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Chapitre 1 Introduction Générale

Cette thèse présente un ensemble de résultats théoriques relatifs à un problème couplé de deux équations de types Cahn-Hilliard et Allen-Cahn. Avant de parler de ces deux types d'équations et de leur couplage, on décrit brièvement deux méthodes de modélisation pour l'évolution des microstructures : la méthode des champs de phase et, en opposition, la méthode classique aussi connue sous le nom de la méthode d'interface raide "sharp interface". Ces méthodes sont à l'origine des équations de type Cahn-Hilliard et Allen-Cahn.

Dans la méthode classique, les régions séparant les domaines structuraux sont traitées comme des interfaces raides, pour lesquelles une certaine régularité est habituellement exigée. Il est alors nécessaire d'avoir des équations d'évolution associées aux variables physiques convenables dans chaque région mais aussi des équations d'évolution aux interfaces. Bien que cette méthodologie soit efficace en dimension 1, il devient difficile de l'appliquer en dimension 2 ou 3. En effet, ces interfaces ont des géométries compliquées séparant les différentes microstructures qui apparaissent souvent durant des processus de mûrissement appelés mûrissement d'Ostwald.

Par contre, ces dernières années, la méthode des champs de phase est devenue assez importante dans la modélisation de différents types d'évolution des microstructures. Elle se base sur une description d'interfaces raides développée par van der Waals il y a plus d'un siècle [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[END_REF] et par Cahn et Hilliard d'une manière indépendante il y a presque cinquante ans [START_REF] Cahn | Free energy of a nonuniform system I, Interfacial free energy[END_REF]. L'idée principale de cette méthode est de remplacer le traitement macroscopique singulier de l'interface raide par une description régularisée. La singularité vient souvent d'une discontinuité de surface pour quelques variables. Dans ce but, on introduit un ou plusieurs champs auxiliaires nommés champs de phase, variant régulièrement à travers les interfaces.

La méthode des champs de phase permet de prévoir l'évolution des morphologies arbitraires et de microstructures compliquées sans suivre explicitement la position des interfaces. En plus, les modèles des champs de phase décrivent les phénomènes microstructurals à l'échelle mésoscopique et contiennent les descriptions convenables des interfaces raides, comme par exemple une limite particulière. Les modèles des champs de phase ont été utilisés dans une grande variété de problèmes ; quelques applications notables de cette méthodologie sont : simulation de la diffusion limitée de la croissance cristalline [START_REF] Collins | Diffuse interface model of diffusion-limited crystal growth[END_REF][START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Karma | Numerical simulation of three-dimensional dendritic growth[END_REF], les instabilités induites par des contraintes dans les solides [START_REF] Kassner | A phase field approach for stress-induced instabilities[END_REF], la convection de Maragoni [START_REF] Borcia | Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface[END_REF], les facteurs d'évolution (dynamics) de goutelettes et des vésicules [START_REF] Beaucourt | Steady to unsteady dynamics of a vesicle in a flow[END_REF], les mélanges polymériques [START_REF] Roths | Dynamics and rheology of the morphology of immiscible polymer blends -on modeling and simulation[END_REF] et le phénomène de mûrissement d'Ostwald [START_REF] Fan | Phase field formulations for modeling the Ostwald ripening in two-phase systems[END_REF].

Les modèles des champs de phase peuvent être associés à des variables conservées ou non conservées ; le premier cas entraîne des équations de type Cahn-Hilliard non linéaires, tandis que le deuxième cas engendre en général des équations de type Allen-Cahn non linéaires.

Sur l'Equation de Cahn-Hilliard

L'équation de Cahn-Hilliard est une équation aux dérivées partielles parabolique du quatrième ordre, introduite en 1958 par Cahn et Hilliard, [START_REF] Cahn | Free energy of a nonuniform system I, Interfacial free energy[END_REF]. Elle représente un paramètre d'ordre conservé et joue un important rôle dans la science des matériaux. Elle décrit des caractéristiques qualitatives des systèmes de deux phases en séparation, en ayant des hypothèses de l'isotropie et de température constante. C'est une équation d'évolution en temps de la concentration d'un matériau. Elle apparaît principalement quand un alliage binaire est refroidi convenablement. Le matériau homogène devient hétérogène et les nucléiques apparaissent : C'est ce qu'on appelle décomposition spinodale qui se déroule en première étape. Dans la deuxième étape, les microstructures grossissent mais plus lentement que dans le processus de la décomposition spinodale. Ce phénomène est essentiel pour étudier la force et la résistance du matériau. Pour plus de détails, le lecteur est invité à consulter les références [START_REF] Cahn | On spinodal deccomposition[END_REF][START_REF] Cahn | Free energy of a nonuniform system I, Interfacial free energy[END_REF][START_REF] Kohn | Upper bounds for coarsening rates[END_REF][START_REF] Langer | Theory of spinodal decomposition in alloys[END_REF][START_REF] Maier-Paape | Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I : Probability and wavelength estimate[END_REF][START_REF] Maier-Paape | Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions : Nonlinear dynamics[END_REF][START_REF] Novick-Cohen | The Cahn-Hilliard equation : Mathematical and modeling perspectives[END_REF][START_REF] Novick-Cohen | The Cahn-Hilliard equation[END_REF].

L'équation de Cahn-Hilliard a été mise en place pour décrire la séparation de phase avec conservation de masse. Dans le cas d'une mobilité constante avec énergie libre non singulière, le comportement asymptotique est donné par un système avec des conditions aux bords libres connu sous le nom de problème de Mullins-Sekerka [START_REF] Chen | Global asymptotic limit of solutions of the Cahn-Hilliard equation[END_REF][START_REF] Pego | Front migration in the nonlinear Cahn-Hilliard equation[END_REF].

Cependant, l'utilisation de l'équation de Cahn-Hilliard a été élargie à divers domaines de la chimie, de la physiques, de la biologie et au secteur de l'ingénierie comme les copolymères diblocs, la retouche d'image, les flux des fluides multiphases, les microstructures avec des inhomogénités élastiques, la simulation de la croissance tumorale, l'optimisation de topologie, la dynamique des populations, la théorie de la formation de galaxies, et même les caractéristiques des anneaux de Saturne ! C'est pourquoi, il est important de comprendre le rôle fondamental de cette équation dans chaque type de modélisation, à ce propos le lecteur pourra consulter [START_REF] Kim | Basic Principles and Practical Applications of the Cahn-Hilliard Equation[END_REF]. Pour voir les applications, le lecteur peut regarder [6,[START_REF] Badalassi | Computation of multiphase systems with phase field models[END_REF][START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF][START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with non smooth free energy part ii : numerical analysis[END_REF][START_REF] Choksi | On the phase diagram for microphase separation of diblock copolymers : an approach via a nonlocal Cahn-Hilliard functional[END_REF][START_REF] Cohen | A generalized diffusion model for growth and dispersion in a population[END_REF][START_REF] Garcke | A singular limit for a system of degenerate Cahn-Hilliard equations[END_REF][START_REF] Heida | On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system[END_REF][START_REF] Jeong | Energy-minimizing wavelengths of equilibrium states for diblock copolymers in the hex-cylinder phase[END_REF][START_REF] Jeong | Numerical analysis of energyminimizing wavelengths of equilibrium states for diblock copolymers[END_REF][START_REF] Kotschote | Strong solutions in the dynamical theory of compressible fluid mixtures[END_REF][START_REF] Wise | Three-dimensional multispecies nonlinear tumor growth I : model and numerical method[END_REF][START_REF] Zhu | Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity[END_REF].

L'équation de base de la modélisation mathématique et des modèles dynamiques est l'équation de Cahn-Hilliard suivante :

∂α ∂t (x, t) = ∇.
[m(α(x, t))∇µ(x, t)], x ∈ Ω, t > 0, (1.1) µ(x, t) = F (α(x, t)) -2 ∆α(x, t), (1.2)

1.1. Sur l'Equation de Cahn-Hilliard

∂α ∂t (x, t) = ∂µ ∂t (x, t) = 0, x ∈ Γ, (1.3) 
où Ω ⊂ IR N , (N = 1, 2, or 3) est un domaine borné de frontière Γ et α(x, t) = α r (x, t) -α s (x, t) est un champ de phase représentant la différence entre les fractions de mole des champs r et s.

La fonction F(α) est un potentiel à double puits d'un système homogène de composition α(x, t), la fonction µ(x, t) est un potentiel chimique, la fonction m(α) est une mobilité positive, et le paramètre est une constante positive reliée à l'épaisseur de l'interface. A l'origine, la mobilité était de la forme m(α) = m 0 (1 -α)(1 + α), elle dépendait de la concentration et m 0 est une constante.

Il existe plusieurs choix de F(α) qui peuvent être considérés.

Les formes les plus utilisées sont

F(α) = 0.25(α 2 -1) 2 (1.4) et F log (α) = θ 2 [(1 + α) log(1 + α) + (1 -α) log(1 -α)] + θ c 2 (1 + α)(1 -α), (1.5) 
où α ∈ (-1, 1), θ est la température et θ c est une température critique.

On remarque qu'au voisinage de α = 0, le potentiel F log (α) se réduit à l'approximation classique de F(α) qui est un polynôme du degré 4 (1.4).

La fonction F qu'on appelle aussi l'énergie libre homogène est souvent régulière pour simplifier l'analyse mathématique. La forme (1.4) décrit deux phases stables (s = ±1). Il est important de trouver des solutions qui prennent leurs valeurs dans l'ensemble [-1, 1] qui est physiquement significatif. Malheureusement, le principe du maximum ne s'applique pas dans notre cas puisque l'équation de Cahn-Hilliard est du quatrième ordre. Une solution à ce problème est de considérer des potentiels qui vérifient les conditions suivantes : (1.9)

F : [-1, 1] → IR, (1.6) 
F ∈ C 2 , (1.7) 
F (s) ≥ -c 0 , c 0 > 0, s ∈ IR, (1.8 
On peut retrouver l'équation de Cahn-Hilliard à partir de l'énergie libre de Ginzburg-Landau

E(α) = Ω (F(α) + 2 2
|∇α| 2 )dx.

(1.10)

Le potentiel chimique µ est alors déduit de (1.10) par :

µ = ∂E ∂α = F (α) -2 ∆α.
Alors, par la loi de conservation de masse, on obtient l'équation de Cahn-Hilliard ∂α ∂t = -∇.Φ, où Φ = -m∇µ est le flux correspondant. On pourra consulter [START_REF] Lee | Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation[END_REF] pour plus de détails sur l'origine physique, mathématique et numérique de l'équation Cahn-Hilliard binaire.

Pour une fonction F régulière sur IR, Elliott et Zheng ont démontré l'existence de solutions globales dans L 2 [START_REF] Elliott | On the Cahn-Hilliard equation[END_REF]. Prüs et al. ont démontré que le problème était bien-posé globalement avec des solutions fortes sous des conditions aux bords dynamiques [START_REF] Prüss | Maximal regularity and asymptotic behaviour of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[END_REF]. Par la suite, Prüs et Wilke ont démontré les mêmes résultats mais dans un cas plus général : l'équation de Cahn-Hilliard non-isothermes avec des potentiels de croissance polynomiale [START_REF] Prüss | Maximal L p -regularity and long-time behaviour of the nonisothermal Cahn-Hilliard equation with dynamic boundary conditions[END_REF].

Un nombre important d'auteurs comme Chill, Hoffman, Rybka, Prüs, Wilke, Wu et Zheng ont démontré des résultats de convergence de solution à des états stables dans le cas des potentiels réguliers [START_REF] Chill | Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions[END_REF][START_REF] Hoffmann | Convergence of solutions to Cahn-Hilliard equation[END_REF][START_REF] Prüss | Maximal L p -regularity and long-time behaviour of the nonisothermal Cahn-Hilliard equation with dynamic boundary conditions[END_REF][START_REF] Wu | Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions[END_REF].

Elliott et Luckhaus ont démontré des résultats d'existence et d'unicité de la solution dans le cas d'un mélange de plusieurs composants [START_REF] Elliot | A generalized equation for phase separation of a multicomponent mixture with interfacial free energy[END_REF]. Debussche et Dettori ont donné une autre démonstration dans le cas d'un mélange de deux composants, ils ont trouvé un attracteur global et ils ont estimé sa dimension [START_REF] Debussche | On the Cahn-Hilliard equation with a logarithmic free energy[END_REF]. Des propriétés supplémentaires des attracteurs ont été étudiées par Dupaix [START_REF] Dupaix | A singularly perturbed phase field model with a logarithmic nonlinearity : Upper-semicontinuity of the attractor[END_REF], mais aussi par Miranville et Zelik [START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF].

Comme nous l'avons vu, il existe une large littérature étudiant l'équation de Cahn-Hilliard. Mais la plupart des références disponibles traitent de cas où le domaine est borné et le modèle est sujet à des conditions de bords convenables [START_REF] Cholewa | Global attractor for the Cahn-Hilliard system[END_REF][START_REF] Eyre | Systems of Cahn-Hilliard equations[END_REF][START_REF] Li | Global attractor for the Cahn-Hilliard system with fast growing nonlinearity[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF].

Cependant, il y a quelques auteurs qui ont traité le problème dans IR N ou dans des domaines non bornés. Par exemple, Bricmont et al. ont étudié en dimension une, la stabilité d'une solution particulière croissante tanh( x 2 ), où des estimations de stabilité et de décroissance en temps ont été établies pour des perturbations des données initiales [START_REF] Bricmont | Stability of Cahn-Hilliard fronts[END_REF]. Liu et al. ont étudié la stabilité dans IR N des solutions constantes en supposant des conditions de croissance locales sur le terme non linéaire et certaine régularité sur la donnée initiale [START_REF] Liu | Global existence and asymptotics of solutions of the Cahn-Hilliard equation[END_REF]. La stabilité est obtenue dans L ∞ (IR N ) et la décroissance en temps est obtenue dans des L p (IR N ). Un résultat de décroissance plus fort est trouvé plus tard pour N ≥ 3 [START_REF] Duan | A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation[END_REF]. L'équation de Cahn-Hilliard est naturellement dissipative dans H -1 dans le sens où la solution semi-groupe est bien définie dans H -1 et possède une boule absorbante dans cet espace.

En outre, beaucoup de modifications sur l'équation de Cahn-Hilliard initiale ont été proposées et étudiées pour donner des modèles complets du point de vue physique. Par exemple : le modèle visqueux de Cahn-Hilliard [START_REF] Bonfoh | Finite-dimensional attractor for the viscous Cahn-Hilliard equation in an unbounded domain[END_REF][START_REF] Carvalho | Strongly damped wave equations in W 1,p 0 (Ω) × L p (Ω)[END_REF][START_REF] Dlotko | Dynamics of the modified viscous Cahn-Hilliard equation in RN[END_REF][START_REF] Elliott | Viscous Cahn-Hilliard equation II, Analysis[END_REF][START_REF] Miranville | Exponential attractors for a class of evolutionary equation by a decomposition method[END_REF][START_REF] Novick-Cohen | On the viscous Cahn-Hilliard equation[END_REF], un modèle de Cahn-Hilliard-Navier-Stokes-Fourier [START_REF] Heida | On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework[END_REF], un modèle avec des termes d'inertie [START_REF] Grasselli | Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term[END_REF] et un modéle avec l'effet d'anisotropie [135]. De plus, différentes perturbations de cette équation ont été analysées en dimension 1 [START_REF] Zheng | Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations[END_REF][START_REF] Zheng | Global attractors for singular perturbations of the Cahn-Hilliard equations[END_REF] et des perturbations stochastiques comme les équations de Cahn-Hilliard-

Sur l'Equation d'Allen-Cahn

Cook peuvent être également trouvées [START_REF] Blömker | Spinoidal decomposition for the Cahn-Hilliard-Cook equation[END_REF][START_REF] Blömker | Second phase spinoidal decomposition for the Cahn-Hilliard-Cook equation[END_REF]. Le système de Cahn-Hilliard avec élasticité linéaire a été aussi étudié [START_REF] Blesgen | A generalized Cahn-Hilliard equation based on geometrically linear elasticity[END_REF][START_REF] Blesgen | On the Allen-Cahn/Cahn-Hilliard system with a geometrically linear elastic energy[END_REF][START_REF] Cahn | The effect of self-stress on diffusion in solids[END_REF][START_REF] Garcke | On Cahn-Hilliard systems with elasticity[END_REF][START_REF] Onuki | Ginzburg-Landau approach to elastic effects in the phase separation of solids[END_REF]. D'autre part, Heida et al. ont fourni une base thermodynamique à la modélisation mathématique pour le développement des modèles de champs de phase et des généralisations des équations de Cahn-Hilliard [START_REF] Heida | On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework[END_REF].

Chercher des solutions numériques de l'équation de Cahn-Hilliard n'était pas souvent facile à cause de trois difficultés principlales : la présence de dans l'équation, la non linéarité du système et la différence des échelles de temps à chaque étape de l'évolution de la concentration. Alors, une résolution numérique du problème demande une relation entre les échelles numériques, particulièrement, entre la taille du maillage, la taille du pas et la longeur de l'interaction. Il existe maintenant une littérature suffisante qui donne des approximations numériques précises, voir [START_REF] Boyer | Numerical schemes for a three component Cahn-Hilliard model[END_REF][START_REF] Copetti | Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy[END_REF]73,[START_REF] Gomez | Isogeometric analysis of the Cahn-Hilliard phase-field model[END_REF][START_REF] Gomez | Provably Unconditionally Stable, Second-order Timeaccurate[END_REF][START_REF] Kim | Conservative multigrid methods for ternary Cahn-Hilliard systems[END_REF][START_REF] Minjeaud | An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model[END_REF][START_REF] Shen | Second-order convex splitting schemes for gradient ows with Enhrich-Schwoebel type energy : application to thin film epitaxy[END_REF][START_REF] Wu | Multiphase Allen-Cahn and Cahn-Hilliard Models and Their Discretizations with the Effect of Pairwise Surface Tensions[END_REF][START_REF] Tierra | Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models[END_REF].

Finalement, des généralisations des modèles de Cahn-Hilliard ont été étudiées, où un nombre arbitraire de phases peut être considéré, consulter [START_REF] Barrett | Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy[END_REF][START_REF] Barrett | Finite element approximation of a model for phase separation of a multi-component alloy with a concentration-dependent mobility matrix[END_REF][START_REF] Lee | A second-order accurate non-linear difference scheme for the N-component Cahn-Hilliard system[END_REF][START_REF] Lee | A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system[END_REF][START_REF] Vanherpe | A multigrid solver for phase field simulation of microstructure evolution[END_REF][START_REF] Wu | Multiphase Allen-Cahn and Cahn-Hilliard Models and Their Discretizations with the Effect of Pairwise Surface Tensions[END_REF].

Sur l'Equation d'Allen-Cahn

L'équation d'Allen-Cahn est une équation aux dérivées partielles parabolique du deuxième ordre, introduite en 1979 dans [START_REF] Allen | A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[END_REF] par Allen et Cahn où ils ont traité le mouvement des grains sur la frontière dans des solides cristallins. Dans ce travail, les auteurs parlent des frontières d'antiphase courbée "APB : curved antiphase boundaries" en les traitant comme des surfaces avec des propriétés géométriques comme l'aire et la courbure, des propriétés thermodynamiques et chimiques comme l'excès de l'énergie libre par unité d'aire et d'adsorption et des propriétés cinétiques comme leur vitesse sous l'effet d'une force agissante. Depuis cet article, les équations d'Allen-Cahn sont devenues un modèle prototype pour les phases de transition isothermes.

L'équation d'Allen-Cahn représente une variable non conservée. C'est pourquoi elle est utilisée pour la modélisation de la ségrégation et de la précipitation dans les solides ou dans des situations plus générales où il existe une réorganisation des maillages de cristaux. Elle décrit le mouvement macroscopique des frontières de phase entraîné par la tension de surface. Elle sert encore comme un modèle de transition de phase dans des alliages métalliques binaires. De plus, elle apparaît comme une équation de diffusion-convection dans la dynamique des fluides numériques ou comme un problème de réaction-diffusion dans la science des matériaux. Elle a été aussi utilisée pour modéliser le débit moyen de courbure et la segmentation d'images [START_REF] Benes | Geometrical image segmentation by the Allen-Cahn equation[END_REF][START_REF] Feng | Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[END_REF][START_REF] Ilmanen | Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[END_REF].

L'équation d'Allen-Cahn joue encore un rôle dans l'étude des ondes stationnaires pour l'équation de Schrödinger non-linéaire et a été beaucoup étudiée. Elle donne un cadre solide pour la description mathématique des problèmes de frontière libre en ce qui concerne les transitions de phase.

La solution d'équation d'Allen-Cahn subit un phénomène qu'on appelle métastabilité [START_REF] Lyons | Fast algorithms for spectral collocation with non-periodic boundary conditions[END_REF] : elle présente des zones plates proches des valeurs séparées par les interfaces qui peuvent disparaître à long terme. Une liste de références concernant les applications de cette équation dans le domaine d'ingénierie se trouve dans [START_REF] Raabe | Continuum Scale Simulation of Engineering Materials : Fundamentals-Microstructures-Process Applications[END_REF].

En 1993, des travaux ont été effectués sur les équations d'Allen-Cahn anisotropiques qui ont été initialement proposées par Mcfadden et al. [START_REF] Mcfadden | Phase field models for anisotropic interfaces[END_REF], puis développées par Eliott et al. en 1996, où l'existence de la solution globale a été établie [START_REF] Elliott | Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean-curvature flow[END_REF]. En 1996 et 1997, Eliott et Schätzle ont démontré la convergence de la solution vers un flux anisotropique de courbure moyenne en se basant sur des estimations qui dépendent de la dérivée de la densité de la tension superficielle [START_REF] Elliott | The limit of the anisotropic double-obstacle Allen-Cahn equation[END_REF][START_REF] Elliott | The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case[END_REF]. En 2007, Ninomiya a examiné des solutions d'ondes mobiles cylindriquement symétriques [START_REF] Ninomiya | Traveling Wave Solutions of the Allen-Cahn Equations[END_REF]. Un an plus tard, Alfaro et al. ont trouvé un approche analytique qui étudie le mouvement de l'interface et de la génération des phases [3].

L'équation d'Allen-Cahn peut être considérée comme le flot du gradient de la même énergie libre utilisée pour la dérivation de l'équation de Cahn-Hilliard dans L 2 .

E(α) = Ω (F(α) + 2 2 |∇α| 2 )dx, où F(α) = 1 4 2 (α 2 -1) 2 .
Cette dérivation de l'équation d'Allen-Cahn est la méthode classique. Elle consiste à définir la dérivée par rapport au temps du paramètre d'ordre considéré égale à une fonction convenable du gradient de la dérivée variationnelle de l'énergie libre de Ginzbaurg-Landau par rapport au paramétre d'ordre considéré, ce qui donne l'équation Allen-Cahn. La plupart du temps, cette fonction est prise linéaire. Une récente étude est faite pour voir si les autres possibilités sont meilleures, en se basant sur un exemple concret étudié dans [START_REF] Alber | An alternative to the Allen-Cahn phase field model for interfaces in solidsnumerical efficiency[END_REF]. Dans une étude faite en 2017, on trouve une nouvelle dérivation des équations d'Allen-Cahn et Cahn-Hilliard basée sur l'énergie libre fonctionnelle généralisée [START_REF] Wu | Multiphase Allen-Cahn and Cahn-Hilliard Models and Their Discretizations with the Effect of Pairwise Surface Tensions[END_REF].

Quand le paramètre tend vers zéro, la solution de l'équation d'Allen-Cahn doit se comporter comme une fonction définie par morceaux avec les valeurs ±1 dans une des deux régions massives qui sont séparées par une couche d'épaisseur interfaciale diffusive . Ce comportement limite est connu sous l'appelation "the sharp interface limit". Le lecteur peut trouver des analyses formelles et plus rigoureuses dans la littérature [START_REF] Evans | Phase transitions and generalized motion by mean curvature[END_REF][START_REF] Ilmanen | Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[END_REF][START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF]. Pour des petites valeurs de , dans la couche interfaciale, la solution reste régulière mais elle développe un gradient spatial important. De telles couches bougent avec le temps. Un portrait de α à travers les couches interfaciales se trouve dans [START_REF] Nürnberg | Numerical approximation of phase-field models[END_REF]. L'équation d'Allen-Cahn, comme l'équation de Cahn-Hilliard est naturellement dissipative, mais dans l'espace L 2 .

En outre, un nombre important d'études a porté sur les solutions numériques et analytiques de l'équation d'Allen-Cahn car elles ont de nombreuses applications (voir [START_REF] Chen | Phase-field models for microstructural evolution[END_REF]). Ce calcul numérique est souvent basé sur des schémas explicites conduisants à des problèmes importants de stabilité qui limitent les intervalles de temps en fonction de la taille du pas de maillage. Une des difficultés principales dans les études numériques est de surmonter la couche fine. Pour plus de discussions sur ce sujet, on pourra consulter [START_REF] Bartels | A posteriori error analysis for time-dependent Ginzburg-Landau type equations[END_REF], [START_REF] Feng | Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[END_REF]- [START_REF] Feng | A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow[END_REF]. En plus, des solutions numériques efficaces ont été établies pour une meilleure compréhension des facteurs de l'équation d'Allen-Cahn. Le lecteur peut se rapporter aux articles : [START_REF] Benes | Geometrical image segmentation by the Allen-Cahn equation[END_REF][START_REF] Choi | An unconditionally gradient stable numerical method for solving the Allen-Cahn equation[END_REF][START_REF] Cox | Exponential time differencing for stiff systems[END_REF][START_REF] Cheng | Maximally fast coarsening algorithms[END_REF][START_REF] Feng | A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow[END_REF][START_REF] Feng | Spectral implementation of an adaptive moving mesh method for phase-field equations[END_REF][START_REF] Li | An unconditinally stablee hybrid numerical method for solving Allen-Cahn equation[END_REF][START_REF] Martin | Adaptive mesh refinement for multiscale nonequilibrium physics[END_REF][START_REF] Vollmayr-Lee | Fast and accurate coarsening simulation with an unconditionally stable time step[END_REF].

