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Résumé : Écoulement et stabilité d’un rideau liquide viscoélastique

L’écoulement et la stabilité des rideaux liquides viscoélastiques sont étudiés pour des solutions
de polymères flexibles et semi rigides. Ces liquides viscoélastiques sont extrudés à partir d’une
fente à débit constant et s’écoulent à l’air libre sous l’effet de la gravité. L’écoulement de ces
liquides se caractérise par un équilibre initial entre la gravité et les forces élastiques causées par les
déformations des chaînes de polymère, jusqu’à ce que l’inertie du liquide finisse par dominer et que
l’on retrouve le comportement classique de chute libre. Nous montrons que l’écoulement est prin-
cipalement influencé par la valeur du temps de relaxation extensionnel mesuré par une méthode de
filamentation. Un nouvel éclairage sur l’écoulement des rideaux liquides Newtoniens nous permet
de trouver une courbe maîtresse de l’écoulement dans le cas viscoélastique par analogie. En ce
qui concerne la stabilité du rideau, nous observons que le débit critique de formation du rideau
n’est pas affecté par la présence de polymères, tandis que le débit minimum en deçà duquel le
rideau se rompt diminue après ajout de polymères, ce qui révèle une plus grande résistance de la
nappe à l’initiation de trous. Par ailleurs, nous observons une instabilité de l’écoulement pour les
solutions les plus rhéofluidifiantes, où des bandes épaisses (où la vitesse du liquide est supérieure
à la moyenne) sont formées au sein du rideau. Une visualisation de l’écoulement à l’intérieur de la
filière d’extrusion révèle que ce phénomène est lié à une instabilité de l’écoulement de contraction
en amont de la fente, où l’écoulement est de nature instationnaire et tridimensionnelle.

Mots clefs : Mécanique des fluides, Écoulement à surface libre, Fluides complexes, Polymères,

Instabilités élastiques

Abstract : Flow and stability of a viscoelastic liquid curtain

The flow and the stability of viscoelastic liquid curtains are investigated using solutions of flex-
ible and semi-rigid polymer chains. These viscoelastic liquids are extruded from a slot at constant
flow rate and fall in ambient air under gravity. We show that the curtain flow of polymer solu-
tions is characterised by an initial balance between gravity and the elastic stresses arising from the
stretching of polymer molecules, until inertia finally dominates and the classical free-fall behaviour
is recovered. We show that the flow is mostly influenced by the value of the extensional relaxation
time of the solution measured by a filament thinning technique. New insights on the theoretical
description of Newtonian curtains allow us to find the master curve of the viscoelastic curtain
flow by analogy. Concerning the curtain stability, we show that the critical flow rate for curtain
formation is not affected by the presence of polymers whereas the minimum flow rate below which
the curtain rapidly breaks is reduced by polymer addition, thus revealing a greater resistance of
the sheet to hole initiations. Furthermore, we observe the onset of a flow instability for the most
shear-thinning solutions, where thick bands (where the liquid velocity is larger than average) are
formed within the curtain. Visualisations of the flow inside the die reveal that this phenomenon is
linked to a flow instability at the contraction plane upstream of the slot where the flow is unsteady
and three-dimensional in nature.

Keywords : Fluid mechanics, Free-surface flow, Complex fluids, Polymers, Elastic instabilities
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General introduction

Liquid curtains are sheets of liquid flowing freely in ambient air under gravity. In-
dustrial curtains are usually produced by extruding a liquid through a vertical slot
die at constant flow rate, or by producing a liquid film which turns into a curtain
when falling off the edge of an inclined plane. Such physical objects are character-
ised by a large aspect ratio, meaning that the falling distance of the liquid is much
larger than the sheet thickness. One of the best everyday examples are the “pool
water curtains” found in some swimming pools: the inertia of the sheet hitting your
body (neck, back, shoulders) produces a pleasant massage effect. Curtains can also
be found in some overflow fountains if the flow rate is large enough to prevent early
breaking of the sheet into independent jets. An original and aesthetic example can
be found in the work of the Polish artist Małgorzata Chodakowska who designed
bronze statues equipped with a hydraulic system producing liquid sheets. These
sheets can represent, among other examples, the wings of an angel or the skirt of a
ballerina.

In the case of water curtains falling vertically, the velocity of the liquid is very well
approximated by a free-fall law, meaning that viscous dissipation is negligible and
that all the gravitational potential energy is converted into kinetic energy. Hence,
every fluid particle falls like an independent friction-free rigid body with constant
acceleration g = 9.81 m2/s. By continuity, the increase in velocity produces a pro-
gressive thinning of the sheet, as is commonly observed in jets of tap water which
is the axisymmetric version of the problem. In the case of Newtonian liquids with
high viscosity, intuition suggests a different behaviour: a jet of honey seems to fall
with lower velocities. The first experimental measurements by Brown (1961) using
viscous Newtonian liquids extruded through a slot indeed revealed a shift from the
classical free-fall behaviour close to the slot. A simple one-dimensional force bal-
ance equation of the flow derived by Sir G. I. Taylor (in the appendix of Brown
(1961)) was shown to fit experimental velocity fields U(z), where U is the local
mean velocity (averaged along the curtain thickness) and z is the distance from the
slot exit. Analytical contributions by Clarke (1966, 1968), Aidun (1987) and Ramos
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(1996) provided a deeper understanding of this equation and revealed that free-fall
behaviour with constant acceleration g is asymptotically recovered at a distance
z∗v = Fv×zv from the slot, where zv = ((4η/ρ)2/g)1/3, ρ and η being the density and
dynamic viscosity of the liquid, and where Fv is a dimensionless decreasing function
of the initial velocity U0 at the slot exit which is about 7 when U0/

√
gzv � 1.

An other interesting aspect of liquid curtains is their stability in terms of spon-
taneous hole opening events. Brown (1961) showed that the future of a hole initi-
ated within the curtain (due to impurities) was principally determined by a balance
between capillary forces, pulling up the rim of the hole towards the slot, and the
inertia of the surrounding liquid which pulls the hole downward. This argument has
later been refined by Sünderhauf et al. (2002) and Karim et al. (2018a) to take into
account stabilising viscous effects.

One of the main industrial applications of liquid curtains is the well documented
curtain coating technique described by Miyamoto & Katagiri (1997) which aims at
depositing a material layer of uniform thickness on a solid surface. In its simplest
version, a liquid is extruded from a thin slot and the resulting vertical liquid sheet
impacts a solid substrate moving horizontally underneath at constant speed. Cur-
tain coating is one of the main manufacturing steps in the production of functional
films used in displays, solar panels and many other applications. Since most in-
dustrial coating liquids are non-Newtonian, recent experimental studies have been
dedicated to the characterisation of non-Newtonian curtains (i.e. made of a com-
plex fluid) such as viscoelastic curtain made of polymer solutions. Existing works
have mostly focused on the impact of viscoelasticity on curtain stability (Becerra &
Carvalho, 2011; Gugler et al., 2010; Karim et al., 2018b), revealing a stabilising ef-
fect of polymer additives. However, the structure of the liquid velocity field has only
been discussed by Karim et al. (2018b) who measured free-falls for polymer solutions
with millisecond-scale relaxation times. In comparison, the effect of fluid elasticity
on the analogous film casting process, involving thick polymer melts stretched by a
rotating drum to produce plastic sheets, is much more documented (Alaie & Papa-
nastasiou, 1991; Satoh et al., 2001). However, since gravity and inertia are negligible
in film casting, these results can not be generalised to the curtain coating technique
which involves liquids of much lower viscosity.

In the present work, we investigate the role of viscoelasticity in the flow and
stability of liquid curtains extruded from a die in the context of polymer solutions.
This manuscript is organised in three main parts.
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Part one We first introduce the main analytical concepts which will be useful
when interpreting the experimental results. In chapter 1, we provide a detailed
analytical analysis of the flow of Newtonian curtains. This analysis contains new
contributions which revealed to be useful for the description of viscoelastic cur-
tains. The main aspects of Newtonian curtain stability are also presented. Then,
we introduce in chapter 2 the main concepts of viscoelasticity and viscoelastic flows.
This includes the presentation of the basic constitutive equations derived from the
microscopic description of polymer molecules and an overview of the unusual flow
characteristics of viscoelastic fluids.

Part two We present in chapter 3 the experimental set-up used to produce liquid
curtains, as well as the particle image velocimetry technique used to measure the
curtain velocity field. We also introduce the different polymer solutions used in this
study, as well as their rheological characterisation, both in shear and extensional
flows. Then, in chapter 4, we present the experimental results concerning the curtain
velocity field. We show that elasticity has a dramatic effect on the flow by reducing
the liquid velocity, or, more precisely, the liquid acceleration which is less than g and
decreases when increasing the polymer relaxation time. We show that the curtain
flow of polymer solutions is characterised by an initial balance between gravity and
the elastic stresses arising from the stretching of polymer molecules, until inertia
finally dominates and the classical free-fall behaviour is recovered. A simple scaling
is found and a master curve is identified. The effect of the history of polymer
deformations inside the die is also investigated. We also provide an attempt of
theoretical description using the Oldroyd-B model.

Part three The last part is dedicated to the study of the curtain stability. In
chapter 5, we first discuss the stability in the familiar context of spontaneous break-
ing events. Then, we discuss the stability in the more classical meaning of the term
which is the instability of the flow itself, and not the stability of the curtain seen
as a physical object. We characterise a new spatial and temporal flow instability
observed for the most shear-thinning solutions, which is characterised by a varicose
horizontal modulation of the sheet thickness and by a modulation of the velocity
field. In chapter 6, using a new experimental setup, we show that this modulation
is linked to a strongly unsteady and 3-dimensional flow instability appearing at the
slot inlet of the die where the liquid undergoes a planar contraction. These results
are compared to analogous elastic instabilities reported in the literature.
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Liquid curtains
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In this chapter, we first present an analysis of the flow of Newtonian liquid cur-
tains. After a general overview, we derive a general force balance equation for the
mean velocity field U(z) averaged over the curtain thickness. We recover the equa-
tion derived by G. I. Taylor in the specific case of a Newtonian liquid. The analytical
solution of this equation is investigated in order to identify a master curve which had
not been clearly identified in the literature. This analysis will be a useful guide for
the interpretation of the experimental results concerning viscoelastic liquid curtains.
Then, we present the classical criterion for the stability of a Newtonian curtain. We
conclude this chapter by a state of the art concerning viscoelastic liquid curtains.
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Chapter 1. Liquid curtains

Figure 1.1 – Sketch of an infinitely long Newtonian curtain (cross-sectional view). The
local vertical velocity field u(y, z) switches from a Poiseuille flow inside the slot to a plug
flow at a distance z = L∗v from the slot. In parallel, the mean velocity field U(z) averaged
over the curtain thickness is characterised by a transition from a sub-gravitational regime
to an asymptotic free-fall regime at a distance z = z∗v from the slot.

1.1 Newtonian curtain flow

1.1.1 General overview

Before deriving any equation, we give a general overview of the different flow trans-
ition observed in Newtonian curtain. In this section, we consider that the flow rate
is large enough to produce a continuous sheet of liquid.

We consider a Newtonian liquid of density ρ, dynamic viscosity η and surface
tension Γ extruded from a vertical slot of thickness 2a, as shown in figure 1.1. The
part of the flow which is in contact with ambient air is called a liquid curtain. It is
characterised by its linear flow rate q which is the volumetric flow rate per unit slot
width. The mean liquid velocity in the slot is

Us =
q

2a
(1.1)

We note z the direction of the flow (axial direction) and y is the transverse direc-
tion. We assume a laminar and steady flow which is translation invariant along x,
meaning that we can neglect any edge effect, as if the curtain had an infinite width.
In curtain coating, the liquid is stopped by a flat solid surface moving horizontally
at constant speed. The length Lc of the curtain (i.e. the distance between the slot
exit and the substrate) is generally much larger than the slot thickness 2a.

We assume that a fully developed Poiseuille flow is established in the slot. At the
slot exit, the wall boundary condition switches to a free-surface boundary condition,
i.e. zero shear stress at the liquid-air interface. Hence, due to viscous diffusion, the
Poiseuille flow switches to a plug flow, as illustrated in figure 1.1. We note u(y, z)

the local vertical velocity and U(z) the mean velocity averaged over the curtain
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1.1. Newtonian curtain flow

thickness. Since the liquid is accelerated by gravity, the curtain thickness 2h(z)

decreases by continuity. Brown (1961) showed experimentally that this contraction
gives rise to viscous stresses which impact the curtain velocity. Therefore, the local
mean acceleration UdU/dz may be initially less than g. Brown (1961) showed that
an asymptotic free-fall regime where UdU/dz = g is reached when inertia overcomes
the resistance of the liquid. We now discuss these two flow transitions.

Poiseuille - plug transition For Newtonian liquids, a fully developed plug flow
is expected to be established after a distance from the slot exit which scales as

Lv =
ρUsa

2

η
= Re a where Re =

ρUsa

η
(1.2)

is the Reynolds number. A large viscosity results in a fast transitionan due to
efficient momentum diffusion. The plug flow is fully established at a distance L∗v =

Pv × Lv from the slot, where Pv is a dimensionless prefactor. In the analogous
case of an axisymmetric laminar capillary jet, Sevilla (2011) shows that Pv is a
function of the Weber number We = ρU2

s a/Γ where a is the injector radius, and
gives Pv(We = 10) ≈ 0.2.

Sub-gravitational - free-fall According to Brown (1961), the mean acceleration
effectively reaches the asymptotic free-fall value g at a distance z∗v = Fv × zv (“v”
for “viscous”) from the slot where

zv =

(
(4η/ρ)2

g

)1/3

(1.3)

and where the prefactor Fv is a decreasing function of the initial curtain velocity
U0 = U(z = 0) = Us. In other words, UdU/dz(z = z∗v) ≈ g. As will be presented in
the next sections, Fv ≈ 7 for negligibly small initial velocities U0 �

√
gzv. Contrary

to the previous transition, a large viscosity results in a slow transition.

Comparison Ignoring the prefactors, the ratio between the Poiseuille to plug and
sub-gravitational to free-fall transition lengths is

Lv
zv

= Re
a

zv
=
Us a

2ρ5/3g1/3

42/3η5/3
, (1.4)

We deduce that liquids of large viscosity (Lv/zv � 1) exhibit a long sub-gravitational
plug flow whereas liquids of low-viscosity (Lv/zv � 1) fall with a mean acceleration
g while exhibiting velocity gradients along the thickness direction y. In the first
case, the curtain flow is purely extensional with no shear component. Of course,
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Chapter 1. Liquid curtains

this discussion if only valid if the curtain length Lc is much larger than both L∗v and
z∗v . For example, if the liquid viscosity is such that z∗v > Lc, the fluid particles may
never reach the gravitational acceleration g.

1.1.2 General force balance equation

In the appendix of Brown (1961), Sir Geoffrey Taylor proposed the following force
balance equation for Newtonian liquid curtains

U
dU

dz
= g +

4ηU

ρ

d

dz

(
1

U

dU

dz

)
(1.5)

where ρ and η are respectively the liquid density and dynamic viscosity. The first
term accounts for the liquid inertia, the second is the gravitational acceleration,
and the last term represents visous dissipation. This equation was found to capture
the experimental results by Brown (1961). As shown by Aidun (1987) and Ramos
(1996), Taylor’s equation 1.5 can be derived rigorously from a long-wave approx-
imation of the Navier-Stokes equation using the aspect ratio a/Lc � 1 as a small
parameter where 2a and Lc are respectively the slot thickness and the curtain length.

Following the simple derivation of G. I. Taylor, we now derive a more general
force balance equation which does not rely upon a particular constitutive equation.
This equation will be used in future descriptions for viscoelastic curtains.

A slice of curtain between altitudes z and z + dz travels a distance dz = Udt

between times t and t + dt. Its momentum per unit curtain width is 2hρUdz.
We consider the gravitational force 2hρgdz and the contact forces 2h(z)πzz(z) and
2h(z + dz)πzz(z + dz) acting respectively on the upper and lower side, where π is
the mean stress tensor. Using the flow rate conservation

2hU = q = 2aUs (1.6)

along with dz = Udt, we obtain

U
dU

dz
= g +

U

ρq

d(2hπzz)

dz
(1.7)

Note that the mean quantities can be written as

U =
1

h

∫ h

0

u dy and πzz =
1

h

∫ h

0

π∗zzdy (1.8)

where u(y, z) and π∗zz(y, z) are respectively the vertical component of the local ve-
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1.1. Newtonian curtain flow

locity field and the z normal component of the local stress tensor π∗. Let us write
π∗ij = −P ∗δij + σ∗ij for the local stress tensor and

πij = −Pδij + σij (1.9)

for the mean stress tensor where δij is the Kronecker delta. Although the exact
definition of P ∗ and P relies upon a particular definition of the extra stress tensors
σ∗ (local) and σ (mean), the derivation can continue without specifying them.
Neglecting surface tension and using the slender curtain approximation dh/dz � 1

(equivalently v � u where v is the y component of the velocity field), the key
argument of Taylor was to assume that

πyy = −Pa (1.10)

where Pa is the atmospheric pressure. According to equation 1.9, this leads to

P (z) = Pa + σyy (1.11)

which, according again to equation 1.9, gives

πzz = −Pa + (σzz − σyy) (1.12)

Normalising pressure such that Pa = 0, and defining the mean normal stress differ-
ence

∆ ≡ σzz − σyy =
1

h

∫ h

0

(σ∗zz − σ∗yy) dy (1.13)

we can finally combine equations 1.6, 1.7, 1.12 and 1.13 to write the following force
balance equation

U
dU

dz
= g +

U

ρ

d

dz

(
∆

U

)
(1.14)

This equation is valid for any continuous material. If the last term is negligible, i.e.
if inertia overcomes the resistance of the liquid, we obtain the classical free-fall law

U =
√
U2

0 + 2gz (1.15)

observed for water curtains for example, where U0 = U(z = 0).

In the following, in order to acknowledge the remarkable physical insight of Sir
Geoffrey Taylor who first derived the Newtonian version of this force balance equa-
tion, equation 1.14 will be referred to as the (Eulerian) Taylor equation. The proper
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Chapter 1. Liquid curtains

derivation of this equation from the local Cauchy equation if not obvious. There-
fore, following the analysis of Ramos (1996) for Newtonian liquids, we provide in
appendix A a rigorous derivation of the Taylor equation.

In the case of a Newtonian liquid, we have σ∗zz = 2η∂u/∂z and σ∗yy = 2η∂v/∂y

which gives σzz = 2ηdU/dz and σyy = −2ηdU/dz for an incompressible flow. Hence,
the mean normal stress difference is simply

∆ = 4η
dU

dz
(1.16)

and we recover Taylor’s force balance equation 1.5. Note that for laminar jets,
the transverse surface curvature gives rise to additional capillary stresses, and a
supplementary term has to be added (see the appendix of Clasen et al. (2009)).

1.1.3 Analysis of the Newtonian Taylor equation

As we will now show, the velocity field U(z) of an infinitely long Newtonian curtain
collapses on a master curve which, to the best of our knowledge, had not been clearly
identified in the literature so far. This analytical description of Newtonian curtains
will be a useful guide when describing the analogous case of viscoelastic curtains.

Equation 1.5 can be put into non-dimensional form when rescaling by

{
z̄ = z/zv

Ū = U/Uv
, zv =

(
(4η/ρ)2

g

)1/3

, Uv =
√
g zv = (4ηg/ρ)1/3 (1.17)

We obtain

Ū Ū ′ = 1 + Ū ′′ − Ū ′2/Ū (1.18)

where ′ denotes spatial derivation d/dz̄. The general solution of this equation was
found by Clarke (1966, 1968) and is given by

Ū(z̄) = 2−1/3

[(
Ai′(Z) + C Bi′(Z)

Ai(Z) + C Bi(Z)

)2

− Z

]−1

, Z = 2−1/3(z̄ + k) (1.19)

where Ai and Bi are the Airy functions, i.e. the two solutions of the differential
equation y′′ − xy = 0 which can be expressed as (Abramowitz & Stegun, 1964)
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1.1. Newtonian curtain flow


Ai(x) =

1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt

Bi(x) =
1

π

∫ ∞
0

[
exp

(
−t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt

(1.20)

and where C and k are integration constants which have to be determined from the
upstream and downstream boundary conditions. Note that for a given value of C,
varying k simply translates the curve along the z̄-axis.

Boundary conditions

The upstream boundary condition is simply

Ū(z̄ = 0) ≡ Ū0 =
U0

Uv
=
ρU0zv

4η
(1.21)

where the initial liquid velocity U0 at the slot exit can be chosen experimentally by
varying the flow rate. This dimensionless number can be seen as a Reynolds number
based on the viscous length scale zv.

Three types of downstream boundary conditions can be chosen depending on
the particular experimental conditions (Ramos, 1996). As shown in figure 1.2.a,
the type of downstream boundary condition depends on the value of C in Clarke’s
solution 1.19. Imposing an arbitrarily large velocity at a given distance Lc from
the slot corresponds to a film casting experiment where the liquid is collected by
a drum rotating at a constant arbitrary angular velocity. This case corresponds to
C > 0 where Clarke’s solution diverges in finite time. On the other hand, the bound-
ary condition U(Lc) = 0 leads to the transition to a plane stagnation flow where
the liquid spreads onto a motionless horizontal solid plate (or substrate) placed at
z = Lc from the slot. In the latter case, which corresponds to C < 0, the liquid
velocity first increases due to gravitational forces and reaches a maximum value at
a distance zm from the slot before finally decreasing down to 0 when approaching
the stagnation point at z = Lc. According to figure 1.2.a, the presence of the solid
plate only affects the flow significantly within a distance from the plate which is
of order Lc − zm. In figure 1.2.b, we present L̄c − z̄m = (Lc − zm)/zv against the
dimensionless curtain length L̄c = Lc/zv for various initial velocities. These results
suggest that Lc − zm is always less of equal to 2.3zv. However, as pointed out by
Ramos (1996), the slender approximation is not justified near the stagnation point
where the transverse velocity component becomes larger than the axial one. In this
case, although solution 1.19 may be valid far enough from the impingement zone, a
two-dimensional analysis is required when focusing on this zone. We can however
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Figure 1.2 – (a): Clarke’s solution (equation 1.19) for C = −102 (1), C = −10−1 (2),
C = −10−3.5 (3), C = −10−7 (4), C = −10−12 (5), C = 0 (6) and C = +10−12 (7), where
k is chosen to ensure that the initial velocity is Ū0 = 10−3 for each curve. Solutions with
C < 0, C = 0 and C > 0 correspond to different types of downstream boundary condition,
respectively a plane stagnation flow for C < 0 where U(L̄c) = 0 when impacting a flat
solid plate at a distance Lc = L̄czv from the slot, an infinite curtain which converges to a
free-fall for C = 0, and a film casting experiment for C > 0 where the velocity imposed by
the rotation speed of the drum can be arbitrarily large. When C < 0, the presence of the
solid plate only affects the flow within a (dimensionless) distance from the plate which is
of order L̄c − z̄m where dU/dz̄(z̄ = z̄m) = 0. (b): L̄c − z̄m against L̄c for different initial
velocities Ū0. Since varying k for a given C only translates the curve along the z̄-axis in
equation 1.19, L̄c − z̄m does not depend on k. Hence, all the curves in (b) corresponding
to different values of Ū0 can be deduced from each other by simple translation along the
L̄c-axis.

reasonably assume that the presence of the solid plate only affects the flow within
a distance before impact which is of order zv.

According to the previous results, if the curtain length Lc is much greater than
zv, the flow close to the slot is universal and is not influenced by the downstream
boundary condition. Therefore, in order to characterise this universal flow far from
the impingement zone, we can use the following boundary condition

lim
z̄→∞

Ū Ū ′ = 1 (1.22)

which ensures that the flow would converge asymptotically to a free-fall with con-
stant acceleration g for a curtain of infinite length. This boundary condition corres-
ponds to C = 0 in solution 1.19 (see figure 1.2.a). It is the case discussed by Clarke
(1966, 1968). In curtain coating, note that the liquid falls onto a horizontal solid
surface moving horizontally at constant speed, which breaks the symmetry of the
problem. However, we can reasonably assume that the flow far from the impinge-
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Figure 1.3 – (a): Dimensionless velocity field Ū(z̄) for an infinitely long curtain made of
a Newtonian liquid (equation 1.19 for C = 0), starting from various initial velocities Ū0

ranging between 0 and 2. All the curves for Ū0 > 0 collapse on the master curve Mv

corresponding to Ū0 = 0 after translation of each curve along the z̄ axis by a distance
M−1
v (Ū0) (equation 1.24). (b): Confirmation with the experimental velocity field of the

pure glycerin curtain of figure 4.1 where Ū0 = 0.14. The master curve Mv is characterised
by an initial sub-gravitational viscous regime and an asymptotic free-fall regime (equation
1.25).

ment zone is also not influenced by this boundary condition.

To summarise, the three types of downstream boundary condition are

• C = 0: Infinite curtain converging to a free-fall

• C > 0: Film casting experiment

• C < 0: The flow turns into a plane stagnation flow

Master curve

Analytical solutions Ū(z̄) are shown in figure 1.3.a for C = 0 and initial velocities
Ū0 ranging between 0 and 2. The curves are similar. In fact, they all rescale on
a unique master curve after translation along the z̄ axis. Indeed, let Mv (“M” for
“Master curve”) be the particular solution corresponding to Ū0 = 0. We have

Mv(z̄) = 2−1/3

[(
Ai′(Z)

Ai(Z)

)2

− Z

]−1

, Z = 2−1/3(z̄ + k0) (1.23)

where Ai(2−1/3 k0) = 0 which gives k0 ≈ −2.94583. This curve is shown in figure
1.3.b in log-log scale. Of course, achieving a curtain of zero initial velocity with
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Chapter 1. Liquid curtains

infinite initial thickness is not physically possible. Yet, we can easily demonstrate
that any physical solution with initial velocity Ū0 > 0 writes

Ū(z̄) = Mv

(
z̄ +M−1

v (Ū0)
)

(1.24)

where M−1
v is the functional inverse of Mv. Indeed, since z̄ does not appear ex-

plicitly in equation 1.18, if Mv is a particular solution, then z̄ 7→ Mv(z̄ + cst) is
also a solution. Since expression 1.24 is the only one satisfying both the upstream
(Ū(z̄ = 0) = Ū0) and downstream (Ū Ū ′ → 1) boundary conditions, it is the only
solution. Hence, any curve Ū(z̄) with initial velocity Ū0 > 0 will collapse on the
master curve Mv(z̄) after translation along the z̄ axis by a distance M−1

v (Ū0) on the
right. This will be shown in chapter 4 using a curtain made of glycerol.

The master curve is characterised by two regimes:

Mv(z̄) =

z̄
2/2 z̄ � 1 : viscous regime√
2 (z̄ − sv,0) z̄ � 1 : inertial regime

(1.25)

where sv,0 ≈ 2.8. The initial viscous regime (z̄ � 1) corresponds to a balance
between gravity and viscous forces where inertia is negligible in the force balance
equation 1.5. As the liquid velocity increases, we enter into an intermediate inertio-
viscous regime where none of the terms of equation 1.5 can be neglected. Finally,
inertia dominates over viscous forces for z̄ � 1 and the local acceleration reaches
the asymptotic free-fall value. More precisely, the full asymptotic inertial regime is
given by M2

v = 2 (z̄ − sv,0). Note that the viscous regime can be found directly by
injecting Ū(z̄) = Kz̄α in equation 1.18 where inertia Ū Ū ′ is neglected. We find that
the only solution is K = 1/2 and α = 2.

For real curtains with non-zero initial velocity U0, according to equations 1.24 and
1.25, the viscous regime only exists if U0 is much smaller than Uv, i.e. Ū0 � 1. This is
illustrated in figures 1.4.a and 1.4.b where we plot the local extension rate Ū ′(z̄) and
the local acceleration Ū Ū ′(z̄) for C = 0 and initial velocities Ū0 ranging between
0 and 10. For low values of Ū0, Ū ′ first increases (viscous regime) before finally
decreasing (inertial regime). However, as Ū0 increases, Ū ′ becomes a monotonous
decreasing function. Equivalently, the acceleration at the slot exit Ū Ū ′(0) goes from
0 for Ū0 = 0 to 1 for Ū0 � 1, in which case inertia dominates over viscous forces even
close to the slot. In practice, we can assume that the flow of a Newtonian curtain
is very well approximated by a free-fall Ū2 = Ū2

0 + 2z̄ if Ū0 ≥ 10. Physically, it can
be explained by considering Ū0 as a Reynolds number based on the characteristic
length zv (equation 1.21). To summarise:
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Figure 1.4 – Dimensionless extension rate Ū ′(z̄) (a) and acceleration Ū Ū ′(z̄) (b) for an
infinitely long curtain made of a Newtonian liquid (equation 1.19 for C = 0), start-
ing from various initial velocities Ū0 ranging between 0 and 10. The master curve Mv

has an inflection point at z̄ ≈ 1.37, where the elongation rate reaches a maximum value
M ′v(1.37) ≈ 0.616, and reaches the asymptotic free-fall regime at z̄ = Fv,0 ≈ 7.56 since
MvM

′
v(Fv,0) = 0.95, where 0.95 is an arbitrary value close to 1.

• Ū0 � 1 ⇒ viscous regime for z̄ � 1 and inertial regime for z̄ � 1

• Ū0 � 1 ⇒ inertial regime only

In the case of a negligible initial velocity U0 � Uv (equivalently Ū0 � 1), ac-
cording to equations 1.24 and 1.25, the viscous regime of the flow (z � zv) writes

Ū(z̄) =
1

2

(
z̄ +

√
2Ū0

)2

(1.26)

This regime has not received much attention in the literature since achieving such
a flow experimentally is quite difficult. Indeed, zv has to be of the order of a few
centimetres, which implies using a liquid of dynamic viscosity η ≥ 101 Pa.s. Besides,
in addition to the difficulty of achieving a large enough flow rate to maintain a con-
tinuous curtain, one must use a very wide slot in order to avoid the edge effects (this
point will be developed in §3.1.4). Finally, the curtain length Lc has to be larger
than zv to observe the universal behaviour which is not affected by the downstream
boundary condition.

Regardless of the value of the initial velocity, in the inertial regime, again using
equations 1.24 and 1.25, the dimensionless velocity field writes

Ū(z̄) =
√
Ū2

0 + 2(z̄ − sv) (1.27)

where sv = sv,0 + Ū2
0/2 −M−1

v (Ū0). In his early experiments, Brown (1961) found
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Chapter 1. Liquid curtains

sv = 2. For negligible initial velocities U0 � Uv, this regime is observed for z � zv.
For large initial velocities U0 � Uv, it is observed immediately after the slot exit.
In fact, since sv goes to 0 for U0 � Uv, we recover the free-fall U2 = U2

0 + 2gz.

Length of the sub-gravitational regime

We can now derive an expression of the length z∗v of the sub-gravitational part of the
curtain introduced in §1.1.1. Let us define this length as UdU/dz(z = z∗v) = 0.95g

where 0.95 is an arbitrary value close to 1. For Ū0 = 0, let Fv,0 be such that
MvM

′
v(z̄ = Fv,0) = 0.95. We obtain the value Fv,0 ≈ 7.56 close to 7 mentioned in

§1.1.1 (see figure 1.4.b). According to equation 1.24, we have

z∗v = Fv × zv with Fv = Fv,0 −M−1
v (Ū0) (1.28)

where the prefactor Fv is a decreasing function of the initial velocity. This result
holds if Fv ≥ 0, i.e. if Ū0 ≤ Mv(Fv,0) ≈ 3.23. For simple numerical estimations,
note that Fv ≈ 2.34 (3.23 − Ū0) with an error less than 0.65. This result had not
been derived in the literature so far since the master curve had not been explicitly
identified.

1.2 Newtonian curtain stability

1.2.1 Dynamics of hole opening

Industrial liquid curtains used in curtain coating may spontaneously break due to
impurities in the liquid such as bubbles. In such cases, a large area of the substrate
will remain “dry” (uncoated). An example of ruptured industrial curtain is shown in
figure 1.5 to illustrate this major problem. The holes forming within the curtain are
generally initiated far from the slot, where the sheet is thin. As the sheet retracts
(i.e. as the hole grows), the liquid is collected into a rim forming the edge of the hole.
Different scenarios can be observed depending on the position of hole initiation: the
hole may be advected by the flow or propagate upwards, thus causing irreversible
breaking of the curtain.

The question of curtain stability in terms of spontaneous hole opening events
has first been raised by Brown (1961) who proposed a simple criterion for the two
different hole propagation scenarios. This criterion is based on a balance between
capillary forces, pulling up the rim of the hole towards the slot, and the inertia of
the surrounding liquid which pulls the hole downwards. This can be reformulated
as follows. According to Taylor (1959) and Culick (1960), if capillary forces are only
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1.2. Newtonian curtain stability

Figure 1.5 – Industrial curtain used in curtain coating (the liquid is a paint). Photo taken
by Julien Beaumont from Saint Gobain Recherche in 2015 in Avilés.

balanced by inertia, the local retraction speed of the sheet in the reference frame of
the moving liquid is

V =

√
Γ

ρh
(1.29)

where ρ and Γ are the liquid density and surface tension and 2h(z) is the local
thickness of the curtain. Hence, the part of the liquid rim corresponding to the
upper edge of the hole propagates at velocity V − U in the reference frame of the
laboratory, where V (z) is calculated based on the local curtain thickness 2h(z) and
where U(z) is the local velocity of the surrounding liquid. This local competition
can be written in terms of a local Weber number

We =

(
U

V

)2

=
ρhU2

Γ
=
ρqU

2Γ
(1.30)

which can be less than one close to the slot and become larger than one downstream.
Therefore, if a hole opens at an altitude where We > 1, i.e. where advection is faster
than the hole opening process, it will be carried away by the flow. This process is
often referred to as “self-healing”. However, if a hole opens in the unstable part
of the curtain where We < 1, the upper edge of the hole propagates upwards and
stops when reaching the slot whereas the lower end propagates downwards, in which
case the curtain is finally split into two parts delimited by a rim which takes the
form of an arch. Hence, there is a separation between an unstable zone upstream
of the curtain (where We < 1) and a stable zone downstream of the curtain (where
We > 1).
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Chapter 1. Liquid curtains

1.2.2 Effect of viscosity

Viscous forces may also play a role. For Newtonian liquids, Savva & Bush (2009)
showed that the velocity of the edge of a hole initiated in a motionless sheet of
constant thickness goes from 0 to V in a time which increases as the Ohnesorge
number Oh increases, where

Oh =
η

(ρhΓ)1/2
=
ηV

Γ
(1.31)

which can be seen as a capillary number based on the Taylor-Culick velocity in its last
form. Capillary forces are initially balanced by viscous forces before inertia finally
dominates. Based on similar results, Sünderhauf et al. (2002) concluded that increas-
ing the liquid viscosity stabilises the curtain since the dynamics of hole opening is
slowed down temporarily. Note that, since the curtain thickness 2h(z) = q/U(z)

is a function of the distance z from the slot, the Taylor-Culick velocity V and the
Ohnesorge number Oh are also function of z.

1.3 Viscoelastic curtains

1.3.1 Curtain flow

The influence of viscoelasticity has been investigated in industrial processes involving
free-surface extensional flows such as fibre spinning (Papanastasiou et al., 1987) and
film casting (Alaie & Papanastasiou, 1991; Satoh et al., 2001). These techniques aim
at producing plastic tubes or sheets respectively. In film casting, a polymer melt is
extruded through a slot die and the resulting liquid sheet is cooled before reaching
a rotating drum where it is collected. Alaie & Papanastasiou (1991) reports that
viscoelastic films thin more rapidly at the slot exit than Newtonian films with the
same viscosity. The liquids involved in film casting are so viscous that gravity and
inertia can generally be neglected. The force exerted by the rotating drum domin-
ates the process and stretches the liquid in the flow direction. Indeed, as will be
illustrated in figure 2.13.a, a fibre-spinning-like experiment can even be performed
“upside down”, the liquid being forced to flow in the direction opposite to gravity.

Curtain coating is a similar process which aims at depositing a material layer
of uniform thickness on a solid substrate by forming a thin sheet of coating liquid
(paint for example) extruded vertically through a slot and falling on the substrate.
The major difference with film casting is that the liquids involved in curtain coating
are generally much less viscous. Therefore, contrary to film casting, the process is
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1.3. Viscoelastic curtains

dominated by gravity which is now the driving force of the problem.

To date, although the structure of the flow is now well understood in film cast-
ing, i.e. in the absence of gravity and inertia, very few authors have addressed the
issue of the possible influence of elasticity in the context of curtain coating. The
only measurements reported in the literature are the very recent measurements per-
formed by Karim et al. (2018b) who observed free-falls (constant acceleration g) for
low-viscosity polymer solutions with millisecond-scale extensional relaxation times.
No similar measurements were performed on other solutions with larger relaxation
times. Consequently, the influence of elasticity on the curtain flow remains an open
question.

To highlight the importance of this question, we recall that in most experimental
and industrial applications involving Newtonian curtains, the length z∗v of the sub-
gravitational regime derived in §1.1 is very small compared to the length of the
curtain. Indeed, typical orders of magnitude for zv (equation 1.3) are 0.01 cm for
water of viscosity η = 10−3 Pa.s and 1 cm for pure glycerin of viscosity η = 1 Pa.s,
while the curtain length is typically of order Lc = 10 cm. However, to date, the
length of the sub-gravitational regime remains unknown in the case of a viscoelastic
curtain. This gap in the literature might lead some authors to assume, incorrectly,
that the flow of viscoelastic curtains or jets can be approximated by a free-fall based
on the small value of the viscous length zv = ((4η0/ρ)2/g)1/3 where η0 is the zero-
shear viscosity of the liquid.

1.3.2 Curtain stability

In contrast, the stability of viscoelastic curtains has already received some atten-
tion in recent literature, mostly from the group of Marcio S. Carvalho (Becerra &
Carvalho, 2011; Karim et al., 2018b). Two different aspects have been examined.

Karim et al. (2018b) recently measured the local retraction speed of the sheet
when a hole is initiated in a curtain made of low-viscosity PEO solutions. They
report that the ratio of the local retraction speed to the local Taylor-Culick velocity
decreases when the local Ohnesorge number increases for Oh ranging between 0.22

and 0.43. This ratio was 0.95 (slightly less than one) for the solution with the highest
extensional relaxation time τ (= 0.16 s, measured by a capillary breakup extensional
rheometer) and the authors concluded that elastic stresses may slow down the hole
opening process.

19



Chapter 1. Liquid curtains

For a given coating liquid, there is a minimum flow rate Qmin below which it
becomes impossible to form a continuous curtain. Below Qmin, the sheet breaks
and equidistant jets are ultimately generated from the die instead of a continuous
curtain. This is one of the most severe industrial limitations of the curtain coating
technique. Therefore, recent studies have investigated the role of polymer additives
in curtain stability by measuring Qmin for polymer solution. Becerra & Carvalho
(2011) and Karim et al. (2018b) showed that Qmin could be decreased by adding
a small amount of polymer molecules to a low-viscosity Newtonian solvent, thus
allowing the formation of continuous curtains at lower flow rates. Karim et al.
(2018b) proposed an interpretation based on measurements of the sheet response
to a local disturbance produced by an air jet blown through a needle. The authors
observed that Newtonian curtains break much more easily than viscoelastic curtains
and concluded that the growth rate of any disturbance leading to the formation of
a hole is delayed by polymer addition.
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Generalities on viscoelasticity
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In a famous text published in 1964 in Physics today, Markus Reiner (Reiner, 1964)
tells us about the birth of Rheology, a now active branch of Physics. This field con-
cerns the study of the deformation of materials which are intermediate between
Hookean elastic solids and Newtonian viscous liquids and which could not be cap-
tured by the two theories existing at the time, namely the theories of elasticity and
of fluid mechanics. The story began in 1928 when Reiner was invited at Lafayette
College by Eugene Cook Bingham who had heard of his recent collaboration with
a chemist on solving an extrusion problem involving a plastic material. Convinced
that this kind of collaboration were to become increasingly necessary, Reiner and
Bingham agreed on the designation of “Rheology” from the Greek “rhéō” (flow) and
“logia” (study of). The term was inspired by the aphorism of Heraclitus of Ephesus
“πάντα ῥεῖ” (panta rhei), literally “everything flows”.

Reiner pointed out a possible misunderstanding of this term which seems to
exclude solids since most of them do not “flow” in the usual meaning of the word.
He found the solution in the words of the prophetess Deborah “The mountains flowed
before the Lord”, meaning that mountains do flow, but only before the Lord whose
time of observation is infinite, and not before men who can not perceive their motion
in the course of their short lives. Reiner concluded that the difference between solids
and fluids lies in the magnitude of the Deborah number

De = relaxation time/observation time (2.1)

which measures the relaxation time of the material, which depends on its internal
structure, relatively to the time of observation which depends only on the observer.
Bringing solids and liquids under a common concept, the Deborah number has now
become one of the fundamental numbers of rheology. Its value helps scientists choos-
ing the appropriate mechanical description for a given problem. For example, rocks
forming the mantle can be considered as solids at human time scales but have to
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2.1. Elastic solid vs. viscous fluid

be modelled as liquids when considering the convective motion in the mantle which
are responsible for continental drift which is hardly noticeable for us human beings
since the continental plates move at a few centimetres per year.

In this chapter, we first present the basic models describing elastic solids (De �
1) and viscous fluids (De � 1). Then, we introduce some simple models and simple
constitutive equations describing the behaviour of viscoelastic liquids (De ≈ 1).
Next, we present the fundamental concepts of the microscopic description of poly-
mers solutions and melts, two classical examples of viscoelastic liquids. Since these
two aspects of viscoelasticity are often presented separately, the link between them is
not always obvious. Hence, we dedicate the next section to the connection between
constitutive equations and the microscopic description of polymers. Finally, we
present some of the many unusual flow characteristics observed with viscoelastic li-
quids which have historically motivated the development of the previously presented
theories.

2.1 Elastic solid vs. viscous fluid

In this section, we present the classical descriptions of solids and liquids in their
simplest (non tensorial) form. The general form will be given in §2.3.3 for Newtonian
fluids.

2.1.1 Elastic solid

Hooke’s law

Hooke’s law describes the behaviour of an ideal elastic solid (called Hookean solid).
It writes

σ = Gγ (2.2)

and indicates that the applied stress (force per unit surface) σ is proportional to the
deformation γ with some proportionality coefficient G called elastic modulus. In the
example of a shear deformation (see figure 2.1), σ is the shear stress, γ = δ/L is the
shear deformation - or shear strain - and G is the shear modulus. For an extensional
deformation, the strain (length increment divided by original length) is noted ε and
stress to strain ratio is called Young’s modulus and is generally noted E. Both G
and E measure the stiffness of the solid and are related by E = 2G(1 + ν̄) where
the Poisson ratio ν̄ is the ratio of transverse to axial strain in the direction of a
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Figure 2.1 – Shear deformation of magnitude γ = δ/L of an elastic solid.

stretching force.

Hooke’s law suggests that the material responds instantaneously to mechanical
solicitations since it has no internal relaxation time, i.e. the stress instantaneously
switches from 0 to Gγ after a sudden deformation γ. Besides, a material described
rigorously by Hooke’s law will always recovers its original shape once the source
of stress is being removed. In other words, it does not “flow” since the internal
structure of the material is not altered at all by the deformation, even when being
applied for a long time. Elastic deformations are reversible and elasticity is in fact
closely linked to the idea of memory. A Hookean elastic solid is the limiting case of
a material with infinite memory.

For usual “hard” solids such as metals and minerals, the elastic modulus ranges
typically from 1010 Pa for sodium and 1011 Pa for quartz and aluminium to 1012 Pa
for diamond. Elasticity comes from the electrostatic restoring force arising from the
stretching of bonds (covalent, ionic, metallic, intermolecular, ...) between atoms or
molecules during deformation (enthalpic elasticity). On the other hand, for “soft”
solids such as elastomers (rubber) or gels, the elastic modulus is much lower. It
ranges between 108 Pa for hardest rubbers to 103 Pa for softest gels. For elastomers
and polymeric gels, elasticity comes from the loss of configurational entropy of the
polymer chains during deformation (entropic elasticity).

Hooke’s law is generally valid in the regime of small deformation, i.e. a few
0.1% for hard solids and more than 100% for some elastomers. Above this critical
deformation, we are in the plastic regime where the material starts creeping. This
behaviour is in fact more related to the behaviour of fluids since permanent structural
modifications observed in the plastic regime.
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2.1. Elastic solid vs. viscous fluid

Figure 2.2 – Shear flow of a viscous fluid between two parallel plates separated by a distance
d, one moving at velocity u and the other one stationary (Couette flow).

2.1.2 Viscous fluid

Newton law

Newton’s law describes the behaviour of an ideal viscous fluid (called Newtonian
fluid). It writes

σ = η γ̇ (2.3)

and indicates that the applied stress σ is proportional to the the rate of deformation
γ̇ with some proportionality coefficient η called (dynamic) viscosity. In the example
of a shear deformation (see figure 2.2), σ is the shear stress and γ̇ = dγ/dt = u/L is
the shear rate. η measures the resistance of the liquid to flow. Newton’s law suggests
that the material responds instantaneously to mechanical solicitations since it has
no internal relaxation time, i.e. the shear stress instantaneously switches from 0 to
ηγ̇ after initiating a sudden shear flow of shear rate γ̇. Besides, any stress σ applied
during a short time t causes a permanent and irreversible deformation γ = σt/η, i.e.
the fluid will never spontaneously recover its previous internal structure once stress
is removed, contrary to Hookean elastic solids. In fact, a Newtonian viscous fluid is
the limiting case of a material with no memory.

Newton’s law can describe both liquids and gases. Viscosity is associated to en-
ergy dissipation within the fluid and is due to internal friction. At the macroscopic
level, viscosity measures the conversion of the kinetic energy of the flow into heat
energy. In the shear flow shown in figure 2.2, viscosity describes the transfer of
momentum due molecular collisions between the different portions of liquids (along
x2) which have different average velocities.

The dynamic viscosity of air is 1.8 × 10−5 Pa.s at a temperature 20◦C and is
an increasing function of temperature. On the other hand, the dynamic viscosity
of liquids is a decreasing function of the temperature. Some orders of magnitudes
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at 20◦C are η = 10−3 Pa.s for water, 100 Pa.s for pure glycerin and 101 Pa.s for
honey. Furthermore, as mentioned earlier, “solids” do also flow on long time scales.
A famous example is the pitch drop experiment started in 1927 in the university
of Queensland where a piece of pitch, which appears to be solid at human time
scales, flows under its own weight and drips at a rate of one drop every eight years.
Viscosity is of order 108 Pa.s. The description of the convective motions in the
mantle requires a much larger viscosity of order 1021 Pa.s.

2.2 Linear viscoelasticity: Simple models

In many experiments, the Deborah number defined in equation 2.1 is either ex-
tremely low or extremely large depending on the material and on the time scale of
the experiment. Hence, Newton’s law 2.3 (De � 1) and Hooke’s law 2.2 (De � 1)
provide respectively appropriate mechanical descriptions. However, a new descrip-
tion must be adopted when considering a material deforming on a time scale which
is of the order of its internal relaxation time, i.e. when the Deborah number is of
order one. Materials which behave as elastic solids on short time scales and as vis-
cous liquids on long time scales are called viscoelastic liquids. In the following, we
introduce the classical models of viscoelastic liquids in their simplest (non tensorial)
form. Their tensorial equivalents will be presented in §2.3.5.

A classical example is a silicone based material called Silly Putty. It bounces
when hitting a flat surface (elastic behaviour) but forms a puddle after laying on
a flat surface for a few minutes, i.e. it flows (viscous behaviour). Two families
of viscoelastic liquids are of particular interest in industrial applications: polymer
melts and polymer solutions. Polymer melts are purely polymeric materials with
no solvent and correspond to the large temperature state of plastic materials such
as polyethylene (PE) which is used to produce plastic bags. In polymer solutions,
polymer molecules are dissolved in a liquid solvent. Many biological liquids fall in
that category, such as saliva, egg white, semen, and the slime produced by hagfishes
to choke predators when under attack.

2.2.1 Maxwell model

The simplest analytical descriptions of viscoelastic liquids is the model introduced
in 1867 by James Clerk Maxwell. The behaviour of the material is assumed to be
analogous to that of a purely viscous damper and a purely elastic spring connected
in series, as illustrated in figure 2.3.a. We consider that the material is subjected
to a pure shear deformation under shear stress σ, and the response is described by
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Figure 2.3 – (a) Maxwell model: purely viscous damper of viscosity η in serie with a purely
elastic spring of elastic modulus G. (b) Jeffrey model: Maxwellian spring-damper element
of elastic modulus G and viscosity ηp (polymers) in parallel with a purely viscous damper
of viscosity ηs (solvent).

analogy with the spring-damper device. The total deformation γ of the device is
γ = γe + γv where γe is the deformation of the spring and γv is the deformation
of the damper. Hence, the total deformation rate is γ̇ = γ̇e + γ̇v. Both spring and
damper undergo the same stress σ. The spring follows Hooke’s law σ = Gγe while
the damper follows Newton’s law σ = ηγ̇v where G and η are respectively the shear
modulus and the shear viscosity of the material. This gives

γ̇ =
σ̇

G
+
σ

η
⇔ τ σ̇ + σ = ηγ̇ (2.4)

where τ is the Maxwell relaxation time defined as

τ =
η

G
(2.5)

2.2.2 Jeffrey model

The Jeffrey model is a refined version of the Maxwell model to take into account the
viscous response of the solvent in polymer solutions. In this model, the rheological
response of the material consists of a superposition of the viscous response of the
solvent and of the viscoelastic response of the particles. The analogous device is
shown in figure 2.3.b and consists of a Maxwellian spring-damper element of elastic
modulus G and viscosity ηp (particles) in parallel with a purely viscous damper
of viscosity ηs (solvent). The total stress σ is the sum of the stresses σp and σs

developed in each branch, i.e.

σ = σp + σs (2.6)
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and the rate of deformation γ̇ is the same in each branch, which gives

τ σ̇p + σp = ηpγ̇ and σs = ηsγ̇ (2.7)

where the relaxation time is now

τ =
ηp
G

(2.8)

2.2.3 Generalised Maxwell model

Most viscoelastic liquids such as polymer melts and polymer solutions are better
described by considering a distribution of relaxation times. The analogous device is
a succession of n Maxwell elements are assembled in parallel, each element following

γ̇ =
σ̇i
Gi

+
σi
ηi

i = 1, 2, 3 . . . n (2.9)

with its own relaxation time τi = ηi/Gi. Note that the Jeffrey model is a special
case of generalised Maxwell model where n = 2 with G1 = G, η1 = ηp, G2 = +∞
and η2 = ηs.

