Conversely, when t < 1, the A cation is too small in comparison to the hole between the

oxygen octahedra. Therefore, both polar off-centering of the A-cation leading to A-driven

ferroelectricity or antipolar motions and/or oxygen rotations can take place, as in the case of

CaTiO3 and CaZrO3. The ideal condition t ≃ 1 is rarely satisfied except for BaZrO3.

We will present the specific structural properties of the aforementioned ABO3 systems in

the results part.

2.2 Ginzburg-Landau-Devonshire theory

As previously introduced, the main interesting feature of the ABO3 ferroelectric perovskites

is to undergo with temperature different sequences of structural phases transition. Therefore,

1Alternatively, one can use the bond-valence model to calculate the ideal A-O and B-O bond distances [64].
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theoretical predictions should take explicitly into account the temperature effect, omitted in

the ground-state theory. In this respect, the most popular approach to describe the temper-

ature behavior of ferroelectrics at the macroscopic level is the phenomenological Ginzburg-

Landau-Devonshire theory [25, 65], that is appropriate for bulk systems with spatially uniform

polarization.

In general, the thermodynamic state of bulk ferroelectrics, and so the associated thermody-

namic potential, the Gibbs free energy, can be specified by three independent quantities among

the conjugate pairs temperature-entropy (T, S), stress-strain (σ, ξ), and electric field-electric

displacement (E , D or eventually polarization P ), such as

G = U − TS − ξσ − ED (2.3)

where T is the temperature, S the entropy and U the internal energy. Then, according to the

second thermodynamic principle, the equilibrium (stable) state is determined by the values of

the corresponding variables which minimize such energy. For a phase transition in temperature

with no external pressure (σ = 0) and field (E = 0), the thermodynamic potential reduces to

the Helmholtz free energy, that is

F = U − TS (2.4)

The main idea behind the Landau theory is that, in the vicinity of a phase transition, the

free energy can be expressed as a power series of the order parameters. The minimization of

the Landau free energy then gives the Helmholtz free energy.

Specifically, in the so-called “proper” ferroelectrics, the polarization (or equivalently the

polar distortion) is taken as first order parameter of the expansion. In the specific case of

perovskite oxides, such expansion concerns the energy of the high-symmetry non-polar phase,

under the hypothesis that the expansion remains valid above and below the phase transition

temperature. This corresponds to the fact that non-centrosymmetric structure can be obtained

from the high-symmetry structure by means of small distortion.

Let us exemplify the approach considering that the strain is zero and the polarization is

directed along one of the cartesian direction. Then the Taylor expansion of the energy is

F =
1

2
αP 2 +

1

4
βP 4 +

1

6
γP 6 (2.5)

where α is a temperature dependent parameter defined as α = a0(T − T0) with a0 a positive

constant and T0 the temperature at which α changes sign; γ is also a positive coefficient, while

β can take values both positive and negative, determining the nature of the transition and the

trend of the polarization.

If β > 0, then a second-order transition occurs at T = T0, and the free energy and the

polarization evolve continuously as a function of decreasing temperature: for T > T0 the

quadratic term is positive and the thermodynamic functional is a single well with its minimum
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Figure 2.3: (a) Free energy as a function of polarization for the paraelectric phase. (b) Free energy
as a function of polarization for a ferroelectric material in a second-order phase transition at T > T0,
T = T0 and T < T0. (d) and (f) are respectively the spontaneous polarization P and the dielectric
susceptibility χ as a function of temperature for a second-order phase transition. (c) Free energy as a
function of polarization for a ferroelectric material in a first-order phase transition at T > Tc, T = Tc

and T < Tc . (e) and (g) are respectively the spontaneous polarization P and the susceptibility χ as
a function of temperature for a first-order phase transition. Adapted from Refs. [66, 59].

corresponding to the non-polar P = 0 phase; for T < T0 the quadratic term is negative and the

curve displays the typical double well shape with two minima at P = ±P0 [Fig. 2.3(b)]. The

spontaneous polarization P0 is estimated by the minimization procedure of the free energy F ,

such as ∂F/∂P = 0, while the susceptibility χ from the relations 1/χ = ∂E/∂P = ∂2F/∂P 2.

Being γ positive, the sixth order term in the expansion (2.5) can be neglected. The results are

P0 = ±
√

a0
β
(T0 − T ) (2.6)

χ =







[a0(T − T0)]
−1 if T > T0

[−2a0(T − T0)]
−1 if T < T0

(2.7)

If β < 0, then a first-order transition occurs at T = Tc. With the negative quartic coeffi-

cient, even when T > T0 the free energy may have two extra local minima at P 6= 0. When

the temperature decreases, the polar state will drop in energy below that of the non-polar

state, becoming the thermodynamically favored configuration. The temperature at which the

polar and non-polar states will be energetically degenerate is the Curie temperature Tc, i.e.

the transition temperature. Tc exceeds T0 defined in the case of second-order transitions. At

any temperature between Tc and T0 the non-polar phase exists as a local minimum of the free

energy [Fig. 2.3(c)]. The most important feature of this phase transition is that the order pa-

rameter jumps discontinuously to zero at Tc [66], so that the first-order transition is also called

discontinuous transition. The observable fingerprint of this type of transition is the occurrence
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of a temperature hysteresis ∆T , i.e. the difference between the transition temperatures upon

cooling and heating of the crystal [67]. Trends for the free energy as a function of polarization

and for the polarization and dielectric susceptibility as a function of temperature are schemat-

ically shown in Fig. 2.3 both for the second- and first- order transitions.

In the case of phase transitions related to oxygen rotations, the same expansion of the

free energy can be made, in which the first order parameter is now φ describing the rota-

tions. Interesting systems are those in which the primary order parameter φ couples linearly

with the parameter P of second order now, driving thus the system to exhibit spontaneous

polarization as secondary effect. Such a mechanism is referred as “improper ferroelectricity”

[69]. Specifically, systems in which P linearly couples with only one independent primary order

parameter, like same type of rotations φ, such as ∼ λφ3P with λ a coupling coefficient, are

properly termed “improper ferroelectrics” [70]; systems in which P couples linearly with two

independent primary order parameters, like the “in-phase” φ+ and “out-of-phase” φ− rotations,

such as ∼ λφ+φ−P , are termed “hybrid improper ferroelectrics” [71]. Systems in which the

coupling is bi-quadratic, such as ∼ λφ2P 2, are termed “triggered” [72].

In order to properly take into account the contribution to the energy due to modification

of the cell shape and size induced by the structural distortions, the strain effect can be also

included as a secondary order parameter ξ in the energy expansion [92]. In particular, in the

case of ferroelectrics, this allows to properly take into account the polarization-strain coupling,

which is eventually responsible for the piezoelectric response. Using a simplified notation and

considering uniaxial strain, the elastic interaction introduces the terms

Cξ2 +QξP 2 (2.8)

where C is the elastic stiffness of the material and Q is the coupling coefficient between polar-

ization and strain. The second term takes into account the modification of the strain induced

by the polar distortion, i.e. by the polarization, and Q is referred as the electrostriction co-

efficient. Therefore, minimizing the energy with respect to the strain to find the equilibrium

condition, such as ∂F/∂ξ = 0, the resulting strain is

ξ = −Q
C
P 2 (2.9)

Being the piezoelectric coefficient d defined as the linear variation of the strain with respect

to the electric field (1.1), it thus results that d ∼ QχP . According to this expression, for

ferroelectrics whose paraelectric phase is centrosymmetric, piezoelectricity originates from the

electrostrictive effect, spontaneous polarization, and the dielectric response [46, 68].
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As mentioned at the beginning of this section, the Ginzburg-Landau-Devonshire theory is

suited to reproduce and describe the temperature-dependent behavior of ferroelectric properties

at the macroscopic level. Nevertheless, this approach cannot provide description of the under-

lying physics, relying on the final macroscopic manifestation of such properties. Conversely,

such a capability is supplied by the first-principles theory (that will be introduced in Chap. 3),

accessing the physics and microscopic mechanisms which determine the appearance of those

properties. In particular, this is due to the provided precise description of the lattice dynamics

and electronic properties of the materials. However, this is in practice restricted to zero Kelvin.

Implemented fist-principles molecular dynamics (MD) simulations are still restricted to small

systems and time scale, being computationally demanding. A valuable alternative approach

is the effective Hamiltonian approach based on first-principles [73, 74, 75]. Similarly to the

Landau theory, such approach relies on the identification of the most important degrees of free-

dom governing the phase transition and the subsequent expansion of the energy with respect

to these degrees of freedom with coefficients initialized from DFT calculations.

2.3 Lattice dynamics

As mentioned in the previous section, the Ginzburg-Landau-Devonshire theory is a macroscopic

approach able to describe the behavior of the macroscopic observables around the phase tran-

sition. In the specific case of ferroelectrics, this approach consists in expanding the energy in

terms of the spontaneous polarization, considered as order parameter. Nevertheless, no access

to the microscopic mechanisms, such as atomic distortions giving rise to such polarization, can

be provided, and so a direct connection with the crystal lattice dynamics is missing in such

phenomenological description. In fact, at microscopic level, the condition for a crystal to be

stable against small deformations is that all the vibrational modes should have real frequencies

ω. Therefore, imaginary frequencies are associated with atomic displacements with respect to

which the reference structure is unstable.

In this respect, Cochran has been the first2 to analyze the problem of structural phase

transitions in the framework of the lattice dynamics [89, 90]. Focusing on ferroelectric phase

transitions, he considered one of the lattice mode as the basic variable, introducing the notion

of “soft-mode”. In particular, he associated the para-ferro transition with the softening of a

zone-center transverse optic (TO) phonon, which “freezes-in” below the transition tempera-

ture, giving rise to a dipolar moment in each unit cell: in the high-temperature paraelectric

phase, there is a lattice (polar) mode for which the frequency goes to zero on decreasing the

temperature toward the transition temperature Tc to generate the ferroelectric crystal struc-

ture. On the other side of the phase transition, as the phase boundary is approached with

increasing temperature in the ferroelectric phase, the lowest-frequency polar phonon become

2It should be noted that, actually, the concept of “soft-mode” was already introduced by Ginzburg in 1949
[88].
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softer decreasing to zero near the transition temperature. The atomic displacements associated

with the soft mode are the same as the deformation of the structure in the low-temperature

phase [91, 93]. Then, the “soft-mode theory” has been widely accepted as general description

of structural phase transitions, which thus arise from the progressive softening of a specific

phonon mode with temperature, which condenses into the structure at the phase transition

[94, 95, 96]. Such mechanism is the one generally characterizing the so-called displacive phase

transition.

Figure 2.4: Schematic representa-
tion of the behavior of the soft-mode
ω̃2 ∝ (T − Tc): at low temperature
T < Tc the soft-mode in the reference
structure is unstable, thus the struc-
ture of the high-temperature phase is
unstable. On increasing temperature
T , the anharmonic interactions add a
positive contribution to the negative
value of ω2

0 (Eq. 2.10): first, the fre-
quency reaches zero at Tc; then, the
frequency becomes real for higher T .
Adapted from Ref. [91].

In particular, Cochran suggested a temperature de-

pendence of the soft mode of the type ω2 ∝ (T −Tc). The
soft-mode model is illustrated schematically in Fig. 2.4:

at T < Tc the structure of the high-symmetry phase is un-

stable with respect to the distortion to the low-symmetry

phase, and the frequency of the soft mode has an imagi-

nary value [91]. At the atomistic level, in fact, it results

that the temperature dependence of the soft-mode arises

from the anharmonic coupling of the soft mode with other

modes, giving rise to a renormalization of the harmonic

frequency [97, 59], such as

ω̃2 = ω2
0 +

kBT

2

∑

i

α4
i

ω2
i

(2.10)

where ω0 is the harmonic frequency of the soft mode

(which is negative, being the unstable mode), kB is the

Boltzmann constant and αi is the anharmonic coupling

coefficient of the soft mode with the mode i of frequency

ωi. The transition temperature Tc, being that at which

the frequency of the soft mode ω̃ reaches zero, results

Tc = − 2ω2
0

kBα
, with α =

∑

i
α4
i

ω2
i

. The temperature depen-

dence of ω̃ can thus be rewritten as

ω̃2 = −ω
2
0

Tc
(T − Tc) = ω2

0 −
ω2
0

Tc
T (2.11)

The result of (2.11) is that the square of the phonon frequencies vary approximately linearly

with temperature. The frequency at T = 0 K corresponds to the harmonic value ω0, which can

be determined by solving of the dynamical equation of the crystal lattice.

The “soft-mode theory” thus results a bridge linking the microscopic lattice dynamics and

the macroscopic Ginzburg-Landau-Devonshire theory. In fact, it is possible to recognize an

equivalence between the α parameter in the energy expansion (2.5) and the square of the har-

monic frequency, both linearly depending on temperature and determining the occurrence of the
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phase transition. For displacive phase transitions, therefore, the Ginzburg-Landau-Devonshire

theory is strictly related to the soft-mode theory, and although the expansion parameters may

be obtained empirically, they can also be related to fundamental quantities accessible, for ex-

ample, from first-principles calculations [91].

2.3.1 The dynamical equation

As previously mentioned, we are interested here in small atomic displacements τ from the

paraelectric reference around the equilibrium configuration. Supposing such displacements are

small with respect to the lattice constant, so that it remains possible to work in the harmonic

approximation, and within the adiabatic approximation, in which it is considered that the

electrons are in their ground-state for any instantaneous ionic configuration, the energy of a

periodic crystal can be expanded in Taylor series around the equilibrium position up to the

second order as

Ee+i({Ra
k}) = E

(0)
e+i +

∑

akα

∑

bk′β

1

2

( ∂2Ee+i

∂τakα∂τ
b
k′β

)

τakατ
b
k′β (2.12)

where labels a and b refer to the unit cell, k and k′ to the atoms and α and β to the spatial

directions. By substituting Eq. (2.12) in the classical equation of motion for the nuclei, we

obtain

Mk
∂2τakα
∂t2

= −∂Ee+i

∂τakα
= −

∑

bk′β

( ∂2Ee+i

∂τakα∂τ
b
k′β

)

τ bk′β (2.13)

from which we can identify the force constants terms associated to a classical 3N harmonic

oscillators system. Specifically, the matrix of the interatomic force constants (IFCs) in real

space is defined as

Ckα,k′β(a, b) =
( ∂2Ee+i

∂τakα∂τ
b
k′β

)

(2.14)

For each atom in the periodic crystal there are 3 equations of motion of the type (2.13) with

general solution of the form:

τakα(t) = ηmq(kα)e
iq·Ra

eiωmt (2.15)

for which the vibrations or normal modes of the ions (phonons) are identified by the wave

vector q compatible with the Born-von Karman boundary conditions. Replacing (2.15) into

Eq. (2.13), we have

−Mkηmq(kα)ω
2
mq = −

∑

bk′β

Ckα,k′β(a, b)ηmq(k
′β)e−iq·(Ra−Rb) (2.16)

where we can recognize the Fourier transform of the force constant matrix element as

C̃kα,k′β(q) =
∑

b

Ckα,k′β(a, b)e
−iq·(Ra−Rb) (2.17)
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Therefore, the displacement of the ions is described by the following dynamical equation:

∑

k′β

C̃kα,k′β(q)ηmq(k
′β) =Mkω

2
mqηmq(kα) (2.18)

Equivalently, the normal modes are solution of the following eigenvalue problem:

∑

k′β

D̃kα,k′β(q)γmq(k
′β) = ω2

mqγmq(kα) (2.19)

with quantities connected as

D̃kα,k′β(q) = C̃kα,k′β(q)/
√

(MkMk′) (2.20)

This quantity is called the dynamical matrix.

The square root of the eigenvalues, ωmq, of the equation (2.19) are the phonon frequencies

of mode m at wave vector q with associated eigenvector γmq. The ηmq are usually referred to

as the phonon eigendisplacements. They are normalized such that < η|M |η >= 1, with mass

matrixM =Mδkk′. Accordingly, eigenvectors and eigendisplacements are related as γ =
√
Mη.

Notice that the phonon frequencies ω2 are the eigenvalues of the dynamical matrix and

are therefore directly related to the Hessian of the energetics (2.12). Accordingly, a positive

value of ω2 (real ω) produces a positive curvature of the energy surface meaning that the

considered atomic positions correspond to a minimum of energy. In this case, the reference

structure of interest is therefore stable. Conversely, if the reference structure is not stable (i.e.

it is not the ground-state), there are atomic distortions that allow to decrease the energy and

for which the energy curvature at the origin is negative. Such pattern of distortion therefore

formally yields a negative value of ω2 (imaginary ω) and corresponds to crystal instabilities. The

atomic displacements pattern associated to such unstable mode is thus the one that is expected

to bring the system to a lower energy configuration, as it produces a negative curvature in

the energy of the reference structure. However, the determination of the optimal distorted

structure is actually dependent on higher-order terms beyond the harmonic approximation.

The fourth-order term in the distortion determines the gain of energy in the resulting double-

well energy profile. Additionally, the coupling of the polar distortion to the strain must be

considered to reproduce the ground-state correctly. For instance, if the strain accompanying

the polar distortion is not taken into account in PbTiO3, the resulting lower energy polar

structure would be a rhombohedral phase with atomic displacements along the [111] direction

instead of the correct tetragonal phase with displacements along the [001] direction [84, 93].

Such important role of polarization-strain coupling is also played in CaTiO3 and (Ba,Ca)TiO3

compounds analyzed in this thesis.

The computation of phonons frequencies in the reference structure of interest, for instance

in the high-symmetry cubic phase of the ABO3 perovskites, is therefore a powerful tool to
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easily identify eventual structural instabilities.

2.3.2 Ferroelectric and Antiferrodistortive distortions

Referring to the simple cubic Brillouin zone (BZ) (Fig. 2.2), the most common instabilities

occurring in the ABO3 cubic perovskites are related to polar zone-center and non-polar zone-

boundary distortions. The first ones usually result in ferroelectricity (FE) like in BaTiO3,

while the latters involve antiferrodistortive (AFD) distortions that preserve inversion symmetry,

including in rotations and/or tilting of the oxygen octahedra and/or antiferroelectric (AFE)

distortion like in CaTiO3 and CaZrO3. The coupling between different such modes produces

additional distortions as allowed by symmetry consideration, like in the typical example of

BiFeO3 [76, 77, 78].

More in detail, the polar distortion is related to an unstable mode at the Γ point of the cubic

BZ (Fig. 2.2), giving rise to a dipole moment in each unit cell. The corresponding irreducible

representation (irrep) is Γ−
4 (notation refers to a system with origin at the B-site). If such

distortion is described as a cooperative motion around the center of mass of the system taken

as reference, it appears as an uniform displacements of cations against the oxygen octahedra, as

illustrated in Fig. 2.5(a). The ferroelectric distortion usually helps to optimize the coordination

environment of the B-site cation mostly to improve the B-O bonding, like in the case of

BaTiO3 and KNbO3 [82]. However, the FE distortion can also optimize the A-site coordination

environment if it involved a significant A-site component [81], like in the prototypical case of

PbTiO3 [83, 84] or CaTiO3 and in solid solutions such as K0.50Li0.50NbO3 [85] and (Ba,Ca)TiO3.

The latter analyzed in this thesis along with its parent compound CaTiO3.

Differently, the non-polar antiferrodistortive distortions are related to unstable modes at the

X , M and R points of the cubic BZ. In particular, distortions associated to oxygens rotations

arise from specific instabilities at M and R, giving rise to tilting of the BO6 octahedra relative

to one another as rigid corner-linked units [80], as illustrated in Fig. 2.5(b,c). Such tilting pro-

duces greater flexibility in the coordination of the A cation, while leaving the environment of

the B cation essentially unchanged [80]. In 1972, Glazer described such octahedral rotations in

terms of component tilts around the pseudo-cubic axes: the rotation around one of these axes

determines the rotation in the direction perpendicular to this axis, but successive octahedra

along this axis can rotate in either the same or opposite sense [80], giving rise to the so-called

“in-phase” and “out-of-phase” rotations respectively [Fig. 2.5(b,c)]. The associated irreps are

M+
3 and R+

4 respectively (notation refers to a system with origin at the B-site). Specifically,

“in-phase” rotations correspond to a phonon mode at the M point, while the “out-of-phase”

rotations to that at R. The symbolic description of these tilted systems is known as Glazer’s

notation and it is of the type a#b#c#, in which each letter refers in turn to rotations around the

[100], [010] and [001] direction of the pseudo-cubic reference. If the amplitude of the distortion

is the same around different axes, the same letter is repeated. The superscript # can take the
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Figure 2.5: Schematic visualization of the two main distortions in the ABO3 perovskites: (a)
polar distortion arising from the Γ point of the cubic BZ consisting in the opposite motion of cations
with respect to oxygens. (b) Antiferrodistortive distortion arising from the M point of the cubic BZ
consisting in “in-phase” rotation of oxygen octahedra around the z pseudo-cubic axis (a0a0c+ in the
Glazer’s notation [79]). (c) Antiferrodistortive distortion arising from the R point of the cubic BZ
consisting in “out-of-phase” rotation of oxygen octahedra around the z pseudo-cubic axis (a0a0c− in
the Glazer’s notation [79]).

Figure 2.6: Schematic diagram indicating the group-subgroup relationships between 15 tilt systems.
Adapted from Ref. [80].

value 0, + or − indicating no rotation or “in-phase” and “out-of-phase” rotations respectively.

Accordingly, supposing only one “in-phase” rotation around the [001] direction the applied no-

tation can be a0a0c+, while if such rotation is “out-of-phase” the notation changes to a0a0c−.

According to the group-theoretical analysis presented in Ref. [80], through the linear combi-

nation of such rotations taken separately around each axis, 15 possible perovskite structures

connected to the Pm3̄m-cubic reference can be obtained (including the cubic reference itself).

The diagram connecting the allowed subgroups to the Pm3̄m-group is shown in Fig. 2.6.

A quite general remark is the seeming incompatibility between ferroelectricity and octahe-
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dral rotations. Indeed, most ABO3 perovskites with t < 1 crystallize in non-polar structures

with octahedral rotations. The most common non-polar structure occurring is the Pnma.

Nevertheless, these perovskites are unstable to both ferroelectric and octahedral rotation dis-

tortions in their cubic phase at T = 0 K. As found out by Benedek and Fennie in Ref. [81], the

suppression of ferroelectricity is generally due to the rotations themselves. However, in certain

systems, like CaTiO3 and CaZrO3, the complementary A-site displacement is also necessary

Moreover, in the specific case of Pnma, together with the M+
3 and R+

4 modes related to the

two rotation patterns, the X+
5 involving the A-site cation anti-polar displacement appears al-

lowed by symmetry, although stable in the reference cubic phase . This mode only becomes

energetically favorable when both M+
3 and R+

4 are present. Such behavior has been classified

as “hybrid” improper-type [86, 87].

Hence, A-site displacements play an important role in the ferroelectric mechanisms of ABO3

materials. Although BaTiO3 is considered a prototypical example of ferroelectric compound

as being B-site driven with t > 1, there is a very small number of perovskites with t > 1.

Therefore, most perovskites not involving chemical mechanisms, such as second-order Jahn-

Teller distortion or lone pair active cations, would be A-site driven geometric ferroelectrics, if

their ferroelectric phases could be stabilized [81].

2.3.3 LO-TO splitting and Born effective charges

Following the initial picture of Cochran, nowadays, it is widely accepted that ferroelectricity

in perovskites results from a delicate balance between short-range (SR) repulsions, which favor

the cubic phase, and long-range (LR) electrostatic forces, which favor a ferroelectric state: a

ferroelectric instability takes place when the Coulomb interaction is sufficiently large to com-

pensate the short-range forces [61]. In fact, in ionic crystals and heteropolar semiconductors the

crystal lattice can be described as composed of charged ions interacting both with short-range

forces and long-range Coulomb forces. The associated dynamical matrix is obtained by direct

summation of short-range terms and long-range Coulomb terms. Specifically, the interatomic

force constants associated to the Coulomb interaction exhibit a dependence on the distance of

the type 1/d3, which is typical of a classical dipole-dipole (DD) interaction [142].

Actually, the dynamical matrix for polar crystal has a “non-analyticity” for q → 0, which

is responsible of the transverse-longitudinal splitting of optical phonons. In fact, in ionic crys-

tal, long-wavelength longitudinal (LO) and transverse (TO) optical modes exhibit different

frequencies and interaction with the macroscopic electric field involving the creation of electric

dipoles: in LO modes, the local field acts to reduce the polarization, producing an additional

restoring force which produces a stiffening of the mode. Conversely, in TO modes, the local

field acts to support the polarization producing the softening of the mode responsible for the

ferroelectric state [61]. Accordingly, the so-called “proper” ferroelectrics, such as BaTiO3, are

characterized to exhibit a ferroelectric ground-state due to a polar distortion which lowers the
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the energy of the nonpolar reference structure in zero macroscopic electric field, corresponding

to the unstable transverse optical (TO) mode. In turn, the longitudinal optical (LO) modes

are stable. Nevertheless, it is noteworthy to mention that a new class of ferroelectrics termed

“hyperferroelectrics” has been recently discovered. This new class of proper ferroelectrics also

exhibits the instability of a LO mode in addition to the TO mode instability, allowing the

polarization to persist in the presence of a depolarizing field [98].

A fundamental quantity monitoring the LR Coulomb interaction is the Born dynamical

effective charge Z∗
k,αβ, which is conventionally defined as the coefficient of proportionality at

the linear order between the macroscopic polarization per unit cell created in direction β and

the displacement of atoms k in direction α, times the unit cell volume Ω0 [99]:

Z∗
k,αβ = Ω0

∂Pβ

∂τk,α
(2.21)

In the cubic structure of the ABO3 perovskites (Fig. 2.2), the Z∗ tensors of the A and B

atoms are isotropic, as they sit in centers of cubic symmetry. The O atoms are located at the

face centers and the associated tensor thus has two inequivalent directions either parallel or

perpendicular to the cubic phase. These two independent elements are then labelled as O‖ and

O⊥ in reference to the change of polarization induced by an atomic displacement parallel or

perpendicular to the B-O bonds [61].

A general feature in perovskite oxides is that the Born effective charges can deviate substan-

tially from the value of the ionic atomic charge, revealing eventual mixed ionic and covalent

character of bonds and producing large spontaneous polarization even for small distortions.

Specifically, Z∗(B) and Z∗(O‖) are anomalously large, while Z∗(A) and Z∗(O⊥) are close to

their nominal ionic value. Exceptions concern A-cations having an active lone-pair like PbTiO3.

Moreover, a strong correlation occurs between Z∗(B) and Z∗(O‖) as well as Z
∗(A) and Z∗(O⊥),

due to the fact that a displacement of the oxygen in the direction parallel to the B-O bond

modulates the character of the bond itself, while a displacement in the perpendicular direction

modulates the A-O bond [100]. Specifically, anomalous Z∗(B) and Z∗(O‖) indicates that a

strong dynamic charge transfer takes place along the B-O bond under atomic displacements.

This is, in turn, related to the dynamical changes of hybridization between O 2p and B d states,

which determines the highly covalent character of the B-O bond [99].

The Born effective charge tensor so reflects the Coulomb interaction effect and can quantify

the LO-TO splitting. In fact, the interatomic force constant matrix can be separated into

two parts: the first is the Fourier transform of the IFC matrix previously introduced, but for

the specific case of q = 0, from which the interaction with the macroscopic the macroscopic

electric field has been excluded; the second contribution is an additional term which treats the

interaction with the eventual macroscopic field and can be expressed by means of the Z∗
k,αβ. It
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is shown in Ref. [61] that the IFC matrix takes finally the form

C̃kα,k′β(q → 0) = C̃TO
kα,k′β(q = 0) +

4π

Ω0

∑

β′(Z∗
k,β′αqβ′)

∑

α′(Z∗
k,α′βqα′)

∑

α′β′ qα′ǫ∞α′βqβ′

(2.22)

The difference between the LO and TO frequencies for an ionic crystal arises from the second

term in Eq. (2.22) and generally there is no correspondence between individual TO and LO

phonon modes.