On note aussi que la solution analytique de l'équation d'Allen-Cahn avec des conditions de bord non-périodiques est difficile à obtenir ce qui a entraîné des recherches additionnelles des solutions numériques (voir par exemple [START_REF] Ali | Some efficient numerical solutions of Allen-Cahn equation with non-periodic boundary conditions[END_REF][START_REF] Bartels | Robust A priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes[END_REF][START_REF] Fasshauer | RBF collocation methods and pseudospectral methods[END_REF][START_REF] Kassam | Fourth-Order time-stepping for stiff PDEs[END_REF][START_REF] Lyons | Fast algorithms for spectral collocation with non-periodic boundary conditions[END_REF]).

L'équation d'Allen-Cahn et ses formes modifiées ont été appliquées dans plusieurs problèmes : le mouvement cristallin des interfaces en premier lieu, analyse d'images, mouvement de la courbure moyenne, flux de fluides à deux phases, la croissance de cristaux, la segmentation d'images et autres [START_REF] Allen | A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[END_REF][START_REF] Benes | Geometrical image segmentation by the Allen-Cahn equation[END_REF][START_REF] Benes | Simulation of anisotropic motion by mean curvaturecomparison of phase field and sharp interface approaches[END_REF][START_REF] Cheng | An efficient algorithm for solving the phase field crystal model[END_REF][START_REF] Dobrosotskaya | A Wavelet-Laplace variational technique for image deconvolution and inpainting[END_REF][START_REF] Evans | Phase transitions and generalized motion by mean curvature[END_REF][START_REF] Feng | Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[END_REF][START_REF] Giga | On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations[END_REF][START_REF] Ilmanen | Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[END_REF][START_REF] Katsoulakis | Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions[END_REF][START_REF] Ohtsuka | Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials[END_REF][START_REF] Wheeler | Phase-field model for isothermal phase transitions in binary alloys[END_REF][START_REF] Yang | Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[END_REF]. On note aussi que le système d'Allen-Cahn avec élasticité linéaire est étudiée dans [START_REF] Blesgen | On the multicomponent Allen-Cahn equation for elastically stressed solids[END_REF].

Enfin, des études sur les modèles d'Allen-Cahn à phases multiples ont été développées [START_REF] Kornhuber | Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy[END_REF][START_REF] Lee | An efficient and accurate numerical algorithm for the vectorvalued Allen-Cahn equations[END_REF][START_REF] Wu | Multiphase Allen-Cahn and Cahn-Hilliard Models and Their Discretizations with the Effect of Pairwise Surface Tensions[END_REF] . Leur cohérence avec les modèles à phase binaire peut facilement être démontrée. Par ailleurs, des équations d'Allen-Cahn à valeurs vectorielles ont été examinées, voir par exemple [START_REF] Bronsard | On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation[END_REF], [START_REF] Garcke | Bi-directional diffusion induced grain boundary motion with triple junctions[END_REF]- [START_REF] Garcke | Anisotropy in multi phase systems : A phase field approach[END_REF] et [START_REF] Kornhuber | Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy[END_REF].

Sur le Couplage des Equations Allen-Cahn/Cahn-Hilliard

Il existe différentes façons de coupler les équations d'Allen-Cahn et de Cahn-Hilliard. Cependant, on s'interesse dans ce travail au modèle introduit dans [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF]. Ce système d'Allen-Cahn/Cahn-Hilliard (AC/CH) a été proposé par Cahn et Novick-Cohen en 1994 comme une extension du modèle classique de Cahn-Hilliard en séparation de phase d'un mélange binaire sous refroidissement. Le mélange peut représenter par exemple des alliages binaires, des populations biologiques, des liquides à deux composants et autres. Ses propriétés mathématiques ont été étudiées dans [START_REF] Barrett | A phase field model for the electromigration of intergranular voids[END_REF][START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF] et les références associées.

Une des plus importantes applications de ce couplage est la cristallographie. En séparation de phase, quand on travaille avec des alliages, la cristallographie distingue plusieurs structures bien ordonnées. Ces structures consistent non pas en des domaines séparés occupés par les deux composants exclusivement (ce qui consiste la première approche de comprendre la séparation de phase) mais aussi par quelques distributions régulières des atomes de deux composants sur des réseaux cristallisés. Le processus est décrit par l'évolution des deux variables u et v comme suit :

∂u ∂t = h 2 ∆( f (u + v) + f (u -v) -h 2 ∆u), ∂v ∂t = -f (u + v) + f (u -v) -αv + h 2 ∆v.
La fonction u est la concentration de l'un des composants, la fonction v exprime une certaine mesure d'ordre entre les atomes des composants et h est le paramètre de la tension de surface. Le paramètre α représente la localisation du système dans le maillage de la phase et la fonction f représente l'énergie d'interaction entre les deux composants. La fonction f est la non-linéarité du système.

Ce système d'équations décrit un flot de gradients dans H -1 × L 2 de l'énergie libre

J(u, v) = Ω F(u + v) + F(u -v) + α 2 v 2 + 1 2 h 2 (|∇u| 2 + |∇v| 2 ) dx, où f = F .
En particulier, ce système se réduit à l'équation d'Allen-Cahn quand u = 1 2 et se réduit à l'équation de Cahn-Hilliard quand v = 0. Deux méthodes phénoménologiques entraînant des équations couplées de Cahn-Hilliard et Allen-Cahn ont été explorées dans [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF]. Ces approches décrivent la dynamique des systèmes qui subissent une séparation de phase du premier ordre puis des transitions d'ordre-désordre.

Dans la première méthode, une limite quasicontinuum de l'énergie libre est prise en compte et l'évolution du système est ensuite supposée donnée par un flot de gradients. Tandis que, dans la deuxième, un ensemble discret de flot de gradients (d'équations d'évolution) est trouvé en premier et ensuite une limite quasicontinuum est prise en compte. Les méthodes du continuum ont été employées en 1983 et 1986 par Krzanowski et Allen [120]- [START_REF] Krzanowski | The Migration Kinetics of Antiphase Boundaries Wetted by a Second Phase[END_REF] et en 1990 et 1998 par Eguchi et al. [START_REF] Eguchi | PC-Visualization of Phase Transitions in Alloys[END_REF][START_REF] Shiiyama | Computer Simulation of Dynamics of the Pattern Formulations in Antiphase Ordered Structure and Phase Separation Induced by Ordering in Binary Alloys[END_REF].

Dans le travail décrit dans [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF], le contexte d'un alliage binaire Fe-Al sur un maillage ayant une forme cubique (BCC : body cubic center) est bien détaillé où l'importance du choix des variables est démontrée. Il faut que ces variables s'adaptent avec les variations de la concentration moyenne ainsi que la structure sous-jacente ordonée des phases possibles coexistantes. C'est le seul cas où les deux approches conduisent approximativement à une même description du continuum. Le résultat est décrit par une équation de type Cahn-Hilliard couplée avec une équation de type Allen-Cahn.

Le système généralisé est défini avec une mobilité Q(u, v) qui n'est pas constante. Il a été traité dans [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF] par exemple où la forme de Q(u, v) permet de faire disparaître cette mobilité aux phases pures. On note que la dérivation du système dans [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF] peut être étendue à une mobilité non-constante.

Le système AC/CH, par construction, est désigné pour décrire des processus d'ordre-désordre et de séparation de phase simultanés. Il peut être considéré comme un modèle d'interface diffus pour le frittage des petits grains et le rainurage des frontières de grains des films polycristalline [START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF].

Brochet et al. ont commencé l'étude mathématique de notre système en 1994 : elles ont démontré que le problème avec des conditions au bord de type Neumann homogène est bien posé. Elles ont aussi démontré l'existence d'un attracteur global et d'un attracteur exponentiel [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF]. En 1999, Passo et al. ont analysé le même modèle couplé AC/CH avec une mobilité dégénérée et une énergie libre qui contient des termes logarithmiques [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF], ils ont démontré l'existence des solutions faibles avec des conditions au bord de type Neuman. Entre 1996 et 2005, Cahn, Novick-Cohen et Peres Hari ont développé des résultats asymptotiques géométriques de notre modèle. Ils ont démontré que le comportement asymptotique fait intervenir le mouvement par courbure moyenne en dimension 2 et 3 [START_REF] Cahn | Limiting motion for an Allen-Cahn/Cahn-Hilliard system[END_REF][START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF][START_REF] Novick-Cohen | Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system : The partial wetting case[END_REF][START_REF] Novick-Cohen | Coupled surface diffusion and motion by mean curvature from a diffuse interface model[END_REF].

En 2002, Gokieli a considéré le modèle avec des contraintes sur les valeurs des inconnus. Elle a démontré l'existence et l'unicité de la solution et elle a étudié le comportement asymptotique pour une forme donnée de l'entropie [START_REF] Gokieli | Asymptotic behaviour for diffusive problems[END_REF]. Après, Gokieli et Ito ont démontré des résultats d'existence, d'unicité et l'existence d'un attracteur global compact dand L 2 (Ω) 2 pour le système dynamique associé, pour deux exemples différents de l'entropie [START_REF] Gokieli | Global attractor for the Cahn-Hilliard/Allen-Cahn system[END_REF]. Gokieli et Marcinkowski ont aussi présenté un schéma numérique implicite basé sur l'élément fini pour résoudre le système AC/CH et elles ont prouvé la convergence des solutions numériques vers la solution exacte [START_REF] Gokieli | Discrete approximation of the Cahn-Hilliard/Allen-Cahn system with logarithmic entropy[END_REF]. Ce travail a enfin été amélioré en 2010, par l'analyse d'un solveur -une méthode itérative effective pour chaque étape du schéma numérique implicite et les auteurs ont aussi démontré la convergence de cette méthode [START_REF] Gokieli | A solver for the finite element approximation for the Cahn-Hilliard/Allen-Cahn system with logarithmic entropy[END_REF]. De plus, en 2012, une méthode NKS (Newton-Krylov-Schwarz) pour la solution implicite de notre système AC/CH a été proposée [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF].

Boussinot et al. ont par ailleurs présenté un système couplé d'Allen-Cahn/Cahn-Hilliard en 2010. Ce système indique des modèles de champ de phase 2D et 3D pour l'évolution des microstructures sous la présence d'un réseau inadapté et avec des constantes élastiques non homogènes [START_REF] Boussinot | Phase-field simulations with inhomogeneous elasticity : comparison with an atomic-scale method and application to superalloys[END_REF]. Plus tard, en 2014, un système couplé de type AC/CH avec élasticité linéaire dans des dimensions D ≤ 3 a été étudié. Ce modèle donne une base pour la généralisation des modèles d'interface diffus isothérmiques déjà existants [START_REF] Blesgen | On the Allen-Cahn/Cahn-Hilliard system with a geometrically linear elastic energy[END_REF].

Enfin, plusieurs méthodes numériques ont été utilisées pour résoudre des systèmes couplés de type AC/CH [START_REF] Gokieli | A solver for the finite element approximation for the Cahn-Hilliard/Allen-Cahn system with logarithmic entropy[END_REF][START_REF] Millett | Void nucleation and growth in irradiated polycrystalline metals : A phase-field model[END_REF][START_REF] Rokkam | Phase field modeling of void nucleation and growth in irradiated metals[END_REF][START_REF] Tonks | An object-oriented finite element framework for multiphysics phase field simulations[END_REF], [START_REF] Vanherpe | A multigrid solver for phase field simulation of microstructure evolution[END_REF]- [START_REF] Wu | Multiphase Allen-Cahn and Cahn-Hilliard Models and Their Discretizations with the Effect of Pairwise Surface Tensions[END_REF] et [START_REF] Xia | Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system[END_REF].

Plan de la thèse

On présente maintenant la structure de ce manuscrit qui regroupe les résultats des articles [START_REF] Miranville | A Cahn-Hilliard/Allen-Cahn system based on heat conduction[END_REF]- [START_REF] Miranville | On The Cahn-Hilliard/Allen-Cahn Equations With Singular Potentials[END_REF] :

1. Dans le premier article, [148], on considère le modèle suivant des équations couplées de Cahn-Hilliard/Allen-Cahn :

(P)

∂u ∂t = h 2 ∆( f (u + v) + f (u -v) -h 2 ∆u) ∂v ∂t = -f (u + v) + f (u -v) -αv + h 2 ∆v
Le problème est posé dans un domaine [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF].

Ω ⊂ IR N (N = 1,
On associe ce problème à des conditions du bord de type Dirichlet :

u = v = 0 sur Γ,
et aux conditions initiales suivantes

u |t=0 = u 0 , v |t=0 = v 0 . La fonction f satisfait f ∈ C 2 , f (0) = 0, f (s) ≥ -c 0 , c 0 > 0, s ∈ R, f (s)s ≥ c 1 F(s) -c 2 , F(s) ≥ -c 3 , c 1 > 0, c 2 , c 3 ≥ 0, s ∈ R, où F(s) = s 0 f (ξ)dξ.
Dans ce travail, on améliore les résultats de [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF]. On les démontre pour un polynôme de degré trois quelconque. On prouve l'existence et l'unicité d'une solution faible globale dans L ∞ (0, T ; H 2 (Ω)), le résultat est illustré par :

Théorème 1.4.1. On prend T > 0 et on suppose que (u 0 , v 0 ) ∈ H 2 (Ω) 2 . Alors, (P) admet une solution unique

(u, v) sachant que (u, v) ∈ L ∞ (0, T ; H 2 (Ω) 2 ) et ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (0, T ; H -1 (Ω) × L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω) 2 ).

Plan de la thèse

Ce théorème nous permet de définir un semi-groupe continu. On démontre alors que ce semi-groupe est dissipatif. 

(Ω)×H 1 (Ω) (A, B) = sup a∈A inf b∈B ||a -b|| H 1 (Ω)×H 1 (Ω) .
La dimension finie est assez importante, elle nous permet de dire que malgré la dimension infinie de l'espace de phase, on peut situer la solution dans un espace de dimension finie.

2. Dans le deuxième article, [START_REF] Miranville | On The Cahn-Hilliard/Allen-Cahn Equations With Singular Potentials[END_REF], avec le même système (P), on considère au lieu du potentiel polynomial un qui est logarithmique :

f (s) = F (s) = -θ c s + θ 2 ln 1 + s 1 -s , où F(s) = θ c 2 (1 -s 2 ) + θ 2 (1 -s) ln 1 -s 2 + (1 + s) ln 1 + s 2 , θ = température, θ c = la température critique, et s ∈ (-1, 1).
En utilisant le développement limité, on approche notre f qui est C 1 (-1, 1) et singulière par une suite de fonctions ( f N ) n∈IN qui est C 1 (IR) :

f N (s) =          f (-1 + 1 N ) + f (-1 + 1 N ) (s + 1 -1 N ), s < -1 + 1 N , f (s), |s| ≤ 1 -1 N , f (1 -1 N ) + f (1 -1 N )(s -1 + 1 N ), s > 1 -1 N . Chaque fonction f N satisfait f N ≥ -c 0 et, en prenant F N (s) = s 0 f N (r)dr, on a : -c 3 ≤ F N (s) ≤ c 4 f N (s)s + c 5 , c 4 > 0, c 3 , c 5 ≥ 0, s ∈ IR, f N (s)s ≥ c 6 | f N (s)| -c 7 , c 6 > 0, c 7 ≥ 0, s ∈ IR,
où les constantes c i , i = 3, ...., 7, sont indépendentes de N.

On associe le problème aux conditions initiales et aux conditions du bord suivantes :

u N = ∆u N = v N = 0 sur Γ, u N|t=0 = u 0 , v N|t=0 = v 0 .
On démontre tout d'abord l'existence et l'unicité de la solution faible dans C w ([0, T ];

H 1 0 (Ω) 2 )∩ L 2 (0, T ; H 2 (Ω) 2 ) ∩ L ∞ (0, T ; H 1 0 (Ω) 2 ). Théorème 1.4.4. On suppose que (u 0 , v 0 ) ∈ H 1 (Ω) 2 , ||u 0 + v 0 || L ∞ (Ω) < 1, et ||u 0 -v 0 || L ∞ (Ω) < 1.
Alors, le système (P) possède une solution unique (faible) sachant que, ∀ T > 0,

(u, v) ∈ C w ([0, T ]; H 1 0 (Ω) 2 ) ∩ L 2 (0, T ; H 2 (Ω) 2 ) ∩ L ∞ (0, T ; H 1 0 (Ω) 2 ) et ∂u ∂t , ∂v ∂t ∈ L 2 (0, T ; H -1 (Ω) × L 2 (Ω)),
où w est utilisé pour la topologie faible, et

d dt ((u, q)) -1 + ((∇u, ∇q)) + (( f (u + v) + f (u -v), q)) = 0, d dt ((v, q)) + ((∇v, ∇q)) + (( f (u + v) -f (u -v), q)) = 0, u(0) = u 0 , v(0) = v 0 , p.p. t ∈ [0, T ], ∀ q ∈ C ∞ c (Ω).
La difficulté étant dans le passage à la limite du problème approché surtout sur le terme non linéaire f . Cette difficulté est surmontée par la possibilité de borner f N dans L 1 (0, T ; Ω) et L 2 (0, T ; Ω). A la fin, on démontre la propriété stricte de la séparation stricte en dimension une qui a une importance physique remarquable. Alors, il existe deux constantes positives δ, δ et T > 0 sachant que

Ensuite

Φ 1 = Φ ∩ {(u, v) ∈ L ∞ (Ω) 2 ; ||u + v|| L ∞ (Ω) < 1 et ||u -v|| L ∞ (Ω) < 1}, où Φ = {(u, v) ∈ H 1 (
||(u + v)(t)|| L ∞ (Ω) ≤ 1 -δ, ∀ 2 ≤ t ≤ T, et ||(u -v)(t)|| L ∞ (Ω) ≤ 1 -δ , ∀ 2 ≤ t ≤ T.
3. Dans le troisième article, [START_REF] Miranville | A Cahn-Hilliard/Allen-Cahn system based on heat conduction[END_REF], on couple le système (P) avec la température et on divise le travail en deux parties :

Dans la première partie, la température suit la loi classique de Fourrier présentée par l'équation ∂θ ∂t -∆θ = -∂v ∂t .

La fonction f satisfait f ∈ C 2 , f (0) = 0, f (s) ≥ -c 0 , c 0 > 0, s ∈ IR, f (s)s ≥ cF(s) -c , F(s) ≥ -c , c > 0, c , c ≥ 0, s ∈ IR, où F(s) = s 0 f (ξ)dξ.
Les conditions aux bords sont les conditions de type Dirichlet. Le système est alors :

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (1.11) ∂v ∂t -∆v + f (u + v) -f (u -v) = θ, (1.12 
)

∂θ ∂t -∆θ = - ∂v ∂t , (1.13) 
u = v = θ = 0 sur Γ, (1.14) 
u |t=0 = u 0 , v |t=0 = v 0 , θ |t=0 = θ 0 , (1.15) 
où Ω est un domaine borné de IR N (N = 1, 2, ou 3) avec une frontiére régulière Γ.

On commence par démontrer l'existence et l'unicité de la solution dans L ∞ loc (IR + ; (H 2 (Ω) 3 ) cette fois sur deux théorèmes. Théorème 1.4.8. Supposons que (u 0 , v 0 , θ 0 ) ∈ H 1 0 (Ω) 3 . Alors, (1.11)-(1.15) possède au moins une solution (u, v, θ) tel que

(u, v, θ) ∈ L ∞ (IR + ; H 1 0 (Ω) 2 × L 2 (Ω)) ∩ L 2 loc (IR + ; H 2 (Ω) 3 ), θ ∈ L ∞ (IR + ; L 2 (Ω) ∩ H 1 0 (Ω)) ∩ L 2 loc (IR + ; H 2 (Ω)) et ( ∂u ∂t , ∂v ∂t , ∂θ ∂t ) ∈ L 2 (IR + ; H -1 × L 2 (Ω) 2 ).
Théorème 1.4.9. Prenons (u, v, θ) une solution de (1.11)-(1.15) avec données initiales (u 0 , v 0 , θ 0 ) obtenus dans Théorème 1.4.8. Si (u 0 , v 0 , θ 0 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) 3 , alors il existe une solution unique (u, v, θ) ∈ L ∞ loc (IR + ; (H 2 (Ω) 3 ) et

( ∂u ∂t , ∂v ∂t , ∂θ ∂t ) ∈ L ∞ loc (IR + ; H -1 (Ω) × L 2 (Ω)) ∩ L 2 loc (IR + ; H 1 0 (Ω) 2 ) × L 2 loc (IR + ; H 1 0 (Ω)).
Ensuite, on définit un semi-groupe qui est continu et dissipatif et on construit une famille d'attracteurs exponentiels. On obtient alors un attracteur global de dimension fractale finie.

Ces résultats sont donnés par les théorèmes suivants : 

: ∀ B ⊂ Φ borné, dist H 1 (Ω) 2 ×L 2 (Ω) (S (t)B, M) ≤ Q(||B|| Φ )e -ct , c > 0, t ≥ 0, où la constante c est indépendente de B et dist H 1 (Ω) 2 ×L 2 (Ω) indique la semidistance Hausdroff entre les ensembles définis par dist H 1 (Ω) 2 ×L 2 (Ω) (A, B) = sup a∈A inf b∈B ||a -b|| H 1 (Ω) 2 ×L 2 (Ω) .
La loi de Fourier n'est pas vraiment réaliste puisqu'elle suppose que les signaux thermiques se propagent avec une vitesse infinie, ce qui contradicte le paradoxe de la conduction thermique [START_REF] Christov | Heat conduction paradox involving second-sound propagation in moving media[END_REF]. C'est pourquoi, on refait la même étude avec une loi plus concrète.

Dans la deuxième partie, la température suit une loi thermodynamique de type III, donnée par l'équation :

∂ 2 α ∂t 2 -k * ∂ ∂t ∆α -k∆α = - ∂u ∂t ,
où α est la température et k une constante positive.

f est C 2 et satisfait -c 0 ≤ F(s) ≤ f (s)s, c o ≥ 0, s ∈ IR, où F(s) = s 0 f (τ)dτ.
On suppose aussi que f (0) = 0, f (s) ≥ c 6 , s ∈ IR.

Les conditions initiales et les conditions aux bords sont les mêmes que dans la première partie et le système est alors :

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (1.16 
)

∂v ∂t -∆v + f (u + v) -f (u -v) = ∂α ∂t , (1.17) 
∂ 2 α ∂t 2 -∆ ∂α ∂t -∆α = - ∂v ∂t , (1.18) 
u = v = α = 0 sur Γ, (1.19) 
u |t=0 = u 0 , v |t=0 = v 0 , α |t=0 = α 0 , ∂α ∂t |t=0 = α 1 , (1.20) 
où Ω est un domaine borné de IR N (N = 1, 2, ou 3) avec une frontière régulière Γ.

Pareillement, on démontre l'existence et l'unicité de la solution dans L ∞ (IR + ; H 1 0 (Ω) 3 ) ∩ L ∞ loc (IR + ; H 2 (Ω) 3 ), la dissipativité du semi-groupe. Enfin pour démontrer l'existence d'un attracteur exponentiel, le système est divisé en somme de deux systèmes due à la difficulté engendrée par la troisième équation. D'une manière plus explicite, les résultats sont : Théorème 1.4.12. Pour tout (u 0 , v 0 , α 0 , α 1 ) ∈ (H 2 (Ω) 3 3 ×L 2 (Ω) )e -ct , c > 0, t ≥ 0, où la constante c est indépendente de B et dist H 1 (Ω) 3 

∩ H 1 0 (Ω)) × H 1 0 (Ω), (1.16)-(1.20) possède une solution unique (u, v, α, ∂α ∂t ) tel que (u, v, α) ∈ L ∞ (IR + ; H 1 0 (Ω) 3 )∩L ∞ loc (IR + ; H 2 (Ω) 3 ), ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (IR + ; H -1 (Ω)×L 2 (Ω))∩L 2 loc (IR + ; H 1 0 (Ω) 2 ) et ∂α ∂t ∈ L ∞ (IR + ; H 1 0 (Ω))∩L 2 loc (IR + ; H 2 (Ω))∩ L 2 (IR + ; H 1 0 (Ω)) ∩ L ∞ loc (IR + ; H 1 0 (Ω)).
(Ω) 3 × L 2 (Ω) ; (ii) M est invariant positivement, S (t)M ⊂ M , ∀ t ≥ 0 ; (iii) M a une dimension fractale finie dans H 1 (Ω) 3 × L 2 (Ω) ; (iv) M attire exponentiellement les ensembles bornés de Φ : ∀ B ⊂ H 1 0 (Ω) 3 borné, dist H 1 (Ω) 3 ×L 2 (Ω) (S (t)B, M ) ≤ Q(||B|| H 1 (Ω)
∂u ∂t = h 2 ∆( f (u + v) + f (u -v) -h 2 ∆u), ∂v ∂t = -f (u + v) + f (u -v) -αv + h 2 ∆v,
to model simultaneous order-disorder and phase separation in binary alloys on a BCC lattice in the neighborhood of the triple point. These authors explored two phenomenological approaches leading to systems of coupled Allen-Cahn/Cahn-Hilliard (AC/CH) equations (see [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF] for more details).

