
HAL Id: tel-02087860
https://theses.hal.science/tel-02087860v1

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability-oriented sensitivity analysis under
probabilistic model uncertainty – Application to

aerospace systems
Vincent Chabridon

To cite this version:
Vincent Chabridon. Reliability-oriented sensitivity analysis under probabilistic model uncertainty –
Application to aerospace systems. Mechanical engineering [physics.class-ph]. Université Clermont
Auvergne [2017-2020], 2018. English. �NNT : 2018CLFAC054�. �tel-02087860�

https://theses.hal.science/tel-02087860v1
https://hal.archives-ouvertes.fr


Université Clermont Auvergne

École Doctorale
Sciences pour l’Ingénieur de Clermont-Ferrand

THÈSE
présentée par

Vincent CHABRIDON
Ingénieur IFMA

en vue d’obtenir le grade de

Docteur d’Université
Spécialité doctorale : Génie Mécanique

Analyse de sensibilité fiabiliste avec prise en
compte d’incertitudes sur le modèle probabiliste

–
Application aux systèmes aérospatiaux

soutenue publiquement le lundi 26 novembre 2018, à l’Office National d’Études et de
Recherches Aérospatiales de Palaiseau, devant un jury composé de :

Dr. Mathieu BALESDENT ONERA, Palaiseau Co-encadrant
Dr. Jean-Marc BOURINET SIGMA, Clermont-Ferrand Co-encadrant
Pr. Nicolas GAYTON SIGMA, Clermont-Ferrand Co-directeur
Dr. Christian GOGU Université Toulouse III Examinateur
Dr. Bertrand IOOSS EDF R&D, Chatou Rapporteur
Pr. Béatrice LAURENT-BONNEAU INSA, Toulouse Examinatrice
Pr. Jérôme MORIO ONERA & ISAE, Toulouse Co-directeur
Pr. Carsten PROPPE KIT, Karlsruhe Rapporteur
Pr. Bruno SUDRET ETH, Zürich Président du jury

ONERA/DTIS, Université Paris Saclay,
F-91123 Palaiseau Cedex, France

• • •
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal,

F-63000 Clermont-Ferrand, France





Reliability-oriented sensitivity analysis under
probabilistic model uncertainty

–
Application to aerospace systems

A dissertation submitted by

Vincent CHABRIDON

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

UNIVERSITY CLERMONT AUVERGNE

Clermont-Ferrand, France

&

ONERA – THE FRENCH AEROSPACE LAB

Palaiseau, France

defended publicly on November 26, 2018 in front of a defense committee made up of:

Dr. Mathieu BALESDENT ONERA, Palaiseau Co-advisor
Dr. Jean-Marc BOURINET SIGMA, Clermont-Ferrand Co-advisor
Pr. Nicolas GAYTON SIGMA, Clermont-Ferrand Thesis co-director
Dr. Christian GOGU Université Toulouse III Examiner
Dr. Bertrand IOOSS EDF R&D, Chatou Reviewer
Pr. Béatrice LAURENT-BONNEAU INSA, Toulouse Examiner
Pr. Jérôme MORIO ONERA & ISAE, Toulouse Thesis co-director
Pr. Carsten PROPPE KIT, Karlsruhe Reviewer
Pr. Bruno SUDRET ETH, Zürich President



This manuscript was typeset with LATEX 2ε (MacTEX-2017 distribution containing TEXLive 2017).
It is based on the Masters / Doctoral Thesis template (version 2.5). The source files were edited
using TeXstudio 2.12.6. The body font used is Mathpazo. Graphical illustrations were produced
with Matlab R©, TikZ, Inkscape and Matplotlib (running Python 3.6). The bibliography was com-
piled using BIBLATEX with BIBTEX backend.

BIBTEX entry:

@PHDTHESIS{Chabridon_PhD_2018,
author = {Chabridon, V.},
year = 2018,
title = {{Reliability-oriented sensitivity analysis under probabilistic
model uncertainty -- Application to aerospace systems}},
school = {Universit\’e Clermont Auvergne}
}



À mes parents,
À mon frère et ma sœur,

À Odette et Athina,
À ma chérie . . .





Remerciements / Acknowledgements
L’écriture des remerciements constitue l’étape clé censée clôturer le travail de thèse. Je

présente par avance mes excuses à celles et/ou ceux que j’aurais éventuellement oubliés dans
ces remerciements.

Avant toute chose, je me dois de remercier les personnes qui, de par leur décision propre,
m’ont permis d’écrire ces remerciements et de publier cette thèse. À Messieurs Carsten PROPPE

et Bertrand IOOSS, j’adresse mes plus profonds remerciements pour avoir accepté la lourde tâche
d’être rapporteurs de ces travaux. Je vous remercie pour vos rapports détaillés, bienveillants
et enthousiastes ainsi que pour l’ensemble de vos remarques et suggestions ! Ces éléments
ainsi que vos questions lors de la soutenance sont autant de sources de réflexions personnelles
scientifiques sur le sens à donner à mes travaux et forment de nombreuses pistes de travaux
pour la suite : merci à vous deux. À Monsieur Bruno SUDRET, qui a accepté de présider mon
jury de soutenance, j’adresse mes plus chaleureux remerciements. Vous avoir eu comme prési-
dent de mon jury a été un grand honneur et un véritable plaisir. Enfin, j’aimerais remercier les
deux derniers membres extérieurs du jury qui ont accepté d’examiner ces travaux de thèse. À
Madame Béatrice LAURENT-BONNEAU et Monsieur Christian GOGU, j’adresse mes plus sincères
remerciements ainsi que toute ma gratitude pour leur bienveillance à l’égard de mes travaux et
pour leurs multiples questions lors de ma soutenance.

Après avoir remercié les membres externes de mon jury, il ne faudrait pas que j’oublie les
quatre autres membres, les « Fabulous Four » comme je me suis longtemps plu à les appeler avec
affection :
• À Nicolas GAYTON, j’adresse mes plus profonds remerciements pour avoir accepté d’être

mon co-directeur de thèse clermontois. Nicolas, outre nos liens depuis l’IFMA, tu as tou-
jours été présent pour me donner confiance en moi et me réconforter dans l’idée que j’étais
sur le droit chemin en choisissant la recherche. Tu m’as ouvert les yeux sur mes capacités
à aller toujours plus loin dans mes idées, tout en me donnant des gardes-fou qui m’ont
permis de trouver le bon chemin. Je te remercie pour tout ce que tu m’as apporté durant
ces trois années et durant ma scolarité à l’IFMA.

• À Jérôme MORIO, mon deuxième co-directeur de thèse, toulousain quant à lui, j’adresse
mes plus profonds remerciements pour avoir été le véritable initiateur de cette thèse.
Jérôme, tu es celui qui m’a donné la possibilité de travailler pendant ces trois ans (et six
mois, avec le stage de fin d’études) à l’ONERA. Je suis heureux d’avoir pu faire tout ce
chemin grâce à toi. Tu m’as poussé à faire ce qui était le mieux pour moi et en vue de
mes aspirations futures. Sur le plan scientifique, tu as su isoler et identifier de nombreuses
pistes déterminantes pour cette thèse, et tu as même mis « la main à la pâte » dans les
calculs et les simulations pour m’aider et me faire avancer. Merci à toi pour ta confiance
et pour tout ce que tu m’as apporté, dans les bons moments comme dans les moments
difficiles.

• À Jean-Marc BOURINET, mon co-encadrant clermontois, j’adresse mes plus profonds re-
merciements pour tout ce qu’il m’a apporté pendant et avant la thèse. Jean-Marc, après
avoir été successivement mon « Tuteur IFMA » dès ma première année, mon professeur
de nombreux cours déterminants pour moi, tu as été le grand organisateur de toute ma
« carrière » à l’IFMA : de mon stage de deuxième année à mon stage de fin d’études à
l’ONERA, en passant par une année internationale... Tu as été un mentor hors pair. Je te
dois énormément pour tout ce que tu m’as apporté.

• À Mathieu BALESDENT, mon co-encadrant palaisien, je me dois d’être plus direct : MERCI
POUR TOUT ! L’utilisation des majuscules ici ne veut pas dire que ce sont des variables
aléatoires, mais bien que ta contribution à cette thèse en tant qu’encadrant au quotidien fut
déterminante. Tu m’as suivi au quotidien. Tu as réussi à me pousser à vaincre les difficultés



et combler mes points faibles. À tes côtés, j’ai compris ce que représente un investissement
personnel total. Tes capacités de travail et de concentration sont impressionnantes. Merci
de m’avoir appris tant de choses, sur la recherche et sur moi-même.

Encore une fois, merci à tous les quatre d’avoir été très présents pour moi et de m’avoir poussé à
donner le meilleur de moi-même. J’espère sincèrement que nous pourrons retravailler ensemble
dans le futur.

Toujours du point de vue de l’influence scientifique, je tiens ici aussi à transmettre mes re-
merciements à des personnes qui ont contribué, de façon ponctuelle ou sur le plus long terme,
à influencer ma vision de la recherche et des pistes à suivre. Je tiens donc à remercier Sébastien
DA VEIGA pour l’ensemble des conseils qu’il m’a prodigués ainsi que Guillaume PERRIN pour
son aide déterminante concernant les travaux présentés au Chapitre 7. Sa bienveillance et sa
réactivité m’ont permis de finir cette thèse dans de bonnes conditions. Je tiens à vivement re-
mercier Merlin KELLER et Gilles DEFAUX pour m’avoir, par des discussions ponctuelles, redonné
confiance (peut-être sans le savoir) et conforté dans l’idée que mes travaux de thèse n’étaient
peut-être pas inutiles pour tout le monde. Je tiens aussi à remercier deux anciens collègues et
amis, Paul B. et Tarik B., pour leur soutien à chacune de nos rencontres, à Clermont, Moissy,
Lille ou Compiègne. Moreover, I would like to thank successively Frank GROOTEMAN (NLR) and
Prof. Wei CHEN (Northwestern University) for having accepted me in their lab. My internships there
undoubtedly comforted me to pursue research by doing a PhD. Finally, I would like to thank Dr. Sergei
KUCHERENKO who accepted to kindly examine my work and provided me some advice during his stay
in Clermont-Ferrand.

Après avoir remercié les personnes qui ont directement contribué sur le plan scientifique à
cette thèse, je me dois d’avoir une pensée pour toutes les personnes qui, sans le savoir, ont véri-
tablement aidé au bon déroulement de ces trois années. Ce travail de thèse a été rendu possible
par l’établissement d’un co-financement entre l’ONERA et l’école d’ingénieur.e.s SIGMA Cler-
mont. La thèse a donc été réalisée pour partie à Palaiseau et à Clermont-Ferrand. Je remercie
mes amis doctorants clermontois pour les bons moments lors de mes différents passages. Parmi
eux, un grand merci à Mathieu S. et Nicolas L. pour leur gentillesse et leurs coups de pouce
technico-informatiques à chacun de mes passages. Merci à Cécile M. et Pierre B., mes deux
anciens (jeunes) professeurs à l’IFMA, de m’avoir toujours fait bénéficier de leurs précieux con-
seils. Merci aussi à Jacqueline M. et Marion L. pour leur aide administrative et leur bienveillance
envers les doctorants. Concernant la vie parisienne, je remercie la troupe de choc, {PYB, Rémi,
Théo}, avec qui j’ai passé quelques soirées arrosées dont Paris se souvient encore... Merci aussi
à Pierre G. pour nos petits cafés lors de tes passages à Paris. Merci à mon ami ifmalien Julien
F. d’avoir toujours été présent pour moi et d’être venu pour m’aider en préparation de la thèse.
Merci à Thomas B. d’avoir continué à m’inviter à venir voir des matchs de l’ASM chez lui, et
ce, malgré mes refus du type « j’peux pas, j’ai thèse ce week-end ». Je tiens aussi à remercier
Maxime F. pour tous les bons moments passés à Paris lors de nos soirées, sur les quais ou pour
les délicieux repas dégustés chez toi. Pour finir, je me dois de remercier mes amis membres du
collectif des Thésards Anonymes + d Docteurs, un groupe de soutien ésotérique qui propose une
thérapie par « l’humour fin et subtil » : merci à Quentin, Mathieu S., Mathieu C., Cédric, Rudy
et Adrien pour m’avoir permis de gâcher plusieurs vies à mourir de rire ! En particulier, je re-
mercie Rudy pour avoir été un ami et un guide hors pair durant tout mon parcours à l’IFMA.
Il a su me prodiguer une foultitude de conseils et m’embarquer dans ses pas en Année Interna-
tionale. Enfin, merci aussi à mon cher ami historien Géraud qui n’a cessé durant ces trois années
de m’inviter à divers dîners/apéros/pique-nique dont les saveurs m’ont toujours rempli de joie
et de souvenirs de notre Auvergne natale...

Concernant mon aventure palaisienne, je tiens à remercier l’ensemble des personnes du Dé-
partement Traitement de l’Information et Systèmes (DTIS) de l’ONERA qui ont œuvré à la mise en
place et au bon fonctionnement (tant sur les plans scientifiques qu’humains et administratifs)



de cette thèse. Toutes ces personnes ont contribué à forger un petit cocon scientifique et humain
où il a fait bon-vivre chaque jour. En particulier, je tiens à remercie Florence M., secrétaire au
DTIS, pour son aide sans faille et son extrême gentillesse sur l’ensemble de ces trois années. J’ai
une pensée émue pour mes ami.e.s thésard.e.s et stagiaires de l’ONERA et de SIGMA Clermont.
Ils/Elles ont réussi à transformer un quotidien, parfois morne et terne, en de véritables journées
passionnantes. Qu’il s’agisse de nos discussions du matin (bienveillantes), du midi (clivantes)
ou du soir (marrantes), ou de nos soirées (alcoolisées ou non, à bases de jeux dont je ne connais ni
ne comprends jamais les règles...), chacun de ces moments privilégiés m’a aidé à voir autrement
et à apprécier chaque moment passé. Ainsi, je tiens à dire un grand merci en particulier à :
Gaétan (et Maude, encore merci à vous pour le super mariage de veille-d’envoi-du-manuscrit),
Carlos (et ses cours très particuliers d’espagnol pas très recommandable), Christophe (et les dé-
couvertes gustatives), le duo {Raphaël L., Romain G.} (et les soirées Versaillaises & Parisiennes),
Claire (et son super encadrant de TP, paraît-il !), Monsieur Michel (pour l’anniversaire de son
frère), Léon (et ses jolis origamis et cactus), Camille S. (et son goût prononcé pour les tagli-
atelles au bleu vegan et pour le mojito à la rose), Sergio (et sa recette mondialement reconnue de
la Paëlla), Rodolphe (et ses délicieuses crêpes du Val-de-Grâce), ainsi que les petits nouveaux,
Baptiste, Jean-Lynce, Denis, Thomas, Sofiane, Enzo, Camille P. et Guillaume, à qui je souhaite
de très belles aventures, à l’ONERA ou ailleurs ! De plus, je souhaiterais remercier Riccardo
B. pour m’avoir entrainé dans ses multiples voyages à travers des espaces mathématiques in-
soupçonnables. Merci à Émilien F. pour son incroyable capacité à comprendre des problèmes
incompréhensibles et pour m’avoir aidé à lire des papiers illisibles. Je remercie aussi mes deux
amis du Bureau-d’à-côté : Julien P. (mon demi-frère de thèse, qui fait de l’optimisation que je
ne comprends pas) pour nos nombreuses soirées et nos discussions infinies au sujet de la vie
et de nos névroses, et Ali H. (mon autre demi-frère de thèse, qui fait de l’optimisation que per-
sonne ne comprend) pour les parties de foot et pour sa gentillesse non bornée. Enfin, j’adresse
un grand merci à Ioannis S. pour tout ce qu’il m’a apporté en tant qu’ami, tant par sa culture
scientifique que par son humanisme sans limite qui transparaît directement derrière un sourire
quotidien. Merci à vous tous pour ces différents moments passés durant ces trois années. Il me
reste à dire merci à un duo de choc à qui je dois énormément : Romain et Elinirina. Ces deux
énergumènes ont réussi, chacun à leur manière, à m’apprivoiser et à m’accepter tel que je suis.
Nous avons débuté le même jour, nous avons fini (presque) en même temps. Nous avons com-
battu et pourfendu les incertitudes, chacun dans nos domaines, en restant unis : des méchants
réseaux bayésiens et vilaines chroniques, à l’horrible remaining useful life accompagnée de ses
impitoyables observateurs à entrées inconnues par intervalles, en passant par les indignes esti-
mateurs à noyaux gaussiens et les monstrueux indices de Sobol sur la fonction indicatrice, nous
avons réussi à les dompter et à leur faire entendre raison ! Nos trois thèses racontent des his-
toires complémentaires dans lesquelles les incertitudes occupent le premier rôle. J’espère que
nos chemins ne divergeront pas de sitôt !

Pour finir avec les amis, je tiens à remercier mes amis d’enfance, Timothée, Xavier, Guillaume
et Benoit. Merci d’avoir toujours été là pour moi pendant toutes ces belles années.

Pour conclure ces remerciements, je tiens à m’adresser à mes proches. Cette thèse n’aurait
pas été possible sans un soutien indéfectible de la part de mes parents, de mon frère et de ma
sœur et de ma famille au sens large. Je remercie ainsi ma (belle-)famille pour tout ce qu’elle
m’a apporté durant ces trois années. Merci à mon frère et ma sœur d’avoir montré l’exemple en
faisant de brillantes études. Merci à mes parents d’avoir veillé à ce que nous ne manquions de
rien, matériellement et culturellement parlant. Merci à eux de m’avoir donné tant d’amour. Je
leur dédie cette thèse...

Le dernier mot ira, je l’espère, droit au cœur de la personne qui a vécu cette thèse de l’intérieur
et qui connaît, elle aussi, le sacrifice que cela représente... Je ne la remercierai jamais assez pour
tout ce qu’elle m’a apporté. Je l’aime et je suis fier de tout ce qu’elle a achevé !

Paris, le 21 décembre 2018





“The very essence of romance is uncertainty.”
Oscar WILDE, The Importance of Being Earnest, 1895.

[\

« J’ai heurté, savez-vous, d’incroyables Florides
Mêlant aux fleurs des yeux de panthères à peaux
D’hommes ! Des arcs-en-ciel tendus comme des brides
Sous l’horizon des mers, à de glauques troupeaux !
...
Or moi, bateau perdu sous les cheveux des anses,
Jeté par l’ouragan dans l’éther sans oiseau,
Moi dont les Monitors et les voiliers des Hanses
N’auraient pas repêché la carcasse ivre d’eau ;
...
J’ai vu des archipels sidéraux ! et des îles
Dont les cieux délirants sont ouverts au vogueur :
– Est-ce en ces nuits sans fonds que tu dors et t’exiles,
Million d’oiseaux d’or, ô future Vigueur ? »
Arthur RIMBAUD, Le Bateau ivre, 1871.

[\

« Il vaut mieux mobiliser son intelligence sur des bêtises
que mobiliser sa bêtise sur des choses intelligentes. »
Devise Shadok
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CHAPTER1
Introduction

Context

Aerospace systems can be classified among complex engineering systems, mainly due to their
multidisciplinary nature while gathering a large panel of heterogeneous components, a rel-
atively moderate number of production units compared to other industrial mass production
branches and, finally, subject to high-performance requirements while facing greater reliabil-
ity and safety concerns. The term “aerospace systems” encompasses a wide family of systems,
from civil and military aircrafts to space launchers, tactical ballistic missiles and satellites. As
one may see, the previous complexity sources have to be balanced between, for instance, a civil
aircraft (mass-manufactured system, highly reliable regarding passengers’ safety) and a satellite
(custom-manufactured system, highly reliable regarding the induced costs). Thus, the similarity
between all of these systems is their highly-safe property while operating in extreme environ-
ments.

Complex aerospace systems analysis and design rely intensely on the use of high-fidelity
computer models to efficiently simulate their behavior, especially when physical phenomena
cannot be directly observed nor measured on test specimens (e.g., extreme phenomena such as
a collision between a space debris and a satellite). The computer models that are used often rely
on solving sets of ordinary or partial differential equations such as in finite element simulations
in structural analysis, or finite volume differences for computational fluid dynamics.

A large amount of computer models used to design and simulate complex aerospace systems
are deterministic models, that is, for two identical sets of inputs (e.g., applied structural loads on
a structural part of an aircraft wing), the same output will be obtained (e.g., the tip deflection
or Von Mises equivalent stress). However, it may happen that some models may be chaotic
(i.e., deterministic but presenting an extreme sensitivity to initial conditions), such as those used
for the numerical simulation of large deformation such as appearing in vehicle crash or buckling,
or even stochastic (e.g., such as the natural variability appearing in material properties over a
specimen).

Assessing reliability and system safety implies to take into account the various sources of
uncertainties which might affect the behavior of the system. Uncertainties may occur in the ini-
tial conditions, in the physical properties of the system (i.e., variability of mechanical properties
of materials due the manufacturing process), in the environmental variables affecting the sys-
tem (i.e., wind speed and induced loadings) or finally, in the modeling itself (e.g., due to the
use of an imperfect mathematical model and its numerical resolution using algorithms, with a
limited accuracy). Nonetheless, these uncertainties have to be incorporated as soon as possible
in the design process to ensure to get an optimized, reliable and safe design regarding standards
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and customers’ requirements. This can be achieved following a general uncertainty quantification
methodology such as presented in the next section.

General methodology for uncertainty quantification

Uncertainty quantification (UQ) regroups a wide panel of both theoretical and applied tools
arising from numerous fields such as probability theory, statistics, computational sciences and
several other fields from both mathematics, physics and computer science. More importantly,
the UQ tools are now pouring into almost all of the engineering branches such as demonstrated
by several recent textbooks on this subject (see, e.g., Sullivan, 2015; Ghanem et al., 2017; Soize,
2017). However, the interdisciplinary nature of UQ can be summarized in a few fundamental
steps gathered in the so-called “UQ methodology” (De Rocquigny, 2006a; De Rocquigny, 2006b;
Sudret, 2007; Iooss, 2009) as illustrated in Figure 1.1.

Uncertainty quantification methodology

Step A
Problem specification

Step B
Uncertainty modeling

Step C
Uncertainty propagation

Step D
Inverse analysis

Computer model

Calibration / Validation
,→ VVUQ

Sensitivity analysis

,→ Model revision
,→ Data gathering

Input

,→ Data treatment
,→ Expert knowledge
,→ Modeling of uncertainty

sources

Output

,→ Model output, mo-
ments, . . .

,→ Failure probability,
quantiles, . . .

FIGURE 1.1: Illustration scheme of the uncertainty quantification methodology.

The UQ methodology presented in Figure 1.1 can be divided into four basic steps 1 which
are detailed herebelow:

• Step A→ Problem specification: the first step consists in defining the real system under
study and to build a computer model that is able to accurately predict and mimick the

1 Note that, going from Steps B to Step C is often denoted as forward UQ, while Step D is called backward / inverse
UQ (see, e.g., Sullivan, 2015).
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behavior of the system. Thus, depending on the case, it can be either an analytical for-
mula to a full multidisciplinary computational workflow (e.g., in the aerospace context,
mixing structural analysis, propulsion, trajectory and aerodynamics). Specifying the prob-
lem includes to define all the set of parameters intrinsic to the computer model, i.e., from
the input variables to which output quantity will be returned by the code. Finally, all the
tuning parameters (e.g., algorithmic parameters such as tolerances) should be chosen;

• Step B → Uncertainty modeling: the second step aims at identifying all the sources of
uncertainties affecting the input variables. Several tools are available to model uncertain
input variables: one can choose either the probabilistic framework, the interval framework
or imprecise probabilities. The choice of one of these frameworks may vary depending on
the nature (e.g., datasets or expert opinions) and quality of the available information about
input variables. The aim of the analysis may also drive the choice of a type of uncertainty
modeling;

• Step C → Uncertainty propagation: the third step generally consists in transfering the
input uncertainties through the computer model. As a result, the output quantity is thus
affected by uncertainties too. Depending on the mathematical framework used to model
the input uncertainties, the form of the output has to be consistent with it (e.g., a proba-
bility distribution, an interval, a probability-box, . . . ). Finally, a statistical treatment of the
output can be performed in order to achieve various tasks such as, e.g., reliability or risk
assessment;

• Step D → Inverse analysis: the fourth step mainly involves two types of analyses. The
first one, which is beyond the scope of this manuscript, mainly gathers the validation, veri-
fication and calibration phases of the computer model w.r.t. available data 2. All these anal-
yses are often gathered under the acronym “VVUQ”. The second one, which is of major
interest in this thesis, is called sensitivity analysis (SA) and gathers a set of methods whose
aim is to study how the variability in output can be apportioned to the input one.

As a remark, as mentioned in Saltelli et al. (2004), SA and VVUQ may be strongly linked to
each other. However, in the present manuscript, the computer models under study are assumed
to be verified, validated and calibrated following a global VVUQ methodology. Thus, in the
inverse analysis (i.e., Step D), one only focuses on SA.

Problem statement

From a general point of view, this thesis deals with the problem of reliability assessment
(more specifically, the problem of rare event probability estimation) and sensitivity analysis for
highly safe systems, i.e., systems characterized by a rare occurence of the failure events. In
a probabilistic framework, the phenomenological uncertainties can be modeled by assuming
that input variables are a set of random variables following some parametric probability dis-
tributions. However, the distribution parameters which are usually set by the analyst may be
affected by uncertainty arising from a lack of data (i.e., statistical uncertainty due to a limited
amount of data) or resting on expert recommendations. Consequently, given a failure scenario,
reliability measures (e.g., failure probability, reliability index) which are estimated regarding the
distribution of the output should take this second uncertainty level into account. As a result,
one has to consider a bi-level input uncertainty composed of:

• the phenomenological uncertainties (a.k.a. natural variability) affecting the inputs, thus repre-
sented by random variables;

2 Despite the fact that this type of analysis is not discussed in this manuscript, the interested reader may refer,
e.g., to Oberkampf and Roy (2010) and Damblin (2015) for a deeper presentation about the VVUQ topic.
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• the probabilistic model uncertainty which characterizes the lack-of-knowledge about the dis-
tribution parameters.

Such a problem is of major interest in the UQ community. If pioneering works such as those
from Ditlevsen (1979a), Ditlevsen (1979b), Der Kiureghian and Liu (1986), and Der Kiureghian
(1988) have already clearly stressed the need for taking both natural variability and probabilis-
tic model uncertainty into account in the reliability models and methods, it appears that such
an issue is still at stake nowadays. This is mainly due to the various developments in terms
of advanced sampling-based techniques for rare event probability estimation (e.g., adaptive im-
portance sampling, subset sampling), the increasing complexity and fidelity of computer mod-
els (e.g., multidisciplinary computational workflows) and the advances in surrogate modeling.
Moreover, various complementary mathematical frameworks to the traditional probabilistic one
have emerged (e.g., Bayesian techniques, imprecise probabilities) to handle various sources of
uncertainties and to propose alternative numerical treatments adapted to the other UQ chal-
lenges (see, e.g., Nagel, 2017; Schöbi, 2017).

In this thesis, the focus is put on accounting the bi-level input uncertainty all along the UQ
methodology, in the context of rare event probability estimation of complex aerospace computer
models. Consequently, the core problem under study in this thesis can be stated as follows:

How to deal with this bi-level input uncertainty all along the UQ methodology?

More specifically, one can decompose this issue into three questions which are themselves
related to the steps mentioned above:

Q1 – How to model this second level of uncertainty? (↪→ Step B)

Q2 – How does this bi-level input uncertainty impact the reliability measure? (↪→ Step C)

Q3 – How to link the variability of the reliability measure to this bi-level input uncertainty?
(↪→ Step D)

Thus, in the present work, it is proposed to develop, at each step, starting from the uncertainty
modeling phase (i.e., Step B), to the inverse analysis phase (i.e., Step D), several tools to handle
this bi-level input uncertainty. To do so, several scientific objectives are stated in the next section.

Objectives and outline of the thesis

Based on the previous problem statement, this thesis aims at developing a consistent strategy
for satisfying the following objectives:

O1 Draw up a state-of-the-art review about the available techniques and methods for both
uncertainty modeling, uncertainty propagation and sensitivity analysis which could be
used/adapted regarding the present problem statement;

O2 Develop an efficient strategy to combine both probabilistic model uncertainty and rare
event probability estimation;

O3 Propose new tools to achieve reliability-oriented sensitivity analysis under probabilistic
model uncertainty;

O4 Demonstrate the consistency of the proposed tools regarding realistic complex aerospace
computer codes.
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All along the chapters, these objectives are recalled, justified and expanded. If one lets the in-
troduction and conclusion chapters aside, this manuscript is composed of seven chapters whose
contents are detailed below.

Chapter 2 aims at introducing a few fundamental concepts appearing in UQ, with a focus on
the probabilistic framework. Core notions of sources and types of uncertainties are described.
The class of models under study is introduced and an inventory of the possible output quantities
of interests is provided.

Chapter 3 presents an overview of a variety of uncertainty propagation techniques adapted
to rare event probability estimation. For each technique, a brief presentation is proposed to-
gether with a summary of the formulation and its main advantages/drawbacks. Finally, a syn-
thesis gathers the most important guidelines about the use of rare event probability estimation
techniques.

Chapter 4 presents an overview of several methods for sensitivity analysis. In a first part, the
methods related to sensitivity analysis of model output (SAMO) are presented. Then, in a second
part, one introduces the paradigm of reliability-oriented sensitivity analysis (ROSA) and describes
a wide panel of methods, while exhibiting several links and differences between all of these
methods. This second part aims at providing a thorough literature review about the current
trends and challenges in the ROSA context.

Chapter 5 addresses the problem of rare event probability estimation under probabilistic
model uncertainty. To do so, the uncertainty affecting the probabilistic model is treated using a
Bayesian framework by assuming a prior distribution over the stochastic distribution parame-
ters. Then, the reliability measure under consideration is no longer the traditional failure prob-
ability, but the predictive failure probability which incorporates the effects of both levels of uncer-
tainties. Finally, two different numerical approaches are presented to estimate such a quantity,
namely the nested reliability approach (NRA) and the augmented reliability approach (ARA). A nu-
merical comparison is led so as to determine which one is more suitable to the current objectives
of the thesis.

Chapter 6 aims at extending the results obtained in Chapter 5. Starting from the estimation
of the predictive failure probability by the augmented reliability approach, the idea is to pro-
pose reliability-oriented sensitivity estimators so as to evaluate the robustness of the estimated
probability w.r.t. the bi-level input uncertainty. More specifically, one assumes that, due to the
Bayesian hierarchical structure in input, one would like to test the robustness of the reliability
measure regarding the hyper-parameters of the prior distribution characterizing the epistemic
uncertainty on the probabilistic model. Due to the local nature of the problem, local derivative-
based sensitivity measures are derived using the concept of score functions. Then, a sampling-
based technique is proposed so as to efficiently estimate both the predictive failure probability
and the sensitivities at the same time, without extra call to the computer model. Finally, this
methodology is applied on two test-cases to demonstrate the efficiency, especially when the oc-
currence of the failure event becomes very rare.

Chapter 7 aims at completing the work achieved in Chapter 6 by investigating the use of
global indices adapted to ROSA in the context of bi-level input uncertainty. These indices are
called Sobol indices on the indicator function. Their formulation and their extension to bi-level input
uncertainty is studied using a disaggregated vision of the input variables affected by epistemic
uncertainty. Then, a methodology to efficiently estimate these indices in the context of rare
event probability estimation is proposed. This methodology relies on the combination between
approximation-based estimators recently derived for these indices and a new approach for kernel
density estimation. If these recent contributions are extracted from recent literature, the originality
of the present work consists in their coupling and their adaptation to the context of bi-level input
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uncertainty. Finally, this methodology is applied to two benchmark applications to demonstrate
its efficiency, especially when the occurrence of the failure event becomes very rare. Moreover,
the numerical applications highlight the possible additional insights the analyst can get from
such a methodological tool.

Chapter 8 presents a representative aerospace test-case issued from a launch vehicle trajec-
tory simulation model. This case is based on the dynamical modeling of the balistic fallout phase
of the first stage of an expendable space launcher. In this chapter, all the methodological tools
developed in the three previous chapters are tested on this case so as to validate them and to
analyze both their advantages and limits.

As a remark, if all the chapters are, for most of them, written so as to be “self-contained”
(some of them being directly linked to supplementary material provided in the appendices),
the reading of the whole manuscript should be conducted in chronological order so as to be
consistent with the UQ methodology viewpoint. Finally, Table 1.1 provides a summary for each
chapter of the content of the manuscript and specifies their links to the global objectives of the
thesis. For each chapter, a mention “SOA” versus (vs.) “NEW” specifies whether the content is
more related to a “state-of-the-art” review or to a contribution proposed by the author.

TABLE 1.1: Summary of the content of the thesis.

Keywords Chapter Content Objectives

Uncertainty modeling / Probability theory / Black-box Chapter 2 SOA O1
Rare event estimation techniques / Failure probability Chapter 3 SOA O1
SA on model output / Reliability-oriented SA (ROSA) Chapter 4 SOA/NEW O1
Predictive failure probability / Epistemic / NRA / ARA Chapter 5 NEW O2
Local ROSA / Score functions / Bounded distributions Chapter 6 NEW O3
Global ROSA / Sobol indices / Indicator function Chapter 7 NEW O3
Aerospace systems / Launcher stage fallout Chapter 8 NEW O4
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2.1 Introduction and motivations

Numerical modeling and simulation are two cornerstones of modern engineering and scien-
tific computing. When dealing with complex aerospace systems, computer models are required
to design, simulate and predict the behavior of such systems in their environment since real ex-
periments are, most of the time, nearly impossible to carry out. Reliability assessment of these
systems is a mandatory phase as their failure may have dramatic consequences in terms of hu-
man safety, environmental impact and money losses.

As an illustrative example of what is at stake in aerospace engineering, one can focus on the
problem of space debris (i.e., orbital debris and reentering debris). Space debris is defined, accord-
ing to the formal definition given by the Inter-Agency Space Debris Coordination Committee
(IADC), as “all man made objects including fragments and elements thereof, in Earth orbit or
re-entering the atmosphere, that are non functional” (Klinkrad, 2006). Historically, these de-
bris mainly originate from accidental and intentional breakups (e.g., created after explosions or
collisions) and from intentionally released ones during space launches’ operations (e.g., inac-
tive satellites, rocket upper stages and other fragments). With the increasing number of space
launches combined to the increasing number of collisions, the number of space debris dramati-
cally increased in the last decades, despite the widespread adoption of mitigation measures ad-
vocated by the IADC. Several famous collisions between satellites and catalogued debris have
been studied and a dedicated literature is available on this subject (see, e.g., Klinkrad, 2006;
Chan, 2008).

Determining the collision probability between orbiting debris and a satellite is of utmost im-
portance to plan the future possible needs in terms of collision avoidance maneuvers. In such a
case, the study is driven by the modeling of the space objects, of their relative trajectories and of
the uncertainties that may affect several variables and parameters. Due to the singularity of the
underlying phenomenon, and because of the impossibility to produce dedicated experimental
data, this study requires the intensive use of complex computer models to simulate and predict
the behavior of such a scenario. Assessing reliability of satellites thus imposes to take uncer-
tainties into account in this preliminary study to ensure the ability for the simulation to predict
future hazardous situations that may cause collision.

For reentering debris, determining their fallout safety zone and the associated impact proba-
bility is another crucial problem. Indeed, a misestimation may have dramatic consequences in
terms of human security and environmental pollution.

The previous motivating examples are given here for the sake of illustration. In this thesis,
the specific scenario under study issued from aerospace engineering concerns a launch vehicle
fallout zone estimation. Moreover, general problems arising in structural reliability will also be
used to illustrate and validate the proposed approaches.

This chapter aims at introducing various core ingredients appearing further in the thesis. It is
organized as follows. Section 2.2 introduces the class of models under study. Section 2.3 draws
up an inventory of the input uncertainties affecting the phenomenon and model of interests
defined previously. Section 2.4 provides mathematical tools for the modeling of these uncertain-
ties regarding the available information in input. Finally, Section 2.5 focuses on describing the
different output quantities of interest.

2.2 Input-output black-box computer model

A computer code simulating the behavior of a complex aerospace (or other) system can be
formally seen as an input-output computer model. A mathematical formulation of such a model
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can be given by the following scalar-valued function:

M :
∣∣∣∣
Dx ⊆ Rd −→ Dy ⊆ R

x 7−→ y
(2.1)

where x = (x1, . . . , xd)
> is a set of d input variables (e.g., environmental or physical variables)

and y a scalar ouput 1. In general, the mappingM(·) can be either defined using an analytical
formula (or a system of formulas) or a high-fidelity computational model. Various examples can
be found in the fields of structural design, propulsion, computational fluid dynamics or trajec-
tory estimation. It is assumed here thatM(·) is deterministic (i.e., no intrinsic stochasticity) and
static (i.e., time is not an explicit variable). It can be either linear or highly nonlinear and poten-
tially expensive-to-evaluate, i.e., that a single run of the model can take several days (e.g., for
codes involving finite element or finite volume analyses). Finally, this model may intricate a
chain of multi-physics simulation codes (see, e.g., Balesdent, 2011; Brevault, 2015 in the context
of multidisciplinary design optimization of launch vehicles). Regarding these multiple sources
of complexity, this computer model will be considered as a black-box model only known point-
wise. In the rest of the thesis, the different strategies under consideration are non-intrusive with
respect to (w.r.t.) this black-box model. An illustration of the “black-box viewpoint” adapted to
the simulation of satellite-debris collision is proposed in Figure 2.1.

Black-box modelInput Output

M(·)
↪→ trajectory propagation

• Input variables

x ∈ Dx ⊆ Rd

↪→ initial position of the
two space objects

• Model output

y =M(x) ∈ R

↪→ minimal distance
between the two
space objects

FIGURE 2.1: Example of the “black-box computer model” viewpoint
(picture extracted from the video “The story of space debris” by ESA c©, see http://www.esa.int).

As a remark, one should notice that considering a black-box computer model should not
prevent the analyst from any possible comprehension of the phenomena that are at stake inside
the computer model. Indeed, any information (e.g., about the inputs or regarding the code
characteristics) that could provide the analyst a better understanding about the model should be
taken into account. This remark is of utmost importance, especially when the black-box model
is used in a context of reliability assessment.

Using simulation models in engineering does not prevent from the existence of several un-
certainties and errors which may affect either the simulation or the real system. Depending at
which conceptual step the analyst is working on (i.e., preliminary design phase, advanced de-
sign phase, certification phase or risk analysis), the potential impact of these uncertainties and
errors ranges from soft to dramatic consequences (e.g., in terms of human safety, environmental
impact and financial aspects). Thus, a key step in the UQ methodology (see Figure 1.1) is to
draw up an inventory of the sources of uncertainties and to provide a dedicated mathematical
framework to characterize and model them.

1 In this thesis, it is assumed that the output of such a model can be reduced to a single scalar. Computer codes
with vectorial or functional outputs are beyond the scope of the present manuscript.

http://www.esa.int
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2.3 Sources of uncertainties

For a successful use of a computer model, one needs to quantify its ability to predict the
response of the real system. It is thus of paramount importance to quantify the uncertainties
affecting the real system together with the various uncertainties and errors induced by the mod-
eling phase.

Identifying the sources of uncertainties and errors is not an easy task as they affect all the dif-
ferent steps of the modeling and simulation processes. Moreover, the semantics used to charac-
terize these uncertainties and errors varies from a scientific field to another one (see, e.g., the in-
ventory proposed by Thunissen, 2005). Following Der Kiureghian and Ditlevsen (2009), one can
state that engineering problems are studied within the confine of a model universe, i.e., within
a certain given domain of validity, carrying its own set of models, equations, data. Thus, the
model and its associated sources of uncertainties are defined by the analyst’ choices, in order to
make further decisions (e.g., for design, certification or risk analysis purposes).

In this thesis, the following classification of sources is adopted:

• variability: relates to the natural variability observed in the real system (e.g., inherent vari-
ability appearing in a manufacturing process of mechanical parts, or in the wind loads
impacting an aircraft);

• modeling errors: relate either to the model form inadequacy (i.e., affectingM(·)) and model
parameters’ calibration, or to the numerical approximation errors;

• input modeling uncertainties: relate to the modeling of the inputs x based on available in-
formation (i.e., possible sparse and/or imprecise or qualitative data, measurement errors,
expert opinions, standards). These uncertainties are often related to statistical uncertainty
and measurement uncertainty arising in experimental procedures for data collection.

Once the sources of uncertainties have been clearly identified, one needs to characterize them
following whether the analyst can, in near-term and regarding a reasonable budget, reduce them
or not so as to improve the accuracy of the predictions. From an engineering point of view, one
can distinguish between two types of uncertainties:

• aleatory uncertainty refers to natural randomness affecting physical phenomena (e.g., the
pressure field in turbulent boundary layer or the geometrical distribution of inclusions in
a biphasic microstructure). In a given context of maximum allowable budget, this type of
uncertainty is considered as irreducible. Basically, referring to Eq. (2.1), aleatory uncertainty
affects the input vector x of the environmental/physical variables;

• epistemic uncertainty refers to the lack of knowledge of the analyst and is potentially re-
ducible by acquiring more information (i.e., data, measurements, expert judgements). Basi-
cally, referring to Eq. (2.1), epistemic uncertainty affects either the modeling of input vector
x based on the available information (due to statistical uncertainty, measure uncertainty)
or the modelM(·) by the specification of its parameters;

Again, following Der Kiureghian and Ditlevsen (2009), such a distinction between aleatory and
epistemic uncertainty should not be considered as a classification of phenomena, but only a
pragmatic way of distinguishing between the uncertainties on which the analyst can allocate
some budget for gaining knowledge and those for which it is impossible. Based on this classifi-
cation, the analyst can take information-based choices.
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2.4 Probabilistic modeling of input uncertainties

Uncertainties in environmental or physical variables can be modelled using various frame-
works and different mathematical concepts (see, e.g., Apostolakis, 1990; Paté-Cornell, 1996; Fer-
son and Ginzburg, 1996; Qiu et al., 2008; Ferson and Oberkampf, 2009). Usually, the choice for
such a framework depends on the nature and amount of information available in input. Among
various frameworks, one can distinguishes between the common probabilistic framework vs. the
imprecise probabilities (see, e.g., Schöbi, 2017, Chap. 2). If the former requires to be able to con-
struct a full input probabilistic model (e.g., by characterizing the joint probability distribution),
the latter gathers various different (but connected techniques) which go beyond the probabilistic
framework by using different tools such as, for instance, intervals, random sets, fuzzy probabil-
ities and probability-bounds (among others). These two frameworks have demonstrated their
respective usefulness in a large panel of engineering applications. As discussed in Beer et al.
(2014), they should be seen more as complementary tools for the analyst than competing frame-
works.

In this thesis, one assumes that sufficient information is available to construct an operational
probabilistic model for the inputs. Imprecise probabilities are not presented hereafter for the
sake of conciseness but a detailed description of the methods can be found in Beer et al. (2013)
and Schöbi (2017). Thus, the following subsections aim at introducing the notations and to
select the core probabilistic concepts that will be used throughout the thesis. It is important to
highlight that, in the hereby manuscript, measure theory is not required to understand and use
the concepts discussed further in this thesis (as exposed, e.g., in Jacod and Protter (2004) and
Gut (2009)). For a broader view of probability theory and stochastic modeling for uncertainty
quantification, the reader can refer, e.g., to the monographs by Sullivan (2015) and Soize (2017).

2.4.1 Elements of probability theory and stochastic modeling

Let the stochastic modeling of the natural variability affecting some inputs 2 of a computer
model be represented by a d-dimensional continuous input vector X = (X1, . . . , Xd)

>. To define
it formally, it implies to consider, first, a probability space (Ω,A, P). This triplet contains, in order
of appearance, the sample space Ω (each element ω ∈ Ω can be seen as a combination of causes
affecting the realization x of X), a sigma-algebra A (whose elements are called events) and a
probability measure P : A → [0, 1]. A random vector X (a.k.a. multivariate random variable) is a
(measurable) function such that X : Ω→ DX ⊆ Rd, ω 7→ X(ω) = x.

The distribution of a random vector X can be described, mostly, using two tools 3:

• either by its joint cumulative distribution function (CDF) FX : Rd → [0, 1] which assigns a
probability to the event {X ≤ x},
i.e., FX(x) = FX1,...,Xd(x1, . . . , xd) = P(X ≤ x) = P(X1 ≤ x1, . . . , Xd ≤ xd);

• or (assuming it exists, in the absolutely continuous case) by its joint probability density func-
tion (PDF) fX : Rd → R+ defined such that

fX(x) = fX1,...,Xd(x1, . . . , xd) =
∂dFX(x)
∂x1 ...∂xd

.

In addition, one can define several characteristics for the random vectors, e.g., its first two
moments which are its mean vector mX = E[X] and its covariance matrix ΣX = Cov[X]. They

2 In this thesis, it is assumed that only continuous input variables are considered. When dealing with input/out-
put variables, uppercase letters stands for quantities that are supposed to be random (i.e., considering mostly X, U,
Θ and Y, but not other mathematical objects such as, e.g., N and T, which respectively refers to a number of samples
and a transformation).

3 Note that other probabilistic tools such as the probability distribution or the characteristic function could be consid-
ered (Soize, 2017).
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respectively read:

mX = E[X] =
∫

DX

x fX(x)dx = (E[X1], . . . , E[Xd])
> = (µX1 , . . . , µXd)

> (2.2)

ΣX = E
[
(X−mX)(X−mX)

>
]
=
∫

DX

(x−mX)(x−mX)
> fX(x)dx

=




Var [X1] Cov[X1, X2] . . . Cov[X1, Xd]

Cov[X2, X1] Var [X2]
. . .

...
...

. . . . . .
...

Cov[Xd, X1] . . . . . . Var [Xd]




. (2.3)

where:

- E[Xi] = µXi =
∫

xi fXi(xi)dxi is the expected value of Xi;

- Var [Xi] = E[(Xi −E[Xi])
2] is the variance of Xi;

- Cov[Xi, Xj] = E
[
(Xi −E[Xi])(Xj −E[Xj])

]
, for i 6= j, denotes the covariance between Xi

and Xj (note that, if i = j, then Cov[Xi, Xi] = Var [Xi]).

Finally, one can introduce the standard deviation (s.d.) σXi =
√

Var [Xi] and the coefficient of
variation (c.v.) δXi = σXi /|µXi | (provided µXi 6= 0).

In this thesis, it is assumed that, for any random vector X under consideration, X is a second
order random vector, i.e., that it belongs to L2(Ω, Rd), which ensures that E

[
‖X‖2

2

]
< +∞ 4.

Thus, the previous moments and quantities are assumed to be well-defined and finite.
Associated to these first two moments, the linear correlation matrix R = [ρij]d×d is often

encountered in probabilistic modeling. In this matrix, the coefficients ρij are the linear correlations
(a.k.a. Pearson’s correlations) and are defined as follows:

ρij =
Cov[Xi, Xj]√

Var [Xi]Var
[
Xj
] =

Cov[Xi, Xj]

σXi σXj

. (2.4)

At this point, one needs to mention a fundamental theorem which allows one to define the
probabilities of interest appearing in uncertainty quantification of industrial systems (e.g., prob-
ability of failure). This theorem is known as the transport theorem (see, e.g., Barbe and Ledoux,
2007).

Theorem 1 (Transport theorem). Let X be a d-dimensional random vector with fX as joint PDF.
Assume that φ : Rd → R a measurable function. Then E[φ(X)] is given by:

E[φ(X)] =
∫

Rd
φ(x) fX(x)dx

=
∫

Rd
φ(x1, . . . , xd) fX1,...,Xd(x1, . . . , xd)dx1 . . . dxd (2.5)

if the integral is absolutely convergent.

In the following, several results rely on the use of two fundamental convergence theorems in
probability: namely, the law of large numbers (LLN) and the central limit theorem (CLT). These two

4 L2(Ω, Rd) denotes the vector space (Hilbert space) of all the square integrable functions defined on Ω with
values in Rd and ‖·‖2 denotes the canonical Euclidean norm on Rd.
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theorems are not recalled here for the sake of conciseness, however, the interested reader may
refer to Jacod and Protter (2004), Gut (2009) or Durrett (2010) concerning any further informa-
tion.

As a remark, in the following of the thesis, as soon as it will be necessary, the sampling
density w.r.t. to which the expected value is computed will be explicitly mentioned to avoid any
confusion. As an example, Eq. (2.5) may be rewritten as E fX [φ(X)].

When independence is assumed (or verified) between input variables, one can write that
the joint CDF or PDF consists of the product of the marginal distributions, i.e., that FX(x) =

∏d
i=1 FXi(xi) and fX(x) = ∏d

i=1 fXi(xi). When the assumption of independence is not verified, a
full specification of the joint distribution of X (i.e., either the CDF FX or the PDF fX) is supposed
to be composed of:

• d marginal distributions (assumed to be known through their PDFs fXi or CDFs FXi , for
i = 1, . . . , d);

• a stochastic dependence structure modeled by a copula C (see Appendix A).

Basically, estimating marginal distributions is a traditional task performed using common sta-
tistical tools described in the next subsection. As for the copula, it represents a measure of depen-
dence which is required to properly define the stochastic dependence within a random vector.
In common engineering practice, people only estimate linear correlation coefficients defined in
Eq. (2.4). These scalar measures are not sufficient to completely describe the stochastic depen-
dence. A brief overview about basic elements of copula theory is provided in Appendix A. For
more details about it, the interested reder should refer to Nelsen (2006) and Lebrun (2013). From
a pragmatic point of view, if copulas may be difficult to identify and to estimate in real appli-
cations, classical linear correlation coefficients could be replaced by more advanced measures,
easier to estimate than the copula, to summarize the dependence structure (Dutfoy and Lebrun,
2009). In this thesis, for the sake of simplicity, it will be assumed that the dependence struc-
tures considered can be either modeled by the independent copula or by the normal copula (see
Appendix A).

Finally, in the following, X is called the vector of “basic variables” (instead of “environmen-
tal” or “physical” variables) since they are assumed to be observable and that possible empirical
data could be available to characterize them (Der Kiureghian and Ditlevsen, 2009). These vari-
ables express the natural variability, as exposed in Section 2.3, that may occur in the system
itself (e.g., variability of material properties) or arising in its environment (e.g., wind loads on a
structure).

2.4.2 Estimating the joint input probability distribution

Engineering practice often relies on various heterogeneous sources of information to con-
struct the joint distribution. For instance, one can dispose of experimental data and measure-
ments (e.g., wind tunnel experiments, flight tests), high-fidelity numerical data (e.g., data issued
from an expensive-to-evaluate computer model), expert judgments, literature-based recommen-
dations or standards. Depending on the information type, one can use dedicated methods to
construct an underlying probabilistic model.

From the data analysis point of view (i.e., the experimental or numerical data), one would
like to find the underlying probabilistic model that produced these data. To do so, one can
assume that an empirical dataset of n data points (a.k.a. observations) about an input variable X
(instead of the vector X for the sake of clarity) of the computer model is available. This dataset is
denoted by X = {x(1), . . . , x(n)}. Moreover, it is assumed that these observations are independent
and identically distributed (i.i.d.). Thus, two different statistical points of view can be adopted
concerning the underlying probabilistic model that led to these observations:
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• either one makes the prior assumption that the underlying probability distribution belongs
to an algebraic class of distributions (i.e., a parametric family) and that a full specification
of the distribution requires to estimate its parameters. This point of view refers to the
parametric statistics (see, e.g., Rhode, 2014).;

• or, no prior assumption is required on the underlying probability distribution. This point
of view refers to the nonparametric statistics. These methods directly approximate the un-
known distribution without any parameter estimation (e.g., by means of kernel density es-
timation, see, e.g., Silverman, 1986; Wand and Jones, 1995; Scott, 2015).

In this thesis, it is assumed that the type of the joint distribution (i.e., either the CDF or the
PDF) of the random vector of the basic variables X is known. The joint distribution (here the
PDF) is supposed to belong to a parametric family P such that:

P = { fX(·; θ) | θ ∈ Dθ ⊆ Rnθ} (2.6)

where θ stands for the distribution/law parameters. Throughout the thesis, the following
notation will be used to denote that “X is distributed according to fX”: “X ∼ fX”. Sometimes,
one will express that “X follows a given probability distribution” by “X ∼ Distrib(θ)” (e.g., in the
multivariate Gaussian case, X ∼ Nd(mX, ΣX)).

The first assumption (i.e., the parametric assumption) relies on the prior fact that sufficient
data is available to estimate the marginal distributions and the dependence structure. Then, es-
timating the distribution parameters can be achieved by several methods which are not detailed
here for the sake of conciseness. For the interested reader, a brief summary about this topic is
provided in Appendix B.

As for the choice of the parametric family P , it is assumed that it can be achieved by using
some goodness-of-fit tests to get an objective measure of the best distribution type that would
fit the given data (Ditlevsen, 1993). For instance, one can cite, among others, the Kolmogorov-
Smirnov test, the Cramer-von Mises test or the Anderson-Darling test (see, e.g., Nikolaidis et al.,
2004, Chap. 26). Another common approach to rationally find an input distribution is to use the
Maximum Entropy Principle (see, e.g., Soize, 2017, Chap. 5).

2.4.3 Mapping to the standard normal space

An interesting feature allowed by considering an input probabilistic modeling is that, when
necessary, one can apply a transformation (a.k.a. mapping) from the original space (a.k.a. physical
space or just “x-space”) to the so-called standard normal space (denoted as “u-space”) in which all
the random components of X ∼ fX become independent standard Gaussian variates gathered
in the vector U ∼ ϕd, with ϕd : Rd → R+ is the d-dimensional standard Gaussian PDF recalled
here for the sake of clarity:

ϕd(u) =
1

(2π)d/2 exp

[
−‖u‖

2
2

2

]
. (2.7)

Various reasons can be invoked for applying such a mapping on the input variables. As
a first reason, one can argue that, due to the mixing between several different input variables,
which may represent heterogeneous physical quantities (different units, different ranges of mag-
nitude), the x-space can be potentially unscaled and asymmetric (and the joint probability dis-
tribution may have a very distorted shape). Dealing with a centered and scaled input space
potentially provides an easier way to analyze the input space. Another interesting feature is
that, after having applied the transformation, the input variables become independent. Several
mathematical and numerical tools used in the various steps of the UQ methodology (e.g., with
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some specific sensitivity analysis methods) require the inputs to be independent. A last argu-
ment, which is more a combination of the two others, is related to some historical method-
ological developments, appeared in the early 1970s among the structural reliability community,
which stressed the need for the introduction of the following transformations detailed below. A
few details about these connections are recalled in Section 2.5 and in Chapter 3, since they are
prerequisite for the development of several methods and safety measures.

More rigorously, one needs first to construct a C1-diffeomorphism 5 such that T : DX → Rd

and allowing (in terms of probability distributions) to get:

U = T(X)⇔ X = T−1(U) (2.8)

where U = (U1, . . . , Ud)
> is a d-dimensional standard Gaussian vector of independent normal

variates Ui with zero means and unit standard deviations.
Depending on the available information about X (i.e., characteristics of its distribution), one

can choose between different types of transformations (e.g., Nataf transformation, Rosenblatt
transformation). These transformations potentially involve technical steps which are not re-
called here for the sake of conciseness. Some details about these transformations are gathered in
Appendix C.