For polymer melts and polymer solutions, this distribution of relaxation times
accounts for the different segments lengths along the polymer molecule relaxing on
different characteristic times. Said differently, a polymer chain has various modes of
vibration. We can often define a terminal relaxation time τ1 corresponding to the
slowest mode, i.e. τi < τ1 for i = 2, 3, . . . n. This slowest relaxation mode is often
considered as the relevant time scale of the polymer chain and is sometimes enough
to capture some experimental results, such as in the capillary filament breakup
problem which will be discussed in chapter 3 (Anna & McKinley, 2001; Entov &
Hinch, 1997).

2.3 Constitutive equations

In this section, we introduce the general tensorial formalism in which the different
models presented in the previous section have to be expressed.

2.3.1 Cauchy equation and stress tensor

Cauchy equation

The branch of physics dealing with the motion of continuous materials such as fluids
and solids is called continuum mechanics. It has been developed in the 19th cen-
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tury by mathematicians, engineers and physicists including Augustin-Louis Cauchy,
Claude-Louis Navier and Sir George Gabriel Stokes who derived the fundamental
equations continuum mechanics. These equations include the conservation of mass
which, in the case of an incompressible flow, is simply

∇ · u = 0 (2.10)

and the conservation of momentum

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρg +∇ · π (2.11)

also known as Cauchy equation. In these equations, u(r, t) is the local velocity field,
r and t are position and time, ρ is the material density (which is constant for an
incompressible flow), g accounts for any external body force (for example gravity)
and π(r, t) is the local stress tensor describing the internal forces (counted per unit
surface) arising at any position in the material during deformations (it was noted
π∗ in chapter 1). We now provide a formal definition of π.

Stress tensor

The force exerted on a surface dS of normal unit vector n can be written as

df = π(n) dS (2.12)

By convention, it is the contact force exerted by the external part of the material
(pointed by n) on the internal part (from which n points). For any surface, we can
show that (Petit et al., 2012)

π(n) = π · n (2.13)

which then defines the stress tensor π. Hence, once knowing the expression of the
components πij in a given coordinate system of unit vectors l1, l2 and l3, we can
express the force exerted on any surface using

π · n =
∑

i

(∑
j πij nj

)
li (2.14)

This tensor is symmetric for classical materials (without long-range order in mo-
lecular orientation), i.e. πji = πij. In the following, we only consider incompressible
flows and symmetric stress tensors. It is often convenient to decompose π as

π = −Pδ + σ (2.15)
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where δ is the unit tensor and where P and σ are called pressure and extra stress
tensor. Of course, the exact definition of P depends on the exact definition of σ. Ex-
amples of extra stress tensors, describing both elastic and dissipative viscous effects,
will be given later. We use this decomposition in §2.3.2 since only normal stress dif-
ferences are considered, i.e. πii−πjj = σii−σjj regardless of the exact definition of σ.

Constitutive equation

While the momentum equation 2.11 describes the dependence of the velocity field on
the stress field, one needs a second equation describing the dependence of the stress
field on the velocity field to close the system. Such an equation is called constitutive
equation and depends on the particular physical constitution of the fluid. This
equation often involves the strain rate tensor D defined as

D =
1

2

(
∇u+ (∇u)T

)
⇔ Dij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.16)

which describes the local rate of change of the material deformation, where T is
transposition and ∇u is the velocity gradient tensor defined as (we choose the usual
convention)

(∇u)ij =
∂ui
∂xj

(2.17)

2.3.2 Shear and extensional flows

Two types of flow have been of particular interest for investigating the mathematical
structure of constitutive equations: pure shear flows and pure extensional flows. We
now discuss these two flows.

Shear flow

The velocity field and the associated strain rate tensor for a pure shear flow are

u =


u1 = γ̇ x2

u2 = 0

u3 = 0

and D = γ̇


0 1/2 0

1/2 0 0

0 0 0

 (2.18)

where 1 and 2 are respectively the direction of the flow and the direction of the
velocity gradient (see figure 2.2), and γ̇ is the shear rate. By symmetry, we can
show that some components of the stress tensor are 0. The most general form of
the stress tensor is
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π =


−P + σ11 σ12 0

σ12 −P + σ22 0

0 0 −P + σ33

 (2.19)

The three experimentally accessible physical quantities are

• the shear stress σ12

• the first normal stress difference N1 = σ11 − σ22

• the second normal stress difference N2 = σ22 − σ33

The shear viscosity, also called apparent shear viscosity, is defined as

η ≡ σ12

γ̇
(2.20)

Extensional flow

The velocity field and the associated strain rate tensor for a pure extensional flow
are

u =


u1 = e1 ε̇ x1

u2 = e2 ε̇ x2

u3 = e3 ε̇ x3

and D = ε̇


e1 0 0

0 e2 0

0 0 e3

 (2.21)

where incompressibility requires that e1 + e2 + e3 = 0. We consider two types of
extensional flows:

• e1 = 1 and e2 = e3 = −1/2: three-dimensional extensional flow along x1,

• e1 = −e2 = 1 and e3 = 0: planar extensional flow along x1.

ε̇ is called extension rate in both cases. By symmetry, we can show that the most
general form of the stress tensor is

π =


−P + σ11 0 0

0 −P + σ22 0

0 0 −P + σ33

 (2.22)

In the case of a three-dimensional extensional flow, since directions x2 and x3 are
equivalent, there is only one normal stress difference σ11 − σ22 and the extensional
viscosity is defined as
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ηe ≡
σ11 − σ22

ε̇
(2.23)

Although the definition of the extensional viscosity found in textbooks is based on
the three-dimensional case, the same definition applies in the planar case.

2.3.3 Newtonian fluids

The simplest constitutive equation relating the stress field to the velocity field is

σ = 2ηD ⇔ σij = η

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.24)

where η is the shear viscosity defined by equation 2.20. It is a constant parameter
of the fluid, independent of the shear rate. Equation 2.24 is the tensorial form of
Newton’s law 2.3. The normal components of the extra stress tensor σ are 0 in a
pure shear flow, i.e. N1 = N2 = 0, and the extensional viscosity is ηe = 3η for a
three-dimensional pure extensional flow. Combining equations 2.10, 2.11, 2.15 and
2.24 gives the Navier-Stokes equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρg −∇P + η∆u (2.25)

where ∆u is the Laplacian of the velocity field. This equation contains a nonlinear
inertial term (u ·∇)u which is responsible of inertial turbulence. It can be neglected
when viscous dissipation overcomes inertia, i.e. when the Reynolds number

Re =
ρUL

η
(2.26)

is much lower than one, where U and L are typical velocity and length scales of the
problem.

Fluids which follow equation 2.24 are called Newtonian fluids. These include
water, air, alcohol, glycerin and some oils. These liquids are considered Newtonian
since they follow equation 2.24 over a wide range of shear rates and frequencies. Al-
though the list is short, large quantities of these fluids are found on earth, especially
water and air. This explains why the branch of fluid mechanics has historically
mostly focused on Newtonian flows (i.e. flows of Newtonian fluids).

2.3.4 Non-Newtonian fluids

Any fluid which do not follow equation 2.24 is called a non-Newtonian fluid. Most
fluids containing microstructures such as deformable particles are non-Newtonian.
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2.3. Constitutive equations

They can be found in nature (biological fluids, mud, magma, . . . ), food industry
(sauces, soups, yogurts, jams, mayonnaise, . . . ), cosmetics (cremes, gels, foams,
. . . ) and civil engineering (concretes, paints, . . . ) for example. Different adjectives
are used to describe particular non-Newtonian properties of a material, and “vis-
coelastic” is one of them. Polymer melts and polymer solutions are generally also
shear-thinning, meaning that their apparent shear viscosity is a decreasing function
of the shear rate. They are also strain-hardening, meaning that the extensional
viscosity is an increasing function of the extension rate.

One of the goals of rheology is to propose constitutive equations accounting for
non-Newtonian properties. These equations can be derived from microstructure
theories or proposed empirically to match experimental data. A valid constitutive
relation must follow some general principles first set out by James Gardner Oldroyd
in 1950 (Oldroyd, 1950) and developed by Clifford Ambrose Truesdell and Walter
Noll in 1953 and 1958 (Truesdell & Noll, 2004). These principles (or axioms) are
(Bertram, 2005; Bertram & Glüge, 2015)

1. Principle of determinism: The stresses in a material point at a certain instant
of time are determined by the current and the past (but not the future) motion
of the body.

2. Principle of local action: The stresses at a material point depend on the motion
of only its infinitesimal neighbourhood.

3. Principle of material frame-indifference or Principle of material objectivity :
Constitutive equations must be invariant under changes of frame of reference.

4. Principle of invariance under superimposed rigid body motions : Stresses in a
body are not directly caused by translations or rotations of the body.

In the following, we present some of the most popular constitutive equations of
viscoelastic liquids, in particular polymer solutions. It is customary to separate the
solvent and polymer contributions to the extra stress tensor by writing

σ = σs + σp where σs = 2ηsD (2.27)

is the Newtonian contribution of the solvent of viscosity ηs and σp is the polymer
contribution. Note that the equations we present now are used for different types of
viscoelastic liquids, not only polymer solutions.
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2.3.5 The Oldroyd-B model

The first attempt to generalise the Maxwell model to a tensorial form consists of
writing equation 2.4 as τ (∂tσp + (u · ∇)σp) + σp = 2ηpD. However, this con-
stitutive equation violates the fourth principle (invariance under superimposed rigid
body motions) and needs some refinements. A valid constitutive equation is

τ
O
σp + σp = 2ηpD (2.28)

where τ is the polymer (terminal) relaxation time, ηp = Gτ where G is the elastic
modulus and O is a notation for the upper-convected time derivative defined for any
vector X as

O
X =

∂X

∂t
+ (u · ∇)X − (∇u)X −X(∇u)T (2.29)

Equations 2.27, 2.28 and 2.29 form the Oldroyd-B or upper-convected Jeffrey model
(Oswald & Saint-Jean, 2005) which is the tensorial version of the Jeffrey model
presented in 2.2.2. In the case of a negligible solvent viscosity, i.e. when the solvent
to total viscosity ratio

S =
ηs

ηs + ηp
(2.30)

is S = 0, we obtain the upper-convected Maxwell (UCM) model (σ = σp) which
is the tensorial version of the Maxwell model presented in 2.2.1. The term σp +

∂tσp makes any change in stress relax on the time scale τ , the term (u · ∇)σp

describes the advection of the stress along the flow streamlines and the two nonlinear
terms (∇u)σp − σp(∇u)T are added to satisfy the fourth principle. Since this
constitutive equations is nonlinear, flow instabilities can be observed even at low
Reynolds numbers (Groisman & Steinberg, 2000; Morozov & van Saarloos, 2007).
These phenomena are referred to as elastic instability. The dimensionless number
governing elastic instabilities is the Weissenberg number

Wi =
τU

L
(2.31)

where U and L are typical velocity and length scales of the problem.

We now derive the predictions of the Oldroyd-B model for the pure shear and
extensional flows. We assume that the stress components σp,ij(t) are homogeneous
in space and we note σ̇p,ij ≡ ∂tσp,ij.
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Shear flow

For a shear flow, we obtain the following equations{
τ(σ̇p,12 − γ̇σp,22) + σp,12 = ηpγ̇

τ(σ̇p,11 − 2γ̇σp,12) + σp,11 = 0

{
τ σ̇p,22 + σp,22 = 0

τ σ̇p,33 + σp,33 = 0
(2.32)

Therefore, assuming that the liquid is initially at rest at t = 0, i.e. σp,ij(0) = 0 we
obtain σp,22 = σp,33 = 0 and{

σp,12(t) = ηpγ̇ [1− exp (−t/τ)]

σp,11(t) = 2ηpτ γ̇
2 [1− (1 + t/τ) exp (−t/τ)]

(2.33)

After transient growth, the shear and normal stress components reach the asymp-
totic values

σp,12 = ηpγ̇ and σp,11 = 2ηpτ γ̇
2 (2.34)

and the measurable quantities defined in §2.3.2 become

σ12 = (ηs + ηp)γ̇, N1 = 2ηpτ γ̇
2 and N2 = 0 (2.35)

The shear viscosity η ≡ σ12/γ̇ is η0 = ηs + ηp and does not depend on the shear
rate. The first normal stress difference scales as N1 ∝ γ̇2 which is in agreement
with most experimental data, including dilute and semidilute polymer solutions at
low shear rates (see for example Zell et al. (2010)). This is due to the deformation
of polymer chains and to their tendency to align in the direction of the flow, both
effects being proportional to γ̇. Experimentally, the second normal stress difference
is much smaller, typically N2 ≈ −N1/10, but not 0.

Extensional flow

For an extensional flow, we obtain the following equations

τ(σ̇p,ii − 2eiε̇ σp,ii) + σp,ii = 2ηpei ε̇ i = 1, 2, 3 (2.36)

Therefore, assuming a three-dimensional extensional flow starting at t = 0, we obtain


σp,11 =

2ηpε̇

1− 2τ ε̇
+

(
σp,11(0)− 2ηpε̇

1− 2τ ε̇

)
exp

[
2ε̇t

(
1− 1

2τ ε̇

)]
σp,ii =

−ηpε̇
1 + τ ε̇

+

(
σp,ii(0)− −ηpε̇

1 + τ ε̇

)
exp

[
−ε̇t

(
1 +

1

τ ε̇

)]
i = 2, 3

(2.37)
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which are function of both the strain ε = ε̇t and the strain rate ε̇. While the
transverse components σp,22 and σp,33 always reach a finite asymptotic value at long
times, the axial component σp,11 only reaches a finite value if τ ε̇ < 1/2. In the case
where τ ε̇ > 1/2, the Oldroyd-B model predicts unbounded stress growth in time.
This non physical behaviour is known to be the major deficiency of this model. Note
that the effect of the initial axial stress σp,11(0) only vanishes with time if τ ε̇ < 1/2.
Otherwise, the initial stress does not decay and affects the flow at all further times,
i.e. the fluid does not exhibit a fading memory. McKinley (2005) pointed out the
possible relevance of this effect in the context of jet breakup where the effect of an
upstream shear flow (pre-shear in a pipe) can significantly modify the dynamics of
breakup. For τ ε̇ < 1/2, the stress components reach the asymptotic values

σp,11 =
2ηpε̇

1− 2τ ε̇
and σp,ii =

−ηpε̇
1 + τ ε̇

i = 2, 3 (2.38)

and the extensional viscosity defined in equation 2.23 becomes

ηe = 3ηs +
3ηp

(1− 2τ ε̇)(1 + τ ε̇)
(2.39)

Note that experiments reveal a strong increase of the extensional viscosity at τ ε̇ =

1/2. This phenomenon, called coil-stretch transition, arises when the stretching ex-
erted by the flow overcomes the relaxation of polymer molecules. At the microscopic
level, it means that polymer molecules unravel to a nearly fully extended state (De
Gennes, 1974; Petrie, 2006).

The Oldroyd-B model captures some of the main features of viscoelastic liquids:
the stress at time t is influenced by the past history of the flow, the fluid exhibits
a non-zero first normal stress difference N1 and the extensional viscosity ηe is an
increasing function of the extension rate. For these reasons, it has become the work-
ing horse of theoretical studies of viscoelastic liquids (Larson, 1999; Morozov & van
Saarloos, 2007). This simple model has been successfully used to describe, at least
qualitatively, many physical phenomena such as elastic instabilities (Shaqfeh, 1996;
Alves & Poole, 2007) or turbulent drag reduction (T. Min & Joseph, 2003).

The limitations of this model are a constant shear viscosity, the absence of a
second normal stress difference N2, and more importantly a diverging extensional
viscosity at the coil-stretch transition. Although many industrial polymer solutions
are shear-thinning, note that laboratory experiments are often performed with dilute
polymer solutions in a highly viscous solvent (S ≈ 1, equation 2.30) in order to
“screen” the natural tendency of polymers to produce a shear-thinning behaviour.
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2.3. Constitutive equations

For such liquids, the viscous response is dominated by the solvent while the elastic
response is determined by the polymer chains. These liquids with constant shear
viscosity, called Boger fluids, are therefore more suitable for analytical descriptions
using the Oldroyd-B model.

2.3.6 Linear vs nonlinear viscoelasticity

In order to give a better insight on the validity domain of the Oldroyd-B model, it is
important to define the linear and nonlinear flow regimes of viscoelasticity. In simple
words, the intrinsic deformation of the particles (polymers, micelles, . . . ) under flow
is proportional to the imposed stress in the linear regime. When the imposed stress
increases, the deformation saturates in the nonlinear regime and nonlinear terms ap-
pear in the intrinsic stress-strain relationship of the material. Since the Oldroyd-B
model predicts a constant apparent shear viscosity, i.e. a linear stress-strain rela-
tionship, it is reasonable to say that this constitutive equation should be valid in the
linear flow regime. A more complete constitutive equation should include nonlinear
terms reflecting the nonlinearities of the intrinsic stress-strain relationship of the
particles.

In the general case, we can define a critical intrinsic deformation γc beyond which
we are no longer in the linear regime. Under a shear flow of shear rate γ̇, since the
particle deformation is γ̇τ , we are in the linear regime if γ̇ < γ̇c where

γ̇c =
γc
τ

(2.40)

The value of γc depends on the material and is of order one in molten polymers far
from the glass transition, i.e. we are in the linear regime when τ γ̇ � 1 (Oswald &
Saint-Jean, 2005). The condition becomes τ ε̇� 1 in an extensional flow, well below
the coil-stretch transition.

For a shear flow, the apparent viscosity η ≡ σ12/γ̇ is constant in the linear regime
since shear stress must be proportional to shear rate. We introduce σ12 = η0γ̇ for
γ̇ < γ̇c where η0 is the constant zero-shear viscosity of the material. For polymer
solutions, the apparent viscosity usually decreases in the non linear regime before
reaching a second plateau value η∞ which is larger or equal to the solvent viscosity
ηs. Several empirical laws have been proposed to fit experimental data. One of them
is the five-parameters Carreau law

η − η∞
η0 − η∞

=

[
1 +

(
γ̇

γ̇c

)a1
]n−1

a1

(2.41)
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Figure 2.4 – Apparent viscosity η against shear rate γ̇ according to Carreau 2.41 and
Oswald 2.42 laws. The boundary between the linear and nonlinear regime is γ̇ = γ̇c.

where a1 encodes the sharpness of the transition from linear to nonlinear regime and
n is the degree of shear thinning. If η∞ � η0, in the range of shear rates such that
η∞ � η � η0, this law reduces to an Ostwald power law

η = K0γ̇
n−1 (2.42)

with K0 = η0/γ̇
n−1
c . This gives σ12 = K0γ̇

n. Both laws are shown in figure 2.4.
However, it is possible to obtain n = 1 (or equivalently η∞ = η0) artificially by
raising the solvent viscosity. For such Boger fluids, the intrinsic shear-thinning
nature of the fluid is “screened” and it becomes impossible to directly measure γ̇c on
the apparent shear viscosity curve. In the following of this thesis, the quantity ηp is
defined as the polymer contribution to the zero-shear viscosity, i.e.

ηp ≡ η0 − ηs (2.43)

We saw in equation 2.35 that ηp = τG for the Oldroyd-B model where τ and G are
the fundamental material parameters.

2.3.7 The FENE-P model

The FENE-P model is one of the most commonly used constitutive equation taking
into account intrinsic nonlinearities. As will be presented in §2.5, it has been derived
by R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager from the kinetic theory
of dilute polymer solution where polymer molecules are modelled as “finitely extens-
ible nonlinear elastic” (FENE) dumbbells. The Oldroyd-B model is also derived
from this theory where the polymer molecules are modelled as Hookean dumbbells,
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2.3. Constitutive equations

with a linear intrinsic stress-strain relationship. Here we simply present the FENE-P
model and its main predictions in pure shear and extensional flows (see Bird et al.
(1987, 1980); Herrchen & Öttinger (1997) for detailed calculations).

The polymer contribution to the extra stress tensor writes

σp = G(fA− δ) where τ
O
A+ fA = δ (2.44)

with

f =

(
1− tr(A)

b

)−1

= 1 +
3

b

(
1 +

tr(σp)

3G

)
(2.45)

where A is a conformation tensor (defined in §2.5), δ is the unit tensor, G is the
elastic modulus, τ is the (terminal) relaxation time on the polymer and b is a pos-
itive dimensionless parameter, typically larger than ten, accounting for the finite
extensibility of the polymer chains. The Oldroyd-B model is recovered for infinitely
extensible polymers, i.e. in the limit b → ∞ (f = 1). At equilibrium (σp,ij = 0),
equations 2.44 and 2.45 give feq = 1 + 3/b, Aij,eq = 0 for i 6= j and Aii,eq = 1/feq for
i = 1, 2, 3.

Shear flow

For a shear flow (§2.3.2), we give the asymptotic values (t → +∞) of the stress
components. We find σ12 = ηγ̇ with

η − ηs = 6Gτ (τ γ̇)−1 p1/2 sinh
[
1/3 arcsinh

(
qp−3/2

)]
(2.46)

where p = b/54 + 1/18 and q = bτ γ̇/108. The two limiting scalings are

η − ηs =

{
Gτ b/(b+ 3) for τ γ̇ → 0

Gτ
[
(2/b)(τ γ̇)2

]−1/3 ∝ γ̇−2/3 for τ γ̇ → +∞
(2.47)

The FENE-P model predicts a shear thinning behaviour. In fact, solution 2.46
is very similar to a Carreau law 2.41 with a degree of shear thinning n = 1/3, a
viscosity η∞ = ηs at large shear rates, a zero-shear viscosity η0 = ηs + ηp with

ηp ≡ η0 − ηs = Gτ b/(b+ 3) (2.48)

(which becomes Gτ for large values of b) and a critical shear rate γ̇c = γc/τ where
γc is an increasing function of b. A direct comparison with the Carreau law 2.41
suggests a1 ≈ 2 and γc ∝ b1/2 with a numerical prefactor close to one. This is not
surprising since, as will be presented in §2.5, b1/2 can be interpreted as the ratio of
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the polymer size at full extension to its size in the coiled state at equilibrium. For a
Boger fluid with a highly viscous solvent (S ≈ 1, equation 2.30), the apparent value
of n becomes 1. The other stress components are σ22 = σ33 = 0 and σ11 = 2σ2

p,12/G,
i.e. N2 = 0 and

N1/γ̇
2 = 2(η − ηs)2/G (2.49)

which, using equation 2.47, gives the expected scaling N1 ∝ γ̇2 in the linear regime
(γ̇ � γ̇c) and N1 ∝ γ̇2/3 in the nonlinear regime (γ̇ � γ̇c).

Extensional flow

For an extensional flow (§2.3.2), the asymptotic values (t → +∞) of the stress
components are given by the following equations

σp,ii =
2eiGτε̇

f − 2eiτ ε̇
(i = 1, 2, 3) and f = 1 +

3

b

(
1 +

σp,11 + σp,22 + σp,33

3G

)
(2.50)

In the case of a three-dimensional extensional flow, the extensional viscosity ηe ≡
(σ11 − σ22)/ε̇ is given by

{
(ηe − 3ηs)/Gτ = 2/(f − 2τ ε̇) + 1/(f + τ ε̇)

f 3 − [τ ε̇+ 1 + 3/b] f 2 +
[
τ ε̇(1 + 3/b)− 2(τ ε̇)2

]
f + 2(τ ε̇)2 = 0

(2.51)

for which there is no simple analytical expression. The two limiting scalings are

ηe − 3ηs =

{
3Gτ b/(b+ 3) for τ ε̇→ 0

2Gτb for τ ε̇→ +∞
(2.52)

Equivalently, using the polymer contribution to the zero-shear viscosity ηp ≡ η0−ηs
(equation 2.48), we obtain

ηe − 3ηs
η0 − ηs

=

{
3 for τ ε̇→ 0

2(b+ 3) for τ ε̇→ +∞
(2.53)

Therefore, the Trouton ratio defined as Tr ≡ ηe/η0 is Tr = 3 for τ ε̇ → 0 and is
Tr = 3S + 2(b+ 3)(1− S) for τ ε̇→ +∞ where we recall that S = ηs/η0. Solutions
of equation 2.51 are shown in figure 2.5 along with the Oldroyd-B solution given in
equation 2.39.
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Figure 2.5 – Dimensionless polymer contribution to the extensional viscosity ηe (asymptotic
value t → +∞) versus dimensionless extension rate τ ε̇ for the Oldroyd-B (equation 2.39)
model and the FENE-P (equation 2.51) model for different values of b.

The FENE-P model is more realistic than the Oldroyd-B model since shear-
thinning behaviour is allowed and the extensional viscosity rises without diverging
at the coil-stretch transition τ ε̇ = 1/2. It has been successfully used to describe,
at least qualitatively, many physical phenomena including the breakup stage of
thinning filaments (Clasen et al., 2009; McKinley, 2005). A common technique used
to obtain more quantitative description is to use a multimode FENE-P model to
allow a spectrum of relaxation times τi reflecting the different vibration modes of

the polymer chain. This gives σp =
∑

iGi(fiAi − δ) and τi
O
Ai + fiAi = δ with

f−1
i = 1− tr(Ai)/bi. The case fi = 1 gives the multimode Oldroyd-B model which is
the tensorial version of the Generalised Maxwell model presented in §2.2. In these
models, the single dumbbell model (two beads linked by one string) is replaced by
a bead-spring chain model (see Anna & McKinley (2001) or (Clasen et al., 2006)
for details). Another way of improving the agreement with experimental data is
to use more refined constitutive equations where terms are added to the FENE-P
model, like in the Bird-DeAguiar model (see Rothstein & McKinley (2001) and Bird
& DeAguiar (1983) for details).

2.3.8 Other models

Many other constitutive equations have been derived to improve the Oldroyd-B
model. The basic idea of such semi-empirical models is to postulate a microstructure
for the polymer chains and to explore the macroscopic consequences of the polymer-
flow interaction. The three main approaches are (Renardy, 2000)
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• Dilute solution theories which treat polymer molecules individually (no inter-
action between molecules). Each molecule is modelled as an elastic dumbbell
(one string connecting two beads) or as a bead-spring (or bead-rod) chain. The
polymer-flow interaction results from the hydrodynamic viscous drag exerted
on the beads by the surrounding fluid (solvent).

• Network theories which treat polymer molecules as a network of springs linked
at junction points (interaction through entanglements). These junctions form
and decay following certain statistical laws at equilibrium, contrary to a solid
(rubber) where these junctions are permanent. The polymer-flow interaction
results from the motion of these junctions.

• Reptation theories which are in between these two extremes. Polymer mo-
lecules are treated individually but their lateral motion is constrained by a
“tube” formed by the other polymer molecules.

The Oldroyd-B and FENE-P dumbbell models (or bead-spring chain models for
their multimode versions) are derived from dilute solution theories where the springs
are respectively Hookean (Oldroyd-B) and non-Hookean (FENE-P). An example of
Reptation theory is the model of Doi & Edwards (1988). An example of Network
theory is the commonly used Phan-Thien-Tanner or PTT model proposed by Thien
& Tanner (1977) (see also Sibley (2010)). An other useful model is the Giesekus
model proposed by Giesekus (1982) to take into account the interaction between
different dumbbells in the elastic dumbbell theory. Both PTT and Giesekus models
add a nonlinear term to the Oldroyd-B model.

2.4 Polymers: Microscopic description

Linear polymers are long molecules formed by a large number of successive copies of
a single subunit called monomer. The simplest polymer is polyethylene of formula
—[CH2]n— obtained by polymerisation of ethylene monomers of formula H2C=CH2.
Polymers are, by definition, made of more than 100 monomers while molecules with
less than 100 monomers are called oligomers. Human DNA contains about 1010

monomers of size 0.3 nm called nucleotides, which results in a macroscopic contour
length of about two meters when completely unfolded.

Polymer molecules are generally found in the form of coils, resulting in a much
lower effective size. Due to the large number of possible configurations, universal
laws can be found to describe polymer molecules independently of their particular
chemical composition. In this section, we give an overview of the main concepts
derived from the microscopic description of polymer chains in melts and in solutions.
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Figure 2.6 – Successive approximations of a polymer chain from the monomer scale (a)
to the Kuhn length scale (b) where polymer molecules are modelled bead-rod chains, and
from the bead-spring chain model (c) to the elastic dumbbell model (d).

2.4.1 Kuhn length, Flory radius and flexibility

Kuhn length

Two consecutive monomers have preferred respective orientations due to their chem-
ical bound (which can be more or less flexible) and to the size of each monomers.
Xanthan gum for example, whose monomer contains five benzene rings, has less
possible orientations than polyethylene. However, there is a typical minimal dis-
tance beyond which two monomers are no longer correlated and can have arbitrary
relative orientations. This length is called Kuhn length, or persistence length. A
Kuhn segment generally contains a few monomers for flexible polymers, as shown
in figure 2.6 (a to b). Hence, a polymer molecule can be seen as a succession of N
Kuhn segments of length ā and mass m. The molecule has a total mass mN and
a molecular weight M = mNNA where NA is the Avogadro number. If n̄ is the
number of chains per unit volume, the mass concentration of polymer is c = n̄mN .

Flory radius

The contour length of the chain is Lch = Nā while the radius of a polymer coil,
called Flory radius, follows typically

R̄ ∝ ā Nν (2.54)

where the exponent depends on the polymer’s environment. ν is often referred to as
the solvent quality exponent or the Flory exponent due to the important contribu-
tions of Paul John Flory in polymer physics (Flory, 1953). R̄ is the typical radius of
the volume 4πR̄3/3 effectively occupied by the chain (as represented in figure 2.7)
and corresponds, with some numerical prefactor, to the polymer’s radius of gyration
measured from neutron scattering experiments. This effective volume has to be lar-
ger or equal to the sum of the volumes of each monomers which is proportional to

43



Chapter 2. Generalities on viscoelasticity

Figure 2.7 – Flexible ((a), χ� 1) and semi-rigid ((b), χ ≥ 1) polymer chain.

Nā3. This leads to the condition ν ≥ 1/3. The opposite limit is the case where the
polymer chain is completely unfolded at equilibrium, i.e. 2R̄ = Lch = Nā⇒ ν = 1.
Hence, the Flory exponent must range between 1/3 ≤ ν ≤ 1.

Flexibility

The flexibility of a polymer is linked to its extensibility defined as

χ = Lch/R̄ (2.55)

which is χ � 1 for flexible polymers, χ ≥ 1 for semi-flexible polymers and semi-
rigid polymers (more rigid than semi-flexible ones), and χ ≈ 1 for rigid polymers
(completely unfolded at equilibrium) which behave as rigid rods. In the latter case
(which corresponds to ν = 1), the Kuhn length is of the order of the length of the
chain and a Kuhn segment contains many monomers. A flexible coil and a semi-rigid
rod are schematically shown in figure 2.7.

2.4.2 Ideal chain

Random walk

The simplest model is the ideal chain (or freely-jointed chain) model which neglects
any interaction between two different monomers (from the same chain or from differ-
ent chains) and describes the polymer chain as a random walk of N Kuhn segments
ai of length ā (see figure 2.8.a), i.e. with equiprobable orientations between two
successive Kuhn segments. The end-to-end vector is defined as R ≡

∑N
i=1 ai and

we note R = ‖R‖. The Flory radius is given by

R̄2 ≡ 〈R2〉eq =
N∑
i=1

〈a2
i 〉eq + 2

∑
i>j

〈ai · aj〉eq (2.56)

where 〈ai · aj〉eq = ā2δij (no correlation at equilibrium) which gives
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Figure 2.8 – Ideal chain. R is the end-to-end vector and ai are the Kuhn vectors. (a):
unconstrained (random walk at equilibrium) and (b): constrained by a force F , each Kuhn
segment ai makes and angle θi with the force direction.

R̄ = ā
√
N (2.57)

The Flory exponent is therefore ν = 1/2 for an ideal chain and the flexibility defined
in equation 2.55 is χ =

√
N . All walks (micro-states) are equiprobable, but the num-

ber of walks resulting in a macro-state with end-to-end vector R is larger for lower
values of R.

Restoring force

When a force F is applied to both ends of the polymer chain (see figure 2.8.b),
a configuration of large end-to-end vector R is imposed and a restoring force −F
arises due to the associated loss of entropy. The relation between F and R can be
derived by minimising the free enthalpy of the chain (see Flory (1953) for example).
The final expression for the magnitude F = ‖F ‖ of the restoring force is

F =
3kBT

Nā2
R = HR where H =

Hm

N
, Hm =

3kBT

ā2
(2.58)

and is proportional to R = ‖R‖. This Hookean restoring force should be valid in the
linear regime defined in §2.3.6 where the intrinsic deformation is much lower than
the polymer contour length, i.e. when R � Lch = Nā2. This result has motivated
microscopic theories where polymer chains are modelled as Hookean dumbbells with
two beads connected by one spring of spring constant H (see figure 2.6.d). Since the
stiffness of the full chain goes like H ∝ 1/N , the polymer can also be modelled as
a succession of N + 1 beads connected in serie by N strings with elementary spring
constant Hm = 3kBT/ā

2 (see figure 2.6.c).

In the nonlinear regime (R ≤ Lch = Nā2), the intrinsic stress-strain relationship
becomes nonlinear since the polymer deformation can not exceed its contour length
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Figure 2.9 – Comparison between the Hookean function (equation 2.58), inverse Langevin
function (equation 2.59) and Warner (FENE) function for the magnitude F of the polymer
restoring force.

Lch. A more realistic restoring force can be derived from an improved model which
associates an energy cost F ·ai = F ā cos θi to the orientation of each Kuhn segment,
where θi is the angle of the Kuhn segment ai relative to the force F . The associated
Boltzmann weight is exp (−F ā cos θi/kBT ) and the norm R of the end-to-end vector
is, on average, R = Nā〈cos θi〉. The calculation gives

F

kBT/ā
= L−1

(
R

Nā

)
with L(x) = coth x− 1

x
(2.59)

which involves the inverse Langevin function L−1. We recover equation 2.58 in the
limit R/Nā � 1 and the restoring force diverges at R/Nā = 1, as shown in figure
2.9. In reality, the chain breaks when F is large enough to break covalent bonds
between monomers.

2.4.3 Real chain

In both polymer melts and polymer solutions, polymer chain are actually not free
to adopt any conformation. Many interactions exist between two (non successive)
monomers from the same chain or between two monomers from different chains.
Some examples are

• Excluded volume (repulsive): two monomers can not occupy the same position
in space due to the repulsion of electronic clouds (Pauli repulsion).

• Van der Waals (attractive): London, Keesom and Debye dipolar interactions.
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• Electrostatic (repulsive) for polyelectrolytes which are polymers made of charged
monomers.

In the case of polymer solutions, monomers also interact with the solvent molecules.
All these interactions (except electrostatic) are short-range interactions. Besides,
hydrodynamic long-range interactions must be added when considering the flow of
polymer solutions since each monomer perturbation to the mean flow has an influ-
ence on the viscous drag experienced by other monomers. Chain-chain interactions
also occur for polymer melts of large molecular weight and polymer solutions of
large concentration. In both cases, the (zero-shear) viscosity stops increasing lin-
early with molecular weight (melts) or polymer concentration (solution) due to the
friction between different chains.

When taking into account excluded volume interactions only, the statistic of a
single chain is no longer Gaussian and its conformation will be that of a self-avoiding
walk. The chain is swollen since expanded configurations are less likely to to lead to
self-intersections, and the resulting Flory radius is (Larson, 1999)

R̄ ∝ ā N3/5 (2.60)

with a Flory exponent ν = 3/5 > 1/2.

In polymer melts, there is no solvent. Hence, monomers only interact with other
monomers. Experiments show that hydrodynamic interactions are negligible and
that, more surprisingly, chains have an ideal behaviour (De Gennes (1979) p.54 and
Larson (1999) p.73). A simple and comprehensive explanation is that chains must
avoid self-intersections but also intersections with other chains and have therefore no
tendency to expand beyond ideal behaviour since swelling would make intersections
with other chains more likely to happen.

2.4.4 Polymer solutions

For polymer solutions, monomer-solvent (m-s) interactions are important and have
to be compared with monomer-monomer (m-m) and solvent-solvent (s-s) interac-
tions. At a given temperature, there are two types of solvents for a given polymer:

• Good solvent: Chains are swollen since monomers prefer contact with the
solvent rather than with other monomers.

• Bad solvent: Chains are contracted since monomers prefer contact with other
monomers rather than with the solvent.
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A complete description taking m-s, m-m and s-s interaction can be founs in De
Gennes (1979) (p.71). The interaction potential Vint(r) between two monomers
has the shape of a Lennard-Jones potential with a repulsive part due to excluded
volume interactions and an attractive part due to Van der Waals interactions, both
interactions being modulated by the presence of the solvent. Note that Vint(r) = 0

corresponds to an ideal chain and that a hard sphere potential corresponds to pure
excluded volume interactions (see equation 2.60). To quantify the quality of the
solvent, Kuhn (1934) and Flory (1949) introduced the excluded volume parameter v̄
which measures the competition between attractive and repulsive interactions. It is
defined as v̄ =

∫
[1− exp (−Vint(r)/kBT )] dr and can be written as a function of the

temperature as (Oswald & Saint-Jean, 2005)

v̄ = v̄0

(
1− Θ

T

)
(2.61)

where v̄0 > 0 and Θ is a particular temperature at which v̄ = 0 which means that
attractive and repulsive interactions compensate. For a given pair polymer-solvent,
the properties of the solution change by varying the temperature. Good and bad
solvents correspond respectively to T > Θ (v̄ > 0) and T < Θ (v̄ < 0).

Dilute solutions

For a dilute solution where chains are independent (not entangled), three regimes
can be identified for electrostatically neutral polymers

• Good solvent (T > Θ): R̄d ∝ āN3/5, ν = 3/5: swollen chains

• Theta solvent (T = Θ): R̄d ∝ āN1/2, ν = 1/2: ideal chains

• Bad solvent: (T < Θ): R̄d ∝ āN1/3, ν = 1/3: collapsed chains

where d means “dilute”. On the other hand, ν is closer to 1 for polyelectrolytes
(without salt) since electrostatic repulsion dominates (Colby, 2010). A proper de-
rivation for good solvents gives R̄d ≈ (v̄/ā3)1/5 āN3/5 (Oswald & Saint-Jean, 2005).

Critical overlap concentration

As polymer concentration c increases, the different polymer coils will eventually
touch at a concentration c∗ called critical overlap concentration, as shown schem-
atically in figure 2.10. The dilute regime corresponds to c < c∗ and the semidilute
regime corresponds to c > c∗. We recall that c = n̄mN where n̄ is the number of
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Figure 2.10 – Boundary between the dilute and semidilute regime for polymer solutions.
In the semidilute regime, polymer chains are entangled and ξ̄ is the average distance along
a chain between two contacts with other chains.

chains per unit volume and that M = mNNA is the molecular weight of the poly-
mer. The volume fraction is φ = n̄R̄3

d (where the numerical factor 4π/3 is omitted).
It must be φ = 1 at c = c∗. Hence, we get

c∗ ≈ mN

R̄3
d

=
M

NAR̄3
d

⇒ c∗ ∝ N1−3ν (2.62)

In practice, c∗ is measured by viscosity measurements. Indeed, in the dilute
regime, the properties of the solution are proportional to the concentration. In
particular, the zero-shear viscosity is η0 = ηs(1 + [η]c) where [η] is the intrinsic
viscosity defined as

[η] ≡ lim
c→0

η0 − ηs
c ηs

(2.63)

This result has to be compared with the viscosity predicted by Einstein’s law η0 =

ηs(1 + 2.5φ) for a dilute suspension of hard spheres of volume fraction φ. A direct
comparison suggests that [η]c ≈ φ and in particular [η]c∗ ≈ 1. Physicists now agree
on using the formula proposed by Graessley (1980)

[η]c∗ = 0.77 ⇒ [η] ∝ N3ν−1 (2.64)

Semidilute solutions

In the semidilute regime (c > c∗), polymers are entangled and form a disordered
mesh of average lattice constant ξ̄ called correlation length (see figure 2.10). In
other words, ξ̄ is the average distance along a chain between two contacts with
other chains. De Gennes (1979) proposed a derivation based on two arguments:
ξ̄ does not depend on N (i.e. ξ̄ ∝ N0) and is equal to R̄d at the critical overlap
concentration c = c∗. Using equation 2.62, we get
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ξ̄ ≈ R̄d

(
c∗

c

)νξ̄
with νξ̄ =

ν

3ν − 1
(2.65)

where the exponent is νξ̄ = 3/4 in good solvent (ν = 3/5).

We now derive an expression of the Flory radius R̄sd in the semidilute regime by
assuming a good solvent situation. The chain can be seen as a succession of “blobs”
of size ξ̄ within which it has no contact with other chains (De Gennes, 1979). There-
fore, at the ξ̄ scale, the statistic of the chain is that of a self-avoiding walk since
excluded volumes dominate (v̄ > 0) and we get ξ̄ ∝ āg

3/5

ξ̄
where gξ̄ is the number

of Kuhn segment inside a blob. According to equation 2.65, we have gξ̄ ∝ N0c−5/4.
The full chain can be seen as an effective chain of N/gξ̄ Kuhn segments of size ξ̄
which has many contacts with other chains. This is similar to polymer melts where
chains are ideal since excluded volumes are screened by the presence of the other
chains. Therefore, we get

R̄sd = ξ̄

(
N

gξ̄

)1/2

∝ N1/2c−1/8 (good solvent) (2.66)

Hence, semidilute polymer solutions and polymer melts of high molecular weight
are often modelled by reptation theories such as the Doi-Edward model. On the
other hand, dilute polymer solutions and polymer melts of low molecular weight are
modelled by dilute solution theories neglecting chain-chain interactions, such as the
elastic dumbbell models discussed in the next section.

2.5 Polymers: Elastic dumbbell models

In this section, we give the important steps of the derivation of the (single mode)
Oldroyd-B and FENE constitutive equations from the kinetic theory of elastic dumb-
bell models without (Rouse) and with (Zimm) hydrodynamic interactions. For a
detailed derivation, see the chapter 13 of Bird et al. (1987). The aim of this section
is to show how the macroscopic flow quantities defined in §2.3 (such as the elastic
modulus G, the relaxation τ and the finite extensibility parameter b) connect with
the microscopic quantities defined in the previous section §2.4.

2.5.1 General framework

Polymers are modelled by dumbbells made of two beads (1) and (2) respectively
at locations r1 and r2 connected by one spring (see figure 2.6.d). The end-to-end
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vector is R = r2− r1 and the velocity field of the surrounding fluid (the solvent for
polymer solutions) is u(r, t). The three forces acting on each bead n = 1, 2 are:

• A hydrodynamic drag force F h
n = −ζ (ṙn − u(rn, t)) which is proportional to

the bead velocity ṙn = ∂trn relative to the velocity u(rn, t) of the surrounding
fluid with a friction coefficient ζ. In polymer solutions, ζ = 6πηsRb where Rb

is the bead radius.

• An elastic restoring force F el
n resulting from the action of the spring. In the

following, we define the connector force F c = F el
1 = −F el

2 acting on bead (1)
which points in the same direction as R.

• A Brownian Langevin force F b
n describing collisions with the molecules of the

liquid (thermal fluctuations). In the following, the average of any quantity X
with respect to the distribution of the realisations of collisions is noted 〈X〉.
We use 〈F b

n,i(t)〉 = 0 and 〈F b
n,i(t)F

b
m,j(t

′)〉 = 2ζkBT δnm δij δ(t−t′) which means
that there is no correlation between the force acting on a bead at time t and at
time t′ 6= t (term δ(t− t′) where δ is the Dirac delta function), no correlation
between the forces acting on different beads (term δnm) and no correlation
between the three spatial components of the force (term δij).

While the hydrodynamic drag force tends to stretch the dumbbell and to orient it
in the direction of the flow, the elastic restoring force tends to maintain its ori-
ginal shape and the Brownian Langevin force tends to randomise its orientation.
Neglecting the inertia of the beads, the force balance equations are

F h
n + F el

n + F b
n = 0 n = 1, 2 (2.67)

from which we can derive the equation of motion of R.

We skip the next step which consists of deriving the diffusion equation of the
configurational distribution function. The result is

ζ
O

〈RR〉+ 4〈RF c〉 = 4kBTδ (2.68)

where δ is the unit tensor and [XX ′]ij = XiX
′
j for arbitrary vectors X and X ′. At

equilibrium (in the absence of flow), we obtain

〈RF c〉eq = kBTδ (2.69)

The next step is to derive an expression of the polymer contribution to the
extra stress tensor σp. There are two contributions which can be understood by
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considering an arbitrary plane dividing the fluid in two parts (I) and (II). If the plane
is intersected by a dumbbell (one bead on each side), there is a force transmitted
through the spring acting on both parts. Besides, if a bead crosses the plane, it
transports some momentum from one part to the other. Since the probability of
crossing the plane is proportional to the number n̄ of dumbbells per unit volume,
σp is proportional to n̄. The final result is

σp = n̄〈RF c〉 − n̄kBTδ (2.70)

2.5.2 Hookean dumbbells (Rouse)

We now assume that the spring is Hookean with spring constant H, as inspired from
the ideal chain model in the linear regime (see equation 2.58). We write

F c = HR (2.71)

When combining equations 2.68, 2.70 and 2.71, and using the fact that
O
δ = −2D,

we recover the exact expression of the Oldroyd-B constitutive equation 2.28 where
the relaxation time τ and the elastic modulus G can now be expressed as a function
of microscopic quantities

τ =
ζ

4H
and G = n̄kBT =

cNAkBT
M

(2.72)

To summarise, the Oldroyd-B constitutive equation is a direct consequence of the
Hookean dumbbell model which is a direct consequence of the ideal chain model.
More visually, the take-home message is

Ideal chain ⇒ Hookean dumbbell ⇒ Oldroyd-B

We can go even further. Equation 2.69 gives

〈RR〉eq =
kBT

H
δ (2.73)

and the Flory radius defined as R̄2 ≡ 〈R2〉eq becomes R̄2 = 3kBT/H. Using the
expression of H = Hm/N = 3kBT/Nā

2 given in equation 2.58, we recover the exact
expression R̄ = ā

√
N of the ideal chain. Furthermore, when writing ζ = Nζm where

ζm is the friction coefficient of a single monomer (or Kuhn segment), equations 2.72
and 2.58 give the (terminal) Rouse relaxation time (Rouse, 1953)

τ = τR ∝
ζm ā

2N2

kBT
∝ N2 (2.74)
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For polymer solutions, since ζm ∝ ηs, the Rouse relaxation time is proportional to
the solvent viscosity ηs and is independent of the polymer concentration c. However,
as will be discussed later, this result is not valid for dilute solutions (even in theta
solvent where chains are ideal) due to hydrodynamic interactions between monomers
which have been neglected here. The situation is different for polymer melts of low
molecular weight (M < Me) where hydrodynamic interactions are short-ranged since
there is no solvent. Measurements indeed give R̄ ∝ N1/2, τ ∝ N2 and η0 = Gτ ∝ N

which is compatible with an ideal chain behaviour.

2.5.3 FENE dumbbells

In the nonlinear regime, the connector force F c must take into account the nonlin-
earities identified in §2.4 (see figure 2.9). In the FENE (finitely extensible nonlinear
elastic) dumbbell model, we assume the form

F c =
H

1− (R/Lch)2
R (FENE) (2.75)

which gives, using Lch = Nā and H = 3kBT/Nā
2 (equation 2.58)

F

kBT/ā
=W

(
R

Nā

)
with W(x) =

3x

1− x2
(2.76)

where the Warner function W is a good approximation of the inverse Langevin
function L−1 introduced in equation 2.59, (see figure 2.9). The spring gets stiffer as
R = ‖R‖ increases and diverges when approaching the chain contour length Lch.

In the FENE model, the derivation of a simple constitutive equation is im-
possible. To solve this issue, A. Peterlin proposed to simplify the connector force
as

F c =
H

1− 〈R2/L2
ch〉
R (FENE-P) (2.77)

which is known as FENE-P spring (P for Peterlin). The derivation becomes straight-
forward. We introduce the finite extensibility parameter b and the conformation
tensor A defined as

b =
L2
ch

kBT/H
= 3N and A =

〈RR〉
kBT/H

=
3〈RR〉
Nā2

(2.78)

We also introduce
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f =

(
1−

〈
R2

L2
ch

〉)−1

=

(
1− tr(A)

b

)−1

(2.79)

since 〈R2〉 = tr(〈RR〉). When combining equations 2.68 and 2.70 with equations
2.77 2.78 and 2.79, we finally obtain the FENE-P constitutive equation 2.44 with
τ = ζ/4H and G = n̄kBT (same as equation 2.72). The finite extensibility para-
meter b and the Kuhn length N are simply related by a numerical constant according
to equation 2.78.

Note that equation 2.69 gives 〈R2〉eq = 3kBT/Hfeq where feq = 1 + 3/b (see
equation 2.45). Hence, the Flory radius becomes R̄2 ≡ 〈R2〉eq = 3kBT/H(1+3/b) =

Nā2(1 + 3/b). For large values of b, it becomes R̄2 ≈ Nā2. Hence, for flexible chains
(b = 3N � 1), we get

b1/2 ≈
√

3N =
√

3Lch/R̄ (2.80)

Therefore, as announced in §2.3.7, b1/2 is the ratio of the polymer size at full exten-
sion to its size in the coiled state at equilibrium (with a numerical constant).

2.5.4 With hydrodynamic interactions (Zimm)

In dilute polymer solutions, regardless of the quality of the solvent, these elastic
dumbbell models have to be refined to include hydrodynamic interactions between
the beads. The general idea is to replace the previous hydrodynamic drag force
F h
n by −ζ (ṙn − u(rn, t)− u′(rn, t)) where u′(rn, t) is the perturbation of the flow

field at the position of bead n resulting from the motion of the other bead. This
was worked out by Zimm (1956) for a bead-spring chain model. The now accepted
formula for the terminal Zimm relaxation time is (see Tirtaatmadja et al. (2006))

τZ =
1

ζ̄(3ν)

[η]Mηs
NAkBT

∝ N3ν (2.81)

which is proportional to the solvent viscosity ηs and is independent of the polymer
concentration c. In this formula, ζ̄ is the Riemann zeta function, and we have
ζ̄(3ν) =

∑∞
i=1 1/i3ν . The dependence τZ ∝ N3ν comes from the fact that [η] ∝

N3ν−1 (see equation 2.64). In theta solvent (ν = 1/2), we have τZ ∝ N3/2 whereas
the Rouse model, which assumes an ideal chain behaviour without hydrodynamic
interactions, predicts τR ∝ N2.
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élément sous droit, diffusion non autorisée

Figure 2.11 – Clean cut of a thick viscoelastic liquid flowing from a bottle into a beaker
by scissors. Images taken from Boger & Walters (2012).