Another important application of coupled (AC/CH) equations is the following. Under appropriate compositional conditions, ordering can be induced in a previously homogeneous material.

If the composition differs slightly from these conditions, the excess composition can emerge as droplets along the boundaries between the ordered regions. This phenomena can be modeled by a coupled (AC/CH) system with degenerate mobilities. In similar applications, surface diffusion coupled with motion by mean curvature appears quite naturally. There are additional effects which are often neglected and which arguably should be included. However, the coupled motion, by itself, is not overly well understood and it was thus reasonable to isolate it and study it, even given its limitations (see [START_REF] Derkach | Geometric interfacial motion : Coupling surface diffusion and mean curvature motion[END_REF]).

Here, u denotes the concentration of one of the components and is a conserved quantity, while v is an order parameter. Furthermore, h is a (positive) parameter which represents the lattice spacing and the parameter α reflects the location of the system within the phase diagram and may be either positive or negative. We further note that the system is a gradient flow in H 1 × L 2 for the free energy

J(u, v) = Ω G(u + v) + G(u -v) + α 2 v 2 + 1 2 h 2 (|∇u| 2 + |∇v| 2 ) dx,
where f = G .

These equations, endowed with Neumann boundary conditions, have been studied in [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF] by A. Novick-Cohen, D. Brochet, and D. Hilhorst who proved the well-posedness and the existence of maximal attractors and inertial sets (i.e., exponential attractors) for the usual cubic nonlinear term f (s) = s 3 -βs in three space dimensions.

Our main aim in this paper is to improve these results. In particular, taking initial conditions in H 2 allows us to prove the existence of exponential attractors (and, thus, of the finite-dimensional global attractor) for a large class of nonlinear terms containing polynomials of arbitrary odd degree with a strictly positive leading coefficient in three space dimensions.

A similar system, with a non-constant mobility, was treated by R. Dal Passo, L. Giacomelli, and A. Novick-Cohen in [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF] who proved the existence of weak solutions for the Neumann problem for a degenerate parabolic system consisting of a fourth-order and a second-order equations with singular lower-order terms in one space dimension. In addition, asymptotics for a similar system with a non-constant mobility were developed as a diffuse interface model for simultaneous order-disorder and phase separation in [START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF]. There, A. Novick-Cohen focused on motion in the plane. This framework yields both sharp interface and diffuse interface models of sintering of small grains and thermal grains boundary grooving in polycrystalline films. This work was extended in [START_REF] Novick-Cohen | Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system : The partial wetting case[END_REF], where the authors studied the partial wetting case, and their analysis accounts for motion in three dimensions.

We also mention that numerical methods to solve coupled (AC/CH) systems were studied in, e.g., [START_REF] Millett | Void nucleation and growth in irradiated polycrystalline metals : A phase-field model[END_REF][START_REF] Rokkam | Phase field modeling of void nucleation and growth in irradiated metals[END_REF][START_REF] Tonks | An object-oriented finite element framework for multiphysics phase field simulations[END_REF][START_REF] Wang | A differential variational inequality approach for the simulation of heterogeneous materials[END_REF][START_REF] Xia | Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system[END_REF]. Furthermore, a NKS method for the implicit solution of a coupled (AC/CH) system was proposed in [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF].

In this work, we take h = 1 and α = 0 and obtain the following system :

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (2.1) 
∂v ∂t -∆v + f (u + v) -f (u -v) = 0, (2.2) 
u = ∆u = v = 0 on Γ, (2.3) 
u |t=0 = u 0 , v |t=0 = v 0 , (2.4) 
where Ω is a bounded domain of R N (N = 1, 2, or 3) with smooth boundary Γ.

As far as the nonlinear term is concerned, we make the following assumptions :

f is of class C 2 , f (0) = 0, (2.5) 
f (s) ≥ -c 0 , c 0 > 0, s ∈ R, (2.6) 
f (s)s ≥ c 1 F(s) -c 2 , F(s) ≥ -c 3 , c 1 > 0, c 2 , c 3 ≥ 0, s ∈ R, (2.7) 
where

F(s) = s 0 f (ξ)dξ.
Remark 2.1.1. In particular, these assumptions are satisfied by polynomials of degree 2p + 1 with a strictly positive leading coefficient, p ≥ 1.

Throughout this work, the same letter c (and, sometimes, c and c ) denotes constants which may change from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may change from line to line, or even in a same line.

A Priori Estimates

In this section, we will establish a number of important inequalities that will be used later in the proof of the existence of the solution and the existence of finite-dimensional attractors.

In what follows, the Poincaré, Hölder and Young inequalities are extensively used, without further referring to them. We rewrite (2.1) in the equivalent form

(-∆) -1 ∂u ∂t -∆u + f (u + v) + f (u -v) = 0. (2.8)
We multiply (2.8) by u, integrate over Ω and have 1 2

d dt ||u|| 2 -1 + ||∇u|| 2 + (( f (u + v) + f (u -v), u)) = 0, (2.9) 
where

|| . || 2 -1 = ||(-∆) -1 2 . ||, || .
|| being the usual L 2 -norm, with associated scalar product ((. , .)).

We then multiply (2.2) by v and have 1 2

d dt ||v|| 2 + ||∇v|| 2 + (( f (u + v) -f (u -v), v)) = 0. (2.10)
The sum of (2.9) and (2.10) gives

1 2 d dt (||u|| 2 -1 + ||v|| 2 )+||∇u|| 2 + ||∇v|| 2 + (( f (u + v), u + v)) + (( f (u -v), u -v)) = 0, (2.11) 
which yields, owing to (2.7),

1 2 d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + ||∇v|| 2 + c Ω F(u + v) + F(u -v) dx ≤ c , (2.12) 
c, c ≥ 0.

We multiply (2.8) by ∂u ∂t to obtain ∂u ∂t

2 -1 + 1 2 d dt ||∇u|| 2 + (( f (u + v) + f (u -v), ∂u ∂t )) = 0. (2.13)
We now multiply (2.2) by ∂v ∂t and find ∂v ∂t

2 + 1 2 d dt ||∇v|| 2 + (( f (u + v) -f (u -v), ∂v ∂t )) = 0. (2.14)
Then, we sum (2.13) and (2.14) and have 1 2

d dt (||∇u|| 2 +||∇v|| 2 ) + ∂u ∂t 2 -1 + ∂v ∂t 2 + (( f (u + v), ∂ ∂t (u + v))) + (( f (u -v), ∂ ∂t (u -v))) = 0, (2.15) which implies 1 2 d dt ||∇u|| 2 + ||∇v|| 2 + 2 Ω F(u + v)dx + 2 Ω F(u -v)dx + ∂u ∂t 2 -1 + ∂v ∂t 2 = 0. (2.16)
Summing (2.12) and (2.16), we obtain 1 2

d dt ||u|| 2 -1 + ||v|| 2 + ||∇u|| 2 + ||∇v|| 2 + 2 Ω F(u + v) + F(u -v) dx + ||∇u|| 2 + ||∇v|| 2 + Ω F(u + v) + F(u -v)dx + ∂u ∂t 2 -1 + ∂v ∂t 2 ≤ c , c ≥ 0. Let E 1 = ||u|| 2 -1 + ||v|| 2 + ||∇u|| 2 + ||∇v|| 2 + 2 Ω F(u + v) + F(u -v) dx.
Then the previous inequality is equivalent to 1 2

d dt E 1 + cE 1 + c ∂u ∂t 2 -1 + ∂v ∂t 2 ≤ c , (2.17) 
whence

∂u ∂t 2 -1 + ∂v ∂t 2 ∈ L 1 (0, T ).
In particular, we deduce from (2.17) the dissipative estimate

E 1 (t) ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + Ω F(u 0 + v 0 ) + F(u 0 -v 0 ) dx + c , c > 0, t ≥ 0.
(2.18)

Furthermore, for every r > 0,

t+r t ∂u ∂t 2 -1 + ∂v ∂t 2 dτ ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + Ω F(u 0 + v 0 ) + F(u 0 -v 0 ) dx + c (r), c > 0, t ≥ 0. (2.19) 
We multiply (2.1) by ∂u ∂t . It follows from the continuity of f and the continuous embedding

H 2 (Ω) ⊂ C(Ω) that d dt ||∆u|| 2 + ∂u ∂t 2 ≤ Q(||u|| H 2 (Ω) + ||v|| H 2 (Ω) ). (2.20)
We can obtain a similar inequality for v by multiplying (2.2) by (-∆) ∂v ∂t , yielding

d dt ||∆v|| 2 + ∂∇v ∂t 2 ≤ Q(||u|| H 2 (Ω) + ||v|| H 2 (Ω) ). (2.21)
Summing then (2.20) and (2.21), we obtain

d dt (||∆u|| 2 + ||∆v|| 2 ) + ∂u ∂t 2 + ∂∇v ∂t 2 ≤ Q(||u|| H 2 + ||v|| H 2 ). (2.22)
In particular, setting

y = ||∆u|| 2 + ||∆v|| 2 ,
we deduce from (2.22) a differential inequality of the form

y ≤ Q(y). (2.23)
Let z be the solution of the ordinary differential equation

z = Q(z), with z(0) = y(0). (2.24)
It follows from the comparison principle that there exists

T 0 = T 0 (||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω)
) belonging to, say, (0, 1 2 ) such that

y(t) ≤ z(t), t ∈ [0, T 0 ], (2.25) whence ||u(t)|| 2 H 2 + ||v(t)|| 2 H 2 ≤ Q(||u 0 || H 2 , ||v 0 || H 2 ), t ≤ T 0 . (2.26)
Therefore, u and v a priori belong to L ∞ (0, T 0 ; H 2 (Ω)).

We now need to prove that u and v are in L ∞ (T 0 , T ; H 2 (Ω)), so that we can obtain the regularity u, v ∈ L ∞ (0, T ; H 2 (Ω)). To do so, we differentiate equations (2.2) and (2.8) with respect to time,

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (2.27) ∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (2.28) 
∂u ∂t = ∂v ∂t = 0 on Γ. (2.29) 
We start by multiplying (2.27) by t ∂u ∂t and (2.28) by t ∂v ∂t to obtain, summing the two resulting equalities, then using (2.6) and an interpolation inequality :

1 2 d dt t ∂u ∂t 2 -1 + t ∂v ∂t 2 + ct ∇ ∂u ∂t 2 + t ∇ ∂v ∂t 2 ≤ 1 2 ∂u ∂t 2 -1 + 1 2 ∂v ∂t 2 + c t ∂u ∂t 2 -1 + ∂v ∂t 2 .
(2.30)

We deduce from (2.19), (2.30), and Gronwall's lemma that 

∂u ∂t (t) 2 -1 + ∂v ∂t (t) 2 ≤ 1 t Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≤ T 0 . ( 2 
+ ∂v ∂t 2 + ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + (( f (u + v)( ∂u ∂t + ∂v ∂t ), ∂u ∂t + ∂v ∂t )) + (( f (u -v)( ∂u ∂t - ∂v ∂t ), ∂u ∂t - ∂v ∂t )) = 0, (2.32) 
which yields, owing to (2.6), 1 2

d dt ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 ≤ c ∂u ∂t 2 + ∂v ∂t 2 .
(2.33)

Employing the interpolation inequality

∂u ∂t 2 ≤ c ∂u ∂t -1 ∇ ∂u ∂t , c > 0,
and then Young's inequality, we deduce that 

d dt ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂u ∂t 2 + 2 ∇ ∂v ∂t 2 ≤ c ∂u ∂t 2 -1 + ∂v ∂t 2 . ( 2 
+ ∂v ∂t (t) 2 ≤ e ct Q ∂u ∂t (T 0 ) 2 -1 + ∂v ∂t (T 0 ) 2 , t ≥ T 0 , (2.35) 
where

Q = Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ).
Hence, owing to (2.31),

∂u ∂t (t) 2 -1 
+ ∂v ∂t (t) 2 ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≥ T 0 . (2.36) 
We now rewrite (2.8) in the elliptic form

-∆u + f (u + v) + f (u -v) = h u (t), u = 0 on Γ, (2.37) 
for t ≥ T 0 fixed, where

h u (t) = -(-∆) -1 ∂u ∂t (2.38)
satisfies, owing to (2.35),

||h u (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≥ T 0 . (2.39)
Furthermore, we rewrite (2.2) in the elliptic form

-∆v + f (u + v) -f (u -v) = h v (t), v = 0 on Γ, (2.40) 
for t ≥ T 0 fixed, where

h v (t) = - ∂v ∂t (2.41)
satisfies, owing to (2.36),

||h v (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≥ T 0 . (2.42)
We multiply (2.37) by u and (2.40) by v and we sum the result.

Then, noting that f (s)s ≥ -c, c ≥ 0, we obtain

||∇u|| 2 + ||∇v|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 ) + c . (2.43)
Multiplying now (2.37) by -∆u and (2.40) by -∆v, summing the two resulting equations, and since f (s) ≥ -c 0 , we have

||∆u(t)|| 2 + ||∆v(t)|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 + ||∇u(t)|| 2 + ||∇v(t)|| 2 ), t ≥ T 0 . (2.44)
We thus deduce from (2.39) and (2.42)-(2.44) that

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≥ T 0 . (2.45)
Combining (2.26) and (2.45), we obtain

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ), t ≥ 0. (2.46)
We deduce that u and v are now in L ∞ (0, T ; H 2 (Ω)), T > 0.

We now wish to find a dissipative estimate that is stronger than (2.18) :

We multiply (2.8) by -∆u and (2.2) by -∆v and sum the two resulting equations to obtain 1 2

d dt (||u|| 2 + ||∇v|| 2 ) + ||∆u|| 2 + ||∆v|| 2 + (( f (u + v)∇(u + v), ∇(u + v) )) + (( f (u -v)∇(u -v), ∇(u -v) )) = 0, (2.47) 
which gives, owing to (2.6), 1 2 

d dt (||u|| 2 + ||∇v|| 2 ) + ||∆u|| 2 + ||∆v|| 2 ≤ c(||∇u|| 2 + ||∇v|| 2 ). (2.48) Furthermore, ||u|| 2 H 1 (Ω) ≤ c||u|| ||u|| H 2 (Ω) , ≤ 1 2 ||∆u|| 2 + c||u|| 2 , c > 0. Therefore, d dt (||u|| 2 + ||∇v|| 2 ) + c(||∆u|| 2 + ||∆v|| 2 ) ≤ c (||u|| 2 + ||∇v|| 2 ). ( 2 
(||u|| 2 H 2 (Ω) + ||v|| 2 H 2 (Ω) )dt ≤ c ||u 0 || 2 + ||v 0 || 2 H 1 (Ω) + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c . (2.51)
Hence, there exists T ∈ (0, 1) such that

||u(T )|| 2 H 2 (Ω) + ||v(T )|| 2 H 2 (Ω) ≤ c ||u 0 || 2 + ||v 0 || 2 H 1 (Ω) + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c .
(2.52) Repeating the estimates leading to (2.46), but starting from t = T instead of t = 0, we have the smoothing property

||u(1)|| 2 H 2 (Ω) + ||v(1)|| 2 H 2 (Ω) ≤ Q ||u 0 || 2 + ||v 0 || 2 H 1 (Ω) + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c .
(2.53) Since our equations are autonomous, we can make a translation in time and, repeating the estimates leading to (2.53), we have

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ Q ||u(t -1)|| 2 + ||v(t -1)|| 2 H 1 (Ω) + Ω [F(u(t -1) + v(t -1)) + F(u(t -1) -v(t -1))]dx + c , t ≥ 1, (2.54) 
which yields, owing to (2.18),

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e -ct Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + Ω F(u 0 + v 0 ) + F(u 0 -v 0 ) dx + c , t ≥ 1. 
(2.55)

Combining the above estimate with (2.46) from 0 to 1, we obtain the dissipative estimate

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e -ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) ) + c , t ≥ 0.
(2.56)

Existence and Uniqueness of Solutions

Theorem 2.3.1. Let T > 0 be given and assume that

(u 0 , v 0 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) 2 . Then, (2.1)-(2.2) possesses a unique solution (u, v) such that (u, v) ∈ L ∞ (0, T ; H 2 (Ω) 2 ) and ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (0, T ; H -1 (Ω) × L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω) 2 ).
Proof.

a) Existence

The proof of existence (as well as the above (and the subsequent) a priori estimates) are based, e.g., on a classical Galerkin scheme.

Let A denote the minus Laplace operator associated with Dirichlet boundary conditions. This operator is a bounded, selfadjoint and strictly positive operator with compact inverse from

H 1 0 (Ω) onto H -1 (Ω).
There is a set of eigenvectors {ϕ i , i ≥ 1} for this operator that is regular as much as needed, associated with the eigenfunctions 0 < λ 1 ≤ λ 2 ≤ ..... such that it is orthonormal relative to the inner product in L 2 (Ω) and orthogonal relative to the one in H 1 0 (Ω).

Setting V m = span{ϕ 1 , ...., ϕ m }, we consider the following approximating problem, written in functional form :

du m dt + A 2 u m + A( f (u m + v m ) + f (u m -v m )) = 0, dv m dt + Av m + f (u m + v m ) -f (u m -v m ) = 0,
together with suitable initial conditions, namely,

u m (0) = P m u 0 , v m (0) = P m v 0 ,
where P m is the orthogonal projector from L 2 (Ω) onto V m (for the L 2 -metric).

This is equivalent to the following :

d dt ((u m , φ)) -((∆u m , ∆φ)) + ((∇ f (u m + v m ), ∇φ)) -((∇ f (u m -v m ), ∇φ)) = 0 , d dt ((v m , ω)) + ((∇v m , ∇ω)) + (( f (u m + v m ), ω)) -(( f (u m -v m ), ω)) = 0 ,
∀φ, ω ∈ V m , together with the above initial conditions. The proof of existence of a local (in time) solution to the approximating problem is standard (indeed, one has to solve a continuous system of ODEs).

Furthermore, we can write the equivalent of the previous estimates (with u and v replaced by u m and v m , respectively ; this is now fully justified and no longer formal). Then (2.16) yields that this solution is actually global. Finally, the passage to the limit is based on classical (Aubin-Lions type) compactness results. Indeed, we have, in particular, u m bounded in L ∞ (0, T ; H 2 (Ω)) and du m dt bounded in L ∞ (0, T ; H -1 (Ω)), independently of m, which yields that (at least for a subsequence which we do not relabel) u m converges strongly to, say,

u in C([0, T ]; H 2-δ (Ω)), ∀ δ > 0. In addition, v m is bounded in L ∞ (0, T ; H 1 0 (Ω)) and dv m dt is bounded in L ∞ (0, T ; L 2 (Ω)), indepen- dently of m, which also yields the strong convergence of v m to, say, v in C([0, T ]; H 1-δ (Ω)), ∀ δ > 0.
We also note that it follows from (2.45) that (u, v) ∈ L ∞ (0, T ; H 2 (Ω) 2 ), from (2.31) and (2.36) that ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (0, T ; H -1 (Ω)×L 2 (Ω)) and from (2.34) that ( ∂u ∂t , ∂v ∂t ) ∈ L 2 (0, T ;

H 1 0 (Ω) 2 ), whence ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (0, T ; H -1 (Ω) × L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω) 2
). Besides, our solution is weakly continuous with respect to time, i.e., it belongs to C w ([0, T ]; H 2 (Ω) 2 ). b) Uniqueness Let (u 1 , v 1 ) and (u 2 , v 2 ) be two solutions with initial data (u 0,1 , v 0,1 ) and (u 0,2 , v 0,2 ), respectively.

Existence and Uniqueness of Solutions

We set (u, v) = (u 1 -u 2 , v 1 -v 2 ) and (u 0 , v 0 ) = (u 0,1 -u 0,2 , v 0,1 -v 0,2 ) and have (-∆) -1 ∂u ∂t -∆u + f (u 1 + v 1 ) -f (u 2 + v 2 ) + f (u 1 -v 1 ) -f (u 2 -v 2 ) = 0, (2.57) ∂v ∂t -∆v + f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) + f (u 2 -v 2 ) = 0, (2.58) 
u = v = 0 on Γ, (2.59 
) 

u |t=0 = u 0 , v |t=0 = v 0 . ( 2 
+ ∂v ∂t 2 + f (u 1 + v 1 ) -f (u 2 + v 2 ), ∂ ∂t (u + v) + f (u 1 -v 1 ) -f (u 2 -v 2 ), ∂ ∂t (u -v) = 0.
(2.61) Furthermore,

f (u 1 + v 1 ) -f (u 2 + v 2 ), ∂ ∂t (u + v) = (-∆) 1 2 f (u 1 + v 1 ) -f (u 2 + v 2 ) , (-∆) -1 2 ∂ ∂t (u + v) ≤ c ∂ ∂t (u + v) -1 ||∇( f (u 1 + v 1 ) -f (u 2 + v 2 ))||, c > 0, (2.62) 
and similarly

f (u 1 -v 1 ) -f (u 2 -v 2 ), ∂ ∂t (u -v) ≤ c ∂ ∂t (u -v) -1 ||∇( f (u 1 -v 1 ) -f (u 2 -v 2 ))||, c > 0.
(2.63) Therefore,

d dt (||∇u|| 2 + ||∇v|| 2 ) + c ∂u ∂t 2 -1 + c ∂v ∂t 2 ≤ c||∇( f (u 1 + v 1 ) -f (u 2 + v 2 ))|| 2 + c||∇( f (u 1 -v 1 ) -f (u 2 -v 2 ))|| 2 .
(2.64)

We can see that, owing to (2.56),

||∇ f (u 1 + v 1 ) -f (u 2 + v 2 ) || =||∇ 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 ))ds(u -v) || ≤|| 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 ))ds∇(u -v)|| + ||(u -v) 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 )) ∇(u 1 + v 1 )
+ s∇(u 2 + v 2 -u 1 -v 1 ) ds|| ≤Q ||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) ||∇(u -v)|| + || |u -v| |∇(u 1 + v 1 )| || + || |u -v| |∇(u 2 + v 2 )| || ≤Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| + ||∇v||).
(2.65)

In the same way,

||∇ f (u 1 -v 1 ) -f (u 2 -v 2 ) || ≤ Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| + ||∇v||). (2.66) 
We deduce from (2.61)-(2.66) that

d dt (||∇u|| 2 + ||∇v|| 2 ) + c ∂u ∂t 2 -1 + c ∂v ∂t 2 ≤ Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| 2 + ||∇v|| 2 ).
Now using Gronwall's lemma, we obtain

||∇u(t)|| 2 + ||∇v(t)|| 2 ≤ e Qt (||∇u 0 || 2 + ||∇v 0 || 2 ), (2.67) 
whence the uniqueness (taking (u 0 , v 0 ) = (0, 0)), as well as the continuous dependence with respect to the initial data. Proof.

Existence of Finite-Dimensional Attractors

We can define the semigroup

S (t) : H 2 (Ω) 2 -→ H 2 (Ω) 2 (u 0 , v 0 ) -→ (u(t), v(t)),
where (u, v) is the unique solution to our system. The result then follows from (2.56).

Existence of Finite-Dimensional Attractors

Remark 2.4.1. It is easy to see that we can assume, without loss of generality, that B 0 is positively invariant by S (t), i.e., S (t)B 0 ⊂ B 0 .

Theorem 2.4.2. The semigroup S(t) possesses an exponential attractor M ⊂ B 0 , i.e., (i)

M is compact in H 1 (Ω) × H 1 (Ω) ; (ii) M is positively invariant, S (t)M ⊂ M, ∀ t ≥ 0 ; (iii) M has a finite fractal dimension in H 1 (Ω) × H 1 (Ω) ;
(iv) M attracts exponentially fast the bounded subsets of H 2 (Ω) 2 :

∀ B ⊂ H 2 (Ω) 2 bounded, dist H 1 (Ω)×H 1 (Ω) (S (t)B, M) ≤ Q(||B|| H 2 (Ω) 2 )e -ct , c > 0, t ≥ 0,
where the constant c is independent of B and dist H 1 (Ω)×H 1 (Ω) denotes the Hausdorff semidistance between sets defined by

dist H 1 (Ω)×H 1 (Ω) (A, B) = sup a∈A inf b∈B ||a -b|| H 1 (Ω)×H 1 (Ω) .
Proof.