2.5 Output quantities of interest

2.5.1 The goal-oriented viewpoint

Once the input probabilistic model for X has been set up, it is crucial, from the black-box
point of view, to define what is/are the possible quantity(ies) of interest (QoI/QoIs). The in-
between step of propagating the uncertainties through the black-box computer model can be
achieved using several techniques which are non-intrusive w.r.t. the code, meaning that the inner
part of the code is not modified by the propagation of uncertainties. Some of these techniques
are reviewed in Chapter 3. Thus, prior to this step, one needs to define what the “goal” of the
study is (Rachdi, 2011).

Due to the uncertainties in input, by propagating them through the code (which is assumed
to be deterministic), the model output thus becomes a random variable denoted Y (assumed to
be scalar in this thesis). The description of the computer model thus reads:

M :
∣∣∣∣
DX ⊆ Rd −→ DY ⊆ R

X(ω) 7−→ Y =M(X(ω))
. (2.9)

In the following, the dependence w.r.t. ω will be dropped for the sake of conciseness. At this
point, for a set of N i.i.d. simulated inputs {X(j)}N

j=1, one gets N simulated outputs {Y(j)}N
j=1. As

a consequence, depending on the goal of the study, several different QoIs can be derived:

• one can reconstruct, respectively, the entire CDF FY(·) or PDF fY(·), to characterize the
variability of the output;

• one can estimate some moments (e.g., E[Y] or Var [Y]) to analyze the statistical behavior of
Y;

• one can estimate a conservative measure, such as a quantile, for risk analysis:

qα = inf
y∈R
{FY(y) ≥ α} (2.10)

5 A C1-diffeomorphism is a bijective mapping which is C1 (i.e., continuously-differentiable and whose inverse is
C1 too.)
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Black-box modelInput probabilistic model Goal-oriented output

M(·)• Basic variables

X ∼ fX(x; θ)

• Model output

Y =M(X)

↪→ CDF / PDF

FY(y), fY(y)

↪→ Statistics

E[Y], Var[Y]

↪→ α-quantile, α ∈ [0, 1]

qα = inf
y∈R
{FY(y) ≥ α}

↪→ Exceedance probability

p = P(Y ≥ yth)

yth ∈ R a threshold

FIGURE 2.2: Goal-oriented viewpoint.

where qα is the α-quantile of Y, with α ∈ [0, 1] the order;

• one can estimate an exceedance probability w.r.t. a safety threshold for reliability analysis
purpose:

p = P(Y ≥ yth) (2.11)

where yth ∈ R is a scalar threshold level characterizing the system safety.

Such a “goal-oriented viewpoint” is illustrated in Figure 2.2 in the context of collision prob-
ability estimation. In such a case, the goal is to estimate a probability defined such that in
Eq. (2.11). More generally, this thesis will focus on the specific goal of estimating rare event
probabilities as the one defined hereinabove. As one may notice, the different goals listed above
refer to different quantities which can imply to set up dedicated approaches. For instance, on
the one hand, focusing on either the CDF, the PDF or the first moments of the model output
Y requires to focus more on the central tendency and spread of the distribution of this random
variable. On the other hand, focusing either on a quantile or an exceedance probability, thus
requires to be very efficient in the characterization of the tails of the distribution of the model
output.

2.5.2 A specific goal: estimating a rare event probability

It is assumed that the performance of the system of interest, modeled byM(·), is measured
by a deterministic scalar function g : Rd → R called the limit-state function (LSF) (a.k.a. perfor-
mance function). A classical formulation for the LSF in the context of reliability assessment can be
that the exceedance of a characteristic threshold output value, yth ∈ R, beyond that the system
is considered as in a failure state (see Eq. (2.11)). The LSF thus takes the form:

g(X) = yth −M(X). (2.12)

Based on the definition of g(·), one can remark that the zero values of this function represent an
hypersurface in Rd called the limit-state surface (LSS) and defined by F 0

x = {x ∈ DX | g(x) = 0}.
This LSS splits the input space of realizations into two canonical domains:
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• the failure domain given by Fx = {x ∈ DX | g(x) ≤ 0}, which in fact does include the LSS
F 0

x ;

• the safe domain given by Sx = {x ∈ DX | g(x) > 0}.

As an illustration of how all these domains are connected, one can consider a two-dimensional
example as depicted in Figure 2.3.

O x1

x2

µX1

µX2

fX(x) = cst

(a) Joint PDF isovalues.

O x1

x2

µX1

µX2

g(x) = 0

FxF 0
x

Sx

(b) Safe Sx vs. failure Fx domains and LSS F0
x .

FIGURE 2.3: Illustration on a two-dimensional example of the way the joint PDF fX may intersect with
the failure domain Fx.

Again, as a consequence of the black-box nature of the modelM(·), the LSF g(·) can only be
evaluated pointwise and may possibly be defined only implicitly. The LSF is characterized by
the same constraints asM(·) (e.g., possibly expensive-to-evaluate, highly nonlinear). However,
in more general settings, g(·) can involve a nonlinear equation of the model output, or may
be defined through a combination of multiple failure criteria (e.g., as a union or intersection of
failure events, often described as system reliability). For more information about this point, see,
e.g., Lemaire et al. (2009).

A widely used safety measure in reliability assessment is the failure probability, denoted pf,
which is the probability that the system under consideration would fail w.r.t. the LSF defined
in Eq. (2.12) and the input probabilistic model of X. This probability is given by the following
d-fold integral:

pf = P(Y ≥ yth) = P (g(X) ≤ 0)

=
∫

Fx

fX(x)dx =
∫

DX

1Fx(x) fX(x)dx = E fX [1Fx(X)] (2.13)

where dx = dx1 . . . dxd and 1Fx(·) is the indicator function of the failure domain defined such
that 1Fx(x) = 1 if x ∈ Fx and 1Fx(x) = 0 otherwise. As a remark, one can notice that, prop-
erly writing, reliability assessment could refer to the estimation of another safety measure: the
reliability R of a system. It is simply defined as the complementary of the failure probability pf,
i.e., R = 1− pf.
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In the rest of this thesis, it will be assumed that the failure event is rare, i.e., that the failure
probability pf is small (i.e., pf � 1

N with N the available simulation budget). In daily engineering
practice, rare event failure probabilities often vary from 10−2 to 10−8 (Lemaire et al., 2009). The
latter order of magnitude may often characterize highly-safe complex engineering systems for
which the safety requirements are drastic (e.g., aerospace systems, nuclear power plants or civil
engineering structures).

An interesting feature about rare event probability estimation is related to the standard nor-
mal space mapping T(·) presented in Subsection 2.4.3. As a matter of fact, one can show that
applying such a transformation should preserve the failure probability estimate.

To do so, one should first redefine the LSF in the standard normal space. It leads to consider
the mapping ◦g : Rd → R defined such that:

u 7→ ◦g(u) =
(

g ◦ T−1
)
(u). (2.14)

As a consequence, based on the proper construction of T(·) and due to its properties (see Ap-
pendix C), one can rewrite the problem in Eq. (2.13) as follows:

pf = P
( ◦g(U) ≤ 0

)
=
∫

Fu

ϕd(u)du =
∫

Rd
1Fu(u)ϕd(u)du = Eϕd [1Fu(U)] (2.15)

where Fu = {u ∈ Rd | ◦g(u) ≤ 0} stands for the failure domain in the standard space, du =
du1 . . . dud and ϕd is the d-dimensional standard Gaussian PDF given in Eq. (2.7).

To conclude, this “duality of working spaces” offers a lot of possibilities for rare event es-
timation. Due to the powerful transformations recalled in Appendix C, the analyst may use
several algorithms whose implementation requires to work in the x-space or in the u-space.
Due to the properties of the transformation, pf remains an invariant which makes reliability as-
sessment relevant in any of those spaces. As a counterpart, the relative interpretations one can
postulate about specific numerical results (e.g., sensitivities, behavior of g(·) vs. ◦g(·), indepen-
dent vs. dependent inputs) may be tricky and switching between both spaces is not simple. A
deeper discussion about this last point will be provided in Chapter 3 and Chapter 4.

2.6 Conclusion

This chapter has set the general framework of uncertainty modeling for black-box input-
output computer models. Starting from the formal definition of the type of model under study
(i.e., black-box, deterministic, static models), an inventory of the sources of uncertainty arising in
input of the model has been provided. The probabilistic characterization of these uncertainties
has been presented before describing the possible output QoIs one can investigate. Thus, choos-
ing a particular QoI (e.g., an exceedance probability) may imply to consider dedicated strategies
for uncertainty propagation and for sensitivity analysis. The goal-oriented viewpoint imposed
by the choice of this QoI will impact the possible interpretation of the results of these two other
types of analyses.

In the next chapter, a brief review of the main uncertainty propagation techniques for rare
event probability estimation is provided. These techniques are core ingredients for estimating
probabilities such as those written in Eqs. (2.13) and (2.15). Similarly, it will be shown how the
duality between x-space and u-space leads to different techniques and can be utilized in practical
implementations.
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3.1 Introduction and motivations

Reliability assessment of complex systems is a problem whose final aim remains a decision-
making process (Benjamin and Cornell, 1970). Indeed, reliability analysis cannot itself prevent real
failure from happening. It is just a scientific (rational) way for providing relevant information,
consistent with the underlying or explicit assumptions adopted w.r.t. the set of models under
study (i.e., the model of the system itself and the associated uncertainties affecting its behavior),
to the decision-maker (Au and Wang, 2014). Among several possible indicators (e.g., some are
more qualitative, others are more quantitative), a set of safety measures is available. In this thesis,
a particular focus is given on the failure probability pf which is a widely used measure. For the
sake of clarity, one recalls the two core definitions of pf, respectively in the x-space :

pf = P (g(X) ≤ 0) =
∫

Fx

fX(x)dx =
∫

DX

1Fx(x) fX(x)dx = E fX [1Fx(X)] (3.1)

and in the u-space :

pf = P
( ◦g(U) ≤ 0

)
=
∫

Fu

ϕd(u)du =
∫

Rd
1Fu(u)ϕd(u)du = Eϕd [1Fu(U)] . (3.2)

The key topic raised in this chapter concerns the efficient evaluation (i.e., numerical approxi-
mation) of these d-fold integrals by diverse techniques. Generally speaking, these techniques
are known as uncertainty propagation techniques since their aim is to propagate the uncertainties
from the input to the output of the computer model. However, as presented in the previous
chapter, different goals (e.g., focusing on the central tendency and spread of the output distribu-
tion of Y vs. the tail of the distribution to get pf) may require different techniques to propagate
the uncertainties. Here, the QoI is a rare failure probability (i.e., pf � 1

N with N the available
simulation budget) and thus, only the relevant estimation techniques regarding such a type of
QoI are reviewed.

This chapter does not aim at presenting an exhaustive review about uncertainty propagation
techniques, but only providing a compendium about a few of them which are widely used in
the context of rare event estimation. These mathematical techniques arise from different periods
(from the last 1950s to the early 2000s for those presented hereinafter) and spread through var-
ious scientific communities (neutronics, civil engineering, aerospace engineering and finance).
Presenting them imposes to find an underlying rationale. To find it, one can analyze the two pre-
vious formulas in Eqs. (3.1) and (3.2). As suggested by these equations, the estimation of these
two expected values (both equal to pf) finally rely on two fundamental components (Cpnt. #1
and Cpnt. #2) which appear in the integrands:

• Cpnt. #1: the failure region, embodied by the indicator function 1F•(·) or, similarly, by the
integration domain F• (where • stands for x or u). These elements are directly related to
the behavior of the modelM(·) w.r.t. to a specific failure scenario given by the LSF g(·) (or
◦g(·));

• Cpnt. #2: the distribution of samples given by the sampling densities fX (or ϕd), which is
related to the input probabilistic model (either directly in the x-space or indirectly, via the
transformation T(·), in the u-space).

As one should notice, these two components do work together. If the Cpnt. #1 refers to the
location of the unknown failure region in the input space, Cpnt. #2 refers to the way the samples
are “likely to go” towards this failure region or not. By keeping this in mind (i.e., Where does the
failure region is likely to be located? and How does the algorithm go there?), one may better understand
the underlying rationale between all the following rare event estimation techniques.
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This chapter is organized as follows. Section 3.2 reviews the crude Monte Carlo sampling.
Then, three families of more advanced estimation techniques are presented. First, approximation-
based reliability techniques are reviewed in Section 3.3. Then, importance sampling techniques
(gathering multiple variants) are reviewed in Section 3.4. Finally, subset sampling is reviewed
in Section 3.5. A synthesis and further discussions are proposed in Section 3.6.

3.2 Crude Monte Carlo sampling

Presentation. Historically, the crude Monte Carlo (CMC) sampling technique has been the first
one used for uncertainty propagation in some pioneering works related to nuclear and particle
physics in the early 1950s (Metropolis and Ulam, 1949; Kahn and Harris, 1951). The underlying
principle of CMC sampling is the ability to generate random or pseudo-random samples from a
given probability distribution (Gentle, 2003). The application of CMC sampling through various
rare event estimation problems can be illustrated by a large amount of scientific production.
Among others, the interested reader may refer to the books by Rubinstein and Kroese (2008),
Rubino and Tuffin (2009), and Zio (2013).

Formulation. Considering a sample {X(j)}N
j=1

i.i.d.∼ fX of N i.i.d. copies of the input random vector
X drawn according to fX. One recalls from Eq. (3.1) that:

pf =
∫

DX

1Fx(x) fX(x)dx = E fX [1Fx(X)] . (3.3)

The CMC estimator of pf is given by:

p̂CMC
f =

1
N

N

∑
j=1

1Fx(X
(j)). (3.4)

This estimator is a random variable as it is a sum of N i.i.d. Bernoulli random variables given
by the indicator functions {1Fx(X

(j))}N
j=1. It converges almost surely to the target probability

pf as a consequence of the law of large numbers (LLN) 1. No regularity condition is required
on the performance function g(·) in order to apply LLN. Only finite expectation, such that
E[|1Fx(X

(j))|] < +∞, is required. The variance of this estimator is given by:

Var
[

p̂CMC
f

]
=

1
N

pf(1− pf), (3.5)

and its estimator is:
V̂ar

[
p̂CMC

f

]
=

1
N

p̂CMC
f (1− p̂CMC

f ). (3.6)

Using the central limit theorem (CLT), confidence intervals associated to the probability estimator
can be calculated. Another widely used statistic to assess the sampling accuracy is the coefficient
of variation (c.v.) of the estimator which writes as follows:

δp̂CMC
f

=

√
Var

[
p̂CMC

f

]

E[ p̂CMC
f ]

=

√
1− pf

Npf
. (3.7)

Advantages and drawbacks. As one may notice, whatever the dimension d of the input vector,
the CMC convergence speed depends only on N and pf. It means that CMC does not suffer from

1 Consequently, this estimator is unbiased (i.e., E fX

[
p̂CMC

f
]
= pf).
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the so-called “curse of dimensionality” and is thus able to handle high-dimensional problems.
Moreover, as mentioned before, this technique converges regardless the regularity of the LSF.
Finally, another interesting aspect is its highly-distributable aspect which allows the respective
calls to the LSF to be run in parallel. These three aspects are the main advantages of CMC
sampling.

However, following Eq. (3.7), if pf corresponds to a rare event probability, one can see that:

lim
pf→0

δp̂CMC
f

= lim
pf→0

1√
Npf

= +∞. (3.8)

Thus, the c.v. is unbounded. As a consequence, a practical rule of thumb to estimate a prob-
ability pf of the order of 10−α with a 10% c.v. indicates that N = 10α+2 samples are required.
Consequently, in a rare event context, the CMC technique requires a huge number of samples
in order to achieve convergence on the estimation. Such a computational burden is often unaf-
fordable in many industrial contexts due to the cost of a single run of a complex computer code
(e.g., finite element or finite volume analyses).

Finally, assuming a substantial computational effort to achieve convergence, CMC is often
considered as the “reference method” for failure probability estimation due to its strong statistical
properties and its main advantages recalled hereabove.

Remarks. As a first remark, one should notice that, in the CMC sampling case, no transfor-
mation T(·) to the u-space is required. All the sampling phase is performed in the x-space. A
second remark consists in noticing that CMC sampling can be used to estimate various quanti-
ties different from pf. For instance, it can be used to get the empirical CDFs of the model output
and the LSF (Dubourg, 2011, Chap. 3). It can also be used to estimate an α-quantile on the model
output such as presented in Section 2.5 (Morio and Balesdent, 2015, Chap. 5). A third remark
concerns the so-called quasi Monte Carlo (QMC) techniques (Lemieux, 2009): these techniques
rely on the generation of quasi-random samples (i.e., samples drawn from low-discrepancy se-
quences). However, if they allow to reduce the computational cost for general uncertainty prop-
agation over a general space, they are not adapted to rare event estimation since they provide a
better global covering of the input space (i.e., they are said to be “space-filling”), but they poorly
cover the tails of the input distribution (Morio and Balesdent, 2015, Chap. 5). In a sense, they are
quite similar to the so-called sparse grids (a.k.a. Smolyak’s quadrature rules, see, e.g., Bungartz and
Griebel, 2004) which are deterministic quadrature rules adapted to high-dimensional problems.
As a final remark, one should notice that, in the context of costly-to-evaluate computer models,
hybrid strategies combining surrogate models and CMC have been proposed in Vazquez and
Bect (2009), Echard et al. (2011), Bect et al. (2012), and Schöbi et al. (2017).

As a conclusion, following the goal-oriented viewpoint which is defined by the QoI one de-
sires to estimate, i.e., a rare event probability pf, CMC sampling seems to be unadapted to this
task since it relies on sampling over the entire input space, no matter where the failure domain
is. Consequently, the computational cost may become cumbersome for highly-safe industrial
systems as getting samples in the failure domain may be difficult due to the rareness of the
failure event. In addition, if the computer model is expensive to evaluate, CMC may become
impractical. In the following, alternative techniques are reviewed, either based on taking bet-
ter advantage of possible information about the failure domain, or based on more advanced
sampling strategies.
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3.3 Most-probable-failure-point-based techniques

Presentation. A first class of techniques regroups the so-called most-probable-failure-point-based
(MPFP) techniques. Under this generic name, one more precisely refers mainly to the first-order
reliability method (FORM) and the second-order reliability method (SORM). Historically developed
among the structural reliability community, respectively in the mid 1970s and 1980s, these meth-
ods derived from earlier pioneering works such as, for instance, those of Rjanitzyne (late 1950s)
and Cornell (1969) 2. For the sake of conciseness, in the following, only FORM/SORM are pre-
sented and the interested reader is invited to refer to general textbooks on this subject (Madsen
et al., 1986; Melchers, 1999; Ditlevsen and Madsen, 2007; Lemaire et al., 2009) for more informa-
tion about the historical and technical developments of these methods.

Formulation. Contrary to CMC, whose strategy is to draw samples covering the entire x-space
so that some of these points may fall into the failure domain, the basic idea of MPFP-based
techniques is to replace sampling by finding the point over the failure border, in the u-space,
corresponding to the maximum probability of occurrence of the failure event. This point is
known as the most probable failure point (MPFP) (a.k.a. design point) and is denoted by P∗. As a
consequence, the initial sampling problem set in Eq. (3.2) is replaced by an optimization problem
whose aim is to find the coordinate vector u∗ associated to P∗, such that:

u∗ = arg max
u∈Rd

1Fu(u)ϕd(u). (3.9)

By definition of the u-space, the previous problem can be rewritten as:

u∗ = arg max
u∈Rd

1
(2π)d/2 exp

[
−1

2
u>u

]
s.t. u ∈ Fu

u∗ = arg min
u∈Rd

u>u s.t. ◦g(u) ≤ 0. (3.10)

The quadratic optimization problem under nonlinear constraint, defined hereabove, can be
solved by using dedicated algorithms (Rackwitz and Fiessler, 1978; Zhang and Der Kiureghian,
1994). Finally, the MPFP P∗ appears to be the closest failure point w.r.t. the origin O of the stan-
dard normal space. As an illustration, one can refer to Figure 3.1 which allows a visualization
in a two-dimensional space of the previous quantities. One can notice that, due to the exponen-
tial decay of the density in both radial and tangential directions, the MPFP P∗ is thus the point
providing the highest contribution to the integral in Eq. (3.2).

Assuming that the MPFP is unique, solving the optimization problem set in Eq. (3.10) allows
one to compute the vector of coordinates u∗. Thus, one can define a new safety measure, called
the Hasofer-Lind reliability index (Hasofer and Lind, 1974), denoted by βHL and defined such that:

βHL = β = min◦
g(u)=0

(u>u)1/2

≡ α>u∗ (3.11)

2 The first safety measure defined in reliability is the Rjanitzyne-Cornell reliability index (Ditlevsen and Madsen,
2007; Lemaire et al., 2009). This index is based on the definition of the problem set in the x-space, and thus, is not
invariant w.r.t. linear transformations of the LSF. This problem led researchers to take advantage of the u-space and
the associated transformations to define invariant safety measures.
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u∗1

u∗2
P∗

α

β− α>u = 0

β = α>u∗

ϕ2(u1, u2) = cst

FIGURE 3.1: Illustration on a two-dimensional example of the standard normal space properties.

where α is unit vector built as the opposite normalized gradient of the LSF 3, in the standard
normal space, evaluated at the MPFP (see Figure 3.1):

α = − ∇u
◦g(u∗)∥∥∇u
◦g(u∗)

∥∥
2

. (3.12)

In most cases, the origin O of the standard normal space lies in the safe domain. Consequently,
β is positive and represents the shortest Euclidean distance between the origin O and the hyper-
plane that approximates the LSF (see Figure 3.1). As for α, it represents the unit vector pointing
at the MPFP, thus providing a most probable failure direction on the (O, P∗) axis (see Figure 3.1).
Assuming that the LSF is continuous, smooth and differentiable around the MPFP, one can apply
the first-order Taylor series expansion such that:

◦g(u) = ◦g1(u) + o
(
‖u− u∗‖2

2

)
(3.13)

with:
◦g1(u) =

◦g(u∗) +∇u
◦g(u∗)>(u− u∗). (3.14)

3 In some cases, it may appear that the gradient of the LSF approaches zero in a large area. It may happen when
“saturation phenomena” occur which prevents traditional gradient-based optimization algorithms from convergence
as noticed in Walz and Riesch-Oppermann (2006). Thus, using other strategies such as surrogate-based optimization
algorithms can be relevant in this case (see, e.g., Chocat et al., 2016).
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Since ◦g(u∗) = 0 by definition (recall that P∗ ∈ F0
u), and combining with Eq. (3.12), one gets:

◦g1(u) =
∥∥∇u

◦g(u∗)
∥∥

2

(
α>u∗ − α>u

)
. (3.15)

Thus, the first-order reliability method (FORM) consists in approximating the unknown probability
pf given in Eq. (2.13) by the following integral:

pFORM
f = P(

◦g1(U) ≤ 0) =
∫

Rd
1Fu,1(u)ϕd(u)du (3.16)

where Fu,1 = {u ∈ Rd | ◦g1(u) ≤ 0} = {u ∈ Rd | β − α>u ≤ 0} (see Figure 3.1 for the
visualization of this hyperplane). Eventually, this integral takes the form:

pFORM
f = P

(
−α>u ≤ −β

)
= Φ(−β) = 1−Φ(β) (3.17)

where Φ(·) denotes the standard Gaussian CDF 4. To summarize, the FORM approximation,
illustrated on a two-dimensional example, is sketched in Figure 3.2a.

O u1

u2

u∗1

u∗2
P∗

α

◦g(u) = 0

◦g1(u) = 0

β

(a) FORM approximation.

O u1

u2

u∗1

u∗2
P∗

α

◦g(u) = 0

◦g1(u) = 0

β

◦g2(u) = 0

(b) SORM approximation.

FIGURE 3.2: Illustration on a two-dimensional example of the FORM and SORM approximations.

When facing nonlinear LSS (e.g., a curvature at the MPFP), the FORM approximation may
become too inaccurate. A second-order approximation can then be considered. Indeed, the
second-order reliability method (SORM) consists in looking at the previous Taylor series expansion
cut at the quadratic term such that:

◦g2(u) = ∇u
◦g(u∗)>(u− u∗) +

1
2
(u− u∗)>∇2

u,u
◦g(u∗)(u− u∗) (3.18)

where ∇2
u,u is the Hessian operator. Then, one can distinguish between two different SORM

methods (Bourinet, 2018):

4 By definition, Φ : R→ R+, u 7→ 1√
2π

∫ u
−∞ exp

[
− ‖t‖

2
2

2

]
dt.
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• the curvature-fitting SORM (SORM-cf);

• the point-fitting SORM (SORM-pf).

These two methods provide approximate formulas for estimating pf. For the sake of illustration,
one can cite the asymptotic approximation (i.e., for β→ +∞) proposed by Breitung (1984) in the
SORM-cf context:

pSORM-cf
f ≈ Φ(−β)

d−1

∏
i=1

1√
1 + βκi

(3.19)

where the κi, for i = 1, . . . , d − 1 being the principal curvatures of the LSS. As a remark, one
should notice that the SORM-cf method requires to compute the Hessian matrix ∇2

u,u
◦g(u∗)

which can be numerically cumbersome. For the sake of conciseness, the interested reader may
refer to the textbook by Lemaire et al. (2009) and the monograph from Bourinet (2018) for a
complete review of these formulations. To summarize, the SORM approximation, illustrated on
the same two-dimensional example, is sketched in Figure 3.2b.

As one may notice, Eqs. (3.17) and (3.19) are built under the assumption of the uniqueness
of the design point. Yet, in practice, nonlinear LSFs may present several failure regions of al-
most equal importance, which implies that several points may be candidate to be MPFPs. As
an illustration, Figure 3.3 displays a two-dimensional example presenting two MPFPs of equal
importance (denoted by P∗(1) and P∗(2)) and the two FORM approximations of the LSS (denoted
by ◦g(1)1 (u) = 0 and ◦g(2)1 (u) = 0) 5. The analyst is often not aware of the existence of these re-
gions before performing FORM/SORM analyses (i.e., that in Figure 3.3, the true LSS ◦g(u) = 0
is unknown for black-box computer models). To solve this problem, a technique (called “multi-
FORM” in this thesis, by abuse of notation) proposed by Der Kiureghian and Dakessian (1998)
aims at finding successively the various MPFPs. To do so, the first MPFP is found by applying
a FORM analysis, and then, repeating another FORM analysis while modifying the LSF in order
to evict the previous MPFP. The modification of the LSF consists in replacing the LSF area by
a bulge centered at the current MPFP (see Der Kiureghian and Dakessian, 1998). Finally, the
procedure is repeated until a spurious MPFP is obtained. Such a point arises due in the foot of
the bulge and is just an artifical MPFP. For any further detail about this multi-FORM algorithm,
the interested reader should refer, e.g., to Der Kiureghian and Dakessian (1998), Dubourg (2011),
and Bourinet (2018).

Advantages and drawbacks. MPFP-based approximation techniques are intensively used in
daily industrial practice. This can be explained by some undeniable advantages: provided that
the LSF is linear and the input dimension is moderate, FORM may approximate very low failure
probabilities at a negligible simulation cost. This makes FORM be one of the less expensive
rare event estimation technique. For checking about the presence of multiple MPFPs, the multi-
FORM algorithm is available. Finally, if the LSF is nonlinear, SORM may potentially overcome
this difficulty and provide an estimate of pf at a reduced cost compared to sampling techniques.
On this point, one should remark that SORM thus requires, in addition to finding the MPFP by
a preliminary FORM analysis, the evaluation of the Hessian matrix ∇2

u,u
◦g(u∗) at P∗ which can

be cumbersome (e.g., estimated by finite differences, see Bourinet (2018, Chap. 1)).
Among the limitations attributed to FORM/SORM, one can mention the fact that they rely

on prior approximations of the LSF which may be not validated a posteriori. Another key draw-
back remains that no control of the estimation error is available contrary to sampling-based
techniques. Finally, a last drawback which does affect both FORM/SORM efficiencies is the in-
put dimension d. As d gets larger, if the LSF is highly nonlinear, the estimation error of pf may

5 Note that real application cases of reliability assessment under multiple failure regions of almost equal weights,
issued from the field of structural mechanics, can be found in Bourinet (2018, Chap. 3).
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FIGURE 3.3: Illustration of a two-dimensional example presenting two MPFPs.

dramatically increase. Such a feature has been first pointed out by Schuëller and Stix (1987). In
addition, a deeper geometric analysis proposed by Katafygiotis and Zuev (2008) and Valdeben-
ito et al. (2010) shows that the notion of MPFP P∗ loses its relevance for large d. Indeed, based
on the geometric study of high-dimensional standard normal space, it can be shown that most
of the probability mass of d-dimensional standard Gaussian PDF belongs to a spherical ring
called the important ring (IR) (Katafygiotis and Zuev, 2008) which is approximately located at a
distance of

√
d from the origin of the u-space. Thus, for large d, it can be proved, first, that the

MPFP does not belong to the IR, and second, that its vicinity has a negligible contribution to the
failure probability calculation. Thus, for high-dimensional problems, FORM/SORM approxi-
mations may induce significant errors for regions far from the MPFP (point where the Taylor
series expansion is achieved), but which mostly contribute to the estimation of pf (Valdeben-
ito et al., 2010). Finally, as noticed by Hurtado (2012), if high-dimensional problems make the
MPFP and its vicinity lacking of physical meaning, some relevant information about the failure
region can still be used by looking at the vector α as defined in Eq. (3.12) (being careful about
the adopted sign convention).

Remarks. As a remark, an interesting feature about MPFP-based techniques consists of the
various by-products (e.g., various different sensitivities) one can get from a reliability analysis
using these techniques. This topic will be further discussed in Chapter 4.

As a conclusion, MPFP-based techniques may be very efficient in terms of cost reduction
regarding the rareness of the failure event. However, they are often based on very restrictive
assumptions w.r.t. the unknown LSF. In a context of black-box complex computer code, their
efficiency is thus compromised. Another problem of these techniques may be their lack of ability
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to efficiently find possible multiple failure regions due to the nonlinearities of the LSF. In the next
section, the idea is to review some advanced sampling methods which are more efficient than
CMC and which enable to concentrate the sampling effort in the regions of interest.

3.4 Importance sampling

General presentation. When facing the tremendous simulation cost imposed by CMC, one
can use either approximation techniques such as those presented hereinabove, or to derive more
efficient sampling techniques. One possible way to reduce the simulation cost associated to a
rare event probability estimation is to use variance reduction techniques 6.

The underlying idea of this family of techniques is to derive estimators (e.g., of pf) allowing
a variance reduction of the estimation compared to the CMC estimator (Bucklew, 2004; Rubin-
stein and Kroese, 2008). Among them, importance sampling (IS) plays a major role for rare event
probability estimation. The underlying idea of IS is to replace the initial sampling distribution
fX by an auxiliary (a.k.a. instrumental) distribution denoted by hX in order to increase the number
of samples drawn into the failure domain.

General formulation. Starting from Eq. (3.1) 7, one can notice that the representation of pf
as an expectation is not unique. Indeed, one can introduce a simple change in the sampling
distribution (known as the “importance sampling trick”) such that:

pf = E fX [1Fx(X)] =
∫

DX

1Fx(x) fX(x)dx =
∫

DX

1Fx(x)
fX(x)
hX(x)

hX(x)dx

= EhX

[
1Fx(X)

fX(X)
hX(X)

]
(3.20)

= EhX [1Fx(X)wX(X)] (3.21)

where wX(x)
def
= fX(x)/hX(x) is called the likelihood ratio. Formally, the auxiliary PDF hX should

be such that it dominates the product 1Fx(x) fX(x) in the absolutely continuous sense:

hX(x) = 0⇒ 1Fx(x) fX(x) = 0⇐⇒ 1Fx(x) fX(x) 6= 0⇒ hX(x) 6= 0. (3.22)

This condition simply means that supp(1Fx fX) ⊆ supp(hX). Hence, acknowledging that 1Fx

is more sensitivite to specific realizations x (i.e., those drawn in the failure region), the new
“biased” density hX should be chosen such that it favors the sampling within the important
region.
The IS estimator of pf, for {X(j)}N

j=1
i.i.d.∼ hX, is given by:

p̂IS
f =

1
N

N

∑
j=1

1Fx(X
(j))

fX(X(j))

hX(X(j))
. (3.23)

6 This name gathers under the same heading various techniques such as: QMC, conditional MC, control variates,
antithetic variates, stratified sampling, subset sampling and importance sampling. Giving a precise definition of
each one is beyond the scope of this thesis. For a precise comparison and a focus on the links between all of these
techniques, the interested reader should refer to Cannaméla (2007) and Munoz Zuniga (2011)

7 Note that, here, derivations are performed in the x-space to make the link with CMC. However, based on the
same principle, similar derivations can be achieved in the u-space.
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This estimator is unbiased (i.e., EhX

[
p̂IS

f

]
= pf) due to the previous dominating property of hX

and convergent by applying CLT. Its variance is given by:

Var
[

p̂IS
f

]
=

1
N

(
VarhX

[
1Fx(X)

fX(X)
hX(X)

])

=
1
N

(
EhX

[(
1Fx(X)

fX(X)
hX(X)

)2
]
− p2

f

)
. (3.24)

and can be estimated using:

V̂ar
[

p̂IS
f

]
=

1
N − 1

(
1
N

N

∑
j=1

1Fx(X
(j))w2

X(X
(j))− ( p̂IS

f )
2

)
. (3.25)

To make IS efficient as a variance reduction technique, the auxiliary PDF needs to ensure that:

VarhX

[
1Fx(X)

fX(X)
hX(X)

]
< Var fX [1Fx(X)] . (3.26)

Theoretically, the optimal IS auxiliary PDF leading to the best variance reduction (i.e., the vari-
ance reducing to zero in Eq. (3.24)) is given by (Bucklew, 2004, Chap. 4):

h∗X(x) =
1Fx(x) fX(x)

pf
. (3.27)

Similar derivations in the u-space would have led to a similar result, thus given by:

h∗U(u) =
1Fu(u)ϕd(u)

pf
. (3.28)

The practical use of these optimal densities is impossible due to their explicit dependence w.r.t. the
unknown QoI one wants to estimate, which is pf. Usually, the common strategy adopted is to
find a so-called “sub-optimal” auxiliary density which approaches the theoretical one defined in
Eqs. (3.27) and (3.28). Such an approximation procedure for finding a sub-optimal IS density can
be achieved by several manners. In the following, three different IS techniques are reviewed:

• the nonadaptive IS techniques based on the design point;

• the (parametric) adaptive importance sampling by cross-entropy (AIS-CE);

• the nonparametric adaptive importance sampling (NAIS).

Figure 3.4 illustrates the problem of reliability estimation in the presence of multiple MPFPs
on a real test-case proposed by Der Kiureghian and Dakessian (1998). The parabolic LSF is
given by ◦g(u) = b− u2− κ(u1− e)2, with u1 and u2 two standard normal variables, and b, κ and
e three deterministic parameters. In this case, the optimal auxiliary density is multimodal and
the approximation of the two modes is illustrated by the iso-contour lines.

3.4.1 Nonadaptive importance sampling techniques based on the design point

Presentation. The introduction of IS in the reliability community dates back from the 1980s
(see, e.g., Shinozuka, 1983; Harbitz, 1986; Schuëller and Stix, 1987; Melchers, 1989) and is, thus,
was spread through contemporary MPFP-based techniques. However, the idea of IS is already
present in former rare event literature such as in Kahn and Harris (1951).
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FIGURE 3.4: Illustration of the iso-contour lines of the approximation of the optimal auxiliary density for
the parabolic LSF proposed by Der Kiureghian and Dakessian (1998) with the following parametrization:

b = 5, κ = 0.5 and e = 0.1.

Formulation. Basically, the idea is to use the information brought by the MFPF to efficiently
sample in its vicinity. Thus, assuming that the MPFP has been previously identified (e.g., us-
ing FORM or multi-FORM), Schuëller and Stix (1987) and Melchers (1989) propose to use the
following sub-optimal auxiliary density in the u-space:

hFORM−IS
U (u) = ϕd(u− u∗) (3.29)

which is, in fact, a d-dimensional standard normal PDF centered at the MPFP. The failure prob-
ability, assuming {U(j)}N

j=1
i.i.d.∼ hFORM−IS

U , is then computed by:

p̂FORM-IS
f =

1
N

N

∑
j=1

1Fu(U
(j))

ϕd(U(j))

hFORM−IS
U (U(j))

. (3.30)

Another kind of MPFP-based IS, proposed independently by Harbitz (1986) and Bernard
and Fogli (1986), differs from the previous one in the sense that, instead of centering the sam-
pling density on the MPFP, it tries to exclude a β-sphere so as to prevent from drawing samples
within the safe domain. This method is known in literature as truncated importance sampling
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(TIS) or radial-based importance sampling (RBIS). The failure probability is then estimated, assum-
ing {U(j)}N

j=1
i.i.d.∼ ϕd, by the following formula:

p̂TIS
f = (1− Fχ2

d
(β2))

1
N

N

∑
j=1

1{‖u‖2>β}(U
(j)) (3.31)

where β is the βHL presented in Section 3.3, Fχ2
d
(·) the CDF of the chi-square distribution with d

degrees of freedom (i.e., the number of input variables), and 1{‖u‖2>β} the indicator function of
the outer β-sphere domain.

Advantages and drawbacks. These nonadaptive techniques do require, at least, the knowl-
edge of the MPFP (either its coordinates u∗, or the associated reliability index β). However,
in several cases, multiple unknown MPFPs have to be considered. Thus, by their nonadaptive
character, these techniques can be restrictive and may focus on a certain failure region while
ignoring others. A more complete review about these techniques is provided by Engelund and
Rackwitz (1993).

Remarks. As a remark, and just to motivate the next subsection, it is worth to mention that the
TIS/RBIS technique presented above has been extended by Grooteman (2008) and Grooteman
(2011) with an adaptive sampling scheme using directional simulations 8. Finally, one should
notice that, in the context of expensive-to-evaluate computer models, a hybrid strategy combin-
ing a surrogate model and FORM-IS has been proposed by Echard et al. (2013).

In the following, one will focus more on adaptive techniques whose aim is to learn the opti-
mal auxiliary sampling density with an iterative procedure.

3.4.2 Parametric adaptive importance sampling using cross-entropy optimization

Presentation. A first way to find a sub-optimal auxiliary density which approaches the optimal
one, either defined in Eq. (3.27) or in Eq. (3.28), is to consider that such a PDF belongs to a
parametric family of distributions. Then, the idea is to optimize the distribution parameters such
that it may lead to the best variance reduction (Rubinstein, 1997), or similarly, such that the
obtained density is the closest to the optimal one (Rubinstein, 1999). The optimization algorithm
used here is called the cross-entropy (CE) method (see, e.g., Rubinstein and Kroese (2004) or
Rubinstein and Kroese (2008, Chap. 8) for a review). Originally proposed by Rubinstein (1997),
this method has been widely used for rare event estimation, such as in Homem-de-Mello and
Rubinstein (2002), Kurtz and Song (2013), Mattrand and Bourinet (2014), Wang and Song (2016),
and Geyer et al. (2019). Finally, as one will see below, the AIS-CE technique combines the IS
point of view (i.e., optimal sampling), and a parametric adaptive fashion to modify the auxiliary
density so as to evoluate towards the region of interest.

Formulation. Assume that hX
9 belongs to a parametric familyH such that:

H = {hX(·; λ) | λ ∈ Dλ ⊆ Rnλ} (3.32)

8 Note that directional simulations (a.k.a. directional sampling) is another sampling technique which is not reviewed
in this thesis, by sake of conciseness. Nonetheless, the interested reader may refer to Bjerager (1988) or Morio and
Balesdent (2015, Chap. 7) for any further information.

9 Note that, here, derivations are performed in the x-space. However, based on the same principle, similar deriva-
tions can be achieved in the u-space. For a full presentation of the CE method in the u-space, the interested reader
may refer to Bourinet (2018).
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with λ = (λ1, . . . , λnλ
) a nλ-(finite)-dimensional vector of distribution parameters. Then, the

idea is to find λ such that hX is the “closest” to the optimal density h∗X. Such a closeness between
two densities can be measured by the so-called Kullback-Leibler (KL) divergence (a.k.a. Kullback-
Leibler distance 10) (Kullback and Leibler, 1951)

Definition 1 (Kullback-Leibler divergence). Let F1 and F2 be two probability distributions de-
fined by their PDFs f1 and f2 with support Rd. The Kullback-Leibler divergence between the two
PDFs f1 and f2 is defined by:

DKL( f1, f2) =
∫

Rd
f1(x) ln

(
f1(x)
f2(x)

)
dx. (3.33)

Thus, in the IS setting, the KL divergence between h∗X and hX is given by:

DKL(h∗X, hX) =
∫

DX

h∗X(x) ln
(

h∗X(x)
hX(x; λ)

)
dx

=
∫

DX

h∗X(x) ln (h∗X(x))dx−
∫

DX

h∗X(x) ln(hX(x; λ))dx. (3.34)

The value λ∗ is thus obtained with:

λ∗ = arg min
λ∈Dλ

DKL(h∗X, hX) (3.35)

λ∗ = arg max
λ∈Dλ

∫

DX

h∗X(x) ln(hX(x; λ))dx. (3.36)

Solving the above optimization problem is not straightforward since it explicitly depends on
the unknown optimal density h∗X. However, it can be proved, following Rubinstein and Kroese
(2004) and noticing that h∗X(x) ∝ 1Fx(x) fX(x) in Eq. (3.27), that it is equivalent to solve:

λ∗ = arg max
λ∈Dλ

∫

DX

1Fx(x) ln(hX(x; λ)) fX(x)dx (3.37)

λ∗ = arg max
λ∈Dλ

E fX [1Fx(X) ln(hX(X; λ))]. (3.38)

Again, to solve the above problem more efficiently, one can use the IS trick (i.e., by considering
that one would prefer to sample according to a suitable density hX(·; q) rather than according to
the initial density fX(·; θ)), one can get:

λ∗ = arg max
λ∈Dλ

∫

DX

1Fx(x) ln(hX(x; λ))
fX(x; θ)

hX(x; q)
hX(x; q)dx (3.39)

λ∗ = arg max
λ∈Dλ

EhX(·;q) [1Fx(X) wX(X; θ, q) ln(hX(X; λ))]. (3.40)

From a practical point of view, one can estimate λ∗ by using the stochastic counterpart (see,
e.g., Rubinstein, 1997; Dussault et al., 1997; Rubinstein and Kroese, 2004) of Eq. (3.40), that is, for

10 Note that DKL( f1, f2) is a positive quantity and is equal to zero if and only if f1 = f2 almost everywhere.
However, DKL( f1, f2) is not a distance since it is not symmetric (i.e., DKL( f1, f2) 6= DKL( f2, f1)).
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{X(j)}N
j=1

i.i.d.∼ hX(·; q):

λ∗ = arg max
λ∈Dλ

1
N

N

∑
j=1

1Fx(X
(j)) wX(X(j); θ, q) ln(hX(X(j); λ)). (3.41)

The IS density hX(·; q) introduced in Eq. (3.41) gets different distribution parameters denoted as
q to distinguish between the parameters at stake in the optimization process, i.e., λ, and those
uses for sampling (here q). By denoting Ex = {X(j) | 1Fx(X

(j)) = 1} as the elite set, i.e., the
samples that lead to failure regarding the indicator function (or, in other words, the samples
which belong to Fx), one can rewrite the previous equation as:

λ∗ = arg max
λ∈Dλ

1
N ∑

X(j)∈Ex

wX(X(j); θ, q) ln(hX(X(j); λ)). (3.42)

The right-hand side term defined in Eq. (3.42) is reasonably assumed to be convex and differen-
tiable w.r.t. λ (see, e.g., Rubinstein and Kroese, 2004; De Boer et al., 2005). Thus, a solution can
be obtained by cancelling the gradient of Eq. (3.42), which leads to solve the following system of
equations:

1
N ∑

X(j)∈Ex

wX(X(j); θ, q)∇λ ln(hX(X(j); λ)) = 0. (3.43)

However, in the context of rare event probability estimation, the above equations are affected
by the fact that the elite set Ex may not contain enough failure points. As a remark, one can
notice that Eq. (3.43) makes appear the gradient term∇λ ln(hX) which is a score function (i.e., the
partial derivative of the log-density). Such a quantity will be further used in the context of sen-
sitivity analysis in Chapter 4 (see Section 4.4.1.2). This problem can be adaptively solved by the
so-called multilevel cross-entropy (m-CE) technique as proposed by Rubinstein and Kroese (2004).
This m-CE algorithm provides the adaptiveness of the AIS-CE technique. The idea is to intro-
duce, jointly, a set of decreasing intermediate thresholds {ys, s ∈ N+} and a set of parameters
{λs, s ∈N} (with λ0 = θ for instance 11) and iterate on both ys and λs. It is important to notice
that the thresholds {ys, s ∈ N+} are iteratively estimated as αCE-quantiles (with αCE ∈]0, 1[ a
rarity parameter) from the set of N samples of LSF outputs Gx = {g(X(j))}N

j=1. Finally, the quasi-
optimal parameters {λs, s ∈N} are estimated as follows (assuming that [k] is the current step):

λ[k] = arg max
λ∈Dλ

1
N ∑

X(j)∈Ex,[k]

fX(X(j))

hX(X(j); λ[k−1])
ln(hX(X(j); λ)) (3.44)

where Ex,[k] is the elite set gathering the failure points regarding the current threshold y[k]. As
soon as the stopping criterion is satisfied, i.e., y[k#] ≤ 0 where [k#] denotes the last step, the failure
probability can be estimated by:

p̂AIS-CE
f =

1
N

N

∑
j=1

1{g(X(j))≤y[k# ]
}(X

(j))
fX(X(j))

hX(X(j); λ[k#−1])

=
1
N ∑

X(j)∈Ex,[k# ]

fX(X(j))

hX(X(j); λ[k#−1])
(3.45)

11 Note that, it is not compulsory to choose hX in the same family of densities as fX.
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where one sets y[k#] = 0 according to the definition adopted in this thesis regarding the thresh-
old 12. In practice, AIS-CE algorithm requires to set several tuning parameters which are detailed
in a dedicated part in Appendix D.

Advantages and drawbacks. The most noteworthy advantage of the AIS-CE technique is re-
lated to the fact that, when dealing with probability distributions belonging to the natural ex-
ponential family (NEF) (Rubinstein and Kroese, 2008, Appendix A.3), the CE problem set in
Eq. (3.43) has an analytical solution. Thus, in the case of the m-CE algorithm, analytical up-
dating formulas (e.g., in the Gaussian case) can be derived for distribution parameters (see,
e.g., Morio and Balesdent, 2015, Chap. 5). Another advantage concerns its ability to be per-
formed in both x-space and u-space which can be useful for some complex input probabilistic
models (see, e.g., Bourinet, 2018). Finally, a last advantage concerns the fact that, similarly to
CMC, one can directly control the estimation error using the estimator of the variance given in
Eq. (3.25).

The main drawbacks pointed out for the AIS-CE technique concern the assumption that the
auxiliary density belongs to a family of parametric unimodal distributions and often assumes
statistical independence between random variables so that the parameters of the marginals can
be updated separately. Thus, AIS-CE may become less efficient than other sampling techniques
to approximate optimal densities when multiple failure regions present similar weights. To
tackle this issue, several recent works try to combine AIS-CE and Gaussian mixtures (Kurtz and
Song, 2013). However, in the case of Gaussian mixtures, closed-form expressions for the update
of parameters cannot be derived (Geyer et al., 2019). Another problem concerns the potential
high-dimensionality in input. As explained in Section 3.3 concerning the inefficiency of MPFP-
based techniques for high-dimensional problems, AIS-CE suffers from a generic problem affect-
ing IS techniques in general, i.e., the incapacity to sample within the important ring (Au and
Beck, 2003; Katafygiotis and Zuev, 2008). Recent papers address this issue by considering other
kind of mixtures than Gaussian ones (e.g., von Mises-Fisher mixture in Wang and Song (2016))
or demonstrate the poor performance of AIS-CE with Gaussian mixtures for high-dimensional
problems (Geyer et al., 2019). Recently, a numerical comparison between AIS-CE and subset
sampling (presented in Section 3.5) has been proposed in Bourinet (2018, Chap. 1). The numer-
ical efficiency of these two sampling strategies are compared over three test-cases, included a
high-dimensional problem and a series system reliability problem presenting multiple failure
regions of equal weights. It appears that, provided the dimension is not too large and the LSF is
smooth enough (and not presenting multiple failure regions of similar importance), the AIS-CE
technique may be more efficient than subset sampling for very low failure probability and may
be more accurate than subset sampling.

Remarks. As a first remark, one can mention a few works related to the CE method adapted
to IS, aiming at bypassing the parametric assumption and thus proposing nonparametric-CE-
based extensions of the traditional AIS-CE technique (see, e.g., Homem-de-Mello, 2007; Botev
et al., 2007). As a second remark, one should notice that, in the context of costly-to-evaluate com-
puter models, a hybrid strategy combining a surrogate model and AIS-CE has been proposed
by Balesdent et al. (2013).

3.4.3 Nonparametric adaptive importance sampling by kernel density estimation

Presentation. Contrary to the parametric assumption made in AIS-CE, the nonparametric adap-
tive importance sampling (NAIS) relies on approximating the optimal auxiliary density by means

12 Note that, for the interested reader who would be more familiar with “threshold exceeding” probability, similar
algorithm is detailed following this notation in Morio and Balesdent (2015).
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of kernel density estimation (KDE) (see Appendix B). The nonparametric view of IS dates back
from the late 1990s, with pioneering works from Zhang (1996), Givens and Raftery (1996), and
Au and Beck (1999). Then, several works explored the possibilities of NAIS for rare event esti-
mation, in several different contexts for applications, such queueing systems and option pricing
in Kim et al. (2000), Neddermeyer (2009), and Neddermeyer (2010) or reliability and risk assess-
ment with Swiler and West (2010), Morio (2010), Morio (2011c), Morio (2012), Balesdent et al.
(2014), and Morio and Balesdent (2016).

Formulation. The mathematical formulation of NAIS relies on KDE (see, for instance, Ap-
pendix B for a brief presentation of KDE) but is relatively similar to the m-CE algorithm pre-
sented previously. Considering a set of decreasing intermediate thresholds {ys, s ∈ N+} es-
timated as αNAIS-quantiles from the set of N samples of LSF outputs Gx = {g(X(j))}N

j=1 with
αNAIS ∈]0, 1[ the rarity parameter, the NAIS algorithmic mechanism provides an iterative scheme
for adaptively updating the kernel-based sampling auxiliary density. Thus, as an example, de-
noting by [k] the current step (and omitting the subscripts “X” for h and w for the sake of clarity),
the updated auxiliary density therefore reads:

ĥ[k+1](x) =
det(H[k])

−1/2

k N Î[k]

[k]

∑
[i]=1

N

∑
j=1

w[i](X
(j)
[i] ) Kd

(
H−1/2

[k] (x− X(j)
[i] )
)

(3.46)

where the likelihood ratio w[i](X
(j)
[i] ) is given by:

w[i](X
(j)
[i] ) = 1{g(X(j)

[i] )≤y[k]}
(X(j))

fX(X
(j)
[i] )

ĥ[i−1](X
(j)
[i] )

(3.47)

and Î[k] is estimated by:

Î[k] =
1

k N

[k]

∑
[i]=1

N

∑
j=1

w[i](X
(j)
[i] ). (3.48)

To sum up and clarify the previous equations, one needs to recall that Eq. (3.46) expresses the
fact that, if one considers all the samples drawn from the beginning till iteration [k] which led
to failure realizations regarding the current threshold y[k], and taking their weights into account
(see Eq. (3.47)), these samples follow the optimal density for estimating the failure probabil-
ity corresponding to the threshold y[k]. As a result, one will use these samples to approach,
by means of a weighted KDE, this optimal density. As a final remark, one can notice that, in
Eq. (3.47), the optimal density is hidden but can be found again by replacing the denominator
by the corresponding intermediate failure probability at iteration [i − 1]. Similarly to AIS-CE,
as soon as the stopping criterion is satisfied (i.e., y[k#] ≤ 0, with [k#] denoting the last step), the
failure probability can be estimated by:

p̂NAIS
f =

1
N

N

∑
j=1

1{g(X(j)
[k# ]

)≤y[k# ]
}(X

(j)
[k#]

)
fX(X

(j)
[k#]

)

ĥ[k#](X
(j)
[k#]

)
(3.49)

where one sets y[k#] = 0 according to the definition adopted in this thesis regarding the threshold.
For more details 13 about the NAIS algorithm, one can refer to the dedicated generic algorithm
provided in Appendix D.

13 Again, for the interested reader who would be more familiar with “threshold exceeding” probability, similar
algorithm is detailed following this notation in Morio and Balesdent (2015).
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Advantages and drawbacks. The main advantage of NAIS is its flexibibility to handle complex
shapes for optimal auxiliary densities (e.g., in the case of multimodal densities corresponding to
multiple failure regions having almost equal importance). On this point, it is considered to be
more efficient than the use of parametric AIS-CE. As another advantage, one can mention that,
similarly to AIS-CE and CMC, the estimation error can be controled using Eq. (3.25).

However, the efficiency of kernel density estimators is getting worse as the input dimension
increases. As the curse of dimensionality affects the KDE, NAIS consequently suffers from it in
terms of probability estimation. Moreover, NAIS bandwidth (either scalar or matrix) estimation
and optimization can be complex and is often considered as the key problem in kernel-based
estimation. A wide literature is devoted to this specific technical point (see Appendix B).

Remarks. As a first remark, one should mention the work of Proppe (2008) which proposes
a slightly different strategy based on a local approximation of the LSS at the most important
failure regions, using moving least-squares. This LSS approximation is proposed together with
an adaptive strategy which can be combined with existing IS techniques (e.g., with a FORM-
based IS or with a KDE-based IS as proposed in Au and Beck (1999)). As a second remark, one
should notice that, in the context of expensive-to-evaluate computer models, hybrid strategies
combining surrogate models and nonparametric sampling have been proposed. For instance,
Balesdent et al. (2013) directly combines a Kriging surrogate model and NAIS. However, in
Dubourg et al. (2013), the Kriging surrogate itself is used to approximate a sub-optimal auxiliary
density for IS in order to estimate a low failure probability.

As a conclusion, IS techniques may be very efficient in terms of cost reduction compared to
CMC. The major difficulty is to construct an efficient quasi-optimal auxiliary density. Parametric
and nonparametric techniques, despite their own advantages and drawbacks, remain powerful
adaptive strategies to get a suitable auxiliary density compared to nonadaptive IS techniques
relying on the MPFP. In the following, one will see that constructing, in an adaptive manner,
such a quasi-optimal density may be achieved by adopting another strategy than the parametric
or nonparametric ones.

3.5 Subset sampling

Presentation. Subset sampling (SS) belongs to the family of variance reduction techniques. How-
ever, due to its mathematical formulation, several variants have been proposed in different sci-
entific communities. For example, one can cite, among others, the pioneering work of Kahn and
Harris (1951) (called splitting) in the field of neutronics physics, the study of Glasserman et al.
(1999) (called multilevel splitting) from the branching processes point of view, the development
by Au and Beck (2001) (called subset simulation) for reliability assessment purpose or finally,
the theoretical studies from the Markov processes point of view by Cérou and Guyader (2007)
(called adaptive multilevel splitting) and Cérou et al. (2012) from the sequential Monte Carlo point
of view.

