ISA, nnon C0029118, ISA, dsyn C0017066, ISA, C0013227 C0029118, ISA, C0012634 C0013227, ISA, phsu C0012634, ISA, dsyn C0439228, ISA, tmco C0206178, ISA, dsyn C0439228, ISA, C0040223 C0206178, ISA, C0009450 C0040223, ISA, tmco C0009450, ISA, dsyn C0286079, ISA, nnon C0206178, ISA, dsyn C0286079, ISA, C0013227 C0206178, ISA, C0012634 C0013227, ISA, phsu C0012634, ISA, dsyn C0017066, ISA, nnon C0206178, ISA C0017066 
  
PROCESS_OF, dsyn C0030705 C0001175 
  
PROCESS_OF, dsyn C0030705 C0009450 
  
ADMINISTERED_TO, humn C0043474 Administered_To 
  
Keywords: Semantic Disambiguation, Conceptual Disambiguation, Ontologization, Knowledge Acquisition Framework, Biomedical Knowledge Source, Ontological Knowledge

In biomedicine, the explosion of textual knowledge sources has introduced formidable challenges for knowledge-aware information systems. Traditional knowledge acquisition methods have been proved costly, resource intensive and time consuming. Automation of large scale knowledge acquisition systems requires narrowing down the semantic gap between biomedical texts and structured representations. In this context, this study proposes a knowledge acquisition framework from biomedical texts. This contributes towards reducing efforts, time and cost incurred to minimaize ontology acquisition bottlenecks.

The proposed framework approximates, models, structures and ontologizes implicit knowledge buried in biomedical texts. In the framework, the semantic disambiguator approximates biomedical artefacts from biomedical texts. The conceptual disambiguator models and structures the biomedical knowledge abstracted from the domain texts. Ontologization presents an explicit interpretation of biomedical artefacts and conceptualizations. The components of the framework are instantiated with scientific and clinical text documents and produced about four million concepts and seven million associations. This set of artefacts is structured into the lower ontological knowledge structure where the upper ontology structure is reused from existing ones. The conceptual structure is represented with graph formalism. The formal interpretation is based on OWL DL language primitives and constructs, which generates a set of OWL DL axioms. The set of OWL DL axioms is referred as the OWL ontology ( o K ).

The extent of approximation and quality of structural design are evaluated using criteria-based methods. A set of metrics is used to measure each criterion and showed encouraging results.

Correctness measurements for concept entity are 70% for accuracy, 82% for completeness, 68% for conciseness and 100% for consistency. Quality measurement showed complex ontology structure with metrics values of 986,448 for vocabulary size, 18.73 for connectivity density, 145,246 for tree impurity and 226, 698 for graph entropy. The ontology schema potential metrics values are also 0.80 for relationship richness, 3 for attribute richness and 13,253 for inheritance richness. Ontology clarity showed an average readability, which is 3 attributes on average. The proposed framework has limitations to address the acquisition of individuals and entity attributes, losing cardinality information in the acquisition of the ontological knowledge. These lead to limitations on the formal interpretation of biomedical semantics, which in turn lead to deploy only existential restriction based interpretations. Thus, a way forward has been recommended to enhance semantic disambiguation and ontologization of the proposed framework so that they enable to accommodate the acquisition of cardinality and attribute information.
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Dedication

To my parents iii ix List of Figures With escalating advancement of technology-enabled innovations in biomedical and healthcare industries, Information and Communication Technology (ICT) has been playing crucial roles since many decades ago [1]. In healthcare, for instance, ICT is found to enhance quality, accessibility and cost of healthcare services [2]. Quality can be enhanced by reducing medical errors and usable resource mobilizations. Health data and service accessibility can also be enhanced by creating collaborative environments among healthcare providers, patients and other stakeholders to improve healthcare service deliveries. These, in turn, reduce costs incurred for healthcare services and enable to develop healthy societies. Consequently, ICT is being adopted in most developed nations', Europe and USA, health programs to use its daunting roles [1], [2].

However, in developing nations, especially in Sub-Saharan African, ICT is under utilized to support their resource-constrained healthcare programs and practices [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF], [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF].

In the developed nations, the clinical practices are progressively embracing innovative ICTs to enable better cures and means for early detection of diseases despite existence of suspicious in processes speed [2]. For example, many cutting edge European ehealth projects have led to significant technological achievements, covering a wide range of health services, which have nevertheless failed to reach sufficient deployment in a real practice [1], [2]. The adoption rate of technologies for better management practices and administrative needs is reportedly slower than other ehealth applications [1], [2]. Consequently, the developed nations are practicing the adoption of advanced ICTs to enable intelligent healthcare practices and services for patients' safety and virtual physiological human [2], [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF].

Efficient adoption of technology-enabled healthcare practices, however, requires advanced methods, such as modeling and simulation, at large scale [1]. These reveal the potential of the methods and the recognition they enjoy in supporting medical decision making [2]. The methods have significant application history in numerous healthcare decision support system practices,

where their objectives are of managerial or policy nature [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF], [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF], [START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF]. These Decision Support Systems (DSS) have shown moderate potential in solving managerial problems, which correlate with the developed nations' health program sets forth as highest priorities. In the priority set, health data quality is the primary burden [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF], [START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF]. Hence, to meet the current demands arising from adoption of advanced technologies and intelligent healthcare practices at large scale, new tools, methods and business models are being emerging [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF], [START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF].

For example, Clinical Decision Support Systems (CDSSs) are emerging to support healthcare practitioners and providers for their decision making towards improved clinical practices and real-time information access facilities [START_REF] Ko | Ontology and CDSS Based Intelligent Health Data Management in Healthcare Server[END_REF]. In the recent increase of attention to prevent medical errors, such as computer-based order entry systems, CDSS has been proposed as a key element to improve patient safety [START_REF] Berner | Hospital Based Decision Support[END_REF]. The SAPPHIRE project 1 is also a CDSS-based system to support healthcare service delivery at home-environment. The healthcare environment attempts to narrow the distance between healthcare institutions' IT infrastructures and the patients' home infrastructures. The environment has a communication protocol based on data privacy requirements, semantically enriched patient data, their integration to hospital information system and Electronic Patient Record (EPR). These adoptions of technologies led to the generation of huge amount of data and information in diagnosis, testing, monitoring, health treatment and management of patients, billing of healthcare services and management of healthcare resources [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF]. Numerous healthcare guidelines, policy and scientific literatures are also generated in the adoption. This data and information might also be stored at heterogeneous and distributed Health Information Systems (HIS) with different formats, which are mainly proprietary [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF].

The generated data and information are required to be accessible for biomedical stakeholders in general and healthcare practitioners and patients in particular as required by the treatment path of the patients, in a uniform and transparent way anywhere and anytime [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF], [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF]. For example, healthcare providers may require sharing of data and information, such as clinical notes, observations, laboratory tests, imaging reports, treatments, therapies, drugs administered, allergies and letters, x-rays and bills. These data are heterogeneous in their terminologies, schema, syntax, semantics, data types, formats and constraints. This data heterogeneity leads to significant data interoperability, sharing, accessibility and integrity challenges, which results healthcare systems and biomedical research to be characterized with increased cost, high error rate and knowledge mismanagement [START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF]. Furthermore, the unstructured patients' health -3 -information, scientific texts, clinical guidelines, narrative documents and policy documents might not be understood easily by automated systems for advanced use of technologies, for instance CDSSs. The core components of these technologies are knowledge bases for storing and maintaining domain knowledge and inference engines for retrieving relevant knowledge and inferring new ones from the knowledge bases [START_REF] Ko | Ontology and CDSS Based Intelligent Health Data Management in Healthcare Server[END_REF], [START_REF] Berner | Hospital Based Decision Support[END_REF], [START_REF] Verlaenen | Arriclides: An Architecture Integrating Clinical Decision Support Models[END_REF]. In this study, biomedical applications that use advanced technologies are referred as knowledge-intensive systems.

In these systems, domain knowledge is required to be represented explicitly and formally for efficient processing, human and machine readability, accurate specification, portability and reusability among healthcare and biomedical institutions and stakeholders. This enables to enhance the integrity, interoperability, intelligibility and precise information access requirements of intelligent systems and services, both in healthcare and biomedical environments [START_REF] Berner | Hospital Based Decision Support[END_REF], [START_REF] Verlaenen | Arriclides: An Architecture Integrating Clinical Decision Support Models[END_REF].

Conventionally, guidelines and terminologies are knowledge representation formalisms in which they present ambiguous and imprecise semantics [START_REF] Marcheschi | ECG Standards for the Interoperability in Patient EHRS in Italy[END_REF] - [START_REF] Laleci | A Semantically Enriched Clinical Guideline Model Enabling Deployment in Heterogeneous Healthcare Environment[END_REF]. Guidelines are developed based on consensus and evidence in medical research and practice, and enable decision makings in diagnosis and treatment procedures. The electronic version is represented as a standard format, the GuideLine Interchange Format (GLIF). Where as, clinical terminologies allow healthcare professionals to use widely agreed sets of terms and concepts for communicating clinical information among healthcare professionals and institutions around the world for the purposes of diagnosis, prognosis and treatment of diseases [START_REF] Cornet | Clinical Terminology in Practical Use for Recording and Researching Reasons for Admission in Intensive Care[END_REF]. They facilitate identifying and accessing information pertaining to healthcare practices and hence improve the provision of healthcare services.

Guidelines and terminologies, however, provide very ambiguous and vague representations of knowledge in addition to their limited expressiveness and reasoning services [START_REF] Graben | Ontologies and Their Application in HER[END_REF], [START_REF] Cornet | Clinical Terminology in Practical Use for Recording and Researching Reasons for Admission in Intensive Care[END_REF]. But, the emergent information systems require semantically rich representation formalisms for their precise information access, intelligibility, interoperability, information sharing and collaborative decision makings, for example ontologies [START_REF] Graben | Ontologies and Their Application in HER[END_REF]. The SAPPHIRE project 1 uses ontologies rather than terminologies to represent vital signs and patient records. Ontological formalism is found to be very promising for semantic analysis and representation of Electronic Health Records (EHRs), healthcare services, unstructured biomedical data and vital signs that are proprietary -4 - [START_REF] Graben | Ontologies and Their Application in HER[END_REF]. Thus, ontologies are becoming the crucial component of knowledge-aware biomedical applications and services [START_REF] Gnanambal | Research Directions in Semantic Web on Healthcare[END_REF], [START_REF] Snae | Personal Health Assistance Service Expert System[END_REF].

There are several information systems, which have used ontologies to support the integrity, interoperability, intelligibility and precise information access of biomedical applications [START_REF] Snae | Personal Health Assistance Service Expert System[END_REF] - [START_REF] Dang | An Ontological Knowledge Framework for Adaptive Medical Workflow[END_REF]. For example, Snae and Brueckner [START_REF] Snae | Personal Health Assistance Service Expert System[END_REF] developed ontology-based personnel health counseling system based on personal health records. In this work, ontologies are used for matching personal health data with medical treatments, which enables to maintain data transmission between patients and a system. In mobile health platforms, the shared features are extracted, registered and manipulated using ontology-based representations [START_REF] Han | An Evolving Mobile E-Health Service Platform[END_REF]. It can also enable to provide ways of presenting reusable and adaptive healthcare services [START_REF] Han | An Evolving Mobile E-Health Service Platform[END_REF], [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF]. In ubiquitous computing environment, ontologies provide context awareness for personalized healthcare services to users at anytime and anywhere [START_REF] Han | Ontology Based Context Modeling and Reasoning for U-Healthcare[END_REF]. Dang and Hedayati [START_REF] Dang | An Ontological Knowledge Framework for Adaptive Medical Workflow[END_REF] are also developed a personalized healthcare application that retrieve the necessary information about patients care, insurance policies and drug prescriptions with the help of ontology-based knowledge representation system. The ontology allows users and physicians to manage and create context sensitive medical workflows without the intervention of IT people. Nardon and Moura [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF] stated the methodology of sharing knowledge based on ontologies by describing how to integrate heterogeneous information for complex queries in real environmental settings.

Despite the crucial contribution of ontologies to enhance intelligibility, integrity, interoperability and precise information access, the design and construction of them and their adoption to a specific application context have been provided less attention yet [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF]. Existing ontologies are handcrafted with domain experts and knowledge engineers, and thus, development of large scale ontologies has become resource-intensive and expensive [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF]. Quality, scalability, expressivity, flexibility and exhaustivity of these ontologies are low and error-prone, and even there are very little ontologies, such as gene ontology and BioTop, which are formally and explicitly expressed.

Consequently, adapting ontologies to a specific application context has become an emergent research interest, which requires well developed methods, techniques and tools in the field.

Furthermore, large scale noiseless ontology design and learning, which could be tailored to specific application contexts, has also become challenging due to their scalability, integrity, independency and rigor in addition to the knowledge acquisition bottleneck.

-5 -

Statement of the Problem

Knowledge acquisition is motivated with large volume and rate of accumulation of unstructured knowledge sources [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF]. In a domain world, unstructured knowledge sources are the highest proportion (accounts for 80%) as compared with other sources, semi-structured and structured [START_REF] Ah-Hwee | Text Mining: The State of Art and the Challenges[END_REF]. As human knowledge is expressed using natural languages, the accumulation of this knowledge is also the highest rate. This is evident with the proportion of knowledge sources on the Web, in corporates, organizations and institutions [START_REF] Verlaenen | Arriclides: An Architecture Integrating Clinical Decision Support Models[END_REF], [START_REF] Han | Ontology Based Context Modeling and Reasoning for U-Healthcare[END_REF]. Hence, ontology acquisition can be more prominent and richer if the source of knowledge is unstructured. Knowledge acquisition is also motivated with the representation formalisms and its richness to express domain semantics [START_REF] Cornet | Clinical Terminology in Practical Use for Recording and Researching Reasons for Admission in Intensive Care[END_REF], [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF]. Ontologies are semantically-rich representation formalisms, which enable inferencing and tractablity [START_REF] Dang | An Ontological Knowledge Framework for Adaptive Medical Workflow[END_REF]. They are also the core component of semantic web technologies and enable interoperability, integrity, intelligibility and precise information access for domain applications and services. Semantic networks and frame nets are intractable and less expressive representation formalisms. For example, they are failed to express negations, disjunctions and non-taxonomic relations. Conceptual Graphs (CG) and FOPL are highly expressive, but intractable, which do not support inferencing and reasoning [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF], [START_REF] Dang | An Ontological Knowledge Framework for Adaptive Medical Workflow[END_REF].

This research is, therefore, motivated to leverage knowledge rich sources, such as unstructured knowledge, and highly expressive and tractable representation formalisms in knowledge acquisition. Particularly, this research is motivated with problems related to medical language text complexities and ambiguities, ontology extraction and structuring based on granularities, and limitations of data-driven methods, such as noise filtering and consensus reaching. These problems are the knowledge acquisition bottlenecks, which have made ontology learning resource-intensive, time consuming and expensive [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF], [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF]. Existing ontologies are hand-built by experts and knowledge engineers and are highly expensive and time-consuming in addition to error-prone, inflexible, small scale and impracticable [START_REF] Marcheschi | ECG Standards for the Interoperability in Patient EHRS in Italy[END_REF]. Although existing ontology learning methods and frameworks can support ontology acquisition, involvement of experts and ontology engineers are not minimized to an acceptable level, even unimaginable for large scale ontology learning. Furthermore, they are less domain binded (uses TFIDF for domain relevance), dependent to other ontology tools, lacks rigor and integrity, and they are also noisy. The frameworks are used data-driven methods, and thus, acquisition of shared and noise-free domain conceptualization is impracticable. Data-driven-based frameworks are also shallow and failed to represent semantic phenomenon such as disjunctions, negations and quantifications [START_REF] Ah-Hwee | Text Mining: The State of Art and the Challenges[END_REF], [START_REF] Pik | Beyond ontologies: Toward situated representations of scientific knowledge[END_REF].

Generally, resource-intensiveness, expensiveness, time-consumption, rigor, scalability, independent and shared ontology acquisitions from biomedical texts are the major challenges in the existing ontology learning methods and frameworks. These challenges are aroused from the inherent complexity and ambiguity problems of natural language texts. The ambiguities and complexities lead to multiple interpretations and views of the biomedical knowledge, which result different conceptualizations of a domain. Multiple interpretations may introduce different understandings for different peoples, which results different knowledge modeling and structuring problems [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF], [START_REF] Marcheschi | ECG Standards for the Interoperability in Patient EHRS in Italy[END_REF]. Consequently, knowledge abstraction with less ambiguity and efficient structuring of the conceptualization has become challenging in the field of knowledge acquisition and representation.

NLP techniques aim to acquire, understand and comprehend texts, which are successful in meeting medical language problems as far as syntax is concerned [START_REF] Geleijnse | Learning Effective Surface Text Patterns for Information Extraction[END_REF], [START_REF] Turney | Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL[END_REF], [START_REF] Hearst | Automatic Acquisition of Hyponyms from Large Text Corpora[END_REF]. But, it has to go a long way in areas of semantics and pragmatics [START_REF] Lyons | Semantics[END_REF], [START_REF] Volker | Acquisition of OWL DL Axioms from Lexical Resources[END_REF]. In semantics, unresolved issues are finding the meaning of a word or a word sense, recognizing quantifiers and its scopes, recognizing concepts and individuals, recognizing associations between concepts or individuals, co-reference resolutions, relation of modifiers to nouns, identifying meaning of tenses to temporal objects and identifying semantic cues across sentences in different paragraphs in a discourse. In pragmatics, a simple declarative sentence stating facts is not only a statement of fact but also serves as some communication functions [START_REF] Lyons | Semantics[END_REF], [START_REF] Volker | Acquisition of OWL DL Axioms from Lexical Resources[END_REF]. The function may be to inform, to mislead about a fact or speaker's belief about a fact, to draw attention, to remind previously mentioned event or object related to fact. All these problems hinder disambiguation and interpretation of semantic phenomenon from biomedical texts, which are highly problematic and less attention have been provided yet.

Representation formalisms must be precise and unambiguous, and enable to capture the intuitive structure of natural language sentences and discourses [START_REF] Vrandecic | The Diligent Knowledge Processes[END_REF], [START_REF] Fernandez | METHONTOLOGY: From Ontological Art Towards Ontological Engineering[END_REF]. Context-independent meaning of sentences can be represented using their logical forms, which encode the possible word senses and identify semantic relationships between words and phrases. This abstract set of semantic relationships between verbs (relational phrases) and its noun phrases (argument phrases) can be used to capture these relationships [START_REF] Vrandecic | The Diligent Knowledge Processes[END_REF]. But, the key problem is to consider what combinations of the individual word meanings can combine to create coherent sentence meanings at the sentence and discourse contexts [START_REF] Fernandez | METHONTOLOGY: From Ontological Art Towards Ontological Engineering[END_REF]. Furthermore, the representation of the structure of a sentence and its logical form, and to map this into expressions in the representation formalism has been provided less attention yet [START_REF] Fernandez | METHONTOLOGY: From Ontological Art Towards Ontological Engineering[END_REF]. As above-mentioned, this may require integration of the different representation formalisms to bring closer semantic structures between biomedical texts and ontological theories, which are hardly possible yet. Thus, for generic, rigor and integrated knowledge acquisition, these problems may require to answer questions how consistent is knowledge acquisition across different formalisms and their interpretations of contextual knowledge?

Empirical NLP has provided significant number of sound techniques, but quite opposed to learning ontological theories [START_REF] Brewster | Background and Foreground Knowledge in Dynamic Ontology Construction: Viewing Text as Knowledge Maintenance[END_REF]. Ontologies are logical theories and declarative by their nature whereas empirical methods are concerned with analytical models that explain data. Despite these methods are not declarative, there are cases that can learn logical theories from data using Inductive Logic Programming (ILP) [START_REF] Studer | Knowledge Engineering: Principles and Methods[END_REF]. However, theories learned from data through ILP differ crucially from shared ontological theories [START_REF] Brewster | Background and Foreground Knowledge in Dynamic Ontology Construction: Viewing Text as Knowledge Maintenance[END_REF]. Ontological theories reflect a shared understanding of domain of interest, which can be developed as a consequence of reflection and consensuses within a certain community and thus representing a commitment to a specific conceptualization [START_REF] Nardon | Knowledge Sharing and Information Integration in Healthcare Using Ontologies and Deductive Databases[END_REF]. However, in logical theories derived inductively from data, it is not clear how far they can be seen as expressing a shared conceptualization. Thus, one of the conceptdriven methods might support an interpretive-based knowledge acquisition, which might also enable to answer to questions what method can enable better consensus reaching than datadriven methods in knowledge acquisition from biomedical texts?

The knowledge acquisition and representation community has also provided less attention to integrate linguistics and ontology learning to knowledge engineering methodologies, and knowledge representation to the way knowledge is expressed in natural language texts [START_REF] Van De Velde | Machine Learning Issues in CommonKADS[END_REF].

These distinctions have been neglected largely, which might be useful in bridging the gap between semantic structures in natural language texts and ontological theories. While there are works on integrating machine learning to traditional knowledge acquisition and engineering methodologies such as CommonKADS [START_REF] Van De Velde | Machine Learning Issues in CommonKADS[END_REF], integration of ontology learning with more recent ontology engineering methodologies such as On-To-Knowledge [START_REF] Sure | Methodology for Development and Employment of Ontology-Based Knowledge Management Applications[END_REF], DILIGENT [START_REF] Vrandecic | The Diligent Knowledge Processes[END_REF] or METHONTOLOGY [START_REF] Fernandez | METHONTOLOGY: From Ontological Art Towards Ontological Engineering[END_REF] haven't been provided adequate attention. The lack of such integration results difficulties to develop integrated, rigorous and scalable ontology acquisition frameworks from unstructured sources. These problems may require an integrated answer to questions in addition to consistency issues across formalisms. For example, how to integrate concept-driven methods to ontology learning and engineering? How to integrate medical language texts, domain conceptualization, domain modeling and structuring formalisms, and formal interpretations?

Generally, to alleviate these problems a little further, an answer is required to a generic question "how to make closer semantic structures between biomedical language texts and ontological theories"? This is further tailored to the following research questions:

 To what extent can biomedical artefacts and their associations be approximated from their unstructured sources, such as biomedical texts?

 How to conceptualize, model, structure and interpret biomedical knowledge artefacts?

 How consistent and integrated is the knowledge acquisition and representation across formalisms?

Thus, to address these questions, the following general objective with a specific question is addressed by the corresponding specific objectives.

Objective of the Study 1.3.1 General Objective

The general objective of this research is to design and develop a rigorous framework for the acquisition and representation of ontological knowledge from unstructured biomedical knowledge sources, the biomedical texts.

Specific Objectives

In order to achieve the general objective, the following specific objectives are formulated:

 To disambiguate and acquire biomedical artefacts and their associations from biomedical texts. This approximates biomedical knowledge from the biomedical texts.

 To model, structure and interpret biomedical knowledge and its conceptualization. This enables to structure and represent the biomedical knowledge.

 To disambiguate agreed upon ontological elements: biomedical concepts, relations, their associations and axioms. The biomedical artefacts and their associations are common understandings among experts, engineers and users in biomedicine, which results a shared conceptualization of the domain knowledge.

 To keep consistencies across the different formalisms during ontological knowledge acquisition. The integration of NLP techniques, ontology engineering methodologies and knowledge representation formalisms enabled for, somewhat, consistent acquisitions of ontological elements and axioms.

 To evaluate the proposed framework for assessing its correctness and quality.

Scope and Limitation

The scope of the study is to design and develop a knowledge acquisition framework from unstructured biomedical knowledge sources. Specifically, the knowledge acquisition considers biomedical texts, such as scientific documents (e.g. literatures, books, journals and reports), clinical texts (e.g. clinical notes, radiologic reports, diagnosis results and prescriptions), guidelines, policy and standard documents. The knowledge sources can be any unstructured type and format, such as text, pdf, html, XML, tagged corpora, as far as they can be converted or chunked into phrases, clauses and sentences. This research, however, is not designed to acquire knowledge from other unstructured sources such as images, audio and video. Thus, the proposed framework disambiguates and interprets the hidden knowledge from biomedical texts. In the process of disambiguation, a set of biomedical artefacts, entities and their associations, are generated for abstracting and conceptualizing the biomedical domain.

Disambiguation of situation-specific scenarios is limited to knowledge-based interpretations, where text scenarios instantiate interpretations and the knowledge-base suggest the interpretation. However, disambiguation based on data-driven or hybrid techniques is beyond the scope of this research. For unambiguous representation and inferencing support, domain conceptualization and its structuring are explicitly interpreted using formal language primitives and constructs. Consequently, the ontology structure is limited to a direct graph based structuring. Particularly, a Direct Acyclic Graph (DAG) is used to structure and represent the ontology structure. The use of other formalisms such as conceptual graphs, frame nets and semantic networks are beyond the scope of this research. Formal interpretation of the conceptualization is also limited to the use of OWL DL language primitives and constructs. But, the use of other formal logics and OWL Lite or OWL Full primitives and constructs are beyond the scope of this research as well.

The knowledge base is limited to biomedical domain where it provides necessary and sufficient biomedical semantics. Furthermore, disambiguation, conceptualization and structuring are limited to the possible semantics suggested by the knowledge base. Consensus reaching is also determined based on the knowledge base semantics, which are already agreed upon biomedical knowledge. That is, consensus of the framework is achieved based on whether the knowledge base is developed collaboratively by different experts and users in the domain or not. This enables to design and develop knowledge acquisition framework, which constructs a shared conceptualization and then shared ontology structure automatically.

Evaluation of the proposed framework is limited to measure its graph-centric representation.

Evaluating the functional and usability dimensions is beyond the scope of this research. The structural dimension is measured based on criteria, which describe the ontology structure properties. The use of other evaluation approaches, such as layers-based, gold standard, application and data-driven based, are beyond the scope of this research. The structural evaluation is also limited to measure the extent of approximating biomedical artefacts and the quality of its structural design. Degree of approximation is evaluated by measuring its correctness; where as quality of the framework is evaluated by measuring the efficiency and effectiveness of the ontology structure design. Furthermore, only eight criteria are applied to Text2Onto and CRCTOL), it doesn't attempted comparative evaluations. This is due to large effort, time and budget requirements of the existing frameworks to bring them into an experimentation.

Significance

There are multi-fold applications of the research concerning to the development of ontological knowledge. Firstly, the research enables to develop biomedical ontology, which can be deployed in knowledge-intensive applications to enhance their intelligibility, integrity, interoperability and preciseness information access. Ontologies have semantically rich taxonomical knowledge, which provides effective and efficient reasoning services. This enables inferencing services while utilized with applications of the domain, and thus, enhances intelligibility. The ontological knowledge also serves as an integration schema of multiple applications' data sources so that it enables the sharing of various data sources among the applications, where it enhances integrity.

The ontology also provides shared understanding of the biomedical knowledge among multiple applications, and thus, enhances interoperability. This way, therefore, the proposed ontology acquisition framework has multiple significances for knowledge-intensive applications in biomedicine.

Consequently, the first significance of the proposed framework is to enable precise information access. For precise information access, ontology is required to support the interpretation. The second significance is to integrate the different biomedical information systems in such a way that they able to run uniformly and precisely. The framework enables to use a common knowledge for applications of the domain of interest. And the different applications are able to interoperate each other using the ontological knowledge as a common knowledge base, domain understanding. Lastly, ontologies are the core components of the semantic web technologies, and thus, the have significant contributions to build semantic web applications in addition to semantic markup.

As ontological knowledge is well structured and rich in its semantic representation of a particular domain, the reasoning services it can provide is plentiful. This enables to enhance the intelligibility of the applications that use the ontology for its interpretation and presentation.

-13 -Intelligibility is, therefore, one of the significances of the ontological knowledge. The research output could also benefit several communities that are also relevant parties in evaluating the proposed framework. That is, intelligent applications and services could be benefited from the results of the research to access knowledge. Researchers could also be the beneficiaries of the study and the techniques and algorithms developed in the research. Physicians, patients and health institutions are also indirect beneficiaries of the study by having the services provided by the health care that interact actively with them.

Contribution

The study contributes to the field of knowledge acquisition and representation and its communities as a whole. It has also technological, social and economic contributions.

Contribution to the field is the scientific contributions where as technological contribution is to advance technologies inline with the research, knowledge acquisition and representation.

Furthermore, this research has also shown the potential of language technologies for knowledge acquisition from unstructured sources, for example biomedical texts. Economic and social contribution is related to resource intensive (e.g. labor, time and cost) nature of the field of knowledge acquisition and representation, and the benefits obtained as a result of deploying the framework for intelligent information systems.

In relation to scientific contribution, the study contributes to open up multiple research dimensions of knowledge acquisition and representation. For example, one dimension is discourse segmentation and disambiguation. In this dimension, each phrase should be segmented and disambiguated semantically. Thus, the study opens many insights in the direction of discourse disambiguation and interpretation, conceptual knowledge structuring and its formal interpretation. It also inspires researches that enable to unlock problems hindering the deployment of intelligent information systems in practical application scenarios. It enables to support integribility, intelligibility and interoperability between interacting information systems.

The study also enables to initiate research and investigate for precise fact retrieval and access, semantic search and healthcare applications.

The study contributes to the scientific communities at different dimensions. Firstly, the knowledge acquisition framework enables the scientific communities to construct biomedical ontology at reduced time, labor and cost. Secondly, it initiates research interests in the area.

Thirdly, it pushes forward solving the problem of knowledge acquisition from unstructured sources. Technological contribution is the maturity and practicality of utilizing intelligent biomedical applications and services. In this context, the study contributes to support biomedical technologies, health information systems and applications in the domain. Technology maturity can brought social benefits by enabling to utilize health information systems. These social benefits, in turn, can bring economic benefits, for example by delivering health care services everywhere and any time. This reduces cost incurred for health services at institutions and time to get services.

Methodology

The aim of this research is to design and develop ontology acquisition framework from biomedical texts. In biomedicine, scientific sentences are different from sentences about a diagnosis results or sentences in health standard documents, in which at least they differ pragmatically. Furthermore, the linguistics structure in scientific documents is more formal than clinical texts. This indicates that there is no uniformity not only in the content but also in complexity of the linguistics structures. Thus, determining the population and sampling technique of the study are found to be crucial.

The study employed experimental research and considers all biomedical documents, potentially converted to texts, as population of the study. Technically, the population of the study is approximated to the set of all biomedical artefacts found in the knowledge base. A cluster-based sampling technique is chosen for its easiness and the text collection is in scientific and clinical sub-domains of biomedicine. The choice of cluster-based sampling technique may lead to accept the resulting skewed knowledge of the scientific and clinical sub-domains. But, the proposed framework is independent from the semantic content of textual sentences, but in the linguistic elements and their structures to makeup sentences. The framework is also independent from sentences in any sub-domain of biomedicine as far as they are valid biomedical sentences. That is, the proposed framework can directly be applied to other sub-domains of biomedicine to complement the less representativeness of the cluster-based sampling technique.

Recently, knowledge acquisition has become more of interpretive and contextual than datadriven [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF]. Information is becoming less and less atomic pieces of data and is becoming more and more semantic concept, which carries an interpretation and exists in a context. Thus, interpretive-based methods might have better quality and correctness than data-driven methods for declarative knowledge acquisition [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF]. Interpretations of situation-specific scenarios in the bioMed text collection are suggested by the knowledge base. Consequently, knowledge-based method is used for semantic disambiguation and structuring of the implicit knowledge in the biomedical texts. Furthermore, the study applies different tools and techniques and follows several steps to achieve its objectives. The study also uses a criteria-based evaluation method to measure the correctness and quality of the proposed framework.

Research Design

After formulation of the research problems and questions, an experiment is designed for gathering textual knowledge sources and determines the population size and sampling technique.

The research design enables to analyze the knowledge sources and abstract the set of biomedical artefacts, conceptualize, structure and interpret them. It also applies a criteria-based evaluation method to measure the structural properties of the graph-centric representation ( o G ).

In the research design, therefore, all biomedical sentences are considered as the population of the study. Each sentence is clustered into either scientific or clinical texts. Thus, textual sentences in each cluster are a population in that cluster. The less domain representativeness nature of cluster based sampling is complemented by the framework, as it is dependent only on the knowledge base and knowledge sources in addition to linguistics structures of each sentence. This means that the framework can be applied to any categories as far as the knowledge base is generic to biomedicine and each knowledge source is valid biomedical sentences.

Biomedical artefacts are abstracted and conceptualized based on graph representation formalism.

The set of knowledge artefacts is abstracted by instantiating the semantic disambiguation model, where as ontology structuring is instantiated by integrating the upper ontology structure with the lower ontology structure. The upper knowledge structure is reused from existing ones and the lower knowledge structure is acquired from the set of knowledge artefacts. The conceptual knowledge is interpreted into its formal representation based on OWL DL language primitives and constructs. Finally, the proposed framework is evaluated by measuring the extent of approximating the biomedical knowledge and quality of its structural design. In the following sections, the research design for each component of the framework is stated.