A relevant quantity revealing the significant role of the soft TO mode in the ferroelectric

state is the mode effective charge defined as [142]

Z̄∗
TO =

∣

∣

∣

∣

∣

∑

k,β Z
∗
k,αβη

TO
k,β

√

< ηTO|ηTO >

∣

∣

∣

∣

∣

(2.23)

The Z̄∗ for the soft mode is usually the largest one, being originated essentially from the large

Born effective charges. This means that the soft mode will couple most strongly with the

electric field. This is the case for BaTiO3, CaTiO3 and CaZrO3 reported in Table 5.6 in the

results part. However, most compounds have a large Z̄∗ for more than one modes. Therefore,

these modes will be eventually mixed by the Coulomb interaction in determining the optimal

ferroelectric state [100].

2.3.4 Interatomic Force Constants

Ferroelectricity is a collective phenomenon. In fact, an isolated atomic displacement in bulk

cubic ABO3 perovskite does not lower the energy of the system and thus does not produce a

structural instability. When one atom is displaced, a restoring force is induced and brings it

back in its initial position. However, this atomic displacement simultaneously induces forces on

the other atoms. It is only the additional displacement of some other atoms in this force field

that can lower the total energy of the reference structure and produce therefore the structural

instability [61]. This feature can be understood in terms of the interatomic and “on-site” force

constants defining the force associated to the atomic displacements. In Sec. 2.3.1, we have seen

that the force F a
kα along the direction α acting on atom k in cell a due to a displacement τ bk′β

of atom k′ in cell b is defined trough the IFC matrix Ckα,k′β in real space as

F a
kα = −Ckα,k′β(a, b)τ

b
k′β (2.24)

For a pair of distinct atoms, the IFC can be interpreted as minus the harmonic spring constant

between them, so that negative values correspond to stable interactions, while positive values

imply destabilizing interatomic interaction. For the case of one single atom displacement, on

the contrary, the “on-site” force constants cannot be directly interpreted as the harmonic spring

constant. However, positive values correspond to stable interactions, while negative values to
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destabilizing ones. In the specific case of most ABO3 perovskites, the “on-site” force constants

are all positive and, therefore, it is only the cooperative motion of different atoms that can

decrease the energy of the crystal and generate an instability.

Moreover, the specific role of the dipole-dipole (DD) interaction can be separated from the

one of the short-range (SR) forces, pointing out that ferroelectric instabilities are the results

of destabilizing DD long-range interactions, sufficiently large to compensate the SR forces as

previously discussed [188].

The analysis of the IFCs thus helps to identify the energetically favorable coupling in the

displacements and elucidate the origin of the unstable phonon branches [102]. In this way, the

access to the IFCs can be considered as an useful tool to identify at atomistic level the key

mechanisms responsible for the final manifestation of macroscopic properties, resulting thus

complementary to the Landau approach. In this regard, a systematic analysis and comparison

of the dynamical properties is reported in the results part for the pure ABO3 compounds and

related solid solutions studied in this thesis.

2.4 Functional properties:

the Dielectric and Piezoelectric response

The interest in ferroelectric oxides for technological applications is not only related to their

switchable spontaneous polarization, but also to their polarization-related properties, such as

large dielectric and piezoelectric responses. Such features can be directly related to the pres-

ence of low-frequency polar phonons, which dominate the properties, producing large lattice

responses with high sensitivity to mechanical and electrical boundary conditions. In fact, certain

responses can diverge near the phase boundary (i.e. around the phase transition temperature)

as the corresponding soft-mode frequency goes to zero [92, 93].

2.4.1 Dielectric permittivity

For insulators, the static dielectric permittivity tensor is the coefficient of proportionality be-

tween the macroscopic displacement and electric fields in the linear regime [142], such as

Dmac,α =
∑

β

ǫαβEmac,β (2.25)

In general, ǫαβ includes both electronic ǫ∞αβ and ionic contributions taking the form [142]

ǫαβ = ǫ∞αβ +
4π

Ω0

∑

m

Sm,αβ

ω2
m

(2.26)
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where ωm is the phonon-frequency of the mode m and Sm,αβ is called mode-oscillator strength

tensor and defined as [142]

Sm,αβ =
∑

kα′

Z∗
k,αα′ηmq=0(kα

′)
∑

k′β

Z∗
k′,ββ′ηmq=0(k

′β ′) (2.27)

with Z∗ being the atomic Born effective charges and ηmq=0 the eigendisplacement associated

to the center-zone mode m. From 2.25 and 2.27, it is clear that compounds with TO modes

combining a high polarity, measured via the coupling of the dynamical charges Z∗ and TO

modes eigendisplacements, i.e. Z∗
k,αα′ηmq=0, and low frequency will exhibit a large dielectric

response. As previously introduced via the notion of mode effective charge (2.23), in ABO3

cubic perovskites, in fact, the soft mode is highly polar. In the ferroelectric phase, this gives

rise to a highly polar mode of low frequency that can strongly couple with an electric field and

be responsible for a huge dielectric coefficients. This is expressed, via the twice appearance of

the dynamical charges in the dielectric response formula [92].

2.4.2 Piezoelectricity

As already seen in the introductory chapter, the piezoelectric effect is the manifestation of a

linear coupling between electrical and mechanical fields [2]. When a piezoelectric material is

subjected to external mechanical stress, electric charges generate at the surface. Nevertheless,

despite its manifestation appears as surface effect, piezoelectricity is a bulk property [60].

The polarity associated to the created electric dipole depends on the direction of the applied

stress, that is compressive or tensile. Such effect relying on the conversion of mechanical to

electrical energy is the direct piezoelectric effect. The relationship between the induced electric

polarization P ind along the direction α and the applied stress σ is

P ind
α = dαβσβ (2.28)

where dαβ is the third-rank piezoelectric tensor [103], using the Voigt notation. Conversely,

when the material is subjected to external electric field, it is strained. Depending on the

direction of the electric field, the resulting strain can produce contraction or expansion of the

material. This effect is the indirect or converse piezoelectric effect. The associated mathematical

formulation is

ξβ = dαβEα (2.29)

where ξ is the strain tensor and the piezoelectric coefficients dαβ are the same as those in

Eq. 2.28 [103].

Two other equations are also used to link polarization to strain (in the direct effect) and
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stress to the electric field (in the indirect effect). Specifically, these equations are:

P ind
α = eαβξβ (2.30)

σα = eαβEβ (2.31)

where eαβ are also elements of a third-rank tensor. However, the eαβ and dαβ have different

units: eαβ is expressed in C/m2, while dαβ in pC/N . These two parameters are related to each

other via the elastic compliance [46].

Focusing on the eαβ piezoelectric coefficients (2.30), it can be decomposed into “clamped-

ion” and “internal-strain” contributions as in the following [104]

eαβ =
∂P ind

α

∂ξβ

∣

∣

∣

∣

η

+
∑

k

∂P ind
α

∂ηk,α

∣

∣

∣

∣

ξ

∂ηk,α
ξβ

(2.32)

where the first term corresponds to the piezoelectric response where the ionic coordinates η stay

unchanged and the second term to the one from the ionic displacements (the internal strain).

The final explicit form highlighting the relationship with the phonon modes is then

eα,µν = e0α,µν −
1

Ω0

∑

m

∑

k,β Z
∗
k,αβη

m
kβ

∑

k,β g
µν
kβη

m
kβ

ω2
m

(2.33)

where gµνkβ are parameters related to the internal strain coupling [92]. Similarly to the dielectric

response, Eq. (2.33) shows that the ionic contribution to the piezoelectric response is large if

the mode involved combines high polarity, via the Z∗
k,αβη

m
kβ term, and low frequency, via the

1/ω2
m contribution. Additionally, it can be larger if that mode in the ferroelectric state exhibits

strong coupling with strain, via the gµνkβη
m
kβ term.

Piezoelectricity being a property involving polar structures, all ferroelectric materials are

also piezoelectrics. In particular, perovskite oxide ferroelectrics, which exhibit high sensitivity

to changes in strain state, show highly-performing piezoelectric properties arousing big interest

for technological applications. As a main result obtained by Fu and Cohen [52], high piezoelec-

tric response in ferroelectric perovskites can be related to an easy rotation of polarization in

presence of applied electric field. In particular, the existence of intermediate polar phases in the

phase diagram, which link states with different orientations of the polarization and separated

by low energy barrier, appears as an important feature for the material to exhibit an enhanced

piezoelectric response.

A winning approach in optimizing and tuning the intrinsic piezoelectricity of the ABO3

perovskite structure is the mixing of different parent oxides via atomic substitution of the A

and/or B sites, leading to the formation of solid solutions of general formula (A,A′)(BB′)O3.

The most extensively studied and performing system at present is, in fact, the Pb(Ti,Zr)O3

solid solution: the first parent compound, PbTiO3, is ferroelectric with tetragonal phase, while

the second one, PbZrO3, exhibits an antiferroelectric (AFE) ground-state. However, the AFE
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is destabilized by the partial atomic substitution of Zr by Ti atoms, favoring a rhombohedral

phase for low concentration of Ti, and a tetragonal phase for higher Ti-concentration. At the

phase boundary, where the two phases meet (which occurs around 50%), an enhancement of

the piezoelectric response is observed. In fact, at that point in the phase diagram, an applied

electric field can easily induce a transition between the rhombohedral and tetragonal phases

going through monoclinic phases, with associated large strain response and rotation of polar-

ization [48, 49, 105]. A similar mechanism concerns BCTZ, of interest here. In fact the end

members in the compositional line of the phase diagram are (Ba,Ca)TiO3 and Ba(Ti,Zr)O3. In

(Ba,Ca)TiO3 the original rhombohedral ground-state of BaTiO3 is destabilized by the partial

atomic substitution of Ba by Ca, favoring a tetragonal phase, while Ba(Ti,Zr)O3 preserves the

rhombohedral ground-state for low Zr-concentration. At the proximity of the phase bound-

ary line of the ferro-ferro transition an outstanding piezoelectric response has been, indeed,

measured [44, 51, 106].

2.5 Conclusions

In this chapter we have had an excursus on the main features of bulk ABO3 perovskites with a

particular focus on the ferroelectric oxides. The aim was to provide all the necessary knowledge

and explanation of the main physical properties investigated in the results part for a clear

understanding of them. Necessary complementary explanations of the used method will be

introduced in the next chapter.

From such an overview, we can summarize a global background like in the following: the

perovskite structure adopted by this class of ABO3 compounds exhibits the tendency to struc-

tural distortions in order to improve the bonding properties between the cations and oxygens.

This behavior manifests in structural phase transitions as a function of temperature. Specif-

ically, polar and/or antiferrodistortive distortions are the ones producing the energy lowering

of the system with respect to the cubic reference structure, which is therefore unstable to such

pattern of distortions.

The microscopic origin of such instabilities relies on a delicate balance between short-range

and long-range interactions. In particular, most of these compounds are characterized by

peculiar charge transfers when the atoms are displaced because of the usual mixed ionic-covalent

character of their bonding, resulting in anomalous effective charges. Such behavior is responsible

for the important Coulomb interaction, able to compensate the stabilizing short-range forces

and to produce a structural ferroelectric instability.

The presence of an unstable phonon mode at the Γ point of the cubic Brillouin zone and

the associated negative curvature at the origin of the adiabatic energy surface for a given

pattern of polar atomic displacements are thus the fingerprint of the ferroelectric instability.

Similarly, instabilities at the edge points of the cubic BZ to anti-polar atomic displacements

and/or oxygens rotations are the fingerprint of the antiferrodistortive instabilities.
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Directly related to this ground-state behavior of ferroelectrics is the softening of the polar

mode with the temperature, which is responsible for the enhanced dielectric and piezoelectric

responses of these compounds. Additionally, ABO3 compounds allow it easily to tune and

optimize such functional properties by means of chemical modifications of the parent ABO3

system, such as via partial atomic substitutions at the A and/or B sites. Such kind of modifi-

cations of the physical properties when going from the parent ABO3 compound to (A,A′)BO3

and A(B,B′)O3 solid solutions will be analyzed in detail in the results part.



Part II

Method



Chapter 3

Density Functional Theory: a general

overview

In the previous chapter, we have seen that ABO3 ferroelectric perovskites are characterized

by complex mechanisms related to their specific structural and chemical properties leading to

competing interactions, which manifest in various functional properties. Therefore, accurate

and quantitative insight into such properties is essential for the understanding of the observed

behavior and optimization of properties. In this respect, first-principles calculations based on

Density Functional Theory (DFT) have yielded several breakthroughs in the understanding of

the underlying physics in such a systems.

DFT is likely the most commonly used approach for the study of the electronic structure,

as it determines the ground-state energy of the system by minimizing the one-body density

functional. The electronic charge density plays the central role. It succeeds in describing

structural and electronic properties for a wide class of materials. Additionally, complementary

implementations, like the calculation of the polarization via the Berry phase formalism and

the merging with the perturbation theory (DFPT), have expanded its range of application and

success. Moreover, DFT is computationally efficient and well implemented in many different

codes.

In the following we provide a general overwiev of DFT and related implementation used all

along the present thesis.

3.1 Many-body Schrödinger equation and the adiabatic

approximation

The peculiarity of density functional approach in its practical implementation is to rely on one-

electron Schrödinger equation with a local effective potential in the study of the ground-state

properties of the many-electron systems.

Considering a system of N electrons, the time-independent Schrödinger equation takes the

43
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form

ĤΨ = EΨ (3.1)

where Ĥ is the Hamiltonian describing all the interactions of the system, E is the total energy

of the system and Ψ is the many-body wave function, which depends on the position of each

electron and each nucleus in the system. The full Hamiltonian for the system of electrons and

nuclei can be expressed as

Ĥ = − ~
2

2me

∑

i

∇2
i −

∑

I

~
2

2MI
∇2

I +
1

2

∑

i 6=j

e2

| ri − rj |
+

1

2

∑

I 6=J

ZIZJe
2

| RI −RJ | −
∑

iI

ZIe
2

| ri −RI |
=

= T̂e + T̂N + V̂ee + V̂NN + V̂eN (3.2)

where T̂e and T̂N refer to kinetic energies of electrons and nuclei respectively, and V̂ee, V̂NN ,

V̂eN are the interaction potential terms; indices i, j and I, J refer to the electrons and to the

nuclei respectively.

If we consider the mass of nuclei to be large in comparison to that of electrons, so that the

inverse term 1/MI can be regarded as “small”, then the nuclear kinetic operator can be ignored

in the total Hamiltonian (3.2) and the nuclei can be considered as fixed at the positions R.

Hereafter R is a shorthand notation indicating the set of nuclear coordinates {RI}. Similarly,

the shorthand notation r indicates the set of electrons coordinates {ri}. This is the so-called

Born-Oppenheimer or adiabatic approximation. Then, the kinetic energy of the nuclei can be

used to determine the lattice dynamics in the harmonic approximation.

Within the adiabatic approximation, the so-called electronic adiabatic Hamiltonian, Ĥe(R; r),

can be written as

Ĥe(R; r1, r2, . . . , rN) = T̂e + V̂ee + V̂NN + V̂eN = T̂e + V̂ (R; r1, r2, . . . , rN) (3.3)

where the variable R appears as parameter, rather than as a quantum dynamical observable.

The Schrödinger equation within the adiabatic approximation becomes

Ĥe(R; r1, r2, . . . , rN)Ψn(R; r1, r2, . . . , rN) = En(R)Ψn(R; r1, r2, . . . , rN) (3.4)

where the electronic wave function Ψn(R; r1, r2, . . . , rN) and eigenvalues En(R) depend on the

parameter R and the subscript n summarizes the electronic quantum numbers. The eigenvalues

En(R) define the so-called adiabatic potential-energy surface.

In order to solve this many-body problem of electrons, that involves such a large number of

particles and the difficult electron-electron interaction, further approximations must be applied.
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3.2 The Hohenberg-Kohn theorem

Let’s consider a system of N interacting electrons, without spin polarization for the moment.

Starting from previous Eq. 3.3, it is convenient to decompose Ĥe into the sum of an “internal”

and an “external” part, which refer to the kinetic energy of electrons plus the electron-electron

interactions and the electronic-nuclear Coulomb interactions respectively. The nucleus-nucleus

interaction V̂NN can be ignored as it is not relevant for the description of the electrons problem.

With rearrangement of notations, we have

Ĥe = Ĥint + V̂ext (3.5)

where Ĥint = T̂e + V̂ee and V̂ext = V̂eN . V̂ext is the only variable of such many-electrons prob-

lem. The Hohenberg-Kohn theorem state that there is a one-to-one correspondence between

the ground-state density of a N electron system and the external potential acting on it [107]:

the electronic density n(r) in the ground-state is a functional of the external potential, n[V (r)],

and, conversely, the external potential is a unique functional of n(r), V [n(r)] [108]. The demon-

stration of this theorem presented in their seminal paper [108].

A straightforward consequence of the Hohenberg-Kohn theorem is that the ground-state

energy is uniquely determined by the ground-state charge density, or, equivalently, the total

energy of the system can be written as a functional of the density:

E[n(r), V̂ext(r)] = T [n(r)] + V̂ee[n(r)] +

∫

dr n(r)V̂ext(r) =

= F [n(r)] +

∫

dr n(r)V̂ext(r) (3.6)

where F [n(r)] is a universal functional of n(r) containing the kinetic energy and the electron-

electron interactions, i.e. it does not depend on V̂ext. By applying the variational principle to

the energy functional (3.6), it result that the ground-state energy is minimized by the ground-

state charge density, and its minimum gives the exact ground-state energy of the many-body

electron system.

In this way, DFT exactly reduces the N interacting particles problem to the determination

of a function n(r) of three-coordinates. However, some approximations are required to estimate

the unknown functional F [n(r)].

3.3 The Kohn-Sham equations and the Effective one-

electron potential

In 1965 Kohn and Sham [109] developed an approximation scheme to exploit the Hohenberg-

Kohn theorem by including exchange and correlation effects. They proposed to replace the
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many-body electron problem by an alternative fictitious independent-particles problem. The

concept is to map the system of interacting particles into a set of fictitious particles moving in

an effective potential, with the same ground-state electronic density.

Within this framework, the density of the system is defined by the one-electron wave function

ψi(r) as

n(r) =
occ
∑

i

|ψi(r)|2 (3.7)

The total electronic energy in term of the density n(r) is written

E[n] =

∫

dr n(r)V̂ext(r) +
e2

2

∫ ∫

drdr′
n(r)n(r′)

|r− r′| + Ts[n] + Exc[n] (3.8)

where the first integral represents the interaction between the electrons and the fixed ions,

the second integral term represents the Coulomb interaction energy of an electronic cloud of

density n(r) (Hartree energy EHartree[n]), Ts represents the kinetic energy of the non-interacting

electrons and Exc is the exchange and correlation energy, that contains all the electron-electron

interaction going beyond the classical Coulomb interaction.

For a given set of atomic positions, the ground-state is determined via the minimization of

Eq. (3.8) under the orthonormalization constraints

< ψi|ψj >= δij (3.9)

This provides the total energy of the system and the associated electronic density.

In practice, the variational calculation of the functional (3.8) with respect to n(r) leads to

the single-particle Schrödinger-like equation of the type

[

−~
2∇2

2me
+ V̂eff (r)

]

ψi(r) = ǫiψi(r) (3.10)

where ǫi and Ψi(r) are the so-called Kohn-Sham eigenvalues and eigenfunctions respectively.

V̂eff is the effective one-electron potential, also called self-consistent potential [141], associated

to the Hohenberg-Kohn ground-state charge density of the interacting many particles potential:

V̂eff(r) = e2
∫

dr′
n(r′)

|r− r′| + V̂eN(r) + V̂xc(r) (3.11)

where the extra term V̂xc(r) is called exchange-correlation potential and is given by the func-

tional derivate

V̂xc(r) =
∂Exc[n]

∂n(r)
(3.12)

Equations (3.10), (3.11), (3.7) have to be solved in a self-consistent way: one starts by

guessing a certain n(r) in order to construct V̂eff(r), and then finds a new n(r) from (3.10)



CHAPTER 3. DENSITY FUNCTIONAL THEORY 47

and (3.7). The initial and final density are then mixed by means of appropriate converging

schemes, until self-consistency is reached (i.e. when the initial and final densities are different

by less than a certain threshold).

Once the Kohn-Sham orbitals and energies have been determined, the exact total ground-

state energy (3.8) of the interacting electronic system can be written as

E0[n] =

occ
∑

i

ǫi −
∫

dr n(r)V̂xc(r)− EHartee[n] + Exc[n] (3.13)

The Kohn-Sham equations are standard differential equations with a local effective poten-

tial V̂eff(r). Any difficulty in the resolution has been confined to the choice of a reasonable

exchange-correlation functional Exc[n]. Conceptually, the Kohn-Sham equations determine the

electron density and the ground-state energy. However, the eigenvalues ǫi in (3.10) are formal

Lagrange multipliers within the variational principle and don’t have any physical meaning.

The identification of ǫi with occupied and unoccupied one-electron states is however often per-

formed and empirically found to give a good results in many cases for the occupied states. On

the contrary, as DFT is a ground-state theory, the description of excited states is rather poor.

Indeed, on the one hand, the general result of DFT calculations is to underestimate the energy

band gap in semiconductors and insulators, independently on the exchange-correlation func-

tional V̂ex used in (3.11). On the other hand, the dispersion curves of valence and conduction

bands are described with good accuracy in many cases. However, the accuracy and capability

of DFT vary strictly as a function of the investigated physical system.

3.4 Approximations for the

Exchange-Correlation energy

3.4.1 LDA

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy Exc[n],

which is expressed as a functional of the density. Even though the exact definition of the

functional Exc[n] is very complex, the first suggestion came from Kohn and Sham themselves

[109]. Their ansatz was that the exchange-correlation Exc[n] can be reasonably approximated

as a local or nearly local functional of the density. They proposed the so-called local density

approximation, better known as LDA, which is particularly justified in systems with reasonably

slowly varying spatial density n(r). They approximated the functional Exc[n] with a function

of the local density n(r) writing down

ELDA
xc [n] =

∫

dr n(r)ǫxc(n(r)) (3.14)
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where ǫxc(n(r)) is the exchange-correlation energy per particle for a homogeneous electron

gas with density n at the point r. The exchange part can be obtained analytically from the

Hartree-Fock technique and it scales like [109]

ǫx = −3

4
e2(3π2)1/3[n(r)]1/3 (3.15)

The expression of correlation energy has been estimated by means of different numerical

parametrizations [110, 109, 111, 112, 113, 114, 115], all of which lead to very similar total-

energy results [116].

As mentioned before, the LDA appears to give a well defined global minimum for the energy

of a non-spin-polarized system of electrons in a fixed ionic potential. Therefore, subsequent

works reformulated density functional theory in the local density approximation for spin depen-

dent systems, [117, 118]. Such extension is known as Local Spin Density Approximation (LSDA).

Traditional DFT is based on two fundamental theorems, according to which the ground-state

wave function is a unique functional of the electronic charge density and the ground-state energy

functional is stationary with respect to variations in the charge density. LSDA formalism can

include all these results in spin dependent cases by replacing the scalar effective one-electron

potential V̂eff in equation (3.11) with the spin dependent effective single-particle potential

V̂ eff
σ (r) = e2

∫

dr′
n(r′)

|r− r′| + V̂eN(r) + V̂ xc
σ (r) (3.16)

Here, the charge density n(r) is intended as the sum of spin densities n↑(r) and n↓(r) with

nσ(r) =
occ
∑

i,σ

|Ψi,σ(r)|2 (3.17)

where Ψi,σ(r) are the spin dependent Kohn-Sham one electron orbitals and the sum runs over

all occupied states with spin σ. To obtain a reasonable approximation for V̂ eff
σ (r), the external

potential V̂eN(r) is considered as slowly varying and the electronic system dived into small

boxes. Within the box centered at r, the electrons can be considered to form a spin polarized

homogeneous electron gas of local density n(r) and the spin dependent exchange-correlation

potential is given by

V̂ xc
σ (r) =

∂(n(r)ǫxc(n↑, n↓))

∂nσ(r)
(3.18)

Accordingly, the exchange-correlation energy functional can be still written in the following

form

ELSDA
xc [n↑, n↓] =

∫

dr n(r)ǫxc(n↑(r), n↓(r)) (3.19)

For weakly correlated materials, such as semiconductors and simple metals, the LDA ac-

curately describes structural and dynamical properties: the correct structure is usually found
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to have the lowest energy, while bond lengths, bulk moduli, and phonon frequencies are accu-

rate to within a few percent [119]. However, such accuracy appears in some cases as a serious

limitation. In perovoskite oxides, for instance, the ferroelectric instability is very sensitive to

pressure, and thus to the structural parameters. Additionally, LDA tends to underestimate

energy band gap in semiconductors and insulators by about 40% [120], and to overestimate

cohesive energies and bond strengths. The latter and its inability to properly describe strongly

correlated systems are the LDA biggest limitations. Therefore, gradient corrections to the LDA

have been developed.

3.4.2 GGA

There have been several attempts to construct improved functionals in order to go beyond

the local density approximation. A first alternative, but connected approach, have been the

Generalized-gradient approximations, better known as GGAs. The physical ideas that are the

basis for the construction of GGAs is to build a “semi-local” functional depending both on

the density at r and on its gradient. Accordingly, starting from the LSD approximation, the

exchange-correlation functional Exc[n] within GGAs is approximated by the form [121, 122, 123]

EGGA
xc [n↑, n↓] =

∫

dr f(n↑, n↓,∇n↑,∇n↓) (3.20)

where f is a parametrized analytic functions.

GGAs usually improve the accuracy of the local spin-density (LSD) approximation in elec-

tronic structure calculations, namely provide a better description of total energies, cohesive

energies, energy barriers and structural properties by correcting bond strengths and lengths

with respect the basic local density functionals. Different derivations and formal properties of

various GGAs have been developed. For detailed descriptions of different GGA and meta-GGA

functionals refer to Refs. [121],[124]-[130]. Among them, the most known and used is the

one designed by Perdew, Burke and Ernzerhof in 1996, the so-called PBE functional, in which

all parameters improving the LSD approximation are fundamental constants. Derivation and

properties of such functional are presented in their famous paper [122]. The general form for

the PBE exchange-correlation functional including nonlocality is

EGGAPBE
xc [n↑, n↓] =

∫

dr nǫunifx (n)Fxc(rs, ζ, s) (3.21)

where n is the electron density, ǫunifx is the exchange energy of a uniform electron gas (3.15) and

Fxc(rs, ζ, s) is the enhancement factor over local exchange [121], with rs the local Seitz radius

(n = 3/4πr3s), ζ = (n↑ − n↓)/n the relative spin polarization and s = |∇n|/[2(3π2)1/3n4/3] a

dimensionless density gradient [122].

However, cases in which GGAs, and so the PBE, overcorrect LSD predictions, such as lattice

constants, could occur [131]. As for the previous case of LDA, such inaccuracy can be dramatic
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especially for ferroelectrics which are extremely sensitive to volume. The worst results concern

volume and strain of relaxed tetragonal PbTiO3 [132]. A considerable improvement for solid

systems has been achieved via the so-called “WC” functional constructed by Wu and Cohen in

2006. Using the PBE correlation functional, they reformulated the exchange part of the PBE

enhancement factor (3.21) relying on the fact that solid systems usually have valence electron

density varying more slowly than electron densities of atoms and molecules. In their work

[133], they show that WC predicts highly accurate volumes, strains, and atomic displacements,

whereas LSD and PBE underestimate and overestimate these values, respectively. In particular,

the recovered agreement with experiments for the case of PbTiO3 is surprising. Moreover, they

also show results for relaxed rhombohedral BaTiO3.

According to the high capability in reproducing properties of ferroelectric materials, we used

therefore the GGA-based WC functional for all our calculations.

3.5 Practical Implementation

Despite the Adiabatic Approximation and the Density Functional Theory reduces the many-

body problem to an equivalent effective single-electron problem in frozen-in configurations of

nuclei, there still remains the task of treating a huge number of non-interacting electrons within

the static potential of a huge number of nuclei. Two associated difficulties thus arise: a wave

function should be calculated for each electron; since each electronic wave function extends

over the entire solid, the basis set required to expand each wave function is infinite [116]. Such

difficulties are overcome in periodic systems, like the ones of interest here, satisfying the Bloch’s

theorem.

The ABINIT package

Various first-principles based on DFT have been implemented in different codes and softwares.