All in all, these splitting techniques rely on the same idea: a rare event should be “split” into
several less rare events, these events corresponding to some “subsets” containing the true failure
set. Thus, the probability associated to each subset should be stronger, and consequently, easier
to estimate. As an example, on can illustrate this by considering that a failure probability pf of
the order of 10−m can be split into a product of m terms of probability 1/10. In the following,
for the sake of conciseness, only the formulation proposed by Au and Beck (2001) is discussed.
For any further information about subset/splitting techniques for rare event simulation, the
interested reader could refer to the following references (Lagnoux, 2006; Caron et al., 2014; Morio
et al., 2014).



3.5. Subset sampling 39

Formulation. The formulation of SS proposed by Au and Beck (2001) is derived in the u-
space 14 and is the one presented hereafter. Let E = { ◦g(u) ≤ 0} denote a failure event suffi-
ciently rare, one can consider a set of intermediate nested events Es with s = 1, . . . , m such that
E = Em ⊂ Em−1 ⊂ · · · ⊂ E2 ⊂ E1. Applying chain rule for conditional probabilities, one gets:

pf = P (E) = P (Em)

= P (Em|Em−1)P (Em−1)

= P (Em|Em−1)P (Em−1)P (Em−1|Em−2) . . . P (E2|E1)P (E1)

=
m

∏
s=1

ps (3.50)

where p1 = P (E1) and ps = P (Es|Es−1) for s = 2, . . . , m. To this collection of nested failure
events, one can define a set of intermediate nested failure domains (which are the so-called “sub-
sets”) such that:

Fu,s = {u ∈ Rd | ◦g(u) ≤ ys}, s = 1, . . . , m (3.51)

where ys belongs to a set of decreasing intermediate thresholds such that ym = 0 (i.e., cor-
responding to the true LSF) and y1 > y2 > · · · > ym−1 > ym. Similarly to AIS-CE and
NAIS, these thresholds are estimated as αSS-quantiles from the set of N samples of LSF out-
puts Gu = { ◦g(U(j))}N

j=1 with αSS ∈]0, 1[ the rarity parameter 15. Consequently, one can notice that
Fu = Fu,m ⊂ Fu,m−1 ⊂ · · · ⊂ Fu,2 ⊂ Fu,1. As an illustration, the underlying mechanism of
the SS is illustrated on a two-dimensional example in Figure 3.5. In Figure 3.5a, the true, but
unknown, LSS is sketched. Then, one considers successive intermediate nested failure domains
which adaptively evolve towards the true failure LSS (see Figures 3.5b, 3.5c and 3.5d).

Thus, the rare event estimation problem set in Eq. (3.2) can be split into a sequence of m sub-
problems with larger probabilities to estimate. For the first level s = 1, the probability reads:

p1 = P (E1) = Eϕd

[
1Fu,1(U)

]
(3.52)

and for s = 2, . . . , m:
ps = P (Es|Es−1) = Eϕd(·|Es−1)

[
1Fu,s(U)

]
. (3.53)

The associated estimators are given, respectively for {U(j)
1 }N

j=1
i.i.d.∼ ϕd, by:

p̂1 =
1
N

N

∑
j=1

1Fu,1(U
(j)
1 ) (3.54)

and, for {U(j)
s }N

j=1
i.i.d.∼ ϕd(·|Es−1), by:

p̂s =
1
N

N

∑
j=1

1Fu,s(U
(j)
s ) (3.55)

where N denotes the number of samples, supposed to be a constant for each level ys, and the
indicator function satisfies 1Fu,s−1(u) = 1 if ◦g(u) ≤ ys−1 and 1Fu,s−1(u) = 0 otherwise. Basically,

14 Note that, here, similar derivations could be achieved in the x-space. This last formulation is the one proposed,
for instance, by Cérou and Guyader (2007). For a full presentation of the adaptive multilevel splitting, one can refer to
Rubino and Tuffin (2009) or Morio and Balesdent (2015, Chap. 5).

15 For more information, the reader is invited to refer to the dedicated generic algorithm provided in Appendix D.
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FIGURE 3.5: Illustration on a two-dimensional example of the SS mechanism.

the SS estimator for pf is given by:

p̂SS
f = p̂1

m

∏
s=2

p̂s. (3.56)

Moreover, it appears that the conditional sampling PDF ϕd(·|Es−1) takes the form:

ϕd(u|Es−1) =
ϕd(u)1Fu,s−1(u)

P (Es−1)
=

ϕd(u)1Fu,s−1(u)
ps−1

, s = 2, . . . , m (3.57)
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This formula evokes the equation encountered when dealing with the optimal auxiliary density
in the u-space (see Eq. (3.28)). For the sake of clarity, this equation is recalled below:

h∗U(u) =
ϕd(u)1Fu(u)

pf
. (3.58)

As a consequence, if one does want to achieve variance reduction with SS compared to CMC
(and thus, to decrease the computational cost in context of very low failure probability), one
should be able to sample sequentially from a quasi-optimal auxiliary PDF as expressed in Eq. (3.57).
Such a problem can be adressed by using dedicated algorithms based on the Markov chain Monte
Carlo (MCMC) sampling technique (see, e.g., Robert and Casella, 2004; Asmussen and Glynn,
2007). For instance, dedicated algorithms such as the standard Metropolis-Hastings (MH) sam-
pler (Metropolis et al., 1953; Hastings, 1970) can be used. In the specific context of SS, the modified
Metropolis-Hastings (m-MH) sampler originally proposed by Au and Beck (2001) has been pro-
posed to deal with possible higher-dimensional reliability problems than the ones standard MH
algorithm traditionally used. Some details about these algorithms are gathered in Appendix D.

Concerning the statistical properties of the estimator of p̂SS
f in Eq. (3.56), Au and Beck (2001)

point out the fact that this estimator is biased due to the correlation between the intermediate
probability estimators p̂s for s = 1, . . . , m. Such a correlation comes from the way the m-MH
sampler is seeded at each step (see, e.g., Bourinet (2018) or Dubourg (2011) for more details). It
is also proved that the estimator p̂SS

f is asymptotically unbiased (Au and Beck, 2001). As for the
c.v. δp̂SS

f
, Au and Beck (2001) show that it is bounded such that:

m

∑
s=1

δs ≤ δ2
p̂SS

f
≤

m

∑
s1=1

m

∑
s2=1

δs1 δs2 . (3.59)

where δ2
p̂SS

f
= E

[(
p̂SS

f −pf
pf

)2
]

and δs are the c.v. of p̂s, for s = 1, . . . , m. For the sake of conciseness,

formulas for computing these quantities can be found in Au and Beck (2001) or Bourinet (2018).
The upper bound is established under the assumption of fully-correlated intermediate probabil-
ity estimators p̂s. Instead of using this upper bound, one can use the lower bound, established
under the assumption of independent probability estimators p̂s. Indeed, although it underesti-
mates the true c.v. , it appears that, in practice (see, e.g., Au et al., 2007), it may give a reasonable
approximation and approaches the empirical c.v. obtained by repetitions of the SS algorithm.

Advantages and drawbacks. On the one hand, the main advantages of SS in rare event prob-
ability estimation are its ability to handle complex LSFs (e.g., highly nonlinear, with possibly
multiple failure regions) and to behave better than other techniques regarding the input dimen-
sion. Moreover, SS may present some interesting features concerning possible parallelization
as exposed in Bourinet (2018). However, in its traditional formulation, SS is not a fully parallel
multilevel splitting (Walter, 2015).

On the other hand, SS also presents some potential drawbacks. Firstly, even if SS provides a
variance reduction compared to CMC, the number of samples required to achieve convergence
may be, in some cases, larger than that required with other IS techniques. Secondly, the estima-
tion error is not directly given by an analytical formula (e.g., variance estimators for CMC and
IS) but has to be estimated using the bounds provided in Eq. (3.59) or by repetition. Thirdly,
another intrinsic difficulty of SS is the tuning of parameters (e.g., the fixed vs. adaptive levels
{ys}m

s=1, the number of samples N per step and other related parameters in the MCMC algo-
rithm) which can be, in some cases, very influential on the efficiency of the algorithm. Fourthly,
as proved in Au and Beck (2001) and recalled by Walter (2016, Chap. 1), the SS formulation leads
to a biased estimator of pf. Other algorithms such as the Last Particle Algorithm by Guyader et al.
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(2011) or the Moving Particles algorithm by Walter (2015) can be used. A numerical investigation
about relative efficiencies of both SS and LPA/MP through the tuning of MCMC parameters has
been recently proposed by Proppe (2017). Fourthly, when input dimension d is large, SS may
be indirectly affected if the traditional MH sampler is used as it becomes inefficient in high di-
mension. Using the m-MH sampler introduced by Au and Beck (2001) allows to overcome this
difficulty. As a an alternative, one could also use another variant of m-MH as proposed in Zuev
and Katafygiotis (2011). Finally, as mentioned in Au and Wang (2014) and Breitung (2019), coun-
terexamples (e.g., specific shapes of LSS) can be found to invalidate SS convergence towards the
true failure probability. This remark highlights the fact that any insight regarding the physical
behavior of the system or about the LSF can be useful for the analyst to avoid dramatic errors in
terms of rare event probability estimation.

Remarks. As a remark, one can notice that SS can be efficiently coupled with surrogate models
(Bourinet et al., 2011; Bourinet, 2016; Bect et al., 2017) to assess reliability regarding expensive-
to-evaluate computer models. In such a case, possible limiting properties of the surrogate model
(e.g., limits concerning the input dimensionality and the smoothness of the LSF) may impact the
usual properties of SS evoked just before.

3.6 Synthesis and discussion

Several uncertainty propagation techniques for rare event probability estimation have been
reviewed in this section. They rely on various underlying strategies (e.g., random sampling for
CMC, advanced sampling for IS and SS, optimization for FORM/SORM) to efficiently estimate
pf and present both advantages and drawbacks. However, as a synthesis, one can discuss a few
generic challenges (which can be seen as strong constraints) in rare event probability estimation
which may reduce either the efficiency or the robustness of the techniques reviewed above and
thus the analyst should be aware of.

Other rare event probability estimation techniques. As a first preliminary remark, one needs
to mention that the previous section is a non-exhaustive list and only focuses, for the sake of
conciseness and without loss of generality, on the most used rare event estimation techniques
in the context defined in Chapter 2. However, throughout this section, multiple references to
other techniques (e.g., line sampling, directional sampling, stratified sampling, last particle algorithm,
moving particles) has been provided in several remarks, and the interested reader is invited to
refer to the related references mentioned all along the section.

Switching from x-space to u-space, and vice versa. As mentioned throughout this section,
various techniques (e.g., CMC, AIS-CE, NAIS and SS) presented here may be set either in the
x-space or in the u-space. However, others (e.g., FORM/SORM, FORM-IS and TIS) are only rel-
evant in the u-space. Switching between these two spaces (see Section 2.4.3 and Appendix C)
may be not difficult when considering the sole problem of probability estimation as formulated
in Eqs. (3.1) and (3.2). However, one should mention that, if working in the u-space often facil-
itates calculations, the interpretation of results may have to be done carefully as a lot of input
information is hidden w.r.t. the x-space.

Tuning parameters of rare event algorithms. Another key remark is related to the fact that
almost all the techniques presented hereabove (except CMC) come along with their own set of
tuning parameters (see, e.g., the tuning parameters for IS and SS techniques in Appendix D) and
several variants (e.g., considering fixed or variable intermediate threshold values in SS). Thus,
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the proper tuning of these parameters have consequences on the efficiency of the technique such
as discussed in Au et al. (2007), Dubourg (2011), and Balesdent et al. (2015).

Rareness of the failure event. When the rareness of the failure event increases (i.e., that the
failure probability pf gets smaller), CMC clearly becomes intractable. Thus, other available
techniques are suitable to deal with this challenge, provided the technique under considera-
tion meets some requirements about the validity of the following points. Notice that, in general,
the true failure probability is unknown. One may just want to make sure that the estimated one
is below a target failure probability.

High-nonlinearity of the LSF and multiple failure regions. A first driving point concerns the
computer code under study. Since it is black-box, it is often difficult to get any information about
the nonlinearity of the code. If, after transformation, the LSF ◦g(·) is linear or almost linear, then
approximation techniques such as FORM/SORM may be sufficient to get an accurate estimate
of pf at a reduced computational cost. In the case of a nonlinear LSF (or without any further
information), getting a prior information about the main characteristics of the code by studying
the output characteristics may provide a better insight about its behavior (see, e.g., the work by
Moutoussamy (2015) about rare event probability estimation under monotonicity constraint).
Such a prior code exploration study is conceivable provided the computer code has a short
unitary runtime.

Constrained simulation budget. If the computer code presents a long unitary runtime, or if
the simulation budget is drastically constrained, then, one can use a surrogate model (a.k.a. meta-
model), whose aim is to mimick the code, to fasten the computations. However, one needs to
ensure that the surrogate model is sufficiently refined in the regions of interest and that the mod-
eling error is controled. Several references based on coupling rare event estimation techniques
and surrogate models have been mentioned throughout this section.

Controling the estimation error. Controling the estimation error may be a key requirement
for some applications. In this case, FORM/SORM does not provide any indicator about this
estimation error. For other techniques, as mentioned previously, this error may be estimated,
either directly by using analytical formulas (e.g., for CMC or IS), or using error bounds on the
c.v. of the failure probability (e.g., for SS).

High-dimensional input vector. For large input dimension d 16, almost all of the techniques
reviewed hereabove (except CMC) get their efficiency affected by this constraint. As mentioned
for MPFP-based techniques (i.e., FORM/SORM, FORM-IS and TIS), the notion of MPFP loses its
meaning due to geometric considerations. Similarly, IS techniques may become inefficient due
to the difficulty to sample within the so-called “important ring”. Another limit may arise in the
use of kernel-based estimators (e.g., for NAIS) whose efficiency in high dimension is limited.
As for SS, standard MH sampler used to get conditional samples becomes inefficient regard-
ing the large input dimension. The m-MH sampler proposed by Au and Beck (2001) is far less
affected by the input dimension, but may also attain its limits for very high dimensional prob-
lems. Finally, none of these methods manages to easily handle very high-dimensional problems.
However, being aware of that, the analyst should perform prior code exploration (e.g., using
sensitivity analysis) so as to, if possible and regarding the goal of the study, reduce the input di-
mension (e.g., by identifying the effective input dimension). However, this type of analysis may

16 Note that “large input dimension” is a generic but vague vocabulary. Indeed, large dimension may start from
d ≈ 10 to d ≈ 103 in some scientific communities. In this thesis, input dimension will not exceed d = 10.
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also present its own limits (e.g., possibly high simulation costs induced by sensitivity analysis
methods, restricted hypotheses about the independence of the inputs).

Robustness of the probability estimate. As a final remark, one should mention that all the
techniques presented in this section rely on the assumption that the input probabilistic model is
perfectly known and thus, the probability estimate is sufficiently representative of what could
be the true (but unknown) pf. However, such an estimate is directly conditional on the input
probabilistic modeling and may be affected if some changes occur in this latter. This remark
directly motivates the next chapter whose aim is to review some of the available techniques to
test and potentially justify the robustness of the estimated rare event probability regarding the
input probabilistic model.

3.7 Conclusion

This chapter provided a review of several rare event probability estimation techniques that
can be used for black-box input-output computer models. For all these techniques, a common
description framework has been adopted through a four-step summary: i.e., Presentation - For-
mulation - Advantages and drawbacks - Remarks. As a consequence, the role of the analyst is of
utmost importance in terms of correctly specifying the problem under study and choosing an
adequate technique to estimate pf. When dealing with a black-box computer model, with no
prior information about the code (i.e., just minimal input probabilistic information), testing sev-
eral techniques (when possible) and comparing their results remain the simplest way to ensure
robustness of the reliability assessment.

In the next chapter, a brief review of the main sensitivity analysis methods is provided. Fol-
lowing the “goal-oriented viewpoint” adopted in this thesis (see Section 2.5), these methods are
distinguished between two categories regarding the QoI they focus on:

• sensitivity analysis of model output (a.k.a. SAMO) methods when the QoI is the model output
Y;

• reliability-oriented sensitivity analysis (a.k.a. ROSA) methods when the QoI is, either related
to the failure domain (e.g., value taken by the LSF or by the indicator function of the failure
domain) or a safety measure (e.g., a failure probability or a reliability index).
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4.1 Introduction and motivations

When performing forward UQ (i.e., modeling and propagation of uncertainties, as presented
in Figure 1.1), one may be interested in some backward UQ, i.e., by investigating “how the uncer-
tainty in the output of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” (Saltelli et al., 2004). Thus, sensitivity analysis (SA) can be seen
as a backward study whose aim is to bridge the gap from the output to the input 1.

Traditionally, SA has been widely studied as the analysis of the model output of black-box
computer models. For this reason, the denomination “sensitivity analysis of model output” (SAMO)
is often encountered in SA literature (Saltelli et al., 1993; Chan et al., 1997). One recalls here that,
in this manuscript, the model output is supposed to be scalar. As stressed by several authors,
SAMO should be performed according to a range of general conceptual objectives, called SA
settings, properly defined in various references (see, e.g., Saltelli et al., 2004; Borgonovo, 2017).
These objectives can be listed such as below (Saltelli et al., 2004):

• factor prioritization (FP-setting): the aim is to identify the key inputs driving the model
behavior. Thus, a possible reduction of the uncertainty affecting these inputs may lead to
the largest reduction of the output uncertainty;

• factor fixing (FF-setting): the aim is to identify the noninfluential inputs which could be
fixed at some given values without any loss of information about the output;

• variance cutting (VC-setting): the aim is to identify which inputs should be fixed so as to
reach a target value on the output variance;

• factor mapping (FM-setting): the aim is to identify the key inputs responsible for produc-
ing values of the output in a given region of interest;

to which Borgonovo (2017) suggests adding:

• model structure (MS-setting): the aim is to analyze the possible interactions between in-
puts;

• sign of change (SC-setting): the aim is to identify whether an increase in the inputs gives
rise to an increase or a decrease in the model output;

• stability (S-setting): the aim is to analyze whether perturbations in the inputs may cause
the preferred alternative to change.

Consequently, SA should be performed in light of one (or several) of the previous SA settings.
Thus, similarly to the previous chapter, a “goal-oriented view” can be apply to SA. However, it is
of paramount importance to notice that all the previous SA settings aim at providing qualitative
or quantitative indicators which, finally, should lead to a pragmatic counterpart in terms of
decision (e.g., fixing some inputs and reducing the input dimension).

In the context of rare failure probability estimation, as explained in Chapter 3, one can con-
sider that the goal is different than a direct study of the model output. Moreover, the simulation
cost may be expensive and the uncertainty propagation methods used to estimate pf may vary
from the traditional ones used to study the variability in Y. As a consequence, the restriction to
a specific critical domain of the model output distribution (e.g., in a tail) and the definition of a
failure scenario implies to focus on a specific “reliability objective”. If some of the previous SA set-
tings may be adapted to reliability measures such as pf, one needs to ensure that the pragmatic
counterparts listed hereabove do not lead to dramatic consequences in terms of safety. Thus, in

1 Note that, in SA literature, the name “input” is traditionally replaced by “factor”. In this thesis, one will use
both of them indistinctly.
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the present chapter, a special focus on “reliability-oriented sensitivity analysis” (a.k.a. ROSA) meth-
ods is provided. The aim is, for the reader, to be presented the strong links (i.e., similarities and
borrowed methods from SAMO to ROSA) and the key differences between these two types of
analyses. As an illustration, Figure 4.1 conceptually presents the different goals of, respectively,
SAMO and ROSA.

Black-box modelInput probabilistic model Goal-oriented output

Sensitivity analysis

M(·)

• SAMO

QoI→ Y / E[Y] / Var[Y] / . . .

• ROSA

QoI→ pf / β / g(·) / ◦g(·) / 1F•(·)

• Basic variables

X ∼ fX(x; θ)

• Distribution type
and parameters

Choice −→ fX(·; ·) and θ

• Model output

Y =M(X)

• Reliability measures

pf = P(Y ≥ yth)

= P(g(X) ≤ 0)
= P(

◦g(U) ≤ 0)

β = −Φ−1(pf)

FIGURE 4.1: Illustration of the SAMO vs. ROSA points of view within the UQ methodology.

This chapter is organized as follows. Section 4.2 aims at introducing the basic principles of
SAMO and presenting a few SAMO methods which exhibit some theoretical and/or compu-
tational links or similarities with the ROSA methods presented further. Section 4.3 proposes
a synthesis of SAMO methods and highlights the motivations for considering ROSA methods.
Section 4.4 first draws up an inventory of the main ROSA methods when the distribution pa-
rameters are of interest. Section 4.5 provides an inventory when the input variables are of inter-
est. Section 4.6 proposes a synthesis about ROSA and recapitulates the most important features
about ROSA. Finally, a conclusion summarizing the most important results of this chapter is
given in Section 4.7.

4.2 Sensitivity analysis of model output (SAMO)

As a preliminary remark, one should notice that, a common distinction is first made between
two different families of SAMO methods (Shekhar et al., 2017):

• the local SAMO methods which imply to study the local impact of inputs’ variations on
model output by concentrating on the sensitivity in the vicinity of a set of input values.
Such sensitivities are often evaluated through gradients or partial derivatives of the model
output at these input values. Finally, the values of other inputs are kept constant when
studying the local sensitivity of a specific input;

• the global SAMO methods which imply to study the effects of various simultaneous inputs’
variation over their entire domain on the model output. Thus, one can look closer at both
output variations induced by individual inputs and/or interactions between several of
them (i.e., groups of input variables).
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This section does not aim at presenting an exhaustive review about SAMO methods, but only
providing a compendium about a few of them which are widely used and thus will be adapted
in the ROSA context. For the sake of brevity, only the basic principles and core equations are re-
viewed in this section. The interested reader can refer to more comprehensive reviews such as in
Helton et al. (2006), Morio (2011a), Iooss and Lemaître (2015), Wei et al. (2015b), and Borgonovo
and Plischke (2016).

4.2.1 Local SAMO methods

Historically, local SAMO methods are the first ones which have been applied to determine
the impact of small input perturbations on the model output. Among local SAMO methods, one
can distinguish between differential and adjoint methods.

Differential methods rely on calculating or estimating the partial derivatives of the model out-
put at some specific values (e.g., around a nominal value such as the mean of an input random
variable). That is, assuming a particular realization x0 of the input vector, the aim is to estimate
the following quantity:

∆i(x0) =
∂M
∂xi

(x0) =
∂M
∂xi

(x0
1, . . . , x0

d) (4.1)

This quantity characterizes the effect of a perturbation of the input Xi near a given value x0
i on

the model output Y. In practice, assuming that the above equation cannot be solved by analytical
differentiation, such a quantity can be estimated by several manners. For instance, one can use
a finite difference (FD) 2 scheme such that (here, a forward scheme):

∆FD
i (x) =

M(x1, . . . , xi−1, xi + δFD, xi+1, . . . , xd)−M(x)
δFD

(4.2)

where δFD is a perturbation step such that ∆i(x) = limδFD→0 ∆FD
i (x). The choice of such a pertur-

bation step is of major importance for ensuring accuracy of the FD scheme which and remains
tricky in practice (see, e.g., Iott et al., 1985). Similarly, such a local index can be approximated
using the one-variable-at-a-time (OAT) design (Ekström and Broed, 2006). The idea is to consider a
range for each input variable (e.g., an interval of ±10%, or a regular grid if the inputs have been
preliminary scaled, or mapped to a scaled space such as the d-dimensional unit hypercube) and
varying only one variable while the others are kept fixed at a baseline value. These methods
have been applied in various fields (see, e.g., Ekström and Broed (2006), Castillo et al. (2008),
and Martins (2012) for some applications).

Adjoint methods (Cacuci, 1981; Cacuci, 2003; Cacuci et al., 2005) are also widely used in
numerous fields when an explicit formulation of the adjoint is available, which can be the case
for some problems (Allaire, 2015). However, in the context of black-box computer code, deriving
an adjoint problem and using these dedicated methods are often impossible.

As a conclusion, one can recall that local SAMO methods have been the first methods de-
veloped for SA. The estimation of local indices is easy as soon as an analytical formula for the
model (and its adjoint) is available. Automatic differentiation methods can also be considered
(see, e.g., Walter, 2014, Chap. 6). However, for complex black-box computer code, the use of
FD schemes can be prohibitive, while automatic differentiation can be even impossible. Finally,
the interpretation of these local indices regarding the SA settings, presented in Section 4.1, can
be difficult if the variables are very heterogeneous in terms of probability laws and supports.
However, they still play a key role regarding robustness of a result w.r.t. a local perturbation and
can be directly used for optimization purposes.

2 Note that here, a forward scheme is given as an example, but both backward and central FD schemes could be
considered too.
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4.2.2 From local to global: the screening methods

When multiple inputs are varied in the same time over a wider region of interest (i.e., no
longer around a specific value, but over the full definition domain of an input), local SAMO
methods are no longer suitable to catch the overall impact on the QoI. However, the local index
they provide can be generalized if the local perturbations are repeated a sufficient number of
times over the entire region of interest. This is the basic idea of the following two methods.
Screening methods are based on a discretization of the input space in fixed levels (i.e., grid) and
the evaluation of indices at well-chosen points of this grid (Iooss and Lemaître, 2015). In this
sense, they can be seen as a generalization of the previous local methods over the entire input
space and are directly linked to the theory of design of experiments (DOE) (see, e.g., Morris, 2017).

4.2.2.1 Elementary effects and the Morris method

The Morris method (Morris, 1991) is based on the repetition of a set of randomized OAT
schemes. A preliminary normalizing phase is required by mapping the input space to the d-
dimensional unit hypercube Hd = [0, 1]d =×d

i=1[0, 1] (Cartesian product of d sets).
The method consists in discretizing the input space in nlevel levels by input (i.e., creating

a grid in the over [0, 1]d) and performing a number nOAT of OAT designs following randomly
chosen sample paths along the grid. To estimate the sensitivity, one needs to define the elementary
effect (EE) computed while perturbating the i-th input Xi at the j-th repetition step, such that:

∆EE
i (x(j)) =

M(x(j) + δEE ei)−M(x(j))

δEE

def
= ∆EE,(j)

i (4.3)

where δEE is the perturbation step (set as a multiple of 1/(nlevel − 1)) and ei is a vector of the
standard Euclidean basis. Note that the grid-point where the OAT design is performed and the
direction of the perturbation (i.e., ei) are randomly chosen. Thus, for each input variable, one

defines a set of two indices as follows (Morris, 1991): µ∆EE
i

= E[∆EE
i ] and σ∆EE

i
=
√

Var
[
∆EE

i

]
.

However, to avoid “vanishing” effects due to opposite signs (e.g., in the case of non-monotonic
models) in the expected value above, Campolongo et al. (2007) propose to use the absolute value
of the elementary effect |∆EE,(j)

i | in the mean index (while the standard deviation index is not
modified) leading to the definition of the following indices:

µ∗|∆EE
i |

= E[|∆EE
i |], σ∆EE

i
=
√

Var
[
∆EE

i

]
. (4.4)

and their empirical estimators:

µ̂∗|∆EE
i |

=
1

nOAT

nOAT

∑
j=1
|∆EE,(j)

i |, σ̂∆EE
i

=

√√√√ 1
nOAT

nOAT

∑
j=1

(
∆EE,(j)

i − 1
nOAT

nOAT

∑
j=1

∆EE,(j)
i

)2

. (4.5)

As for the interpretation of these indices, µ̂∗|∆EE
i |

measures the influence of the i-th input on the
dispersion of the model output (the larger this index, the more influential the input) and σ̂∆EE

i
measures the nonlinear effects and/or the possible interactions between multiple inputs. If σ̂∆EE

i
is small, it suggests a linear relationship between Xi and Y, while a large σ̂∆EE

i
implies either a

nonlinear effect between Xi and Y or a combined effect between Xi and other inputs. Finally,
another feature of the method is that these two indices can be plotted on a same graph (i.e., σ̂∆EE

i
as a function of µ̂∗|∆EE

i |
) which provides a qualitative tool to distinguish the various effects of the

input variables on the output.
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The advantages of such a method is to provide a qualitative manner to fastly explore the
behavior of a black-box computer code, at a low computational cost. The practical implementa-
tion relies on the definition of a set of matrices (e.g., orientation and permutation matrices) and
setting the two parameters nlevel and nOAT (see Saltelli et al. (2004)). If the method is fully de-
scribed in Morris (1991), more details about practical implementation can be found in Ekström
and Broed (2006) and Bolado-Lavin and Costescu Badea (2008). This method is said to be global
in the sense that it averages local measures over the input space. Finally, the Morris method
is tractable when facing problems with large d. However, its main drawback is that it is not
possible to distinguish between nonlinear effects and interaction effects which can be a critical
information in terms of decision making. Moreoever, due to the normalized grid, it does not
really take into account the input distributions.

As a remark, one can notice that the Morris method provides relevant indices regarding both
the FF- and MS-settings described in Section 4.1.

4.2.2.2 Derivative-based global sensitivity measures

Derivative-based global sensitivity measures (DGSM) can be seen, either as a direct generaliza-
tion of the local differential methods provided in Subsection 4.2.1 (by getting a global measure
from local derivatives) or as a generalization of the Morris method (by adopting a global strat-
egy but using strict local derivatives and not variations on a fixed grid, which enables to take
the input distributions into account). DGSM have been first introduced by Sobol and Gershman
(1995) and then further investigated, e.g., in Kucherenko et al. (2009) and Patelli et al. (2010).
Thereafter, some theoretical links between the DGSM and the Sobol indices 3 (these indices are
presented further in Subsection 4.2.3.1) have been proved and investigated in Lamboni et al.
(2013) and Roustant et al. (2014). For the interested reader, details and references about the
DGSM can be found in Kucherenko and Iooss (2017).

Assuming X = (X1, . . . , Xd)
> a d-dimensional vector of d independent Gaussian random

variables, with joint PDF fX defined on Rd, the DGSM index νi associated with the i-th input Xi,
introduced by Sobol and Kucherenko (2009), is given by:

νi =
∫

Rd

(
∂M(x)

∂xi

)2

fX(x)dx = E

[(
∂M(X)

∂Xi

)2
]

. (4.6)

Other DGSM indices can be defined depending on the types of probability distributions (e.g., for
uniformly distributed random variables over the unit hypercube Hd, see Kucherenko and Iooss,
2017).

The main advantage of DGSM relies on their reduced cost compared to other global sensivity
methods and the bounding properties which enable a qualitative analysis regarding the FP-,
FF-settings defined in Section 4.1. However, it should be noted that the ranking of the most
influential variables may be different between DGSM and Sobol indices, especially when dealing
with nonlinear models (Kucherenko and Iooss, 2017).

As a remark, one should notice that, in the context of costly-to-evaluate computer models,
hybrid strategies combining surrogate models and DGSM have been proposed in Mai and Su-
dret (2015) and De Lozzo and Marrel (2016a).

As a conclusion of this subsection, screening methods are known to be efficient for a rough
but fast exploration of the input space and the code behavior. However, the information they

3 Note that the theoretical links rely on bounding Sobol indices using DGSM. These bounds can be derived using
Poincaré inequalities and their associated Poincaré constants (which some of them can be optimal), derived for mul-
tiple probability distributions. See Lamboni et al. (2013), Kucherenko and Iooss (2017), and Roustant et al. (2017) for
further information about these bounds.
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provide is more qualitative than quantitative. In the next subsection, quantitative global meth-
ods providing importance measures (i.e., proper measure allowing a ranking between input vari-
ables w.r.t. their relative influence) are investigated.

4.2.3 A few importance measures for global SAMO

Contrary to screening methods which allow a qualitative and fast exploration of computer
codes, global SAMO methods aim at providing importance measures which are of major interest
for FP-, FF- and VC-settings.

4.2.3.1 Functional decomposition of variance and Sobol indices

One needs first to consider that the modelM(·) under study can be possibly nonlinear and
non-monotonic. Then, assumingM(·) is square-integrable and defined on the unit hypercube
[0, 1]d 4, with X gathering d independent 5 variables, the model output Y can be decomposed
such that (Hoeffding, 1948):

Y =M(X) =M0 +
d

∑
i=1
Mi(Xi) +

d

∑
i<j
Mij(Xi, Xj) + · · ·+M1...d(X) (4.7)

whereM0 = E[M(X)] =
∫
[0,1]dM(x) fX(x)dx, and where fX is supposed to be a product of d

uniform marginals over [0, 1]. The other terms are given by:

Mi(Xi) = E[M(X)|Xi]−M0 (4.8)
Mij(Xi, Xj) = E[M(X)|Xi, Xj]−E[M(X)|Xi]−E[M(X)|Xj]−M0 (4.9)

andM1...d(X) is given by the difference betweenM(X) and the sum of all other terms of increas-
ing dimension such that Eq. (4.7) is verified. The uniqueness of this functional decomposition is
ensured if the following orthogonality property is verified (Sobol, 1993):

∫ 1

0
Mj1...js(xj1 , . . . , xjs)dxjk = 0, ∀k ∈ {1, . . . , s}, ∀{j1, . . . , js} ⊆ {1, . . . , d}. (4.10)

This unique functional decomposition of the model output leads to consider the following func-
tional decomposition of variance (a.k.a. functional analysis of variance or F-ANOVA):

Var [Y] =
d

∑
i=1

Di(Y) +
d

∑
i<j

Dij(Y) + · · ·+ D1...d(Y) (4.11)

4 Note that this assumption is taken by Sobol (1993) but can be generalized to any other type of input distribution
by transformation as mentioned in Chastaing (2013, Chap. 1) and Baudin and Martinez (2014).

5 Note that, in this manuscript, only the Sobol indices in the case of independent inputs. For dependent inputs, a
generalized Hoeffding-Sobol decomposition has been proposed in Chastaing (2013). Moreover, it can be shown that,
in the dependent case, four types of Sobol indices are necessary. More details and related references can be found in
Iooss and Prieur (2017).



4.2. Sensitivity analysis of model output (SAMO) 53

with Di(Y) = Var [E[Y|Xi]], Dij(Y) = Var
[
E[Y|Xi, Xj]

]
− Di(Y)− Dj(Y) and so on for higher

order interaction terms. The Sobol indices (Sobol, 1993; Sobol, 2001) are thus defined as follows:

Si =
Di(Y)
Var [Y]

=
Var [E[Y|Xi]]

Var [Y]
(4.12)

Sij =
Dij(Y)
Var [Y]

=
Var

[
E[Y|Xi, Xj]

]
− Di(Y)− Dj(Y)

Var [Y]
(4.13)

. . .

Eq. (4.12) is known as the first-order Sobol index and quantifies the part of variance of Y due
to the variability in Xi (a.k.a. the main effect) while Eq. (4.13) is the second-order Sobol index and
measures the effect of the interaction between Xi and Xj. Higher order Sobol indices can be
derived following the same principle 6. However, in practice, deriving all of the indices can
be tedious, especially when d is large, and one thus prefers to compute the total Sobol index
introduced by Homma and Saltelli (1996) and defined such that:

STi = ∑
j∈{#i}

Sj (4.14)

where {#i} represents all the subsets of {1, . . . , d} containing i. The total Sobol index measures
the part of output variance which can be explained by all the combined effects (a.k.a. the total
effect) in which Xi is part of. Finally, this total Sobol index can be rewritten as follows:

STi = 1− Var
[
E[Y|X−i]

]

Var [Y]
(4.15)

where X−i stands for X without the i-th component Xi. In practice, the total index is often con-
sidered under the following equivalent form (see, e.g., Saltelli et al., 2008):

STi =
E
[
Var

[
Y|X−i]]

Var [Y]
. (4.16)

Numerical estimation of Sobol indices can be achieved by CMC sampling using pick-freeze 7

estimators as proposed by Homma and Saltelli (1996), Sobol (2001), and Saltelli (2002). However,
the computational cost to get converged estimates is often demanding. Other sampling tech-
niques such as QMC sampling or Fourier amplitude sensitivity test (FAST) have been proposed and
various formulas have been proposed to enhance the numerical estimation (see, e.g., Lemaître
(2014) and Iooss and Lemaître (2015) for further details).

The main advantage of Sobol indices is that they provide a clear quantitative interpretation
of the respective contributions of each input to the variance of the output. However, as a draw-
back, one needs to ensure that the variance is the real moment of interest characterizing the
model output. For instance, in a context of multimodal or highly-skewed output distribution,
the variance is no longer representative. Another common drawback pointed out is the cost
associated with the estimation of Sobol indices in the CMC setting.

As a remark, one should notice that, in the context of costly-to-evaluate computer models,
the use of surrogate models can serve as an efficient basis for SAMO. For instance, on the one
hand, Sobol indices can be efficiently derived and estimated using polynomial chaos expansion
(PCE) as shown in Sudret (2008). One can get the Sobol indices by a simple post-processing of

6 Note that, when d is the input dimension, the total number of indices is 2d − 1.
7 For a deeper theoretical study of statistical properties of pick-freeze estimators for Sobol indices, one can refer to

Gamboa et al. (2015).
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the PCE coefficients. On the other hand, using Gaussian processes (GP), as proposed in Marrel et
al. (2009), allows one to efficiently derive confidence intervals for the indices. For the interested
reader, a thorough review of these methods can be found in Le Gratiet et al. (2017). Note that
other surrogate models can be used (e.g., law-rank approximation (LRA) as presented in Konakli
and Sudret (2016)).

4.2.3.2 Sensitivity indices based on dissimilarity measures

To overcome the restrictions due to focusing only on the variance of the model output as
stated in the formulation of Sobol indices, several sensitivity indices have been proposed to en-
hance these limitations. Even if the following indices presented herebelow have been, for most
of them, proposed under various assumptions and remain different in terms of technical details
(e.g., formulas, estimation, interpretation of the results), they can be considered as members of a
wider family containing sensitivity indices based on dissimilarity measures (Da Veiga, 2015; Rah-
man, 2016). Indeed, the basic idea is to consider that the impact of an input Xi on the model
output Y can be measured by the differences between the output probability distribution, de-
noted PY and the conditional probability distribution PY|Xi

(Borgonovo, 2007). However, this
distributional changes have to be measured through the use of a dissimilarity measure (Da Veiga,
2015; Rahman, 2016).

Under the assumption of a continuous modelM(·) and an input vector X gathering d inde-
pendent random variables, one can define the following sensitivity index:

SDi = E fXi
[D(PY, PY|Xi

)] (4.17)

where D(·, ·) is a dissimilarity measure between two probability distributions. Thus, one can
notice that the choice of D(·, ·) determines the type of sensitivity index under study. In the
following, several dissimilarity measures and their associated sensitivity indices are presented.
The interested reader is invited, for any further information, to refer to both Da Veiga (2015) and
Rahman (2016).

Another possible definition of the Sobol indices. As a first dissimilarity measure, one can
choose a comparison between the mean values of the two probability distributions:

D(PY, PY|Xi
) = (E[Y]−E[Y|Xi])

2 (4.18)

which leads, after some calculations, to the non-normalized first-order Sobol index:

SDi = Var [E[Y|Xi]] . (4.19)

Consequently, Sobol indices can be seen as a particular case of a class of more general sensitivity
indices defined through dissimilarity measures. As one can see herebelow, one can thus define
moment-independent sensitivity indices which do not rely on the variance of the output as a QoI.

Sensitivity indices derived from Csiszár fC-divergences. A wide class of dissimilarity mea-
sures is given by the family of Csiszár fC-divergences 8. The dissimilarity measure, if chosen

8 Note that the notation fC instead of “Csiszár f -divergences” is adopted here to avoid any confusion with PDFs.
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among the class of Csiszár fC-divergences (denoted DfC(·, ·)) is given by 9:

DfC(PY, PY|Xi
) =

∫

R
fC

(
fY(y)

fY|Xi
(y|xi)

)
fY|Xi

(y|xi)dy (4.20)

where fC(·) is a convex function defined such that the normalization condition fC(1) = 0 is
verified 10. The divergence function fC(·) can be chosen among a wide list of functions. For
instance, one can mention:

• the Kullback-Leibler divergence: fC(t) = − ln(t) or fC(t) = t ln(t);

• the Kolmogorov total variation distance: fC(t) = |t− 1|;

• the Pearson χ2 divergence: fC(t) = (t− 1)2 or fC(t) = t2 − 1.

As a consequence, combining Eq. (4.20) and Eq. (4.17), one can build the following generic fC(·)-
dependent sensitivity index:

S
DfC
i =

∫

DXi×DY

fC

(
fY(y) fXi(xi)

fXi ,Y(xi, y)

)
fXi ,Y(xi, y)dxidy. (4.21)

The motivation for creating such a wide class of indices can be summed up as: an input Xi has a
strong influence on the model output Y if, when one fixes this input, one can measure a strong
change in the distribution of Y, and not only on the second-order-moment of Y (i.e., the variance,
as for Sobol indices). This type of index has the fundamental properties of being nonnegative
and reducing to zero if Xi and Y are independent. Finally, it can be shown that, choosing a
particular function fC(·) in the previous list allows to reconstruct 11 several indices proposed in
the literature in various contexts (Da Veiga, 2015; Rahman, 2016). As a few examples, one can
cite:

• the Kullback-Leibler discriminator from Park and Ahn (1994) and Relative entropy index pro-
posed by Liu et al. (2006a) both rely on the use of the Kullback-Leibler divergence with
fC(t) = t ln(t);

• the Entropy index proposed by Krzykacz-Hausmann (2001) is a normalized version of the
hereabove index assuming a Kullback-Leibler divergence with fC(t) = − ln(t);

• the Moment-independent sensitivity index (a.k.a. the Borgonovo index) proposed by Borgonovo
(2007) relies on the use of the Kolmogorov total variation distance with fC(t) = |t− 1|.

All these indices presented hereabove are not detailed in this manuscript for the sake of con-
ciseness, but more information about them can be found in Caniou (2012) and Lemaître (2014)
for an overview of their respective classical formulations. The major interest of all these indices
is that they provide a better insight about sensitivities when the variance of the output is no
longer relevant, and thus outperform the Sobol indices. For instance, a comparison between
Sobol indices and both the “Entropy index” and “Relative entropy index” is proposed in Auder

9 Formally, one needs to assume that, for any i = 1, . . . , d, the couple (Xi, Y) has an absolutely continuous dis-
tribution w.r.t. the Lebesgue measure on R2. Thus, one can reasonably assume that the PDFs fY , fY|Xi

and fXi ,Y do
exist.

10 Note that this condition ensures that the smallest possible value for DfC
(PY , PY|Xi

) is zero, which is a useful
property for the sensitivity indices.

11 The term “reconstruct” here denotes the fact that the way these indices are presented in this manuscript,
i.e., through their common underlying framework should not be misleading for the reader. Several sensitivity in-
dices have been proposed several years before this common interpretation framework.
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and Iooss (2009). As for “Moment-independent sensitivity index / Borgonovo index”, much ef-
fort has been done to propose efficient estimation strategies (see, e.g., Wei et al., 2013; Derennes
et al., 2018a; Derennes et al., 2018b) which could replace the initial “double-loop sampling”
strategy (Borgonovo, 2007) which can be cumbersome for complex computer codes.

Sensitivity indices derived from other dissimilarity measures. Other dissimilarity measures
can be used to extend the previous indices. In Da Veiga (2015), dependence measures such as the
mutual information (which, when combined with specific Csiszár fC-divergences, leads to a non-
normalized version of the Entropy index presented hereabove), distance correlation (dCor) and
the Hilbert-Schmidt independence criterion (HSIC). Starting from the two last dependence measures
(dCor and HSIC), and working in the dedicated theoretical framework of Reproducing Kernel
Hilbert Spaces (RKHS, see, e.g., Berlinet and Thomas-Agnan (2004)), two indices and their pick-
and-freeze estimators are proposed and tested over a large panel of examples. A few advantages,
among others, remain their low computational cost compared to Sobol indices and their ability
to deal with large number of inputs. Finally, the possible use of these indices for screening
purposes has been recently investigated in De Lozzo and Marrel (2016b) and their extension to
SA of spatial model outputs has been studied in De Lozzo and Marrel (2016c). However, the
accurate estimation of dependence measures in high-dimension remains a challenge for indices
such as those defined using Csiszár fC-divergences or other dependence measures.

4.2.3.3 Sensitivity indices based on contrast functions

Another class of sensitivity indices, called goal-oriented sensitivity indices has been introduced
by Fort et al. (2016) 12. These indices are based on the use of contrast functions.

As a first point, one can recall the wide variety of existing QoIs mentioned in Section 2.5.1
and the associated “goal-oriented point-of-view”. Based on this analysis, Fort et al. (2016) pro-
pose to consider that all of the QoIs listed in Section 2.5.1 (i.e., the PDF of the model output fY,
the mean value E[Y] or an exceedance probability P(Y ≥ yth)) can be considered as various
different features, denoted by the generic quantity ρZ ∈ Z , with Z the feature space. Then, a
contrast function (assuming that PY is some probability measure on the space DY) is defined as
any function ψ given by:

ψ :
∣∣∣∣
Z −→ L1(PY)

ρZ 7−→ ψ(·, ρZ ) : y ∈ DY 7−→ ψ(y, ρZ )
(4.22)

and such that ρ∗Z = arg min
ρZ∈Z

Ψ(Y, ρZ ), where Ψ : ρZ 7→ EY[ψ(Y, ρZ )] is called the average

contrast function. As an example, by choosing Z = R as the feature space, thus one gets ρZ =
E[Y] ∈ R and finally one gets the mean contrast given by ψ(y, ρZ ) = (y − ρZ )2. Another
example consists in choosing Z = [0, 1], then ρZ = P(Y ≥ yth) ∈ [0, 1]. As a result, the contrast
function is given by ψ(y, ρZ ) = (1{y>yth}(y) − ρZ )2. Other examples can be found in Rachdi
(2011, Chap. 2). Finally, the associated sensitivity index (called ψ-index) is given by:

Sψ
i =

E[ψ(Y, ρ∗Z )]−E(Xi ,Y)[ψ(Y, ρZ ,i(Xi))]

E[ψ(Y, ρ∗Z )]−E[minρZ ψ(Y, ρZ )]
(4.23)

12 Note that, in their paper, Fort et al. (2016) aim at developing a general approach for SA, named “Goal Oriented
Sensitivity Analysis” (GOSA). The term “Reliability-oriented sensitivity analysis” (ROSA) used in this manuscript (not
dedicated to a single method but to a wider class of methods) has been mainly borrowed and adapted from this
reference and from the recent work of Perrin and Defaux (2019).
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where ρZ ,i(xi) = arg min
ρZ

E[ψ(Y, ρZ )|Xi = xi] is a feature of interest about Y conditionally to

Xi = xi (which can be computed analytically for special cases of interest, see Rachdi (2011,
Chap. 2)). Moreover, as mentioned in Fort et al. (2016), for specific cases, the second term in
the denominator satisfies E[minρZ ψ(Y, ρZ )] = 0. For any further details about practical imple-
mentation of these indices (e.g., MC estimators have been derived), the reader should refer to
Rachdi (2011) and Fort et al. (2016). As a final remark, one should notice that, when choosing
the mean contrast ψ(y, ρZ ) = (y− ρZ )2, the ψ-indices correspond to the first-order Sobol indices
(Fort et al., 2016).

Among several properties, one can mention that the ψ-indices are nonnegative and satisfy
Sψ

i ∈ [0, 1] and Sψ
i = 0 if Y and Xi are independent. A major advantage remains their adaptability

w.r.t. the chosen goal (i.e., the feature of interest) and their ability to provide more information
than variance-based indices. However, for some specific contrasts (e.g., quantile-contrasts), their
estimation remains difficult (see, e.g., Browne (2017, Chap. 7,8) and Maume-Deschamps and
Niang (2018)).

4.2.3.4 Shapley effects

Shapley effects (a.k.a. Shapley values) have been introduced in game theory by Shapley (1953).
The basic idea of Shapley values is, in the context of game theory, to find a way to fairly reward
the players by splitting the gains resulting from a team effort. Thinking now in terms of variance-
based SA, it appears that the idea of attributing a part of the output variance to each input
contributor has some similarities. This similarity has been pointed out and brought to the SA
community, in the context of variance-based SA, by Owen (2014).

Theoretically, the Shapley effects are not based on the Hoeffding-Sobol decomposition such
as presented in Paragraph 4.2.3.1, but following a direct allocation of a part of the output vari-
ance to each input. As a preliminary remark, one should notice that, contrary to the way Sobol
indices have been introduced in Paragraph 4.2.3.1, i.e., in the context of independent inputs 13,
Shapley effects have been studied in the context of dependent inputs in Song et al. (2016) and
Owen and Prieur (2017). As a consequence, the formulation of the Shapley effect associated with
the i-th input variable Xi, while considering a set of inputs indexed by v ⊆ {1, . . . , d}, is given
by:

Shi = ∑
v⊆−{i}

(d− |v| − 1)! |v|!
d!

[c(v ∪ {i})− c(v)] (4.24)

where −{i} ≡ {1, . . . , i − 1, i + 1, . . . , d}, |v| stands for the cardinality of v and c(·) is a cost
function. To make the link with Sobol indices, Song et al. (2016) and Iooss and Prieur (2017)
propose to use the following cost function:

c(v) =
Var [E[Y|Xv]]

Var [Y]
≡ Sclo

v (4.25)

with Xv the group of input variables whose indices correspond to those in v. Finally, this cost
function corresponds to the so-called closed Sobol index, denoted by Sclo

v , and defined for a group
of variables (Prieur and Tarantola, 2017). Consequently, the underlying idea of the Shapley effect
Shi associated with Xi is that it intrinsically contains the possible interactions and/or correlations
with other inputs Xj, for j ∈ {1, . . . , d}, j 6= i. Thus, to clarify the link between Shapley effects
and Sobol indices, one can discriminate two cases:

13 Note that, a wide literature about Sobol indices in the context of dependent inputs can be found, e.g., in Chas-
taing (2013) and in the first section of Iooss and Prieur (2017) for a comprehensive review.
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• if the inputs are independent, the following equation holds:

Si ≤ Shi ≤ STi (4.26)

which makes the Shapley value be a “midpoint” between Sobol indices (Owen, 2014);

• if the inputs are dependent, then the previous equation does not hold anymore and mul-
tiple cases (Gaussian inputs or not, linear correlation vs. interaction between inputs) have
been investigated (see Iooss and Prieur (2017), Benoumechiara and Elie-Dit-Cosaque (2018),
and Broto et al. (2018)). However, if Shi ≈ 0, one can still deduce that the input Xi does
not contribute to the variance of the output, which meets the FF-setting.

Consequently, Shapley effects may provide relevant information in a context of dependent
inputs compared to Sobol indices. As a key example, Iooss and Prieur (2017) show that an input,
not directly involved in the numerical modelM(·), may have a non-zero effect if it is correlated
with another influential input of the model. The main drawback concerns the estimation of
Shapley effects. As pointed out in Owen (2014), Song et al. (2016), and Iooss and Prieur (2017),
if one is able to compute the complete set of Sobol indices, then Shapley effects can be obtained
as a simple post-treatment. Conversely, computing, in a direct way, Shapley effects may be
prohibitive for general complex computer models (e.g., see the algorithms proposed by Song
et al. (2016)). Finally, Iooss and Prieur (2017) and Benoumechiara and Elie-Dit-Cosaque (2018)
investigate the use of surrogate-model-based strategies to avoid the computational burden.

4.3 Synthesis about SAMO and motivations for reliability-oriented
sensitivity analysis

4.3.1 Synthesis and discussion about SAMO methods

Several SAMO methods (but only a limited panel of them) have been reviewed in the previ-
ous section. They rely on various underlying assumptions and mathematical frameworks. As
a result, they provide a wide panel of qualitative and/or quantitative information in terms of
sensivitity indices and potential ranking. However, the interpretation of these results remain a
challenging task for the analyst who has to compare and contrast these results as much as possi-
ble, and take care of the multiple underlying constraints which might have an impact and lead
to an erroneous interpretation.

A few constraints for the analyst. SAMO may suffer from various constraints the analyst
should be aware of before performing such an analysis. A few examples are listed below:

• type of QoI (e.g., mean value of Y, variance of Y, full CDF of Y);

• goal of the study (e.g., fast screening vs. importance ranking);

• maximum allowable simulation budget (e.g., computational time or number of calls to the
computer code);

• characteristics of the inputs (e.g., independent or not, functional input, input dimension)
and of the outputs (e.g., single vs. multiple, functional output);

• available information about the model (e.g., monotonic, linear vs. nonlinear, complexity,
multidisciplinary workflow, inner stochasticity);

• additional sources of uncertainties (e.g., on the input probabilistic model, on the model
M(·) itself or induced by the use of a surrogate model).
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Some of the constraints mentioned above can be moderated in practice by using, when it is
possible, the complementarity of several SAMO methods. Then, if the results from one method
corroborates partially or totally the results obtained by another one, and if these methods rely
on different assumptions, then one can consider they provide relevant results. As a synthesis,
the interested reader may refer to the the decision diagram in De Rocquigny et al. (2008) and the
concept map proposed in Iooss and Lemaître (2015) dedicated to global SAMO methods.

As announced at the beginning of this chapter, only a few SAMO methods have been pre-
sented. The priority has been put on SAMO methods which would exhibit a direct or indirect
link with ROSA methods presented later in this chapter. For any further information about other
SAMO methods, the interested reader is invited to refer to the various survey papers dedicated
to this topic (see, e.g., Helton et al., 2006; Morio, 2011a; Iooss and Lemaître, 2015; Wei et al.,
2015b; Borgonovo and Plischke, 2016).

4.3.2 Motivations for considering reliability-oriented sensitivity analysis

As highlighted in Figure 4.1, reliability-oriented sensitivity analysis (ROSA) differs from SAMO
for two main reasons. The first one is due to the strong difference in the nature of the various
QoIs under study (i.e., a reliability/safety measure vs. the model output). The second reason
concerns the fact that, estimating a reliability measure (e.g., a failure probability pf) requires
dedicated methods, as presented in Chapter 3 which may provide reusable ingredients or fea-
tures which can be relevant in the ROSA context (as thoroughly explained and illustrated in Zio
and Pedroni (2012)).

Before introducing the methods, the following subsection aims at presenting the motivations
for considering ROSA methods.

Restrictions about the QoI. The first reason mentioned hereabove is related to an issue which
has already been pointed out and discussed in the SA literature. To make it simple, the idea is
to not focus on the variability of Y over its whole support DY, but on a more restrictive domain
such as an interval (e.g., [ya, yb] with ya < yb), the left/right tail of the distribution (e.g., {y ∈
DY | y > yth}), or more generally any critical domain CY such that CY ⊂ DY (Raguet and Marrel,
2018).

This problem has been early addressed, for instance, in Spear and Hornberger (1980) and is
denoted as “regional SA” 14. Regional SA regroups methods whose goal is to identify specific re-
gions in the input space corresponding to particular values (e.g., based on a binary classification
of model outputs regarding if they belong to a constrained domain) of the output. Such a goal is
deeply related to the FM-setting as defined in Section 4.1. Several authors derived sensitivity es-
timators based on SAMO methods, dedicated to perform regional SA (see, e.g., Liu et al., 2006b;
Wei et al., 2015a; Pianosi et al., 2016).

At the same time, a large variety of works has been proposed in the reliability community
to perform both local and global SA, but on the specific QoIs that are the failure probability pf
or the reliability index β, which are quantities which, obviously, can be related to the notion of
critical domain CY ⊂ DY such as described hereabove. However, it is important to notice that
the estimation of the sensitivity indices with these methods is often related to the underlying
technique used to get the reliability measure. These works have been gathered under the generic
name “reliability SA”. These methods are described in the next subsections and are thus not
discussed here to avoid redundancy. However, one needs to mention that, a first thorough
review specifically dedicated to reliability SA can be found in Lemaître (2014).