2.6 Unusual flows characteristics of viscoelastic li-
quids

In this section, we present some of the many unusual flow characteristics observed
with viscoelastic liquids. Some of these particularities such as jet stabilisation and
drag reduction have been used to improve industrial techniques while others such as
melt fracture represent a severe limitation to industrial processes. This explains why
the development of the previously presented theories, initiated in the 1930s by pi-
oneers such as Bingham and Reiner, have been of major importance in recent history.

A classical example is the elastic recoil experiment shown in figure 2.11 where
a viscoelastic liquid is flowing from a bottle into a beaker (liquid behaviour) and
recoils back into the bottle after clean cut by scissors (solid behaviour). Here, the
liquid is quite thick. Note capillary forces are also responsible of the recoil, and may
become the dominant contribution, as shown by Clasen et al. (2009) for a dilute
aqueous polymer solution. Here are some other examples of unusual flows.

2.6.1 Normal stress effects

Rod climbing

When a rigid rod is rotated into a viscoelastic liquid, the free surface may rise (some-
times spectacularly, see figure 2.12.a) due to the development of normal stresses in
the liquid. This in not true for Newtonian liquids since the free surface is repelled
by the rotating rod due to inertial effects.
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Die swell

When viscoelastic liquid is extruded through a tube, the jet may rapidly swell at
the outlet due to the recovery of the normal stress imparted into the tube (see figure
2.12.b). A simple image is to consider that polymer molecules are initially stretched
and oriented along the shear flow inside the tube and recover a coil shape due to
the change of boundary condition, thus resulting in radial expansion.

2.6.2 Extensional viscosity effects

Open siphon

When filling a syringe with a viscoelastic liquid placed in a beaker, the flow does not
stop when rising the syringe above the free surface if maintaining the axial tension
(depression in the syringe). This is due to the stretching of polymer molecules in the
jet connecting the syringe to the beaker which produces strong extensional stresses,
thus preventing breaking of the jet. The same phenomenon can be observed when
replacing the syringe by a rotating drum collecting the liquid and also producing
axial tension (see figure 2.13.a).

Jet stabilisation and Drag reduction

When extruding a Newtonian liquid from a tube at high velocity (high Reynolds
number), addition of small amounts of high molecular weight polymers can signific-
antly reduce the number of emitted (spray) droplets and smooth the surface of the
turbulent jet (see figure 2.13.b). This stabilising effect is also used to suppress the
splashing of droplets impacting on rough solid surfaces in pesticide spraying, spray
coating, and inkjet printing (Crooks & Boger, 2000). Polymer additives are also
used to reduce the drag in turbulent pipe flows through a rise of extensional vis-
cosity (due to the elongation of polymer molecules) which stabilises the small-scale
flow field (Virk, 1975). This effect is used to increase the flow rates of hose streams
in firefighting (Chen et al., 1998).

2.6.3 Extrusion phenomena

Contraction flows

When forcing a viscoelastic liquid through a contraction (extrusion through a syr-
inge for example), many unusual flow patterns can be observed. While Newtonian
liquids exhibit vortices of modest size on both corner of the upstream part, polymer
melts and solutions usually exhibit much larger (corner) vortices and even present
(lip) vortices at the re-entrant corner. These phenomena are referred to as vortex
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Figure 2.12 – Normal stress
effects. (a): Rod climbing
for a solution of polyisobutylene
(B200) in polybutene. (b) Die
swell from a tube for a 2.0%
aqueous solution of polyacrylam-
ide. Images taken from Boger &
Walters (2012).

élément sous droit, diffusion non autorisée

Figure 2.13 – Extensional viscosity effects (a and b). (a): Open siphon with a drum rotating
above the free surface of a polyisobutylene (B200) solution in oil. (b): Jet stabilisation for
a high Reynolds number capillary jet (1 m from the exit of a 0.635 cm diameter nozzle) for
water (top) and a 200 ppm aqueous solution of polyethylene oxide (bottom). (c): Vortex
enhancement (stationnary regime) in a 16:1 square-square contraction flow of a Boger fluid.
Images taken from Boger & Walters (2012).

élément sous droit, diffusion non autorisée

Figure 2.14 – Melt fracture. (a): Five snapshots of a polymer melt extruded from a tube
at increasing flow rate from left to right. (b and c): Narrow grooves (b) and wide stripes
(c) formed on the surface of a sheet of polymer solution extruded at different flow rates
from slots of dimensions 3×0.3 cm (b) and 3.9×0.1 cm (c). In (c), the sheet is continuous
and the stripes are simply highlighted by the photographic technique. Images taken from
Morozov & van Saarloos (2007) (a) and Boger & Walters (2012) (b and c).
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enhancement (see figure 2.13.c). Both vortices usually grow in size when increasing
flow rate until reaching an unstable regime where the flow becomes non-stationary.
The precise flow pattern depends critically on the exact experimental conditions such
as the contraction geometry (axisymmetric, planar, square-square), the contraction
ratio, the flow rate and the rheology of the liquid (Boger & Walters, 2012).

Melt fracture

After contraction, the liquid flows through a thin tube (axisymmetric) or a thin slot
(planar) which can be long or short (a few millimetres for a syringe) before final
release. The free-surface of the resulting jet (axisymmetric) or sheet (planar) often
presents some irregularities, unwanted in industrial processes. Small surface defects
(referred to as “sharkskin” or “loss of gloss” ) typically appear during extrusion of
thick melts. These scratches are formed at the tube (or slot) outlet and are not re-
lated to upstream flow instabilities. On the other hand, the more severe distortions
referred to as melt fracture are consequences of the non-stationary unstable flow
patterns (jerky pulsations) developing at the contraction upstream of the tube (or
slot) inlet above some critical flow rate (Piau et al., 1990) (see figure 2.14.a). Recent
publications also suggest that melt fracture may be due to a nonlinear subcritical
instability of the viscoelastic Poiseuille flow in the tube (or slot) initiated by per-
turbations of finite amplitude (Bertola et al., 2003; Morozov & van Saarloos, 2007).
Figures 2.14.b and 2.14.c show the narrow vertical grooves formed on the surface of
a sheet of polymer solution extruded from a slot (b) and the non-stationary wide
vertical stripes appearing at larger flow rates (c). Both types of irregularities can
be observed on the same sheet.
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In this chapter, we first present the experimental set-up used in curtain exper-
iments. The experimental results associated with this set-up will be shown in
chapters 4 and 5. After describing the preparation of polymer solutions, we in-
troduce the hydraulic loop and the slot die used to produce liquid curtains. Then
we present the flow visualisation technique used to measure the curtain velocity
field U(z). Next, we turn our attention to the rheological characterisation of the
polymer solutions, both in shear and extensional flows. This is followed by a general
discussion on the different rheological parameters and by a discussion on the proto-
cols which are adapted to solve the issue of mechanical degradation of the polymer
molecules in the hydraulic loop.
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Figure 3.1 – Chemical structure of PEO (a) and of HPAM (b).

3.1 Experimental set-up

In this section, we present the experimental set-up used in curtain experiments.

3.1.1 Polymers and sample preparation

Experiments are performed with aqueous solutions of two high molecular weight
polymers with different rheological behaviours. For each curtain experiment, a total
mass Ms = 5 kg of solution is required.

We use solutions of polyethylene oxide (PEO) with an average molecular weight
M = 8 × 106 g/mol. Its chemical structure is shown in figure 3.1.a. The solvent
is a Newtonian aqueous solution of polyethylene glycol (PEG) which has the same
chemical structure but has a lower average molecular weightM = 8000 g/mol. PEG
is used as a thickener, as proposed by Dontula et al. (1998); Becerra & Carvalho
(2011); Karim et al. (2018b). Both polymers are provided by Sigma-Aldrich (ref-
erences 372838 and P2139). In most solutions, the PEG concentration is [PEG]
= 20 wt% (the mass of PEG represents 20% of the total mass of the solution) and
the corresponding solvent viscosity is ηs = 0.017 Pa.s. The PEO concentration
ranges between 0 (pure solvent) and 0.4 wt%. A 5 kg solution is prepared by first
adding the desired mass of PEO (20 g for a 0.4 wt% PEO concentration) to 3 kg
of pure water. To avoid agglomeration, the granular polymer particles are slowly
added in the vortex created by a mechanical stirrer which is then used during 15
hours to ensure homogeneous mixing. Finally, another solution of 1 kg of PEG and
1 kg of water is prepared and the two solutions are mixed. The final solution is
shaken for about two hours before use. Following a similar protocol, other solutions
are prepared with a higher PEG concentration [PEG] = 40 wt%. The corresponding
solvent viscosity is ηs = 0.14 Pa.s.

We also use solutions of partially hydrolysed polyacrylamide (HPAM), a polyelec-
trolyte commonly used in oil recovery provided by SNF Floerger (ref Floset 130 VG).
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Molecular weight is estimated to be aroundM = 15−20×106 g/mol and the hydro-
lysis degree is close to 30 %. At equilibrium in water, HPAM molecules are swollen
due to repulsive electrostatic charges along the chain backbone and behave as semi-
rigid rods, in contrast to PEO molecules which behave as flexible coils. HPAM
rigidity can be tuned by adding salt to the solution. As salt is added, the repuls-
ive interactions are screened and HPAM molecules become more flexible, i.e. their
radius of gyration decreases (Chen et al., 2012; Zhang et al., 2008). This property
has been used by author authors such as Cartalos & Piau (1992) and Kawale et al.
(2017). In order to investigate the influence of polymer conformation on the curtain
flow, we use aqueous solutions of fixed polymer concentration [HPAM] = 0.1 wt%
and various salt concentrations [NaCl] ranging between 0 and 10 wt%. A 5 kg solu-
tion is prepared by adding 5 g of HPAM powder to 5 kg of pure water and shaking
for 15 hours to ensure homogeneous mixing. The desired mass of salt is finally added
and the final solution is shaken for a few minutes before use. The solvent viscosity
is ηs = 0.001 Pa.s. Of course, when adding salt, the exact HPAM mass fraction
changes since, for example, solutions referred to as 0.1 wt% HPAM solution with
1 wt% salt contain in fact 5 g of HPAM and 50 g of salt dissolved in 5 kg of water, i.e.
[HPAM] = 0.099 wt% and [NaCl] = 0.99 wt%. Similarly, for the HPAM solutions
referred to as 0.1 wt% HPAM solution with 10 wt% salt, the real concentrations are
[HPAM] = 0.091 wt% and [NaCl] = 9.1 wt%. For simplicity, the designation of the
solutions will not take this deviation into account.

As will be commented in §3.2.5, mechanical degradation occurs during shaking,
as is expected from the use of a mechanical stirrer which is a high shear-rate mixing
technique. Polymer chains break, resulting in a lower average molecular weight.
Hence, the rheological behaviour of any newly prepared solution has to be charac-
terised independently.

For a given solvent, density ρ and surface tension Γ, which is measured by a
pendant drop method (Daerr & Mogne, 2016), were found not to depend on polymer
concentration. However, it depends on PEG concentration. Values are

• ρ = 1000 kg/m3 and Γ = 72 mN/m for HPAM solutions.

• ρ = 1026 kg/m3 and Γ = 62 mN/m for PEO solutions (20 wt% PEG solvent).

• ρ = 1070 kg/m3 and Γ = 53 mN/m for PEO solutions (40 wt% PEG solvent).
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Figure 3.2 – Schematic of the hydraulic loop (a) and of the slot die (b).

3.1.2 The hydraulic loop

Most of the curtain experiments were conducted with the hydraulic loop sketched
in figure 3.2.a. The polymer solution is pumped from a reservoir with a peristaltic
pump up to a constant level tank, from which it flows down to a slot die by gravity.
The liquid then falls vertically from the slot down to a tank, forming a rectangular
curtain of width l = 14.5 cm and length Lc ranging between 15 cm and 200 cm.
To avoid sheet retraction due to surface tension, the liquid is guided between two
wires (cooking strings) held vertically with loads on the tank surface. The liquid
then flows back to the reservoir, thus closing the loop.

The liquid mass flow rate Q feeding the die is controlled by a valve and is
measured directly by weighing. Q is lower than the flow rate imposed by the pump,
and the liquid excess flows directly from the constant level tank to the reservoir.
This ensures that the liquid level, and therefore the flow rate, does not vary with
time. The constant level tank is about 2 metres above the die. When the valve is
completely open, it allows flow rates up to 80 g/s which is the maximum achievable
water flow rate of the peristaltic pump. We define the linear flow rate (volumetric
flow rate per unit width) as

q =
Q

ρ l
(3.1)

The pulsations caused by the peristaltic pump vanish when the liquid enters the
constant level tank. This ensures that the die is fed by a stationary flow. Note that
the choice of a peristaltic pump, less convenient than a gear pump, was originally
motivated by the constrain of minimising polymer mechanical degradation through
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the hydraulic loop.

3.1.3 The die

In figure 3.2.b we present the geometry of the slot die. The liquid enters on both
sides of a hollow box of width 2A = 14 mm and then flows through a slot of length
Ls = 10 cm, width l and thickness 2a = 1 mm. The contraction ratio is A/a = 14.
The air inside the die is evacuated using a small hole on top of the box. Once the
die is full of liquid, the hole is closed with a screw.

The slot consists of two flat walls which were carefully designed to ensure a
constant separation distance. The wall edges are bevelled to prevent any wetting
of the liquid when leaving the slot. The initial curtain thickness 2h(z = 0) is thus
expected to be equal to 2a. Equivalently, the initial mean velocity of the curtain at
the slot exit U0 ≡ U(z = 0) is expected to be equal to the mean velocity in the slot
defined as Us = q/2a.

3.1.4 Flow visualisation

We measure the velocity field of the curtain in the x− z plane using the particle im-
age velocimetry (PIV) technique. Polymer solutions are seeded with polyamid solid
particles (PSP) of diameter 50 µm and density 1.03 g/cm3 (provided by Dantec
Dynamics) at a concentration of 0.04 wt% corresponding to a volume fraction of
4 × 10−4. We have checked that these tracers had no influence on the rheology of
the solutions. A large-angle objective is mounted on a high-speed camera which
records pictures of the curtain at typically 600 frames per second with a typical
spatial resolution of 60 pixels per centimetre. A typical exposire time is 500 µs. The
curtain is illuminated with a white continuous light source and cross-correlation is
computed over windows of size 16×16 pixels, i.e. typically 2.7×2.7 mm. Note that,
due to the finite size of the PIV correlation windows and to some light reflections
at the slot exit, the first value U1 = U(z1) of the velocity field is measured at a
distance z = z1 ≈ 2.5 mm below the slot exit. Note that we do not measure the y
dependence of the flow field with the technique described in this section.

In figure 3.3.a, we show a superposition of eleven successive curtain images for
a 0.2 wt% PEO solution with 20 wt% PEG solvent. Note that the falling velocity
decreases down to 0 when approaching the vertical immobile guides (not visible in
figure 3.3.a). This is the consequence of a boundary layer developing along the flow
direction. For all the PEO and HPAM solutions used in this manuscript, curtains
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Figure 3.3 – Example of PIV measurement for a 0.2 wt% PEO solution with 20 wt% PEG
solvent after ten minutes in the hydraulic loop. (a): Superposition of eleven successive PIV
images where some tracers are highlighted for clarity. Due to edge effects, the correlation
algorithm is applied to a domain restricted to the dashed rectangle. (b): z-component of
the velocity field, i.e. U(x, z, t), against the horizontal coordinate x at different distances
z from the slot at an arbitrary time t. The curtain length is Lc = 30 cm and the linear
flow rate is q = 2.3 cm2/s.

are only affected within less than 2 cm from the guides at the maximum distance
from the slot in the camera field, i.e. typically at z = 20 cm from the slot. There-
fore, the image correlation algorithm is applied to a domain restricted to the central
region where the flow is not affected by this edge effect (see the dashed rectangle
in figure 3.3.a). This effect is much more pronounced for highly viscous Newtonian
liquids. For example, we measure that the boundary layer reaches a size of about
4 cm at z = 20 cm for pure glycerin (η ≈ 1 Pa.s), and invades the whole curtain at
z = 10 cm for honey (η ≈ 10 Pa.s). In the latter case, the velocity field U(x, z) ap-
proaches a parabolic shape, i.e. a Poiseuille-like flow in which vertical wires play the
role of rigid walls. Such boundary layers are also reported by Karim et al. (2018a)
for Newtonian liquids.

Once a curtain is established, images of the flow are recorded during 2 seconds.
An example of velocity field obtained by processing a pair of successive images is
given in figure 3.3.b for a 0.2 wt% PEO solution with 20 wt% PEG solvent. We
measure that the x component of the velocity field is 0, as expected. Therefore, we
plot the z component U(x, z, t) against x for various distances z from the slot at
an arbitrary time t. As expected, the flow is fairly independent of x. Therefore,
U is averaged along x at each value of z. We obtain 〈U〉x which is a function
of z and t. Repeating this procedure for different image pairs shows that flow is
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stationary. Therefore, 〈U〉x is averaged over 40 image pairs, equally spaced in time,
and we finally obtain U(z) ≡ 〈〈U〉x〉t. The curtain flow is stationary and translation
invariant along x for most of the data presented in this manuscript. However, some
exceptions are observed, as will be investigated in a separate section for clarity (see
§4.1.2).

3.1.5 The accessible ranges of flow rates

For a given liquid, the maximum accessible flow rate Qmax feeding the die (when
the valve is completely open) can either be determined by the maximum flow rate
achievable by the pump (for this liquid) or by the dissipation in the slot. In the lat-
ter case, we observe that Qmax decreases when increasing the polymer concentration
since the liquid viscosity increases. Besides, since the polymer molecules undergo
a rapid strain at the slot entrance, an extra “pressure drop” can arise due to the
stretching of polymer molecules, as shown by Rothstein & McKinley (1999) in the
case of an axisymmetric contraction. On the other hand, the die needs to be fed
with a minimum flow rate Qmin to prevent breaking of the sheet. We observe that
Qmin decreases with increasing the polymer concentration, as will be discussed in
§5.1. The resulting range of accessible flow rates Qmin −Qmax goes from 5− 10 g/s
for large polymer concentrations to 20− 80 g/s for low polymer concentrations. In
the latter case, the convenient range of flow rates for flow visualisation is closer to
50− 80 g/s since many holes may open in the curtain at low flow rates.

For these reasons, the experiments presented in this manuscript are performed
with flow rates Q ranging from 6 g/s for large polymer concentrations to 60 g/s for
low polymer concentrations, i.e. the mean velocity Us = q/2a in the slot ranges
between 0.04 m/s and 0.4 m/s.

3.2 Rheology of the polymer solutions

In this section, we present two distinct series of shear and extensional rheology meas-
urements. First, in order to characterise the polymer solutions, we performed purely
rheological measurements on various PEO solutions with 20 wt% PEG solvent and
on 0.1% HPAM solutions with various salt concentrations at T = 20◦C. The PEO
solutions are obtained by dilution of a 0.2 wt% stock solution (except for 0.3 and
0.4 wt% solutions which are prepared independently) while HPAM solutions were
obtained by addition of different salt weight fractions to samples of a 0.1 wt% HPAM
stock solution. The rheological characterisation of these solutions are presented in
§3.2.1, 3.2.2, 3.2.3 and 3.2.4. Then, the rheological characterisation of the specific
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5 kg solution used in curtain experiments (including PEO solutions with 40 wt%
PEG solvent) will be commented separately in §3.2.5.

3.2.1 Shear rheology

General principles of shear rheology

We explain how to measure experimentally the apparent shear viscosity η ≡ σ12/γ̇

and the first normal stress difference N1 ≡ σ11 − σ22 of a viscoelastic liquid using
a shear rheometer (see notations of §2.3.2). The idea is to produce a shear flow of
homogeneous shear rate and to measure the resulting torque and normal force. A
common technique for producing a shear flow consists of placing the liquid between
two close surfaces, one rotating at a constant angular velocity while the other is
immobile.

Among the various existing geometries, we present here the cone-plate geometry
schematically shown in figure 3.4. A few drops of liquid are placed at the centre of
the plate before a cone of radius R1 and angle θ1 is placed at the appropriate vertical
position where its fictional tip touches the plate. The tip of the cone is cut and the
minimum distance e1 separating the cone from the plate to avoid solid friction is
called the truncation gap. The space below the cone has to be completely filled with
liquid. The shear flow is produced by having the plate (or the cone) rotating at
angular velocity Ω. The direction of the flow is the direction perpendicular to figure
3.4 and the direction of velocity gradient is the vertical direction. If the gap between
the two surfaces is sufficiently small, i.e. if θ1 � 1, the flow between the cone and
the plate is laminar at low angular velocities. At a distance r from the symmetry
axis, the velocity of the plate is Ωr and the cone-plate gap is r tan θ1. Therefore,
the shear rate is homogeneous and writes

γ̇ =
Ω

tan θ1

≈ Ω

θ1

(3.2)

The cone is equipped with sensors measuring the torque T and the normal (vertical)
force Fz. The torque can be expressed as a function of the shear stress σ12 = η(γ̇)γ̇

(which is also homogeneous) and of geometrical parameters. Assuming that θ1 � 1,
it writes

T ≈
∫ R1

0

∫ 2π

0

σ12 r
2 dϕ dr =

2πR3
1

3
σ12 (3.3)

A shear rheometer has a minimum measurable torque Tmin. Hence, experimental
data are only meaningful if T > Tmin. Using equation 3.3 and σ12 = ηγ̇, this
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Figure 3.4 – Schematic representation of a cone-plate shear rheometer.

condition becomes

η > ηmin =
3Tmin
2πR3

1γ̇
∝ γ̇−1 (3.4)

Concerning the normal force Fz, we can show that it is directly related to the
first normal stress difference N1, and is independent of the second normal stress
difference N2. Calculation gives (Oswald & Saint-Jean, 2005)

N1,tot =
2Fz
πR2

1

(3.5)

However, as shown by Macosko (1994), the raw data has to be corrected by inertial
effects which tend to pull the plates together. This has been shown by Lindner
(2000) (page 72) who obtained negative values N1,tot < 0 (instead of the expected
0 value) when measuring the first normal stress difference of water for shear rates
γ̇ ≥ 103 s−1. We use the usual correction

N1 =
2

πR2
1

(
Fz + 0.075πρΩ2R4

1

)
= N1,tot + 0.15ρΩ2R2

1 (3.6)

As explained by Ewoldt et al. (2015), secondary flows and instabilities are ulti-
mately generated at large shear rates. Hence, the flow is no longer laminar and one
can no longer use equation 3.2, 3.3 and 3.6. These instabilities can either be inertial
(large Reynolds number) or elastic (large Weissenberg number).

Shear rheology results

We now present shear rheology measurements performed on PEO solutions (with
20 wt% PEG solvent) and HPAM solutions. We use a strain-controlled rheometer
(ARES-G2) from TA Instruments equipped with a cone-plate geometry of radius
R1 = 25 mm, angle θ1 = 0.04 rad and truncation gap e1 = 0.055 mm. Temperature
is controlled by a Peltier device. We measure the apparent shear viscosity η = σ12/γ̇
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Figure 3.5 – Shear viscosity η(γ̇) for PEO solutions with 20 wt% PEG solvent and for
HPAM solutions at T = 20◦C. Data are fitted with a Carreau law (equation 3.7). The
low-torque limit is shown.

as well as the first normal stress differenceN1 = σ11−σ22. Note that it was impossible
to perform satisfying small amplitude oscillatory shear (SAOS) measurements due
to low solution viscosity, as also reported by other authors (Rodd et al., 2005; Oli-
veira et al., 2006).

We now detail the measurement protocol for measuring the apparent shear vis-
cosity η(γ̇). The shear rate γ̇ is first increased from 10−3 s−1 to γ̇max, typically
100 s−1, and then decreased. The overlap of both data sets indicates negligible
degradation at high shear rates. Measuring η(γ̇) for a given value of γ̇ requires a
minimum sampling time of 10 s to ensure steady state is achieved. γ̇max is chosen
to be close to the shear rate marking the onset of elastic instabilities where appar-
ent shear-thickening is observed (Larson, 1992). Unstable data are removed. We
also remove the data below the minimum measurable torque Tmin = 0.5 µN.m us-
ing equation 3.4. Results are presented in figure 3.5. Since the second Newtonian
plateau is not accessible by our measurement method (it is beyond the onset of the
elastic instabilities), shear viscosity is fitted by a Carreau law where η∞ = 0 (see
equation 2.41). It writes

η = η0

[
1 +

(
γ̇

γ̇c

)a1
]n−1

a1

(3.7)

where η0 is the zero-shear viscosity, γ̇c is the shear rate at which shear-thinning
starts, a1 is an exponent that encodes the sharpness of the transition and n is the
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Figure 3.6 – First normal stress difference N1(γ̇) for PEO solutions with 20 wt% PEG
solvent and for HPAM solutions at T = 20◦C. Data are fitted with a power law (equation
3.8).

degree of shear thinning. a1 is always close to 2 and other parameters are presented
in table 3.1.

PEO solutions with 20 wt% PEG solvent have a constant shear viscosity (n = 1)
up to [PEO]= 0.04 wt% beyond which shear thinning appears. Shear thinning be-
haviour is much more pronounced for unsalted HPAM solutions, i.e. when polymer
chains are semi-rigid, with n = 0.16 for [NaCl]= 0 wt%. The degree of shear thin-
ning is drastically reduced when adding salt. Note that fitting with a Carreau law
fails for [NaCl]= 0 wt% and 0.01 wt% and that the Newtonian plateau is beyond
the low-torque limit of the rheometer. Therefore, the corresponding values of η0

reported in table 3.1 are merely orders of magnitude.

Normal stress measurements are performed using a specific step-by-step protocol
similar to Casanellas et al. (2016) to circumvent the instrumental drift of the normal
force. Each step consists in imposing a given step shear rate γ̇ and then imposing a
zero shear rate. Subtracting the two plateau values of the first normal stress differ-
ence gives access to the real value of N1(γ̇) after removing the contribution of fluid
inertia to the normal force (equation 3.6). Results are presented in figure 3.6. Nor-
mal stress measurements are restricted to a narrow range of shear rates due to the
limited resolution of the rheometer and to the onset of elastic instabilities at large
shear rates. These instabilities are detected by rapid growth of both the first normal
stress difference and the shear stress over time (Larson, 1992). No measurements
are possible for solutions exhibiting no measurable values of N1 below the onset of

69



Chapter 3. Material and Methods

elastic instabilities.

The data can be fitted with a power law within the measurement window

N1(γ̇) = Ψγ̇α1 . (3.8)

Values of Ψ and α1 are reported in table 3.1. We find α1 = 2 for most PEO solu-
tions, except for the two largest concentrations. This result is consistent with the
Oldroyd-B constitutive model which predicts N1 = 2ηpτ γ̇

2 where τ is the relaxa-
tion time and ηp = η0 − ηs is the polymer contribution to the zero-shear viscosity.
Therefore, when α1 = 2, we can define a shear relaxation time Ψ/2ηp. We also
mention the more general definition N1/(2(η− ηs)γ̇2) which is shear rate dependent
for shear-thinning solutions exhibiting a non quadratic first normal stress difference.

Note that N1 decreased when adding salt to a HPAM solution, although chains
become more flexible. This can be explained by the fact that normal stresses arise
due to both single chain deformability and chain-chain interactions and that salt
addition reduces the radius of gyration of the HPAM chains (Chen et al., 2012;
Zhang et al., 2008), thus resulting in lower chain-chain interactions.

3.2.2 Extensional rheology

General principles of extensional rheology

Since the curtain flow is an extensional flow, we performed extensional rheology
measurements. We now explain how to measure experimentally the (extensional)
relaxation time and the (terminal) extensional viscosity of a viscoelastic liquid. In
order to produce an extensional flow, we use the well documented filament thinning
technique described by Anna & McKinley (2001). This rheometer is known in the
literature as a Capillary Breakup Extensional Rheometer (CaBER). This technique
is known to allow measurements of the relaxation time of very dilute polymer solu-
tions for which neither N1 nor SAOS measurements are accessible with a classical
shear rheometer. For this reason, it has become a standard technique and is now
used by many authors. A typical protocol is the following. A droplet of liquid is
placed between two horizontal plates, like a drop of saliva between thumb and index.
The lower plate is kept fixed and the upper plate is slowly moved upwards until the
liquid bridge starts necking, at which time the plate motion is stopped (details are
given later). The filament connecting the two end drops undergoes a succession
of thinning regimes until final breaking. This is shown schematically in figure 3.7.
The filament thinning process is recorded in order to measure the filament radius
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Figure 3.7 – Schematic representation of a thinning cylindrical filament.

profile R̄ at a function of time t. As shown in the following, many useful rheological
information can be extracted from this experimental signal.

A global picture of the filament thinning process of complex fluids can be found
in the review article published by McKinley (2005). When separating the two plates
by a distance L0, the liquid bridge (or filament) becomes unstable above a critical
separation distance L∗0 where is starts necking due to capillary pressure. In dimen-
sionless terms, the necking instability starts when reaching a critical aspect ratio
Λ∗ = L∗0/2Rd where Rd is the maximum radius of the end drops. The filament
radius profile R̄(z, t) is a function of altitude z and is not rigorously symmetric due
to gravitational sagging. However, this gravitational effect is usually negligible in
CaBER experiments. Hence, the altitude corresponding to the minimum filament
radius is almost at the centre of the filament. This altitude is now our reference
z = 0. We introduce the minimum filament radius R̄(0, 0) = R0 at the onset of
the necking instability (at time t = 0). Throughout the filament thinning process,
this altitude corresponds to the stagnation point of a three-dimensional extensional
flow. Due to capillary pressure, the liquid contained in the filament flows towards
the two end drops, as shown in figure 3.7.

For slender filaments (i.e. filaments for which ∂R̄/∂z � 1), mathematical ana-
lysis are often simplified by neglecting axial curvature and writing a simplified force
balance equation for the minimum filament radius R(t) = R̄(z = 0, t). In this con-
text, the extensional flow has an axial component uz = ε̇z and radial component
ur = −0.5 ε̇r where ε̇ is the extension rate. Since ur(r = R, t) must be equal to
Ṙ = dR/dt, we get

ε̇ = −2 Ṙ
R

(3.9)
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One way of quantifying the total elongation of a fluid element after the filament has
necked down to a size R is to use the logarithmic strain or Hencky strain defined as

ε(t) ≡
∫ t

0

ε̇(t∗)dt∗ = −2 ln

(
R(t)

R0

)
(3.10)

Taking into account inertial, capillary, viscous and elastic forces, the force bal-
ance equation writes (Tirtaatmadja et al., 2006)

1

2
ρṘ2 ≈ Fax

πR2
− Γ

R
− 3ηsε̇− (σp,zz − σp,rr) (3.11)

where ρ and Γ are the density and surface tension of the liquid, ηs is the solvent
viscosity, σp,zz − σp,rr is the polymeric normal stress difference, and Fax is the axial
tensile force in the filament. In CaBER experiments, since there is no external
stretching (contrary to fibre-spinning-like experiments for example), this force Fax
is the force 2πRΓ acting at the junction of the filament with the two end drops.
Hence, equation 3.11 writes

1

2
ρṘ2 ≈ Γ

R
− 3ηsε̇− (σp,zz − σp,rr) (3.12)

Regardless of the liquid used, the first stage of the necking process (just after
reaching the instability threshold L∗0) corresponds to the exponential growth of small
perturbations. According to Clanet & Lasheras (1999) and to Clasen et al. (2009),
the minimum bridge radius follows R/R0 = 1 − e−t/τ∗ where τ ∗ is a characteristic
time scale. However, as the filament radius decreases, the dynamic of the thinning
process becomes independent of the initial radius R0 and converges towards a self-
similar behaviour with no characteristic length scale. In the following, we discuss
the self-similar solutions in the case of Newtonian and viscoelastic liquids.

Newtonian liquids For a Newtonian liquid of viscosity η, close to filament breakup,
two different behaviours can be observed depending on the relative importance of
inertia and viscosity. When comparing the inertial (Rayleigh) time scale (ρR3/Γ)1/2

to the viscous time scale ηR/Γ, we can build the Ohnesorge number

Oh =
η

(ρRΓ)1/2
(3.13)

Note that Oh2 can be seen as an inverse Reynolds number based on the capillary
velocity Γ/η. If inertia overcomes gravity (Oh � 1), the force balance equation
3.12 reduces to 0.5ρṘ2 ≈ Γ/R. On the other hand, if viscosity overcomes inertia
(Oh � 1), the force balance equation 3.12 reduces to 3ηε̇ ≈ Γ/R. Therefore, the
respective inertio-capillary and visco-capillary regimes write respectively
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Figure 3.8 – Different stages of the thinning process of a filament made of a 0.01 wt% PEO
solution with 20 wt% PEG solvent (raw images).

R/R0 ∝

{(
Γ/ρR3

0

)1/3
(ts − t)2/3 for Oh � 1

(Γ/ηR0) (ts − t) for Oh � 1
(3.14)

where ts is the time at which the filament breaks (finite time singularity).

Viscoelastic liquids The end of the latter scenario is significantly altered when
adding small amounts of high molecular weight polymer molecules to the liquid. A
typical filament thinning sequence is shown in figure 3.8 for a 0.01 wt% PEO solution
with 20 wt% PEG solvent. The slow exponential regime (stage a) is followed by a
self-similar inertio-capillary (Oh � 1) or visco-capillary (Oh � 1) regime (stage
between b and c) depending on the value of the Ohnesorge number which is now
Oh = η0/(ρRΓ)1/2 where η0 = ηs + ηp is the zero-shear viscosity of the liquid.
Then, the bridge abruptly switches to a slender filament shape at time t = ts

(stage c). During this transition, elastic stresses become dominant due to the rapid
stretching of polymer molecules, thus inhibiting the usual finite time singularity
observed in Newtonian filaments (Amarouchene et al., 2001). During this elasto-
capillary regime, this cylindrical filament (characteristic of viscoelastic liquids) thins
following an exponential law. Numerical simulations using a FENE-P model (with
elastic modulus G, relaxation time τ and finite extensibility parameter b) predict
that the process is initially independent of the finite extensibility of the polymer
chains. Therefore, predictions are initially similar to the prediction of an Oldroyd-B
model. In both cases, the filament radius follows initially (McKinley, 2005; Rodd
et al., 2004)

R
R0

≈
(
GR0

2Γ

)1/3

exp

(
−t− ts

3τ

)
(3.15)

Therefore, according to equation 3.9, the extension rate is initially constant and
equal to

ε̇ =
2

3τ
(3.16)
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Using a multimode FENE-P model, Entov & Hinch (1997) showed that a more
general analytical solution can be derived at “intermediate elastic times” (i.e. after
viscous effects have become negligible and before finite polymer extensibility be-
comes important). For dilute solutions described by the Zimm model, Anna &
McKinley (2001) showed that this solution is well approximated by equation 3.15
at “long” times when replacing τ by the terminal (longest) relaxation time of the
spectrum. It means that the contribution of the higher modes rapidly decay and
that all the elastic stress is ultimately carried by the mode corresponding to the
longest relaxation time. Therefore, the regression of experimental data to equation
3.15 should give the Zimm longest time constant (Anna & McKinley, 2001).

The value τ ε̇ = 2/3 is larger than the coil-stretch transition value 1/2. Therefore,
during this elasto-capillary regime, the polymer chains undergo progressive unrav-
elling. The filament remains perfectly cylindrical since any localised pinching pro-
duces additional polymeric stresses which inhibits further pinching. However, when
polymer chains have reached their full length, the extensional viscosity reaches a
plateau value and the liquid behaves as a Newtonian liquid, allowing local pinching
that typically occurs near the end drops (stage d). The filament then undergoes
a Rayleigh-Plateau-like instability commonly referred to as “blistering instability”
(Sattler et al., 2008, 2012; Eggers, 2014) where tiny drops are separated by micro-
metric sub-filaments (stage e). The simple one-dimensional force balance equation
3.12 becomes invalid. Besides, since finite extensibility effects are now important,
the solution 3.15 is not valid anymore. Introducing the plateau value ηE of the
extensional viscosity, the radii of sub-filaments follow R ∝ (Γ/ηE) (tb − t) where tb
is the time at which sub-filaments break (see equation 3.14). In this final regime,
the extension rate ε̇ diverges towards infinity in finite time. After breaking, the two
end drops are finally completely separated (stage f).

Using the force balance equation 3.12, one can estimate the normal stress differ-
ence σzz − σrr in the filament. Indeed, in the elasto-capillary regime where inertia
is negligible, we get

Γ

R
≈ 3ηsε̇+ (σp,zz − σp,rr) = σzz − σrr (3.17)

where σzz − σrr = (σs,zz − σs,rr) + (σp,zz − σp,rr) and where σs,zz − σs,rr = 3ηsε̇.
Therefore, using equation 3.9, the apparent extensional viscosity defined as

ηapp ≡
σzz − σrr

ε̇
(3.18)

can be estimated directly from experimentally measured quantities as
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ηapp ≈ −
Γ

2Ṙ
(3.19)

According to the FENE-P model described in §2.3.7 (see figure 2.5 for example),
and since the extension rate diverges towards infinity near breaking, the apparent
extensional viscosity is expected to reach an asymptotic value ηE called terminal
extensional viscosity and given by

ηapp −→ ηE = 3ηs + 2bηp (3.20)

where ηp = η0− ηs by definition. In this expression, the value b+ 3 found in chapter
2 with the FENE-P model (see figure 2.5) is replaced by b in order to match the
definition given by other authors (McKinley, 2005). Since we are mostly interested
in the order of magnitude of b, this will have no consequences is later discussions.

Extensional rheology results

We have built a simple Capillary Breakup Extensional Rheometer (CaBER) which
was used following the slow retraction method (SRM) described by Campo-Deano
& Clasen (2010) in order to minimise the unwanted fluid inertia effects inherent to
the classical step-strain plate separation protocol (Rodd et al., 2004). A droplet of
liquid is placed between two horizontal plates of radius Rd = 1.5 mm (see figure
3.7). The lower plate is kept fixed and the upper plate is moved upward with a
manual translation stage until the liquid bridge connecting the two end drops be-
comes unstable and starts necking. The initial and final plate separation distances
are typically L0,i ≈ 1.5 mm and L0,f ≈ 3.5 mm, which gives initial and final aspect
ratios Λi = L0,i/(2Rd) ≈ 0.5 and Λf = L0,f/(2Rd) ≈ 1.2 which is a bit larger than
the critical aspect ratio Λ∗. The average rate of plate separation is 0.5 mm/s.

The filament connecting the two end drops undergoes a succession of thinning
regimes until final breaking. The process is observed with a high magnification
objective (allowing spatial resolution of 1 pixel per micrometre) mounted on a high-
speed camera. Image processing gives access to the minimum filament radius R as
a function of time t. Figure 3.9 displays the evolution of the filament radius R(t)

for PEO solutions (with 20 wt% PEG solvent) and HPAM solutions along with
raw filament images at four stages of thinning for one of the PEO solutions. Near
breakup, R is the radius of the thinnest sub-filaments. Solutions are tested at room
temperature T = 20◦C.

Just after the transition to the elasto-capillary regime, we indeed observe an
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Figure 3.9 – Left: minimum filament radius R as a function of time t− ts where ts marks
the transition to the elasto-capillary (exponential) regime for PEO solutions with 20 wt%
PEG solvent and for HPAM solutions at T = 20◦C. Right: Four images of a filament of a
0.2 wt% PEO solution during the thinning process. These four steps are reported on the
corresponding R(t) curve on the left.

exponential decrease of the filament radius. This regime is fitted by

R ∝ exp (−t/3τfil). (3.21)

where we define τfil as the extensional relaxation time of the liquid. Repeating this
experiment on different drops of the same liquid shows reproducible results for PEO
and salted HPAM solutions. We checked that experimental parameters such as the
rate of plate separation had no impact on the measured value of τfil, as also reported
by Miller et al. (2009) for polymer solutions. However, unsalted HPAM solutions
showed less reproducible results. One possible explanation is that solutions of ri-
gid polymers are analogous to particle suspensions which are known to be affected
by random fluctuations in the particle concentration along the filament (Mathues
et al., 2015; McIlroy & Harlen, 2014). Values of τfil are reported in table 3.1 with
a number of significant digits which reflects the precision of the measurement.

We show in figure 3.10 the apparent extensional viscosity ηapp against the Hencky
strain ε given by equations 3.19 and 3.10 respectively. Since the minimum measur-
able radius (before breaking) is 0.5 µm (1/2 pixel) and since the initial minimum
bridge radius R0 (at the onset of the instability) is of order 0.4 mm, the maximum
Hencky strain is εmax = 13. The plateau value ηE at large strains is estimated.
Therefore, knowing η0 and ηs from shear rheology measurements, we can use equa-
tion 3.20 as a definition for the finite extensibility parameter b, i.e.
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Figure 3.10 – Apparent extensional viscosity ηapp (equation 3.19) as a function of the
Hencky strain ε (equation 3.10) for PEO solutions with 20 wt% PEG solvent and for
HPAM solutions at T = 20◦C.

b ≡ ηE − 3ηs
2(η0 − ηs)

(3.22)

Of course, for semidilute solutions, b has to be considered as an effective value since
the FENE-P model does not take into account any chain-chain interaction. Values
of ηE and b (calculated using equation 3.22) are reported in table 3.1. b ranges
between 103 and 105 for flexible PEO and salted HPAM solutions but is only of
order 100 - 101 for semi-rigid unsalted HPAM solutions.

3.2.3 Determination of the concentration regimes

For notation consistency, we introduce the other definition of polymer concentration
c = ρ [X] (where X means PEO or HPAM) introduced in chapter 2 which is the
polymer mass per unit volume, while [X] is the polymer mass fraction. Two methods
can be used to determine the critical overlap concentration c∗.

Shear viscosity data In order to characterise the different concentration regimes
of PEO solutions with 20 wt% PEG solvent, we show in figure 3.11.a the evolution
of the polymer contribution to the zero-shear viscosity ηp = η0 − ηs with polymer
concentration. The evolution is initially linear in the dilute regime and ηp = ηs[η]c

where [η] is the intrinsic viscosity defined in equation 2.63. We measure [η] =

0.93 m3/kg. Using the expression of the critical overlap concentration c∗ = 0.77/[η]

by Graessley (1980), we obtain c∗ = 0.83 kg/m3 (equivalently 0.081 wt%). This
value is consistent with the onset of shear-thinning behaviour, although the link
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[PEG] [PEO] c/c∗ η0 ηp n 1/γ̇c α1 Ψ τfil ηE b

wt % wt % Pa.s Pa.s s Pa.sα1 s Pa.s

20 0.001 0.012 0.017 0.0002 1.0 - - - 0.005 3× 101 1× 105

20 0.002 0.025 0.017 0.0003 1.0 - - - 0.013 9× 101 1× 105

20 0.01 0.12 0.018 0.001 1.0 - 2 0.0009 0.070 4× 102 1× 105

20 0.02 0.25 0.020 0.003 1.0 - 2 0.0016 0.13 6× 102 9× 104

20 0.04 0.49 0.023 0.006 1.0 - 2 0.0024 0.19 1× 103 8× 104

20 0.1 1.2 0.045 0.028 0.92 0.36 2 0.0079 0.41 2× 103 4× 104

20 0.2 2.5 0.18 0.16 0.82 3.1 2 0.026 0.78 5× 103 2× 104

20 0.3 3.7 0.40 0.38 0.73 4.0 1.7 0.12 1.1 6× 103 8× 103

20 0.4 4.9 1.2 1.2 0.62 5.9 1.4 0.63 1.3 7× 103 3× 103

[HPAM] [NaCl] c/c∗ η0 ηp n 1/γ̇c α1 Ψ τfil ηE b

wt % wt % Pa.s Pa.s s Pa.sα1 s Pa.s

0.1 0 6.7 2× 102 2× 102 0.16 7× 102 0.64 4.1 0.4 1× 103 3× 100

0.1 0.01 - 6× 101 6× 101 0.24 5× 102 0.70 2.3 0.3 8× 102 1× 101

0.1 0.1 - 0.40 0.40 0.48 7.7 0.93 0.36 0.15 5× 102 6× 102

0.1 1 - 0.023 0.022 0.70 0.50 1.0 0.058 0.081 4× 102 9× 103

0.1 10 - 0.0087 0.0077 0.82 0.22 - - 0.068 4× 102 3× 104

Table 3.1 – Rheological parameters of PEO solutions with 20 wt% PEG solvent (top)
and salted (NaCl) HPAM solutions (bottom) at T = 20◦C. Concentrations are in weight
fraction. Shear parameters: η0, n, γ̇c, α1 and Ψ are such that the shear viscosity η(γ̇) and
the first normal stress difference N1(γ̇) are captured by equations 3.7 and 3.8 (γ̇c is not
measurable when n = 1 and N1 is not always measurable). Values of c/c∗ are shown, where
c = ρ [X] (X means PEO or HPAM) and c∗ is the critical overlap concentration which is
c∗ = 0.83 kg/m3 for PEO solutions and c∗ = 0.15 kg/m3 for the unsalted HPAM solution.
ηp = η0−ηs where ηs is the solvent viscosity which is respectively 0.017 Pa.s (top) and 0.001
Pa.s (bottom). We use ηp = ηs[η]c to determine ηp for the two smallest PEO concentrations
(dilute regime) since the difference between η0 and ηs is too small to be measured directly,
where [η] = 0.93 m3/kg is the intrinsic viscosity. Extensional parameters (CaBER): τfil
is the extensional relaxation time and ηE is the terminal extensional viscosity. b = (ηE −
3ηs)/(2ηp) is the effective value of the finite extensibility parameter.

“semidilute regime ⇔ shear thinning” is far from obvious. After considering the
FENE-P model (describing dilute polymer solution, i.e. c < c∗) in chapter 2, we
already saw that finite extensibility is sufficient to lead to shear thinning behaviour
even without chain-chain interaction, provided that the solvent viscosity does not
“screen” intrinsic shear thinning (i.e. provided that S is not too close to 1, equation
2.30). However, shear-thinning is more likely to be observed in the semidilute regime
since polymers are more likely to align along the flow and to “slide” on one another
at large shear rates, thus exhibiting a lower resistance to the flow. Values of c/c∗ are
reported in table 3.1. Solutions are semi-dilute for c > c∗, as shown by the first slope
change in figure 3.11.a. A second slope change is observed for the most concentrated
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Figure 3.11 – Some data for the PEO solutions with 20 wt% PEG solvent of table 3.1. (a)
Evolution of the polymer contribution to the zero-shear viscosity ηp = η0 − ηs (divided
by the solvent viscosity ηs) with polymer concentration [PEO]. (b): Comparison of the
different relaxation time estimations: Ψ/2ηp (shear measurements for quadratic normal
stress differences N1 = Ψγ̇2), τfil (CaBER) and τZ = 0.024 s (Zimm theory, equation
2.81) against dimensionless polymer concentration c/c∗ where c = ρ [PEO] and c∗ = 0.83
kg/m3 is the critical overlap concentration.

solution, thus indicating a transition from the semi-dilute unentangled regime to
the semi-dilute entangled regime at a concentration ce ≈ 3 kg/m3 (equivalently
0.3 wt%). According to Rubinstein & Colby (2003), the different scalings are ηp ∝
c1/(3ν−1) for c∗ < c < ce and ηp ∝ c3/(3ν−1) for c > ce where ν is the solvent quality
(Flory) exponent. The data in figure 3.11.a can be described by the theta solvent
exponents 2 and 6 (ν = 0.5). However, other authors working with PEO solutions
in water/glycerol mixtures reported ν = 0.55 and measured the corresponding 1.54

and 4.62 exponents for ηp (Tirtaatmadja et al., 2006; Casanellas et al., 2016; Zell
et al., 2010).

Mark-Houwink equation The Mark-Houwink equation is a common way to es-
timate the critical overlap concentration c∗ which does not require intensive viscosity
measurements. This equation takes the form [η] = KM MαM whereM is the molecu-
lar weight of the polymer and where KM and αM depends on the chemical nature
of both polymer and solvent. We recall that M = 8 × 106 g/mol for PEO and
M = 15 − 20 × 106 g/mol for HPAM. Investigations with PEO in various solvents
(water, glycerol-water) suggest that solvent play a minor role (Tirtaatmadja et al.,
2006). Using (Tirtaatmadja et al., 2006; Rodd et al., 2004)

[η] = 0.072M0.65 (PEO) (3.23)

(where M is in g/mol and [η] is in ml/g), we find [η] = 2.2 m3/kg and we obtain a
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value c∗ = 0.77/[η] = 0.35 kg/m3 (equivalently 0.034 wt%) which is comparable to
the measured value within the experimental uncertainty reported by Tirtaatmadja
et al. (2006). Besides, the discrepancy can be attributed to the mechanical breaking
of polymer chains during sample preparation which results in a lower average mo-
lecular weight Mw (discussion in §3.2.5).

For HPAM chains with hydrolysis degree of 30 % in water (without salt), we can
use (Wu et al., 1991; Kawale et al., 2017)

[η] = 0.022M0.74 (unsalted HPAM) (3.24)

which gives [η] = 5.0 m3/kg. We obtain c∗ = 0.77/[η] = 0.15 kg/m3 (equivalently
0.015 wt%). Hence, c/c∗ ≈ 6.7 for HPAM solutions without salt and polymer mo-
lecules are probably in the semi-dilute entangled regime. Since c∗ increases when
adding salt (Chen et al., 2012), salted solutions are expected to be less entangled.

Since [η] ∝ M3ν−1 (equation 2.64), identification with the Mark-Houwink expo-
nent leads to ν = 0.55 for PEO and ν = 0.58 for HPAM.

3.2.4 Discussion on the rheological parameters

We now discuss the other rheological parameters of table 3.1.