Background Knowledge

In this research, a biomedical knowledge base, which suggests the interpretation of situationspecific scenarios in biomedical texts, is referred as background knowledge. It is also a knowledge known before hand about the domain. In this respect, we choose UMLS as background knowledge for interpreting situation-specific scenarios from bioMed text collection. This is because, UMLS has been developed by the National Library of Medicine (NLM) and is an integration of more than 150 biomedical vocabulary sources into its Metathesaraus in which it consists of more than twelve million concepts and their associations [START_REF] Campbell | The Unified Medical Language System: Toward a Collaborative Approach for Solving Terminological Problems[END_REF]. 

Knowledge Source

The bioMed text collection is prepared as a knowledge source of the proposed ontology acquisition framework. The bioMed text collection is composed of 55,536 scientific and clinical textual documents. The scientific knowledge sources are literatures, articles, journals and books.

The clinical texts are clinical notes and reports. BioMed text collection is prepared as a combination of textual documents from pubmed, ClinicalTrial, Genia and CLEF text collections.

From these sources, we collected about 65,736 textual document collections, but we used only 55,536 text documents where the rest has introduced preprocessing difficulties.

Generally, any textual knowledge sources are collected from their various repositories to be used as a knowledge source as far as they can be chunked into phrases, clauses and sentences.

Although there is several daunting unstructured knowledge sources in biomedicine in which they represent biomedical phenomenon or situation, this study instantiates the knowledge acquisition framework with scientific and clinical textual knowledge source as they can be easily available for research purposes.

Modeling Language

Conceptual knowledge is expressed using graph formalism, particularly direct graph. Thus, conceptual ontology is represented using a directed acyclic graph, which completely eliminates cyclic redundancies in its representation and guarantees inferencing or tractability. Furthermore, the proposed framework expressed ontologies explicitly and formally using mathematical semantics, which has unambiguous interpretation and support inferencing. Formal representation of ontologies requires formal modeling language, for example Description Logic (DL) due to its tractability. Thus, the OWL DL primitives and constructs are used for unambiguous interpretation of the conceptualization ( o C ).

Preprocessing

The bioMed text collection is cleaned to eliminate unwanted part of the text, such as non-ASCII characters and punctuation. This enhances the performance and accuracy of the semantic disambiguation model. Thus, to do the preprocessing, a technique, which handles two tasks, is applied. Firstly, it converts all the different knowledge source types and formats into one common representation format (e.g XML format).

Secondly, the technique eliminates unnecessary (noise) characters, figures, tables and percentages of each textual sentence. After these two tasks, each textual knowledge source is segmented into sentences, phrases or clauses. Finally, each textual knowledge sources is presented as a set of sentences separated by a period followed by a space and a capitalization, making ready for situation specific scenario, concept and their relationship, disambiguation. SemRep is also enhanced to include ontological predicates, which are not belonging to the UMLS semantic network associations. To accomplish this, a pair of concepts is searched for their possible associations in the background knowledge and if it exists, the pair will be considered as a predicted proposition.

Conceptual Disambiguation

The conceptual knowledge structure is instantiated by integrating the upper ontology structure ( u G ) and the lower ontology structure ( L G ). The upper ontology structure is reused from -19 -existing sub-domain and semantic categories, the UMLS semantic groups and semantic types.

The lower ontology structure is learned from the set of knowledge artefacts ( p K ). Thus, the ontology structure ( o G ) and its conceptualization ( o C ) is modeled at two knowledge levels: the upper and lower knowledge levels. The upper knowledge level is modeled by sub-domain categories and semantic categories, where the semantic categories are sub-partitions of subdomain categories.

The lower knowledge level is modeled by the fine-grained concepts and their associations disambiguated from bioMed text collection. During disambiguation, each fine-grained concept is categorized by their semantic categories. This created overlap between the upper and lower knowledge layers, where the set of concept overlaps are used to integrate the two ontology structures. Finally, the ontology structure is represented as a direct acyclic graph.

Ontologization

The ontology structure ( o G ) is represented using graph formalism. Graph formalism is very ambiguous and provides poor reasoning support and intractable. The conceptualization ( o C ) is, therefore, explicitly interpreted and represented using formal language semantics, OWL DL.

OWL DL has semantically-rich primitives and constructs that enable to express the interpretation of domain semantics. It is also computationally tractable and supports reasoning services. Thus, unambiguous interpretation of biomedical ontology is represented as a set of OWL DL axioms.

Consequently, the biomedical ontology ( o K ) is formulated as a set of logically integrated biomedical axiom types, which is formulated as six tuples, ) , , , , , (

A H H K r c o     .
Instantiating this formulation provides four tuples, ) , , , (

   r c o H H K
. This is because of that assertional and attribution axioms are nullified as they are not disambiguated and interpreted.

But, two additional axioms are also introduced, equivalent axioms (  ) and disjoint axioms ( ).

Thus, the instantiated formulation becomes ) , , , , , (

     r c o H H K , where     and    A .

Evaluation Approach

A criteria-based evaluation method is employed to measure the correctness and quality of the proposed framework. Each criterion describes a set of ontology structure properties. Each structural property is also measured using metrics, whose value is determined using a formulation that characterizes the proposed framework or otology structure. Thus, a set of metrics is used to measure each criterion, which can be measured by analyzing the set of its metrics values, which are used to evaluate each criterion, and thus, the results of evaluation, in turn, used to obtain insights about either correctness or quality of the proposed framework. For each criterion, the results of analyzing metrics values and the value for each criterion, including insights of correctness or quality of the framework, are used to perform comparative analysis and discussion.

Research Method

Information processing has brought a paradigm shift towards concept-driven to address the demand shifts from data-driven to semantic-driven services [START_REF] Gangemi | A Theoretical Framework for Ontology Evaluation and Validation[END_REF]. That is, the basic unit of information is becoming less and less atomic pieces of data and is becoming more and more a semantic entity, which carries interpretations and exists in contexts [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF]. Concept-driven methods are based on semantic interpretations and provide natural understanding (cognitive understandings) to domain semantics. It is also one of semantic-driven methods, which support interpretations and provide cognitive understandings. Knowledge-driven methods support shared understandings of domain semantics. Thus, a concept-driven method is used to suggest the interpretations of situation-specific scenarios in the biomedical text. The method is also used to suggest the interpretation of the ontology structure ( o G ) to a direct acyclic graph formalism.

Consequently, situation-specific scenarios are interpreted suggested by a set of scenarios in the background knowledge. This means that situation-specific scenarios in the biomedical text suggest which scenarios in the background knowledge are relevant, and scenarios in the background knowledge suggest ways of interpretating and disambiguating the biomedical text.

Similarly, scenarios in the knowledge abstraction suggest which scenario contexts in the background knowledge are relevant, and the scenarios in the background knowledge suggest ways of interpreting and structuring the set of knowledge abstractions.

Organization of the Dissertation

The 

Chapter Two State of the Art

Ontologies have become core components of Semantic Web (SW) where they enable software agents to communicate each other to resolve conflicts [START_REF] Berners-Lee | The Semantic Web[END_REF], [START_REF] Mukundan | Spinning the Semantic Web[END_REF]. Gruber [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF] defined ontology as a formal, explicit specification of a shared conceptualization, where one of the reasons why business and knowledge management communities had a growing interest [START_REF] Prusak | Where Did Knowledge Management Come From?[END_REF] - [START_REF] Hendricks | Knowledge-Based Systems and Knowledge Management Friends or Foes?[END_REF]. As the volume of biomedical texts is extremely increasing, the manual techniques to acquire ontological knowledge have become impractical. Plus, unstructured knowledge is rapidly changing and difficult to keep up-to-date ontologies. These revolutionalize to large text collections where ontology construction has access to large quantities of unstructured data from different sources [START_REF] Sinclair | Look Up: an Account of the COBUILD Project in Lexical Computing[END_REF], [START_REF] Winograd | Understanding Natural Language[END_REF], such as manually collected or crawled from websites. The challenge is, however, to automate ways of acquiring ontology from the unstructured sources and bring to adequate approximations and representations of the knowledge available for a human reader of the texts [START_REF] Sinclair | Look Up: an Account of the COBUILD Project in Lexical Computing[END_REF], [START_REF] Winograd | Understanding Natural Language[END_REF], [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF], [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF].

As ontologies represents human knowledge about a domain and human beings successfully communicate their knowledge through medium of texts, it is possible to learn ontologies from large quantities of unstructured texts [START_REF] Maedche | Mining Ontologies from Text[END_REF], [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]. Many investigations have been concentrated on the knowledge acquisition challenges, working within Natural Language Processing (NLP), Knowledge Discovery (KD) and Knowledge Representation (KR) techniques. However, the intention has been to consider a range of computational and representational techniques to push the boundaries forward and gain deeper understanding of the relationship between natural language texts and structured knowledge, which however remained resource-intensive and expensive [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF], [START_REF] Blythe | Knowledge Acquisition Using an English-Based Method Editor[END_REF], [START_REF] Mcgraw | Knowledge Acquisition: Principles and Guidelines[END_REF]. This chapter, therefore, grants deeper understandings of the state of the art of knowledge bases, knowledge sources, ontology acquisition and representation, and ontology evaluation approaches, methods and techniques.

Knowledge Bases

Knowledge bases are domain representations in the internal structure of computer programs. The extent to approximate and represent domain knowledge has brought opportunities for intelligent applications to function successfully and interact with the environment humanly. But, although -23 -there is a long history to abstract and represent a domain, most of them are handcrafted and have limited scope and coverage [START_REF] Winograd | Understanding Natural Language[END_REF]. Traditionally, abstractions and representations are to build knowledge bases from the information provided with the analysis of interviews or dialogue between experts and their customer by means of protocol analysis, which is time consuming, effort intensive and expensive [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF].

With the emergence of NLP, Text Mining (TM) and Knowledge Representation (KR)

technologies, however, the development of knowledge bases is supported with software tools, environments and techniques [START_REF] Maedche | Mining Ontologies from Text[END_REF], [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]. Particularly, these technologies support the development of knowledge bases with the analysis of unstructured (e.g texts) knowledge sources. These enable to capture the hidden knowledge from the unstructured sources, abstract and represent the specified domain. These, in turn, have contributed to reduce time, effort and expensiveness of developing knowledge bases [START_REF] Maedche | Mining Ontologies from Text[END_REF], [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]. These technologies may require knowledge bases for acquisition and representation of domain knowledge [START_REF] Winograd | Understanding Natural Language[END_REF]. In textual sources, for example, meaningful sentences are composed of meaningful words, and any system that processes natural language texts must have information about the words and their meanings. This information can be provided with dictionaries [START_REF] Wilks | Electronic Words Dictionaries, Computers and Meaning[END_REF]. While dictionaries are developed for ease of human readers but not for machines, WordNet provides effective combination of lexicography and computational information. Thus, wordnet is a repository of linguistics and domain knowledge, which is related to thesauri, taxonomies and ontologies [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF].

Ontologies are knowledge bases about entities, abstract and concrete, their associations and attributes, which make up the domain [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF], [77]. Thesaurus is a wordbook where words and terms are organized under headings and sub-headings. Taxonomy is a conceptually organized reality [START_REF] Sowa | Knowledge Representation[END_REF], [START_REF] Roget | Thesaurus of English Words and Phrases Classified and Arranged so as to Facilitate the Expression of Ideas and Assist in Literary Composition[END_REF]. The distinctions among these knowledge structures are a matter of background than substantive differences in approach and objectives. Thus, a brief survey of the three types of knowledge bases and their distinctions are presented in the following sections.

Thesaurus

A thesaurus is a set of words, which mean the same but spell differently. That is, thesaurus is a set of words, which share meaning, sense or are otherwise associated in the minds of people [START_REF] Sowa | Knowledge Representation[END_REF].

A dictionary explains meanings of words but in thesaurus the converse is true. An idea is given to search a word or words by which that idea may be mostly expressed successfully [START_REF] Masterman | The Thesaurus in Syntax and Semantics[END_REF]. Thus, words and phrases of a language are classed according to their signification [START_REF] Jones | Synonymy and Semantic Classification[END_REF]. For example, Roget [START_REF] Sowa | Knowledge Representation[END_REF] provided taxonomy of languages and it is entirely inaccessible in most electronic versions. Taxonomy of a thesaurus is important that it contains a great deal of latent information concerning to interrelation between different areas of vocabularies.

As categorization of words has become a useful tool to handle word sense disambiguation, thesaurus is recognized in natural language processing [START_REF] Roget | Thesaurus of English Words and Phrases Classified and Arranged so as to Facilitate the Expression of Ideas and Assist in Literary Composition[END_REF]. For example, Sparck Jones [START_REF] Masterman | The Thesaurus in Syntax and Semantics[END_REF] attempts to use thesaurus for information retrieval. In the work, the emphasis is on sub-levels, which consist of close synonyms, which are substitutable in a given context. The thesaurus rows are taken as a set of features and clustering techniques are used to see if they could be classified in accordance with their membership of thesaurus heads. One of the key problems was that clusters did not have labels and it became difficult in the research [77]. For example, the Roget's thesaurus was used for word sense disambiguation by a number of researchers. For this reason, the researchers attempted to adapt a thesaurus to a corpus and then use it to perform word sense disambiguation [START_REF] Newman | Descartes' Epistemology[END_REF].

In Information Retrieval (IR), thesauri are also used for query expansion [START_REF] Yarowsky | Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora[END_REF]. Qiu and Frei [START_REF] Yu | The Effectiveness of the Thesaurus Method in Automatic Information Retrieval[END_REF] and Crouch and Yang [START_REF] Qiu | Concept Based Query Expansion[END_REF] presented ways to develop thesaurus automatically from text for query expansion and shows improved retrieval performance. Although Voorhees [START_REF] Crouch | Experiments in Automatic Statistical Thesaurus Construction[END_REF] showed that WordNet is not useful in improving text retrieval, Kekäläinen [START_REF] Voorhees | Using Wordnet for Text Retrieval[END_REF] and Sormunen et al. [START_REF] Kekäläinen | The Effects of Query Complexity, Expansion and Structure on Retrieval Performance in Probabilistic Text Retrieval[END_REF] argued that domain specific thesauri can significantly improve text retrieval. Recently, Clough

and Stevenson [START_REF] Sormunen | Document Text Characteristics Affect the Ranking of the Most Relevant Documents by Expanded Structured Queries[END_REF] also showed that using EuroWordNet for cross-language information retrieval is effective.

Taxonomies

Taxonomies are a step towards formal specification of knowledge structure in which a specific relationship is usually implied between a parent node and the children [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF], [START_REF] Clough | Cross-Language Information Retrieval Using EuroWordNet and Word Sense Disambiguation[END_REF]. In taxonomies, a child has set-subset relation with parents. Taxonomies have greater depth than a thesaurus, with more levels between leaf and root nodes. In addition, taxonomies can be conceived as a representation of a domain [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF], [START_REF] Clough | Cross-Language Information Retrieval Using EuroWordNet and Word Sense Disambiguation[END_REF]. For example, libraries have long used sophisticated taxonomies in order to classify books and other media, for instance, the Library of Congress -25 -Classification System1 and the Dewey Decimal System2 . These systems make unstated claim that each topic in the taxonomy is more general than its individual children, parent includes children.

The problem with library classification schemes is that they are not trying to classify objects that appear to be limited in the number of dimensions relevant to classification but rather they classify documents in which by their nature discuss a number of topics [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF].

Library classification systems facilitate access to objects, which cover many topics or perceived from many dimensions [START_REF] Guarino | Some Ontological Principles for Designing Upper Level Lexical Resources[END_REF]. The problem where to classify an item is also apparent with one of the most widely used taxonomies of the Internet era, Yahoo! 3 . Yahoo! provides access to documents, which are web pages. Yahoo! has been incredibly influential to determine the design of internet and intranet portals of the web content, layout and underlying structure. However, it is an incredibly unwieldy object, which attempts all things to all men [START_REF] Yarowsky | Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora[END_REF]. The significance is, however, in the commercial world, there is far greater demand of taxonomies 4 and less for ontologies where many academias are trying to build and promote [START_REF] Morville | Little Blue Folders[END_REF].

WordNet

It is an alphabetical structuring of lexical information and put words together that is spelled alike and scatters words with similar meanings randomly through the list [START_REF] Wilks | Electronic Words Dictionaries, Computers and Meaning[END_REF]. Wordnet is a proposal for effective combination of lexicographic information and modern high-speed computation, where its aim is to create dictionary and thesaurus [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF]. Another objective of wordnet is to support automatic text analysis and artificial intelligence [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF]. It is useful to determine connections between synonym sets and tracing morphological connections between words. In WordNet, the taxonomy is structured not only by a synonym-of relation, but verbs and nouns are hierarchically organized via hypernym/hyponym relation. Furthermore, EuroWordNet is a multilingual database of WordNets for European languages [START_REF] Ellman | Corporate Ontologies as Information Interfaces[END_REF]. Each WordNet is structured in the same way as Princeton WordNet in terms of synsets with basic semantic relations between them.

-26 -Thus, WordNets are lexical databases for NLP research and applications. While the current versions have broad domain coverage, they manifest many defects that reflect the lack of domain expertise on the part of lexicographers and it is not built for domain-specific applications. In biomedicine, for example, the research community has been aware of these defects [START_REF] Vossen | EuroWordNet: Building a Multilingual Database with Wordnets for European Languages[END_REF], [START_REF] Burgun | Comparing Terms, Concepts and Semantic Classes in Wordnet and the UMLS[END_REF].

With a goal of eliminating noises associated with applications of WordNet and similar resources in biomedical domain, Medical WordNet (MWN) is developed as a free-standing lexical database designed specifically for medical NLP [325].

In Wordnets, the common semantic relations are synonymous, antonymy, meronymy, hyponymy/hypernymy and morphological relations [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF]. Synonymy is the basic relation as wordnet uses sets of synonyms to represent word senses. It is a symmetric relation between word forms. Antonymy is also a symmetric relation between word forms, especially important in organizing meanings of adjectives and adverbs. Hyponymy and its inverse, hypernymy, are transitive relations between synsets. Because, there is only one hypernym, the relation organizes meanings of nouns to hierarchical structure. Meronymy and its inverse, holonymy, are complex relations.

Ontologies

Ontologies have vibrating in many disciplines ranging from Semantic Web to Knowledge Management (KM) [START_REF] Fellbaum | Towards New Information Resources for Public Health--From Wordnet to MedicalWordNet[END_REF], [START_REF] Noy | Ontology Development 101 a Guide to Creating Your First Ontology[END_REF]. It also shares and enables to reuse domain knowledge among peoples in a discipline. It interweaves formal semantics understandable to a computer with real world semantics understandable to human [START_REF] Fellbaum | Towards New Information Resources for Public Health--From Wordnet to MedicalWordNet[END_REF]. They are also built for knowledge representation [START_REF] Noy | Ontology Development 101 a Guide to Creating Your First Ontology[END_REF]. For example, the IEEE Standard Upper Ontology working group defines ontology similar to dictionary with detailed structure that enables computer programs to process contents [START_REF] Huhns | Personal Ontologies[END_REF].

Thus, ontology consists of a set of concepts, axioms and relationships that describe a domain of interest [START_REF] Huhns | Personal Ontologies[END_REF]. Although there is a consensus of the need for ontologies, each of the following requirements raises its own set of problems. Firstly, although ontology is believed to be shared to a group of agents, in the real world it is extremely difficult to reach consensus in any domain. 

Knowledge Sources

Although unstructured knowledge sources are found to be rich in explicit, implicit and tacit knowledge and their distinctions, transforming them for applying NLP techniques are found to -28 -be difficult and challenging [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF]. In the context of texts and NLP, there are a number of implicit and explicit knowledge, which can be acquired using NLP methods and techniques that may, for example, find associations among terms [START_REF] Winograd | Understanding Natural Language[END_REF]. Knowledge in the text is either explicit or implicit where the implicit are implied or inferred from the explicit. Thus, the explicit or implicit knowledge is in the text but it is difficult to transform into usable formalism for knowledge engineers to deal with them using automatic means [104].

Traditional knowledge sources (e.g. domain experts) have limitations to cover the domain of interest, error-prone, small scale and inconsistent [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF], [START_REF] Winograd | Understanding Natural Language[END_REF]. Knowledge acquired from experts is intentional and inefficient for large scale information processing. The reason is that experts may perform automatically and the knowledge required may not be retrieved and come into mind. Or when experts are unable to provide actual knowledge, they may say nothing or else give reasonable textbook explanations. Another reason is the time where the acquisition process takes.

For example, interviews and dialogues take longer time, and even, subsequent transcriptions and analysis may take many hours or days to complete [ However, with the emergence of NLP and TM technologies, unintentionally presented NL texts, such as books, guidelines, policy and standard documents, are becoming tremendous sources of domain knowledge [START_REF] Maedche | Mining Ontologies from Text[END_REF], [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]. These knowledge sources provide richer domain knowledge than the traditional sources, but challenging to acquire the knowledge in them as they are unintentionally written natural language texts. In these sources, the explicit and implicit knowledge are represented naturally in the texts written for different purposes and contexts but not intended to knowledge acquisition systems. However, the sophistication of these sources has meant that researchers must turn to more expedient techniques, which promise a decrease in the amount of time spent and efforts consumed and less expensive on knowledge acquisition and an increase in the quality of knowledge acquired [START_REF] Maedche | Mining Ontologies from Text[END_REF], [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]. Although there is no one correct account of explicit storage, the use of languages provides personal-level reflections of explicit knowledge [110]. Since problems of accessing explicitly stored information may result failures to use information, it has to be accessed before its uses [START_REF] Hearst | Automatic Acquisition of Hyponyms from Large Text Corpora[END_REF], [110]. Thus, explicitly known information are either explicitly stored or implicitly represented. But, explicit storage, even within a human subject, is not sufficient for explicit knowledge. Information may be explicitly stored within a human subject but not available to the subject for verbal report, not accessible to the subject's consciousness and can't be conceptualized by the subject [111]. For example, tacit knowledge of rules involve explicit storage of this kind where an internal representation encodes rules in a structured format and a process of searching and accessing the representation is required before tacit knowledge of rule can contribute causally to any transitions between input and output representations [START_REF] Fodor | Psychosemantics: The Problem of Meaning in the Philosophy of Mind[END_REF], [113].

Knowledge Types

Generally, the emphasis is on explicit and implicit knowledge resides in textual knowledge sources, which are found very challenging to acquire them accurately with the current potential of NLP and IE technologies. For example, in a text "During sexual reproduction, a male sperm joins with a female egg. This is called fertilization", the antecedent of this can't be resolved because it is not clear that there is one. Anaphora resolution is dependent on a great deal of world knowledge, which can not be brought easily in the process of ontological knowledge acquisition.

However, explicit and implicit knowledge can be understood as domain knowledge, which can be disambiguated and interpreted from domain texts using advanced NLP techniques. This knowledge can, therefore, be easily structured and encoded into an ontological formalism.

Ontological Nature

The notion of explicitness has very precise meaning that ontological relationship between two terms is expressed with lexico-syntactic patterns of the type identified by Hearst [START_REF] Hearst | Automatic Acquisition of Hyponyms from Large Text Corpora[END_REF]. In this context, it might be found extremely rare for background knowledge to be explicitly expressed in any text [START_REF] Emmott | Narrative Comprehension a Discourse Perspective[END_REF], [123]. Particularly, it is true for scientific texts as they are attempts to change community accepted ontologies. However, this is not true for texts in textbooks, manuals or glossaries where by their nature don't assume domain specific background knowledge, but they assume general, possibly top-level ontologies. One can also find specifications of ontologies at the borders of a domain, where it might be in time or intellectual space [123]. Thus, one can expect when a concept or rather its corresponding lexicalization is first introduced, there may be statements defining or explicating the idea. When a concept is borrowed from one discipline into another, the term is likely to be defined [START_REF] Langer | Examining Background Knowledge and Text Comprehension[END_REF]. The important points to be considered here is that the foundation for efforts for automatically building ontologies from texts is the assumption that there are texts, which specify in a coherent manner the ontological relations one is interested in, and these textual specifications can be read and processed by a machine. However, a number of efforts at automating the ontology acquisition have encountered substantial difficulties due to data sparseness as well [START_REF] Langer | Examining Background Knowledge and Text Comprehension[END_REF], [125].
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No matter how large a corpus is, the major part of ontologies may not be specified because it is assumed to be part of the background knowledge that the reader brings to the text. This assumption is applied to ordinary texts without didactic intentions, such as textbooks or manuals

[123], [START_REF] Langer | Examining Background Knowledge and Text Comprehension[END_REF]. This is because; they probably have explicit definitions of terms and explanations if they are intentionally written to instruct [125]. The potential problems related to textbooks and manuals are: firstly, they tend to reflect knowledge at a particular point in time and fall behind the changes occurring in a field; Secondly, explicit knowledge is very sparse because the writers tend to assume sufficient if a definition is provided once; and finally, there are significant areas of endeavor where there are no textbooks [126], [START_REF] Knowlson | Universal Language Schemes in England and France 1600-1800[END_REF]. It is not possible to prove empirically data sparseness problem because one could always imagine a larger collection of texts in a specific domain, somewhere in the collection one might also find the missing text expressing knowledge one is seeking to identify. However, experience has shown that a certain number of textual contexts are required for ontological knowledge explicitly available. Finally, at a certain level, background knowledge is presupposed by specialized texts but it is important to keep in mind when designing ontology acquisition systems and understanding their failings [START_REF] Langer | Examining Background Knowledge and Text Comprehension[END_REF], [125].

With these understandings of knowledge presented in texts, there are a number of potential sources of ontological knowledge where all of which present certain challenges [START_REF] Rindflesch | The Interaction of Domain Knowledge and Linguistic Structure in Natural Language Processing: Interpreting Hypernymic Propositions in Biomedical Text[END_REF], [144].

Encyclopaedias are the ideal source of ontological knowledge that may include defining or explanatory texts. Google Glossary (GG) is also a source of ontological knowledge. It is a new experimental service in Google Labs, which provides definition texts for each term one enters.

Another significant ontological knowledge source is the Internet [START_REF] Rindflesch | The Interaction of Domain Knowledge and Linguistic Structure in Natural Language Processing: Interpreting Hypernymic Propositions in Biomedical Text[END_REF], [144].

Knowledge Acquisition Methods

Knowledge acquisition is a method for acquiring information and its structures from different knowledge sources, for example biomedical texts [START_REF] Winograd | Understanding Natural Language[END_REF]. There are different methods for knowledge acquisition from free texts, such as conventional methods, pattern-based methods, memory-based methods, knowledge-based methods and machine learning-based methods.

Conventional Methods

Domain experts are the core sources of knowledge and interviews are a natural way to access domain knowledge from these experts [START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF], [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF], [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF]. For example, TEIRESIAS [128], MOLE

[129], AQUINAS [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF] and Blythe and Ramachandran [START_REF] Blythe | Knowledge Acquisition Using an English-Based Method Editor[END_REF] are technology supported interviewbased knowledge acquisition systems. In these systems, the interview is integrated with knowledge-bases and prompts the expert to propose knowledge add-ons for remedy of erroneous answers [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF]. The strength of the method is that knowledge enter into the system with experts exclusive of human intermediary, minimizing the engineering effort, and the interview system can make use of existing knowledge-bases and knowledge of appropriate problem-solving methods to provide a context of its questions [START_REF] Ericsson | Protocol Analysis: Verbal Reports as Data[END_REF], [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF].

In these systems, a dialogue is produced through instantiating question patterns to internal names of domain concepts, which restricts the number of responses available to experts [START_REF] Boose | Expertise Transfer and Complex Problems: Using AQUINAS as A KA Workbench for KBS[END_REF], [START_REF] Blythe | Knowledge Acquisition Using an English-Based Method Editor[END_REF]. The method requires the basic structure of knowledge-bases and underlying problem-solving techniques so that any change to knowledge may readily contained [START_REF] Blythe | Knowledge Acquisition Using an English-Based Method Editor[END_REF]. To succeed with these methods, a set of criterion are required to be meet whose details can be found in [START_REF] Mcgraw | Knowledge Acquisition: Principles and Guidelines[END_REF]. The methods are also required the availability of experts in the construction period [START_REF] Mcgraw | Knowledge Acquisition: Principles and Guidelines[END_REF] 

Pattern-Based Methods

Assuming that language understanding involves identifying linguistics patterns, another method for knowledge acquisition is to match input texts against pre-determined notion of knowledge, a set of patterns [146]. In this method, patterns are at a coarser granularity and explicit incorporation assumes the nature of natural language texts, the representation, content of domain knowledge and the target knowledge to be acquired [START_REF] Reimer | Automatic Acquisition of Terminological Knowledge from Texts[END_REF]. For example, PETRARCA attempts to obtain knowledge of term descriptions from a corpus of texts [146], [START_REF] Reimer | Automatic Acquisition of Terminological Knowledge from Texts[END_REF]. Then, the system derives semantic interpretations of unidentified terms in the unstructured texts. For this, the system uses elements of general knowledge, syntax to semantics rules [135]. For instance, patterns that match words to concepts associating them are used to generate possible interpretations [START_REF] Reimer | Automatic Knowledge Acquisition from Texts: Learning Terminological Knowledge via Text Understanding and Inductive Generalization[END_REF].

The Wit system, for instance, acquires knowledge of concepts from texts using a parsing technique that recognizes a small number of syntactical phenomena [146], [START_REF] Reimer | Automatic Acquisition of Terminological Knowledge from Texts[END_REF]. Hull and Gomez [149] also presented a system for acquiring knowledge from bio-graphical entries in encyclopaedia. Entries are parsed and passed to a semantic interpreter, which instantiates verbal concepts with appropriate subjects and objects. Additional knowledge is provided as a set of verbs, which are interesting along with indication of verbal concepts and a general knowledge.

This enables to disambiguate phrases and complete instantiations [START_REF] Reimer | Automatic Knowledge Acquisition from Texts: Learning Terminological Knowledge via Text Understanding and Inductive Generalization[END_REF], [149].

Memory-Based Methods

A memory-based method is also another technique for knowledge acquisition [150]. According to Lebowitz [START_REF] Lebowitz | The Use of Memory in Text Processing[END_REF], memory-based method is used to acquire knowledge of concepts by integrating bottom-up processing of texts and top-down reuse of domain concepts stored in memory. Understanding a text, which describes a new concept, becomes recognizing which concepts in memory are similar to it and the way it differs from these. In this technique, the goal is to acquire conceptual descriptions of physical structures of disk drives [START_REF] Lebowitz | The Use of Memory in Text Processing[END_REF]. Systems are also developed frame-based models to express drives and their components along with a set of relations, which describe physical associations of components. Thus, texts are manipulated and labeled to identify memory pointers and terms, usually noun phrases and semantic indicators

[150], [START_REF] Lebowitz | The Use of Memory in Text Processing[END_REF].

Goel et al [START_REF] Lebowitz | Researcher: An Overview[END_REF] also stated a method for knowledge acquisition with more sophisticated notions of how devices could be stored in memory. The objective of the system is to acquire the structural-behavioral-functional models of devices. In this system, ontology of concepts is provided to describe models, together with existing memory of devices. Inputs to the system are descriptions of new devices [START_REF] Lebowitz | Researcher: An Overview[END_REF]. Texts are manipulated conceptually using domain knowledge to identify the potential cues of memory of models of devices, which are comparable to new device. The texts are also parsed and translated to a conceptual interpretation, where the interpretation is used to identify functional and structural differences between the new device and the devices whose model have been retrieved. The distinctions are, therefore, utilized to choose a suitable plan and enable retrieved models to be changed and describe the new devices that are indexed and stored in memories [START_REF] Lebowitz | The Use of Memory in Text Processing[END_REF], [START_REF] Lebowitz | Researcher: An Overview[END_REF].

Machine Learning Methods

Data-driven methods are recognizable in knowledge acquisition from natural language texts [START_REF] Goel | Unification of Language Understanding, Device Comprehension and Knowledge Acquisition[END_REF]. Pattern and memory based acquisition methods use data-driven methods in their knowledge acquisition processes. Machine learning is also a data-driven technique, which uses existing machine learning algorithms to acquire knowledge from free texts. Since learning algorithms are developed to capture and represent knowledge, machine-learning-based methods are attractive to be adapted. For example, a machine learning technique is used to learn nontaxonomic relationships among concepts [START_REF] Maedche | Discovering Conceptual Relations from Text[END_REF]. In the method, texts are tokenized and matched with a lexicon and then subjected to lexico-syntactic analysis. The resulting texts are analyzed to form pairs of concepts, which are linguistically linked in free texts.