Let (u 1 , v 1 ) and (u 2 , v 2 ) be two solutions to our system with initial data (u 0,1 , v 0,1 ) and (u 0,2 , v 0,2 ), respectively. We note that it is sufficient here to take the initial data in the bounded absorbing set B 0 constructed in the previous section. We set (u, v)

= (u 1 , v 1 ) -(u 2 , v 2 ) and (u 0 , v 0 ) = (u 0,1 , v 0,1 ) -(u 0,2 , v 0,2
) and have

∂u ∂t + ∆ 2 u -∆( f (u 1 + v 1 ) -f (u 2 + v 2 ) + f (u 1 -v 1 ) -f (u 2 -v 2 )) = 0, (2.68) 
∂v ∂t -∆v + f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) + f (u 2 -v 2 ) = 0, (2.69) 
u = v = 0 on Γ, (2.70 
)

u |t=0 = u 0 , v |t=0 = v 0 . (2.71)
We recall the inequality (2.67),

||∇u(t)|| 2 + ||∇v(t)|| 2 ≤ e Qt (||∇u 0 || 2 + ||∇v 0 || 2 ). (2.72)
We then multiply (2.68) by (-∆) -1 ∂u ∂t and (2.69) by v and have, summing the two resulting equations,

d dt (||∇u|| 2 + ||v|| 2 ) + c ∂u ∂t 2 -1 +c||∇v|| 2 ≤ c||∇ f (u 1 + v 1 ) -f (u 2 + v 2 ) || 2 +c||∇ f (u 1 -v 1 ) -f (u 2 -v 2 ) || 2 .
(2.73)

We recall inequality (2.65),

||∇ f (u 1 + v 1 ) -f (u 2 + v 2 ) || ≤ Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| + ||∇v||).
(2.74)

The same can be done to obtain

||∇ f (u 1 -v 1 ) -f (u 2 -v 2 ) || ≤ Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| + ||∇v||). (2.75)
We deduce from (2.73)-(2.75) that

d dt (||∇u|| 2 + ||v|| 2 ) + c ∂u ∂t 2 -1 + c||∇v|| 2 ≤ Q(||u 0,1 || H 2 (Ω) , ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) )(||∇u|| 2 + ||∇v|| 2 ).
(2.76)

It follows from (2.76) that t 0 ∂u ∂t 2 -1 + ||∇v|| 2 dx ≤ ce c t (||∇u 0 || 2 + ||∇v 0 || 2 ), t ≥ 0, (2.77) 
where the constants only depend on B 0 .

We then differentiate (2.68) with respect to time and have

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u 1 + v 1 ) ∂ ∂t (u + v) + f (u 1 + v 1 ) -f (u 2 + v 2 ) ∂ ∂t (u 2 + v 2 ) + f (u 1 -v 1 ) ∂ ∂t (u -v) + f (u 1 -v 1 ) -f (u 2 -v 2 ) ∂ ∂t (u 2 -v 2 ) = 0.
(2.78)

We multiply (2.78) by (t -T 0 ) ∂u ∂t , where T 0 is the same as mentioned before, and we obtain 1 2

d dt (t -T 0 ) ∂u ∂t 2 -1 + (t -T 0 ) ∇ ∂u ∂t 2 ≤ c(t -T 0 ) ∂u ∂t 2 + c(t -T 0 ) ∂v ∂t 2 + (t -T 0 ) Ω | f (u 1 + v 1 ) -f (u 2 + v 2 )| ∂u ∂t ∂ ∂t (u 2 + v 2 ) dx + (t -T 0 ) Ω | f (u 1 -v 1 ) -f (u 2 -v 2 )| ∂u ∂t ∂ ∂t (u 2 -v 2 ) dx + 1 2 ∂u ∂t 2 -1
.

Noting that

Ω | f (u 1 + v 1 )-f (u 2 + v 2 )| ∂u ∂t ∂ ∂t (u 2 + v 2 ) dx ≤ c Ω |u + v| ∂u ∂t ∂ ∂t (u 2 + v 2 ) dx ≤ c||∇(u + v)|| ∇ ∂u ∂t ∂ ∂t (u 2 + v 2 ) ,
and

Ω | f (u 1 -v 1 )-f (u 2 -v 2 )| ∂u ∂t ∂ ∂t (u 2 -v 2 ) dx ≤ c Ω |u -v| ∂u ∂t ∂ ∂t (u 2 -v 2 ) dx ≤ c||∇(u -v)|| ∇ ∂u ∂t ∂ ∂t (u 2 -v 2 ) ,
we obtain, owing to a proper interpolation inequality,

1 2 d dt (t -T 0 ) ∂u ∂t 2 -1 + (t -T 0 ) ∇ ∂u ∂t 2 ≤ c(t -T 0 )( ∂u ∂t 2 -1 + ∂v ∂t 2 ) + c (t -T 0 ) ∂ ∂t (u 2 + v 2 ) 2 ||∇(u + v)|| 2 + c (t -T 0 ) ∂ ∂t (u 2 -v 2 ) 2 ||∇(u -v)|| 2 + 1 2 ∂u ∂t 2 -1
.

( 

, v) = (u 1 , v 1 ) and then (u, v) = (u 2 , v 2 ) )that t T 0 ∂u 2 ∂t 2 + ∂v 2 ∂t 2 dτ ≤ ce c t , t ≥ T 0 , (2.80) 
where the constants only depend on B 0 .

Applying Gronwall's lemma on (2.79) over (T 0 , t) (note that T 0 < 1) and owing to (2.72), (2.77), and (2.80) we obtain

∂u ∂t (t) 2 -1 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.81) 
where the constants only depend on B 0 .

We now rewrite (2.68) in the form

-∆u = hu (t), u = 0 on Γ, (2.82) 
for t ≥ 1 fixed, where

hu (t) = -(-∆) -1 ∂u ∂t -f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) -f (u 2 -v 2 ) , (2.83) 
satisfies, owing to (2.72) and (2.81)

|| hu (t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.84) 
where the constants only depend on B 0 .

Multiplying then (2.82) by -∆u, we have

||∆u(t)|| ≤ || hu (t)||, t ≥ 1, whence ||u(t)|| 2 H 2 (Ω) ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.85) 
where the constants only depend on B 0 .

Next, we differentiate (2.69) with respect to time and have

∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u 1 + v 1 ) ∂ ∂t (u + v) + f (u 1 + v 1 ) -f (u 2 + v 2 ) ∂ ∂t (u 2 + v 2 ) + f (u 1 -v 1 ) ∂ ∂t (v -u) + f (u 2 -v 2 ) -f (u 1 -v 1 ) ∂ ∂t (u 2 -v 2 ) = 0.
(2.86)

We multiply (2.86) by (t -T 0 ) ∂v ∂t , where T 0 is the same as above, and obtain 1 2

d dt (t -T 0 ) ∂v ∂t 2 + (t -T 0 ) ∇ ∂v ∂t 2 ≤ (t -T 0 ) Ω | f (u 1 + v 1 )| ∂v ∂t ∂ ∂t (u + v) dx + (t -T 0 ) Ω | f (u 1 + v 1 ) -f (u 2 + v 2 )| ∂v ∂t ∂ ∂t (u 2 + v 2 ) dx + (t -T 0 ) Ω | f (u 2 -v 2 ) -f (u 1 + v 1 )| ∂v ∂t ∂ ∂t (u 2 -v 2 ) dx + (t -T 0 ) Ω | f (u 1 -v 1 )| ∂v ∂t ∂ ∂t (u -v) dx + 1 2 ∂v ∂t 2 .
The terms

Ω | f (u 1 + v 1 ) -f (u 2 + v 2 )| ∂v ∂t ∂ ∂t (u 2 + v 2 ) dx and Ω | f (u 2 -v 2 ) -f (u 1 + v 1 )| ∂v ∂t ∂ ∂t (u 2 -v 2 ) dx
can be estimated as above.

Furthermore,

Ω | f (u 1 + v 1 )| ∂v ∂t ∂ ∂t (u + v) dx = Ω | f (u 1 + v 1 ) -f (0) + f (0)| ∂v ∂t ∂ ∂t (u + v) dx ≤ Ω | f (u 1 + v 1 ) -f (0)| ∂v ∂t ∂ ∂t (u + v) dx + Ω | f (0)| ∂v ∂t ∂ ∂t (u + v) dx ≤c(||u 1 || L ∞ (Ω) + ||v 1 || L ∞ (Ω) ) Ω ∂v ∂t ∂ ∂t (u + v) dx + c Ω ∂v ∂t ∂ ∂t (u + v) dx ≤c(||u 1 || H 2 (Ω) + ||v 1 || H 2 (Ω) ) ∂v ∂t ∂ ∂t (u + v) + c ∂v ∂t ∂ ∂t (u + v) ≤c ∂v ∂t ∂ ∂t (u + v) .
Therefore, we have

1 2 d dt (t -T 0 ) ∂v ∂t 2 +(t -T 0 ) ∇ ∂v ∂t 2 ≤ c(t -T 0 ) ∂v ∂t 2 + c(t -T 0 ) ∂u ∂t 2 + c(t -T 0 ) ∂ ∂t (u 2 + v 2 ) 2 ||∇(u + v)|| 2 + 1 2 ∂v ∂t 2 + c(t -T 0 ) ∂ ∂t (u 2 -v 2 ) 2 ||∇(u -v)|| 2 .
(2.87)

We now apply Gronwall's lemma to (2.87) and find, owing to (2.72), (2.74), and (2.80),

∂v ∂t (t) 2 ≤ ce c t (||∇u 0 || 2 + ||∇v 0 || 2 ), t ≥ T 0 , (2.88) 
where the constants only depend on B 0 .

In the same way, we rewrite (2.69) in the form

-∆v = hv (t), v = 0 on Γ, (2.89) 
for t ≥ 1 fixed, where

hv (t) = - ∂v ∂t -f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 2 -v 2 ) -f (u 1 -v 1 ) , (2.90) 
satisfies, owing to (2.72) and (2.88),

|| hv (t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.91) 
where the constants only depend on B 0 .

Multiplying (2.89) by -∆v, we have

||∆v(t)|| ≤ || hv (t)||, t ≥ 1, whence ||v(t)|| 2 H 2 (Ω) ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.92)
where the constants only depend on B 0 .

We deduce from (2.85) and (2.92) that

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) ), t ≥ 1, (2.93) 
where the constants only depend on B 0 .

Finally, we derive a Hölder (both with respect to space and time) estimate. Actually, owing to (2.72), it suffices to prove the Hölder continuity with respect to time.

We have

||u(t 1 ) -u(t 2 )|| H 1 (Ω) + ||v(t 1 ) -v(t 2 )|| H 1 (Ω) ≤ c||∇ u(t 1 ) -u(t 2 ) || + c||∇ v(t 1 ) -v(t 2 ) || ≤ c t 2 t 1 ∇ ∂u ∂t dτ + t 2 t 1 ∇ ∂v ∂t dτ ≤ c|t 1 -t 2 | 1 2 t 2 t 1 ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 dτ 1 2
.

(2.94)

We note that it follows from (2.19), (2.34), and (2.36) that

t 2 t 1 ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 dτ ≤ c, (2.95) 
where c only depends on B 0 and T ≥ T 0 such that t 1 , t 2 ∈ [T 0 , T ]. Actually, replacing B 0 by S (1)B 0 , we can assume that T 0 = 0.

Finally, we have

||u(t 1 ) -u(t 2 )|| H 1 (Ω) + ||v(t 1 ) -v(t 2 )|| H 1 (Ω) ≤ c|t 1 -t 2 | 1 2 , (2.96) 
where c only depends on B 0 and T is a positive number such that t 1 , t 2 ∈ [0, T ] and the result follows from (2.72), (2.93), and (2.96) (see [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF][START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in IR 3[END_REF]). Moreover, we can deduce from Theorem 2.4.2 and standard results the Corollary 1. The semigroup S (t) possesses the finite-dimensional global attractor A ⊂ B 0 .

Remark 2.4.2. We recall that the global attractor A is the smallest (for the inclusion) compact set of the phase space which is invariant by the flow (i.e., S (t)A = A, ∀t ≥ 0) and attracts all bounded sets of initial data as time goes to infinity ; it thus appears as a suitable object in view of the study of the asymptotic behavior of the system. Furthermore, the finite dimensionality means, roughly speaking, that, even though the initial phase space is infinite dimensional, the reduced dynamics is, in some proper sense, finite dimensional and can be described by a finite number of parameters. We refer the reader to [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF] for more details and discussions on this.

Remark 2.4.3. Compared to the global attractor, an exponential attractor is expected to be more robust under perturbations. Indeed, the rate of attraction of trajectories to the global attractor may be slow and it is very difficult, if not impossible, to estimate this rate of attraction with respect to the physical parameters of the problem in general. As a consequence, global attractors may change drastically under small perturbations. We refer the reader to [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF] for discussions on this subject. 

Introduction

The following Cahn-Hilliard/Allen-Cahn model was introduced by J. Cahn and A. Novick-Cohen in [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF] :

∂u ∂t = h 2 ∆( f (u + v) + f (u -v) -h 2 ∆u), ∂v ∂t = -f (u + v) + f (u -v) -αv + h 2 ∆v,
to model simultaneous order-disorder and phase separation in binary alloys on a BCC lattice in the neighborhood of the triple point. These authors explored two phenomenological approaches leading to systems of coupled Allen-Cahn/Cahn-Hilliard (AC/CH) equations (see [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF] for more details).

Here, u denotes the concentration of one of the components and is a conserved quantity, while v is an order parameter. Furthermore, h is a (positive) parameter which represents the lattice spacing, the parameter α reflects the location of the system within the phase diagram and may be either positive or negative, and the nonlinear term f is the derivative of a double-well potential F. We further note that the system is a gradient flow in H 1 × L 2 for the free energy

J(u, v) = Ω F(u + v) + F(u -v) + α 2 v 2 + 1 2 h 2 (|∇u| 2 + |∇v| 2 ) dx, where f = F .
These equations, endowed with Neumann boundary conditions, have been studied in [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF] by A. Novick-Cohen, D. Brochet, and D. Hilhorst who proved the well-posedness and the existence of maximal attractors and inertial sets (i.e., exponential attractors) for the usual cubic nonlinear term f (s) = s 3 -βs in three space dimensions. These results were improved in [148], taking initial conditions in H 2 (Ω), which allowed to prove the existence of exponential attractors (and, thus, of the finite-dimensional global attractor) for a large class of nonlinear terms containing polynomials of arbitrary odd degree with a strictly positive leading coefficient in three space dimensions.

A similar system, with a non-constant mobility, was treated in [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF] where the existence of weak solutions for the Neumann problem for a degenerate parabolic system consisting of a fourth-order and a second-order equations with singular lower-order terms in one space dimension was proved. In addition, asymptotics for a similar system with a non-constant mobility, proposed as a diffuse interface model for simultaneous order-disorder and phase separation, was studied in [START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF]. There, A. Novick-Cohen focused on motion in the plane. This framework yields both sharp interface and diffuse interface models of sintering of small grains and thermal grains boundary grooving in polycrystalline films. This work was extended in [START_REF] Novick-Cohen | Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system : The partial wetting case[END_REF], where the authors studied the partial wetting case, and their analysis accounts for motion in three space dimensions.

We also mention that numerical methods to solve coupled (AC/CH) systems were studied in, e.g. [START_REF] Cahn | Evolution equations for phase separation and ordering in binary alloys[END_REF][START_REF] Millett | Void nucleation and growth in irradiated polycrystalline metals : A phase-field model[END_REF][START_REF] Rokkam | Phase field modeling of void nucleation and growth in irradiated metals[END_REF][START_REF] Tonks | An object-oriented finite element framework for multiphysics phase field simulations[END_REF][START_REF] Wang | A differential variational inequality approach for the simulation of heterogeneous materials[END_REF][START_REF] Xia | Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system[END_REF]. Furthermore, a NKS method for the implicit solution of a coupled (AC/CH) system was proposed in [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF].

In this work, we take h = 1 and α = 0 and obtain the following system :

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (3.1) 
∂v ∂t -∆v + f (u + v) -f (u -v) = 0, (3.2) 
u = ∆u = v = 0 on Γ, (3.3) 
u |t=0 = u 0 , v |t=0 = v 0 , (3.4) 
where Ω is a bounded domain of IR N (N = 1, 2, or 3) with smooth boundary Γ.

Setting of the Problem

In the Cahn-Hilliard theory, a thermodynamically relevant potential F is the following logarithmic function which follows from a mean-field model (see [START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF]) :

F(s) = θ c 2 (1 -s 2 ) + θ 2 (1 -s) ln 1 -s 2 + (1 + s) ln 1 + s 2 , s ∈ (-1, 1), 0 < θ < θ c . (3.5)
Furthermore,

f (s) = F (s) = -θ c s + θ 2 ln 1 + s 1 -s . (3.6)
The logarithmic potential F is very often approximated by regular ones, typically,

F(s) = 1 4 (s 2 -1) 2 , (3.7) 
leading to the following cubic nonlinear term

f (s) = s 3 -s. (3.8) 
Note, however, that such an approximation is reasonable when the quench is shallow, i.e. when the absolute temperature θ is close to the critical one θ c . Also note that the nonlinear term f (3.6) leads to essential difficulties, due to the fact that we need to prove that the order parameter remains in in the physically relevant interval (-1, 1) (see, e.g. [START_REF] Cherfils | The Cahn-Hilliard equation with logarithmic nonlinear terms[END_REF][START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF][START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF]).

In this article, we first prove the existence of weak solutions to the (AC/CH) equations with singular nonlinear terms. To do so, we approximate the singular nonlinear terms by regular ones and prove the convergence of the solutions to the approximated problems to that to the limit singular one. Then, we prove the uniqueness of the solution, which allows us to define the corresponding semigroup and prove the existence of the global attractor. We finally prove some higher-order regularity results which lead to a strict separation property in one space dimension.

Setting of the Problem

As far as the nonlinear term f is concerned, we assume more generally that In particular, it follows from these assumptions that

f ∈ C 1 (-1, 1), f (0) = 0, (3.9) 
f ≥ -c 0 , c 0 ≥ 0, (3.11) 
and

-c 1 ≤ F(s) ≤ f (s)s + c 2 , c 1 , c 2 ≥ 0, s ∈ (-1, 1), (3.12) 
where F(s) = s 0 f (r)dr (in particular, in order to obtain the right-hand side of (3.12), we can study the variations of the function s -→ f (s)s -F(s) + c 0 2 s 2 , whose derivative has, owing to (3.11), the sign of s). Remark 3.2.1. In particular, the thermodynamically relevant logarithmic functions (3.6) satisfy the above assumptions.

Next, we define, for N ∈ IN, the approximated function

f N ∈ C 1 (IR) by f N (s) =          f (-1 + 1 N ) + f (-1 + 1 N ) (s + 1 -1 N ), s < -1 + 1 N , f (s), |s| ≤ 1 -1 N , f (1 -1 N ) + f (1 -1 N )(s -1 + 1 N ), s > 1 -1 N .
We thus have

f N ≥ -c 0 (3.13)
and, setting

F N (s) = s 0 f N (r)dr, -c 3 ≤ F N (s) ≤ c 4 f N (s)s + c 5 , c 4 > 0, c 3 , c 5 ≥ 0, s ∈ IR, (3.14) 
f N (s)s ≥ c 6 | f N (s)| -c 7 , c 6 > 0, c 7 ≥ 0, s ∈ IR, (3.15) 
where the constants c i , i = 3, ...., 7, are independent of N (see [START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF]).

Then, we introduce the approximated problem :

∂u N ∂t + ∆ 2 u N -∆( f N (u N + v N ) + f N (u N -v N )) = 0, (3.16 
)

∂v N ∂t -∆v N + f N (u N + v N ) -f N (u N -v N ) = 0, (3.17) 
u N = ∆u N = v N = 0 on Γ, (3.18) 
u N|t=0 = u 0 , v N|t=0 = v 0 . (3.19)

A Priori Estimates

Our aim in this section is to derive a priori estimates for the solutions u N and v N to (3.16)- (3.19). These a priori estimates are independent of N and are formal, i.e. we assume that u N and v N are as smooth as needed. In particular, we will derive a priori estimates which are independent of

N on f N (u N + v N ) and f N (u N -v N ) in L 2 ((0, T ) × Ω), T > 0.
These a priori estimates allow us to obtain the existence of a solution to (3.16)- (3.19) by implementation of a Galerkin approximation. This will also allow us to pass to the limit N → +∞ in the approximated system (3.16)- (3.19).

We start by assuming that :

||u 0 + v 0 || L ∞ (Ω) ≤ 1 -δ, (3.20) 
and

||u 0 -v 0 || L ∞ (Ω) ≤ 1 -δ , δ, δ ∈ (0, 1), (3.21) 
where δ and δ are fixed positive constants.

We now write equation (3.16) in the equivalent form

(-∆) -1 ∂u N ∂t -∆u N + f N (u N + v N ) + f N (u N -v N ) = 0. (3.22)
We multiply (3.22) by u N , (3.17) by v N and sum the resulting equalities to obtain

1 2 d dt (||u N || 2 -1 + ||v N || 2 ) + ||∇u N || 2 + ||∇v N || 2 + (( f N (u N + v N ), u N + v N )) + (( f N (u N -v N ), u N -v N )) = 0, (3.23)
where (( . , . )) and ||.|| are the usual L 2 -scalar product and associated norm. Furthermore, ||.|| -1 is the H -1 norm. More generally, ||.|| X denotes the norm in the Banach space X.

Using (3.15), the previous equation gives 

1 2 d dt (||u N || 2 -1 + ||v N || 2 ) + ||∇u N || 2 + ||∇v N || 2 + || f N (u N + v N )|| L 1 (Ω) + || f N (u N -v N )|| L 1 (Ω) ≤ c . ( 3 
+ ∂v N ∂t 2 + (( f N (u N + v N ), ∂ ∂t (u N + v N ) )) + (( f N (u N -v N ), ∂ ∂t (u N -v N ) )) = 0, which implies 1 2 d dt ||∇u N || 2 + ||∇v N || 2 + 2 Ω F N (u N + v N )dx + 2 Ω F N (u N -v N )dx + ∂u N ∂t 2 -1 + ∂v N ∂t 2 = 0. ( 3 
d dt (||u N || 2 -1 + ||v N || 2 ) + ||∇u N || 2 + ||∇v N || 2 + c Ω F N (u N + v N ) + F N (u N -v N ) dx ≤ c , c > 0, c ≥ 0. (3.26)
The sum of (3.24), (3.25), and (3.26) gives

d dt E N + c E N + || f N (u N + v N )|| L 1 (Ω) + || f N (u N -v N )|| L 1 (Ω) + ∂u N ∂t 2 -1 + ∂v N ∂t 2 ≤ c , c > 0, c ≥ 0, (3.27) 
where

E N = ||u N || 2 -1 + ||v N || 2 + ||∇u N || 2 + ||∇v N || 2 + 2 Ω F N (u N + v N ) + F N (u N -v N ) dx.
We note that (3.27) and Gronwall's lemma imply the dissipative estimate

E N (t) ≤ e -ct E N (0) + c , c > 0, t ≥ 0. ( 3.28) 
Integrating now (3.27) with respect to time, we have

|| f N (u N + v N )|| L 1 ((0,T )×Ω) + || f N (u N -v N )|| L 1 ((0,T )×Ω) ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c Ω F N (u 0 + v 0 ) + F N (u 0 -v 0 ) dx + c .
(3.29) Furthermore, for every r > 0,

t+r t ∂u N ∂t 2 -1 + ∂v N ∂t 2 dτ ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c Ω F N (u 0 + v 0 ) + F N (u 0 -v 0 ) dx + c (r), c > 0, t ≥ 0. (3.30) Also note that Ω F N (u 0 +v 0 )+F N (u 0 -v 0 ) dx ≤ c, since ||u 0 +v 0 || L ∞ ≤ 1-δ and ||u 0 -v 0 || L ∞ ≤ 1-δ .
Therefore, (3.29) yields

|| f N (u N + v N )|| L 1 ((0,T )×Ω) + || f N (u N -v N )|| L 1 ((0,T )×Ω) ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c . (3.31) 
We have thus found an estimate on the L 1 norm of f N (u N + v N ) and f N (u Nv N ).

We now need to derive an estimate of its L 2 norm. Intergrating (3.27) over (0, t), we obtain

t 0 ∂u N ∂t 2 -1 + ∂v N ∂t 2 dt ≤ c e -ct (||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c ). (3.32) 
We next multiply (3.22) by -∆u N , (3.17) by -∆v N , and sum the resulting equations to find :

1 2 d dt (||u N || 2 + ||∇v N || 2 ) + ||∆u N || 2 + ||∆v N || 2 + (( f (u N + v N )∇(u N + v N ), ∇(u N + v N ) )) + (( f (u N -v N )∇(u N -v N ), ∇(u N -v N ) )) = 0, (3.33) 
which gives, owing to (3.13), 

1 2 d dt (||u N || 2 + ||∇v N || 2 ) + ||∆u N || 2 + ||∆v N || 2 ≤ c(||∇u N || 2 + ||∇v N || 2 ). (3.34) Furthermore, ||u N || 2 H 1 (Ω) ≤ c||u N || ||u N || H 2 (Ω) , ≤ 1 2 ||∆u N || 2 + c||u N || 2 , c > 0. Therefore, d dt (||u N || 2 + ||∇v N || 2 ) + c(||∆u N || 2 + ||∆v N || 2 ) ≤ c (||u N || 2 + ||∇v N || 2 ). ( 3 
f N (u N + v N ) + f N (u N -v N ) = -(-∆) -1 ∂u N ∂t + ∆u N , (3.39) 
f N (u N + v N ) -f N (u N -v N ) = - ∂v N ∂t + ∆v N . (3.40) 
We sum (3.39) and (3.40), then subtract them, to have

2 f N (u N + v N ) = -(-∆) -1 ∂u N ∂t + ∆u N - ∂v N ∂t + ∆v N , 2 f N (u N -v N ) = -(-∆) -1 ∂u N ∂t + ∆u N + ∂v N ∂t -∆v N .
Therefore, using (3.30) and (3.38), we obtain

|| f N (u N + v N )|| L 2 (Ω) + || f N (u N -v N )|| L 2 (Ω) ≤ c e -ct ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c . ( 3 
.41) Integrating (3.41) with respect to time, we have

|| f N (u N + v N )|| L 2 ((0,T )×Ω) + || f N (u N -v N )|| L 2 ((0,T )×Ω) ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + c . (3.42) 
We can then write (3.28) as

||u N (t)|| 2 -1 + ||v N (t)|| 2 + ||∇u N (t)|| 2 + ||∇v N (t)|| 2 ≤ e -ct ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + 2 Ω F N (u 0 + v 0 ) + F N (u 0 -v 0 ) dx + c . Recalling that Ω F N (u 0 + v 0 ) + F N (u 0 -v 0 ) dx ≤ c, because, noting that if N is large enough, F N (s 0 ) = F(s 0 ).
Then, owing to (3.20) and (3.21), the previous relation becomes

||u N (t)|| 2 -1 + ||v N (t)|| 2 + ||∇u N (t)|| 2 + ||∇v N (t)|| 2 ≤ ce -c t (||∇u 0 || 2 + ||∇v 0 || 2 + c ) + c . (3.43)

Existence and Uniqueness of Solutions

Theorem 3.4.1. We assume that u 0 and v 0 are given such that (u 0 , v 0 ) ∈ H 1 (Ω) 2 , ||u 0 +v 0 || L ∞ (Ω) < 1, and ||u 0v 0 || L ∞ (Ω) < 1. Then, (3.1)-(3.4) possesses a unique (weak) solution (u, v) such that,

∀ T > 0, (u, v) ∈ C w ([0, T ]; H 1 0 (Ω) 2 ) ∩ L 2 (0, T ; H 2 (Ω) 2 ) ∩ L ∞ (0, T ; H 1 0 (Ω) 2 ) and ∂u ∂t , ∂v ∂t ∈ L 2 (0, T ; H -1 (Ω) × L 2 (Ω)),
where the subscript w stands for the weak topology, and

d dt ((u, q)) -1 + ((∇u, ∇q)) + (( f (u + v) + f (u -v), q)) = 0, d dt ((v, q)) + ((∇v, ∇q)) + (( f (u + v) -f (u -v), q)) = 0, u(0) = u 0 , v(0) = v 0 , a.e. t ∈ [0, T ], ∀ q ∈ C ∞ c (Ω).
Proof.

a) Existence

We consider the solution (u N , v N ) to the approximated problem (3.16)-(3.19) (as already mentionned in the previous section, the proof of existence of such a solution having the above regularity can be obtained by a standard Galerkin scheme).