PEO solutions (with 20 wt% PEG solvent)

The CaBER extensional relaxation time τfil is compared in figure 3.11.b with the
relaxation times Ψ/2ηp calculated for PEO solutions exhibiting quadratic first nor-
mal stress differences N1 = Ψγ̇2 (i.e. in the dilute and semi-dilute unentangled
regimes). Both quantities are plotted against c/c∗. While τfil increases with poly-
mer concentration, Ψ/2ηp decreases since ηp increases faster than Ψ which scales as
Ψ ∝ c0.72 in the dilute regime and Ψ ∝ c1.5 in the semi-dilute unentangled regime.
The link between the first normal stress coefficient Ψ and the CaBER extensional
relaxation time τfil is far from obvious. An intensive study by Zell et al. (2010)
involving semi-dilute PEO solutions in water-glycerol mixtures has been dedicated
to this topic. The authors also report that Ψ ∝ c1.5 for c∗ < c < ce, as well as values
of τfil much larger than Ψ/2ηp. Our experiments suggest that τfil ∝ c0.84, which is
in agreement with the exponents found by Zell et al. (2010). The authors also report
an empirical relation Ψ ∝ τ 2

fil where, surprisingly, the prefactor does not depend on
polymer concentration. This is different from the microscopic predictions in the di-
lute regime, i.e. ηp = Gτ (see §2.3.5) with G = n̄kBT (equation 2.72, dilute regime)
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and therefore Ψ = 2nkBTτ
2. Our experimental results follow the same quadratic

dependence in the semi-dilute regime with a prefactor 0.06 Pa which is comparable
to the prefactor reported by the authors.

Both relaxation times are compared in figure 3.11.b with the Zimm (longest)
relaxation time which is given by equation 2.81. The numerical prefactor is 0.38

for ν = 0.5 and 0.46 for ν = 0.55 and the corresponding values of τZ are respect-
ively 0.020 s and 0.024 s. The fact that τfil is larger than τZ in the dilute regime
(c < c∗) has been reported by Tirtaatmadja et al. (2006) and discussed by Clasen
et al. (2006). The interpretation is that polymer chain-chain interactions (neglected
in the Zimm model) are not negligible during the filament thinning process since
τfil ε̇ = 2/3 which is larger than the coil-stretch transition value 1/2 (De Gennes,
1974). The polymer chains are therefore highly extended and may overlap. Clasen
et al. (2006) suggested that there must be an effective critical overlap concentration
in extensional measurements which is orders of magnitude smaller than the con-
ventional coil overlap concentration c∗. Furthermore, the authors show that τfil is
larger than the longest relaxation time measured from small amplitude oscillatory
shear (SAOS) experiments since intermolecular interactions are less important. The
authors conclude that τfil is an effective relaxation time which is relevant in strong
extensional flows. CaBER experiments have indeed been used to determine the rel-
evant polymer time scale in many elongational flows including spraying (Keshavarz
et al., 2015), jetting (Clasen et al., 2009) contraction (Rodd et al., 2005, 2007) and
coating (curtain) flows (Becerra & Carvalho, 2011; Karim et al., 2018b). Note that
we measure values of τfil lower than τZ for the two most dilute PEO solutions, as
also reported by Clasen et al. (2006). The interpretation is that, for very dilute
solutions, polymeric stress may be insufficient to maintain the elastocapillary bal-
ance leading to equation 3.21 and to allow an unambiguous determination of the
longest relaxation time. Another possible interpretation is that our estimation of τZ
is incorrect due to mechanical degradation during sample preparation which leads
to a lower average molecular weight Mw.

We can compare the experimental values of the finite extensibility parameter b
to the microscopic expression (Clasen et al., 2006)

b = 3

[
j(sin (θ/2))2Mw

C∞Mu

]2(1−ν)

(3.25)

which involves the C-C bond angle θ = 109◦, the number of bonds j of a monomer
unit with molar mass Mu and the characteristic ratio C∞. For PEO, j = 3 and
C∞ = 4.1 (Brandrup et al., 1989). Therefore, using ν = 0.55 gives a value b =
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Figure 3.12 – Graphic representation of some of the rheological parameters of table 3.1
plus the rheological parameters of the solutions used in curtain experiments (see tables
B.1, B.2 and B.3). (a): Terminal extensional viscosity ηE versus the extensional relaxation
time τfil. (b): Degree of shear-thinning n versus the effective flexibility paramater b.

8.8×104 which is very close to the values measured for dilute PEO solutions. Using
ν = 0.5 gives a larger value b = 2.7× 105.

More general discussion

According to Stelter et al. (2002), the terminal extensional viscosity ηE is propor-
tional to τfil with a prefactor which is larger for flexible polymers than for rigid
polymers (see also McKinley (2005)). In figure 3.12.a, we plot ηE against τfil for
both PEO and HPAM solutions (table 3.1) and we indeed find that ηE ≈ 8×103 τfil

for solutions of flexible chains such as PEO and salted HPAM. Lower values of ηE
are found for semi-rigid (unsalted) HPAM solution. This behaviour is confirmed by
experimental data with curtain solutions (not introduced yet, see tables B.1, B.2
and B.3), which are superimposed in figure 3.12.a

The data of table 3.1 also suggests a link between the degree of shear-thinning
n and the effective value of the finite extensibility parameter b. In figure 3.12.b,
we plot n against b and we observe a correlation between these two rheological
parameters. When b increases, i.e. when the (effective) chain flexibility increases, n
increases which means that the solution is less shear-thinning. Hence, rigid polymers
are more likely to produce shear thinning solutions. This point has been discussed
by Lindner (2000) when comparing non shear-thinning solutions of (flexible) PEO
chains and shear-thinning solutions of (rigid) Xanthan chains. The experimental
data suggests a relation which can be simplified to
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n ≈

{
0.16 b0.17 for b < 5× 104

1 for b ≥ 5× 104
(3.26)

This behaviour is confirmed by experimental data with curtain solutions (not intro-
duced yet, see tables B.1, B.2 and B.3), which are superimposed in figure 3.12.b.
To our knowledge, this kind of relation is not mentioned in the literature. It is is
not predicted by dilute polymer solutions models such as the FENE-P model which
gives η − ηs ∝ γ̇−2/3 at large shear rates, i.e. n = 1/3 for all values of b.

3.2.5 Mechanical degradation and adequate protocols

During preparation (see §3.1.1) of a 5 kg curtain solution, degradation of the poly-
mer chains may occur during shaking since mechanical stirrers produce high shear
rates. This is particularly true for PEO solutions since we measured that the relaxa-
tion time of two independently prepared solutions of same PEO concentration could
vary by a factor of up to 4 (HPAM solution are much more reproducible). Authors
working with smaller samples use generally more gentle techniques such as magnetic
stirrers or (even better) roller-mixers. These techniques require longer preparation
times. In our case, the rheological data presented in the previous sections which
correspond to specific solutions with a particular preparation history can not be
used as a reference for all other solutions. Therefore, rheological measurements are
performed on any newly prepared solution. Nevertheless, the data presented in the
previous sections capture the main trends and orders of magnitude. In particular,
the scalings found in §3.2.4 remain true.

Mechanical degradation of the polymer chains also occur in the hydraulic loop
described in §3.1.2. Indeed, in this closed-loop system, polymer chains flow many
times through the peristaltic pump which was found to be the principal source of
degradation. Since irreversible scission of the polymer molecules occurs at each
passage through the pump, the rheological properties of the solution vary with
time. Therefore, it would be incorrect to correlate curtain data with the rheological
properties of the initial fresh solutions. In order to overcome this problem, we use
two different experimental protocols.

Degradation protocol For the first protocol, we take advantage of degradation
by proceeding as follows. A newly prepared solution is placed in the reservoir and
the pump is turned on at time td = 0. Filling the loop and setting the desired
flow rate takes about 1 minute. A first PIV measurement is performed, and we
immediately collect a sample of the solution from the die. Without changing any
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Figure 3.13 – Dependence of the extensional relaxation time τfil (a) and of the zero-shear
viscosity η0 (b) on the number of laps nlap through the hydraulic loop for PEO solutions
with 20 wt% PEG solvent (table B.1) and for HPAM solutions (table B.2 (top)). nlap is
estimated by tdQ/Ms where td is the time spent since the start of the experiment, Q is
the mass flow, and Ms = 5 kg is the mass of the solution. For each liquid, τfil and η0 are
normalised by the initial values before degradation, i.e. at td = 0.

external parameter, this procedure is repeated at times td = 10, 20, 40, 60 and
100 minutes. We therefore obtain six velocity profiles U(z) corresponding to six
degradation degrees of a given initial solution, which can be unambiguously correl-
ated to the rheological properties of the six corresponding samples. For simplicity,
the solution corresponding to the first measurement is called the fresh solution and
is referred to as td = 0. Note that the flow rate Q has to be regularly readjusted
because it increases naturally over time due to a decreasing dissipation in the slot.

For a solution of total mass Ms = 5 kg flowing with mass flow Q, the number
of laps through the loop is nlap ≈ tdQ/Ms where td is the time spent since the start
of the experiment. We show in figure 3.13 the extensional relaxation time τfil (a)
and the zero-shear viscosity η0 (b) as a function nlap for PEO solutions with 20 wt%
PEG solvent and for HPAM solutions. Values at time td = 0, 10, 20, 40, 60 and 100

minutes are normalised by the initial value before degradation, i.e. at td = 0. Since
the solutions are extruded at different flow rates (see §3.1.5), the values reported in
figure 3.13 correspond to different values of nlap. For PEO solutions, τfil decreases
by a factor of up to 10 after 100 minutes of circulation. In contrast, HPAM chains
are more resistant since they deteriorate at a much lower rate. Besides, we observe
that η0 only decreases for PEO solutions which exhibit shear-thinning behaviour.

The detailed rheological parameters of all the solutions presented in figure 3.13
are summarised in tables B.1 and B.2 (top). Shear thinning PEO solutions become
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less shear thinning during degradation, i.e. n increases. Note that an extra HPAM
solution is presented in table B.2 (bottom): starting from a fresh unsalted HPAM
solution, five PIV measurements are performed at arbitrary times, each measure-
ment corresponding to a particular salt concentration which is achieved by adding
a particular salt quantity to the solution. Samples are again collected at each step
and shear and extensional rheological measurements are performed on each sample.
Since polymer degradation is slow for HPAM solutions, we ensure that the drastic
modifications of the rheological parameters reported table B.2 (bottom) are mostly
due to salt addition.

Degradation-free protocol A second protocol is used when investigating the
role of external parameters such as the curtain length (§4.2.1), the flow rate (§4.2.2)
or the die geometry (§4.4.3). In this case, solutions must have the exact same
rheological properties for each measurement. Instead of using the peristaltic pump,
the liquid is poured manually from a bucket directly into a tank placed at two
metres above the die and drilled with a hole on the lower side. A constant flow
rate is ensured by keeping a constant liquid level in the tank. With 5 kg of liquid,
this protocol is only possible if the time to perform a controlled experiment is less
than the time to empty the bucket. This degradation-free protocol was used with
the PEO solutions with 40 wt% PEG solvent presented in table B.3, which have a
fairly constant shear viscosity (n ≈ 1) and large extensional relaxation times, and
with the PEO solution of table B.4. We checked that the shear and extensional
rheological parameters do not vary during experiments.

Temperature Curtain experiments are performed at room temperature, which
could vary between 20◦C and 30◦C from day to day. Since temperature is not
imposed in our “home-made” CaBER rheometer, the extensional rheology measure-
ments are always performed a few minutes after curtain experiments and in the same
room for maximum accuracy on extensional parameters. For the liquids of tables
B.3 and B.4, the temperature of the curtain room was imposed for shear rheology
measurements. However, for the liquids of tables B.1 and B.2, shear rheology meas-
urements were performed at a temperature T = 20◦C which was not necessarily
the room temperature. We measured on similar solutions that the variation of the
viscosity parameters η0, n and γ̇c is very weak within this temperature range (the
zero-shear viscosity η0 typically decreases by a factor of only 1.1 when raising the
temperature from 20◦C to 30◦C, while n and γ̇c remain unchanged). Hence, we can
reasonably use the 20◦C values reported in tables B.1 and B.2. However, values
of the first normal stress difference could vary significantly (by a factor 2). Hence,
values of α1 and Ψ are only reported for the liquids of tables B.3 and B.4. These
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values will be used for investigating die swell (§4.1.3 and §4.4.1) and the impact of
die geometry on the curtain flow (§4.4.3).
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4.6 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . 128

In this chapter, we first present the three important experimental specificities of
viscoelastic liquids in the context of curtain flows. These specificities are a dramatic
shift of the velocity field U(z) towards sub gravity accelerations, the apparition of a
flow instability for the most shear-thinning solutions, and a swelling of the curtain at
the slot exit. Then, focusing on the first specificity, we investigate the role of curtain
length, flow rate and rheological properties on the velocity field. Then, after deriving
a general force balance equation of the curtain flow, we identify a master curve of
viscoelastic curtains by analogy with Newtonian curtains. Next, we investigate the
influence of the pre-shear inside the slot on the curtain flow. Finally, we present an
attempt of theoretical description using the Oldroyd-B model.

4.1 General observations

4.1.1 A dramatic shift towards sub gravity accelerations

To identify the specificity of polymer solutions in the context of curtain flows, we
have performed a first series of experiments with three different liquids. The first
one (1) is the Newtonian 20 wt% PEG solvent of viscosity η = 0.017 Pa.s. The
second one (2) is a fresh (td = 0 min) 0.2 wt% PEO solution with 20 wt% PEG
solvent (table B.1). Its zero-shear viscosity is η0 = 0.12 Pa.s, ten times larger than
the pure solvent (1). The third one (3) is pure glycerin, a Newtonian liquid with
a measured viscosity η = 1.5 Pa.s, a hundred times larger than the shear viscosity
of liquid (1), and density ρ = 1250 kg/m3. Note that we used a different setup for
glycerin since, due to a strong viscous dissipation in the hydraulic loop, the max-
imum accessible flow rate is well below the minimum flow rate required to create
a continuous curtain. Glycerin is placed in a reservoir connected to the die and a
large enough flow rate is enforced by applying a constant air flow on the top of the
reservoir.

In figure 4.1, we plot the square U2 of the falling velocity of these liquids as a
function of the distance z from the slot. All three curtains have the same length
Lc = 30 cm and start from comparable initial velocities U1 ranging between 0.07 m/s
for glycerin (3) and 0.2 m/s for the PEG solvent (1). We recall that U1 = U(z1) is
the liquid velocity at z1 ≈ 2.5 mm from the slot exit (see §3.1.4) while U0 = U(z = 0)

is the liquid velocity at the slot exit. The local acceleration of the liquid is given by
UdU/dz which is half the local slope of the U2(z) curve. For both Newtonian cur-
tains (1) and (3), we observe that this acceleration is equal to g far from the slot exit.
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Figure 4.1 – Square U2 of the falling velocity as a function of the distance z from the
slot for two Newtonian curtains (1) and (3), a 20 wt% PEG solution and pure glycerin
of viscosities η = 0.017 Pa.s and η = 1.5 Pa.s respectively, and for a fresh (td = 0 min)
0.2 wt% PEO solution (2) with 20 wt% PEG solvent of zero-shear viscosity η0 = 0.12 Pa.s
(table B.1). The curtain length is Lc = 30 cm and the initial velocity U1 at z1 ≈ 2.5 mm
from the slot exit is 0.2 m/s, 0.13 m/s and 0.07 m/s for liquids (1), (2) and (3) respectively.
The local acceleration of the liquid is UdU/dz.

More precisely, the fall of the low-viscosity Newtonian liquid (1) is very well cap-
tured by a free-fall, i.e. U2 = U2

0 + 2gz, whereas the acceleration of glycerin reaches
the asymptotic value g at about 10 cm from the slot. These results are in agreement
with the theory of viscous Newtonian curtains derived in chapter 1 according to
which viscous forces are negligible far downstream from the slot. Indeed, the length
of the sub-gravitational part of the flow is of order zv = ((4η/ρ)2/g)1/3 (equation
1.3), respectively 0.077 cm and 1.4 cm for liquids (1) and (3), with a prefactor which
is about 7 for low initial velocities U0 �

√
gzv (see §1.1.3). In particular, we measure

U0 = 0.05 m/s from the glycerin curtain movie, which gives U0/
√
gzv ≈ 0.14 < 1.

Hence, according to the theory, the length of the sub-gravitational part of the flow
should be about 7 zv ≈ 10 cm which is in agreement with the experimental results.

In contrast, the PEO solution falls at much lower velocities than the two oth-
ers, despite the fact that its zero-shear viscosity is one order of magnitude smal-
ler than the viscosity of glycerin. More precisely, the acceleration at z = 14 cm
from the slot is UdU/dz = 2.5 m/s2 < g despite the fact that the viscous length
zv = ((4η0/ρ)2/g)1/3 is only 0.28 cm based on the zero-shear viscosity. Therefore,
viscoelastic curtain flows are not captured by the Newtonian curtain theory.
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Figure 4.2 – Example of PIV measurement for a degraded (td = 20 min) 0.1 wt% unsalted
HPAM solution (table B.2). (a): Superposition of six successive PIV images. The correla-
tion algorithm is applied to a domain restricted to the dashed rectangle. (b): z-component
of the velocity field, i.e. U(x, z, t), against the horizontal coordinate x at different distances
z from the slot at an arbitrary time t. The curtain length is Lc = 30 cm and the linear
flow rate is q = 3.1 cm2/s.

4.1.2 Unstable flow for the most shear-thinning solutions

We observed that the curtain flow is not always stationary and translation invari-
ant along the x horizontal direction as displayed in figure 4.2. Indeed, for some
solutions, the curtain flow is unstable and presents a time-dependent varicose mode
along x. More precisely, at a given time, the extrusion velocity of the liquid is
found to depend on the position x along the slot, producing a modulation of the
thickness of the curtain. This is illustrated by the vertical dark and bright stripes
in figure 4.2.a for an unsalted HPAM solution. This is one of the most extreme
cases of unstable curtain flow. The wavelength and the typical time of evolution of
the pattern are of the order of a few centimetres and a few tens of seconds respect-
ively. The corresponding velocity field U(x, z, t) is presented in figure 4.2.b at an
arbitrary time t. The dark and bright stripes are associated with flow regions with
characteristic velocities respectively slower and faster than the average velocity. For
example, at a distance z = 16 cm from the slot, the liquid velocity ranges between
0.6 m/s and 1 m/s which corresponds to a variation of ±25% around the average
value 〈U〉x = 0.85 m/s. The time variation of the average velocity 〈U〉x is presented
in figure 4.3.a: it is fairly independent of time. Hence, we can reasonably define an
average flow U(z) = 〈〈U〉x〉t obtained after averaging 〈U〉x over time, as presented
in figure 4.3.b.

As salt is added to an initially unsalted HPAM solution, the amplitude of the
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Figure 4.3 – (a): Velocity 〈U〉x averaged over x versus time t (for a two seconds PIV
movie) and at different distances z from the slot. Time t = 0 s corresponds to the data of
figure 4.2.b. (b): Velocity 〈〈U〉x〉t averaged over x and t versus z. The big coloured dots
correspond to the values of figure a.

instability decreases. It disappears for [NaCl] ≥ 1 wt%. Besides, for PEO solutions
with 20 wt% PEG solvent (table B.1), the curtain flow is weakly unstable for the
highest concentration [PEO] = 0.4 wt%. However, as the polymer chains break due
to mechanical degradation, the amplitude of the velocity variation decreases. It dis-
appears for td ≥ 40 min. All other solutions in table B.1 produce a stable curtain,
as well as every PEO solution with 40 wt% PEG solvent (table B.3).

Within our experimental range of rheological parameters and flow rates, the
only solutions producing an unstable flow have a degree of shear-thinning n < 0.70

or, equivalently, an effective finite extensibility b < 2 × 103. Neither the zero-
shear viscosity η0 nor the extensional relaxation time τfil does provide such a clear
separation between stable and unstable curtains. This aspect of our work will be
developed in §5.2 when focusing on the curtain stability. Besides, in chapter 6
which will be dedicated to the visualisation of the flow upstream of the slot, we
give experimental evidence that the flow instability observed in these curtains is in
fact generated at the planar contraction prior to entering the slot. This contraction
instability is characterised by a variation of the local velocity along the slot, thus
leading to overfed and underfed regions generating a modulation of the thickness and
velocity field of the downstream curtain. For now, concerning this chapter, whatever
the curtain (stable or unstable) we focus on the mean flow U(z) = 〈〈U〉x〉t.
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Figure 4.4 – (a): Velocity field U(z) at the slot exit measured from single particle tracking
velocimetry (PTV) for the PEO solution of table B.4 extruded at different flow rates q
ranging between 0.45 cm2/s and 1.4 cm2/s. The curtain swells since the mean velocity
decreases from U0 at z = 0 to U(zd) at a distance zd from the slot exit. U0 is estimated by
extrapolation the PTV data. The PIV velocity fields are also shown for comparison, the
first value U1 corresponding to z1 ≈ 2.5 mm. To guide the eye, z1, zd, U0, U1 and U(zd) are
shown for the data corresponding to q = 1.4 cm2/s (red symbols). (b): The corresponding
values of U0 and U(zd) are plotted against the mean velocity Us = q/2a inside the slot.

4.1.3 Die swell

We recall that the first value U1 = U(z1) measured by PIV corresponds to the ve-
locity at z1 ≈ 2.5 mm from the slot exit, whereas the mean velocity in the slot can
be estimated as Us = q/2a where q is the measured linear flow rate and 2a is the
slot thickness. Values of both Us and U1 are reported in tables B.1, B.2 and B.3
for the corresponding curtains experiments. We observe that U1 is systematically
smaller than Us, except for HPAM curtains, and that the ratio ξ = Us/U1 is up to 2

and increases with polymer concentration. Observations with the naked eye confirm
that the curtain rapidly swells at the slot exit. This is not due to a wetting effect,
as expected from the design of the die where the wall edges are bevelled (figure 3.2.b).

In order to estimate the velocity profile U(z) in this region, we can use the particle
tracking velocimetry (PTV) technique within the first millimetres of the flow, i.e.
we track the position of singles particles after leaving the slot. Image processing is
performed “manually”. Results are presented in figure 4.4.a for the PEO solution
of table B.4 extruded at different flow rates. The liquid velocity first decreases
from U0 = U(z = 0) at the slot exit to a minimum value at z = zd before finally
increasing, where zd increases from 1.5 mm to 4 mm when increasing the flow rate.
This is reminiscent of the delayed die swell effect (Boger & Walters, 2012; Delvaux
& Crochet, 1990). PIV measurements are not able to capture this behaviour since
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cross-correlation is computed over centimetric windows. However, a superposition of
the PIV velocity profiles in figure 4.4.a shows an acceptable agreement between the
first value U1 measured from PIV and the minimum velocity U(zd) measured from
particle tracking: U(zd) = U1 with less than 15% error. The values of U0 and U(zd)

are reported in figure 4.4.b as a function of the mean velocity Us in the slot. As
expected, U0 = Us. Besides, the swelling ratio ξ = Us/U1 increases when increasing
the flow rate. In the following, zd and U(zd) are approximated by z1 and U1 for the
sake of simplicity.

4.2 The influence of experimental parameters

4.2.1 The influence of the curtain length

To investigate the role of the curtain length Lc on the flow, we perform experiments
with Lc ranging from 15 cm to 200 cm. To achieve such measurements, we use a
two-floor room: the liquid is poured from the top floor and reaches the die hanging
from the ceiling of the bottom floor. After extrusion, the liquid is stopped at the
desired distance Lc from the slot by a 20×10 cm horizontal plastic plate and finally
falls into a reservoir. The vertical wires guiding the flow pass through two small
holes drilled on the plastic plate to ensure that all the liquid is stopped. The cam-
era only records the first 32 centimetres of the fall. Only the most elastic solutions
could form a 2 meters continuous curtain. On the other hand, curtains made of
solutions with low polymer concentration usually break before reaching the plastic
plate. Near the breaking zone, some curtains may even adopt a sinuous flag-like
motion. We suspect that this is due to the shear instability with the surrounding
air described by Dombrowski & Johns (1963) and Villermaux & Clanet (2002).

For these experiments, we use the PEO solutions with 40 wt% PEG solvent
presented in table B.3 along with the degradation-free protocol presented in §3.2.5
to ensure that Lc is the only varying parameter for a given solution. We only consider
the curtains reaching the plastic plate without breaking. Some results are presented
in figure 4.5 for [PEO] = 0.2 wt% (a) and [PEO] = 0.024 wt% (b). In the first case,
longer curtains fall clearly faster than shorter ones, i.e. the velocity U is larger at
a any distance z from the slot. The liquid vertical velocity has to vary from the
imposed initial velocity U(0) = U0 at the slot exit to U(Lc) = 0 when impinging onto
the motionless plastic plate where the curtain flow turns into a plane stagnation flow.
Everyday experience with jets of tap water suggests that the presence of a horizontal
solid surface only affects the liquid flow within a few millimetres before impact.
However, as suggested in the curtain-like experiment of figure 2.11 (elastic recoil,
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Figure 4.5 – Velocity field U(z) for z ≤ 32 cm for curtains of lengths Lc ranging between
15 cm and 200 cm. The liquid falls onto a motionless horizontal plate (see inset on the
right) and reaches a maximum velocity at a distance zm from the slot. The liquids are
respectively 0.2 wt% (a) and 0.024 wt% (b) PEO solutions with 40 wt% PEG solvent
(table B.3). They are respectively extruded at flow rates q = 0.40 cm2/s and 0.98 cm2/s.
The liquid velocity U1 at z1 ≈ 2.5 mm from the slot is respectively 0.02 m/s and 0.06 m/s.

first image), “thick” viscoelastic liquids start “spreading” much further upstream. In
other words the curtain thickness (resp. the curtain velocity) starts increasing (resp.
decreasing) at a much larger distance from the plate. Indeed, for the liquid of figure
4.5.a with extensional relaxation time τfil = 1.1 s, the presence of the plate clearly
affects the flow on a much larger scale: for Lc = 37 cm, the liquid velocity first
increases and reaches a maximum value at z = zm ≈ 25 cm before decreasing, i.e.
the curtain starts to get thicker at a distance Lc− zm ≈ 12 cm from the impact. As
the plate is moved downwards, the flow field near the slot exit converges towards a
universal behaviour which is no longer influenced by the presence of the plate: there
is no difference between Lc = 150 cm and Lc = 200 cm within the first 32 centimetres
of the fall in figure 4.5.a. This is even more visible for the solution used in figure
4.5.b which has a lower extensional relaxation time τfil = 0.17 s since the liquid
velocity U(z) is almost the same for all curtain lengths, except for Lc = 15 cm.

4.2.2 The influence of the flow rate

To investigate the role of the flow rate, we perform experiments using the degradation-
free protocol presented in §3.2.5 to ensure that q is the only varying parameter for
a given solution. The test liquid is the PEO solution presented in table B.4 which
is close to (but not exactly the same as) the degraded (td = 100 min) 0.4 wt% PEO
solution with 20 wt% PEG solvent presented in table B.1. The liquid is extruded
at different flow rates q ranging between 0.45 cm2/s and 1.4 cm2/s. In figure 4.6.a,
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Figure 4.6 – (a): Velocity field U(z) for the PEO solution of table B.4 extruded at flow
rates q = 0.45 cm2/s and 1.4 cm2/s. The liquid velocity U1 at z1 ≈ 2.5 mm from the
slot is respectively 0.047 m/s and 0.082 m/s. (b): Local acceleration UdU/dz at an
arbitrary distance z = 16 cm from the slot versus initial velocity U1. The curtain length
is Lc = 50 cm.

we report the velocity field U(z) for these two flow rates. U increases slightly faster
when increasing the flow rate. To quantify this effect, values of the liquid accelera-
tion UdU/dz at an arbitrary distance z = 16 cm from the slot are reported in figure
4.6.b as a function of the initial velocity U1 (after swelling). The local acceleration
is increased by a factor 1.2 when U1 is increased by a factor 1.7. The same trend is
observed for all solutions, including HPAM solutions.

4.2.3 The influence of the rheological properties

To investigate the role of the rheological properties, we show in figure 4.7.a the
square U2(z) of the velocity field for the six 0.1 wt% PEO solutions with 20 wt%
PEG solvent presented in table B.1. These measurements are performed with the
degradation protocol presented in §3.2.5 and each solution corresponds to a specific
degradation time. All six curtains share the same initial velocity U1 ≈ 0.17 m/s at
z1 ≈ 2.5 mm from the slot and the same curtain length Lc = 30 cm. These specific
solutions are almost non shear-thinning (n ≈ 0.96) and have similar shear viscosities.
In particular, the three last solutions have the same values of both η0 = 0.029 Pa.s
and ηp = 0.012 Pa.s. However, we observe that the liquid acceleration increases
with degradation time. This suggests that neither η0 nor ηp does fully control the
curtain flow and that other rheological parameters are to be taken into account to
rationalise the curtain data. The same conclusion can be drawn for the 0.02 wt%
and 0.004 wt% PEO solutions of table B.1 for which degradation has no impact on
the shear viscosity (results not shown).
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Figure 4.7 – Dependence of the velocity field U(z) on the rheological properties of the
solution. (a): U2(z) for the 0.1 wt% PEO solutions with 20 wt% PEG solvent (table
B.1) for all degradation times td = 0 to 100 min. All solutions are almost non shear-
thinning fluids of comparable zero-shear viscosity η0 ≈ 0.03 Pa.s and have comparable
initial velocities U1 ≈ 0.17 m/s at z1 ≈ 2.5 mm from the slot. A free-fall is shown for
comparison. (b): U2(z) for five pairs of solutions (1), (2), (3), (4) and (5) from tables
B.1 and B.2 (bottom) which are referred to as follows: [P0.2, td 60] corresponds to a
0.2 wt% PEO solution (with 20 wt% PEG solvent) with degradation time td = 60 min and
[H0.1, salt 1] corresponds to a 0.1 wt% HPAM solution with salt concentration [NaCl] =
1 wt%. Within each pair, both solutions share similar initial velocities U1 and comparable
extensional relaxation times ranging between τfil = 0.0073−0.008 s (1) to τfil = 0.38−0.5 s
(5). The curtain length is Lc = 30 cm for both figures.

In figure 4.7.b, we plot the square U2(z) of the velocity field for various PEO
and HPAM solutions from tables B.1 and B.2 (bottom). The curtain length is
Lc = 30 cm and we choose five pairs of solutions such that both solutions within
each pair share comparable extensional relaxation times τfil and initial velocities
U1. The results suggest that the liquid fall is mostly influenced by the value of τfil
since the flow of both solutions within each pair is very similar. More precisely, the
flow of solutions (1), which have low extensional relaxation times τfil = 7− 8 ms, is
well captured by a free fall with constant acceleration g = 9.81 m/s2, whereas other
solutions with larger values of τfil fall with sub-gravitational accelerations. In the
latter case, note that the local acceleration UdU/dz is an increasing function of z.
These results are consistent with the recent results of Karim et al. (2018b) who also
measured free-falls for curtains made of PEO solutions with extensional relaxation
times τfil ≤ 7.3 ms.

Note that η0 and ηp vary significantly for the pair (3) in figure 4.7.b. This ex-
ample reinforces the idea that shear viscosity does not fully control the curtain flow.
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Figure 4.8 – Dimensionless acceleration [UdU/dz]/g at z = 18 cm from the slot against
polymer extensional relaxation time τfil in lin-lin (a) and log-log (b) scales for all the
solutions of tables B.1 (PEO) and B.2 (HPAM), for which the curtain length is always
Lc = 30 cm, and for all PEO the solutions of tables B.3 when the curtain length is also
Lc = 30 cm. Note that another 0.4 wt% PEO solution with 20 wt% PEG solvent was
prepared and that the curtain flow was measured at td = 0, 5, 10, and 20 minutes in order
to fill the high relaxation time region of the curve.

The flexibility of the polymer chains also appears to play no major role since values
of the effective finite extensibility b (and of the degree of shear-thinning n) are very
different for the solutions of pair (5). To confirm these ideas, we gather all the
data corresponding to Lc = 30 cm in figure 4.8 where the acceleration at a given
(arbitrary) distance z = 18 cm from the slot is plotted against τfil. We observe a
good collapse of the data although neighbouring points in the plot can correspond
to very different values of the other rheological parameters. This result confirms
that curtain data can be fairly rationalised using only the extensional relaxation
time τfil measured from CaBER experiments. The deviations can be explained by
the differences in flow rates: curtains extruded at lower flow rates have a slightly
lower acceleration (§4.2.2). Note that some of the data in figure 4.8 correspond to
the unstable curtains mentioned in §4.1.2 and blend with the stable curtain data,
which suggests that this instability does not affect significantly the average velocity
field U(z) = 〈〈U〉x〉t.

According to figure 4.8.b, solutions with relaxation times τfil ≤ 10 ms have an
acceleration UdU/dz = g at z = 18 cm from the slot exit. In fact, for some of these
solutions, the local liquid acceleration is less than g close to the slot and reaches
the free-fall value g at z < 18 cm. This is reminiscent of the flow of pure glycerin
reported in figure 4.1, which suggests that g is also the asymptotic value of the
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liquid acceleration for viscoelastic curtains. However, due to the finite length of the
curtain, many liquids are stopped before reaching the free-fall behaviour. This is
particularly true for solutions with high relaxation times τfil ≈ 1 s which fall with
very low accelerations UdU/dz ≈ 0.1 m/s2 � g at z = 18 cm from the slot exit.

4.3 Characterisation of the average velocity field

4.3.1 General overview of the problem

Before focusing on the description of the curtain flow, we would like to give in this
section a general overview of the different types of flows involved in this problem,
as we did in §1.1 for Newtonian curtains. Here we will focus on viscoelastic liquids.

General description The liquid first experiences a planar contraction of ratio
A/a at the slot entrance (figure 3.2.b). The mean liquid velocity on the centre
line y = 0 switches from about q/2A in the hollow box to Us = q/2a inside the
slot in a characteristic time a/Us, where q is the linear flow rate and 2a is the slot
thickness. Then, a Poiseuille flow is established in the slot due to the development
of a viscous boundary layer along the walls. At the slot exit, the wall boundary
condition switches to a free-surface boundary condition, i.e. zero shear stress at the
liquid-air interface. Hence, due to viscous diffusion, the Poiseuille flow switches to a
plug flow, as illustrated in figure 4.9. U is the mean vertical velocity averaged over
the curtain thickness. After initial swelling at the slot exit, the curtain thickness
decreases since fluid particles are now accelerated by gravity. Since the liquid may
develop some resistance to gravitational forces, the local mean acceleration UdU/dz

may be initially less than g. The asymptotic free-fall regime where UdU/dz = g is
reached when inertia overcomes the resistance of the liquid.

Viscoelastic liquids For all solutions used in our experiments, the time scale a/Us
of the planar contraction is shorter than the extensional relaxation time τfil. Hence,
the polymer molecules undergo a rapid strain of Hencky strain ε ≈ ln (A/a) = 2.6

(equation 3.10). Significant extensional stresses may arise due to this sudden poly-
mer elongation. However, the time Ls/Us spent by the liquid inside the slot is
generally longer than τfil. Therefore, the polymeric stress developed by the liquid
at the slot entrance is expected to relax towards the asymptotic Poiseuille flow value
before leaving the slot.

For a Newtonian liquid, due to the development of a viscous boundary layer
along the slot walls, a fully developed Poiseuille flow is expected to be established
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4.3. Characterisation of the average velocity field

Figure 4.9 – Sketch of an infinitely long viscoelastic curtain (cross-sectional view). During
the swelling at the slot exit, the mean liquid velocity U and the mean normal stress
difference ∆ = σzz − σyy averaged over the curtain thickness switch respectively from Us
and ∆s to U1 and ∆1 at z1 ≈ 2.5 mm from the slot exit. The local vertical velocity field
u(y, z) switches from a Poiseuille flow inside the slot to a plug flow at a distance z = L∗e
from the slot. In parallel, the mean velocity field U(z) is characterised by a transition from
a sub-gravitational regime to an asymptotic free-fall regime at a distance z = z∗e from the
slot.

at a distance from the slot inlet which scales as Lv = Re a from the slot, where
Re = ρUsa/η is a Reynolds number. The prefactor for the effective establishment is
typically less than one (Kays et al., 2005). For the viscoelastic liquids used in our
experiments, the Reynolds number ranges between 0.03 and 10 based on the zero-
shear viscosity. Hence, Lv ranges between 0.01 mm and 5 mm which is much smaller
than the slot length Ls = 10 cm. This suggests that a fully developed Poiseuille
flow is established long before the slot exit, as confirmed by direct visualisation.

We recall that z∗v (“v” for “viscous”) is the distance from the slot exit at which
a Newtonian curtain reaches the asymptotic free-fall value (given in equation 1.28).
Using analogous notations for viscoelastic curtains, let z∗e (“e” for “elastic”) be the
distance from the slot at which the local acceleration of the liquid reaches the asymp-
totic value g. We showed in sections 4.1.1 and 4.2.3 that this transition length can be
much larger than what could be expected from the theory of Newtonian curtains, i.e.
z∗e � z∗v , and that it was mainly determined by the value of the extensional relaxa-
tion time τfil of the polymer solution. Of course, regardless of the liquid rheology,
this discussion only makes sense if the curtain length is larger than this transition
length, i.e. Lc > z∗e or Lc > z∗v , otherwise the curtain flow would turn into a plane
stagnation flow before reaching the free-fall regime.

Direct visualisation of the y dependence of the curtain flow is quite difficult.
Therefore, to estimate the length L∗e at which the plug flow is fully established in
the case of viscoelastic liquids, we visualised the flow of some PEO solutions when
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issuing from a nozzle of diameter 1 mm. For the degraded (td = 100 min) 0.1 wt%
PEO solution with 20 wt% PEG solvent, we measure L∗e ≈ 1.2 cm although the
transition to free-fall is out of frame in curtain experiments, i.e. z∗e > 18 cm. Hence,
provided that the order of magnitude of L∗e is comparable in the curtain, we can
reasonably assume that the plug flow is established much sooner than the free-fall
regime, i.e. L∗e/z∗e � 1. We shall mention that our measurements suggest an influ-
ence of elasticity on the Poiseuille to plug transition: L∗e is larger than what could
be expected from the theory of Newtonian curtains. Further analysis is required to
characterise this effect.

In this manuscript, we focus on the transition from the sub-gravitational regime
to the free-fall regime. In particular, we wish to characterise the sub-gravitational
regime in the case of a viscoelastic curtain and to express z∗e as a function of the
parameters of the problem.

4.3.2 Newtonian master curve

Before investigating the structure of the flow of viscoelastic curtains, we check that
the master curve identified in §1.1.3 for Newtonian curtain gives correct predictions.
We recall that the analysis of the Taylor equation 1.14 predicted that, when the
downstream boundary condition does not affect the flow (i.e. when the curtain
length Lc is much larger than the characteristic length zv = ((4η/ρ)2/g)1/3 of the
transition from the sub-gravitational regime to the free-fall regime), the velocity
field U(z) of a Newtonian curtain was given by

Ū(z̄) = Mv

(
z̄ +M−1

v (Ū0)
)

(4.1)

where z̄ = z/zv and Ū = U/Uv, where zv and Uv =
√
g zv are the characteristic

length and velocity scales of the problem. In this formula, Mv is a master curve
characterised by an initial viscous regime Mv(z̄) = z̄2/2 (gravity is balanced by
viscous dissipation) and an asymptotic inertial regime Mv(z̄) =

√
2 (z̄ − sv,0) where

sv,0 ≈ 2.8 (gravity is balanced by the fluid inertia). Basically, equation 4.1 predicts
that for any solution Ū(z̄) with initial velocity Ū0, the curve will collapse on the
master curve Mv(z̄) after translation along the z̄ axis by a distance M−1

v (Ū0) on the
right, where M−1

v is the functional inverse of Mv.

For the glycerin curtain flow presented in figure 4.1, we have zv = 1.4 cm (which
is smaller than the curtain length Lc = 30 cm) and U0 = 0.05 m/s which gives
Ū0 = U0/

√
gzv = 0.14 and M−1

v (Ū0) = 0.55. Therefore, shifting the dimensionless
curve Ū(z̄) by a distance 0.55 on the right makes the experimental data collapse on
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Figure 4.10 – Superposition of the experimental velocity field of the pure glycerin curtain
of figure 4.1 (Ū0 = 0.14) and of the Newtonian master curve shown previously in figure
1.3.b. The master curve Mv is characterised by an initial sub-gravitational viscous regime
and an asymptotic free-fall regime (equation 1.25).

the master curve, as shown in figure 4.10 in log-log scale. In fact, we tried to observe
a fully developed the viscous regime (equation 1.26) using honey but the boundary
layer developing along the guides had unfortunately completely invaded the curtain
after 4 cm of fall (see discussion in §3.1.4). Glycerin was a good compromise: it
is viscous enough to observe the intermediate inertio-viscous regime and inviscid
enough to measure the flow over a considerable distance without guide effects.

4.3.3 Viscoelastic scaling

As will be presented in §4.3.4, many aspects of the Newtonian curtains theory presen-
ted in the previous section are analogous to the description of viscoelastic curtains.
Hence, in order to find the appropriate length and velocity scales of viscoelastic cur-
tains, we first use the general force balance equation 1.14 derived in §1.1.2. Then,
a simple model giving the same result is presented. We recall that for Newtonian
curtains, the mean normal stress difference was simply ∆ = 4ηdU/dz. In the case of
a viscoelastic liquid however, a more general constitutive equation must be used to
close the system. An attempt of closure using the Oldroyd-B model will be provided
in §4.5. Note that equation 1.14 can reasonably be used for the curtains presented in
this manuscript since the local slenderness ratio |dh/dz| is less than one. The data of
figure 4.4 are a typical example where dh/dz goes from +0.1 at z = 0 to a minimum
value of about −0.06 after die swell, and is of order −10−4 at z = 20 cm from the slot.
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Chapter 4. Curtain flow

Force balance equation We can use equation 1.14 to find the appropriate scal-
ings of viscoelastic curtain flows without specifying any particular form of the con-
stitutive equation. We know from the experimental results of §4.2.3, that the exten-
sional relaxation time τfil of the solution is of primary importance. Therefore, let
us write equation 1.14 in a Lagrangian form where we introduce time

t =

∫ z

0

dz∗

U(z∗)
(4.2)

We obtain

dU

dt
= g +

1

ρ

d

dt

(
∆

U

)
(4.3)

which can be integrated into

U − U1 = g(t− t1) +
1

ρ

(
∆

U
− ∆1

U1

)
(4.4)

where subscript 1 refers to any altitude z1. Introducing τfil which is the natural
(longest) time scale of the polymers, we obtain the dimensionless force balance
equation

U − U1

gτfil
=
t− t1
τfil

+
∆

ρgUτfil
− ∆1

ρgU1τfil
(4.5)

This equation suggests that the natural velocity scale of the flow is

Ue = gτfil (4.6)

Therefore, the natural length scale of the flow is ze = Ue τfil which gives

ze = gτ 2
fil = U2

e /g (4.7)

Simple model The characteristic length scale ze can also be derived by simple
physical arguments. If a polymer molecule follows a free-fall trajectory U ∝

√
2gz,

it experiences a spatially decreasing strain-rate field ε̇ = dU/dz ∝
√
g/2z. It is

known that polymer chains go through the coil-stretch transition when they are
stretched faster that their natural relaxation rate, i.e. when τfil ε̇ is larger than 1/2

if taking τfil as the relevant polymer relaxation time (De Gennes, 1974). Therefore,
when considering the free-fall expression of ε̇(z), the polymer chains are expected to
exhibit large extensional viscosities as long as z < ze = gτ 2

fil (without prefactor).
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4.3. Characterisation of the average velocity field

4.3.4 A master curve for viscoelastic curtains

By analogy with Newtonian curtains, we can now use the scalings 4.6 and 4.7 to
identify the master curve of the viscoelastic curtain flow. First, we plot U(z)/Ue

as a function of (z − z1)/ze where z1 ≈ 2.5 mm (not shown). We obtain similar
curves which, like in figure 1.3.a, seem to rescale on a unique master curve after
translation along the horizontal axis. Indeed, when shifting each curve by a certain
dimensionless distance zshift, we obtain a good collapse of the velocity profiles with
less than 20% error, as shown in figure 4.11.a in log-log scale. Our experimental
data covers seven decades in z/ze.

Master curve

We introduce dimensionless variables

ẑ = z/ze and Û = U/Ue (4.8)

The master curve Me(ẑ) is characterised by two regimes:

Me(ẑ) =

Kẑ
α ẑ � 1 : elastic regime√

2 (ẑ − se,0) ẑ � 1 : inertial regime
(4.9)

where K = 1.3 ± 0.2 and α = 0.92 ± 0.02. Note that we only consider in figure
4.11.a the experimental data which are presumably not influenced by the down-
stream boundary condition. This includes the unstable (modulated) HPAM cur-
tains mentioned in §4.1.2, showing that the instability does not affect the average
velocity field. This result also confirms that the shear rheology parameters such as
η0, ηp and n play no major role in the description of the curtain flow, as well as
the flexibility parameter b. We measure that M2

e reaches an oblique asymptote of
equation M2

e = 2(ẑ − se,0) in the free-fall regime where se,0 = 6± 2.

The value of zshift, which is specific to each velocity field, is presented in figure
4.11.b as a function of the dimensionless initial velocity

Û1 = Û(ẑ1) =
U1

Ue
(4.10)

where U1 = U(z1). We measure that zshift ≈ (Û1/K)1/α for low initial velocities
Û1 � 1 and that zshift ≈ Û2

1/2 for large initial velocities Û1 � 1, which suggests
that zshift = M−1

e (Û1). Finally, we can write that

Û(ẑ) = Me

(
ẑ − ẑ1 +M−1

e (Û1)
)

(4.11)

103



Chapter 4. Curtain flow

10-3 10-2 10-1 100 101 102 103 104
10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101
10-4

10-3

10-2

10-1

100

101

102

Figure 4.11 – (a): Master curve of viscoelastic curtains. Dimensionless velocity field
U(z)/gτfil against (z − z1)/gτ2

fil + zshift in log-log scale, where z1 ≈ 2.5 mm, and where
each curve is translated by a distance zshift in order to rescale all the data on a single curve.
The master curve Me is characterised by an initial sub-gravitational elastic regime and an
asymptotic free-fall regime (equation 4.9). (b): When plotting zshift against U1/gτfil, we
find that zshift = M−1

e (U1/gτfil). We only consider the curtain flows which are presumably
not influenced by the downstream boundary condition. For the PEO solutions with 40 wt%
PEG solvent of table B.3, we only take the longest curtains, for example Lc = 200 cm for
the data of figure 4.5.a. Besides, for the PEO and HPAM solutions of tables B.1 and B.2
(top) which correspond to curtains of length Lc = 30 cm, we show the velocity profile
for z < 20 cm only for the solutions with extensional relaxation times τfil ≤ 0.2 s since
the experiments reported in §4.2.1 suggest that the effect of the downstream boundary
condition is out of frame.

This formula is completely analogous to the Newtonian curtain flow since equation
4.1 also gives Ū(z̄) = Mv

(
z̄ − z̄1 +M−1

v (Ū1)
)
for any altitude z1 ≥ 0. However,

since the die swell flow for 0 < z < z1 is not captured by equation 4.9, equation 4.11
is only valid for z ≥ z1. In particular, Û(ẑ) 6= Me

(
ẑ +M−1

e (Û0)
)
where Û0 = U0/Ue.

According to equations 4.11 and 4.9, we can show that the elastic regime only
exists if U1 is much smaller than Ue, i.e. Û1 � 1. This important result can be
summarised as

• Û1 � 1 ⇒ elastic regime for ẑ � 1 and inertial regime for ẑ � 1

• Û1 � 1 ⇒ inertial regime only

If U1 � Ue (equivalently Û1 � 1), according to equations 4.9 and 4.11, the elastic
regime of the flow (z � ze) writes
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4.3. Characterisation of the average velocity field

Û(ẑ) = K

ẑ − ẑ1 +

(
Û1

K

)1/α
α

(4.12)

and corresponds to negligible inertia in the force balance equation 1.14. Note that
only two curtains exhibit such a fully developed elastic regime: the 0.2 and 0.11 wt%
PEO solutions with 40 wt% PEG solvent (table B.3). For these solutions, the curtain
flow is the same within the first 30 cm of the fall for both Lc = 1.5 m and 2 m which
suggests that the flow has become independent of the downstream boundary condi-
tion (figure 4.5.a). However, ze = gτ 2

fil is respectively ze = 12 m and ze = 4.5 m.
Hence, we are not in the ideal limit Lc � ze. Therefore, it is not excluded that the
data corresponding to the elastic regime in figure 4.11.a are still a bit sensitive to
the downstream boundary condition. If that is the case, a curtain of length Lc � ze

would potentially exhibit an elastic regime with a value of α closer to 1. Of course,
achieving such curtains is very difficult in practice since they would probably break
before reaching the free-fall regime due to the shear instability mentioned in §4.2.1.

Note that the transition to plane stagnation flow discussed in §4.2.1 for vis-
coelastic curtains is analogous to the Newtonian case. In both figures 4.5 and 1.2,
the liquid velocity first increases, reaches a maximum value at some distance zm
from the slot, and finally decreases down to U(Lc) = 0. Provided that the analogy
remains true, we speculate that the presence of the plate affects the viscoelastic
curtain flow within a distance from the plate which is of order ze.

Regardless of the value of the initial velocity, in the inertial regime, again using
equations 4.11 and 4.9, the dimensionless velocity field writes

Û(ẑ) =

√
Û2

1 + 2(ẑ − ẑ1 − se) (4.13)

where se = se,0+Û2
1/2−M−1

e (Û1). In the case of a negligible initial velocity U1 � Ue,
this regime is reached for z � ze. On the other hand, for initial velocities U1 � Ue,
inertia dominates over elastic forces even close to the slot and the flow is well ap-
proximated by a free-fall U2 = U2

1 + 2g(z − z1) since se goes to zero.

In figure 4.12.a and 4.12.b, we present respectively the dimensionless extension
rate ε̇τfil where ε̇ = dU/dz and the dimensionless acceleration [UdU/dz] /g as a
function of ẑ − ẑ1 + zshift. The experimental data collapse on master curves which
correspond to M ′

e and MeM
′
e respectively, where ′ denotes spatial derivation d/dẑ.