The pair of concepts is subjected to associative learning algorithms, which aim to recognize cooccurring concepts. Furthermore, a technique of learning ontology of domain concepts is proposed by Faure and Nédellec [START_REF] Lebowitz | Generalization from Natural Language Text[END_REF]. In the technique, concepts are used to generalize subcategorization frame descriptions. More machine learning methods can also be found in literatures [START_REF] Faure | Knowledge Acquisition of Predicate Argument Structures from Technical Texts Using Machine Learning: The System ASIUM[END_REF]- [START_REF] Lapalut | How to Handle Multiple Expertises from Several Experts: A General Text Clustering Approach[END_REF]. Furthermore, there are interactive-based knowledge acquisition methods, which consider the interaction of systems with users or experts in the course of knowledge acquisition. More survey of such methods can be found in [START_REF] Szpakowicz | Semi-Automatic Acquisition of Conceptual Structure from Technical Texts[END_REF], [161], [162]. Integration is also another method for knowledge acquisition in which more surveys can be obtained in [START_REF] Lu | Towards Knowledge Acquisition from Texts[END_REF], [START_REF] Mikheev | A Workbench for Acquisition of Ontological Knowledge from Natural Text[END_REF], [165].
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Knowledge-Based Methods

Many knowledge acquisition methods use knowledge bases to suggest disambiguation and interpretation of knowledge items from textual sources [135], [136]. The use of knowledge base is suitable to integrate semantics to a system and present a link between natural language texts and semantics in knowledge bases. Several knowledge bases are available recently where their use as background knowledge has the potential of reducing resources needed to develop knowledge acquisition systems [START_REF] Sowa | Knowledge Representation[END_REF], [START_REF] Roget | Thesaurus of English Words and Phrases Classified and Arranged so as to Facilitate the Expression of Ideas and Assist in Literary Composition[END_REF], [START_REF] Huhns | Personal Ontologies[END_REF]. In this context, many knowledge-based methods have been introduced to acquire knowledge items from textual sources towards extending background knowledge or to create new ones [START_REF] Craven | Constructing Biological Knowledge Bases by Extracting Information from Text Sources[END_REF], Generally, knowledge acquisition methods can be classified into two, data-driven and conceptdriven. The above-stated methods, except knowledge-based one, are data-driven techniques.

They are used either frequencies or patterns to generate analytical models. Although these methods are well developed, their interpretations are resource-intensive, where the analysis results are empirical models, which don't have declarative nature. On the other hand, ontological theories are declarative in nature. In acquiring ontologies, data-driven methods are failed to accommodate, at least, the shared characteristics of ontologies. Knowledge-based methods are, however, interpretive or cognitive that are concept-driven and enables to interpret semantic knowledge reside in textual sources. In this research, therefore, a knowledge-based method is used to suggest each instance of textual scenarios in the knowledge-base.

Natural Language Processing

Recently, Natural Language processing (NLP) has gained an escalating complexity [169], [START_REF] Hearst | Automated Discovery of Wordnet Relations[END_REF]. The MENELAS system is a multilingual text understanding system built to extract information from patient discharge summaries [182]. The domain knowledge resides in ontologies, and linguistic relations are projected to the reference model using morpho-syntactic analysis. Thus, the output is an annotated parse tree, which is subject to a semantic analyzer that heuristically selects the best representation using semantic lexicon and rules. MENELAS is also evaluated for In addition to the above-mentioned NLP systems, there are also tools and techniques for semantic information acquisition from biomedical language texts. They enable to identify and extract entities such as individuals, concepts, roles and their attributes and values from the biomedical texts. For example, MetaMap and semRep are biomedical text processing tools developed by National Library of Medicine (NLM) [187], [START_REF] Aronson | Effective Mapping of Biomedical Texts to the UMLS Metathesaraus: The MetaMap Program[END_REF].

In MetaMap [START_REF] Aronson | An Overview of MetaMap: Historical Perspective and Recent Advances[END_REF], an input text undergoes lexico-syntactic analysis consisting of: tokenization, sentence boundary determination and acronym/abbreviation identification; part-of-speech tagging; lexical lookup of input words in the SPECIALIST lexicon; and a final syntactic analysis consisting of a shallow parse in which phrases and their lexical heads are identified by the SPECIALIST minimal commitment parser. Then, each phrase is analyzed first for variant generation, where variants of all phrase words are determined; this is followed by candidate identification, where matching of phrase texts are computed and evaluated as to how well they match the input texts; the third step is mapping construction, where candidates found in the previous step are combined and evaluated to produce a final result that best matches the phrase texts; and, optionally, word-sense disambiguation (WSD), where mappings involving concepts that are semantically consistent with surrounding text are favored.

SemRep is an NLP system designed to disambiguate semantic propositions from biomedical text using underspecified syntactic analysis and structured domain knowledge from the UMLS [187] The goal of IE is, however, to extract prominent facts about pre-specified types of events, entities or relationships and build more meaningful, rich representations of their semantic content [198]. There are also publicly available web services dealing with IE tasks. Calais3 aims at extracting named entities, relations and events in the domain of news articles. Several tag recommending plugins for web content management systems are based on Calais, for example Tagaroo4 .

IE
Another tag recommending service is provided by Zemanta5 , which can suggest annotations in the form of links to popular sites, such as Wikipedia or Amazon. In biomedical domain, the UMLS platform and associated tools, such as MetaMap6 and semRep 7 , enabled biomedical information extraction.

Representation Formalisms

Knowledge representation is a core technology in Artificial Intelligence (AI), where AI emphasizes on storing, manipulating and computation of information using computer programs to achieve human intelligence [START_REF] Minsky | A Framework for Representing Knowledge[END_REF]. Knowledge must be represented in machine understandable -42 -formalisms for these operations and automated reasoning services [START_REF] Minsky | A Framework for Representing Knowledge[END_REF]. Techniques of automated reasoning allow computer programs to infer new knowledge from existing representations. Thus, knowledge representations appear to be in different formalisms where the most prominent are semantic networks, frame networks, logics and ontologies [START_REF] Minsky | A Framework for Representing Knowledge[END_REF].

Semantic Networks

Semantic networks stem from existential graphs, which express logical sentences as graphical Subsumption is associated with the notion of inheritance in that a specialized concept inherits all the properties from its most general parent concepts.

In general, semantic networks distinguish between concepts, denoted by generic nodes, and individuals, denoted by individual nodes, and between subclass/supperClass edges and property edges. Using subclass/supperClass links, concepts are organized in a subsumption hierarchy.

Using property edges, properties are associated with concepts, to individuals belonging to concepts whose properties are associated with. The two kinds of edges interact with each other in such a way that a property is inherited along subclass/supperClass edges if not modified in a more specific class. However, concrete individuals and data values are not represented well in addition to negations, quantifiers and disjunctions.

The Frame Networks

A frame system has been introduced as alternative to semantic network formalism [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF], [START_REF] Bobrow | An Overview of KRL, a Knowledge Representation Language[END_REF].

Frame systems use data structures to represent knowledge concerning situations and objects, which include defaults and multiple perspectives. Thus, a frame system is a structured representation of semantic networks where concepts and attributes are described as frames. The aim of a frame system is to collect relevant knowledge about a situation in one object instead of distributing across different axioms [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF], [224]. That is, a situation is represented in a frame where it contains slots to represent properties of the situation. Therefore, frames provide a structured representation of objects or class of objects [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF]. But, frame systems have also limitations similar to semantic networks, which include vague and ambiguous representation, logical inadequacies, unable to represent negations, disjunctions and quantifications.

For example, one frame may represent an automobile and another frame a class of automobile. In a frame language, constructs and primitives are available for organizing frames that represent classes into taxonomies. The constructs allow a knowledge base designer to describe each class as a specialization of generic classes. For instance, an automobile is described as vehicles plus a set of properties that distinguish automobiles from other vehicles. Reasoning in frames comes in two shapes: the first is using a partial matching, more specific frames are embedded into more general ones, thus giving meaning to a new situation or classifying an object as a kindOf relationship; the second is searching for slot fillers to collect more information concerning a specific situation. Varieties of expert systems are based on a frame-based formalism and are further enhanced with rules, triggers and daemons [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF], [224].

The advantage of frame-based languages, over semantic networks, is that they capture knowledge in a way experts think. This provides a structural representation of useful relations, support a concise definition by specialization technique, and this is easy to use [77], [START_REF] Minsky | A Framework for Representing Knowledge[END_REF], [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF] [223], [224]. A special purpose deductive algorithm can be developed, which exploits the structural characteristics of frames to rapidly perform a set of inferences required in knowledgeintensive applications. In this context, frame languages are powerful as the taxonomic associations enable shared descriptive information among multiple frames through inheritance and the internal structure of frames enable to maintain semantic integrity constraints automatically [225], [226]. One of the basic tenets of knowledge system technologies is that domain knowledge can effectively be utilized by a system and easily understood by its users if it is represented in declarative rather than procedural formalism. Frame systems, therefore, provide direct facilities to declaratively describe how the knowledge stored in frames is used [226].

Logic Formalism

Knowledge representations with semantic networks and frame nets are vague, ambiguous and has logical inadequacies which are problematic for computational and inferencing services. They also don't support quantifications, negations and disjunctions in their representation. In the conceptual fragment CAUSES (Bacteria, Infection), for example, it is not clear whether every bacteria causes infection or some of them. Thus, semantic graphs and frame nets are evolved to logic-based formalisms for expressivity, unambiguous interpretations and computational efficiency [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF], [225].

First Order Predicate Logic (FOPL) enables to describe a domain of interest as a set of objects and construct formulas around these objects formed by predicates, functions, variables and logical connectives [START_REF] Bobrow | An Overview of KRL, a Knowledge Representation Language[END_REF]. Natural language statements are expressed using logical sentences of objects of a domain of interest with appropriate choice of predicate's and function's symbols. In formulas, concepts and relations are mapped to unary and binary predicates respectively. OWL comes with different flavors with a compromise between expressivity and tractability.

Usually, ontology developers take into considerations which sublanguage best suits their needs.

For example, the choice between OWL Lite and OWL DL depends on the extent to which users require more expressive constructs. The choice between OWL DL and OWL Full is mainly depends on the extent to which users require the meta-modeling facilities of RDF schema, such as defining classes of classes or attaching properties to classes. and their structuring and representation is based on computationally tractable language formalisms, the DL based formalism is always recommended [228]. In this research, ontologies are, therefore, chosen as formalisms to represent biomedical knowledge. We used the decedent of DL formalism, the OWL DL language primitives and constructs for explicit interpretation of the ontological axioms and assertions.

Ontology Acquisition Evaluation

According to Gruber [START_REF] Gruber | A Translation Approach to Portable Ontology Specifications[END_REF], ontology is defined as explicit and formal specification of a shared conceptualization, where the conceptualization refers to an abstraction of a domain of interest.

Domain abstraction has been increasingly used in information access, data integration and the biggest of which is in the semantic web applications. The apparent increase of using ontologies has lead to an increase in the existence of ontologies, which have heightened the need for evaluating ontologies [START_REF] Gómez-Pérez | Ontology Evaluation[END_REF], [START_REF] Sure | Why Evaluate Ontology Technologies? Because It Works![END_REF]. Thus, ontology evaluation has become an emerging field, which introduced a number of frameworks and methodologies [240]. The importance of evaluating ontologies is also evident with roles they play in the semantic web and ontologyenabled applications [START_REF] Sure | Why Evaluate Ontology Technologies? Because It Works![END_REF] Gómez-Pérez et al [START_REF] Gómez-Pérez | Ontology Evaluation[END_REF], which later echoed by Vrandecic et al [START_REF] Vrandecic | The Diligent Knowledge Processes[END_REF]. Accordingly, ontology evaluation is defined with two interesting contexts, verification and validation, in which they also offer a way to categorize current ontology evaluation endeavors. Another definition of ontology evaluation is introduced by Brank et al [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF] as a layer-based approach. Ontology is a complex structure and it could be better to evaluate each layer separately than targeting the entire ontology at once. The last definition is related to either comparison against gold standard, uses in applications, judged by human experts or using domain corpus [238], [239]. The first and third approaches may be used at one or more layers of the second approach as required and their optimality [START_REF] Spyns | EvaLexon: Assessing Triples Mined from Texts[END_REF] - [246].

In evaluating ontology learning frameworks, semiotic-based dimensions, such as structural, functional and usability, are assessed [START_REF] Gangemi | A Theoretical Framework for Ontology Evaluation and Validation[END_REF], [246]. The structural dimension assesses the graphical structure and formal semantics of ontologies. The functional dimension assesses the intended use of ontologies and their components, the ontology's functions in a context. Usability assesses the level of ontology annotations, its usability, and addresses the communication aspects of ontologies. The three dimensions are analogous to semiotic assessments in linguistics, which embraces syntax, semantics and pragmatics [START_REF] Gangemi | A Theoretical Framework for Ontology Evaluation and Validation[END_REF], [246]. Thus, to assess ontology learning using its semiotic dimensions, the semiotic characteristics are identified and analyzed. The functional and usability dimensions are resource intensive and costly as they require domain expert and ontology engineer involvement. They also require longer time for evaluations and even in some cases they may not be practical and easy. For good understanding of ontology evaluation, we -49 -introduced different ontology evaluation methods, focusing on the evaluation of structural dimensions using criteria-based methods. was also undertaken a relevant application-based evaluation methodology. In the methodology, the scenario is to identify the correct speech recognition hypotheses in dialogue systems, where correct hypotheses were identified by hand and act as a gold standard. The system is about ranking of speech recognition hypotheses where the rank of each hypothesis is determined by a coherence score derived using ontologies [267], [START_REF] Wahlster | Smartkom: Symetric Multimodality in an Adaptive and Reusable Dialog Shell[END_REF].

Generally, the task is a speech recognition problem, where evaluation of the task output is interpretations of sentences as compared with a gold standard. Although use-based evaluation methods are elegant for evaluating the effectiveness and efficiency of ontologies through their uses, they have also several limitations: ontology is good or bad when used in a particular context for a particular task, thus, generalization is very difficult with this observation only; the ontology may be a small component of the application and its effect on the outcome may be relatively small and indirect; comparison among different ontologies is possible if they can all be plugged into the same application scenario; the method is very expensive in the sense that it requires specifically tailored or generic ontologies fitting to each application scenarios. In this technique, ontologies are penalized for terms present in the corpus but not in them, and terms absent in the corpus but present in the ontologies. Another view of this technique is to use a vector representation of the terms in the corpus and ontologies and compute the semantic distance between the two [267], [270]. Brewster et al [START_REF] Wahlster | Smartkom: Symetric Multimodality in an Adaptive and Reusable Dialog Shell[END_REF] used a set of domain-specific terms extracted from a corpus of documents, for example using latent semantic analysis to compute the amount of term overlaps between the domain knowledge and ontologies, for example names of concepts and relations. These set of overlapped terms enabled to measure the fit between ontologies and the corpus. Furthermore, precision and recall measures are used to have insights about the proportion of the overlap. For more wide-ranging and complicated ontologies, which integrate lots of factual information, such as Cyc ontology, text collections are used as a source of facts in the external world.

In this context, the evaluation measure is a proportion of these facts, which are derivable from information in the ontologies. Thus, the approach proposed the idea of developing congruence based measurement between a corpus and a specific domain knowledge, which are used to evaluate ontology learning. The method has limitations, for example evaluating the suitability of organizational structures of ontologies is difficult because basically there are always a large number of different ways to structure the understanding of a domain. In the contexts of datadriven methods, the only thing which can be determined is a range of possible ways of organizing vocabularies, terms or concepts. Another limitation may be data sparsity and mismatch between the domain corpus and the ontologies, which directly affect the amount of overlapped terms between ontologies and the domain knowledge. Furthermore, the domain corpus requires annotations, which are very expensive and time-consuming.

Gold Standard-Based Evaluation

The gold standard-based evaluation of ontology learning measures the semantic distance between learned ontologies and priori developed benchmark ontologies. The learning system is better when the learned ontologies scored highest similarity with the benchmark. In this context, a number of gold standards were developed and a number of techniques to measure the extent to which the learned ontologies corresponds to the gold standard are also developed [271]. For example, Maedche and Staab [START_REF] Maedche | Ontology Learning[END_REF] proposed a method for comparing ontologies at two layers.

In the lexical layer, lexical labels are compared using Levenshtein edit distance and derived an averaged string match. The second is the conceptual layer where the notion of semantic cotopy is used as a means to express the semantics of a concept. Semantic cotopy is a set of super-and sub-concepts and is used to calculate the taxonomic overlap between two ontologies. They also defined a relation overlap measure where a relation is defined lexically and conceptually as a pair ) , ( the focus of specific evaluation efforts, for example to measure inheritance or inferencing capabilities of ontologies. In this context, the measures may be errors related to circulatory definitions, redundancies and wrong partitioning. Evaluation at other semantic relations also focuses on non-hierarchical structures, which refers non-taxonomic structures. These structures may also be the focus of evaluation efforts, which measures connectivity densities of ontology learning systems.

Evaluation at a context focuses to measure the usability of ontologies at a particular application or use contexts. In this context, ontology may be seen as part of a larger collection of ontologies, which either reference or being referenced by other ontologies [START_REF] Supekar | A Peer-Review Approach for Ontology Evaluation[END_REF], [START_REF] G´omez-P´erez | Towards a Framework to Verify Knowledge Sharing Technology[END_REF], [281]. Another form of context is the application where ontologies are being used. Thus, it may be practical to evaluate ontologies within the context of an application and observe how the results are affected -54 -in using the ontologies. It may also be focused on evaluation from a particular point of view of individual user or organization such as company, which may use the ontologies [START_REF] Palermo | The Ontology of Economic Power in Capitalism: Mainstream Economics and Marx[END_REF], [283].

Evaluation at the Syntactic Layer may have a particular interest for ontologies developed manually. The constructed ontologies are described with formal language and must match the syntactic requirements of that language. The presence of natural language documentations and avoiding loops between definitions may also be considered at the syntactic layer [START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF].

Evaluation at the structure, architecture, design layer focuses on higher-level design decisions that are used during the development of ontologies, which is primarily of interest for manually constructed ontologies. Assuming that a kind of design principles has been agreed upon prior to constructing ontologies, evaluation means checking to what extent the resulting ontology matches those criteria. Structural concerns involve the organization of ontologies and their suitability for further development, such as addition of new concepts, modification of old ones [START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF], [281]. For some applications, it is also important that the formal definitions and statements of ontologies are accompanied by appropriate natural language documentation, which must be meaningful, coherent, up-to-date and consistent with the formal definitions and sufficiently detailed. Evaluation of these qualities must usually be done largely or even entirely manually by experts and domain engineers.

In general, at each layer of ontology acquisition, one or combination of the above-mentioned evaluation techniques can be used depending on the suitability of the methods. Thus, the layerbased evaluation is easily integrable with any evaluation methods at a particular layer of ontology learning. Moreover, evaluating the structural dimension of ontologies requires lesser resources and cheaper than other methods. The structural dimension evaluation is also easier to be measured automatically based on a set of criterion describing the ontology graph properties and behaviors.

Structure-Based Evaluation

Ontology evaluation can be pursued based on principles of its construction [START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF], [START_REF] Gómez-Pérez | Ontology Evaluation[END_REF]. This is considered as a formative evaluation since the emphasis is on continuous evaluation throughout the ontology development life-cycle where a number of criteria are used as assessments [241]

[323], [324]. For example, consistency is one criterion, which determines whether inconsistent conclusions are derivable from ontologies or not. It may arise within the definition of concepts or individuals, for instance formal and informal definitions may not coincide. Inconsistencies may also arise from errors in the taxonomy, such as circularity errors and subclass partitions with common classes [START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF], [START_REF] Gómez-Pérez | Ontology Evaluation[END_REF]. Another criterion is completeness, which determines whether all knowledge in ontologies is explicitly stated or inferred. But, Gómez-Pérez investigated that completeness can not be proven but incompleteness can be [START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF], [START_REF] Gómez-Pérez | Ontology Evaluation[END_REF]. Conciseness is also a 

Criteria-Based Evaluation

Criteria-based evaluation is a technique of evaluating ontologies focusing on measuring correctness and quality of ontology acquisition system's structural dimension [START_REF] Guarino | Toward a Formal Evaluation of Ontology Quality[END_REF]. For example, criteria-based hierarchical evaluation is comprised of four evaluation-layers where a set of criterion is defined for each layer. At first layer, the ontology acquisition system and its artefacts are measured. At the second layer, the correctness or quality or both of the ontology acquisition system is measured. At the third layer, each criterion is measured and lastly, metrics of each criterion are measured. Thus, the criteria-based evaluation considers multiple dimensions of a knowledge acquisition system and its artefacts. The dimensions are measures used to assess a set of metrics for each criterion. Each of the dimensions, therefore, expresses at least one aspect of a knowledge acquisition system and then its artefact, the ontological knowledge [323]

[324].

In this research, multiple criteria are used to measure different perspectives of the structural dimensions of the proposed framework [START_REF] Guarino | Toward a Formal Evaluation of Ontology Quality[END_REF], [323], [324]. The adoption of criteria-based methods is due to resource-intensiveness of other methods and their requirement to involve large number of experts for annotation and subjective evaluation. Plus, it is easily automatable or objectively measureable than others. Criteria and metrics selections are not exhaustive but to demonstrate correctness and quality of the knowledge acquisition framework at lesser resource utilization, computational efficiency and complexity. In this context, each criterion measures an aspect of the structural dimension, which characterizes the ontology acquisition framework.

Thus, measuring each criterion based on their metrics evaluates either quality or correctness of the proposed framework. Generally, the following criteria and their metrics are chosen to evaluate either correctness or quality of the proposed framework [START_REF] Guarino | Toward a Formal Evaluation of Ontology Quality[END_REF] 

Related Works

Manual acquisition of domain ontologies requires much time, resource-intensive, incomplete and inaccurate, error-prone, biased towards their developers, inflexible and specific to the purpose that motivated their development [START_REF] Staab | Ontology Learning[END_REF], [START_REF] Maedche | Mining Ontologies from Text[END_REF]. Consequently, in order to minimize the expenditure of ontology learning practices, ontology acquisition environments, systems and techniques have been developed [START_REF] Maedche | Ontology Learning[END_REF] [START_REF] Bisson | Designing Clustering Methods for Ontology Building -The Mo'K Workbench[END_REF]. For example, the ASIUM system acquires taxonomic relations and subcategorisation frames of verbs using syntactic inputs. It clusters noun phrases -58 -based on syntactically related verbs [START_REF] Gómez-Pérez | Evaluation of Taxonomic Knowledge in Ontologies and Knowledge Bases[END_REF]. The ASIUM system extends its lexicon, set of domain concepts and concept hierarchies using cooperative machine learning techniques [START_REF] Gómez-Pérez | Evaluation of Taxonomic Knowledge in Ontologies and Knowledge Bases[END_REF]. OntoLT is also another ontology learning framework, which makes linguistics analysis at protégé interface [303]. OntoLearn is another framework, which focuses on word sense disambiguation.

The framework proposed an algorithm based on the structure of general ontologies. The algorithm contains an explanation component, which generates domain relevant concept definitions [265]. An example of ontology learning environment is the work of Mo'K, which enables to build concept hierarchies from text collections using unsupervised machine learning technique [START_REF] Bisson | Designing Clustering Methods for Ontology Building -The Mo'K Workbench[END_REF]. The environment emphasizes on mass clustering techniques and supports ontology engineers to practice with different constraints of ontology learning [START_REF] Bisson | Designing Clustering Methods for Ontology Building -The Mo'K Workbench[END_REF].

All of these systems hardly support user modeling and non-taxonomic relations extraction. They are also used TFIDF to determine domain relevance, which is inappropriate to discriminate domain concepts, even for large collections and big document size. Particularly, TFIDF may provide erroneous results in the case of polysemous terms. That is, the term may have highest frequency for other domains than the domain of interest. Furthermore, these systems require expert and knowledge engineer involvement at larger extent. Thus, the development of accurate and large scale ontologies in a reasonable time and resources are hardly expected [START_REF] Bisson | Designing Clustering Methods for Ontology Building -The Mo'K Workbench[END_REF].

Although many frameworks and methods have been developed to support ontology learning, the involvement of domain experts and ontology engineers are not significantly reduced.

Furthermore, the issue of scalability, rigorousity, shared semantics and independency hasn't been raised in the previous works [300], [302], [START_REF] Jiang | CRCTOL: A Semantic-Based Domain Ontology Learning System[END_REF]. These have remained ontology learning resource-intensive and time consuming yet.

Ontology Acquisition Methods and Limitations

As mentioned previously, manual development of ontologies are expensive, tedious, error-prone, biased towards their developers, inflexible and time consuming [START_REF] Riloff | Automatically Constructing a Dictionary for Information Extraction Tasks[END_REF]. To enhance these limitations, (semi-) automatic techniques are investigated to learn ontologies from domain texts.

Automation of ontology learning not only minimizes expenditures, but also enables to build ontologies that better suite for applications [START_REF] Pugeault | Knowledge Extraction from Texts: Method for Extracting Predicate-Argument Structures from Texts[END_REF]. Consequently, several frameworks and systems have been proposed to develop ontologies, which can be viewed in two perspectives [194] [299]. In the semantic-driven techniques, lexico-syntactic analysis is used to chunk valid linguistics units. Thus, the use of NLP is common to data-driven and semantic-driven ontology learning methods and techniques.

Data-Driven Methods

The data processing community provides large number of sound techniques for data-driven learning, which are quite opposed to the idea of learning ontologies that are logical theories and declarative by nature [START_REF] Mitchell | Machine Learning[END_REF]. It is concerned with analytical models that explain data. In one of data-driven approach, supervised learning, these models serve for classifying training examples, where as in unsupervised learning, they discover patterns in the data, referred as clusters [START_REF] Jain | Algorithms for Clustering Data[END_REF], [START_REF] Agrawal | Mining Association Rules between Sets of Items in Large Databases[END_REF]. These techniques are used for ontology learning, for example Maedche and Staab [START_REF] Maedche | Discovering Conceptual Relations from Text[END_REF] used association rules to discover relations between concepts and Cimiano et al [START_REF] Cimiano | Learning Concept Hierarchies from Text Corpora Using Formal Concept Analysis[END_REF] used clustering techniques to group and hierarchically arrange words. However, these models are generally not declarative in the sense of logical theories.

Although theories learned from data through Inductive Logic Programming (ILP) differ crucially from ontologies, there are methods and techniques that attempt to learn logical theories from data [START_REF] Lavrac | Inductive Logic Programming: Techniques and Applications[END_REF]. But logical theories derived inductively from data is not clear how far they can express a shared conceptualization. This is because; ontological theories reflect a shared understanding of a domain of interest, which represent a commitment to a specific domain conceptualization.

Furthermore, the large volume of data generated analytically requires knowledge engineers and experts for its interpretation, which is highly expensive and resource-intensive. Generally, the future machine learning methods require a systematic analyzes of inductively derived models, classifications and associations to support ontology engineers to formulate their conceptualization in the form of ontological theories. This assumes that ontology learning is an interactive and cooperative process between ontology engineers and a system [START_REF] Staab | Ontology Learning[END_REF]. In this context, involvement of domain experts and ontology engineers can be supported with datadriven methods and techniques but still they have significant roles in the ontology learning process.

Semantic-Driven Methods

Information processing has brought shifts from data processing towards concept processing to address demand shifts from data-driven to semantic-driven applications [START_REF] Gangemi | A Theoretical Framework for Ontology Evaluation and Validation[END_REF]. It means that the basic unit of information processing is becoming less and less atomic pieces of data and is becoming more and more semantic entities, which easy interpretations and exists in contexts.

This changes information processing from syntactic computing to semantic computing paradigm [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF]. The semantic-driven processing emerged from artificial intelligence attempts to model cognition, which is interpretive-based information processing as compared to analytical models [START_REF] Brank | A Survey of Ontology Evaluation Techniques[END_REF]. Semantic-driven methods depend on the availability of semantically-rich background knowledge, which suggests situation-specific scenario interpretation in the free texts. We -62 -

Comparisons

A comparison is made between data-driven and knowledge-based methods for domain ontology learning based on identified parameters. The parameters are scalability, rigor, consensus reaching, domain binding, domain adaptive and support ontological theories. Table 3.1 illustrates the parameters supported by the methods. In the table, tick-mark () illustrates the method supports the parameter and the cross (x) shows that the parameter is less supported by the method.

Table 2.1 -Parameters for Comparison

The data-driven methods are less rigorous in relation to scalability and integrity of ontology learning. This is due to the need to involve ontology engineers and experts in the acquisition process. For example, the TextToOnto framework [300] can extract about 5,000 terms and thus hardly possible to structure these concepts using ontology engineers. Data-driven methods also use TFIDF techniques to determine terms' domain relevance, which is less efficient for discriminating terms with multiple meanings, particularly across domains [300], [302]. Although data-driven methods are highly domain adaptive, it doesn't support consensus reaching and ontological theories. In contrast, knowledge-based methods support all parameters illustrated in the table. Consequently, with all these reasons, we adapted a knowledge-based method in the proposed ontology acquisition framework from biomedical texts.

Ontology Acquisition Frameworks and Limitations

Ontology engineering has emerged as a science and thus, ontology learning tools, methods and techniques have become necessary to easy the difficulties to model knowledge relevant to a domain of interest [START_REF] Vrandecic | The Diligent Knowledge Processes[END_REF], [START_REF] Fernandez | METHONTOLOGY: From Ontological Art Towards Ontological Engineering[END_REF]. The frameworks may also have generality and adaptability but the issue of senses disambiguation, explicit interpretation and scalability are highly ignored. They haven't used sense disambiguation techniques. But, CRCTOL [START_REF] Jiang | CRCTOL: A Semantic-Based Domain Ontology Learning System[END_REF] used variant of LESK algorithm, which uses window based context overlap. Lesk's approach is very sensitive to the exact wording of definitions, so the absence of certain word can radically change the results. The algorithm determines overlaps only among glosses of senses being considered. This is a limitation in that dictionary glosses tend to be fairly short and do not provide sufficient vocabulary to relate finegrained sense distinctions.

The frameworks are also designed for small scale, in less than five thousand concepts and their associations, as the learning requires expert and engineer involvement [300], [302], [303], [START_REF] Jiang | CRCTOL: A Semantic-Based Domain Ontology Learning System[END_REF].

Furthermore, the frameworks used data-driven methods, particular machine learning techniques, which are mainly based on weighting schemes, frequency counts and term collocations. On the other hand, ontological theories are highly interpretive and declarative. Thus, reaching consensus is almost unachievable in data-driven approach. TextToOnto [300], Text2Onto [302] and CRCTOL [START_REF] Jiang | CRCTOL: A Semantic-Based Domain Ontology Learning System[END_REF] than five thousand concepts and their associations. The ontology developed using this set of artefacts is very small scale and insufficient for practical application usage. Each framework is also specialized only in one component of a framework. Thus, there is a lack of integrated ontology learning, which, in turn, consequences lack of rigorous acquisition. While the ontology learning frameworks are domain adaptable, consensus reaching is very challenging and never achieved yet.

Ontology structuring and interpretation are also manual supported with ontology engineering tools. It is resource intensive in terms of time, effort and cost. Domain relevance is determined using TFIDF and DFIDF techniques. These techniques have their own weakness even if the document collection is large and each document size is long. Using WordNet for ontology structuring and lexical interpretation may make the resulting ontology more general rather than specific to a given domain. Wordnet is a generic lexical knowledge structure, which has no clear taxonomic hierarchies. Plus, it is comprised of very limited domain specific structures and lexical information. These necessitated highly scaled, integrated, rigor and consensus reached framework with rich semantics knowledge for better ontology learning and engineering. In table 3.2, the cross (x) illustrates the absences of supporting the ontology dimensions or characteristics by the frameworks.

In conclusion, it is understood that knowledge acquisition is still facing a big challenge to model ontologies relevant to a domain due to the knowledge acquisition bottlenecks. This requires the development of generic, rigorous and independent ontology acquisition frameworks, which minimize the involvement of ontology engineers and domain experts. To contribute towards alleviating these problems and narrow down ontology acquisition bottlenecks, we proposed to design and develop a rigorous, scalable and independent ontology learning framework from biomedical texts. In addition to rigorousity and scalability, the proposed framework minimizes the involvements of ontology engineers and domain experts towards automating ontology acquisition, and thus, reduces time, effort and cost incurred in conventional ontology learning frameworks. 