Furthermore, since the estimates derived in the previous section are independent of N, this solution converges, up to a subsequence which we do not relabel, to a limit function (u, v) in the following sense :

u N -→ u ∈ L 2 (0, T ; H 2 (Ω)) weakly owing to (3.38), ∂u N ∂t -→ ∂u ∂t ∈ L 2 (0, T ; H -1 (Ω)) weakly owing to (3.32), v N -→ v ∈ L 2 (0, T ; H 2 (Ω)) weakly owing to (3.38), ∂v N ∂t -→ ∂v ∂t ∈ L 2 (0, T ; L 2 (Ω)
) weakly owing to(3.32). Then we use classical Aubin-Lions compactness results for the strong convergence.

The only difficulty, when passing to the limit, is to pass to the limit in the nonlinear terms containing f N . First, it follows from (3.31) that f N (u N + v N ) and f N (u Nv N ) are bounded, independently of N, in L 1 ((0, T ) × Ω). Then, it follows from the explicit expression of f N that

meas(F N,M ) ≤ µ( 1 N ), N ≤ M, where F N,M = {(t, x) ∈ (0, T ) × Ω, |u M (t, x) + v M (t, x)| > 1 - 1 N } and µ(s) = c min(| f (1 -s)|, | f (s -1)|)
.

Here, the constant c is independent of N and M. Note that there holds

T 0 Ω | f M (u M + v M )|dx dt ≥ F N,M | f M (u M + v M )|dx dt ≥ c meas(F N,M ) 1 µ( 1 N ) , (3.44) 
where the constant c is independent of N and M.

We can pass to the limit M -→ ∞ (employing Fatou's lemma on (3.44)) and then N -→ ∞ (noting that lim s-→0 µ(s) = 0) to find

meas{(t, x) ∈ (0, T ) × Ω, |u(t, x) + v(t, x)| ≥ 1} = 0, so that -1 < u(t, x) + v(t, x) < 1 a.e. (t, x). (3.45) 
In the same way, we can prove that -1 < u(t, x)v(t, x) < 1 a.e. (t, x).

(3.46)

Next, it follows from the above almost everywhere convergence of u N and v N , from (3.45), (3.46), and the explicit expression of f N that

f N (u N + v N ) -→ f (u + v) a.e. (t, x) ∈ (0, T ) × Ω (3.47) and f N (u N -v N ) -→ f (u -v) a.e. (t, x) ∈ (0, T ) × Ω. (3.48) 
Finally, since, owing to (3.42),

f N (u N + v N ) and f N (u N -v N ) are bounded, independently of N, in L 2 ((0, T ) × Ω), it follows from (3.47) and (3.48) that f N (u N + v N ) -→ f (u + v) and f N (u N -v N ) -→ f (u -v) in L 2 ((0, T ) × Ω)
weakly, which finishes the proof of the passage to the limit (the weak continuity property follows from Strauss's lemma, see, e.g. [START_REF] Temam | Navier-Stokes equations : theory and numerical analysis[END_REF]).

We also note that it follows from (3.43) that (u, v) ∈ L ∞ (0, T ; H 1 0 (Ω) 2 ).

b) Uniqueness

Let (u 1 , v 1 ) and (u 2 , v 2 ) be two solutions to (3.1)-(3.4) with initial data (u 0,1 , v 0,1 ) and (u 0,2 , v 0,2 ), respectively. We set (u, v) = (u 1u 2 , v 1v 2 ) and (u 0 , v 0 ) = (u 0,1u 0,2 , v 0,1v 0,2 ) and have

(-∆) -1 ∂u ∂t -∆u + f (u 1 + v 1 ) -f (u 2 + v 2 ) + f (u 1 -v 1 ) -f (u 2 -v 2 ) = 0, (3.49) ∂v ∂t -∆v + f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) + f (u 2 -v 2 ) = 0, (3.50) u = ∆u = v = 0 on Γ, (3.51) 
u |t=0 = u 0 , v |t=0 = v 0 . (3.52) 
We multiply (3.49) by u, (3.50) by v, and sum to obtain

1 2 d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + ||∇v|| 2 + (( f (u 1 + v 1 ) -f (u 2 + v 2 ), u + v)) + (( f (u 1 -v 1 ) -f (u 2 -v 2 ), u -v)) = 0. (3.53) Let p = u 1 + v 1 , q = u 2 + v 2 , h = u 1 -v 1 , and l = u 2 -v 2 .
We have

(( f (u 1 + v 1 ) -f (u 2 + v 2 ), u + v)) = (( f (p) -f (q), p -q)) = (( f (ξ)(p -q), p -q)) ≥ -c 0 ||p -q|| 2 ≥ -c 0 ||u + v|| 2 , (3.54) 
and

(( f (u 1 -v 1 ) -f (u 2 -v 2 ), u -v)) = (( f (h) -f (l), h -l)) ≥ -c 0 ||u -v|| 2 . (3.55) 
Hence, using the previous inequalities, equation (3.53) yields 1 2

d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + ||∇v|| 2 = -(( f (u 1 + v 1 ) -f (u 2 + v 2 ), u + v)) -(( f (u 1 -v 1 ) -f (u 2 -v 2 ), u -v)) ≤ c 0 ||u + v|| 2 + c 0 ||u -v|| 2 ≤ c(||u|| 2 + ||v|| 2 ).
(3.56)

Employing the interpolation inequality

||u|| 2 ≤ c ||u|| -1 ||∇u|| ≤ 1 2 ||∇u|| 2 + c||u|| 2 -1 ,
we deduce that

d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + ||∇v|| 2 ≤ c (||u|| 2 -1 + ||v|| 2 ). (3.57)
It finally follows from Gronwall's lemma that

(||u|| 2 -1 + ||v|| 2 ) ≤ e c t (||u 0 || 2 -1 + ||v 0 || 2 ), (3.58) 
hence the uniqueness (taking (u 0 , v 0 ) = (0, 0)), as well as the continuous dependence with respect to the initial data in H -1 (Ω) × L 2 (Ω).

Existence of the Global Attractor

Existence of the Global Attractor

It follows from Theorem 3.4.1 that we can define the continuous family of operators

S (t) : Φ 1 -→ Φ (u 0 , v 0 ) -→ (u(t), v(t)),
where Φ = {(u, v) ∈ H 1 (Ω) 2 ; |u + v| < 1 and |u -v| < 1 a.e.} and 2) is dissipative in H 1 (Ω) 2 in the sense that it possesses a bounded absorbing set

Φ 1 = Φ ∩ {(u, v) ∈ L ∞ (Ω) 2 ; ||u + v|| L ∞ (Ω) < 1 and ||u -v|| L ∞ (Ω) < 1}.
B 1 ⊂ H 1 (Ω) 2 , i.e. ∀ B ⊂ Φ 1 bounded, ∃ t 0 = t 0 (B) such that t ≥ t 0 implies S (t)B ⊂ B 1 .
The dissipativity of S (t) and the existence of a bounded absorbing set in H 1 (Ω) 2 immediately follow from (3.43).

We now assume that lim

s→±1 F(s) = c, (3.59) 
where c is a constant (note that this holds for the thermodynamically relevant logarithmic potentials). Then, S (t) as defined above is a semigroup now (i.e. S (0) = I (identity operator) and

S (t + τ) = S (t) • S (τ), t, τ ≥ 0).
As a consequence of Theorem 3.5.1 and of (3.59), it follows from standard results (see, e.g. [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Finite dimensional global attractor for a class of doubly nonlinear parabolic equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]) that we have the following theorem.

Theorem 3.5.2. The semigroup S(t) possesses the global attractor A on Φ (i.e. A is compact in H -1 (Ω) × L 2 (Ω), bounded in Φ, invariant and attracts the images of all bounded subsets of Φ with respect to the topology of H -1 (Ω) × L 2 (Ω)).

Remark 3.5.1. In order to prove that one has the global attractor and, in particular, the attraction property in the natural topology of the phase space Φ, one would need additional regularity on the solutions or the strict separation property from the singular values ±1 which we are not able to prove, except in one space dimension (see Section 3.6 below). We can also note that it follows from (3.58) that we can extend, in a unique way and by continuity, the semigroup S (t) to the closure of Φ in the H -1 (Ω) × L 2 (Ω)-topology, namely to

Φ = {(u, v) ∈ L ∞ (Ω) 2 ; ||u + v|| L ∞ (Ω) ≤ 1 and ||u -v|| L ∞ (Ω) ≤ 1}.
The corresponding semigroup again possesses the global attractor which is precisely A.

Further Regularity Results

In what follows, we set V = H 1 0 (Ω). We also denote by V its dual space and by ||.|| V its norm.

We can decompose the singular potential F as

F(x) = S (x) + θ c 2 (1 -x 2 ), with lim x→-1 S (x) = -∞, lim x→1 S (x) = +∞, S (x) ≥ θ > 0, ∀x ∈ (-1, 1), (3.60) 
and we let θ c -θ = α > 0.

We also require that S satisfies

|S (x)| ≤ e c|S (x)|+c , ∀x ∈ (-1, 1), (3.61) 
for some positive constant c, and S is convex.

We mention below a Trudinger-Moser type inequality (see, e.g., [START_REF] Nagai | Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis[END_REF]) which is needed later on.

Lemma 1.

Let Ω be a bounded smooth domain of IR 2 . Then, there exists a positive constant c such that

Ω e |u| dx ≤ ce c||u|| 2 V , ∀ u ∈ V. (3.62) 
Let us now define the free energy functional

E(u + v) = 1 2 ||∇u|| 2 + 1 2 ||∇v|| 2 + 2 Ω F(u + v)dx + 2 Ω F(u -v)dx.
Theorem 3.6.1. Let u 0 and v 0 be in V such that F(u 0 + v 0 ) and F(u 0v 0 ) ∈ L 1 (Ω). Then, there exists a unique solution (u, v) ∈ C([0, T ]; H -1 w (Ω) × L 2 w (Ω)) which fulfills the estimate

E((u + v)(t)) + t+1 t (||∇µ(s)|| 2 + ||v t (s)|| 2 )ds ≤ E(u 0 + v 0 ), ∀ t ≥ 0. (3.63)
Proof.

The existence and uniqueness of the solution can be proved in the same way as in section 3.4. Therefore, we confine ourselves only to the proof of (3.63). We rewrite equation (3.1) in the form

(-∆) -1 ∂u ∂t -∆u + f (u + v) + f (u -v) = 0. (3.64)
We start by differentiating equations (3.64) and (3.2) with respect to time to find 

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (3.65) ∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) -f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, ( 3 
+ ∂v ∂t (t) 2 ≤ 1 t Q(||u 0 || H 1 (Ω) , ||v 0 || H 1 (Ω) ), t ∈ (0, 1]. ( 3 
+ ∂v ∂t (t) 2 ≤ e ct Q(||u 0 || H 1 (Ω) , ||v 0 || H 1 (Ω) ), t ≥ 1. (3.71)
where Q denotes a monotone increasing function.

Integrating now (3.70) between t and t + 1 and using (3.71), we find

t+1 t ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 dt ≤ e ct Q(||u 0 || H 1 0 (Ω) , ||v 0 || H 1 0 (Ω) ), (3.72) 
for t ≥ 1. Therefore, ( ∂u ∂t , ∂v ∂t ) ∈ L 2 (t, t + 1; H 1 0 (Ω) 2 ).

Then, we can rewrite equations (3.1) and (3.2) as

u t = ∆µ, (3.73) 
where 

µ = -∆u + F (u + v) + F (u -v),
and v t + F (u + v) -F (u -v) = ∆v. ( 3 
((u t , q)) + ((∇µ, ∇q)) = 0, ∀ q ∈ H 1 0 (Ω), (3.75) 
and ((v t , q )) + ((F (u + v), q )) -((F (uv), q )) + ((∇v, ∇q )) = 0, ∀ q ∈ H 1 0 (Ω).

(3.76)

Using equations (3.75)-(3.76) and the standard chain rule in L 2 (0, T ; V) ∩ H 1 (0, T ; V ), we get

((u t , µ)) + ((∇µ, ∇µ)) + ((v t , v t )) + ((F (u + v), v t )) -((F (u -v), v t )) + ((∇v, ∇v t )) = 0,
which gives the energy equality

d dt E(u + v) + ||∇µ|| 2 + ||v t || 2 = 0.
It finally follows from the Gronwall lemma that

E((u + v)(t)) + t+1 t (||∇µ(s)|| 2 + ||v t (s)|| 2 )ds ≤ E(u 0 + v 0 ), ∀ t ≥ 0.
In what follows, according to (3.55), the generic positive constant c may also depend on the initial energy E(u 0 + v 0 ). In particular, we will use

E((u + v)(t)) + t+1 t (||∇µ(s)|| 2 + ||v t (s)|| 2 )ds ≤ c, ∀ t ≥ 0. (3.77)
Theorem 3.6.2. Let the assumptions of Theorem 3.6.1 holds. Then there exists a positive constant c such that

||µ|| L ∞ (1,t;V) + ||v t || L ∞ (1,t;L 2 (Ω)) ≤ c, ∀ t ≥ 1, (3.78 
)

and ||u t + v t || L ∞ (1,t;V ) + ||u t -v t || L ∞ (1,t;V ) + ||u t || L 2 (t,t+1;V) + ||v t || L 2 (t,t+1;V) ≤ c, ∀ t ≥ 1. (3.79)
Proof.

We start by differentiating equation (3.74) with respect to time, which yields 

∂ ∂t v t + ∂ ∂t [F (u + v) -F (u -v)] = ∆v t . ( 3 
+ ((F (u + v)(u t + v t ), u t + v t )) + ((F (u -v)(u t -v t ), u t -v t )) = 0.
We observe that

((u t , -∆u t )) + ((F (u t + v t )(u t + v t ), u t + v t )) + ((F (u t -v t )(u t -v t ), u t -v t )) ≥ ||∇u t || 2 -α||u t + v t || 2 -α||u t -v t || 2 ≥ 1 2 ||∇u t || 2 -c||∇v t || 2 -c||u t + v t || 2 V -c||u t -v t || 2 V .
(3.81)

Accordingly, setting

ψ(t) = 1 2 ||∇µ(t)|| 2 + 1 2 ||v t (t)|| 2 ,
we end up with the differential inequality Therefore, the uniform Gronwall lemma leads to

d dt ψ + 1 2 ||∇u t || 2 + c||∇v t || 2 ≤ c||u t + v t || 2 V + c||u t -v t || 2 V . ( 3 
ψ(t) ≤ c, ∀ t ≥ 1.
In particular, we have the bound

||µ|| L ∞ (1,t;V) + ||v t || L ∞ (1,t;L 2 (Ω)) ≤ c, ∀ t ≥ 1, which in turn gives ||u t || L ∞ (1,t;V ) + ||v t || L ∞ (1,t;V ) ≤ c, ∀ t ≥ 1.
The desired conclusion (3.79) follows from an integration in time of (3.82) on (t, t + 1), t ≥ 1, combined with the previous inequality.

Remark 3.6.1. The proof of Theorem 3.6.1 is formal, but it can be justified within a Galerkin scheme as in the proof of Theorem 3.4.1. More precisely, all the computations can be rigorously performed within the Galerkin scheme. Given that F is controlled from below, the estimates turn out to be independent of the approximation parameter and a final passage to the limit gives the result.

Lemma 2. Let N = 2 and u 0 and v 0 ∈ V be such that F(u 0 + v 0 ) and F(u 0v 0 ) ∈ L 1 (Ω). Then, for any p ≥ 1, there exist two positive constants c and c depending on p such that

||S (u + v)|| L p (t,t+1;L p (Ω)) ≤ c(p), ∀ t ≥ 1, (3.86) 
and

||S (u -v)|| L p (t,t+1;L p (Ω)) ≤ c (p), ∀ t ≥ 1. (3.87)
Proof.

Equations (3.1) and (3.2) can be written in the equivalent form 

-∆u + S (u + v) + S (u -v) = μ, (3.88) 
-∆v + S (u + v) -S (u -v) = μ , ( 3 
-∆(u + v) + 2S (u + v) = μ + μ (3.90) and -∆(u -v) + 2S (u -v) = μ -μ . (3.91)
For any L > 0, we consider

g 1 = S (u + v)e L|S (u+v)| and g 2 = S (u -v)e L|S (u-v)| .
We observe that

∇g 1 = S (u + v)[1 + L|S (u + v)|]e L|S (u+v)| ∇(u + v).
Then we consider equation (3.90) and test it with g 1 , which yields

Ω ∇(u + v)∇(u + v)S (u + v)[1 + L|S (u + v)|]e L|S (u+v)| dx + 2 Ω S (u + v) 2 e L|S (u+v)| dx = Ω μg 1 dx + Ω μ g 1 dx.
The first term on the left-hand side is nonnegative (S is convex). Therefore, the previous relation is equivalent to

2 Ω S (u + v) 2 e L|S (u+v)| dx ≤ Ω μg 1 dx + Ω μ g 1 dx.
Now, the right-hand side can be controlled by means of a generalized Young's inequality (see [START_REF] Adams | Sobolev Spaces[END_REF], Section 8.2) as follows :

Ω μS (u + v)e L|S (u+v)| dx ≤ Ω | μ||S (u + v)|e L|S (u+v)| dx ≤ 1 2 Ω S (u + v) 2 e L|S (u+v)| dx + Ω e c(L) μd x + c.
In the same way,

Ω μ g 1 dx ≤ 1 2 Ω S (u + v) 2 e L|S (u+v)| dx + Ω e c(L) μ dx + c.
Using Lemma 1, we end up with

2 Ω S (u + v) 2 e L|S (u+v)| dx ≤ Ω S (u + v) 2 e L|S (u+v)| dx + 2c, whence Ω S (u + v) 2 e L|S (u+v)| dx ≤ c, (3.92) 
where c depends on L. On account of (3.61), we observe that, for any p ≥ 1,

|S (x)| p ≤ e pc (c + |S (x)| 2 e pc|S (x)| ), ∀ x ∈ (-1, 1). (3.93)
Combining finally (3.61) and (3.93) and taking L = pc, we deduce that

||S (u + v)|| L p (t,t+1;L p (Ω)) ≤ c(p), ∀ t ≥ 1,
In the same way, if we consider equation (3.91) and test it with g 2 , we can easily obtain

||S (u -v)|| L p (t,t+1;L p (Ω)) ≤ c(p), ∀ t ≥ 1.
Lemma 3. Let the assumptions of Lemma 2 hold. Then, there exists a constant c such that

||u t || L ∞ (2,t;L 2 (Ω)) + ||u t || L 2 (t,t+1,H 2 (Ω)) + ||v t || L ∞ (2,t;H 1 (Ω)) + ||v t || L 2 (t,t+1;H 2 (Ω)) ≤ c, ∀ t ≥ 2. (3.94)
Proof.

Differentiating equations (3.73) and (3.74) with respect to time, we obtain 

∂ ∂t u t = ∆µ t (3.95) and ∂ ∂t v t + ∂ ∂t [S (u + v) -S (u -v)] -2θ c v t = ∆v t . ( 3 
((∆µ t , u t )) = -((∆u t , ∆u t )) -2((θ c ∆u t , u t )) + (( ∂ ∂t [S (u + v) + S (u -v)], ∆u t )).
Moreover, using Hölder and Young's inequalities and Lemma 2, we have

Ω S (u + v)(u t + v t )∆v t dx ≤ ||S (u + v)|| L 3 (Ω) ||u t + v t || L 6 (Ω) || ||∆v t || L 2 (Ω) ≤ 3c(p) 2 4 ||u t + v t || 2 L 6 (Ω) + 1 4 ||∆v t || 2 (3.98)
and similarly 

Ω S (u -v)(u t -v t )∆v t dx ≤ ||S (u -v)|| L 3 (Ω) ||u t -v t || L 6 (Ω) || ||∆v t || L 2 (Ω) ≤ 3c(p) 2 4 ||u t -v t || 2 L 6 (Ω) + 1 4 ||∆v t || 2 , (3.99) Ω S (u + v)(u t + v t )∆u t dx ≤ ||S (u + v)|| L 3 (Ω) ||u t + v t || L 6 (Ω) || ||∆v t || L 2 (Ω) ≤ 3c(p) 2 4 ||u t + v t || 2 L 6 (Ω) + 1 4 ||∆u t || 2 , (3.100) Ω S (u -v)(u t -v t )∆u t dx ≤ ||S (u -v)|| L 3 (Ω) ||u t -v t || L 6 (Ω) || ||∆v t || L 2 (Ω) ≤ 3c(p) 2 4 ||u t -v t || 2 L 6 (Ω) + 1 
+ c||u t -v t || 2 L 6 (Ω) + 1 2 ||∆v t || 2 + 1 2 ||∆u t || 2 , (3.102) 
where c depends on p.

Then, owing to the continuous embedding H 1 (Ω) ⊂ L 6 (Ω), we have Theorem 3.6.3. Let N = 1 and let f satisfy assumption (3.10). Then, there exist two positive constants δ and δ and T > 0 such that

||(u + v)(t)|| L ∞ (Ω) ≤ 1 -δ, ∀ 2 ≤ t ≤ T, (3.104) 
and

||(u -v)(t)|| L ∞ (Ω) ≤ 1 -δ , ∀ 2 ≤ t ≤ T. (3.105)
Proof.

Since we are in one space dimension, we have the Sobolev embedding H 1 (Ω) ⊂ C(Ω). Therefore, it follows from (3.77) and (3.79) that

|| μ|| L ∞ (2,t;L ∞ (Ω)) ≤ c, ∀ 2 ≤ t ≤ T. Testing (3.90) by |S (u + v)| p-2 S (u + v), we get (p -1) Ω |S (u + v)| p-2 S (u + v)|∇(u + v)| 2 dx + 2||S (u + v)|| p L p (Ω) = Ω μ|S (u + v)| p-2 S (u + v)dx - Ω v t |S (u + v)| p-2 S (u + v)dx + 2θ c Ω v|S (u + v)| p-2 S (u + v)dx.
The first term on the left-hand side is nonnegative, so that an application of the Hölder inequality yields

||S (u + v)|| L p (Ω) ≤ c(|| μ|| L p (Ω) + ||v t || L p (Ω) + ||v|| L p (Ω) ).
Recalling equation (3.35) which holds when N → +∞, we have 

d dt (||u|| 2 + ||∇v|| 2 ) + c(||∆u|| 2 + ||∆v|| 2 ) ≤ c (||u|| 2 + ||∇v|| 2 ). ( 3 
||S (u + v)|| L p (Ω×(t,t+1)) ≤ c, ∀ 2 ≤ t ≤ T,
where c is independent of p and t.

Applying Theorem 2.14 in [START_REF] Adams | Sobolev Spaces[END_REF], we obtain

||S (u + v)|| L ∞ (Ω×(t,t+1)) ≤ c, ∀ 2 ≤ t ≤ T.
This implies that there exists δ > 0 such that

||u + v|| L ∞ (Ω×(t,t+1)) ≤ 1 -δ, ∀ 2 ≤ t ≤ T. Since u + v ∈ L ∞ (0, t; L ∞ (Ω)
) for all t ≥ 0, we also infer that

||u + v|| L ∞ (2,t;L ∞ (Ω)) ≤ 1 -δ, ∀ 2 ≤ t ≤ T.
Finally, we deduce (3.104) from the continuity in time.