14 Note that “regional SA” is also denoted sometimes as “Monte Carlo filtering” in some references, see, e.g., Saltelli
et al. (2004, Chap. 6) and Pianosi et al. (2016) for a review. This second name is somewhat related to the fact that
regional SA is linked to the FM-setting, which plays a major role not only in SA, but also in calibration of computer
models and thus illustrates a link between “model vs. data/observations” as usually described in filtering theory.
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Restrictions due to rare event probability estimation. The second reason mentioned in the
introductory paragraph hereabove is related to the fact that performing ROSA implies first to
get “access” to the reliability measure. In the context of rare event probability estimation, this
specific task can be difficult and/or computationally expensive to achieve and may require ded-
icated techniques as presented in Chapter 3. Very recently, in a thorough review proposed by
Raguet and Marrel (2018), the authors suggest to adopt a new paradigm to describe and gener-
alize both “regional SA” and “reliability SA”. They advocate the fact that one should consider,
in addition to traditional global SA, two other SA families:

• first, “target SA”, which still considers the entire input domain but aims at studying their
impact over the critical domain CY, and more specifically, over the occurrence of the critical
event 15.

• second, “conditional SA”, whose aim is to study the influence of the input exclusively
within the critical domain CY.

Consequently, following Raguet and Marrel (2018), one will see that some ROSA methods fit
the definition of “target SA” while others are related to “conditional SA”. Finally, as highlighted
several times in their paper, the key challenge for target SA concerns the difficulties induced by
the rareness of the critical event. This problem is typically a matter of efficient rare event esti-
mation. Thus, the following review aims at presenting methods which stem from the reliability
community and are thus adapted to rare event estimation.

“SA-settings” revisited. As highlighted in Lemaître (2014, Chap. 1) and illustrated in Zio and
Pedroni (2012), in the specific context of ROSA, the traditional SA-settings as stated in Section 4.1
have to be reinterpreted. Moreover, it appears that in the ROSA context, two levels are of interest
in input: the basic variables and the probabilistic model (i.e., the distribution type and the dis-
tribution parameters). Assuming that a parametric model has been set up (see Subsection 2.4.2),
only the distribution parameters remain in the second level of input uncertainty. As an illustra-
tion, one can propose the following causal chain:

θ 7→ Xθ 7→ g(Xθ) 7→ 1Fx(Xθ) 7→ pf(θ) (4.27)

where θ = (θ1, . . . , θnθ
)> ∈ DΘ ⊆ Rnθ is the vector of distribution parameters, Xθ denotes the

implicit dependence between X and θ through the PDF fX(·; θ), and pf(θ) denoting the resulting
scalar mapping between the input of the chain, θ, and the output, pf. As a result, in the ROSA
context, one can consider the following ojectives:

• Objective #1

↪→ Quantify the sensitivity of a reliability measure w.r.t. the input distribution type.

• Objective #2

↪→Determine which inputs are the most influential w.r.t. the occurence of the failure event.

These objectives should reflect important motivations to perform ROSA.

To sum up, in this section, the aim is to provide a review of ROSA methods, gathering meth-
ods developed in both fields of reliability and sensitivity analysis. To do so, one need to
distinguish between two sorts of ROSA methods regarding the two input levels:

15 Note that earlier works in SAMO (see, e.g., Da Veiga, 2015; Fort et al., 2016) have already foreseen the potential
difficulties/differences regarding the FP- or FF-settings if one focuses on the occurrence of a critical event (e.g., by
considering the indicator function of the critical event, such that 1CY (y)) instead of the whole distribution of Y.



4.4. Reliability-oriented sensitivity analysis with respect to distribution parameters 61

• ROSA w.r.t. distribution parameters (i.e., ROSA w.r.t. θ);

• ROSA w.r.t. input variables (i.e., ROSA w.r.t. X).

These two input levels correspond to two different kinds of variables of interest (VoIs): either
the distribution parameters in θ or the input variables in X. As a result, due to the causal
chain given in Eq. (4.27), the first type of ROSA methods is of major interest when one desires
to focus on a reliability measure as a QoI (i.e., pf or β). Thus, depending on the formalism
used to treat the uncertainty in θ, both local, screening or global methods can be envisaged.
As for the second type of ROSA methods, various QoIs can be envisaged in addition to the
traditional reliability measures (e.g., the LSFs g(·) / ◦g(·) or the indicator function of the failure
domain 1F•(·)). Then, depending on the objectives, constraints (computational cost) and the
available information about the input distributions, both local, screening or global methods
can be envisaged.

4.4 Reliability-oriented sensitivity analysis with respect to distribu-
tion parameters

4.4.1 Local ROSA methods with respect to distribution parameters

4.4.1.1 Sensitivities through MPFP-based techniques

Gradients of the reliability index and the failure probability. A set of local derivative-based
indices have been proposed by Hohenbichler and Rackwitz (1986), Bjerager and Krenk (1987),
and Bjerager and Krenk (1989) to locally assess the impact on the reliability index due to a change
in the input distribution parameters, denoted as θ ∈ Rnθ . Starting from the expression of the
Hasofer-Lind reliability index, the gradients are given by:

∇θ β = Ju,θ(u∗; θ)>α (4.28)

where Ju,θ(u; θ) = [∂ui/∂θj]d×nθ
is the Jacobian matrix of the transformation T(·) w.r.t. the dis-

tribution parameters θ. The detailed derivations can be found in Bjerager and Krenk (1989) and
Ditlevsen and Madsen (2007, Chap. 8). As a result, the gradient of the FORM estimate for the
failure probability can be derived as follows:

∇θ pFORM
f = −ϕ(β)∇θ β. (4.29)

These gradients are useful, not only from a sensitivity perspective (see, e.g., the study of pa-
rameter sensitivity in finite element reliability analysis by Haukaas and Der Kiureghian (2005)),
but also for reliability-based design optimization (Hou et al., 2004). However, these derivations
are performed under the assumption of the uniqueness of the MPFP, which may be erroneous
for a large variety of applications. Nonetheless, extensions to system reliability problems with
multiple MPFPs (e.g., involving series and/or parallel systems), can be found in Karamchan-
dani and Cornell (1992). When the LSS is nonlinear, one can still improve FORM sensitivities
by considering the multi-hyperplane combination method (MHCM) and its associated sensitivity
indices as proposed by Dong et al. (2014). Another possibility is to use the sensitivities derived
in a SORM-like fashion (called novel SORM) as proposed in Yoo et al. (2014).

As a remark, one should notice that the Jacobian matrix appearing in Eq. (4.28) is obtained
by differentiating the terms within the Nataf transformation (presented briefly in Appendix C).
This differentiation makes appear two terms which may be, depending on the nature of θ (i.e., a
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moment, a linear correlation parameter or any other distribution parameter), negligible or not.
Details about these derivations can be found in Bourinet (2018) 16.

Elasticities. For a comparison purpose, one can obtain normalized sensitivities, called elastic-
ities (Lemaire et al., 2009, Chap. 6). These elasticities can be obtained according to various nor-
malization formulas. A common way used in ROSA w.r.t. distribution parameters is to consider
the following formula, here given for the reliability index:

eθk =
θk

β

∂β

∂θk
. (4.30)

Elasticities can be used to efficiently compare, at a low cost, the relative influence of inputs as
illustrated in Chocat et al. (2016). However, as explained further in Chapter 6, several formulas
for elasticities are available in literature and the scaled values obtained may vary from one for-
mula to another (see, e.g., Wu, 1994b; Der Kiureghian, 1999; Lemaire et al., 2009; Millwater and
Wieland, 2010).

4.4.1.2 Sensitivities through sampling-based techniques

In a similar manner as for MPFP-based techniques, local reliability-oriented sensitivity in-
dices can be obtained through the use of sampling-based techniques. In the following, the idea
is to present the underlying principle of the indices. Then, the interested reader is invited to
refer to several references for details concerning a specific technique.

Sensitivities with CMC using the score function. To assess local sensivitities of the failure
probability w.r.t. distribution parameters, one can consider the following partial derivative, for
any distribution parameter θk ∈ θ:

∂pf

∂θk
=

∂

∂θk

∫

DX

1Fx(x) fX(x)dx. (4.31)

Then, assuming that (i) the joint PDF X is continuously differentiable w.r.t. θk and (ii) the inte-
gration domain DX does not depend on θk, one can write 17:

∂pf

∂θk
=
∫

DX

1Fx(x)
∂ fX(x)

∂θk
dx. (4.32)

By simply manipulating this integral, using an importance sampling trick (here, with the initial
density fX) as in Section 3.4, one gets:

∂pf

∂θk
=
∫

DX

1Fx(x)
∂ fX(x)/∂θk

fX(x)
fX(x)dx

=
∫

DX

1Fx(x)
∂ ln fX(x)

∂θk
fX(x)dx

= E fX [1Fx(X) κθk(X)] (4.33)

where κθk(X)
def
= ∂ ln fX(x)

∂θk
is called the score function (SF). This way of deriving sensitivities in the

CMC setting has been first introduced by Rubinstein (1986) and then popularized by many other

16Note that, for the specific topic of sensitivity w.r.t. linear correlation parameters, one can refer to Žanić and Žiha
(1998), Žanić and Žiha (2001), Bourinet and Lemaire (2008), and Bourinet (2017). A synthesis of these works is given
in Bourinet (2018).

17 Note that this equality holds if one applies the Lebesgue’s dominated convergence theorem (Jacod and Protter, 2004).
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works such as Wu (1994b), Rahman (2009), Millwater (2009), Millwater et al. (2011), Millwater
et al. (2012), and Garza and Millwater (2016a) 18.

The CMC estimator of the quantity ∂pf/∂θk, for a N-sample {X(j)}N
j=1

i.i.d.∼ fX, is given by:

∂̂pf

∂θk
=

1
N

N

∑
j=1

1Fx(X
(j)) κθk(X

(j)) (4.34)

which highlights the fact that, using this estimator enables to reuse the same samples for esti-
mating both pf and its gradients w.r.t. distribution parameters. This simple post-processing / post-
treatment step made the SF popular for various applications, from rare event estimation to re-
liability-based design optimization (see, e.g., Jha et al., 2009; Taflanidis and Beck, 2009; Millwater
and Wieland, 2010; Chowdhury and Adhikari, 2010; Dubourg and Sudret, 2011; Dubourg and
Sudret, 2014; Garza and Millwater, 2016b).

As a remark, one should mention that, when the condition (ii) mentioned hereabove is
not fulfilled, i.e., when one considers finite supports such as for truncated probability distri-
butions (e.g., uniform distribution, truncated Gaussian), the derivations are not straightforward
as presented above, and one needs to apply Leibniz integral rule for differentiation for parameter-
dependent integrals. For the sake of consiseness (and due to the fact that an adaptation of these
derivations will be detailed in Chapter 6), the interested reader should refer to Millwater and
Feng (2011) and Lee et al. (2011).

Finally, in a similar manner, Breitung (1991) derived asymptotic approximation formulas
(i.e., valid for β → +∞) of both the failure probability and its sensitivities, in the cases of un-
bounded and bounded distributions (see, e.g., Cherng and Wen (1994) for an application of the
method).

As a final remark, one can notice that, similarly to what has been done in Eq. (4.30), elastici-
ties can also be derived based on the SF estimates.

Sensitivities derived for other sampling techniques. In the literature, several rare event tech-
niques allow to derive, either using a SF-like method, or directly using partial derivatives, a set
of sensitivities of pf w.r.t. distribution parameters. Without going deeper into details, this para-
graph aims at providing a brief overview of these multiple variants associated to well-known
rare event estimation techniques:

• Adaptive importance sampling: see, e.g., Wu (1994a);

• Stratified importance sampling: see, e.g., Feng et al. (2010);

• Subset sampling: see, e.g., Song et al. (2009b) and Bourinet (2018, Chap. 1) for a detailed
review;

• Line sampling: see, e.g., Lu et al. (2008), Song et al. (2009a), and Valdebenito et al. (2018);

• Directional sampling: see, e.g., Song et al. (2011);

• Method of moments: see, e.g., Song et al. (2010).

Finally, one should point out the work of Zio and Pedroni (2012) in which the authors com-
pare sensitivity estimates obtained from both subset and line sampling mentioned hereabove in
a context of reliability assessment of a complex nuclear engineering thermal-hydraulic passive
system.

18 Note that the name instead of the traditional name “score function”, one can also encounter sometimes the terms
“kernel function” such as in Millwater (2009).
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4.4.1.3 Hybrid strategies mixing MPFP-based techniques and sampling

Another class of methods may combine some tools from both MPFP-based techniques and
sampling techniques. As an example, one can cite the proposed method by Melchers and
Ahammed (2004) which uses MC simulations to fit an hyperplane by least-square regression and
then treat the problem in a FORM-like fashion, by deriving analytical sensitivities, but avoid-
ing any transformation to the u-space. However, the efficiency of the method greatly depends
on the accuracy of the tangent hyperplane estimation. Moreover, this method is still limited
regarding the possible strong nonlinearity of the true LSS. An extension of this work to non-
normal random variables and constrained LSF can be found in Ahammed and Melchers (2006).
Conversely, Sues and Cesare (2005) propose a method (for system reliability problems) which
combines FORM to get the failure probability and MC simulations over the hyperplane to cal-
culate analytical sensitivities using traditional partial derivative formulas.

4.4.2 Screening-like ROSA methods with respect to distribution parameters

As presented before, local ROSA methods, mainly through the use of partial derivatives,
study the impact of a local change in the distribution parameters on the reliability measure
which can be either the reliability index or the faillure probability. A possible way to generalize
the study of the sensitivities w.r.t. distribution parameters, in a global sense, is to repeat a local
sensitivity calculation for several different values {θ(j)}N

j=1. This is the main aim of screening
methods as presented in the SAMO context in Section 4.2.2. Doing so implies, either to embrace
the idea that epistemic uncertainty (i.e., lack-of-knowledge) does affect the input probabilistic
modeling, or to desire to test the robustness of the reliability assessment regarding possible vari-
ations in the input probabilistic model. However, such parameter values may arise from three
different but complementary processes:

• firstly, by adopting a deterministic point of view, which consists in sampling over a regular
grid-based DOE;

• secondly, by adopting a Bayesian point of view, which implies to consider a prior density
fΘ : DΘ ⊆ Rnθ → R+;

• thirdly, by adopting an extra / imprecise probabilistic point of view, which consists in consid-
ering other frameworks (e.g., intervals, fuzzy sets, etc.) 19.

In the following, two screening ROSA methods are presented.

4.4.2.1 A Morris method for ROSA

Following the same principles as those introduced in Subsection 4.2.2.1, Xiao et al. (2016)
proposed to adapt the modified Morris’ elementary effects method proposed by Campolongo
et al. (2007) (i.e., using the µ∗|∆EE

i |
instead of the µ∆EE

i
one) to the ROSA context. Here, the in-

puts are independent epistemic uncertain distribution parameters gathered in the vector θ =
(θ1, . . . , θnθ

)> ∈ DΘ ⊆ Rnθ . The idea is to consider the following elementary effect (for k ∈
{1, . . . , nθ}):

∆EE
k (θ(j)) =

pf(θ
(j) + δEE ek)− pf(θ

(j))

δEE

def
= ∆EE,(j)

k (4.35)

19 Note that, in some references, Bayesian approaches are considered as being part of imprecise probabilities (see,
e.g., Schöbi, 2017). In this manuscript, the choice of distinguishing these two families is made, not to break with the
previous point of view, but because the Bayesian framework is more familiar due to its probabilistic roots than many
other frameworks belonging to imprecise probabilities
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where the failure probability pf is estimated for each grid-point θ(j) using a particular rare event
estimation technique 20. However, any other technique such as those presented in Chapter 3
could be, in theory, used here. Finally, one can compute the set of two indices (µ∗|∆EE

k |
, σ|∆EE

k |) fol-
lowing formulas given in Eq. (4.5). The main drawback here remains that one needs to estimate
several times (i.e., for all the grid-points) a possibly expensive-to-evaluate rare event probability
which can be cumbersome.

4.4.2.2 Derivative-based global sensitivity measures for ROSA

Following what has been presented in Subsection 4.2.2.2, another way of thinking consists in
deriving a global sensitivity measure based on the integral of local derivatives. Thus, a DGSM-
like index has been proposed in the ROSA context by Wang et al. (2013a). The formulation of
this index is as follows (for k ∈ {1, . . . , nθ}) 21:

νk =
∫

DΘ

∣∣∣∣
∂pf(θ)

∂θk

∣∣∣∣ fΘ(θ)dθ (4.36)

where ∂pf(θ)/∂θk is obtained using the SF estimator given in Eq. (4.34). Finally, numerical es-
timation results are obtained using QMC and point estimate techniques. If the relative ranking
of the most important parameters may be correctly estimated for screening purposes, the values
obtained seem to be difficult to interpret in terms of absolute ranking for factor fixing purposes.

4.4.3 Importance measures for global ROSA with respect to distribution parameters

4.4.3.1 Variance-based importance measures for ROSA

Sobol indices on the conditional failure probability. Morio (2011b) proposed to consider that
the change in a failure probability estimate due to epistemic uncertainty affecting distribution
parameters can be seen in a functional relationship such that Pf = Γ(θ), whith Γ : Rnθ → R (one
can consider, for instance, a single parameter per input variable, e.g., the mean, which leads
to nθ = d). The distribution parameters θ are assumed to be distributed according to a prior
density fΘ. Then, one can use a similar F-ANOVA as in Subsection 4.2.3.1 and get the following
indices:

SPf
i =

Var [E[Pf|θi]]

Var [Pf]
(4.37)

SPf
Ti
= 1− Var

[
E[Pf|θ−i]

]

Var [Pf]
(4.38)

where θ−i stands for the vector θ of distribution parameters without the i-th component. The
numerical estimation of these indices can be achieved as a by-product if one considers small
perturbations of the distribution parameters. To do so, one can use the so-called “reverse/inverse
importance sampling trick” (see, e.g., Beckman and McKay, 1987; Hesterberg, 1996) described
hereafter. Indeed, if one considers the IS estimator given by:

P̂f(θ) =
1
N

N

∑
j=1

1Fx(X
(j))

fX|Θ(X(j)|θ)
hX(X(j))

(4.39)

20This technique, proposed by Zhang and Pandey (2013), is called the multiplicative dimensional reduction method
(M-DRM) and is based on maximum entropy principle, fractional moments and dimensional reduction method.

21 Note that this index is built using the absolute value of the partial derivative, in a similar fashion as the modified
Morris index proposed by Campolongo et al. (2007). However, some links exist between the absolute value index
and the square index as explained in Kucherenko and Iooss (2017).
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then, one can assume that the failure domain does not depend on θ (e.g., under small pertur-
bations around mean values), and that hX(·) is a quasi-optimal density that still can be used to
sample efficiently within the failure domain. Thus, to compute the Sobol indices, one just needs
to recalculate the weights without evaluating the complex computer code again.

Finally, these Sobol indices on the conditional failure probability have been further investi-
gated by Wang et al. (2013b) and Wang et al. (2013c) by considering efficient surrogate-based
estimation (using GP and moving least-squares). Very recently, Ehre et al. (2018) proposed a
slightly different version of the indices presented above by considering the logarithmic transfor-
mation ln(Pf) instead of Pf in their formulation. Then, efficient estimation is proposed through
a double stage sampling strategies relying on the use of surrogate models (both PCE and LRA
have been tested).

4.4.3.2 Perturbed-law indices

Perturbed-law indices (PLI) have been first proposed by Lemaître (2014) and Lemaître et al.
(2015) 22. The idea is to consider that, for any input variable Xi, ∀i ∈ {1, . . . , d}, of density
fXi

def
= fi, a perturbation δ applied to this input leads to a pertubed density fiδ. Then, the failure

probability is perturbed from its initial value Pf to Pf,iδ given by:

Pf,iδ =
∫

DX

1Fx(x)
fiδ(xi)

fi(xi)
fX(x)dx. (4.40)

Then, the PLI index is defined as follows:

SPLI
iδ =

[
Pf,iδ

Pf
− 1
]

1{Pf,iδ≥Pf} +
[

1− Pf

Pf,iδ

]
1{Pf,iδ<Pf} (4.41)

=
Pf,iδ − Pf

Pf 1{Pf,iδ≥Pf} + Pf,iδ 1{Pf,iδ<Pf}
. (4.42)

Thus, when SPLI
iδ = 0⇐⇒ Pf = Pf,iδ, one can conclude that, either Xi is a noninfluential variable,

or δ is negligible (e.g., robustness of the probability estimation regarding the input perturbation).
Moreover, the sign of SPLI

iδ may indicate whether the perturbation increases or decreases the
reliability.

As for numerical estimation, considering a sample {X(j)}N
j=1

i.i.d.∼ fX, Pf can be estimated, for
instance, using the following traditional CMC estimator as given in Eq. (3.4) and recalled below:

P̂f =
1
N

N

∑
j=1

1Fx(X
(j)). (4.43)

Then, to avoid any supplementary call to the computer code, one can estimate the perturbed
failure probability Pf,iδ using the “reverse/inverse importance sampling trick” (see, e.g., Beckman and
McKay, 1987; Hesterberg, 1996) as in the previous ROSA method proposed by Morio (2011b):

P̂f,iδ =
1
N

N

∑
j=1

1Fx(X
(j))

fiδ(X(j)
i )

fi(X(j)
i )

. (4.44)

22 Note that these indices have been initially named “Density Modification based Reliability Sensitivity Indices” (DM-
BRSI) in Lemaître et al. (2015) and then renamed “Perturbed-law indices” (PLI) in Sueur et al. (2017) and Iooss and
Le Gratiet (2017).
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Finally, the plug-in estimator for SPLI
iδ is given by:

Ŝ PLI
iδ =

[
P̂f,iδ

P̂f
− 1

]
1{P̂f,iδ≥P̂f} +

[
1− P̂f

P̂f,iδ

]
1{P̂f,iδ<P̂f}. (4.45)

Theoretical convergence proofs are provided in Lemaître (2014) and Lemaître et al. (2015).
Moreover, input perturbation strategies are investigated for several input distributions in Lemaître
(2014) and Lemaître et al. (2015). Recent works extended the definition and the use of PLI in-
dices to quantiles in Sueur et al. (2017) and probability of detection curves in Iooss and Le Gratiet
(2017).

4.5 Reliability-oriented sensitivity analysis with respect to input vari-
ables

4.5.1 Local ROSA methods with respect to input variables

4.5.1.1 Sensitivities through MPFP-based techniques

Importance factors via FORM and SORM. During a FORM analysis (assuming the use of
FORM is relevant regarding the linearity of the LSS and the uniqueness of the MPFP), the vari-
ance of the LSF in the u-space as expressed in Eq. (3.15) (see, e.g., Ditlevsen and Madsen (2007,
Chap. 8) and Lemaire et al. (2009, Chap. 6)):

Var
[ ◦g1(U)

]
= Var

[
−
∥∥∇u

◦g(u∗)
∥∥

2

(
α>U− β

)]

=
∥∥∇u

◦g(u∗)
∥∥2

2 Var
[
α>U

]
(4.46)

with Var
[
α>U

]
= α>α = α2

1 + α2
2 + · · ·+ α2

d. As a result, when the input variables are indepen-
dent, the α2

i -values measure the relative influence of input variables regarding the variability
of the LSF response in the vicinity of the MPFP. These indices are denoted as importance fac-
tors (Paloheimo and Hannus, 1974; Hohenbichler and Rackwitz, 1986) and verify the following
feature:

d

∑
i=1

α2
i = 1 (4.47)

which enables an easy interpretation of such normalized indices. As a remark, these sensitiv-
ity indices are just a by-product (i.e., post-processing) of a FORM reliability analysis (obtained
directly from Eq. (3.12)). A recent illustration of the use of these two sensitivity indices can be
found in Kouassi et al. (2016).

When the inputs are not independent (e.g., linearly correlated), Der Kiureghian (1999) pro-
posed, instead of using the α2

i -values, to consider another set of importance factors. To do so, one
needs to introduce first an “equivalent” normal vector in the x-space at the MPFP x∗, denoted
by X̂ and such that u = u∗ + JT(x̂− x∗), with JT = Ju,x the Jacobian matrix of the transformation
T(·) evaluated at x∗. Thus, these new importance factors, denoted γ2

i -factors, are defined as
follows:

γ> =
α>JTD̂∥∥∥α>JTD̂

∥∥∥
2

(4.48)

where D̂ = [D̂ii]d×d is a diagonal square matrix such that D̂ii =
√

J2,ii, ∀i ∈ {1, . . . , d} and J2,ii is
the i-th diagonal term of J2 = [J2,ij]d×d = JT−1J>T−1 , with JT−1 = Jx,u is the Jacobian matrix of the
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inverse transformation T−1(·) evaluated at u∗.
Finally, note that, in the specific case of independent input variables Xi, then α = γ.

When dealing with nonlinear LSS, one can use SORM to estimate the failure probability. In
this case, Kouassi (2017, Chap. 4) proposed in a recent work to derive importance factors based
on the SORM-cf technique (assuming that the inputs Xi are independent). It can be shown, after
some derivations to get Var

[ ◦g2(U)
]
, that on can obtain the following sensitivity index:

δi =
δ̃i

Var
[
◦̃g2(U)

] (4.49)

where ◦̃g2(U) =
◦
g2(U)

‖∇u
◦
g(u∗)‖2

. Both quantities Var
[
◦̃g2(U)

]
and δ̃i can be computed using detailed

expressions given in Kouassi (2017, Chap. 4) 23. Moreover, the author proposed to consider two
higher order indices, denoted by δij and δijk, to take into account possible interactions between
variables. Finally, one can notice that these indices follow the normalization property (i.e., they
sum to one if considering all orders of indices) but may take negative values.

Omission sensitivity factors. In the context of reliability analysis, other sensitivity indices,
called omission sensitivity factors, have been introduced by Madsen (1988). The basic idea is to
consider the conditional ratio:

ζi =
β|Xi

β
(4.50)

where β|Xi
is the Hasofer-Lind reliability index conditional to the fixed input Xi = xi

24. For
instance, Madsen (1988) advocates to replace any input Xi by its mean or its median. More
information about these indices can be found in Ditlevsen and Madsen (2007, Chap. 8).

4.5.2 Importance measures for global ROSA with respect to input variables

4.5.2.1 Distance-based importance measures for ROSA

Entropy-based indices. To account for variability in the failure probability estimate (e.g., due
to sampling variability), several methods relying on the notion of “entropy” have been investi-
gated. Reid (2002) proposed to consider the entropy E , defined such that E = −∑i pi ln pi, where
pi is a probability mass associated to a range of discrete outcomes oi. In the reliability context,
this can be used as a measure for the “Fail / Safe” binary outcomes. Thus, Reid (2002) proposed
to consider the following measure:

E(pf) = −[pf ln pf + (1− pf) ln(1− pf)]. (4.51)

Finally, for a range of input designs (i.e., a range of input probabilistic models), leading to var-
ious failure probability values, the entropy index can be characterized by the expected value
E[E(Pf)] (where Pf denotes the fact that the failure probability becomes a random variable).

Following this idea, Liu et al. (2004) and Liu et al. (2006b) developed a Kullback-Leibler-
entropy-based index (called relative entropy index) for failure probability defined as follows 25:

DKL(Pf|Xi
, Pf) = Pf|Xi

ln
(Pf|Xi

Pf

)
+ (1− Pf|Xi

) ln
(1− Pf|Xi

1− Pf

)
(4.52)

23 Note that these expressions rely on the components of the vector α and on the components of the Hessian matrix
H = ∇2

u,u
◦g(u∗).

24 Note that the formulation of the omission sensitivity factor can be stated either in the x-space or the u-space.
25 Note that the index in Eq. (4.52) is proposed in Liu et al. (2006b) as an extension of their SAMO index discussed

in Subsection 4.2.3.2.
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where Pf|Xi
is the failure probability conditional to the fixed input Xi = xi. This index is called

total effect index for Xi, while the main effect index is given by −DKL(Pf|X−i , Pf), where Pf|X−i cor-
responds to the failure probability estimated while all input random variables are fixed, e.g., to
their mean value, except Xi. Finally, Jiang et al. (2016) proposed an extension of these relative
entropy indices under mixed aleatory and epistemic uncertainties in the context of multidisci-
plinary systems.

Moment-independent indices. Another class of indices are based in a similar fashion as the
Borgonovo index for SAMO (by Borgonovo (2007), as introduced in Subsection 4.2.3.2) but consid-
ering failure probabilities instead of the model output. Cui et al. (2010) introduced two different
ROSA importance measures, defined such that:

ηPf
i =

1
2

∫ +∞

−∞
|Pf − Pf|Xi

| fXi(xi)dxi =
1
2

E fXi
[|Pf − Pf|Xi

|] (4.53)

and a second one defined such that:

δPf
i =

1
2

∫ +∞

−∞
(Pf − Pf|Xi

)2 fXi(xi)dxi =
1
2

E fXi
[(Pf − Pf|Xi

)2]. (4.54)

These indices have been then investigated in several papers (see, e.g., Li et al., 2012; Ruan and
Lu, 2014; Yun et al., 2016) and, independently in Lemaître (2014). Their formulation can be
easily extended to groups of input variables as shown in the previous references. Finally, one
should notice that the case of correlated inputs has been studied in Li et al. (2016) and that a
local parametric sensitivity analysis w.r.t. input distribution parameters applied to the index in
Eq. (4.54), has been proposed in Zhang et al. (2015) to monitor the effect of this second level on
the importance measures.

4.5.2.2 Variance-based importance measures for ROSA

Sobol indices on the indicator function. Another set of Sobol indices has been proposed in
the ROSA context. These indices have not been introduced through a F-ANOVA decomposition
but as a rewriting of the moment-independent index in Eq. (4.54). Indeed, following Li et al.
(2012), one can notice the link between failure probabilities and mathematical expectations:

Pf − Pf|Xi
= E[1Fx(X)]−E[1Fx(X)|Xi]. (4.55)

which leads to write (omitting the scalar factor 1/2):

δPf
i ∝ E fXi

[(Pf − Pf|Xi
)2]

= E fXi

[
(E[1Fx(X)]−E[1Fx(X)|Xi])

2
]

(4.56)

= Var [E[1Fx(X)|Xi]] . (4.57)

Thus, by dividing the last equation by the total variance Var [1Fx(X)], one gets the following set
of Sobol indices:

S1F
i =

Var [E[1Fx(X)|Xi]]

Var [1Fx(X)]
(4.58)

S1F
Ti

= 1− Var
[
E[1Fx(X)|X−i]

]

Var [1Fx(X)]
(4.59)
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where Var [1Fx(X)] = Pf(1− Pf). Moreover, note that, similarly to traditional Sobol indices in
the SAMO context, the total index can be rewritten as (Saltelli et al., 2008):

S1F
Ti

=
E
[
Var

[
1Fx(X)|X−i]]

Var [1Fx(X)]
. (4.60)

Efficient estimation schemes (e.g., using FORM-IS or TIS, see Chapter 3) for these Sobol indices
have been investigated in Wei et al. (2012), Wei et al. (2016), and Yun et al. (2018).

Very recently, another way of deriving these indices (i.e., both the δPf
i and the (S1F

i , S1F
Ti

),
following a Bayesian view of the problem, has been proposed respectively in Wang et al. (2018)
for δPf

i and in Perrin and Defaux (2019) for the Sobol indices. To avoid any redundancy, this latter
work will be further detailed in Chapter 7 as it will be a core ingredient of the proposed method.

As a remark, one can notice that Eq. (4.56) is linked to the remark made in Subsection 4.2.3.2
about dissimilarity measures and Sobol indices as shown in Murangira et al. (2015). In such a
case, dealing with the indicator function of the failure domain can be linked to the χ2-divergence
by noticing that:

S1F
i =

Pf(Qi − 1)
1− Pf

(4.61)

with Qi =

∫
R

( fXi |F (xi |F ))2

fXi (xi)
dxi and fXi |F (·|F ) is the marginal PDF of the sample points that led

to failure (i.e., conditional to the failure event denoted by F here). Therefore, the hereabove
numerator in Eq. (4.61) is subject to the link (Qi − 1) = Dχ2( fXi |F , fXi). Similar results can be
obtained for the total index and the major issue is thus to correctly and efficiently estimate this
χ2-divergence (see Murangira et al., 2015).

4.5.2.3 A hybrid strategy mixing MPFP-based techniques and sampling: generalized relia-
bility importance measure

Importance factors obtained via FORM (i.e., α and γ), as presented in 4.5.1.1, provide mea-
sures of the relative influence of the input variables on the LSF variability at the MPFP. How-
ever, they fall under two FORM assumptions: the linearity of the LSF and the uniqueness of
the MPFP. As a result, in many real cases, these importance factors obtained may be not rel-
evant. To overcome this issue, a new type of importance measure, called generalized reliability
importance measure (GRIM) has been recently proposed by Kim and Song (2018a) and Kim and
Song (2018b). GRIM indices are based on the underlying idea that one can identify, among the
whole failure domain, some critical subdomains which correspond to the most probable failure
regions (i.e., failure regions corresponding to different MPFPs such as illustrated in Figure 3.4).
Such an identification is based on the law of total variance, which states that, assuming a partition
A1, . . . , AK over the whole outcome space (i.e., they are mutually exclusive and exhaustive events),
one gets the following decomposition:

Var [Y] =
K

∑
k=1

Var [Y|Ak]P(Ak) +
K

∑
k=1

E[Y|Ak]
2P(Ak)−

(
K

∑
k=1

E[Y|Ak]P(Ak)

)2

=
K

∑
k=1

(
Var [Y|Ak]P(Ak) + E[Y|Ak]

2P(Ak)−E[Y|Ak]P(Ak)E[Y]
)

=
K

∑
k=1

Vark[Y] (4.62)
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with Vark[Y]
def
= Var [Y|Ak]P(Ak) + E[Y|Ak]

2P(Ak) − E[Y|Ak]P(Ak)E[Y]. This decomposition
leads to consider the following regional participation factor of each k-th subdomain:

rpk =
Vark[Y]
Var [Y]

=
Vark[Y]

∑K
k=1 Vark[Y]

. (4.63)

One can notice that the normalization property ∑K
k=1 rpk = 1 is verified. Going back to FORM

approximation, one can apply the linearization of the LSF similarly to Eq. (3.14) at any point
of coordinate vector a lying in the failure domain (i.e., verifying ◦g(a) ≤ 0). Thus, one gets the
following expression for the variance:

Var
[ ◦g1(U = A)

]
=
∥∥∇u

◦g(a)
∥∥2

2

d

∑
i=1

α2
i (a) (4.64)

where α(a) = − ∇u
◦
g(a)

‖∇u
◦
g(a)‖2

. Consequently, assuming that A1, . . . , AK represents a partition of the

failure domain with a1, . . . , aK their respective representative points, one can notice that:

K

∑
k=1

rpk‖α(ak)‖2
2 =

K

∑
k=1
‖rpk α(ak)‖2

2 = 1. (4.65)

Finally, the GRIM index accounting for the contribution of the random variables of the k-th
failure subdomain Ak is given by:

αk
GRIM =

√
rpk α(ak). (4.66)

As a result, the GRIM index can be seen as an extension of the FORM importance factors by
taking into account the contributions of random variables to the variability of the LSF at several
failure regions and within the failure regions. In that sense, following Raguet and Marrel (2018),
the GRIM index can be seen as a conditional SA index. In their papers, the authors consider
two other quantities, namely a participation matrix and a variable participation factor which allows
to identify the relative contribution of the failure regions, or the participation rate of a given
variable. A last extension is proposed for correlated input variables by adapting the γ factor
given in Eq. (4.48) in a similar fashion. As a last remark, one can highlight that identifying the
failure subdomains may be difficult in practice. To efficiently estimate these indices, the authors
use a AIS-CE which is based on the use of Gaussian mixtures (called “AIS-CE-GM” and proposed
in Kurtz and Song (2013)). The use of such a method is also constrained by several tuning
parameters such as the number of Gaussian mixtures KGM which should be enough to find the
possible K failure subdomains. For more information, the interested reader should refer to Kim
and Song (2018a) and Kim and Song (2018b) and Kurtz and Song (2013) and Geyer et al. (2019)
for the AIS-CE-GM technique.

4.6 Synthesis about reliability-oriented sensitivity analysis

The QoI vs. the VoI. In the ROSA context, several QoIs can be considered: reliability measures
(i.e., pf or β), the LSF (i.e., g(·) or ◦g(·)) or the indicator function (i.e., 1Fx(·) or 1Fu(·)). As high-
lighted in this chapter, ROSA allows a two-way interpretation so as to find the relevant method
to a given problem: either one starts from the available QoI, or one chooses the variable of interest
(VoI), which can be either a basic variable (respectively, a group of variables) or a distribution
parameter. Then, the analyst has to choose among several tools regarding this choice about the
VoI.



72 Chapter 4. Sensitivity analysis of model output and reliability measure

Local vs. global ROSA. As shown in this chapter, the paradigm “local vs. global” is still rel-
evant in the ROSA context. Several methods are available for both types of analyses and re-
garding the two types of VoI. However, as a remark, one should notice that the notion of “lo-
cal” should be considered carefully. Indeed, one can study the local choice of a specific value
(e.g., like in derivative-based SA) or be more interested in a “regional” point of view, e.g., by
considering the variability within a specific region. In this sense, ROSA indices such as FORM
importance factors are typical examples of ambiguous “local-global” indices: on the one hand,
they can be considered as global since they are based on the variance of the LSF regarding the
variability of the inputs over their entire support, but, on the other hand, they can be considered
as local in the sense of regional SA since they are based on the local approximation at the MPFP
in the u-space.

Byproduct vs. standalone ROSA methods. A major difference one can mention between
SAMO and ROSA consists in the fact that ROSA contains various methods directly issued from
rare event probability estimation techniques. Thus, one can distinguish between the by-product
methods and standalone ones. By-product methods provide indices which are directly (consider-
ing, at most, a supplementary post-processing phase) derived from the samples used to get the
failure probability, or to the mathematical formulation as set in the rare event estimation prob-
lem (e.g., in the case of FORM). The main advantage of these methods is the relative moderate
simulation cost required to get the sensitivity indices. However, as a drawback, the limits of
the rare event probability estimation technique used may directly impact the sensitivity indices
in terms of both accuracy and representativeness. Standalone methods are, for most of them,
SAMO methods adapted to the ROSA context. They often consist in adding a extra-loop over a
probability estimation one. This can be cumbersome and inefficient in the context of rare event
probability estimation. Nonetheless, several tools available to achieve standalone ROSA may be
not available yet as by-product methods.

Standard space vs. physical space. Another key characteristic of ROSA concerns the duality
of spaces where such a type of analysis can be performed. In the x-space, the results can be
easily interpreted and compared with the underlying phenomenon under study. Nevertheless,
x-space is directly affected by the heterogeneity (e.g., in terms of probability distributions and
range of values or units) from the input vector X. Moreover, if any dependence characterizes the
input vector, one needs to take into account in the ROSA, which is still a challenge in SA. In the
u-space, sensitivities are scaled by nature. Independence between the inputs is set by definition.
Thus, computing and analyzing sensitivity indices in such a space is easier. The counterpart
is a loss in terms of representativeness of the results, especially if the original input vector X
is made of dependent inputs. Finally, performing ROSA with multiple indices in both spaces
could be the safest practice. However, such a thorough analysis might be often impracticable in
an industrial context regarding the tremendous computational effort required.

Single-level vs. bi-level. As a final remark, one should notice that, depending on the choice
of the VoI, ROSA methods imply to consider either a single-level of input uncertainty (on the
basic variables in X), or a bi-level of input uncertainty as explained in Subsection 4.4.2. This
second level on the distribution parameters θ can be seen from the deterministic/parametric
viewpoint (e.g., through the use of a regular grid-based DOE) or a stochastic one (e.g., through
considering a prior distribution). If these two viewpoints differ on the fundamental hypotheses,
the underlying idea is still practically the same: testing the robustness of the failure probability
estimation w.r.t. θ. Thus, considering ROSA methods which take these two levels into account
seems relevant both from a theoretical and a pragmatic point of view.
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4.7 Conclusion

This chapter provided a review of sensitivity analysis methods according to the following
distinction:

• sensitivity analysis of model output (a.k.a. SAMO) methods when the QoI is related to the
model output;

• reliability-oriented sensitivity analysis (a.k.a. ROSA) methods when the QoI is related to a
reliability measure.

Concerning SAMO, the basic principles of a few methods have been presented so as to highlight
the common trends and differences between them. A synthesis has been provided about SAMO
and the core motivations for considering ROSA have been presented. Then, a thorough review
of ROSA methods has been proposed. Such a survey enabled to highlight the major trends and
shortcomings about ROSA methods. Moreover, a discussion about a few key characteristics of
ROSA methods the analyst should pay attention is provided in a final synthesis. Among others,
the problem of checking the robustness of the failure probability estimation w.r.t. the distribution
parameters has been mentioned.

Thus, in the next chapter, the problem of reliability assessment under distribution parameter
uncertainty is discussed in the light of this last topic.
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This chapter is adapted from the following reference:
Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio, and N. Gayton (2017). “Evaluation of
failure probability under parameter epistemic uncertainty: application to aerospace system
reliability assessment”. In: Aerospace Science and Technology 69, pp. 526–537.

5.1 Introduction and motivations

Rare event probability estimation techniques presented in Chapter 3 suppose a perfect state of
knowledge about the input probabilistic model (Der Kiureghian, 1988), i.e., that the joint PDF fX is
perfectly determined. As recalled in Chapter 2, under the parametric hypothesis, this implies to
be able to perfectly identify and model the marginal distributions (i.e., the shape/family of the
PDF and the distribution parameters) and the stochastic dependence structure (i.e., the copula).
However, in practice, this input probabilistic model relies on multiple sources of information
which entail, themselves, their respective uncertainties. For instance, one can list the following
sources of information:

• experimental data (see, e.g., BIPM, 2008);

• numerical simulation data (e.g., issued from high-fidelity computer codes);

• expert judgments or opinions (see, e.g., Ayyub, 2001; Meyer and Booker, 2001; O’Hagan
et al., 2006);

• literature-based data (e.g., extracted values from references);

• standards and guides (see, e.g., AIAA, 1998; ASME, 2009; NASA, 2009);

• common sense, daily engineering practice (a.k.a. “Good Engineering Practices” (GEPs))
and traditions.

All of the sources mentioned above affect the input probabilistic model by including a part
of epistemic uncertainty. Epistemic uncertainty 1 can be understood as the part of “reducible
uncertainty” regarding a certain effort (e.g., gathering more data, using a more refined computer
model for simulations, using more test specimens, elicitating more experts’ judgments). When
data is lacking, statistical uncertainty may play a major role by affecting the input probabilistic
model. Thus, one can distinguish between the following two types of uncertainties:

• distribution type uncertainty which is related to choosing a relevant probability distribution
to the input random variables (see, e.g., Ditlevsen, 1993; Sankararaman, 2012; Sankarara-
man and Mahadevan, 2013a);

• distribution parameter uncertainty which is related to the statistical estimation of the avail-
able data and thus impacts the choice of distribution parameters’ values (see, e.g., Der
Kiureghian, 1989; Pendola et al., 1999; Pendola, 2000).

In this thesis, and especially in the present chapter, one only focuses on the second type of
uncertainty, i.e., the distribution parameter uncertainty, assuming that the distribution type has
been preliminary chosen based on sufficient knowledge about the system, as explained in the
parametric assumption given in Chapter 2.

1 Note that, following Ditlevsen and Madsen (2007), epistemic uncertainty can be split into statistical uncertainty,
related to the construction of the input probabilistic model, and model uncertainty related either toM(·) or to the LSF
g(·). In this thesis, the model is supposed to be set and black-box, so that only statistical uncertainty is of concern.
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As a consequence, if the input probabilistic model (i.e., the joint PDF fX) can be affected
by epistemic uncertainty (here, distribution parameter uncertainty), the input probabilistic
model now consists of two uncertainty levels: on the basic variables X and on the distribution
parameters θ. Moreover, there is a functional link between these two quantities. In this the-
sis, one calls this structure a bi-level input uncertainty. Thus, one can formulate the following
questions:

Q1 – How to model this second level of uncertainty?

Q2 – How does this bi-level input uncertainty impact the reliability measure?

Q3 – How to link the variability of the reliability measure to this bi-level input uncertainty?

This chapter deals with the first two questions (Q1 and Q2) while Q3 will be progressively
addressed in the next two chapters. This chapter is organized as follows. Section 5.2 aims at
presenting a short bibliography review of reliability assessment under distribution parameter
uncertainty and introducing the formal concepts and notations. Section 5.3 describes two ap-
proaches used to practically estimate into a common framework and provides generic algo-
rithms for both of them. Section 5.4 illustrates the benefits of such an augmented approach
through a numerical comparison between the two approaches on two test-cases of increasing
complexity. Section 5.5 discusses limitations of those approaches and evokes possible perspec-
tives. A conclusion gathering the most important results of this chapter is finally given in Sec-
tion 5.6.

5.2 Reliability analysis under distribution parameter uncertainty

5.2.1 Distribution parameter uncertainty and the Bayesian framework

In this chapter, two levels of uncertainty are considered: the first one represents the variabil-
ity in the basic input variables and thus affects the input random vector X when the second one
represents the lack of knowledge affecting the distribution parameters Θ. To do so, the following
Bayesian hierarchical model (Gelman et al., 2006) is considered:

X ∼ fX|Θ(x|θ) : DX ⊆ Rd → R+ (uncertainty level #1) (5.1a)

Θ ∼ fΘ|ξ(θ|ξ) : DΘ ⊆ Rnθ → R+ (uncertainty level #2) (5.1b)

ξ = (ξ1, ξ2, . . . , ξnξ
)> ∈ Dξ ⊆ Rnξ (deterministic level). (5.1c)

In this hierarchical representation, one can distinguish three layers of inputs:

• the first layer is constituted by the random vector X gathering the basic stochastic variables.
Based on prior knowledge, a probability distribution can be assumed through the choice
of a parametric model. This random vector can be possibly high-dimensional and may
involve a complex dependence structure (Lebrun and Dutfoy, 2009b);

• the second layer is constituted by uncertain and deterministic (i.e., supposed to be known
accurately enough) distribution parameters. Adding such a layer is consistent with the
Bayesian point of view of modeling either “uncertain” (in the sense of stochastic) or “un-
known but fixed” parameters (Gelman et al., 2006). If one can theoretically consider a
possible dependence structure for the vector Θ, such a vector is often, from a pragmatic
point of view (by omitting the deterministic parameters in it), of rather small dimension
compared to the basic random vector and structured such that quadrature schemes or
quasi-random sampling can be easily used to sample over the spaceDΘ. Other techniques,
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such as the association of a rank correlation procedure developed in Iman and Davenport
(1982) and quasi-random sampling have been successfully used in literature (see, e.g., Hel-
ton and Davis, 2003). In the present chapter, the prior distribution is mostly assumed to
be derived from expert judgment or from a limited set of data. Thus, despite the fact that
Bayes’ theorem is not used as an updating procedure (but could be, if more data or a better
characterization was available), one can consider that this prior distribution characterizes
epistemic uncertainty affecting the distribution parameters;

• the third layer is composed of fixed hyper-parameters gathered in ξ. These hyper-parameters,
which can be either some moments or bounds, characterize the prior distributions of un-
certain stochastic parameters Θ.

In the following, one will only focus on the first two layers, i.e., X and Θ. Thus, for the
sake of clarity and conciseness, the third layer (i.e., the hyper-parameters ξ) will be omitted
such that one will denote the prior density over the distribution parameters by fΘ(θ) instead
of fΘ|ξ(θ|ξ). The dependence on ξ will be introduced in the next chapter when dealing with
sensitivity analysis.

As an illustration of the bi-level input uncertainty structure, Figure 5.1 represents a family of
Gaussian PDFs. Indeed, assuming that a basic variable X is distributed according to a standard
Gaussian density, one considers that the distribution parameters θ = (µX, σX)

> are not precisely
known. As a result, several densities for various pairs of distribution parameters are sketched.
Finally, one can consider the prior predictive PDF of X, i.e., the PDF that both incorporates the
variability in X and the prior distribution over Θ. This PDF is defined as follows:

f̃X(x) =
∫

DΘ

fX|Θ(x|θ) fΘ(θ)dθ. (5.2)

In Figure 5.1, f̃X is sketched using KDE.
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FIGURE 5.1: Illustration of a family of PDFs for a single Gaussian random variable under distribution
parameter uncertainty.
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5.2.2 Predictive failure probability

Such a topic has been early discussed among the structural reliability community, mainly in
the first investigations led by Der Kiureghian (see, e.g., Der Kiureghian, 1988; Der Kiureghian,
1989; Der Kiureghian, 1996; Der Kiureghian, 2008) and Ditlevsen (see, e.g., Ditlevsen, 1979a;
Ditlevsen, 1979b; Ditlevsen, 1982; Ditlevsen and Madsen, 2007). In their common paper, Der
Kiureghian and Ditlevsen (2009) stress the need of a reliability measure that takes into account
parameter uncertainty (Der Kiureghian (1988) proposed to call it “predictive reliability measure”,
following Bayesian analysis vocabulary, and provided a formal definition that will be recalled
later).

Assuming now that X is distributed according to the parametric joint PDF fX|Θ, each random
variable Xi is distributed according to the marginal PDF fXi |Θi

. In the case of dependent inputs,
in the normal copula case, uncertainty affecting the correlation matrix could easily be consid-
ered in this framework. However, from a more general point of view, uncertainty affecting the
dependence structure (i.e., the copula) is not a widely studied topic in literature. Moreover,
from an engineering perspective, this problem is really difficult to assess due to the crucial lack
of information. In this chapter, only distribution parameter uncertainty is treated and copula
structure uncertainty is not considered. Indeed the vector Θ gathers all distribution parame-
ters of the corresponding marginals such that Θ = (Θ1, Θ2, . . . , Θd)

>, where each Θi, i ∈ J1, dK
is a set of distribution parameters for the i-th marginal (for instance, if Xi ∼ N (µXi , σXi), then
Θi = (µXi , σXi)

>). One can notice that, depending on the distribution type, all the marginal
PDFs will not be defined with the same number of parameters. In this chapter, it is assumed that
only a set of independent distribution parameters are uncertain which leads to consider a gen-
eral collection of univariate random parameters given by Θ = (Θ1, Θ2, . . . , Θnθ

)> ∈ DΘ ⊆ Rnθ

(which can be either moments or bounds). Consequently, without any loss of generality, one can
assume the existence of a joint PDF fΘ = ∏nθ

j=1 fΘj as a product of the marginal PDFs of each Θj

(see, e.g., Vergé et al. (2016) for a similar assumption). Note here that one could also consider
a dependence structure between the distribution parameters. However, the problem would be
far more difficult and would imply to have, at minimum, a prior information about such a de-
pendence structure. This topic is beyond the scope of this chapter. To get a deeper insight about
the practical characterization of fΘ(θ) based on available data (which is not the scope of this
chapter), the reader may refer to Robert (2007). To sum up, in this chapter, only a prior probability
distribution (for instance, following an expert-based judgment) will be assumed for Θ without
any purpose of Bayesian reliability updating (see, e.g., Pendola et al. (1999), Straub (2011), and
Straub and Papaioannou (2015) for more information about this topic).

Consequently, a new formulation for the failure probability can be proposed, following Der
Kiureghian (2008). Indeed, due to this bi-level uncertainty (on the vector of basic variables X and
on the vector of distribution parameters Θ), the failure probability pf is no longer a deterministic
value. It becomes a random variable, denoted by Pf, which depends on the realization θ of the
random vector of uncertain parameters such that:

Pf(θ) = P(g(X) ≤ 0 | Θ = θ) (5.3a)

=
∫

DX

1Fx(x) fX|Θ(x|θ)dx (5.3b)

= E fX|Θ [1Fx(X) | Θ = θ] . (5.3c)

Hence, by integrating over DΘ, one gets the so-called “predictive failure probability” P̃f which is a



80 Chapter 5. Reliability assessment under distribution parameter uncertainty

measure of reliability taking into account the effect of the uncertain characterization of distribu-
tion parameters:

P̃f = E fΘ
[Pf(Θ)] (5.4a)

=
∫

DΘ

Pf(θ) fΘ(θ)dθ (5.4b)

=
∫

DΘ

(∫

DX

1Fx(x) fX|Θ(x|θ)dx
)

fΘ(θ)dθ. (5.4c)

Eq. (5.4c) is the key equation whose solution is under consideration in this chapter. The idea is
that it can be numerically solved by two different approaches. Indeed, using the Fubini-Tonelli
theorem, one can show that:

P̃f =
∫

DX

1Fx(x)
(∫

DΘ

fX|Θ(x|θ) fΘ(θ)dθ

)
dx (5.5a)

=
∫

DX

1Fx(x) f̃X(x)dx (5.5b)

which makes appear the prior predictive PDF of X as defined in Eq. (5.2).
From a numerical point of view, a first way of computing this integral relies on evaluat-

ing pointwise the inner integral for each realization θ of Θ (Limbourg et al., 2010; Gayton et
al., 2011; Balesdent et al., 2014): this leads to the nested reliability approach (presented in sub-
section 5.3.1). The second way consists in evaluating it by treating both basic variables and
uncertain distribution parameters together and by integrating simultaneously on both domains
(under a conditioning constraint) as suggested in Der Kiureghian (2008): this is the augmented
reliability approach (presented in subsection 5.3.2). This second approach implies to sample ac-
cording to prior predictive PDF. The next section describes these approaches in details. As a
remark, one can notice that this Bayesian framework provides here a single reliability measure
(the predictive failure probability). Nevertheless, this quantity can help engineers to make more
informed decisions during the design process and can be coupled with the usual single-level
reliability measure so as to analyze properly the risk undertaken with a design choice. Decision
can be then enlightened by such additional information (Pasanisi et al., 2009; Keller et al., 2011;
Pasanisi et al., 2012).

Up to now, several researchers deployed efforts to carry on the way of other approaches to
compute this predictive failure probability (see another approach by Wen and Chen (1987), used
in Der Kiureghian (1988) and in Hong (1996) only with FORM calculations). Nevertheless, the
track of exploring the augmented space has not been over-exploited yet. In Pendola (2000), the
author recommended and implemented this strategy on a fracture mechanics test-case but lim-
ited his study to the FORM algorithm. All these works mainly focused on providing a global
reliability index, robust to parameter uncertainty, in the specific context of FORM. The use of an
augmented space has also been exploited by Au (2005) for design sensitivity purpose while con-
sidering uncertain design parameters. More recently, in Sankararaman and Mahadevan (2013b),
the authors proposed a broader view and an interpretation of the different levels of uncertainty
involved in these calculations and advocated to use an augmented approach to solve a similar
integral problem given in Eq. (5.4c). However, their study did not aim at performing reliability
assessment for rare event failure probabilities of some complex simulation codes which is the
scope of the present chapter.
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5.3 Nested vs. augmented reliability approaches

5.3.1 The nested reliability approach (NRA)

This approach is based on nested loops since it involves the numerical estimation of two
different quantities. The first (nested or inside) loop aims at computing a “conditional” fail-
ure probability whose numerical estimator is denoted by P̂f(θ). This estimator is a measure of
reliability given a realization θ of the random vector Θ. The second (outside) loop aims at com-

puting an estimator of the predictive failure probability, denoted by ̂̃Pf. In practice, it consists
in computing several P̂f(θ) for samples of the uncertain parameters Θ. It has been widely used
in literature, in various contexts, such as for uncertainty propagation in monotonic models in
Limbourg et al. (2010), probability-based tolerance analysis of products in Gayton et al. (2011)
and rare event probability estimation using a Kriging surrogate model in Balesdent et al. (2014).