The one used to obtain all the results in this thesis is ABINIT, a package whose main pro-

gram allows to calculate the ground-state total energy, charge density and electronic structure

of electrons-ions systems within Density Functional Theory, using pseudopotentials (or PAW

atomic data) and a plane waves basis. Additionally, ABINIT also allows to perform optimization

of the geometry according to the definition of forces and stresses in the DFT; implementation

for molecular dynamics simulations are also available. Moreover, thanks to an advanced im-

plementation of the Density Functional Perturbation Theory DFPT, it is possible to calculate

phonons at every point within the Brillouin zone of the analysed structure as well as to calculate

Born effective charges, dielectric tensors, piezoelectric tensors, polarization. The latter quantity

is attainable with the implementation of the Berry phase theory. Many other properties are

achievable by means of other developments. In addition to the main ABINIT code, different

utility programs for post-processing treatment of data are provided. Detailed descriptions can
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be found in Refs. [156, 157, 158, 159].

In the following basic descriptions of some practical implementations for the usage of DFT

as well as of DFPT as exploited by ABINIT are provided.

3.5.1 Bloch’s Theorem and Plane wave basis set

For infinite periodic solids obtained by imposing periodic boundary conditions, the electronic

wave functions ψn,k(r) can be related to the product of a plane wave function of wave vector

k and a cell periodic function un,k(r)

ψn,k(r) =
1√
NΩ0

eik·run,k(r) (3.22)

where N is the number of unit cells repeated in the Born-von Karman periodic box, and Ω0

is the volume of the unit cell. Specifically, un,k(r) satisfies the lattice periodicity condition:

un,k(r) = un,k(r + R) for any R belonging to the Bravais lattice. As a consequence, un,k(r)

can be expanded in terms of a discrete set of plane waves whose wave vectors G are vectors

belonging to the reciprocal lattice of the crystal and defined by G ·R = 2πm with m integer

(i.e. discrete Fourier transform). The electronic wave function thus can be expanded as

ψn,k(r) =
1√
NΩ0

∑

G

cn,k(G)ei(k+G)·r (3.23)

An infinite plane wave basis set is required to expand ψn,k(r). However, in practical calculations,

the expansion can be truncated to include only plane waves that have a kinetic energy smaller

that a chosen “cut-off energy”, namely ~
2

2m
|(k+G)|2 ≤ Ecut. Such truncation introduces a

computational error. However, the amplitude of such error can be reduced by increasing the

value of Ecut until the calculated total energy reaches a chosen convergence.

Similarly, the accuracy of calculations also rely on the sampling of the Brillouin zone as the

use of the Bloch functions is associated with integration over the periodic k-space. In principle,

electronic wave functions for an infinite number of k points should be calculated However,

electronic wave functions at k points that are close to each other are mostly identical, so that it

possible to represent ψn,k(r) over a region of k space by that at a single k point. In such a way

calculations are performed for a finite number of k points [116]. As a consequence, different

sampling methods have been developed among which the so-called “Monkhorst-Pack” is the

most used [134, 135, 136]. Of course, the total energy will converge as the density of the k

points increases, and the error due to such sampling then approached zero, like in the case of

the cuff-energy for the plane waves basis set expansion. Therefore, specific convergence tests

on the k point sampling and Ecut have to be performed for any compound of interest.

3.5.2 Pseudopotential approximation
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Figure 3.1: Schematic illustration of
all-electron (solid lines) and pseudoelec-
tron (dashed lines) potentials and their
corresponding wave functions. The ra-
dius at which all-electrons and pseu-
dopotential values match is designated
rc. From Ref. [116].

Despite the computational advantages associated to the

plane waves basis, two major difficulties, one related to

the description of tightly bounded core states and the

other to the rapid oscillations of the wave functions of

the valence electrons in the core region, have required the

development of a joint approximation: the pseudopoten-

tial.

At the basis of such approximation, there is a first

observation referred as “frozen-core” approximation, ac-

cording to which the physical and chemical properties

of solids are usually essentially dependent on the va-

lence electrons, while the core electrons, which do not

participate to the chemical bonding, are only slightly

affected by the atomic environment. The pseudopoten-

tial approximation exploits this by removing the core

electrons and by replacing them and the strong ionic

potential by a fictitious potential acting on valence elec-

trons only such that the valence wave functions remain

unchanged beyond a given cutoff radius rc and are re-

placed by smoothly varying function inside the core region [116, 61], as illustrated in Fig. (3.1).

In practice, in order to further validate the frozen-core and pseudopotential approximations,

electrons from deep energy levels can be treated as valence electrons. This is what has been

done for the study of BaTiO3, CaTiO3, CaZrO3, and BaZrO3 (see Sec. 4).

As seen before, the total energy of the electronic system is a function of the electron density

(3.7). Therefore, it is necessary that outside the core region the pseudo wave functions and real

wave functions are identical both in their spatial dependences and in their absolute magnitudes,

so that the two wave functions generate identical charge densities. Pseudopotentials preserving

the charge are termed norm conserving. A list of references related to different pseudopotential

developments can be found in the review of Payne et al. [116].

The typical method for generating an ionic pseudopotential is to perform at first all-electron

calculations for an isolated atom and then, an analytical pseudopotential is fitted in order to re-

produce the real potential and wave functions outside the cutoff radius. It is then expected that

such potential is transferable to the solid systems, within which the frozen-core approximation

remains valid. The most general form for a pseudopotential is

Vps =
∑

lm

|lm > Vl < lm| (3.24)

where |lm > are the spherical harmonics and Vl is the pseudopotential for angular momentum l

[116]. Vps using the same potential for all the angular momentum is called local pseudopotential,
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while angular momentum dependent Vps is called nonlocal pseudopotential. The “Optimized

Norm-Conserving” pseudopotentials [137] used for the calculations in this work belong to the

nonlocal type.

VCA

The application of first-principles calculations to the study of disordered alloys and solid so-

lutions generally requires the use of the supercell approximation, namely to study one or

more atomic configurations in large cells with imposed periodic boundary conditions within

the framework of Bloch’s theorem. Such calculations, however, tend to be computationally

very demanding. In this respect, a less expensive approach has been developed to treat such

complex systems, that is the virtual crystal approximation (VCA). Within this approximation,

one studies a crystal with the primitive periodicity, but composed of “fictitious virtual” atoms

that interpolate between the behavior of the real atoms occupying alternatively the same site

[138]. By its nature, VCA is closely related to the pseudopotential approximation. In its general

formulation, the VCA operator equation for any type of pseudopotential is formally defined by

averaging the pseudopotentials of the combined homovalent elements, i.e. C1−xDx, on a specific

atomic site I as [138, 139]

V I
ps[x] = (1− x)V C

ps + xV D
ps (3.25)

where V C
ps and V D

ps are the pseudopotentials of the combined C and D atoms and x the mixing

concentration at the site I.

Pioneering works [138, 139, 140] have demonstrated good accuracy for the VCA in some fer-

roelectric perovskite solid solutions, such as Pb(Zr0.50Ti0.50)O3 and BaxSr1−xTiO3. Relying on

these observations, we performed first-principles calculations using the VCA on the solid solu-

tions of interest in this thesis, such as (Ba,Ca)TiO3 and Ba(Ti,Zr)O3. However, the comparison

with complementary calculations based on the use of supercells and available experiments have

revealed severe limits to the applicability of the VCA for these systems. Detailed results and

explanations will be provided in specific sections of the results part.

3.6 Merging DFT and Perturbation Theory

As seen so far, many of the properties of interest in crystalline solids are related to the derivative

of the total energy E(R) with respect to adiabatic perturbations (mainly atomic displacements,

electric field and strain) around the equilibrium configuration. Within DFT, the simplest

method is a direct approach, called finite differences, in which a finite amplitude perturbation

is frozen into the system and the perturbed system is then compared to the unperturbed one.

Despite being rather straightforward computationally, such approach suffers from limitations

mostly related to incommensurability of some perturbations with the periodic lattice and limited

size used cells [141, 142, 143]. The merging of the perturbation theory and DFT, instead, has
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brought several advantages in the description and treatment of perturbations. Such a method,

known as density functional perturbation theory (DFPT) had been first reported by Baroni,

Giannozzi, and Testa [141] for linear response to atomic displacements and then generalized to

other perturbations [144, 145, 146, 147]. A different algorithm, based on a variational principle,

has been then proposed by Gonze et al, generalizing previous formulations by making use of

the 2n+1 theorem [148, 149, 150].

3.6.1 Perturbative development

Within the perturbation theory, the basic idea is that all quantitiesX (X = H,En, ψn(r), n(r), etc.)

can be expanded in terms of a small external perturbation λ around the unperturbed state X(0),

as follow [149, 150]

X(λ) = X(0) + λX(1) + λ2X(2) + λ3X(3) + . . . (3.26)

where

X(n) =
1

n!

dnX

dλn

∣

∣

∣

λ=0
(3.27)

Focusing on the change in the unperturbed Hamiltonian of the system H(0) due to an exter-

nal perturbative potential, namely H(λ) = H(0) + Vext(λ), the perturbed Schödinger equation

to be solved takes the form

H(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 ∀λ (3.28)

with the normalization condition

〈ψn(λ)|ψm(λ)〉 = δnm (3.29)

Inserting in Eq. (3.28) the expansion (3.26) as a function of λ, i.e.

H(λ) = H(0) + λH(1) + λ2H(2) + λ3H(3) + . . .

|ψn(λ)〉 = |ψ(0)
n 〉+ λ |ψ(1)

n 〉+ λ2 |ψ(2)
n 〉+ λ3 |ψ(3)

n 〉+ . . .

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n + . . .

and grouping terms with the same power of λ result in a set of equations of the type

for λ0 H(0) |ψ(0)
n 〉 = E

(0)
n |ψ(0)

n 〉
for λ1 H(0) |ψ(1)

n 〉+H(1) |ψ(0)
n 〉 = E

(0)
n |ψ(1)

n 〉+ E
(1)
n |ψ(0)

n 〉
for λ2 H(0) |ψ(2)

n 〉+H(1) |ψ(1)
n 〉+H(2) |ψ(0)

n 〉 = E
(0)
n |ψ(2)

n 〉+ E
(1)
n |ψ(1)

n 〉+ E
(2)
n |ψ(0)

n 〉
· · ·

Similarly, introducing the perturbative expansion of |ψn(λ)〉 in the normalization condi-
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tion (3.29), the orthonormality relationships for the perturbed wave functions are

for λ0 〈ψ(0)
n |ψ(0)

n 〉 = 1

for λ1 〈ψ(0)
n |ψ(1)

n 〉+ 〈ψ(1)
n |ψ(0)

n 〉 = 0

for λ2 〈ψ(0)
n |ψ(2)

n 〉+ 〈ψ(1)
n |ψ(1)

n 〉+ 〈ψ(2)
n |ψ(0)

n 〉 = 0

· · ·

Previous expansions for the Schödinger equation and normalization condition then become,

at generic order i [148]

i

i
∑

j=0

(H −En)
(j) |ψ(i−j)

n 〉 = 0 (3.30)

i
∑

j=0

〈ψ(j)
n |ψ(i−j)

n 〉 = 0, i 6= 0 (3.31)

In order to determine ith-order correction to the energies, it is necessary to project on

〈ψ(0)
n | the Schödinger equation of the ith-order of interest and to make use of the associated

relationships between the perturbed wave functions obtained from the normalization condi-

tion. Moreover, it is worthy remembering that the Hamiltonian is Hermitian. Proceeding, for

instance, for the first- and second-order derivatives, we obtain

E(1)
n = 〈ψ(0)

n |H(1) |ψ(0)
n 〉

E(2)
n = 〈ψ(0)

n |H(2) |ψ(0)
n 〉+ 〈ψ(0)

n |H(1) −E(1)
n |ψ(0)

n 〉

Therefore, it results that to obtain the 1st-order correction to the energy, only the knowledge

of the 0th-order wave function is required; to obtain the 2st-order correction to the energy, the

0th- and 1st-order wave functions are required.

Alternatively, it is possible to develop as a function of λ the following equation

〈ψn(λ)|H(λ)−En(λ) |ψn(λ)〉 = 0 ∀λ (3.32)

Developing (3.32) up to the second-order perturbative expansion, another expression for

E
(2)
n is obtained, that is

E(2)
n = 〈ψ(0)

n |H(2) |ψ(0)
n 〉+ 〈ψ(1)

n |H(0) − E(0)
n |ψ(1)

n 〉+ (3.33)

+ 〈ψ(0)
n |H(1) −E(1)

n |ψ(1)
n 〉+ 〈ψ(1)

n |H(1) − E(1)
n |ψ(0)

n 〉

The general expression of the perturbation expansion, which allows to isolate specific ith-
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order corrections is [148]

i
∑

j=0

i
∑

k=0

〈ψ(j)
n | (H − En)

(i−j−k) |ψ(k)
n 〉 = 0 (3.34)

and the extension of the previous observation is the “2n + 1 theorem”, which states that the

(2n+1)-order derivative of the eigenenergies can be calculated from the knowledge of the wave

function and its derivatives up to order n [148, 149]. Specifically, from the wave functions up

to order n, it is possible to construct the derivatives of the energy up to order 2n + 1. The

search for the wave functions of order n can be achieved either by minimization of the energy

functional of order 2n under the orthonormality constraints (3.31) or by direct resolution of

Eqs. (3.30) [150].

3.6.2 Density Functional Perturbation Theory

Having defined the general expression of the equations within the perturbation theory, the

application to the DFT formalism is straightaway. In fact, in previous sections, we have seen

that within DFT the search for the ground-state of the electronic system can be achieved either

by the minimization of the electronic energy functional with respect to the Kohn-Sham wave

functions |ψn〉

Eel{ψ(0)
n } =

occ
∑

n

〈ψ(0)
n | (T + Vext)

(0) |ψ(0)
n 〉+ E(0)

xc [n
(0)] (3.35)

under the constraint 〈ψ(0)
n |ψ(0)

m 〉 = δnm, or by the self-consistent solution of Eq. (3.10), which

can be rewritten in a compact formulation, as

H(0) |ψ(0)
n 〉 = [−1

2
∇2 + V

(0)
ext + V (0)

xc ] |ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (3.36)

with the exchange-correlation potential V
(0)
xc (r) = δExc[n(0)]

δn(r)
, and n(r) =

∑

n ψ
∗
n(r)ψn(r).

Therefore, the perturbed electronic energy functional to be minimized is

Eel{ψn(λ)} =

occ
∑

n

〈ψn(λ)|T + Vext(λ) |ψn(λ)〉+ Exc(λ)[n(λ)] (3.37)

under the constraint (3.29), 〈ψn(λ)|ψm(λ)〉 = δnm, or, alternatively, the perturbed Schödinger

equation to be solved is

H(λ) |ψn(λ)〉 = [−1

2
∇2 + Vext(λ) + Vxc(λ)] |ψn(λ)〉 = En(λ) |ψn(λ)〉 (3.38)

with Vxc(r;λ) =
δExc[n(λ)]

δn(r)
.
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Then, the obtained in DFPT for the 1st derivative of the electronic energy is

E
(1)
el =

occ
∑

n

〈ψ(0)
n | (T + Vext)

(1) |ψ(0)
n 〉+ d

dλ
Exc[n

(0)]
∣

∣

∣

λ=0
(3.39)

and the 2nd order derivative arises from the minimization with respect to |ψ(1)〉 of the following
expression

E
(2)
el {ψ(0);ψ(1)} =

occ
∑

n

[〈ψ(1)
n | (T + Vext)

(1) |ψ(0)
n 〉+ 〈ψ(0)

n | (T + Vext)
(1) |ψ(1)

n 〉] + (3.40)

+

occ
∑

n

[〈ψ(0)
n | (T + Vext)

(2) |ψ(0)
n 〉+ 〈ψ(1)

n | (H − En)
(0) |ψ(1)

n 〉] +

+
1

2

∫ ∫

δ2Exc[n
(0)]

δn(r)δn(r′)
n(1)(r)n(1)(r′)drdr′ +

+

∫

d

dλ

δExc[n
(0)]

δn(r)

∣

∣

∣

λ=0
n(1)(r)dr +

1

2

d2Exc[n
(0)]

dλ2

∣

∣

∣

λ=0

Detailed descriptions, formulas, implementations and applications are provided in Refs. [141,

148, 149, 150, 142, 143, 152, 119, 151].

3.6.3 Accessible ground-state quantities

By focusing on quantities associated with first- and second- order derivatives of the total energy

E with respect to atomic positions Rk, homogeneous strain ξ and homogeneous electric field

E perturbations, all the functional properties of interest can be defined, namely forces F ,

polarization P , stress σ, dynamical Born effective charges Z∗, interatomic force constants C,

indirect clamped-ion piezoelectric tensor e0, optical dielectric tensor ǫ∞, clamped-ion elastic

constants c0 and the internal strain coupling parameter g. Such a correspondence between

quantities via successive derivatives is reported in Table 3.1.

E 1st-order 2nd-order
∂/∂R ∂/∂ξ ∂/∂E

∂/∂R F C g Z∗

∂/∂ξ σ g c0 e0

∂/∂E P Z∗ e0 ǫ∞

Table 3.1: Physical quantities related to first- and second-order derivatives of the total energy E.
Adapted from Ref. [92].

In the following, we focus on the specific description of the nuclear forces F and sponta-

neous polarization P , while other physical properties, such as interatomic force constants, Born

effective charges, and dielectric and piezoelectric responses have already been introduced in the

previous Chapter [see Secs. (2.3.1), (2.3.3), and (2.4)].
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Optimization of Ionic Positions: the Hellmann-Feyman theorem

In all the discussions related to DFT, no comment has been made about ionic positions, which

have been assumed fixed, in turn leading to the correct electronic ground-state through the self-

consistent relaxation of the electronic configuration. Actually, the determination of the lowest

energy configuration for a given system also relies on the relaxation of the ionic positions and

the size and shape of the unit cell. In many cases, the atomic configurations are known from

experimental data, such as X-ray scattering or neutron diffraction, and they can be used as

initial guess to find the minimum of the total energy as a function of atomic positions.

The equilibrium geometry of the system is given by the condition that the forces acting on

individual ions I, given by differentiation of the adiabatic potential-energy surface E(R) (3.4)

with respect to the nuclear position RI , vanish:

FI = −∂E(R)

∂RI
= 0 (3.41)

In practice, the calculation of the equilibrium geometry relies on computing the first derivative of

the Born-Oppenheimer energy surface. Such results arise from the application of the Hellmann-

Feyman theorem to the interacting electronic-nuclear system. This theorem states that the

gradient depending on a parameter λ along which to move to minimize the energy is obtained

from the expectation value of the derivative of the Hamiltonian, as

〈ψλ|
∂Hλ

∂λ
|ψλ〉 =

∂Eλ

λ
(3.42)

It is worthy recognizing that such formulation corresponds to the first-order derivative of the

energy previously introduced.

In this specific case the parameters λ are the coordinates R of the nuclei in the electronic

adiabatic Hamiltonian (3.3). Therefore, derivation of both sides of Eq. (3.4) with respect to

RI reduces to the derivation of the electrons-nuclei VeN interaction potential and Coulomb

nuclei-nuclei ENN repulsion energy, obtaining

FI = −∇RI
E = −

∫

dr n(r)∇RI
VeN(r)−∇RI

ENN (3.43)

Thus, the force acting on a given nucleus I depends on the negative gradient of the elec-

trostatic potential energy originated from all the other nuclei and the unperturbed electronic

charge density. Therefore, the forces on the nuclei should not be calculated until the electronic

configuration is near at its ground-state: each time that the positions of the ions or the size and

shape of the cell are changed, the electrons must be brought close to the ground-state of the

new ionic configuration in order to calculate forces (and stresses) of the new ionic configuration

[116]. In practice, this means that for each step in the relaxation of the ionic configuration, the

relaxation of the electronic configuration to obtain the ground-state density must be performed.
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The Hessian matrix of the Born-Oppenheimer energy surface is thus obtained by differen-

tiating FI with respect to nuclear coordinates,

∂2E(R)

∂RI∂RJ

= − ∂FI

∂RJ

=

∫

∂n(r)

∂RJ

∂VeN(r)

∂RI

dr +

∫

n(r)
∂2VeN(r)

∂RI∂RJ

dr +
∂2ENN

∂RI∂RJ

(3.44)

Eq. (3.44) therefore shows that the calculation of the Hessian matrix, which is referred as the

matrix of the interatomic force constants (IFCs), requires the calculation of the ground-state

electron charge density n(r) as well as of its linear response to a distortion of the lattice,

∂n(r)/∂RI [119].

Polarization

As already discussed in the previous Chapter, the electric polarization P is one of the essential

quantities in the physics of dielectric materials, being related to electric permittivity, ferro-

electricity, dynamical effective charges, piezoelectricity, pyroelectricity and other phenomena.

Specifically, the presence of a spontaneous and switchable macroscopic polarization is the sig-

nature of a ferroelectric material. A knowledge of the periodic electronic charge distribution

in a polarized crystalline solid, cannot be used to construct a meaningful definition of bulk

polarization. In this way P wrongly results being dependent on the shape and location of the

unit cell of the investigated system [60]. In real materials, in fact, it is not possible to localize

unambiguously the electronic charge, mainly in the ferroelectric ABO3 oxides, which displays

a mixed ionic/covalent character of the bondings.

Experimentally, the approach of measuring spontaneous polarization is through the polar-

ization difference ∆P rather than direct measurements of “polarization itself” exploiting its

switchability: in a typical experiment, application of a sufficiently strong electric field switches

the polarization from P to −P . The quantity measured then corresponds to the difference in

polarization between the two zero-field values of P in the hysteresis loop; one can then equate

this difference to twice the spontaneous polarization [60].

Proceeding from the ambiguity in defining P as a single-value equilibrium property of the

crystal in a given broken-symmetry state, the theoretical microscopic theory of polarization has

also relied on differences in polarization between two different states, as suggested by Resta

[153, 154]. Within the adiabatic approximation at zero temperature, the basic assumption of

such theory is the existence of a continuous adiabatic transformation of the Kohn-Sham Hamil-

tonian connecting the two crystal states, under the hypothesis that (i) the transformation is

performed at null electric field, and (ii) the system remains an insulator [154]. By parametriz-

ing the transformation with a variable λ assuming values 0 and 1 at the initial and final states

respectively, the change ∆P can be expressed as

∆P =

∫ 1

0

dλ
∂P (λ)

∂λ
(3.45)
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As an example, λ could be an internal coordinate of the system representing the rela-

tive displacements of sublattices in the periodic crystal. Such a case is representative of the

polarization induced by the zone-center polar phonon modes described in Sec. (2.3.2). This

approach applies both to transformations that conserve volume and shape of the cell and to

“cell-conserving” transformations [154].

The polarization P (λ) after integration with respect to λ (3.45) can be decomposed into

ionic and electronic contributions:

P (λ) = Pion(λ) + Pel(λ) (3.46)

The ionic term can be directly computed as

Pion(λ) =
e

V

∑

k

ZkRk (3.47)

where Rk and eZk are the position and charge of the atom k and V is the volume of the cell. The

electronic polarization, instead, can be formulated by making use of the periodic Kohn-Sham

orbitals ψn(k, r;λ) and results

Pel(λ) =
e

(2π)3
ℑ
∑

n

∫

dk 〈un(k, r)|∇k |un(k, r)〉 (3.48)

where the sum n runs over the occupied states. The latter form is then related to the Berry

phase [60]. Formally, the central result of the modern theory of polarization is that P defined

via the summation of (3.47) and (3.48) is only well-defined mod eR/V, called quantum of

polarization [154, 60], because of the translational invariance of bulk macroscopic property.

A quantitative and reliable estimation of the spontaneous polarizations in ferroelectrics can

be achieved by the use of the Born Effective Charges (Sec. 2.3.3), which takes into account the

contribution from the charges of both nuclei and electrons, by means of the following relation

Pα =
1

Ω0

∑

k,β

Z∗
k,αβτk,β (3.49)

with Z∗
k,αβ = Z ion

k δαβ + Zel
k,αβ [99, 155]. Such method can be a useful hint to find out the final

value of P from direct Berry phase calculations.

3.7 Conclusions

In this chapter we have had an excursus over the first-principles technique based on the Density

Functional Theory. The main general equations and approximations have been reported in order

to introduce the general method used for the determination of the physical properties discussed

and analyzed all along this thesis.
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The basic approximations behind the access to the properties of materials at the atomic scale

are the Born-Oppenheimer approximation and the Hohenberg-Kohn theorem, which via the

variational principle allow to determine the ground-state electronic charge density of interacting

particles. This reduces the problem to that of one-electron, defining an effective potential. The

capability of the DFT to properly reproduce properties depends strongly on the form of the

exchange-correlation energy introduced in such potential. The first formulation has relied on

the local density approximation (LDA), but characterized by considerable inaccuracy in the

determination of some electronic properties. An improvement has been then made by the semi-

local generalized gradient approximations (GGA). Further developments due to the addition

of perturbation theory within DFT have allowed the possibility to access directly properties

associated to variations of the total energy by various perturbations. Accordingly, DFT and

DFPT have become a standard and reliable methods for the investigation of the properties of

solids.
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Chapter 4

Technical Details

4.1 Computational Details

We use the general framework of the density functional theory (DFT) (Chap. 3) to compute the

structural properties and the electric polarization. Dynamical and piezoelectric properties have

been calculated using Density Functional Perturbation Theory (DFPT) [142], as implemented in

the ABINIT package [156, 157, 158]. The exchange-correlation potential was evaluated within

the generalized gradient approximation (GGA) using the Wu-Cohen (WC) functional [133]

for all simulations. Optimized Norm-Conserving Pseudopotentials [137] have been employed

with the following orbitals considered as the valence states: 5s, 5p and 6s for Ba, 3s, 3p

and 4s for Ca, 3s, 3p, 4s and 3d for Ti, 4s, 4p, 4d and 5s for Zr and 2s and 2p for O.

The energy cutoff for the expansion of the electronic wave functions has been fixed to 45 Ha.

Before performing computationally demanding calculations on ordered supercells by using a

standard DFT approach, a first investigation has been performed using the VCA, which relies

on virtual atoms obtained from combination of the reference atomic pseudopotentials [138, 139],

as introduced in Sec. 3.5.2. In order to make proper comparative analysis, calculations have

been performed with lattice parameters obtained by first-principles for all the studied systems,

as experimental values are not available for all them. Accordingly, for the optimization of

the cubic perovskite structures, phonons and polarization calculations within VCA, we used

a 6 × 6 × 6 k-points mesh for the Brillouin zone sampling for which energy is converged to

0.5 meV . For the optimization of the polar P4mm, R3m and Amm2 and piezoelectric response

calculations different sampling from 8 × 8× 8 to 8× 6 × 6 were used. For the optimization of

the supercells and for the associated phonons calculations we used the 8×8×8 k-mesh. For all

the tetragonal superlattices we used 8× 8× 6 k-mesh sampling. In order to allow comparison

between different structures, energy will be reported in meV /f.u. (i.e. per 5 atoms). The

q-points for the phonon dispersion curves and IFCs of the four pure compounds included Γ, X ,

M , R and the Λ point halfway from Γ to R of the simple cubic Brillouin zone.
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4.2 Structure of the parent compounds

The optimized lattice parameters of the cubic structure of the four parent compounds are

reported in Table 4.1. There, the atoms in the ABO3 perovskite structure are labelled according

to Fig 4.1. These values are used in Sec. 5.1 for the calculation of the phonon dispersion

curves and interatomic force constants. The obtained values are in excellent agreement with

experimental data for BaTiO3 and BaZrO3 [162, 163] (within 1%), whereas for CaTiO3 the

underestimation is of about 2% [164]. The larger error for CaTiO3 can be assigned to the fact

that the 0 K DFT results are compared to measurements at 1720 K. For CaZrO3 the optimized

lattice parameter overestimates the experimental value [165] of about 2%.

BaTiO3 CaTiO3 BaZrO3 CaZrO3

Present 3.975 3.840 4.184 4.099

Exp. 4.003 [162] 3.897 [164] 4.191 [163] 4.020 [165]

Table 4.1: Relaxed lattice parameter acell (in Å) of the cubic structure of the four parent compounds.
Experimental values are also reported for comparison.

4.3 Supercell structures

We have considered different supercells describing the Ca and Zr atomic substitutions in BaTiO3

and performed DFPT calculations on the corresponding relaxed high-symmetry paraelectric

structures.

For Ba7/8Ca1/8TiO3 and BaTi7/8Zr1/8O3, we have used the smallest reference structure

which is the cubic Pm3̄m (Oh
1 ) with 40 atoms. The GGA-WC optimized lattice constants are

7.917 Å and 8.003 Å respectively (Fig. 4.2).