In the same way, we can obtain the second inequality (3. 

∂u ∂t = h 2 ∆( f (u + v) + f (u -v) -h 2 ∆u), ∂v ∂t = -f (u + v) + f (u -v) -αv + h 2 ∆v,
where u is the concentration of one of the components and it is a conserved quantity, v is an order parameter, h is a (positive) parameter which represents the lattice spacing, α is a parameter that reflects the location of the system within the phase diagram (it may be either positive or negative), and the nonlinear term f is the derivative of a double-well potential F.

The system models simultaneous order-disorder and phase separation in binary alloys on a BCC lattice in the neighborhood of the triple point.

We further note that it is a gradient flow in H 1 × L 2 for the free energy

J(u, v) = Ω F(u + v) + F(u -v) + α 2 v 2 + 1 2 h 2 (|∇u| 2 + |∇v| 2 ) dx,
These equations , endowed with Neumann boundary conditions, have been studied in [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF] by A. Novick-Cohen, D. Brochet, and D. Hilhorst who proved the well-posedness and the existence of maximal attractors and inertial sets (i.e., exponential attractors) for the usual cubic nonlinear term f (s) = s 3 -βs in three space dimensions. These results were improved in [148] : taking initial conditions in H 2 (Ω) allowed the authors to prove the existence of exponential attractors (and, thus, of the finite-dimensional global attractor) for a large class of nonlinear terms containing polynomials of arbitrary odd degree with a strictly positive leading coefficient in three space dimensions. This model has been also studied in [START_REF] Miranville | On The Cahn-Hilliard/Allen-Cahn Equations With Singular Potentials[END_REF], where an exponential attractor for singular potentials was found, and by consequence a global attractor of finite dimension.

A similar system, with a non-constant mobility, was treated in [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF] where the authors proved the existence of weak solutions for the Neumann problem for a degenerate parabolic system consisting of a fourth-order and a second-order equations with singular lower-order terms in one space dimension. In addition, asymptotics for a similar system with a non-constant mobility, proposed as a diffuse interface model for simultaneous order-disorder and phase separation, was studied in [START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF]. This work was extended in [START_REF] Novick-Cohen | Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system : The partial wetting case[END_REF], where the authors studied the partial wetting case, and their analysis accounts for motion in three space dimensions.

We also mention that numerical methods to solve coupled AC/CH systems were studied in, e.g. [START_REF] Millett | Void nucleation and growth in irradiated polycrystalline metals : A phase-field model[END_REF][START_REF] Rokkam | Phase field modeling of void nucleation and growth in irradiated metals[END_REF][START_REF] Tonks | An object-oriented finite element framework for multiphysics phase field simulations[END_REF][START_REF] Wang | A differential variational inequality approach for the simulation of heterogeneous materials[END_REF][START_REF] Xia | Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system[END_REF]. Furthermore, a NKS method for the implicit solution of a coupled AC/CH system was proposed in [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF].

In this work, we study two systems of three simultaneous equations : a Cahn-Hilliard equation, an Allen-Cahn equation and a heat equation. In the first part of the paper, the heat equation is based on the usual Fourier law. We were able to find exponential attractors then a global attractor associated to the system. In the second part, the heat equation is based on the type III law of thermoelasticity. There, to find exponential attractors, we were obliged to decompose the system into the sum of two systems to overcome the difficulties created by a second-order derivative term. Not much work has been done in similar cases. However, in a recent paper, [START_REF] Krasnyuk | Long-time oscillating properties of confined disordered binary alloys[END_REF], the authors studied a coupled AC/CH system with temperature and long-time oscillating properties were found.

Throughout this paper, the same letter c (and, sometimes, c , c , and c ) denotes constants which may change from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may change from line to line, or even in the same line.

Part I : The Usual Fourier Law

In this part, as mentioned before, the generalized heat equation is based on the classical Fourier law for heat conduction. Indeed, we can rewrite this equation as

∂H ∂t = -div q,
where q is the thermal flux vector and, assuming the Fourrier law q = -∇θ.

The function H is the enthalpy defined by

H = v + θ,
and θ is the relative temperature.

Setting of the Problem

We take h = 1 and α = 0 for simplicity, and consider what follows

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (4.1) 
∂v ∂t -∆v + f (u + v) -f (u -v) = θ, (4.2) ∂θ ∂t -∆θ = - ∂v ∂t , (4.3) 
u = ∆u = v = θ = 0 on Γ, (4.4 
)

u |t=0 = u 0 , v |t=0 = v 0 , θ |t=0 = θ 0 , (4.5) 
where Ω is a bounded domain of IR N (N = 1, 2, or 3) with smooth boundary Γ.

As far as the nonlinear term is concerned, we make the following assumptions : 

f is of class C 2 , f (0) = 0, (4.6) f (s) ≥ -c, c > 0, s ∈ IR, (4.7) f (s)s ≥ cF(s) -c , F(s) ≥ -c , c > 0, c , c ≥ 0, s ∈ IR, ( 4 

Existence and Uniqueness of Solutions

We rewrite equation (4.1) in the equivalent form

(-∆) -1 ∂u ∂t -∆u + f (u + v) + f (u -v) = 0. (4.9) 
We multiply (4.9) by ∂u ∂t , (4.2) by ∂v ∂t , and (4.3) by θ and then integrate by parts over Ω, we obtain

∂u ∂t 2 -1 + 1 2 d dt ||∇u|| 2 + (( f (u + v) + f (u -v), ∂u ∂t )) = 0, (4.10) 
∂v ∂t 2 + 1 2 d dt ||∇v|| 2 + (( f (u + v) -f (u -v), ∂v ∂t )) = ((θ, ∂v ∂t )), (4.11) 1 2 
d dt ||θ|| 2 + ||∇θ|| 2 = ((- ∂v ∂t , θ)). (4.12) 
Summing (4.10), (4.11), and (4.12), we obtain 1 2

d dt ||∇u|| 2 + ||∇v|| 2 + ||θ|| 2 + 2 Ω [F(u + v) + F(u -v)]dx + ||∇θ|| 2 + ∂u ∂t 2 -1 + ∂v ∂t 2 = 0. (4.13) 
Based on (4.13), we have the following result Theorem 4.2.1. Assume that (u 0 , v 0 , θ 0 ) ∈ H 1 0 (Ω) 3 . Then, (4.1)-(4.5) possesses at least one solution (u, v, θ) such that

(u, v, θ) ∈ L ∞ (IR + ; H 1 0 (Ω) 2 × L 2 (Ω)) ∩ L 2 loc (IR + ; H 2 (Ω) 3 ), θ ∈ L ∞ (IR + ; L 2 (Ω) ∩ H 1 0 (Ω)) and ( ∂u ∂t , ∂v ∂t , ∂θ ∂t ) ∈ L 2 (IR + ; H -1 × L 2 (Ω) 2 ).
Proof.

The proof of existence (as well as the above and the subsequent a priori estimates) are based, e.g. on a classical Galerkin scheme. Let A denote the minus Laplace operator associated with Dirichlet boundary conditions. This operator is a bounded, selfadjoint and strictly positive operator with compact inverse from H 1 0 (Ω) onto H -1 (Ω). There is a set of eigenvectors {φ i , i ≥ 1} for this operator, associated with the eigenfunctions 0 < λ 1 ≤ λ 2 ≤ ..., such that it is orthonormal relative to the inner product in L 2 (Ω) and orthogonal relative to the one in H 1 0 (Ω). Setting V m = S pan{φ 1 , ..., φ m }, we consider the following approximating problem, written in the fuctional form :

du m dt + A 2 u m + A( f (u m + v m ) + f (u m -v m )) = 0, (4.14) 
dv m dt + Av m + f (u m + v m ) -f (u m -v m ) = θ m , (4.15) 
dθ m dt + Aθ m = - dv m dt , (4.16) 
together with suitable initial conditions, namely,

u m|t=0 = P m u 0 , v m|t=0 = P m v 0 , θ m|t=0 = P m θ 0 ,
where P m is the orthogonal projector from L 2 (Ω) onto V m (for the L 2 -metric).

This is equivalent to the following problem :

d dt ((u m , p)) -((∆u m , ∆p)) + ((∇ f (u m + v m ), ∇p)) + ((∇ f (u m -v m ), ∇p)) = 0, d dt ((v m , q)) + ((∇v m , ∇q)) + (( f (u m + v m ), q)) -(( f (u m -v m ), q)) = ((θ m , q)), d dt ((θ m , r)) + ((∇θ m , ∇r)) = - d dt ((v m , r)),
∀ p, q, r ∈ V m , together with the above initial conditions. The proof of existence of a local (in time) solution to the approximating problem is standard (indeed, one has to solve a continuous system of ODEs).

Furthermore, we can write the equivalent of the previous and the subsequent estimates (with u, v and θ replaced by u m , v m , and θ m respectively) ; this is now fully justified and no longer formal. Then we can deduce from (4.13) that this solution is actually global. And, the passage to the limit is based on classical (Aubin-Lions type) compactness results. Indeed, we have, in particular, u m bounded in L ∞ (0, T ; H 1 0 (Ω)) and du m dt bounded in L 2 (0, T ; H -1 (Ω)), independently of m, which yields that (at least for a subsequence which we do not relabel) u m converges strongly to, say, u in C([0, T ]; H 1-δ (Ω)), ∀ δ > 0. In addition, v m is bounded in L ∞ (0, T ; H 1 0 (Ω)) and

dv m
dt is bounded in L 2 (0, T ; L 2 (Ω)), independently of m, which also yields the strong convergence of v m to, say, v in C([0, T ]; H 1-δ (Ω)), ∀ δ > 0.

We also note that it follows from (4.13

) that (u, v) ∈ L ∞ (IR + ; H 1 0 (Ω) 2 ), θ ∈ L ∞ (IR + ; L 2 (Ω)) ∩ L 2 (IR + ; H 1 0 (Ω)) and that ( ∂u ∂t , ∂v ∂t ) ∈ L 2 (IR + ; H -1 (Ω) × L 2 (Ω)).
We now multiply (4.9) by -∆u, (4.2) by -∆v, (4.3) by -∆θ, and integrate over Ω to obtain 1 2

d dt ||u|| 2 + ||∆u|| 2 + (( f (u + v)∇(u + v), ∇u)) + (( f (u -v)∇(u -v), ∇u)) = 0, (4.17) 1 2 
d dt ||∇v|| 2 + ||∆v|| 2 + (( f (u + v)∇(u + v), ∇v)) -(( f (u -v)∇(u -v), ∇v)) = ((θ, -∆v)), (4.18) 
and 1 2

d dt ||∇θ|| 2 + ||∆θ|| 2 = (( ∂v ∂t , ∆θ)). (4.19) 
Summing (4.17), (4.18), and (4.19) and using (4.7), we obtain 1 2

d dt (||u|| 2 + ||∇v|| 2 + ||∇θ|| 2 ) + ||∆u|| 2 + c (||∆v|| 2 + ||∆θ|| 2 ) ≤ c(||∇u|| 2 + ||∇v|| 2 ) + c ∂v ∂t 2 . (4.20) 
Hence, we can deduce from (4.20) that (u, v, θ) ∈ L 2 loc (IR + ; H 2 (Ω) 3 ).

We finally multiply (4.3) by ∂θ ∂t and get

d dt ||∇θ|| 2 + ∂θ ∂t 2 ≤ ∂v ∂t 2 . (4.21) 
Then ∂θ ∂t ∈ L 2 (IR + ; L 2 (Ω)) which finishes the proof of the regularity of the solution.

We develop now some formal estimates needed for this and the following sections : We start by multiplying (4.9) by u, (4.2) by v, sum them together and use (4.8) to obtain

1 2 d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + c||∇v|| 2 + c Ω [F(u + v) + F(u -v)]dx ≤ c + c||θ|| 2 . (4.22) 
Then, we sum (4.13) and (4.22), where is small enough so that

d dt ||u|| 2 -1 + ||v|| 2 + ||∇u|| 2 + ||∇v|| 2 + ||θ|| 2 + 2 Ω [F(u + v) + F(u -v)]dx + c ||∇u|| 2 + ||∇v|| 2 + ||∇θ|| 2 + Ω [F(u + v) + F(u -v)]dx + ∂u ∂t 2 -1 + ∂v ∂t 2 ≤ c . (4.23) 
We set

E 1 = ||u|| 2 -1 + ||v|| 2 + ||∇u|| 2 + ||∇v|| 2 + ||θ|| 2 + 2 Ω [F(u + v) + F(u -v)]dx.
Whence, we deduce from (4.23) the inequality

dE 1 dt + c E 1 + ∂u ∂t 2 -1 + ∂v ∂t 2 + ||∇θ|| 2 ≤ c . (4.24) 
Next, we add (4.21) and (4.24), we obtain

dE 2 dt + c E 2 + ∂u ∂t 2 -1 + ∂v ∂t 2 + ∂θ ∂t 2 ≤ c , (4.25) 
where

E 2 = E 1 + ||∇θ|| 2 .
Applying Gronwall's lemma to (4.25) yields

E 2 (t) ≤ e -ct E 2 (0) + c , ∀ t ≥ 0, c > 0. (4.26) 
We can deduce from (4.25) and (4.26) that, for every r > 0,

t+r t ∂u ∂t 2 -1 + ∂v ∂t 2 + ∂θ ∂t 2 dτ ≤ ce -c t ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c (r). (4.27) 
We now differentiate equations (4.2) and (4.9) with respect to time, we obtain

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (4.28) 
∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) -f (u -v)( ∂u ∂t - ∂v ∂t ) = ∂θ ∂t , (4.29) 
with

∂u ∂t = ∂v ∂t = ∂θ ∂t = 0 on Γ. (4.30) 
We then multiply (4.28) by t ∂u ∂t , (4.29) by t ∂v ∂t and we sum the resulting equations, we obtain 1 2

d dt t ∂u ∂t 2 -1 + t ∂v ∂t 2 + ct ∇ ∂u ∂t 2 + t ∇ ∂v ∂t 2 + (( f (u + v)( ∂u ∂t + ∂v ∂t ), ∂u ∂t + ∂v ∂t )) + (( f (u -v)( ∂u ∂t - ∂v ∂t ), ∂u ∂t - ∂v ∂t )) = t ∂θ ∂t , ∂v ∂t + 1 2 ∂u ∂t 2 -1 + ∂v ∂t 2 ,
which yields, owing to (4.7), 1 2

d dt t ∂u ∂t 2 -1 + t ∂v ∂t 2 + ct ∇ ∂u ∂t 2 + t ∇ ∂v ∂t 2 ≤ c t ∂u ∂t 2 + ∂v ∂t 2 + ∂θ ∂t 2 + 1 2 ∂u ∂t 2 -1 + ∂v ∂t 2 .
Employing the interpolation inequality

∂u ∂t 2 ≤ c ∂u ∂t -1 ∇ ∂u ∂t , c > 0,
and the Young's inequality, we deduce that 1 2

d dt t ∂u ∂t 2 -1 + t ∂v ∂t 2 + ct ∇ ∂u ∂t 2 + t ∇ ∂v ∂t 2 ≤ c t ∂u ∂t 2 -1 + ∂v ∂t 2 + ∂θ ∂t 2 + 1 2 ∂u ∂t 2 -1 + ∂v ∂t 2 . (4.31) 
We now apply Gronwall's lemma and use (4.27) to obtain

∂u ∂t (t) 2 -1 
+ ∂v ∂t (t) 2 ≤ 1 t e c t Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ∈ (0, T 0 ]. (4.32) 
Moreover, summing (4.28) times ∂u ∂t and (4.29) times ∂v ∂t , then using (4.7) and an interpolation inequality, we find

d dt ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 ≤ c ∂u ∂t 2 -1 + ∂v ∂t 2 + c ∂θ ∂t 2 . (4.33) 
Applying Gronwall's lemma and using (4.27) and (4.32), we obtain

∂u ∂t (t) 2 -1 + ∂v ∂t (t) 
2

≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ T 0 . (4.34) 
Furthermore, we multiply (4.9) by -∆ ∂u ∂t , (4.2) by -∆ ∂v ∂t , and (4.3) by -∆θ and sum the resulting equations. Then using (4.6) and the continuous embedding H 2 (Ω) ⊂ C(Ω), we obtain 1 2

d dt (||∆u|| 2 + ||∆v|| 2 + ||∇θ|| 2 ) + c(||∇ ∂v ∂t || 2 + ∂u ∂t 2 + ||∆θ|| 2 ) ≤ Q(||u|| H 2 (Ω) , ||v|| H 2 (Ω) ). (4.35) 
Setting y = ||∆u|| 2 + ||∆v|| 2 + ||∇θ|| 2 , we deduce from (4.35) a differential inequality of the form

y ≤ Q(y).
Let z be the solution of the ordinary differential equation z = Q(z) with z(0) = y(0).

It follows from the comparison principle that there exists

T 0 = T 0 (||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω)
) belonging to, say, (0, 1 2 ) such that

y(t) ≤ z(t), t ∈ [0, T 0 ], whence ||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≤ T 0 . (4.36) 

Part I : The Usual Fourier Law

We now rewrite equations (4.2) and (4.9) in the following forms

-∆u + f (u + v) + f (u -v) = h u (t), (4.37) 
-∆v + f (u + v) -f (u -v) = h v (t), (4.38) 
with u = ∆u = v = θ = 0 on Γ, (4.39) 
for t ≥ T 0 fixed, where

h u (t) = -(-∆) -1 ∂u ∂t ,
and

h v (t) = - ∂v ∂t + θ,
satisfy, owing to (4.26) and (4.34)

||h u (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ T 0 , (4.40) 
and

||h v (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ T 0 . (4.41) 
We multiply (4.37) by u and (4.38) by v and we sum the result. Noting then that f (s)s ≥ -c, c ≥ 0, we obtain

||∇u|| 2 + ||∇v|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 ) + c . (4.42) 
Next, we multiply (4.37) by -∆u and (4.38) by -∆v, we sum the resulting equations and obtain, using (4.7),

||∆u(t)|| 2 + ||∆v(t)|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 + ||∇u(t)|| 2 + ||∇v(t)|| 2 ). (4.43) 
We thus deduce from (4.40)-(4.43) that

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ T 0 . (4.44) 
And therefore,

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ 0. (4.45) 
Finally, we can say that (u, v) belongs a priori to L ∞ (0, T ; H 2 (Ω) 2 ), T > 0.

Plus, we note from (4.19) that we have

d dt ||∇θ|| 2 + ||∆θ|| 2 ≤ ∂v ∂t 2 . (4.46) 
Integrating (4.46) between T 0 and t, then using (4.27) and (4.36), we obtain

||∇θ(t)|| 2 ≤ e ct Q(||u 0 || H 2 , ||v 0 || H 2 , ||θ 0 || H 1 ). (4.47) 
Combining (4.36) with (4.47), we get

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ), t ≥ 0. (4.48) 
Multiplying then (4.3) by -∆ ∂θ ∂t , we obtain

d dt ||∆θ|| 2 + ||∇ ∂θ ∂t || 2 ≤ ||∇ ∂v ∂t || 2 . (4.49) 
Hence θ ∈ L ∞ (0, T ; H 2 (Ω)) and ∂θ ∂t ∈ L 2 (0, T ; H 1 0 (Ω)) a priori.

Our goal now is to find a dissipative estimate :

We start by recalling the inequality (4.20)

1 2 d dt (||u|| 2 + ||∇v|| 2 + ||∇θ|| 2 ) + ||∆u|| 2 + c(||∆v|| 2 + ||∆θ|| 2 ) ≤ c(||∇u|| 2 + ||∇v|| 2 ) + c ∂v ∂t 2 . (4.50) 
Using the interpolation inequality

||u|| 2 H 1 (Ω) ≤ c||u|| ||u|| H 2 (Ω)
, c ≥ 0, and then the Young's inequality, we obtain

d dt (||u|| 2 + ||∇v|| 2 + ||∇θ|| 2 ) + c(||∆u|| 2 + ||∆v|| 2 + ||∆θ|| 2 ) ≤ c (||u|| 2 + ||∇v|| 2 ) + c ∂v ∂t 2 . (4.51) 
Applying now Gronwall's lemma and using(4.27), we find

||u(t)|| 2 + ||∇v(t)|| 2 + ||∇θ(t)|| 2 ≤ e c t Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.52) 
In addition, it follows from (4.51) after using (4.27) and (4.52) that

1 0 (||u|| 2 H 2 (Ω) + ||v|| 2 H 2 (Ω) + ||θ|| 2 H 2 (Ω) )dt ≤ Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.53) 
Hence, there exists T ∈ (0, 1) such that

||u(T )|| 2 H 2 (Ω) + ||v(T )|| 2 H 2 (Ω) + ||θ(T )|| 2 H 2 (Ω) ≤ Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.54) 
Repeating the estimates leading to (4.48), but starting from t = T instead of t = 0, we have

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ e ct Q ||u(T )|| 2 H 2 (Ω) + ||v(T )|| 2 H 2 (Ω) + ||θ(T )|| 2 H 1 (Ω) .
Then using (4.54), we obtain

||u(1)|| 2 H 2 (Ω) + ||v(1)|| 2 H 2 (Ω) + ||θ(1)|| 2 H 1 (Ω) ≤ Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.55) 
We now repeat the estimates leading to (4.55), and since our equations are autonomous, we can make a translation in time. We obtain, for t ≥ 1,

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ Q ||∇u(t -1)|| 2 + ||∇v(t -1)|| 2 + ||∇θ(t -1)|| 2 + Ω [F(u(t -1) + v(t -1)) + F(u(t -1) -u(t -1))]dx , (4.56) 
which yields, owing to (4.26),

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ e -ct Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 H 1 (Ω) + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c , c > 0, t ≥ 1. (4.57) 
Combining the above estimate with (4.48) from 0 to 1, we obtain the dissipative estimate

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ e -ct Q ||u 0 || 2 H 2 (Ω) + ||v 0 || 2 H 2 (Ω) + ||θ 0 || 2 H 1 (Ω) + c , c > 0, t ≥ 0. (4.58) 
We then recall the equation (4.49)

d dt ||∆θ|| 2 + ∇ ∂θ ∂t 2 ≤ ∇ ∂v ∂t 2 . (4.59) 
Noting that it follows from (4.27), and (4.33) that

t+r t ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 dx ≤ e -ct Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c (r), c > 0, r > 0, (4.60) 
and from (4.46), (4.57) and (4.60) that

t+r t ||∆θ|| 2 dx ≤ e -ct Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c (r), c > 0, r > 0.
(4.61)

We deduce from (4.59)-(4.61) and, the uniform's Gronwall lemma, (see, e.g. [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]), that 

||θ(t)|| 2 H 2 (Ω) ≤ e -ct Q ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇θ 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c (r), c > 0, r > 0. ( 4 
, v 0 , θ 0 ) obtained in Theorem 2.1. If (u 0 , v 0 , θ 0 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) 2 × H 1 0 (Ω)
, then there exists a unique solution (u, v, θ) ∈ L ∞ loc (IR + ; (H 2 (Ω) 3 ), and

( ∂u ∂t , ∂v ∂t , ∂θ ∂t ) ∈ L ∞ loc (IR + ; H -1 (Ω) × L 2 (Ω) 2 ) ∩ L 2 loc (IR + ; H 1 0 (Ω) 3 ).
Proof.

The proof of the existence (as well as the above a priori estimates) are based on a classical Galerkin scheme as in the previous section and mainly on the estimations (4.48) and (4.49).

We now turn our attention to prove the uniqueness :

We consider two solutions (u 1 , v 1 , θ 1 ) and (u 2 , v 2 , θ 2 ) to the problem with initial data (u 0,1 , v 0,1 , θ 0,1 ) and (u 0,2 , v 0,2 , θ 0,2 ) respectively. We set (u, v, θ) = (u 1 , v 1 , θ 1 ) -(u 2 , v 2 , θ 2 ) and (u 0 , v 0 , θ 0 ) = (u 0,1 , v 0,1 , θ 0,1 ) -(u 0,2 , v 0,2 , θ 0,2 ). We then have the following system

(-∆) -1 ∂u ∂t -∆u + f (u 1 + v 1 ) -f (u 2 + v 2 ) + f (u 1 -v 1 ) -f (u 2 -v 2 ) = 0, (4.64) 
∂v ∂t -∆v + f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) + f (u 2 -v 2 ) = θ, (4.65 
)

∂θ ∂t -∆θ = - ∂v ∂t , (4.66) 
with u = ∆u = v = θ = 0 on Γ, (4.67) 

u |t=0 = u 0 , v |t=0 = v 0 , θ |t=0 = θ 0 . ( 4 
+ ∂v ∂t 2 + ||∇θ|| 2 + (( f (u 1 + v 1 ) -f (u 2 + v 2 ), ∂ ∂t (u + v))) + (( f (u 1 -v 1 ) -f (u 2 -v 2 ), ∂ ∂t (u -v))) = 0. (4.69)
Furthermore,

f (u 1 + v 1 ) -f (u 2 + v 2 ), ∂ ∂t (u + v) = (-∆) 1 2 f (u 1 + v 1 ) -f (u 2 + v 2 ) , (-∆) -1 2 ∂ ∂t (u + v) ≤ c ∂ ∂t (u + v) -1 ||∇( f (u 1 + v 1 ) -f (u 2 + v 2 ))||, c > 0, (4.70) 
and similarly

f (u 1 -v 1 ) -f (u 2 -v 2 ), ∂ ∂t (u -v) ≤ c ∂ ∂t (u -v) -1 ||∇( f (u 1 -v 1 ) -f (u 2 -v 2 ))||, c > 0. (4.71) 
Therefore, 1 2

d dt ||∇u|| 2 + ||∇v|| 2 + ||θ|| 2 + c ∂u ∂t 2 -1 + c ∂v ∂t 2 + ||∇θ|| 2 ≤ c(||∇( f (u 1 + v 1 ) -f (u 2 + v 2 ))|| 2 + ||∇( f (u 1 -v 1 ) -f (u 2 -v 2 ))|| 2 ). (4.72)
Owing to (4.58), we can see that

||∇ f (u 1 + v 1 ) -f (u 2 + v 2 ) || =||∇ 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 ))ds(u -v) || ≤|| 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 ))ds∇(u -v)|| + ||(u -v) 1 0 f (u 1 + v 1 + s(u 2 + v 2 -u 1 -v 1 )) ∇(u 1 + v 1 ) + s∇(u 2 + v 2 -u 1 -v 1 ) ds|| ≤Q ||∇(u -v)|| + || |u -v| |∇(u 1 + v 1 )| || + || |u -v| |∇(u 2 + v 2 )| || ≤Q(||∇u|| + ||∇v||).
(4.73)

In the same way,

||∇ f (u 1 -v 1 ) -f (u 2 -v 2 ) || ≤ Q(||∇u|| + ||∇v||), (4.74) 
where whence the uniqueness (taking (u 0 , v 0 , θ 0 ) = (0, 0, 0)), as well as the continuous dependence with respect to the initial data.