Algorithm 1 – Nested reliability approach (NRA)
with CMC box for probability estimation.

1: Start
2: Define: X, Θ, Nx and Nθ (resp. the sampling budgets over the domain
DX and the domain DΘ)

3: For k = 1 : Nθ

4: Sample Θ(k);

5: For j = 1 : Nx

6: Sample X(j)
(k) given Θ(k) = θ(k);

7: Limit-state function evaluation: g(x(j)
(k));

8: Conditional failure probability estimator:
9: P̂(k)

f (θ(k)) = 1
Nx

∑Nx
j=1 1Fx(X

(i)
(k));

10: Predictive failure probability estimator:

11: ̂̃P
NRA

f = 1
Nθ

∑Nθ

k=1 P̂(k)
f (θ(k));

12: End

Algorithm 2 – NRA generic box (FORM / SS / AIS-CE / NAIS).
...

Define: usual transformation T to the u-space
U = T(X) (Nataf or Rosenblatt) and its inverse T−1 (see Appendix C)
Start

FORM / SS / AIS-CE / NAIS Algorithm
(see Appendix D for a full description of these algorithms)

End
Get: P̂(k)

f (θ(k))
...

A generic implementation of NRA framework coupled with a nested CMC sampling tech-
nique is given in Algorithm 1. In the rectangular box at lines 5− 9, one can choose any available
rare event probability estimation technique to estimate the conditional failure probability P̂f(θ),
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from approximation techniques (FORM, SORM) to most advanced sampling techniques (IS, SS).
However, for the sake of conciseness, one will only focus on the application of three techniques,
i.e., CMC, FORM and SS, while IS will be extensively used in the next chapter. Indeed CMC is
still considered as the reference rare event probability estimation technique for validation. Then,
FORM is widely used in an industrial context as it enables practitioners to perform reliability as-
sessment at a low computational cost. Finally, SS appeared to be a very powerful technique
to reach estimation of rare event failure probabilities, under the constraint of nonlinear LSFs,
with a rather moderate computational effort (Au et al., 2007). In brief, the rectangular box can
be seen as a non-intrusive plug-in uncertainty propagation code for reliability assessment. An
example of a plug-in box (for FORM, IS or SS) is given in the Algorithm 2. For specific cases
(e.g., FORM or SS), an additional step may be required: the transformation to the u-space (see
Appendix C). In the nested case, the transformation is already included in the plug-in reliability
rectangular box, i.e., usual transformations such as Nataf or Rosenblatt ones can be both used,
and the distribution parameter uncertainty does not change anything to their implementation.
Nevertheless, one should notice that for each sampled parameter, the algorithm needs to rebuild
and recalculate the transformation since it depends on the parameter value. Thus, for compli-
cated transformations, with a large number of basic variables, the simulation cost induced can
be increased. Finally, in this nested case, one can consider the following proposition.

Proposition 1 (NRA estimator). The NRA estimator ̂̃P
NRA

f is unbiased.

Proof. Consider that {X(j)
(k)}

Nx
j=1

i.i.d.∼ fX|Θ(k) and {Θ(k)}Nθ

k=1
i.i.d.∼ fΘ.

E

[
̂̃P

NRA

f

]
= E

[
1

Nθ

Nθ

∑
k=1

(
1

Nx

Nx

∑
j=1

1Fx(X
(j)
(k))

)]
(5.6a)

=
1

NθNx

Nθ

∑
k=1

Nx

∑
j=1

E fΘ

[
E f

X|Θ(k)
[1Fx(X

(j)
(k))|Θ(k)]

]
(5.6b)

=
1

NθNx

Nθ

∑
k=1

Nx

∑
j=1

E fΘ
[Pf(Θ

(k))] (5.6c)

= P̃f (5.6d)

The simulation budget allocation defined in terms of the two domains, DX and DΘ, can be
an obstacle for the accurate estimation of the predictive failure probability when using sampling
techniques. For instance, for a fixed simulation budget, one needs to decide whether to allow a
substantial budget to get a better precision over the integral on DX or over the integral on DΘ.
On the one hand, because the simulation budget over DX is not easily reducible as it directly af-
fects the estimation accuracy of the failure probability, it comes that adding a second integration
budget over DΘ can be computationally critical. On the other hand, sampling with only a few
number of points over DΘ may introduce a bias in the final measure of reliability by advantag-
ing some parameter values which influence the final probability measure without taking their
relative weight into account. For all these reasons, efficient design of experiments (DOE) may be
used so as to optimize the sampling over DΘ. As an example, one can mention the quadrature
scheme-based DOE over DΘ. The idea is to approximate a k-variate integral over DΘ ⊆ Rnθ of
the form:

I [Pf(θ)] =
∫

DΘ

Pf(θ) fΘ(θ)dθ (5.7)

where fΘ(θ) ≡ w(θ) is a density (or weight) function which is evaluated at gridpoints. The
quadrature rule provides an approximation using a combination of these weight functions such
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that (Davis and Rabinowitz, 1984):

I [Pf(θ)] ≈
M1

∑
j1=1

M2

∑
j2=1
· · ·

Mnθ

∑
jnθ

=1
(wj1 ⊗ wj2 ⊗ · · · ⊗ wjnθ

)Pf(θ
(j1)
1 , θ

(j2)
2 , . . . , θ

(jk)
nθ

) (5.8)

with wj the weights and ⊗ the tensor product operator. The indices M1, . . . , Mk represent the
number of points in each dimension. Such a strategy can be used with complex computer codes
(e.g., as for the launcher fallout case presented in Chapter 8).

5.3.2 The augmented reliability approach (ARA)

Another approach is to consider an augmented input random vector Z def
= (Θ, X)> composed

of the basic variables and their distribution parameters as it appears in Eq. (5.4c) (see Schöbi
and Sudret (2015) for a similar definition). Thus, this augmented input space has a dimension
of nθ + d (nθ uncertain distribution parameters and d random basic variables). The predictive
failure probability can be then rewritten as follows:

P̃f =
∫

DΘ

∫

DX

1Fx(x) fX|Θ(x|θ) fΘ(θ)dxdθ =
∫

DZ

1Fz(z) fZ(z)dz = E fZ [1Fz(Z)] (5.9)

where Fz = {z ∈ DZ | g(z) ≤ 0} and DZ = DX ×DΘ (where × is the Cartesian product). Note
that this definition is similar to the one given in Eq. (5.5b) with the prior predictive distribu-
tion, however, to clearly distinguish between the single-level uncertainty involving only the X
variables and the bi-level uncertainty involving both X and Θ, the notation f̃X is replaced by fZ.
However, as an important remark, one should notice that using the notation “Z” as inputs of the
functions 1Fz(Z) and g(Z) is an abuse of notation since, in practice, only the basic variables X do
play a role in the computer code as physical variables. Such a notation is just used to denote that
the derivations are achieved under bi-level uncertainty. In the literature, FORM has been the
first technique that has been coupled to ARA as proposed in Hong (1996) and Pendola (2000).

A generic implementation framework is given in Algorithm 3. Again, in this algorithm, the
rectangular box can be replaced by any non-intrusive plug-in uncertainty propagation code for
reliability assessment as the ones cited previously for the NRA (see Algorithm 4 as an example).
This shows that the ARA does not suffer from any major difference with the classical nested ap-
proach in terms of the variety of applicable techniques. Again, as for the NRA, one can consider
the following proposition.

Proposition 2 (ARA estimator). The ARA estimator ̂̃P
ARA

f is unbiased.

Proof. Consider that {Z(j)}Nx,θ
j=1

i.i.d.∼ fZ with fZ = f(X,Θ).

E

[
̂̃P

ARA

f

]
= E

[
1

Nx,θ

Nx,θ

∑
j=1

1Fz(Z
(j))

]
(5.10a)

=
1

Nx,θ

Nx,θ

∑
j=1

E[1Fz(Z
(j))] (5.10b)

=
1

Nx,θ

Nx,θ

∑
j=1

P̃f (5.10c)

= P̃f (5.10d)
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Algorithm 3 – Augmented reliability approach (ARA)
with CMC box for probability estimation.

1: Start
2: Define: X, Θ, Nx,θ (sampling budget)

3: For i = 1 : Nx,θ
4: Sample Θ(i);
5: Sample X(i) given Θ(i) = θ(i);
6: Consider Z(i) = (X(i), Θ(i));
7: Limit-state function evaluation: g(z(i));
8: Predictive failure probability estimator:

9: ̂̃P
ARA

f = 1
Nx,θ

∑
Nx,θ
i=1 1Fz(Z

(i));

10: End

Algorithm 4 – ARA generic box (FORM / SS / AIS-CE / NAIS).
...

Define: new transformation TRos
aug for the augmented space

U = TRos
aug (Z)

(see Eq. (5.11), but not compulsory for all techniques)
Start

FORM / SS / AIS-CE / NAIS Algorithm
(see Appendix D)

End
Get: ̂̃P

ARA

f
...

One major difference concerns the transformation to the u-space: since there exists a condi-
tioning between the distribution parameters and the basic input variables, Nataf transformation
cannot be used anymore and Rosenblatt transformation is the only one that can handle this
constraint.

Under the bi-level input uncertainty, one needs to adapt the usual Rosenblatt transformation
(see Appendix C for the traditional formulation of the transformation). It is assumed that the
joint PDF fX|Θ is known since all the marginal PDFs and the correlation matrix (or the covari-
ance matrix) giving the linear correlation structure between the basic input variables (normal
or Gaussian copula case (Lebrun, 2013)) are known. In addition, the joint PDF fΘ, as explained
previously in Subsection 5.2.1, is supposed to be known. In this case, under the consideration
of the augmented space of dimension nθ + d, one can apply the Rosenblatt transformation, first to
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the nθ components of Θ, and second to the d ones of the vector X|Θ such that:

TRos
aug :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Rnθ+d −→ Rnθ+d

z 7−→ u =




Φ−1 (FΘ1(θ1))
...

Φ−1
(

FΘnθ
(θnθ

)
)

...
Φ−1

(
FX1|Θ1,...,Θnθ

(x1|θ1, . . . , θnθ
)
)

...
Φ−1

(
FXd|Θ1,...,Θnθ

,X1,...,Xd−1
(xd|θ1, . . . , θnθ

, x1, . . . , xd−1)
)




(5.11)

where Φ−1(·) is the normal inverse CDF and FΘi(·), FXj|Θi
(·|·) respectively the marginal CDFs of

the parameters and the conditional marginal CDFs of the basic variables. In the case of correlated
inputs, one can implement this regular transformation following and adapting general formulas
given in Rosenblatt (1952). As a remark, one should notice that from a numerical point of view,

the inverse transformation
(

TRos
aug

)−1
(·) (from the u-space to the z-space) can be the most useful

(especially when FORM, SORM or SS techniques are used).

5.3.3 Illustration

From a numerical point of view, NRA and ARA can be illustrated through a two-dimensional
example with one uncertain distribution parameter. Let us call X1 and X2 the two basic input
variables modeled as two Gaussian variates such that X1 ∼ N (µX1 = 7, σX1 = 5/

√
3) and

X2 ∼ N (Θ = µX2 , σX2 = 2/
√

3). The mean of X2 is considered as being uncertain (for example,
Θ ∼ N (2, 1.5)). For the sake of clarity, in Figure 5.2a, only three clouds of samples are plotted
for three different values of θ (200 points per cloud). Indeed such a sequential sampling is the
underlying principle of NRA.

As for ARA, graphical results plotted in Figure 5.2b bring out the underlying principle of
this approach: covering in one algorithm step the augmented input space (for the sake of com-
parison, 600 points are used, instead of 3× 200 points for NRA). One can clearly notice the same
trend between NRA and ARA, the first one by a sequential sampling strategy, the second one by
a simultaneous sampling over all the dimensions of the augmented input space.

5.4 Numerical comparison between the two approaches

To evaluate the efficiency of the ARA, a numerical validation benchmark has been performed
with a systematic comparison to the classical NRA. Two academic test-cases of increasing com-
plexity have been chosen to check the validity of the two approaches. Numerical application
on a realistic aerospace test-case is further proposed in Chapter 8. Moreover, three reliability
techniques have been tested to calculate the failure probability: CMC, FORM and SS. The fol-
lowing numerical applications have been implemented in Matlab R© and performed using the
open source toolbox FERUM v4.1 (Bourinet et al., 2009).
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FIGURE 5.2: Illustration of NRA and ARA simulation procedures on a two-dimensional problem.

5.4.1 Methodology and comparison metrics

This section aims at comparing results obtained for both NRA and ARA. For each type of
approach, two reliability techniques, FORM (when LSF is linear) and SS, will be used to esti-
mate the predictive failure probability P̃f. These combined approaches (NRA/FORM, NRA/SS,
ARA/FORM, ARA/SS) will be respectively compared to a reference estimation performed us-
ing CMC (most of the time, a NRA/CMC with a large number of samples on both domains).
These three techniques (CMC, FORM and SS) have been chosen for their representativeness of
both reference, approximation and advanced sampling techniques. As for IS techniques (either
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nonadaptive and adaptive ones), they could also be used here. However, they will be extensively
studied in the next chapter. Table 5.1 gives a brief overview of the methodology.

TABLE 5.1: Overall methodology for the numerical comparison
between NRA and ARA.

Test-case Ref. NRA ARA
Ref. CMC CMC FORM SS CMC FORM SS

Ex. #1: Correlated R− S a (cf. 5.4.2) � � � � � � �
Ex. #2: Nonlinear oscillator b (cf. 5.4.3) � � × � � × �

a 2 correlated basic variables, 1 uncertain parameter, g(·) linear, low single-level pf.
b 8 independent basic variables, 1 uncertain parameter, g(·) nonlinear, low single-level pf.

In Table 5.1, the black squares � stand for successful calculations of the test-cases and the
crosses × indicate that FORM is clearly inappropriate since the LSF is known explicitly to be
nonlinear. As a remark, one can notice that some specific cases are denoted by computationally
“intractable”. Indeed, to overcome such a difficulty and to get a reference result to make the
comparison viable, specific computational strategies have been set up. For the sake of clarity and
to avoid any confusion, these strategies are presented and discussed in the dedicated subsections
of the test-cases.

One needs to introduce the comparison metrics used in the following numerical benchmarks.
As proposed in Morio and Balesdent (2015), characterizing the quality of a rare event probability

estimation by a given “method” M (considering the estimator ̂̃P
M

f of P̃f), can be achieved by
the use of three performance metrics computed w.r.t. some reference estimation (here, those
obtained by CMC). These metrics are detailed below.

Relative standard error. The relative standard error (RE) is defined as follows:

RE
[
̂̃P

M

f

]
=

√
Var

[
̂̃P

M

f

]

E

[
̂̃P

M

f

] (5.12)

where E

[
̂̃P

M

f

]
and Var

[
̂̃P

M

f

]
are estimated on the sample obtained by replication of the analysis

(see Eq. (5.15) and Eq. (5.16)).

Relative bias. The relative bias (RB) is defined as follows:

RB
[
̂̃P

M

f

]
=

E

[
̂̃P

M

f

]
− ̂̃P

CMC

f

̂̃P
CMC

f

. (5.13)

It gives a description of how close the estimate ̂̃P
M

f is close to the reference value ̂̃P
CMC

f . In the
following (see Table 5.3 and Table 5.4), RB for NRA is computed with reference to the quantity
̂̃Pf,ref (estimated by a reference CMC or another technique when CMC is intractable) while RB

for ARA is computed with reference to ̂̃P
ARA/CMC

f to make the comparison representative.
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Efficiency. The efficiency νM relatively to a CMC estimate (respectively obtained by NRA/CMC
or ARA/CMC) can be defined such that:

νM =
NCMC

sim

NM
sim

(5.14)

where NCMC
sim is the required number of CMC simulations to get RE

[
̂̃P

CMC

f

]
= RE

[
̂̃P

M

f

]
. A value

of νM > 1 indicates that the method M is more efficient than CMC for the given test-case. In other
words, νM indicates the quantity by which one can divide the initial CMC simulation budget for
a same level of accuracy.

Statistics of the predictive failure probability estimator. In the following numerical studies,

the mean and variance of ̂̃Pf are estimated by replication of the algorithm, using the following
usual statistics:

m̂̃Pf
=

1
Nrep

Nrep

∑
i=1

̂̃P
(i)

f (5.15)

which is the sample mean with Nrep the number of replications of the predictive failure probability
estimation and S2

̂̃Pf
the unbiased sample variance defined by:

S2
̂̃Pf
=

1
Nrep − 1

Nrep

∑
i=1

(
̂̃P
(i)

f −m̂̃Pf

)2

. (5.16)

5.4.2 Example #1: a resistance – demand toy-case with correlated basic variables and
low failure probability

Description. The aim of this first academic test-case is to check the validity of the two ap-
proaches regarding two difficulties: assuming a strong correlation in the input probabilistic
model and trying to estimate a low failure probability w.r.t. a given simulation budget. Ta-
ble 5.2 gives the input data. The reference failure probability without parameter uncertainty
is pf,ref = 8.84× 10−8 (because of the linear LSF, the true conditional failure probability Pf(θ)
can be obtained using FORM). The correlation coefficient ρ = 0.9 expresses the linear correla-
tion between the two basic variables. The failure is considered when the demand S exceeds the
resource R. The LSF thus reads:

g(X) = R− S = X1 − X2. (5.17)

The conditional failure probability, i.e., Pf(Θ = θ), can be written in its integral form since the
joint conditional PDF fX|Θ can be analytically derived. One gets:

Pf(θ = µX2) =
∫

Fx

1
2πσX1 σX2

√
1− ρ2

× exp

[
− 1

2(1− ρ2)

(
(x1 − µX1)

2

σ2
X1

− 2ρ(x1 − µX1)(x2 − θ)

σX1 σX2

+
(x2 − θ)2

σ2
X2

)]
dx. (5.18)
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In the specific case of two correlated normal variables and a linear LSF, the probability of failure
becomes:

Pf(θ = µX2) = Φ (−βC) = Φ


− µX1 − θ√

σ2
X1

+ σ2
X2
− 2ρσX1 σX2


 . (5.19)

where βC is the Cornell reliability index (Madsen et al., 1986). This simple closed-form solution
can be used to check and validate numerical results obtained for this elementary test-case.

TABLE 5.2: Input probabilistic model for Example #1.

Variable Xi
a Distribution Mean µXi S.d. σXi

X1 = R Normal 12 5/
√

3
X2 = S Normal µX2 uncertain b 2/

√
3

Θ = µX2 Normal 2 1.5

a Linear correlation between X1 and X2: ρ = 0.9.
b For a fixed value µX2 = 2, pf,ref = 8.84× 10−8.

Results. Table 5.3 illustrates that NRA and ARA give similar results for estimating the pre-
dictive failure probability. Moreover, for almost all the techniques (except NRA/CMC which
suffers here from a lack of points while computing the integral over DΘ) it demonstrates that
ARA can handle both rare event probabilities and strong correlation between basic input vari-
ables. On the one hand, ARA/FORM seriously challenges other techniques since it has a very
small number of simulation code evaluations compared to CMC and SS and it gives exact results
since the LSF is linear. On the other hand, ARA/SS definitely gives promising results compared
to ARA/CMC since the ν value (ν = 54.44) is high. In a classical context of rare event (often en-
countered in aerospace engineering), one can see the superiority of ARA (coupled with FORM
or SS) compared to other NRA-coupled techniques. It also reveals how high can be the vari-
ations between the single-level failure probability estimate and the predictive one considering
parameter uncertainty (here, it varies from 10−8 to 10−5). Note that a similar test-case treating
both µXi and σXi as uncertain distribution parameters is treated in Chabridon et al. (2017b) but
are not recalled here for the sake of conciseness.
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FIGURE 5.3: Two-degree-of-freedom damped oscillator with primary and secondary systems.

5.4.3 Example #2: a two d.o.f. primary/secondary damped oscillator

Description. This nonlinear oscillator is a well-known structural reliability test-case firstly pro-
posed in Der Kiureghian and De Stefano (1991) and then used for benchmarking purposes in
Bourinet et al. (2011), Bourinet (2016) and Dubourg (2011). The aim here, is to assess relia-
bility of a two-degree-of-freedom primary-secondary system, as shown in Figure 5.3, under
a white noise base acceleration. The basic variables characterizing the physical behavior are
the masses mp and ms, spring stiffnesses kp and ks, natural frequencies ωp = (kp/mp)1/2 and
ωs = (ks/ms)1/2 and damping ratios ζp and ζs, where the subscripts p and s respectively refer to
the primary and secondary oscillators. If Fs denotes the force capacity of the secondary spring,
then the reliability of the system can be evaluated using the following LSF (Der Kiureghian and
De Stefano, 1991; Igusa and Der Kiureghian, 1985):

g(X) = Fs − 3ks

√√√√√ πS0

4ζsω3
s


 ζaζs

ζpζs (4ζ2
a + r2) + γζ2

a

(
ζpω3

p + ζsω3
s

)
ωp

4ζω4
a


 = Fs − Facc. (5.20)

This equation defines the potential failure event {Fs ≤ Facc} occuring if the force induced by the
white noise base acceleration overcomes the force capacity in the secondary spring. Moreover,
S0 is the intensity of the white noise, γ = ms/mp the mass ratio, ωa = (ωp + ωs)/2 the average
frequency ratio, ζa = (ζp + ζs)/2 the average damping ratio and r = (ωp − ωs)/ωa a tuning
parameter. The probabilistic model for X is detailed in Table 5.5.

The two interesting characteristics of this application test-case are its set of non-normal basic
random variables and the fact that it suffers from a highly nonlinear limit-state surface (such a
strong nonlinearity prevents from using any FORM-based approach, as illustrated by Bourinet
(2016)). Moreover, following Dubourg (2011), under single-level uncertainty, it appears that the
mean value of the force capacity µX7 is the most influential distribution parameter on the single-
level failure probability. However, it is assumed here that this distribution parameter is not
perfectly known. Thus one considers a prior distribution over µX7 as presented in Table 5.5.
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TABLE 5.5: Input probabilistic model for Example #2.

Variable Xi
a Distribution Mean µXi C.v. δXi

X1 = mp (kg) Lognormal 1.5 10%
X2 = ms (kg) Lognormal 0.01 10%
X3 = kp (N.m−1) Lognormal 1 20%
X4 = ks (N.m−1) Lognormal 0.01 20%
X5 = ζp (1) Lognormal 0.05 40%
X6 = ζs (1) Lognormal 0.02 50%
X7 = Fs (N) Lognormal µX7 uncertain b 10%
X8 = S0 (m.s−2) Lognormal 100 10%
Θ = µX7 (N) Normal 21.5 10%

a The basic variables are independent.
b For a fixed value µX7 = 21.5, pf,ref = 4.78× 10−5.

Results. Numerical results summarized in Table 5.4 show that, for the same simulation budget,
ARA/CMC is more accurate than NRA/CMC to estimate the predictive failure probability (the

reference result ̂̃Pf,ref is provided below the table). As for ARA/SS, a significant gain is noticeable
referring to the high ν values compared to unity (ν > 10). In brief, that means the ARA/SS
is very efficient to treat this problem compared to a classical Monte Carlo approach. A final
remark concerns the comparison between the two reference probabilities pf,ref = 4.78 × 10−5

and ̂̃Pf,ref = 1.55× 10−4 : one can see that, in this case, considering uncertainty on a distribution
parameter makes the system less safe, which can be, for example, an important indicator for
design or re-design purposes.

5.4.4 Synthesis about numerical results

The aim of this subsection is to give a synthesis about the main advantages and drawbacks
of both NRA and ARA. According to the numerical results, one can make the following remarks:

• ARA leads to more accurate results than NRA with respect to a given simulation budget;

• only ARA, coupled with dedicated rare event probability estimation techniques, is able to
handle very expensive simulation codes;

• NRA suffers from the “budget allocation” problem;

• ARA requires to adapt the Rosenblatt transformation so as to use the usual rare event
probability estimation techniques in the u-space.

As a final remark concerning the coupling between ARA and rare event probability estimation
techniques, one can notice that large efficiencies can be attained with advanced sampling tech-
niques such as ARA/SS (here, only SS is used but in the next chapter, similar efficiencies are
demonstrated with IS) seems to be a very promising technique since it can handle most of the
difficulties encountered in complex simulation codes. However, other techniques can be used if
some specific characteristics are preponderant. For instance, if one knows that the LSF is linear,
one should use ARA/FORM instead (whatever the rareness of the failure probability). Combin-
ing several characteristics lead to deduce which optimal technique should be used regarding all
these simulation constraints.
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5.5 Discussion and perspectives

As described in the previous sections, reliability assessment under parameter uncertainty
involves mainly two components: the choice of an estimator for the failure probability (here,
the predictive failure probability P̃f) and the choice of a numerical strategy to get an estimate
of it (i.e., NRA vs. ARA). Concerning the first point, P̃f corresponds to the mean failure proba-
bility over all the conditional failure probabilities Pf(θ). As discussed in Keller et al. (2011) and
Pasanisi et al. (2012), such a predictive estimator appears to be, from the statistical decision theory
point of view (Berger, 1985), associated to a quadratic cost function whose aim is to quantify the
impact of a mis-estimation through P̃f with respect to the true failure probability pf (probability
obtained with a full knowledge of the probability distribution of X and with a perfect com-
puter model). However, as pointed out in Pasanisi et al. (2012), since the associated quadratic
cost function is symmetric, both under- and over-estimations have the same costs, theoretically
speaking. Nevertheless, this symmetry of costs may have asymmetric consequences from a risk
management perspective. Thus, a more conservative estimate (e.g., a quantile) could be com-
bined with P̃f to characterize more accurately the probability of interest. However, estimating
such an indicator is possible with NRA but, as mentioned previously, with a computational cost
which might be incompatible with industrial considerations. Further investigations are required
to make the calculation of quantiles possible with ARA. A first track could be to use the reverse
importance sampling trick in a similar fashion as in Morio (2011b) and Lemaître et al. (2015) so as
to avoid the naive sampling strategy imposed by NRA. In the recent work of Zhao et al. (2018),
a point-estimate technique is used to either approximate the mean and a quantile of the con-
ditional failure probability. This approximation technique seems promising but presents some
limitations, mainly due to the use of point-estimate approximation techniques which can intro-
duce some bias in the estimates.

Further enhancements can be envisaged from reliability updating process, especially by cou-
pling the proposed approaches with reliability updating schemes such as those proposed in
Straub (2011) and Straub and Papaioannou (2015). Indeed, one could consider either getting
more information about the basic input variables (e.g., more data) or even more information
about distribution parameters (see, e.g., the discussion about the topic of statistical tolerancing
for mass production in Chabridon et al., 2017c).

Finally, in order to reduce the computational cost of these estimations, one possible enhance-
ment track could be to use a surrogate model coupled with ARA in order to reduce the compu-
tational cost of these estimations. However, one needs to ensure first that the accuracy of the
surrogate model is high enough so as to avoid adding noise to the already existing bi-level input
uncertainty.

5.6 Conclusion

In this chapter, a coupling between rare event probability estimation techniques (e.g., CMC,
FORM, SS) and two existing strategies, namely the nested reliability approach (NRA) and the
augmented reliability approach (ARA), is investigated to handle reliability assessment of black-
box computer codes under distribution parameter uncertainty. If the first one, the NRA, is
widely used and simple to set up, it definitely crashes with both the curse of dimensionality
and simulation budget considerations. The second one, the ARA, relies on the definition of an
augmented input vector of uncertain distribution parameters and the basic input variables. For
ARA, numerical sampling and integration can be carried simultaneously on both basic random
variables conditioned on uncertain distribution parameters. The main principles of both tech-
niques have been presented into a unified common framework. Specific attention has been given
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to the algorithmic links and differences existing between these approaches. Specificities con-
cerning the use of Rosenblatt transformation with ARA have been evoked. Then, a comparison
between NRA and ARA has been carried out through application on two academic test-cases.
Numerical application on a realistic aerospace test-case will be further studied in Chapter 8.
This study showed the benefits of using ARA with dedicated rare event probability estimation
techniques for complex models. Several enhancements raised in Section 5.5 are currently open
research tracks.

In the next chapter, a first way to study the variability of the reliability measure (i.e., the
predictive failure probability) w.r.t. the bi-level input uncertainty is investigated. It relies on the
proposition of local derivative-based sensitivity estimators of the predictive failure probability
regarding the deterministic hyper-parameters of the prior probability distribution of Θ.
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This chapter is adapted from the following reference:
Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio, and N. Gayton (2017). “Reliability-
based sensitivity estimators of rare event probability in the presence of distribution parameter
uncertainty”. In: Reliability Engineering and System Safety 178, pp. 164–178.

6.1 Introduction and motivations

In this chapter, one considers the same Bayesian hierarchical model as that presented in
Chapter 5:

X ∼ fX|Θ(x|θ) : DX ⊆ Rd → R+ (uncertainty level #1)

Θ ∼ fΘ|ξ(θ|ξ) : DΘ ⊆ Rnθ → R+ (uncertainty level #2)

ξ = (ξ1, ξ2, . . . , ξnξ
)> ∈ Dξ ⊆ Rnξ (deterministic level).

In the present chapter, contrarily to the previous one, the third level is considered in an explicit
way. This is due to the fact that, in the context of a lack of information about Θ, the epistemic
uncertainty is characterized through the use of a prior distribution. This prior can be elicited
from experts’ judgments. As a result, the choice of the prior distribution hyper-parameters
(e.g., choice of moments or bounds) might have an impact on the safety measure. The idea
is to check the robustness of the safety measure w.r.t. the local choice of specific values for the
hyper-parameters.

Moreover, as described in Chapter 5, under this bi-level input uncertainty, the chosen QoI is
the predictive failure probability defined such that:

P̃f(ξ)
def
= E fΘ|ξ [Pf(Θ)] = E fΘ|ξ

[
E fX|Θ [1Fx(X)|Θ] |ξ

]
(6.2a)

=
∫

DΘ

Pf(θ) fΘ|ξ(θ|ξ)dθ (6.2b)

where Pf(θ) is the conditional failure probability given by:

Pf(θ) = P(g(X) ≤ 0 | Θ = θ) =
∫

DX

1Fx(x) fX|Θ(x|θ)dx (6.3a)

= E fX|Θ [1Fx(X) | Θ = θ] . (6.3b)

As demonstrated in the previous chapter (see also Chabridon et al. (2017a) and Chabridon et
al. (2017c)), an efficient way to estimate such a QoI can be achieved by considering a so-called
“augmented” random vector Z def

= (X, Θ)> defined on DZ = DX × DΘ (where × is the Carte-
sian product) with joint PDF fZ|ξ(z|ξ)

def
= f(X,Θ)|ξ((x, θ)|ξ) = fX|Θ(x|θ) fΘ|ξ(θ|ξ) such that the

expression in Eq. (6.2b) can be rewritten as follows:

P̃f(ξ) =
∫

DΘ

∫

DX

1Fx(x) fX|Θ(x|θ) fΘ|ξ(θ|ξ)dxdθ =
∫

DZ

1Fz(z) fZ|ξ(z|ξ)dz (6.4a)

= E fZ|ξ [1Fz(Z) | ξ] (6.4b)

where Fz = {z ∈ DZ | g(z) ≤ 0}. This augmented formulation (a.k.a. ARA) numerically implies
to estimate the expected value in Eq (6.4b).

In this chapter, the aim is to propose a possible answer to the Q3 recalled herebelow:

Q3 – How to link the variability of the reliability measure to this bi-level input uncertainty?
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This chapter is organized as follows. Section 6.2 describes both the derived sensitivity esti-
mators and their implementation within the augmented Adaptive Importance Sampling strat-
egy. Section 6.3 illustrates the benefits of such a methodology on different test-cases of increas-
ing complexity and a synthesis gathering the key aspects and issues of the proposed approach
is provided at the end of this section. A conclusion gathering the most important results of this
chapter is finally given in Section 6.4.

6.2 Sensitivity analysis of predictive failure probability with respect
to distribution hyper-parameters

The use of local sensitivities in this study is motivated mainly by two reasons. The first one
corresponds to the way the problem is set as explained above (i.e., one wants to measure the
sensitivity w.r.t. a local choice of ξ). Finally, the second reason, which is a key constraint in this
work, remains the limited allowable extra simulation budget one can afford to get sensitivities
while the rare event probability estimation can be very expensive too (without any consideration
here of any use of a metamodel).

The gradient of the predictive failure probability P̃f w.r.t. the vector of the hyper-parameters
ξ is defined as follows:

∇ξ P̃f(ξ) =

(
∂P̃f(ξ)

∂ξ j
, j = 1, . . . , nξ

)>
. (6.5)

Depending on the nature of the hyper-parameter ξ j, two cases are considered:

• Case #1: ξ j is an hyper-parameter of a prior distribution with an unbounded support;

• Case #2: ξ j is an hyper-parameter of a prior distribution with a bounded/truncated sup-
port.

6.2.1 Sensitivity estimators for Case #1 in the augmented framework

The partial derivative of the predictive failure probability w.r.t. the j-th component of ξ is
given by:

∂P̃f(ξ)

∂ξ j
=

∂

∂ξ j

[∫

DΘ

Pf(θ) fΘ|ξ(θ|ξ)dθ

]
=
∫

DΘ

Pf(θ)
∂ fΘ|ξ(θ|ξ)

∂ξ j
dθ. (6.6)

Note that, in the previous derivations, the differential and integral operators are switched due to
Lebesgue’s dominated convergence theorem (Jacod and Protter, 2004). Following the idea given
in Rubinstein (1986), one can use the so-called importance sampling trick so as to get an expectation
w.r.t. the same probability measure as that used for the failure probability estimation. It thus
comes:

∂P̃f(ξ)

∂ξ j
=
∫

DΘ

Pf(θ)

∂
∂ξ j

fΘ|ξ(θ|ξ)
fΘ|ξ(θ|ξ)

fΘ|ξ(θ|ξ)dθ (6.7a)

=
∫

DΘ

(∫

DX

1Fx(x) fX|Θ(x|θ)dx
)

∂ ln fΘ|ξ(θ|ξ)
∂ξ j

fΘ|ξ(θ|ξ)dθ (6.7b)

=
∫

DΘ

(∫

DX

1Fx(x) κj(θ, ξ) fX|Θ(x|θ)dx
)

fΘ|ξ(θ|ξ)dθ (6.7c)

= E fZ|ξ

[
1Fz(Z) κj(Θ, ξ)

]
(6.7d)
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where κj(θ, ξ)
def
=

∂ ln fΘ|ξ(θ|ξ)
∂ξ j

is called the “score function” (SF). As recalled in Chapter 4, the SF ap-
proach has been widely used in the ROSA literature under single-level uncertainty (see, e.g., Wu
(1994b), Rahman (2009), and Millwater and Feng (2011)). It is used here, in the context of bi-level
uncertainty, for three main reasons: first, it enables to provide the targeted local sensitivity in
Eq. (6.6) as a simple derivation (assuming rather simple cases for the prior distribution); then, it
fits naturally to an importance-sampling-based estimation framework; and finally, it provides an
efficient sampling-based estimator which allows to avoid finite difference schemes. One should
notice that, to avoid any confusion, in the above equations and in the rest of the chapter, the
vector Θ is explicitely written instead of Z = (X, Θ)> since the dependence w.r.t. ξ is through
Θ. An example of a SF associated to an unbounded normal prior for an uncertain distribution
parameter Θj is given in Table 6.1. Then, considering a sample {Z(i)}N

i=1 of N i.i.d. copies of the
augmented vector Z, one can derive the following MC estimator:

∂P̃f(ξ)

∂ξ j
≈
MC

1
N

N

∑
i=1

1Fz(Z
(i)) κj(Θ

(i), ξ). (6.8)

As a remark, if the probability is estimated with ARA, its gradient in Eq. (6.8) may be estimated
at a reduced cost. However, due to central limit theorem, one can show that the predictive
failure probability and its sensitivities may have different convergence rates. Thus, the variance
associated with the two asymptotic distributions will necessarily differ.

TABLE 6.1: Score functions for normal (Case #1) and uniform (Case #2) prior distributions on an uncertain
parameter Θj.

Distribution PDF fΘj|ξ(θj|ξ1, ξ2) Hyper-parameters SF κ1(θj, ξ1) SF κ2(θj, ξ2)

Normal

(Case #1) 1
ξ2
√

2π
exp

[
− 1

2

(
θj−ξ1

ξ2

)2
]

ξ1 = µΘj , ξ2 = σΘj
1
ξ2

(
θj−ξ1

ξ2

)
1
ξ2

[(
θj−ξ1

ξ2

)2
− 1
]

Uniform
(Case #2) 1

ξ2−ξ1
ξ1 = aθj , ξ2 = bθj

1
ξ2−ξ1

− 1
ξ2−ξ1

6.2.2 Sensitivity estimators for Case #2 in the augmented framework

Here, at least, one of the basic variables Xj follows a parametrized distribution whose param-
eter Θj follows a bounded or truncated distribution denoted by fΘj|ξ(θj|ξ), with ξ = (ξ1, ξ2, . . . , ξnξ

)>

the vector of the hyper-parameters. Here, ξ j ∈ ξ could be either a bound or a moment. In the
next derivations, one considers that the distribution parameters Θi, i = 1, . . . , nθ are indepen-
dent, which leads to fΘ|ξ(θ|ξ) = ∏nθ

i=1 fΘi |ξ(θi|ξ). Before deriving the sensitivities, one should
notice that, in this case, the support DΘ is a function of ξ j as the support of Θj is either bounded
or truncated (note that, without any loss of generality, the bounds are denoted by a(ξ j) and b(ξ j)

in Eq. (6.9b)). In the following, the notation Θ−j (respectively θ−j) denotes the vector without
the j-th component Θj (repectively θj) which depends on the hyper-parameter ξ j. Thus, one can
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write:

∂P̃f(ξ)

∂ξ j
=

∂

∂ξ j

[∫

DΘ(ξ j)
Pf(θ) fΘ|ξ(θ|ξ)dθ

]
(6.9a)

=
∂

∂ξ j

[∫

Rnθ−1

∫ b(ξ j)

a(ξ j)
Pf(θ) fΘj|ξ(θj|ξ) fΘ−j|ξ(θ

−j|ξ)dθjdθ−j
]

(6.9b)

=
∫

Rnθ−1

∂

∂ξ j

[∫ b(ξ j)

a(ξ j)
Pf(θ) fΘj|ξ(θj|ξ)dθj

]
fΘ−j|ξ(θ

−j|ξ)dθ−j (6.9c)

=
∫

Rnθ−1

∂

∂ξ j
[I (Pf(θ), ξ)] fΘ−j|ξ(θ

−j|ξ)dθ−j (6.9d)

where I (Pf(θ), ξ) is an integral whose bounds (denoted by a and b) depend on the parameter
ξ j. Indeed, using the Leibniz integral rule for differentiation of a definite integral whose limits
are functions of the differential variables, one gets:

∂

∂ξ j
[I (Pf(θ), ξ)] =

∂

∂ξ j

[∫ b(ξ j)

a(ξ j)
Pf(θ) fΘj|ξ(θj|ξ)dθj

]
(6.10a)

=
∫ b(ξ j)

a(ξ j)
Pf(θ)

∂ fΘj|ξ(θj|ξ)
∂ξ j

dθj

+ Pf

(
θ−j, θj = b(ξ j)

)
fΘj|ξ(b(ξ j)|ξ)

∂b(ξ j)

∂ξ j

− Pf

(
θ−j, θj = a(ξ j)

)
fΘj|ξ(a(ξ j)|ξ)

∂a(ξ j)

∂ξ j
(6.10b)

where Pf
(
θ−j, θj = •(ξ j)

)
represents the failure probability estimated with θj fixed to one of the

integration bounds (i.e., •(ξ j) = a(ξ j) or b(ξ j)).
To illustrate the previous reasoning, one can apply these derivations to a test-case involving a

distribution parameter Θj following a continuous uniform distribution such that Θj ∼ U([a, b]).
In this example, ξ j can be either a bound (a or b) or even a moment (e.g., µΘj =

a+b
2 or σΘj =

b−a√
12

).
Let us first assume that ξ j = a:

∂

∂a
[I (Pf(θ), ξ)] =

∫ b

a
Pf(θ)

∂ fΘj|ξ(θj|ξ)
∂a

dθj + 0− Pf(θ
−j, θj = a) fΘj|ξ(a|ξ)× 1 (6.11a)

=
∫ b

a
Pf(θ)

∂ fΘj|ξ(θj|ξ)
∂a

dθj −
1

b− a
Pf(θ

−j, θj = a). (6.11b)
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Hence, using the same trick as in paragraph 6.2.1, one gets:

∂P̃f(ξ)

∂a
=
∫

Rnθ

Pf(θ)
∂
∂a fΘj|ξ(θj|ξ)
fΘj|ξ(θj|ξ)

fΘj|ξ(θj|ξ) fΘ−j|ξ(θ
−j|ξ)dθjdθ−j

− 1
b− a

∫

Rnθ−1
Pf(θ

−j, θj = a) fΘ−j|ξ(θ
−j|ξ)dθ−j (6.12a)

=
∫

Rnθ

(∫

Rd
1Fx(x) fX|Θ(x|θ)dx

) ∂ ln fΘj|ξ(θj|ξ)
∂a

fΘ|ξ(θ|ξ)dθ

− 1
b− a

∫

Rnθ−1

(∫

Rd
1Fx(x) fX|Θ(x|θ−j, θj = a)dx

)
fΘ−j|ξ(θ

−j|ξ)dθ−j (6.12b)

=
∫

Rnθ

(∫

Rd
1Fx(x) κj(θj, a) fX|Θ(x|θ)dx

)
fΘ|ξ(θ|ξ)dθ

− 1
b− a

∫

Rnθ−1

(∫

Rd
1Fx(x) fX|Θ(x|θ−j, θj = a)dx

)
fΘ−j|ξ(θ

−j|ξ)dθ−j (6.12c)

= E fZ|ξ

[
1Fz(Z) κj(Θj, ξ)

]
− 1

b− a
E fZ|Θj=a,ξ

[
1Fz(Z

−j) | Θj = a
]

(6.12d)

where Z−j stands for (X, Θ−j)>, which means that the integration is achieved over a (naug − 1)-
dimensional domain where naug = nθ + d. Using formulas given in Table 6.1 and the linearity
of expectation, one obtains the following two sensitivities:

∂P̃f(ξ)

∂a
=

1
b− a

(
E fZ|ξ [1Fz(Z)]−E fZ|Θj=a,ξ

[
1Fz(Z

−j) | Θj = a
])

(6.13a)

=
1

b− a

(
P̃f(ξ)− Pa

f,aux

)
; (6.13b)

∂P̃f(ξ)

∂b
= − 1

b− a

(
E fZ|ξ [1Fz(Z)]−E fZ|Θj=b,ξ

[
1Fz(Z

−j) | Θj = b
])

(6.13c)

=
1

b− a

(
Pb

f,aux − P̃f(ξ)
)

. (6.13d)

where Pa
f,aux and Pb

f,aux are two “auxiliary” failure probabilities which have to be estimated. These
derivations are consistent with those provided in Millwater and Feng (2011) and Lee et al. (2011)
in the context of ROSA under single-level uncertainty (i.e., deterministic distribution parameters
and traditional failure probability as a QoI). As for the interpretation, the sensitivity estimators
obtained in Eqs. (6.13b) and (6.13d) are close to those derived in Millwater and Feng (2011) and
similarly involve flux integrals, here Pa

f,aux and Pb
f,aux, over a (naug − 1)-dimensional space. As

a further remark, one should highlight the fact that for uniform prior distributions, one can
calculate the sensitivities of the predictive failure probability w.r.t. the moments µΘj =

a+b
2 or

σΘj =
b−a√

12
by combining the previous sensitivities w.r.t. the bounds such that:

∂P̃f(ξ)

∂µΘj

=
∂P̃f(ξ)

∂a
∂a(µΘj)

∂µΘj

+
∂P̃f(ξ)

∂b
∂b(µΘj)

∂µΘj

= 2

(
∂P̃f(ξ)

∂a
+

∂P̃f(ξ)

∂b

)
; (6.14a)

∂P̃f(ξ)

∂σΘj

=
∂P̃f(ξ)

∂a
∂a(σΘj)

∂σΘj

+
∂P̃f(ξ)

∂b
∂b(σΘj)

∂σΘj

=
√

12

(
∂P̃f(ξ)

∂b
− ∂P̃f(ξ)

∂a

)
. (6.14b)

As a final remark, one could notice that for Case #2, the computational cost (i.e., estimating
two probabilities) is similar to that required by applying a finite difference method (FDM). How-
ever, using FDM can be difficult for several reasons: firstly, FDM is an approximation method
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to compute the gradient; secondly, the type of finite difference scheme (forward, backward or
centered) may influence the results; thirdly, choosing an optimal perturbation step can be prob-
lematic. The proposed method allows to overcome these difficulties by providing (assuming the
SF is available for the prior distribution) an exact formulation to get the gradient of the predictive
failure probability and estimate it independently of any choice for the perturbation step.

Up to now, the previous framework allows to estimate jointly, within the same sampling
phase and with limited extra computational effort, a predictive failure probability and its deriva-
tives w.r.t. a priori deterministic hyper-parameters. However, even with the ARA strategy,
ARA/CMC is not able to handle rare event probability estimation regarding real engineering
system safety assessment. The idea of the next subsection is to propose a dedicated numeri-
cal methodology combining efficient sampling strategy in the augmented space and the above
sensitivity estimators.

6.2.3 Proposed methodology (ARA/AIS) for local ROSA under bi-level input uncer-
tainty

Estimating a rare event probability with CMC can be cumbersome and can even become in-
tractable for costly-to-evaluate computer codes. Importance Sampling (IS) is now a well-known
variance-reduction technique (see Chapter 3). The idea is to use a so-called “auxiliary density”
hZ(·) to generate samples such that, if this density is the optimal one, one gets a zero variance of
the IS estimator of the rare event probability. To introduce it, one can start from the observation
that the following equality holds:

∫

DZ

1Fz(z) fZ|ξ(z|ξ)dz =
∫

DZ

1Fz(z)
fZ|ξ(z|ξ)

hZ(z)
hZ(z)dz =

∫

DZ

1Fz(z)w(z)hZ(z)dz (6.15)

where w(z) def
=

fZ|ξ(z|ξ)
hZ(z)

is called the likelihood ratio (Rubinstein and Kroese, 2008). This weight is
introduced in the probability estimator and takes into account the change in the sampling PDF.
Thus, considering {Z(i)}N

i=1
i.i.d.∼ hZ of N i.i.d. copies of the augmented vector Z, the IS estimators

for both the probability and its sensitivities can be derived such that:

P̃f(ξ) ≈
IS

1
N

N

∑
i=1

1Fz(Z
(i)) w(Z(i)) (6.16a)

∂P̃f(ξ)

∂ξ j
≈
IS

1
N

N

∑
i=1

1Fz(Z
(i)) w(Z(i)) κj(Θ

(i), ξ). (6.16b)

The estimator P̃
∧

f of P̃f given in the right hand side in Eq. (6.16a) is unbiased (i.e., one can show

that EhZ

[
P̃
∧

f

]
= P̃f) and its variance Var

[
P̃
∧

f

]
reduces to zero as the density hZ(·) equals the

optimal auxiliary density h∗Z(·) given by:

h∗Z(z) =
1Fz(z) fZ|ξ(z|ξ)

P̃f
. (6.17)

Since this quantity depends on the predictive probability P̃f to estimate, this intricate problem
can be solved by using Adaptive Importance Sampling (AIS) techniques (Tokdar and Kass, 2009).
These techniques aim at, using different adaptive strategies, sequentially approximating the op-
timal auxiliary density.

In this chapter, it is proposed to adapt two existing AIS techniques (see Chapter 3), namely
the Nonparametric Adaptive Importance Sampling (NAIS) and the Adaptive Importance Sampling by
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Cross-Entropy (AIS-CE) to the ARA framework. The idea is to estimate both the predictive failure
probability and its sensitivities w.r.t. deterministic hyper-parameters at a reduced cost compared
to CMC. Thus, one presents in this chapter two different techniques which are called respec-
tively “ARA/NAIS” and “ARA/AIS-CE”. Two generic algorithms are given in Algorithm 5 (for
ARA/NAIS) and Algorithm 6 (for ARA/AIS-CE). A complete description of these algorithms
is provided in Appendix D. However, one should insist on the fact that these two rare event
estimation algorithms rely on some assumptions and dedicated parameters (e.g., the choice of
a given kernel K(·) for ARA/NAIS, the choice of an initial parametric family for the auxiliary
PDF hλ(·) with λ ∈ Λ for ARA/AIS-CE, the choice of the α-quantiles for both techniques) whose
tuning and performance optimization are not treated in the core discussion of the present chap-
ter (the interested reader may refer to Morio and Balesdent (2015) for more information about
it). Note that the algorithms’ parameters used in this chapter are given as footnotes of both
algorithms (see Algorithms 5 and 6).

Algorithm 5 – Generic algorithm for ARA/AIS
(with an ARA/NAIS plug-in box in this example).

Start
Define: PDF fZ|ξ , budget N, modelM(·), threshold yth,
quantile α ∈ [0, 1] a, kernel K(·) b

Set: k = 1 and h0 = fZ|ξ
Generate: i.i.d. samples z(i)1 of {Z(i)

1 }N
i=1 ∼ h0

Evaluate: Y(1)
1 =M(Z(1)

1 ), . . . , Y(N)
1 =M(Z(N)

1 )

Compute: empirical α-quantile γ1 of the samples {Y(i)
1 }N

i=1
While γk < yth do

Estimate: lk =
1

kN ∑k
j=1 ∑N

i=1 1{M(z(i)j )≥γk}
(Z(i)

j )
fZ|ξ(Z

(i)
j )

hj−1(Z
(i)
j )

and set wj(Z
(i)
j ) = 1{M(z(i)j )≥γk}

(Z(i)
j )

fZ|ξ(Z
(i)
j )

hj−1(Z
(i)
j )

Update c:
hk+1(z) = 1

kNlk det(H1/2
k )

∑k
j=1 ∑N

i=1 wj(Z
(i)
j )K

(
H−1/2

k (z− Z(i)
j )
)

Set: k = k + 1
Generate: i.i.d. samples z(i)k of {Z(i)

k }N
i=1 ∼ hk

Evaluate: Y(1)
k =M(Z(1)

k ), . . . , Y(N)
k =M(Z(N)

k )
Compute:

empirical α-quantile γk of the samples {Y(i)
k }N

i=1

Estimate:

P̃
∧

f =
1
N ∑N

i=1 1{M(z(i)k )>yth}
(Z(i)

k )
fZ|ξ(Z

(i)
k )

hk(Z
(i)
k )

∂P̃f

∧

/∂ξ j =
1
N ∑N

i=1 1{M(z(i)k )>yth}
(Z(i)

k )
fZ|ξ(Z

(i)
k )

hk(Z
(i)
k )

κj(Θ
(i)
k , ξ)

End
a In this chapter: α = 0.9.
b In this chapter: the Gaussian kernel is used.
c Hk is a symmetric positive definite bandwidth matrix optimized with the asymptotic

integrated square error (AMISE) criterion, see Morio and Balesdent (2015).
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Algorithm 6 – Generic ARA/AIS-CE plug-in box.

Define: . . . , parametric family of PDFs hλ(·) with λ ∈ Λ a

. . .
Set: k = 1
Generate: i.i.d. samples z(i) of {Z(i)}N

i=1 ∼ hλ0

. . .
While γk < yth do

Optimize b: the parameters of the auxiliary PDF family

λk = arg max
λ∈Λ

{
1
N ∑N

i=1

[
1{M(z(i)j )≥γk}

(Z(i)
j )

fZ|ξ(Z(i))

hλk−1
(Z(i))

ln[hλ(Z(i))]

]}

Set: k = k + 1
Generate: i.i.d. samples z(i) of {Z(i)}N

i=1 ∼ hλk−1

Evaluate: Y(1) =M(Z(1)), . . . , Y(N) =M(Z(N))
Compute:

empirical α-quantile γk of the samples {Y(i)}N
i=1

. . .
a In this chapter: the Gaussian parametric family is used.
b For specific density families (e.g., Gaussian), the PDF optimal parameters have analyt-

ical formulas, see Morio and Balesdent (2015). In this chapter: both mean and standard
deviation are optimized.

The proposed methodology is able to handle both Case #1 and Case #2 as detailed in Sub-
sections 6.2.1 and 6.2.2. However, in Case #2, estimating the predictive failure probability is not
enough to get the sensitivities w.r.t. bounds. An estimation of the auxiliary failure probability, as
shown in Eqs. (6.13b) and (6.13d) for the uniform case, is required. To do so, one needs to apply
a second time the ARA/AIS algorithm (with either NAIS or AIS-CE as the core algorithm) to
estimate this quantity and allow an accurate estimation of the sensitivity.

As an illustration of the ARA/AIS sampling strategy, one can consider a simple test case
involving two basic random variables, similar to a so-called “Resistance – Demand” problem
(similar to that presented further in the numerical applications in Subsection 6.3.1). Assum-
ing these variables are Gaussian, one can imagine that, due to limited data, their distribution
parameters are affected by epistemic uncertainty: for instance, the standard deviation of the re-
sistance variable and the mean value of the demand one are not perfectly known. Some prior
distributions are considered to model the a priori knowledge about these parameters. The prop-
agation of this bi-level uncertainty (to get an estimate of the predictive failure probability and
its sensitivities) using the ARA/AIS strategy is presented only with the ARA/NAIS method in
Figure 6.1 for the sake of conciseness.

In Figure 6.1a, one can see two sets of N = 103 realizations in the x-space of the vector
Θ = (Θ1, Θ2)>. The first set of samples corresponds to the first iteration of the ARA/NAIS
algorithm. The second set corresponds to the final iteration of the algorithm. By comparing
them, one can notice the modification between the initial sampling density and the final one.
Such a modification is also noticeable in Figure 6.1b which represents the same samples in the
u-space. One can see the shrinkage of the initial standard normal density to the optimal one.
Based on these samples, one can observe the corresponding realizations of the basic variables
gathered in X. Figure 6.1c and Figure 6.1d show the corresponding samples plotted respectively
in the x- and in u-spaces. Again, from the first iteration to the final one, the convergence of the
density towards the optimal one is noticeable. One can also highlight that considering a second
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FIGURE 6.1: Illustration of the ARA/NAIS method on a Resistance – Demand test-case (similar to that
described in Example #1 (cf. 6.3.1)). In this example, two different sets of samples, drawn at iterations #1
and #4 of the ARA/NAIS method (Algorithm 5) are presented. One can see the evolution of the samples

showing the adaptive evolution of the augmented sampling density towards a near optimal one.

level of uncertainty does affect the realizations of the basic variables by changing the shape of
the distribution of X.

In the following section, the numerical efficiency of the ARA/AIS method is demonstrated
on two numerical test-cases representative of various challenges in reliability assessment. A
numerical application on a realistic aerospace test-case will be further proposed in Chapter 8.

6.3 Application examples

The following numerical applications have been implemented in Matlab R© and performed
using a rare event simulation toolbox developed at ONERA – The French Aerospace Lab.