For Ba0.50Ca0.50TiO3 and BaTi0.50Zr0.50O3 three distinct geometric arrangements of the

40-atom cell were considered: columns of same cations along the [001] direction, layers of

same cations parallel to the [110] planes and rocksalt configuration, Fig. 4.2. The paraelectric

Structure Ba0.50Ca0.50TiO3 BaTi0.50Zr0.50O3

columnar a = b = 5.535 a = b = 5.752
P4/mmm [001] c = 3.899 c = 4.104

layered a = b = 3.911 a = b = 4.098
[110] c = 7.803 c = 8.125

Fm3̄m a = b = c = 7.825 a = b = c = 8.150

Table 4.2: Optimized lattice parameters (in Å) of the tetragonal-P4/mmm and the cubic-Fm3̄m
structures for Ba0.50Ca0.50TiO3 and BaTi0.50Zr0.50O3 solid solutions. For the tetragonal P4/mmm we
report values related to the reduced 10-atom cell. The relations with respect to the 2× 2× 2 supercell
are: (columnar) a=b=a(2×2×2)/

√
2 and c=c(2×2×2)/2; (layered) a=b=a(2×2×2)/2 and c=c(2×2×2).
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reference of the two first “ordered” structures are characterized by a tetragonal symmetry

within the P4/mmm (D4h
1 ) space-group and they can be reduced by symmetry to 10-atom cell,

whereas the rocksalt configuration has the cubic symmetry within the Fm3̄m (Oh
5 ) space-group.

Structural relaxation have been done on the 2×2×2 supercells (40 atoms) for each geometrical

ordering, whereas DFPT calculations and structural relaxation of lower symmetry structures

have been performed on the reduced 10-atom cell for the P4/mmm structures and on the 40-

atom cell for the Fm3̄m one. The optimized lattice parameters of the high-symmetry references

are reported in Table 4.2. Figures have been produced by using the VESTA package [219].



CHAPTER 4. TECHNICAL DETAILS 66

Figure 4.1: (Top) Schematic 3D-view of atoms. (Bottom) Positions in reduced coordinates of the
atoms in the perovskite structure.
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Figure 4.2: Schematic representation of different atomic ordering in 2× 2× 2 supercells for the two
investigated solid solutions. (Top) Sublattice of A cations in Ba1−xCaxTiO3. (Bottom) Sublattice
of B cations and oxygens in BaTi1−yZryO3. Ca and Zr atoms are labelled to help the visualization.
(a,e) x, y = 0.125. (b,f) rocksalt order, (c,g) columnar order along the z axis and (d,h) layered order
perpendicular to z axis for x, y = 0.50.
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Parent compounds

We start our study by considering individually the BaTiO3, CaTiO3, CaZrO3 and BaZrO3

parent compounds. The dynamics and the energetics of these systems is fundamental to un-

derstand the key features of the related solid solutions. Compared to other ab-initio studies

on these systems, we report a careful analysis of the interatomic interactions, which helps to

identify the key mechanisms driving their properties.

BaTiO3 is one of the most studied perovskite, both from the theoretical [25, 166, 167, 168,

169] and experimental [170, 171, 172] points of view. This perovskite is characterized by a

tolerance factor t greater than 1, t ≃ 1.06 [173], that allows to predict a polar distorted ground-

state [173]. In fact, while stable at high temperature in the centrosymmetric cubic (Pm3̄m)

phase, it undergoes [172] ferroelectric structural phase transitions to a tetragonal (P4mm)

structure at ≃ 393 K, to a orthorhombic (Amm2) phase at ≃ 278 K and to a rhombohedral

(R3m) ground-state at 183 K.

CaTiO3, on the contrary, has a tolerance factor t smaller than 1, t ≃ 0.97 [173]. Accordingly,

this compound displays a non-polar orthorhombic (Pnma) ground-state. It exhibits at least two

observed phase transitions at high temperatures: from a cubic (Pm3̄m) to a tetragonal phase

(I4/mcm) at ≃ 1634 K and from a tetragonal (I4/mcm) to the orthorhombic ground-state

(Pnma) at ∼ 1486 K [164, 174, 175].

CaZrO3, that has t ≃ 0.91, was observed only in two different structures: the high tem-

perature cubic (Pm3̄m) form and its orthorhombic (Pnma) ground-state with the transition

temperature at ≃ 2170 K [177, 176, 178].

BaZrO3, with t ≃ 1.00 [173], is experimentally not known to undergo any structural phase

transition and remains in the paraelectric cubic phase down to 2 K [163].

In Sec. 5.1, we provide a comparison of the dynamical properties (phonon dispersion curves

and interatomic force constants) of the parent compounds in their cubic phase. Then, in

Sec. 5.2, we compare the energetics of various metastable phases of lower symmetry arising

from the condensation of individual and combined distortions related to the unstable phonon

modes identified in Sec. 5.1.
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5.1 Dynamical properties

As introduced in Sec. 2.3.1, the identification of imaginary phonon frequencies and the corre-

sponding displacement patterns allow us to pinpoint the main instabilities behind the structural

phase transitions in our systems. Thus, we considered the cubic reference structure and we com-

puted the phonon dispersion curves along selected high-symmetry lines in the simple Brillouin

zone (Fig 2.2). The results are shown in Fig. 5.1.

The presence of imaginary phonon frequencies (shown as negative values in Fig. 5.1) reveals

the structural instabilities of the cubic phase. The nature of the corresponding transition is

usually determined by the character of the main unstable modes, and the related eigendis-

placement vectors indicate the pattern of distortion, which spontaneously brings the system

to more stable configurations. Furthermore, we complement this analysis with the calculation

of the interatomic force constants in real space. As we have seen in the previous chapters,

these constants are defined as Ckα,k′β(l, l
′) = ∂2Etot/∂τ

l
kα∂τ

l′

k′β, where Etot is the total energy

of a periodic crystal and τ lkα is the displacement of the atom k in the cell l along direction α

from its equilibrium position. Their interpretation has been introduced in Sec. 2.3.4. In our

analysis, we further separate the distinct contributions of the dipole-dipole interaction (DD)

and short-range forces (SR) in order to identify the key mechanisms that lead the system to

exhibit or not specific phonon instabilities. For a more detailed description of the physical

meaning and its practical implementation see Refs. [142, 152, 101].

In the following we address a systematic description of the phonon dispersion curves repro-

duced in Fig. 5.1.

5.1.1 BaTiO3

Ferroelectricity in BaTiO3 is known to be related to the Ti off-centering driven by an unstable

polar mode at Γ [168, 102]. This ferroelectric (FE) instability is such that it expand over the

entire Γ−X−M planes of the simple cubic Brillouin zone, as can be seen in Fig. 5.1(a). While

each atom is at a position stable against individual displacements (Table 5.1), the origin of

this distortion has to be primarily ascribed to the destabilizing Ti-O interaction, reflected in

the positive value of the interatomic force constant along the bond’s direction (Table 5.3). An

additional contribution comes from the strong interaction of subsequent Ti-atoms along the B-

B′ chain direction compared to the small value in the transverse component. These anisotropic

couplings give rise to a branch of unstable modes almost flat in the Γ − X − M plane and

highly dispersive along Γ − R. This reflects the chain-like nature of the instability in real

space. The polar distortion requires cooperative atomic displacement along Ti-O chains [168].

Furthermore, the negligible contribution of Ba-atom to the ferroelectric distortion, has to be

ascribed to its sizeable on-site force constant and very weak Ba-O1 coupling.

In Table 5.2, we also compare the eigendisplacements associated to the unstable F1u(TO1)

mode to those of the stable F1u(TO2) and F1u(TO3) ones and we report the related mode
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Figure 5.1: Calculated phonon dispersion curves of BaTiO3 (a), CaTiO3 (b), BaZrO3 (c) and
CaZrO3 (d) along different high-symmetry lines in the simple cubic Brillouin zone. Negative values of
frequencies refer to imaginary frequencies (ω are in cm−1). The different colors indicate the different
atomic contributions in the corresponding eigenvectors as in Ref. [102] (red for the A atom, green for
B atom and blue for O atoms).

effective charges, as described in Ref. [142]. The mode effective charge is giant for the unstable

mode in comparison to the others [100, 101]. In fact, the very anomalous Born effective charges

on Ti and O‖ combined through the specific pattern of eigendisplacements associated to the

TO1 mode produce a large spontaneous polarization. For the TO2 and TO3 modes, the motions

are coupled so that Ti and O generate polarizations that partly compensate.

5.1.2 CaTiO3

CaTiO3 displays two main non-polar instabilities at the R and M points of the cubic Bril-

louin zone related to antiferrodistortive (AFD) motions (ω ≃ 209i cm−1 and ω ≃ 198i cm−1,

respectively). These correspond to cooperative rotations of oxygen octahedron, around the

B-atoms, with consecutive octahedron along the rotation axis being in-phase at M (a0a0c+ in

Glazer’s notation [79]) and anti-phase at R (a0a0c−). As such, the M-instability appearing in

the phonon spectrum is a continuation of the instability at R, while in BaTiO3 it is a continua-

tion of the polar instability at Γ. The description of such AFD instabilities has been introduced

in Sec. 2.3.2.

In addition, there is an unstable mode at the Γ-point that is also polar. This FE instabil-

ity is now restricted to a region around the Γ-point highlighting a larger and more isotropic
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ferroelectric correlation volume. This mode enables the condensation of a polar distortion.

However, the character of the corresponding ferroelectricity is rather different compared to

that in BaTiO3 where it is dominated by the Ti displacements (B-site ferroelectricity). In

fact, in CaTiO3, this instability turns out to be dominated by the Ca displacements (A-type

ferroelectricity) as can be seen from the eigendisplacements displayed in Table 5.2 and the red

color of the corresponding phonon in Fig. 5.1(b). Despite this important involvement of the

A-cation in the polar distortion, its Born effective charge is not strongly anomalous. This has

to be ascribed to the fact that the polar distortion of Ca is driven by a steric effect. In fact,

we already mentioned that CaTiO3 has t < 1. Therefore, the small size of the Ca ionic radius

allows its distortion in the cubic perovskite structure. Consequently, the involvement of the

oxygens in the distortion is inverted with respect to the BaTiO3 case, as the O2/3 lying on the

plane perpendicular to the direction of the distortion are now more involved than the apical

oxygen (see Table 5.2).

These results can be rationalized by looking at the effect of the substitution of Ba by

Ca on the “on-site” and interatomic force constants. In fact, the “on-site” force constant of

Ca as well as the A-A′ interaction are significantly smaller than the corresponding ones in

BaTiO3, while the “on-site” force constant of Ti is increased. Additionally, the destabilizing

A-O1 interaction (xx′, Table 5.3) become significantly positive in agreement with the opposite

direction of the respective atomic eigendisplacements (Table 5.2), whereas along the Ti-O1

chain a stronger repulsive interaction prevents an important participation of the B-cation to

the polar distortion.

These previous observations can be also related to the concurrent appearance of AFD dis-

tortions in the system. Although the IFCs between the reported pairs of oxygen are remarkably

similar in BaTiO3 and CaTiO3 (and also in BaZrO3 and CaZrO3 as we will see below), the

oxygens tilting is favored by the fast decrease of the oxygen “on-site” forces (linked to the

destabilizing A-O1 interaction) in the directions perpendicular to the B-O chains and to the

increasing stiffness in the parallel direction (Table 5.1). Moreover, the phonon dispersion curves

appear substantially flat along R−M suggesting the absence of coupling between the oxygens

in different planes, but, as can be seen in Tables 5.3 and 5.4, the transverse interactions are

far to be negligible. As proposed in Ref. [102], this could be due to the joint action of the A-O

coupling with a compensation between different interplane interaction of the oxygens (see also

Ref. [179]).

5.1.3 CaZrO3

CaZrO3 exhibits much more intricate phonon branches than CaTiO3. However, the dynamical

properties of both compounds show some similarities. As in CaTiO3, the strongest instabilities

in cubic CaZrO3 are the one at the R and M points of the Brillouin zone associated to AFD

oxygen rotations (ω ≃ 238i cm−1 and ω ≃ 233i cm−1, respectively). Also, the dispersion curve
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along R−M appears completely flat.

Nevertheless, the lowest polar instability is no more confined at Γ, but the polar-antipolar

instability extends all over the cubic Brillouin zone. This reflects a FE instability more localized

in real space.

In CaZrO3, the distortion is fully driven by the A-cation (Ca) and the O2/3 anions. In

fact, Zr at the B-site does not participate to the polar distortion with subsequent reduced

participation of the apical O1 [see Table 5.2-(TO1 mode)]. Finally, the dynamical effective

charges of both Zr and O‖ appear less anomalous than in the titanates, resulting in a lower

value of the mode effective charge.

As before, these dynamical properties can be understood in terms of IFCs. In fact, the

“on-site” force associated to Ca and the in-plane “on-site” force of O are drastically reduced

while for Zr it is strengthened. This reflects the fact that, with respect to their high-symmetry

positions, the A-cation and the O2/3 anions are highly unstable, while the B-cation remains

almost fixed. Accordingly, the Ca-O1 interatomic force constants are largely dominated by

the dipole-dipole interaction, while the Zr-O1 interaction is strongly repulsive. The interplay

between all these features allows the understanding of the strong A-site driven character of the

instabilities. In fact individual Ca displacements are nearly unstable (Table 5.1).

A proper comparison of CaZrO3 an CaTiO3 with respect to PbZrO3 and PbTiO3 respec-

tively, can be done via the lattice dynamics analysis presented in Ref. [102].

5.1.4 BaZrO3

Starting from the analyzed dynamics in BaTiO3 and CaZrO3, the dynamical properties of

BaZrO3 are fairly predictable. The substitution of the Ti atoms with Zr on the B-site joined

to the presence of Ba on the A-site leads to the “quasi”-stability of the cubic phase, also

confirmed by steric arguments, since the tolerance factor is close to 1. In fact, unlike the

previous perovskite systems, the phonon spectrum of BaZrO3 shows only a very weak instability

at the R-point with associated phonon frequency ω ≃ 60.2i cm−1 and no unstable polar modes.

By looking at the specific quantities reported in Table 5.2, the softest polar mode (TO1)

displays the smallest polarity (Z̄∗) with respect to the corresponding modes in the other com-

pounds. Moreover, unlike Ti in BaTiO3, a tendency of Zr to decrease the spontaneous polar-

ization results from the specific combination of the associated pattern of distortion with the

dynamical charges. Conversely, the second stable polar mode (TO2), even if stiffer, displays

bigger polarity because of the additive contribution of Zr and O.

This behaviour can be justified by means of the force constants. In fact, the B-cation

and O, along the transverse direction, experience now increased “on-site” terms with respect

to BaTiO3. The Zr-O1 is then strongly dominated by the short-range forces. The A-cation,

conversely, shows an “on-site” force constant in between BaTiO3 and CaTiO3, but the A-O

interaction is still too weak to destabilize Ba (see Tables 5.1 and 5.3).
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For all the four compounds, the interatomic force constants associated to the A−B cations

and to the O-O interactions have the same sign and order of magnitude. This trend points out

the key role played by the on-site force constants in generating different kinds of instabilities

according to the environment, which each atom experiences in the different perovskites. In

fact, changes in the A-O and B-O interactions (Tables 5.1 and 5.3) are primarily associated to

changes of those values.
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Atom Direction BaTiO3 CaTiO3 BaZrO3 CaZrO3

A xx = yy = zz +0.0893 +0.0269 +0.0550 +0.0099
B xx = yy = zz +0.1635 +0.2236 +0.2198 +0.2510
O xx = yy +0.0711 +0.0432 +0.0396 +0.0171

zz +0.1454 +0.2624 +0.2135 +0.2909

Table 5.1: “On-site” force constants (in Ha/bohr2) related to different atoms in the cubic phase of
the four bulk compounds. A positive value means that the atomic position is stable against isolated
displacement of the considered atom.

BaTiO3 CaTiO3 BaZrO∗∗
3 CaZrO3

Atom Born effective charge Z∗

A(+2) 2.751 2.575 2.732 2.623

B(+4) 7.289 7.188 6.099 5.903

O
(−2)
‖ -5.756 -5.730 -4.808 -4.862

O
(−2)
⊥ -2.142 -2.017 -2.012 -1.832

F1u(TO1)

ω (cm−1) 183.45i 136.21i 96.39 179.91i
Z̄∗ 9.113 6.453 3.954 4.455

Eigendisplacements

A +0.0012 +0.0950 +0.0561 +0.1120
B +0.0978 +0.0298 -0.0337 +0.0002
O1 -0.1480 -0.0763 -0.0687 -0.0390
O2/3 -0.0774 -0.1254 -0.1103 -0.1215

F1u(TO2)

ω (cm−1) 176.91 181.36 193.26 202.42
Z̄∗ 1.937 5.344 5.784 3.268

Eigendisplacements

A +0.0547 -0.0922 -0.0228 -0.0823
B -0.0800 +0.1116 +0.0781 +0.0698
O1 -0.0715 -0.0189 -0.0353 -0.0039
O2/3 -0.0793 -0.0421 -0.1068 -0.0940

F1u(TO3)

ω (cm−1) 468.91 589.62 503.07 610.29
Z̄∗ 1.281 4.269 3.777 4.601

Eigendisplacements

A -0.0012 +0.0083 +0.0024 -0.0065
B +0.0253 +0.0135 +0.0140 -0.0225
O1 +0.1767 -0.2213 -0.2315 +0.2353
O2/3 -0.1212 +0.0801 +0.0653 -0.0454

∗∗ BaZrO3 has no instabilities at Γ, whereas the TO1 mode

is unstable for BaTiO3, CaTiO3 and CaZrO3.

Table 5.2: Born effective charges (in |e|) of individual atoms in each parent compound followed by
the frequencies, mode effective charges, and eigendisplacements (< η|M |η >= 1 with M in amu), of
F1u(TO) phonon modes at Γ on the optimized cubic phase (Table 4.1). The mode effective charge is

defined as in Ref. [142], Z̄∗
TO =

∣

∣

∣

∑
k,β Z∗

k,αβ
ηTO
k,β√

<ηTO |ηTO>

∣

∣

∣
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BaTiO3 CaTiO3 BaZrO3 CaZrO3

Atoms Total DD SR Total DD SR Total DD SR Total DD SR

A−A′ (‖) -0.0115 -0.0054 -0.0061 -0.0085 -0.0056 -0.0029 -0.0094 -0.0062 -0.0032 -0.0071 -0.0064 -0.0007
(⊥) +0.0039 +0.0027 +0.0012 +0.0040 +0.00281 +0.0012 +0.0130 +0.0106 +0.0024 +0.0042 +0.0032 +0.0010

B −B′ (‖) -0.0693 -0.0379 -0.0314 -0.0788 -0.0438 -0.0350 -0.0564 -0.0308 -0.0256 -0.0593 -0.0323 -0.0270
(⊥) +0.0078 +0.090 -0.0111 +0.0084 +0.0219 -0.0135 +0.0071 +0.0154 -0.0083 +0.0065 +0.0162 -0.0097

B −O1 (‖) +0.0037 +0.2394 -0.2357 -0.0382 +0.2794 -0.3176 -0.0409 +0.1940 -0.2349 -0.0719 +0.2129 -0.2847
(⊥) -0.0203 -0.0445 +0.0243 -0.0184 -0.0492 +0.0308 -0.0166 -0.0406 +0.0240 -0.0148 -0.0401 +0.0253

A−B (‖) -0.0298 -0.0220 -0.0078 -0.0266 -0.0242 -0.0025 -0.0281 -0.0212 -0.0069 -0.0244 -0.0221 -0.0023
(⊥) +0.0139 +0.0110 +0.0029 +0.0150 +0.0121 +0.0029 +0.0130 +0.0106 +0.0024 +0.0133 +0.0111 +0.0023

A−O1 (xx′) -0.0022 +0.0119 -0.0140 +0.0108 +0.0125 -0.0017 +0.0058 +0.0129 -0.0070 +0.0141 +0.0126 +0.0015
(yy′) -0.0042 -0.0059 +0.0017 -0.0055 -0.0062 +0.0007 -0.0051 -0.0064 +0.0013 -0.0056 -0.0063 +0.0007
(zz′) -0.0111 -0.0160 +0.0049 -0.0116 -0.0177 +0.0061 -0.0105 -0.0154 +0.0049 -0.0107 -0.0167 +0.0060

O1 −O4 (xx′) -0.0020 -0.0033 +0.0013 -0.0022 -0.0035 +0.0012 -0.0019 -0.0034 +0.0014 -0.0020 +0.0012 +0.0078
(yy′) +0.0018 +0.0016 +0.0002 +0.0014 +0.0017 -0.0003 +0.0018 +0.0017 +0.0001 +0.0012 +0.0016 -0.0003
(zz′) +0.0093 +0.0118 -0.0025 +0.0107 +0.0139 -0.0032 +0.0070 +0.0096 -0.0026 +0.0078 +0.0110 -0.0032

O1 −O5 (xx′) -0.0004 +0.0016 -0.0020 -0.0009 +0.0017 -0.0026 -0.0009 +0.0017 -0.0026 -0.0013 +0.0016 -0.0028
(yy′) -0.0004 +0.0016 -0.0020 -0.0009 +0.0017 -0.0026 -0.0009 +0.0017 -0.0026 -0.0013 +0.0016 -0.0028
(zz′) -0.0339 -0.0236 -0.0102 -0.0379 -0.0278 -0.0101 -0.0345 -0.0191 -0.0154 -0.0372 -0.0219 -0.0153

Table 5.3: Interatomic force constants in (Ha/bohr2) between different pairs of atoms in their local coordinates system, xx′ (‖), yy′ (⊥) and
zz′ (⊥) for ABO3 bulk compounds. Transverse (⊥) directions for some atomic pairs are degenerate. The two different dipole-dipole (DD) and
short-range (SR) contributions also reported.
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Atoms

BaTiO3 CaTiO3




+0.0038 0.0000 0.0000
0.0000 −0.0091 +0.0284
0.0000 +0.0126 −0.0091









+0.0057 0.0000 0.0000
0.0000 −0.0120 +0.0322
0.0000 +0.0177 −0.0120





O1 −O2

BaZrO3 CaZrO3




+0.0039 0.0000 0.0000
0.0000 −0.0060 +0.0234
0.0000 +0.0110 −0.0060









+0.0051 0.0000 0.0000
0.0000 −0.0071 +0.0249
0.0000 +0.0137 −0.0071





BaTiO3 CaTiO3




−0.0007 −0.0007 +0.0013
−0.0013 +0.0014 +0.0025
+0.0007 +0.0007 +0.0014









−0.0007 −0.0006 +0.0017
−0.0017 +0.0015 +0.0029
+0.0006 +0.0005 +0.0015





O1 −O6

BaZrO3 CaZrO3




−0.0077 −0.0007 +0.0013
−0.0013 +0.0012 +0.0021
+0.0007 +0.0006 +0.0012









−0.0007 −0.0005 +0.0016
−0.0016 +0.0013 +0.0023
+0.0005 +0.0004 +0.0013





Table 5.4: Interatomic force constant matrix in (Ha/bohr2) between other pairs of oxygen in the
Cartesian coordinates system. Rows and columns of the matrices correspond, respectively, to x, y and
z directions.
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5.2 Energetics of metastable phases

In the previous section we have seen that the parent compounds can develop two types of

instability: a FE instability associated to a polar mode at Γ and AFD instabilities associated

to unstable modes atM and R. In particular, now we quantify the energy difference associated

to the condensation of the corresponding polar distortions and oxygen rotations with respect

to the cubic phase. The results are shown in Fig. 5.2. A careful crystallographic explanation

of the symmetry changes associated to these distortions can be found in Ref. [81].

 R3m P4mmAmm2 P4/mbm I4/mcm R-3c Imma PnmaPm-3m
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Figure 5.2: Energy landscape (in log scale) for BaTiO3 (red closed circles), CaTiO3 (blue closed
squares), CaZrO3 (pink closed rhombus) and BaZrO3 (green closed triangle). For each ABO3 per-
ovskite, we report the energy gain with respect to the corresponding simple cubic phase, for different
optimized phases allowed by dynamical properties (phonon spectra Fig. 5.1). Polar distortions, char-
acterizing ferroelectric structures, and oxygen rotations, characterizing non-polar distorted structures,
have been taken into account separately. All the structures have been fully relaxed within GGA-WC
functional. Main features for the different structures are reported in Table 5.5.

5.2.1 BaTiO3

In BaTiO3 the energy sequence of the polar phases arising from the condensation of the polar

mode is in line with the experimental sequence of phase transitions when lowering the tem-

perature (Pm3̄m → P4mm → Amm2 → R3m). To be noticed is that the energy landscape

is relatively flat. The R3m ground-state is only 20 meV /f.u. below the paraelectric Pm3̄m

phase and the energy difference between the polar phases is ≃ 5 meV /f.u. Interestingly, the

anisotropy of the energy landscape (as well as of the polarization) is linked to the corresponding

polar mode [168] and remain qualitatively unaffected by strain relaxation [see Figs. 6.5(a,d) in

next chapter (Sec. 6.2)]. This is the signature of a relatively weak polarization-strain coupling

in BaTiO3 [187]. Accordingly, the calculated c/a ratio in the tetragonal phase is only ∼ 1.02.
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Polar structures

Space group Notation Modes

P4mm (99) a0a0a1 Γ−
4

Amm2 (38) a0a1a1 Γ−
4

R3m (160) a1a1a1 Γ−
4

Antiferrodistortive structures

Space-group Notation Modes

P4/mbm (127) a0a0c+ M+
3

I4/mcm (140) a0a0c− R+
4

Imma (74) a0b−b− R+
4

R3̄c (167) a−a−a− R+
4

Pnma (62) a−b+a− R+
4 , M

+
3 , X

+
5

Table 5.5: Space-group and main active modes in the two allowed classes of distortions. By referring
to the simple cubic Brillouin zone: polar motion is due to instabilities at Γ (0,0,0), oxygen tilting to
instabilities at M (12 ,

1
2 , 0) and R (12 ,

1
2 ,

1
2), and anti-polar motion to instabilities at X (12 , 0, 0) or to the

trilinear coupling with the two latter instabilities [81, 87], as in CaTiO3. The polarization direction
associated to the ferroelectric structures and Glazer notation associated to the antiferrodistortive
structures are also reported.

5.2.2 CaTiO3

Interestingly, in CaTiO3 the energy sequence of the polar phases, arising from the condensation

of the unstable polar mode, is reversed. In addition, the relative energy difference is larger than

in BaTiO3. In fact, the tetragonal P4mm structure is the lowest energy configuration among

the polar ones with a relative energy gain of about 70 meV /f.u. Moreover, unlike in BaTiO3,

we note that the initial instability is relatively isotropic and the strain relaxation is now crucial

to obtain the eventual anisotropy [see Figs. 6.5(c,f) in Sec. 6.2]. Accordingly, the calculated c/a

ratio in the tetragonal phase becomes ∼ 1.06. It is noteworthy that such large strain coupling

was previously reported in compounds with stereochemically active lone pair at the A-site like

PbTiO3 [84, 180] and BiFeO3 [181, 182]. However, the above indicates that it is a more generic

feature related to strongly A-type ferroelectricity.

Additional non-polar structures arising from the condensation of the unstable AFD modes

at M and R also appear as metastable or eventually stable. As usual in perovskites with

t < 1 [81], in fact, the ground-state corresponds to the Pnma (a−b+a−) structure which is

≃ −350 meV per f.u. below the reference cubic phase. One-tilt structures, such as P4/mbm

(a0a0c+) or I4/mcm (a0a0c−), and the two-tilts Imma (a0b−b−) are intermediate metastable

structures that appear ≃ 100 meV and ≃ 50 meV per f.u. above the ground-state, respectively.
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5.2.3 CaZrO3

In CaZrO3 the energy sequence of both the polar and AFD phases is the same as CaTiO3, but

they are shifted down in energy becoming very spread. The AFD-Pnma ground-state is lower

by about −1 eV /f.u. than the Pm3̄m phase. This is in tune with the very high transition

temperature experimentally observed for the sequence Pm3̄m → Pnma, even if the phonon

frequencies related to the unstable modes are close to the ones in CaTiO3.