According to figure 4.12.a, the extension rate is of the order of 1/τfil in the elastic
regime z � ze. More precisely, ε̇τfil weakly decreases and is initially larger than the
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Figure 4.12 – (a) Dimensionless extension rate τfil dU/dz(z) and (b) dimensionless ac-
celeration UdU/dz(z)/g versus (z − z1)/ze + zshift for the curtains of figure 4.11. The
master curve Me reaches the asymptotic free-fall regime at z/ze about Fe,0 = 12± 5 since
MeM

′
e(Fe,0) = 0.95, where 0.95 is an arbitrary value close to 1.

coil-stretch transition value 1/2. This result is reminiscent of the filament thinning
experiment described in §3.2.2 for which ε̇ τfil = 2/3 in the elastic regime. Physically,
polymer chains are therefore expected to unravel in the elastic regime since τfil ε̇ =

O(1), and to return progressively to a coil state in the inertial regime where τfil ε̇
decreases and becomes � 1.

Polymer extension in the elastic regime

We can now give a physical argument for the absence of finite extensibility effects in
the curtain flow. First we need to estimate the total Hencky strain εe accumulated
by the polymer chains in the elastic regime. We use the following high estimation

εe − ε1 ≈
∫ t(ze)

t(z1)

ε̇dt =

∫ ze

z1

dU/U = ln

(
U(ze)

U1

)
(4.14)

We assume that the Hencky strain after swelling ε1 is less than εe since polymer
chains are expected to unravel more in the curtain extensional flow than in the slot
shear flow. Using equation 4.12 and taking α = 1 for simplicity, we find U(z) ≈
U1 + K(z − z1)/τfil and therefore U(ze) ≈ U1 + KUe assuming z1 � ze. Finally,
we get εe ≈ ln(1 + K/Û1). This value has to be compared to the critical Hencky
strain ε∗ above which the polymer deformation saturates to its maximum value. It
can be estimated from CaBER data shown in figure 3.10. We get ε∗ ≈ 6 for PEO
and salted HPAM solutions and ε∗ ≈ 4 for unsalted HPAM solutions. The condition
for no finite extensibility effect writes εe � ε∗, i.e. polymer chains must not reach
their maximum length during the elastic regime. After injecting the estimation of
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εe, the condition becomes Û1 � K/(exp(ε∗) − 1) which is 2 × 10−3 for PEO and
salted HPAM solutions and 2× 10−2 for unsalted HPAM solutions. This condition
is fulfilled in most experiments (see values of Û1 in figure 4.11.b) and the finite
extensibility parameter b does not play a major role.

Length of the sub-gravitational regime

We can now derive an expression of the length z∗e of the sub-gravitational part of the
curtain introduced in §4.3.1. Let us define this length as UdU/dz(z = z∗e) = 0.95g

where 0.95 is an arbitrary value close to 1 and let Fe,0 be such that MeM
′
e(ẑ =

Fe,0) = 0.95. We obtain Fe,0 = 12 ± 5 (figure 4.12.b). Therefore, according to
equation 4.11, we have

z∗e = Fe × ze with Fe = Fe,0 + ẑ1 −M−1
e (Û1) (4.15)

where the prefactor Fe is a decreasing function of the initial velocity.

4.3.5 An elasticity number

We have characterised the curtain flow of both Newtonian and viscoelastic liquids. In
particular, the length of the sub-gravitational part of the curtain is given respectively
by zv and ze (equations 1.17 and 4.7) with prefactors which are decreasing functions
of the initial velocity. For a given viscoelastic liquid with zero-shear viscosity η0,
density ρ and extensional relaxation time τfil, we define a dimensionless number

El =

(
ze
zv

)1/2

=
τfil g

2/3

(4η0/ρ)1/3
(4.16)

which measures the relative importance of elastic to viscous effects in the curtain
flow. In the general case, the exact definition of the elasticity number is the ratio
between the Weissenberg number Wi = τU/L (equation 2.26) and the Reynolds
number Re = ρUL/η (equation 2.31) defined in chapter 2, where U and L are
characteristic velocity and length scales. The resulting number is independent of
velocity and writes

El =
Wi
Re

=
τ η

ρL2
(4.17)

Hence, the dimensionless number defined in equation 4.16 is an elasticity number
based on the viscous length scale zv = ((4η0/ρ)2/g)1/3 and on the extensional relax-
ation time τfil.
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Values of El are reported in tables B.1, B.2 and B.3. As expected, it is larger
than one since ze � zv in our experiments, except for solutions with low polymer
concentrations exhibiting a free-fall, for which both ze and zv are less than a few
millimetres. When adding polymer molecules to a viscous Newtonian solvent with
a large value of zv, we can expect a transition from the viscous regime described in
§4.3.2 with exponent 2 (equation 1.26) to the elastic regime described in §4.3.4 with
exponent α = 0.92 (equation 4.12) when El becomes larger than one.

4.4 Elastic stress at the slot exit

In this section, we address the question of the origin of the elastic stress in the
curtain. In the previous section, we have assumed that it comes mostly from the
stretching of polymer molecules in the curtain, especially in the elastic regime where
τfil ε̇ = O(1). However, one other possible origin lies is the initial stretching (or “pre-
shear”) of polymer molecules in the slot, which may lead to unrelaxed stress on top
of the curtain. We start this discussion by investigating the die swell ratio.

4.4.1 The die swell ratio

The liquid swells at the slot exit due to the recovery of the elastic strain imparted
into the die. In the theory of Tanner (1970, 2005), and Huang & White (1979), the
swelling ratio is

ξ =
Us
U1

=

[
1 +

3−m
m+ 1

(
N1

2σ

)2

w

]1/4

(4.18)

where N1 = σ∗zz − σ∗yy and σ = σ∗yz are respectively the normal stress difference
and the shear stress, m is such that N1 ∝ σm, and subscript w indicates that N1

and σ are to be taken at the wall of the slot, i.e. at y = a. Note that σ∗ is the
local stress tensor. This formula, which was developed for melts, has also been
used in the context of polymer solutions (Allain et al., 1997). Let us compare the
experimental data presented in figure 4.4 for the PEO solution of table B.4 with
Tanner’s prediction 4.18. Since the wall shear rate γ̇w ∼ Us/a is larger than the
shear rate γ̇c = 3 s−1 at which shear-thinning starts, the Carreau law 3.7 can be
reduced to an Ostwald power law σ = K0γ̇

n with K0 = η0/γ̇
n−1
c and the wall shear

rate can be simplified to

γ̇w =
2n+ 1

n

Us
a

(4.19)

With Us ranging between 0.045 and 0.14 m/s and n = 0.81, we find that γ̇w ranges
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Figure 4.13 – Comparison between the experimental die swell ratio ξ = Us/U1 for the data
of figure 4.4 and the values predicted by Tanner’s unconstrained recovery theory (equation
4.18) where we use (N1)w = N1(γ̇w) = Ψγ̇α1

w and (σ)w = σ(γ̇w) = K0γ̇
n
w where γ̇w is the

wall shear rate (equation 4.19). Since N1 ∝ σm, we use m = α1/n.

between 290 and 900 s−1. We can reasonably use the parameters of table B.4 since
shear rheology measurements are performed for shear rates up to 500 s−1 which is
close to γ̇w.

The experimental die swell ratio ξ is shown in figure 4.13 along with the predic-
tions of equations 4.18 and 4.19. The theory clearly overpredicts the die swell ratio.
This is not surprising since the unconstrained recovery theory of Tanner is only valid
if the extruded sheet is load-free, i.e. in the absence of tensile stress. A correction
has been proposed in the context of fibre spinning (White & Roman, 1976) (which
is equivalent to film casting) but not in the context of free jets or curtains subjected
to gravity only. The die swell ratio is generally assumed to be only slightly modified
by gravity for free jets (Richardson, 1970). However, in the planar case, Huang
& White (1979) report significant discrepancies between Tanner’s theory and their
experimental results when extruding melts from slit dies into ambient air, like in
figure 4.13. They report that Tanner’s law was recovered when extruding into a
bath of silicone oil with the same density, in which case the curtain no longer necks
down after swelling due to gravity (i.e. h and U are constant). In the latter case,
according to the force balance equation 1.14 without inertia, ∆ must therefore be
constant. In the theory of Tanner, it is assumed that most fluid particles “rapidly”
switch from the state of fully developed flow in the slot to a state of zero stress
measured relative to atmospheric pressure as datum. Here, “rapidly” means that
the time needed to clear the exit zone is short compared to the polymer relaxation
time, i.e. Usτfil/a � 1 which is the case in figure 4.13. In other words, the mean

109



Chapter 4. Curtain flow

normal stress difference ∆ defined in §1.1.2 in equation 1.13 switches from a value
∆s inside the slot to a value ∆1 = ∆(z1) after swelling (figure 4.9) which is ∆1 = 0

in the absence of gravity. The discrepancy in figure 4.13 suggests that ∆1 6= 0 in
the presence of an axial tension due to gravity.

These results suggest that the elastic stress imparted into the die may have an
effect on the curtain flow downstream. In order to quantify this effect, we now
compare the value of the mean normal stress difference ∆s inside the die and ∆1

after swelling.

4.4.2 Mean normal stress difference before and after swelling

Before swelling

∆s can be estimated analytically. We consider a shear-thinning fluid following an
Ostwald power law σ = K0γ̇

n for simplicity. Assuming a fully developed Poiseuille
flow, a classical calculation shows that the local velocity inside the slot is

u(y) = Us
2n+ 1

n+ 1

[
1−

(
| y |
a

)1+ 1
n

]
(4.20)

where Us = q/2a, from which equation 4.19 is recovered. Using N1 = Ψγ̇α1 and
γ̇ = du/dy. we find

∆s =
1

a

∫ a

0

N1 dy =
n

α1 + n

(
2n+ 1

n

)α1

Ψ

(
Us
a

)α1

. (4.21)

Note that for an Oldroyd-B fluid (for which n = 1 and α1 = 2), we can easily
show that a parabolic flow u(y) is an exact solution. We obtain equation 4.20 with
prefactor 3/2. The constitutive equation gives the following local stress components:
σ∗yz = (ηs + ηp)γ̇(y) and σ∗zz − σ∗yy = 2ηpτ [γ̇(y)]2 where γ̇ = du/dy. This means that
the normal stress at a distance y from the symmetry axis (y = 0) only depends on
the local velocity gradient. In particular, the polymer molecules are not deformed
at y = 0 (since γ̇ = 0) and are elongated close to the wall where the shear rate is
maximum.

After swelling

Viscoelastic liquid Now we show how to obtain the value of the mean normal
stress difference ∆1 after swelling based on the Lagrangian force balance equation
derived in §1.1.2.
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4.4. Elastic stress at the slot exit

We know from figure 4.12.a that the extension rate goes to 0 far from the slot
for an infinitely long curtain. Therefore, we can reasonably assume that the mean
normal stress difference ∆ becomes negligible in the asymptotic free-fall regime. In
particular, in the free-fall regime, according to equation 4.5 where we choose to start
from z1 ≈ 2.5 mm, the curtain velocity U reaches an oblique asymptote of equation

U − U1

gτfil
=
t− t1
τfil

− Ae (4.22)

where

Ae =
∆1

ρgU1τfil
=

∆1

ρU1Ue
=

∆̂1

Û1

(4.23)

where

∆̂1 =
∆1

∆e

(4.24)

and

∆e = ρgze = ρU2
e = ρ(gτfil)

2 (4.25)

which is the natural scaling for ∆ in the force balance equation 1.14 for a low vis-
cosity elastic liquid.

To estimate Ae, we plot (U −U1)/gτfil as a function of (t− t1)/τfil, as shown in
figure 4.14.a for some liquids with extensional relaxation times τfil ranging between
0.008 s and 0.68 s. Since we could not always observe the asymptotic free-fall regime,
we use the master curve Me identified in figure 4.11.a to extend the experimental
data and we fit the free-fall regime by an oblic asymptote to obtain the value of
Ae (figure 4.14.a). In order to validate this method, we performed an additional
experiment where a long curtain is observed at various vertical positions to obtain
a more complete velocity field U(z). The extensional relaxation time of this liquid
(which is close to the degraded (td = 100 min) 0.4 wt% PEO solution with 20 wt%
PEG solvent presented in table B.1) was τfil = 0.1 s. Unfortunately, the curtain
spontaneously breaks at z ≈ 100 cm due to the shear instability mentioned in §4.2.1
and we can still not observe the free-fall regime since z∗e ≈ 120 cm. However, the
flow for z ≤ 100 cm fits perfectly onto the master curve Me, and the data presented
in figure 4.14.a are comparable to the data corresponding to the almost same liquid
observed for z ≤ 20 cm, which validates the method presented here to estimate Ae.

Values of Ae are presented in figure 4.14.b for various solutions as a function
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Figure 4.14 – (a): (U − U1)/gτfil versus (t − t1)/τfil, where subscript 1 refers to the
altitude z1 ≈ 2.5 mm and t is the Lagrangian time (equation 4.2), for five liquids. Liquid
1: degraded (td = 100 min) 0.02 wt% PEO solution with 20 wt% PEG solvent (table B.1),
Liquid 2: degraded (td = 60 min) 0.1 wt% PEO solution with 20 wt% PEG solvent (table
B.1), Liquid 3: degraded (td = 100 min) 0.4 wt% PEO solution with 20 wt% PEG solvent
(table B.1), Liquid 4: 0.11 wt% PEO solution with 40 wt% PEG solvent (table B.3). The
curtain length Lc is 30 cm for liquids 1, 2 and 3 and is 200 cm for liquid 4. Liquid 5:
liquid close to liquid 3 for Lc = 100 cm and observed at various vertical positions to obtain
a more complete velocity field U(z). The experimental data is extended with the master
curve Me (figure 4.11) and the free-fall regime is fitted by equation 4.22. (b): Values of Ae
versus U1/Ue = U1/gτfil for some of the liquids of figure 4.11.

of the dimensionless initial velocity Û1 = U1/Ue. It ranges from Ae = 4.5 for the
solution with the largest relaxation time to negligibly small values Ae < 0.4 for the
solutions with low extensional relaxation times which are almost immediately in the
free-fall regime after leaving the slot. For Û1 ≤ 1, the experimental data are well
captured by

Ae ≈ 1.4 Û−0.2
1 (4.26)

which, according to equation 4.23, gives finally

∆1 ≈ 1.4 ρg1.2U0.8
1 τ 1.2

fil (4.27)

A different behaviour is observed for Û1 ≥ 1. The slope switches from about −0.2

to about −2 (see figure 4.14).

Newtonian liquid As we now show, this result is analogous to Newtonian cur-
tains for which die swell can be neglected (Tanner, 2000). Since there is no internal
relaxation time, the mean normal stress difference instantaneously switches from
∆s = 0 inside the slot to a value ∆0 = ∆(z = 0) at the slot exit. Since we know
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4.4. Elastic stress at the slot exit

the constitutive equation, the derivation is straightforward. According to equation
1.16, ∆0 is given by

∆0 = 4η
dU

dz

∣∣∣∣
z=0

(4.28)

In dimensionless form, we obtain

∆̄0 = Ū ′(z̄ = 0) where ∆̄ =
∆

∆v

(4.29)

and

∆v = ρgzv = ρU2
v = ρ(4ηg/ρ)2/3 (4.30)

which is the natural scaling for ∆ in the force balance equation 1.14 for a viscous
Newtonian liquid. Equations 1.26 and 4.29 gives

∆̄0 = (2 Ū0)1/2 for Ū0 � 1 (4.31)

which, in dimensional variable, gives

∆0 = 2
√

2 ρ (gU0η/ρ)0.5 (4.32)

We can also define

Av =
∆0

ρU0Uv
=

∆̄0

Ū0

(4.33)

and we obtain

Av =
√

2 Ū
−1/2
0 for Ū0 � 1 (4.34)

where the exponent −0.5 is larger (in absolute value) than the exponent −0.2 found
in the viscoelastic case. Note that for Ū0 � 1, in which case the curtain flow is a
free-fall even close to the slot, we have

∆̄0 = 1/Ū0 and Av = Ū−2
0 for Ū0 � 1 (4.35)

which is analogous to the Û1 ≥ 1 part of the curve of figure 4.14.b.

Physical meaning In order to get more information about the physical meaning
of ∆1, we can use the integrated force balance equation 4.4 which we write here in
its Eulerian form for more clarity
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2h1∆1 − 2h∆ = ρq(U1 − U) + 2ρg

∫ z

z1

h(z∗)dz∗ (4.36)

where 2h1 = 2h(z1) = q/U1. Note that, when plotting the right-hand side of this
equation, we always find a positive value (not shown), unless the flow is a free-fall in
which case it is equal to 0. Hence, h1∆1 ≥ h∆. In the elastic regime (z � ze), the
inertia term is negligible and the weight of the curtain between z1 and z is supported
by the difference between the contact forces 2h1∆1 and 2h∆ acting respectively on
the upper and lower side. This shows that ∆1 is the mean normal stress difference
which is necessary to bear the weight of the sub-gravitational part of the curtain.
We can derive the previous results for viscoelastic liquids by neglecting inertia and
returning to the Lagrangian description. In the elastic regime (t � τfil), using
q = 2hU and the definition of time (see equation 4.2), we obtain

∆1

U1

− ∆

U
≈ ρg(t− t1) (4.37)

Assuming that ∆ becomes negligible at the transition to free-fall (t ≈ τfil) and that
t1 � τfil, we find that

∆1 ∝ ρgU1τfil (4.38)

with a prefactor Ae which must be a decreasing function of the dimensionless initial
velocity Û1 since the length of the sub-gravitational part of the curtain is z∗e = Fe×ze
where Fe is a decreasing function of Û1. In particular, as expected from the discussion
about Tanner’s theory, ∆1 = 0 in the absence of gravity. The exact same reasoning
can lead to an analogous conclusion for Newtonian curtains.

Comparison between ∆s and ∆1

For the experiments presented so far, using equations 4.21 and 4.23, we obtain

∆1

∆s

=

[
n

α1 + n

(
2n+ 1

n

)α1
]−1

Ae ρgτfilU1

Ψ (Us/a)α1
. (4.39)

Estimating Ae by the method presented in this section, we find ∆1/∆s = O(1).
More precisely, it decreases from 2.5 to 0.5 for the liquid of table B.4 used in figures
4.4 and 4.13 when increasing the flow rate, and it is equal to 0.6± 0.1 for all PEO
solutions with 40 wt% PEG solvent of table B.3. In the latter case, the elastic stress
rapidly decreases when leaving the slot as the polymer chains undergo a rapid strain
ε = ln(U1/Us) = − ln(ξ) < 0 during swelling. However, in the presence of gravity,
the sheet is not load-free and the swelling ratio is less than expected since some
elastic stress ∆1 6= 0 has to bear the weight of the sub-gravitational part of the
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4.4. Elastic stress at the slot exit

curtain. In other words, the polymer chains can not recover their equilibrium shape
after swelling.

The last question which remains unanswered is the link between ∆1 and ∆s.
Since the experiments presented so far indicate that ∆1/∆s = O(1), one might
think that ∆1 is intrinsically linked to ∆s. If so, the origin of the polymeric stress
would lie in the shear deformation of the polymer chains in the slot, in which case the
length z∗e of the sub-gravitational regime would be a function of ∆s. In particular,
a curtain of vanishing slot velocity Us would exhibit no sub-gravitational elastic
regime (although U1 � gτfil) since ∆s, and therefore ∆1, would be arbitrarily small.
However the fact that we find ∆1/∆s = O(1) might also be a coincidence. To answer
this question, we need to compare the flow of two curtains made of the same liquid
but with radically different values of ∆s. According to equations 4.21 and 4.27,
changing the slot thickness 2a while keeping the same initial velocity U1 is a good
solution: if ∆1 does not change while ∆s changes, it means that the origin of the
polymeric stress lies in the extensional deformation of polymer molecules once in the
free-surface curtain. If so, the description of the flow provided in 4.3.4 is universal
and the master curve Me does not depend on the pre-shear history upstream of the
curtain.

4.4.3 The influence of the die geometry

In order to check if ∆1 is intrinsically linked to ∆s or not, i.e. whether or not
the curtain flow is affected by the history of polymer deformations upstream of the
curtain, we compare the flow of two curtains of same length and made of the same
liquid (table B.4).

Slot Die The first curtain is extruded from the slot die of figure 3.2.b where the
slot thickness 2a = 1 mm. The flow rate is q = 1.4 cm2/s, the mean velocity is
Us = q/2a = 0.14 m/s in the slot and U1 = 0.085 m/s at z1 = 2.5 mm from the slot
exit, after an initial swelling of ratio ξ = Us/U1 = 1.6 > 1.

Inclined plane The second curtain is formed using a second “die” presented in
figure 4.15.a where the liquid flows freely along an inclined plane before forming a
vertical curtain when falling off the edge. Imposing a flow rate q? = 0.85 cm2/s < q,
we measure that the thickness of the liquid layer flowing down the plane is 2a? =

2.5 mm > 2a, which gives a mean velocity U?
s = q?/2a? = 0.034 m/s < Us. We

measure that the mean vertical velocity is U?
1 = 0.088 m/s ≈ U1 at 3 mm from the

edge of the plane. Therefore, the thickness of the liquid rapidly decreases by a factor
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Figure 4.15 – (a): Sketch of a curtain formed when a liquid layer of thickness 2a? falls off the
edge of an inclined plane with mass flow Q. A grid of straws is used to homogenise the flow
in the x direction and the linear flow rate is q = Q/ρl where l is the curtain width. Guides
are used to avoid sheet retraction. (b): Using the PEO solution of table B.4, comparison
of the squared velocity field U2(z) of the curtain formed using the inclined plane and using
the slot die of figure 3.2.b. Both curtains start with comparable initial velocities U1 and
share the same length Lc = 50 cm. The typical shear rate is Us/a = 280 s−1 in the slot
but is only only U?s /2a? = 14 s−1 along the inclined plane, i.e. 20 times less.

ξ? = U?
s /U

?
1 = 0.39 < 1 at the edge of the plane. The swelling observed for the slot

die is now replaced by a contraction.

As presented in figure 4.15.b, the flows of these two curtains are slightly differ-
ent. The liquid velocity, which is initially comparable since U?

1 ≈ U1, increases a
bit faster when falling off the edge of the plane than when being extruded from the
slot. For example, the liquid acceleration is respectively 5.5 m/s2 and 4.6 m/s2 at
z = 18 cm. Therefore, the flow of the curtain falling of the inclined plane does not
perfectly collapse on the master curveMe identified in figure 4.11.a. Let us estimate
∆s and ∆1 for these two curtains.

We find ∆s ≈ 690 Pa for the slot die (equation 4.21). For the inclined plane, we
estimate the mean normal stress difference ∆?

s developed by the liquid when flowing
down the plane using equation 4.21 where a is replaced by 2a? since the flow is a
semi-Poiseuille. We find ∆?

s ≈ 1.6 Pa which is much less than ∆s. In fact, the
general formula for the ratio between ∆?

s and ∆s depends only on flow parameters.
We find

∆?
s

∆s

=

(
U?
s

Us
× a

2a?

)α1

=

(
q?

q
× a2

2(a?)2

)α1

≈ 2× 10−3 � 1 (4.40)
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This result suggests that the effect of ∆s on the curtain flow identified in figure
4.15.b is actually very weak. Indeed, despite a much different flow upstream of the
curtain, the curtain flows are quite comparable. In particular, ze = gτ 2

fil is still the
appropriate scaling for the length of the sub-gravitational regime. Therefore, the
mean normal stress difference ∆1 developed a few millimetres below slot or below
the edge of the plane respectively must be comparable in both experiments. Using
the method described in §4.4.2, we find Ae ≈ 3.4 for the slot die and A?e ≈ 2.1 for the
inclined plane. In the latter case, note that this estimation is based on comparisons
with other curtain flows (of similar extensional relaxation time) extruded from the
slot die since the master curve can not be used to extend the experimental data. We
find respectively ∆1 ≈ 460 Pa and ∆?

1 ≈ 300 Pa which are indeed comparable, i.e.

∆?
1

∆1

=
A?e
Ae
≈ 0.6 (4.41)

For the slot die, the polymeric stress decreases during swelling and ∆1/∆s ≈ 0.7 < 1.
However, for the inclined plane, the polymeric stress increases during the contraction
at the edge of the plane and ∆?

1/∆
?
s ≈ 180 > 1. In fact, in both cases, the polymer

molecules undergo a rapid strain ε = ln(U1/Us) which is −0.50 < 0 for the slot and
which is 0.95 > 0 for the inclined plane. According to figure 3.10, such strains can
indeed cause significant modifications of the polymeric stress.

Summary To summarise, the mean normal stress difference switches from a value
∆s inside the die to a value ∆1 at the die exit, where ∆1 is of order ρgU1τfil independ-
ently of the flow history inside the die, with a prefactor Ae which is a decreasing
function of the initial velocity. However, since the flow is slightly modified when
changing ∆s, the prefactor also depends on the die geometry and is an increasing
function of ∆s. The length z∗e of the sub-gravitational regime is of order gτ 2

fil with
a prefactor Fe which is a decreasing function of the initial velocity and which is also
an increasing function of ∆s. In simple words, polymeric stresses in the curtain are
mostly due to the extensional stretching of polymer molecules in the curtain (where
τfil ε̇ = 0(1) in the elastic regime), with a small correction due to the “pre-shear” in
the die.

4.5 Theoretical description using Oldroyd-B

In this section, we provide an attempt of analytical description of the viscoelastic
curtain flow using the Oldroyd-B model. This choice is motivated by the simpli-
city of the model and by the fact that, as suggested by experimental results, the
extensional relaxation time is the only relevant rheological parameter. Indeed, a
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more realistic model would involve at least one other rheological parameter such as
the finite extensibility parameter b in the FENE-P model. As will be developed,
some assumptions lead to a simple analytical expression which roughly captures the
trends observed in the experimental data, with discrepancies which will be discussed.
Hence, we do not mean to say in this section that the Oldroyd-B model is the right
model, and we rather investigate the implications of the model in order to derive
the basic ideas which will be necessary for a more refined description.

4.5.1 Set of equations

The general force balance equation 1.14 has to be coupled with a constitutive equa-
tion giving an expression of the mean normal stress difference ∆ defined by equation
1.13. Assuming a fast convergence towards the plug flow, we assume that (at first
order) the flow will be well captured by neglecting any y dependence in the con-
stitutive equation, i.e. by treating the flow as a pure planar extensional flow, as done
by Taylor when deriving the Newtonian Taylor equation 1.5. Using the Oldroyd-B
model (with elastic modulus G and relaxation time τ), since the local extension rate
is ε̇(z) = dU/dz, the components of the mean extra stress tensor σ are (assuming a
pure planar extensional flow)

σzz = 2ηs
dU

dz
+ σp,zz and σyy = −2ηs

dU

dz
+ σp,yy (4.42)

where (according to equation 2.36 where d/dt is replaced by Ud/dz)
τU

dσp,zz
dz

+ σp,zz

(
1− 2τ

dU

dz

)
= 2ηp

dU

dz

τU
dσp,yy

dz
+ σp,yy

(
1 + 2τ

dU

dz

)
= −2ηp

dU

dz

(4.43)

where ηs is the solvent viscosity and where ηp = Gτ . The mean normal stress
difference is

∆ = σzz − σyy = 4ηs
dU

dz
+ (σp,zz − σp,yy) (4.44)

No simple equation for σp,zz−σp,yy can be derived by subtracting or adding equations
4.43. Therefore, using equations 1.14, 4.42 and 4.43, the complete set of equations
describing the curtain flow are
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U
dU

dz
= g +

4ηsU

ρ

d

dz

(
1

U

dU

dz

)
+
U

ρ

d

dz

(
σp,zz − σp,yy

U

)
τU

dσp,zz
dz

+ σp,zz

(
1− 2τ

dU

dz

)
= 2ηp

dU

dz

τU
dσp,yy

dz
+ σp,yy

(
1 + 2τ

dU

dz

)
= −2ηp

dU

dz

(4.45)

The first equation is general while the two others are the expressions of the normal
stresses given by the Oldroyd-B model assuming a pure planar extensional flow.
Note that, as expected, the Newtonian Taylor equation 1.5 is recovered when τ = 0

by replacing η by η0 = ηs + ηp.

We have obtained a system of three ordinary differential equations describing the
evolution of the velocity U(z) and the evolution of the polymeric normal stresses
σp,zz(z) and σp,yy(z). Since the first equation involves a second derivative d2U/dz2

due to the solvent term, four boundary conditions are required. This is two times
more than for Newtonian curtains. Here are four possible boundary conditions: one
for the initial velocity and one for each initial polymeric normal stress components
(three upstream boundary conditions) plus one describing the downstream boundary
condition (plane stagnation flow, film casting or free-fall, see §4.3.2). Since die
swell is not captured by the force balance equation, the three upstream boundary
conditions should be evaluated at a distance z = z1 from the slot exit. In the
following, we note

U(z1) = U1, σp,zz(z1) = σp,zz,1 and σp,yy(z1) = σp,yy,1 (4.46)

The system 4.45 can be written in terms of dimensionless variables

ẑ = z/ze, Û = U/Ue and σ̂p,ii = σp,ii/∆e (i = y, z) (4.47)

where we recall that

ze = gτ 2, Ue =
√
gze = gτ and ∆e = ρU2

e = ρgze = ρ(gτ)2 (4.48)

We obtain
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Û
dÛ

dẑ
= 1 +

S

El3
Û

d

dẑ

(
1

Û

dÛ

dẑ

)
+ Û

d

dẑ

(
σ̂p,zz − σ̂p,yy

Û

)

Û
dσ̂p,zz

dẑ
+ σ̂p,zz

(
1− 2

dÛ

dẑ

)
=

1− S
2El3

dÛ

dẑ

Û
dσ̂p,yy

dẑ
+ σ̂p,yy

(
1 + 2

dÛ

dẑ

)
= −1− S

2El3
dÛ

dẑ

(4.49)

where

S =
ηs

ηs + ηp
=
ηs
η0

and El =
τ g2/3

(4η0/ρ)1/3
(4.50)

where El is the elasticity number defined with τfil in equation 4.16.

4.5.2 Three hypothesis

At this point, one important hypothesis can be made to simplify the problem:

• Hypothesis 1 : Elasticity dominates over viscosity, i.e. El � 1

This hypothesis is motivated by the fact that, as suggested by experimental results,
η0 is does not play a major role. For example, for the 0.2 wt% PEO solution with
40 wt% PEG solvent of table B.3 which showed a fully developed elastic regime in the
master curve (figure 4.11), we have El = 37 and therefore 1/El3 = 2.0× 10−5 � 1.
Hence, for this liquid and many others, is seems reasonable to neglect the term on
the right-hand side of the last two equations 4.49, as well as the solvent term in the
first equation.

At this point, it can be useful to turn to the Lagrangian description by in-
troducing time t (defined in equation 4.2) in order to replace Ud/dz by d/dt, or
equivalently Ûd/dẑ by d/dt̂ where

t̂ = t/τ (4.51)

In Lagrangian description, the extension rate ε̇ = dU/dz becomes ε̇ = (1/U)dU/dt.
In dimensionless form, dÛ/dẑ (which is equal to τ ε̇) becomes (1/Û)dÛ/dt̂. In par-
ticular, the two last equations 4.49 become
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dσ̂p,zz

dt̂
+ σ̂p,zz

(
1− 2

Û

dÛ

dt̂

)
= 0 ⇒ σ̂p,zz

σ̂p,zz,1
=

(
Û

Û1

)2

e−(t̂−t̂1)

dσ̂p,yy
dŷ

+ σ̂p,yy

(
1 +

2

Û

dÛ

dt̂

)
= 0 ⇒ σ̂p,yy

σ̂p,yy,1
=

(
Û

Û1

)−2

e−(t̂−t̂1)

(4.52)

where t1 = t(z1). This results suggests that, provided that σp,yy,1 � σp,zz,1, then
σp,yy � σp,zz at all later times. This is our third hypothesis

• Hypothesis 2 : The axial tension dominates, i.e. σp,yy � σp,zz

This hypothesis has also been successfully used by Clasen et al. (2009) to find the
simple solution R ∝ exp (−t/3τ) (equation 3.15) in the filament thinning problem.
Since the solvent term has been neglected through hypothesis 1, we obtain

∆ ≈ σp,zz (4.53)

Finally, under hypothesis 1 and 2, the system becomes simply
Û

dÛ

dẑ
= 1 + Û

d

dẑ

(
∆̂

Û

)

Û
d∆̂

dẑ
+ ∆̂

(
1− 2

dÛ

dẑ

)
= 0

(4.54)

and only requires two boundary conditions (for example: the initial velocity Û1 and
the initial mean normal stress difference ∆̂1). The initial values σp,zz,1 and σp,yy,1

have been replaced by ∆1. More importantly, one boundary condition has been
removed when neglecting the solvent term in the force balance equation. Therefore,
if considering that U1 and ∆1 can be any arbitrary value, it becomes impossible to
control the downstream boundary condition. Although it is clear that the initial
velocity U1 can be imposed arbitrarily by varying the flow rate, the status of ∆1 as
a valid boundary condition is not yet clear.

Let us clarify this point with the theory of Newtonian curtains developed in
§4.3.2. We know that the initial mean normal stress difference ∆̄0 is equal to the
initial slope of the velocity profile Ū ′(z̄ = 0) (see equation 4.29). If the downstream
boundary condition is not specified, the value of C in Clarke’s solution 1.19 can
be positive (film casting) negative (plane stagnation flow) or equal to 0 (infinite
curtain converging towards a free-fall). Therefore, the exact value of ∆̄0 depends
on the upstream and downstream boundary conditions. Considering the case of a
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convergence towards a plane stagnation flow for example (C < 0), there is no exper-
imental control on ∆̄0 since it is fixed by the initial velocity Ū0 and by the curtain
length L̄c. When C = 0, ∆̄0 is a (decreasing) function of Ū0 only (see §4.4.2).

For viscoelastic curtains however, it would seem reasonable to assume that ∆1

can be varied arbitrarily, independently of (for example) the curtain length. The
data of figure 4.15 indeed suggests that, for a given initial velocity U1 and a given
curtain length Lc, the initial mean normal stress difference ∆1 (after swelling) is a
(weak) function of the mean normal stress difference ∆s developed inside the slot.
Hence, if the value of ∆1 is not directly encoded by U1 and by the downstream
boundary condition (contrary to the Newtonian case), then one boundary condition
is missing in equation 4.54.

4.5.3 Analytical solution

General expression

Let us continue the calculation to see where the two hypothesis are taking us. In
Lagrangian form, equation 4.54 becomes

dÛ

dt̂
= 1 +

d

dt̂

(
∆̂

Û

)
⇒ Û − Û1 = t̂− t̂1 +

∆̂

Û
− ∆̂1

Û1

d∆̂

dt̂
+ ∆̂

(
1− 2

Û

dÛ

dt̂

)
= 0 ⇒ ∆̂

∆̂1

=

(
Û

Û1

)2

e−(t̂−t̂1)

(4.55)

which finally gives a simple analytical expression

Û − Û1 =
t̂− t̂1 − Ae

[
1− e−(t̂−t̂1)

]
1−Xe−(t̂−t̂1)

(4.56)

or equivalently

Û =
t̂− t̂1 − Ae + Û1

1−Xe−(t̂−t̂1)
(4.57)

where

Ae =
∆̂1

Û1

and X =
Ae

Û1

=
∆̂1

Û2
1

(4.58)

where ∆̂1 = ∆1/∆e and ∆1 = ∆(z1). The definition of Ae matches the definition of
equation 4.23. At infinity (t̂→ +∞), this solution reaches an oblique asymptote of
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4.5. Theoretical description using Oldroyd-B

equation

Û − Û1 = t̂− t̂1 − Ae (4.59)

which is exactly the free-fall anticipated in equation 4.22. This is not surprising
since the only hypothesis used to write equation 4.22 was that ∆ becomes negligible
in the free-fall regime (t̂ � 1). Indeed, according to equation 4.55, this hypothesis
is valid for an Oldroyd-B fluid.

Avoiding the divergence

The denominator of the right-hand side of equation 4.57 becomes 0 at a time t̂div
given by

t̂div − t̂1 = ln (X) (4.60)

which is positive is Ae > Û1 (i.e. if X > 1). If the denominator goes to zero, the
solution diverges in finite time, unless the numerator is also 0 at time t̂div. Using
equation 4.57 and 4.60, the latter condition writes

lnX − Û1 (X − 1) = 0 (4.61)

Let X∗ be a solution of this equation. A trivial solution is X∗ = 1 and the nontrivial
solution is a decreasing function of Û1 with no simple analytical expression. More
precisely, X∗ > 1 if Û1 < 1 and X∗ < 1 if Û1 > 1. Therefore, the only way to have
a nondiverging solution using equation 4.57 is to restrict the value of Ae (and thus
the value of ∆̂1) to a very specific value A∗e = Û1X

∗ which is a function of the initial
velocity Û1. Therefore, with our hypothesis, ∆̂1 can not be arbitrary.

In order to obtain the Eulerian solution, one must reintroduce the distance z
from the slot which writes

z − z1 =

∫ t

t1

U(t∗) dt∗ ⇔ ẑ − ẑ1 =

∫ t̂

t̂1

Û
(
t̂∗
)

dt̂∗ (4.62)

Combining with the solution 4.57, we get

ẑ − ẑ1 =

∫ t̂−t̂1

0

T − Ae + Û1

1−Xe−T
dT (4.63)

which has no simple analytical expression.

In figure 4.16.a, we present the velocity field Û predicted by equation 4.57 as a
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Figure 4.16 – Velocity field Û against t̂ − t̂1 (a) (Lagrangian description, equation 4.57)
and against ẑ− ẑ1 (b) (Eulerian description, equations 4.57 and 4.62) for an initial velocity
Û1 = 10−3 and for Ae = A∗e(Û1) ≈ 9.1191 (infinite curtain converging to a free-fall),
Ae = A∗e − 0.1 (the velocity reaches a maximum value at a distance ẑm from the slot and
turns into a plane stagnation flow when impacting a flat surface at a distance L̂c from the
slot) and for Ae = A∗e + 0.1 (the velocity diverges and becomes arbitrarily large, like in
film casting experiments).

function of time for an initial velocity Û1 = 10−3 and for three different values of
Ae. Figure 4.16.b is the Eulerian version, where the velocity field is plotted against
the distance from the slot instead of time using equation 4.62. When Ae = A∗e (the
solution of equation 4.61), the solution converges to the free-fall oblique asymptote.
However, for Ae > A∗e, the solution diverges in finite time, which allows arbitrary
large values of the velocity at a given distance from the slot. Moreover, for Ae <
A∗e, the velocity reaches a maximum value at a distance ẑm from the slot before
decreasing down to Û = 0 at a distance L̂c from the slot. These three scenarios
are reminiscent to the Newtonian scenarios discussed in figure 1.2.a. Hence, the
Oldroyd-B model also predicts the three types of downstream boundary conditions
discussed in §4.3.2 depending on the value of Ae:

• Ae = A∗e: Infinite curtain converging to a free-fall

• Ae > A∗e: Film casting experiment

• Ae < A∗e: The flow turns into a plane stagnation flow

Comparison with experimental results

Values of A∗e (solution of equation 4.61) are plotted against Û1 in figure 4.17.a.
This theoretical curve is compared with the experimental data of figure 4.14.b. The
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Figure 4.17 – (a) Solution A∗e of equation 4.61 compared with the experimental data of
figure 4.14.b. (b) Master curve Me (solution Û (equation 4.57) for Û1 = 0 and Ae = A∗e in
Eulerian description using equation 4.62), compared with the experimental data of figure
4.11.a. In practice, it is impossible to impose Û1 = 0 rigorously. Therefore, we chose a
value Û1 ≪ 1 and we check that choosing an other value (ten times lower or ten times
larger for example) has no consequence on the shape of the analytical curve in the domain
of figure (b).

orders of magnitude are recovered, as well as the decreasing behaviour. However,
A∗e overestimates the experimental values for low initial velocities Û1 < 1. Note that
this comparison relies on an implicit third hypothesis which is that the relaxation
time τ of the Oldroyd-B model is rigorously equal to the extensional relaxation time
τfil measured in CaBER experiments, i.e.

• Hypothesis 3 : The relevent Oldroyd-B relaxation time is τ = τfil (CaBER)

Indeed, the dimensionless quantities in figure 4.17.a are Ae = ∆1/ρgU1τfil and
Û1 = U1/gτfil for the experimental data and are Ae = ∆1/ρgU1τ and Û1 = U1/gτ

for the theoretical data. We recall that, when using a multimode Oldroyd-B con-
stitutive equation with a Zimm spectrum of relaxation times to model the filament
thinning process, the filament radius decreases as exp (−t/3τ) in the elastic regime
at “long times”, where τ (model) is the longest relaxation time corresponding to the
slowest mode (the contribution of the other modes becomes negligible, see discussion
in §3.2.2). Hence, it corresponds to the value τfil measured in CaBER experiments.
For the viscoelastic curtain problem, experimental results suggested that τfil was
also the relevant time scale.

In figure 4.17.b, the experimental master curveMe,exp of figure 4.11.a is compared
with the theoretical master curve Me,th corresponding to the particular solution of
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Figure 4.18 – Extension rate dMe/dẑ (a) and acceleration Me dMe/dẑ (b) for the master
curveMe of figure 4.17.b, compared respectively with the experimental data of figure 4.12.a
and 4.12.b.

equations 4.57 and 4.62 for Û1 = 0 and Ae = A∗e. With the Oldroyd-B model, we
obtain two distinct regimes: an elastic regime for ẑ � 1 and an inertial free-fall
regime for ẑ � 1. We remind the expression of the master curve found in §4.3.4:

Me(ẑ) =

Kẑ
α ẑ � 1 : elastic regime√

2 (ẑ − se,0) ẑ � 1 : inertial regime
(4.64)

The experimental data suggested that K = 1.3± 0.2 and α = 0.92± 0.02, as well as
se,0 = 6 ± 2. However, in spite of the reasonable order-of-magnitude agreement in
figure 4.17.b, the Oldroyd-B model underestimates the liquid velocity in the elastic
regime, with a maximum difference of about 100 % (a factor 2). Moreover, a careful
examination of Me,th reveals that there is no clear power law such as Kẑα in the
elastic regime. However, as ẑ decreases, we observe that Me,th(ẑ) gets closer and
closer to ẑ. The experimental data are better described by the theory in the free-fall
regime. Note that, when plotting M2

e,th, we find a free-fall oblique asymptote of
equation 2 (ẑ − se,0) where se,0 ≈ 3.3 which is not too bad given the experimental
error bar.

We show in figures 4.18.a and 4.18.b the extension rate dMe,th/dẑ and the acceler-
ationMe,th dMe,th/dẑ of the master curve respectively, compared to the experimental
data of figures 4.12.a and 4.12.b. In both cases, the Oldroyd-B theory underestim-
ates the experimental data in the elastic regime. Note that the extension rate seems
to have a limiting value 1 for low ẑ, i.e.
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lim
ẑ→0

dMe,th

dẑ
= 1 (4.65)

Besides, note that the master curve acceleration reaches 0.95 at ẑ = Fe,0 ≈ 12, which
is in excellent agreement with the experimental value 12± 5 found in §4.3.4.

According to equation 4.65, in the Oldroyd-B theory, the extension rate dÛ/dẑ

goes to 1 for Û1 → 0 and ẑ � 1 (elastic regime). To understand how this result in
consistent with previous results, let us write the mean normal stress difference ∆̂ as
a function of Û and dÛ/dẑ only. When eliminating the d∆̂/dẑ term from equations
4.54, we obtain

∆̂ = Û
1− Û dÛ

dẑ

1− dÛ

dẑ

⇔ ∆ = ρgτÛ

1− U

g

dU

dz

1− τ dU

dz

(4.66)

which gives ∆̂ > 0 since both the numerator and the denominator are positive.
Taking ẑ = ẑ1 in equation 4.66, we obtain an expression of ∆̂1, and therefore of Ae
which becomes

Ae =
∆̂1

Û1

=

1− Û1
dÛ

dẑ

∣∣∣∣∣
ẑ1

1− dÛ

dẑ

∣∣∣∣∣
ẑ1

(4.67)

For Û1 → 0, if dÛ/dẑ|ẑ1 goes to 1, the numerator goes to 1 while the denominator
goes to zero. Therefore, Ae goes to +∞, which is consistent with the prediction on
A∗e(Û1) (see figure 4.17.a and equation 4.61).

Discrepancies

The above results are encouraging since the Oldroyd-B theory, despite of its sim-
plicity, is able to capture the main experimental trends and orders of magnitudes.
Therefore, the analytical solution 4.57 is a good starting point for any more refined
theoretical description. We now discuss the discrepancies between this model and
the experimental results. Three interpretations can be proposed:

1. One of the three hypothesis leading to the solution 4.57 is not valid.

2. The Oldroyd-B model is not appropriate.
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3. The experimental data in the elastic regime are still a bit influenced by the
downstream boundary condition.

The third interpretation is tempting since it would explain why the experimental
velocity exponent is α = 0.92 < 1 in the elastic regime while it is closer to one in
the Oldroyd-B theory. Indeed, as already commented in figure 4.5, the velocity
field U(z) becomes less and less concave as the curtain length Lc increases, thus
suggesting “α → 1” when Lc � ze. However, according to this interpretation, the
experimental velocities should be lower than the theoretical ones, which is the con-
trary of what is observed in figure 4.17.b. Therefore, this interpretation alone is not
sufficient.

An other major problem of this theory is that, contrary to the experimental
results presented in §4.4.3, the solution 4.57 does not allow a dependence of the
initial mean normal stress difference ∆1 on the mean normal stress difference ∆s

developed upstream of the curtain. Hence, an interesting possibility is to release
the first hypothesis El = ∞ to allow one more boundary condition arising from
the solvent term. Besides, although the single mode Oldroyd-B model may lead to
qualitative predictions in viscoelastic flows, a multimode Oldroyd-B model if often
used to obtain a more quantitative agreement with experimental results. We are not
yet sure of what would be the analytical implications of these two possibilities. In
particular, we are not sure of weather or not the analytical solution will give larger
or lower velocities. Both possibilities of improvement will be explored in the future.

4.6 Partial conclusion

In this chapter, we presented the first intensive experimental investigation of the
role of viscoelasticity in the extensional flow of a sheet - or curtain - of low-viscosity
liquid falling freely from a slot at constant flow rate. Contrary to film casting,
gravity is the only source of axial tension. The mean liquid velocity U(z), where
z is the distance from the slot exit, is measured for polymer solutions with various
rheological behaviours. We show that the flow is mostly influenced by the value
of the extensional relaxation of the polymers, characterised by the time τfil meas-
ured with a CaBER rheometer. If the liquid initial velocity U1 after swelling is
such that U1 � gτfil, gravity is initially balanced by the elastic stresses arising
from the stretching of polymer molecules. In this elastic regime, the liquid acceler-
ation UdU/dz is less than the gravitational acceleration g. However, inertia finally
dominates over elasticity far from the slot and the liquid acceleration reaches the

128



4.6. Partial conclusion

asymptotic free-fall value g. Polymer molecules initially unravel in the elastic re-
gime since τfil dU/dz = O(1), and return progressively to a coil state in the inertial
free-fall regime where τfil dU/dz � 1. The length of the sub-gravitational part of
the curtain is z∗e = Fe × ze where ze = gτ 2

fil and where Fe is a decreasing function
of U1/gτfil. In particular, the flow is a free-fall even close to the slot if U1 � gτfil.
When considering the flow far from the impingement zone, we show that the velocity
field U(z) rescales on a master curve, like for Newtonian liquids of dynamic viscosity
η and density ρ where the flow is initially dominated by viscous dissipation if the
initial velocity is less than Uv =

√
gzv where zv = ((4η/ρ)2/g)1/3.

We show that the flow is only weakly influenced by the history of polymer de-
formations in the die upstream of the curtain. More precisely, the polymeric stresses
in the curtain are mostly due to the extensional stretching of polymer molecules in
the curtain, with a small correction due to the “pre-shear” in the die. In particular,
the mean normal stress difference ∆ switches from a shear value ∆s inside the slot
to an extensional value ∆1 = Ae ρgU1τfil after swelling which is needed to bear the
weight of the sub-gravitational part of the curtain, where Ae is a decreasing function
of U1/gτfil.
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In this chapter, we wish to characterise the curtain stability. This aspect is of
major importance regarding industrial processes such as curtain coating since, if the
curtain spontaneously breaks during the process, a large area of the substrate will
remain “dry” (uncoated). One of the questions which originally motivated this thesis
is whether or not the addition of polymer molecules to a Newtonian coating liquid
could stabilise the curtain by reducing the frequency of such spontaneous breaking
events. Besides, we measure the dependence of the minimum flow rate Qmin (below
which the curtain spontaneously breaks in the form of equidistant jets) on the rhe-
ological properties of the polymer solutions. As mentioned at the end of chapter 1,
contrary to the “velocity field” aspect of viscoelastic curtains investigated in chapter
4, which had not been explored in the past, the stability aspect has already received
some attention in recent literature, mostly from the group of Marcio S. Carvalho
(Becerra & Carvalho, 2011; Karim et al., 2018b). These aspects will be investigated
in §5.1.
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Figure 5.1 – Time evolution of a hole forming spontaneously in a curtain of 20 wt% PEG
solvent with flow rate q = 3.3 cm2/s and length Lc = 30 cm. The hole is advected by the
flow (self-healing). (b): Image superposition.

Furthermore, if the curtain thickness is modulated at the slot exit due to an
extrusion instability, the thickness of the coating layer may be irregular. When there
is no choice but using a viscoelastic liquid which is particularly prone to this type of
elastic instability, this destabilising mechanism can become a major limitation for
industrial applications. This aspect, which was already mentioned in §4.1.2, will be
investigated in more details in §5.2.

5.1 Spontaneous breaking of the liquid sheet

In this section, we investigate the influence of elasticity on the stability of the curtain
in terms of spontaneous hole opening events. Here, we only consider the stability of
the liquid sheet a as physical object, meaning that a continuous sheet is a stable state
while a broken sheet is an unstable state. We are not yet considering the stability of
the flow discussed in §4.1.2 and all the liquids used in this section produce “stable”
(or “smooth”) curtains, in the sense that the flow is not modulated in the horizontal
direction.

5.1.1 Dynamics of hole opening

In figures 5.1.a and 5.1.b, we show the time evolution of a hole forming spontan-
eously in a Newtonian curtain of 20 wt% PEG solvent. Such a hole can be generated
by impurities in the liquid such as bubbles which are inevitably generated in the
hydraulic loop. The hole in figure 5.1 is advected by the flow while growing in size
and the liquid is collected in a rim at the edge of the hole.