The numerical testing of the methodology developed in this chapter, as summed up in Ta-
ble 6.2, relies on the following settings:
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• firstly, the ARA/AIS method has been implemented and tested on two different test-cases
of increasing difficulty (see the first column and the footnotes below Table 6.2 for the spec-
ifications of each test-case);

• secondly, reference results for the estimation of the predictive failure probability and its
sensitivities are obtained using a CMC with large sample size performed by ARA (see the
second column denoted ARA/CMC, see Chapter 5 and Chabridon et al. (2017a) for details
about the coupling between ARA and sampling techniques);

• thirdly, as shown in the third column of Table 6.2, the two different techniques, namely
ARA/AIS-CE and ARA/NAIS are applied on the two test-cases for the sake of compar-
ison, but also to illustrate the modular aspect of the methodology (the black squares �
stand for the performed calculations). Finally, after validation of the method, the impact
of the increasing rareness of the failure event (regarding a limited simulation budget avail-
able) is studied as an extension of the last two test-cases (see the four black starsF). This
last extension is called “rare event context” in the rest of the chapter. One should notice
that, for these specific cases, the reference calculation by ARA/CMC is considered as com-
putationally “intractable” (see the corresponding crosses ×).

TABLE 6.2: Overall strategy for the numerical tests of the proposed methodology.

Test-case Reference ARA/AIS
ARA/CMC ARA/AIS-CE ARA/NAIS

Ex. #1: Resistance – Demand a (cf. 6.3.1) � � �
Ex. #2: Nonlinear oscillator b (cf. 6.3.2) � × �F �F

a 2 basic variables, 2 uncertain parameters (1 unbounded & 1 bounded), g(·) linear.
b 8 basic variables, 2 uncertain parameters (1 unbounded & 1 bounded), g(·) nonlinear.

Finally, for a comparison in terms of numerical efficiency of the method w.r.t. CMC estima-
tion, the following standard coefficient νARA/AIS is used:

νARA/AIS =
NARA/CMC

sim

NARA/AIS
sim

(6.18)

where NARA/CMC
sim is the required number of CMC samples to reach the same coefficient of varia-

tion δ on the probability estimate for both techniques. A value of νARA/AIS > 1 indicates that the
method ARA/AIS is more efficient than CMC for the given test-case. In other words, νARA/AIS

indicates the quantity by which one can divide the initial CMC simulation budget for a same
level of accuracy.

6.3.1 Example #1: a resistance-demand toy-case

Description. The goal of this first academic test-case is to validate the method regarding the
estimation accuracy of both the predictive failure probability and its sensitivities w.r.t. its hyper-
parameters. Table 6.3 gives the input data. The LSF g(X) = R − S = X1 − X2 is linear and
involves two independent Gaussian random variables. One assumes that both the standard de-
viation of the first variable and the mean of the second one are affected by epistemic uncertainty.
Thus, two prior distributions (one unbounded and one bounded) are assumed for the uncertain
parameters (e.g., based either on limited data, literature-based information or expert opinion).
As a remark, one could argue that the choice of a normal prior for Θ1 may be inappropriate
regarding physical constraints and informativeness. In this chapter, common priors (i.e., normal
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and uniform) are set for the sake of illustration to characterize epistemic uncertainty and for
an easy sampling, without loss of generality. For a pure Bayesian approach (involving possible
updating), the reader should refer to Gelman et al. (2006), Hamada et al. (2008), and Straub and
Papaioannou (2015).

TABLE 6.3: Input probabilistic model for Example #1.

Variable Distribution Parameter #1 Parameter #2

X1 = R Normal µX1 = 7 σX1 uncertain
X2 = S Normal µX2 uncertain a σX2 = 1
Θ1 = σX1 Normal ξ1 = µσX1

= 0.7 ξ2 = σσX1
= 0.07

Θ2 = µX2 Uniform ξ3 = aµX2
= 1.5 ξ4 = bµX2

= 2.5

a For fixed values σX1 = 0.7 and µX2 = 2, pf,ref = 2.50× 10−5.

TABLE 6.4: Results for Example #1.

ARA/CMC ARA/AIS-CE ARA/NAIS
(Nx,θ = 108 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)
Estimate cv Estimate cv Estimate cv

P̃
∧

f 3.72× 10−5 (1.60 %) 3.73× 10−5 (4.39 %) 3.71× 10−5 (3.62 %)

∂P̃f

∧

/∂ξ1 2.77× 10−4 (3.50 %) 2.81× 10−4 (14.2 %) 2.75× 10−4 (13.7 %)

∂P̃f

∧

/∂ξ2 1.37× 10−4 (10.8 %) 1.45× 10−4 (62.9 %) 1.35× 10−4 (59.1 %)

∂P̃f

∧

/∂ξ3 3.30× 10−5 (1.91 %) 3.32× 10−5 (4.91 %) 3.30× 10−5 (4.06 %)

∂P̃f

∧

/∂ξ4 8.91× 10−5 (1.41 %) 8.87× 10−5 (5.99 %) 8.89× 10−5 (4.74 %)

∂P̃f

∧

/∂µΘ2
a 2.44× 10−4 − 2.44× 10−4 − 2.44× 10−4 −

∂P̃f

∧

/∂σΘ2 1.94× 10−4 − 1.92× 10−4 − 1.94× 10−4 −
νARA/AIS − − 103 − 158 −

a Cf. Eqs. (6.14a) and (6.14b) for the uniform case.

Results. Table 6.4 gathers the numerical values obtained for the probability estimates, sensi-
tivities and efficiencies. For comparison purpose, a CMC with Nx,θ = 108 samples is performed.
The coefficient of variation (cv) for any estimate is calculated using a hundred replicates of each
algorithm. However, for the sake of conciseness, only the results associated to the highest nu-
merical efficiency νARA/AIS are presented in Table 6.4 for the two proposed techniques (here,
Nx,θ = 104 samples/step). As a remark, one can see that both the predictive failure probabil-
ity and its sensitivities are well estimated with both techniques compared to ARA/CMC. Con-

cerning the estimation of the predictive failure probability, one can see that P̃
∧

f = 3.72× 10−5

which shows that taking a second uncertainty level into account implies a slight increase com-
pared to the failure probability under single-level uncertainty pf = 2.50× 10−5 (see below Ta-

ble 6.3). From these results, one can notice that the sensitivities w.r.t. bounds (i.e., ∂P̃f

∧

/∂ξ3 and

∂P̃f

∧

/∂ξ4) show a reduced coefficient of variation compared to those for the unbounded distri-

bution (i.e., ∂P̃f

∧

/∂ξ1 and ∂P̃f

∧

/∂ξ2). This could be due to the fact that they are estimated as a
difference of two probabilites estimated both by the method which lead to a reduced variance.
In terms of comparison, since the problem involves two uncertain distribution parameters (Θ1
unbounded and Θ2 bounded), one can use Eqs. (6.14a) and (6.14b) to get sensitivities w.r.t. mo-
ments of Θ2 instead of its bounds. Finally, in this case, the predictive failure probability seems to
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be slightly more sensitivive to the a priori choice of the mean values of both distribution param-
eters than to the choice of the standard deviations. As for the νARA/AIS coefficients, they are very
high compared unity for both techniques. This implies that, for the same level of accuracy, one
can reduce the CMC simulation budget by 103 times if one uses ARA/AIS-CE and by 158 times
if one uses ARA/NAIS. This gain can be of practical importance for applications involving rare
event probabilities.

6.3.2 Example #2: a two d.o.f. primary/secondary damped oscillator

Description. This nonlinear oscillator is the same two-degree-of-freedom primary-secondary
system, as presented in Chapter 5, in Subsection 5.4.3, excited by a white noise base acceleration
(Der Kiureghian and De Stefano, 1991). Thus, one just recalls the LSF of the system:

g(X) = Fs − 3ks

√√√√√ πS0

4ζsω3
s


 ζaζs

ζpζs (4ζ2
a + r2) + γζ2

a

(
ζpω3

p + ζsω3
s

)
ωp

4ζω4
a


 = Fs − Facc. (6.19)

Table 6.5 gives the input data (the set of parameters here for the basic variables are mean values
and coefficients of variation). The LSF g(·) is highly nonlinear and involves eight independent
lognormal random variables. Moreover, one assumes that the mean of the second mass is not
precisely known due to measure uncertainty and that the mean of the secondary spring force
capacity is also affected by epistemic uncertainty. Thus, two prior distributions (Gaussian and
uniform) are assumed for the uncertain parameters based on expert judgment.

TABLE 6.5: Input probabilistic model for Example #2.

Variable a Distribution Parameter #1 Parameter #2

X1 = mp (kg) Lognormal µX1 = 1.5 δX1 = 10%
X2 = ms (kg) Lognormal µX2 uncertain b δX2 = 10%
X3 = kp (N.m−1) Lognormal µX3 = 1 δX3 = 20%
X4 = ks (N.m−1) Lognormal µX4 = 0.01 δX4 = 20%
X5 = ζp (1) Lognormal µX5 = 0.05 δX5 = 40%
X6 = ζs (1) Lognormal µX6 = 0.02 δX6 = 50%
X7 = Fs (N) Lognormal µX7 uncertain δX7 = 10%
X8 = S0 (m.s−2) Lognormal µX8 = 100 δX8 = 10%
Θ1 = µX7 (N) Normal ξ1 = µµX7

= 21.5 / 27.5 (F) c ξ2 = σµX7
= 2.15 / 2.75 (F)

Θ2 = µX2 (kg) Uniform ξ3 = aµX2
= 0.008 ξ4 = bµX2

= 0.012

a The basic variables are independent.
b For fixed values µX2 = 0.01 and µX7 = 21.5 / 27.5, pf,ref = 4.78× 10−5 / 3.78× 10−7.
c The second value is for the rare event case, cf. Table 5.1.

Results. Numerical results summarized in Table 6.6 show that, for a moderately rare failure
event, both ARA/AIS-CE and ARA/NAIS give accurate results in the predictive failure prob-
ability estimation compared to ARA/CMC. Again, the coefficient of variation (cv) for any esti-
mate is calculated using a hundred replicates of each algorithm. It first reveals the variations
between the failure probability under single-level uncertainty pf and the predictive one P̃f (here,
it increases from 4.78× 10−5 to 2.35× 10−4) due to the bi-level uncertainty. In this case, con-
sidering uncertainty on a distribution parameter makes the system less safe, which can be an
important indicator for design or re-design purposes. Concerning sensitivities, most of them are

correctly estimated, except for ∂P̃f

∧

/∂ξ2 for which one can observe a slight relative bias between



108 Chapter 6. Local ROSA under distribution parameter uncertainty

the proposed techniques and reference results. In terms of comparison, once again, since the
problem involves two uncertain distribution parameters (Θ1 unbounded and Θ2 bounded), one
can use Eqs. (6.14a) and (6.14b) to get sensitivities w.r.t. moments of Θ2 instead of its bounds. Fi-
nally, in this case, the predictive failure probability seems to be slightly more sensitivive to the a
priori choice modelling the uncertain mean of the secondary mass. Thus, the lack of knowledge
about the mean value of the mass plays a key role in terms of system safety. As for the conver-
gence of the results, Figure 6.2a compares the estimated sensitivities (to avoid any redundancy,
only the ARA/NAIS plots are presented) to the reference results obtained by ARA/CMC. One
can notice the convergence w.r.t. the increasing number of samples per step and a low variabil-
ity of the two last sensitivities as mentioned previously. Finally, for a moderate rareness of the
failure event, the efficiency of the method is promising: νARA/AIS is equal to 58 for ARA/AIS-
CE and 50 for ARA/NAIS, meaning the equivalent ARA/CMC simulation budget can be still
divided while ensuring a given target accuracy in the estimation.

In the rare event context (F) (see Table 6.7), reference results are supposed to be intractable.
Again, a hundred replicates were used to get samples’ statistics. One can first observe a slight
increase for the predictive failure probability (around 7× 10−6) compared to the failure proba-
bility under single-level uncertainty (equals to 3.78× 10−7 as given below Table 6.5). With the
proposed method, one can notice that the estimated values show relatively low coefficient of
variation. Comparing sensitivities leads to notice that the rareness of the failure event (i.e., be-
tween Table 6.6 and Table 6.7) does not impact the relative order in terms of influence. The
moments of Θ2 are still the most influential hyper-parameters of the predictive failure probabil-
ity. The method ensures a higher efficiency as the rareness of the probability increases (νARA/AIS

from 792 for ARA/AIS-CE to 830 for ARA/NAIS). Finally, the global convergence is observed
on Figure 6.2b (for ARA/NAIS only).

TABLE 6.6: Results for Example #2.

ARA/CMC ARA/AIS-CE ARA/NAIS

(Nx,θ = 108 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv Estimate cv

P̃
∧

f 2.35× 10−4 (0.603 %) 2.36× 10−4 (4.69 %) 2.38× 10−4 (4.57 %)

∂P̃f

∧

/∂ξ1 −1.61× 10−4 (0.661 %) −1.60× 10−4 (4.80 %) −1.61× 10−4 (5.32 %)

∂P̃f

∧

/∂ξ2 9.04× 10−3 (0.602 %) 1.08× 10−2 (4.69 %) 1.09× 10−2 (4.57 %)

∂P̃f

∧

/∂ξ3 5.57× 10−2 (0.650 %) 5.58× 10−2 (4.89 %) 5.63× 10−2 (4.81 %)

∂P̃f

∧

/∂ξ4 1.36× 10−1 (0.525 %) 1.35× 10−1 (6.45 %) 1.34× 10−1 (6.22 %)

∂P̃f

∧

/∂µΘ2
a 3.82× 10−1 − 3.82× 10−1 − 3.82× 10−1 −

∂P̃f

∧

/∂σΘ2 2.77× 10−1 − 2.75× 10−1 − 2.71× 10−1 −
νARA/AIS − − 58 − 50 −

a Cf. Eqs. (6.14a) and (6.14b) for the uniform case.
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TABLE 6.7: Results for Example #2 considering the influence of the failure event rareness.

ARA/AIS-CE (F) ARA/NAIS (F)

(Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv

P̃
∧

f 6.71× 10−6 (6.25 %) 6.82× 10−6 (5.97 %)

∂P̃f

∧

/∂ξ1 −4.95× 10−6 (6.58 %) −4.98× 10−6 (5.56 %)

∂P̃f

∧

/∂ξ2 2.41× 10−4 (6.25 %) 2.45× 10−4 (5.97 %)

∂P̃f

∧

/∂ξ3 1.62× 10−3 (6.51 %) 1.65× 10−3 (6.14 %)

∂P̃f

∧

/∂ξ4 4.63× 10−3 (6.74 %) 4.59× 10−3 (9.01 %)

∂P̃f

∧

/∂µΘ2
a 1.25× 10−2 − 1.25× 10−2 −

∂P̃f

∧

/∂σΘ2 1.04× 10−2 − 1.02× 10−2 −
νARA/AIS 792 − 830 −

a Cf. Eqs. (6.14a) and (6.14b) for the uniform case.

6.3.3 Synthesis about numerical results and discussion

Synthesis about numerical results. The aim of this subsection is to give a synthesis about the
main advantages and drawbacks of the proposed approach. According to the numerical results,
one can sum up the following characteristics:

• ARA/AIS-CE and ARA/NAIS lead to similar results for the predictive failure probability
and reliability-oriented sensitivities estimation compared with those of the reference ap-
proach, namely ARA/CMC. They both enable to reduce the variance of estimation and
limit the number of calls to the black-box model;

• ARA/AIS-CE and ARA/NAIS, coupled to the derived sensitivity estimators, enable to es-
timate sensitivities w.r.t. distribution parameters appearing in both unbounded and bounded
priors.

More generally, the proposed approach is dependent on the intrinsic performances of both AIS-
CE and NAIS algorithms. Therefore, for specific cases, ARA/AIS-CE could suffer from the pos-
sible multimodality of the optimal auxiliary density (i.e., problem with multiple failure regions),
which is a known issue of this method (Kurtz and Song, 2013). As for ARA/NAIS, it is able to
handle multimodal densities but its use should be restricted to problems whose input dimen-
sionality (including the stochastic distribution parameters) is around ten while ARA/AIS-CE
could handle higher input dimensions.

Efficiency of the proposed methodology. Figure 6.3 summarizes the evolution of the numer-
ical efficiency νARA/AIS (for both ARA/AIS-CE and ARA/NAIS) regarding the results obtained
for the second example (i.e., the nonlinear oscillator). The two configurations, i.e., initial problem
(�) and the problem under increased rareness of the failure event (F), are given as a function
of the number of samples per step (from 103 to 104). As a remark, one can notice that the in-
creasing curves as a function of the number of samples only represent the underlying tradeoff
of the proposed method between accuracy (i.e., the coefficient of variation on the probability
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(b) Estimated sensitivities (error bars) in a context of rare event (F).

FIGURE 6.2: Convergence plots obtained by ARA/NAIS for Example #2.

decreasing as the number of samples increases) and the global computational cost. However,
one should notice that these results are dependent on the tuning parameters of the underlying
algorithms (AIS-CE and NAIS). Typically, the choice of the empirical quantile threshold value
may affect the value of the efficiency (e.g., by modifying the value of the coefficient of variation
on the probability and the total number of samples).

Interpretation of the estimated sensitivities. In terms of interpretation of the sensitivities de-
rived in this chapter, one should remember that local sensitivities are not quantities that can be
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FIGURE 6.3: Efficiency.

easily ranked. Local sensitivities can only give a qualitative result which should be considered
as an indication for the user to know whether he/she should get more information about the
lack of knowledge affecting one or more distribution parameters. It cannot be used as a variable
importance measure for factor fixing purposes (Wei et al., 2015b). However, they can be useful
to highlight some features and underlying behaviors associated, either to the input probabilistic
modeling, or to the model behavior at failure. To do so, one should compare sensitivities of the
same nature, for instance sensitivities to a mean together, sensitivities to a standard deviation
together, sensitivities to bounds together. Another possible solution is to build what is called an
elasticity which is a normalized sensitivity (Lemaire et al., 2009). In reliability literature, several
authors advocated different types of elasticities. For instance, Table 6.8 gathers three different
formulas and the corresponding literature sources for computing elasticities (adapted here to
the bi-level uncertainty framework). From the authors knowledge, there is no consensus about
the elasticity formulation. For the sake of generality, the sensitivity indicator provided in this
chapter do not take into account any normalization factor. All the derivative-based formulas
(and associated numerical results) described in this chapter can be combined with the formulas
given in Table 6.8 to obtain elasticities.
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TABLE 6.8: Different formulas for elasticities.

Formula Hyper-parameters Source

(f1) ej =
∂P̃f
∂ξ j
× σΘj

P̃f
ξ j = µΘj or ξ j = σΘj Wu (1994b)

(f2) ej =
∂P̃f
∂ξ j
× σΘj ξ j = µΘj or ξ j = σΘj Der Kiureghian (1999)

(f3) ej =
∂P̃f
∂ξ j
× ξ j

P̃f
ξ j = µΘj or ξ j = σΘj Lemaire et al. (2009)

(f4) ej =
∂P̃f
∂ξ j
× ξ j ξ j = µΘj or ξ j = σΘj Millwater and Wieland (2010)

It is important to notice that the choice of prior distributions is of utmost importance in prac-
tice and can achieved using various techniques (expert judgment, data analysis, experimental
results). For the sake of conciseness, in this chapter, the sensitivity estimator formula (and ap-
plication cases) are explicitely given using only normal and uniform probability distributions as
priors. When facing more complex priors (e.g., truncated normal distribution to avoid unreal-
istic physical data), these formula can be adapted. Finally, for some priors, score functions may
not be available (Rahman, 2009; Millwater and Feng, 2011; Lee et al., 2011).

6.4 Conclusion

In this chapter, new local reliability-oriented sensitivity estimators are proposed using the
so-called “augmented reliability approach”. The proposed derivative-based local sensitivity
estimators of predictive failure probability, with respect to deterministic distribution hyper-
parameters, are derived for two cases: firstly, when all the stochastic distribution parameters
follow some unbounded prior probability distributions; secondly, when at least one distribution
parameter follows a bounded prior. Thus, this method allows to get sensitivities with either
none (in the unbounded case) or a moderate extra computational effort (in the bounded case).
To enhance the efficiency of the method, these estimators are derived using an adaptive impor-
tance sampling scheme, either using a parametric algorithm (ARA/AIS-CE) or a nonparametric
one (ARA/NAIS). Then, two numerical applications of increasing difficulty are considered. The
comparison with a reference method (ARA/CMC) demonstrates the convergence and the effi-
ciency of the proposed method. Finally, this study shows the benefits of using an ARA/AIS
strategy when the failure event becomes very rare and the LSF is nonlinear.

A first enhancement track could be to study the possibility of enhancing ARA/AIS-CE strat-
egy for reliability and sensitivity assessment under bi-level uncertainty by adapting recent works
on AIS-CE (Kurtz and Song, 2013; Wang and Song, 2016) to handle both multiple failure regions
and high-dimensionality. In order to further reduce the computational cost of these estimations,
another possible enhancement track could be to couple the ARA/AIS strategy to a metamodel
such as proposed in Dubourg and Sudret (2014) to possibly extend it to the bi-level uncertainty
problem. However, metamodels also bring their own contribution to the overall uncertaintiy by
adding some “model uncertainty”. This type of uncertainty has to be handled and should not
cover the uncertainty introduced by considering a prior on the distribution parameters. Some
recent metamodel-based strategies also consider a so-called “augmented framework” by con-
sidering that the metamodel can handle all kinds of epistemic uncertainties in its own definition
(Walter, 2015).

In the next chapter, one considers that the impact of the prior distribution hyper-parameters
need to be studied. Then, a more global point of view is adopted by studying the impact of
the entire support of the prior distribution over Θ on the safety measure. Thus, one decides
to investigate a particular set of global importance measures adapted to the ROSA context: the
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Sobol indices on the indicator function. After a presentation of the main characteristics of these
indices, an extension to the bi-level input uncertainty case is proposed, as well as an efficient
estimation scheme based on the post-treatment of a reliability analysis phase.
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7.1 Introduction and motivations

In this chapter, one still considers the same hierarchical structure of input variables as pre-
sented in Chapter 5 and Chapter 6. In the previous chapter, the goal was to study the impact
of a local choice in terms of the hyper-parameters ξ characterizing the prior distribution fΘ|ξ
(e.g., following experts’ judgments) on the predictive failure probability. Such a study is useful
to investigate the robustness of the reliability measure regarding some prior choices about the
input probabilistic model in the context of lack-of-information. In the present chapter, the idea
is to consider that the probabilistic model of the second level is now fixed (i.e., that the hyper-
parameters ξ of fΘ|ξ have been set to a given value regarding the study conducted in Chapter 6).
Thus, this second level is now representative of the lack-of-knowledge about the distribution
parameters. Then, one would like to study how does this bi-level input uncertainty play a role
in terms of system behavior at failure. More precisely, the idea is to provide an index which is
as follows:

• it should be adapted to the bi-level input uncertainty;

• it should be an importance measure in the ROSA context such that it allows a ranking of
the most influential inputs;

• it should distinguish between both aleatory uncertainty and epistemic uncertainty.

• it should be sufficiently cheap to estimate, especially in the context of rare event probability
estimation and/or costly-to-evaluate black-box computer code.

Among the various indices listed in Chapter 4, it appears that the set of Sobol indices on the
indicator function (denoted by “S1F -indices” in the rest of this chapter) present several advan-
tages, both in terms of interpretation and estimation. They correspond to a class of relevant
importance measures in the reliability context as already demonstrated in several works (see,
e.g., Wei et al., 2012; Lemaître, 2014).

In this chapter, the adaptation of these indices to the bi-level input uncertainty is investigated
and a new methodology is proposed to efficiently estimate these global importance measures for
ROSA under the constraint of the bi-level input uncertainty. To do so, a disaggregated version of
the input augmented vector is proposed before the rare event probability estimation. Then, us-
ing an adapted version of the estimators recently proposed in Perrin and Defaux (2019) together
with an advanced version of KDE proposed in Perrin et al. (2018), the S1F -indices are estimated
only by post-processing failure samples contained in the elite set obtained at the final step of an
advanced sampling-based technique. Due to the disaggregated version of the augmented vec-
tor, either the stochastic distribution parameters and the basic variables are given a first and total
index. To make it clear, the tools used in this chapter are methodological tools recently proposed
in literature. The innovation remains in their adaptation to the bi-level input uncertainty and
their intensive use so as to reach both some limits and open some perspectives for these tools.

This chapter is organized as follows. Section 7.2 describes briefly the Sobol indices on the
indicator function and presents the set of estimators that will be adapted further. Section 7.3
proposes a disaggregated version of the augmented vector such that both aleatory and epistemic
uncertainty can be treated separately in the context of ROSA under a bi-level uncertainty. Then,
an extension of the S1F -indices is proposed to handle the bi-level uncertainty and pick-freeze
estimators are provided. Section 7.4 treats the problem of the efficient estimation of these indices
and proposes a methodology based on the use of the recent data-driven tensorized Gaussian KDE
proposed by Perrin et al. (2018). Section 7.5 illustrates the benefits of such a methodology on
two test-cases of increasing complexity. Then, a synthesis gathering the key aspects and issues
of the proposed approach is provided at the end of this section. A conclusion gathering the most
important results of this chapter is finally given in Section 7.6.
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7.2 Focus on Sobol indices applied to the indicator function

7.2.1 Basic formulation of the Sobol indices on the indicator function

As a reminder, one can recall that, in Chapter 4, S1F -indices have been presented in 4.5.2.2.
These indices are variance-based importance measures which differ from traditional Sobol in-
dices on model output as the QoI is the indicator function of the failure domain 1Fx(·). As
mentioned in 4.5.2.2, they arise from the following equality (Li et al., 2012):

E fXi
[(Pf − Pf|Xi

)2] = Var [E[1Fx(X)|Xi]] . (7.1)

Thus, after normalizing by Var [1Fx(X)], the basic formulation of the sensitivity indices as intro-
duced by Li et al. (2012) and Lemaître (2014) is given by:

S1F
i =

Var [E[1Fx(X)|Xi]]

Var [1Fx(X)]
(7.2)

S1F
Ti

= 1− Var
[
E[1Fx(X)|X−i]

]

Var [1Fx(X)]
=

E
[
Var

[
1Fx(X)|X−i]]

Var [1Fx(X)]
(7.3)

where S1F
i is the first-order index and S1F

Ti
the total index associated to the input variable Xi.

Efficient estimation schemes using a single-loop CMC, FORM-IS and TIS 1, have been inves-
tigated (see, e.g., Wei et al., 2012; Yun et al., 2018). Very recently, another efficient estimation
scheme using subset sampling has been proposed by Perrin and Defaux (2019). This work is
detailed hereafter.

7.2.2 Rewriting Sobol indices on the indicator function using Bayes’ theorem

Following Perrin and Defaux (2019), it is proposed to rewrite the S1F -indices presented here-
above as in the following proposition. Note that similar derivations have been proposed in
Wang et al. (2018) for the ηPf

i index as defined in Eq. (4.53) (see Chapter 4).

Proposition 3 (Perrin and Defaux, 2018). The first and total order S1F -indices associated to each input
Xi, ∀i ∈ {1 . . . , d}, can be rewritten as follows:

S1F
i =

Pf

1− Pf
Var

[
fXi |F (Xi)

fXi(Xi)

]
(7.4)

S1F
Ti

= 1− Pf

1− Pf
Var

[
fX−i |F (X

−i)

fX−i(X−i)

]
(7.5)

where:

fX|F (x) =
1Fx(x) fX(x)

Pf
(7.6a)

fXi |F (xi) =
∫

DX−i

fX|F (x)
d

∏
j=1
j 6=i

dxj, DX−i =
d×

j=1
j 6=i

DXj (7.6b)

fX−i |F (x
−i) =

∫

DXi

fX|F (x) dxi. (7.6c)

1 As a reminder, TIS stands for truncated importance sampling as presented in Chapter 3, i.e., sampling outer the
β-sphere (see, e.g., Harbitz, 1986; Grooteman, 2008; Grooteman, 2011).
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Proof. A sketch of proof can be found in Perrin and Defaux (2019). However, more details are given below
for the sake of clarity. Recalling that Var [1Fx(X)] = Pf(1− Pf) and applying Bayes’ theorem to Eq. (7.1),
one gets:

E fXi
[(Pf − Pf|Xi

)2] = E fXi



(

Pf − Pf
fXi |F (xi)

fXi(xi)

)2

 (7.7a)

= P2
f E fXi



(

1− fXi |F (xi)

fXi(xi)

)2

 . (7.7b)

Hence, for the first order index, by applying the total variance theorem, one gets:

S1F
i =

E fXi
[(Pf − Pf|Xi

)2]

Pf(1− Pf)
(7.8a)

=
Pf

1− Pf

(
Var

[
1− fXi |F (xi)

fXi(xi)

]
+ E2

fXi

[
1− fXi |F (xi)

fXi(xi)

])
(7.8b)

=
Pf

1− Pf

(
Var

[
fXi |F (xi)

fXi(xi)

]
+ 1−E2

fXi

[
fXi |F (xi)

fXi(xi)

])
. (7.8c)

Moreover, one can notice that:

E fXi

[
fXi |F (xi)

fXi(xi)

]
=

∫

DXi

fXi |F (xi)

fXi(xi)
fXi(xi)dxi (7.9a)

=

∫

DXi

∫

DX−i

fX|F (x)
d

∏
j=1
j 6=i

dxj dxi (7.9b)

=

∫

DX

1
Pf

1Fx(x) fX(x)dx (7.9c)

= 1 (7.9d)

which finally allows to get the expected result. Similar derivations for the total index can be achieved
starting from:

E fX−i [(Pf − Pf|X−i)2] = P2
f E fX−i



(

1−
fX−i |F (x

−i)

fX−i(x−i)

)2

 (7.10a)

and noticing that E fX−i

[
fX−i |F (x

−i)

fX−i (x−i)

]
= 1.
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As a result, the two estimators associated to the indices are given by:

Ŝ 1F
i =

P̂f

1− P̂f
Var

[
f̂Xi |F (Xi)

f̂Xi(Xi)

]
(7.11)

Ŝ 1F
Ti

= 1− P̂f

1− P̂f
Var

[
f̂X−i |F (X

−i)

f̂X−i(X−i)

]
(7.12)

where f̂Xi |F and f̂Xi are, respectively, the estimator of the marginal PDF of Xi conditioned to
failure (i.e., the marginal PDF of Xi estimated on the elite set Ex

2) and the estimator of the initial
marginal PDF.

This set of estimators present the main advantage of requiring only a post-processing phase
of a single elite set Ex obtained from a reliability analysis using any sampling-based technique
mentioned in Chapter 3. Moreover, one could theoretically get all the S1F -indices at any order.
However, the difficulty remains the accurate estimation of the densities, especially for the total
indices which involve the estimation of a multivariate density at failure.

7.3 Sobol indices on the indicator function adapted to the bi-level in-
put uncertainty

7.3.1 Bi-level input uncertainty: aggregated vs. disaggregated types of uncertainty

In this part, the same Bayesian hierarchical structure is considered as in the two previous
chapters:

X ∼ fX|Θ(x|θ) : DX ⊆ Rd → R+ (uncertainty level #1)

Θ ∼ fΘ|ξ(θ|ξ) : DΘ ⊆ Rnθ → R+ (uncertainty level #2)

ξ = (ξ1, ξ2, . . . , ξnξ
)> ∈ Dξ ⊆ Rnξ (deterministic level).

Moreover, it is assumed that the input variables Xi, for i = 1, . . . , d, are independent. To be
consistent with such a hypothesis, one can consider that, either the problem naturally involves
independent input variables, or transformations like those presented in Appendix C can be used
to set the problem in the u-space. In the latter case, one should notice that, unfortunately, any re-
sults obtained by ROSA should be interpreted carefully as dependence between input variables
is not taken into account.

When dealing with the bi-level input uncertainty, two cases can be considered:

• on the one hand, one might be interested in the combined effects of both aleatory and
epistemic uncertainties at failure, i.e., one might want to “aggregate” both sources of uncer-
tainty;

• on the other hand, one might be rather interested in distinguishing between the contri-
butions of aleatory and epistemic uncertainties, i.e., one might want to “disaggregate” (or
“separate”) both sources of uncertainty.

Concerning the first problem, adapting the previous S1F -indices can be achieved by con-
sidering the equivalent indices evaluated on the augmented vector Z = (X, Θ)>. Such indices
would reflect the contribution of both the variables X|Θ and distribution parameters Θ.

2 As a reminder, the elite set is defined such that Ex = {X(j), 1 ≤ j ≤ Nfail | 1Fx (X
(j)) = 1}, with Nfail the number

of failure points.
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In the second problem, the idea is to study the impact of aleatory and epistemic uncertainties
separately. Indeed, as stressed in Hoffman and Hammonds (1994), Helton (1997), Helton et al.
(2004), and Sankararaman and Mahadevan (2013b), separating both contributions of aleatory
and epistemic uncertainties may be of utmost importance if one desires to get a deeper insight
about which type of uncertainty plays a major role on the system at failure, and to start a well-
informed decision process in terms of budget allocation to possibly reduce epistemic uncertainty
if this one plays a significant role on the variability of the reliability measure.

In this chapter, it is proposed to consider a disaggregated version of the augmented input
vector to separate both types of uncertainty. Moreover, the effects of both types of uncertainties
on the indicator function (in other words, “at failure”) are studied and taken into account in the
ROSA context, as presented in the following sections.

7.3.2 Disaggregated random variables

One possible manner to study the effects of distribution parameter uncertainty and input
variability separately is to transform the input variables as proposed in Schöbi and Sudret (2017)
(in the context of p-boxes). As a preliminary example, one can consider the Gaussian case as an
illustrative example. Thus, under a single-level type of uncertainty, a Gaussian random variable
X can be split as follows:

X = µX + σX UX (7.14)

where θ = (µX, σX)
> are the distribution parameters and UX ∼ N (0, 1) is a standard Gaussian

variable which characterizes the inherent variability of X. Note that such a transformation is not
limited to the Gaussian case. One can build similar transformations for random variables fol-
lowing, for instance, lognormal, Gumbel or Weibull distributions. The interested reader should
refer to Schöbi and Sudret (2017) for the presentation of these cases.

Under a bi-level input uncertainty, the idea is to consider a prior distribution fΘ over the un-
certain distribution parameters Θ = (MX, SX)

>. As a consequence, the previous decomposition
can be rewritten as follows:

X = MX + SX UX (7.15)

where Vdis = (MX, SX, UX)
> is a vector of independent variables denoted as the “disaggregated

augmented vector”. Note that, for some cases, only the mean value or the standard deviation
could be considered as uncertain. In the following, the study will be limited to the Gaussian
case as working in the u-space will facilitate the calculations, without loss of generality. Finally,
the augmented input vector under a bi-level uncertainty will be composed of two sorts of inputs,
the inputs that are not affected by the bi-level uncertainty ones (gathered in the vector Xsingle)
and the disaggregated ones, such that Z = (Vdis, Xsingle)

> with dZ = ddis + dsingle denotes the
dimension of this vector. As a final remark, one should notice that, in a multivariate setting, one
has fZ = fΘ × fU × fXsingle .

As a remark and to avoid any confusion for the reader, one should notice that, similarly to
the remark mentioned in Chapter 6, despite the disaggregated inputs, only the basic variables
X do play a role in the physical model. Thus, these disaggregated inputs are “re-aggregated”
within the code such that only X variables play a role in the physical behavior. In the following,
one will use the notation Z to deal with input variables, but the reader should be aware that only
the X variables have a physical sense from the failure point of view.
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7.3.3 Extension to the bi-level input uncertainty and pick-freeze estimators

In this chapter, it is proposed to extend the previous S1F -indices to the bi-level input uncer-
tainty. To do so, the following pair of indices is proposed:

S1F
i =

Var [E[1Fz(Z)|Zi]]

Var [1Fz(Z)]
(7.16)

S1F
Ti

= 1− Var
[
E[1Fz(Z)|Z−i]

]

Var [1Fz(Z)]
=

E
[
Var

[
1Fz(Z)|Z−i]]

Var [1Fz(Z)]
. (7.17)

Pick-freeze estimators can be used to estimate these indices by MC simulations. In the following,
these estimators will be used to get the reference results.

Computing S1F
i and S1F

Ti
under a bi-level uncertainty using a single-loop CMC sampling can

be achieved in four steps. The procedure presented herebelow is adapted from the one proposed
by Wei et al. (2012).

Step #1. Generate 2N copies of the augmented vector {Z(j)}2N
j=1

i.i.d.∼ fZ. These samples are stored
in the following two matrices:

A =

Z1 Z2 . . . Zi . . . ZdZ





1 z(1)1 z(1)2 . . . z(1)i . . . z(1)dZ

2 z(2)1 z(2)2 . . . z(2)i . . . z(2)dZ
...

...
...

. . .
...

. . .
...

N z(N)
1 z(N)

2 . . . z(N)
i . . . z(N)

dZ

(7.18)

B =

Z1 Z2 . . . Zi . . . ZdZ





N + 1 z(N+1)
1 z(N+1)

2 . . . z(N+1)
i . . . z(N+1)

dZ

N + 2 z(N+2)
1 z(N+2)

2 . . . z(N+2)
i . . . z(N+2)

dZ
...

...
...

. . .
...

. . .
...

2N z(2N)
1 z(2N)

2 . . . z(2N)
i . . . z(2N)

dZ

. (7.19)

Step #2. Generate a set of matrices C(i), with i ∈ {1, . . . , dZ} where the i-th column of C(i)

comes for A and all other dZ − 1 columns come from B:

C(i) =

Z1 Z2 . . . Zi . . . ZdZ





z(N+1)
1 z(N+1)

2 . . . z(1)i . . . z(N+1)
dZ

z(N+2)
1 z(N+2)

2 . . . z(2)i . . . z(N+2)
dZ

...
...

. . .
...

. . .
...

z(2N)
1 z(2N)

2 . . . z(N)
i . . . z(2N)

dZ

. (7.20)

Step #3. Compute the indicator function values for each sample in the matrices A, B and C(i).
Finally, one gets the following set of N-dimensional column vectors:

1A = 1Fz(A), 1B = 1Fz(B), 1C(i) = 1Fz(C
(i)). (7.21)
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Step #4. The S1F -indices, for i ∈ {1, . . . , dZ}, are computed using the following CMC estima-
tors:

Ŝ 1F
i =

D̂i − ̂̃P
2

f

D̂
(7.22)

Ŝ 1F
Ti

= 1− D̂−i − ̂̃P
2

f

D̂
(7.23)

where:

̂̃Pf =
1

2N

N

∑
j=1

(1
(j)
A + 1

(j)
B ) (7.24)

̂̃P
2

f =
1
N

N

∑
j=1

1
(j)
A 1

(j)
B (7.25)

D̂ = ̂̃Pf − ̂̃P
2

f (7.26)

D̂i =
1
N

N

∑
j=1

1
(j)
A 1

(j)
C(i) (7.27)

D̂−i =
1
N

N

∑
j=1

1
(j)
B 1

(j)
C(i) (7.28)

where 1
(j)
A , 1

(j)
B and 1

(j)
C(i) are, respectively, the j-th component of the column vector 1A, 1B and

1C(i) .

In the following, reference values for S1F -indices will be estimated using this four-step pro-
cedure. Note that, following Homma and Saltelli (1996) and Wei et al. (2012), an extra step could
be added to compute analytical formulas to get the estimation error. However, in the following,
this error is controled by use of repetitions of the whole procedure. At this point, one should
notice that this single-loop CMC sampling procedure may become inefficient in the context of
rare event probability estimation as most of the indicator functions in Eq. (7.21) could be equal to
zero. Moreover, the simulation cost associated to this single-loop procedure is Ncost = N(dZ + 2)
calls to the LSF. To avoid such a computational burden, Wei et al. (2012) proposes FORM-IS and
TIS-based estimators of the above CMC estimators (in the context of single-level ROSA). In the
next section, another way is investigated to efficiently obtain the indices under a bi-level uncer-
tainty by an efficient estimation scheme coupling the estimators presented in Subsection 7.2.2, a
subset sampling technique and kernel density estimation.
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7.4 Efficient estimation using subset sampling and kernel density es-
timation

7.4.1 The problem of estimating the optimal distribution at failure

By adapting the expressions given in Eq. (7.11) and Eq. (7.12) to the bi-level uncertainty, one
gets the following estimators:

Ŝ 1F
i =

̂̃Pf

1− ̂̃Pf

Var

[
f̂Zi |F (Zi)

f̂Zi(Zi)

]
(7.29)

Ŝ 1F
Ti

= 1−
̂̃Pf

1− ̂̃Pf

Var

[
f̂Z−i |F (Z

−i)

f̂Z−i(Z−i)

]
(7.30)

where ̂̃Pf is the estimated value of the predictive failure probability as presented in Chapter 5,
estimated here by ARA/SS. As suggested by these estimators adapted to the bi-level uncer-
tainty, the first and total sensitivity indices require the estimation of fZi |F and fZ−i |F . These
densities correspond, respectively, to the marginal distribution w.r.t. Zi and to the “joint minus
one” (abbreviated as “joint−1”, the one corresponding to the i-th marginal) distribution of the
failure points. These two estimators exhibit a number of challenges that are detailed below in
the dedicated paragraphs.

As a remark, one should notice that these densities fZi |F and fZ−i |F are closely related to the
optimal ones discussed in Chapter 3 (see Eq. (3.27) and Eq. (3.28)) in the context of importance
sampling and subset sampling. However, as explained all along Chapter 3, the optimal density
at failure (without specifying the space, either x-space or u-space), may be challenging to esti-
mate due to multiple reasons. Such a task can be achieved by means of KDE (see Appendix B
and its use, e.g., in the NAIS technique as explained Chapter 3).

In the context defined hereabove, i.e., global ROSA with S1F -indices, under a bi-level input
uncertainty, one needs to recall the major challenges arising from the estimation of the optimal
distribution at failure using KDE, and the new challenges induced by the use of the estimators
in Eq. (7.29) and Eq. (7.30).

Challenge #1: input dimension. It is known that the performance of KDE deteriorates with
the input dimension. However, in the estimators presented above, this issue is predominantly
affecting the total index Ŝ 1F

Ti
as it requires the estimation of the joint−1 density fZ−i |F at failure.

However, this issue is intrinsically affected by the fact that, under a bi-level uncertainty, one
considers the augmented vector Z = (Vdis, Xsingle)

> of size dZ > d due to the disaggregated
variables contained in Vdis. This increased input dimension is the counterpart of taking the
bi-level input uncertainty into account.

Challenge #2: complex shape of the optimal density at failure. As explained in Chapter 3,
the shape of the optimal density at failure may be complex. By complex, one means that it is a
distribution truncated by the LSS, which can be multimodal and may thus arise from a complex
combination of the inputs. Note that the multimodality can be either smooth (close modes) or
very sharp, especially in the context of disconnected failure regions of almost equal importances.

Challenge #3: limited number of failure points in the elite set. In the context of rare event
probability estimation, the number of failure points, i.e., samples that lie in the true failure do-
main, is often limited (e.g., with the CMC technique). Even if variance reduction techniques
such as IS or SS can be used and may significantly increase the number of failure points in the
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last iteration, the elite set Ex (or Eu) is often of rather small size compared to the total number
of simulations used to get an estimate of the failure probability. Finally, one can also add more
samples by using resampling within this failure domain (e.g., by using MCMC techniques such
as presented in Appendix D). In the context of costly-to-evaluate computer codes, resampling
may even become untractable. As a result, the learning procedure of fZi |F and fZ−i |F by KDE has
to be performed over a limited elite set composed of from a few hundreds to a few thousands of
failure points.

Challenge #4: accuracy of the KDE. A last challenge concerns the fact that, in Eq. (7.29) and
Eq. (7.30), not only the estimations of fZi |F and fZ−i |F are required but also their evaluations on
samples Zi and Z−i. Moreover, these indices are based on the variance of ratios of these density
evaluations. Thus, one needs to ensure that the KDE provides sufficiently accurate estimations
for the densities to avoid large estimation errors. Consequently, if a coarse KDE can be sufficient
to get a sampling density able to generate samples within a certain region (e.g., a failure region,
such as in the NAIS technique), getting a very accurate estimation of a multivariate density over
a limited set of samples is far more challenging.

If the traditional KDE formulation such as presented in Appendix B may be sufficient for
basic “estimation-sampling” tasks used in reliability assessment such as in the NAIS technique,
it is definitely not efficient enough regarding the four challenges listed hereabove. To do so,
one needs to focus on dedicated tools developed w.r.t. these challenges. Recently, a modified
formulation based on Gaussian KDE (G-KDE, i.e., using Gaussian kernels) has been proposed
in Perrin et al. (2018). This formulation is briefly reviewed below.

7.4.2 Data-driven tensorized kernel density estimation

Introduced in Perrin et al. (2018), a new data-driven tensorized G-KDE has been proposed so
as to overcome a few difficulties of traditional G-KDE. For the sake of clarity and conciseness,
only a few prerequisites and the core modifications are presented below. The interested reader
is invited to refer to Perrin et al. (2018) for any further information.

Context and prerequisites. This data-driven tensorized G-KDE relies on the assumption that
the maximum available information consists of a set of independent realizations {Z}N

j=1 of a
random vector Z. In the reliability context, such a dataset can be typically the elite set denoted
by Ez, i.e., a N-dimensional vector of realizations of the input vector whose coordinates fall in
the failure domain (which can be either in the x-space or in the u-space).

Another prerequisite consists in assuming that the unknown underlying distribution fZ of
these data samples might be concentrated on an unknown subset of Rd. This assumption may
be particularly true when the distribution of Z may exhibit a strong stochastic dependence struc-
ture. In the reliability context, this case typically corresponds to the case of the optimal density
at failure for complex LSFs (even if the input vector of basic variables X is made of independent
variables). This theoretical problem of probability concentration is strongly linked with mathe-
matical concepts related to dimension reduction via diffusion maps theory (see, e.g., Coifman et al.,
2015; Soize and Ghanem, 2016; Soize and Ghanem, 2017). The basic idea of diffusion maps is to
identify the underlying manifold upon which the data is embedded (see, e.g., De La Porte et al.,
2008). Nonetheless, this theoretical topic is beyond the scope of this thesis and the interested
reader is invited to refer to the above references for any further information.

Main features of the data-driven tensorized G-KDE. Regarding the potential constraints and
challenges mentioned above, Perrin et al. (2018) propose two main adaptations to the traditional
G-KDE. These two features are detailed below:
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• the data-driven feature: while considering a dataset Ez = {Z(1), . . . , Z(Nfail)}, the idea is
to modify the traditional G-KDE estimator so that the mean and covariance matrix are
equal to the empirical moments m̂Ez and Σ̂Ez estimated from the dataset Ez. Moreover, it
is proposed to replace the “Silverman’s rule of thumb” (see Appendix B) characterized by
the bandwidth matrix given in Eq. (B.14) parametrized by a single scalar bandwidth ηSilv
given in Eq. (B.15). Instead, it is proposed to use the maximum likelihood estimate HML

based on the available data;

• the tensorization feature: to take into account the possible complex dependence structure of
the underlying distribution of interest, it is proposed to consider a block-by-block decomposi-
tion to separate the components of Z which can be reasonably assumed to be independent
from those which can be assumed dependent. Thus, two dependent inputs should belong
to the same block. This leads to consider a tensorized version of the bandwidth matrix
HML parametrized by a set of bandwiths ηl with l ∈ {1, . . . , nblock}.

7.4.3 Methodology based on subset sampling and data-driven tensorized G-KDE

The proposed methodology can be summarized as proposed in Figure 7.1. Thus, it can be
decomposed into two major phases:

• Phase #1: the first phase (cf. the blue blocks in Figure 7.1) corresponds to a reliability
analysis phase. The idea is to perform a rare event probability estimation using ARA/SS.
To do so, one first needs to set the augmented problem by constructing the augmented
vector using the disaggregated strategy. Then, one performs a SS-based rare event prob-
ability estimation (which implies to set several tuning algorithms for SS as explained in
Appendix D) so as to get an elite set. A possible final step consists in resampling within the
failure domain, if necessary;

• Phase #2: the second phase (cf. the orange blocks in Figure 7.1) corresponds to a learning
and sensitivity analysis phase. To do so, one needs first to estimate empirical moments based
on the available elite set. Then, one can run the procedure of data-driven tensorized G-KDE
as set in Perrin et al. (2018). Note that, in this chapter, the algorithm used to find the block-
dependence structure is a greedy algorithm. Another possibility could be to use a genetic
algorithm as achieved in Perrin et al. (2018). Finally, one can evaluate the S1F -indices using
estimators given in Eq. (7.29) and Eq. (7.30).

In the following, this methodology is applied and tested on two academic test-cases. A numeri-
cal application on a realistic aerospace test-case will be further studied in Chapter 8.

7.5 Application examples

The numerical applications presented in this section are based on the following tools:

• the rare event probability estimation has been implemented in Matlab R© and performed
using both a rare event simulation toolbox developed at ONERA;

• a Python
TM

implementation of the data-driven tensorized G-KDE procedure proposed by
Perrin et al. (2018).

The numerical testing of the methodology developed in this chapter, as summed up in Ta-
ble 7.1, relies on the following settings:
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Start

Construct the augmented vector Z with :

. Vdis ≡ vector of disaggregated inputs

. Xsingle ≡ other inputs

↪→ Set prior distributions

Perform a rare event probability estimation

. ̂̃Pf

. Ez = {Z(j), 1 ≤ j ≤ Nfail | 1Fz(Z
(j)) = 1}

↪→ Use ARA/SS (+ set tuning parameters)

Are there enough
failure points in

the elite set ?

Resample within the failure domain
using a MCMC algorithm

↪→ Use MH or m-MH algorithms

Pre-processing of the data

. Estimate the empirical moments m̂Ez and Σ̂Ez

. Normalize and decorrelate the samples such that : m̂Ez = 0 and Σ̂Ez = IdZ

↪→ Use, e.g., a principal component analysis

Run the Data-driven tensorized G-KDE procedure

. Identification of the block-by-block decomposition

. Estimation of HML

↪→ Use a greedy algorithm

Evaluate the indices

. Distribution fitting using KDE

. Generate Ngen samples to evaluate the densities

. Estimation of the variance ratios of densities

↪→ Use the formulas of S1F -indices

Stop

yes

no

FIGURE 7.1: Flowchart of the proposed methodology to compute S1F -indices under a bi-level uncertainty.
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• firstly, the idea is to highlight the fact that dealing with bi-level uncertainty, especially with
disaggregated random variables, may provide more information about how epistemic un-
certainty plays a role on the variability of the indicator function. To do so, one proposes
a comparison of S1F -indices under single- and bi-level uncertainty, obtained using both
CMC and ARA/CMC with large sample sizes;

• secondly, it is proposed to efficiently estimate the bi-level S1F -indices using the method-
ology described in Subsection 7.4.3 (i.e., the coupling between SS and the data-driven
tensorized G-KDE, abbreviated as “SS + G-KDE” in the following), at a lower compu-
tational cost than CMC (see Subsection 7.3.3). To do so, one considers that several elite
sets {E (j)

z }nset
j=1 are obtained by repeating nset times the SS algorithm. Then, based on these

elite sets, one can repeat the overall procedure proposed in Subsection 7.4.3 so as to esti-
mate the indices. However, due to possible numerical instabilities in the estimation of the
S1F -indices (mainly due to the approximation of the PDFs), the mean estimate are given
together with a “success rate” which indicates the percentage of estimated values that have
been kept to get the mean estimate. The rejected ones correspond to negative values of the
indices which are considered as outliers but are taken into account in the score provided
by the success rate.

• thirdly, after validation of the method, the impact of the increasing rareness of the failure
event (regarding a limited simulation budget available) is studied as an extension of the
first test-case (see the three black starsF).

TABLE 7.1: Overall strategy for the numerical tests of the proposed methodology.

Test-case Single-level Bi-level
CMC Ref. ARA/CMC ARA/SS

Ex. #1: Polynomial function a (cf. 7.5.1) �F �F �F
Ex. #2: Truss structure b (cf. 7.5.2) �F �F �F

a dZ = 5.
b dZ = 7.

As shown in Table 7.1, the proposed methodology is applied on two test-cases, respectively
a polynomial toy-case and the failure of a roof structure modeled by a truss (the black squares
stand for the performed calculations). A numerical application on a realistic aerospace test-case
will be further proposed in Chapter 8.

7.5.1 Example #1: a polynomial function toy-case

Description. In a first example (issued from Perrin and Defaux (2019)), one considers an ana-
lytical toy-case made of a polynomial function whose failure is given by the following LSF:

g(X) = yth −M(X) = yth − (1 + X1)(5 + X2)(10 + X3) (7.31)

where the Xi, for i = 1, . . . , d, are three independent standard Gaussian variables. The failure is
supposed to occur as soon as the output value exceeds the threshold yth. In the following, two
cases are treated:

• yth = 250: in this case, the reference failure probability estimated using CMC (with N =
106 samples and Nrep = 100 replications) is pf,ref = 8.55× 10−4);

• yth = 350: in this case, the rareness of the failure event is increased so as to reach a reference
failure probability under a single-level uncertainty of pf,ref = 1.17× 10−5 (estimated using
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CMC with N = 107 samples and Nrep = 100 replications). For this case, the s.d. values
of the prior distributions are increased so as to get stronger sensitivities (see the values
marked with the symbolF in Table 7.2).

Under a bi-level uncertainty, one considers that the probabilistic model of the first input vari-
able X1 is not perfectly known (see Table 7.2). Thus, one considers the following decomposition:

X1 = MX1 + SX1UX1 (7.32)

where MX1 and SX1 follow respectively some prior distributions described in Table 7.2. As for
UX1 , it represents the natural variability of the input X1.

TABLE 7.2: Input probabilistic model for Example #1.

Variable Xi Distribution Mean µXi S.d. σXi

X1 Normal µX1 uncertain a σX1 uncertain
X2 Normal 0 1
X3 Normal 0 1
MX1 Normal 0 0.1/0.7(F)
SX1 Normal 1 0.1/0.7(F)
UX1 Normal 0 1

a For fixed values µX1 = 0 and σX1 = 1, pf,ref = 8.55× 10−4.

Results. Figure 7.2a and Figure 7.2b provide the reference results for the estimation of both
first-order and total S1F -indices under a single-level uncertainty. Based on these plots, one can
notice firstly that X1 is the most influential variable on the indicator function, and second, that
all the three variables show high values for the total indices which indicates that these variables
present strong interactions at failure (which is coherent with the results observed by Lemaître
(2014, Chap. 1)).

Now, one can compare these results with the reference ones obtained under a bi-level uncer-
tainty using the CMC pick-freeze estimators presented in Subsection 7.3.3. The most influential
input variable X1 has been disaggregated. Thus, Figure 7.3a and Figure 7.3b show that it is UX1

which is the most influential regarding first-order indices. Then, looking at total indices, one
can notice that, even if the ranking is still preserved (UX1 > X2 > X3), SX1 is most influential
than MX1 and is of the same order of magnitude as X3. Consequently, considering an extra level
of uncertainty plays, not only a role on the reliability assessment (here, the failure probability
slighty increases from 8.55× 10−4 to 1.0× 10−3), but also on the relative influence of the random
variables at failure. Moreover, these results show that epistemic uncertainty affecting distribu-
tion parameters may play a non-negligible role compared to aleatory uncertainty of the basic
variables.