5.2.4 BaZrO3

For BaZrO3 we found competitive stable R3̄c (a−a−a−), Imma (a0b−b−) and I4/mcm (a0a0c−)

antiferroditortive structures. From phonon calculations performed on the three distorted struc-

tures, in fact, no instabilities have been found. Further details are provided in Appx. A.

According to the very tiny value of the instability in the cubic phase then [Fig. 5.1(c)], the

condensation of the oxygen rotations provides an energy gain relative to the cubic phase of

about ≃ 2.5 meV per f.u., while the three distorted phases have an energy that differs by less

than 0.2 meV /f.u. In spite of the negligible energy gain, the amplitude of the AFD distortion

is significant. The biggest distortion is appearing in the tetragonal phase with an angle of

rotation of ∼ 4◦ about the [001] direction.

5.2.5 Polar modes and ferroelectric phases

In order to interlock the optimized polar structures with the lattice dynamics, we evaluated the

contribution of each polar mode to the condensed distortion. The overlap matrix is reported

in Table 5.6. It is interesting to notice, that the three ferroelectric states are mostly due to the

condensation of the unstable optical mode for all the three perovskites BaTiO3, CaTiO3 and

CaZrO3, so that it is possible to establish a nearly one-to-one correspondence with the pattern

of distortion associated to the unstable TO1 mode and the displacements as obtained from the

structural optimization, while the contribution of the TO2 and TO3 modes remains very small.

An important remark is the huge difference in the total distortion τ between BaTiO3 and

the Ca-based perovskites, that allow for possible bigger spontaneous polarization in the latter

compounds even if the A-cation at play is not either stereochemically active or involved in the

hybridization with the oxygens.

5.3 Conclusions

The previous analysis of the dynamics and energetics associated to the four parent compounds

has emphasized some similarities and differences. In particular through the analysis of the

“on-site” and interatomic force constants, we have identified some key interactions tuning the

different dynamical and related properties. This is helpful for a better understanding of prop-
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BaTiO3

P4mm Amm2 R3m

|τ | 0.188 0.209 0.214
F1u(TO1) 0.993 0.975 0.971
F1u(TO2) 0.110 0.087 0.129
F1u(TO3) 0.032 0.194 0.228

CaTiO3

P4mm Amm2 R3m

|τ | 0.601 0.478 0.435
F1u(TO1) 0.985 0.970 0.970
F1u(TO2) -0.171 -0.203 -0.199
F1u(TO3) 0.033 0.129 -0.143

CaZrO3

P4mm Amm2 R3m

|τ | 0.903 0.886 0.868
F1u(TO1) 0.976 0.910 0.897
F1u(TO2) -0.060 0.202 -0.208
F1u(TO3) -0.067 -0.336 -0.197

Table 5.6: Overlap matrix between the total distortion τ of the three optimized polar structures and
the eigendisplacements ηi associated to the F1u(TO) modes of the optimized cubic phase, 〈ηi|M |τ 〉 =
αi. The distortion τ has been normalized such that 〈τ |M |τ 〉 = 1, with M in atomic mass units,
and results to be defined as τ =

∑

i=1,2,3 αiηi, with |τ | =
√

〈τ |M |τ 〉. Since BaZrO3 has no polar
instabilities we report results only for BaTiO3, CaTiO3 and CaZrO3.

erties arising while mixing cations at the A- and B-sites in (Ba,Ca)TiO3 and Ba(Ti,Zr)O3

solid solutions, respectively. Additionally, we note that the parent BaTiO3 and CaTiO3 com-

pounds display inverted sequence of polar phases. Then, for the (Ba,Ca)TiO3 solid solutions,

the emergence of a region with strong competition between these phases and a crossing point

in energetics can be expected. This will be confirmed in the next chapter.

We will now present results coming from a systematic characterization of the latter systems

by also testing and comparing two different approaches: the “virtual crystal approximation”

(VCA) and supercell-based calculations.



Chapter 6

(Ba,Ca)TiO3 solid solutions

In the last few years, Ba1−xCaxTiO3 (BCT) has started to arouse curiosity in the experimental

community as the Ca off-centering seems to play an important role in stabilizing ferroelectricity

against chemical pressure effects [183, 184, 185]. In particular, in Ref. [184], Fu and Itoh

have characterized single crystals of BCT in a temperature range from 2 K to 400 K and

for compositions ranging from x = 0.00 up to x = 0.34. They found that the Curie point

is nearly independent of the Ca-concentration for the Pm3̄m → P4mm transition, whereas

there is a shift of the P4mm → Amm2 and Amm2 → R3m phase transitions toward lower

temperatures. Accordingly, the effect of Ca-substitution is the stabilization of the tetragonal

ferroelectric phase.

Let us now analyze the dynamics and energetics as predicted by means of first-principles

calculations. We first report results from the VCA approach in Sec. 6.1, then from the use of

supercells in Sec. 6.2.

6.1 VCA approach

6.1.1 Lattice parameter

First, we report the evolution of the lattice parameter of the Pm3̄m-cubic phase as obtained

from the structural optimization within VCA. Because of the reduced volume of CaTiO3 with

respect to BaTiO3 (Table 4.1), the lattice parameter decreases monotonically with the Ca-

concentration, but the trend deviates from the linearity of the Vegard’s law, as shown in

Fig. 6.1(a).

As for the pure compounds, for solid solutions we can define the tolerance factor as t =

(rA+ rO)/
√
2(rB + rO), with rA = (1−x)rBa+(x)rCa. Values of the ionic radii, ri, for the pure

atoms have been taken from Ref. [186]. For increasing x, t decreases from 1.06 to 0.97 reaching

1 at x = 0.6, as reported on top of Fig. 6.1.

80
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6.1.2 Dynamical properties

We analyze the evolution of the lowest phonon frequencies at the high symmetry points of the

Brillouin zone of the cubic reference. DFPT calculations have been performed on the optimized

structures. We find that, for increasing Ca-concentration, the original polar instabilities of

BaTiO3 changes character by becoming confined to the center of the Brillouin zone (AFE

instabilities at X and M disappear), while the AFD modes due to oxygen rotations become

unstable, as shown Fig. 6.1(b). Changes in the phonon instabilities are linked to the evolution

of t. In fact, the polar instability dominates until t becomes smaller than one at which the AFD

rotational modes become largely unstable. Specifically, the lattice dynamics is BaTiO3-like for

0 ≤ x ≤ 0.2. The unstable polar mode at Γ is mainly sustained by the destabilizing Ti-O

interaction, while the A-O interaction stays mostly repulsive, resulting in the inactivity of the

A-site, as reproduced in Fig. 6.1(c,d,e). Accordingly, the instabilities at the X- and M-points

are also due to Ti-O polar motion. For 0.3 ≤ x ≤ 0.6, the scenario starts to change. The polar

instability becomes weaker as it results from the important reduction in the amplitude of the

associated frequencies. Particularly, the polar distortion remains unstable at Γ, while it becomes

progressively stable at X and M . These smooth changes can be related to smooth changes in

the type of interaction between the cations and the oxygens. A change of sign is observed

along both the Ti-O and A-O interaction that corresponds to a strong competition between

attractive and repulsive forces in determining the nature and character of the polar instability:

a reduction of the amplitude of the Ti-motion corresponds to increasing negative value of the Ti-

O interaction, while an increasing contribution to the polar distortion of the A-site arises from

positive values of the A-O interaction, as shown in Fig. 6.1(c,d,e). Finally, for 0.7 ≤ x ≤ 1.0, the

lattice dynamics becomes CaTiO3-like. Accordingly, instabilities related to oxygen rotations

appear at the M- and R-points of the cubic Brillouin zone and are more unstable than the

polar one at Γ. This situation results from strong destabilizing A-O interactions and largely

repulsive Ti-O interactions. Accordingly, the character of the polar distortion also changes by

becoming largely driven by the motion of the A-site with respect to the B-one.

Moreover, changes in the phonon behavior also affect the dynamics of the oxygens. The

increasing contribution to the distortion from the A-site, i.e. increasing long-range forces be-

tween the A-cation and oxygens, favors the motion of the planar oxygens with respect to the

apical one (labelled O2/3 and O1 in Fig. 6.1(e), respectively). Specifically, the contribution is

reversed when going from t > 1 to t < 1.

The latter analysis of the evolution of the dynamical properties when going from the BaTiO3-

rich region to the CaTiO3-rich one in the Ba1−xCaxTiO3 “virtual-system” reveals the presence

of two parallel mechanisms: the progressive weakening of the long-range forces between Ti and

O atoms in favor of their strengthening between the A-atoms and oxygens. In terms of character

of the phonons instabilities, this change corresponds to a smooth evolution from the B-driven
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Figure 6.1: Evolution of different lattice properties as a function of x-composition in Ba1−xCaxTiO3

as obtained by the use of VCA. (a) Cubic lattice parameter acell (in Å). Vegard’s law has been
built on the theoretical values of the cubic BaTiO3 and CaTiO3 reported in Table 4.1: a(x) =
(1 − x)aBTO + (x)aCTO. (b) Trend of the lowest phonon frequencies at the high-symmetry points
of the simple cubic Brillouin zone. Evolution of the total Ti-O (c) and A-O (d) Interatomic Force
Constants (IFCs in Ha/bohr2). (e) Evolution of normalized eigendisplacements (in a.u.) associated
to the unstable polar mode at the Γ-point of the simple cubic Brillouin zone. Lines are guide for the
eyes.
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into the A-driven distortions associated to the parents BaTiO3 and CaTiO3, respectively. The

reasons behind these two phenomena are also different and complementary. In fact, Ca-doping

of the virtual A-site produces: (i) varying interatomic force constants between the A-O atomic

pair in favors of destabilizing long-range forces sustained by the progressive lowering of the

A-cation stiffness when going from BaTiO3 to CaTiO3 (see Table 5.1); (ii) reduction of the

volume, that can be considered as increasing isotropic pressure on the ATiO3 system and,

therefore, shortening of the Ti-O bond lengths. The latter effect produces increasing stiffness

of Ti-atoms, that results in the change of sign of the Ti-O interatomic force constants and

associated weakening of the B-type ferroelectricity. In fact, as investigated at the first-principle

level in Refs. [187, 188, 189] and as it turns out when comparing graphs (a) and (c) reported in

Fig. 6.1, the balance between short-range and long-range forces between the Ti and O atoms is

strongly sensitive to pressure. At variant, the varying composition does not affect significantly

the A-B interaction, that in fact remains almost the same as in the pure parent compounds

(see Tables 5.3 and 6.1).

6.1.3 Energy landscape

As we previously did for the pure parent compounds, now that the main instabilities of BCT

“virtual-system” have been identified, we look at the energy competition between different

phases arising from the condensation of the corresponding modes in order to obtain an overview

of the energetics as a function of concentration. As shown in Fig. 6.2, the main effect of
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Figure 6.2: Energy gain with respect to the simple cubic phase for different optimized structures
allowed by dynamical properties within VCA as a function of x-composition in Ba1−xCaxTiO3. Struc-
tures properties reported in Table 5.5. The inset shows a zoom on the energetics of the polar phases
for 0.1 ≤ x ≤ 0.9.
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the Ca-substitution is to reduce the energy gain both between the three ferroelectric phases

and with respect to the cubic phase by making them strongly competitive, while additional

antiferrodistortive structures appear as metastable in the CaTiO3-rich region by providing a

non-polar ground-state.

Such behaviour proceeds from the evolution of the dynamical properties previously ana-

lyzed. In fact, an important energy competition between polar phases starts at x = 0.3, that

corresponds to the concentration where we observe the change of sign of the Ti-O IFCs [see

Fig. 6.2(c)]. Then, the energies of the polar phases smoothly converge to that of the cubic one

in line with the progressive weakening of the polar instability. Noteworthy is that the inversion

in the energy sequence of the three polar phases happens at x = 0.9 where we observe the

inversion of the dominant character of the polar instability between virtual A-cation and Ti

[see Fig. 6.2(e)].

Additional structures with oxygen rotations appear with an higher energy gain from x = 0.7

proceeding from the appearance of the related phonons instabilities in the cubic phase [see

Figs. 6.1(b) and 6.2]. It is also noteworthy that the contribution to the polar distortion arising

from the apical and planar oxygens is inverted from this point, with the dominant motions of

the latter ones (see Fig. 6.1(e)).

6.1.4 Polarization and piezoelectric response

Proceeding from the previous observation that for 0.0 ≤ x ≤ 0.6 the BCT “virtual-system”

experiences a progressive weakening of the ferroelectric instability and that no other phonons

are unstable, we now evaluate the evolution of the spontaneous , Ps, and piezoelectric coef-

ficients, dij. According to the VCA results, we performed calculations on the lowest energy

rhombohedral-R3m structure (Fig 6.2). Values are normalized to the calculated ones of pure

R3m-BaTiO3, that are PBTO
s ≃ 38 µC/cm2 and dBTO

11 ≃ 76 pC/N , dBTO
15 ≃ 270 pC/N and

dBTO
33 ≃ 15 pC/N .

Specifically, in Fig. 6.3, we report Ps as obtained both via first-principles calculations by

means of the Berry Phase Theory [191] (blue circles) and via the Born effective charges by means

of the approximation Ps,α = 1
Ω

∑

k,β Z
∗
k,αβ∆τk,β [99] (green rhombus). It results that Ps decreases

as function of increasing Ca-composition in tune with the decreasing energy gain associated to

the polar phases in this range of composition, i.e. the weakening of the polar instability detected

within VCA (Figs. 6.1 and 6.2). In order to clarify if changes in the polarization are mostly due

to varying effective charges or atomic distortions, we disentangled the two contributions. In

the first case, we kept constant the atomic displacements of pure R3m-BaTiO3 and took into

account the different effective charges associated to each BCT compositions (orange triangles).

In the second case, we kept constant the Born effective charges of pure R3m-BaTiO3 and

considered the distortion arising from different compositions (red circles). It results that the

evolution of Ps has to be widely ascribed to changes in atomic distortion in BCT “virtual-
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rhombohedral-R3m phase as a function of x-composition in Ba1−xCaxTiO3 within VCA. Values are
normalized to the ones of R3m-BaTiO3: P

BTO
s ≃ 38 µC/cm2; dBTO

11 ≃ 76 pC/N , dBTO
15 ≃ 270 pC/N

and dBTO
33 ≃ 15 pC/N ; εBTO

11 ≃ 208 and εBTO
33 ≃ 11. Upper panel: variation of the polarization as

directly computed by Berry-phase calculations (blue circles) and by Born effective charges approxima-
tion to disentangle the contribution of varying atomic charges and displacements. Lower panel: trend
of the dij coefficient and stress-free dielectric response εij .

system” in such range of composition, as shown in Fig. 6.3 (top). In fact, this behaviour is in

line with the evolution of the eigendisplacements associated to the unstable polar mode at Γ

with a pronounced reduction of the titanium and oxygens motion Fig. 6.1(e).

Despite the decrease of polarization, the piezoelectric response increases with the Ca-

concentration (Fig. 6.3 bottom). This trend is due to the fact that the stress-free dielectric

response, εij, remarkably increases as well, as shown in the inset of Fig. 6.3. By writing down

the piezoelectric coefficient as dik =
des,i
dEk

∝ (χj,kPs,l + Ps,jχl,k) [46] (Sec. 2.2), it is easier to

understand such a trend: near a phase transition, where the lowest-frequency polar mode, i.e.

the soft mode, goes to zero, the dielectric response diverges [93]. Accordingly, the calculated

values of the lowest-frequency polar modes in the R3m-phase evolve like 169, 160, 124, 73 (in

cm−1) for 0.0, 0.2, 0.4 and 0.6 x-composition, respectively. Therefore, the softening of the polar

mode overcomes the reduction of Ps in the piezoelectric response within the VCA approach.
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Ba0.875Ca0.125TiO3

VCA 2x2x2 CELL

Atoms Total DD SR Atoms Total DD SR

A−A′ Ba-Ba’ (‖) -0.012 -0.006 -0.006
d=3.967 Å (‖) -0.011 -0.005 -0.006 d=3.959 Å (⊥) +0.004 +0.003 +0.001

(⊥) +0.004 +0.003 +0.001 Ca-Ba (‖) -0.009 -0.005 -0.004
d=3.959 Å (⊥) +0.004 +0.003 +0.001

B −B′ (‖) -0.070 -0.038 -0.032 Ti-Ti’ (xx′) -0.072 -0.040 -0.033
d=3.967 Å (⊥) +0.008 +0.019 -0.011 d=3.929 Å (yy′) +0.008 +0.020 -0.012

(zz′) +0.009 +0.020 -0.011

A−B Ba-Ti (‖) -0.030 -0.022 -0.008
d=3.436 Å (‖) -0.030 -0.022 -0.008 d=3.437 Å (⊥) +0.014 +0.011 +0.003

(⊥) +0.014 +0.011 +0.003 Ca-Ti (‖) -0.023 -0.022 -0.001
d=3.403 Å (⊥) +0.013 +0.011 +0.003

B −O1 Ti-O1 (‖) +0.005 +0.236 -0.231
d=1.984 Å (‖) +0.002 +0.242 -0.241 d=1.994 Å (⊥) -0.020 -0.045 +0.025

(⊥) -0.020 -0.045 +0.025 Ti-O2 (‖) -0.007 +0.253 -0.260
d=1.965 Å (⊥) -0.020 -0.044 +0.024

A−O1 Ba’-O1 (xx′) -0.004 +0.012 -0.016
d=2.805 Å d=2.783 Å (yy′) -0.011 -0.016 +0.005

(zz′) -0.004 -0.006 +0.002

(xx′) -0.001 +0.012 -0.013 Ba’-O2 (xx′) -0.003 +0.012 -0.015
(yy′) -0.004 -0.006 +0.002 d=2.800 Å (yy′) -0.005 -0.006 +0.001
(zz′) -0.011 -0.016 +0.005 (zz′) -0.011 -0.016 +0.005

Ca-O2 (xx′) +0.011 +0.011 -0.000
d=2.750 Å (yy′) -0.005 -0.006 +0.001

(zz′) -0.011 -0.016 +0.005

Table 6.1: Interatomic force constants for Ba0.875Ca0.125TiO3 from VCA and super cell calculations.
Units are in Ha/bohr2. Directions xx′ (‖), yy′ (⊥) and zz′ (⊥) refer to local coordinates system of
the different pairs of atoms. Distances (in Å) between the selected atoms are also reported. Atoms’
notation in the second column is consistent with Fig. 6.6(a)

6.2 Supercell approach

In order to check the validity of VCA and to better characterize the impact of the (Ba,Ca)

substitution on the dynamics of the system we performed direct DFT calculations on the

Ba0.875Ca0.125TiO3 and Ba0.50Ca0.50TiO3 compositions by means of supercells. Details about

the atomic arrangements have been provided in Sec. 4.3.

6.2.1 Ba0.875Ca0.125TiO3

Phonons calculations performed at the Γ-point of the cubic Pm3̄m Ba0.875Ca0.125TiO3 supercell

[Fig. 4.2(a)] have revealed several instabilities related to polar modes. The most unstable one,
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with ω ≃ 169i cm−1, is associated to a polar distortion driven by all the Ti-atoms and the single

Ca-atom against the oxygens. Ba-atoms are almost fixed as in the parent BaTiO3. Therefore,

Ca is polar active on the A-site already at low concentration. The different dynamics can be

analyzed in terms of interatomic force constants between the A-cations and oxygens in the

investigated solid solution. In fact, the A-O interaction results to be opposite if we focus on Ba

or Ca atoms in line with the dynamical properties of the respective pure compounds (Table 5.3).

As reported in Table 6.1, the Ba-O interaction remains dominated by repulsive forces, while the

Ca-O interaction is largely dominated by the destabilizing long-range interaction. Moreover, the

Ti-O interaction also appears to be indirectly affected by such atomic substitution at the A-site;

in fact, from values reported in Table 6.1 in relationship with the atomic structure illustrated

in Fig. 6.6(a), it is evident that interatomic force constants between the Ti cations and oxygens

change alternately sign, reflecting strong competition between long- and short-range forces.

Such behavior is the result of a steric effect induced by the Ca substitution. In fact, the

ionic radii of Ba and Ca are 1.61 Å and 1.34 Å respectively [186]. Thus, to accommodate the

difference in size introduced by the partial substitution of Ba by Ca, a structural relaxation

takes place, changing the Ti-O distances already in the reference cubic structure. Specifically,

Ti atoms experiences shorter and longer bonds with the corresponding apical oxygen [Table 6.1

and Fig. 6.6(a)]. Such structural relaxation in turn strongly affects the Ti-O interatomic in-

teraction and consequently, the dynamics behind the emergence of ferroelectricity in BaTiO3

[102, 168]. In BaTiO3, in fact, ferroelectricity is quickly suppressed by decreasing Ti-O distance

as revealed under hydrostatic pressure [189]. In Fig. 6.4(a), in fact, we see that the overall fer-

roelectric instability in the cubic phase rapidly evolves as a function of the Ti-O distance and

becomes localized at the Γ point before it disappears. This happens below dT i−O ∼ 1.979 Å,

which is shorter by only a 0.4% of the optimal Ti-O distance in cubic BaTiO3. At the same

time, the longitudinal Ti-O interatomic force constant changes sign, and so the nature of the

interaction transforms from destabilizing into stabilizing, as can be seen Fig. 6.4(c). Together

with this weakening of the polar instability, the relative energy difference between the two polar

states with polarization along the [100] and [111] directions abruptly decreases [Fig. 6.4(b)].

In CaTiO3, on the contrary, the increase of the Ti-O distance, which is now analogous to

volume expansion with respect to its ideal cubic phase, keeps the overall behavior qualita-

tively unchanged. The corresponding Ca-O IFCs are, in fact, always positive, as we can see

in Fig. 6.4(d), whereas, the Ti-O IFCs change sign also in this case, as shown in Fig. 6.4(c).

However, in Sec. 5.1.2 we have seen that in CaTiO3 the key interatomic interaction for the

ferroelectric instability is the Ca-O one, leading to the A-site driven character of the associated

polar distortion. Therefore, the persistence of this destabilizing Ca-O interaction is another

key feature of the Ca substitution in the solid solution.

The intriguing manifestation of such an interplay between weakened Ti-driven ferroelectric-

ity and emergent Ca-driven one in Ba0.875Ca0.125TiO3 is the achievement of a quasi-degeneracy

between different polar states. In fact, we analyzed five different polar states corresponding
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BaTiO3 and CaTiO3 in the cubic phase. (a) Phonon frequencies (in cm−1) at the high-symmetry
Q-points of the cubic Brillouin zone of BaTiO3. (b) Relative energy difference (in meV/f.u.) between
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Force constants (in Ha/bohr2) along the Ti-O coupling in BaTiO3 and CaTiO3. (d) Total Interatomic
Force constants (in Ha/bohr2) along the Ca-O coupling in CaTiO3.

to the tetragonal, orthorhombic, rhombohedral, monoclinic and triclinic phases with P4mm,

Amm2, R3m, Pm and P1 space-group symmetry, respectively, obtained by fully relaxing lat-

tice vectors and atomic positions. Specifically, the average gain in energy with respect to the

Pm3̄m-cubic phase is about −20 meV/f.u. as for the parent BaTiO3 [Fig. 6.5(a), Sec. 5.2].

Nevertheless, the maximum energy difference between the different polar phases is of about

0.5 meV/f.u. In particular, the energy of the tetragonal phase is lower than in BaTiO3. This

is likely because of the larger lattice-strain coupling effect [187, 180, 190] brought by the Ca

substitution, as evident from Figs. 6.5(a,d) and Figs. 6.5(c,f). The evolution of the energy

landscape when going from pure BaTiO3 to CaTiO3 passing through Ba0.875Ca0.125TiO3 as
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strain relaxation) for BaTiO3 and CaTiO3 respectively. For Ba0.875Ca0.125TiO3 (b) closed squares
reproduce the energetics as obtained from Eq. 6.1. (Center) Trend of spontaneous polarization (in
µC/cm2) calculated by means of computed atomic displacements and Born effective charges, Ps,α =
1
Ω

∑

k,β Z
∗
k,αβ∆τk,β [99], for different polar states. In (d) and (f) open rhombus reproduce polarization

constrained to the cubic unit cell for BaTiO3 and CaTiO3 respectively. For Ba0.875Ca0.125TiO3 (e)
closed triangles reproduce the polarization as obtained from Eq. 6.2. (Bottom) Evolution of average
atomic displacements (in internal coordinates) relative to the center of mass of corresponding cells.

well as the effect of the strain relaxation on the energetics of the two parent compounds are

reproduced in Fig. 6.5.

Interestingly, this degeneracy can be reproduced via a simple heuristic model in which the

relative energy of each ferroelectric phase (Ei) and their spontaneous polarization (P i) are

expressed as a linear combination of the corresponding quantities of the parent compounds:

Ei(x) = (1− x)Ei
BTO + xEi

CTO (6.1)

P i(x) = (1− x)P i
BTO + xP i

CTO (6.2)

where x is the Ca concentration. This simple model exploits the reversed sequence of ferro-

electric states displayed by the two parent compounds. Noteworthy, the strain effect has to
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be included to properly reproduce the degeneracy of phases. The obtained from this model is

shown in Fig. 6.5(b,e).

Going back to the specific results from supercell calculations for x = 0.125, it is worthy

to emphasize the emergence of the triclinic and monoclinic structures absent in the energet-

ics of the parent compounds. Specifically, the triclinic-P1(C1) phase displays polarization

Pabc nearly between the [001]-[111] direction of the original cubic structure (Pa/Pc ≃ 0.53,

Pb/Pc ≃ 0.48) and the monoclinic-Pm(Cs
1) phase displays polarization P0bc in between the

[001]-[011] direction (Pb/Pc ≃ 0.53) [Figs. 6.5(b,e)]. Furthermore, the spontaneous polarization

and related atomic distortions are essentially the same for all the ferroelectric phases as we

show in Figs. 6.5(e,h) (P ∼ 39µC/cm2 as computed via the Berry phase [191]). Together with

the the quasi-degeneracy of the energies, these results disclose a remarkably isotropic energy

landscape. We also note that, compared to the parent BaTiO3, the relative displacements of

both Ti and O atoms are reduced for x = 0.125, which is more pronounced for the Ti atoms,

while the current distortion also contains a sizable displacement of Ca [see Fig. 6.5(h)]. Such

behavior has been actually observed experimentally in Refs. [193, 194]. This reduction of the Ti

and O displacements contributes to reduce the overall anisotropy of the system. Therefore, the

specific dynamics in Ba0.875Ca0.125TiO3 is a clear manifestation of the appearance of a A-driven

character of the distortion accompanied by the reduction of the B-driven one.

Additionally, we calculated the dij coefficients of the piezoelectric tensor in the stable R3m-

phase. The d33 component, parallel to the polarization direction, remains unchanged with

respect to BaTiO3, while the d11 and d15 components, transversal to the polar axis, are con-

siderably enhanced. Specifically they are: d33 ≃ 15, d11 ≃ 344 and d15 ≃ 1458 in pC/N . This

behavior can be related to the increase of the stress-free dielectric response along the corre-

sponding directions due to the softening of the polar modes. In fact, the lowest-frequency polar

mode in the stable R3m-phase is of about 61 cm−1 instead of 169 cm−1 in BaTiO3.

6.2.2 Ba0.5Ca0.5TiO3

First result in Ba0.5Ca0.5TiO3 [Fig. 4.2(b-d)] is the preference of an ordered configuration com-

posed by alternating layers of the same type of A-cations with respect to a columnar and

rocksalt ordering. The relative energy gain of the high-symmetry columnar and layered con-

figurations with respect to the rocksalt one is about −35.5 meV/f.u. and −81.4 meV/f.u.,

respectively.