We briefly recall the results mentioned in §1.2 for liquids of negligible viscosity
and elasticity. If capillary forces are only balanced by inertia, the local retraction
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5.1. Spontaneous breaking of the liquid sheet

Figure 5.2 – Time evolution of two holes forming spontaneously in a curtain of degraded
(td = 100 min) 0.004 wt% PEO solution with 20 wt% PEG solvent with flow rate q ≈
1.5 cm2/s and length Lc = 30 cm. The upper edge of one of the holes moves downwards
while the other moves upwards and causes the breaking of the sheet. It can be interpreted
as the fact that the Weber number (equation 5.2) is less than one close to the slot (unstable
zone) where the second hole formed. An arbitrary line is traced between the two holes to
illustrate the separation between the unstable zone and the stable zone.

speed of the sheet (i.e. the velocity of the rim) in the reference frame of the moving
liquid is the Taylor-Culick velocity

V =

√
Γ

ρh
(5.1)

Hence, the part of the liquid rim corresponding to the upper edge of the hole grows
at velocity V −U in the reference frame of the laboratory, where V (z) is calculated
based on the local curtain thickness 2h(z) and where U(z) is the local velocity of
the surrounding liquid. This local competition can be written in terms of a local
Weber number

We =

(
U

V

)2

=
ρhU2

Γ
=
ρqU

2Γ
(5.2)

which can be less than one close to the slot and become larger than one downstream.
Therefore, if a hole opens at an altitude where We > 1, i.e. where advection is faster
than the hole opening process, it will be carried away by the flow, like in figure 5.1.
This process is often referred to as “self-healing”. However, if a hole opens in the
unstable part of the curtain where We < 1, the upper edge of the hole propagates
upwards and stops when reaching the slot whereas the lower end propagates down-
wards, in which case the curtain is finally split into two parts delimited by a rim
which takes the form of an arch. A comparable scenario is shown in figure 5.2 (the
flow rate is so low that instead of a single arch, we end up with a set of jets). Hence,
there is a separation between an unstable zone upstream (We < 1) and a stable
zone downstream (We > 1).
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If the Weber number is larger than one everywhere, i.e. if the initial velocity
Us = q/2a at the slot exit (of thickness 2a) is larger than the value of V at the slot
exit, any hole should be advected by the flow. Equivalently, the linear flow rate q
has to be larger than a critical value

qΓ =

√
4aΓ

ρ
(5.3)

This description does not take die swell into account and one could argue that U1

is the velocity which has to be larger than V . This gives a larger critical flow rate
qΓ = (4aξΓ/ρ)1/2 where ξ = Us/U1 is the die swell ratio.

In the following, we show that two different scenarios are observed when in-
creasing of decreasing the flow rate (hysteretic behaviour). Hence, two different flow
rates can be experimentally measured: the critical flow rate qc above which a curtain
forms when increasing q (§5.1.2), and the minimum flow rate qmin below which the
curtain breaks when decreasing the flow rate (§5.1.3).

5.1.2 Critical flow rate

In figure 5.3.a, we show the different regimes observed when increasing the flow rate.
First (step 1), droplets are periodically emitted from equally spaced spots along the
slot. In the case of a polymer solution, these drops can be connected by filaments
(Clasen et al., 2009). Then, the liquid falls in the form of equally spaced continu-
ous jets (step 2). The transition from dripping to jetting is described by Clanet &
Lasheras (1999) in the case of a single Newtonian jet issuing from a nozzle. The
distance between two jets is typically captured by the value 2π

√
2(Γ/ρg)1/2 expected

from the Rayleigh-Taylor instability theory which is of order 2 cm for PEO solutions
(Fermigier et al., 1992; Brunet et al., 2007). As the flow rate is further increased,
neighbouring jets merge and form thicker jets until the arches are finally advected
and a continuous sheet of liquid suddenly emerges from the slot (step 3) at a critical
flow rate qc which is measured.

Values of the ratio qc/qΓ are reported in figure 5.3.b for the five degraded
(td = 100 min) PEO solutions with 20 wt% PEG solvent (table B.1). Results
are reproducible and are plotted against the extensional relaxation time τfil. We
measure that qc/qΓ ≈ 0.8 for all solutions. Note that taking die swell into account,
we obtain a value of qc/qΓ closer to 0.7. This shows that the arches indeed detach
from the slot when the extrusion velocity becomes of the order of the Taylor-Culick
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Figure 5.3 – (a): Different regimes observed when increasing the flow rate from 0 to
6 cm2/s for the degraded (td = 100 min) 0.1 wt% PEO solution with 20 wt% PEG solvent
(table B.1). (b): Critical flow rate qc (above which any hole is advected by the flow)
and minimum flow rate qmin (required to maintain a continuous curtain for more than
30 seconds), divided by qΓ = (4aΓ/ρ)1/2, against the extensional relaxation time τfil for
the five degraded (td = 100 min) PEO solutions with 20 wt% PEG solvent (table B.1).
qΓ = 3.5 cm2/s and curtain length is Lc = 30 cm.

velocity and suggests that elastic forces have a negligible influence on the retraction
speed of the hole. The fact that qc is not rigorously equal to qΓ may be due to the
weight of the rim pulling arches downwards and shows that the classical criterion
based on the Weber number can be refined. Instead of a simple balance between
the liquid inertia pulling the arch downwards and surface tension pulling it upwards,
one could add the rim weight pulling the arch downwards to obtain a more complex
dimensionless number which is equal to one at the boundary between the unstable
zone (close to the slot) and the stable zone. However, since the weight of the rim
increases with time during hole expansion, the derivation is not trivial. Inspiration
can be drawn from the calculation of Clanet & Lasheras (1999) in the context of free
jets. See Roche et al. (2006) for more advanced discussions on rim weight effects in
the context of liquid curtains.

5.1.3 Minimum flow rate

Starting from q > qc, nothing special happens when decreasing the flow rate below qc

and the curtain generally remains continuous for a long time. However, since holes
are continuously generated in the curtain, the curtain will finally break when a hole
eventually opens close enough to the slot where We < 1, i.e. where the upper edge
of a hole propagates upwards. Hence, as proposed by Becerra & Carvalho (2011), we
define the minimum flow rate qmin above which the liquid sheet remains continuous
for more than a certain amount of time, for example 30 seconds since liquid depos-
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ition on a substrate takes a few seconds in curtain coating. We measure qmin as
follows. Starting from a continuous curtain, the flow rate q is slowly decreased step
by step, each step lasting 30 seconds, until the curtain breaks at q = qmin. We obtain
reproducible values of qmin. The ratio qmin/qΓ is reported in figure 5.3.b. Values
of qmin decrease from 1.3 cm2/s for the 0.004 wt% PEO solution (which is also the
value measured with the pure solvent) to 0.58 cm2/s for the 0.4 wt% PEO solution,
i.e. qmin decreases by a factor 2.2. Therefore, curtain coating can be performed at
lower flow rates when adding polymer molecules to the liquid, as already shown by
Becerra & Carvalho (2011) and Karim et al. (2018b) with similar measurements.

The value of qmin is linked to the frequency of spontaneous hole opening events
in the curtain. Holes are mostly generated far from the slot where the curtain is
thin. Curtain are indeed often continuous close to the slot but constantly punc-
tured downstream, as is commonly observed in water fountains. The frequency of
hole opening events must depend on the concentration of impurities in the liquid,
which is not controlled in our experiment. We measure that this frequency decreases
when increasing the extensional relaxation time of the solution. Typically, for the
0.02 wt% PEO solution with 20 wt% PEG solvent (table B.1) extruded at flow
rate q = 1.7 cm2/s with curtain length Lc = 30 cm, the frequency of spontaneous
hole opening events decreases from about one hole per minute before degradation
(td = 0 min) to ten holes per second after td = 100 minutes of degradation, most of
them being generated more than 10 cm below the slot. The latter case is reminiscent
of the curtain shown in figure 5.2 which is riddled with holes. For such curtains, the
velocity field U(z) for z < 20 cm can only be measured after raising the flow rate up
to 3.4 cm2/s, as mentioned in §3.1.5 when discussing the accessible ranges of flow
rates. Indeed, the hole opening frequency decreases when increasing the flow rate
since the curtain becomes thicker everywhere.

We conclude that polymer addition greatly enhances the stability of the curtain
by reducing the frequency of spontaneous hole opening events. Since these events
are generally consequences of the bursting of bubbles in the liquid, this result can
be interpreted as a greater resistance of the liquid sheet to bubble bursting. We
speculate that two liquid layers separating a bubble on both sides from the ambient
air undergo an extensional flow and are therefore more difficult to break due to
the elastic stresses arising from the stretching of polymer molecules, like in the
filament thinning experiment where breaking is inhibited by the presence of polymer
molecules. This interpretation is consistent with the experiments conducted by
Karim et al. (2018b) which consist of applying a local disturbance on the curtain
with an air jet blown through a needle. Indeed, since Newtonian curtains break

136



5.2. Modulated curtains

much more easily than viscoelastic curtains, the authors concluded that the growth
rate of any disturbance leading to the formation of a hole is delayed by polymer
addition.

5.2 Modulated curtains

In this section, we turn our attention to another aspect of the curtain stability issue
which is the possibility of the development of a modulated curtain, as already men-
tioned in §4.1.2. In a nutshell, for the most shear thinning solutions, the curtain
flow is unstable and presents a time-dependent varicose mode along the horizontal
direction x. More precisely, at a given time, the extrusion velocity of the liquid is
found to depend on the position x along the slot, producing a modulation of the
thickness of the curtain. Hence, the curtain organises in a succession of vertical
thick and thin bands (or stripes) where the liquid velocity is respectively larger and
lower than the averages value 〈U〉x. The modulation of the sheet has a centimetric
length scale, meaning that the typical distance between two thick bands is of a few
centimetres.

This instability may belong to the family of melt-fracture phenomena described
in §2.6. However, it is not exactly similar to the extrusion instability reported by
Boger & Walters (2012) (see figure 2.14.c) where, to quote the author, the wide
vertical bands “are not stationary but travel from the middle to both sides, i.e. they
are generated sequentially at the middle and annihilated at the edges”. We did not
observe such behaviour in our experiments where the thick bands are generated at
“random” (unpredictable) positions along the slot. Besides, in our experiments, new
bands emerge continuously from the slot and “die” (disappears spontaneously) after
a few tens of seconds without travelling along x in their lifetime. Hence to our
knowledge, this particular instability has not yet been mentioned in the literature.
This section is dedicated to a more extensive exploration of this phenomenon with
a purely empirical approach.

5.2.1 Empirical description

A direct visualisation of the difference between a modulated and a smooth (unmod-
ulated) curtain is presented in figure 5.4. The liquid is a 0.1 wt% HPAM solution
before (a) and after (b) salt addition. These pictures are extracted from experiments
performed on the solutions presented in table B.5 where salt is added step by step
to an initially unsalted HPAM solution using the degradation protocol presented
in §3.2.5. A PIV measurement is performed at each step and is correlated to the
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Figure 5.4 – Modulated (a)
and smooth (b) curtains ob-
served when extruding an
unsalted (a) and a salted (b,
[NaCl] = 10 wt%) 0.1 wt%
HPAM solution (see table
B.5). In (a), the curtain or-
ganises in a succession of ver-
tical thick and thin bands
where the liquid is respect-
ively faster and slower than
average.

rheology of a sample of liquid collected simultaneously, exactly like for the liquids
of table B.2 (bottom). We choose to use the liquids of table B.5 to characterise the
curtain modulation. The thickness modulation of the curtain (succession of thick
and thin vertical bands) is illustrated by the deformation of the background when
looking through the transparent sheet. The PIV measurements corresponding to
these curtains are very similar to the ones already shown in figure 3.3 (smooth cur-
tain) and figure 4.2 (modulated curtain).

Velocity distribution

We now describe this instability in more details. In figures 5.5.a and 5.6.a, we
present the velocity field U(x, z, t) of an unsalted 0.1 wt% HPAM solution against
the distance z from the slot at 42 different horizontal positions xi (along the slot) at
arbitrary times t∗ (figures 5.5.a) and t∗+ 1.2 s (figures 5.6.a). These figures contain
the same information as figure 4.2.b where U(x, z, t) is plotted against x for different
z. At each distance z from the slot, the average velocity 〈U〉x is computed and is
compared to its time average 〈〈U〉x〉t defined in §3.1.4 which is the velocity field
U(z) discussed in chapter 4. As already discussed in figure 4.3, 〈U〉x ≈ 〈〈U〉x〉t at
all times which means that the average flow 〈U〉x is fairly independent of time.

We now discuss the distribution of the velocity field U(x, z, t) around its mean
value 〈U〉x at a given time. As illustrated in figures 5.5.a and 5.6.a, U ranges between
a minimum and maximum value Umin and Umax which are both increasing functions
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Figure 5.5 – (a): z-component of the velocity field, i.e. U(x, z, t), against the distance z
from the slot at 42 different horizontal positions xi (along the slot) at an arbitrary time
t∗ for an unsalted 0.1 wt% HPAM curtain (see table B.5) of length Lc = 30 cm. The
difference between two successive positions is xi+1 − xi = 2.7 mm (the size of a PIV
correlation window). At a given distance z from the slot, the velocity along x ranges
between Umin and Umax with an average value 〈U〉x. Each blue curve is either above or
below the average curve, meaning that the curtain organises in a horizontal succession of
fast vertical “bands” and slow ones. The time average 〈〈U〉x〉t defined in §3.1.4 is also
shown. (b): Histogram of the velocity distribution at an arbitrary distance z = 16 cm
from the slot. The kernel density estimation (KDE) is also shown. The KDE is normalised
for an easier comparison with the histogram.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

1

2

3

4

5

6

7

8

9

10

Figure 5.6 – Same as figure 5.5 but 1.2 seconds later. The velocity field (a) and the
histogram (b) show the appearance of a band of fluid which is much faster than the others
(“major band”) and which can clearly be identified in the curtain movie.
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of z. At each position xi, the velocity curve U(xi, z, t) versus z is either below of
above the mean curve 〈U〉x, which means that the liquid within each vertical band
is either systematically faster or slower than the average flow.

Typical flow pattern As observed in 5.5.a, the velocity distribution is often fairly
symmetric around the average value and is quite narrow, meaning that there are no
“extremely fast” or “extremely slow” flow regions. This is illustrated in figure 5.5.b
by the histogram of the velocity distribution at an arbitrary distance z = 16 cm
from the slot, superimposed to its associated kernel density estimation (KDE). The
KDE has only one peak corresponding to the average velocity 〈U〉x.

Atypical flow pattern However, as shown in figures 5.6.a and b, for the same
liquid at a different time, the distribution can be wider and the KDE can even
display other secondary peaks (here one) corresponding to atypically fast or slow
flow regions. In the case of an atypically fast flow region, curtain movies reveal
the existence of a band of fluid (“major band” in figure 5.6) which is faster (and
also thicker) than the other fast bands. Such bands are often wider than the others
(larger extension in the x direction). On the other hand, in the case of an atypic-
ally slow flow region, curtain movies reveal the existence of a band of fluid which is
slower (and also thinner) than the other slow bands, sometimes so thin that almost
no PIV tracers can be found in this region. This scenario corresponds to the velo-
city field presented in figure 4.2. The latter scenario often leads to curtain breaking
(spontaneous hole opening event), as will be discussed in §5.2.2.

As will be discussed in chapter 6, this curtain modulation is the consequence
of a flow instability at the inlet of the slot (planar contraction) which results in
the formation of overfed and underfed spots xi along the slot. For the downstream
curtain, this leads to a the formation of thick-and-fast bands (overfed spots) and
thin-and-slow ones (underfed spots).

HPAM: The influence of salt concentration

In figure 5.7, we present the average velocity 〈〈U〉x〉t of three 0.1 wt% HPAM solu-
tions with different salt concentrations. The fact that the velocity increases when
increasing the salt concentration comes from a reduction of the extensional relax-
ation time τfil. To compare the relative amplitudes of the curtain modulation, we
plot the time averages 〈Umin〉t and 〈Umax〉t of the minimum and maximum velocities
Umin and Umax defined in figures 5.5.a and 5.6.a. Clearly, the curtain flow is less and
less modulated as salt is added to the solution, i.e. the velocity distribution narrows
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Figure 5.7 – Amplitude of the velocity distribution for three 0.1 wt% HPAM solutions with
different salt concentrations (see table B.5). The average velocity 〈〈U〉x〉t is compared to
the time averages or the 〈Umin〉t and 〈Umax〉t of the minimum and maximum velocities
Umin and Umax defined in figures 5.5.a and 5.6.a. The curtain length is Lc = 30 cm

down with the addition of salt. In fact, for [NaCl] = 1 wt% (not shown) and 10 wt%,
the velocity profile is similar to the one shown in figure 3.3 which means that the
curtain flow can be considered as stationary and translation invariant along x. The
slight variation around 〈〈U〉x〉t is mainly due to small measurements errors.

In order to characterise the velocity distribution associated to different liquids,
we introduce the standard deviation σU defined as

σU =
√〈

(U − 〈U〉x)2〉
x

(5.4)

which is a function of z and t. The time-averaged standard deviation 〈σU〉t is plotted
against z in figure 5.8.a for the HPAM solutions of table B.5 (data of figure 5.7). It
is an increasing function of z, which means that the velocity distribution gets wider
far from the slot. This could have been anticipated by noticing that Umin and Umax
“get away” from the average velocity curve in figures 5.5.a and 5.6.a and in figure 5.7.
In order to estimate the amplitude of the velocity variation relatively to the average
flow, we plot in figure 5.8.b the relative width of the velocity distribution defined
as 〈σU/〈U〉x〉t. It is close to 〈σU〉t/〈〈U〉x〉t. It decreases with z since the increasing
tendency of 〈〈U〉x〉t overcomes the decreasing tendency of 〈σU〉t. The relative mod-
ulation amplitude decreases from more than 10 % for the unsalted HPAM solution
to about 0.60 % (far from the slot) for the largest salt concentrations for which the
flow is not modulated. The small 0.60 % error represents the small experimental
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Figure 5.8 – (a) Time-averaged standard deviation 〈σU 〉t (equation 5.4) against z for the
HPAM solutions of table B.5. (b): Relative modulation amplitude 〈σU/〈U〉x〉t for the same
liquids. The curtain length is Lc = 30 cm

errors in velocity measurements.

Note that 〈σU〉t slightly decreases close to the slot (see figure 5.8.a for z & z1).
The reason is quite subtle. We recall that the flow has a y dependence, especially
close to the slot where the Poiseuille flow inside the slot has not completely switched
to a plug flow, as shown in the general overview of figure 4.9. Hence, PIV tracers at
y ≈ 0 (in the slot) exit the slot with a larger velocity than those at y ≈ ±a. In cur-
tain movies, we clearly observe different “layers” of tracers of different velocities close
to the slot exit. This results in a greater difficulty for the PIV correlation algorithm
to estimate the velocity in this region, i.e. the measured velocity distribution is ar-
tificially slightly wider than expected. This is a pure limitation of our measurement
method and is not related to any modulation of the flow along x. According to the
data of figure 5.8.b, for the unmodulated curtains, this effect leads to an extra error
of about 4 % (to be added to the 0.60 % experimental errors) in estimating the
flow field in the first two centimetres of the flow (in particular in estimating U1).
This is small enough not to weaken the validity of the results presented in chapter 4.

HPAM: The influence of the flow rate

The influence of flow rate q on the modulation amplitude was investigated with
unsalted HPAM solutions. A direct observation suggests that modulated curtains
are smoother (less modulated) at lower flow rates, i.e. the background is less de-
formed when looking through the curtain. If 2h(x, z, t) is the local value of the
curtain thickness and σh is the standard deviation of the thickness distribution, our
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guess is that the amplitude 〈σh/〈h〉x〉t of the thickness modulation decreases when
decreasing the flow rate. Since no direct thickness measurement was performed, this
result is a conjecture. This scenario is reminiscent of the melt fracture phenomena
reported by Morozov & van Saarloos (2007) (figure 2.14.a) for jets extruded from a
tube and by Boger & Walters (2012) (figure 2.14b and c) for sheets extruded from
a slot. In both cases, the amplitude of the thickness modulation is an increasing
function of the flow rate. However, contrary to these analogous examples, we did
not detect smooth curtains in the low flow rate limit. Indeed, as explored in §5.1.3,
there is a minimum flow rate qmin below which the curtain rapidly breaks (in less
than 30 seconds), thus forbidding the exploration of lower flow rates.

Different behaviours were observed when examining the velocity field of HPAM
curtains extruded at different flow rates. When decreasing q, both narrower and
wider velocity distributions could be observed. In the latter case, curtain movies
reveal very slow bands of liquid connecting faster bands (atypical flow pattern).
These slow bands seem to be almost not fed at all by the slot and are more likely to
break due to spontaneous hole initiation (as will be developed in §5.2.2). However,
the amplitude and duration of this phenomenon could vary from one curtain movie to
an other, resulting in different values of both 〈σU〉t and 〈σU/〈U〉x〉t for two movies
of the same curtain extruded at the same flow rate. Indeed, curtains are filmed
during two seconds (at 600 frames per second) while the time of evolution of the
band pattern is of few tens of seconds. Hence, two different movies (of duration
two seconds) will potentially exhibit different band patterns. Therefore, although
curtain movies are long enough to estimate roughly the width of the time-averaged
velocity distribution, they are not long enough to obtain reproducible results.

Attempt of bifurcation diagram

In order to determine the role of rheological parameters in the appearance of the
curtain modulation, we gather data extracted from many curtains in figure 5.9 where
both 〈σU〉t (a) and 〈σU/〈U〉x〉t (b) (measured at an arbitrary distance z = 16 cm
from the slot) are plotted versus 1− n where n is the degree of shear thinning (see
equation 3.7). There is clearly a correlation between the amplitude of the modula-
tion and the degree of shear thinning. The only curtains exhibiting a modulation
are the HPAM solutions with low salt concentrations and the 0.4 wt% PEO solution
with 20 wt% PEG solvent at low degradation times. More generally, according to
figure 5.9, the curtain becomes unstable for n < nc in the range of investigates flow
rate , where the “instability threshold” is approximately nc = 0.72. According to
the correlation identified in figure 3.12.b between n and the effective value b of the
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Figure 5.9 – Bifurcation diagram. Amplitudes 〈σU 〉t (a) and 〈σU/〈U〉x〉t (b) of the modu-
lation at an arbitrary distance z = 16 cm from the slot versus 1− n where n is the degree
of shear thinning (see equation 3.7) for the liquids of table B.1, B.2 (top), B.3 and B.5
corresponding to the data of figure 5.8. The modulation amplitude starts increasing for
n < 0.72. A square root fit is drawn in both cases. The curtain length is Lc = 30 cm
except for the PEO solutions with 40 wt% PEO solvent (table B.3) for which the curtain
is not modulated for all curtain lengths Lc ranging between 15 cm and 200 cm.

finite extensibility parameter, this is equivalent of saying that the curtain becomes
unstable for b smaller than a critical value bc, i.e. for the most rigid polymers. Plot-
ting the modulation amplitude against b suggests bc ≈ 3× 103.

We present in figure 5.9 an tentative of fit with a square root law of the type
B0 + Am

√
nc − n which corresponds to a supercritical pitchfork bifurcation. B0

is simply the amplitude of the measurement errors and Am is a fitting parameter.
Although the agreement is not too bad, the experimental data are too scattered to
conclude on any particular law. The scatter in the data comes probably from the lack
of reproducibility mentioned earlier. For example, the six unsalted HPAM solutions
of table B.2 (top) are extruded at similar flow rates q ranging between 2.9 cm2/s and
3.1 cm2/s and there is no correlation between 〈σU〉x and the degree of degradation.
Hence, for this set of curtains, the scatter in the data can hardly be attributed to the
effect of flow rate of to the effect of other rheological parameters. Note that plotting
the same data against the extensional relaxation time τfil (for example) does not
provide such a clear separation between stable and unstable (modulated) curtains.
In particular, the PEO solutions with 40 wt% PEG solvent have large extensional
relaxation times but are almost non shear-thinning fluids (n ≥ 0.9) exhibiting no
curtain modulation.
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5.2.2 Impact on curtain stability

Dynamics of hole opening

The modulation of the curtain has a strong impact on the curtain stability in terms
of spontaneous hole opening events. Indeed, thin bands are quite fragile, especially
in an extreme cases where a band of liquid seems to be almost not fed at all (atypical
flow pattern). Hence, hole initiations are more frequent in modulated curtains since
a bubble ending up in a thin band is more likely to burst than in a smooth curtain
extruded at the same flow rate. Besides, since the liquid velocity is lower in such
bands, the time spent by the bubble in the curtain (before advection in the reservoir)
is larger and it has more time available to burst. Moreover, due to the reduction
of the curtain thickness in thin bands, the local Taylor-Culick velocity V (x, z, t) =√

Γ/ρh(x, z, t) can be much larger than its average value

〈V 〉x =

√
Γ

ρ〈h〉x
(5.5)

Besides, the advection is reduced since the local velocity U(x, z, t) of the surrounding
liquid is smaller in thin bands. Combining both effects, the local Weber number
We = (U/V )2 can be quite small in thin bands, i.e. smaller than the ratio of the
averaged velocities defined as a “mean Weber number”

〈We〉x =

(
〈U〉x
〈V 〉x

)2

=
ρ〈h〉x〈U〉2x

Γ
(5.6)

which is also 〈We〉x = ρq〈U〉x/2Γ when assuming that 2〈h〉x〈U〉x = q, by analogy
with smooth curtain for which 2hU = q.

In figure 5.10, we present two scenarios observed in a curtain of unsalted HPAM
solution with concentration close to 0.1 wt% extruded at a flow rate q = 3.8 cm2/s.
In both cases (a and b), a hole is initiated in a very thin band (atypical flow pattern
and low local Weber number) and the upper edge of the hole initially propagate
upwards. This initial phase can be seen as a “fracture” developing along a “weak”
part of the curtain. In both cases (a and b), the thin band upstream of the hole
disappears at some point due to the natural evolution of the band pattern (whose
time scale is of the order of a few tens of seconds). Hence, the upper edge of the
hole may propagate upwards or downwards depending on the new value of the local
Weber number. In the first case (a), it reaches the slot and the hole finally invades
the whole curtain, resulting in a permanent arch (rim) of liquid. The curtain is
irreversibly broken. However, in the second case (b), the hole is finally advected by
the flow (self-healing). Generally speaking, since the average Weber number 〈We〉x
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Figure 5.10 – Two different scenarios after a spontaneous hole opening event in a given
modulated curtain. The hole is generally initiated in a thin band where the local Taylor-
Culick velocity V is large and the local liquid velocity U is low. Therefore, the upper
edge of the hole initially propagates upwards. When the thin band upstream of the hole
disappears due to the natural evolution of the band pattern, the upper edge of the hole
may go on propagating upwards and cause irreversible breaking of the curtain (a), or start
propagating downwards, in which case the hole is finally advected (b). The liquid is an
unsalted HPAM solution with concentration 0.08 wt% (early experiment) extruded at a
flow rate q = 3.8 cm2/s. The curtain length is Lc = 30 cm.

is lower close to the slot, a hole is more likely to reach the slot (and therefore to
break the curtain) if the initial “fracture” along the thin band takes the hole to a
vertical position z close to 0. The self-healing scenario, where the hole goes “up and
down”, is frequently observed in modulated curtains. However, it is never observed
in smooth curtains since there is a clear altitude separating the unstable zone close
to the slot from the unstable zone downstream.

We can estimate the thickness of the thin band in figure 5.10.a. For simplicity,
we assume that the dynamic of hole opening is only influenced by capillarity and
inertia without any effect of the weight of the rim, so that the velocity of the upper
edge of the hole is vhole = V − U where V and U are the local values in the thin
band. We show in figure 5.11 the time evolution of the altitude of the upper edge of
the hole following hole initiation. The hole velocity is initially constant and equal
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Figure 5.11 – Altitude of the upper edge of the hole in figure 5.10.a, a few milliseconds
after initiation of the hole, measured from the curtain movie. z = 0 corresponds to the
altitude of the slot exit.

to vhole = 5.0 m/s within the first 10 ms. It decreases after this initial phase due
to a change in surrounding geometry: the portion of liquid upstream of the hole
is now thicker. According to particle tracking velocimetry (PTV), the local liquid
velocity in the thin band is U = 1.1 m/s during this initial phase, which gives V =

vhole + U = 6.1 m/s and We = (U/V )2 = 0.033 ≤ 1: the hole propagates upwards.
Hence, using equation 5.1, we get 2h = 2Γ/ρV 2 = 3.9 µm. We now compare this to
the average curtain thickness. According to PIV measurement, the average velocity
at the altitude of hole initiation is 〈U〉x = 1.8 m/s, about two times more than in the
thin band. Hence, assuming that 2〈h〉x〈U〉x = q, we get 2〈h〉x = 0.21 mm = 210 µm
which is 50 times more than in the thin band. We can calculate that the average
Weber number at this altitude is 〈We〉x = ρq〈U〉x/2Γ = 4.8 > 1 which means that
the hole would be advected by the flow without curtain modulation.

Critical and minimum flow rate

For modulated curtains, we can also measure the critical flow rate qc defined in
§5.1.2. We recall that, starting from a broken curtain at low flow rate, the flow
rate is increased until the last arch detaches from the slot. For example, the arch in
figure 5.10.a (last picture) will remain as long as the flow rate q = 3.8 cm2/s is kept
constant, but it will detach from the slot and be advected after increasing the flow
rate above a critical value qc. The minimum flow rate qmin below which the curtain
spontaneously breaks in less than 30 seconds is also measured. Results correspond-
ing to the 0.1 wt% HPAM solutions of table B.5 are presented in figure 5.12 as a
function of 1− n. We recall that the data corresponding to n < 0.72 (equivelently,

147



Chapter 5. Curtain stability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.12 – Critical flow rate qc (above which any hole is advected by the flow) and
minimum flow rate qmin (required to maintain a continuous curtain for more than 30
seconds), divided by qΓ = (4aΓ/ρ)1/2, against 1−n (n being the degree of shear-thinning)
for the five degraded (td = 100 min) PEO solutions with 20 wt% PEG solvent of table B.1
(qΓ = 3.5 cm2/s, data of figure 5.3.b) and for the 0.1 wt% HPAM solutions of table B.5
(qΓ = 3.8 cm2/s). The curtain length is Lc = 30 cm.

1 − n > 0.28) correspond to modulated curtains (see bifurcation diagram in figure
5.9). The data corresponding to the degraded PEO solutions of figure 5.3.b (for
which curtains are smooth) are also shown. Both qmin and qc are normalised by
qΓ = (4aΓ/ρ)1/2 which is 3.8 cm2/s for the HPAM solutions and 3.5 cm2/s for the
PEO solutions. Note that the data are not plotted against the extensional relaxation
time τfil contrary to figure 5.3.b.

As expected, qc/qΓ ≈ 0.8 below the instability threshold. However, for n < 0.72,
we measure larger critical flow rates, up to qc/qΓ ≈ 1.3, which means that the flow
rate has to be increased above the usual value to detach the arch from the slot. To
understand this, let us consider that, at a given time, the position of the highest
point of a permanent arch it xa. Direct observation reveals that the horizontal pos-
ition xa of the arch usually coincide with an underfed spot along the slot, i.e. there
is usually a thin band upstream of the arch. As the band pattern evolves, the thin
band corresponding to this spot may disappear, in which case the horizontal position
xa of the arch spontaneously changes to match the position of a new underfed spot.
During such transitions, the arch may be transiently advected by the flow since the
inertia of the liquid leaving the slot becomes larger, thus resulting in an oscillatory
vertical motion of the arch. This scenario is commonly observed with HPAM solu-
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tions but is never observed for smooth PEO curtains for which arches are quite still.
For the arch of figure 5.10.a (last picture), PIV reveals that the average velocity
at the slot exit is 〈〈U〉x〉t = 0.40 m/s (= U1) which means that the average Weber
number is 〈〈We〉x〉t = ρq〈U〉x/2Γ = 1.0. Hence, when adding the weight of the rim
pulling the arch downwards, we understand that the arch can only “survive” as long
as its horizontal position coincides with an underfed spot where the Weber number
is locally less than one. According to this interpretation, the particular rheology of
the liquid is not the direct cause of the unusually high value of qc. High values of qc
are rather a direct consequence of the curtain modulation, which is itself probably
a consequence of the liquid rheology.

Figure 5.12 also suggests that qmin is larger than expected for modulated curtains.
Indeed, the unsalted HPAM values (for which 1 − n is large) correspond to the
largest extensional relaxation times τfil ≈ 0.3 s. Hence, following the trend in figure
5.3.b, we expect values of qmin/qΓ lower than 0.2 in the absence of modulation since
the largest PEO extensional relaxation time in the plot is 0.12 s (less than 0.3 s).
Nonetheless, we find qmin/qΓ ≈ 0.3 > 0.2 for unsalted HPAM curtains. This result
suggests that, due to the presence of fragile thin bands, modulated curtains break
more easily than smooth curtains at a given flow rate and for the same value of τfil.

5.2.3 The influence of the die geometry

With the intuition that the curtain modulation is a consequence of a flow instability
at the planar contraction upstream of the slot, we predict that the length Ls of the
slot may affect the amplitude of the curtain modulation. Indeed, if the width of the
velocity distribution decreases inside the slot, we should observe an increase of the
curtain modulation amplitude when shortening the slot.

We examine the role of the die geometry by performing experiments with an
unsalted 0.1 wt% HPAM solution extruded from two different dies. The first die is
the usual die presented in figure 3.2.b with a slot of thickness 2a = 1 mm and length
Ls = 10 cm. The other die presented in figure 5.13.a consists of a hollow cylinder
drilled with a slot of same thickness 2a? = 1 mm. The slot has a much shorter
length L?s = 4 mm. In fact, this type of die is much more common than the die of
figure 3.2.b which was specifically designed for us, in particular to ensure that the
time Ls/Us spent by the liquid in the slot is longer than its extensional relaxation
time τfil (see discussion in §4.3.1).

Figure 5.13.b displays the amplitude 〈〈σU/U〉x〉t of the velocity modulation meas-
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Figure 5.13 – (a) Sketch of a curtain extruded from a cylindrical die drilled with a slot
of thickness 2a? = 1 mm and length L?s = 4 mm on its lower side. (b): Comparison of
the relative modulation amplitude 〈σU/〈U〉x〉t for an unsalted 0.1 wt% HPAM solution
extruded from this cylindrical die and from the usual die of slot length Ls = 10 cm
presented in figure 3.2.b at the same flow rate q = q? = 3.3 cm2/s. The curtain length is
Lc = 30 cm.

ured on curtains extruded from the two dies at the same flow rate q = 3.3 cm2/s.
We obtain larger values for the cylindrical die, which suggests that shortening the
slot exacerbates the curtain modulation. In particular, we obtain 〈〈σU/U〉x〉t > 50%
close to the slot exit, which is much larger than any of the values reported in pre-
vious examples using the usual die. Our interpretation is that the flow, which has
a wide velocity distribution at the slot inlet, quietens down inside the slot. Hence,
for the short slot, the curtain velocity distribution at the slot exit is closer to the
characteristic velocity distribution at the contraction. This point is confirmed by
direct visualisation of the flow. Indeed, for the cylindrical die, we observe fast por-
tions of liquid erupting from the slot at unpredictable positions x. This often leads
to the formation of “fingers” (or “spurts”) of liquid within the curtain, i.e. thick
portions of liquid generally evolving into thick bands. This is illustrated by the cur-
tain pictures of figure 5.14 extracted from the image sequences used for figure 5.13.b.

Some details can be discussed regarding the data of figure 5.13.b. Although
the flow rates are she same (q = 3.3 cm2/s), which means that the average velo-
city inside the slot is the same and is equal to 〈〈U〉x〉t = Us = q/2a = 0.33 m/s,
we measure that the initial average velocity at z1 ≈ 2.5 mm from the slot exit is
U1 = 〈〈U〉x〉t = 0.35 m/s for the usual die and U?

1 = 0.18 m/s < U1 for the cyl-
indrical die. A possible interpretation is that, the curtain swells (on average) for the
short slot while, as mentioned in §4.1.3, is does not swell (on average) for HPAM
curtains extruded from the usual long-slot die. Indeed, as discussed for example by
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5.2. Modulated curtains

Figure 5.14 – Typical flow patterns for an unsalted 0.1 wt% HPAM solution (the same in
(a) and (b)) extruded from the short-slot cylindrical die of figure 5.13.a (a) and from the
usual long-slot die of figure 3.2.b (b) at the same flow rate q = 3.3 cm2/s. In the first case,
fast portions of liquid erupt from the slot, leading to the formation of thick “fingers” of
liquid within the curtain. Images are extracted from the image sequences used for figure
5.13.b. The curtain length is Lc = 30 cm.

Kiriakidis & Mitsoulis (1993), it is well known that the swelling ratio increases when
the slot aspect ratio Ls/2a decreases. Since, the slot exit is not bevelled (contrary
to the usual die), wetting at is also a possible interpretation. Since U1 is not the
same for both dies, the amplitude of the modulation may be affected, as discussed
in §5.2.1. However, it is clear from direct observation (figure 5.14) that the curtain
behaves differently for the cylindrical die, and the large values of 〈〈σU/U〉x〉t can
not simply be attributed to a lower initial velocity. For example, the absolute width
〈〈σU〉x〉t of the velocity distribution at z = 16 cm from the slot exit is 0.12 m/s for
the cylindrical die and 0.09 m/s for the usual die. Hence, the large relative value
〈〈σU/U〉x〉t ≈ 〈〈σU〉x〉t/〈〈U〉x〉t does not come from a lower value of the average
velocity 〈〈U〉x〉t. In fact, we chose to have the same value of Us instead of the same
value of U1 because, as will be developed in chapter 6, the amplitude of the flow
instability at the planar contraction is known to be a function of the Weissenberg
number Wi = τUs/a where τ is a polymer relaxation time.

Finally, we shall mention here that original results were obtained when using
the inclined plate technique described in figure 4.15.a to produce a curtain out of
an unsalted 0.1 wt% HPAM solution. If the liquid velocity along the plane is large
enough, the liquid forms a nice continuous sheet in the form of an arc with no ab-
rupt transition to a vertical curtain when reaching the end of the plane. In this
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case, the sheet is perfectly smooth, i.e. not modulated at all along x. However, at
lower velocities, we observe the abrupt transition shown in figure 4.15.a where the
free-surface has a high curvature at the end of the plane. In this case, the vertical
curtain is modulated, like after extrusion through a die. However, there is no ap-
parent modulation of the liquid film flowing down the plane, and the destabilisation
emerges at the high curvature point at the end of the plane, with the formation of
“ribs” at the free-surface. Similar ribs can be observed simply by pouring a HPAM
solution from a beaker. This phenomenon may belong to the family of interfacial
viscoelastic instabilities (described for example by Graham (2003)) arising from the
combination of large tangential tension and surface curvature and leading to un-
stable stress gradient along the free-surface. Of course, such ribs were not observed
for the PEO solution used in figure 4.15.b. Much more work would be needed to
characterise this effect.

In the next chapter, focusing on the modulation of curtains extruded from a die,
we present some visualisations of the planar contraction flow upstream of the slot.
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In this section, we present visualisations of the flow upstream of the slot, where
the liquid is forced to flow through an abrupt planar contraction. Since the die used
in curtain experiments is made of opaque metal, another die of similar slot thickness
and contraction ratio has been designed using Plexiglas. These experiments confirm
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a correlation between the modulations observed in the curtains described in §5.2
and the presence of a flow instability at the slot inlet.

We begin by introducing the results found in the literature concerning axisym-
metric and planar contraction flows of viscoelastic liquids. Then we present the
experimental set-up which was developed specifically for this flow visualisation, as
well as the rheology of the test liquids, before finally presenting our results.

6.1 State of the art

6.1.1 General context

The viscoelastic entry flow problem has a rich history and has received a partic-
ular attention in the experimental and numerical community in the last decades.
It has been selected by the computational rheology community as a core problem
for testing algorithms due to the diversity and complexity of the associated flow
patterns. Three orifice configurations are generally considered, as shown in figure
6.1, in both axisymmetric and planar geometries. The upstream part, which cor-
responds generally to a fully developed Poiseuille flow in a channel of size A, is
followed by a constriction of size a and length Ls. The contraction ratio is defined
as β ≡ A/a. Depending on the particular orifice configuration, the flow can either
expand in a new channel of size A (figure 6.1.a: contraction-expansion), or leave the
contraction and be exposed to ambient air (figure 6.1.b: free curtain (planar) or free
jet (axisymmetric)). The contraction can also have an infinite length (figure 6.1.c:
entry in an infinite slot (planar) or in an infinite capillary (axisymmetric)). The last
configuration is of particular interest for numerical studies. Note that contraction
flows have both a shear component, due to the presence of walls, and an extensional
component due to rapid increase of the velocity at the contraction inlet. Before the
existence of filament thinning techniques, this flow had even been considered for
measurements of the extensional viscosity of polymer solutions (Binding & Walters,
1988).

Most experimental studies have been focusing on the characterisation of the flow
pattern at the contraction using PIV techniques. Early photographs of viscoelastic
entry flow patterns, in both axisymmetric and planar geometries, have been gathered
in the reference book “Rheological phenomena in focus, volume 4” by Boger & Wal-
ters (2012), Chapter 3: “Contraction and expansion flows”. Some experimental stud-
ies have also addressed the question of the pressure drop arising from the presence
of the contraction by measuring the pressure difference P1 − P2 between two planes
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Figure 6.1 – Side view of three orifice configurations considered in the literature for (axisym-
metric and planar) contraction flows. (a): contraction-expansion, (b): free curtain (planar)
or free jet (axisymmetric), (c): entry in an infinite slot (planar) or in an infinite capillary
(axisymmetric). In the planar case, the thickness of the upstream channel is A and the
thickness and length of the slot are a and Ls. The mean velocity increases from q/2A to
Us = q/2a in the slot, where q is the linear flow rate. In the first configuration (a), pressure
measurements are often performed upstream (P1) and downstream (P2) of the contraction.

far upstream and far downstream of the contraction in a contraction-expansion con-
figuration.

Dimensionless group

For a viscoelastic liquid, the flow characteristics depend on the Reynolds and Weis-
senberg numbers which are usually defined as

Re =
ρUsa

η∗
and Wi =

τ ∗Us
a

(6.1)

where ρ is the fluid density, η∗ is a characteristic shear viscosity and τ ∗ is a char-
acteristic relaxation time. Since the mean flow velocity switches from the upper
channel value (which is q/2A in the planar case, where q is the linear flow rate) to
the contraction value Us (=q/2a in the planar case) in a characteristic time ∼ a/Us,
the Weissenberg number is in fact the ratio of a polymer relaxation time and a flow
timescale. This flow timescale is the characteristic residence time in the contraction
region, as well as the inverse of the characteristic shear rate γ̇∗ in the contraction
which is given by

γ̇∗ =
Us
a

(6.2)

In the planar case, the local value γ̇ = du/dy of the shear rate for a fully developed
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Poiseuille flow can be calculated from equation 4.20. Other dimensionless numbers
may be considered for a given viscoelastic liquid, such as the finite extensibility
parameter b of the FENE-P model, or the experimentally measured degree of shear-
thinning n.

Reynolds number When calculating the Reynolds number, many authors choose
to define the characteristic shear viscosity as η∗ = η(γ̇∗) where η is the apparent
shear viscosity measured with a shear rheometer (McKinley et al., 1991; Chiba
et al., 1990). Other authors choose the zero-shear viscosity, i.e. η∗ = η0, which is
an equivalent definition for non shear-thinning fluids (Walters & Rawlinson, 1982;
Rothstein & McKinley, 2001; Rodd et al., 2005).

Weissenberg number When calculating the Weissenberg number, two different
approaches have been considered. Many authors have used the following definition

Wi = τ ∗(γ̇∗) γ̇∗ with τ ∗(γ̇∗) =
Ψ1(γ̇∗)

2η(γ̇∗)
(6.3)

where Ψ1 is the first normal stress coefficient defined as Ψ1 ≡ N1/γ̇
2 where N1 is

the first normal stress difference measured with a shear rheometer (McKinley et al.,
1991; Walters & Rawlinson, 1982; Rothstein & McKinley, 1999; Cartalos & Piau,
1992; Piau et al., 1990). Among these authors, some add a numerical prefactor
(γ̇∗ = 8Us/a for axisymmetric contractions) to their definition γ̇∗ to account for
larger shear rates close to the walls (Cartalos & Piau, 1992; Piau et al., 1990). Other
authors choose the zero-shear-rate relaxation time τ0 = Ψ10/2η0 where Ψ10 is the
constant value approached by Ψ1 at small shear rates (Rothstein & McKinley, 2001).
Both definitions are equivalent for non shear-thinning fluids exhibiting quadratic
normal stresses N1 ∝ γ̇2. The second approach in more recent studies (Rodd et al.,
2005, 2007) was to use the extensional relaxation time τfil measured in CaBER
experiments as a characteristic relaxation time, i.e.

Wi =
τfil Us
a

(6.4)

This choice is motivated by the extensional component of the flow which is due to
rapid increase of the velocity at the contraction inlet where polymer chains undergo
a transient elongation. Indeed, polymers chains may unravel partially depending on
the magnitude of the Weissenberg number: if τfil � a/Us, the polymer relaxation
overcomes stretching and the liquid behaves almost as a Newtonian liquid, whereas
if τfil � a/Us, polymer chains undergo a rapid Hencky strain equal to ln(β2) in the
axisymmetric case and to ln(β) in the planar case (Rothstein & McKinley, 1999).

156



6.1. State of the art

This difference in the amplitude of polymer elongation is one of the reasons for the
many differences between axisymmetric and planar contractions.

6.1.2 Axisymmetric contraction

Non shear-thinning fluids without inertia

The laminar flow of a Newtonian liquid is characterised by the presence of a weak
recirculating vortex in the salient corner, upstream of the contraction plane, called
corner vortex or “Moffatt eddy” (Moffatt, 1964). In an axisymmetric contraction,
this vortex takes the form of a torus. This weak corner vortex can also be observed
at low Weissenberg numbers for viscoelastic liquids. As the Weissenberg number is
increased, two distinct scenarios have been identified for non shear-thinning fluids
(n = 1) with negligible inertia (Re � 1) at a given contraction ratio β (see pictures
of Boger & Walters (2012) and Rothstein & McKinley (1999)).

• In a nutshell, for some elastic fluids, the size of the corner vortex increases, i.e.
it grows radially inward toward the re-entrant corner while growing axially outward.
This flow regime is steady in time until reaching a critical Weissenberg number Wi c
marking the onset of a flow instability: the corner vortex become asymmetric and
precesses (oscillates) in the azimuthal direction at a frequency which increases with
Wi , i.e. fluid elements follow a helical path into the orifice (Rothstein & McKinley
(1999), Wi c ≈ 2.8 for β = 4). More dramatic unsteady patterns are observed at
very large Weissenberg numbers (Boger & Walters, 2012).

• A second scenario is observed for other elastic fluids at the same contraction
ratio: the size of the corner vortex decreases while a separate, distinct “lip vortex”
appears near the re-entrant corner and expands in the radial direction until “de-
vouring” the corner vortex. This flow becomes unsteady in time above some critical
Weissenberg number: the size of the lip vortex oscillates with a regular period (Boger
& Walters, 2012; McKinley et al., 1991). These oscillations can only be observed in
a certain range of contraction ratios (McKinley et al. (1991) proposed 2 ≤ β ≤ 5)
and the flow remains steady for larger contraction ratios. More complex behaviours
are observed at large Weissenberg numbers.

Since, in both cases, the resulting vortex (corner or lip) is much larger than
the Newtonian Moffatt eddy, these phenomena are commonly referred to as “vortex
enhancement” and are attributed to elastic effects. An example is shown in figure
2.13.c. In the case of a free jet orifice configuration (see figure 6.1.b), it has been
shown that the oscillations observed in the unsteady regime were responsible for the
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strong surface defects observed in the downstream extruded jet and referred to as
“melt-fracture” (Piau et al., 1990).

In parallel, beyond a critical Weissenberg number which is smaller than Wi c,
the measured pressure drop becomes larger than the pressure drop predicted by the
Newtonian theory. This extra pressure drop is associated with the strong extensional
flow near the contraction inlet but could not be predicted by numerical computations
using simple (Oldroyd-B) dumbbell models (Rothstein & McKinley, 1999).

Shear-thinning fluids with inertia

Fluid inertia and shear-thinning effects can alter the vortex growth scenario. Many
authors have reported that, while elasticity encourages vortex growth, inertia tends
to decrease the size of the vortex by pressing the vortex in the outer (salient) corner,
resulting in a divergence of the streamlines towards the walls of the tube, thus leading
to more complex flow patterns where a stagnant zone may be present in the central
region near the contraction entry (Boger & Walters, 2012; Raiford et al., 1989; Kim-
e et al., 1983). Calculations by (Kim-e et al., 1983) also suggest that shear-thinning
decreases the size of the vortex and increases entrance pressure losses.

6.1.3 Planar contraction

Corner and lip vortices may also be observed on both sides of a planar contraction
(two separated sets of vortices are formed instead of the recirculating torus observed
in axisymmetric contractions). However, different pattern evolution scenarios have
been reported. A comprehensive review of the different vortex growth scenarios in
planar contractions has been proposed by Rodd et al. (2005).

Early works showed that non shear-thinning fluids exhibiting vortex enhance-
ment in axisymmetric contractions may exhibit no evident vortex activity in planar
contractions, while shear-thinning fluids usually exhibit vortex enhancement in both
axisymmetric and planar contractions (Walters & Rawlinson, 1982; Evans & Wal-
ters, 1986, 1989). An other generally accepted idea is that, for a given shear-thinning
liquid with negligible inertia, the existence of lip vortices depends on the contrac-
tion ratio. For example, for an aqueous solution of polyacrylamide (PAA) with large
polymer concentration, while the corner vortex grows in size when increasing the
Weissenberg number for β = 4, a lip vortex appears, grows, and ultimately “de-
vours” the corner vortex for β = 16 (Boger & Walters, 2012). However, using a
less concentrated aqueous solution of polyacrylamide with contraction ratio β = 4,
a lip vortex is visible, proving that the vortex enhancement mechanism is a very
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Figure 6.2 – 3-dimensional flow structure observed by Chiba et al. (1990, 1992) at large flow
rate for a shear-thinning aqueous PAA solutions with low concentration. (a): Schematic
representation. (b): side view (z − y plane) and (c): front view (z − x plane) close to the
wall: appearance of counter rotating Görtler-like vortex tubes.

complicated function of flow rate, material properties and contraction ratio (Boger
& Walters, 2012). In the latter case, inertia finally comes into play: the vortex size
now decreases significantly when increasing the flow rate, and divergent streamlines
are ultimately observed, like in the axisymmetric case. Such inertial damping and
diverging streamlines, as well as the selection between corner and lip vortices, has
been reproduced numerically by Purnode & Crochet (1996) using a FENE-P model.