Q = Q(||u 0,1 || H 2 (Ω) ,

Global and Exponential attractors

We set Φ = (H 2 (Ω) ∩ H 1 0 (Ω)) 3 . Note that it follows from Theorem 2.2 that we can define the semigroup

S (t) : Φ -→ Φ (u 0 , v 0 , θ 0 ) -→ (u(t), v(t), θ(t)),
where (u, v, θ) is the unique solution to our system. Theorem 4.2.3. The semigroup S (t) associated with (4.1)-(4.5) possesses a bounded absorbing set B 0 in Φ such that, for every bounded set B ⊂ Φ, there exists t 0 = t 0 (B) ≥ 0 such that t ≥ t 0 implies S (t)B ⊂ B 0 . Therefore, S (t) is a dissipative semigroup.

It comes directly from (4.26) and (4.63). Remark 4.2.1. We can assume, without loss of generality, that B 0 is positively invariant by S (t), i.e., S (t)B 0 ⊂ B 0 , ∀ t ≥ 0. Theorem 4.2.4. The semigroup S (t) possesses an exponential attractor M ⊂ B 0 , i.e., (i) M is compact in H 1 (Ω) 2 × L 2 (Ω) ; (ii) M is positively invariant, which means that S (t)M ⊂ M, ∀ t ≥ 0 ; (iii) M has a finite fractal dimension in H 1 (Ω) 2 × L 2 (Ω) ; (iv) M attracts exponentially fast the bounded subsets of Φ : ∀ B ⊂ Φ bounded, dist H 1 (Ω) 2 ×L 2 (Ω) (S (t)B, M) ≤ Q(||B|| Φ )e -ct , c > 0, t ≥ 0, where the constant c is independent of B and dist H 1 (Ω) 2 ×L 2 (Ω) denotes the Hausdorff semidistance between sets defined by

dist H 1 (Ω) 2 ×L 2 (Ω) (A, B) = sup a∈A inf b∈B ||a -b|| H 1 (Ω) 2 ×L 2 (Ω) .
Proof.

Here, we assume that the initial conditions are in the bounded absorbing set B 0 . To complete the proof, we need an asymptotic smoothing property on the difference of two solutions, a Hölder estimate with respect to space and time, and a compactness estimate of the solution. These are the key tools to construct exponential attractors (see [START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in IR 3[END_REF]- [START_REF] Efendiev | Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems[END_REF], [START_REF] Fabrie | Uniform exponential attractors for a singularly perturbed damped wave equation[END_REF][START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF]).

The Hölder estimate is as follows

||u(t 1 ) -u(t 2 )|| H 1 (Ω) + ||v(t 1 ) -v(t 2 )|| H 1 (Ω) + ||θ(t 1 ) -θ(t 2 )|| L 2 (Ω) ≤ c(||∇(u(t 1 ) -u(t 2 ))|| + ||∇(v(t 1 ) -v(t 2 ))|| + ||(θ(t 1 ) -θ(t 2 ))||) ≤ c t 2 t 1 ∇ ∂u ∂t dτ + t 2 t 1 ∇ ∂v ∂t dτ + t 2 t 1 ∂θ ∂t dτ ≤ c|t 1 -t 2 | 1 2 t 2 t 1 ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + ∂θ ∂t 2 dτ 1 2
.

We note that it follows from (4.27), (4.32), (4.33) and the fact that the initial conditions are in a bounded absorbing set that

t 2 t 1 ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 dτ ≤ c, (4.77) 
where c only depends on B 0 and T ≥ T 0 such that t where c only depends on B 0 .

Therefore, we have

||u(t 1 ) -u(t 2 )|| H 1 (Ω) + ||v(t 1 ) -v(t 2 )|| H 1 (Ω) + ||θ(t 1 ) -θ(t 2 )|| L 2 (Ω) ≤ c|t 1 -t 2 | 1 2 , (4.80) 
where c only depends on B 0 , and t 1 , t 2 ∈ [T 0 , T ], where T ∈ IR + .

We now want to find a compactness estimate :

First, we differentiate (4.64) and (4.65) with respect to time, we multiply the resulting equations by (t -T 0 ) ∂u ∂t and (t -T 0 ) ∂v ∂t respectively, where T 0 is the same as before and we obtain 1 2

d dt (t -T 0 ) ∂u ∂t 2 -1 + (t -T 0 ) ∂v ∂t 2 + (t -T 0 ) ∇ ∂u ∂t 2 + (t -T 0 ) ∇ ∂v ∂t 2 ≤ c(t -T 0 ) ∂u ∂t 2 + ∂v ∂t 2 + 1 2 ∂u ∂t 2 -1 + 1 2 ∂v ∂t 2 -(t -T 0 ) ∂θ ∂t , ∂v ∂t 
+ (t -T 0 ) Ω | f (u 1 + v 1 ) -f (u 2 + v 2 )| ∂ ∂t (u + v) ∂ ∂t (u 2 + v 2 ) dx + (t -T 0 ) Ω | f (u 1 -v 1 ) -f (u 2 -v 2 )| ∂ ∂t (u + v) ∂ ∂t (u 2 -v 2 ) dx.
Noting that

Ω | f (u 1 + v 1 ) -f (u 2 + v 2 )| ∂ ∂t (u + v) ∂ ∂t (u 2 + v 2 ) dx ≤ c Ω |u + v| ∂ ∂t (u + v) ∂ ∂t (u 2 + v 2 ) dx ≤ c||∇(u + v)|| ∇ ∂ ∂t (u + v) ∂ ∂t (u 2 + v 2 ) , (4.81) 
using Hölder inequality and the continuous embeddings H 1 (Ω) ⊂ L 3 (Ω) and H 1 (Ω) ⊂ L 6 (Ω).

Similarly,

Ω | f (u 1 -v 1 ) -f (u 2 -v 2 )| ∂ ∂t (u + v) ∂ ∂t (u 2 -v 2 ) dx ≤ c||∇(u -v)|| ∇ ∂ ∂t (u + v) ∂ ∂t (u 2 -v 2 ) . (4.82) 
Owing then to a proper interpolation inequality, we obtain where the constants only depend on B 0 .

1 2 d dt (t -T 0 ) ∂u ∂t 2 -1 + (t -T 0 ) ∂v ∂t 2 + c(t -T 0 ) ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 ≤ c(t -T 0 ) ∂u ∂t 2 -1 + ∂v ∂t 2 + ∂θ ∂t 2 + 1 2 ∂u ∂t 2 -1 + ∂v ∂t 2 + c (t -T 0 )||∇(u + v)|| 2 ∂ ∂t (u 2 + v 2 ) 2 + c (t -T 0 )||∇(u -v)|| 2 ∂ ∂t (u 2 -v 2 ) 2 . ( 4 
Next, we rewrite equations (4.64) and (4.65) in the following forms

-∆u = hu (t), (4.86) 
and -∆v = hv (t), (4.87) where u = ∆u = v = θ = 0 on Γ, for t ≥ 1 fixed, and The global attractor A is the smallest (for the inclusion) compact set of the phase space which is invariant by the flow (i.e., S (t)A = A, ∀t ≥ 0) and attracts all bounded sets of initial data as time goes to infinity ; that's why, it's important in the study of the asymptotic behavior of the system. Furthermore, the finite dimensionality means, roughly speaking, that, even though the initial phase space is infinite dimensional, the reduced dynamics can be described by a finite number of parameters. We refer the reader to [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF] for more details and discussions on this.

hu (t) = -(-∆) -1 ∂u ∂t -f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 1 -v 1 ) -f (u 2 -v 2 ) , (4.88) 
hv (t) = - ∂v ∂t -f (u 1 + v 1 ) -f (u 2 + v 2 ) -f (u 2 -v 2 ) -f (u 1 -v 1 ) + θ, (4.89 
Remark 4.2.3. An exponential attractor is expected to be more robust than a global attractor under perturbations. And that's because the rate of attraction of the global attractor is slow and it's very hard to estimate it with respect to the physical parameters of the problem in general. Therefore, global attractors may change drastically under small perturbations. However, the rate of attraction of exponential attractors is considerably fast (an exponential rate) and that gives them some kind of resilience. We refer the reader to [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF] and [START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF] for more details on this subject.

Part II : The Type III Law

The classical Fourier law presented in the previous section has one essential drawback, that is, it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called 'paradox of heat conduction', see, e.g. [START_REF] Christov | Heat conduction paradox involving second-sound propagation in moving media[END_REF]). That's why, several modifications of the classical Fourrier law have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.

In particular, in [START_REF] Miranville | A generalization of the Caginalp phase-field system based on the Cattaneo heat flux law[END_REF], the authors considered

1 + η ∂ ∂t q = -∇θ, η > 0,
assuming the classical Fourrier law q = -∇θ,

which leads to η ∂ 2 θ ∂t 2 + ∂θ ∂t -∆θ = -η ∂ 2 v ∂t 2 - ∂v ∂t ,
(see also [START_REF] Jiang | Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law[END_REF][START_REF] Jiang | Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law[END_REF] the Maxwell-Cattaneo law).

On the other side, Green and Naghdi proposed in [START_REF] Green | A re-examination of the basic postulates of thermomechanics[END_REF]- [START_REF] Green | A new thermoviscous theory for fluids[END_REF] an alternative treatment for a thermomechanical theory of deformable media which presents an entropy balance rather than the usual entropy inequality. However, if we restrict our attention to the heat conduction, we recall that three different theories, labelled as type I, type II and type III, were proposed. In particular, the Fourrier law is found when type I is linearized. The linearized versions of the two other theories are described by the following constitutive equations (knowing that we are going to study only the type III in what follows) q = -k∇α, k > 0, (Type II) (4.96) and q = -k∇αk * ∇θ, k, k * > 0, (Type III),

where

α(t) = t t 0 θ(τ)dτ + α 0 , θ = ∂α ∂t
is called the thermal displacement variable. These theories were well studied in the recent years and, particularly, a special interest was given to the qualitative study of the solutions (see e.g.

[168]- [START_REF] Quintanilla | Energy bounds for some non-standard problems in thermoelasticity[END_REF] for studies concerned with linear thermoelastic theories). In addition, non-linear acceleration waves have been studied for types II and III non-linear thermoelasticity [START_REF] Quintanilla | A note on discontinuity waves in type III thermoelasticity[END_REF] and fluids without energy dissipation [START_REF] Quintanilla | Nonlinear waves in a Green-Naghdi dissipationless fluid[END_REF].

Adding equations (4.96) and (4.97) to the equation

∂H ∂t + div q = 0, (4.98) 
we obtain the following equations

∂ 2 α ∂t 2 -k∆α = - ∂v ∂t
for type II and

∂ 2 α ∂t 2 -k * ∂ ∂t ∆α -k∆α = - ∂v ∂t
for type III.

Setting of the New Problem

We consider the following initial and boundary value problem (for simplicity, we take k = k * = 1) :

∂u ∂t + ∆ 2 u -∆( f (u + v) + f (u -v)) = 0, (4.99) ∂v ∂t -∆v + f (u + v) -f (u -v) = ∂α ∂t , (4.100) 
∂ 2 α ∂t 2 -∆ ∂α ∂t -∆α = - ∂v ∂t , (4.101) 
u = ∆u = v = α = 0 on Γ, (4.102) 
u |t=0 = u 0 , v |t=0 = v 0 , α |t=0 = α 0 , ∂α ∂t t=0 = α 1 , (4.103) 
where Ω is a bounded domain of IR N (N = 1, 2, or 3) with smooth boundary Γ.

We assume that f is of class C 2 and satisfies

-c ≤ F(s) ≤ f (s)s, c ≥ 0, s ∈ IR, (4.104) 
where

F(s) = s 0 f (τ)dτ.
We also assume that

f (0) = 0, f (s) ≥ -c , s ∈ IR, c ≥ 0. (4.105)

A Priori Estimates

First, we rewrite (4.99) in the equivalent form

(-∆) -1 ∂u ∂t -∆u + f (u + v) + f (u -v) = 0 (4.106)
We multiply (4.106) by ∂u ∂t , (4.100) by ∂v ∂t and have, summing the results, 

∂u ∂t 2 -1 + ∂v ∂t 2 + d dt 1 2 ||∇u|| 2 + 1 2 ||∇v|| 2 + Ω [F(u + v) + F(u -v)]dx = ∂α ∂t , ∂v ∂t . ( 4 
d dt ||∇u|| 2 + ||∇v|| 2 + 2 Ω [F(u + v) + F(u -v)]dx + ∂α ∂t 2 + ||∇α|| 2 + 2 ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂α ∂t 2 = 0. (4.109) 
We now multiply (4.106) by u, (4.100) by v and sum the results to have, owing to (4.104), (4.111), where 1 and 2 > 0 are chosen small enough so that

d dt (||u|| 2 -1 + ||v|| 2 ) + ||∇u|| 2 + ||∇v|| 2 + Ω [F(u + v) + F(u -v)]dx ≤ c ∇ ∂α ∂t 2 . ( 4 
∂α ∂t 2 + 2 ||∇α|| 2 + 2( ∂α ∂t , α) ≥ c ∂α ∂t 2 + ||∇α|| 2 , c > 0, (4.112) 2 -1 c -2 c > 0, (4.113) 2 -2 c > 0, (4.114) 
and have an inequality of the form

dE 3 dt + E 3 + ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂α ∂t 2 + ||∇α|| 2 ≤ 0, (4.115) 
where

E 3 = 1 ||u|| 2 -1 + 1 ||v|| 2 + ||∇u|| 2 + ||∇v|| 2 + 2 Ω [F(u + v) + F(u -v)]dx + (1 + 2 )||∇α|| 2 + 2 2 (( ∂α ∂t , α)) + ∂α ∂t 2 , satisfies E 3 ≥ c ||∇u|| 2 + ||∇v|| 2 + Ω [F(u + v) + F(u -v)]dx + ||∇α|| 2 + ∂α ∂t 2 -c , c > 0. (4.116)
In particular, we deduce from (4.115) the dissipative estimate

E 3 (t) ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||α 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇α 0 || 2 + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , c > 0, t ≥ 0. (4.117)
Furthermore, for every r > 0, Let z be the solution of the ordinary differential equation

t+r t ∂u ∂t 2 -1 + ∂v ∂t 2 + ∇ ∂α ∂t 2 + ||∇α|| 2 dx ≤ ce -c t ||u 0 || 2 -1 + ||v 0 || 2 + ||α 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇α 0 || 2 + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx + c (r), c > 0, t ≥ 0. ( 4 
z = Q(z),
with z(0) = y(0). It follows from the comparison principle that there exists

T 0 = T 0 (||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω)
) belonging to, say, (0, 1 2 ) such that

y(t) ≤ z(t), t ∈ [0, T 0 ], whence ||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||α(t)|| 2 H 2 (Ω) + ∂α ∂t (t) 2 H 1 (Ω) ≤ Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ), t ≤ T 0 . (4.123) Therefore (u, v, α, ∂α ∂t ) ∈ L ∞ (0, T 0 ; H 2 (Ω) 3 × H 1 (Ω)) a priori.
We now differentiate (4.100) and (4.106) with respect to time to find, owing to (4.101) 

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (4.124) 
∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) -f (u -v)( ∂u ∂t - ∂v ∂t ) = - ∂v ∂t + ∆ ∂α ∂t + ∆α, (4.125 
+ ||∇α(t)|| 2 ≤ 1 t Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , t ∈ (0, T 0 ]. ( 4 
+ ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , t ≥ T 0 . ( 4 
+ ∂v ∂t (t) 2 + ∂α ∂t (t) 2 + ||∇α(t)|| 2 ≤ e ct Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , t > 0. (4.131) 
We now rewrite (4.100) and (4.106) in the following forms

-∆u + f (u + v) + f (u -v) = h u (t), (4.132) 
-∆v + f (u + v) -f (u -v) = h v (t), (4.133) 
where u = ∆u = v = 0 on Γ, t ≥ T 0 , and

h u (t) = -(-∆) -1 ∂u ∂t (4.134) h v (t) = ∂α ∂t - ∂v ∂t , (4.135) 
satisfy, owing to (4.130),

||h u (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 1 (Ω) , ||α 1 ||), t ≥ T 0 , (4.136) 
and 

||h v (t)|| ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 1 (Ω) , ||α 1 ||), t ≥ T 0 . ( 4 
T 0 t ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + ∇ ∂α ∂t 2 dx ≤ e ct Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , t ≥ T 0 . (4.142) 
Applying then Gronwall's lemma to (4.141) and using (4.142), we find 

||∆α(t)|| 2 + ∇ ∂α ∂t (t) 2 ≤ ce c t Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , t ≥ T 0 . ( 4 
(Ω) + ||v|| 2 H 2 (Ω) + ∂α ∂t 2 H 1 (Ω) )dt ≤ Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.147) 
Hence, there exists T ∈ (0, 1) such that

||u(T )|| 2 H 2 (Ω) + ||v(T )|| 2 H 2 (Ω) + ∂α ∂t (T ) 2 H 1 (Ω) ≤ Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . ( 4 

.148)

Repeating now the estimates leading to (4.144) from t = T instead of t = 0, we have

||u(1)|| 2 H 2 (Ω) + ||v(1)|| 2 H 2 (Ω) + ∂α ∂t (1) 
2

H 1 (Ω) ≤ Q ||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx . (4.149) 
Similarly, repeating the estimates leading to (4.149) also, we have, for t ≥ 1,

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ∂α ∂t (t) 2 H 1 (Ω) ≤ Q ||u(t -1)|| 2 H 1 (Ω) + ||v(t -1)|| 2 H 1 (Ω) + ||α(t -1)|| 2 H 1 (Ω) + ∂α ∂t (t -1) 2 + Ω [F(u(t -1) + v(t -1)) + F(u(t -1) -v(t -1))]dx . (4.150) 
Owing to (4.117), the above estimate yields 

||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ∂α ∂t (t) 2 H 1 (Ω) ≤ e -ct Q ||u 0 || 2 -1 + ||v 0 || 2 + ||∇u 0 || 2 + ||∇v 0 || 2 + ||∇α 0 || 2 + Ω [F(u 0 + v 0 ) + F(u 0 -v 0 )]dx , c > 0, t ≥ 1. ( 4 
(Ω) + ||v(t)|| 2 H 2 (Ω) + ∂α ∂t (t) 2 H 1 (Ω) ≤ e -ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ), c > 0, t ≥ 0. ( 4 
+ ∂v ∂t 2 ) + c ||∆u|| 2 + 3 ||∆v|| 2 + c ∇ ∂α ∂t 2 ≤ 0, (4.155) 
where

E 4 = E 3 + 3 (||u|| 2 + ||∇v|| 2 + c||∇α|| 2 + ∂α ∂t 2 
).

We also sum (4. 

Global and Exponential Attractors

Theorem 4.3.1. For every (u 0 , v 0 , α 0 , α 1 ) ∈ (H 2 (Ω)∩ H 1 0 (Ω)) 3 × H 1 0 (Ω), (4.99)-(4.103) possesses a unique solution (u, v, α, ∂α ∂t ) such that (u, v, α) ∈ L ∞ (IR + ; H 1 0 (Ω) 3 ) ∩L ∞ loc (IR + ; H 2 (Ω) 3 ), ( ∂u ∂t , ∂v ∂t ) ∈ L ∞ (IR + ; H -1 (Ω)×L 2 (Ω))∩L 2 loc (IR + ; H 1 0 (Ω) 2 ) and ∂α ∂t ∈ L ∞ (IR + ; H 1 0 (Ω))∩ L 2 (IR + ; H 2 (Ω)).

Proof.

The proof of existence is based on the a priori estimates derived in the previous section and on, e.g., a standard Galerkin scheme similar to the proof of Theorem 2.1 based mainly on (4.109) and (4.144). Therefore, we will only be proving the uniqueness.

Let (u (1) , v (1) , α (1) , ∂α ∂t (1) ) and (u (2) , v (2) , α (2) , ∂α ∂t (2) ) be two solutions of (4.99)-(4.103) with initial data (u (1) 0 , v (1) 0 , α (1) 0 , α (1) 1 ) and (u (2) 0 , v (2) 0 , α (2) 0 , α (2) 1 ) respectively.

We set (u, v, α) = (u (1) , v (1) , α (1) , ∂α ∂t

) -(u (2) , v (2) , α (2) , ∂α ∂t

), and (u 0 , v 0 , α 0 ) = (u (1) 0 , v (1) 0 , α (1) 0 , α (1) 1 ) -(u (2) 0 , v (2) 0 , α (2) 0 , α (2) 1 ).

Hence (u, v, α) satisfy (-∆) -1 ∂u ∂t -∆u + f (u (1) + v (1) )f (u (2) + v (2) ) + f (u (1) v (1) )f (u (2) v (2) ) = 0, (4.158) ∂v ∂t -∆v + f (u (1) + v (1) )f (u (2) + v (2) )f (u (1) v (1) ) ≤ Q ||u (1) 0 || H 2 (Ω) , ||u (2) 0 || H 2 (Ω) , ||v (1) 0 || H 2 (Ω) , ||v (2) 0 || H 2 (Ω) ,

+ f (u (2) -v (2) ) = ∂α ∂t , (4.159) 
||α (1) 0 || H 2 (Ω) , ||α (2) 0 || H 2 (Ω) , ||α (1) 1 || H 1 (Ω) , ||α (2) 1 || H 1 (Ω) .

( hence the uniqueness, as well as the continuity (with respect to the H 1 0 (Ω) 3 × L 2 (Ω)-norm) with respect to the initial data.

It follows from the previous theorem that we can define the family of solving operators S (t) : Φ -→ Φ (u 0 , v 0 , α 0 , α 1 ) -→ (u(t), v(t), α(t), ∂α ∂t (t)), t ≥ 0, where (u, v, α, ∂α ∂t ) is the unique solution to our system and Φ = (H 2 (Ω) 3 × H 1 0 (Ω)).

Furthermore, this family of solving operators forms a continuous semigroup (for the H 1 (Ω) 3 × L 2 (Ω)-topology), i.e. S (0) = Id and S (t + τ) = S (t) • S (τ), ∀ t, τ ≥ 0. The result follows directly from (4.157).

We will be searching now for exponential attractors :

The classical methods of constructing an exponential attractor do not seem to work here because the term ∂ 2 α ∂t 2 creates difficulties in the calculations. Therefore, as in [START_REF] Miranville | Exponential attractors for a class of evolutionary equation by a decomposition method[END_REF] and [START_REF] Miranville | Exponential attractors for a class of evolutionary equation by a decomposition method[END_REF], we decompose the solution (u, v, α, ∂α ∂t ) to our system with initial data (u 0 , v 0 , α 0 , α 1 ) into the sums u(t) = w 1 (t) + w 2 (t), (4.165) v(t) = q 1 (t) + q 2 (t), (4.166) and α(t) = r 1 (t) + r 2 (t), (4.167) where w 1 , q 1 , and r 1 are solutions to (-∆) -1 ∂w 1 ∂t -∆w 1 = 0, (4.168)

∂q 1 ∂t -∆q 1 = ∂r 1 ∂t , (4.169) 
∂ 2 r 1 ∂t 2 -∆ ∂r 1 ∂t -∆r 1 = - ∂q 1 ∂t , (4.170 
)

w 1 = ∆w 1 = q 1 = r 1 = 0 on Γ, (4.171) 
w 1|t=0 = u 0 , q 1|t=0 = v 0 , r 1|t=0 = α 0 , ∂r 1 ∂t t=0 = α 1 . (4.172) and w 2 , q 2 , and r 2 are solutions to (-∆) -1 ∂w 2 ∂t -∆w 2 + f (u (1) + v (1) )f (u (2) + v (2) ) + f (u (1) v (1) )f (u (2) v (2) ) = 0, (4.173) ∂q 2 ∂t -∆q 2 + f (u (1) + v (1) )f (u (2) v (2) )f (u (1) v (1) ) + f (u (2) v (2) where the constants only depend on B 1 .