Numerical results obtained by the proposed methodology are given in Table 7.3. These re-
sults have been obtained for the following settings: nset = 10 elite sets of Nfail = 2.5× 103 failure
samples have been obtained by repetition of the SS algorithm. In addition to that, one gener-
ates Ngen = 5× 104 samples on which one evaluates the densities and compute the variance
of the ratio. Thus, one can notice, by comparing the second and third columns, that the first
order indices are rather correctly estimated, at a relative moderate cost and with a high success
rate. One can still note that the index associated to UX1 is a little bit under-estimated. As for
the total indices, even if the orders of magnitude are almost correct, most of them are a little bit
over-estimated.
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FIGURE 7.2: Reference S1F -indices estimated for the Example #1 under a single-level uncertainty (CMC
of Nsim = 106 samples and Nrep = 100 repetitions, with pf,ref = 8.55× 10−4).
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FIGURE 7.3: Reference S1F -indices estimated for the Example #1 under a bi-level uncertainty (CMC of
Nsim = 106 samples and Nrep = 100 repetitions, with P̃f,ref = 1.0× 10−3).

TABLE 7.3: Results for Example #1.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 1.4× 10−4 8.4× 10−5 (100 %) 0.145 0.224 (90 %)
SX1 4× 10−4 5.8× 10−4 (100 %) 0.366 0.476 (100 %)
UX1 0.118 0.069 (100 %) 0.987 0.981 (100 %)
X2 5.1× 10−3 4.1× 10−3 (100 %) 0.772 0.806 (100 %)
X3 1.4× 10−3 1.5× 10−3 (100 %) 0.487 0.604 (100 %)

Considering the influence of the failure event rareness (i.e., for yth = 350), numerical results
are given in Table 7.4. For this case, the reference predictive failure probability is such that
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P̃f,ref = 2.05× 10−5. Reference values for S1F -indices have been obtained by CMC, with N = 108

samples and Nrep = 100 replications. Numerical results for the proposed methodology have
been obtained for the following settings: nset = 10 elite sets of Nfail = 500 failure samples have
been obtained by repetition of the SS algorithm (with 5× 103 samples/step, an αSS-quantile set
to 0.75 and a final MCMC-based resampling step of 5× 103 samples whose only the first 10 %
samples are kept). In addition to that, one generates Ngen = 5 × 105 samples on which one
evaluates the densities and compute the variance of the ratio. Thus, one can notice that the first
order indices are rather correctly estimated, at a relative moderate cost compared to CMC and
high success rates. As for the total indices, almost all of them have been correctly estimated.
However, the smallest one, associated to MX1 , is over-estimated at a low success rate of 50 %.

TABLE 7.4: Results for Example #1 (F).

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 7.8× 10−8 2.6× 10−6 (100 %) 0.176 0.394 (50 %)
SX1 2.0× 10−5 3.5× 10−5 (100 %) 0.539 0.517 (100 %)
UX1 0.026 0.016 (100 %) 0.998 0.990 (100 %)
X2 4.6× 10−4 1.3× 10−3 (100 %) 0.902 0.906 (100 %)
X3 7.4× 10−5 8.7× 10−5 (100 %) 0.659 0.700 (100 %)

7.5.2 Example #2: a truss structure

Description. The second example (issued from Wei et al. (2012)) is a roof structure whose be-
havior is modeled by a truss as sketched in Figure 7.4. For the bars, two different materials are
assumed: the top boom and the compression bars are reinforced by concrete (denoted by the
subscript c in the mechanical characteristics) while the bottom boom and the tension bars are
made of steel (denoted by the subscript s in the mechanical characteristics). A uniformly dis-
tributed load q is applied to the roof. As a result of the modeling, one can reduce it to nodal
loads P = ql/4 applied respectively on nodes C, D and F. The failure of such a structure can
be attained if the deflection of node C (denoted by ∆C) reaches a given threshold ∆th. Such a
scenario is given by the following LSF:

g(X) = ∆th −M(X) = 0.025− ∆C. (7.33)

The analytical formulation of ∆C can be derived from the basic principles of structural mechanics
applied to trusses. As a result, one has the following deflection formula (Wei et al., 2012):

∆C =
ql2

2

(
3.81
AcEc

+
1.13
AsEs

)
(7.34)

where l denotes the total length of the basis of the truss, Ac and As the sectional areas of,
respectively, the concrete and steel bars, and finally Ec and Es the Young’s modulus of con-
crete and steel. Thus, one has to consider a 6-dimensional input random vector, such that
X = (q, l, As, Ac, Es, Ec)>, composed of independent Gaussian variables as described in Table 7.5.

Considering a single-level of uncertainty in input, the reference failure probability estimated
using CMC (with N = 106 samples and Nrep = 100 replications) is pf,ref = 1.27× 10−2. Under a
bi-level uncertainty, one assumes that the probabilistic model of the first input variable X1 is not
perfectly known (see Table 7.2). Thus, one considers the following decomposition:

X1 = MX1 + σX1UX1 (7.35)
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where MX1 follow respectively a prior distribution described in Table 7.5, while σX1 is supposed
to be well known. As for UX1 , it represents the natural variability of the input X1 and is thus
modeled by a standard Gaussian random variable.
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FIGURE 7.4: A roof truss.

TABLE 7.5: Input probabilistic model for Example #2.

Variable Xi Distribution Mean µXi S.d. σXi

X1 = q (N.m−1) Normal µX1 uncertain a 0.08× 20 000
X2 = l (m) Normal µX2 = 12 0.02× µX2

X3 = As (m2) Normal µX3 = 9.82× 10−4 0.06× µX3

X4 = Ac (m2) Normal µX4 = 0.04 0.2× µX4

X5 = Es (N.m−2) Normal µX5 = 1.2× 1011 0.07× µX5

X6 = Ec (N.m−2) Normal µX6 = 3× 1010 0.08× µX6

MX1 Normal 20 000 0.05× 20 000
UX1 Normal 0 1

a For the fixed value µX1 = 20 000, pf,ref = 1.27× 10−2.

Results. Figure 7.5a and Figure 7.5b provide the reference results for the estimation of both
first-order and total S1F -indices under a single-level uncertainty. Based on these plots, one can
notice first, that X4 presents the largest first order index, and second, that the total indices indi-
cate a partition into three groups of inputs: (X4, X1) show the strongest indices, then (X2, X3, X5)
have quasi-similar values for their indices, and finally X6 (these results are coherent with those
obtained by Wei et al. (2012)).

Under a bi-level uncertainty, it is assumed that the mean of X1 is affected by epistemic un-
certainty. Thus, X1 has been desaggregated into MX1 and UX1 . As a result, Figure 7.6a and
Figure 7.6b show that it is UX1 is the second most influential input regarding first-order indices.
As for total indices, one can see that the group (X4, UX1) is the most influential, followed by
(MX1 , X2, X3, X5) and finally X6. Thus, again, the epistemic uncertainty affecting the mean of X1
plays a non-negligible role on the variability of the indicator function, mainly due to interactions
with other inputs.

The numerical results obtained by the proposed methodology are given in Table 7.6. These
results have been obtained for the following settings: nset = 50 elite sets of Nfail = 2× 103 failure
samples have been obtained by repetition of the SS algorithm. In addition to that, one generates
Ngen = 1× 104 samples on which one evaluates the densities and compute the variance of the
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ratio. Thus, one can notice, by comparing the second and third columns, that the first order
indices are almost perfectly estimated (only the strongest index associated to X4 is moderately
over-estimated), at a lower cost compared to CMC and with the highest success rates for all
the indices. As for the total indices, some of them are perfectly estimated while others show
a relative bias. Moreover, the ranking is slighty modified between MX1 and X3. However, the
reference values are also very close. Thus, the proposed methodology is able to catch, at least,
accurate orders of magnitude. Finally, one can see that the success rates of total indices do not
reach values under 82 %.
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FIGURE 7.5: Reference S1F -indices estimated for the Example #2 under a single-level uncertainty (CMC
of Nsim = 106 samples and Nrep = 100 repetitions, with pf,ref = 1.26× 10−2).
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FIGURE 7.6: Reference S1F -indices estimated for the Example #2 under a bi-level uncertainty (CMC of
Nsim = 106 samples and Nrep = 100 repetitions, with P̃f,ref = 1.65× 10−2).
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TABLE 7.6: Results for Example #2.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 0.012 0.012 (100 %) 0.420 0.346 (98 %)
UX1 0.042 0.046 (100 %) 0.639 0.567 (100 %)
X2 8.8× 10−3 9.1× 10−3 (100 %) 0.374 0.297 (94 %)
X3 0.013 0.015 (100 %) 0.410 0.365 (94 %)
X4 0.114 0.145 (100 %) 0.672 0.643 (100 %)
X5 0.021 0.023 (100 %) 0.478 0.444 (100 %)
X6 3.2× 10−3 3.4× 10−3 (100 %) 0.229 0.207 (82 %)

7.5.3 Synthesis about numerical results and discussion

As a synthesis, and according to the numerical results presented previously, one can high-
light a few characteristics and perspectives about the proposed methodology:

• the proposed methodology allows to investigate the impact of the relative part of epistemic
uncertainty and aleatory uncertainty to the variability of the indicator function (which is
directly linked to the variability of the failure probability as showed in Eq. (7.1));

• the coupling between ARA/SS and the data-driven tensorized G-KDE seems to provide
very promising results for global ROSA under a bi-level uncertainty, especially concerning
the reduction in terms of computational cost compared to CMC, since this methodology
only requires a post-treatment of an elite set obtained after a reliability analysis;

• the methodology seems able to handle moderate dimensions, at least, greater dimensions
for which traditional KDE fails to estimate correctly multivariate densities;

• this methodology is driven by several tuning parameters which may influence drastically
the results: the quality of the elite set (influenced by the tuning of the SS algorithm), the
number Nfail of failure samples in the elite set and the number Ngen of generated samples
to compute the variance. As for nset, it is important to notice that, in practice, for costly-to-
evaluate computer models (and rare event probability estimation), it might not be possible
to get neither multiple not large-sample-size elite sets.

7.6 Conclusion

In this chapter, a new methodology is proposed to estimate, at a lower computational cost
than CMC, a set of S1F -indices, in the context of bi-level input uncertainty. This methodology
relies on the combination of three main components:

• first, a disaggregated structure of the inputs that are affected by epistemic uncertainty;

• second, the use of the SS algorithm to get an estimate of the predictive failure probability
and, jointly, to use the final elite set of failure samples to estimate the S1F -indices;

• third, a data-driven tensorized G-KDE which allows to improve the density estimation
required to compute the indices.

The combination of these three tools allows to propose a methodology whose efficiency has been
observed on two numerical test-cases. Moreover, the influence of the failure event rareness has
been investigated too. However, this work only provides promising preliminary results. Indeed
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as mentioned in the results, some numerical experiments can lead to negative values of the S1F -
indices as indicated by the “success rate” scores. Thus, the proposed methodology might be
not suited to a use as a one-shot methodology. Its robustness should be improved, mainly by
investigating the potential reasons for such a failure in terms of estimation (e.g., possible insuf-
ficiency in terms of budget allocation / inaccuracy of the KDE / inefficiency of the resampling
phase using MCMC creating correlated samples).

In the next chapter, the methodologies developed in Chapter 5, Chapter 6 and in the present
chapter, are applied on a real aerospace test-case, i.e., a launcher stage fallout test-case, to demon-
strate both the applicability and the practical interests of the proposed methodologies when
facing bi-level input uncertainty in both rare event probability estimation and ROSA contexts.
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8.1 Introduction and motivations

The role of a launch vehicle (a.k.a. space launcher) is to carry a payload (e.g., a satellite) from the
Earth’s surface to a given orbit. A traditional expendable space launcher is composed of multiple
stages, equipped with their propulsion systems. An example of such a launch vehicle is given
in Figure 8.1. During the flight, uncertainties can affect several variables in multiple disciplines
(e.g., on the perturbation during trajectory or propellant combustion). For instance, focusing
on the optimal trajectory assessment leads to consider the separation point (denoted by “stage
separation” in Figure 8.1) as a key point in terms of uncertainty analysis. For instance, the first
stage of a light VEGA type launcher is jettisoned at an altitude of around 61 km (Arianespace,
2014) while the solid rocket boosters of the heavy ARIANE 5 launcher are jettisoned at an altitude
of around 69 km (Arianespace, 2016). Thus, such altitudes are still lower than the Kármán line 1

so that wind perturbations might affect their dynamics. As a consequence, the handling of
uncertainties (e.g., arising from dynamic perturbations, error measurements due to sensors or
varying unburned propellant left mass) plays a crucial role in the comprehension and prediction
of the global system behavior. That is the reason why it is of prime importance to take it into
account during the reliability analysis and the prediction of the fallout zone. A misestimation
can have dramatic consequences in terms of launcher safety, human security and environmental
impact.

LAUNCH SITE OCEAN

BOOSTER BREAKS UP

STAGE SEPARATION

LIFTOFF

FAIRING SEPARATION

MECO

SECOND STAGE IGNITION

PAYLOAD

SECO

SEPARATION

(MAIN ENGINE CUTOFF)

(SECOND ENGINE CUTOFF)

DURING UNCONTROLLED REENTRY

FIGURE 8.1: Illustration scheme of a first stage fallout phase
(recreated and adapted from an infographic by Jon Ross,

see http://www.zlsadesign.com).

1 The Kármán line denotes the boundary between the Earth’s atmosphere and outer space. The practical use of
such a limit mainly appears to consider when the effects of the atmosphere might become negligible. Traditionally
set to a 100 km altitude for common applications, some researchers recently advocated that a value of 80 km altitude
would be more realistic (McDowell, 2018).

http://www.zlsadesign.com
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The goal of this chapter is to present a simplified, but representative, fallout trajectory sim-
ulation model. Indeed, this model is representative of the phenomena encountered but with a
reduced simulation cost (e.g., use of mass point model) while remaining challenging enough re-
garding the use of advanced rare event estimation techniques and sensitivity analysis methods.
For more realistic problems, one can refer to Ronse and Mooij (2014), Ridolfi and Mooij (2016),
Hoogendoorn et al. (2018), and Geul et al. (2018). In these studies, other parameters are consid-
ered and investigated concerning the dynamics of the vehicle (e.g., perturbation of atmospheric
density, winds). In the present chapter, they are not taken into account for the sake of simplicity
and interpretation of the given results, but they remain parameters that should be incorporated
in the model to get a full high-fidelity simulation model.

The launcher stage fallout simulation computer code may be represented as an input-output
black-box model. The input variables are, among others, some characteristics of the launcher
and some conditions (initial or arising during the flight) of the fallout phase. These inputs are
affected by uncertainties and are gathered in a random vector with a given PDF. It is assumed
that this PDF is described by a parametric model of density. The output corresponds to the
position of fallout and is also a random variable because of the input randomness. A typical
safety measure can be the probability that a stage (e.g., the first stage) falls at a distance greater
than a given safety limit. Indeed this estimation is strategic for the qualification of such vehicles.

This chapter is organized as follows. Section 8.2 describes the physical model and describes
the sources of uncertainties. Section 8.3 defines the input probabilistic model, the failure scenario
and the associated LSF. Section 8.4 proposes a first preliminary analysis to get more insight about
the behavior of the system at failure. Then, Section 8.5, Section 8.6 and Section 8.7 aim at apply-
ing the three methodologies presented in the three previous chapters (i.e., efficient estimation
of the predictive failure probability, local ROSA and global ROSA, all of them within the ARA
framework) to the aerospace test-case. Finally, a conclusion gathering the most important results
of this chapter is given in Section 8.8.

8.2 Description of the physical model

Space launcher complexity arises from the coupling between several subsystems, such as
stages or boosters and other embedded systems.

The simulation model used in this chapter can be considered as a black-box model denoted
by M : Rd=6 → R. Here, it is a simplified trajectory simulation code of the dynamic fallout
phase of a generic launcher first stage. The avantage of a black-box model is to enlarge the ap-
plicability of the proposed statistical approaches illustrated in this chapter to any test-cases in
this range of models. As a matter of fact, the following methods proposed in this chapter are
said to be “non-intrusive” w.r.t. the model under study. The d-dimensional (here d = 6) input
vector of the simulation code, denoted by X, contains the following basic variables (i.e., physical
variables) modeling some initial conditions, environmental variables and launch vehicle char-
acteristics:

X1: stage altitude perturbation at separation ∆a (m);

X2: velocity perturbation at separation ∆v (m.s−1);

X3: flight path angle perturbation at separation ∆γ (rad);

X4: azimuth angle perturbation at separation ∆ψ (rad);

X5: propellant mass residual perturbation at separation ∆m (kg);

X6: drag force error perturbation ∆Cd (dimensionless).



138 Chapter 8. Application to a launcher stage fallout test-case

FIGURE 8.2: Illustration scheme of a launch vehicle first stage fallout phase into the Atlantic Ocean.
Multiple fallout trajectories are drawn (red dotted lines), leading to the impact zone (yellow circular

surface). Due to uncertainties, one fallout trajectory may lead to a failure impact point (red star).

These variables are assumed to be independent for the sake of simplicity. As an output, the code
will give back the scalar distance Y = M(X) which represents the distance Dcode between the
theoretical fallout position into the ocean and the estimated one due to the uncertainty propaga-
tion.

8.3 Input probabilistic model and limit-state function

In the context of the launch vehicle fallout case, the input variables are known to be affected
by uncertainties (e.g., , due to the natural variability of wind or due to lack-of-knowledge). Thus,
applying UQ methodology leads to consider a probabilistic model for the input vector X, i.e., by
assuming the existence of a joint PDF fX : DX ⊆ Rd → R+. Since the input variables are assumed
to be independent, this joint PDF corresponds to the product of the marginal PDFs fXi of the
input variables Xi, i ∈ {1, . . . , d}. The input probabilistic model for the launch vehicle fallout
case is given in Table 8.1. Note that the numerical values used in this test-case are hypothetic
and should not be used for industrial applications.
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TABLE 8.1: Input probabilistic model.

Variable Xi
a Distribution Mean µXi S.d. σXi

X1 = ∆a (m) Normal 0 1650
X2 = ∆v (m.s−1) Normal 0 3.7
X3 = ∆γ (rad) Normal 0 0.001
X4 = ∆ψ (rad) Normal 0 0.0018
X5 = ∆m (kg) Normal 0 70
X6 = ∆Cd (1) Normal 0 0.1

a The input variables are independent.

The input probabilistic model is given in Table 8.1. The code output is the distance Dcode
between the theoretical fallback position into the ocean and the estimated one. For the sake of
clarity, one recalls that the LSF g(·) can be written as follows:

g(X) = dsafe −M(X) = dsafe − Dcode (8.1)

for which the rareness of the failure event depends on the safety threshold distance dsafe.

8.4 Preliminary analysis of the limit-state surface

As a preliminary analysis of the black-box model, one can transform the problem set in the
original physical space (a.k.a. x-space) into the standard Gaussian space (a.k.a. u-space) by using
one of the transformations recalled in Appendix C. Then, one can use FORM in the first place
(see Chapter 3). The idea is not only to get a first estimate of the failure probability (whose
value may be completely wrong if the LSS turns out to be nonlinear), but, above all, to find a
first MPFP. Based on this first MPFP, one can use it to visualize the shape of the failure domain,
i.e., how the LSS behaves. Indeed, in the u-space, one can consider two-dimensional cross-cuts by
fixing all the inputs but two and solving the LSF equation on a regular grid (e.g., as performed in
Dubourg (2011) and Bourinet (2016)). These cross-cuts may be helpful to get a first insight about
the behavior of the LSS within the u-space, where visualization is the easiest one. Similar cross-
cuts in the x-space could be, for heteregeneous input random vector X (i.e., different probability
distributions with very different ranges of values), complicated to get and not easy to plot.

As an example, Figure 8.3 provides the cross-cuts in the (ui, uj)-plane for the launcher stage
fallout test case. The black cross is the origin and the black square represents the MPFP found
by applying FORM. The black line is the limit-state surface (LSS), formally defined by the set
F 0

u = {u ∈ Rd | ◦g(u) = 0}, which highlights the separation between the safe domain (in
green/light grey) and the failure domain (in orange/dark grey). By definition, the LSS belongs
to the failure domain.
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FIGURE 8.3: Illustration of cross-cuts in the u-space.

By analyzing these cross-cuts, one can formulate the following remarks:

• firstly, one can notice that, for some combinations, the LSS is highly nonlinear (e.g., for the
pairs (u1, u4), (u2, u4), (u3, u4), (u4, u5)). Moreover, one can see that these nonlinearities
seem to be specific to the variable X4, i.e., the azimuth angle perturbation at separation.
Such nonlinearities indicate that any method relying on a linear assumption of the LSS
(such as FORM) should be avoided for reliability assessment in this specific case;

• secondly, one can notice that the two cross-cuts ((u2, u3), (u2, u6)) present possible multiple
MPFPs. In particular, (u2, u3) would suggest the presence of a second MPFP of opposite
coordinates.
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As explained in Chapter 3, tracking multiple MPFPs can be achieved using the “multi-FORM”
algorithm proposed by Der Kiureghian and Dakessian (1998). Briefly, this method consists in
repeating a FORM analysis with a modified LSF which triggers the search outside the area
where a MPFP has been found. Here, by applying this method, one can find that a second
MFPF exists with the coordinates in the u-space given by (u2, u3) = (3.084, 2.058) and (u2, u6) =
(3.084,−1.798). This result is just a qualitative example which should highlight that, MPFP-
based techniques can be useful to learn some key characteristics of a black-box model (e.g., non-
linearity of the LSS, curvatures, possible multiple MPFPs). These key characteristics can then
be taken into account to choose a dedicated technique to correctly estimate the failure proba-
bility. For instance, if one knows that the problem presents multiple MPFPs of possible almost
equal importance, one should, for example, avoid FORM-IS and recourse to advanced sampling
techniques such as adaptive IS techniques or subset sampling.

As highlighted in the present section, the black-box model under study present a few key
characteristics which have to be kept in mind in the following phases:

• it is of moderate input dimension (d = 6);

• the inputs are independent Gaussian variables;

• the rareness of the failure event depends on the safety threshold dsafe;

• the LSS is highly nonlinear in the u-space and might present multiple MPFPs (i.e., mutliple
failure regions);

In the following, one will investigate the impact of the lack-of-knowledge (i.e., epistemic un-
certainty arising from lack of data or measurement uncertainty) about a few distribution pa-
rameters set in Table 8.1. The idea is then to evaluate the impact of such a bi-level uncertainty
through a three-step long study: firstly, on the reliability assessment (called Step #1); secondly,
by testing the robustness of the reliability assessment w.r.t. to the local prior parametrization
(called Step #2); and thirdly, by investigating the impact of the bi-level uncertainty level at fail-
ure (called Step #3). As a remark, one should notice that the same comparison metrics such as
those described in Chapter 5 are used in the numerical applications.

8.5 Step #1: reliability assessment under distribution parameter un-
certainty

In this first step, it is assumed that the mean values of the basic variables X2 (i.e., the velocity
perturbation at separation) and X3 (i.e., the flight path angle perturbation at separation) are
uncertain. As they are related to physical quantities which are very difficult to measure and
to control in reality, it is supposed that they are affected by epistemic uncertainty and modeled
using prior distributions detailed in Table 8.2.

8.5.1 Simulation settings

For the numerical experiments, simulation settings have been defined as follows. Firstly,
the threshold safety distance dsafe is set to 20 km so as to reach a reference probability without
parameter uncertainty pf,ref equal to 2.31× 10−7 (estimated by CMC with 108 samples and con-
firmed by SS with 103 samples/step). Then, for both NRA and ARA (see Chapter 5), three rare
event probability estimation techniques are investigated:

• CMC as a reference technique;
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• FORM as it is widely used in daily industrial practice and to be consistent with the results
presented in Chapter 5. As a remark, even if, in this case, one already knows from the
analysis conducted in Section 8.4 that the LSS is highly nonlinear in the u-space and that
FORM is not adapted to this problem, conducted FORM analysis still provides a worst-
case estimation comparison which can still be relevant during the reliability analysis phase;

• SS as it is a widely used advanced sampling technique which will be considered as suffi-
ciently representative of the most advanced variance reduction techniques.

TABLE 8.2: Input probabilistic model under bi-level input uncertainty.

Variable a Distribution Mean S.d.

X1 = ∆h (m) Normal µX1 = 0 σX1 = 1650
X2 = ∆v (m.s−1) Normal µX2 uncertain b σX2 = 3.7
X3 = ∆γ (rad) Normal µX3 uncertain σX3 = 0.001
X4 = ∆ψ (rad) Normal µX4 = 0 σX4 = 0.0018
X5 = ∆m (kg) Normal µX5 = 0 σX5 = 70
X6 = ∆Cd (1) Normal µX6 = 0 σX6 = 0.1
Θ2 = µX2 (m.s−1) Normal ξ1 = µµX2

= 0 ξ2 = σµX2
= 3.7

Θ3 = µX3 (rad) Normal ξ3 = µµX3
= 0 ξ4 = σµX3

= 0.001

a The basic variables are independent.
b For fixed values µX2 = 0 and µX3 = 0, one has:

. for dsafe = 15 km, pf,ref = 1.36× 10−4;

. for dsafe = 20 km, pf,ref = 2.31× 10−7.

8.5.2 Results and discussion

Numerical results gathered in Table 8.3 show that both NRA/CMC and ARA/CMC give
similar results and manage to correctly estimate the predictive failure probability (whose refer-
ence value is given below Table 8.3). NRA/SS and ARA/SS provide close results even if one can
notice a significant value of the efficiency (ν > 20) for ARA/SS which indicates how promising
is the use of ARA/SS with such an industrial test-case. As for NRA/FORM and ARA/FORM,
they both give poor results. ARA/FORM manages to give, at least, an order of magnitude of
the predictive failure probability quite close to the reference one. A possible explanation for this
could be that, adding a second uncertainty level on µX2 and µX2 , one made one of the MPFPs be
more dominant than the other one.

As explained in Chapter 5 (see Subsection 5.3.1), the launcher fallout case is a complex com-
puter model for which adding an extra sampling loop could be cumbersome. Here, two uncer-
tain distribution parameters are considered, which means that the integration domain is R2. The
quadrature type is chosen to be a Gauss-Hermite quadrature scheme, which means that one uses
Gaussian weights (see, e.g., Heiss and Winschel, 2007; Heiss and Winschel, 2008). Depending
on the problem dimensionality, one can choose an accuracy level Macc which allows to integrate
complete polynomials of total order 2Macc − 1 exactly. Here, an accuracy level Macc = 14 is
chosen so as to provide enough samples (here, it corresponds exactly to 1009 samples) to cover
the domain DΘ. Such a choice is constrained by the expensive aspect of the computer code.
However, for different applications, one could choose another accuracy level. Finally, coupling
this DOE with a SS technique with 104 samples/step allows to estimate the reference predictive

failure probability ̂̃Pf,ref. A last remark concerns the fact that taking only two parameters out
of six basic variables as being uncertain implies to increase the failure probability of three loga-
rithmic decades in terms of magnitude compared to the single-level reference estimate. Again,
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that emphasizes how crucial taking distribution parameters uncertainty is during the reliability
analysis phase.

TABLE 8.3: Results for Step #1.

Approach Estimates a

m̂̃Pf
S2
̂̃Pf

RE RB ν

NRA/CMC b 1.18× 10−4 8.82× 10−11 7.97× 10−2 − −
ARA/CMC 1.27× 10−4 1.05× 10−10 8.07× 10−2 − −
NRA/FORM 9.16× 10−3 1.11× 10−4 1.15 75.32 −
ARA/FORM 8.28× 10−5 − − −0.35 −
NRA/SS c 1.13× 10−4 4.98× 10−9 0.63 −6.09× 10−2 5.65× 10−2

ARA/SS 1.25× 10−4 1.52× 10−9 0.31 −1.57× 10−2 20.6

a Ref. (Gauss-Hermite with Nθ = 1009 samples + SS with Nx = 104 samples/step):
̂̃Pf,ref = 1.20× 10−4.

b NRA: Nθ = 103 samples, Nx = 103 samples | ARA: Nx,θ = 106 samples.
c NRA: Nθ = 103 samples, Nx = 103 samples/step | ARA: Nx,θ = 103 samples/step.

8.6 Step #2: local ROSA under distribution parameter uncertainty

In this second step, the same input probabilistic model as set in Table 8.2 is considered. In
this section, the idea is to investigate the local robustness of the predictive failure probability
estimate w.r.t. the choice of the hyper-parameters ξ.

8.6.1 Simulation settings

For the numerical experiments, simulation settings have been defined as follows. Firstly,
concerning the LSF, two cases are treated to investigate the influence of the rareness of the failure
event:

• in the first place, the safety threshold distance is set to dsafe = 15 km;

• then, it is set to dsafe = 20 km (denoted by the signF).

Secondly, using the ARA framework solely (see Chapter 5), three rare event probability estima-
tion techniques are investigated in this part:

• ARA/CMC as the reference technique;

• ARA/AIS-CE, i.e., a parametric adaptive IS technique based on cross-entropy optimiza-
tion;

• ARA/NAIS, i.e., a nonparametric adaptive IS technique based on kernel density estima-
tion.

Note that, in the following, the term “ARA/AIS” (see, e.g., for the efficiency νARA/AIS) sym-
bolizes a generic denomination for both adaptive IS sampling techniques, ARA/AIS-CE and
ARA/NAIS.

8.6.2 Results and discussion

Numerical results gathered in Table 8.4 show that both techniques manage to correctly es-
timate the predictive failure probability. As a first remark, this predictive failure probability
is slightly greater than the failure probability under single-level uncertainty whose reference
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value pf,ref recalled below Table 8.2. This emphasizes how taking uncertainty on the distribu-
tion parameters into account can be relevant regarding system safety. Then, one can highlight
the fact that ARA/NAIS gets closer results to reference ones (obtained by ARA/CMC) than
ARA/AIS-CE. The problem here is inherent to the cross-entropy method as it shows some diffi-
culty to converge with a correct accuracy when the problem involves multiple failure regions. In
terms of comparison, the predictive failure probability seems to be more sensitivive to the hyper-
parameters ξ4 and ξ3 which are respectively the standard deviation and the mean of Θ3 = µX3 .
Here, the lack of knowledge affecting the mean value of the flight path angle perturbation really
plays a key role on the final predictive failure probability. This can be a relevant information for
refining the a priori probabilistic model for Θ3 (especially in terms of variance reduction) and
set up an investigation policy about the possible reduction of epistemic (statistical) uncertainty
affecting Θ3. Concerning the efficiencies, while ARA/AIS-CE is inefficient in this specific case
where AIS-CE is not accurate enough, ARA/NAIS manages to provide a precise estimation for
both the probability and the sensitivities. The convergence plot in Figure 8.4a illustrates these

results. Note that, due to the small values for the sensitivities, the two curves for ∂P̃f

∧

/∂ξ1 and

∂P̃f

∧

/∂ξ2 are superimposed so that one cannot differentiate them.
In the rare event context (F, as given in Table 8.5, one can still see that ARA/NAIS provides

better results than ARA/AIS-CE, even if this one still manages to get relevant orders of mag-
nitude for both the probability and the sensitivities. However, the efficiency of ARA/AIS-CE
is annealed by the poor accuracy of the estimation while ARA/NAIS outperforms ARA/CMC
by allowing to reduce the simulation budget by 207. Similar comparisons can be drawn to the
previous case regarding the relative influence of the hyper-parameters. However, one can still
notice that increasing the rareness of the failure event decreased, in proportion, the relative in-
fluence of ξ4. Finally, the global convergence of ARA/NAIS sensitivity estimation is represented
in Figure 8.4b. Again, note that, due to the small values for the sensitivities, the two curves for

∂P̃f

∧

/∂ξ1 and ∂P̃f

∧

/∂ξ2 are superimposed so that one cannot differentiate them.

TABLE 8.4: Results for Step #2.

ARA/CMC ARA/AIS-CE ARA/NAIS

(Nx,θ = 106 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv Estimate cv

P̃
∧

f 4.40× 10−3 (1.38 %) 4.41× 10−3 (10.3 %) 4.40× 10−3 (2.08 %)

∂P̃f

∧

/∂ξ1 −9.13× 10−4 (3.44 %) −8.68× 10−4 (27.7 %) −9.12× 10−4 (5.90 %)

∂P̃f

∧

/∂ξ2 2.95× 10−3 (2.32 %) 3.02× 10−3 (14.8 %) 2.95× 10−3 (3.22 %)

∂P̃f

∧

/∂ξ3 −2.31 (3.88 %) −2.29 (25.7 %) −2.30 (5.82 %)

∂P̃f

∧

/∂ξ4 6.43 (2.18 %) 6.26 (14.6 %) 6.41 (3.77 %)

νARA/AIS − − 0.5 − 13 −
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TABLE 8.5: Results for Step #2 considering the influence of the failure event rareness.

ARA/AIS-CE (F) ARA/NAIS (F)

(Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv

P̃
∧

f 1.00× 10−4 (29.7 %) 1.19× 10−4 (2.85 %)

∂P̃f

∧

/∂ξ1 −4.65× 10−5 (46.9 %) −3.66× 10−5 (7.00 %)

∂P̃f

∧

/∂ξ2 1.21× 10−4 (40.3 %) 1.41× 10−4 (3.62 %)

∂P̃f

∧

/∂ξ3 −1.19× 10−1 (34.4 %) −9.18× 10−2 (7.67 %)

∂P̃f

∧

/∂ξ4 2.51× 10−1 (25.2 %) 3.10× 10−1 (4.24 %)

νARA/AIS 2 − 207 −

8.7 Step #3: global ROSA under distribution parameter uncertainty

In this third step, the idea is to investigate the global impact of the bi-level input uncertainty
of the system at failure. To do so, one focuses on the Sobol indices on the indicator function
(denoted by “S1F -indices”) adapted to the bi-level input uncertainty, as presented in Chapter 7.

8.7.1 Simulation settings

Due to the presence of a bi-level input uncertainty and following the methodology proposed
in Subsection 7.3.2, it is proposed to consider the following disaggregated inputs:

X2 = MX2 + σX2 UX2 (8.2)
X3 = MX3 + σX3 UX3 (8.3)

where MX2 and MX3 follow the same prior distributions as previously presented in Table 8.2, UX2

and UX3 are two standard Gaussian variables, and σX2 and σX3 are the two standard deviations
defined in Table 8.2. Finally, one considers the following augmented input vector:

Z = (Vdis, Xsingle)
> = (X1, MX2 , UX2 , MX3 , UX3 , X4, X5, X6)

> (8.4)

For the numerical experiments, simulation settings have been defined as follows. Firstly,
concerning the LSF, two cases are treated to investigate the influence of the rareness of the failure
event:

• in the first place, the safety threshold distance is set to dsafe = 11 km (associated to a
reference failure probability under single-level input uncertainty such that pf,ref = 6.10×
10−3). This case is used to obtain reference results (using CMC) in order to have a better
insight of what is at stake in terms of sensitivity indices.

• then, the safety threshold distance is set to dsafe = 15 km. In such a case, only refer-
ence results in bi-level are provided and compared to those obtained from the proposed
methodology.

Finally, concerning the proposed methodology, mean estimates of the sensitivity indices are
provided together with a “success rate” which indicates, in percentage of the total number of
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(b) Estimated sensitivities (error bars) in a context of rare event (F).

FIGURE 8.4: Convergence plots obtained by ARA/NAIS for Step #2.

repetitions, the number of experiments that have provided positive values of indices. If the
index value is negative, the numerical experiment is considered as “failed” and the estimated
value is removed.

8.7.2 Results and discussion

Figure 8.5a and Figure 8.5b provide the reference results for the estimation of both first-order
and total S1F -indices under single-level uncertainty. Based on these plots, one can notice first,
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that X2 presents the largest first order index, and second, that the total indices indicate a partition
into two groups of inputs: (X2, X3, X6) show the strongest indices (above 0.50) while (X1, X4, X5)
have rather moderate values (around 0.15). Moreover, one can see that first-order indices are, for
most of them, very low while total order indices are much stronger. This clearly indicates that
variables interact a lot at failure but do not contribute that much on their own to the variability
of the indicator function. Such a remark has been already pointed out in the work of Lemaître
(2014).

Under bi-level uncertainty, Figure 8.6a shows that, for X2, UX2 is more influential than MX2 ,
while for X3, it is MX3 which is more influential than UX3 . This clearly highlights that, due to
the disaggregated version of the augmented vector, one can analyze both effects from aleatory
and epistemic uncertainties. Again, the first order indices are low which indicates a poor contri-
bution of each variable to the overall variability of the indicator. As for total indices displayed
in Figure 8.6b, one can observe the same ranking as for first-order indices. However, one can
see the epistemic uncertainties affecting the mean value of X2 and X3 play a major role on the
variability of the indicator function and have thus to be taken into account.
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FIGURE 8.5: S1F -indices estimated under single-level uncertainty (CMC of Nsim = 105 samples and
Nrep = 10 repetitions, with pf,ref = 6.10× 10−3).

When considering the case where dsafe is set to 15 km, numerical results obtained by the
proposed methodology are given in Table 8.6. These results have been obtained for the following
settings:

• nset = 35 elite sets obtained after 35 repetitions of the SS algorithm;

• each elite set contains Nfail = 2× 103 failure samples resampled at the end of each appli-
cation of SS;

• in addition to that, one generates Ngen = 1 × 105 samples on which one evaluates the
densities and compute the variance of the ratio;

• the reference CMC is obtained by Nrep = 10 repetitions of Nsim = 105 samples;

• the “success rate” is obtained by counting the number of negative-valued indices removed
from the statistics.

Concerning the first-order indices, one can see that, most of them are correctly estimated (despite
the fact they have small values). The strongest first-order indices (i.e., those associated to MX2
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FIGURE 8.6: S1F -indices estimated under bi-level uncertainty (ARA/CMC of Nsim = 105 samples and
Nrep = 10 repetitions, with P̃f,ref = 3.98× 10−2).

and UX2) are rather well estimated. As for the total order indices, the results show that the indice
associated to X1 can be correctly estimated but with a very low success rate. As for X6, its total
index is well estimated but with a moderate success rate. The group (MX2 , UX2 , MX3 , UX3) are
estimated in terms of order of magnitude but not accurately. Finally, the indices associated to
(X4, X5) are completely over-estimated.

TABLE 8.6: Results for Step #3.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

X1 2.3× 10−3 1.1× 10−4 (100 %) 0.155 0.135 (3 %)
MX2 0.014 0.022 (100 %) 0.776 0.598 (66 %)
UX2 0.028 0.038 (100 %) 0.792 0.511 (77 %)
MX3 9.3× 10−3 0.012 (100 %) 0.697 0.523 (60 %)
UX3 4.7× 10−3 5.6× 10−3 (100 %) 0.620 0.540 (60 %)
X4 0 5.3× 10−4 (100 %) 0.137 0.608 (63 %)
X5 0 1.2× 10−4 (100 %) 0.132 0.407 (49 %)
X6 2.3× 10−3 2.0× 10−3 (100 %) 0.524 0.518 (51 %)

8.8 Conclusion

In this chapter, the methodologies proposed in the three previous chapters have been applied
to a launcher stage fallout test-case issued from aerospace research. Despite the fact this model
is a simplified version, the underlying difficulties of the model are still representative of the
difficulties encountered in reliability assessment of such complex systems.

In a first part, the presentation and its key characteristic have been presented or identifies
from a preliminary analysis of its LSF. Then, in a second part, the three main methodologies
developed in this manuscript have been applied to the case. As a result, one can set up the
following synthesis:
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• About Step #1: ARA/SS demonstrated a good efficiency compared to NRA/CMC and
ARA/CMC for the estimation of a rare predictive faillure probability;

• About Step #2: ARA/NAIS demonstrated a very high efficiency compared to ARA/CMC
in terms of probability estimation. Moreover, local sensitivities w.r.t. distribution hyper-
parameters can be obtained by simple post-processing (in the case of unbounded prior
distributions) which makes the approach tractable and efficient for both complex computer
models and rare event probability estimation;

• About Step #3: the proposed methodology demonstrated, on the one hand, promising
results in terms of cost reduction compared to a single-loop CMC to get the S1F -indices,
but on the other hand, still lack of robustness regarding the accuracy of the estimates.

Consequently, the three steps are partially validated regarding such a complex aerospace
test-case. This motivates further improvements and perspectives for the proposed methodolo-
gies, especially regarding the last step. These perspectives are gathered in the following conclud-
ing chapter. Nonetheless, this step is also the most challenging one as it involves well-known
issues related to KDE and high-dimension as stated in Chapter 7.





CHAPTER9
Conclusion and perspectives

Summary of the main contributions

The underlying theme of this thesis was to develop numerical strategies to handle the bi-
level input uncertainty (i.e., the aleatory uncertainty characterizing the basic variables and the
epistemic uncertainty on their probabilistic modeling) all along the UQ methodology process,
i.e., starting from the uncertainty modeling step to the inverse analysis one as presented in Fig-
ure 1.1.

As a first step, it has been proposed to adopt a Bayesian viewpoint such that the distribution
parameters affected by epistemic uncertainty follow some prior distributions. A hierarchical
prior structure is thus considered in input. Then, it has been decided to focus on the predictive
failure probability. Such a QoI appears to be relevant for reliability purposes as it incorporates
both levels of uncertainty.

Nested vs. augmented reliability approaches

The first technical contribution of this work has consisted in investigating the coupling be-
tween several rare event probability estimation techniques and two distinct approaches to es-
timate the predictive failure probability: the nested reliability approach (NRA) and the aug-
mented reliability approach (ARA). The NRA relies on a double-loop estimation scheme while
the ARA relies on a single-loop one. A numerical comparison between these two approaches
has been conducted on several test-cases of increasing complexity. When coupled with ad-
vanced rare event sampling techniques (e.g., adaptive importance sampling techniques, subset
sampling), ARA outperforms NRA in terms of numerical efficiency, especially for rare failure
probabilities. Finally, this contribution is linked to the following publications:

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2017). “Evaluation of
failure probability under parameter epistemic uncertainty: application to aerospace sys-
tem reliability assessment”. In: Aerospace Science and Technology 69, pp. 526–537.

. Chabridon V., N. Gayton, J.-M. Bourinet, M. Balesdent and J. Morio (2017). “Some Bayesian
insights for statistical tolerance analysis”. In: Actes du 23ème Congrès Français de Mécanique
(CFM 2017), Lille, France.

Local reliability-oriented sensitivity estimators under bi-level uncertainty

The second technical contribution of this work focused on proposing local reliability-oriented
sensitivity estimators within the augmented framework. These estimators are based on the
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first-order partial derivative of the predictive failure probability w.r.t. deterministic distribu-
tion hyper-parameters. The underlying idea has been to take advantage of the use of the prior
distribution score functions. Finally, two cases have been treated: firstly, when all the uncertain
distribution parameters follow some unbounded prior probability distributions and secondly,
when at least one distribution parameter follows a bounded prior. Then, an efficient adaptive
importance sampling scheme has been proposed to estimate these sensitivities along with the
predictive failure probability at a reduced simulation cost. A numerical comparison between the
proposed methodology and a reference CMC approach has been conducted on several test-cases
of increasing complexity. Finally, this contribution is linked to the following publications:

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2018). “Reliability-
based sensitivity estimators of rare event probability in the presence of distribution pa-
rameter uncertainty”. In: Reliability Engineering and System Safety 178, pp. 164–178.

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2017). “Reliability-
based sensitivity analysis of aerospace systems under distribution parameter uncertainty
using an augmented approach”. In: Proc. of the 12th International Conference on Structural
Safety & Reliability (ICOSSAR 2017), Vienna, Austria.

Global reliability-oriented sensitivity estimators under bi-level uncertainty

The third technical contribution of this work aimed at adapting global reliability-oriented
sensitivity estimators (i.e., the Sobol indices on the indicator function) within the augmented
framework. The underlying idea was to allow a quantitative analysis of the impact of both
types of uncertainties (i.e., aleatory and epistemic) on the indicator function of the failure do-
main. To do so, the augmented vector has been modified to a disaggregated version allowing to
separate both aleatory and epistemic uncertainties. Then, a coupling between recently proposed
tools (i.e., Bayesian sensitivity estimators and a data-driven tensorized kernel density estima-
tion) has been proposed so as to be able to estimate these indices at a lower cost compared to
CMC. The main advantage is that the indices can be obtained just by post-processing an elite set
of failure points in the augmented space, obtained in the final step of any advanced sampling
technique (e.g., adaptive importance sampling techniques, subset sampling). Finally, the pos-
sible publication of these results in a scientific book chapter is considered and currently under
writing process.

Application to a realistic aerospace computer model

The fourth contribution of this work is focused on applications. All the previous technical
contributions have been applied to a representative aerospace test-case issued from a launch
vehicle trajectory simulation model. This case is based on the dynamical modeling of the bal-
istic fallout phase of the first stage of an expendable space launcher. A complete uncertainty-
oriented study of this test case has been conducted. Moreover, both advantages and limits of
the proposed methodologies have been investigated. The intrinsic difficulties (rareness of the
failure event together with multimodality of the optimal density at failure, strong influence of
some key variables) appearing in this test-case have been highlighted and led to consider several
open issues and perspectives. Finally, this contribution is linked to the following publications:

. Derennes P., V. Chabridon, J. Morio, M. Balesdent, F. Simatos, J.-M. Bourinet and N. Gay-
ton (2018). “Nonparametric importance sampling techniques for sensitivity analysis and
reliability assessment of a launcher stage fallout”. In: Optimization in Space Engineering.
Ed. by G. Fasano and J. Pintér. Springer International Publishing. (To Appear).



Chapter 9. Conclusion and perspectives 153

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2018). “Nonpara-
metric adaptive importance sampling strategy for reliability assessment and sensitivity
analysis under distribution parameter uncertainty – Application to launch vehicle fallback
zone estimation”. In: Actes des 10èmes Journées Fiabilité des Matériaux et des Structures (JFMS
2018), Bordeaux, France.

Perspectives

A few possible extensions about the thesis’ contributions

About the Bayesian framework. A first research track could consist in studying the impact on
data gathering process in the proposed methodologies. Due to the Bayesian framework, reliabil-
ity updating could be possible, especially using existing methologies (see, e.g., Papadimitriou et
al., 2001; Straub, 2011; Straub and Papaioannou, 2015; Straub et al., 2016). Moreover, recent tools
developed in the context of Bayesian calibration could be used too (see, e.g., Nagel and Sudret,
2016). Another track could be to go beyond the parametric assumption for the basic variables
and to study the impact of the distribution type through the use of Bayesian model averaging
(BMA) (see, e.g., Sankararaman and Mahadevan, 2013a).

About the predictive failure probability and risk analysis. From the Bayesian decision the-
ory, the predictive failure probability is not suited for risk analysis as this measure is not con-
servative enough (Pasanisi et al., 2012). However, reconstructing the entire distribution of the
conditional failure probability might be cumbersome using naive NRA. A first research track
could be to use a surrogate model of the black-box model so as to reduce the computational
burden of nested calls to the computer model and to efficiently get the distribution of the condi-
tional failure probability. A second track could be to use the reverse importance sampling trick
as used in Beckman and McKay (1987), Hesterberg (1996), and Morio (2011b) so as to reconstruct
the distribution of the conditional failure probability w.r.t. the uncertain distribution parameters.
A third track could be to replace the predictive measure so as to consider a more conservative
measure, e.g., a penalized reliability measure.

A few methodological perspectives

Exploring the possibilities offered by new sensitivity indices. One resulting research track at
the end of this thesis concerns the dependence of the inputs at failure. Such a key feature could
be specifically handled by SAMO indices which could be adapted to the ROSA context and, if
possible, to the bi-level input uncertainty. For instance, one can cite the sensitivity indices based
on dependence measures (see Chapter 4). As already proposed in Da Veiga (2015) and then ex-
tended by Raguet and Marrel (2018), these indices seem to be more informative than traditional
variance-based indices. Recently, the adaptation of these indices (in their SAMO version) to the
bi-level input uncertainty has been proposed in Meynaoui et al. (2018). Other indices such as
the GOSA indices (see Chapter 4) seem to not have been investigated regarding the bi-level input
uncertainty. Finally, recently proposed indices in literature, such as Sobol indices with constraints
by Kucherenko et al. (2017) or support indices by Fruth et al. (2018) might present interesting
features which could be investigated w.r.t. the ROSA context.

Exploring the possibilities offered by surrogate modeling. Surrogate modeling is definitely
a powerful tool for efficient reliability assessment and sensitivity analysis of computer models.
However, the counterpart remains the difficulty to catch and measure the impact of the modeling
errors induced by the surrogate model itself. In the context of bi-level input uncertainty, one
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needs to ensure that such an extra type of uncertainty will not exceed the probabilistic model
uncertainty.

Exploring the possibilities offered by kernel density estimation. The topic of kernel density
estimation for high-dimensional problems is still an open issue. In the ROSA context, it has been
demonstrated that the optimal density was likely to be concentrated on an unknown subset of
Rd. Thus, new methodologies tackling this problem of probability concentration (see, e.g., Soize
and Ghanem, 2016; Soize and Ghanem, 2017) might be a relevant research track for ROSA. In
that sense, the data-driven tensorized G-KDE proposed by Perrin et al. (2018) seems a promis-
ing tool which can outperform usual KDE in this specific context, and thus should be further
investigated.

Exploring the effects of incomplete information about the dependence structure. Studying
the impact of epistemic uncertainty affecting the dependence structure is a fundamental topic
which has not been widely studied. For instance, one can mention the works by Tang et al.
(2013), Tang et al. (2015), and Benoumechiara et al. (2018). Developing sensitivity indices for
ROSA adapted to this specific issue could be valuable and would allow to get a full insight
about the lack-of-knowledge that could affect the input probabilistic model.

Exploring the links between the Bayesian framework and imprecise probabilities. As a fi-
nal methodological research track, one should stress the need to fill the gap between Bayesian
approaches and imprecise probabilities. As stated in Beer et al. (2014), these frameworks are
complementary and should be both investigated so as to combine advantages from both. As
an example, one can mention the work of Schöbi and Sudret (2017) which fills the gap be-
tween traditional SAMO using Sobol indices and their “imprecise version” when dealing with
probability-boxes.

A few perspectives about the applications

About complex aerospace computer models. Dealing with aerospace computer models may
imply to develop complex computational workflows such as those encountered in multidisci-
plinary design optimization (MDO). As a result, these workflows may combine several sources
and types of uncertainties (see, e.g., Jaeger et al., 2013; Dubreuil et al., 2016). Combining the
several sources of uncertainties while assessing the reliability of multidisciplinary systems has
been investigated in Brevault (2015). Performing SAMO regarding multidisciplinary systems
has been both addressed in Sankararaman (2012) and Jiang et al. (2016). Proposing efficient
ROSA indices in such a context could be a challenging perspective.

About aerospace systems’ safety facing uncertain conditions. Aerospace systems are now
designed and controled so that they can be able to manage uncertain conditions. Research topics
such as time-dependent reliability, online reliability updating, predictive maintenance or prognostics are
active fields of research (see, e.g., Karandikar et al., 2012; Wang et al., 2016; Chiachío et al.,
2017; Robinson et al., 2018). For these topics, contrary to usual static reliability analysis, the
uncertainty management has to be performed online. Both aleatory and epistemic uncertainties
appear in such a state-space dynamic evolution. Thus, these several uncertainty sources have to
be taken into account so as to guarantee the accuracy of the predictions and to ensure the system
safety. Developing methodological tools to handle the bi-level uncertainty and to perform online
sensitivities for time-dependent processes (see, e.g., Alexanderian et al., 2017) in such a context
is a real challenge as the computational constraints are drastic.
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APPENDIXA
Copulas

Basically, copulas correspond to the general and rigorous mathematical tools to model the
stochastic dependence between random variables from a theoretical point of view. The general
definition of a copula is given by the theorem below (Nelsen, 2006).

Theorem 2 (Sklar’s Theorem). Let FX be a d-dimensional joint CDF with given marginal CDF
FXi , for i = 1, . . . , d. Then there exists a d-dimensional copula C such that:

FX(x) = FX(x1, . . . , xd) = C (FX1(x1), . . . , FXd(xd)) . (A.1)

In addition, if the marginal CDFs are continous, then C is unique.

This theorem states that a copula represents the complementary information required to fully
specify a joint distribution of a random vector X regarding the marginal distributions {FXi , i =
1, . . . , d}. A corollary of this Sklar’s Theorem (Nelsen, 2006) is given below.

Corollary 1. Let FX, {FXi , i = 1, . . . , d} and C be as in Theorem 2, and let {F−1
Xi

, i = 1, . . . , d} be
the inverse CDFs of the corresponding marginals. Then, for any u = (u1, . . . , ud)

> ∈ [0, 1]d:

C(u1, . . . , ud) = FX

(
F−1

X1
(u1), . . . , F−1

Xd
(ud)

)
. (A.2)

This corollary states that, from a practical point of view, a copula is a joint CDF on the unit
hypercube [0, 1]d with uniformly distributed marginals on [0, 1]. This provides a method to
practically construct copulas from a known joint probability distribution.
From the previous Sklar’s Theorem, one can make the link between CDFs and PDFs through the
following derivations:

fX(x) =
∂dFX(x1, . . . , xd)

∂x1 . . . ∂xd
=

∂dC(u1, . . . , ud)

∂u1 . . . ∂ud

d

∏
i=1

∂FXi(xi)

∂xi

= c (FX1(x1), . . . , FXd(xd))
d

∏
i=1

fXi(xi) (A.3)

where c(u1, . . . , ud) is the density of copula C. A large variety of copulas is available to model
dependence (e.g., normal, Student, Frank, Clayton, among others). For more information about
it, one can refer to Lebrun (2013). In this thesis, one will just recall two definitions, respectively
those for the independent and normal copulas.
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Definition 2 (Independent copula). The d-dimensional independent copula, for u ∈ [0, 1]d, is
given by (respectively for the CDF and PDF):

Cind(u1, . . . , ud) =
d

∏
i=1

ui (A.4)

cind(u1, . . . , ud) = 1. (A.5)

Definition 3 (Normal copula). Let u ∈ [0, 1]d and Φd(·; R0) be the d-dimensional standard nor-
mal CDF with linear correlation matrix R0. Then, the d-dimensional normal copula (a.k.a. Gaussian
copula) parameterized by R0 is given by (respectively for the CDF and PDF):

CNd(u1, . . . , ud; R0) = Φd

(
Φ−1(u1), . . . , Φ−1(ud); R0

)
(A.6)

cNd(u1, . . . , ud; R0) =
ϕd
(
Φ−1(u1), . . . , Φ−1(ud); R0

)

∏d
i=1 ϕ (Φ−1(ui))

. (A.7)

For the interested reader, one could refer jointly to a reference monograph on this subject
such as the one from Nelsen (2006) and to the general work of Lebrun (2013) about copulas in
structural reliability. Finally, for a practical view of dependence modeling using copulas in the
context of reliability assessment, one should refer to Dutfoy and Lebrun (2009).



APPENDIXB
Constructing input distributions

In the following, let X = {x(1), . . . , x(N)} denote a set of N i.i.d. data points or observations.
The basic idea is to characterize the parent probability distribution fX

1 (a.k.a. the parent law) of the
random variable X based on this set of observations. This characterization can be achieved by
various tools, and depends whether this parent distribution is assumed to belong to a parametric
family or not, i.e., whether one assumes or not that fX ∈ P with P such that:

P =
{

fX(·; θ) | θ ∈ Dθ ⊆ Rk
}

. (B.1)

Section B.1 aims at presenting a few basic parametric statistical methods. Note that, in this
section, it is assumed that data points are realizations of a single random variable. However, one
could extend the review to methods adapted to a set of i.i.d. observations of a random vector
X. However, in engineering practice, a common situation is that only experimental data lead to
assess, successively, a statistical inference about the marginal distributions, and then, if possible,
the dependence structure (most of the time, only linear correlations are inferred).