Preprocessing

Human knowledge about a biomedical domain world, w D , the knowledge of people about the biomedical domain, is described with medical language texts. This knowledge is expressed in a way that human can comprehend and understand it. In the expression of medical language syntax and semantics, biomedical artefacts are expressed either explicitly or implicitly. This knowledge is crucial for knowledge-enable applications and services, and thus, must be expressed in a way that automated systems able to understand it. Thus, for accurate and quality disambiguation and interpretation of the biomedical artefacts, alphabets (e.g. diacritic marks), numerals, punctuations and span of texts, are not necessary and meaningless for knowledge-aware systems. Furthermore, interpreting these terms are very difficult and complex for the state of the art techniques. Thus, to prepare the biomedical knowledge source for accurate, quality and computationally efficient acquisition and representation of the knowledge artefacts, the biomedical texts must be cleaned from these texts. In addition, most knowledge sources might have meta-information that describe them as a whole and other visual and tabular effects in them (e.g. figures, tables and graphs) to clarify its contents. As the focus of the knowledge acquisition and representation systems is on the content of the sources rather than meta-knowledge, the meta-information is also eliminated and cleaned. Biomedical knowledge source format: to ease document analogue, every biomedical knowledge sources are converted to one and common standard format. Originally, every biomedical knowledge sources may have its own format, such as pdf, .doc and xls, which are required to be converted into XML format. For its persistency and standard representation, XML based format is used as a common representation format. Thus, every knowledge source, for instance a textual document ( i d ), are converted to XML format. It means that the whole text is tagged with XML and stored with XML extension.

Unstructured biomedical knowledge

Meta-information: is additional information about biomedical knowledge sources. For example, information related to size, location, format, type, category, belongingness and authors of the knowledge source, is meta-information and talks about the knowledge source or document. This information is not describing domain knowledge facts, and thus, they are not mentioning domain artefacts or entities and their interactions. Consequently, they are cleaned from the knowledge source collection.

Titles and sub-Titles: they are title texts of each knowledge source, textual document, and texts in sub-titles. These texts are kept delimiting with full stops followed by a space and a capital letter. Similarly, in abstracts and summary texts, titles are dropped and the texts are kept merging with the body of the documents.

Visual information: most knowledge sources are elaborated using diagrams, graphs, figures and charts. However, these don't express domain artefacts to be abstracted with knowledge acquisition frameworks. However, captions may provide important domain artefacts. Thus, all visual information such as figures, graphs and diagrams are removed except their captions.

Tabular Information: biomedical knowledge sources may be elaborated using tabular information, such as numerals, using tables and other columnar presentations. Though this information describes domain artefacts, their acquisition is very problematic. In this research, therefore, tabular information is supposed to be eliminated from each biomedical knowledge sources.

Acronyms or Abbreviations: all acronyms or abbreviations, except standard and Author defined ones, are changed into their long form. If the symbols in the acronyms are separated using full stop or space, the full stop or space is eliminated and the symbols are capitalized.

Punctuations: all punctuations, except comma, colon, semi-colon and full stop, are eliminated in each knowledge sources. Exclamation marks, question marks and full stops that are considered at the end of a sentence are replaced with full stop followed by a space and a capital letter. Where as, exclamation marks, question marks and full stops that are assumed to appear in other locations (if any) are eliminated.

Numbers and Amounts: these are quantities or measurement values in the knowledge sources.

Numbers and amounts are eliminated during knowledge acquisition if they are not referring to amounts, such as volumes and distances, however, proportions such as percentages and fractions are replaced with the corresponding textual representations.

Generally, preprocessing knowledge sources is contextual, which can be preprocessed depending on the contexts of the next process to be applied on the knowledge sources. In this research, the objective is to remove potentially all natural language expressions that have no equivalent scenario specific semantic representations in the background knowledge. In this context, the above-mentioned expressions are eliminated even if perfectly accurate preprocessing is an ideal task.

Biomedical Text Collection (BTC): after preprocessing of the biomedical knowledge source collected from the different source repositories, bioMed text collection is built as a set of cleaned textual biomedical knowledge source. Every sentence is delimited with a full stop and a space followed by a capital letter. Thus, the bioMed text collection, bioMed, is formulated as a set of sentences ( i s ) filtered out after cleaning the original knowledge source collection. } ,..., , {

2 1 n s s s bioMed  (3.3)
Where, n is the number of sentences in the bioMed text collection.
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Semantic Disambiguation

Meaning disambiguation and interpretation are modeled as situation-specific scenario representations of domain texts, where elements of the representation denote concepts and their associations. In this context, the extent of understanding meaning is reflected by the ability and quality of responding questions about scenarios the text describes. For example, in a text:

(1) The reason behind this study was to compare the efficacy and safety of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in children with oligoarticular juvenile idiopathic arthritis.

Situation-specific scenario representation presents that the disorder described in the text is juvenile idiopathic arthritis or that there are two drugs, triamcinolone hexacetonide and triamcinolone acetonide. Moreover, it presents that disorder is childhood arthritis; oligoarticular juvenile idiopathic arthritis is a disease; intra articular triamcinolone hexacetonide and triamcinolone acetonide are drugs. Thus, semantic analysis demonstrates how detail is situation-specific scenario representations of a text-fragment, which is the potential capability of a semantic processor to understand it.

However, most scenario representations are required to come from strong prior expectations about the way the domain might be and meaning processing involves matching, combining and instantiating these prior expectations with knowledge stated in the text fragments. For example, in text (1) above, surface (phrasal) analysis addresses the identification of intra articular triamcinolone hexacetonide and oligoarticular juvenile idiopathic arthritis, isolating the relevant strings. But, these phrases alone do not show that the first is a drug and the second is a disease.

Moreover, it does not provide the information that childhood arthritis is another name for disorder.

Semantic processing is leveraged to enhance phrase analysis and incorporate semantic information with situation-specific scenario representations of biomedical texts. For example, phrases in text (1) can be mapped to concepts in the prior expectation (background knowledge), intra articular triamcinolone hexacetonide mapped to Triamcinolone Hexacetonide, and oligoarticular juvenile idiopathic arthritis mapped to Chronic Childhood Arthritis. From the information in the background knowledge, therefore, it is possible to determine that Triamcinolone Hexacetonide is a drug and Chronic Childhood Arthritis is a disease. Thus, disambiguation of -76 -biomedical concepts provides enriched meaning representation of textual scenarios. Additional level of processing, however, combines these concepts into their associations that explicitly represent their interactions. Associations of concepts are referred as semantic predications or semantic propositions and they are made up of arguments and syntactic indicators. For example, disambiguation of a text in (1) enables to predict a semantic proposition, triamcinolone hexacetonide TREATS chronic childhood arthritis.

In general, semantic disambiguation relies on the recognition of domain artefacts (concepts, roles and individuals) and prediction of their associations (semantic predicates) asserted among these entities in the knowledge source. To achieve this, the semantic disambiguator analyzes each biomedical sentence at two levels: lexico-syntactic and semantics. Lexico-syntactic analysis enables to chunk argument and relational phrases within each sentence of the biomedical text.

The analysis generates a set of argument and relational phrases in addition to a set of associations between the argument and relational phrases. See section 4.2.1 below for detailed discussions of phrase segmentation and syntactic associations. Semantic analysis is performed at two stages:

phrase disambiguation and proposition disambiguation. Phrase disambiguation maps argument and relational phrases to domain entities (concepts and individuals) and their associations, where as proposition disambiguation predicts semantic associations between concepts and their semantic relationships. That is, proposition disambiguation predicts semantic associations corresponding to syntactic associations. 

Phrase Segmentation

Phrase segmentation analyzes the lexico-syntactic aspects of biomedical texts, focusing on syntactic disambiguation of biomedical sentences. This is referred as surface semantics analysis as it disambiguates the surface meanings of text fragments. An example of surface semantic analysis is the generation of knowledge fragments in (2) from a textual sentence in (1).

(2) [("", "Study", "efficacy and safety"), ("Intra-articular triamcinolone hexacetonide", "in", "children with disorder"), ("Triamcinolone acetonide", "in", "children with disorder"), ("children", "with", "oligoarticular juvenile idiopathic arthritis"), ("childhood arthritis" "synonymous", -78 -"disorder"),("intra articular triamcinolone hexacetonide", "is", "drug"), ("oligoarticular juvenile idiopathic arthritis", "is"," disease")]

Generally, surface semantic analysis presents each text fragment based on the following syntactic formulations: Thus, each biomedical sentence is analyzed and its syntactic knowledge fragments are disambiguated and chunked in the parse tree. Syntactic disambiguation is performed by looking for subject-semanticCues-object patterns rooted at the main verb or in a relative clause or in a preposition in the parse tree. For example, given the textual sentence in (1), one can have the knowledge fragments in (2). In order to parse each sentence, lexical entries including multiword forms (e.g. Doppler Echocardiography in (3)) is assigned a part-of-speech label and lexical ambiguities are assigned more than one part-of-speech label. For example, the term used has labels "verb" and "adj" in the background knowledge, where as the term left has "adj," "adv," "noun," and "verb". Thus, lexical ambiguities are resolved by enabling part-of-speech taggers to consider the syntactic contexts of each sentence in the biomedical text. For example, considering the text fragment in (3), part-of-speech labeled output is provided in (4).

(

3) Doppler echocardiography can be used to diagnose left anterior descending artery stenosis in patients with type 2 diabetes (4) NP(Doppler echocardiography) modal(can) aux(be) verb(used) adv(to) verb(diagnose) adj(left) adj(anterior) adj(descending) NP(artery) NP(stenosis) prep(in) NP(patients) prep(with) NP(type) num(2) NP(diabetes)

Part Of Speech (POS) tagging determines the syntactic functions of words in the biomedical texts. It labels words with a particular part of speech tag based on its definition and context, relationship with adjacent and related words in a phrase or sentence. For example, for input text in (3), the POS tagged output text is as in [START_REF] Kokinaki | Integrating SCP-ECG Files and Patient Records: An Ontology Based Approach[END_REF]. The use of a specific tagger is left to the implementation of the phrase segmentation component in which this research has used the MedPost Tagger [317] to annotate the bioMed text collection.

Syntactic analysis is based on part-of-speech labels of the input text fragments and the background knowledge, for example the SPECIALIST lexicon. One technique of syntactic analysis may be to identify simple noun phrases, i.e. noun phrases where the head is the right most elements and has no right modification. In this technique, heads are identified and terms to the left of the head are labeled as modifiers, for example the text in [START_REF] Bock | Healthcare Strategic Focus Area: Clinical Informatics[END_REF] is analyzed as in [START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF].

Segmentation is based on barrier words, which serve as boundaries between phrases. An example of barrier words are modals (e.g. can in ( 4)), auxiliaries (e.g. be in ( 4)), verbs (e.g. used and diagnose in ( 4)) and prepositions (in and with in ( 4)). Using these barrier words, for example, part-of-speech labeled texts in ( 4) is syntactically analyzed (or chunked) as in ( 5).

(

5) [head('Doppler echocardiography')], [modal(can)], [aux(be)], [verb(used)], [adv(to)], [verb(diagnose)], [mod(left), mod(anterior), mod(descending), mod(artery), head(stenosis)], [prep(in), head(patients)], [prep(with), head('type 2 diabetes')]]

Thus, during the process of chunking, a parser uses barrier words to close the current phrase and open the next one. Any phrase containing a noun constitutes a noun phrase. The rightmost noun is labeled as head and terms to the left of the head, other than determiners and prepositions, are labeled as modifiers (mod). These noun phrases comprise of vocabularies where the concepts they refer to are computed using semantic mapping to match each noun phrase to concepts in the background knowledge. The semantic mapper examines all the term combinations in the noun phrase and then determines the best match, taking into account term variations (e.g. inflectional and derivational) and allowing for partial and multiple matching. Although the proposed framework is generic and a particular grammar rule adoption is left to the implementation of the framework, this research adopted logic-based grammar formalism for shallow syntactic analysis as implemented in minimum commitment specialist parser [START_REF] Mccray | UMLS Knowledge for Biomedical Language Processing[END_REF].

Thus, a grammar either for shallow, dependency or deep syntactic analysis can easily be adopted into the framework with complexity and effectiveness trade off. The syntactic constraint imposed by the grammar serves as a necessary condition for disambiguating and interpretating syntactic indicators and its arguments as syntactic associations. In (5), for example, the grammar rules applied to the verb diagnose must limit the subject of the verb to the noun phrase Doppler echocardiography. The object, however, can be any of the three noun phrases to the right of diagnose: left anterior descending artery stenosis, patients, or type 2 diabetes. Such syntactic ambiguities are resolved by the syntactic analyzer. In this research, however, semantic constraints are applied in determining which of the three is the right object of the verb diagnose in (5).

Generally, syntactic structures of text fragments are expressed into syntactic associations that form subject-syntacticrelation-object triplets. The subjects and objects are noun phrases and syntacticrelations are semantic indicators such as verbs, prepositions or nominalizations. These structures enable computation of lexical matching between terms in the syntactic associations and terms referring to entities in the background knowledge. Thus, the disambiguation model involves computation of lexical matches between terms that refer to domain entities in the background knowledge and terms mentioned in the biomedical text, for example Noun Phrases (NPs) and Verb Phrases (VPs), prepositions and nominalizations.

The model looks for modifier-head relations in the syntactic structures and computes lexical matches with terms referring to domain entities in the background knowledge. The model also looks for semantic indicators, which relates two noun phrases (argument phrases) from the syntactic structure, and computes semantic matches with conceptual relations in the background knowledge. In a scenario representation, therefore, as many as possible subject and object terms and syntacticrelations from the syntactic structure match with subject and object entities and semanticrelations respectively in the background knowledge.

More 



.

Terms with the highest similarity values are ranked as a matching term and concepts referred by these terms in the background knowledge are taken as an interpretation of the syntactic subject Thus, indicator rules are required to disambiguate and interpret biomedical texts, for example the indicator rules for texts in (5) are as provided in [START_REF] Ko | Ontology and CDSS Based Intelligent Health Data Management in Healthcare Server[END_REF]. The syntactic phenomena, such as part-of-speech or syntactic structure, occurs to the left of the rules (or colon) and semantic predicates occur to the right of the rules (or colon). The matching function works with syntactic information in the syntactic structures and semantic information in the background knowledge. That is, the phrase semantics disambiguator uses lexical information (e.g. NPs and VPs) and terms that refer to entities in the background knowledge (e.g. a set of synonymous strings referring to each entity) for lexical matching computation. Each entity in the background knowledge has a set of associated terms/phrases expressing it and a term in a text fragment matches the entity if that term is a member of the associated terms for that entity or one of its specializations or generalizations. In the matching computation, best matching is determined using a scoring function that assess the degree of match, looking for scenarios with the maximum number of matching text fragments, and in the case of a tie preferring a scenario with the maximum number of entities potentially matching terms in the text fragment. When the scoring function computes irresolvable tie values, it is responsible to handle disambiguation of word senses and semantic relations. For example, in the case of text fragments extracted from (1), for the best match with anatomical disorder scenario, the disorder in the text fragment is taken to mean the anatomical disorder ( word sense or context) as opposed to visual disorder or vocal disorder.

Phrase semantics disambiguation is carried out at two levels: the matching of syntactic arguments (e.g. NPs) to semantic arguments (e.g. concepts), and the matching of syntactic indicators (e.g. prep. with) to semantic predicates (e.g. CO-OCCURS_WITH). Consequently, disambiguation of syntactic arguments is comprised of five major components in which the detailed description can be found in [START_REF] Aronson | An Overview of MetaMap: Historical Perspective and Recent Advances[END_REF] In variant generation, variants are essentially consists of one or more noun phrase terms together with all of its spelling variants, abbreviations/acronyms, synonyms, inflectional and derivational variants and meaningful combination of these. The validity of the generators and the variants are determined based on their existence in the background knowledge. That is, they must be either meaningful single words or multi-word terms that exist in the background knowledge. Candidate identification is based on rules: every term, referring to entities in the background knowledge, contains one or more terms in the text fragment (e.g. NPs). The assumption is that all terms referring to entities in the background knowledge are potential information of the matching function. Thus, all terms referring to domain entities in the background knowledge is collected as a member of the candidate set. Candidate evaluation computes matching scores for each candidate term and determines the matching strength of the terms using evaluation metrics and then orders the candidates by the mapping strength. The evaluation metrics are centrality, variation, coverage and cohesiveness [187]. Centrality measures the involvement of head words in the candidate term. Variation measures the average variation distance of a candidate term to their variants, for example, spelling variation, inflectional and derivational variants, synonymous, acronym/abbreviation or combination of them. Coverage determines the amount of matching words between candidate terms and the noun phrases, where as cohesiveness measures word links or positions in each matching terms.

Mapping construction combines the candidates involved with disjoint parts of terms in the text fragment and then re-computes the matching strength based on the combined candidates. After computation, it selects candidates that have the highest score to form a set of best matching terms of the original terms in the text fragment. In case of ambiguity, a tie of matching, the mapping function applies word sense disambiguation based on syntactic and semantic information in the chunked text and background knowledge. For example, in a phrase "ocular complication" [START_REF] Berner | Hospital Based Decision Support[END_REF], terms scoring 694 and 861 respectively are in a tie.

-85 - restrictions are enforced by meta-rules stipulating that identified semantic associations must be sanctioned by predications in the background knowledge. For example, the rule may ensure that syntactic arguments associated with treatment, in the analysis of [START_REF] Silveira | A Survey of Interoperability in E-Health Systems: The European Approach[END_REF], must be mapped to concepts in the background knowledge with one of its parent concept match with permissible argument configurations for TREATS. In [START_REF] Silveira | A Survey of Interoperability in E-Health Systems: The European Approach[END_REF], the semantic classes Pharmacologic Substance and Disease or Syndrome fulfill these requirements.

(10) New fluoroquinolones such as ofloxacin are beneficial in the treatment of chronic obstructive airways disease exacerbation requiring mechanical ventilation

Where as, syntactic constraints for argument identification is controlled by statements expressed in the grammar rules. For example, rules for nominalizations may state that one possible argument configuration is that, for the object marked by the preposition of occurring to the right of the nominalization, one possible location for the subject is anywhere to the left of the noun phrase containing the nominalization. For semantic proposition interpretation of treatment in [START_REF] Silveira | A Survey of Interoperability in E-Health Systems: The European Approach[END_REF], for example, choosing the noun phrase ofloxacin, which maps to a concept with semantic class Pharmacologic Substance, as subject and chronic obstructive airways disease exacerbation, which maps to a concept with semantic class Disease or Syndrome, as object allow both constraints (syntactic and semantic) to be satisfied. Thus, the final interpretation is the semantic proposition in [START_REF] Graben | Ontologies and Their Application in HER[END_REF], where concepts from the background knowledge are arguments of the predicate.

(11) Ofloxacin TREATS Chronic obstructive airways disease exacerbated 

Conceptual Disambiguation

As abovementioned, disambiguation of biomedical artefacts depends on scenarios in the background knowledge, which had been stated either explicitly or implicitly about the way the domain world would be [START_REF] Cimiano | Learning Concept Hierarchies from Text Corpora Using Formal Concept Analysis[END_REF], [316]. It has also stated that disambiguation involves matching, combining and instantiating situation-specific scenarios in text fragments. Thus, understanding is modeling the interactions of situation-specific scenarios with the background knowledge. Thus, conceptual disambiguation models and structures the knowledge resides in the biomedical texts,

where their interpretations are suggested by scenarios in the background knowledge.

Knowledge modeling partitions the biomedical domain to M independent and disjoint sub- )), ( , ( 
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. Where, the ordered pair <A, R> is a POSET (Partially Ordered Set) when R is a partial order.

In this research, the partial order relation (R) is the subsumption relation (  ) and the partial order set (A) is the set of biomedical concepts (C). Thus, the ordered pair is <C,  > and  is a partial order. More formally, let 

C C C  
, then the following are always true based on the partial order relation definition.
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Horizontally, biomedical knowledge is partitioned into disjoint and independent categories at each knowledge granularities or levels. Disjointness refers to absence of overlaps between semantic categories. Independency is related to functioning and further partitioning capability of each category. This means that each category functions independently and its partitioning is independent of other categories. An independent biomedical category, such as Anatomy, is comprised of all anatomy individuals only and can further be partitioned into its sub-categories independently. More formally, let bioMed denotes the biomedical domain at the highest granularity, let C and 2 C respectively, then the following are always true. ) is neutral to the actual existence of a patient p , in contrast it stipulates that if there is a situation where p exists as a patient, then p also exists as a human in the situation.

                   
C C C C C C C C C C C C C C C C bioMed bioMed C bioMed C bioMed C (3.7)
However, the conceptualization must be captured in some concrete structure to reason about biomedical characteristics. The representation must characterize it as an intensional structure that encompasses all state of affairs and independent of a particular language vocabulary. Thus, a conceptualization of biomedical knowledge structure ( o G ) is intensionally modeled independent of the state of affairs in the intended world ( w ) based on a set of domain artefacts and a set of nary relations ( R ) of the conceptualization ( o C ). In general, a conceptualization of the biomedical knowledge is characterized as an intensional structure encompassing all state of affairs and independent of a particular modeling language. Hence, conceptualization is supplemented with the following definitions. This definition can be generalized to the conceptualization of all state of affairs exist in all possible domain worlds (W) and the set of individuals in the domain of interpretation (D) as well as to the set of all relations in the domain of interpretations (R). With these formulations and models of particular conceptualization, world knowledge W K is formulated into four tuples for intensional structuring and interpretation:

Definition

) , , , ( T R D W K W  (3.8)
Where, W is the possible domain worlds, D is the set of domain individuals, R is the set of relations R, and T is the set of vocabularies of a modeling language L.

Structural Model

A structural model is a representation of a conceptualization ( i C ) based on a particular conceptual language formalism. It is also a structural instantiation of a conceptualization using a specific conceptual modeling language, for example Direct Acyclic Graph (DAG). Thus, structural modeling is a concretization of a conceptualization using a specific conceptual language syntax and semantics to construct a knowledge structure ( o G ). In this research, the conceptualization ( o C ) and its conceptual structure ( o G ) is instantiated using the biomedical artefacts and their n-ary relations, such as concepts and their associations. While nodes of the structure are biomedical concepts and individuals, arcs of the structure are semantic links, relationships between concepts or individuals. In the structure, however, the broader semantic categories, which are supposed to appear at the highest level of the conceptual structure, don't exist or have very limited existence in the knowledge sources.

The proposed framework disambiguates the fine-grained biomedical entities and their associations in addition to few coarse-grained entities. Largely, the set of biomedical artefacts represent the fine-grained knowledge granularities at the lower conceptual structure ( L G ).The upper conceptual structure representation comes from sub-domain categories, coarse-grained concepts and their associations, which builds the upper knowledge structure ( u G ). Thus, the upper knowledge structure ( u G ) is reused from existing upper-level ontologies [START_REF] Beisswanger | BioTop: An Upper Domain Ontology for the Life Sciences[END_REF] [314] or built with the help of domain experts and ontology engineers. It is, then, integrated with the lower knowledge structure ( L G ) acquired from the biomedical texts.

The upper knowledge structure ( u G ) is conceptualized to upper knowledge conceptualization ( u C ) and the lower knowledge structure is conceptualized to lower knowledge conceptualization

( l C ) of the biomedical knowledge conceptualization ( o C ), U L o C C C   
. Thus, the conceptualization o C is the union of the two conceptualizations, u C and l C , over subsumption operator,  , using the overlapping concepts. More formally, the integration is defined based on subsumption relation on the overlapping concepts of the two knowledge structures. The subsumption relation is defined at the point of overlapping, i.e. Generally, a set of domain knowledge artefacts ( p K ) can be articulated into a knowledge conceptualization ( o C ) in terms of the possible domain worlds (W ), domain of individuals (D), and a set of semantic relations (R). This set is articulated to conceptual structures supported with background knowledge for its interpretation. The structural articulation of the biomedical artefacts is represented with concrete specifications based on a conceptual modeling language constructs and primitives, leading to intensional interpretations of the structure. Lastly, the conceptualization ( o C ) is extensionally interpreted using logical language primitives and constructs.

               l u l u u l l u o C C if egrable non C C and C C if C C C , , int , , , , (3.9 

Ontologization

The biomedical conceptualization articulates knowledge artefacts ( p K ) and models to a conceptual structure ( o G ). However, conceptual knowledge has ambiguous interpretations, poor reasoning support and less computationally tractable [START_REF] Aikins | A Representation Scheme Using both Frames and Rules[END_REF]. For this reasons, the biomedical knowledge conceptual structure ( o G ) are interpreted extensionally for their unambiguous representations and better reasoning support. In this context, ontologization presents the way how the conceptual structure is interpreted and instantiated to a set of individuals in the domain of discourse, the intended world (w). Thus, ontologization considers the following constraints to check satisfability and redundant instantiation of individuals within multiple concepts. The interpretation model M can, therefore, be generalized as: 

I w I w w W w w c c c c M       ) ( ), ( ) (     (3.
( o C ) such that 1 c is a specialization of 2 c in the conceptual structure ( o G ). Then, W w  
, the model interprets as: 

) ( ) (
) ( ) ( 2 1 c c w w    (3.12)
Combining the previous definitions, for any rigid biomedical concept c, the following is valid.

W w c c c w W     ), ( ) ( ) (    (3.13)
Where, a rigid concept is one that applies to its instances necessarily, i.e., in every possible domain world.

Definition (Non-Rigid Concept): A concept c is non-rigid if and only if for W w  , there is an individual x such that ) (c x w  
and there is a

W w  ' such that ) ( ' c x w   .
In the conceptualization Let the domain of a relation r in a world w be defined as

)} ( ) , ( | { ) ( r y x x r Dom w w   
where x and y are individuals, then for

W w   , )} ( ) , ( | ( ) ( r y x x r Dom W W   
. Similarly, the range of a relation r in a world w be defined as

)} ( ) , ( | { ) ( r y x y r Range w w   
where x and y are individuals, then for

W w   , )} ( ) , ( | { ) ( r y x y r Range W W    . Generally, ) ( ) ( r r W    can be formulated as: ) ( ) ( ) ( , ), ( ) ( R Ran R dom r where r r w w w W w w         (3.14)
Thus, the interpretation model is generalized as ) , , (

I S w M  , where W w  is the intended world, ) , ( R D S 
, where D is the domain of individuals and R is the extensional relations, i.e.

relations in the domain of universe. And  is a mapping function defined as

w w w R D T   :  ,
where w T is the vocabulary of language L in a world w. The mapping function,  , interprets each individual in D of w to constant symbols in T of w, and element r in R of w to predicate symbols in T of w.

In general, the interpretation function maps the conceptualization ( o C ) to elements (individuals) in the domain of discourse ( I  ). Let I  be a non-empty domain of interpretation and  is the interpretation function, then  assigns:

 An element I I i   for each individual D i  ,  A subset I I c   for each atomic concept, o C c  ,  A relation I I I x r    for each role, R r  .
Combining all, the interpretation function can be generalized to the following formulation:  Define the non-primitive biomedical concepts and roles based on the primitive ones. The non-primitive concepts are referred as unnamed concepts and roles. These concepts are defined based on the primitive concepts and roles using union, intersection and quantifier operators.

I I I I R C I where R C I T      , , , , :  (3.15) 
 Assertional Axioms (A): it is a knowledge comprised of individuals and their associations in the biomedical domain. It also includes the link knowledge of every individual to their semantic classes. That is, the instantiation of intensional knowledge to its extensional counterpart.

 Primitive Attribute Axioms (): this is the axiomatic interpretation of primitive entities' attributes such as concepts, individuals and roles. 

 Concept Taxonomy Axioms

Domain Ontology Model

The domain ontology model partitions the biomedical knowledge and its conceptual structure ( o G ) into six logically consistent axioms. These are the primitive axioms (), the primitive attribute axioms (), the concept taxonomy axioms ( c H ), the role taxonomy axioms ( r H ), the non-taxonomic axioms (  ) and the assertional axioms (A). An ontological knowledge is modeled in a logically consistent integration of these knowledge axioms. Thus, the formal domain ontology ( o K ) model is expressed as a set of knowledge axioms, which is formulated as six tuples:

) , , , , , ( A H H K r c o     (3.16)
The model interprets each tuple by mapping to the domain of interpretation ( I  ). The logical integration model is defined as a mapping function (  ), which interprets each tuple in o K based on the domain of discourse ( I  ), where:

 For conceptualization ( o C ), its interpretation is 0 0 , , C C I I I o where C   
is the possible conceptualizations in the domain of discourse ( I  ).

 For primitive axioms (  ), its interpretation is

      I I I
where, , is the possible primitive attribute axioms in the domain of discourse ( I  ).

 For primitive attribute axioms ( ), its interpretation is

   I I I where    , ,
is the possible primitive attribute axioms in the domain of discourse ( I  ).

 For concept taxonomy axioms ( c H ), its interpretation is

I c I c I c where H    , ,
is the possible concept taxonomy axioms in the domain of discourse ( I  ).

 For role taxonomy axioms ( r H ), its interpretation is

I r I r I r where H    , ,
is the possible role taxonomy axioms in the domain of discourse ( I  ).

 For role taxonomy axioms (  ), its interpretation is

I I I where       , ,
is the possible role taxonomy axioms in the domain of discourse ( I  ).

 For assertional axioms ( A ), its interpretation is

I A A I I where A    , ,
is the possible assertional axioms in the domain of discourse ( I  ).

The integration model, therefore, maps each tuple in the ontological knowledge formulation to its semantics in the intended world w. The mapping function  is defined formally as a projection of the domain of interpretation onto the cross product of the six tuples in o K :

I I r I c I I I I A H H            :
(3.17)

Semantic Space

The unstructured biomedical knowledge source ( T W ) is a heterogeneous source of knowledge in the domain. The proposed framework considers the knowledge source a comprised of a set of individuals I, which is a subset of all individuals in the possible domain world, W, i.e. W W T  . This implies that W I I  . The set of all individuals, in the possible domain world W, is the interpretation or semantic space in the specified domain. In this research, semantic space is also referred as the domain of interpretation. Formally, the semantic space is denoted using delta symbol raised with capital

I ( I  ). } { . . }, ,...., , { 0 2 1  N N W i i i W i e i i i i       (3.18)
Where, N W is the number of individuals in the possible domain world (W). The set of individuals in the semantic space can be structured and conceptualized in several ways based on the purpose of conceptualization and the intended applications. That is, there are several possible conceptualizations of the set of individuals in the semantic space () of the domain. A specific unstructured biomedical knowledge source can provide one possible conceptualization of the domain. That is, each semantic class is a set of related individuals in the semantic space ( I  ). In turn, these classes of individuals and their relationships must correspond to semantic concepts and their interactions in the conceptualization ( o C ), i.e.

I I o C   (3.19)

Chapter Four

Instantiating the Proposed Framework

Once the proposed framework designed, it is necessary to instantiate the framework based on domain text collection and knowledge structure as domain knowledge source and background knowledge respectively. Consequently, in this chapter a knowledge source is instantiated with bioMed text collection, which is prepared as a combination of texts in the PubMed, Genia, CLEF, and ClinicalTrial corpus collections. The background knowledge is instantiated with a specific version of the UMLS knowledge, UMLS 2012AB.

MetaMap and enhanced semRep tools are used to instantiate the disambiguation of biomedical concepts and their associations in the bioMed text collection respectively. MetaMap enables to disambiguate biomedical concepts from biomedical sentences. The MetaMap word sense disambiguator is used to resolve multiple mappings of a term in a text to background knowledge.

SemRep enables to disambiguate biomedical concept associations, semantic predictions.

However, the coverage of interpreting concept associations is limited to semantic predicates defined in the UMLS semantic network. In this research, coverage of disambiguating semantic associations between concepts is enhanced with an algorithm that generates a matrix of concepts and look for their associations in the background knowledge. The quality and accuracy of the semantic associations are validated with the existence of a pair of concepts in a sentence and their semantic association in the background knowledge. The algorithm prunes unnecessary concept pairs, for example self and non-existent associations.

The ontology structure ( o G ) is instantiated with a Direct Acyclic Graph (DAG) formalisms at two knowledge levels, upper and lower ontology structures. While the upper ontology structure is reused from existing ones, the lower ontology structure is acquired from the bioMed text collection. A concept-overlap technique is applied to integrate the two ontology structures. Plus, pruning and alignment are applied to construct 135 ontologies rooted at each of 135 semantic categories. Finally, the ontology structure ( o G ) is interpreted with OWL DL primitives and constructs, producing a set of OWL DL axioms ( o K ). A restriction-based interpretation is used to interpret each biomedical concept associations acquired from the bioMed text collection. In -106 -this study, existential restriction-based interpretation is used after an experimental analysis of determining the trends of biomedical concept associations.