We now rewrite equations (4.173) and (4.174) in the following forms -∆w 2 = hw 2 (t), (4.191) and -∆q 2 = hq 2 (t), (4.192) where w 2 = ∆w 2 = q 2 = 0 on Γ, for t ≥ 1 fixed, and hw 2 (t) = -(-∆) -1 ∂w 2 ∂t f (u (1) + v (1) )f (u (2) + v (2) )f (u (1) v (1) )f (u (2) v (2) ) , (4.193) hq 2 (t) = -∂q 2 ∂t + ∂r 2 ∂t f (u (1) + v (1) )f (u (2) + v (2) ) + f (u (1) v (1) )f (u (2) v (2) ) , (4. 

+ ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 ), t ≥ 1, (4.200) 
where the constants only depend on B 1 .

And the existence of exponential attractors follows from ((4.164)), (4.180), (4.185), and (4.200) (see [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF]- [START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in IR 3[END_REF]). Therefore, we have Ensuite, la deuxième étude du système était faite avec un terme singulier (logarithmique en particulier). Ici aussi, on a pu démontrer l'existence et l'unicité de la solution qui ont permi de définir un semigroupe à lequel on a trouvé un ensemble borné absorbant. Puis, un attracteur global est trouvé. Enfin, on a établi des résultats de régularité supplémentaire qui ont aidé à démontrer la séparation stricte en dimension une. La troisième partie de la thèse était consacrée à l'étude du même système mais couplé cette fois avec une troisième équation : l'équation de la chaleur.

Cette partie est divisée elle même en deux : Dans la première partie, l'équation de la chaleur suit la loi classique de Fourrier. À ce niveau là, on a démontré l'existence et l'unicité de la solution pour pouvoir trouver un attracteur exponentiel et par conséquence un attracteur global de dimension finie. Dans la deuxième partie, l'équation de la chaleur suit une loi thermodynamique de type III. Dans ce cas, on a aussi réussi à trouver un attracteur global de dimension finie à l'aide d'un attracteur exponentiel construit après pouvoir démontrer en premier lieu l'existence et l'unicité de la solution du système associé.

Pour aller plus loin, notamment en vue de l'étude asymptotique, l'analyse numérique et des simulations des modèles considérés peuvent être envisagées. Dans le cas du potentiel logarithmique, des estimations additionnelles peuvent être trouvées pour aboutir à une séparation stricte en dimension deux. En dimension trois, cette question reste ouverte. Concernant l'équation de la chaleur, on peut étudier le cas où cette équation est gouvernée par la loi de Maxwell-Cattanéo ou d'autres lois de type thermomécaniques. De même, il est intéressant d'étudier le système posé avec des conditions de bord de type Neuman et des conditions de bord dynamiques.

) lim s→±1 f

 s→±1 (s) = ±∞, et lim s→±1 f (s) = +∞.

Théorème 1 . 4 . 7 .

 147 Supposons que N = 1 et que f satisfait la condition lim s→±1 f (s) = ±∞, et lim s→±1 f (s) = +∞.

Theorem 3 . 5 . 1 .

 351 The family of operators associated with (3.1)-(3.

. 74 )

 74 Equations (3.73) and (3.74) are equivalent to

  Combining (3.88) and (3.89), we obtain

  105) using equation (3.91) instead of (3.90). An immediate consequence is the following Asymptotic Behavior of a Cahn-Hilliard/Allen-Cahn System with Temperature 4.1 Introduction J. Cahn and A. Novick-Cohen introduced, in [35], the following system :

. 8 ) 1 2

 81 where F(s) = s 0 f (ξ)dξ. We denote by ||.|| the usual L 2 -norm, ((., .)) its associated scalar product, ||.|| -1 = ||(-∆) -||, and ||.|| X is the norm in the Banach space X.

u||∇u|| 2 + ||∇v|| 2 + ||∇α|| 2

 222 = ∆u = v = α = 0 on Γ, (4.161)u |t=0 = u 0 , v |t=0 = v 0 , α |t=0 = α 0 , ∂α ∂t t=0 = α 1 .(4.162)First, we multiply (4.158) by ∂u ∂t , (4.159) by ∂v ∂t , (4.160) by ∂α ∂t , and we sum the resulting equations to obtain, using the continuous embedding H 2 (Ω) ⊂ C(Ω),

Theorem 4 . 3 . 2 .

 432 The semigroup associated with (4.99)-(4.103) possesses a bounded absorbing set B 1 in Φ .

Theorem 4 . 3 . 3 . 5

 4335 The semigroup S (t) possesses an exponential attractor M ⊂ B 1 , i.e., (i) M is compact in H 1 (Ω)3 × L 2 (Ω) ; (ii) M is positively invariant, S (t)M ⊂ M , ∀ t ≥ 0 ; (iii) M has a finite fractal dimension in H 1 (Ω) 3 × L 2 (Ω) ;(iv) M attracts exponentially fast the bounded subsets of Φ :∀ B ⊂ Φ bounded, dist H 1 (Ω) 3 ×L 2 (Ω) (S (t)B, M ) ≤ Q(||B|| Φ )e -ct , c > 0, t ≥ 0,where the constant c is independent of B and dist H 1 (Ω)3 ×L 2 (Ω) denotes the Hausdorff semidistance between sets defined bydist H 1 (Ω) 3 ×L 2 (Ω) (A, B) = sup a∈A inf b∈B ||a -b|| H 1 (Ω) 3 ×L 2 (Ω) .Consequently, we deduce from standard results the Corollary 5. The semigroup S (t) possesses the finite dimensional global attractor A ⊂ B 1 .Chapitre Conclusion et PerspectivesL'objectif de cette thèse a été d'étudier le comportement asymptotique d'un système couplé d'une équation de Cahn-Hilliard avec une équation d'Allen-Cahn. On considère dans un premier temps un terme non linéaire régulier. En particulier, on a démontré l'existence et l'unicité de la solution puis l'existence d'un attracteur exponentiel et par conséquence l'existence d'un attracteur global de dimension fractale finie.

  La famille d'opérateurs associée au système (P) est dissipative dans H 1 (Ω) 2 alors elle possède un ensemble borné absorbant B 1 ⊂ H 1 (Ω) 2 , i.e. ∀ B ⊂ Φ 1 , ∃ t 0 = t 0 (B) tel que t ≥ t 0 ce qui implique S (t)B ⊂ B 1 ,

	1.4. Plan de la thèse
	Théorème 1.4.5. Φ 1 étant l'espace suivant :
	, on définit le semi-groupe S (t) associé à l'opérateur différentiel et on démontre
	sa dissipativité. Puis, on démontre l'existence d'un attracteur global. Ces résultats sont
	annoncés comme suit :

  Ω)2 ; |u + v| < 1 et |u -v| < 1 p.p.},

	Théorème 1.4.6. Le semigroupe S(t) possède l'attracteur global A sur Φ (i.e. A est
	compact dans H -1 (Ω) × L 2 (Ω), borné dans Φ, invariant et attire les images de tous les
	ensembles bornés de Φ par rapport à la topologie de H -1 (Ω) × L 2 (Ω)).

  .[START_REF] Blömker | Second phase spinoidal decomposition for the Cahn-Hilliard-Cook equation[END_REF]) Then, we multiply (3.22) by ∂u N ∂t and (3.17) by ∂v N ∂t . We sum the resulting equalities and obtain 1 2

	d dt	(||∇u N || 2 + ||∇v N || 2 ) +	∂u N ∂t	2 -1

  .35) Using now Gronwall's lemma, we obtain||u N (t)|| 2 + ||∇v N (t)|| 2 ≤ e c t (||u 0 || 2 + ||∇v 0 || 2 ). || 2 + ||∆v N || 2 )dt ≤ ce c t (||u 0 || 2 + ||∇v 0 || 2 ). + ||v N || 2 L 2 (0,T ;H 2 (Ω)) ≤ ce c t (||u 0 || 2 + ||∇v 0 || 2 ).

	(3.36)
	It follows from (3.35) that
	t
	(||∆u N (3.37)
	0
	Hence,
	||u N || 2 L 2 (0,T ;H 2 (Ω)) (3.38)
	We now rewrite (3.22) and (3.17) as

  4 ||∆u t || 2 . || 2 + ||∇v t || 2 ) + ||∆v t || 2 + c||∆u t || 2 ≤ c||u t + v t || 2

			(3.101)
	Therefore, equation (3.97) becomes
	1 2	d dt	(||u t L 6 (Ω)

  || 2 + ||∇v t || 2 ) + c||∆v t || 2 + c||∆u t || 2 ≤ c||∇v t || 2 + c||∇u t || 2 . || 2 + ||∇v t || 2 ) + c||∆v t || 2 + c||∆u t || 2 ≤ c(||u t || 2 + ||∇v t || 2 ).

	1 2 (||u t Furthermore, d dt
	||u t || 2 H Hence 1 2 d dt (||u t

1 (Ω) ≤ c||u t || ||u t || H 2 (Ω) ≤ c||u t || 2 + c||∆u t || 2 , c > 0. (3.103) Using (3.78), (3.79), and the uniform Gronwall lemma to (3.103), we obtain the desired result. Remark 3.6.2. The proof of Lemma 3 is carried out with the solution itself since (3.86) and (3.87) cannot be guaranteed within a Galerkin scheme.

  ≤ e -ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||θ 0 || H 1 (Ω) ) + c (r), c > 0, r > 0. (4.63)Theorem 4.2.2. Let (u, v, θ) be the solution to the problem with initial data (u 0

	.62)
	Collecting (4.58) and (4.62), we obtain the dissipative estimate
	||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 2 (Ω)

  ||u 0,2 || H 2 (Ω) , ||v 0,1 || H 2 (Ω) , ||v 0,2 || H 2 (Ω) , ||θ 0,1 || H 2 (Ω) , ||θ 0,2 || H 2 (Ω) ). + ||∇v(t)|| 2 + ||θ(t)|| 2 ≤ e Qt (||∇u 0 || 2 + ||∇v 0 || 2 + ||θ 0 || 2 ),(4.76) 

	We deduce from (4.69)-(4.74) that							
	1 2	d dt	||∇u|| 2 + ||∇v|| 2 + ||θ|| 2 +	∂u ∂t	2 -1	+	∂v ∂t	2	+ ||∇θ|| 2	(4.75)
			≤ Q(||∇u|| 2 + ||∇v|| 2 ).							
	Now using Gronwall's lemma, we obtain							
	||∇u(t)|| 2								

  1 , t 2 ∈ [T 0 , T ]. + ||∇θ|| 2 dx ≤ ce Qt (||∇u 0 || 2 + ||∇v 0 || 2 + ||θ 0 || 2 ) ≤ c ,

	Moreover, it follows from (4.75) and (4.76) that
	0	t	∂u ∂t	2 -1	+	∂v ∂t	2		(4.78)
	where c only depends on B 0 .	
	Plus, it follows from (4.21), (4.52), and (4.78) that
							t 1	t 2	∂θ ∂t	2	dx ≤ c,	(4.79)

  The semigroup S (t) possesses the finite dimensional global attractor A ⊂ B 0 .

	and								
									||∆v(t)|| ≤ || hv (t)||, t ≥ 1,
	whence	||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 ), t ≥ 1,	(4.92)
	where the constants only depend on B 0 .
	We also multiply (4.66) by -(t -T 0 )∆θ and find
	d dt	((t -T 0 )||∇θ|| 2 ) + (t -T 0 )||∆θ|| 2 ≤ c(t -T 0 ) ∇	∂v ∂t	2	+ ||∇θ|| 2 .	(4.93)
	We find combining (4.83) and (4.93) then applying Gronwall's lemma (applied over (T 0 , t) ;
	note that T 0 ≤ 1) and using (4.76)-(4.79), and (4.84), we find
	∂u ∂t	(t)	2 -1	+	∂v ∂t	(t)	2	+ ||∇θ(t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 ),	(4.94)
									t ≥ 1,
	where the constants only depend on B 0 .
	At the end, we can see from (4.92) and (4.94), that
	||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||θ(t)|| 2 H 1 (Ω) ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 ), t ≥ 1,	(4.95)
	And the result follows from (4.76), (4.80), and (4.95).
	Moreover, we can deduce from Theorem 4.1 and standard results the
	Corollary 4. Remark 4.2.2.								
										)
	satisfy, owing to (4.76) and (4.85),	
				|| hu (t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 ), t ≥ 1,	(4.90)
	and								
				|| hv (t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||θ 0 || 2 ), t ≥ 1,	(4.91)
	where the constants only depend on B 0 .
	Multiplying now (4.86) by -∆u and (4.87) by -∆v, we obtain
									||∆u(t)|| ≤ || hu (t)||, t ≥ 1,

  Multiplying now (4.132) by -∆u and (4.133) by -∆v, summing the result, then noting that f (s) ≥ -c , we obtain||∆u(t)|| 2 + ||∆v(t)|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 + ||∇u(t)|| 2 + ||∇v(t)|| 2 ). ≤ ce c t Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 1 (Ω) , ||α 1 ||), t ≥ T 0 .

	.137) Next, we multiply (4.132) by u, (4.133) by v and sum the result. Then, noting that f (s)s ≥ -c, c ≥ 0, we obtain We finally deduce that ||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) (4.140) Moreover, we multiply (4.101) by -∆ ∂α ∂t and find 1 2 d dt ||∆α|| 2 + ∇ ∂α ∂t 2 + c ∆ ∂α ∂t 2 ≤ ∇ ∂v ∂t 2 . (4.141) ||∇u|| (4.139) Integrating now (4.129) between t and T 0 and using (4.130), we obtain

2 + ||∇v|| 2 ≤ c(||h u (t)|| 2 + ||h v (t)|| 2 ) + c . (4.138)

  ≤ e ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ), t ≥ 0.

	.143) (4.144) ∂t , we obtain, after We start by multiplying (4.106) by -∆u, (4.100) by -∆v, and (4.101) by ∂α Thus, we deduce from (4.123), (4.140), and (4.143) that ||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||α(t)|| 2 H 2 (Ω) + ∂α ∂t (t) 2 H 1 (Ω) 4.3.3 Dissipative Estimate summing the result and using (4.105), 1 2 d dt ||u|| 2 + ||∇v|| 2 + ||∇α|| 2 + ∂α ∂t 2 + ||∆u|| 2 + c||∆v|| 2 + c ∇ ∂α ∂t 2 ≤ c (||∇u|| 2 + ||∇v|| 2 ) + ∂v ∂t 2 . (4.145) Using an interpolation inequality and Young's inequality, we have ||u|| 2 d dt ||u|| 2 + ||∇v|| 2 + ||∇α|| 2 + ∂α ∂t 2 + c ||∆u|| 2 + ||∆v|| 2 + ∇ ∂α ∂t 2 ≤ c (||u|| 2 + ||∇v|| 2 ) + ∂v ∂t 2 . (4.146) It follows from (4.146), using (4.118) and (4.131), that 1 H Therefore 0 (||u|| 2 H 2

1 (Ω) ≤ c||u|| ||u|| H 2 (Ω) ≤ 1 2 ||∆u|| 2 + c||u|| 2 , c ≥ 0.

  -ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ).

	Moreover, we note that it follows from (4.122) and (4.152) that
	d dt	||∆u|| 2 + ||∆v|| 2 + ||∆α|| 2 + ∇	∂α ∂t	2	+	∂u ∂t	2	+ ∆	∂α ∂t	(4.153)
	Multiplying then (4.101) by -∆α, we have				
		d dt	||∆α|| 2 + 2((∆α,	∂α ∂t	)) + c||∆α|| 2 ≤ c	∂v ∂t	2	+ 2 ∇	∂α ∂t	2	.	(4.154)
	We now sum (4.115) and 3 (4.146), where 3 > 0 is small enough so that
	dE 4 dt	+ c(E 4 +	∂u ∂t	2 -1						
												.152)

2

≤ e

  [START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF],[START_REF] Ali | Some efficient numerical solutions of Allen-Cahn equation with non-periodic boundary conditions[END_REF] (4.154), and (4.155), where 4 > 0 is small enough so that≤ e -ct Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ), c > 0, t ≥ 0.

		∂α ∂t H 2 (Ω)	+ 4 (||∆α|| 2 + 2((∆α,	∂α ∂t	))) ≥ c(	∂α ∂t H 2 (Ω)	+ ||∆α|| 2 ),
	and									
	dE 5 dt	+ c E 5 +	∂u ∂t	2 -1	+	∂v ∂t	2	+	∂α ∂t	2 H 2 (Ω)
											∂α ∂t	)) + ∇	∂α ∂t	2	.
	We finally deduce from (4.156) the dissipative estimate
	||u(t)|| 2 H 2 (Ω) + ||v(t)|| 2 H 2 (Ω) + ||α(t)|| 2 H 2 (Ω) +	∂α ∂t	(t)	2 H 1 (Ω)	(4.157)

≤ e -c t Q(||u 0 || H 2 (Ω) , ||v 0 || H 2 (Ω) , ||α 0 || H 2 (Ω) , ||α 1 || H 1 (Ω) ), c > 0, t ≥ 0, (4.156)

where

E 5 = E 4 + ||∆u|| 2 + ||∆v|| 2 + (1 + 4 )||∆α|| 2 + 4 ((∆α,

  = ||∆w 1 || 2 + ||∆q 1 || 2 + (1 + 4 )||∆r 1 || 2 + 1 ||w 1 || 2 -1 + 1 ||q 1 || 2 + ||∇w 1 || 2 + (1 + 3 )||∇q 1 || 2 + (1 + 2 + c 3 )||∇r 1 || 2 + 2 2 (( ∂r 1 ∂t ,r1 )) + (1 + 3 ) ∂r 1 ∂t And it follows from (4.118), (4.129), (4.130) and the fact that the initial data are in a bounded absorbing set, that only depends on B 1 and T ≥ T 0 such that t 1 , t 2 ∈ [T 0 , T ].. Thus, it follows from (4.141), (4.144), (4.182), and (4.183) that u(t 2 )|| H 1(Ω) + ||v(t 1 )v(t 2 )|| H 1 (Ω) + ||α(t 1 ) -α(t 2 )|| H 1 (Ω)It's important to note that w 2 , q 2 , and r 2 verify the same system as u, v, and α so they satisfy the same estimations found in the previous sections.Furthermore, we differentiate (4.173) and (4.174) with respect to time and we multiply the resulting equations by (t -T 0 ) ∂w 2 ∂t and (t -T 0 ) ∂q 2 ∂t , respectively. Then, we sum the result with (t -T 0 ) ∂r 2∂t times (4.175), we obtain = (u 2 , v 2 ) and the constants only depend on B 1 .dx ≤ c(||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 ), t ≥ 0. (4.189) Applying Gronwall's lemma to (4.186) over (T 0 , t) and owing to (4.164)and (4.187)-(4.189), we obtain ||∇r 2 (t)|| 2 ≤ ce c t (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 ), t ≥ 1.

	We can thereby deduce that	t T 0	∂ 2 r 2 ∂t 2 -∆ t 1 ∂u 2 ∂t 2 +	∂r 2 ∂t t 2 ∂ 2 α -∆r 2 = -∂t 2 ≤ c, 2 ∂v 2 ∂t dx ≤ ce c t , t ≥ T 0 , ∂q 2 ∂t ,	) =	∂r 2 ∂t	,	(4.174) (4.175) (4.184) (4.188)
	w 2 = ∆w 2 = q 2 = r 2 = 0 on Γ, w 2|t=0 = 0, q 2|t=0 = 0, r 2|t=0 = 0, ∂r 2 ∂t t=0 where c only depends on B 1 . Whence, we have for (u, v) It also follows from (4.163) and (4.164) that	= 0.	(4.176) (4.177)
	Repeating the same calculations leading to (4.156), but considering now (4.168)-(4.172), where f = 0, we obtain dE 6 dt + cE 6 ≤ 0, c ≥ 0, (4.178) ||u(t 1 ) + ∂α ∂t (t 1 ) -∂α ∂t (t 2 ) ≤ c |t 1 -t 2 | 1 2 . (4.185) t 0 ∂u ∂t 2 -1 + ∂v ∂t 2 ∂t + ∇ ∂α 2
	where									
	∂α ∂t (t -T 0 ) (t 1 ) -∂w 2 ∂α ∂t ∂t 2 -1 (t ∂α ∂t + (t -T 0 ) (t 1 ) -∂q 2 ∂t ∂w 2 ∂t 2 + ∇ ∂q 2 ∂t ≤ c (t -T 0 ) ∂w 2 ∂t 2 -1 + ∂q 2 ∂t + ∂v ∂t 2 + 1 2 ∂w 2 ∂t 2 -1 + ∂q 2 ∂t ∂w 2 ∂t E 6 + 1 2 d dt ∂w 2 ∂t (t) 2 -1 + ∂q 2 ∂t (t) 2 + ∂r 2 ∂t (t) 2 ∂α ∂t + ∇ (t 2 ) 2 + ∂r 2 ∂r 2 ∂t ∂t ∂t (u 2 + v 2 ) 2 ∂	2	(4.181) (4.186)
	≤ c + c (t -T 0 )||∇(u + v)|| ∇ t 2 t 1 ∇ ∂u ∂t dτ + t 2 t 1 ≤ c|t 1 -t 2 | 1 2 t 2 t 1 ∇ ∂u ∂t 2 + ∇ ∇ ∂v ∂t ∂q 2 ∂t ∂v dτ + ∂ (u 2 + v 2 ) t 2 t 1 ∇ ∂t ∂t 2 + ∇ ∂α ∂t + c (t -T 0 )||∇(u -v)|| ∇ ∂w 2 ∂t ∂ (u 2 -v 2 ) ∂t + c (t -T 0 )||∇(u -v)|| ∇ ∂q 2 ∂t ∂ ∂t (u 2 -v 2 ) , ∂α ∂t 2 + dτ + ∂ 2 α ∂t 2	2	t 2 dτ t 1	∂ 2 α ∂t 2 dτ 1 2 .
	t 2 It follows from (4.129), (4.130) that t 1 ∇ ∂u ∂t similarly to (4.83).	2	+ ∇	∂v ∂t	2	+ ∇	∂α ∂t	2	≤ c,	(4.182)
	where c Moreover, looking at the equation (4.160), we can see that t T 0 ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + ∇ 2 ∂α ∂t ≤ ce c t , t ≥ T 0 ,	(4.187)
	∂ 2 α ∂t 2 ≤ ∆ where the constants only depend on B 1 .	∂α ∂t	+		∂v ∂t	+ ||∆α||.	(4.183)

2

+ ((∆r 1 , ∂r

1

∂t

))| + 3 ||w 1 || 2 + ∇ ∂r 1 ∂t 2 . (4.179)

Using Gronwall's lemma on (4.178), we obtain

E 6 (t) ≤ e -ct E 6 (0).

(4.180)

On the other side,

||u(t 1 )u(t 2 )|| H 1 (Ω) + ||v(t 1 )v(t 2 )|| H 1 (Ω) + ||α(t 1 ) -α(t 2 )|| H 1 (Ω) 2 ) ≤ c ||∇(u(t 1 )u(t 2 ))|| + ||∇(v(t 1 )v(t 2 ))|| + ||∇(α(t 1 ) -α(t 2 ))|| + 2 + (t -T 0 ) ∂r 2 ∂t 2 + (t -T 0 )||∇r 2 || 2 + c(t -T 0 ) ∇ 2 + ||∇r 2 || 2 + c (t -T 0 ) ∂u ∂t 2 + ||∇r 2 || 2 + c (t -T 0 )||∇(u + v)|| ∇ 2 + (4.
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  [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF] satisfy, owing to (4.164) and(4.190),|| hw 2 (t)|| 2 ≤ ce Qt (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 ), t ≥ 1,(4.195)and|| hq 2 (t)|| 2 ≤ ce Qt (||u 0 || 2 H 1 (Ω) + ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 H 1 (Ω) + ||α 1 || 2 ), t ≥ 1. (4.196) where the constants only depend on B 1 .Multiplying now(4.191) by -∆w 2 and (4.192) by -∆q 2 , we obtain ||∆w 2 (t)|| ≤ || hw 2 (t)||, t ≥ 1, and ||∆q 2 (t)|| ≤ || hq 2 (t)||, t ≥ 1. Whence ||w 2 (t)|| 2 H 2 (Ω) + ||q 2 (t)|| 2 H 2 (Ω) ≤ ce Qt (||u 0 || 2 H 1 (Ω)+ ||v 0 || 2 H 1 (Ω) + ||α 0 || 2 -T 0 )||∆r 2 || 2 + (t -T 0 ) ∆ ∂r 2 ∂tThen applying Gronwall's lemma over (T 0 , t) and using(4.143) and (4.187), we obtain ||∆r 2 (t)|| 2 ≤ ce c t . (4.199) Finally, summing (4.197) and (4.199), we obtain ||w 2 (t)|| 2 H 2 (Ω) + ||q 2 (t)|| 2 H 2 (Ω) + ||r 2 (t)|| 2 H 2 (Ω) +

								+ ||α 1 || 2 ), t ≥ 1.						H 1 (Ω)	(4.197)
	Next, we multiply (4.175) by -(t -T 0 )∆ ∂r 2 ∂t and find								
	1 2	d dt	∂r 2 ∂t ≤ c(t -T 0 ) ∇ (t -T 0 ) ∇	∂r 2 ∂t	2	+ c(t -T 0 ) ∇	∂q 2 ∂t	2	+	1 2	∇	2 ∂r 2 ∂t	2	+	2 1	||∆r 2 || 2 .	(4.198)
				∇	∂r 2 ∂t	(t)									
									∂r 2 ∂t	(t)					

2

+ (t 2 + 2 H 1 (Ω) ≤ ce Qt (||u 0 || 2 H 1 (Ω)
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