At large flow rates, unstable flows can be observed, like in axisymmetric con-
tractions. Using a micro-fabricated planar contraction (β = 16) and aqueous PEO
solutions with almost constant shear viscosity, Rodd et al. (2005) reported that the
onset of elastic instabilities, manifested by fluctuations in the local velocities near
the contraction, occur above a critical Weissenberg number Wi crit ≈ 50 for Reynolds
numbers less than 40.

More surprisingly, although the flow is 2-dimensional at sufficiently low flow
rates, Chiba et al. (1990, 1992) obtained experimental evidence for the existence of
a nontrivial 3-dimensional flow structure appearing at large flow rates using shear-
thinning aqueous PAA solutions with low polymer concentration (i.e., subjected to
inertial effect and therefore exhibiting divergent streamlines). This “anomalous flow
pattern” is characterised by a modulation along the neutral x direction which is
shown schematically in figure 6.2.a, along with flow visualisations in the z− y plane
(figure 6.2.b) and in a z − x plane parallel and close to the side wall (figure 6.2.c).
The divergence of the streamlines and the y asymmetry of the flow are clear in fig-
ure 6.2.b. Note that figure 6.2.b corresponds to a regime where the vortices have
disappeared due to inertia. When (corner or lip) vortices are present, the unsteady
nature of the flow is characterised by a periodic and alternative growth and decay
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of the vortices present on both sides. Figure 6.2.c shows a multiple cellular struc-
ture along x where “bundle-like” streamlines are generated near the salient corners.
These streamlines move back and forth along x due to the alternative growth and
decay of the (corner or lip) vortices (not visible in the figure). Based on these visu-
alisations, the authors conclude on the existence of counter rotating vortex tubes
consisting in Görtler-like vortices with almost rectangular cross sections. Görtler
vortices are counter rotating longitudinal vortices that appear in a boundary layer
flow along a concave wall due to destabilising centrifugal forces. According to the
authors interpretation, such tubes are generated by a decrease in radius of the main
flow curvature which is due to the diverging streamlines. Such flow structure might
possibly result in a velocity variation along the slot. However, since the authors
used a long slot (large Ls) and did not investigate the structure of the downstream
curtain, we do not know if such 3-dimensional flow structure in the contraction re-
gion can result in a modulation of the curtain velocity field along x.

In parallel of the appearance of these different flow patterns, the measured pres-
sure drop may be affected by the presence of polymers. Different behaviours have
been reported: while Nigen & Walters (2002) measured no extra pressure losses (i.e.
no difference between a Newtonian liquid and a non shear-thinning liquid of same
shear viscosity), Rodd et al. (2005) reports extra pressure losses, like in axisymmet-
ric contractions.

Conclusion A rich variety of flow structures are observed in both axisymmetric
and planar abrupt contractions. To quote Xue et al. (1998), “it is impracticable,
or even impossible to get the whole picture about the flow behaviour of viscoelastic
fluids in such complex flow from existing experimental results”. In other words,
the exact observed flow patterns are so dependent on the exact contraction ratio,
flow rate and liquid rheological properties (for example through Re, Wi and n)
that formulating any general law is quite difficult. In the following, we report new
phenomena which, in the case of HPAM solutions, are linked to the modulation of
the curtain flow after extrusion through the slot (discussed in chapter 5).

6.2 Experimental set-up

6.2.1 The die

We present in figure 6.3 the experimental set-up which was developed specifically for
the visualisation of the flow upstream of the slot. The liquid is poured in a container
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Figure 6.3 – Experimental set-up for
visualisations of the flow structure up-
stream of the slot. The flow is illu-
minated by a laser sheet. We visualise
the flow along two different planes: a
z−y plane situated at a few centimetres
from the side wall (side view, shown in
this figure) and the z−x plane situated
along the slot (y = 0) which is the plane
of symmetry of the die (front view).

connected to a rectangular die of height 30 cm, inner width l = 15 cm and inner
thickness 2A = 14 mm presenting a short slot (Ls = 4 mm) of thickness 2a = 1 mm.
The slot thickness 2a and the contraction ratio β = A/a = 14 are the same as the
die used in previous curtain experiments (see figure 3.2.b). We are in the situation
of figure 6.1.b: after exiting the slot, depending on the flow rate, the liquid forms
either a free curtain (large flow rate) or an array of jets (low flow rate). Since the
liquid from the container enters at the centre of the die (x = 0), an array of straws
of length 5 cm and diameter close to 2A/3 ≈ 4.6 mm is placed in the die at 21 cm
from the slot in order to homogenise the flow along x.
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6.2.2 Flow control

In order to avoid mechanical degradation of the polymer chains, the liquid flow is
not controlled by a pump but by applying an air flow on top of the container. The
detailed procedure is as follows. First, the die is sealed by fixing a plastic plate
below the slot using a “clamp” (or “jaw”). Then, a polymer solution of total mass
Ms = 5 kg is poured into the container: it fills the die and about 2/3 of the con-
tainer. The container is then sealed using a specific lid, winded by a soft o-ring,
which is pressed against the container in order to obtain an airtight set-up. The
lid is then connected to a pressurised filtered air system by an adequate hole. The
air flow is controlled by a valve. While the valve is closed, the die is released (i.e.
the plastic plate is removed): some liquid flows outside of the die until reaching a
steady state where the liquid weight is supported by the air depression on top of the
container. The slot is thin enough to avoid air entering the die (no Rayleigh-Taylor
instability). Hence, the liquid flow can be adjusted by opening the valve.

The liquid is collected by a bucket placed on a balance which is connected to
the computer. Using a Matlab code, we have a real-time access to the mass ms(t)

measured by the balance. The signal is differentiated to obtain the instantaneous
mass flow rate Q = dms/dt. We checked that, for a given valve opening, the
measured liquid flow rate is constant. The time window for flow visualisation is
limited by the time needed to empty the die-container system. It is equal to Ms/Q

which ranges typically between 30 s for Q = 150 g/s and 16 min for Q = 5 g/s.

6.2.3 Flow visualisation

The liquid is seeded with polyamid solid particles (PSP) of diameter 20 µm and dens-
ity 1.03 g/cm3 (provided by Dantec Dynamics) at a concentration of 0.009 wt%. A
laser sheet is used to illuminate the flow along a desired plane and a high speed
camera records the flow at about 100 images per second during typically 8 seconds.
We visualise the flow along two different planes: one z − y plane situated at a few
centimetres from the side wall (side view, as shown in figure 6.3) and the z−x plane
along the slot (y = 0) which is the plane of symmetry of the die (front view). In
the latter case, the curtain flow is also visible since the curtain is also illuminated
by the laser.

The vertical flow velocity switches from about Uu = q/2A (on average, “u” for up-
stream) in the die to about Us = q/2a (“s” for slot) in the slot where q = Q/ρl is the
linear flow rate. Typical orders of magnitude for q = 3 cm2/s are Uu = 0.02 m/s and
Us = 0.3 m/s. Unfortunately, the laser sheet we had at our disposal was not strong
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enough to allow sufficiently low camera exposure times for resolving the flow near
the contraction with a PIV technique (tracers look like streaks instead of points).
This problem is even more dramatic in the case of HPAM solutions which (as will be
presented below) exhibit surprisingly large velocities. In contrast, the light source
used in earlier curtain experiments (mentioned in 3.1.4) was powerful enough to al-
low sufficiently short exposure times (typically 500 µs) for the resolution of velocities
U > Us in the curtain. This problem will be solved for future experiments. The
results presented in this chapter are in fact preliminary results where the structure
of the flow is investigated using image superpositions to visualise the pathlines of
the tracers, which correspond to the flow streamlines in steady regimes. In all the
experiments presented below, the thickness of the viscous boundary layer develop-
ing along the side walls (situated at x = ±l/2) never exceeds 2 cm. Side views are
always performed sufficiently far from the side walls to avoid this edge effect.

6.3 Test liquids

We choose to define the Weissenberg number as Wi = τfil Us/a (equation 6.4) where
τfil is the extensional relaxation time measured with a CaBER rheometer, as defined
by Rodd et al. (2005). We know that it is an important parameter since elastic in-
stabilities usually arise above a critical Weissenberg number. However, since the
results of §5.2 suggest that the degree of shear-thinning n is of primary import-
ance when investigating the onset of modulated curtain flows, we use four PEO and
HPAM solutions with different values of n and with similar extensional relaxation
times τfil which cover comparable ranges of Weissenberg numbers.

6.3.1 Rheological parameters

The four recipes and the corresponding solvent viscosities ηs, density ρ and surface
tension Γ are given in table 6.1. The first three solutions, which we refer to as P1,
P2 and P3, are PEO solutions with respective PEG concentrations 40 wt% (P1),
20 wt% (P2) and 0 wt% (P3). Note that the reported solvent viscosity ηs = 0.12 Pa.s
for solution P1 is lower than the value reported in §3.1.1 ηs = 0.14 Pa.s for similar
solutions. This is due to the fact that the temperature dependence of the solvent
viscosity becomes non negligible for solvents with such large PEG concentrations.
The two measured values correspond to different room temperatures: the experi-
ments reported in this chapter were performed at a room temperature T = 27◦C for
this specific solution P1 while the experiments reported in previous chapters with
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Liquid [PEG] [PEO] [HPAM] [NaCl] ηs ρ Γ

wt% wt% wt% wt% Pa.s kg/m3 mN/m

P1 40 0.02 0 0 0.12 1070 53
P2 20 0.05 0 0 0.017 1026 62
P3 0 0.36 0 0 0.001 1000 72
H1 0 0 0.1 0.2 0.001 1000 72

Table 6.1 – Composition of the four liquids P1, P2, P3 and H1 used in this chapter. ηs, ρ
and Γ are the respective solvent viscosity, solution density and solution surface tension.

Liquid η0 ηp n 1/γ̇c τfil ηE b Wi Re
Pa.s Pa.s s s Pa.s

P1 0.13 0.01 1.0 0.17 8× 102 4× 104 10 - 160 0.12 - 1.9
P2 0.019 0.002 0.97 0.1 0.10 7× 102 2× 105 8 - 220 1.2 - 33
P3 0.15 0.15 0.57 0.71 0.088 6× 102 2× 103 7 - 170 0.76 - 74
H1 0.11 0.11 0.56 2 0.13 8× 102 4× 103 7 - 160 1.0 - 33

Table 6.2 – Rheological parameters of the solutions P1, P2, P3 and H1 introduced in table
6.1. The first columns are similar to table 3.1. The range of Weissenberg Wi = τfilUs/a
and Reynolds Re = ρUsa/η(γ̇∗) (where γ̇∗ = Us/a) numbers experimentally investigated
are shown.

the solutions of table B.3 were performed at a lower room temperature closer to
23◦C. The last solution, which we refer to as H1, is a 0.1 wt% HPAM solution with
0.2 wt% salt.

The rheological properties of these four solutions are reported in table 6.2. We
checked that they do not vary in the course of an experimental session by measuring
the rheological properties of a sample of fresh solution and a sample of solution
collected after experiments. Since the room temperature could vary between 26◦C
and 30◦C from day do day, CaBER experiments are once more performed in the
same room as curtain experiments (a few minutes after) and shear rheology exper-
iments were performed by imposing the room temperature to the rheometer. The
extensional relaxation time ranges between 0.088 s and 0.17 s. The apparent shear
viscosity of each liquid is shown in figure 6.4.a. Solutions P1 and P2 are almost
non shear-thinning fluids n ≈ 1 while solutions P3 and H1 are shear thinning with
n ≈ 0.57.
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Figure 6.4 – (a): Apparent shear viscosity of the solutions P1, P2, P3 and H1 presented in
tables 6.1 and 6.2. The low torque limit is shown, as well as the range of experimentally
achieved values of γ̇∗ = Us/a which is a characteristic shear rate in the slot. The data are
fitted by a Carreau law (equation 3.7). (b): Explored regions in the Wi − Re space for
solutions P1, P2, P3 and H1. The data corresponding to sufficiently large flow rates for
the formation of a curtain are shown (a line is drawn to guide the eye).

6.3.2 Range of Weissenberg and Reynolds numbers

Each solution is extruded at linear flow rates q ranging typically between 0.3 cm2/s
and 10 cm2/s. Hence, the mean velocity in the slot Us = q/2a ranges between
0.03 m/s and 1 m/s and the Weissenberg number Wi = τfil Us/a ranges between
7 and 220. We define the Reynolds number as Re = ρUsa/η(γ̇∗) where γ̇∗ = Us/a

(see equations 6.1 and 6.2). In figure 6.4.a, we show the different ranges of shear
rates γ̇∗ achieved in the slot for the four solutions. For solution P1, η(γ̇∗) is simply
η0. For solution P2, we use the Carreau law 3.7 for η(γ̇∗), unless we obtain values
lower that the solvent viscosity ηs, in which case we choose η = ηs. For solution
P3, we also use the Carreau law (it gives values larger than ηs). For solution H1,
we observe the second Newtonian plateau η∞ = 0.0091 Pa.s which is larger than ηs.
Therefore, we use the Carreau law for η(γ̇∗), unless we obtain values lower than η∞,
in which case we choose η = η∞. The range of Weissenberg and Reynolds number
explored for each solution is shown in table 6.2: we are in conditions similar to Rodd
et al. (2005). A graphic representation of this is provided in figure 6.4.b where each
experimental measurement is placed in the Wi −Re space. The data corresponding
to sufficiently large flow rates for the formation of a curtain are shown.
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6.4 Flow patterns

Before showing the different flow patterns, we shall mention a difficulty in defin-
ing the onset of instabilities for our particular set-up. Since we use a free-curtain
configuration instead of the more classical contraction-expansion or infinite slot con-
figurations (see figure 6.1), the flow upstream of the slot is not translation invariant
along x at low flow rates (in particular q < qmin) where the liquid leaving the slot
forms an array of jets instead of a continuous liquid sheet (see figure 5.3.a). Indeed,
at low flow rates, we observe that the flow upstream of the slot “focuses” on the differ-
ent spots xi corresponding to jets near the contraction, while the flow far upstream
from the contraction (when leaving the array of straws) is perfectly 2-dimensional
(i.e. translation invariant along x outside of the boundary layers) for the four solu-
tions. In other words, the tracer pathlines start pointing towards the positions xi
of the jets a few centimetres from the contraction plane. Therefore, it is possible to
observe a transition from a 3-dimensional flow at low flow rates to a 2-dimensional
flow at q ≥ qc, i.e. when a continuous curtain is finally formed (this will be true
for solutions P1, P2 and P3 only). In fact, the flow becomes 2-dimensional at lower
flow rates closer to qmin since a short liquid sheet is usually formed within the first
millimetres below the slot before separating into jets. Since this 3-dimensional effect
is simply due to our choice of configuration and is not at all a consequence of elastic
effects (it is also observed with pure water), we will consider that the onset of elastic
instability corresponds to the onset of time-dependent flow patterns and not to the
onset of x-dependent flow patterns.

This 3-dimensional effect at low flow rates has a consequence on the side view
visualisation (along a z − y plane) since different flow patterns may be observed
depending on the arbitrary position xi of the laser sheet: higher velocities will be
measured upstream of a jet. In future experiments, one possible idea to get rid of this
uninteresting 3-dimensional effect is to immerse the lower part of the die in a bath
containing the same liquid. We speculate that the flow will become 2-dimensional at
low flow rates since jets are no longer formed below the slot. Of course, this would
take us away from our original question which is: are curtain modulations linked or
not to a flow instability upstream of the slot? To answer this question, we need to
see both the curtain and the contraction flow at the same time.

6.4.1 Non shear-thinning PEO solutions P1 and P2

For the whole range of flow rates investigated, solutions P1 and P2 exhibit steady
flow patterns with a symmetry axis at the position y = 0 of the slot. The tracers
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Figure 6.5 – Side view of the flow pattern for solution P1 extruded at the lowest flow rate
(a) q = 0.29 cm2/s and the largest flow rate (b) q = 4.7 cm2/s. The respective Weissenberg
and Reynolds numbers are shown. These images are obtained by superposition of successive
images.

Figure 6.6 – Side view of the flow pattern for solution P2 extruded at the lowest flow rate (a)
q = 0.42 cm2/s and the largest flow rate (b) q = 11 cm2/s. The respective Weissenberg and
Reynolds numbers are shown. These images are obtained by superposition of successive
images.

pathlines correspond to the flow streamlines. These patterns are shown in figures
6.5 (P1) and figures 6.6 (P2) at a low flow rate (a: array of jets) and large flow
rate (b: continuous curtain). The corresponding Weissenberg and Reynolds num-
bers are indicated. Our results differ from the results of Rodd et al. (2005) who
reports unsteady and asymmetric flows for Wi > Wi crit where Wi crit ≈ 50 (with
the same definition of the Weissenberg number) using a planar contraction of com-
parable ratio β = 16 for the same range of Reynolds numbers. The explanation lies
probably in the fact that these authors, due to the constrains of micro-fabricated
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geometries, use a slot of limited aspect ratio l/2a = 2 for which edge effects are not
negligible, whereas we use a slot of much larger aspect ratio l/2a = 150. Indeed, as
discussed in §6.2.3, the size of the boundary layer developing along the side walls
is small compared to the channel width l in our case. Our contraction is therefore
closer to the ideal planar contraction of infinite aspect ratio. Furthermore, no trace
of 3-dimensional structure has been observed in the curtain regime (large flow rate)
for these solutions. This is consistent with the fact that the downstream curtain is
not modulated.

Note that the velocity field u(y, z) in the upstream channel depends only on y
far from the contraction plane and is well captured by a parabolic law, which means
that the flow rapidly reaches a fully developed Poiseuille state after leaving the array
of straws. This results comes from preliminary PIV measurement (not shown) which
can only be performed far from the contraction for reasons mentioned in §6.2.3.

Note also that small corner vortices are observed in the salient corners. Their
size slightly decreases when increasing the flow rate (this is usually attributed to the
inertia of the flow). Hence, we do not observe the vortex enhancement phenomenon.
This is consistent with the results obtained by Walters & Rawlinson (1982); Evans
& Walters (1986, 1989) who report low vortex activity for planar contractions of
non shear-thinning fluids.

6.4.2 Shear-thinning PEO solution P3

In contrast, solution P3 exhibits more complex flow patterns. These patterns are
shown in figures 6.7 for different flow rates. A large lip vortex is visible for the
lowest flow rate (a) and we speculate that the usual growing sequence reported in
the literature would have been observed at lower increasing flow rates. The size of
this lip vortex rapidly decreases (b) and divergent streamlines are finally observed
(c), which attests a competition between elasticity and inertia. A similar sequence
is for example reported by Boger & Walters (2012) (p. 61). For the first flow rates
(a), (b) and (c), the flow is steady and presents a symmetry axis at the position
y = 0.

The flow becomes both unsteady and asymmetric at a critical flow rate qcrit
ranging between 2.7 cm2/s and 3.9 cm2/s, as shown in figure 6.7 (d), (e) and (f)
which correspond to flow rates q ≥ 3.9 cm2/s. These images are comparable to the
results of Chiba et al. (1990, 1992) shown in figure 6.2.b. Besides, for these three
last images (for which a curtain is formed below the slot), a front view reveals a

168



6.4. Flow patterns

Figure 6.7 – Side view of the flow pattern for solution P3 extruded at flow rates q =
0.40 cm2/s (a), q = 0.83 cm2/s (b), q = 1.4 cm2/s (c), q = 3.9 cm2/s (d), q = 4.8 cm2/s
(e), q = 9.8 cm2/s (f). The respective Weissenberg and Reynolds numbers are shown.
These images are obtained by superposition of successive images.

very weak tendency to 3-dimensionality with particles moving along x just before
entering into the contraction (a few millimetres before the contraction plane). This
effect is not shown since it is hardly noticeable with an image superposition. A
possible explanation is that our z− x plane corresponds to the slot position (y = 0)
whereas the front view images of Chiba et al. (1990, 1992) shown in figure 6.2.c
correspond to a plane close to the wall situated at y = ±A where this 3-dimensional
structure may be more visible.

No trace of curtain modulation is visible for the largest flow rates, although the
flow upstream of the slot is unsteady and weakly 3-dimensional. Since solution P3
has a degree of shear thinning n = 0.56, this result is in contradiction with the
results presented in §5.2 which suggested that, in this range of flow rates, curtains
become modulated for n < 0.72. In fact, PEG-free PEO solutions like solution P3
had not been tested in previous chapters, and the only PEO curtains presenting
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Figure 6.8 – Side view of
the flow pattern for solu-
tion H1 extruded at flow
rate q = 0.27 cm2/s <
qmin where the x position
of the laser sheet matches
(a) or does not match (b)
the position of a jet be-
low the slot. The respect-
ive Weissenberg and Reyn-
olds numbers are shown.
These images are obtained
by superposition of suc-
cessive images.

a modulation were some 0.4 wt% PEO solutions with 20 wt% PEG solvent. This
point will be examined in a more general discussion in §6.5.

6.4.3 Shear-thinning HPAM solution H1

Flow patterns

Solution H1 exhibits incredibly complex flow structures, even at the lowest tested
flow rates, i.e. the flow is strongly unsteady, asymmetric and 3-dimensional. The
corresponding curtains are all modulated. Hence, the critical flow rate qcrit mark-
ing the onset of unsteady flow patterns is below our minimum flow rate which is
0.27 cm2/s.

Figures 6.8, 6.9 and 6.10 show different flow patterns observed at different flow
rates where jets (figure 6.8) and (modulated) curtains (figures 6.9 and 6.10) are
formed below the slot. Note that in figure 6.8, there is actually only one jet formed
below the slot instead of the classical full array of equidistant jets. This behaviour
is often observed with HPAM solutions and we did not find explanations for this
in the literature. Figure 6.8.a corresponds to a typical flow pattern observed up-
stream of this jet while figure 6.8.b displays a typical flow pattern when there is
no jet below the position xi of the laser sheet. Figures 6.9 and 6.10 correspond to
different typical flow patterns upstream of the curtain at a particular position xi at

170



6.4. Flow patterns

two different arbitrary times (a and b).

Figure 6.9 – Side view of
the flow pattern for solu-
tion H1 extruded at flow
rate q = 2.0 cm2/s (a
curtain is formed below
the slot) at two arbitrary
times t∗ and t∗ + 1.6 s.
The respective Weissen-
berg and Reynolds num-
bers are shown. These im-
ages are obtained by super-
position of successive im-
ages.

Figure 6.10 – Side view
of the flow pattern for
solution H1 extruded at
flow rate q = 2.0 cm2/s
(a curtain is formed be-
low the slot) at two ar-
bitrary times t∗ and t∗ +
0.64 s. The respective
Weissenberg and Reynolds
numbers are shown. These
images are obtained by
superposition of successive
images.
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Figures 6.8.a and 6.8.b are quite different. Figure 6.8.a shows an asymmetric vor-
tex structure upstream of the jet while figure 6.8.b shows no obvious structure near
the contraction. In particular, the velocity of the tracers inside the slot is almost 0

in figure 6.8.b since there is no jet to be “fed” with liquid at this particular position
xi. A comparable 3-dimensional effect was observed with the previous solutions P1,
P2 and P3 (which exhibit an array of almost equidistant jets like in figure 5.3.a),
but with a quite reduced intensity, meaning that the tracer pathlines start pointing
towards the jet positions much closer to the contraction plane than with solution H1.

In fact, an analogous 3-dimensional effect was observed with solution H1 at large
flow rates where a modulated curtain is formed beneath the slot. This is illustrated
by the different structures observed at a particular position xi in figures 6.9.a and
6.9.b and in figures 6.10.a and 6.10.b. In both cases, figure (a) shows a long jet-like
structure in the upstream channel, feeding the slot (at this particular position xi)
with high liquid velocity, while figure (b) reveal no such jet-like structure, the slot
(at the same position, a few tens of second later) being fed with liquid with a much
more modest velocity. In other words, if Us = q/2a is the mean velocity in the slot
in the case of a purely 2-dimensional flow, the position xi is alternatively overfed
(a: U > Us) and underfed (b: U < Us). The time of evolution of the flow structure
if of the order of a few tens of seconds. Contrary to figure 6.8, this 3-dimensional
structure is not trivial since it is not a consequence of the destabilisation of the
downstream curtain into jets.

These observations suggest that the modulation of the curtain thickness and
velocity field along x is related to the 3-dimensional flow structures observed in
figures 6.9 and 6.10. This is validated by front visualisation of the flow in the z − x
plane where the laser sheet is placed at the position of the slot (y = 0). An example is
shown in figure 6.11: there is a remarkable continuity between the flow in the upper
channel and the flow in the curtain: the thick-and-fast bands of the modulated
curtain are simply the continuation of the long jet-like structures in the die. This
explains why the characteristic time of evolution of the band pattern in the curtain
is the same as the time of evolution of the flow in the upper channel. Note that, due
to a short exposure time used for the front view of solution H1, it was quite difficult
to obtain a meaningful image superposition, although the die-curtain continuity is
quite clear when watching the movie. For this reason, figure 6.11 corresponds to an
experiment with an unsalted 0.1 wt% HPAM solution filmed at a longer exposure
time. The exact shape of the flow patterns observed for these two liquids are different
(the velocity distribution is narrower for solution H1, as suggested by figure 5.8)
but both flows have the same intrinsic unsteady, asymmetric and 3-dimensional
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Figure 6.11 – Front view of the flow pattern for an unsalted 0.1 wt% HPAM solution (the
nature of the flow patterns are similar to those observed for solution H1). A curtain is
formed below the slot. Note that no guides were used to enforce a rectangular curtain
shape in this chapter for practical reasons (observations suggests that it does not affect
the flow inside the die). There is a continuity between the flow in the upper channel and
the flow in the curtain: the thick-and-fast bands of the modulated curtain are simply the
continuation of the long jet-like structures within the die.

characteristics. In the future, in order to obtain even more meaningful images, we
plan to change the lighting of the curtain by using the powerful light source used in
curtain experiments (see figure 4.2.a for example), while illuminating the die with a
more powerful laser sheet.

Size of the recirculation area

From the movies, we observe that the flow in the die is only perturbed (i.e. un-
steady, asymmetric and 3-dimensional) within a restricted area upstream of the
contraction plane., i.e. the flow is usually unperturbed (i.e. steady, symmetric and
2-dimensional) when leaving the array of straws situated at 21 cm from the contrac-
tion plane. We note Lrc the length of this area along the vertical direction z. In
the case of solution P3, the length of the perturbed area is of the order of the upper
channel thickness, i.e. Lrc ≈ 2A (see figure 6.7). However, according to figures 6.8,
6.9, 6.10 and 6.11, the perturbed area is much longer for solution H1.
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Figure 6.12 – (a): Time evolution of the dimensionless size Lrc/2A of the perturbed re-
circulation area when initiating a sudden flow of flow rate q = 2.5 cm2/s (Wi = 67 and
Re = 14) and q = 6.3 cm2/s (Wi = 160 and Re = 34) for the solution H1. (b): Ex-
ample of flow pattern during the transient rising of the perturbed recirculation area for
q = 6.3 cm2/s at a time reported in figure (a).

In order to estimate Lrc, we performed a serie of experiments with solution H1
where, starting from equilibrium (q = 0), a flow of linear flow rate q > 0 is rapidly
initiated. We then observe that the recirculating perturbed area, which is initially
restricted to the neighbourhood of the contraction plane, grows in size an invades a
long part of the upstream channel. The time evolution of the length Lrc(t) of this
perturbed area can be estimated. Results are presented in figure 6.12.a for two dif-
ferent flow rates q = 2.5 cm2/s and q = 6.3 cm2/s. After initial rising, the perturbed
recirculating area reaches a plateau value Lrc,∞ which is an increasing function of
the flow rate. In dimensionless values, we find Lrc,∞/2A = 5 for the low flow rate
and Lrc,∞/2A = 9 for the large flow rate. We also observe that the transient rising
phase of the perturbed front is shorter (about 6 s) for the large flow rate than for
the low flow rate (for which it lasts about 21 s).

Such surprisingly long recirculation areas have also been reported by Cartalos &
Piau (1992) in both steady (long steady vortices) and unsteady regimes for HPAM
solutions extruded from an axisymmetric contraction. Note that their solvent is
much more viscous, resulting is solutions of zero-shear viscosity η0 ≈ 1 Pa.s and
therefore in lower Reynolds numbers. They report Re ≤ 2 while the results of figure
6.12 correspond to Re > 10.
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Analogous phenomena

Analogous large jet-like structures have been observed in different situations. In
particular, in the movie presented by Salipante et al. (2016) at the 69th Annual
Meeting of the APS Division of Fluid Dynamics called “Jetting Flow of a Shear
Banding Fluid” (video available on YouTube), the authors report the existence of
a very similar unsteady jetting structures in shear banding worm-like micellar solu-
tions upstream of a progressive contraction in a micro-fabricated channel. This phe-
nomenon is characterised by the existence of a self-contained portion of the channel
where the fluid velocity is much greater than the surroundings, like in our pictures of
HPAM solutions upstream of a planar contraction (figures 6.10 and 6.11). Authors
also report the existence of such phenomena even in the absence of a contraction in
rectangular micro-fabricated ducts with shear banding worm-like micellar solutions
(Salipante et al., 2017; Haward et al., 2014). According to the authors, the existence
of such jets relies on the existence of plateau in the (shear rate) - stress (γ̇ - σ) curve,
which is a characteristic of shear banding fluids. Hence, HPAM solutions (exhibit-
ing no shear banding properties) are not expected to form the same flow structure.
However, since both fluids exhibit both elastic and shear-thinning properties, an
analogy between the patterns observed with worm-like micellar solutions and with
HPAM solutions is not excluded.

Analogous elastic instabilities have also been reported by Kawale et al. (2017)
with HPAM solutions forced through a controlled porous media made of pillars in a
micro-fabricated channel. Here, the flow presents stationary “dead zones” of immob-
ile liquid upstream of the pillars while the flow is strongly unsteady at large Weis-
senberg numbers and is characterised by fast portions of liquid sneaking between
the pillars. In particular, the size of the dead zones is an increasing function of
1 − n, thus suggesting that flow inhomogeneities are correlated to shear-thinning
behaviour.

These comparisons suggest that the provocatively complex flow pattern observed
with our HPAM solution is principally driven by elastic and shear-thinning effects.
In the examples presented above and in our experiments, fast jets of fluid erupt
within a quasi immobile surrounding liquid. We can imagine a simple mechanism
for this instability: fast portions of liquid correspond to regions of highly stretched
material where polymer molecules align along the flow, thus resulting in lower flow
resistance which enhances further concentration of the fluid motion within the jet.
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Figure 6.13 – Phase diagram of the modulated and smooth curtains in the Wi − n space.
The curtain data corresponding to solutions P1, P2, P3 and H1 (table 6.2) are superposed
to the data corresponding to the PEO and HPAM solutions used in previous chapters
(tables B.1, B.2, B.3). Most of these previous data correspond to the data of figure 5.9.

6.5 Onset of curtains modulation

Now that we know that the curtain modulation is linked to 3-dimensional unsteady
flow patterns in the die, we can discuss the onset of curtain modulation in terms of
Weissenberg numbers which is known to be an important parameter for describing
the onset of elastic instabilities in contractions. Since we know from figure 5.9 that
shear-thinning plays a major role, modulated and smooth curtains are gathered in a
Wi − n phase diagram in figure 6.13. As anticipated in figure 5.9, most modulated
curtains are found at n < 0.72. Of course, for a given highly shear-thinning fluid,
smooth curtains are to be expected at low Weissenberg numbers (low flow rates)
since the onset of elastic instabilities usually correspond to a critical flow rate. Such
low-flow-rate curtain visualisations are unfortunately hindered by the existence of a
critical flow rate below which the curtain rapidly breaks into an array of jets. This
explains why the low Wi region of the map 6.13 is empty. Indeed, if qmin is the
minimum linear flow rate to form a curtain, the minimum achievable Weissenberg
number is qminτfil/2a2 (see equation 6.4 with Us = q/2a).

The only data preventing us from drawing any line separating modulated and
smooth curtain in figure 6.13 is the data of solution P3, which is very similar to
solution H1 (same n and same range of Wi). For both solutions, unsteady and
3-dimensional flow structures are observed in the die. However, this 3-dimensional
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character is much more pronounced for solution H1, thus leading to clearly observ-
able modulation in the curtain flow. Understanding the striking difference between
these two behaviours is not trivial at all. In particular, as shown in figure 6.4.b,
both solutions correspond to comparable Reynolds numbers. Hence, adding a third
Re axis to figure 6.13 will not separate the P3 data from the H1 data.

In the next section, we sum up the results obtained in this manuscript concerning
modulated curtains and we present some perspectives for future works aiming at a
finer characterisation of the onset of curtain modulation.

6.6 Partial conclusions and perspectives

In this chapter, the behaviour of three PEO solutions P1, P2 and P3 and one HPAM
solution H1 extruded through a planar contraction of ratio β = 14 has been invest-
igated. In particular, the critical linear flow rate marking the onset of elastic in-
stabilities in the die, characterised by unsteady flow patterns, has been investigated,
as well as the appearance of 3-dimensional flow patterns presenting a modulation
along the neutral direction x. These experiments aimed at identifying the origin
of the thickness and velocity modulation of some curtains emerging from the slot
which, as discussed in §5.2, seemed to appear for highly shear-thinning solutions.

While solutions P1 and P2 present no elastic instability and no curtain mod-
ulation for the largest tested flow rate, solution P3 presents an elastic instability
above a critical flow rate but presents no observable curtain modulation. In con-
trast, solution H1 presents strong elastic instabilities, even at the lowest tested flow
rate, as well as modulation in the downstream curtain. Our experiments bring to
light a correlation for this HPAM solution between the modulation of the curtain
and the unsteady and 3-dimensional nature of the flow upstream of the contraction.
More precisely, thick-and-fast bands of the modulated curtain are simply the con-
tinuation of long jet-like structures in the die which are initiated at the contraction
plane and grow in size when imposing a sudden flow rate. This is reminiscent of
the experiments conducted by Piau et al. (1990) who clearly showed that melt frac-
ture phenomena observed for jets extruded from an axisymmetric contraction above
some critical flow rate are caused by the onset and downstream transport of un-
stable phenomena occurring within the extensional flow upstream of the orifice. In
our case, a planar contraction leads to a modulation of the liquid velocity along the
slot, thus resulting in the appearance of spots which are overfed (jet-like structure
upstream and thick band downstream) and underfed with liquid. To our knowledge,
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such behaviour has not yet been reported in the literature.

One question is still open: which phenomenon is the consequence of the other?
In order to prove that the curtain modulation is the consequence (and not the cause)
of the flow instability in the die, future works should focus on visualising the flow
upstream of the planar contraction in submerged conditions (as done by Piau et al.
(1990)) where the liquid leaving the slot no longer presents a free surface and flows
directly into a bath of the same liquid. If the flow is still unsteady and 3-dimensional,
it will mean that the flow instability comes from the planar contraction and not from
any destabilisation of the free surface of the curtain.

Furthermore, the results reported in this work and gathered in figure 6.13 show
that the critical Weissenberg number marking the onset of curtain modulation
(which, according to the data of solution P3, is not exactly the same as the critical
Weissenberg number marking the onset of flow instabilities in the die) is a com-
plex function of the experimental parameters. Our results suggest a general trend:
highly shear thinning liquids have a greater tendency to produce modulated curtains
at a given Weissenberg numbers than weakly shear thinning liquids. However, other
parameters must play a role. The Reynolds number can not be one of them since
solutions L3 and H1 share comparable values of Re while exhibiting very different
behaviours. Future works should focus on identifying these parameters. An answer
may lie in a finer rheological description of solutions L3 and H1.

178



General conclusion

In this thesis, we have experimentally investigated the role of viscoelasticity on the
flow and stability of a liquid curtain falling freely from a slot at constant flow rate.
Extruded liquids were dilute and semi-dilute solutions of flexible polyethylene ox-
ide (PEO) and solutions of semi-rigid partially hydrolysed polyacrylamide (HPAM)
whose rigidity could be tuned by salt addition. These solutions exhibit signific-
ant elasticity while having relatively low shear viscosities, contrary to the polymer
melts used in the analogous film casting problem where inertia and gravity are neg-
ligible. Significant deviations from the classical free-fall law (valid for low-viscosity
Newtonian curtains) were observed and quantified by velocimetry measurements.
Moreover, addition of flexible polymer molecules was shown to stabilise the liquid
sheet while addition of semi-rigid polymer molecules was shown to trigger a flow
instability resulting in a varicose modulation of the curtain which may ultimately
lead to a destabilisation of the liquid sheet. We now summarise these different ex-
perimental results before drawing outlooks for future investigations.

Curtain flow

We measured the local vertical velocity U(z) of the liquid as a function of the
distance z from the slot exit. Experiments reveal the existence of an initial regime
where fluid particles accelerate at a rate lower than gravitational acceleration g.
This regime had not been observed before. This elastic regime is characterised by
a balance between gravity and the elastic stresses arising from the stretching of
polymer molecules in the curtain. As the liquid velocity increases, inertia finally
dominates over elasticity and the classical free-fall behaviour is recovered (inertial
regime). We show that the flow is mostly influenced by the value of the extensional
relaxation time τfil of the solution measured by a filament thinning technique and
that the length of the elastic regime scales as ze = gτ 2

fil. The elastic regime is
characterised by strong stretching of polymer molecules where the local extension
rate ε̇ = dU/dz is of order 1/τfil. This result is analogous to viscous Newtonian
curtains for which the length beyond which inertia overcomes viscous dissipation is
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given by zv = ((4η/ρ)2/g)1/3 for a liquid of viscosity η and density ρ. While this
viscous length is generally much smaller than the curtain length in typical curtain
coating experiments, the elastic length ze can be larger than the curtain length for
viscoelastic coating liquids. By analogy with the Newtonian curtain theory (which
we revised to extract a Newtonian master curve), we show that the viscoelastic
velocity profiles fall on a master curve for sufficiently long curtains which are not
influenced by the downstream boundary condition. Furthermore, we show that the
history of shear deformations in the slot has a weak impact on the curtain dynamic.

Curtain stability

Two aspects of curtain stability have been investigated: the stability of the sheet in
terms of spontaneous hole opening events and the stability of the flow with respect
to elastic instabilities.

• We find than adding small amounts of flexible polymer molecules to a New-
tonian solvent greatly enhances the stability of the sheet by reducing dramatically
the typical frequency of hole opening events. Besides, the minimum flow rate qmin
(below which the curtain spontaneously break into jets) is reduced, thus allowing
the formation of continuous sheets at lower flow rates. These effects have already
been observed by other authors. However, the critical flow rate qc above which the
curtain forms is shown not to depend on polymer concentration, which suggests that
the dynamic of sheet retraction is mostly influenced by capillarity and inertia and
is not greatly influenced by elastic stresses.

• However, when adding semi-rigid polymer molecules to a Newtonian solvent,
we show that the curtain flow undergoes an elastic instability which is characterised
by a varicose modulation of the curtain. This effect had not been observed before.
The amplitude of the modulation seems to correlate with to the degree of shear-
thinning of the solution. In particular, the strong modulation observed for highly
shear-thinning unsalted HPAM solutions disappears after adding salt to the solution.
This modulation has a dramatic influence on the stability of the sheet since holes
are more easily initiated in the fragile thin zones of the sheet and are more likely
to propagate towards the slot since capillary forces dominate. This modulation
is shown to be linked to an elastic instability observed inside the die upstream
of the slot where the liquid is forced through an abrupt planar contraction. For
a HPAM solution with sufficiently low salt concentration, the flow inside the die
is highly unsteady, asymmetric and 3-dimensional. We observe jet-like structures
where liquid velocity is much larger than the surrounding liquid. Below a jet-like
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structure, the slot is overfed with liquid, resulting in a thick and fast band of liquid
in the downstream curtain, whereas underfed spots along the slot result in thin and
slow bands.

Perspectives

A quantitative analytical description of the curtain flow is still missing. Although
a simple Oldroyd-B approach appears to provide a qualitative agreement with the
experimental results, more work is needed to obtain quantitative predictions. One
possible approach is to use a multimode description of the polymer relaxation while
keeping τfil as the longest time scale.

More experimental work is also needed to fully characterise the complex flow
behaviours observed for shear-thinning solutions at the slot inlet. In order to avoid
the uninteresting 3-dimensional effects arising at low flow rates from the destabil-
isation of the downstream curtain into jets, future experiments should be performed
with a die submerged in a bath of polymer solution. Besides, a more refined rhe-
ological characterisation of the polymer solutions is needed to conclude about the
onset of elastic instabilities in the die since no clear criterion could be derived with
available data including the Weissenberg and Reynolds numbers and the degree of
shear-thinning.

In order to extend our experimental description, one could measure the velocity
field of a viscoelastic jet extruded from a hole. This problem is analogous to liquid
curtains and should present a similar scaling of the distance from the nozzle beyond
which inertia overcomes elasticity. However, due to the strong radial curvature of
the jet surface, capillary forces should be taken into account. Some inspiration can
be found in the experimental study of Clasen et al. (2009) on the jetting–dripping
transition in flows of polymer solutions.

181





Bibliography

Abramowitz, M. & Stegun, I. A. (1964). Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55. Courier Corporation. (page
10)

Aidun, C. K. (1987). Mechanics of a free-surface liquid film flow. Journal of applied
mechanics, 54(4), 951–954. (page 1, 8, 197, 206)

Alaie, S. M. & Papanastasiou, T. C. (1991). Film casting of viscoelastic liquid.
Polymer Engineering & Science, 31(2), 67–75. (page 2, 18)

Allain, C., Cloitre, M., & Perrot, P. (1997). Experimental investigation and scal-
ing law analysis of die swell in semi-dilute polymer solutions. Journal of non-
newtonian fluid mechanics, 73(1-2), 51–66. (page 108)

Alves, M. A. & Poole, R. J. (2007). Divergent flow in contractions. Journal of
non-newtonian fluid mechanics, 144(2-3), 140–148. (page 36)

Amarouchene, Y., Bonn, D., Meunier, J., & Kellay, H. (2001). Inhibition of the
finite-time singularity during droplet fission of a polymeric fluid. Physical Review
Letters, 86(16), 3558. (page 73)

Anna, S. L. & McKinley, G. H. (2001). Elasto-capillary thinning and breakup of
model elastic liquids. Journal of Rheology, 45(1), 115–138. (page 28, 41, 70, 74,
210)

Becerra, M. & Carvalho, M. S. (2011). Stability of viscoelastic liquid curtain. Chem-
ical Engineering and Processing: Process Intensification, 50(5), 445–449. (page 2,
19, 20, 60, 81, 131, 135, 136, 220)

Bertola, V., Meulenbroek, B., Wagner, C., Storm, C., Morozov, A., & Bonn, W.
v. D. (2003). Experimental evidence for an intrinsic route to polymer melt fracture
phenomena: A nonlinear instability of viscoelastic poiseuille flow. Physical review
letters, 90(11), 114502. (page 58)

183



Bibliography

Bertram, A. (2005). Elasticity and plasticity of large deformations. Springer. (page
33)

Bertram, A. & Glüge, R. (2015). Solid mechanics. Springer. (page 33)

Binding, D. M. & Walters, K. (1988). On the use of flow through a contraction
in estimating the extensional viscosity of mobile polymer solutions. Journal of
Non-Newtonian Fluid Mechanics, 30(2-3), 233–250. (page 154)

Bird, R. B., Armstrong, R. C., Hassager, O., & Curtiss, C. (1987). Dynamics of
Polymeric Liquids-Volume 2: Kinetic Theory. John Wiley and Sons Inc., New
York, NY. (page 39, 50)

Bird, R. B. & DeAguiar, J. R. (1983). An encapsulted dumbbell model for con-
centrated polymer solutions and melts i. theoretical development and constitutive
equation. Journal of non-newtonian fluid mechanics, 13(2), 149–160. (page 41)

Bird, R. B., Dotson, P. J., & Johnson, N. L. (1980). Polymer solution rheology based
on a finitely extensible bead—spring chain model. Journal of Non-Newtonian
Fluid Mechanics, 7(2-3), 213–235. (page 39)

Boger, D. V. & Walters, K. (2012). Rheological phenomena in focus, volume 4.
Elsevier. (page 55, 57, 58, 92, 137, 143, 154, 157, 158, 159, 168, 222)

Brandrup, J., Immergut, E. H., Abe, E. A. G. A., & Bloch, D. R. (1989). Polymer
handbook, volume 7. Wiley New York etc. (page 81)

Brown, D. R. (1961). A study of the behaviour of a thin sheet of moving liquid.
Journal of fluid mechanics, 10(2), 297–305. (page 1, 2, 7, 8, 15, 16, 205)

Brunet, P., Flesselles, J.-M., & Limat, L. (2007). Dynamics of a circular array of
liquid columns. The European Physical Journal B, 55(3), 297–322. (page 134)

Campo-Deano, L. & Clasen, C. (2010). The slow retraction method (srm) for the
determination of ultra-short relaxation times in capillary breakup extensional
rheometry experiments. Journal of Non-Newtonian Fluid Mechanics, 165(23-24),
1688–1699. (page 75)

Cartalos, U. & Piau, J. M. (1992). Creeping flow regimes of low concentration poly-
mer solutions in thick solvents through an orifice die. Journal of non-newtonian
fluid mechanics, 45(2), 231–285. (page 61, 156, 174, 222)

Casanellas, L., Alves, M. A., Poole, R. J., Lerouge, S., & Lindner, A. (2016). The
stabilizing effect of shear thinning on the onset of purely elastic instabilities in
serpentine microflows. Soft matter, 12(29), 6167–6175. (page 69, 79)

184



Bibliography

Chen, E. B., Morales, A. J., Chen, C. C., Donatelli, A. A., Bannister, W. W.,
& Cummings, B. T. (1998). Fluorescein and poly (ethylene oxide) hose stream
additives for improved firefighting effectiveness. Fire Technology, 34(4), 291–306.
(page 56)

Chen, P., Yao, L., Liu, Y., Luo, J., Zhou, G., & Jiang, B. (2012). Experimental and
theoretical study of dilute polyacrylamide solutions: effect of salt concentration.
Journal of molecular modeling, 18(7), 3153–3160. (page 61, 70, 80)

Chiba, K., Sakatani, T., & Nakamura, K. (1990). Anomalous flow patterns in
viscoelastic entry flow through a planar contraction. Journal of Non-Newtonian
Fluid Mechanics, 36, 193–203. (page 156, 159, 168, 169, 222)

Chiba, K., Tanaka, S., & Nakamura, K. (1992). The structure of anomalous entry
flow patterns through a planar contraction. Journal of non-newtonian fluid mech-
anics, 42(3), 315–322. (page 159, 168, 169, 222)

Clanet, C. & Lasheras, J. C. (1999). Transition from dripping to jetting. Journal
of fluid mechanics, 383, 307–326. (page 72, 134, 135)

Clarke, N. S. (1966). A differential equation in fluid mechanics. Mathematika, 13(1),
51–53. (page 1, 10, 12, 206)

Clarke, N. S. (1968). Two-dimensional flow under gravity in a jet of viscous liquid.
Journal of Fluid Mechanics, 31(3), 481–500. (page 1, 10, 12, 206)

Clasen, C., Bico, J., Entov, V. M., & McKinley, G. H. (2009). Gobbling drops:
the jetting–dripping transition in flows of polymer solutions. Journal of fluid
mechanics, 636, 5–40. (page 10, 41, 55, 72, 81, 121, 134, 181)

Clasen, C., Plog, J. P., Kulicke, W.-M., Owens, M., Macosko, C., Scriven, L. E., Ver-
ani, M., & McKinley, G. H. (2006). How dilute are dilute solutions in extensional
flows? Journal of Rheology, 50(6), 849–881. (page 41, 81)

Colby, R. H. (2010). Structure and linear viscoelasticity of flexible polymer solutions:
comparison of polyelectrolyte and neutral polymer solutions. Rheologica Acta,
49(5), 425–442. (page 48)

Crooks, R. & Boger, D. V. (2000). Influence of fluid elasticity on drops impacting
on dry surfaces. Journal of Rheology, 44(4), 973–996. (page 56)

Culick, F. E. C. (1960). Comments on a ruptured soap film. Journal of applied
physics, 31(6), 1128–1129. (page 16, 218)

185



Bibliography

Daerr, A. & Mogne, A. (2016). Pendent_drop: an imagej plugin to measure the
surface tension from an image of a pendent drop. Journal of Open Research
Software, 4(1). (page 61)

De Gennes, P.-G. (1974). Coil-stretch transition of dilute flexible polymers under
ultrahigh velocity gradients. The Journal of Chemical Physics, 60(12), 5030–5042.
(page 36, 81, 102, 211)

De Gennes, P.-G. (1979). Scaling concepts in polymer physics. Cornell university
press. (page 47, 48, 49, 50)

Delvaux, V. & Crochet, M. J. (1990). Numerical simulation of delayed die swell.
Rheologica acta, 29(1), 1–10. (page 92)

Doi, M. & Edwards, S. F. (1988). The theory of polymer dynamics, volume 73.
oxford university press. (page 42)

Dombrowski, N. & Johns, W. R. (1963). The aerodynamic instability and disin-
tegration of viscous liquid sheets. Chemical Engineering Science, 18(3), 203–214.
(page 93)

Dontula, P., Macosko, C. W., & Scriven, L. E. (1998). Model elastic liquids with
water-soluble polymers. AIChE journal, 44(6), 1247–1255. (page 60)

Eggers, J. (2014). Instability of a polymeric thread. Physics of Fluids, 26(3), 033106.
(page 74, 211)

Entov, V. M. & Hinch, E. J. (1997). Effect of a spectrum of relaxation times on the
capillary thinning of a filament of elastic liquid. Journal of Non-Newtonian Fluid
Mechanics, 72(1), 31–53. (page 28, 74, 211)