BioMed Text Collection

In this study, the bioMed text collection is prepared as an instance of the biomedical knowledge source. It is composed of 55,536 textual documents, where each document contains an average of 30 sentences. It is used to experiment the instantiation of the proposed framework. Each textual document is tagged with an XML version 1.0 and encoded with UTF-8. Within the documents, the additional information is the documents' meta-data such as their file name, the URL where they are located in and the full text tag that delimits the body text of the document.

The average size of each textual document is 30.51 KB, and thus, the total size of the collection is about 2.0 GB. Most of the documents are related to scientific literatures and clinical notes. The contents of each document are tagged with an XML, including sources, figures and tables. These enabled to easily identify the different contents of the textual document during the cleaning phase of the text collection. The bioMed text collection contains information of non-specific nature and could potentially be judged as a good biomedical knowledge source.

Cleaning bioMed Text Collection

In bioMed text collection, each text document contains different irrelevant text parts, such as figures, tables, and bad characters like diacritics. These spans of texts and characters are cleaned for accurate processing of sentences in the bioMed text collection. Every sentence is delimited the bioMed text collection. This set of concepts is, therefore, used as input for semantic proposition prediction. Thus, the set of biomedical concepts ( m C ) recognized and disambiguated from the bioMed text collection can, generally, be formulated as two tuples:

) , ( C T C m  (4.1)
Where, T is a set of terms referring to biomedical concepts C, and C is a set of biomedical concepts disambiguated from the bioMed text collection. 

Semantic Proposition Disambiguation

Biomedical concepts are interacting in the bioMed text collection. This set of concept interactions is referred as semantic associations and show their relationships as described in the text collection. These associations are recognized and instantiated to generate a set of semantic propositions. Semantic propositions are a set of semantic triples in which each of them forms a graphical structure. Such graphical structures are formulated as triplets such as {subject_argument, predicate, object_argument}, where the argument set is biomedical concepts and the predicate set is ontological relations, which links the subject and the object argument sets.

A semantic processing program is used to predict semantic associations between biomedical concepts. For example, the SemRep program is used to instantiate concept associations as they exist in the bioMed text collection and thus, semRep generated more than 5 million biomedical concept associations from bioMed text collection. But, semRep considers only 54 semantic predicates from UMLS semantic network, which results limited coverage in predicting concept associations. For example, an XML formatted output of the semRep program is illustrated for a text "ocular complications of myasthenia gravis" as follows.

<? Xml version="1.0" encoding="UTF-8"?> <SemRepAnnotation> <Document id="D00000000" text="ocular complications of myasthenia gravis." > <Utterance id="D00000000.tx.1" section="tx" number="1" text="ocular complications of myasthenia gravis."> <Entity id="D00000000.E1" cui="C0015392" name="Eye" semtypes="bpoc" text="ocular" score="888" begin="0" end="6" /> <Entity id="D00000000.E2" cui="C0009566" name="Complication" semtypes="patf" text="complications" score="888" begin="7" end="20" /> <Entity id="D00000000.E3" cui="C0026896" name="Myasthenia Gravis" semtypes="dsyn" text="myasthenia gravis" score="1000" begin="24" end="41" /> <Predication id="D00000000.P1"> <Subject maxDist="0" dist="0" entityID="D00000000.E1" relSemType="bpoc" /> -113 -<Predicate type="LOCATION_OF" indicatorType="MOD_HEAD" begin="0" end="20" /> <Object maxDist="0" dist="0" entityID="D00000000.E2" relSemType="patf" /> </Predication> From this, one can see that every semantic prediction is a semantic Graph (SG). Examples of SG are: Eye (C015392) isa bpoc; Complication (C0009566) isa patf; and Eye LOCATION_OF Complication. From the principle of inheritance, it also implies that bpoc LOCATION_OF patf.

Consequently, more than seven million concept associations are disambiguated from the bioMed text collection. Even though these enhancements, semantic disambiguation is limited to acquire biomedical concepts and their associations from free biomedical texts. Acquiring biomedical individuals and attribute information is left as way forwards in the future. Furthermore, involving large number of semantic predicates could improve the number of semantic predictions acquired from free texts. That is, at least considering the 736 semantic predicates found in the background knowledge might bring significant improvements.

Conceptual Structure

The set of disambiguated biomedical artefacts (i.e. concepts and roles) and semantic graphs (i.e. Generally, the upper ontology structure is represented using a set of sub-domain and coarsegrained concepts associated with these relationships. Formally, it can be formulated as:

u sc m sc m sc G G G G G bioMed G     , , (4.3) 
Where, u G is the upper ontology structure, sc G is sub-domain categories and m G is coarsegrained concept structure. In the lower ontology structure, each of the 135 ontologies is constructed and rooted at each of the 135 concepts (nodes), and redundancies and cycles are pruned. In the construction, argument concepts are aligned to their immediate parent concepts, which are already aligned to the root concept either directly or through their ancestors. In the process of pruning, semantic predictions that can be inferred from taxonomies are eliminated. Finally, each of the 135 ontologies is structured into a direct acyclic graph and merged with the upper ontology structure using concept-overlap technique.

In this way, the lower ontology is structured using more than 4 million concepts, 682 relationships and their associations, semantic predictions. The semantic predictions are structured with either taxonomically (e.g. 'ISA') or non-taxonomically (e.g. CAUSE and CAUSED_BY).

The taxonomic structure eliminates the redundant subsumption relations implied from transitivity. For example, for the semantic prediction {C0196878, ISA, C0543467}, {C0543467, ISA, C0087111} and {C0196878, ISA, C0087111}, the third semantic prediction is redundant, which can be inferred from the first two. Consequently, these types of semantic predictions are eliminated and referred as pruning.

The non-taxonomic structure is simply represented with non-taxonomic associations of each concept for sorting and correct structuring. For example, the concept, C0196878, in the previous taxonomy, has associations with a set of concepts {C0196878, TREATS, C1457887; C0196878, USES, C0037494; and, C0196878, TREATS, C0030705}. The non-taxonomic structuring sorts them for correct representation as a set of semantic predictions {(C0196878, TREATS, C1457887), (C0196878, USES, C0037494), (C0196878, TREATS, C0030705)}.

Aligning Semantic Predictions

Semantic prediction alignment enables to structure each of the 135 ontologies in the form of direct acyclic graph. In the structuring, arguments of semantic predictions (i.e. concepts) are structured into hierarchies where broader concepts subsume narrower concepts and linked with an isa relationship. Consequently, arguments of hierarchical semantic predictions (i.e. linked with isa relationship) are aligned based on concepts' knowledge levels, broader-narrower relationships. For example, section 4.3.2 predicts that the concept ganciclovir (C0017066) is subsumed by its type nucleic acid (nnon) and by the concept drugs (C0013227). It further predicts the concept drugs (C0013227) is subsumed by its type Pharmacologic Substance (phsu). This is structured as in the following, where dashed-arrows indicate subsumption relation, which requires alignment and eliminating the redundancies to generate a direct acyclic graph structure.

C0017066 --> nnon, C0017066 --> C0013227, C0013227 --> phsu

Aligning the above predictions, therefore, generated the following hierarchical structures. These structures belong with two root nodes, nnon and phsu, due to the two parents of a concept drugs (C0013227).

C0017066 --> C0013227--> nnon, C0017066 --> C0013227 --> phsu

In order to build these structures, a technique is developed to align each hierarchy and construct taxonomies of the ontologies, forming direct acyclic graphs. The algorithm first constructs The output of the algorithm is a non-redundant and ordered set of semantic triples. Figure 4.12 illustrates non-redundant and ordered set of semantic predictions. 

G G G where G G G o u l l u o      , , (4.4) 
Conceptual representation of biomedical semantics is highly ambiguous and less machine understandable. For example, a semantic proposition {bacteria, CAUSES, infections} produces the following ambiguous interpretations as it may mean one or more of them at the same time.

Bacteria  CAUSE.Infections, i.e. {x| x  Bacteria I , and (x, y)  CAUSE I implies y Infections I } acquisition process. Furthermore, construction of the ontology structure is independent from a number of biomedical concepts and their associations; and thus, the proposed framework is scalable. These have significant impacts to reduce/ minimaize resources (e.g. time, effort and cost) in ontology learning from free texts.

In conceptual structuring, the upper ontology structure is reused from existing top-level ontologies, the UMLS semantic network. The chose of the UMLS semantic network is due to its easy integration with the set of ontologies acquired from free biomedical texts. However, more semantically rich (multi-knowledge level upper ontology), which better covers the biomedical domain seems sounding and left as way forwards in the future. This can be obtained with comparative studies among the existing top-level ontologies or creating new ones.

Ontologization

The 

Experimental Analysis

In this section, an experiment is conducted to observe the trends of interpretations of biomedical concept associations. In the experiment, a randomly selected five hundred (500) semantic predictions are considered and described into human readable representations. Two human subjects, where the first is an expert of microbiology and the second is an expert of medicine, are trained about restriction-based interpretations, particularly related to the three restriction-based interpretations: universal (), existential () and number restrictions (either =n, n or n).

interpretation of anonymous concepts or roles defined based on atomic concepts or roles respectively. Consequently, the primitive axioms () is set to be a logical combination of four primitive knowledge axioms. More formally,  is formulated as:

) , , , (       (4.5)
Where,  is a set of atomic concept axioms,  is a set of atomic role axioms,  is set of defined concept axioms and  is set of defined role axioms.

Atomic concept axioms (  ) is an interpretation of a set of biomedical concepts using OWL DL primitives and constructs. Each concept axiom interpretation includes three attributes: its identification, label and description. For example, the concept bioMed and its two sub-domain categories (Anatomy and Disorder) are interpreted and represented as: To generalize concept and role axiomatization, all atomic concepts and roles are interpreted and represented to a set of atomic concept axioms (  ) and atomic role axioms (  ) in a similar fashion. In order to accomplish these, an algorithm is developed to produce the set of atomic concept and role axioms. The algorithm uses the set of biomedical concept ( a C ) and role ( a R ) inventories as its inputs and produces a set of primitive concept axioms (  ) and primitive role axioms (  ), where part of the outputs are illustrated in the above listings.

Pseudo-algorithm -to generate a set of atomic concept and role axioms Note that in defining the new concept, it is interpreted as subclass of the subject concept in the association, the concept Bacteria in above case. Defined role axioms (  ) is an interpretation and representation of a set of defined roles. Defined roles are created when binary association of two roles is interpreted. In this research, however, only taxonomic association is defined between roles, i.e. there are no non-taxonomic associations between roles. And thus, there are no defined non-taxonomic roles, which is an empty set axiom,  = {}. Thus, all defined concepts are interpreted in a similar fashion to produce a set of defined concept axioms (  ). In order to generate these axioms, algorithm is developed that takes non-taxonomic associations as input and produce a set of defined concept axioms (  ) as output where part of it is illustrated in the above listing. 

(see eq. 4.7). Thus, as presented in eq. 4.7, equivalence of a concept c or a role r is interpreted as the union of its children. as presented in eq. 5.9. The OWL DL ontology is, therefore, the logical integration of these set of axioms. To produce the logical integration and generate the OWL DL ontology, a main algorithm (implemented as main function) is developed that calls the different algorithms (implemented as sub-functions), which generates the different set of axioms, in an ordered manner. After generating the ontology header information, the main algorithm calls the algorithm that produces set primitive axioms (  ). Secondly, it calls the algorithm that produces concept ( c H ) and role ( r H ) taxonomy axioms. Thirdly, the main algorithm calls the algorithm that produces set of non-taxonomic axioms (  ). Lastly, the equivalence and disjoint axioms are generated by calling the respective algorithms. Finally, the integrated set of OWL DL ontology axioms represented the ontological knowledge ( o K ). -149 - 
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Integrity and Consistency across Formalisms

The proposed framework passes through different representation formalisms to acquire ontological knowledge from biomedical texts. Initially, domain artefacts are encoded in natural language lexical, syntactic and semantic structures. These biomedical artefacts are acquired from biomedical text collections and structured into graph formalism and finally to logic formalism. In such transformation-based ontology acquisition, integrity and consistency across formalism is very crucial. Consequently, integrity and consistency depends on a set of formalisms M and computational theories, O , which are formulated as in the following. 
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Chapter Five Evaluation of the Proposed Framework

The proposed ontology learning framework is instantiated and the results are illustrated. This chapter evaluates the correctness and quality of the structural aspect of the framework and presents evaluation results. Thus, evaluation is designed to assess the extent of approximating Clarity Metrics measure how effective the ontology communicates the intended meaning of each biomedical term, which refers to term senses. Hence, it focuses on the human readable descriptions of each term in the ontology, such as comments, labels or descriptions. Specifically, it computes the readability (RD) of each class i c or role i r in the ontology. It is defined as the average number of attributes of concepts and roles in the ontology. This is formulated as in eq.6.15 where an algorithm is developed to compute readability as in the following. Ontology schema metrics measure the potential of the ontology structure to represent knowledge. This is measured in terms of semantic richness. Semantic richness is defined using Relationship Richness (RR), Attribute Richness (AR) and Inheritance Richness (IR). RR reflects the diversity of relations in the ontology structure, which is a ratio of the number of relationships 

Evaluation Results

Analyzing the metrics values enabled to have insights about correctness and quality of the acquired ontology. Thus, this section provides the experimental setup and the analysis of metrics values obtained from computations to understand the characteristics of the ontology and its structure.

Experimental Setup

A set of biomedical artefacts, such as concepts, predicates (roles) and their associations 

Measuring Accuracy

Accuracy is the amount of correctly acquired knowledge artefacts from the biomedical texts.

Thus, accuracy of knowledge artefact (concept, role and their association) is shown in table 5.2. 

Measuring Completeness, Conciseness and Consistencies

As previously pointed out, completeness, conciseness and consistencies are measured by computing the coverage, relevancy coverage and inconsistencies respectively of the acquired ontological knowledge. The result of computing these metrics is shown in table 5.3.

Table 5.3 -Completeness, Conciseness and Consistency

In the table, coverage and relevant coverage are equivalent to completeness and conciseness respectively. This is because, completeness is the amount of biomedical artefacts acquired from the domain text as compared with the background knowledge. But, there is no partitioning and cyclic inconsistencies found in the ontology structure. These results inconsistencies to be zero, this, in turn, results consistency to be one.

Measuring Complexity

Efficiency of learned ontology is evaluated by measuring the complexity of its structure. Thus, complexity is measured by computing four major metrics, namely SOV (size of vacabulary), ENR (edge-node ratio), TIP (tree impurity) and EOG (graph entropy). Accordingly, the computational results of these metrics are shown in table 5.4, considering relevant artefacts.

Table 5.

-Complexty Metrics

The vocabulary size is 986,448, showing large ontology size. The edge-node ratio (18.73) shows the connectivity density, on average about 18 edges per node. The tree impurity (145,246) shows large divation of the ontology structure from pure tree structure. Finaly, the ontology structure has large graph entropy. All these demonistrate complex ontology structure.

Measuring Adaptability

In a similar fashion, adaptability is measured based on cohesiveness and coupling metrics. While cohesiveness is measured by computing NoR and NoL nodes and ADIT-LN of the ontology structure, coupling is measured by computing NEC and NER. Consequently, the result is shown in table 5.5.

Table 5.5 -Adaptability Metrics -165 -In the table, NoR is 1 which means that the ontology has only one root node and highly cohesive.

Furthermore, NEC and NER are not defined (hyphen, '-') for cohesiveness, and NoL, NoR and ADIT-LN are not defined (hyphen, '-') for coupling. Values of NEC and NER are zero, which means that there are no external classes and roles the proposed framework imported in the learning process, and thus, the ontology produced is higly decoupled.

Measuring Schema Potential and Readability

Ontology schema potential and clarity are also evaluated using Semantic Richness (SR) and readability (RD). While semantic richness is measured by computing relationship richness (RR), Attribute Richness (AR) and Inheritance Richness (IR), readability (RD) is measured by computing the average numbre of class level attributes. Consequently, the result of ontology shema potential metrics values are shown in table 6.6.

Table 5.6 -Ontology Shema Potential metrics

In the table, AR is three which means that aeverage number of attributes for each class is 3.

Consequently, readability becomes 3, which measures the clarity of the ontology structure.

Measuring Correctness and Quality

Correctness

Correctness is an extent of approximating biomedical knowledge by the domain model, proposed framework. It is measured based on a set of criteria related to the property of the ontology structure ( o G ), where each criterion is, in turn, expressed with a set of values computed for each metrics. As shown in table 5.2 in section 5.2.2, accuracy is found to be 70%, 96% and 92% for concepts, roles and associations respectively.

respectively. Consistency is the fourth criterion, which is measured by computing inconsistencies in the acquisition process. In this work, however, only two aspects of inconsistencies, cyclic and partitioning redundencies, where both of them are found to be zero, are considered.

Consequently, an improved degree of biomedical knowledge approximation is dimonstrated.

Existing ontology learning frameworks structure and interpret domain knowledge with the help of domain experts and ontology engineers. This study, however, accomplishes these tasks without the involvement of domain experts and ontology engineers, i.e. automatically. Existing ontology learning frameworks use ontology tools for interpreting semantic associations.

For independent ontologization, restriction-based interpretation is used for axiomatizing the conceptual structure. To decide which restrictions to apply for each semantic association interpretation, experimental analysis has been made to get insights about interpretation trends.

After analyzing the trends, existential restriction-based interpretation is used and implemented.

Consequently, in this work, independent interpretation is practiced instead of using ontology tools and engineers.

In ontology learning, one of the major challenges is that texts are represented in natural language formalism whereas ontologies are represented with structured language formalism, for example OWL DL. Ontologies are expected to represent the possible semantics represented or implied in the domain texts so that any semantics in the domain text must also exist in an ontology acquired from the text. This requires consistent and integrated ontology acquisition methods and techniques across formalisms, from natural language to structured ontology representation. Such ontology acquisition has provided less attention in the existing ontology learning frameworks. In this work, however, emphasis is provided to keep natuaral language semantics using scenario based interpretations suggested by a prior expectations. The prior expectations represent domain semantics, which could appear in the text collection. Consequently, the conceptual disambiguation models and structures biomedical artefacts (concepts, roles and their associations) produced by the semantic disambiguator into a conceptual structure, conceptual ontology. Once the conceptual ontology ( o G ) is constructed, it is interpreted for its formal representation based on OWL DL primitives and constructs. A restriction-based interpretation is applied on concepts, roles and their associations for better approximation of the representation.

In this way, an integrated consistency across representation formalisms are achieved.

In chapter two, table 2.1 summarized common and recent knowledge acquisition frmaeworks and discribed them using ten (10) charactersitics features. In the table, scalability is in the order of thansands (<5,000 concepts) where as in the proposed work it is in the order of millions (≈ 4 million concepts and their associations). The components of existing frmaeworks are also developed for different interests at different times. This produced problems of integration among components of a particular framework. In the proposed work, however, all components are designed and developed for ontology learning at the same time, and thus, integrity is not an issue.

Existing ontology learning frmaeworks are data-driven, and thus, reaching consensus among domain experts and users are very difficult, and even never achievable, with data-driven methods. To ease this problem, the proposed work used an already consensus-reached semantics (the UMLS), and referred it as a knowldege-based method. Consequently, each semantics interpretation is suggested by already consensus reached semantics. The proposed framework is independent from ontology engineers and domain experts (manual works), and thus, geared towards fully automatic acquisition. In the existing frameworks, domain relevance is determined using TFIDF or its derivatives (e.g. KFIDF). These techniques are designed for discriminating documents rather than artefacts, and thus, highly inefficient and ineffective in ontology learning.

In the proposed work, domain relevance is determined using the backgrpound knowledge, which is pre-built and consensus-reached biomedical knowledge.

Exhaustive domain aretefact learning is very difficult in the existing ontology learning frmaeworks in which scalability is very limited. The proposed framework, however, is highly scalable and exhuastive in acquiring biomedical artefacts (concepts, roles and their associations).

-171 -Consequently, over 4 million concepts and 7 million associations are acquired from the bioMed text collection. Furthermore, ontology structuring is manual in the existing ontology learning frmaeworks but automatic in the proposed framework. The manual structuring is supported with knowledge base, commonly Wordnet. Wordnet, however, is a lexical knowledge comprised of lexical information rather than semantic information. Plus, it is a shallow knowledge about language charactersitics than the domain semantics. Interpretations of domain artefacts are also manual, supported with ontology tools (e.g. protégé). But in this work, interpretation is automatic using ontology language primitives and constructs (e.g. OWL DL 

Conclusion

The objective of the research is to design and construct an ontology acquisition framework from biomedical texts, which enables to reduce effort, time and costs incurred in ontology learning.

Although the framework requires further development for its maturity, it is possible to consider it as comprehensive ontology acquisition framework towards automatic ontology learning from unstructured biomedical knowledge sources. It is designed in a way that can easily be adapted and generalized into other unstructured sources, such as video, audio, image and video. As far as domain knowledge base is available, the framework can be generalized to multimedia, multimodal and multilingual unstructured sources in a domain. In a similar fashion, the proposed framework can also be adapted and generalized easily to other domains (e.g. agriculture and tourism) as far as the knowledge base is available.

The construction of the framework is also rigorous in dealing with different representation formalisms and their inconsistencies, Natural Language (NL), Conceptual Language (CL) and Formal Language (FL). Acquiring and representing knowledge in a consistent manner across these formalisms is very challenging and difficult in which most authors in the field point as a major cause of ontology learning bottlenecks. Thus, the proposed framework identified possible inconsistencies across different formalisms and points its limitations and possible extensions. Generally, instantiation of the semantic disambiguation generated more than four million biomedical concepts and seven million concept associations, semantic propositions. This set of biomedical artefacts approximated the biomedical knowledge from bioMed text collection. The extent of approximation is evaluated by measuring the correctness of the proposed framework using a set of criterion. A set of metrics are measured to evaluate each criterion and the results are very appreciable. For example, concept identification: 70% accuracy; 82% completeness; 68% conciseness; and 100% consistency. These results showed that the extent of domain approximation (correctness) is in a promising correctness, good extent of biomedical knowledge approximation.

Conceptual Disambiguation

The semantic association disambiguation leads to the design and development of the conceptual structure, which is instantiated with a Direct Acyclic Graph (DAG) Quality of the ontology structure is evaluated with a set of criteria and their metrics. Complexity, adaptability, ontology schema potential and clarity are used to assess the quality of the ontology structure ( o G ). Quality measurement showed complex ontology structure with metrics values of 986,448 for vocabulary size, 18.73 for connectivity density, 145,246 for tree impurity and 226, 698 for graph entropy. The schema potential metrics values are also 0.80 for relationship richness, on the average 3 for attribute richness, and 13,253 for inheritance richness. Ontology clarity showed promising readability, which is found to be 3 attributes on average. Average attribute is computed as the ratio of the total number of concept attributes to that of the number of concepts in the ontology structure.

Ontologization

The semantic and conceptual disambiguation constructed the conceptual ontology ( o G ), taxonomic and non-taxonomic structures. For unambiguous understanding and interpretation, the conceptual structure is interpreted and represented with OWL DL primitives and constructs.

Consequently, the shared conceptualization of biomedical knowledge is formalized to a set of OWL DL axioms, from which we referred as OWL DL ontology ( o K ). In the axiomatization, root concepts are defined as the union of its children using owl: unionOf construct, where all of them are set as disjoint using owl: disjointWith construct. In addition, concepts in the taxonomic hierarchy are structured with a transitive relationship, ISA. The non-framework is applicable to biomedical domain, its practicality remained dependent on the technicality of instantiating the three semantic disambiguations and interpretations: semantic disambiguation, conceptual disambiguation and ontologization. Furthermore, the unstructured knowledge sources and background knowledge coverage have also their on contribution for practicality of the framework. In this context, we pleased to urge further investigations as future extensions of the framework. Consequently, the following points should be noted to enrich and mature the ontology learning framework.

 The use of very dense domain knowledge source collection. In the experimentation of the framework, it is found that several biomedical artefacts presented in the background knowledge aren't found in the bioMed text collection. This leads us to notice the knowledge source collection missed many of the biomedical entities from the knowledge base, which means that the collection is sparse.

 The use of semantically rich domain knowledge base. Several biomedical entities in the bioMed text collection are not found in the domain knowledge base. This leads us to further observe that there are many biomedical entities, which are not found in the background knowledge. Thus, we urge the development and use of highly rich background knowledge.

 The use of highly accurate concept and semantic association disambiguation programs.

MetaMap and enhanced-semRep are semantic disambiguation programs. MetaMap disambiguated biomedical concepts with certain limitations as shown in the literature. But, further investigations to extend MetaMap for individual and attribute information as well as to minimize its drawback are a requirement. Furthermore, currently enhanced-semRep disambiguated 682 biomedical roles out of the 736 defined in the background knowledge. As a result, we have observed that the recall and hence accuracy of biomedical roles and semantic associations can be enhanced by considering more semantic relationships. Thus, further extension of the semantic processing program at least to include the 736 roles in the background knowledge is required for still better ontology acquisition framework design and development.

 Consistent interpretation of conceptual semantics. As presented with the instantiation of the ontology acquisition framework, it didn't disambiguated semantic restrictions for each semantic association. To this end, we forced to interpret all associations using existential restrictions. This might have bad consequences to some associations, which are either universal or number restrictions. Thus, the interpretation model should also include universal and number restriction based interpretations.

 Exhaustive evaluation of the knowledge acquisition framework. It was evaluated on the structural dimension aspects only in terms of correctness and quality. However, the functional and usability dimensions are also equally measures quality and correctness of the framework. Thus, the proposed framework should also be assessed from these perspectives.

 Use of hybrid method for ontological knowledge acquisition. Data-driven and knowledge driven methods can be used to acquire richer ontological knowledge from biomedical texts.

For example Pikes framework can be integrated with our concept-driven method to acquire both schema and individual knowledge about a domain.

 Deploying the knowledge acquisition framework for ontology-based applications. It means that applying application-based evaluation approach for the proposed framework.

Application-based evaluation might investigate accurately the effectiveness and efficiency of the proposed knowledge acquisition framework and in turn generates the ontological knowledge.

 Domain adaptivity. The proposed framework can be made domain adaptive using adaptive learning techniques. Pikes framework can be used to enhance the domain adaptiveness of the proposed framework
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  measure correctness and quality of the proposed framework. Where, four of them are used to measure correctness and others are used to measure quality -11 -While scope and delimitation are as above-stated, the collection of textual knowledge sources for sub-fields of biomedicine is hardly possible. Consequently, collecting clinical narratives such as prescriptions, diagnosis and radiologic reports, books, health standard and policy documents become impossible due to its huge budget and longer time requirement to convert into its electronic version from their fragmented paper based version. Only scientific textual documents and clinical texts (e.g. clinical notes/reports) are used as a knowledge sources. Thus, only biomedical concepts and their associations from scientific and clinical texts are included to the set of biomedical knowledge artefacts. However, as far as any biomedical texts can be segmented or chunked into valid sentences, phrase or clauses, the framework can be applied directly.The proposed framework is also limited to disambiguate biomedical concepts, roles and their associations. Disambiguation and interpretation of entity attributes and individual entities are not considered in this research implementation, which is left as work on progress. But, it is easily adapted to disambiguate and interpret entity attributes and individuals if the knowledge base supports them. Disambiguation of named entities requires further knowledge base from what we have in the biomedical domain. However, it may require semantically annotated corpora, which is very expensive and effort intensive. As a result, attributional and assertional knowledge in the framework are empty or nullified.In formalizing the conceptualization, a restricted interpretation is used for unambiguous representations of the set of axioms, which based on either universal quantifier () or existential quantifier () or number restrictions. The technicality of universal quantifier () and number restriction is left as work on progress as they are determined based on the number of individuals involved in the restriction. The evaluation of the framework is also limited to measure values of the set of metrics for each criterion and their analysis results. However, the evaluation doesn't consider the correlation of set of metrics values to subject judged values. This is because judging each metrics values by subjects is labor intensive, time consuming and expensive. Furthermore, checking the well-formedness and syntactic consistency of the set of OWL DL axioms, OWL DL ontology, is left as work on progress. It is technically laborious, expensive and time consuming to check its syntactic consistency and well-formedness by opening, for example, in protégé environment. Although the proposed framework has visible differences (related to scalability, rigor, expert and engineer involvement) with existing frameworks (e.g. TextToOnto,

  It has three semantically correlated knowledge layers that represent biomedicine at different level of semantic granularity: the Semantic Network (SN); the Metathesaraus (MT) and its Specialist Lexicon (SL). The UMLS semantic network represents the high level conceptual abstraction of biomedicine with broader semantic classes and relations, named as semantic types and relationships. The Metathesaraus represents the fine-grained concepts and synonymous terms as well as relationships among concepts. The lexicon represents lexical knowledge sources, which consist of morphological and syntactic attributes of each term in the Metathesaraus. It creates linkage between Metathesaraus concepts and span of texts in the bioMed text collection. Consequently, as it is integrated with UMLS tools (semRep), the UMLSAB2012 version of UMLS is used to suggest interpretation of situation-specific scenarios.
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 76 Semantic Disambiguation In semantic disambiguation, situation-specific scenarios in text fragments are disambiguated with MetaMap and semRep. MetaMap disambiguates biomedical concepts, where as semRep disambiguates semantic propositions, associations between pair of concepts. While disambiguating concepts, syntactic parser is used to segment phrases, both argument and relational, in each biomedical sentence [316]. The parser, therefore, disambiguates the syntactic structure of sentences in the bioMed text collection, which we referred as surface semantics disambiguation. MetaMap uses a lexical matching algorithm to compute the matching of argument phrases with strings referring concepts in the background knowledge. After matching computation and selection of candidate terms, the corresponding concepts are recognized as concepts referred by the span of texts in bioMed text collection. Matching of a term with multiple concepts is also disambiguated based on the concepts' supper-class categorization and the terms context. SemRep uses indicator rules, the UMLS and the set of concepts from MetaMap output. Thus, it disambiguates ontology predicates that correspond to semantic indicators in the bioMed text collection. It also disambiguates appropriate semantic arguments (e.g. concepts) for each semantic predicate.

  rest of the study is organized into six chapters. Chapter two provides detail reviews of the state of the arts in the field of knowledge acquisition, representation and discovery. It also reviews recent studies related to knowledge discovery and acquisition frameworks, which lead to connections with the proposed framework. Chapter three reviews more surveys related to the proposed knowledge acquisition framework. Chapter four provides detail investigations of the design and modeling of the proposed knowledge acquisition framework in a general way. The proposed knowledge acquisition framework and its components are well explained in the same chapter.While chapter five instantiates the proposed framework to concrete instances such as the UMLS knowledge base, bioMed text collection and MetaMap and semRep programs, chapter six states the evaluation approaches and evaluates the proposed framework. The framework is evaluated using eight criteria, each of which corresponds to a set of metrics. Thus, each criterion is evaluated by measuring a set of structural metrics. Chapter seven concludes the study and recommends further research investigations for more enrichment and maturity of the knowledge acquisition framework.

  [138]. In these techniques, texts are parsed to add potential domain concepts into the background knowledge[START_REF] Spyns | Natural Language Processing in Medicine: An Overview[END_REF]. Knowledge-based methods have, therefore, been used to disambiguate and interpret syntactic and semantic knowledge that exist in textual documents. Syntactic knowledge bases are used to disambiguate linguistics structure of textual documents, for example Lexicons and WordNets[START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF]. Semantic knowledge bases, such as semantic graphs, thesauri and ontology, are used to disambiguate and interpret semantics and pragmatics of textual knowledge sources [140]. These methods have been successful in relation to quality and accurate disambiguation and interpretation of situationspecific scenarios in text fragments [140]. Consequently, researchers have been investigating the use of knowledge-based methods for practical applications such as medical knowledge acquisition [141] and medical literature indexing [142]. These methods are outperforming in quality and accuracy of semantic disambiguation and interpretation from unstructured textual sources (e.g. biomedical texts) [139] [140], [141], [142]. Rules are formulated by disambiguating terms, constants and context keywords from textual sources. Then, a recognizer is used to organize rules as tuples of the generated knowledge base schema. Although exploiting these techniques practically remained difficult due to resources required to annotate many texts and the need for templates that stipulate information types, recently several knowledge bases are emerging that enable to reduce these problems. In biomedicine, there have been several knowledge bases that have been utilized in disambiguating and interpreting implicit knowledge hidden in biomedical textual sources. The Unified Medical Language System (UMLS) is one of the largest Knowledge Base (KB) where most information acquisition systems rely on it. AQUA [140], PROTEOUS-BIO [145] and semRep [142] are three acquisition systems based on UMLS as a knowledge base [71].