Then, as previously, we performed DFPT calculations on the three high-symmetry refer-

ence supercells. All three configurations display several instabilities. In all of them the most

unstable mode corresponds to a polar distortion driven by both the Ti and Ca atoms like in

Ba0.875Ca0.125TiO3, but with an average major contribution from calcium. The phonon fre-

quency associated to that mode is ω ≃ 141i cm−1 in all three cases. Additionally, AFD modes

related to oxygen rotations become unstable. However, the energy gain carried to the system
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Ba0.50Ca0.50TiO3

VCA 1x1x2 CELL

Atoms Total Atoms Total

B −O1 Ti-O1 (‖) -0.009
d=1.960 Å d=1.956 Å (⊥) -0.019

(‖) -0.011 Ti-O2 (‖) -0.047
(⊥) -0.020 d=1.890 Å (⊥) -0.017

Ti-O3 (‖) +0.010
d=2.011 Å (⊥) -0.019

A−O1 Ba-O1 (xx′) -0.001
d=2.772 Å d=2.837 Å (yy′) -0.005

(zz′) -0.011

Ba-O3 (xx′) -0.005
(xx′) +0.002 d=2.765 Å (yy′) -0.005
(yy′) -0.005 (zz′) -0.011

(zz′) -0.011 Ca-O1 (xx′) +0.010
d=2.690 Å (yy′) -0.006

(zz′) -0.012

Ca-O2 (xx′) +0.011
d=2.765 Å (yy′) -0.005

(zz′) -0.012

Table 6.2: Interatomic force constants for Ba0.50Ca0.50TiO3 within VCA and the layered supercell. Units
are in Ha/bohr2. Directions xx′ (‖), yy′ (⊥) and zz′ (⊥) refer to local coordinates system of the different pairs
of atoms. Distances (in Å) between the selected atoms are also reported. Atoms’ notation in the second column
is consistent with Fig. 6.6(b)

by the condensation of the latter distortions alone is lower than the one coming from the polar

distortions, that determine the ground-state.

Accordingly, the most stable polar phase results to be the P2mm-structure with the po-

larization along the [100] direction of the layered atomic arrangement. The associated Ps is

of about 51 µC/cm2 and it is considerably greater than the one calculated in P4mm-BaTiO3,

that is Ps ≃ 34 µC/cm2. Moreover, in order to see eventual effects of the atomic configuration

on the energy competition between different polar states, we condensed different patterns of

polar distortions in the three arrangements. The associated energy landscape is quite spread

as reported in Fig. 6.6(c). It results that, for x = 0.50, the system prefers a state with only

“one-component” polarization independently of the atomic configuration. The R3m-like state

with polarization along the [111] pseudo-cubic direction is largely penalized.

Also in this case, changes in the dynamical properties (i.e. substantial contribution from

Ca-atoms to the polar distortion and the appearance of unstable AFD modes) and in the

energetics of the polar phases can be analyzed in term of interatomic force constants. As made

clear in Table 6.1 and Table 6.2, the main features are the same as the ones described for the

x = 0.125 Ca-concentration. However, the higher concentration of calcium induces shorter Ti-O
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distances, i.e. more contracted [TiO6]-octahedra. On the one hand, this produces the overall

weakening of the long-range interaction between Ti and O atoms in favor of repulsive forces

hindering the B-driven polar distortion. Therefore, the polar instability remains mostly Ca-

driven, promoting “tetragonal-like” polar states. Accordingly, the result of such unbalanced

competition between Ti- and Ca-driven polar distortion is that the quasi-degeneracy of the

ferroelectric phases found out in the low Ca-concentration case is lost and the energy landscape

becomes highly anisotropic again, CaTiO3-like. On the other hand, the stiffness of oxygens is

reduced in the direction perpendicular to the Ti-O bonds favoring the appearance of oxygen

rotations. In fact, the values of the “on-site” oxygens force constants in the solid solution are

in between the ones of pure BaTiO3 and CaTiO3 (Table 5.1).
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Comparison with experimental phase diagram

It is worth noting that our calculations reproduce qualitatively the T = 0 K experimental

phase diagram reported by Fu et al. in Refs. [184, 195] [Fig. 6.7(b)]. Specifically, at T = 0 K,

Ba1−xCaxTiO3 is experimentally found to be in the rhombohedral R3m phase for x ∼ 0.18

and in the tetragonal P4mm phase for x ∼ 0.23. The orthorhombic Amm2 phase has been

assigned to the intermediate 0.18 . x . 0.23 interval which, in our calculations, appears

to be virtually zero [see Figs. 6.5(a)-(c)]. However, we note that in the measurements of the

dielectric constant reported in Ref. [195] [Fig. 6.7(a)], it is observed very broad low-temperature

features for x = 0.18 that can perfectly result from the overlap of the two hysteretic anomalies,

having thus still three peaks in total. Additionally, the authors have obtained the critical

concentrations xc(T=0 K) by invoking a “quantum” scaling, of the type T ∝ (x− xc)
1/2, and

fitting the data to this scaling over all the temperature interval from 0 to 300 K of the phase

diagram [Fig. 6.7(b)]. This scaling, however, is an asymptotic scaling that can be expected to

be valid in the ultra low-temperature limit only, and not above ∼ 100 K [197, 198]. Moreover,

they ignore the hysteretic behavior of the experimental data (see the temperature dependence

of the dielectric constant ǫ′ in Fig. 6.7(a)), revealing the first-order character of the transition,

that does not allow an universal scaling.

To test the trend T ∝ (x− xc)
1/2, we have plotted T 2 ∝ (x− xc) as function of x by taking

into account in the fit only the data below ∼ 100 K. The result shown in Fig.6.7(c) is that

such a trend is not representative of all the data. Then, if we simply extrapolate their results

without assuming any specific scaling, we find that these results are also compatible with the

three polar phases meeting together at T = 0 K, as shown in Fig. 6.7(d). The fit has been done

on data extracted from the phase diagram reported in Ref. [184] by excluding the last point at

T < 5 K. Consequently, on the one hand the quasi-degeneracy of the ferroelectric phases found

out by our first-principles calculations is compatible with the direct extrapolation of this data

to T = 0 K. On the other hand, the disagreement in the quantitative prediction of the specific

concentration, at which such a convergence occurs, is likely due to the relative small size of our

2×2×2 supercells, not considering explicitly the effect of disorder. Additionally, the energetics

obtained by our specific calculations for the case x = 0.50 based on such supercells [Fig. 6.6], are

again fully compatible with the experimentally observed stabilization of the tetragonal phase

over the orthorhombic and rhombohedral ones for greater Ca-concentration. Nevertheless, the

quantitative reproduction of the experimental data, as well as the discussion of quantum critical

effects, was not the scope of our study aimed instead to the identification of the microscopic

mechanisms leading to this quasi-degeneracy.
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Figure 6.7: (a) Temperature dependence of the dielectric constant (ǫ′) of Ba1−xCaxTiO3 crystals.
(b) Phase diagram of Ba1−xCaxTiO3 derived from dielectric measurements. Blue rhombus and red
circles indicate the cooling and heating processes, respectively. From Refs. [184, 195]. (c) and (d)
fit of the trend of the transition temperature T as a function of the concentration x: (c) plot of T 2

fitted via the linear behavior a(x − xc) to test the trend T ∝ (x − xc)
1/2 as assumed by Fu et al. in

Refs. [184, 195] for the T-O and O-R phase transitions; (d) fitting of T via the classic trend (x− xc)
for the C-T transition, while via a generic trend a(x−xc)+b(x−xc)

2 for the T-O and O-R transitions
to extrapolate xc(T=0 K). a and b are fitting parameters. Data for fitting have been extracted from
the phase diagram (b) reported in Ref. [184].

6.3 VCA vs SUPERCELL approaches

By comparing results from supercell-based calculations with the ones from VCA, it seems that

the latter approach is successful to provide an average and qualitative identification of the main

changes occurring in the (Ba,Ca)TiO3 solid solutions. However, it cannot provide a proper de-

scription of the microscopic mechanism behind properties. The reason of such a limitation is

that, by construction, VCA considers all A atoms as equivalent and forces them to behave simi-

larly while, in fact, Ba and Ca want to adopt different behaviors. The importance of considering

the actual local cations is clear by comparing the quantities reported in Tables 6.1 and 6.2,

where we clearly see that different results are obtained depending on the method. In fact, as

discussed above, evolutions in the dynamics as well as in the energy landscape are strongly

related to the presence of calcium that directly interacts with the oxygens and, indirectly, af-

fects the Ti-O interaction via local changes of the structure. These effects have a purely steric

nature related to the presence of Ca atoms. Strong changes in the dynamical properties as
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steric effects induced by the addition of Ca have also been found in (Ba,Ca)ZrO3 [192].

However, the progressive weakening of ferroelectricity, within VCA, is not representative

of the real behaviour: the actual weakening of the Ti-driven ferroelectricity due to decreasing

volume is progressively compensated by the Ca-driven ferroelectricity. In fact, the inversion in

the sequence of polar phases when going from BaTiO3 to CaTiO3 appears already at x = 0.50

within the supercell, while it is expected for x ≥ 0.9 within VCA. Additionally, an opposite

trend of the spontaneous polarization is also obtained within the two approaches: decreasing

values for larger x within VCA, while increasing ones within the supercells.

As a global result, the partial success of VCA in detecting changes in the dynamical prop-

erties when progressively substituting Ba by Ca is due to two main factors: (i) the volume

contraction induced by increasing Ca concentration allows to detect the weakening of the B-

driven ferrolectricity; (ii) possible inaccuracies in reproducing the orbital hybridization within

VCA are not primary here, as the most relevant hybridization mechanism is only related to the

O p and Ti d states, that are not concerned by the VCA mixing procedure. Nevertheless, the

trends and microscopic mechanisms involved as predicted by means of supercells calculations

are better in line with experimental observations [184, 193]. This remark confirms that, in order

to provide a proper first-principles characterization of (Ba,Ca)TiO3, VCA-based approaches can

provide some trend, but are not appropriate to explain the underlying physics; for the latter,

supercells-based calculations taking explicitly into account the different nature of the cations

are more suitable.



Chapter 7

Ba(Ti,Zr)O3 solid solutions

Ba(Ti,Zr)O3 (BTZ) solid solutions involve the homovalent substitution between Ti4+ and Zr4+,

that are nevertheless quite different atoms both for the ionic radii (0.605 Å and 0.72 Å re-

spectively [186]) and the electronic configuration (Ti 4s2 3d2 and Zr 4d2 5s2), which enters the

hybridization mechanism responsible of the ferroelectricity in BaTiO3.

The first experimental investigation of the phase diagram of the BaTiO3-BaZrO3 binary

system dates back to the 1956 with the work of Kell and Hellicar [160], reporting the abrupt

effect of Zr-concentration on the decreasing of the Curie point for the three ferroelectric phases

of BaTiO3. Subsequently, other solid experimental investigations came out in the late ’90s,

when Ravez et al. in Refs. [199, 200] provided a clear distinction of phases in the BaTi1−yZryO3

ceramics diagram: classical ferroelectric BaTiO3-like for 0.00 ≤ y ≤ 0.10, only one ferroelectric-

paralectric transition observed in the range 0.10 ≤ y ≤ 0.27 and relaxor ferroelectric behavior

for 0.27 < y ≤ 0.42. Then, in 2004, Simon et al. also investigated the crossover from a fer-

roelectric to a relaxor state in lead-free solid solutions in Ref. [201], confirming that beyond a

definite concentration y, BTZ ceramics show relaxor properties. For BaTi0.80Zr0.20O3 only one

resonance of the permittivity at the ferroelectric-paraelectric TC of about 315 K is observed,

whereas for y = 0.35 the dielectric anomaly is broad and frequency-dependent as a function

of temperature. Moreover in Ref. [202], they provide an EXAFS study of BTZ systems and

conclude that BTZ is relaxor and the average crystal structure is cubic (Pm3̄m space group)

in the range 0.25 ≤ y ≤ 0.50. In addition, in a complementary work on BCTZ [203], the X-ray

diffraction has revealed (110) peaks in BaTi0.80Zr0.20O3 ceramic but a weak tetragonality (i.e.

a/c ∼ 1), that means closeness to the cubic phase. However, no experimental data on single

crystal samples are available for direct comparison with ab-initio results.

As for the previous case of (Ba,Ca)TiO3, we first investigate the Ba(Ti,Zr)O3 system by

means of the virtual crystal approximation. Then, we go beyond by using supercells-based

calculations.

96
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7.1 VCA approach

7.1.1 Lattice parameters

We first report the trend of the lattice parameter of the Pm3̄m-cubic phase as a function of

Zr-composition. Because of the bigger volume of BaZrO3 with respect to BaTiO3 (Table 4.1),

the trend is monotonically increasing with the amount of zirconium and the agreement with

the linearity of the Vegard’s law is quite satisfactory [Fig. 7.1(a)]. Contrariwise, because of the

bigger ionic radius of Zr than Ti, the tolerance factor1 decreases without going below 1, that is

the value for pure BaZrO3, as reported on top of Fig. 7.1.

7.1.2 Dynamical properties

We focus on the dynamics by looking at the evolution of the lowest phonon frequencies at the

high-symmetry points of the cubic Brillouin zone. Calculations have been performed on the

VCA-optimized Pm3̄m structure. It results that the main effect of the Zr-doping is to abruptly

stabilize the cubic phase, as clear from Fig. 7.1(b). In fact, already in the Ti-rich region, i.e.

y > 0.10, the original polar instability vanishes and an AFD unstable mode BaZrO3-like appears

at the R-point only for y ≥ 0.90. The reason behind such abrupt weakening of ferroelectricity

in the BTZ “virtual-system” at low y-concentration can be traced back to abrupt changes in

the type of interaction between the virtual cation at the B-site and the oxygens. In fact, the

total IFC along the B-O direction is of about −0.001 Ha/bohr2 at y ≥ 0.05. Therefore, the

change of sign with respect to the corresponding interaction in pure BaTiO3 (Tables 5.3) means

that the Zr-substitution strongly favors short-range repulsive forces.

Differently from BCT systems, it is not possible to relate such behaviour to the evolution of

the tolerance factor or to simple volumetric reasons. In fact, in line with the properties of the

two parent compounds, t remains larger than one and the volume increases for each intermediate

composition. The main mechanism involved here is the weakening of the Ti-O interaction when

“virtually” introducing Zr on the same B-site. This corresponds to either direct changes in the

O 2p and B d hybridization mechanism from the electronic perspective or breaking correlated

Ti-O chains necessary to sustain ferroelectricity in BaTiO3 from the lattice dynamics. In fact,

we have already seen in Sec.5.1.4, that the Zr-O interaction in BaZrO3 is strongly repulsive.

Moreover, differently than the role played by CaTiO3 in BCT, no contribution from the A-site

is observed, as the Ba-O interaction is too weak to sustain alone a polar instability in BTZ.

As a consequence, it is finally not surprising that the “virtual”-BTZ system does not display

any instabilities for a very large range of composition.

1also in this case, we defined an average radius for the B-cation as rB = (1− y)rTi + (y)rZr
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Figure 7.1: (a) Evolution as a function of y-composition in BaTi1−yZryO3 of the cubic lattice
parameter acell (in Å) relaxed within VCA. Vegard’s law has been built on the theoretical values of
the cubic BaTiO3 and BaZrO3 reported in Table 4.1: a(y) = (1 − y)aBTO + (y)aBZO. (b) Trend of
the lowest phonon frequencies (in cm−1) at the high-symmetry points of the simple cubic Brillouin
zone as a function of different y-compositions.

7.1.3 Energy landscape

In line with the drastic changes of the dynamical properties in BTZ predicted by VCA, the

energy difference both between the three polar phases and with respect to the cubic one is

abruptly reduced, as shown in Fig. 7.2. In fact, the energy competition is within 0.1 meV/f.u.

at y = 0.10 and beyond this concentration no stable or metastable polar phases are allowed

within VCA.

7.1.4 Polarization and piezoelectric response

After identifying the abrupt weakening of ferroelectricity in the BTZ “virtual-system”, we

now evaluate the associated effect on the piezoelectric response. Therefore, we calculate the

spontaneous polarization Ps and the piezoelectric coefficients dij for the stable phase, that is

the R3m-phase for y = 0.05 and 0.10 (Fig.7.2). Also in this case, as we are mostly interested in

the qualitative trend of these properties as a function of Zr-doping, we report values normalized
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to those of R3m-BaTiO3.

In Fig. 7.3 we report values of Ps calculated both via Berry phase (blue circles) and Born
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Figure 7.2: Zoom on the evolution of the energy gain (in meV/formula unit) of the three polar
structures relative to the cubic phase as a function of y-composition in the Ti-rich region within VCA.
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effective charges (green rhombus). This is to be compared with the same calculations for BCT

in Fig 6.3. In line with the strong weakening of the polar instability, Ps is drastically reduced

by the Zr-doping. Similarly to BCT, from the further analysis of the distinguished contribution

from effective charge variation and atomic displacements, it results that the evolution of Ps has

to be widely ascribed to largely reduced atomic motions. However, by looking at y = 0.10, it is

important to note that there is a disagreement between the value of polarization by fixing the

Born effective charges to that of pure R3m-BaTiO3 (red circles) or to the ones of R3m-BTZ

“virtual-system” (green rhombus) as the Zr-doping also affects the Born effective charges. In

fact, we have already shown that the Z∗ associated to Zr is less anomalous than the one of Ti

(Table 5.2). Therefore, the average effective charge associated to the “virtual” B-cation is also

reduced with increasing Zr-concentration. This is an important warning about the ability of

VCA in describing the properties arising from the mixing of Zr and Ti on the B-site, as they

have quite different electronic properties (see Sec.7.3 below).

Such decrease of Ps remains compatible with an increase of piezoelectricity. In fact, the

huge increase of dielectric response, εij, associated to the drastic softening of the polar mode,

largely compensates the decrease of Ps. This results in the enhancement of the piezoelectric

response with respect to pure BaTiO3, as reported in Fig. 7.3. Accordingly, the values of the

lowest-frequency polar mode in the stable R3m-phase evolve like 169, 146, 69 (in cm−1) for

y = 0.00, 0.05 and 0.10, respectively.

As we see, the trends obtained from VCA are in reasonable agreement with the experimental

observations. However, to understand the actual impact of the partial substitution of Ti with

Zr on the dynamics of the system at the local level, supercells-based calculations are necessary.

7.2 Supercell approach

In this Section, we investigate the dynamical properties of BaTi0.875Zr0.125O3 and BaTi0.50Zr0.50O3

supercells. Structural details are provided in Sec. 4.3

7.2.1 BaTi0.875Zr0.125O3

BaTi0.875Zr0.125O3 supercell [Fig. 4.2(e)] hosts several instabilities in the cubic Pm3̄m phase,

all related to ferroelectric and antiferroelectric distortions. The most unstable, with ω ≃
214i cm−1, is a polar mode mostly related to the opposite motion of Ti and O, while the Zr

atom slightly moves in the same direction as the oxygens. The difference in these relative dis-

placements affects the neighboring atom lying on the polar direction, that slightly moves with

the oxygens as well. This means that, according to the labels indicated in Fig. 7.4(a), if the po-

lar distortion is, for instance, along the x direction, Ti1 slightly off-centers with Zr in the same

direction as the oxygens, but opposite to the other Ti-atoms. Ba-atoms are almost fixed as in



CHAPTER 7. BA(TI,ZR)O3 SOLID SOLUTIONS 101

¿ÀÁÂ7/8ÃÄ1/8O3 BaTi1/2ÆÇ1/2TiO3 

ROCKSALT

(a) (b)

LAYERED

COLUMNAR

ROCKSALT

∆
E

 (
m

e
V

/f
.u

.)

BaTi0.875ÈÉ0.125O3 BaTi0.50ÊË0.50O3

P000 P001 P011 P111 P000 P001 P100 P110

Ì30

Ì20

Ì10

0

0

15

30

45

60

75

90

(c) (d)

z

x
y

ÍÎ

ÍÎÏ

O1

O1 O1

O1

O2

O2

O2O2

Ti1Zr

Ti2

Zr Ti

O

O O

O

O

O

Ba
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the parent BaTiO3. Such different dynamics is made clear when looking at the interatomic force

constants reported in Table 7.1. In fact, the original destabilizing Ti-O interaction of BaTiO3

is not preserved for each direction in the system. The Ti-atoms having Zr as first-neighbors

experience a strong repulsive Ti-O interaction along the O-Zr-O-Ti-O chain direction, while the

long-range forces remain the major ones along the other directions as well as for the other Ti-

atoms. This is strongly ascribed to the “chain-like” character of the polar instability of BaTiO3,

as discussed in Sec. 5.1.1: the polar instability requires a minimum number of correlated Ti-O

displacements [168] that, however, are prevented along the chain containing Zr. In fact, accord-

ing to the properties of BaZrO3 described in Sec. 5.1.4, the Zr-O interaction remains strongly

repulsive also in this Ti-rich solid solution. However, along the preserved O-Ti-O-Ti-O chains,

the long-range interaction is even indirectly strengthened by the Zr-presence. In fact, the bigger

size of Zr (i.e. of the [ZrO6]-octahedral volume) makes the Ti-O bond’s length perpendicular
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BaTi0.875Zr0.125O3

VCA 2x2x2 CELL

Atoms Total DD SR Atoms Total DD SR

A−A′ (‖) -0.011 -0.006 -0.005 Ba-Ba’ (‖) -0.012 -0.006 -0.0061
d=3.997 Å (⊥) +0.004 +0.003 +0.001 d=4.043 Å (⊥) +0.004 +0.003 +0.001

B −B′ Ti1-Ti2 (xx′) -0.068 -0.038 -0.029
d=3.997 Å (‖) -0.067 -0.037 -0.030 d=4.002 Å (yy′) +0.008 +0.018 -0.010

(⊥) +0.009 +0.018 -0.011 (zz′) +0.008 +0.019 -0.011

Ti1-Zr (xx′) -0.069 -0.034 -0.034
d=4.002 Å (yy′) +0.008 +0.019 -0.011

(zz′) +0.008 +0.019 -0.011

A−B Ba-Ti1 (xx′) -0.028 -0.022 -0.007
d=3.461 Å (‖) -0.030 -0.023 -0.008 d=3.478 Å (yy′) +0.014 +0.010 +0.003

(⊥) +0.014 +0.011 +0.003 (zz′) +0.013 +0.011 +0.002

Ba-Zr (xx′) -0.031 -0.020 -0.011
d=3.502 Å (yy′) +0.013 +0.011 +0.002

(zz′) +0.013 +0.011 +0.002

B −O1 Ti1-O1 (‖) -0.032 +0.239 -0.271

d=1.998 Å d=1.929 Å (⊥) -0.015 -0.052 +0.037

Zr-O1 (‖) -0.039 +0.199 -0.238
(‖) -0.009 +0.229 -0.238 d=2.073 Å (⊥) -0.013 -0.040 +0.027

(⊥) -0.020 -0.045 +0.025 Ti1-O2 (xx′) +0.013 +0.239 -0.226
d=2.012 Å (yy′) -0.023 -0.039 +0.016

(zz′) -0.021 -0.046 +0.025

Ti2-O2 (‖) +0.003 +0.244 -0.241
d=1.990 Å (⊥) -0.021 -0.043 +0.022

A−O1 (xx′) -0.001 +0.013 -0.014 Ba-O1 (xx′) +0.000 +0.012 -0.0113
d=2.826 Å (yy′) -0.005 -0.006 +0.002 d=2.860 Å (yy′) -0.010 -0.015 +0.005

(zz′) -0.011 -0.016 +0.005 (zz′) -0.004 -0.006 +0.002

Table 7.1: Interatomic force constants from VCA and supercell-based calculations for
BaTi0.875Zr0.125O3. Units are in Ha/bohr2. Directions xx′ (‖), yy′ (⊥) and zz′ (⊥) refer to local
coordinates system of the different pairs of atoms. Distances (in Å) between the selected atoms are
also reported. Atoms’ notation in the second column is consistent with Fig. 7.4(a).

to the O-Zr-O-Ti-O chain direction longer than in pure BaTiO3. This mechanism locally fa-

vors the long-range interaction. Accordingly, the “on-site” force constants tensor associated to

the Ti-atoms adjacent to Zr are anisotropic: by referring to Ti1 of Fig. 7.4(a), the “on-site”

terms are (+0.247,+0.132,+0.132) Ha/bohr2. Therefore, they are much more stiffer along the

Zr-direction, while softer along the transversal directions than in BaTiO3 (see Table 5.1). The

other Ti-atoms display a slightly anisotropic tensor, but similar to the one in BaTiO3: by

referring to Ti2 of Fig. 7.4(a), values are (+0.162,+0.151,+0.162) Ha/bohr2. In contrast, Zr
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displays an isotropic tensor BaZrO3-like with diagonal values of about +0.229 Ha/bohr2, as it

experiences the same interactions in each direction. Concerning Ba at the A-site, the dynamics

is the same as in pure BaTiO3. In fact, the A-O interatomic force constant is close to zero along

parallel direction of the coupling meaning that Ba distortion does not lead ferroelectricity in

BaTi0.875Zr0.125O3. The A-B interaction is also similar to the one in the two parent compounds

reported in Table 5.3.

Such complex dynamics results in slightly reduced total polarization and more spread energy

landscape with respect to the case of the parent BaTiO3. On one hand, the calculated spon-

taneous polarization is of about 28 µC/cm2 and 35 µC/cm2 for the P4mm and R3m phases,

respectively, while it is of about 34 µC/cm2 and 38 µC/cm2 for the corresponding phases in

pure BaTiO3. This has to be assigned to the local depolarizing contribution arising from the

O-Zr-O-Ti-O chain. On the other hand, the energy gain of the three polar phases relative to the

cubic phase is higher than in BaTiO3 and it appears much more pronounced for the Amm2 and

R3m phases as reported in Fig. 7.4(c). This effect traces back to the overall volume increase,

that further favors the rhombohedral phase.

In line with the higher anisotropy of the energy landscape and reduced polarity of the system,

the piezoelectric response results then reduced than in BaTiO3. Specifically, we calculated the

dij coefficients of the piezoelectric tensor in the stable R3m-phase. Values are: d33 ≃ 11,

d11 ≃ 23 and d15 ≃ 85 in pC/N .

7.2.2 BaTi0.50Zr0.50O3

The case of BaTi0.50Zr0.50O3 [Fig. 4.2(f-h)] clearly reveals the importance of the atomic ordering

on the dynamical properties. The first result is that the atomic arrangement associated to

the high-symmetry-Fm3̄m rocksalt configuration is lower in energy than the ordered-P4mmm

structures based on chains or layers of same type of B-cations: the three structures have been

optimized and the energy lowering with respect to the highest energy layered configuration is of

about −30.95 meV/f.u. for the columnar configuration and −93.73 meV/f.u. for the rocksalt.

Beyond that, all the three configurations show very different dynamical properties. Looking

at the phonon frequencies reported in Table 7.2, unstable modes appear at each high-symmetry

point of the P4mmm-tetragonal Brillouin zone of the layered-based supercell. Specifically, the

BaTi0.5Zr0.5O3 (P4mmm-supercell)

Configuration Γ(0 0 0) Z (0 0 1
2) M (12

1
2 0) A (12

1
2

1
2) R (0 1

2
1
2 ) X (0 1

2 0)

layered [110] 274.18i 271.42i 65.17i 60.85i 259.90i 262.65i

columnar [001] 304.05i 90.60 301.88i 75.43 76.32 299.4i

Table 7.2: Lowest phonon frequencies (cm−1) at the high symmetry points of the tetragonal P4mmm
Brillouin zone. As BaTi0.5Zr0.5O3 has no instabilities within VCA, only results from supercells are
reported.
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BaTi0.50Zr0.50O3

Fm3̄m-2x2x2 CELL

Atoms Total

B −B′ Ti-Zr (‖) -0.063
d=4.075 Å (⊥) +0.008

A−B Ba-Ti (‖) -0.027
d=3.529 Å (⊥) +0.013

Ba-Zr (‖) -0.030
d=3.529 Å (⊥) +0.013

B −O Ti-O (‖) -0.002
d=1.978 Å (⊥) -0.020

Zr-O (‖) -0.025
d=2.097 Å (⊥) -0.015

A−O Ba-O (xx′) +0.002
d=2.882 Å (yy′) -0.011

(zz′) -0.005

Table 7.3: Interatomic force constants from supercell calculations for BaTi0.50Zr0.50O3 in the cubic-
Fm3̄m phase. Units are in (Ha/bohr2). Directions (‖), (xx′) and (⊥), (yy′), (zz′) refer to the local
coordinates system between different atomic coupling. Distances in (Å) between the selected atoms
are also reported. Atomic labels refer to Fig. 7.4(b).

two instabilities appearing at the M and A points are associated to antiferrodistortive modes

due to oxygen rotations, while all the other instabilities are related to the polar instability

arising from Γ and mostly ascribed to the (Ti,O)-polar motion along the direction of preserved

O-Ti-O-Ti-O chains. Zr displays the same dynamics as described for the BaTi0.875Zr0.125O3

case. Within the columnar configuration, the instabilities appear only along the Γ − X −M

line and are linked to the polar distortion arising from the Γ-point with the same character as

the former cases. In sharp contrast, no instability appears for the rocksalt configuration. In

particular, the absence of O-Ti-O-Ti-O chain in any direction makes the cubic phase stable.