Concerning the choice of the parametric family P , it can be achieved in practice by using
some goodness-of-fit tests to get an objective measure of the best distribution type that would fit
the given data (Saporta, 2006). Finally, another common approach to find an input distribution
w.r.t. the available information in input is to use the Maximum Entropy Principle (Soize, 2017).

Sometimes, it may happen that no conventional parametric density is suitable for modeling
the distribution of available data points. In order to circumvent this problem, nonparametric
methods are dedicated to this problem. Section B.2 provides a brief review of some basic non-
parametric statistical methods. In this section, the multidimensional case for X is presented since
nonparametric methods may be powerful tool for estimating joint distributions and/or copulas.

For more information about the following methods, the interested reader can refer to Wasser-
man (2004, Chap. 9) for parametric inference and Wasserman (2006) or Tsybakov (2009) for the
nonparametric one.

B.1 A few parametric statistical methods

Method of moments. A first approach assumes that the data gathered in X are realizations of
a random variable X whose unknown probability distribution belongs to a parametric family of
distributions, denoted fX(·; θ) where θ is the vector of unknown distribution parameters. The
idea of the method is to match the first two sample moments (i.e., sample mean µ̂X and sample

1 Note that this sentence is a strong abuse of notation. One should write that the parent law should be PX on R,
assuming that PX is continuous w.r.t. the Lebesgue measure, and whose density is fX .
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variance σ̂2
X ) with the moments of the underlying distribution, denoted by µ(θ) and σ2(θ). The

sample moments thus reads:

µ̂X =
1
N

N

∑
j=1

x(j), σ̂2
X =

1
N − 1

N

∑
j=1

(
x(j) − µ̂X

)2
. (B.2)

Finally, the distribution parameters θ are computed by solving: µ(θ) = µ̂X and σ2(θ) = σ̂2
X .

This method is rather intuitive and provides a smooth CDF curve.

Maximum likelihood method. In the same manner, the maximum likelihood (ML) method
relies on the assumption that the data are drawn from an unknown probability distribution
fX(·; θ) where the vector of distribution parameters θ is unknown. The likelihood function thus
reads:

L(θ|X ) =
N

∏
j=1

fX(x(j); θ) (B.3)

where fX(x(j); θ) is the marginal PDF conditioned by θ. Finally, the principle of maximum likeli-
hood (Rhode, 2014) states that the optimal vector of distribution parameters θ̂ ML is the one that
maximizes L(θ|X ). In practice, the problem can be set in another way, i.e., by looking for θ̂ ML

which minimizes the opposite of the log-likelihood function:

θ̂ ML = arg min
θ∈Dθ

(
−

N

∑
j=1

log fX(x(j); θ)

)
. (B.4)

Asymptotic properties of this estimator can be found, for instance, in Van Der Waart (1998) and
Saporta (2006).

B.2 A few nonparametric statistical methods

Empirical CDF. A first nonparametric method consists in estimating the empirical CDF of the
set of data X . Then, one can estimate an empirical CDF using:

F̂X(x) =
1
N

N

∑
j=1

1{x≥x(j)}(x) (B.5)

where 1{x≥x(j)}(·) is the indicator function which is equal to unity if the subscript event {x ≥ x(j)}
is verified, and zero otherwise. This estimator provides a stair-shaped curve due to the limited
number of samples N. Thus, the empirical CDF F̂X(·) is a rather simple and coarse estimate
of the underlying CDF FX(·). Small-sample and asymptotic properties of this estimator can be
found, for instance, in Wasserman (2006) or Tsybakov (2009).

Histogram. For density estimation, an histogram appear to be one of the most simple density
estimator. It is a widely used statistical tool in daily engineering practice. The histogram estima-
tor is rough and mainly depends on a the number of disjoint categories known as bins. Thus, the
binwidth parameter is not easy to tune and may affect the graphical coherence of the visualized
distribution.

Kernel density estimation. In a more general setting, if one desires to construct an estimate
of the PDF of a random variable, or more generally, of a random vector, with only a set of
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realizations as the prior information, the way for solving such a problem relies on using a non-
parametric density estimate obtained by kernel uni- or multivariate smoothing, a.k.a. kernel density
estimation (KDE) (see, e.g., Silverman, 1986; Wand and Jones, 1995; Scott, 2015).

Let us consider the previous dataset X = {x(1), . . . , x(N)}. X denotes a univariate set of N
i.i.d. observations drawn from an unknown parent density denoted by fX. Then, its kernel density
estimator is given by:

f̂X(x) =
1

Nη

N

∑
j=1

K

(
x− x(j)

η

)
(B.6)

where K(·) is a univariate kernel 2, and η ∈ R+∗ is a smoothing parameter known as the band-
width. Two widely used univariate kernels are the Gaussian and the Epanechnikov ones. They are
defined such that:

K(x) =
1√
2π

exp
[
− x2

2

]
(Gaussian kernel) (B.7)

K(x) =
3
4
(1− x2)1{|x|≤1}(x) (Epanechnikov kernel). (B.8)

If the choice of the kernel K(·) may influence the performance of the estimation in some specific
cases, it remains that the most influent parameter is the bandwidth η. This parameter has to be
tuned so to find an admissible trade-off between global smoothing and capturing the peaks of
the density. It can be optimized following some optimality criteria, such that the mean square
integrated error (MISE):

MISE(η) = E

[∫

R

(
f̂X(x)− fX(x)

)2
dx
]

. (B.9)

Other estimators can be used such that the asymptotic mean square integrated error (AMISE) (Jones
et al., 1996), plug-in estimators (Botev et al., 2010) or finally cross-validation-based estimators
(Jones et al., 1996). For more information about these aspects, the reader should refer to the
books by Wand and Jones (1995) and Scott (2015).

In the multivariate setting, one can assume that a set X = {x(1), . . . , x(N)} of N i.i.d. obser-
vations of a d-dimensional random vector, drawn from an unknown parent density denoted by
fX. Thus, its kernel density estimator is given by:

f̂X(x) =
det(H)−1/2

N

N

∑
j=1

Kd

(
H−1/2(x− x(j))

)
(B.10)

where det(·) is the determinant operator, Kd(·) is a multivariate (d-dimensional) kernel and H is
a (d× d)-dimensional positive definite symmetric matrix, often named the “bandwidth matrix”.
In a similar fashion than in the univariate case, two widely used kernels are the Gaussian one
and the Epanechnikov one, defined such that:

Kd(x) =
1

(2π)d/2 exp
[
−1

2
x>x

]
(Gaussian kernel) (B.11)

Kd(x) =
d + 2
2vd

(1− x>x)1{x>x≤1}(x) (Epanechnikov kernel) (B.12)

where vd is the volume of the unit sphere in Rd, i.e., vd =
∫

Rd 1{x>x≤1}(x)dx. As for the band-
width matrix H, it can be optimized using a similar MISE criterion as the one given in Eq. (B.9),

2 The word “kernel” refers to any non-negative symmetric function that integrates to one.
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which reads:

MISE(H) = E

[∫

Rd

(
f̂X(x)− fX(x)

)2
dx
]

. (B.13)

In common engineering practice (and when d increases), the Gaussian assumption on fX is often
considered. Thus, a widely used approximation for H is derived from the so-called “Silverman’s
rule of thumb” (Silverman, 1986) which assumes that H takes the following form:

H = η2
Silv




σ̂2
1 0 . . . 0

0 σ̂2
2

. . .
...

...
. . . . . . 0

0 . . . 0 σ̂2
d




(B.14)

where σ̂2
i for i = 1, . . . , d is the empirical estimation of the variance of Xi and ηSilv is given by:

ηSilv =

(
1
N

4
(d + 2)

) 1
d+4

. (B.15)



APPENDIXC
Transformations

This appendix aims at recalling basic properties of the most common transformations from
the physical space (a.k.a. the x-space) to the standard normal space (a.k.a. the u-space) used in reli-
ability analysis.

Case of normally distributed and correlated variables. In this case, X ∼ Nd(mX, ΣX) where
mX and ΣX are defined as in Eqs. (2.2) and (2.3). By construction, the covariance matrix reads
ΣX = DRD, where R = [ρij]d×d is the linear correlation matrix and D = diag(σ1, . . . , σd) is
the diagonal matrix of standard deviations. Thus, the transformation (and its inverse) directly
reads:

u = L−1D−1(x−mX) (C.1)
x = DL(u−mX) (C.2)

where L is the lower triangular matrix obtained by the Cholesky decomposition of R = LL>.

The Nataf transformation. This transformation is due to Nataf (1962) and has been popular-
ized in the reliability community by Liu and Der Kiureghian (1986). In this case, X = (X1, . . . , Xd)

>

is described by d marginal distributions (i.e., PDFs fXi or CDFs FXi , for i = 1, . . . , d) and a linear
correlation matrix R = [ρij]d×d (i.e., referred to as the normal copula case in Appendix A). The
transformation is therefore defined as the following composed application:

T = Tzu ◦ Tvz ◦ Txv :
∣∣∣∣
DX −→ [0, 1]d −→ Rd −→ Rd

x 7−→ v = Txv(x) 7−→ z = Tvz(v) 7−→ u = Tzu(z)
(C.3)

where x, v, z and u are d-dimensional vectors of realizations such that, for i = 1, . . . , d, vi =
FXi(xi) and zi = Φ−1(vi). As for the Tzu(·) transformation, supplementary technical calculations
are required. They are not displayed in this manuscript for the sake of conciseness, but the
interested reader should refer to Bourinet (2018). Note that the Nataf transformation presented
here can be generalized to encompass more general dependence structures as shown by Lebrun
and Dutfoy (2009a).

The Rosenblatt transformation. This transformation is due to Rosenblatt (1952) and has been
popularized in the reliability community by Hohenbichler and Rackwitz (1981). In this case, X
is described by its joint distribution (i.e., joint PDF fX or joint CDF FX). The transformation is
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therefore defined as the following composed application:

T = Tvu ◦ Txv :
∣∣∣∣
DX −→ [0, 1]d −→ Rd

x 7−→ v = Txv(x) 7−→ u = Tvu(v)
(C.4)

where x, v and u are d-dimensional vectors of realizations such that, for i = 1, . . . , d, the Tvu(·)
transformation reads ui = Φ−1(vi). As for the Txv(·) transformation, it is given by the following
recursive formula:

v1 = FX1(x1)

v2 = FX2|X1
(x2|x1)

v3 = FX3|X1,X2
(x3|x1, x2) (C.5)

. . .
vd = FXd|X1,...,Xd−1

(xd|x1, . . . , xd−1)

where FXi |X1,...,Xi−1
(·|x1, . . . , xi−1) is the conditional CDF of the variable Xi. Expressions of con-

ditional CDFs can be derived knowing the marginal distributions and the copula (see Bourinet,
2018). However, the definition of the inverse T−1(·) of the Rosenblatt transformation (which
may be of interest in practical numerical implementation) may require substantial efforts. As
a final remark, one can recall that, in the Rosenblatt transformation, as shown in Eq. (C.5), d!
conditioning orders can be chosen, resulting sometimes in differences affecting numerical re-
sults associated to specific quantities (e.g., importance factors may be affected by the order, see
Chapter 3). However, the core reliability measures (i.e., the failure probability or the reliability
index, see Chapter 3) are not impacted by the ordering (Lebrun and Dutfoy, 2009b).



APPENDIXD
Generic algorithms for rare event
probability estimation

This appendix aims at providing generic algorithms of a few rare event estimation tech-
niques described in Chapter 3.

D.1 Crude Monte Carlo (CMC)

The CMC sampling technique can be implemented either in the x-space or in the u-space.
Algorithm 7 provides a generic CMC algorithm for failure probability estimation.

Algorithm 7 – Generic CMC algorithm.

1:
�� ��Input:
. fX, joint PDF of the inputs
. g(·), LSF
. N, total number of samples

2:
�� ��Algorithm:

3: Sample: {X(j)}N
j=1

i.i.d.∼ fX

4: Evaluate: Gx = {g(X(1)), . . . , g(X(N))}
5: Compute: p̂CMC

f = 1
N ∑N

j=1 1Fx(X
(j))

6:
�� ��Output:
. p̂CMC

f , CMC estimate of pf
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D.2 Adaptive importance sampling using cross-entropy (AIS-CE)

The AIS-CE sampling technique can be implemented either in the x-space or in the u-space.
Algorithm 8 provides a generic AIS-CE algorithm for failure probability estimation. Further
details about the tuning of parameters can be found in Morio and Balesdent (2015) and Bourinet
(2018).

Algorithm 8 – Generic AIS-CE algorithm.

1:
�� ��Input:
. fX, joint PDF of the inputs
. g(·), LSF
. hX(·; λ) with λ ∈ Dλ ⊆ Rk, parametric family of auxiliary PDFs
. λ[0] ∈ Dλ, initial values of parameters
. N, number of samples per step
. αCE ∈]0, 1[, empirical quantile order (rarity parameter)

2:
�� ��Algorithm:

3: Set: k = 1
4: Sample: {X(j)

[1]}N
j=1

i.i.d.∼ hX(·; λ[0])

5: Evaluate: Gx,[1] = {g(X(1)
[1] ), . . . , g(X(N)

[1] )}
6: Estimate: the empirical αCE-quantile y[1] of the set Gx,[1]
7: While y[k] > 0 do

8: Evaluate: Ex,[k] = {X(j)
[k] | g(X(j)

[k] ) ≤ y[k]}
9: Optimize the parameters of the auxiliary PDF:

10: λ[k] = arg max
λ∈Dλ

1
N ∑X(j)

[k]∈Ex,[k]

fX(X
(j)
[k] )

hX(X
(j)
[k] ;λ[k−1])

ln(hX(X
(j)
[k] ; λ))

11: Set: k← k + 1
12: Sample: {X(j)

[k]}N
j=1

i.i.d.∼ hX(·; λ[k−1])

13: Evaluate: Gx,[k] = {g(X(1)
[k] ), . . . , g(X(N)

[k] )}
14: Estimate the empirical αCE-quantile y[k] of the set Gx,[k]
15: End While
16: Get the total number of levels k# such that y[k#] ≤ 0
17: Set: y[k#] = 0

18: Estimate: p̂AIS-CE
f = 1

N ∑X(j)∈Ex,[k# ]

fX(X
(j)
[k# ]

)

hX(X
(j)
[k# ]

;λ[k#−1])

19:
�� ��Output:
. p̂AIS-CE

f , AIS-CE estimate of pf
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D.3 Nonparametric adaptive importance sampling (NAIS)

The NAIS sampling technique can be implemented either in the x-space or in the u-space.
Algorithm 9 provides a generic NAIS algorithm for failure probability estimation. Further de-
tails about the tuning of parameters can be found in Morio (2011c) and Morio and Balesdent
(2015).

Algorithm 9 – Generic NAIS algorithm.

1:
�� ��Input:
. fX, joint PDF of the inputs
. g(·), LSF
. Kd(·), d-dimensional kernel
. N, number of samples per step
. αNAIS ∈]0, 1[, empirical quantile order (rarity parameter)

2:
�� ��Algorithm:

3: Set: k = 1 and h[0] = fX

4: Sample: {X(j)
[1]}N

j=1
i.i.d.∼ h[0]

5: Evaluate: Gx,[1] = {g(X(1)
[1] ), . . . , g(X(N)

[1] )}
6: Estimate: the empirical αNAIS-quantile y[1] of the set Gx,[1]
7: While y[k] > 0 do

8: Estimate: Î[k] = 1
k N ∑[k]

[i]=1 ∑N
j=1 w[i](X

(j)
[i] )

9: with: w[i](X
(j)
[i] ) = 1{g(X(j)

[i] )≤y[k]}
(X(j)

[i] )
fX(X

(j)
[i] )

ĥ[i−1](X
(j)
[i] )

10: Update the KDE-based PDF:

11: ĥ[k+1](x) =
det(H[k])

−1/2

k N Î[k]
∑[k]

[i]=1 ∑N
j=1 w[i](X

(j)
[i] ) Kd

(
H−1/2

[k] (x− X(j)
[i] )
)

12: Set: k← k + 1
13: Sample: {X(j)

[k]}N
j=1

i.i.d.∼ ĥ[k]
14: Evaluate: Gx,[k] = {g(X(1)

[k] ), . . . , g(X(N)
[k] )}

15: Estimate the empirical αNAIS-quantile y[k] of the set Gx,[k]
16: End While
17: Get the total number of levels k# such that y[k#] ≤ 0
18: Set: y[k#] = 0

19: Estimate: p̂NAIS
f = 1

N ∑N
j=1 1{g(X(j)

[k# ]
)≤y[k# ]

}(X
(j)
[k#]

)
fX(X

(j)
[k# ]

)

ĥ[k# ]
(X(j)

[k# ]
)

20:
�� ��Output:
. p̂NAIS

f , NAIS estimate of pf



184 Appendix D. Generic algorithms for rare event probability estimation

D.4 Subset sampling (SS)

The SS technique can be implemented either in the u-space (see the version by Au and Beck
(2001)) or in the x-space (see the version by Cérou et al. (2012)). The differences between these
two spaces imply a different tuning of the algorithm parameters and different MCMC sampling
strategies (as explained in Section D.5). However, Algorithm 10 aims at providing a generic
SS algorithm for failure probability estimation. Further details about the tuning of parameters
(e.g., practical estimation of the αSS-quantile) can be found in Dubourg (2011), Morio and Bales-
dent (2015), and Bourinet (2018).

Algorithm 10 – Generic SS algorithm.

1:
�� ��Input:
. fX / ϕd, joint PDF of the inputs (after transformation)
. g(·) / ◦g(·), LSF (after transformation)
. N, number of samples per step
. αSS ∈]0, 1], empirical quantile order (rarity parameter)

2:
�� ��Algorithm:

3: Set: k = 0 and f[0] = ϕd

4: Sample: {U(j)
[0]}N

j=1
i.i.d.∼ f[0]

5: Evaluate: Gu,[0] = {
◦g(U(1)

[0] ), . . . , ◦g(U(N)
[0] )}

6: Estimate: the empirical αSS-quantile y[0] of the set Gu,[0]
7: While y[k] > 0 do
8: Determine the subset Fu,[k+1] = {U[k] ∈ Rd | ◦g(U[k]) ≤ y[k]}
9: and the conditional PDF f[k+1] = ϕd(·|Fu,[k])

10: Sample: {U(j)
[k]}N

j=1
i.i.d.∼ f[k]

11: Evaluate: Gu,[k] = {
◦g(U(1)

[k] ), . . . , ◦g(U(N)
[k] )}

12: Estimate the empirical αSS-quantile y[k] of the set Gu,[k]
13: End While
14: Get the total number of levels k# such that y[k#] ≤ 0
15: Set: y[k#] = 0

16: Estimate: p̂SS
f = (1− αSS)

k × 1
N ∑N

j=1 1{ ◦g(U(j)
[k# ]

)≤y[k# ]
}(U

(j)
[k#]

)

17:
�� ��Output:
. p̂SS

f , SS estimate of pf
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D.5 Markov chain Monte Carlo sampling technique for Subset sam-
pling

The aim of Markov chain Monte Carlo (MCMC) techniques is to enable an approximate sam-
pling of any arbitrary distribution, denoted as the target distribution, which may be not directly
available (e.g., typically ϕd(·|Es) in the context of SS as presented in Section 3.5).

Before detailing the usual MCMC algorithms encountered in the context of SS, one recalls
some basic principles of Markov chain theory. Note that the derivations are achieved in the u-
space, for the sake of coherence with the presentation of SS in Section 3.5.

In the following, only a few basic principles about current MCMC samplers used in SS are
presented. For the interested reader, more comprehensive reviews (containing numerous refer-
ences and much more details about derivations and numerical implementation) about MCMC
for SS can be found, e.g., in Dubourg (2011, App. B), Papaioannou et al. (2015), and Bourinet
(2018, Chap. 1).

A few principles of Markov chain theory. If {Uk, k ∈ N} is a time-homogeneous, discrete-
time, first-order Markov chain, defined in the continuous state-space Rd. Then, one can assure
that this Markov chain follows the Markov property if it verifies:

Definition 4 (Markov property). For any event A ∈ B, with B the Borel σ-field of Rd, one has:

P(Uk+1 ∈ A | ∩k
m=0 {Um = um}) = P(Uk+1 ∈ A | {Uk = uk}). (D.1)

In other words, the previous definition states that the conditional distribution of Uk+1, given
U1, U2, . . . , Uk, only depends on the previous step Uk. Thus, the random process {Uk, k ∈ N} is
called a stationary Markov chain (i.e., it does not depend on time t). Then, the transition PDF τ(v|u)
which defines the transition between two subsequent states Uk and Uk+1 should be stationary
too.

Finally, the joint PDF of a stationary Markov chain is given by a marginal distribution ϕd(u|Es)
and a stationary transition distribution τ(v|u) such that:

ϕd(v|Es) =
∫

u∈Rd
τ(v|u)ϕd(u|Es)du. (D.2)

Eq. (D.2) ensures that if Uk ∼ ϕd(·|Es), then Uk+1 ∼ ϕd(·|Es) and all the subsequent elements
of the chain will be distributed according to ϕd(·|Es). Thus, ϕd(·|Es) is called the invariant
(a.k.a. stationay) joint PDF of the chain. A sufficient condition for Eq. (D.2) to be fulfilled is
the so-called reversibility condition given by:

τ(v|u)ϕd(u|Es) = τ(u|v)ϕd(v|Es). (D.3)

In practice, MCMC aims at producing samples that follow the target distribution by simulat-
ing states of a stationary Markov chain whose marginal distribution is the target one. Further-
more, if one starts from a state that is not distributed according to the target distribution, the
Markov chain will asymptotically converge to the target stationary distribution, provided that
this chain is aperiodic and irreducible. Briefly, one can sum up these two properties by (Papaioan-
nou et al., 2015):

• aperiodicity: τ(v|u) should be chosen such that it assigns a non-zero probability for not
moving from the current state;
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• irreducibility: τ(v|u) should be chosen such that it assigns a non-zero probability for enter-
ing any set in the state-space in a finite number of steps.

As a last characteristic, one can mention the burn-in period which is the transient period required
for the Markov chain to approximately reaches its stationary state.

Specific context of Subset sampling. In the context of the SS algorithm, MCMC sampling is
used to get samples at the step s + 1 from the conditional PDF ϕd(·|Es). To do so, one uses the
samples that fell into the failure domain Fu,s at step s. These specific failure samples form the
following elite set:

Es = {u(j)
s , 1 ≤ j ≤ N | 1Fu,s(u

(j)
s ) = 1} (D.4)

and are called seeds of the Markov chain. They play the role of starting points for the chain and
are distributed according to ϕd(·|Es). Consequently, for these samples, the chains have already
attained their stationary states from the beginning. Thus, no burn-in period is required for them
and all the following states will be distributed according to ϕd(·|Es) (Papaioannou et al., 2015).

Metropolis-Hastings sampler. A first algorithm used for SS (especially in its “multilevel split-
ting” version, defined in the x-space) is the Metropolis-Hastings (MH) sampler as originally pro-
posed by Metropolis et al. (1953) and Hastings (1970).

In this algorithm, the transition PDF is given by:

τ(v|u) = a(u, v)q(v|u) + (1− r(u))δu(v) (D.5)

where q(v|u) is called the proposal PDF, δu(v) is the Dirac mass at u and a(u, v) is given by:

a(u, v) = min
{

1,
ϕd(v|Es)q(u|v)
ϕd(u|Es)q(v|u)

}
(D.6)

and finally, r(u) =
∫

v∈Rd a(u, v)q(v|u)dv. Eq. (D.5) simply states that, to generate a sample of
the new state Uk+1 conditional to the current state Uk = u, one considers a candidate state v
generated by the proposal PDF q(·|u). This candidate is accepted with probability a(u, v), and
thus the chain goes to the state Uk+1 = v, or rejected with probability (1− r(u)) which makes
the chain stay at Uk+1 = u.

Finally, by combining Eq. (3.57) and Eq. (D.6), one can show (see, e.g., Papaioannou et al.,
2015; Bourinet, 2018) that the acceptance probability (a.k.a. move probability) a(u, v) can take the
following form:

a(u, v) = ã(u, v)1Fu,s(v) (D.7)

where ã(u, v) = min
{

1, ϕd(v)q(u|v)
ϕd(u)q(v|u)

}
, which means that, the MH sampler can be implemented in

two distinct steps:

1. Firstly, draw a candidate sample v ∼ q(·|u) with acceptance probability ã(u, v);

2. Secondly, finally decide on the move from u to v by checking if 1Fu,s(v) = 1.

More details about numerical implementation can be found in Papaioannou et al. (2015). As a
final remark, one can mention a few key points about this MH sampler:

• the previous presentation of the MH sampler is achieved in the u-space due to the fact that,
in the reliability context, such an algorithm is easier to tune in this space, mainly due to
its scaling and componentwise independence properties. However, it has been originally
defined within the x-space (see, e.g., Robert and Casella, 2004, Chap. 7);
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• in the u-space, the proposal PDF q(·|u) can be chosen among various PDFs. Usually, one
may often encounter the d-dimensional standard normal PDF centered at the current state
u or a d-dimensional uniform PDF, centered on u with a symmetric side length;

• when the input dimension d gets larger, this algorithm fails to converge due to the strong
correlation appearing between the successive states of the Markov chain (see, e.g., Katafy-
giotis and Zuev, 2008; Zuev and Katafygiotis, 2011), which consequently deteriorates the
acceptance rate as illustrated in Papaioannou et al. (2015).

Modified Metropolis-Hastings algorithm. All the key points mentioned hereabove have led
Au and Beck (2001) to modify their MCMC sampler so as to avoid these pitfalls. To do so,
they proposed a modified Metropolis-Hastings (m-MH) sampler, characterized by a componentwise
two-step strategy for sampling the candidate state. These steps can be summed up as:

1. Firstly, draw a candidate sample v = (v1, . . . , vd)
> ∼ q(·|u) = ∏d

i=1 qi(·|ui) such that,
for each vi ∈ v (i = 1, . . . , d), the componentwise acceptance probability is ãi(ui, vi) =

min
{

1, ϕ(vi)qi(ui |vi)
ϕ(ui)qi(vi |ui)

}
;

2. Secondly, finally decide on the move from u to v by checking if 1Fu,s(v) = 1.

Again, implentation details may be found in Papaioannou et al. (2015) and Bourinet (2018).
Finally, Au and Beck (2001) claim that the choice of the type of proposal distribution should

not drastically influence the performance of the algorithm but the spread should play a role.
Thus, they advocate the use of a uniform PDF centered at ui with a width of 2. However, as
mentioned by Proppe (2008), for some cases, it may happen that the type of the proposal PDF
may also have an influence so that bell-shaped PDFs could lead to a stronger robustness of the
algorithm.

As a conclusion, this brief overview just aims at presenting the basic principles of the two
main MCMC samplers used in SS. However, this section cannot replace a deeper and more
detailed presentation of these notions. The interested reader may find further information in the
references mentioned throughout this section.





APPENDIXE
Résumé étendu de la thèse

Contexte

Les systèmes aérospatiaux sont généralement considérés comme étant des « systèmes com-
plexes », principalement à cause de leur nature multi-disciplinaire (due au grand nombre de
composants hétérogènes qu’ils rassemblent), leur caractère unitaire (i.e., faible nombre d’unités
produites) et les conditions d’opérations extrêmes auxquelles ils peuvent être confrontés durant
leur vie opérationnelle. La combinaison de ces facteurs fait que les systèmes aérospatiaux sont
caractérisés, du point de vue de leur conception, comme des systèmes :

• « critiques » ce qui implique que les conséquences associées à une défaillance peuvent être
désastreuses, tant d’un point vue économique, environnemental qu’humain ;

• « hautement-fiables » ce qui implique que le nombre de défaillances complètes (contraire-
ment à des défaillances partielles, potentiellement mineures) observées de ces systèmes est
(doit être) très faible.

La conception et l’analyse de tels systèmes reposent sur l’utilisation à la fois de moyens
expérimentaux puissants et d’une grande précision mais qui peuvent être très coûteux à met-
tre en œuvre, et l’utilisation de modèles mathématiques et physiques, qui, pour être résolus
et exploités, passent bien souvent par des étapes de modélisation, simulation et/ou résolution
numériques. Ces modèles ont l’avantage de pouvoir se substituer aux essais expérimentaux
trop coûteux qui peuvent devenir inaccessibles sous certaines conditions extrêmes voire jamais
observées (e.g., simulation d’une collision satellite-débris ou collision météorite-Terre). Ce car-
actère exploratoire des modèles numériques a aussi un coût non négligeable dès lors que les
modèles impliquent un grand nombre de variables d’entrée et font appel à des techniques de
résolution coûteuses (e.g., résolution de systèmes d’équations aux dérivées partielles).

Dans un contexte d’analyse de fiabilité des systèmes aérospatiaux, l’enjeu principal con-
cerne la prise en compte des incertitudes, dès le cycle de conception, qui pourraient éventuelle-
ment affecter le comportement ou les performances du système dans ses véritables conditions
d’opération futures et mener à la défaillance redoutée. En effet, les incertitudes proviennent de
multiples sources qui doivent être identifiées, caractérisées et traitées en vue d’assurer la fiabilité
du système étudié. Pour ce faire, une méthodologie générale de quantification des incertitudes est
disponible et adoptée de façon quasi unanime dans de nombreuses branches de l’ingénierie con-
frontées à des problématiques similaires. Cette méthodologie (qui peut se décliner de plusieurs
manières suivant les domaines et le but recherché, voir De Rocquigny (2006a), De Rocquigny
(2006b), Sudret (2007), and Iooss (2009)) se compose généralement de quatre grandes étapes
détaillées ci-dessous (voir Figure 1.1 présentée en Chapitre 1) :
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• Étape A→ Spécification du problème : la première étape consiste à spécifier le périmètre
de l’étude, c’est-à-dire de définir le plus formellement possible le système étudié. Cette
étape implique de définir l’ensemble des variables d’entrée et de sortie. Enfin, on doit, lors
de cette étape, définir le type d’analyse que l’on souhaite mener par la suite (e.g., analyse
d’incertitudes, de fiabilité ou de risque) ce qui implique directement de choisir une quantité
d’intérêt (e.g., la distribution de la sortie du code, une probabilité de défaillance ou un
quantile sur la sortie) ;

• Étape B→Modélisation des incertitudes : la deuxième étape consiste à identifier les dif-
férentes sources d’incertitudes et/ou d’erreurs. Une fois les sources d’incertitudes identi-
fiées, une phase de modélisation/caractérisation des différents types d’incertitudes recen-
sées doit être réalisée. Mathématiquement, la modélisation des incertitudes peut être réal-
isée à l’aide de plusieurs formalismes, dont le cadre probabiliste est peut-être le plus connu
(Apostolakis, 1990; Paté-Cornell, 1996). Toutefois, d’autres formalismes tels que les prob-
abilités imprécises ou des cadres extra-probabilistes (e.g., intervalles) peuvent être envisagés
car mieux adaptés aux spécificités du problème (Beer et al., 2013; Zio and Pedroni, 2013).
Le choix du formalisme dépend généralement du type et de la qualité de l’information
disponible pour modéliser les incertitudes. Enfin, d’un point de vue décisionnel, on con-
sidèrera que l’analyste peut être amené à caractériser les incertitudes identifiées selon leur
nature supposée, à savoir : d’un côté, les incertitudes dites aléatoires considérées comme
irréductibles, et de l’autre les incertitudes dites épistémiques, c’est-à-dire réductibles par
ajout de connaissance ou d’information (e.g., des données) ;

• Étape C → Propagation des incertitudes : la troisième étape consiste à propager les in-
certitudes modélisées en entrée à travers le code numérique. Les quantités de sortie du
code sont, de fait, elles aussi impactées par la propagation des incertitudes et deviennent
elles-mêmes incertaines. Les méthodes numériques utilisées pour la propagation des in-
certitudes peuvent varier en fonction de l’objectif affiché en entrée (e.g., caractérisation
globale de la distribution de sortie vs. estimation d’une probabilité d’événement rare asso-
ciée à une queue de distribution) ;

• Étape D→ Analyse inverse : la quatrième étape intègre généralement deux types d’ana-
lyses. La première composante de cette étape, qui n’entre pas dans le cadre de l’étude
présentée dans ce manuscrit, concerne le calage de code de calcul (Damblin, 2015). La
deuxième composante concerne l’analyse de sensibilité qui vise à étudier comment la vari-
abilité de certaines quantités en sortie de code peut être attribuée aux incertitudes en entrée
(Saltelli et al., 2004).

Hypothèses générales de travail et formulation du problème

Cette thèse traite, de façon générale, du problème de l’analyse de fiabilité (Étape C) et de
l’analyse de sensibilité (Étape D) de codes numériques simulant les performances de systèmes
aérospatiaux considérés comme complexes, critiques et hautement-fiables. Dès lors, de multi-
ples difficultés sont à prendre en compte et amènent à considérer certaines hypothèses de tra-
vail :

• le modèle numérique a été préalablement vérifié, validé et calibré, ce qui implique que,
le modèle obtenu est, a priori, la meilleure représentation numérique disponible du com-
portement du système étudié ;
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• le modèle numérique (code de simulation) est considéré comme une « boîte-noire », c’est-
à-dire que l’ensemble des étapes énoncées précédemment sont considérées comme non-
intrusives vis-à-vis du code numérique de simulation. Dès lors, ce code pourrait être pos-
siblement coûteux à évaluer, non-linéaire et en assez grande dimension. Toutefois, dans
cette thèse, les cas étudiés sont à la fois représentatifs de certaines des difficultés rencon-
trées dans les codes industriels (codes non-linéaires, zones de défaillances multiples, prob-
abilités rares) tout en restant abordables du point de vue du coût de calcul (e.g., plusieurs
milliers d’appels au code sont envisageables et la dimension du vecteur d’entrée est de
l’ordre de la dizaine) ;

• l’analyse de fiabilité consiste à estimer une probabilité de défaillance. Dans le contexte de
systèmes hautement-fiables, cette probabilité est supposée associée à un événement rare et
est donc supposée très faible. Dès lors, elle devient très coûteuse à estimer par simulations
de Monte-Carlo.

• la modélisation des incertitudes en entrée est réalisée dans un cadre probabiliste. Ainsi, les
variables de base et leur structure de dépendance sont considérées à travers l’utilisation
de variables aléatoires et d’une copule formant un vecteur aléatoire de loi jointe supposée
connue, à l’exception de certains paramètres de distribution de certaines lois marginales
qui sont peu connus (e.g., à cause d’un manque de données) ou dont la connaissance est
uniquement liée à un choix d’expert. Dès lors, l’ensemble de la démarche de quantification
des incertitudes est conditionnelle à la connaissance de ces paramètres de distribution.

Dans ce contexte, et compte tenu des hypothèses générales énoncées ci-dessus, cette thèse
traite du problème de l’analyse de fiabilité et de l’analyse de sensibilité de modèles numériques
boîtes-noires simulant des systèmes caractérisés par des défaillances de type événements rares.
Les entrées sont des variables incertaines modélisées dans un cadre probabiliste et certains
paramètres de distribution sont supposés méconnus ou incertains. Dès lors, le problème prin-
cipal de la thèse concerne la prise en compte d’un double niveau d’incertitudes lors des deux
analyses mentionnées précédemment. Ce double niveau est formé par :

• les incertitudes phénoménologiques, caractérisant la variabilité naturelle de certaines entrées,
modélisées à l’aide de variables aléatoires ;

• les incertitudes portant sur le modèle probabiliste lui-même, qui caractérisent le manque de
connaissance que l’analyste peut avoir dans le choix de certains paramètres de distribution.

Ce problème est d’un intérêt majeur dans le domaine de la quantification des incertitudes dans
les codes numériques. Si de nombreux travaux pionniers, tels ceux de Ditlevsen (Ditlevsen,
1979a; Ditlevsen, 1979b) ou de Der Kiureghian (Der Kiureghian and Liu, 1986; Der Kiureghian,
1988), ont déjà soulevé l’importance cruciale de tenir compte de ce double niveau d’incertitudes
dans l’analyse de fiabilité, il apparaît que ce problème est toujours d’actualité, et ce pour plusieurs
raisons. Tout d’abord, de nouveaux algorithmes d’estimation de probabilités d’événements
rares ont été développés au cours des dernières décennies (e.g., les techniques de type “adap-
tive importance sampling” ou celles de “subset sampling”). De plus, la complexité des codes
de calculs s’est accrue (e.g., chaînage de codes et approches multi-disciplinaires) parallèlement
à l’émergence des techniques de métamodélisation. Enfin, de nombreux cadres mathématiques
complémentaires du cadre probabiliste ont vu le jour (e.g., techniques bayésiennes, probabilités
imprécises) afin de tenir compte de multiples sources d’incertitudes et de pouvoir proposer un
traitement numérique adapté (see, e.g., Nagel, 2017; Schöbi, 2017).

Dans cette thèse, le focus est mis sur la prise en compte du double niveau d’incertitudes à
travers l’ensemble de la méthodologie de quantification des incertitudes (i.e., les étapes A-B-C-
D mentionnées plus haut), dans un contexte d’estimation de probabilité d’événement rare pour
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des systèmes aérospatiaux complexes. Par conséquent, la problématique centrale de la thèse
peut être résumée comme suit :

Comment tenir compte de ce double niveau d’incertitudes à travers l’ensemble des étapes
de quantification des incertitudes ?

On peut décomposer ce problème en trois questions qui relèvent elles-mêmes des étapes men-
tionnées précédemment :

Q1 – Comment modéliser le deuxième niveau d’incertitudes sur les paramètres de distribu-
tion ? (↪→ Étape B)

Q2 – Comment ce deuxième niveau impacte-t-il la mesure de fiabilité ? (↪→ Étape C)

Q3 – Comment relier la variabilité de la mesure de fiabilité à ce double niveau d’incertitudes
en entrée ? (↪→ Étape D)

Ainsi, dans cette thèse, on se propose de développer, pour chaque phase depuis l’étape B jusqu’à
l’étape D, plusieurs outils et méthodes afin de gérer ce double niveau d’incertitudes. Pour ce
faire, plusieurs objectifs scientifiques sont définis dans la section suivante.

Verrous scientifiques et objectifs de la thèse

Partant de la formulation du problème telle que décrite dans la section précédente, cette thèse
a pour but de développer une stratégie cohérente en vue de satisfaire les objectifs suivants :

O1 Dresser une revue de l’état de l’art sur les techniques disponibles pour la modélisation
et la propagation des incertitudes, ainsi que sur les méthodes d’analyse de sensibilité qui
pourraient être adaptées à la problématique de la thèse ;

O2 Développer une stratégie efficace qui vise à prendre en compte et combiner la modélisa-
tion des incertitudes sur le modèle probabiliste des entrées et l’estimation de probabilités
d’événements rares ;

O3 Proposer de nouveaux outils pour réaliser une analyse de sensibilité fiabiliste en présence
d’incertitudes sur le modèle probabiliste des entrées ;

O4 Démontrer la cohérence et l’applicabilité des méthodes proposées à travers leur applica-
tion sur un cas de simulation représentatif de système aérospatial.

Dans les sections suivantes, des résumés des chapitres de la thèse sont proposés, suivant les
trois grandes parties suivantes :

• tout d’abord, les chapitres qui présentent des notions relatives à l’état de l’art ;

• ensuite, les chapitres qui contiennent les apports méthodologiques propres à la thèse et les
applications aérospatiales ;

• enfin, les conclusions et perspectives de la thèse, ainsi que la valorisation scientifique des
travaux de thèse.
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État de l’art

Chapitre 2 – Modélisation des incertitudes pour les modèles numériques de type
entrée-sortie

Ce chapitre a pour but d’introduire, de façon concise, les principaux concepts mathéma-
tiques fondamentaux utiles en quantification des incertitudes, avec un focus spécifique sur le
cadre probabiliste. Les notions de sources et de types d’incertitudes y sont décrites. La classe
et les caractéristiques des modèles étudiés (e.g., codes numériques de type boîte-noire) y sont
introduites. Enfin, un inventaire des quantités d’intérêt pouvant être étudiées en sortie de
code (e.g., variable scalaire de sortie, moments de cette variable, probabilité de dépassement
de seuil ou quantile) est proposé au regard des différents types d’analyses pouvant être menées
(e.g., analyse d’incertitudes, de fiabilité ou de risque).

Chapitre 3 – Estimation de probabilité d’événement rare

Ce chapitre a pour but de passer en revue un panel de techniques numériques adaptées
à l’estimation de probabilité d’événement rare. Pour chaque classe d’algorithme, une brève
présentation historique et générale est donnée dans un premier temps. Dans un deuxième
temps, une formulation mathématique est proposée afin de montrer à la fois les liens et les dif-
férences entre les différentes classes d’algorithmes. Dans un troisième et dernier temps, les prin-
cipaux avantages et inconvénients sont explicités et quelques pistes d’approfondissement sont
données en fin de chaque section. Pour finir, ce chapitre se conclut par une synthèse regroupant
quelques recommandations fondamentales à propos de l’utilisation pratique d’algorithmes d’es-
timation de probabilités d’événements rares.

Chapitre 4 – Analyse de sensibilité d’une sortie de modèle et d’une mesure de fiabilité

Ce chapitre a pour but de proposer une revue de la litérature concernant les méthodes
d’analyse de sensibilité fiabiliste. Dans un premier temps, les principales méthodes relatives
à l’analyse de sensibilité basée sur la sortie de modèle (SAMO) sont présentées. Dans un deuxième
temps, les notions et concepts relatifs à l’analyse de sensibilité fiabiliste (ROSA) sont introduits et
les différentes classes de méthodes identifiées dans la litérature sont présentées de façon à ex-
hiber à la fois les liens profonds entre les méthodes ainsi que de faire ressortir leurs différences.
Cette deuxième partie vise à proposer une revue de litérature de façon à identifier les grandes
tendances et enjeux liés à la réalisation d’analyses de type ROSA.

Apports méthodologiques et applications

Chapitre 5 – Analyse de fiabilité en présence d’incertitudes sur les paramètres de
distribution

Ce chapitre traite du problème de l’estimation de probabilités d’événements rares en présence
d’incertitudes sur les paramètres de distribution. Pour ce faire, les incertitudes associées au
modèle probabiliste des entrées sont traitées à travers un cadre bayésien, c’est-à-dire en con-
sidérant une loi a priori sur les paramètres de distribution incertains. Dès lors, la mesure de
fiabilité considérée n’est plus la probabilité de défaillance traditionnelle scalaire. Celle-ci de-
vient conditionelle à l’état de connaissance sur les paramètres. Ainsi, une mesure de défail-
lance pouvant être considérée est la probabilité de défaillance prédictive qui incorpore les effets
des deux niveaux d’incertitudes. Dans ce chapitre, deux approches numériques adaptées pour
l’estimation de cette quantité sont présentées. Ces approches sont dénommées approche imbriquée
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(ou nested reliability approach, NRA) et approche augmentée (ou augmented reliability approach, ARA).
Une comparaison numérique du couplage de ces deux approches avec plusieurs algorithmes
d’estimation de probabilités d’événements rares (e.g., subset sampling) est menée et validée à
travers l’utilisation de plusieurs cas-tests. In fine, l’approche présentant les meilleurs perfor-
mances vis-à-vis de plusieurs critères définis dans ce chapitre (ici, l’approche ARA est la plus
performante) est conservée comme étant conforme au regard des objectifs de la thèse.

Chapitre 6 – Analyse de sensibilité fiabiliste locale en présence d’incertitudes sur les
paramètres de distribution

Ce chapitre vise à étendre les résultats obtenus dans le chapitre précédent au cadre de l’analyse
de sensibilité fiabiliste. En effet, partant d’une stratégie d’estimation de la probabilité de dé-
faillance prédictive dans le cadre de l’approche ARA, de nouveaux estimateurs de sensibilités
fiabilistes locales sont proposés afin d’évaluer la robustesse de l’estimation de la probabilité vis-
à-vis du double niveau d’incertitudes. Plus spécifiquement, on suppose que, de par la structure
bayésienne hiérarchique du modèle probabiliste des entrées, on souhaite tester la robustesse de
la mesure de fiabilité estimée par rapport aux choix des hyper-paramètres de la densité a priori
charactérisant l’incertitude épistémique sur le paramètre incertain. De par la nature du prob-
lème, des indices de sensibilités locaux à base de score functions (Rubinstein, 1986; Rubinstein
and Kroese, 2008; Millwater, 2009; Song et al., 2009b) sont proposés. De plus, une technique
d’échantillonnage à base de tirages préférentiels adaptatifs, est proposée dans le cadre ARA afin
d’estimer conjointement la probabilité de défaillance prédictive et les sensibilités de façon si-
multanée, sans appel supplémentaire au code numérique. Enfin, l’ensemble de la méthodologie
est appliquée à deux cas-tests en vue de démontrer son efficacité, d’autant plus que l’occurrence
de l’événement redouté de défaillance devient rare.

Chapitre 7 – Analyse de sensibilité fiabiliste globale en présence d’incertitudes sur
les paramètres de distribution

Ce chapitre vise à compléter l’approche locale proposée dans le chapitre précédent par une
approche globale. En effet, l’idée principale est d’étudier comment adapter une certaine classe
d’indices de sensibilités fiabilistes globaux, appelés dans ce manuscrit « indices de Sobol sur la
fonction indicatrice » (Li et al., 2012; Lemaître, 2014), au contexte du double niveau d’incertitudes.
La formulation de ces indices et leur extension au double niveau est proposée dans un premier
temps. Cette extension s’appuie sur une vision « désagrégée »du vecteur des variables d’entrée af-
fectées par une incertitude épistémique sur leurs paramètres de distribution (Schöbi and Sudret,
2017). Par la suite, une méthodologie est proposée afin d’estimer ces indices dans un contexte de
calcul de probabilité de défaillance associée à un événement rare. Cette méthodologie s’appuie
sur la combinaison entre, d’une part, l’adaptation d’estimateurs existants (Perrin and Defaux,
2019) de ces indices au double niveau, et d’autre part, de l’utilisation d’une nouvelle approche
d’estimation par noyaux disponible dans la littérature (Perrin et al., 2018). Si ces contributions
sont relativement récentes, l’originalité des travaux présentés dans ce chapitre résulte dans leur
couplage et leur adaptation à la contrainte du double niveau d’incertitudes ce qui en accroit les
difficultés intrinsèques d’utilisation (e.g., dimension, complexité des densités à estimer). Pour
finir, cette méthodologie est appliquée à deux cas-tests afin de démontrer son efficacité, et plus
particulièrement quand l’occurence de l’événement redouté devient rare. De plus, les applica-
tions numériques viennent surligner les gains en termes d’interprétations que peuvent apporter
ce genre d’analyses dans un contexte de double niveau d’incertitudes.
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Chapitre 8 – Application à un cas de retombée d’un étage de lanceur

Ce chapitre constitue une mise en perspective des apports méthodologiques de la thèse à
travers leurs applications successives à un code numérique représentatif du domaine aérospa-
tial. Le modèle considéré vise à simuler la retombée d’un étage de lanceur spatial au travers
du calcul de sa trajectoire en phase balistique. Dans ce chapitre, les outils méthodologiques
dévéloppés et présentés dans les trois chapitres précédents sont testés sur ce cas à des fins de
validation. Les performances, avantages et limites de chaque outil sont donnés.

Conclusions

Ces travaux de thèse sont constitués, outre d’une analyse de l’état-de-l’art sur plusieurs do-
maines de la gestion des incertitudes, d’un certain nombre de contributions qui ont été valorisées
(ou sont en cours de valorisation) au travers de publications scientifiques. Ainsi, une liste men-
tionnant les principales contributions et les publications associées est proposée ci-dessous.

1. Approche imbriquée vs. approche augmentée (NRA vs. ARA)

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2017). “Eval-
uation of failure probability under parameter epistemic uncertainty: application to
aerospace system reliability assessment”. In: Aerospace Science and Technology 69, pp.
526–537.

. Chabridon V., N. Gayton, J.-M. Bourinet, M. Balesdent and J. Morio (2017). “Some
Bayesian insights for statistical tolerance analysis”. In: Actes du 23ème Congrès Français
de Mécanique (CFM 2017), Lille, France.

2. Analyse de sensibilité fiabiliste locale (local ROSA)

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2018). “Reliability-
based sensitivity estimators of rare event probability in the presence of distribution
parameter uncertainty”. In: Reliability Engineering and System Safety 178, pp. 164–178.

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2017). “Reliability-
based sensitivity analysis of aerospace systems under distribution parameter uncer-
tainty using an augmented approach”. In: Proc. of the 12th International Conference on
Structural Safety & Reliability (ICOSSAR 2017), Vienna, Austria.

3. Analyse de sensibilité fiabiliste globale (global ROSA)

. Rédaction d’un chapitre d’ouvrage scientifique en cours

4. Application de ces méthodologies à un cas aérospatial réaliste

. Derennes P., V. Chabridon, J. Morio, M. Balesdent, F. Simatos, J.-M. Bourinet and N.
Gayton (2018). “Nonparametric importance sampling techniques for sensitivity anal-
ysis and reliability assessment of a launcher stage fallout”. In: Optimization in Space
Engineering. Ed. by G. Fasano and J. Pintér. Springer International Publishing. (To
Appear).

. Chabridon V., M. Balesdent, J.-M. Bourinet, J. Morio and N. Gayton (2018). “Nonpara-
metric adaptive importance sampling strategy for reliability assessment and sensitiv-
ity analysis under distribution parameter uncertainty – Application to launch vehicle
fallback zone estimation”. In: Actes des 10èmes Journées Fiabilité des Matériaux et des
Structures (JFMS 2018), Bordeaux, France.
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Les perspectives liées à ces travaux de thèse sont de plusieurs natures. Elles peuvent, dans
un premier temps, consister en des améliorations directes, à court terme, de certaines des con-
tributions présentées dans cette thèse. Elles peuvent, dans un deuxième temps, concerner des
aspects plus méthodologiques, voire contenir certaines questions ouvertes. Enfin, elles peuvent
aussi concerner les applications, soit des apports méthodologiques de ces travaux à d’autres do-
maines, soit une généralisation à d’autres systèmes et/ou analyses issus du monde aérospatial.
Les perspectives évoquées ici sont abondament discutées et documentées dans le Chapitre 9. Le
lecteur est donc invité à s’y référer pour plus d’informations.





Résumé

Les systèmes aérospatiaux sont des systèmes complexes dont la fiabilité doit être garantie dès la phase de con-
ception au regard des coûts liés aux dégâts gravissimes qu’engendrerait la moindre défaillance. En outre, la prise
en compte des incertitudes influant sur le comportement (incertitudes dites « aléatoires » car liées à la variabilité
naturelle de certains phénomènes) et la modélisation de ces systèmes (incertitudes dites « épistémiques » car liées
au manque de connaissance et aux choix de modélisation) permet d’estimer la fiabilité de tels systèmes et demeure
un enjeu crucial en ingénierie. Ainsi, la quantification des incertitudes et sa méthodologie associée consiste, dans un
premier temps, à modéliser puis propager ces incertitudes à travers le modèle numérique considéré comme une
« boîte-noire ». Dès lors, le but est d’estimer une quantité d’intérêt fiabiliste telle qu’une probabilité de défaillance.
Pour les systèmes hautement fiables, la probabilité de défaillance recherchée est très faible, et peut être très coûteuse
à estimer. D’autre part, une analyse de sensibilité de la quantité d’intérêt vis-à-vis des incertitudes en entrée peut être
réalisée afin de mieux identifier et hiérarchiser l’influence des différentes sources d’incertitudes. Ainsi, la modélisa-
tion probabiliste des variables d’entrée (incertitude épistémique) peut jouer un rôle prépondérant dans la valeur de
la probabilité obtenue. Une analyse plus profonde de l’impact de ce type d’incertitude doit être menée afin de donner
une plus grande confiance dans la fiabilité estimée. Cette thèse traite de la prise en compte de la méconnaissance du
modèle probabiliste des entrées stochastiques du modèle. Dans un cadre probabiliste, un « double niveau » d’incertitudes
(aléatoires/épistémiques) doit être modélisé puis propagé à travers l’ensemble des étapes de la méthodologie de
quantification des incertitudes. Dans cette thèse, le traitement des incertitudes est effectué dans un cadre bayésien
où la méconnaissance sur les paramètres de distribution des variables d‘entrée est caractérisée par une densité a
priori. Dans un premier temps, après propagation du double niveau d’incertitudes, la probabilité de défaillance prédic-
tive est utilisée comme mesure de substitution à la probabilité de défaillance classique. Dans un deuxième temps,
une analyse de sensibilité locale à base de score functions de cette probabilité de défaillance prédictive vis-à-vis des
hyper-paramètres de loi de probabilité des variables d’entrée est proposée. Enfin, une analyse de sensibilité globale à
base d’indices de Sobol appliqués à la variable binaire qu’est l’indicatrice de défaillance est réalisée. L’ensemble des
méthodes proposées dans cette thèse est appliqué à un cas industriel de retombée d’un étage de lanceur.

Mots-clés : analyse de fiabilité • probabilité d’événement rare • approches bayésiennes • échantillonnage préférentiel
• statistiques non-paramétriques • analyse de sensibilité • systèmes aérospatiaux

Abstract

Aerospace systems are complex engineering systems for which reliability has to be guaranteed at an early de-
sign phase, especially regarding the potential tremendous damage and costs that could be induced by any failure.
Moreover, the management of various sources of uncertainties, either impacting the behavior of systems (“aleatory”
uncertainty due to natural variability of physical phenomena) and/or their modeling and simulation (“epistemic”
uncertainty due to lack of knowledge and modeling choices) is a cornerstone for reliability assessment of those sys-
tems. Thus, uncertainty quantification and its underlying methodology consists in several phases. Firstly, one needs
to model and propagate uncertainties through the computer model which is considered as a “black-box”. Secondly,
a relevant quantity of interest regarding the goal of the study, e.g., a failure probability here, has to be estimated. For
highly-safe systems, the failure probability which is sought is very low and may be costly-to-estimate. Thirdly, a sen-
sitivity analysis of the quantity of interest can be set up in order to better identify and rank the influential sources of
uncertainties in input. Therefore, the probabilistic modeling of input variables (epistemic uncertainty) might strongly
influence the value of the failure probability estimate obtained during the reliability analysis. A deeper investiga-
tion about the robustness of the probability estimate regarding such a type of uncertainty has to be conducted. This
thesis addresses the problem of taking probabilistic modeling uncertainty of the stochastic inputs into account. Within
the probabilistic framework, a “bi-level” input uncertainty has to be modeled and propagated all along the different
steps of the uncertainty quantification methodology. In this thesis, the uncertainties are modeled within a Bayesian
framework in which the lack of knowledge about the distribution parameters is characterized by the choice of a prior
probability density function. During a first phase, after the propagation of the bi-level input uncertainty, the predictive
failure probability is estimated and used as the current reliability measure instead of the standard failure probability.
Then, during a second phase, a local reliability-oriented sensitivity analysis based on the use of score functions is
achieved to study the impact of hyper-parameterization of the prior on the predictive failure probability estimate.
Finally, in a last step, a global reliability-oriented sensitivity analysis based on Sobol indices on the indicator function
adapted to the bi-level input uncertainty is proposed. All the proposed methodologies are tested and challenged on
a representative industrial aerospace test-case simulating the fallout of an expendable space launcher.

Keywords: reliability analysis • rare event probability estimation • Bayesian approaches • importance sampling •
nonparametric statistics • sensitivity analysis • aerospace systems
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