  Generic engines are emerging to convey semantic representations of sentences or generate sentences from their representations[216]. NLP is also enabled to build targeted systems of specific purposes, for example, finding index terms in free texts and the ability to judge what level of syntax analysis is appropriate. Consequently, NLP techniques are becoming crucial for creating user-friendly decision-support systems, particularly in areas of knowledge discovery and acquisition. However, these systems must have substantial knowledge about the structure of a language, including what the words are; how to combine the words into sentences; what the words mean; and how these word meanings contribute to sentence meanings[216]. They also require techniques of encoding and using knowledge in a way that can produce appropriate behavior. Plus, situational knowledge plays crucial roles in determining how a system interprets a particular sentence[269].In biomedicine, researchers are developing and using NLP techniques, which are varying along several dimensions, but the complexity of natural language dictates that semantic interpretation is focused in scope, for instance, applications that are designed to interpret clinical texts such as discharge summaries [168], [169]. These works are knowledge-based and the specificity of the domain suggests the type and amount of knowledge used [167]. Existing knowledge sources, such as UMLS [168] or GALEN ontology [169], are used but commonly locally developed knowledge bases are used. Furthermore, system restrictions are imposed based on syntactic structures. For instance, NLP techniques process noun phrases or phrases covered by semantic grammars. Different linguistic grammars might be used, including semantic grammars, definite clause and dependency grammars and bottom-up parsers [137], [166]. For example, MedLEE developed semantic models derived from Linguistic String Project (LSP) and is guided by a semantic grammar that consists of patterns of semantic classes [170], [171]. These classes are defined in a semantic lexicon and Friedman et al [170] discussed the use of UMLS in constructing this lexicon. MedLEE has also been evaluated for several clinical applications [172], [173]. The AQUA system was developed to interpret natural language queries issued by users for information retrieval system [140]. The parser used standard definite clause grammars enhanced by an operator grammar, with a support of a semantic lexicon compiled from the UMLS Metathesaraus and Semantic Network. The final semantic representation is in the form of conceptual graphs [140]. The RECIT system concentrates on processing noun phrases and is composed of a proximity processor, a typology of concepts, a dictionary with syntactic and semantic information, a set of conceptual relationships and a set of canonical concepts [174]. The semantic information relies on the model developed by the GALEN project [175]. Rosario et al [177] describe an approach to semantic interpretation of noun phrases and nominal compounds based on semantic information contained in a large lexical hierarchy, the National Library of Medicine's Medical Subject Headings (MeSH) [177]. Part of the challenge addressed by their research is to determine the possible semantic relations that can obtain among the components of a nominal construction. SymText uses probabilistic Bayesian networks to represent semantic types and relations [176]. Syntactic knowledge comes from augmented transition networks and the system depends on a set of reports to train the network for a specific medical domain. SymText has been evaluated for clinical applications [178], [179], [180]. In a recent upgrade to SymText, MPLUS, Bayesian networks are represented in an object-oriented format and a bottom-up chart parser provides syntactic analysis. In addition, MPLUS uses an abstract semantic language to link Bayesian network types to each other in a predication format [181].

  coding a subset of discharge summaries whose details is provided byZweigenbaum et al [183].Hahn et al [184] also developed a natural language processor, MEDSYNDIKATE, to automatically acquire knowledge from medical reports. Grammatical knowledge comes from a lexicon and a fully specified dependency grammar. Conceptual knowledge comes from a locally developed ontology that consists of a set of axioms for concept roles with corresponding type restrictions for role fillers. In addition to sentence level analysis, MEDSYNDIKATE uses a centering algorithm to resolve anaphoric expressions at the discourse level [185],[186].
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 188 , [189], [190]. After input and tokenization, text is submitted to underspecified parser that relies on syntactic information in the SPECIALIST Lexicon. Part-of-speech ambiguities are resolved with the MedPost Tagger [191]. The interpretation of semantic propositions depends on the underspecified analysis enriched with domain knowledge and is driven by syntactic phenomena that indicate semantic predicates, including verbs, prepositions, nominalizations and the head-modifier relation in simple noun phrases. Rules are used to map syntactic indicators to predicates in the UMLS. For example, there is a rule that links the nominalization treatment with the predicate TREATS. Domain restrictions are enforced by a meta-rule stipulating that all semantic propositions identified by SemRep must be sanctioned by a predication in the UMLS Semantic Network (SN) [142]. This rule ensures that syntactic arguments associated with treatment must have been mapped to UMLS concepts with semantic types that match one of the permissible argument configurations for TREATS, such as Pharmacologic Substance and Disease or Syndrome [142]. Further syntactic constraints on argument identification are controlled by statements expressed in a dependency grammar [142]. For example, the rules for nominalizations state that one possible argument configuration of an object is marked by with the preposition of occurring to the right of the nominalization and that one possible location for the subject is anywhere to the left of the noun phrase containing the nominalization [142]. Generally, NLP technologies are increasingly supporting knowledge discovery and acquisition systems. In this research, MetaMap and semRep are used to recognize domain entities and their associations from biomedical texts.2.5 Information ExtractionIn the last decades, rapid proliferation of textual information has been available in a myriad of repositories on the Internet and intranets. That is, large proportion of information has been transmitted through free-text documents and is hard to search them [192]-[203]. Consequently, a growing need of techniques to analyze free-texts and discover valuable information from them led to the emergence of Information Extraction (IE) technologies[204]. The task of IE is to identify a predefined set of entities in a specific domain, where a domain consists of a corpus of texts along with clearly specified information need[192],[START_REF] Consoli | A New Framework to Extract Knowledge by Text Mining Tools[END_REF]. Thus, IE is a process of extracting structured information, such as identifying small-scale structures like noun phrases, denoting a person or group of persons, geographical references and numeral expressions, and finding semantic relations between them. However, domain specific knowledge is required for correct aggregation of partially extracted information into a structured representation[204].IE is a non-trivial task due to the complexity and ambiguity of natural language structures. For example, there are different ways of expressing the same fact distributed across multiple sentences of documents or repositories, and the relevant information might also be implicit and difficult to differentiate[206]. IE is narrower than full text understanding, which computes the possible interpretations and grammatical relations in natural language texts whose realization is still impossible from the technical point of view[205]. Thus, the use of less sophisticated linguistic analysis techniques might be advantageous since they might be sufficient for extracting and aggregating relevant pieces of information. Particularly, the recent advances of NLP with robust, efficient and high-coverage shallow text processing techniques, opposed to deep linguistic analysis, have contributed to the wide spread deployment of IE techniques in realworld applications [205], [206].

  node and link diagrams[222]. Latter, similar notations have been introduced as conceptual graphs differing slightly in syntax and semantics[77]. Despite the differences, semantic graph formalisms concentrate on expressing taxonomic structure of concepts and the relations between them [77]. Semantic network is a graph whose nodes represent concepts and whose arcs represent relations between the concepts in which they provide structural representation of statements about the domain of interest. In biomedicine, for example, bacteria and infections are typical concepts, while the relations between them are caused, caused_by, affected and affected_by. Thus, semantic networks provide a means to abstract knowledge from natural language formalism. That is, it enables to capture knowledge in texts in a form suitable to computational reasons[START_REF] Bobrow | An Overview of KRL, a Knowledge Representation Language[END_REF],[224].Concepts represent meanings of noun phrases while relations represent meanings of verb phrases, nominalizations, prepositions or comparatives. A semantic network fragment CAUSES (bacteria, infections) is read as bacteria causes infections, expressed as a binary relation between the two concepts, bacteria and infections. The concepts and their associations are generic and stand for anything relevant in the domain of interest. However, some particular relations for standard knowledge representation and reasoning involve particular instances (objects) instead of concepts. For example, considering a particular bacterium (bact#1) and a particular infection (infect#2). The latter represents concrete individuals in a domain of interest, the former serves as the classes to group these individuals which have certain properties in common. A particular relation that links individuals to their classes is that of instantiation, denoted by instance_of, and thus, bact#1 is an instance_of a concept bacterium[START_REF] Bobrow | An Overview of KRL, a Knowledge Representation Language[END_REF],[224].The lower part of semantic network is concerned with knowledge of individuals reflecting about a particular situation of bacterium, bact#1, which causes a particular infection, infect#1. The upper part is concerned with knowledge of general concepts, reflecting various possible situations. The most prominent relation in semantic network is subsumption, denoted by kindOf relation, which relates two general concepts and expresses generalization-specialization [222]. In the above text, parasiticBacteria is a special kind of bacteria and it is subsumed by bacteria.

  Whereas, Description Logic (DLs) are computationally tractable subset of FOPL with a typical Tarskian model-theoretic semantics but restricted to unary and binary predicates to capture the notion of concepts and relations[226]. DLs enable to represent knowledge of application domain in a structured and formally understood manner[226].DLs are motivated in that the important notion of a domain is described by concept descriptions and binary predicates, supported with the use of concept and role constructors and primitives. DLs differ with the semantic network and frames nets as they are equipped with formal semantics and its tractability. That is, DLs are decidable fragment of FOPL and expressive enough that they become major knowledge representation formalism, particularly in the emerging semantic web [226], [227], [228]. Description logic theory consists of statements about concepts, individuals and their relationships [226]. Individuals correspond to constants in first order logic and concepts correspond to unary predicates. The DL concepts can be either named or anonymous. Named concepts consist of a name, say mammal, which can also be mapped into a unary predicate in FOL. Composite or anonymous concepts are formed from named concepts with the use of DL concept constructors, similar to the formation of complex formulas out of atomic formulas in FOL [226]. For example, if C and D are DL concepts, then C  D, C  D, and C are DL composite or anonymous concepts. Exceptionally, DLs provide two special classes, namely  and . They are defined by means of equivalences   C   C and  C   C, where C is some arbitrary concept. The concept  is the NULL concept, a concept under which everything falls or SINK concept. The concept is the TOP concept, a concept that subsumes every concept in the knowledge. Thus, the TOP and NULL concepts are the highest and the lowest in DLs knowledge base respectively. Furthermore, DLs allow a restricted use of quantifiers through role restrictions. Roles are named entities, which are binary predicates in FOL. For example, in DLs given a role, r, and a concept C, the composite concept r.C or r.C can be formed. In addition, DLs are equipped with terminological and assertional axioms. Terminological axioms (denoted as Tbox) are used to introduce names for complex descriptions. Assertional axioms (denoted as Abox) are used to state properties of individuals. A set of assertions in an Abox and named individuals that occur in the Abox assertions are Abox individuals. The Tbox consists of a set of statements of the form C  D, C  D or C D, where C and D are named or composite concepts. Any Tbox can be translated to first order logic, and thus, inherits a logical consequence relation from it [226]. DLs allow to state individuals as instances of concepts. For example, C (a) states that an individual a belongs to a concept C. Similarly, a statement r (a, b), where r is a role means that the individual a and b stand in relation to r. Thus, the DL Abox consists of a set of statements of the form C (a) or r (a, b), where C is a named or anonymous concept, r is a role and a and b are individuals. The DL knowledge base (  ), therefore, is the Tbox and Abox. In  , a concept C is subsumed by D iff all instances of C are necessarily instances of D [226], [227], [228]. An individual i is an instance of a concept C iff i is always interpreted as an element of C ( C i  ) [226], [227], [228]. Consequently, DLs are ideal candidates as ontology languages and thus, the W3C proposed Web Ontology Language (OWL), evolved from DLs, as ontology language [226], [227], [228]. OWL has a syntax based on RDF Schema, but it basis for its design with the expressive DL, SHIQ, and developers have tried to find a good compromise between expressiveness and complexity of reasoning [226], [228]. Although reasoning in SHIQ is decidable, it has a rather high worst case complexity. However, highly optimized reasoner such as RACER [229], Pellet [231] and Fact++ [232] behave quite well in practice. Though SHIQ has different features, it has been argued with the DL and ontology communities that these features play a central role when describing properties of aggregate objects and when building ontologies [226], [228]. The actual use of DL provides these features as the underline logical formalism of the web ontology language (OWL), which substantiates the claim [227]. Thus, OWL is an extension of RDF Schema in the sense that it uses the RDF meaning of classes and properties (rdfs: Class and rdfs: subClassOf) and its adds language primitives to support richer expressiveness. Simple extension of RDF schema may clash with the trade of between expressive power and efficient reasoning. RDF schema has powerful modeling primitives (e.g. rdfs: Class, rdfs: Property), which are very expressive and may lead to uncontrollable computational properties [228].

2. 7 . 2

 72 Data-Driven Based EvaluationData-driven based ontology evaluation attempts to measure the equivalence between ontologies and a domain of knowledge, domain corpus[244]. The basic notion of the technique is to measure the extent of fitting between ontologies and domain knowledge[267]. Thus, this technique is referred as data-driven ontology evaluation, which essentially identifies a means to compare ontologies with the actual knowledge of a domain. For example, Brewster et al argued that a corpus of texts is an effective source of information to construct large proportion of ontologies[270]. In the technique, a set of domain terms are extracted from the corpus, and a set of concept and relation names are extracted from ontologies and finally count the number of term overlaps between the ontologies and the corpus.

[ 278 ]

 278 , [279]: Evaluation at Lexical, vocabulary or data layer focuses on domain artefacts and their labels. These are concepts, instances and facts in the ontology learning and vocabularies used to label domain artefacts. Evaluation tends to engage contrasts between different sources of data in the problem domain such as domain specific corpus, and techniques such as cosine based similarity measures. Evaluation at Hierarchies or Taxonomies layer emphasizes on the ontology hierarchies. Taxonomies are the back-bone of ontologies defined as a set of structures linked by is-a relation, subsumption structures. Subsumption (is-a) structures are important and they are

  considered such semantic-driven interpretation methods and techniques as one of the knowledgebased methods, a concept-driven technique.With the availability of background knowledge, the concept-driven technique enables to instantiate already consensus reached semantics to support ontological theories and develop a shared domain conceptualization. Thus, knowledge-based methods support ontological theories than the data-driven counterparts. In this context, we applied a concept-driven processing technique to learn ontologies from biomedical texts. In this method, situation-specific scenario is interpreted suggested by a set of instances in the background knowledge. That is, the situation specific scenario in a text suggest a knowledge base scenario, and knowledge base instances suggest ways of interpretating and disambiguating text fragments from biomedical texts. In this way, a knowledge-based method enables to learn ontologies, which have common understandings to a group of peoples or experts. Plus, it minimizes expenditures of ontology learning from unstructured sources than data-driven methods and techniques. Thus, knowledge-based methods and techniques are outperforming in accuracy and quality of knowledge acquisition from textual sources[START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF],[142]. There are many investigations, which used knowledge-based methods for a range of applications, including medical knowledge acquisition, medical literature indexing and searching, automatic coding of clinical texts and processing molecular biology information [141],[142]. In these systems, after extraction of terms, constants and keywords as rules, a recognizer is used to organize them as tuples of the generated knowledge-base schema. Although exploiting these methods remains difficult because of time and effort needed to manually annotate large texts and the need for templates that stipulate information types to extract, several knowledge-bases are emerging that reduce these problems[START_REF] Campbell | The Unified Medical Language System: Toward a Collaborative Approach for Solving Terminological Problems[END_REF]. In biomedicine, for example, there are many knowledge-bases, which are utilized to disambiguate implicit knowledge buried in the biomedical texts. UMLS is one of the largest biomedical knowledge-base where most knowledge acquisition systems rely on it. It is an integration of more than 150 biomedical vocabulary sources, including SNOMED CT and MeSH[START_REF] Campbell | The Unified Medical Language System: Toward a Collaborative Approach for Solving Terminological Problems[END_REF]. Furthermore, UMLS has been developed, maintained and used since 1986 by different domain experts and users internationally in addition to those in the National Library of Medicine (NLM). Thus, the semantics in the UMLS knowledge base is already consensus reached and shared among these experts and users. AQUA [140], PROTEOUS-BIO [141], MetaMap[START_REF] Aronson | An Overview of MetaMap: Historical Perspective and Recent Advances[END_REF] [187] and semRep [142] are knowledge acquisition systems based on the UMLS knowledgebase. MetaMap is a program that disambiguates concepts from biomedical texts[START_REF] Aronson | An Overview of MetaMap: Historical Perspective and Recent Advances[END_REF],[187]. On the other hand, semRep disambiguates semantic propositions from biomedical texts using underspecified syntactic analysis and structured domain knowledge, the UMLS [142].
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 6421 Figure 2.1 -Architecture of Ontology Learning Framework [300]

Figure 3 .

 3 Figure 3.1 depicts the general architecture of the proposed ontology acquisition framework interacting components. In the architecture, the components are denoted with shapes of drawings. Cylinders denote repositories and rectangles denote processes where as document collection denotes a set of domain texts. Arrows denote component interactions.

  source: the unstructured knowledge source is a collection of biomedical documents with different formats, types and categories in the domain. Particularly, the unstructured knowledge source is the biomedical textual document collection, which can be normalized into phrases, clauses or sentences containing biomedical artefacts and their interactions either implicitly or explicitly stated in the text. More formally, for domain knowledge source ( i d S ) for each document ( i d ), the domain knowledge source collection ( S ) is the set of biomedical documents, which comprised of biomedical artefacts and their interactions ( set of biomedical concepts and i r denotes a set of conceptual relations in the document collection. This way, m number of biomedical documents are collected and prepared as the knowledge sources of the proposed framework.

Figure 3 .

 3 Figure 3.2 illustrates the architecture of semantic disambiguation and its interacting components. Cylinders denote knowledge repositories and curved rectangles denote processes, where as document collections denote biomedical knowledge sources. Arrows denote component interactions. The semantic disambiguation enables to acquire biomedical artefacts (concepts, individuals, and relationships) from free texts and predicts their semantic associations. It is comprised of three components: phrase segmentation, phrase disambiguation and semantic association disambiguation. Phrase segmentation chunks argument (e.g. NPs) and relational phrases (e.g. VPs, PPs, etc) for each biomedical sentence, and then, produce syntactic associations (a set of syntactic triplets). Phrase disambiguation produces semantic mappings for each argument and relational phrases. While argument phrases are mapped into domain individuals or concepts, relational phrases are mapped into semantic (ontological) predicates.
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 32 Figure 3.2 -Semantic Disambiguation Architecture

  Syntactic cues: [<subject>, or <object>, or <syntacticrelation>] Syntactic triplets: [<Subject, Syntacticrelation, Object>] Where, the subject and object are syntactic arguments and syntacticrelation (e.g. in and with in the text fragment) is semantic indicators or relational phrases in the text fragment. Arguments (e.g. subjects and objects) are referred by noun phrases, where as syntacticrelation (semantic indicators) are referred by verbs, nominalizations, prepositions (e.g. in or with) or comparatives in the textual knowledge sources.

  The syntactic phenomena, such as verbs, prepositions, nominalizations and the head-modifier relations, are semantic indicators and they are mapped to semantic predicates in the background knowledge. For example, the semantic indicators in[START_REF] Ryan | Towards Semantic Interoperability in Healthcare: Ontology Mapping from SNOMED CT to HL7 Version 3[END_REF] are the verb diagnoses, the prepositions in and with and the modifier-head structure in the noun phrase whose head is stenosis. Semantic indicators are syntactic predicates that anchor the disambiguation and interpretation of syntactic structures as semantic propositions. Consequently, disambiguation of syntactic associations asserted in the input text depends on the syntactic information contained in the parse structure, which are the argument and syntactic relation identification. Argument identification is constrained by a grammar that establishes a syntactic relation between semantic indicators and heads of noun phrases serving as arguments, i.e. arguments syntactic position relative to the semantic indicator. Grammar rules can be stated in general terms for each class of indicators, such as verbs, prepositions and nominalizations. For example, the argument identification rules for verbs stipulate that subjects must occur to the left of the verb and objects to the right.

Figure 3 .

 3 3 depicts the architecture of phrase segmentation and interaction of its components. In the figure, cylinders are repositories and curved rectangles are processes. The document representations are unstructured knowledge sources and arrows are component interactions. The phrase segmentation architecture has three major interacting components: lexical analysis, syntactic analysis and syntactic disambiguation. The lexical analyzer determines the functional categories of each word in a sentence, referred as POS tagging. Syntactic analyzer determines the syntactic structures of each sentence by identifying the argument (subject and object arguments) and relational phrases (syntactic indicators). Syntactic disambiguation enables to predict the syntactic associations among subject and object arguments, and syntactic indicators, referred as syntactic associations or triplets.

Figure 3

 3 Figure 3.3 -Phrase Segmentation

st

  or object o t . Syntactic relations are interpreted based on their syntactic and semantic functions in the syntactic structure. In this research, however, semantic indicators are interpreted using rules, which map the syntactic indicators to their corresponding semantic predicates in the background knowledge. Each mapping rule associates a set of semantic indicators with a semantic predicate defined in the background knowledge. This set of rules is referred as indicator rules hereafter.

( 6 )

 6 (Diagnose, verb): DIAGNOSES ([Left anterior descending artery, stenosis], Mod-head): LOCATION_OF (In, preposition) : OCCURS_IN (With, preposition) : CO-OCCURS_WITH

( 8 )

 8 (qualifier)) [Spatial Concept] The word sense disambiguator chooses one of the matching terms proposed by the mapping function. Generally, interpretation of syntactic arguments is determined by computing lexical matches and imposing syntactic and semantic constraints. The syntactic constraint enables to determine noun phrases from the syntactic structures and semantic constraints enable to resolve ambiguities in multiple mappings. The mapping function computes the similarity of syntactic arguments (e.g. NPs) to terms referring to semantic arguments (e.g. concepts), where similarity is computed by the scoring function during candidate evaluation. In disambiguating syntactic indicators, such as verbs, prepositions, nominalizations and comparatives, all semantic indicators are chunked and analyzed to group them according to their semantic correspondence with semantic predicates in the background knowledge [142]. The syntactic contexts of semantic indicators are determined using their syntactic argument expressions, and semantic contexts of the semantic predicates are determined using their semantic argument expressions. After chunking of semantic indicators, they are classified under each semantic predicates extracted from background knowledge. Then, semantics correspondence rules (indicator rules) are built to develop the matching of semantic indicators to semantic predicates in the background knowledge. Generally, relational phrase disambiguation is a rule construction function that chunks semantic indicators, retrieves semantic predicates and constructs matching rules between syntactic indicators and semantic predicates. The assignment of semantic indicators to semantic predicates is performed with a semantic classifier, which understands the syntactic and semantic functions of them. In this research, interpretation of syntactic indicators and construction of indicator rules are performed manually for semantic predicates in the background knowledge. For example, in a text fragment in (8), there is a rule in (9) that links the nominalization treatment (semantic indicator) with the semantic relation TREATS (semantic predicate). Treatment of fracture with surgery -86 -(9) (treatment, nominalization) : (TREATS, semantic predicate) Thus, syntactic relation disambiguation is comprised of four components: syntactic relation chunking, context identification (e.g. NPs, VPs, nominalizations, etc.), semantic predicate extraction, classification and rule construction. Syntactic relation chunking segments each sentence of the knowledge source and identifies syntactic indicators (e.g. VPs, prepositions, nominalizations, comparatives, etc) that link argument phrases (NPs). Context identification determines whether the syntactic indicator is verb, nominalization, preposition, and so on. The semantic predicate extraction enables to acquire semantic predicates either explicitly or implicitly (inferred ones) stated in the background knowledge. While semantic classification assigns each semantic indicator to one or more semantic predicates as its category, rule construction builds mapping rules based on the information on categories of semantic indicators, for example building indicator rules as in (9).
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 33487323 Figure 3.4 illustrates architecture of phrase semantics disambiguation, where two components are interacting: argument and relational phrase disambiguation. The architecture gets input from phrase segmentation and produces a set of domain artefacts: individuals, concepts and ontological predicates. Argument phrase disambiguator generates a set of biomedical individuals and concepts, whereas, the relational phrase disambiguator produces a set of indicator rules, which associate semantic indicators with semantic predicates.

Figure 3 .

 3 Figure 3.5 illustrates the architecture of semantic proposition disambiguation. In the architecture, two components are interacting: candidate argument selection and argument sense disambiguation. Candidate argument selection produces a set of candidate biomedical entities (e.g. individuals and concepts), where as sense disambiguation interprets and produces the correct arguments of each semantic predicate in a sentence. Lastly, the proposition disambiguation produces a set of semantic associations, semantic predictions, as interpretations of each syntactic association.
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 35 Figure 3.5 -Semantic Proposition Disambiguation

Figure 4 .

 4 Figure 4.6 illustrates biomedical knowledge modeling based on disjoint partitioning and generalization-specialization or subsumption relationships. In this case, the broadest concept is the biomedical domain and the finest concept is a class of similar individuals.

Figure 3 . 6 -

 36 Figure 3.6 -Domain Knowledge Modeling
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  For completeness, the structural model combines two relational models: the semantic overlap and InstanceOf relation models. The overlap relation model computes the subsumption relation between the two conceptualizations, l C and u C . The overlap computation is based on semantic classes that exist in l C and u C , their intersections. For example, in a text (10), the concepts Ofloxacin and Chronic obstructive airways disease exacerbated with their semantic class Pharmacologic Substance and Disease or Syndrome respectively exist in l C structure, but Pharmacologic Substance and Disease or Syndrome are also exist in the upper knowledge structure creating an overlap between the two knowledge conceptualizations. Thus, the overlap relational model creates a subsumption relation between the lower and upper ontology schema structures. It is also possible to consider the lower ontology structure ( l G ) as an instance of the upper ontology schema structure ( u G ), i.e. elements in l C can be considered as instances of elements in u C . This is because l G is an intensional structure and it is the instance of the upper knowledge schema structure. The InstanceOf relational builds an elemental relationship between each individual and its semantic class or concept in the lower ontology structure ( l G ). The model classifies each individual I i  in one and only one semantic class in l C . To keep the consistency of the classifier, the model is constrained by the disjointness axioms at each semantic class. For example, in (10), if Ox#1 and Ox#2 are individuals belonging to Ofloxacin, Ox#1 and Ox#2 should not belong to other semantic classes in the conceptualization ( o C ). To keep the uniqueness of the semantic class (Ofloxacin) for Ox#1 and Ox#2, the disjointness axiom is set between sibling semantic classes in the instantiation of the conceptualization ( o C ).

Constraint 4 . 1 :Constraint 4 . 2 :

 4142 Every individual in the conceptualization ( o C ) must be an instance of a conceptual type, semantic class, that represents a semantic category in the conceptual structure ( o G ). This definition enables ontologization to interpret each semantic class to a set of individuals in the domain of interpretation ( I  ). An individual in the conceptualization ( o C ) must instantiate exactly in one conceptual type or semantic class. This definition enables ontologization to partition each individual distinctly in their semantic class. Ontologization also considers two instance levels in the conceptualization ( o C ) or conceptual structure ( o G ). While the first instantiates semantic classes in the intensional structure to a set of individuals in the domain of interpretation, the second instantiates the schema structure to semantic classes in the intensional structure. Consequently, a conceptualization ( o C ) is instantiated with a set of individuals in the domain of discourse ( I  ). Generally, semantic categories and semantic classes in the conceptual structure ( o G ) and its conceptualization ( o C ) is instantiated either directly or indirectly to a set of individuals in the domain of interpretation ( I  ). The semantic classes are instantiated directly to a set of individuals in the domain of discourse, where as semantic categories are instantiated indirectly to their individuals through their instances, i.e. semantic classes. Consequently, semantic categories and semantic classes are interpreted to their extensional representation. Ontologization, therefore, maps semantic classes and categories in a similar fashion to their set of individuals in the intended domain world, w.
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 41 Interpretation Model The interpretation model adopts set theoretic model to interpret every concept in the conceptualization ( o C ) to a set of individuals in the intended world w, where w  W, the possible domain worlds. The extension of each biomedical concept or category is world invariant in cases where a static possible domain world w is considered. This is also generalized to all possible domain worlds, W. In this research, the interpretation model (M) considers the extensions of biomedical concepts or categories in a static biomedical domain world. That is, interpretation of biomedical concepts and categories are world invariant. Definition (Concept Extension function): Let W be a non-empty set of possible domain worlds and let w  W be a specific world. The extension function  maps a concept c to its interpretation, the set of individuals in a specific world w. c to set of instances in a world w. Consequently, the extension function ) (c  provides a mapping of a concept c to a set of instances that exist in the possible domain worlds, W.



  is the interpretation of a concept c in a world w, and ) (c  is the interpretation of a concept c in the possible domain worlds, W. The interpretation model ( M ) can also be supplemented with definitions related to specialization relations and rigidity of a concept interpretation. Definition (Subsumption Relation): Let 1 c and 2 c are two concepts in the conceptualization

  in the conceptual structure ( o G ) is, therefore, interpreted as a subset relation in the semantic interpretation model, M . Definition (Rigid Concept): A concept c is rigid or modally constant if and only if for any

  ( o C ), each concept node is associated with other concept nodes with their semantic links, semantic relations. The interpretation model maps these semantic relations to associations of set of individuals. The following definitions formulate how the model interprets these semantic relations. Definition (Role Extension Function): let W be a non-empty set of possible domain worlds and let W w  be a specific world. The extension function w  maps each semantic role r to its interpretation domain I  , i.e. the set roles in the intended world w. More formally, the extension function ) (r w  maps a role r to a set of role instances in a world w. Consequently, to the set of role instances that exist in the possible domain worlds, W.

Figure 4 .

 4 Figure 4.7 depicts the extensional interpretation model of biomedical individuals, concepts and their associations. It enables further understanding of how the conceptual knowledge is mapped to a set of individuals in the domain of discourse ( I  ). The figure demonstrated the interpretation function using two individuals (Ayele and Senait), three concepts (Lawyer, Doctor, & Vehicle), and two roles (hasChild and owns). The diagram illustrated the mapping of individuals (e.g. Senait), a set of individuals (e.g. Doctor), and the binary relation (e.g. owns) in the domain of interpretation ( I  ). The circle on the right is the domain of interpretation and the individuals, concepts and the roles are conceptual entities. The interpretation function  map the semantics of the conceptual entities (Senait, Ayele, Lawyer, Doctor, hasChild, owns) to the domain of
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 37 Figure 3.7 -Extensional Interpretation Model

  ( c H ): the hierarchical knowledge in the schema and intensional structure level of the conceptual structure ( o G ). It also defines the properties of hierarchical relations ('ISA',) to fulfill the partial order relation characteristics or not.  Role Taxonomy Axioms ( r H ): the hierarchical knowledge in the schema and intensional structure level of the conceptual structure ( o G ). It also defines the properties of hierarchical relations ('ISA',) to fulfill the partial order relation characteristics or not. That is, the transitivity, reflexivity and anti-symmetricity properties.  Non-taxonomic Axioms (  ): it is non-hierarchical knowledge in the schema and intensional structure of the conceptual structure ( o G ). It also defines the inheritability properties of each non-taxonomic relation in the conceptual structure ( o G ).