As reported in Table 7.3, in fact, both the Ti-O and Zr-O interactions are dominated by the

short-range forces and the slightly destabilizing interaction between Ba and O atoms is not

enough to globally destabilize the system.

Since the Zr-doping directly affects the B-O interaction, the system clearly prefers to keep

an isotropic surrounding environment in order to preserve the same kind of interaction in each

direction, i.e. O-Zr-O-Ti-O chains like in the Fm3̄m-structure. This arrangement prevents the

original Ti-driven polar distortion of BaTiO3. Therefore, the ground-state for the y = 0.50

composition is globally non-polar, as reported in Fig. 7.4(d).
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7.3 VCA vs SUPERCELL approaches

By comparing the results reported in Sec. 7.1 and Sec. 7.2, it becomes clear that the VCA

method is not suitable for describing the Ba(Ti,Zr)O3 solid solutions. The decrease of polariza-

tion for increasing Zr-concentration is obtained in both cases. However, within VCA, neither

the energetics nor the dynamical properties are well reproduced. In particular, VCA does not

detect any instability in the cubic phase already for y > 0.10, whereas it is not the case as

found out in BaTi0.875Zr0.125O3-supercell as well as in the experiments introduced at the begin-

ning of the present section. As already widely discussed, the reason behind such failure is that

VCA does not allow to access distinct contributions to the dynamics arising from the different

nature of the mixed cations as well as the effects due different atomic ordering. The latter is,

in fact, the main variable controlling the dynamics in BTZ. Additionally, we know that the FE

instability in BaTiO3 is strongly sensitive to the O 2p - Ti 3d hybridization. Therefore, as Zr

occupies 4d states, the changes in the electronic properties induced by the Zr-doping directly

affect the dynamics of the system. As such, the way VCA combines the different electronic

properties from the parents BaTiO3 and BaZrO3 is also determinant in the failure of the VCA

approach for BTZ.

In Fig. 7.5 we compare the electronic density of states (DOS) within the two approaches. It

appears that VCA acts in making an “horizontal” average of the DOS of the parent compounds.

This is clearly visible in Fig. 7.5(a), where we have aligned the valence-band maximum of

BaTiO3, BaZrO3 and the VCA compound. In fact, the DOS calculated by VCA is the one of

BaTiO3 horizontally shifted toward that of BaZrO3 proportionally to the 12.5% composition

of Zr since it is linearly interpolating between the 3d states of Ti and 4d states of Zr. In

panel 7.5(b), we reproduce this average by adding up the density of peaks facing one with

the other with the weight fixed by the chosen composition. The result, plotted on top of the

VCA graph, reproduces nicely the calculated DOS (non-linear effects play a minor role in the

creation of fictitious virtual atom).

The way supercell-based calculations combine properties from the parent compounds is

significantly different [Fig. 7.5(c)]. It results to be a straightforward linear combination of

the two DOS. In Fig. 7.5(d), we just added up 7
8
DOSBTO + 1

8
DOSBZO and the plot perfectly

overlaps the supercell calculated one.

This distinct way of averaging the electronic properties can be the reason why the two

approaches reproduce different ground-state for the same composition. The incorrect average

location of the d-states of the virtual atoms in VCA (i.e. at higher energy) prevents the correct

p-d hybridization, which is at the basis of the ferroelectric distortion in BaTiO3.
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Figure 7.5: Calculated electronic density of states for BaTiO3, BaZrO3 and BaTi0.875Zr0.125O3.
Upper panels: DOS of the BTZ solid solution as obtained within VCA (left) and supercell calculation
(right) in comparison with the parent compounds. Bottom panels: empirical reproduction of DOS
as obtained from “horizontal” average to reproduce the VCA (left) and linear combination for the
supercell case (right).

7.4 Role of cation arrangement

Since the dynamics in Ba(Ti,Zr)O3 is strongly related to the geometrical and atomic ordering

while the polar distortion in BaTiO3 requires correlated displacements along (Ti,O)-chains,

we find it interesting to explore more deeply different compositions and cations arrangements.

Thus, we have performed additional calculations for idealized BaZrO3/BaTiO3 (BZO/BTO)

supercells (Fig. 7.6) in order to clarify the role played by the geometrical environment and

composition in getting ferroelectricity and homogeneous polarization in Ba(Ti,Zr)O3 solid so-

lutions.

At first, we considered a given structural ordering with different composition. We built

1×1×L superlattices (BZO/mBTO) by adding up to six layers of BaTiO3 to one unit cell thick

layer of BaZrO3, as represented in Fig. 7.6(a). This corresponds to decreasing concentrantion

of zirconium from 50% for L=2, to 33% for L=3, 25% for L=4, 20% for L=5 and 17% for

L=6. The total length in terms of unit cells is L = m+1. Then, proceeding from the evolution

with L of the energetics and polarization along the stacking direction, we tried to explain the
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Figure 7.6: Scheme of the investigated BZO/mBTO-based supercells. (a) 1 × 1 × L superlattice
based on one single chain of BaZrO3-mBaTiO3 with decreasing composition of zirconium. The smallest
chain with L=2 corresponds to the layered 50%-composition. The represented chain is doubled along
the x and y direction to help the visualization of the crystal periodicity. (b)-(c) 1×2×L and 2×2×L

supercells based on alternating chains BaZrO3-mBaTiO3 and BaTiO3-nBaZrO3 to keep a 50% global
composition. The smallest cells with L=2 correspond to the columnar and rocksalt 50%-composition,
respectively. The represented 1× 2× L-case is doubled along the x to help visualization.

appearance of ferroelectricity by a simple electrostatic model.

In detail, we started our study by investigating the appearance of polarization along the

epitaxy direction of the 1× 1× L superlattice. For each length L, we fully relaxed the centro-

symmetric P4/mmm and the polar P4mm structures, where the inversion symmetry breaking

is due to the atomic displacements along the z direction. As expected, we found no polar distor-

tions along the z direction for L=2. Because of the periodicity of the crystal, this configuration

corresponds, in fact, to the layered structure described in Sec. 7.2.2, Fig. 4.2. Conversely, for

L ≥3 the polar structures have an energy gain with respect to the paraelectric one and values

of polarization increase with the number m of BaTiO3 layers. Values of Ps are reported in

Table 7.4 and in Fig. 7.8. Then we described the atomic distortion from the paraelectric to the

ferroelectric phase as a cooperative motion around the center of mass (CM) of the system, in

order to better clarify the driving mechanism. This description has revealed the active role of

Zr-atom in the polarization against the dynamical properties found out in bulk BaZrO3 as well

as in the investigated Ba(Ti,Zr)O3 solid solutions (Sec. 5.1.4 and 7.2 respectively). For m ≥ 2,

BZO/mBTO superlattice behaves like BaTiO3 with the opposite motion of the O-anions and

(Ti,Zr)-cations. In terms of stiffness, the zirconium atom experiences a much smaller “on-site”

force constant in the direction of the epitaxy, i.e. of the Ti-atoms, that allows for the Zr-

polar motion. Moreover, the associated Born effective charge, of about ≃ 7.2 e, is considerably

anomalous along that direction and comparable to that of Ti.

For the sake of completeness, we also performed DFPT calculations in order to evaluate the

d33 piezoelectric coefficient in the P4mm phase. Results are reported in Table 7.4. Moreover,
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1x1xL 1x2xL 2x2xL

L ∆E P d33 ∆E P d33 ∆E P d33

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 -1.0 17.0 77.3 -0.8 10.2 34.0 -1.3 11.1 28.0
4 -4.2 24.2 57.2 -5.6 15.9 – -9.2 17.3 –
5 -6.7 27.2 52.3 -10.2 18.1 – -16.3 19.7 –
6 -8.6 28.9 49.7 -13.8 19.3 – -21.7 21.0 –

Table 7.4: Comparison of P (in µC/cm2) and d33 (in pC/N) as a function of the length L in the
three investigated atomic arrangements, as obtained by Berry-phase and DFPT calculations. For
1 × 2 × L and 2 × 2 × L supercells, DFPT calculations have been performed only for L=3. For
comparison, in P4mm-BaTiO3 we obtained d33 ≃ 43.3 pC/N . Relative energy gain between the
optimized ferroelectric and paraelectric phases [∆E(FE-PE) in meV/f.u.] is also reported.

it results that this polar phase is not the ground-state. In fact, it still presents phonon polar

instabilities (not shown) in the (x, y) plane, i.e. along the preserved Ti-O-Ti-O chains, with

dynamical properties similar to the Ba(Ti,Zr)O3 solid solutions described in Sec. 7.2.

In order to interpret the latter results, specifically the polar activation of Zr, here we adapt

the simple model proposed in Ref. [92] describing the behavior of dielectric/ferroelectric multi-

layers to our BZO/mBTO superlattice.

Neglecting interface corrections, the total energy of a (1, m) superlattice can be written as

E(PBZO, PBTO;m) = UBZO(PBZO) +mUBTO(PBTO)

+ C(m)(PBTO − PBZO)
2 (7.1)

Here P is the polarization arising from the displacement of the ions from their high-symmetry

positions under the condition of zero electric field, U is the internal energy of bulk BaZrO3 and

BaTiO3 at zero field as a function of P and C(m)(PBTO − PBZO)
2 is macroscopic electrostatic

energy, Eelec, resulting from the eventual presence of non-vanishing electric fields in the layer

when PBZO and PBTO are different. This term typically acts as an energy penalty which

tends to reduce the polarization mismatch in polarizing the dielectric layer and depolarizing

the ferroelectric one. In practice, when the dielectric layer is sufficiently polarizable, this term

forces the system to adopt a uniform polarization along the stacking direction (z direction in

Fig. 7.6), i.e. PBZO = PBTO = P . In this case the model reduces to [204, 205, 206]

E(P ;m) = UBZO(P ) +mUBTO(P ) (7.2)

The energies UBTO(P ) and UBZO(P ) can be directly obtained from appropriate DFT calcu-

lations on pure bulk compounds. In the case of BaTiO3, we built the adiabatic path from the

paraelectric to the ferroelectric P4mm phase (discussed in Sec. 5.2) by means of linear inter-

polation of the atomic displacements. During this interpolation the volume is fixed to the one
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BaTiO3 BaZrO3

αT βT γT α
(a)
Z β

(a)
Z α

(b)
Z β

(b)
Z

-0.054 1.8x10−5 3.4x10−9 0.048 1.37x10−5 0.073 2.26x10−5

Table 7.5: Values of the parameters used in the UBTO(P ) and UBZO(P ) expansion as resulted from
a fitting procedure. For BaZrO3, we reports the parameters for both the constructions: (a) from the
minimization procedure at fixed P (blue curve in Fig. 7.7); (b) from the empirical approach (green
curve in Fig. 7.7).

of the polar structure. For each intermediate configuration, we computed the internal energy

and polarization. This results into a double-well energy profile that we fit with the standard

polynomial expansion

UBTO(P ) ≃ αTP
2 + βTP

4 + γTP
6

where αT , βT , γT are the fitting parameters 2. We used a similar expansion for BaZrO3.

However, according to the paraelectric nature of this compound, the coefficient of the second

order term is positive. Thus we restricted the expansion to the fourth order and we write

UBZO(P ) ≃ αZP
2 + βZP

4.

In this case, as the system does not show any polar instability, the only way to follow the

evolution of the internal energy UBZO(P ) with the ferroelectric distortion is to freeze the pattern

of the motion along the z direction. We defined the total distortion τ as a linear combination

of the eigendisplacements associated to the polar modes, i.e. τ = a1ηTO1 + a2ηTO2 + a3ηTO3,

with
∑

i a
2
i = 1 and 〈ηi|M |ηi〉 = 1. The first approach was to determine the coefficients

of the expansion by minimizing UBZO(P ) to equilibrium values of ηi with the constrain of

fixed P , as proposed in Ref. [207]. From this minimization we obtained a1=0.945, a2=0.325

and a3=0.044, that corresponds to a pattern dominated by the softest TO1 mode of BaZrO3

driven by the Ba motion (see Table 5.2). However, this result is not in full agreement with

the pattern of distortion obtained from the atomic relaxation in the superlattice previously

described. Therefore, we also built UBZO(P ) from the relaxed pattern. In detail, we considered

the distortion of the BaZrO3 unit cell in the 1× 1× 3 superlattice and we projected it on each

TOi mode in order to get the ai coefficient to be compared with the previous procedure. We

obtained a1=0.595, a2=0.802 and a3=0.051, that clearly reveal the key role of zirconium. The

UBZO(P ) curves obtained via the two procedures are shown in Fig. 7.7.

Then, from the minimization of Eq. 7.2 with respect to P , we obtain that a spontaneous

polarization is admitted if the condition m > αZ

|αT |
is satisfied, otherwise P is zero. The resulting

2The sixth order term is introduced to ensure a proper description of the physics of the system as it is close
to a tricritical point, i.e. change of the order of the phase transition via a change in sign of the coefficient of
the fourth order term.
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Figure 7.7: Variation of total energy (in meV/f.u.) as a function of the varying polarization (in
µC/cm2) from the centric to the polar configurations for distorted bulk BaTiO3 (red squares) and
BaZrO3. For the latter, curves as obtained within the two approaches are reported: (blue triangles)
from the minimization procedure at fixed P ; (green circles) from the relaxed pattern of distortion of
1× 1× 3 superlattice.

formula for the polarization and energy are

P 2(α, β,m) ≃ − mαT + αZ

2(mβT + βZ)

E(α, β,m) ≃ −(mαT + αZ)
2

4(mβT + βZ)

Coefficients are reported in Table 7.5. The evolution of P and E resulting from the electro-

static model within the two different approaches and from DFT calculations are reproduced in

Fig. 7.8. The two models globally reproduce the same trend, however the second one built on

the relaxed pattern is in better agreement with the calculations. In fact, from the parameters re-

lated to the first curve, with smaller curvature, a polar state is admitted for all m instead of the

condition m ≥ 2. On one hand, the quantitative inconsistencies between the two approaches,

both in the distortion pattern and in ferroelectric properties of the superlattice, point out that

a simple model only based on pure bulk quantities can fail in reproducing the dynamics of the

system because of strong coupling between the two different B-cations at play. On the other

hand, the perfect agreement obtained between the “second” model and first-principles calcu-

lations (Fig. 7.8) confirms the validity of the hypothesis of uniform P in the superlattice, i.e.

electrostatic energy cost equal to zero, due to the fact that the polar distortion of Zr preserves

the charge transfer along Zr-O-Ti-O-Ti-O chains. Moreover, P asymptotically approaches the

value of P4mm-BaTiO3, that is of about ≃ 34 µC/cm2 as calculated via DFT.

These results, in particular the cooperative BaTiO3-like atomic motion along the Zr-O-Ti-

O-Ti-O chains, are the manifestation of the “chain-like” nature of the distortion. In fact, we
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Figure 7.8: Evolution of the total polarization (in µC/cm2) and energy (in meV/formula unit) as
a function of increasing number m of BTO-layers. Values obtained from DFT calculations and from
the electrostatic model are reported. We refer to results coming from the first approach based on the
minimization at fixed P as model 1, while to those based on the relaxed pattern as model 2. The inset
shows the different energies for m = 1. The E from DFT calculations refers to the relative energy
gain between the optimized ferroelectric phase and the centro-symmetric reference with volume fixed
to that of the polar structure.

already discussed in Sec. 7.2 how the break of correlated Ti-O chains introduced by the polar

inactive Zr prevents the propagation of the original BaTiO3 distortion in Ba(Ti,Zr)O3 solid

solutions. Nevertheless, when a minimum number of consecutive Ti atoms are preserved along

those chains, the substitution of one atom of Ti with one of Zr does not suppress the polariza-

tion. On the contrary, the electrostatic coupling forces the system to sustain a homogeneous P

by making Zr polar active.

Previous calculations and physical interpretation have been based on superlattices with de-

creasing Zr-concentration. Therefore, in order to further prove the crucial role played by the

local “chain-like” correlation over the increasing BTO-concentration, we have better distin-

guished the effects arising from the composition and from the imposed atomic ordering. Thus

we carried DFT calculations on 1 × 2 × L and 2 × 2 × L ordered supercells as we did for the

1 × 1 × L case. These two supercells, composed by alternating single chains of BZO/mBTO
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and BTO/nBZO, allow to keep the total composition fixed to 50% of Zr and Ti and to preserve

locally the imposed “chain-like” atomic ordering, as reproduced in Fig.7.6(b,c).

For both the arrangements, it is not surprising to get no polar phases for L = 2 from the

inversion symmetry breaking along the z direction. In fact, by periodicity, these structures

correspond to the columnar and rocksalt orders described in Sec. 7.2.2 (Fig. 4.2). Relevant re-

sults arise from L ≥ 3, since a spontaneous polarization appears along the BZO/mBTO chains

driven by the (Zr,Ti)-motion against the oxygens inside the global BaTi0.50Zr0.50O3 matrix. As

in the 1 × 1 × L superlattice, in fact, we described the atomic displacements as a cooperative

motion around CM and we found out that most of the polar distortion comes from the B-

cations stacked on the local BZO/mBTO chains. We also obtained sizeable d33 piezoelectric

coefficient, but smaller than in the 1 × 1 × L and pure P4mm-BaTiO3 cases, as reported in

Table 7.4 (because of the high computational cost for these supercells, we performed DFPT

calculations only for the case L=3). A simple explanation could be that the coexistence of the

BZO/mBTO and BTO/nBZO chains, that behave differently since the cations in the latter one

do not participate to the polarization, could globally prevent the variation of P . Noteworthy

is that the polar P4mm phase within the 2× 2× L structure is stable.

The main finding from the comparison of results coming from the three different structures

is the polar activation of zirconium in Ba(Ti,Zr)O3 system as a function of specific atomic or-

dering, that is local BZO/mBTO chains with m ≥ 2, and independent of the total composition

of the matrix. Therefore, the analysis and physical interpretation of the dynamics conducted

through the previous electrostatic model remains valid also for the 1×2×L and 2×2×L cases:

Zr atom is locally activated by a Zr-Ti coupling to avoid polarization gradients and electrostatic

energy cost. But then, the gain of energy related to polarizing ferroelectric BaTiO3 is decreased

by the energy cost to polarize BaZrO3.

From the U(P ) curves of the pure compounds in Fig. 7.7 and trends reported in Fig. 7.8,

the maximum Zr-concentration to get a ferroelectric system seems to be around 30% in agree-

ment with experimental observations. Beyond this concentration, the results are line with the

observed relaxor behavior of BaTi1−yZryO3 and existence of polar nanoregions associated to

local fluctuation of y, that allows for correlated polar motions, as described in Refs. [209, 208,

210, 212]. Maiti et al., in their experimental investigation of the correlation between structure

and property in Ba(Ti,Zr)O3 ceramics [208, 211], point out that a gradual incorporation of

Ti4+ into the nonpolar BaZrO3 lattice results in the evolution of relaxation behavior because

of the increasing amount of ordering and density of nano-sized Ti4+-rich polar regions in the

Zr4+-rich matrix. Moreover, C. Laulhé et al. suggest that the observation of such polar nanore-

gions consist in 1D-chains with correlated Ti displacements [210]. By means of Monte-Carlo

simulations, Akbarzadeh et al. describe the Ti sites as nuclei acting to formation of polar

clusters with rather small contribution from Zr sites [212].
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Accordingly, by means of combined DFT calculations and phenomenological model, we

have provided a complementary microscopic information. In particular, the behavior of the

polar-clusters in a global paraelectric-matrix, like the case of the investigated BaTi0.50Zr0.50O3

composition, may be due to the cooperative motion of Zr and Ti atoms and not only by isolated

Ti-dipoles.



Chapter 8

Discussion & Conclusions

In this thesis, we have investigated the dynamical, structural, ferroelectric and related prop-

erties of chosen compositions of (Ba,Ca)TiO3-Ba(Ti,Zr)O3 solid solutions and related parent

compounds by means of first-principles calculations based on Density Functional Theory, with

the intent to identify some of the key microscopic mechanisms behind the enhanced piezo-

electric properties of (Ba,Ca)(Ti,Zr)O3. In particular, we have focused on the evolution of

the properties in (Ba,Ca)TiO3 and Ba(Ti,Zr)O3 solid solutions (Chap. 6 and Chap. 7) and

analyzed them in relationship with those of the pure BaTiO3, CaTiO3, CaZrO3 and BaZrO3

parent compounds (Chap. 5) in order to disentangle the role of individual atomic substitutions

at the A- and B-sites. In fact, these two solid solutions result from the mixing of systems with

very different dynamics. This turns out to be a crucial point regarding the suitableness of the

ab-initio method employed, VCA vs direct supercell calculations.

When going from BaTiO3 to CaTiO3 in (Ba,Ca)TiO3, the main feature is the mixing of

the so called B-driven and A-driven ferroelectricity associated to the two parent compounds,

respectively. Cubic BaTiO3, in fact, exhibits strong and highly polar instabilities that expand

over the entire Γ-X-M planes of the Brillouin zone, as shown in Fig. 5.1(a). They are de-

termined by the destabilizing Ti-O interaction resulting in the relative motion of Ti atoms

with respect to oxygens. Particularly, this polar distortion requires cooperative atomic dis-

placements along Ti-O chains. From the electronic point of view, such instability is ascribed

to the hybridization between the O 2p and Ti 3d states [187]. The sizeable stiffness of Ba

determines its negligible contribution to the distortion instead. Related values of the “on-site”

and interatomic force constants are reported in Tables 5.1 and 5.3. These mechanisms stabi-

lize the rhombohedral R3m-phase, as reported in Fig. 5.2 and Fig. 6.5(a). On the contrary,

CaTiO3, in its cubic phase, hosts a strong polar instability confined at Γ and mostly related

to a polar motion of Ca and O. In fact, we found that a strong destabilizing interaction occurs

between these two atoms (Table 5.3). Such Ca driven instability is ascribed to steric effects

as the smaller size and greater softness of Ca than Ba (Tables 4.1 and 5.1). In fact, same

dynamical properties characterize CaZrO3, for which the covalency between Zr and O is even

further reduced [187]. Additionally, the reduced volume of cubic CaTiO3 compared to BaTiO3

114
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shortens the Ti-O distances, making the Ti-O interaction mainly repulsive and Ti atoms much

more stiffer (volume effect on Ti-O interaction is shown in Fig. 6.4). These mechanisms favor

the tetragonal P4mm-phase over the R3m-one in CaTiO3 [Fig. 5.2 and Fig. 6.5(c)]. However,

the ground-state of CaTiO3 is determined by the strong AFD instabilities present along the

M − R line [see Fig. 5.1(b) and Fig. 5.2]. Consequently, as obtained from supercell calcula-

tions for BaTiO3-rich compositions, the mixing of the two A-cations in Ba1−xCaxTiO3 solid

solutions does not make barium active in the polar distortion, but introduces a cooperative

motion of Ca-atoms together with Ti-atoms against the oxygens-cage, i.e. interplay between

A-site and B-site driven polar distortion [Fig. 6.5(h)]. A ferroelectric ground-state is then

predicted up to x = 0.50. As it is expected from the dynamical properties and energetics of

the two parent compounds, the increasing Ca-concentration favors P4mm-like polar phases

over the R3m one. In particular, in the Ba-rich region, the evolution from the B-type to the

A-type ferroelectricity promoted by the partial atomic substitution of Ba with Ca arises from

the interplay of two distinct mechanisms: the weakening of Ti-driven ferroelectricity via the

modification of the Ti-O interactions and the emergence of Ca-driven ferroelectricity sustained

by the Ca-O interactions. Such effects, then, reduce and eventually suppress the energy barrier

between the different polar phases. This behavior yields to increasing piezoelectric response as

the energy landscape in terms of polarization orientation becomes quasi-isotropic. Specifically,

these properties are found in Ba0.875Ca0.125TiO3, as obtained from the use of 2 × 2 × 2 super-

cells [Figs. 6.5(b,e)]. Interesting and qualitatively compatible trends have been also achieved

within the VCA approach. However, within VCA the distinction of the dynamics of Ba and

Ca atoms is not accessible, because only a final average effect from the two cations at the same

A-site is reproduced, as shown in Fig. 6.1(c). This method forces the change of character of

the mechanisms at play without allowing distinction of the opposite nature of Ba and Ca. In

fact, Ca is actually polar active for each composition x. Such a limitation is especially evident

in the finding of the concentration where the inversion of polar phases takes place, and in the

polarization trend, that is decreasing with Ca-concentration within VCA, while it is increasing

within the supercells.

When going from BaTiO3 to BaZrO3 in Ba(Ti,Zr)O3, the scenario is completely different.

BaZrO3, in fact, does not host any polar instability. Zr atom is quite stiff and the Zr-O

interaction is strongly repulsive, as reported in Table 5.1 and Table 5.3. From the electronic

point of view, this can be ascribed to the fact that Zr occupies 4d states less hybridized with

the 2p states of O. Therefore, at first, low Zr-concentration indirectly further stabilizes the

R3m-phase in BaTi1−yZryO3 [Fig. 7.4(c)] because of the larger ionic radius of Zr than Ti,

i.e. volume effect on the dynamics of BaTiO3. However, the spontaneous polarization is

slightly reduced. Then, for higher Zr-concentration, the system tends to globally reduce the

polar distortion, thus suppressing the original ferroelectricity of BaTiO3. In fact, the presence

of Zr on the B-site introduces breaks along the correlated Ti-O-Ti-O chains, preventing the

preservation of polarization. Such mechanisms are evident both for y = 0.125 and y = 0.50
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supercells compositions. For instance, in BaTi0.50Zr0.50O3, the energetically favored Fm3̄m

nonpolar phase is stable. Nevertheless, polar nanoregions can be locally preserved in Ti-rich

regions. Additionally, by building different supercell environments based on BaZrO3/mBaTiO3

chains (Fig. 7.6), we found that as soon as Zr experiences at least 2 subsequent Ti atoms, it

becomes active in the polarization and a cooperative motion of the two B-cations is observed.

The reason of such behavior, explained via a basic electrostatic model, is that Zr is locally

activated in order to preserve homogeneous polarization along the Zr-O-Ti-O-Ti-O chain and

to minimize the electrostatic energy cost. Such important role played by local structures on

the Zr-Ti dynamics and differences in the electronic configuration of the two B-cations make

VCA not suitable for the Ba(Ti,Zr)O3 system. In fact, predictions achieved via supercell-based

calculations concerning both the dynamics and energetics are not reproduced by VCA.

From a methodological point of view, in both (Ba,Ca)TiO3 and Ba(Ti,Zr)O3, we found

that the two types of cations introduced at the A and B sites, respectively, behave very differ-

ently and, therefore, the mixing can hardly be described by averaged virtual atoms. Although

providing some trends, VCA is therefore not suitable for reproducing and understanding the

microscopic physics of (Ba,Ca)(Ti,Zr)O3 solid solutions. By construction, in fact, this approxi-

mation fails in reproducing both specific local arrangements and same-site independent motion

of the active atoms involved in the ferroelectric instabilities, oversimplifying the actual dy-

namical and electronic properties of the solid solutions. These are key features for the overall

behavior of BaTiO3-based solid solutions, which thus need to be addressed by means of direct

supercell calculations. This also clarifies why recent attempts [213] to study BCTZ from a

VCA-based effective Hamiltonian required to adjust by hands some of the parameters initially

fitted from first-principles in order to reproduce experimental data.

In conclusion, we have seen that in (Ba,Ca)TiO3 the competition between the B-type and

the A-type ferroelectricity of the two parent compounds is the key mechanism behind the

eventual competition between different polar phases. In fact, BaTiO3 and CaTiO3 have a

reversed energy sequence of ferroelectric states so that a crossover between them is required to

achieve the inversion. The achievement of such crossover manifests in quasi-degeneracy of the

energy landscape and quasi-isotropic polarization, thus enhancing the piezoelectric response.