MMMMFor each line of text l in d Scan 2 regExp and 1 regExp 2 regExp or 1 regExp

 2121 with full stop followed by a space and capital letter for easy recognition by the phrase and proposition disambiguation. The text in appendix A.1 illustrates a sample biomedical text document before cleaning. In the text, there are several irrelevant text parts and bad characters such as "a 6 &amp;#8211; 24 &amp;#160", citations like "[ 1 , 2 , 12 , 15 , 16 , 19 , 23 &amp;#8211; 27 ]" and figures like "Fig. &amp; #160". In cleaning and delimiting each sentence, the content of the text documents are considered to have different sections. Scientific documents, for example, have abstracts, captions for images, graphs and tables in which all of them are annotated with XML tags. The XML tags enabled the cleaner to detect Meta-information such as captions from each text document. Sentence delimitation is based on regular expression that detects full stop followed by space and a capital letter. The cleaner examined each sentence in the textual documents for bad characters (diacritics) and irrelevant texts in it. The cleaner accomplished its task in three steps: recognition and removal of XML tags in the content of the bioMed text collection, sentence delimitation, and elimination of bad characters and unwanted texts in the textual sentences. Appendix A.2 illustrates a sample document snapshot after cleaning and delimitation of sentences. BioMed Text Collection Cleaner: it is a module implemented for cleaning a bioMed text collection. It refers different algorithms, which eliminates the different irrelevant part of the bioMed text collection. Let uc M denote the uncleaned bioMed text collection and c M denote the cleaned bioMed text collection, the following pseudo-algorithm is developed using these as input and output. Pseudo-algorithm -bioMed text collection cleaner, which refers different algorithms and produces cleaned bioMed text collection. //input: uncleaned bioMed text collection, uc M //output: cleaned bioMed text collection, c For each document d in uc M Remove XML tags (d) Detect sentence boundaries (d) Normalize sentences (d)//remove irrelevant characters End XML Tag Identification and Cleaning: algorithm is developed for identifying and removing these parts of the texts. The algorithm reads each document, identifies XML tags and removes the section or the tag. Pseudo-algorithm -XML tag cleaner, identifies and eliminates XML tags/sections in each text document, d.//ID is a section identification number attached in each document // c M is the bioMed text collection -108 -//input is text documents with XML tags and sections //output is text documents with XML tag removed & merged For each document, d , in c For each XML tag ID If ID is document ID, ignore the XML tag, If ID is abstract ID, clean the XML tag, If ID is body text ID, clean the XML tag, Else if image, figure, graph, table captions Eliminate the section itself End Eliminate spaces between lines Merge body text with the abstract End Sentence Boundary Detection: the boundary of each sentence is identified and delimited with a sentence delimiter. Boundary detector scans left-to-right and line-by-line each biomedical document ( d ), with a pattern of full stop, space and an uppercase letter ( 1 regExp ), or full stop, upper case letter ( 2 regExp ). Once the boundary detector recognized either of these two patterns in a line of text, it puts a new pattern that concatenated a period, a single space and a single upper case letter as a sentence delimiter. The pseudo-algorithm for accomplishing this task is presented as follows: Pseudo-algorithm -sentence boundary detector delimits sentence boundaries in each text document ( d ). is the bioMed text collection //input is XML tag removed biomedical documents //output is sentence delimited biomedical documents For each document, d, in c If is found, Replace with new regular expression 3 regExp and semantic proposition disambiguation respectively. The MetaMap program is used to recognize and extract biomedical concepts from each sentence of the bioMed text collection. The MetaMap WSD server is used to resolve multiple mapping of a term. Concept associations are predicted using an enhanced-semRep program. For example, in a text fragment "Bacteria cause Infections", MetaMap disambiguated the concepts Bacteria and Infections, where as the role CAUSE and the semantic proposition {Bacteria, CAUSE, Infection} is disambiguated using the semRep program. Thus, bacteria and infection are argument phrases (NPs) where as cause is a relational phrase (e.g. VPs). Similarly, Bacteria and Infection are argument concepts and CAUSE is a semantic predicate.4.3.1 Concept Disambiguation In recognizing and disambiguating biomedical concepts, lexical matching between terms in the bioMed text collection and background knowledge are computed. The lexical matching algorithm used an exhaustive technique to generate term variants, identify potential candidates, compare the candidates and compute the mapping for accurate disambiguation of the concepts. The MetaMap WSD server is configured to resolve multiple mapping of a term based on the semantic contexts of the matching concepts. For example, in an input text "ocular complications of myasthenia gravis", MetaMap disambiguated candidate concepts as depicted in Figure 4.1 below.

Figure 4 .

 4 Figure 4.1 -Multiple Mapping
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 42 Figure 4.2 -Biomedical Concept Disambiguation

Figure 4 .

 4 Figure 4.2 illustrates a snapshot of concept disambiguation output. More outputs of concept disambiguation can be obtained in appendix A.3 before post-processing.
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 43 Figure 4.3 -Snapshot of Predicted Semantic Propositions

Figure 4 .

 4 4 illustrates a snapshot of concept associations generated by the semantic processing (enhanced semRep coverage) program where numerical codes represent concepts, capitalized letters represent relationships between concepts and underscores are separators. More output of the semantic processing program is illustrated in appendix A.4 and A.6. Finally, the acquired knowledge artefacts ( p K ) is generalized to a formulation of four tuple the set of terms referring to concepts and roles in the bioMed text collection; C is the set of atomic concepts interpreted from the text collection; R is the set of atomic roles interpreted from the same text collection in the indicator rules; and R C is the set of binary associations between the concepts in C and the roles in R.
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 44 Figure 4.4 -Snapshot of Semantic Propositions
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 441 semantic predictions) are structured into a lower conceptual ontology structure ( l G ). The upper conceptual ontology structure ( u G ) is reused from the UMLS semantic groups and semantic classes[START_REF] Mccray | Upper-Level Ontology for the Biomedical Domain[END_REF] [START_REF] Burgun | Mapping the UMLS Semantic Network into General Ontologies[END_REF]. The conceptual ontology ( o G ) is instantiated with direct acyclic graph formalism. The lower ontology structure is built as an integration of a set of semantic predictions acquired from the bioMed text collection, in which 135 conceptual ontologies, rooted at each of the 135 semantic categories (i.e. semantic classes), are constructed. In the process, semantic predictions are aligned based on their hierarchical knowledge granularity. In addition, redundancies and cycles are pruned to minimize inconsistencies and improve inferencing.These ontologies are comprised of fine-grained concepts and their associations. In each of the 135 ontologies, the root concept is overlapped with a leaf concept in the upper ontology structure ( u G ). In the upper ontology structure ( u G ), each semantic class (e.g. semantic type) is subsumed by only a semantic group and every semantic group represents sub-domain categories of the biomedical domain, the bioMed concept. Consequently, the upper ontology structure ( u G ) is rooted at the concept bioMed, which is partitioned disjointly into sub-domain categories (i.e. -118 -semantic groups). Each sub-domain categories are further partitioned disjointly into semantic categories, a set of leaf nodes or concepts. Integration of the two ontology structures (upper and lower) is built by computing conceptoverlaps between the two structures. For example, in a text 'ocular complications of myasthenia gravis', Eye is a fine-grained concept whose type (root concept) is Body Part, Organ or Organ Components and Complications is also a fine-grained concept whose type (root concept) is Pathologic Function. But, Body Part, Organ or Organ Components and Pathologic Function are semantic categories appearing as leaf concepts of the upper ontology structure, creating overlaps with the root concepts of the lower ontologies. In this way, the two ontology structures are integrated consistently and generated the large conceptual ontology ( o G ) as a direct acyclic graph. Upper Ontology Structure The UMLS semantic groups, semantic types and their associations are re-used to construct the upper ontology structure. Semantic groups partitioned the biomedical domain into 15 subdomain categories. The categories are partitioned disjointly with the help of domain experts and they form biomedical sub-domain categories where any semantic classes are belong to only in one of them. The 15 sub-domain categories are further partitioned disjointly into 135 coarsegrained semantic classes (semantic types) [314]. Each semantic class is subsumed with a subdomain category. For example, Finding and Pathologic Function are coarse-grained concepts, which are subsumed by the Disorder sub-domain category. Consequently, taxonomically, the upper ontology is structured using subsumption relation, the 'ISA' link. That is, all sub-domain categories are subsumed by the broadest biomedical concept, the bioMed. The bioMed concept is the root of the upper ontology structure ( u G ). The leaf concepts of the upper ontology are the semantic classes or coarse-grained concepts, which overlaps with root concepts of the lower ontology structure ( l G ).To construct the upper ontology structure, a technique that uses the bioMed concept, sub-domain categories and coarse-grained concepts and their semantic associations, is developed. In the technique, the bioMed concept is considered as a set of all biomedical individuals and it is the top concept (┬) in the ontology's lattice structure ( o G ). The bioMed concept (┬) is then further partitioned disjointly into domain concepts (categories), which are subsumed by the bioMed concept (┬). These categories are associated with the broadest biomedical relations such as ISA, ASSOCIATED_WITH, CONCEPTUALLY_RELATED_TO, PHYSICALLY_RELATED_TO, SPATIALLY_RELATED_TO and TEMPORARLY_RELATED_TO. These relations are structured hierarchically where ASSOCIATED_WITH is the top (┬) biomedical relation and all others are subsumed by it. An algorithm is, therefore, developed to structure the bioMed concept, sub-domain concepts and their associations. The algorithm creates the top concept first and then it creates the subpartitions, their associations and the structures of associations. The inputs for the algorithm are the bioMed concept, T C , sub-domain concepts, D C , the top relation, T R , and its partitions (subdomain relations, D R ). The output of the algorithm is the structure of the highest (except the leaf nodes) knowledge level of the upper ontology structure ( u G ).

Figure 5 .

 5 5 depicts the output of the algorithm, which partitions into 15 sub-domain categories. In the figure, items in the first column, for example chemicalsAndDrugs, Devices, Disorders and Objects are sub-domain categories. These sub-domain categories are semantically related (ISA link) with the root concept, bioMed.
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 4849 Figure 4.8 -Partitioning of Relations
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 412 Figure 4.12 -Snapshot of Ordered Semantic Triples
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 4413 Figure 4.13 depicts an example of the integration of the two ontology structures based on the fine-grained concepts eye and complications and their parent concepts and ancestors. Thus, Body part, Organ or Organ components (bpoc) and Pathologic Functions (patf) are coarse-grain concepts, which create an overlap between the two ontologies. This overlap enabled to build a semantic link (isa, subsumption relation) between the two ontology structures. Consequently, each hierarchy is integrated to the upper ontology structure in a way the lower ontology structure is structured to its immediate upper ontology structure concepts. That is, each of the broadest fine-grained concepts in the lower ontology is a specialization of the narrowest coarse-grained concepts in the upper ontology, leaf nodes.
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 414 Figure 4.14 -Part of the Ontology Structure Hierarchies

  formal ontology is a set of OWL DL axioms and denoted by o K . Axiomatization enforces restrictions for interpreting biomedical artefacts (the set of concepts and roles) and their associations. Restriction-based interpretation enabled unambiguous representations on the expense of losing certain semantic information and human understandability, i.e. more of mathematical semantics than natural one. The OWL DL primitives and constructs support two classes of restrictions: quantification (universal () and existential ()) and number restrictions ( , the OWL DL existential restriction primitives are used to instantiate interpretation of biomedical artefacts, and thus, a set of OWL DL axioms ( o K ) is generated.

  <owl: Class RDF: about="#bioMed"> <rdfs: label xml: Lang="en">Biomedicine</rdfs: label> <rdfs: comment xml: Lang="en">The highest biomedical concept, which consists of all biomedical individuals</rdfs: comment> </owl: Class> <owl: Class RDF: about="#ANAT"> <rdfs: label xml: Lang="en">Anatomy</rdfs: label> <rdfs: comment xml: Lang="en">All anatomical organs and structures </rdfs: comment> </owl: Class> <owl: Class RDF: about="#DISO"> <rdfs: label xml: Lang="en">Disorder</rdfs: label> <rdfs: comment xml: Lang="en">All type of body disorders of animals </rdfs: comment> </owl: Class> Atomic role axioms ( ) is an interpretation of a set of biomedical roles using OWL primitives and constructs. Each role interpretation includes its attributes: identification, label and description. For example, a role associated_with and the only subsumption relation are interpreted and represented as: <owl: ObjectProperty RDF: ID="Asso_with"> <rdfs: label xml: Lang="en">ASSOCIATED_WITH</rdfs: RDF: ID="ISA"> <rdfs: label xml: Lang="en">A Type of Relation</rdfs: label> <rdfs: comment xml: Lang="en">A core relationship for taxonomic structure</rdfs: label> <rdf: type rdf: resource="&owl; TransitiveProperty"/> <rdf: type rdf: resource="&owl; SymmetricProperty"/> <rdf: type rdf: resource="&owl; ReflexiveProperty"/> </owl: ObjectProperty>

4. 5 . 3 (

 53 Other AxiomsEquivalence and disjointness are another set of axioms, which are interpreted and represented in OWL DL ontology model. OWL DL provides owl: equivalentClass construct to define concept equivalence and owl: equivalentProperty construct to define role equivalence. Accordingly, biomedical concept and role equivalence and disjointness are defined and interpreted to produce a set of equivalence and disjoint axioms. The equivalence axiom of a non-leaf concept c is defined as the union of its children, see eq. 4.7). Similarly, the equivalence axiom of a non-leaf role r is defined as the union of its children n r r r ,..., ,

.

  is the number of children, i c and i r are child of c and r respectively. As shown in eq.4.8, OWL DL provides owl: disjointWith construct to define concept and role disjointness axioms. Similarly, the disjoint axiom of a concept c is a set to be disjoint with its sibling concepts Similarly, the disjoint axiom of a role r is a set to be disjoint with its sibling roles

  is the number of siblings and i sc or i sr is a sibling of c or r respectively. For example, from the output listing, a concept anatomy (ANAT) has three children and four disjoint classes, then its equivalence and disjoint axioms are represented as: <owl: Class RDF: about="#ANAT"> <Owl: equivalentClass> <Owl: Class> <owl: unionOf RDF: ParseType="Collection"> <rdfs: Class RDF: resource="#anst"> <rdfs: Class RDF: resource="#blor"> <rdfs: Class RDF: resource="#bpoc"> </owl: unionOf> </owl: Class> </owl: equivalentClass> <owl: disjointWith RDF: resource="#DISO"> <owl: disjointWith RDF: resource="#PHEN"> <owl: disjointWith RDF: resource="#ACTI"> <owl: disjointWith RDF: resource="#CHEM"> </owl: Class> In a similar fashion, the role physically_related_to has three children and disjoint with three roles, then its equivalence and disjoint axioms are represented as: <owl: ObjectProperty RDF: about="#PHYRT"> <Owl: EquivalentProperty> <Owl: Class> <owl: unionOf RDF: ParseType="Collection"> <rdfs: Class RDF: resource="#part_of"> <rdfs: Class RDF: resource="#contains"> <rdfs: Class RDF: resource="#consist_of"> </owl: unionOf> </owl: Class> </owl: EquivalentProperty> <owl: disjointWith RDF: resource="#conceptually_related_to"> <owl: disjointWith RDF: resource="#spatially_related_to"> <owl: disjointWith RDF: resource="#functionally_related_to"> <owl: disjointWith RDF: resource="#temporary_related_to"> </owl: Class>Furthermore, if a concept c has multiple parents, equivalence axiom is defined as an intersection of a set of parent concepts

Figure 4 .

 4 [START_REF] Snae | Personal Health Assistance Service Expert System[END_REF] illustrates a snapshot of the OWL DL ontology axioms as represented in the ontology (bioOntology.owl) file.
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 415 Figure 4.15 -Snapshot of the Ontology Axioms

. 10 In

 10 this study, four representation formalisms are defined: 1) natural language formalisms where the biomedical knowledge in the text is encoded; 2) a set of semantic triples/knowledge artefacts in which biomedical artefacts acquired from biomedical texts are represented; 3) the graph formalisms where the conceptual ontology structure is defined, e.g Direct Acyclic Graph; and 4) finally, the OWL DL formalism where the conceptual knowledge is expressed with OWL DL Axioms. The NLP computational theories are used to transform knowledge from biomedical texts to knowledge artefacts. Semantic and graph theories are used to prune and structure the -151 -knowledge artefacts to graph structure and finally the OWL DL computational theories are used to formalize the conceptual knowledge.In transforming knowledge from formalism to another, consistency is measured based on the number of semantic concepts, roles and their associations acquired from biomedical texts and how many of them are used to structure the conceptual ontology. Plus, how accurate is the interpretation of conceptual ontology into OWL DL axioms. Consequently, in measuring the process of acquiring biomedical artefacts, more than 1.5 million concepts and 6 million associations are extracted. Out of these figures, 1.2 concepts and 5.2 associations are used for conceptual ontology structuring. Although the result is promising, consistency across formalisms posed serious challenges in the perspective of attribute and cardinality information acquisition, and universal quantifier based interpretation in the proposed biomedical knowledge acquisition framework.

G

  =d/D //probability of node i having d degrees EOG=-(EOG + p (i)*log 2 p (i)) //diversity of the ontology structure End Adaptability Metrics measures the ease of use of the ontology for different contexts, possibly by extending it without the need to remove existing axioms. It is measured by computing the coupling and cohesiveness of the ontology structure ( o G ). Coupling refers to the number of external classes and roles referenced, where as cohesiveness refers to the Number of Root (NoR) nodes, Number of Leaf (NoL) nodes and Average Depth of Inheritance Tree of Leaf Nodes (ADIT-LN). Coupling is computed as the Number of External Classes (NEC) and Roles (NER) referenced in the ontologization, i.e. NER NEC Coupling   (5.11) Cohesiveness is computed based on NoR, NoL and ADIT-LN. The NoR class is the number of root nodes explicitly defined in the ontology structure ( o G ). It is computed as in the following where n is the number of root classes in o G . number of leaf nodes (concepts) explicitly defined in the ontology structure ( o G ). NoL is computed as in the following where m is the number of leaf nodes in o G . is the ratio of the sum of depths of all paths to the total number of paths in the ontology structure ( o G ). Depth of a path is the number of nodes in the path, and sum of depths is the total number of nodes in all paths of the ontology structure ( o G ).Total number of paths is all the distinct paths from root node to each leaf node. ADIT-LN is computed as in the following where, j D is the total number of nodes in the j th path, n j   1 , and n is the total number of paths in o G . An algorithm is developed to compute adaptability in terms of coupling and cohesiveness. Pseudo-algorithm -computes adaptability of the ontology structure ( o G ) //input= extracted knowledge artefacts, concepts and roles, =0 NoR=number of root concepts in o NoL=number of leaf concepts in o G sumOfDepth=sum of depths of all paths in o G avg depth of inheritance tree of LNs

(

  R) to the sum of the number of subclasses (SC) plus the number of relationships in the ontology structure. It is computed as: number of attributes (slots) defined for each class. Note that the more slots defined, more knowledge the ontology conveys. Attribute richness is defined as the average number of attributes (slots) per class. It is computed as the ratio of number of attributes for all classes ( attr ) to the number of classes ( C ).

  distribution of information across different levels of the ontology inheritance tree, fan-out of parent classes. This is an indication of how well knowledge is grouped into different categories and subcategories in the ontology structure. IR is computed as the average number of subclasses per class, where the number of subclasses ( l C ) for a class i C is C is the number of concepts in the ontology structure ( o G ). Pseudo-algorithm -computes semantic richness of the ontology structure ( o G ) //input=the ontology structure, o G //output= RR, AR and IR RR=number of non-isa edges in

(

  semantic predictions), are acquired from the bioMed text collection. This set of artefacts and their structuring approximated the biomedical knowledge as stated in the previous chapters. For reasons of computational efficiency, we have considered only relevant 986,340 concepts, 682 predicates and 5,221,148 concept associations to structure the ontology for evaluation experimentation. The size of knowledge artefacts identified for experimentation is shown in table5.1. The first three columns are inventories of artefacts acquired from the bioMed text collection, and the rest three columns are inventories of biomedical artefacts identified as relevant. Table 5.1 -Size of Acquired Knowledge Artefacts Python programming language, in windows and Linux environment, is used to write necessary codes (scripts) for experimentation. Accordingly, eight experiments are performed corresponding to each criterion: accuracy, completeness, conciseness, consistency, complexity, adaptability, schema potential and clarity. Experiments are performed by computing metrics values for each criterion and analyzing the results of computations. Consequently, experimental results shown in section 5.2.2 and 5.2.3 below illustrates the correctness of the proposed framework. Whereas, -163 -experiments performed in sections 5.2.4, 5.2.5 and 5.2.6 illustrates the quality of the proposed framework.

  Automated ontology structuring and interpretation could minimize time, effort and costs incurred for ontology learning. Background knowledge (e.g. UMLS) is used to suggest conceptualization, and structuring of the anticipated ontology structure. The proposed framework, thus, uses this knowledge for modeling and structuring biomedical artefacts into a direct acyclic graph. The framework also uses OWL DL primitives and constructs for interpreting (axiomatizing) the conceptual structure ( o G ).

  While the framework has limitations to disambiguate individuals and entity attribute information, it has also drawbacks for interpreting restricted semantics, such as existential, universal and number restrictions based interpretations. Consequently, in instantiating the framework, an approximated interpretation, based on existential restriction, is implemented. Since it is more relaxed than others and most of the biomedical concept associations seem to lay in this category of restrictions.Consequently, development and design of the proposed framework are based on three core semantic modeling and interpretations, which are designed as generic as possible. These are -174 -semantic disambiguation, conceptual disambiguation and formal interpretation. A careful design and development of these models lead to consistent integration and cooperation of them for achieving ontology acquisition in biomedicine.6.1.1 Semantic DisambiguationSemantic disambiguation is comprised of phrase segmentation, phrase disambiguation and semantic proposition disambiguation. Phrase segmentation is performed with the help of specialist minimum commitment parser, which disambiguated syntactic structures. Syntactic analysis of each text fragment is performed using surface semantic analyzer, phrase segmentor. In disambiguating biomedical concepts, situation-specific scenarios in the text fragments are interpreted as suggested by scenarios in the background knowledge. Consequently, concept disambiguation is instantiated using MetaMap program. Semantic proposition disambiguation interprets semantic associations between concepts and semantic roles. A semantic processing (enhanced-semRep) program is used to instantiate and interprets semantic associations. This produces a conceptual structure based on graph representation formalism. The semantic disambiguation is generic to analyze biomedical texts by chunking into argument and relational phrases and interpreting them with the support of background knowledge. That is, situation-specific scenarios of text fragments suggest knowledge instances, where as knowledge base scenarios suggest interpretation of each scenario in the text fragment. In a similar fashion, semantic association is interpreted with the help of semantic indicators, which suggest semantic links in the background knowledge. Indicator rules suggest interpretation of semantic indicators and background knowledge suggests interpretation of semantic associations in the text.The semantic disambiguator is a crucial component of the framework, which has used a shallow phrase segmentor, the specialist minimum commitment parser. But, this parser is not exhaustive for segmenting argument and relational phrases. Concept and semantic association disambiguators have also their own drawbacks. They are less accurate to disambiguate biomedical concepts, roles and their associations. For example, enhanced-semRep used only 682 roles out of 736, which is very limited and affects the accuracy and completeness of approximating biomedical domain. They have also limitations to disambiguate and interpret entity attributes and individuals from free biomedical texts. The consequence is a limitation of restricted interpretation (e.g. lack of cardinality information) in the formal representation of ontology.

  Conceptual disambiguation constructed the conceptual design structure ( o G ). Thus, biomedical knowledge is modeled into two knowledge layers based on granularities of domain artefacts. The upper knowledge layer categorizes and partitions the domain into sub-domain categories, such as Anatomy and chemicalsAndDrugs and semantic categories, such as Disease or Syndrome and PathologicFunctions. This layer is instantiated with 15 sub-domain categories and 135 semantic categories.Semantic categories are narrower than sub-domain categories in their semantics scope and they are disjoint partitions of sub-domain categories. These layers built the upper ontology and they are reused from existing upper biomedical ontologies.Each of the 135 semantic categories is partitioned into more fine-grained biomedical concepts.More than 4 million biomedical concepts and 682 relationships are learned from the biomedical texts and included in the lower ontology structure ( l G ). A set of fine-grained concepts, roles and their associations are acquired from biomedical texts by instantiating the semantic disambiguation model. After this, they are integrated to upper ontology structure. The integration results the over all biomedical ontology structure as a DAG ( o G ).

  

  

  

  

  

  

  

  

  

  

  

  

  

  There are different software platforms, libraries and web services, which are used for different IE tasks. GATE 1 (General Architecture for Text Engineering) is a free software platform for natural language processing. It provides a component framework for creating processing resources,

systems are, therefore, used to populate databases or knowledge bases to provide structured input for mining more complex patterns in text collections. Recently, IE provides spectacular advances in converting raw textual information to structured data and they are increasingly being deployed in commercial applications. Consequently, IE constitutes to machine translation, question answering, text summarization and opinion mining [206] -[210].

IE systems are also support to develop new ontology or populate existing ontology with entities and their associations extracted from texts [211] -

[START_REF] Biemann | Ontology Learning from Text: A Survey of Methods[END_REF]

. For example, Hearst

[START_REF] Hearst | Automated Discovery of Wordnet Relations[END_REF] 

and Cimiano et al

[216] 

proposed techniques to learn and populate ontologies leveraging IE technologies. A common use of patterns involve searching of phrases, which explicitly show the existence of 'isa' or 'part-of' relations between two lexical units. Unfortunately, these phrases do not appear often in standard texts, and thus, systems limited with this kind of extraction suffer from low recall. Thus, data-driven ontology learning and populations are supported with supervised and unsupervised learning techniques. Supervised learning outperforms unsupervised one but require manual annotation of training data sets, which is expensive

[START_REF] Tanev | Weakly Supervised Approaches for Ontology Population[END_REF]

,

[START_REF] Fleischman | Fine Grained Classification of Named Entities[END_REF]

. which operate on documents and corpora. ANNIE 2 (A Nearly New Information Extraction) system contains components for common NLP tasks, such as tokenization, sentence splitting, POS tagging, named entity recognition and a simple Coreferences resolution. GATE has also been used as a base for IE systems, such as GATE-SVM [219].

  descriptions in the semantic web allowing for the definition of a shared knowledge, which is acted upon by agents performing on behalf of humans[START_REF] Gomez-Perez | Evaluation of Taxonomic Knowledge on Ontologies and Knowledge bases[END_REF],[START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF]. Ontologies, therefore, attracted lots of interests from academia and industries leading to the proliferation of several

	ontologies [238], [239]. However, it presents a challenge in deciding how good ontologies are
	and hence the field of measuring how far ontologies approximate real domain world, correctness,
	and how good are the qualities, structural and representational efficiency and effectiveness, of
	ontologies [240], [241].
	In this context, ontology evaluation defined as a progression of deciding and quantifying
	correctness and quality of Ontology Learning (OL) with criteria-based hierarchical assessment
	techniques [241], [323], [324]. However, a definition of ontology evaluation is provided by

, [238], [239]. Hence, ontologies are the centerpiece of knowledge -48 -

  2.7.1 Use-Based EvaluationAnother aspect of evaluating ontologies is to measure their effectiveness in the context of applications. Less attention has been provided to consider application environment and measure different ontologies to assess which one is appropriate in the context. In machine-readability vision of Semantic Web (SW), ontologies are enabling technologies of interoperability. It may be entirely inappropriate for humans to read and assess ontologies, but only technological effects of

them are being judged

[264]

. For example,

Velardi and Navigli [265] 

have done relevant work in OntoLearn system. The task was very challenging, which required bilingually aligned corpora or usage of the Web

[START_REF] Koessler | Common Knowledge and Interactive Behaviors: A Survey[END_REF]

,

[START_REF] Grefenstette | The World Wide Web as a Resource for Example-Based Machine Translation Tasks[END_REF]

. Navigli et al used OntoLearn to extract technical terminologies and associate each component element of complex terms with appropriate synsets in EuroWordNet and then select the correct synset from other languages. However, although the results were reputable, the system does not actually use standalone ontology in order to produce its output. The ontology is generated automatically as part of the process and thus the terminology translation task is not well-suited to compare ontologies or successive versions of ontologies

[START_REF] Koessler | Common Knowledge and Interactive Behaviors: A Survey[END_REF]

,

[244]

.

Velardi and Navigli [265] 

extended their approach to evaluate OntoLearn as ontology learning system, which presented a technique to generate natural language definitions. The ontology learning approach is entirely centered on linking and extending WordNet; and presenting to ontology engineers with a combination of WordNet synset numbers is not very useful, thus, automated generation of glosses provides human readable access for conceptual choices of the ontology generation component. Although the evaluation results are reported as acceptable, a major challenge is to what extent the approach can capture the subtlety of terminological changes as technology and language usage changes. A comparatively low acceptability statistics indicate that this approach is challenging even if it is interesting and provoking.

Porzel and Malaka [267] 

  technique is to compare ontologies as lexicalization of concepts and relations varies, while the semantics thatMaedche and Staab [274] proposed for concepts and relations are unnecessary and insufficient to establish semantic similarity.Brank et al [271] extend Maedche and Staab's technique and provided a general account of including instances as part of the evaluation. In contrast to Maedche and Staab, they weren't relied on natural language descriptors of concepts, thus eliminating the string edit distance method. That is, there was no assumption regarding the representation of instances, but only distinguishing of one instance from another. Brank et al extended the Rand index to OntoRand index to measure the distance between different clusters containing any two instances and then when automatic learning techniques are used to build ontologies, the techniques may be different for the different layers and separately evaluating them is very effective[277]. In this method, each layer may also be defined with different authors, but the definitions may generally tend to be similar and require evaluations at each of the following layers[START_REF] Gómez-Pérez | Some Ideas and Examples to Evaluate Ontologies[END_REF],[238] 

	2.7.4 Layer-Based Evaluation
	As ontology acquisition is a complex structure, separating into different learning layers make it
	more manageable and practical. That is, each layer may be developed separately by different
	authors [276]. Thus, a layer-layer based evaluation focuses to measure the different layers of
	ontology learning in a more practical way than to measure the entire ontology [276]. Layer-based
	evaluation is effective for automatic means than other evaluations techniques [235]. The other
	reason is that
	ontology evaluation in general. Another basic problem with a gold standard is how to measure
	the difference and similarity between any two ontologies. Generally, similarity-based techniques
	between learned and gold standard ontologies remained open problems [271], [273].
	1 1 D C	. Where, 1 C is a concept that the relation belongs to and its range restriction 1 D .
		-53 -

Experimental results of their measures show disagreements between experts constructing ontologies irrespective of the amount of material being predefined. This raises the issue of how -52 -effective the comparing the distance across two ontologies

[START_REF] Rand | Objective Criteria for the Evaluation of Clustering Methods[END_REF]

. They also proposed that by using different functions to measure the distance between placements of different instances, it provides a family of measures comparing different ontologies. Generally, the gold standard-based evaluation can be used to measure the precision and recall of learned ontologies compared to the gold standard.

Evaluation results can also be replicated and are comparable if the same corpus, learning algorithm and gold standard are used. Besides, it is only the first run of evaluation, which is expensive for creating the gold standard. Successive runs of evaluations are fully automatic.

Although gold standard-based methods seem simple and easy, there are basic problems in using them. The first problem is that the technique is somewhat arbitrary. It may be comparable to asking a student to know a textbook for an exam, while the real objective is to find out if the student knows a topic in the textbook. Thus, a gold standard method may have questionable validity, which depends on whether one is evaluating the closeness of ontologies to another or whether one is evaluating ontology is a reasonable representation of a domain, in which they have significant distinction. The main reason gold standards are used is that they are easy and not too complicated. But, excessive dependence on this technique is indicative of immaturity of

  criterion, which determines the relevance of knowledge to a domain of interest. Ontology is concise if it does not store unnecessary knowledge and no redundancies in the definition of terms. However, it is extremely difficult to determine what may be unnecessary in ontologies, just as subjective as determining what is needed [238], [239]. Thus, quality and correctness of ontology learning systems can be assessed by measuring the characteristics of the ontology graph structure ( o G ) with minimal resource requirement and less expensively. And the ontology structure properties and characteristics can easily be adapted to criteria-based evaluation methods with lesser resource requirement, computational complexity and cheaply. With this reason, we adapted criteria-based evaluation techniques in the structural dimension of the proposed ontology acquisition framework.

	root and leaf nodes) are part of the ontology graph structure ( o G ). Ontology graph properties
	enable to determine the characteristics of ontology graph structure ( o G ), for example average
	depth and breadth of the ontology structure and its complexity, cohesiveness and coupling.

Adaptability is concerned with ease of which new definitions and concepts are added to ontologies without re-organizing the ontology structures. If ontology reflects a model or theory about a domain then the ease with which new concepts or phenomena are added is a good indicator of soundness of the model

[246]

. Accuracy [241] and complexity

[323] 

are also other criteria to measure the structural dimension of ontologies. Accuracy, completeness and consistency enable to determine the extent of approximating the real world by the domain model. Adaptability, clarity, ontology schema potential and complexity enables to determine the quality of ontology structure design [324],

[START_REF] Hlomani | Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: A survey[END_REF]

.

In this context, structural evaluation of ontologies focuses on the graph-centric representation of an ontology learning system and its logical adequacies. In this representation, nodes and arcs are structural elements whereas depth, breadth, modularity and connectivity are topological properties. Consistency, complexity, satisfability and subsumption are logical adequacies and characteristics of ontology structures. Thus, the set of ontology elements, o S , is a constitute of ontologies that makeup the graph-like structure. The structural elements (e.g. nodes, arcs, and Complexity and cohesiveness, in turn, enable to measure the design quality of an ontology acquisition system and its artefact, the ontology.

-56 -

  Correctness Criteria: these criteria are introduced to measure the extent of approximating biomedical artefacts and their associations from biomedical texts. Correctness of biomedical knowledge abstraction is evaluated using four criteria, such as accuracy, completeness, conciseness and consistency. Accuracy is measured in terms of precision and recall, where as completeness and conciseness is measured in terms of domain coverage and relevance.Consistency is measured in terms of cyclic redundancy and inconsistent partitioning.Quality Criteria: these criteria are introduced to measure the quality of proposed framework and its artefact. The criteria are focused to evaluate the efficiency of ontology structure design of the proposed framework. Four major criteria are identified for evaluation, such as complexity,

, [323], [324]. adaptability, clarity and potential of the ontology schema. Complexity is assessed using Vocabulary Size (SOV), Edge-Node Ratio (ENR), Tree-ImPurity (TIP) and Graph Entropy (EOG). Adaptability is measured in terms of coupling and cohesiveness, where coupling is measured using Number of External Concepts (NEC) and Roles (NER) involved in the acquisition and cohesiveness is measured using Number of Root (NoR) nodes, Number of Leaf (NoL) nodes and Average Depth of Inheritance Tree of Leaf Node (ADIT-LN). Clarity of the proposed framework is measured in terms of natural language descriptions, such as owl: labels and owl: comments, involved in the acquisition to easy its understanding by domain experts and users. The last one, potential of ontology schema is measured in terms of schema metrics, such as Relationship Richness (RR), Attribute Richness (AR) and Inheritance Richness (IR) of the ontology graph structure.