Different behaviors characterize Ba(Ti,Zr)O3, where the appearance of ferroelectricity is

strongly dependent on the local atomic arrangements and electrostatic. BaZrO3, in fact, ex-

hibits highly stable cubic phase. The increasing substitution of Ti by Zr thus acts to reduce the

spontaneous polarization and progressively suppress the overall ferroelectricity. Nevertheless,

polar nanoregions can be preserved in Ti-rich regions.

Moreover, we have provided a direct comparison between the virtual crystal approxima-

tion (VCA) and direct supercell calculations, showing that the specific microscopic physics of

(Ba,Ca)TiO3 and Ba(Ti,Zr)O3 solid solutions imposes severe limitations to the applicability of

VCA.
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With respect to the experimentally observed enhanced piezoelectric response in BCTZ

around the polymorphic phase boundary (PPB) at 0.135 . x . 0.15 and 0.10 . y . 0.11

concentrations of Ca and Zr respectively (i.e. low Ca- and Zr- concentrations) [44, 54, 106]

(Fig. 1.2), our study reveals that a key microscopic factor is the interplay between weakened

Ti-driven ferroelectricity and emerging Ca-driven ferroelectricity, both promoted by steric ef-

fects. On the one hand, small concentration of Zr does not drastically affect the original

dynamics of BaTiO3, preserving, indeed, the R3m ferroelectric ground-state. However, it acts

to contract the spontaneous polarization. On the other hand, the presence of Ca strongly

change the dynamical properties of the full system. In particular, small Ca-concentration in-

duces a competition between the Ti-driven ferroelectricity and the Ca-driven ferroelectricity,

which would favor separately either a rhombohedral or a tetragonal phase. This thus provides

the condition for minimal anisotropy with respect to directions of the polarization and mani-

fests in the enhancement of the piezoelectric response.

Providing such a theoretical investigation on an atomic scale, we believe that our work sig-

nificantly contributes to clarify the microscopic physics of BaTiO3-based systems and provides

a solid background to further investigations of the important family of BCTZ solid solutions

via advanced large-scale and finite-temperature simulations. Moreover, the revealed complex

mechanisms involved in the dynamics of such systems, might be exploited to develop advanced

effective Hamiltonian approaches expanding the number of the key atomic degrees of freedom,

going beyond the standard use of VCA. Furthermore, discussing the physics, it is of generic

interest to both theorists and experimentalists and might be also relevant to the discussion of

other families of solid solutions.

Most of the discussed results are published in D. Amoroso, A. Cano, and Ph. Ghosez, Phys.

Rev. B, 97, 174108 (2018).
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Distorted phases of BaZrO3

As introduced in Sec. 5.2, the condensation of the out-of-phase oxygen rotations (Table 5.5) as-

sociated to the tiny instability at the R point of the cubic Brillouin zone of BaZrO3 [Fig. 5.1(c)],

brings the system to lower energy antiferrodistortive structures. The energetics, angle of rota-

tion and volume (per 5-atom cell) of the tetragonal-I4/mcm (T), orthorhombic-Imma (O) and

rhombohedral-R3̄c (R) phases with respect to the cubic-Pm3̄m phase are reported in Fig. A.1.
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Figure A.1: Energy gain (in meV/f.u.), rotational angle Θ, and volume (in Å3/f.u.) for T, O, and
R antiferrodistortive phases of BaZrO3 with respect to the cubic phase. Structures have been fully
relaxed within GGA-WC functional.
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In particular, these AFD phases result all stable, as shown by the phonon dispersion curves in

Fig. A.2. Phonon calculations have been performed on the fully relaxed AFD structures, and

structural details are reported in Table A.1.

Structure Lattice parameters Wyckoff positions

I4/mcm a=b= 5.907 Å α = β = γ = 90◦ Ba 4 b 0.00000 0.50000 0.25000
c= 8.382 Å Zr 4 c 0.00000 0.00000 0.00000

O1 8 h 0.77000 0.27000 0.00000
O2 4 a 0.00000 0.00000 0.25000

Imma a= 5.912 Å α = β = γ = 90◦ Ba 4 e 0.00000 0.25000 0.50046
b= 8.355 Å Zr 4 a 0.00000 0.00000 0.00000
c= 5.922 Å O1 4 e 0.00000 0.25000 0.02738

O2 8 g 0.25000 0.51389 0.25000

R3̄c a=b=c 5.911 Å α = β = γ = 60◦ Ba 2 a 0.25000 0.25000 0.25000
Zr 2 b 0.00000 0.00000 0.00000
O 6 e 0.77200 0.72800 0.25000

Table A.1: Structural details for the I4/mcm, Imma, and R3̄c AFD optimized structures.
Structural analysis has been done via FINDSYM tool [218].

In order to provide an insight into these distorted phases of BaZrO3, we also provide here

the analysis of the zone-center phonon modes. Such analysis can be useful for the interpretation

of infrared and/or Raman spectra, being the low-temperature properties of BaZrO3 still under

discussion [214, 163, 215]. Therefore, the irreducible representations at Γ (0,0,0) for the three

AFD phases in Mulliken’s notation [216] are:

I4/mcm







Γacoustic = A2u ⊕ Eu

Γoptic = A1g ⊕ A1u ⊕ 2A2g ⊕ 3A2u ⊕B1g ⊕B1u ⊕ 2B2g ⊕ 5Eu ⊕ 3Eg

Imma







Γacoustic = B1u ⊕ B2u ⊕ B3u

Γoptic = 3Ag ⊕ 2Au ⊕ 2B1g ⊕ 5B1u ⊕ 3B2g ⊕ 4B2u ⊕ 4B3g ⊕ 4B3u

R3̄c







Γacoustic = A2u ⊕ Eu

Γoptic = A1g ⊕ 2A1u ⊕ 3A2g ⊕ 3A2u ⊕ 5Eu ⊕ 4Eg

In Table A.2, we report the zone-center phonon frequencies and assignments of the associated

modes for these distorted phases.
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Figure A.2: Calculated phonon dispersion curves of I4/mcm, Imma and R3̄c antiferrodistortive
structures associated to out-of-phase oxygen rotations in BaZrO3. Phonon density of states by atomic
species are also reported on the right side of the phonon band structures. Different colors indicate the
different atomic contributions in the corresponding eigenvectors as in Ref. [102] (red for the A atom,
green for B atom and blue for O atoms). Small anomalies in the proximity of the high-symmetry
Q-points in the phonon dispersion curves of the O and R structures are matter of accuracy in the
interpolation procedure to extrapolate the curves [61]. Therefore, they do not have physical meaning
and do not affect the provided analysis.
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I4/mcm-T Imma-O R3̄c-R

ω (cm−1) mode deg. activity ω (cm−1) mode deg. activity ω (cm−1) mode deg. activity

23.49 Eg 2 Raman 20.01 B2g 1 Raman 7.27 Eg 2 Raman
92.72 A1g 1 Raman 23.02 B1g 1 Raman 88.50 A1g 1 Raman
101.82 Eg 2 Raman 87.07 Ag 1 Raman 98.24 A2g 1 silent
104.36 B2g 1 Raman 100.41 B2g 1 Raman 99.34 A2u 1 IR
106.52 Eu 2 IR 101.36 B3g 1 Raman 104.43 Eg 2 Raman
113.38 A2u 1 IR 103.75 B3u 1 IR 111.66 Eu 2 IR
191.57 Eu 2 IR 106.71 B2u 1 IR 187.82 Eu 2 IR
194.52 A2u 1 IR 107.17 Ag 1 Raman 193.20 A2u 1 IR
194.72 Eu 2 IR 114.24 B1u 1 IR 194.91 Eu 2 IR
199.53 B1u 1 silent 186.36 B3u 1 IR 204.16 A1u 1 silent
301.13 A1u 1 silent 191.90 Au 1 silent 300.89 A1u 1 silent
302.03 Eu 2 IR 193.75 B2u 1 IR 302.29 Eu 2 IR
356.41 Eg 2 Raman 193.85 B3u 1 IR 353.29 A2g 1 silent
358.05 B2g 1 Raman 194.10 B1u 1 IR 358.38 Eg 2 Raman
494.37 Eu 2 IR 204.40 B1u 1 IR 494.27 A2u 1 IR
496.48 A2u 1 IR 300.73 Au 1 silent 496.52 Eu 2 IR
534.22 A2g 1 silent 302.11 B1u 1 IR 535.38 Eg 2 Raman
535.33 B1g 1 Raman 302.48 B2u 1 IR 791.52 A2g 1 silent
790.83 A2g 1 silent 354.31 B2g 1 Raman

356.37 B3g 1 Raman
359.78 Ag 1 Raman
494.07 B3u 1 IR
494.75 B2u 1 IR
497.47 B1u 1 IR
534.78 B1g 1 Raman
535.53 B3g 1 Raman
791.18 B3g 1 Raman

Table A.2: Calculated phonon frequencies ω (in cm−1) at the Γ (0 0 0) point of the I4/mcm, Imma, and R3̄c Brillouin zone. The
symmetry assignments in Mulliken’s notation, degeneracy and activity in the infrared (IR) or Raman spectroscopy for each mode are also
reported. The analysis relies on SAM [220] and SMODES [221] tools.



Appendix B

Discussion et conclusions : résumé
Les piézoélectriques à haute performance sont des composants clés pour les dispositifs agiles. Il

a été démontré récemment que les solutions solides (Ba,Ca)(Ti,Zr)O3 (BCTZ) présentent des

propriétés électromécaniques prometteuses. Cependant, les mécanismes microscopiques con-

duisant à de telles caractéristiques restent à éclaircir, et les investigations théoriques de BCTZ

demeurent très limitées à ce jour. En conséquence, cette thèse propose d’étudier les propriétés

de différentes compositions de solutions solides (Ba,Ca)TiO3-Ba(Ti,Zr)O3 au moyen de calculs

de premier principe fondés sur la théorie de la fonctionnelle de la densité, en mettant l’accent sur

la dynamique du réseau et sur la compétition entre différentes phases ferroélectriques. L’objectif

principal est d’identifier certains des mécanismes microscopiques essentiels à l’origine des pro-

priétés piézoélectriques améliorées de (Ba,Ca)(Ti,Zr)O3. En particulier, nous nous sommes

concentrés sur l’évolution des propriétés des solutions solides (Ba,Ca)TiO3 et Ba(Ti,Zr)O3

(Chap. 6 et Chap. 7) et les avons analysées en relation avec celles des composés parents BaTiO3,

CaTiO3, CaZrO3 et BaZrO3 (Chap. 5) afin de différencier le rôle des substitutions atomiques

individuelles sur les sites A et B. En fait, ces deux solutions solides résultent du mélange de

systèmes ayant chacun une dynamique très différente. Cela s’avère être un point crucial en ce

qui concerne l’adéquation de la méthode ab-initio employée, calculs VCA vs calcul direct de

supercellule.

Lorsqu’on passe continument de BaTiO3 à CaTiO3 dans (Ba,Ca)TiO3, la caractéristique

principale est une transformation progressive de la ferroélectricité de type B en type A, as-

sociée respectivement aux deux composés parents. Le BaTiO3 cubique présente en effet des

instabilités fortes et hautement polaires qui se développent sur l’ensemble des plans Γ−X−M
de la zone de Brillouin, comme indiqué sur la Fig. B.3(a). Ces instabilités sont déterminées par

l’interaction déstabilisante Ti-O produisant le mouvement relatif des atomes de Ti par rapport

aux ions oxygène. En particulier, cette distorsion polaire nécessite un mouvement atomique

coopératif le long les châınes Ti-O. Du point de vue électronique, cette instabilité est attribuée

à l’hybridation entre les états Ti 3d et O 2p [187]. La raideur considérable de Ba détermine

sa contribution négligeable à la distorsion. Les valeurs associées aux constantes de force sur

chaque site atomique (“on-site”) et interatomique sont présentées dans les tableaux 5.1 et 5.3.

Ces mécanismes stabilisent la phase rhomboédrique R3m, comme indiqué dans les Fig. B.4
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et Fig. B.9(a). Au contraire, CaTiO3, dans sa phase cubique, héberge une forte instabilité

polaire confinée à Γ, qui est principalement liée à un mouvement polaire de Ca et O. En fait,

nous avons constaté qu’une forte interaction déstabilisatrice se produit entre ces deux atomes

(tableau 5.3). Cette instabilité guidée par le calcium est attribuée aux effets stériques en raison

de la plus petite taille et de la plus grande douceur du Ca par rapport au Ba (Tableaux 4.1

et 5.1). En fait, les mêmes propriétés dynamiques caractérisent CaZrO3, pour lequel la cova-

lence entre Zr et O est réduite. De plus, le volume réduit de CaTiO3 cubique par rapport à

BaTiO3 raccourcit les distances Ti-O, rendant l’interaction Ti-O principalement plus répulsive

et les atomes de Ti beaucoup plus rigides (l’effet de volume sur l’interaction Ti-O est illustré à la

Fig. B.8). Ces mécanismes favorisent la phase tétragonale P4mm par rapport à la phase R3m

dans CaTiO3 [Fig. B.4 et Fig. B.9(c)]. Cependant, l’état fondamental de CaTiO3 est déterminé

par les fortes instabilités antiferrodistorsives (AFD) présentes le long de la brancheM−R [voir

Fig. B.3(b) et Fig. B.4]. Par conséquent, tel qu’obtenu par des calculs en supercellule effectués

pour des compositions riches en BaTiO3, le mélange des deux cations A dans des solutions

solides Ba1−xCaxTiO3 ne rend pas le baryum actif dans la distorsion polaire, mais introduit

un mouvement coopératif des atomes de Ca avec des atomes de Ti contre les oxygènes, c.-à-d.

une interaction entre la distorsion polaire guidée par le site A et le site B [Fig. B.9(h)]. Un

état fondamental ferroélectrique est ensuite prédit jusqu’à x = 0.50. Comme attendu au vu des

propriétés dynamiques et énergétiques des deux composés parents, la concentration croissante

de Ca favorise des phases polaires de type P4mm par rapport aux phases de type R3m. En

particulier, dans la région riche en Ba, l’évolution de la ferroélectricité de type B vers le type A,

favorisée par la substitution atomique partielle de Ba par Ca, résulte de l’interaction de deux

mécanismes distincts: l’affaiblissement de la ferroélectricité guidée par Ti via la modification

des interactions Ti-O et l’émergence d’une ferroélectricité guidée par Ca soutenue par les inter-

actions Ca-O. Ces effets réduisent et, finalement, suppriment la barrière énergétique entre les

différentes phases polaires. Ce comportement conduit à une réponse piézoélectrique croissante

car le paysage énergétique en termes d’orientation de polarisation devient quasi-isotrope. Plus

précisément, ces propriétés ont été trouvées dans Ba0.875Ca0.125TiO3, à partir de l’utilisation de

supercellules 2× 2× 2 [Figs. B.9(b,e)]. Des tendances intéressantes et qualitativement compat-

ibles ont également été obtenues dans l’approche VCA. Cependant, dans l’approche VCA, la

distinction entre la dynamique des atomes de Ba et de Ca n’est pas accessible, car seul un effet

moyen final des deux cations sur le même site A est reproduit, comme le montre la figure 6.1(c).

Cette méthode force le changement de caractère des mécanismes en jeu sans permettre la dis-

tinction de la nature opposée de Ba et Ca. En fait, Ca est actif dans la polarisation pour

chaque composition x. Une telle limitation est particulièrement évidente dans la découverte

de la concentration à laquelle se produit l’inversion des phases polaires et dans la tendance de

polarisation, qui diminue avec la concentration de Ca dans VCA, alors qu’elle augmente dans

les supercellules.

Lorsqu’on passe continument de BaTiO3 à BaZrO3 dans Ba(Ti,Zr)O3, le scénario est très
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différent. Le BaZrO3, en effet, n’héberge aucune instabilité polaire. L’atome de Zr est assez

rigide et l’interaction Zr-O est fortement répulsive, comme l’indiquent les tableaux 5.1 et Ta-

ble 5.3. Du point de vue électronique, cela peut être attribué au fait que Zr occupe des états 4d

moins hybridés avec les états 2p de O. Par conséquent, au début, une faible concentration en Zr

stabilise indirectement la phase R3m dans BaTi1−yZryO3 [Fig. B.15(c)] en raison du rayon ion-

ique de Zr supérieur à celui de Ti, c’est-à-dire un effet de volume sur la dynamique du BaTiO3.

Cependant, la polarisation spontanée est légèrement réduite. Ensuite, pour une concentration

plus élevée en Zr, le système a tendance à réduire globalement la distorsion polaire, supprimant

ainsi la ferroélectricité initiale de BaTiO3. En fait, la présence de Zr sur le site B introduit des

ruptures locales dans les châınes corrélées Ti-O-Ti-O, empêchant la préservation de la polarisa-

tion. De tels mécanismes sont évidents pour les concentrations y = 0.125 et y = 0.50 étudiées

au moyen de supercellules. Par exemple, au sein de BaTi0.50Zr0.50O3, la phase non polaire

Fm3̄m est stable et préférée par des considérations énergétiques. Néanmoins, des nanorégions

polaires peuvent être localement préservées dans des régions riches en Ti. De plus, en con-

struisant différents environnements de supercellules basés sur des châınes BaZrO3/mBaTiO3

(Fig. B.17), nous avons trouvé que dès que Zr est suivi par 2 atomes de Ti, il devient actif

dans la polarisation et un mouvement coopératif des deux cations B est observé. La raison de

ce comportement, expliquée via un modèle électrostatique de base, est que Zr est localement

activé afin de préserver une polarisation homogène le long de la châıne Zr-O-Ti-O-Ti-O et ainsi

minimiser le coût de l’énergie électrostatique. Ce rôle important joué par les structures locales

sur la dynamique du Zr-Ti et les différences de configuration électronique des deux cations sur

le site B rend l’approche VCA inadéquate au système Ba(Ti,Zr)O3. En fait, les prédictions

obtenues au moyen de calculs effectués sur les supercellules concernant à la fois la dynamique

et l’énergétique ne sont pas reproduits par VCA.

D’un point de vue méthodologique, à la fois en (Ba,Ca)TiO3 et en Ba(Ti,Zr)O3, nous

avons trouvé que les deux types de cations introduits aux sites A et B, respectivement, se

comportent très différemment et, par conséquent, le mélange peut difficilement être décrit

par des atomes virtuels moyennés. A l’exception de certaines tendances moyennes, VCA ne

convient donc pas pour reproduire et comprendre la physique microscopique de solutions solides

(Ba,Ca)(Ti,Zr)O3. Par construction, en fait, cette approximation échoue dans la reproduction

des arrangements locaux et des mouvements indépendants des atomes sur le même site actif dans

les instabilités ferroélectriques, simplifiant à l’excès les propriétés dynamiques et électroniques

réelles des solutions solides. Ce sont des caractéristiques clés pour le comportement global

des solutions solides à base de BaTiO3, qui doit donc être analysé au moyen de calculs sur

supercellules. C’est également la raison pour laquelle les tentatives récentes [213] d’étudier

BCTZ à partir d’un Hamiltonien effectif basé sur VCA requièrent l’ajustement manuel de

certains paramètres initialement adaptés aux résultats des calculs de premiers principes afin de

reproduire les données expérimentales.

En conclusion, nous avons vu que dans (Ba,Ca)TiO3, la concurrence entre la ferroélectricité
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de type B et de type A des deux composés parents est le mécanisme clé de la compétition

éventuelle entre différentes phases polaires. En fait, BaTiO3 et CaTiO3 ont une séquence

d’énergie d’états ferroélectriques inverse, de sorte qu’un croisement entre eux est nécessaire pour

obtenir l’inversion. La réalisation de ce croisement se traduit par une quasi-dégénérescence du

paysage énergétique et une polarisation quasi-isotrope, améliorant ainsi la réponse piézoélectrique.

Différents comportements caractérisent Ba(Ti,Zr)O3, où l’apparition de la ferroélectricité est

fortement dépendante des arrangements atomiques locaux et électrostatiques. BaZrO3 présente

en effet une phase cubique très stable. La substitution croissante de Ti par Zr a donc pour effet

de réduire la polarisation spontanée et de supprimer progressivement la ferroélectricité globale.

Néanmoins, des nanorégions polaires peuvent être préservées dans les régions riches en Ti. De

plus, nous avons fourni une comparaison directe entre l’approximation du cristal virtuel (VCA)

et les calculs directs de supercellules, montrant que la physique microscopique spécifique des

solutions solides (Ba,Ca)TiO3 et Ba(Ti,Zr)O3 impose de sérieuses limitations à l’applicabilité

de VCA.

Par rapport à la réponse piézoélectrique améliorée telle qu’observée expérimentalement dans

la BCTZ autour de la limite polymorphe de phase (“Polymorphic Phase Boundary” PPB) pour

les concentrations x ∈ [0.135 : 0.15] et y ∈ [0.10 : 0.11] respectives de Ca et de Zr (petites

concentrations de Ca et de Zr) [44, 54, 106] (Fig. 1.2), notre étude révèle qu’un facteur mi-

croscopique essentiel est l’interaction entre la ferroélectricité guidée par le Ti affaiblie et la

ferroélectricité guidée par le Ca émergente, en raison d’effets stériques. D’une part, une faible

concentration de Zr n’affecte pas radicalement la dynamique initiale du BaTiO3, préservant

en effet l’état fondamental ferroélectrique et la phase stable R3m, mais réduisant la polari-

sation spontanée. Par contre, la présence de Ca change fortement les propriétés dynamiques

du systéme. En particulier, une petite concentration de Ca induit une compétition entre la

ferroélectricité guidée par Ti sur le site B et la ferroélectricité guidée par Ca sur le site A, qui

favoriserait séparément une phase rhomboédrique ou tétragonale, respectivement. Ceci produit

donc la condition pour une anisotropie minimale selon les directions de la polarisation et se

manifeste dans l’amélioration de la réponse piézoélectrique.

En proposant cette étude thórique au niveau atomique, notre travail peut contribuer de

manière significative à clarifier la physique microscopique des systèmes à base de BaTiO3 et

fournit une base solide pour d’autres études de solutions solides BCTZ au moyen de simulations

avancées à grande échelle et à température finie. De plus, les mécanismes complexes ici révélés,

impliqués dans la dynamique de tels systèmes, pourraient être exploités pour développer des ap-

proches hamiltoniennes efficaces avancées augmentant le nombre de degrés de liberté atomiques

clés, allant au-delà de l’utilisation standard de VCA. De plus, en discutant de la physique, ce

travail présente un intérêt générique â la fois pour les théoriciens et pour les expérimentateurs

et pourrait également intéresser la discussion d’autres familles de solutions solides.

La plupart des résultats discutés sont publiés dans D. Amoroso, A. Cano, and Ph. Ghosez,

Phys. Rev. B, 97, 174108 (2018).
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Figure B.1: (Haut) Vue schématique en 3D des atomes. (Bas) Positions en coordonnées réduites
des atomes dans la structure pérovskite.
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Figure B.2: Représentation schématique de différents ordres atomiques dans des supercellules 2×
2× 2 pour les deux solutions solides étudiées. (Haut) Sous-réseau des cations A dans Ba1−xCaxTiO3.
(Bas) Sous-réseau des cations B et oxygènes dans in BaTi1−yZryO3. (a,e) x, y = 0.125. (b,f) “rocksalt”
ordre, (c,g) “columnar” ordre le long de l’axe z et (d,h) “layered” ordre perpendiculaire à l’axe z pour
x, y = 0.50.
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Figure B.3: Courbes de dispersion de phonons dans la phase cubique du BaTiO3 (a), CaTiO3 (b),
BaZrO3 (c) et CaZrO3 (d) le long du chemin des lignes de haute symétrie dans la zone de Brillouin. Les
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le CaZrO3 (losanges roses) et le BaZrO3 (triangles verts). Toutes les structures ont été entièrement
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sont présentées dans le Tableau 5.5.
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propres (en a.u.) du mode instable à Γ dans la zone de Brillouin cubique.
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Figure B.9: Comparaison de l’énergétique, de la polarisation spontanée et des déplacements atom-
iques dans le BaTiO3 (a,d,g), Ba0.875Ca0.125TiO3 (b,e,h) et CaTiO3 (c,f,i). (Haut) Gain d’énergie (en
meV/f.u.) par rapport à la phase cubique des phases avec différentes orientations de polarisation. Les
cercles pleins représentent des structures complètement relaxées. En (a) and (c) les cercles ouverts
reproduisent le gain d’énergie associé à la distorsion polaire dans la maille cubique (c.-à-d. pas de
“strain” relaxation) dans le BaTiO3 et le CaTiO3 respectivement. Dans le cas de Ba0.875Ca0.125TiO3

(b) carrés pleins reproduisent l’énergétique obtenue à partir de Eq. 6.1. (Centre) Variation de la
polarisation (en µC/cm2) calculée par les déplacements atomiques et les charges effectives de Born
Ps,α = 1

Ω

∑

k,β Z
∗
k,αβ∆τk,β [99], pour différents états polaires. En (d) et (f) losanges ouverts repro-

duisent la polarisation contrainte à la maille cubique dans le BaTiO3 et le CaTiO3 respectivement.
Dans le cas de Ba0.875Ca0.125TiO3 (e) triangles pleins reproduisent la polarisation obtenue à partir de
Eq. 6.2. (Bas) Evolution des déplacements atomiques moyens (en coordonnées internes) par rapport
au centre de masse de chaque structure.
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transition T en fonction de la concentration x: (c) graphique de T 2 ajusté à partir de le comportement
linéaire a(x−xc) pour tester la tendance T ∝ (x−xc)

1/2 telle que supposée par Fu et al. dans Refs. [184,
195] pour les transitions de phase T-O et O-R; (d) ajustement de T à partir de le comportement linéaire
(x − xc) pour la transition C-T, alors que á partir d’une tendance générique a(x − xc) + b(x − xc)

2

afin d’extrapoler xc(T=0 K) pour les transitions T-O et O-R. a et b correspondent à des paramétres
d’ajustement. Les données pour l’ajustement ont été extraites de le diagramme de phase (b) rapporté
dans la référence [184].
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valeurs théoriques dans le BaTiO3 et le BaZrO3 cubiques (Tableau 4.1): a(y) = (1−y)aBTO+(y)aBZO.
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Figure B.15: Représentation schématique de l’arrangement atomique dans BaTi0.875Zr0.125O3

(a) et dans “rocksalt”-BaTi0.50Zr0.50O3 (b). Les labels facilitent la visualisation des paires atom-
iques analysées dans les tableaux 7.1 and 7.3. (c) Gain d’énergie (en meV/f.u.) par rapport à la
structure Pm3̄m pour BaTi0.875Zr0.125O3 (c) at par rapport à la structure “rocksalt”-Fm3̄m pour
BaTi0.50Zr0.50O3 en fonction de différents états polaires relaxées dans supercellules. La notation de
l’axis x fait référence à la direction des composants de la polarisation.
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0

4

8

12

16

to
ta

l 
D

O
S

VCA
BaTiO3
BaZrO3

0

4

8

12

16

0 2 4 6 8 10 12 14 16 18 20

to
ta

l 
D

O
S

E (eV)

VCA
averaged DOSh-

SUPER CELL
BaTiO3
BaZrO3

0 2 4 6 8 10 12 14 16 18 20

E (eV)

SUPER CELL

linear combined DOS

(a)

(b)

(c)

(d)
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Figure B.17: Représentation schématique des supercellules basées sur BZO/mBTO. (a) 1× 1× L

super-réseau basé sur une seule châıne de BaZrO3-mBaTiO3 avec une composition décroissante en
zirconium. La plus petite châıne avec L=2 correspond à la structure “layered” dans la composition
50%. La châıne représentée est doublée dans les directions x et y pour aider à la visualisation de la
périodicité du cristal. (b)-(c) 1× 2 × L et 2 × 2 × L supercellules basées sur des châınes alternées de
BaZrO3-mBaTiO3 et BaTiO3-nBaZrO3 afin de conserver une composition globale de 50%. Les plus
petites cellules avec L=2 correspondent respectivement à la composition 50% dans l’ordre “columnar”
et “rocksalt”. Le 1 × 2 × L-case représenté est doublé le long de la direction x pour faciliter la
visualisation.
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de la configuration paraélectrique à la a configuration polaire dans le BaTiO3 (carrés rouges) et le
BaZrO3. Pour ce dernier, les courbes ont été obtenues selon deux approches: (triangles bleus) à partir
de la procédure de minimisation à P fixe; (cercles verts) à partir de la structure polaire relaxée dans
le super-réseau 1× 1× 3.
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Bibliography
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