  -[205]. The first is to develop ontology building tools and support knowledge engineers and experts, for example protégés and OntoEdit [287], [288]. The second is to support ontology learning from various unstructured sources (semi-) automatically [289], [290].Although there are many tools to support ontology building (e.g. protégé and OntoEdit), we emphasized on ontology learning techniques from unstructured sources, focusing on data-driven and semantic-driven techniques. In this context, ontology learning is understood as a set of methods and techniques used to develop ontologies in a (semi-) automatic manner from free texts[291],[292]. Hence, learning ontologies from free texts depends on natural language processors, which is the lexico-syntactic analysis components of ontology learning systems. Data-driven ontology learning uses techniques from machine learning, text mining, natural language processing and probabilities to generate analytical models. For example, Cimiano and Volker

[302] used surface text processing with statistical analysis. Recently, semantic-driven methods and techniques are used to develop ontologies, focusing context based searching of complex relationships among concepts and intelligent applications. The success of these methods and techniques depends on the availability of semantically-rich background knowledge

[START_REF] Moulin | Automated Knowledge Acquisition from Regulatory Texts[END_REF]

, [298],

  are used WordNet for suggesting their ontology structure. But, WordNet doesn't have well defined taxonomic structure and have very limited domain specific coverage, particularly in biomedical domain [325].

Generally, existing ontology learning frameworks can be characterized with different dimensions. These may include scalability, integrity, consensus reaching, domain relevance, rigor, ontology structuring, formal interpretation, use of ontology tools and knowledge bases, and finally weather the framework is ontology learning or not. These dimensions are used to clearly demonstrate the weakness and strengths of existing ontology learning frameworks, particularly OntoLT, TextToOnto, Text2Onto and CRCTOL. In the last column of the table, the Pikes framework (one of linked-data extraction framework) [329] is indicated to show that PIKES is not ontological knowledge extraction framework. As illustrated in the table, scalability is less

Table 2 .

 2 2 -Characteristics of Ontology Learning Frameworks

	-68 -

  Candidate evaluation computes the matching strength of each candidate terms. Mapping construction computes the combined matching strength and selects the best matches. The word sense disambiguator determines the semantics of noun phrases based on the surrounding texts. Particularly, the word sense disambiguator resolves if the input text maps to two or more candidate terms of the background knowledge.

: lexical variant generation, candidate identification, candidate evaluation, mapping construction and Word Sense Disambiguation (WSD). Variant generation determines the variant generators of noun phrases and candidate identification looks for and determines candidate terms in the background knowledge.

  categories, where each of them further partitioned to independent and disjoint sub-

	knowledge level i l , where i runs from top	(  i	) 1	to bottom	( N i 	)	. Thus, the biomedical
	knowledge ( bio K ) can be modeled as:						
	categories. The disjoint partitioning continues to N knowledge levels, where the narrowest
	categories are comprised of very similar class of biomedical individuals. While domain
	partitioning models the biomedical knowledge with M disjoint sub-domain categories and their
	descendent categories, generalization-specialization models the domain taxonomically with N
	knowledge levels satisfying partial order relation properties (reflexivity, transitivity and
	antisymmetricity). Thus, biomedical knowledge is modeled hierarchically in a taxonomic manner
	and horizontally in a disjoint manner. More formally, let i m is the number of partitions at each
		-90 -				

  concepts, followed by doing it with the next broader concepts. In a similar fashion, this structuring continuous to the next broader sub-concepts up until the leaf concepts are reached, the narrowest concepts in the ontology structure. For implementing this technique, a generalized breadth first search algorithm is implemented after re-structuring of a set of semantic predictions disambiguated.

	Firstly, the algorithm eliminates redundant semantic predictions in the unordered set of semantic
	triples, and then sorts out the set of semantic triples from broader to narrower tuples by the set of
	left concepts ( i c ). The inputs to the algorithm is a set of non-hierarchical associations ( nha K )
	from the set of semantic predictions (	p K ) disambiguated in sec. 4.3.2.
	In this study, therefore, an algorithm is developed that eliminates either explicitly or implicitly Pseudo-algorithm -non-redundant ordering of non-hierarchical associations
	(transitively) defined redundancies in the set of semantic predictions ( p K ).
		//input=set of non-hierarchical associations,	K	nha	in	K	p
		//output=set of ordered set of semantic associations
	Pseudo-algorithm -Pruning hierarchical semantic predictions and generate direct acyclic graph //N=number of non-hierarchical associations
		//let i c =each left concept in nha K		
	Pseudo-algorithm -Aligning Hierarchical Semantic Predictions to build direct acyclic graph //let l G is a set of hierarchies in all the 135 ontologies //let j c =each right concepts in nha K
	//Input =a set of hierarchies, l G , of the ontology structures, //k=number of triples whose left argument is i c
	//Input =a set of semantic predictions, p k , linked with isa //Output=direct acyclic graphs of ontology structures, DAG g //r=semantic relationships
	g //let N=number of hierarchies involved in each ontologies, oi g // i sp =each semantic prediction //Output=hierarchical structure of ontologies, i //Let M=adjacent matrix of concepts, ij M =elements of M For each ontology, o g , in l G For each i sp in nha K
		//let For each hierarchy, oi i sp = each semantic prediction in g , in o g r arg =get right argument of i sp	k	p
		//let N=number of concepts involved in p k Scan redundant subsumptions, rp H l arg =get left argument of i sp
		For each Eliminate the redundancies, i sp in p k lr prd =get semantic predicate H	rp	
	End	Get argument concepts, Set consistent hierarchies, DAG ij M ,of End End For each j sp in nha K g , forming a DAG structure i sp Compare ( l arg , lr prd , r arg )and sp j Construct N x N matrix, M, of concepts For each row concept, i If comparison=true c , in M Eliminate j sp
	Get recursively the ancestors of i c Identify the broadest concept sets, b End Firstly, the algorithm scans explicit redundancies and eliminates them iteratively. In the above End c listings (Lst. 4.1), for example, the algorithm scans from top to bottom until all the three End End For each column concept, i c Get recursively the descendents of i c Identify the lowest concept sets, l c End For each i c , i r in nha K //ordering the tuples repetitions of a semantic prediction (C0017066, isa, nnon) is found. Secondly, the Search k number of j c , where ( i c , ij c ) is true r , j algorithm scans each hierarchy iteratively for implicit or transitive redundancies up until the c , ij r , j c ) as an ordered tuple Set ( i hierarchies are exhausted. In above listings, the semantic prediction (C0439228, ISA, tmco) End
	For each broadest concepts, bi c , in b c is a repetition in the hierarchies defined as follows where dashed arrows indicate subsumption
	relations.	Set bi c isa ri c , where ri c is a root concept
		End				
				-130 -	

  Pseudo-algorithm -to generate a set of defined concept axioms //let input = a set of non-taxonomic associations, non T //let output = a set of defined concept axioms, 

	<rdfs: SubClassOf RDF: resource="#ANAT"> set of roles ( H R ) associated by an isa relationship. Finally, the algorithm produces a set of <Owl: restriction>
	</owl: Class> </owl: Class>
	<owl: Class RDF: about="#cellComp"> concept hierarchy axioms ( c H ) and a set of role hierarchy axioms ( r H ). <owl: Class Rdf: about="#bpoc">
	<rdfs: SubClassOf RDF: resource="#ANAT"> <Owl: restriction>
	For each association non t </owl: Class> Pseudo-algorithm -to construct a set of concept and role taxonomy axioms, c in non H and r H <owl: OnProperty RDF: Resource="#location_of"/> T <owl: Class RDF: about="#cell"> <owl: someValuesFrom RDF: resource="#patf"/>
	//define new concept axioms <rdfs: SubClassOf RDF: resource="#ANAT"> //input=set of concept ( H C ) and role ( H R ) associations linked by isa <Owl: restriction>
	<owl: Class RDF: about="#new_concept_id"> </owl: Class> //output=set of concept ( c H ) and role ( r </owl: Class> H ) taxonomy axioms <rdfs: label xml: Lang="en"> new concept name</rdfs: label> <owl: Class Rdf: about="#Eye">
	<rdfs: comment xml: Lang="en">new concept description</rdfs: All subsumption relations (i.e. concepts linked by 'ISA') are axiomatized in a similar fashion and For each hierarchy h in c H or r H <Owl: restriction>
	comment> If h is concept hierarchy <owl: OnProperty RDF: Resource="#location_of"/> H ). represented as a set of concept taxonomy axioms ( c <owl: IntersectionOf RDF: ParseType="Collection"> H <owl: someValuesFrom RDF: resource="#Complication"/> //generate a set of concept taxonomy axioms, c <owl: Class RDF: about="#subj_concpt_id"/> Role Taxonomy Axioms ( r H ) is an interpretation role associations related using an 'ISA' link. <Owl: restriction> <owl: Class RDF: about="#subj_concept_id"> <owl: Restriction> <rdfs: SubClassOf RDF: resource="#obj_concept_id"> </owl: Class>
	<owl: onProperty RDF: resource="#relationship_type"/>
	<owl: someValuesFrom RDF: resource="#obj_concpt_id"/> </owl: Class>
	</owl: Restriction> Elseif h is role hierarchy
	//create subsumption link //generate a set of role taxonomy axioms,
	<rdfs: SubClassOf RDF: resource="#subj_concpt_id"/>
	</owl: Class>
	</owl: ObjectProperty>
	</owl: ObjectProperty>
	<owl: ObjectProperty RDF: about="#assesses_effect_of"> Finally, the primitive axiom (  ) is reformulated as three tuples as illustrated in: End if
	End for
	<rdfs: SubPropertyOf RDF: resource="#conceptually_related_to">
	) </owl: ObjectProperty> , ,    Non-Taxonomic Relation Axiom (  ) is an interpretation of non-taxonomic concept (   (4.6)
	<owl: ObjectProperty RDF: about="#conceptally_part_of">
	Primitive Attribute Axioms ( ) is an empty set axiom, {}, because attribute information is not <rdfs: SubPropertyOf RDF: resource="#conceptually_related_to"> associations, i.e. relations other than 'ISA' links. Each of these axioms is interpreted based on For each non-hierarchical concept association non c in non C
	acquired in the acquisition of concepts and roles. Consequently, </owl: ObjectProperty> existential restrictions for unambiguous representations. For example, the non-taxonomic     . //generate non-taxonomic axioms, 
	<owl: ObjectProperty RDF: about="#conceptally_related_to"> associations: <owl: Class Rdf: about="#subj_concept_id">
	Concept Taxonomy Axioms ( c H ) is an interpretation of concept associations related using an 'ISA' link. 'ISA' link is a subsumption relation and interpreted with an OWL DL primitive owl: <rdfs: SubPropertyOf RDF: resource="#associated_with"> <Owl: restriction> {(Anatomy, Spatially_related_to, Disorder), (BodyPartOrganOrOrganComponents </owl: ObjectProperty> (bpoc), location_of, pathologicFunctions (patf)), and (Eye (C0015392), <owl: OnProperty RDF: Resource="#relationship_type"/>
	subClassOf. This is exemplified with part of the output listings for a set of biomedical concepts: location_of, Complication (C0009566))} <owl: someValuesFrom RDF: resource="#obj_concept_id"/> All role subsumption relations (i.e. roles linked with an 'ISA' link) are axiomatized in a similar <Owl: restriction>
	Tissue, Anatomy, EmbryonicStructure, Cell and cellComponent. fashion and represented as a set of role taxonomy axioms ( r H ). Are interpreted and represented as part of output listings shown below: </owl: Class>
	<owl: Class RDF: about="#tisu"> <rdfs: SubClassOf RDF: resource="#ANAT"> In order to generate the set of concept taxonomy axioms ( c H ) and the set of role taxonomy <owl: Class Rdf: about="#ANAT">
	</owl: Class> axioms ( r H ), an algorithm is introduced that accepts as an inputs a set of concepts ( H C ) and a <Owl: restriction>
	<owl: Class RDF: about="#emst"> <owl: OnProperty RDF: Resource="#Spatially_related_to"/>
	<owl: someValuesFrom RDF: resource="#DISO"/>

'ISA' is a subsumption relation and interpreted with an OWL DL primitive owl: subPropertyOf. This is exemplified with part of the output listings for a set of biomedical roles: analysis, conceptually_related_to, assesses_effect_of and conceptally_part_of.

<owl: ObjectProperty RDF: about="#analysis"> <rdfs: SubPropertyOf RDF: resource="#conceptually_related_to"> r H <owl: ObjectProperty RDF: about="#subj_role_id"> <rdfs: SubPropertyOf RDF: resource="#obj_role_id"> Generally, all non-taxonomic relations are axiomatized in a similar fashion and represented as a set of non-taxonomic axioms (  ). In order to generate this set of axioms, an algorithm is introduced that accepts as an input the set of non-taxonomic concept associations and produces the set of non-taxonomic axioms (  ). Pseudo-algorithm -to generate a set of non-taxonomic axioms,  //input= a set of non-hierarchical concept associations, non C //output= a set of non-taxonomic axioms,  End Assertional Axioms ( A ) is an empty set axiom, {}, because individual entities are not included in the acquisition of biomedical artefacts. Thus,    A .

  Similar to the above, such concept equivalence axioms are interpreted using owl: equivalentClass construct. For example, as part of the output listings, the concept denervation (C0011307) has two parent classes, surgery (C0543467) and treatment (C0087111), equivalence axiom is interpreted as the intersection of these concepts:

	4.5.4 Ontological Knowledge
	OWL DL ontology is a set of schema and assertional axioms expressed using OWL DL
	primitives and constructs. In this research, OWL DL ontology is a set of primitive, concept and
	role taxonomic, non-taxonomic, equivalence and disjoints axioms structured into a direct acyclic
	2 </owl: Class> <Owl: equivalentClass> <Owl: Class> <owl: IntersectionOf RDF: ParseType="Collection"> <rdfs: Class RDF: resource="#C0543467"> <rdfs: Class RDF: resource="#C0087111"> </owl: IntersectionOf> </owl: Class> </owl: equivalentClass> For each concept, i c , or role, i r ,in C or R Read concept, i c or role, i r , in C or R Retrieve i c 's or i r 's children(Ch), if not leaf node Define i c 's or i r 's equivalence axiom ( ), union of children (4.9) Retrieve i c 's or i r 's parents(P), if not root node Define i c 's or i r 's equivalence axiom, intersection of parents Retrieve i c 's or i r 's siblings (S), in not root node graph. Assertional (A) and attribute ( ) axioms are interpreted as empty set axioms ( 1    A and  = {} respectively). Consequently, the OWL DL ontology ( o K ) is defined as a set of schema axioms. These set of schema axioms are integrated to model the formal biomedical ontology ( o K ). In eq. 5.6, the set of primitive axioms ( Practically, the ontological knowledge ( o K ) is represented as six tuples: Where, n is the number of parent concepts and <owl: Class RDF: about="#C0011307"> ) , , , , , (      r c o H H K (4.9)
	Define i c 's or i r 's siblings as disjoint axioms ( )
	End
	-148 -

i c is a parent of c. Note that, in this case, we do not have role equivalence axioms as there are no roles that have multiple parents in the ontology -147 -structure.

To generate a set of concept or role equivalence and disjoint axioms, an algorithm is developed that inputs a set of concepts ( C ) or roles ( R ) and retrieves a set of parents ( ) P , siblings ( S ) and childs (Ch) of each concept c or role r, and then produces a set of equivalent and disjoint axioms.

Pseudo-algorithm -concept or role equivalence and disjointness axiomatization:

//input= a set of concepts, C , in the ontology structure //input= a set of roles, R , in the ontology structure //output= a set of equivalence ( ) and disjointness axioms ( )  ) is splited into three tuples for technical reasons.

Furthermore, in section 5.5.3, two set of axioms, equivalence (  ) and disjointness ( ), are introduced for practical reasons. Thus, OWL DL ontology is a set of six axioms: a set of primitive axioms (  ), a set of concept hierarchy axioms ( c H ), a set of role hierarchy axioms ( r H ), a set of non-taxonomic axioms (  ), a set of equivalent ( ) and disjoint ( ) axioms.

  biomedical knowledge (i.e. correctness) and quality of the ontology structure design. As stated, while ontology structure is influenced with structural parameters, such as complexity, adaptability, schema potential and clarity, correctness is influenced with accuracy, completeness, conciseness and consistency of the acquisition process. Consequently, extent of approximating biomedical knowledge and quality of the structural design are determined by measuring the structural properties of the proposed framework. The larger SOV means, larger size of the ontology and longer time and effort required to build and maintain it. It is defined as the cardinality of named artefacts, n a node i having n edges, incoming and outgoing degrees. An algorithm is developed to compute the four complexity metrics as in the following.

	SOV is the total number of biomedical concepts ( n N ) and roles ( n R ) defined in the ontology structure ( o G ). N and n R , Where, ) (i p is probability of Pseudo-algorithm -computes complexity of the ontology structure
	G as: in o //input= acquired knowledge artefacts,	K	p
	n //input= the ontology structure, n R N SVO  	G	o	(5.7)
	N=unique number of concepts in	G	o
	Where, n N is number of defined concepts and n R is number of defined properties or roles. ENR R=unique number of roles in o G
	represent the connectivity density, number of relationships per concept. The larger ENR value R N SOV   //vocabulary size
	means, greater complexity of the ontology structure ( o G ). E=number of edges in o G //r/ships among concepts
	ENR		E	/	N		//connectivity density
	E E = number of subsumption edges //isa links ENR  ' N 1 '    N E TIP //sets the tree impurity	(5.8)
	Average Depth of Inheritance Tree of Leaf Nodes (ADIT-LN), Number of External Classes Where, structure. It is computed as: D= sum of degrees for all nodes in
	(NEC) and Number of External Roles (NER). These graph properties enable to measure the 1 '    N E TIP (5.9)
	adaptability of the ontology structure in terms of its cohesiveness and coupling. Relationship
	richness (RR), Attribute Richness (AR) and Inheritance Richness (IR) are also graph properties Where,
	for measuring ontology schema potential.
	A criteria-based approach is used to evaluate correctness and quality of the proposed framework
	for its less computational costs. Thus, eight criterions expressing different properties of an
	ontology structure are considered for evaluation. Each criterion, in turn, is measured with a
	combination of different metrics, each of which describing a property of the ontology structure owl: Thing), in which such additions ensure that TIP is always non-negative.
	( o G ). EOG is the entropy of the ontology structure ( o G ), which measures how diverse the ontology
	structure is. Lower EOG indicates regular structure and lesser complexity. EOG is formulated as:
	EOG			i 	p	(	i	)	log	2	p	(	i	)	(5.10)
																-158 -

In this research, while extent of approximation is evaluated by measuring precision and recall, coverage, relevance and inconsistencies of the acquisition process, ontology structure quality is evaluated by measuring Size of Vocabulary (SOV), Tree ImPurity (TIP), Edge Node Ratio (ENR) and Entropy of Graph (EOG). These properties enable to measure complexity of the ontology structure. Others are Number of Leaf nodes (NoL), Number of Root nodes (NoR), E is the number of edges and N is the number of nodes (concepts) in o G . TIP measures how far the ontology inheritance hierarchy structure is deviated from a pure tree ' E is the number of ISA edges, and N is the number of nodes (concepts) in the hierarchical structure. The greater the TIP value, the more ontology inheritance hierarchy deviates from a pure tree structure and greater complexity of the ontology structure. Note, we considered the top class bioMed and owl: Thing. Each class node c with no explicit supperClass nodes have an edge added for it: (c, rdfs: subClassOf, bioMed) and (bioMed rdfs: subClassOf,

Table 5 . 2

 52 

-Accuracy of the Knowledge Artefacts As shown in the table, accuracy of concept extraction is 70%, role extraction is 96% and that of concept association extraction is 92%. This implies that extraction of concept associations, ones the ontological predicates and concepts are set, shows noticeable effectiveness. Similarly, both concept and semantic predicate extraction is illustrates good effectiveness.

  ). Generally, while existing ontology learning frameworks are supported with ontology tools (e.g. ontoEdit), this framework doesn't require it. assertional axioms are not disambiguated from the biomedical text. On the other hand, another two axioms are introduced, equivalent ( ) and disjoint ( ) axioms. As a result, the biomedical ontology is formulated and instantiated as six tuples,

	K	o		(		,	H	c	,	H	r	,		,		, 	)	.

  The interpretation is limited to model the effectiveness and efficiency of OWL DL primitives and constructs. Expressivity and inferencing are also limited with the functionalities of OWL DL primitives and constructs. In this context, formal interpretation of the conceptual structure is  is a set of primitive attribute axioms, c H is a set of concept taxonomy axioms, r H is a set of role taxonomy axioms,  is a set of non-taxonomic relation axioms and A is a set of assertional axioms. Technically, there are empty set of assertional ( A ) and attribute ( ) axioms but another set of axioms are introduced, equivalent ( ) and disjoint ( ) axioms. Thus, the

	logically formulated into six tuples,	K	o		(		, 	,	H	c	,	H	r	,		,	) A	, where  is a set of primitive
	axioms, instantiated ( o K ) is reformulated as	K	o		(		,	H	c	,	H	r	,		,		, 	)	.
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Else

Replace full stop with single space End End Sentence Normalization: the cleaner truncate or drop out words with number or percentage as part of its characters. However, it keeps abbreviations as it appears in the knowledge sources.

RegExp is applied to detect numbers, measurements and percentages in a word of texts. If the regExp is detected in a word of texts, the word in a text is truncated as a whole.

Pseudo-algorithm -sentence normalizer cleans bad characters and amounts. At the end of cleaning the bioMed text collection, each sentence is delimited with a full stop followed by a space and capital letter. Bad characters (e.g. diacritics) and unwanted part of texts in each sentence of the biomedical documents are also cleaned. The resulting text collection is, therefore, used as input for semantic disambiguation, which involves concept disambiguation and semantic proposition prediction.

Semantic Disambiguation

The semantic disambiguation model enables to acquire biomedical concepts and their associations. In this section, an attempt is made to instantiate this model and acquires biomedical concepts and their associations. MetaMap and enhanced-semRep programs are used for concept 

C0439228 --> tmco, C0439228 --> C0040223, C0040223 --> tmco

The algorithm, therefore, scans each subsumption relation and eliminates the implicitly repeated hierarchies to generate a consistent hierarchy, where a snapshot is shown in Figure 4.11.

Consequently, the semantic prediction, C0439228 --> tmco, is eliminated for consistency reasons. In the hierarchy, the semantic class, tmco, has become a root concept. 

C0439228 --> C0040223 --> tmco

Non-Hierarchical Associations

The set of non-hierarchical semantic predictions is unordered collection of semantic triples, where several of them appear with unnecessary repetitions, redundancies. An algorithm is developed to eliminate such redundancies and to order semantic triples based on the left argument, l c . For example, in the following output listings (Lst. Atomic axioms are interpretation of atomic concepts or roles, where as defined axioms is

Evaluation Criteria and Metrics

Exhaustive utilization of criteria for evaluating knowledge acquisition is very difficult and resource intensive. Consequently, eight criterions (accuracy, completeness, conciseness, consistency, complexity, adaptability, schema potential and clarity) are adapted to form a coherent and succinct set for evaluation. However, all of them may not perform equally; even some of them seem contradicting, for example conciseness and completeness. It is also note that none of these criteria can be directly measured and most of them may not be perfectly achieved.

A criterion is quantified using metrics, meaningful properties of ontology structure The formulation computes the coverage of biomedical concepts, roles and their associations.

Coverage values of concepts, roles and their associations are analyzed to discuss the completeness of the framework. A simple algorithm for computing coverage, and thus, completeness is developed as follows.

Pseudo-algorithm -computing coverage and completeness

//inputs=number of acquired knowledge artefacts, This formulation computes the conciseness of biomedical concepts, roles and their associations.

A simple algorithm is developed for computing conciseness as in the following.

Pseudo-algorithm -computing relevance, and thus, conciseness Consistency metrics measure how consistent the framework is in approximating the biomedical artefacts, knowledge. They measure number of inconsistent definitions and artefacts produced.

Particularly, they compute partitioning and cyclic inconsistencies introduced in the acquisition -156 -process. Consequently, inconsistency is computed as the proportion of cyclic redundancies and wrong partitioning. Thus, inconsistency is formulated as a ratio of counted inconsistencies ( inc K )

(wrong partitioning and cycles) to the total knowledge artefacts ( p K ).

This formulation computes inconsistencies of biomedical concepts, roles and their associations.

The values are used to analyze and discuss the consistency of acquiring knowledge artefacts. An algorithm is developed to compute inconsistencies ( inc K ) and consistencies ( con K ). Completeness is 59%, 93% and 82% for semantic associations, roles and concepts respectively.

Pseudo-algorithm -computes the inconsistencies

Conciseness is 68%, 100% and 90% for concepts, roles and semantic associations respectively, where as consistency is 100% as there is no cyclic and partitioning redundancies found in the acquisition process. These results showed better extent of acquiring biomedical knowledge from biomedical text.

Quality

In this study, quality is measured related to the ontology structure design efficiency. This is related to the computational complexity, coupling and cohesiveness, schema potential and clarity of the ontology structure. Each of these criteria is measured using a set of metrics, whose values are computed based on their formulations. and EOG (=226,698) showed larger values. Larger values for each metrics, more complex are the ontology structure, and thus, higher complexity the ontology has. In table 5.5, the measured values for cohesiveness and coupling revealed that the ontology is more cohesive and decoupled.

The ontology has only one root node and larger number of leaf nodes (545,246) and depth of inheritance tree [START_REF] Brewster | Background and Foreground Knowledge in Dynamic Ontology Construction: Viewing Text as Knowledge Maintenance[END_REF]. The ontology doesn't used external classes and roles, and hence, coupling is zero, decoupled. implicitly in the discourse in an ontological formalism. For example, co-reference is a lexical relationship but not ontological relationship. In description logic concept, it lacks the Tbox, corresponding to ontological schema knowledge. Furthermore, there is no clear hierarchical (taxonomic) structuring and classes of individuals/mentions, the major benefit of ontological knowledge representation, where reasoning services are possible. PIKES deals with individual/assertional knowledge (Abox) but the taxonomies are not explicitly structured and a lot of cyclic representations exists that results inferencing impossible and intractable. Our framework deals with the ontology schema knowledge (Tbox) with ontological formalisms, having clear subsumption knowledge or taxonomies. But, as demonstrated in the limitation, the framework lacks knowledge about individuals, assertional knowledge.

Consequently, empirical comparison between the two frameworks, Pikes and proposed framework, are impossible. This is because of that: 1) Pikes is not an ontological knowledge 1 http://pikes.fbk.eu/index.html -168 -learning framework, but rather a set of instances and their association in RDF triplets.

2) The proposed framework is an ontological knowledge learning framework with defined taxonomies and Direct Acyclic Graph Structure. This supports intelligibility and interoperability services anticipated from ontological knowledge representation.

However, the major limitations of the proposed framework (cardinalities and attributes information, and domain adaptability) can be supplemented with the results of Pikes framework.

The Pikes framework produces a set of assertional knowledge (instances and their associations) and these can be used by the proposed ontology acquisition framework to populate its schema ontology, referred as ontology population. This in turn avoids the limitations on universal quantifier based interpretation in the formal representation of our framework. Furthermore, although Pikes framework is domain independent, our framework is dependent to a specific domain where background knowledge exists. Pikes could support our framework domain adaptability using adaptive learning techniques. Consequently, it is a core component of semantic web applications, particularly in the context of integration and information sharing.

Findings of the Study

In this context, several investigations have been forwarding ways of acquiring and representing domain knowledge from heterogeneous sources, namely from biomedical texts. The challenge is that acquisition of such knowledge required intensive expert efforts, time and huge investments.

Even with intensive resource mobilization, most constructed ontologies are either very shallow (e.g. Cyc and Galen) or very narrow (e.g. GO), which have poor coverage, organization and formalization. These ontologies are not deployable in practical application scenarios. In order to strengthen knowledge acquisition and ontology construction, literatures have recommended the need to design methodologies and frameworks that enable to acquire and represent ontologies from their sources at large scale with minimal expert involvement, time and investment, reducing the knowledge acquisition bottleneck.

In order to contribute in this direction, this research investigates the development of ontology acquisition framework from biomedical texts. The proposed framework is designed, constructed and instantiated using biomedical text collection and background knowledge (UMLS). The instantiated framework is also evaluated for its correctness and quality using a set of criteria. The evaluation result showed better extent of approximation and quality of the ontology structure.

The framework formulates the ontology ( o K ) as six tuples.

, where,

 is a set of primitive axioms,  is a set of primitive attribute axioms, c H is a set of concept taxonomy axioms, r H is a set of role taxonomy axioms,  is a set of non-taxonomy axioms and

A is a set of assertional axioms. However, instantiation of this formulation, attribute and hierarchical structure is anchored on non-isa relationships. Pair of concepts associated with this set of roles is interpreted using existential restrictions and the interpreted classes are set as anonymous classes whose type is the subject class. For example, a semantic association "Bacteria CAUSE Infection" is interpreted as Bacteria  CAUSE.Infection. This defined a class of Bacteria, which can cause at least one infection whose type is also a Bacteria, i.e. a set of infections Bacteria. Consequently, such anonymous class of bacteria is set to have a type of Bacteria.

Evaluation

The proposed framework is evaluated using criteria-based approach to measure the extent of approximation and quality of the ontology structure. Each criterion represented a set of structural properties, where each property is measured using a set of metrics. The metrics values are obtained computationally. Eight criteria are chosen for measurement out which four of them measured extent of approximation and the rest are used to measure quality of the ontology structure.

To measure extent of approximation, five metrics are chosen, namely precision, recall, coverage, relevance and inconsistency. Accuracy is measured in terms of precision and recall and the result enabled to judge better accuracy. Completeness and conciseness are measured in terms of coverage and relevance, and the results are also good coverage. However, we considered the presence of cycles and partitioning errors as source of inconsistencies and found none. For details of the results, please see sections 6.2.2 and 6.2.3 above.

To measure quality, thirteen metrics are chosen and computed for measurement. Structural complexity is measured based on SOV, ENR, TIP and EOG and judged to be complex (see sec.

6.2.4)

. Adaptability is measured with coupling and cohesiveness, where their metrics are NEC, NER, NoR, NoL, ADIT-LN, and judged to be good (see sec. 6.2.5). Ontology schema potential is measured with semantic richness properties such as RR, AR and IR (see sec. 6.2.6). Lastly, clarity is measured with readability (RD) metrics. Both shows better results and judged to be good and encouraging. In general, according to the evaluation results shown in section 6.3, the correctness and quality of the proposed framework is inline with the original expectation.

Contribution

The contribution of this resaerch work is the construction of rigrous and integrated ontology acquisition framework from biomedical texts. The specifities of the framework are rigor, shared knowledge, scalability, independent and automatic ontology acquisition in the biomedical domain. Scalability is in the order of millions (>4 million concepts and their associations). The components of the frmaework are highly integrated for consistent and semantically relevenant acquisition. The challenges of consensus reaching (shared knwoeldge acquisition) is better minimized using shared domain semantics in the background knowledge. This enabled ontology learning independent from ontology engineers and domain experts (manual works), and thus, geared towards fully automatic acquisition. Domain relevance is determined using the semantics in the background knowledge, which is pre-built and consensus-reached set of domin artefacts rather than using TFIDF.

The proposed framework is highly scalable and exhuastive in acquiring biomedical artefacts (concepts, roles and their associations). Consequently, over 4 million concepts and 7 million associations are acquired from the bioMed text collection. Ontology structuring is automatic supported by structures in the bckground knowledge. Interpretation is autoamatic using ontology language primitives and constructs (e.g. OWL DL). Thus, while existing ontology learning frameworks are supported with ontology tools (e.g. ontoEdit), this framework doesn't require it.

Generally, this study is the first attempt to fully automate ontology learning from text collection at larger scale and rigourously focusing on a shared understanding of the domain semantics.

Firstly, it disambiguates biomedical artefacts at large scale; secondly, the framework structures biomedical concepts and their associations into ontology structures; Finally, formally interprets the conceptual ontology. The framework does these activities independently from knowledge engineers and ontology tools, which results reduction of time, effort and cost in conventional ontology learning.

Way Forward

This research designed and developed a generic and rigorous ontology acquisition framework as a first step to automate ontology learning from biomedical texts. Even though the proposed
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