Evans, R. E. & Walters, K. (1986). Flow characteristics associated with abrupt
changes in geometry in the case of highly elastic liquids. Journal of Non-
Newtonian Fluid Mechanics, 20, 11–29. (page 158, 168)

Evans, R. E. & Walters, K. (1989). Further remarks on the lip-vortex mechanism of
vortex enhancement in planar-contraction flows. Journal of non-newtonian fluid
mechanics, 32(1), 95–105. (page 158, 168)

Ewoldt, R. H., Johnston, M. T., & Caretta, L. M. (2015). Experimental challenges
of shear rheology: how to avoid bad data. In Complex Fluids in Biological Systems
(pp. 207–241). Springer. (page 67)

186



Bibliography

Fermigier, M., Limat, L., Wesfreid, J. E., Boudinet, P., & Quilliet, C. (1992). Two-
dimensional patterns in rayleigh-taylor instability of a thin layer. Journal of Fluid
Mechanics, 236, 349–383. (page 134)

Flory, P. J. (1949). The configuration of real polymer chains. The Journal of
Chemical Physics, 17(3), 303–310. (page 48)

Flory, P. J. (1953). Principles of polymer chemistry. Cornell University Press. (page
43, 45)

Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the
concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian
Fluid Mechanics, 11(1-2), 69–109. (page 42)

Graessley, W. W. (1980). Polymer chain dimensions and the dependence of vis-
coelastic properties on concentration, molecular weight and solvent power. Poly-
mer, 21(3), 258–262. (page 49, 77, 210)

Graham, M. D. (2003). Interfacial hoop stress and instability of viscoelastic free
surface flows. Physics of Fluids, 15(6), 1702–1710. (page 152)

Groisman, A. & Steinberg, V. (2000). Elastic turbulence in a polymer solution flow.
Nature, 405(6782), 53. (page 34)

Gugler, G., Beer, R., & Mauron, M. (2010). Coatability of viscoelastic liquid curtain.
In Proceedings of the 15th international coating science and technology symposium,
St. Paul , Minnesota. (page 2)

Haward, S. J., Galindo-Rosales, F. J., Ballesta, P., & Alves, M. A. (2014). Spa-
tiotemporal flow instabilities of wormlike micellar solutions in rectangular mi-
crochannels. Applied Physics Letters, 104(12), 124101. (page 175)

Herrchen, M. & Öttinger, H. C. (1997). A detailed comparison of various fene dumb-
bell models. Journal of Non-Newtonian Fluid Mechanics, 68(1), 17–42. (page 39)

Huang, D. C. & White, J. L. (1979). Extrudate swell from slit and capillary dies:
an experimental and theoretical study. Polymer Engineering & Science, 19(9),
609–616. (page 108, 109)

Karim, A. M., Suszynski, W. J., Francis, L. F., & Carvalho, M. S. (2018a). Effect
of viscosity on liquid curtain stability. AIChE Journal, 64(4), 1448–1457. (page
2, 64)

187



Bibliography

Karim, A. M., Suszynski, W. J., Griffith, W. B., Pujari, S., Francis, L. F., &
Carvalho, M. S. (2018b). Effect of viscoelasticity on stability of liquid curtain.
Journal of Non-Newtonian Fluid Mechanics, 257, 83–94. (page 2, 19, 20, 60, 81,
96, 131, 136, 215, 220)

Kawale, D., Marques, E., Zitha, P. L., Kreutzer, M. T., Rossen, W. R., & Boukany,
P. E. (2017). Elastic instabilities during the flow of hydrolyzed polyacrylamide
solution in porous media: Effect of pore-shape and salt. Soft matter, 13(4), 765–
775. (page 61, 80, 175, 210)

Kays, W. M., Crawford, M. E., & Weigand, B. (2005). Convective heat and mass
transfer. (page 99)

Keshavarz, B., Sharma, V., Houze, E. C., Koerner, M. R., Moore, J. R., Cotts, P. M.,
Threlfall-Holmes, P., & McKinley, G. H. (2015). Studying the effects of elong-
ational properties on atomization of weakly viscoelastic solutions using rayleigh
ohnesorge jetting extensional rheometry (rojer). Journal of Non-Newtonian Fluid
Mechanics, 222, 171–189. (page 81)

Kim-e, M. E., Brown, R. A., & Armstrong, R. C. (1983). The roles of inertia
and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden
contraction. Journal of non-Newtonian fluid mechanics, 13(3), 341–363. (page
158)

Kiriakidis, D. G. & Mitsoulis, E. (1993). Viscoelastic simulations of extrudate swell
for an hdpe melt through slit and capillary dies. Advances in Polymer Technology:
Journal of the Polymer Processing Institute, 12(2), 107–117. (page 151)

Kuhn, W. (1934). Über die gestalt fadenförmiger moleküle in lösungen. Kolloid-
Zeitschrift, 68(1), 2–15. (page 48)

Larson, R. G. (1992). Instabilities in viscoelastic flows. Rheologica Acta, 31(3),
213–263. (page 68, 69)

Larson, R. G. (1999). The structure and rheology of complex fluids (topics in
chemical engineering). Oxford University Press, New York• Oxford, 86, 108. (page
36, 47)

Lindner, A. (2000). L’instabilité de Saffman-Taylor dans les fluides complexes: re-
lation entre les propriétés rhéologiques et la formation de motifs. PhD thesis,
Université Pierre et Marie Curie-Paris VI. (page 67, 82)

Macosko, C. W. (1994). Rheology: principles, measurements, and applications.
Wiley-vch. (page 67)

188



Bibliography

Mathues, W., McIlroy, C., Harlen, O. G., & Clasen, C. (2015). Capillary breakup
of suspensions near pinch-off. Physics of Fluids, 27(9), 093301. (page 76)

McIlroy, C. & Harlen, O. G. (2014). Modelling capillary break-up of particulate
suspensions. Physics of Fluids, 26(3), 033101. (page 76)

McKinley, G. H. (2005). Visco-elasto-capillary thinning and break-up of complex
fluids. Annual Rheological Review, 3, 1–48. (page 36, 41, 71, 73, 75, 82, 210, 211)

McKinley, G. H., Raiford, W. P., Brown, R. A., & Armstrong, R. C. (1991). Non-
linear dynamics of viscoelastic flow in axisymmetric abrupt contractions. Journal
of fluid mechanics, 223, 411–456. (page 156, 157, 222)

Miller, E., Clasen, C., & Rothstein, J. P. (2009). The effect of step-stretch paramet-
ers on capillary breakup extensional rheology (caber) measurements. Rheologica
acta, 48(6), 625–639. (page 76)

Miyamoto, K. & Katagiri, Y. (1997). Curtain coating. In Liquid film coating (pp.
463–494). Springer. (page 2)

Moffatt, H. K. (1964). Viscous and resistive eddies near a sharp corner. Journal of
Fluid Mechanics, 18(1), 1–18. (page 157)

Morozov, A. N. & van Saarloos, W. (2007). An introductory essay on subcritical
instabilities and the transition to turbulence in visco-elastic parallel shear flows.
Physics Reports, 447(3-6), 112–143. (page 34, 36, 57, 58, 143)

Nigen, S. & Walters, K. (2002). Viscoelastic contraction flows: comparison of
axisymmetric and planar configurations. Journal of non-newtonian fluid mechan-
ics, 102(2), 343–359. (page 160)

Oldroyd, J. G. (1950). On the formulation of rheological equations of state. Proc.
R. Soc. Lond. A, 200(1063), 523–541. (page 33)

Oliveira, M. S., Yeh, R., & McKinley, G. H. (2006). Iterated stretching, exten-
sional rheology and formation of beads-on-a-string structures in polymer solutions.
Journal of non-Newtonian fluid mechanics, 137(1-3), 137–148. (page 68)

Oswald, P. & Saint-Jean, M. (2005). Rhéophysique: Ou comment coule la matière.
Belin. (page 34, 37, 48, 67)

Papanastasiou, T. C., Macosko, C. W., Scriven, L. E., & Chen, Z. (1987). Fiber
spinning of viscoelastic liquid. AIChE journal, 33(5), 834–842. (page 18)

189



Bibliography

Petit, L., Hulin, J.-P., & Guyon, É. (2012). Hydrodynamique physique 3e édition
(2012). EDP sciences. (page 29)

Petrie, C. J. (2006). One hundred years of extensional flow. Journal of non-
newtonian fluid mechanics, 137(1-3), 1–14. (page 36)

Piau, J. M., El Kissi, N., & Tremblay, B. (1990). Influence of upstream instabilities
and wall slip on melt fracture and sharkskin phenomena during silicones extrusion
through orifice dies. Journal of non-newtonian fluid mechanics, 34(2), 145–180.
(page 58, 156, 158, 177, 178, 222)

Purnode, B. & Crochet, M. J. (1996). Flows of polymer solutions through con-
tractions part 1: flows of polyacrylamide solutions through planar contractions.
Journal of non-newtonian fluid mechanics, 65(2-3), 269–289. (page 159)

Raiford, W. P., Quinzani, L. M., Coates, P. J., Armstrong, R. C., & Brown, R. A.
(1989). Ldv measurements of viscoelastic flow transitions in abrupt axisymmetric
contractions: interaction of inertia and elasticity. Journal of non-newtonian fluid
mechanics, 32(1), 39–68. (page 158)

Ramos, J. I. (1996). Planar liquid sheets at low reynolds numbers. International
journal for numerical methods in fluids, 22(10), 961–978. (page 1, 8, 10, 11, 197,
206)

Reiner, M. (1964). The deborah number. Physics today, 17(1), 62. (page 22)

Renardy, M. (2000). Mathematical analysis of viscoelastic flows, volume 73. Siam.
(page 41)

Richardson, S. (1970). The die swell phenomenon. Rheologica Acta, 9(2), 193–199.
(page 109)

Roche, J. S., Grand, N. L., Brunet, P., Lebon, L., & Limat, L. (2006). Pertubations
on a liquid curtain near break-up: Wakes and free edges. Physics of fluids, 18(8),
082101. (page 135)

Rodd, L. E., Scott, T. P., Boger, D. V., Cooper-White, J. J., & McKinley, G. H.
(2005). The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-
fabricated geometries. Journal of Non-Newtonian Fluid Mechanics, 129(1), 1–22.
(page 68, 81, 156, 158, 159, 160, 163, 165, 167)

Rodd, L. E., Scott, T. P., Cooper-White, J. J., Boger, D. V., & McKinley, G. H.
(2007). Role of the elasticity number in the entry flow of dilute polymer solu-
tions in micro-fabricated contraction geometries. Journal of Non-Newtonian Fluid
Mechanics, 143(2-3), 170–191. (page 81, 156)

190



Bibliography

Rodd, L. E., Scott, T. P., Cooper-White, J. J., & McKinley, G. H. (2004). Capillary
break-up rheometry of low-viscosity elastic fluids. (page 73, 75, 79, 210)

Rothstein, J. P. & McKinley, G. H. (1999). Extensional flow of a polystyrene boger
fluid through a 4: 1: 4 axisymmetric contraction/expansion. Journal of non-
newtonian fluid mechanics, 86(1), 61–88. (page 65, 156, 157, 158, 222)

Rothstein, J. P. & McKinley, G. H. (2001). The axisymmetric contraction–
expansion: the role of extensional rheology on vortex growth dynamics and the
enhanced pressure drop. Journal of non-newtonian fluid mechanics, 98(1), 33–63.
(page 41, 156)

Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions
of coiling polymers. The Journal of Chemical Physics, 21(7), 1272–1280. (page
52)

Rubinstein, M. & Colby, R. H. (2003). Polymer physics, volume 23. Oxford Univer-
sity Press New York. (page 79)

Salipante, P., Little, C. A., & Hudson, S. D. (2016). Jetting Flow of a Shear Banding
Fluid. Technical report. (page 175)

Salipante, P. F., Little, C. A., & Hudson, S. D. (2017). Jetting of a shear banding
fluid in rectangular ducts. Physical review fluids, 2(3), 033302. (page 175)

Satoh, N., Tomiyama, H., & Kajiwara, T. (2001). Viscoelastic simulation of film
casting process for a polymer melt. Polymer Engineering & Science, 41(9), 1564–
1579. (page 2, 18)

Sattler, R., Gier, S., Eggers, J., & Wagner, C. (2012). The final stages of capillary
break-up of polymer solutions. Physics of Fluids, 24(2), 023101. (page 74, 211)

Sattler, R., Wagner, C., & Eggers, J. (2008). Blistering pattern and formation
of nanofibers in capillary thinning of polymer solutions. Physical review letters,
100(16), 164502. (page 74, 211)

Savva, N. & Bush, J. W. M. (2009). Viscous sheet retraction. Journal of Fluid
Mechanics, 626, 211–240. (page 18)

Sevilla, A. (2011). The effect of viscous relaxation on the spatiotemporal stability
of capillary jets. Journal of Fluid Mechanics, 684, 204–226. (page 7)

Shaqfeh, E. S. (1996). Purely elastic instabilities in viscometric flows. Annual Review
of Fluid Mechanics, 28(1), 129–185. (page 36)

191



Bibliography

Sibley, D. N. (2010). Viscoelastic Flows of PTT Fluid. PhD thesis, University of
Bath. (page 42)

Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. (2002). Investigation
of the elongational behavior of polymer solutions by means of an elongational
rheometer. Journal of Rheology, 46(2), 507–527. (page 82)

Sünderhauf, G., Raszillier, H., & Durst, F. (2002). The retraction of the edge of a
planar liquid sheet. Physics of Fluids, 14(1), 198–208. (page 2, 18)

T. Min, J. Y. Yoo, H. C. & Joseph, D. D. (2003). Drag reduction by polymer
additives in a turbulent channel flow. Journal of Fluid Mechanics, 486, 213–238.
(page 36)

Tanner, R. I. (1970). A theory of die-swell. Journal of Polymer Science Part B:
Polymer Physics, 8(12), 2067–2078. (page 108)

Tanner, R. I. (2000). Engineering rheology, volume 52. OUP Oxford. (page 112)

Tanner, R. I. (2005). A theory of die-swell revisited. Journal of non-newtonian fluid
mechanics, 129(2), 85–87. (page 108)

Taylor, G. (1959). The dynamics of thin sheets of fluid. iii. disintegration of fluid
sheets. Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, (pp. 313–321). (page 16, 218)

Thien, N. P. & Tanner, R. I. (1977). A new constitutive equation derived from
network theory. Journal of Non-Newtonian Fluid Mechanics, 2(4), 353–365. (page
42)

Tirtaatmadja, V., McKinley, G. H., & Cooper-White, J. J. (2006). Drop forma-
tion and breakup of low viscosity elastic fluids: Effects of molecular weight and
concentration. Physics of fluids, 18(4), 043101. (page 54, 72, 79, 80, 81, 210)

Truesdell, C. & Noll, W. (2004). The non-linear field theories of mechanics. In The
non-linear field theories of mechanics (pp. 1–579). Springer. (page 33)

Villermaux, E. & Clanet, C. (2002). Life of a flapping liquid sheet. Journal of fluid
mechanics, 462, 341–363. (page 93)

Virk, P. S. (1975). Drag reduction fundamentals. AIChE Journal, 21(4), 625–656.
(page 56)

Walters, K. & Rawlinson, D. M. (1982). On some contraction flows for boger fluids.
In Progress and Trends in Rheology (pp. 193–198). Springer. (page 156, 158, 168)

192



Bibliography

White, J. L. & Roman, J. F. (1976). Extrudate swell during the melt spinning of
fibers—influence of rheological properties and take-up force. Journal of Applied
Polymer Science, 20(4), 1005–1023. (page 109)

Wu, X. Y., Hunkeler, D., Hamielec, A. E., Pelton, R. H., & Woods, D. R. (1991).
Molecular weight characterization of poly (acrylamide-co-sodium acrylate). i. vis-
cometry. Journal of applied polymer science, 42(7), 2081–2093. (page 80, 210)

Xue, S.-C., Phan-Thien, N., & Tanner, R. I. (1998). Three dimensional numerical
simulations of viscoelastic flows through planar contractions. Journal of Non-
Newtonian Fluid Mechanics, 74(1-3), 195–245. (page 160)

Zell, A., Gier, S., Rafai, S., & Wagner, C. (2010). Is there a relation between
the relaxation time measured in caber experiments and the first normal stress
coefficient? Journal of Non-Newtonian Fluid Mechanics, 165(19), 1265–1274.
(page 35, 79, 80)

Zhang, G., Zhou, J. S., Zhai, Y. A., Liu, F. Q., & Gao, G. (2008). Effect of salt
solutions on chain structure of partially hydrolyzed polyacrylamide. Journal of
Central South University of Technology, 15(1), 80–83. (page 61, 70)

Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasti-
city, flow birefringence and dielectric loss. The journal of chemical physics, 24(2),
269–278. (page 54)

193





Appendices

195





Appendix A

The Taylor equation

In this section, we present a proper derivation of the general force balance equation
1.14 for slender curtains using the local Cauchy equation. This equation was derived
by Taylor (Geoffrey Ingram) in the case of Newtonian curtains. Our method is
inspired by the methods employed by Ramos (1996) and Aidun (1987) for Newtonian
curtains and is based on the Taylor (Brook) expansion of the local vertical velocity
fields u(y, z) around the symmetry axis y = 0.

Cauchy equation and boundary conditions

We consider a liquid curtain extruded from a slot, subjected to gravity g, and made
of any continuous material with density ρ, as shown in figure 4.9. We consider a
steady and two-dimensional flow in the y-z plane, z = 0 corresponding to the slot
exit and y = 0 being the symmetry axis. With the notations of §1.1.2, the mass
conservation equation 2.10 for an incompressible flow writes

∂v

∂y
+
∂u

∂z
= 0 (A.1)

and the Cauchy (momentum conservation) equation 2.11 writes
ρ

(
v
∂u

∂y
+ u

∂u

∂z

)
= ρg +

∂π∗yz
∂y

+
∂π∗zz
∂z

ρ

(
v
∂v

∂y
+ u

∂v

∂z

)
=
∂π∗yy
∂y

+
∂π∗yz
∂z

(A.2)

where v(y, z) and u(y, z) are the local velocity components along y and z and where
π∗(y, z) is the (local) stress tensor. Since the free-surface is situated at y = h(z),
the kinematic boundary condition is

v = uh′ at y = h (A.3)
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where ′ denotes d/dz, i.e. h′ = dh/dz is the local curvature. Assuming low surface
curvature (h′ � 1), we neglect the Laplace pressure. Besides, we assume that
the surrounding gas is dynamically passive with constant atmospheric pressure Pa.
Hence, using equation 2.13, the dynamic boundary condition writes{

π∗yyny + π∗yznz = −Pany
π∗yzny + π∗zznz = −Panz

at y = h (A.4)

where n is the unit vector normal to the free surface, i.e.

ny =
1

(1 + h′2)1/2
and nz = −nyh′ =

−h′

(1 + h′2)1/2
(A.5)

Combining equations A.4 and A.5 gives{
π∗yy − h′π∗yz = −Pa
π∗yz − h′π∗zz = h′Pa

at y = h (A.6)

Leading order equation

We assume that the flow is symmetric with respect to y = 0 which means that v is 0

at the symmetry axis and is an odd function of y. Besides, assuming a Poiseuille-like
flow in the slot, we can assume that u is an even function of y and has a maximum
value u0(z) at y = 0. In order to derive an equation for u0, we introduce a small
parameter ε = a/Lc � 1 (curtain aspect ratio) where 2a is the slot thickness and
Lc is the curtain length which is a characteristic axial length. We can think of this
small parameter to be of order ε = O(h′) (slenderness ratio). In particular, since y
and h are of order a, we can introduce

y = εȳ and h = εh̄ (A.7)

where ȳ and h̄ are of order Lc. We decompose the velocity field in{
u = u0(z) + ε2ȳ2 u2(z) +O(ε4)

v = εȳ v1(z) +O(ε3)
(A.8)

Let u0 = O(Us) where Us = q/2a is the mean velocity in the slot. The Taylor
expansion of u gives u2 = 1

2
∂2u/∂y2(y = 0, z). Assuming a fast convergence towards

the plug flow, we assume that u2 = O(Us/L
2
c), i.e. ε2ȳ2 u2 = O(ε2 Us)� u0.

• Using incompressibility (equation A.1), we obtain at leading order

v1 = −u′0 (A.9)
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At leading order, the kinematic boundary condition A.3 becomes

h̄ v1 = h̄′u0 (A.10)

Combining equations A.9 and A.10, we get

h̄u0 = w/ε ⇔ hu0 = w (A.11)

where w is a constant. Using equations A.8 and A.11, the linear flow rate q is

q

2
≡
∫ h

0

u dy = hu0 +O(ε3) = w +O(ε3) (A.12)

•We need a decomposition of the stress components. Since π∗yz must be odd and
π∗yy and π∗zz must be even, we write

π∗zz = πzz0(z) +O(ε2)

π∗yy = πyy0(z) +O(ε2)

π∗yz = εȳ πyz1(z) +O(ε3)

(A.13)

At leading order, the dynamic boundary conditions A.6 become{
πyy0 = −Pa
h̄ πyz1 − h̄′πzz0 = h̄′Pa

(A.14)

and the z Cauchy equation A.2 becomes

ρu0u
′
0 = ρg + πyz1 + π′zz0 (A.15)

• We decompose the stress tensor as

π∗ = −Pδ + σ (A.16)

and we write


P = P0(z) +O(ε2)

σ∗zz = σzz0(z) +O(ε2)

σ∗yy = σyy0(z) +O(ε2)

σ∗yz = εȳ σyz1(z) +O(ε3)

with


πzz0 = −P0 + σzz0

πyy0 = −P0 + σyy0

πyz1 = σyz1

(A.17)

We also define the local normal stress difference ∆∗ as
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∆∗ ≡ σ∗zz − σ∗yy = ∆0(z) +O(ε2) with ∆0 = σzz0 − σyy0 (A.18)

The first equation A.14 becomes

P0 = Pa + σyy0 (A.19)

which gives

πzz0 = −Pa + (σzz0 − σyy0) = −Pa + ∆0 (A.20)

Using this result, Pa disappears from the second equation A.14 which becomes

h̄ σyz1 = h̄′∆0 (A.21)

• Injecting equations A.20 and A.21 in equation A.15, and replacing h̄ by h/ε
gives

ρu0u
′
0 = ρg +

h′

h
∆0 + ∆′0 = ρg +

1

h
(h∆0)′ (A.22)

Finally, using the fact that hu0 = w is constant (equation A.11), we get a force
balance equation

u0
du0

dz
= g +

u0

ρ

d

dz

(
∆0

u0

)
(A.23)

for u0(z) = u(y = 0, z) and ∆0 = ∆∗(y = 0, z) which has the exact same form as
the Taylor equation 1.14 which is written for mean values U and ∆. We can easily
demonstrate equation 1.14 from equation A.23 by writing the definitions

U =
q

2h
=

1

h

∫ h

0

u dy

∆ = σzz − σyy =
1

h

∫ h

0

∆∗ dy

(A.24)

which, using our decomposition, becomeU =
1

h

[
hu0 +O(ε3)

]
= u0 +O(ε2)

∆ = ∆0 +O(ε2)
(A.25)

Therefore, at leading order, the same force balance equation can be written for U
and ∆.
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[PEO] td η0 ηp n 1/γ̇c τfil ηE b El Us U1

wt % min Pa.s Pa.s s s Pa.s m/s m/s

0.004 0 0.017 0.0006 1.0 - 0.010 1× 102 8× 104 1.1 0.22 0.20
0.004 10 0.017 0.0006 1.0 - 0.0073 7× 101 5× 104 0.83 0.29 0.26
0.004 20 0.017 0.0006 1.0 - 0.0050 5× 101 4× 104 0.57 0.33 0.29
0.004 40 0.017 0.0006 1.0 - 0.0036 3× 101 2× 104 0.41 0.32 0.28
0.004 60 0.017 0.0006 1.0 - 0.0029 3× 101 2× 104 0.33 0.32 0.27
0.004 100 0.017 0.0006 1.0 - 0.0024 2× 101 2× 104 0.27 0.33 0.28

0.02 0 0.019 0.002 1.0 - 0.060 4× 102 1× 105 6.5 0.38 0.27
0.02 10 0.019 0.002 1.0 - 0.030 2× 102 5× 104 3.3 0.34 0.27
0.02 20 0.019 0.002 1.0 - 0.018 2× 102 5× 104 2.0 0.34 0.26
0.02 40 0.019 0.002 1.0 - 0.015 1× 102 2× 104 1.6 0.34 0.27
0.02 60 0.019 0.002 1.0 - 0.010 1× 102 2× 104 1.1 0.34 0.27
0.02 100 0.019 0.002 1.0 - 0.008 1× 102 2× 104 0.87 0.34 0.28

0.1 0 0.037 0.020 0.96 0.14 0.23 1× 103 2× 104 20 0.26 0.14
0.1 10 0.035 0.018 0.95 0.13 0.15 8× 102 2× 104 13 0.29 0.17
0.1 20 0.034 0.017 0.95 0.11 0.085 6× 102 2× 104 7.6 0.25 0.17
0.1 40 0.030 0.013 0.96 0.050 0.064 6× 102 2× 104 6.0 0.25 0.17
0.1 60 0.029 0.012 0.96 0.029 0.041 3× 102 1× 104 3.9 0.25 0.18
0.1 100 0.029 0.012 0.95 0.025 0.026 3× 102 1× 104 2.5 0.25 0.19

0.2 0 0.12 0.10 0.85 1.3 0.28 2× 103 1× 104 17 0.21 0.12
0.2 10 0.084 0.067 0.88 0.50 0.20 1× 103 1× 104 13 0.23 0.13
0.2 20 0.075 0.058 0.88 0.33 0.15 1× 103 1× 104 10 0.25 0.13
0.2 40 0.063 0.046 0.90 0.25 0.10 1× 103 1× 104 7.3 0.27 0.16
0.2 60 0.054 0.037 0.91 0.10 0.06 6× 102 1× 104 4.6 0.30 0.18
0.2 100 0.053 0.036 0.91 0.083 0.05 6× 102 1× 104 3.9 0.29 0.18

0.4 0 1.2 1.2 0.62 6.7 1.2 6× 103 3× 103 33 0.17 0.089
0.4 10 0.68 0.66 0.67 2.5 0.51 3× 103 2× 103 17 0.19 0.097
0.4 20 0.48 0.46 0.69 1.4 0.38 2× 103 2× 103 14 0.16 0.088
0.4 40 0.33 0.31 0.72 0.71 0.26 2× 103 3× 103 11 0.19 0.10
0.4 60 0.25 0.23 0.74 0.40 0.20 2× 103 4× 103 9.2 0.18 0.10
0.4 100 0.20 0.18 0.77 0.29 0.12 1× 103 3× 103 6.0 0.17 0.10

Table B.1 – Rheological parameters of the PEO solutions with 20 wt% PEG solvent used in
curtain experiments, where td is the time of degradation. The first columns are similar to
table 3.1 and the solvent viscosity is ηs = 0.017 Pa.s. El is the elasticity number (equation
4.16), Us = q/2a is the extrusion velocity where q is the linear flow rate, and U1 = U(z1)
is the liquid velocity measured at z1 ≈ 2.5 mm from the slot, i.e. after swelling.

202



[NaCl] td η0 ηp n 1/γ̇c τfil ηE b El Us U1

(wt %) min (Pa.s) (Pa.s) (s) (s) (Pa.s) (m/s) (m/s)

0 0 1× 102 1× 102 0.20 8× 102 0.4 2× 103 1× 101 2 0.29 0.29
0 10 1× 102 1× 102 0.20 8× 102 0.4 2× 103 7× 100 2 0.31 0.30
0 20 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 2 0.31 0.31
0 40 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 2 0.28 0.31
0 60 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 1 0.29 0.31
0 100 1× 102 1× 102 0.20 8× 102 0.2 1× 103 3× 100 1 0.31 0.31

0.1 0 0.61 0.61 0.49 2× 101 0.24 1× 103 8× 102 8.2 0.33 0.33
0.1 10 0.61 0.61 0.49 2× 101 0.19 8× 102 7× 102 6.5 0.28 0.30
0.1 20 0.61 0.61 0.49 2× 101 0.16 8× 102 7× 102 5.4 0.29 0.30
0.1 40 0.61 0.61 0.49 2× 101 0.15 8× 102 7× 102 5.1 0.29 0.32
0.1 60 0.61 0.61 0.49 2× 101 0.14 5× 102 4× 102 4.8 0.28 0.30
0.1 100 0.61 0.61 0.49 2× 101 0.12 5× 102 4× 102 4.1 0.27 0.29

0 1× 102 1× 102 0.20 8× 102 0.4 1× 103 3× 100 2 0.12 0.12
0.01 8× 101 8× 101 0.25 8× 102 0.4 8× 102 5× 100 2 0.13 0.12
0.1 0.70 0.70 0.47 20 0.19 5× 102 4× 102 6.2 0.13 0.14
1 0.025 0.024 0.71 0.71 0.077 6× 102 1× 104 7.6 0.12 0.12
10 0.0088 0.0078 0.81 0.25 0.050 4× 102 3× 104 7.0 0.14 0.13

Table B.2 – Rheological parameters of the salted (NaCl) 0.1 wt% HPAM solutions used in
curtain experiments, where td is the time of degradation (top) which is unknown for the
last liquid (bottom) where salt is added after each PIV measurement. The first columns
are similar to table 3.1 and the solvent viscosity is ηs = 0.001 Pa.s. El is the elasticity
number (equation 4.16), Us = q/2a is the extrusion velocity where q is the linear flow rate,
and U1 = U(z1) is the liquid velocity measured at z1 ≈ 2.5 mm from the slot, i.e. after
swelling.

[PEO] η0 ηp n 1/γ̇c α1 Ψ τfil ηE b El Us U1

(wt %) (Pa.s) (Pa.s) (s) (Pa.sα1) (s) (Pa.s) (m/s) (m/s)

0.2 0.70 0.56 0.90 2.0 1.8 0.25 1.1 7× 103 6× 103 37 0.040 0.020
0.11 0.35 0.21 0.95 0.56 2 0.040 0.68 4× 103 1× 104 28 0.057 0.029
0.048 0.21 0.07 1 - 2 0.014 0.42 2× 103 2× 104 21 0.073 0.040
0.024 0.17 0.03 1 - 2 0.005 0.17 9× 102 2× 104 9.1 0.098 0.060

Table B.3 – Rheological parameters of the PEO solutions with 40 wt% PEG solvent used
in curtain experiments. The first columns are similar to table 3.1 and the solvent viscosity
is ηs = 0.14 Pa.s. El is the elasticity number (equation 4.16), Us = q/2a is the extrusion
velocity where q is the linear flow rate, and U1 = U(z1) is the liquid velocity measured at
z1 ≈ 2.5 mm from the slot, i.e. after swelling.
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[PEG] [PEO] η0 ηp n 1/γ̇c α1 Ψ τfil ηE b El
wt % wt % Pa.s Pa.s s Pa.sα1 s Pa.s

20 0.4 0.21 0.19 0.81 0.4 2 0.0029 0.16 1× 103 3× 103 7.8

Table B.4 – Rheological properties of the liquid used as a reference for the investigations
on die swell (§4.1.3 and §4.4.1), and on the role of flow rate (§4.2.2) and die geometry (see
§4.4.3). All these experiments are performed the same day. This liquid is close to (but
not exactly the same as) the degraded (td = 100 min) 0.4 wt% PEO solution with 20 wt%
PEG solvent presented in table B.1. Density is ρ = 1026 kg/m3, surface tension is γ = 62
mN/m, solvent viscosity is ηs = 0.017 Pa.s and El is the elasticity number (equation 4.16)

[NaCl] η0 ηp n 1/γ̇c τfil ηE b El Us U1

wt % Pa.s Pa.s s s Pa.s m/s m/s

0 1× 102 1× 102 0.19 6× 102 0.4 1× 103 3× 100 2 0.35 0.33
0.01 3× 101 3× 101 0.28 3× 102 0.3 8× 102 1× 101 3 0.36 0.37
0.1 0.52 0.52 0.51 17 0.14 5× 102 5× 102 5.0 0.33 0.35
1 0.019 0.018 0.75 0.56 0.064 4× 102 1× 104 6.9 0.37 0.36
10 0.0073 0.0063 0.84 0.17 0.057 4× 102 3× 104 8.5 0.38 0.34

Table B.5 – Rheological parameters of the salted (NaCl) 0.1 wt% HPAM solutions used in
§5.2 for investigations on the extrusion instability. Like in table B.2 (bottom), salt is added
after each PIV measurement. The first columns are similar to table 3.1 and the solvent
viscosity is ηs = 0.001 Pa.s. El is the elasticity number (equation 4.16), Us = q/2a is the
extrusion velocity where q is the linear flow rate, and U1 = U(z1) is the liquid velocity
measured at z1 ≈ 2.5 mm from the slot, i.e. after swelling.
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Chapter 7

Résumé en français

Dans ce chapitre, nous présentons un résumé des travaux de thèse rédigé en langue
française, conformément aux règles de l’EDPIF (École Doctorale 564 Physique en
Île-de-France).

Rideau Newtonien

Les rideaux liquides sont de minces lames de liquide s’écoulant à l’air libre à débit
constant par gravité. Ils sont souvent extrudées à partir d’une fente et sont not-
amment utilisée dans l’industrie lors du processus d’enduction au rideau (“curtain
coating”) qui consiste à faire s’écouler une lame de liquide verticale (peinture, re-
vêtement protecteur, . . . ) sur un substrat solide en mouvement horizontal à vitesse
constante.

La première étude de l’écoulement des rideaux liquides date des années 1960,
lorsque Brown (1961) a mesuré le champ de vitesse U(z) d’un liquide Newtonien au
sein d’un rideau vertical extrudé depuis une fente, où z est la distance à la sortie de
la fente. Il mesure une déviation à la loi classique de la chute libre U =

√
U2

0 + 2gz

près de la fente, où U0 est la vitesse en sortie de fente et g = 9.81 m/s2 est la gravité.
Physiquement, puisque les particules de fluide sont accélérées par la gravité, le rideau
se contracte par conservation du débit, et cette contraction génère des contraintes
visqueuses au sein du liquide qui ont un effet sur la vitesse de chute. G. I. Taylor a
proposé (dans l’appendice de Brown (1961)) une équation bilan de la forme

U
dU

dz
= g +

4ηU

ρ

d

dz

(
1

U

dU

dz

)
(7.1)

où ρ et η sont la masse volumique et la viscosité dynamique du liquide. Dans cette
équation, U est la vitesse moyennée dans l’épaisseur de du rideau. On peut retrouver
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cette équation à partir de l’équation de Navier-Stokes pour des rideaux fins, i.e. pour
lesquels ∂h/∂z � 1 où 2h est l’épaisseur locale du rideau (Aidun, 1987; Ramos,
1996). Cette équation montre que, en accord avec l’expérience, l’accélération des
particules de fluide est initialement inférieure à g et atteint la valeur asymptotique
de chute libre g à une distance de la fente z∗v qui s’écrit

z∗v = Fv × zv où zv =

(
(4η/ρ)2

g

)1/3

(7.2)

et où Fv est une fonction décroissante de la vitesse initiale U0 et qui est de l’ordre 7

pour U0/
√
gzv � 1.

Au cours de cette thèse, nous avons été amené à pousser l’analyse de l’équation
de Taylor 7.1 plus loin que ce qui avait été initialement fait dans la littérature,
notamment pour identifier une courbe maîtresse de l’écoulement. On introduit des
variables adimensionnées

{
z̄ = z/zv

Ū = U/Uv
, zv =

(
(4η/ρ)2

g

)1/3

, Uv =
√
g zv = (4ηg/ρ)1/3 (7.3)

L’équation de Taylor 7.1 devient

Ū Ū ′ = 1 + Ū ′′ − Ū ′2/Ū (7.4)

La solution générale de cette équation a été trouvée par Clarke (1968, 1966) et s’écrit

Ū(z̄) = 2−1/3

[(
Ai′(Z) + C Bi′(Z)

Ai(Z) + C Bi(Z)

)2

− Z

]−1

, Z = 2−1/3(z̄ + k) (7.5)

où Ai et Bi sont les fonctions d’Airy et où C et k sont des constante à déterminer
grâce aux conditions aux limites en amont et en aval du rideau. La condition en
sortie de fente est simplement

Ū(z̄ = 0) ≡ Ū0 =
U0

Uv
=
ρU0zv

4η
(7.6)

où la vitesse en sortie de fente U0 = U(z = 0) peut être changée par variation du
débit. Il existe trois types de conditions en aval. Si C > 0, la solution diverge vers
+∞ en temps fini, ce qui correspond à une expérience de “film casting” où la nappe
de liquide est étirée par un rouleau tournant à une vitesse arbitrairement grande en
aval. Si C < 0, la solution passe par U = 0 à une distance Lc de la fente. Cela
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Figure 7.1 – (a) Solution de Clarke (équation 7.5) pour le champ de vitesse d’un rideau
Newtonien “infini”, i.e. tendant vers une chute libre (C = 0), pour différentes vitesses ini-
tiales Ū0 comprises entre 0 et 2. (b) Courbe maîtresseMv et champ de vitesse expérimental
pour un rideau de glycérine pure (les points expérimentaux sont translatés le long de l’axe
des abscisses selon l’équation 7.7). Les régimes visqueux (z̄ � 1) et inertiels (z̄ � 1) sont
décrits par l’équation 7.8

correspond à la transition vers un étalement de la nappe sur une surface horizontale
immobile. Enfin, si C = 0, la solution tend vers une chute livre à l’infini, c’est à
dire que Ū Ū ′ → 1 pour z̄ → +∞, ce qui correspond à un rideau infiniment long.

La solution de Clarke (équation 7.5) est tracée en figure 7.1.a pour C = 0 (rideau
“infini” tendant vers une chute libre) et des vitesse initiales Ū0 comprises entre 0 et 2.
Toutes les courbes se superposent sur la courbe maîtresse qui correspond à Ū0 = 0

après translation selon l’axe des abscisses. Cette propriété peut s’écrire

Ū(z̄) = Mv

(
z̄ +M−1

v (Ū0)
)

(7.7)

où Mv est la courbe maîtresse (vitesse initiale nulle, équation 7.5 avec C = 0 et
k0 ≈ −2.94583). Cette propriété se démontre aisément en utilisant le fait que z̄
n’apparaît pas explicitement dans l’équation 7.4. Cette courbe est tracée en figure
7.1.b. On observe deux régimes:

Mv(z̄) =

z̄
2/2 z̄ � 1 : régime visqueux√
2 (z̄ − sv,0) z̄ � 1 : régime inertiel

(7.8)

où sv,0 ≈ 2.8. La gravité est initialement équilibrée par la dissipation visqueuse
(z̄ � 1) jusqu’à ce que l’inertie finisse par dominer (z̄ � 1). On retrouve une
chute libre asymptotique. On peut combiner les équations 7.7 et 7.8 pour obtenir
les profils de vitesses Ū(z̄) dans ces deux régimes. Notons que le régime visqueux
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Figure 7.2 – Schéma de la boucle hydraulique (a) et de la filière (b).

n’existe que pour des vitesses initiales Ū0 � 1, i.e. U0 � Uv =
√
gzv, car dans le

cas contraire (Ū0 � 1), l’inertie domine même près de la fente, auquel cas on a une
chute libre U =

√
U2

0 + 2gz.

Matériel et méthodes

Afin d’étudier l’écoulement et la stabilité des rideaux liquides viscoélastiques, nous
formons des rideaux de solutions de polymères. Deux polymères sont utilisés, le
poly(oxyde d’éthylène) (PEO) de masse molaire M = 8× 106 g/mol et le polyacryl-
amide partiellement hydrolysé (HPAM) de masse molaire M = 15−20×106 g/mol.
Les chaînes de PEO sont flexibles tandis que le HPAM est un polyélectrolyte dont
les chaînes sont semi rigides. La flexibilité des chaînes de HPAM peut être modifiée
par ajout de sel à la solution car il agit comme un écran aux charges négatives de la
chaîne. Les solutions de PEO sont préparées dans des solvants aqueux, épaissis par
ajout de polyéthylène glycol de masse molaireM = 8000 g/mol (solvent Newtonien)
en concentrations 20 wt% et 40 wt%. La concentration en PEO, notée [PEO], varie
entre 0 et 0.4 wt%. On utilise des solutions aqueuses de HPAM à concentration fixée
[HPAM] = 0.1 wt% en polymère et avec une concentration en sel variant entre 0 et
10 wt%. Pour un solvant donné, la densité ρ et la tension de surface Γ ne dépendent
pas de la concentration en polymère.

Montage expérimental

Afin de former un rideau, nous utilisons le montage présenté en figure 7.2. Les 5 kg
de solution s’écoulent au sein d’une boucle grâce à une pompe péristaltique et pas-
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Figure 7.3 – Exemple de mesure de PIV pour une solution de PEO de concentration 0.2 wt%
dans un solvant à 20 wt% de PEG. (a): Superposition d’images successives. L’algorithme
de corrélation est appliqué à une zone éloignée des guides pour éviter les effets de bords. (b):
Composante vertical de la vitesse, i.e. U(x, z, t), en fonction de la coordonnée horizontale
x à un temps arbitraire t pour plusieurs distances z à la fente. La longueur du rideau est
Lc = 30 cm et le débit linéique est q = 2.3 cm2/s.

sent par une filière (“die” en anglais) présentant une fente d’épaisseur 2a = 1 mm,
de longueur Ls = 10 cm et de largeur l = 14.5 cm. En amont de la fente, l’épaisseur
de la filière est 2A = 14 mm, i.e. A/a = 14. Le liquide s’écoule alors librement sous
l’effet de la gravité avant d’impacter le fond d’un réservoir immobile à une distance
Lc de la sortie de la fente. Lc est la longueur du rideau et varie entre 15 cm et
200 cm. Des guides verticaux sont placés de part et d’autres du rideau afin qu’il ait
une forme rectangulaire. Le débit massique Q du rideau est mesuré par pesée. On
définit alors le débit linéique q donné par q = Q/ρl où ρ est la masse volumique du
liquide. La vitesse moyenne au sein de la fente est alors Us = q/2a.

Afin de mesurer le champ de vitesse au sein du rideau, on utilise la technique de
Vélocimétrie par Images de Particules (PIV). Le liquide est ensemencé de traceurs
de taille 50 µm et est éclairé par une puissante lumière blanche et filmé par une
caméra rapide. Une séquence d’image est traitée par un algorithme de corrélation
d’images de manière à reconstruire le champ de vitesse verticale U(x, z, t) au sein du
rideau. Un exemple de superposition d’images et de champ de vitesse est montré en
figure 7.3. Dans beaucoup de cas, le champ de vitesse est stationnaire et ne dépend
pas de la coordonnée horizontale x. On s’intéresse donc à l’évolution de la vitesse
verticale U(z) en fonction de la distance z à la fente.
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Caractérisation rhéologique

Afin de caractériser nos solutions de polymère, nous mesurons certaines propriétés de
cisaillement à l’aide d’un rhéomètre ARES-G2 équipé d’une géométrie cône-plan de
rayon R1 = 25 mm et d’angle θ1 = 0.04 rad. La viscosité de cisaillement apparente
de certaines solutions est présentée en figure 7.4 en fonction du taux de cisaillement
γ̇. Les données sont ajustées par la loi (empirique) de Carreau

η = η0

[
1 +

(
γ̇

γ̇c

)a1
]n−1

a1

(7.9)

où η0 est la viscosité à zéro cisaillement, n est le degré de rhéofluidification, γ̇c est
le taux de cisaillement au delà duquel la viscosité diminue et a1 code la transition
vers le régime rhéofluidifiant. Les solutions de PEO les plus diluées ont une viscosité
constante (n = 1) tandis que les solutions les plus concentrées sont rhéofluidifiantes.
La solution de HPAM non salée est très rhéofluidifiante et l’ajout de sel permet de
réduite le degré de rhéofluidification. Á partir des données de viscosité, on peut
estimer la concentration critique d’enchevêtrement c∗ des solutions de PEO. Elle est
liée à la viscosité intrinsèque définie par

[η] ≡ lim
c→0

η0 − ηs
c ηs

(7.10)

où c = ρ[PEO]. On mesure [η] = 0.93 m3/kg. En utilisant la relation c∗ = 0.77/[η]

de Graessley (1980), on obtient c∗ = 0.83 kg/m3 (ce qui correspond à 0.081 wt%).
Nous travaillons donc avec des solutions de PEO diluées et semi diluées. Pour la
solution de HPAM non salée, l’équation de Mark-Houwink (Wu et al., 1991; Kawale
et al., 2017) donne [η] = 5.0 m3/kg et donc c∗ = 0.15 kg/m3 (ce qui correspond à
0.015 wt%). La solution de HPAM non salée est donc semi diluée.

Vu que l’écoulement du rideau est extensionnel, nous avons également mesuré la
rhéologie extensionnelle de ces solutions à l’aide de la méthode de CaBER (Capil-
lary Breakup Extensional Rheometer). Cette méthode est largement décrite dans
la littérature (McKinley, 2005; Rodd et al., 2004; Anna & McKinley, 2001; Tirtaat-
madja et al., 2006) et consiste à placer une goutte de liquide entre deux plaques
horizontales puis à séparer les plaques jusqu’à ce que la goutte de sépare en deux.
En effet, à partir d’une distance critique entre les plaques, une instabilité capillaire
engendre un amincissement progressif du pont de liquide reliant les deux “gouttes”
situées sur les deux plaques. Pour une goutte de liquide Newtonien, le filament de
liquide se rompt rapidement suivant une loi auto-similaire qui n’est pas la même
suivant que les forces capillaires sont équilibrées par les forces visqueuses ou iner-
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Figure 7.4 – Viscosité de cisaillement η(γ̇) pour des solutions de PEO dans un solvant à
20 wt% de PEG et pour des solutions de HPAM avec différentes concentrations en sel.
Les données sont ajustées avec la loi de Carreau 7.9. La limite de résolution de l’appareil
(couple minimum mesurable) est montrée.

tielles. En revanche, en présence de polymères, le filament transite vers une forme
cylindrique dont le rayon R décroît en suivant une loi exponentielle

R ∝ exp (−t/3τfil). (7.11)

où τfil est assimilable au temps de relaxation le plus long (ou temps terminal) du
spectre de la chaîne de polymère (Entov & Hinch, 1997; McKinley, 2005). Dans
ce régime élastique, le taux d’extension ε̇ = −2 Ṙ/R est constant et est tel que
ε̇τfil = 2/3 ce qui est supérieur à la valeur 1/2 au delà de laquelle les chaînes se
démêlent ( “coil-stretch transition”, De Gennes (1974)). Par conséquent, les chaînes
finissent par atteindre leur taille maximale et la viscosité extensionelle devient con-
stante. Le filament se déstabilise alors en gouttelettes avant de se rompre (Sattler
et al., 2008, 2012; Eggers, 2014).

Le filament est filmé avec une caméra rapide et un objectif permettant une résolu-
tion de 1 pixel par micromètre. L’évolution du rayon minimum R(t) du filament est
montré en figure 7.5 avec des images brutes correspondant aux différentes phases
décrites plus haut. On mesure des temps de relaxation τfil compris entre quelques
millisecondes et une seconde.

Dans la suite, les valeurs de ces différents paramètres rhéologiques seront utilisés
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Figure 7.5 – Gauche: Rayon minimum R du filament en fonction du temps t − ts où ts
marque la transition vers le régime élasto-capillaire (décroissance exponentielle) pour des
solutions de PEO avec un solvant à 20 wt% de PEG et pour des solutions de HPAM.
Droite: Quatre images du filament pour une solution de PEO de concentration 0.2 wt%
aux quatre temps reportés sur la courbe correspondante à gauche.

pour interpréter les résultats concernant l’écoulement et la stabilité des rideaux
liquides viscoélastiques.

Écoulement du rideau

Le montage expérimental présenté en figure 7.2 produit une dégradation progressive
des solutions, notamment au niveau de la pompe. Par exemple, le temps de relax-
ation extensionnel τfil décroît d’un facteur 10 après une heure de circulation d’une
solution (de 5 kg) au sein du montage. Pour résoudre ce problème, deux protocoles
ont été mis en oeuvre. Le premier consiste à effectuer plusieurs mesures au cours du
temps pour une même solution, et à prélever à chaque fois un échantillon de solution
pour les mesures de rhéologie. Ainsi, nous pouvons extraire plus de données avec
une seule solution. Le deuxième protocole consiste à ne pas utiliser la pompe et à
verser directement la solution dans un réservoir connecté à la filière. On évite ainsi
la dégradation.

Écoulement sous gravitaire

Afin d’identifier la particularité des rideaux de liquides viscoélastiques, nous avons
réalisé une série de mesures sur trois rideaux: deux Newtoniens (une solution de
20 wt% en PEG, peu visqueux, et de la glycérine, plus visqueuse) et une solution
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Figure 7.6 – Carré U2 de la vitesse du liquide en fonction de la distance z à la sortie
de la fente pour deux rideaux Newtoniens (1) and (3), respectivement une solution de
20 wt% de PEG (1) et de la glycérine pure (3) de viscosités respectives η = 0.017 Pa.s and
η = 1.5 Pa.s, et pour une solution de PEO de concentration 0.2 wt% (2) avec un solvant
de 20 wt% en PEG de viscosité à cisaillement nul η0 = 0.12 Pa.s. La longueur du rideau
est Lc = 30 cm et la vitesse initiale U1 à z1 ≈ 2.5 mm de la fente est 0.2 m/s, 0.13 m/s
and 0.07 m/s pour les liquides (1), (2) and (3) respectivement. L’accélération locale du
liquide est UdU/dz.

de PEO de viscosité de cisaillement intermédiaire. Les résultats sont présentés en
figure 7.6 où le carré U2 de la vitesse verticale est tracé en fonction de la distance z à
la sortie de la fente. L’écoulement du rideau Newtonien peu visqueux est une chute
libre, i.e. U2 = U2

0 + 2gz. Le rideau de glycérine présente un régime initial (près de
la fente) où l’accélération locale UdU/dz est inférieure à g. L’accélération atteint sa
valeur asymptotique g à une distance de la fente qui correspond à la valeur z∗v donnée
en équation 7.2. Ce profil de vitesse est très bien décrite par l’équation de Taylor
7.1, comme le montre la figure 7.1.b où les points expérimentaux sont superposée
à la courbe maîtresse Mv décrite précédemment. En revanche, le rideau de liquide
viscoélastique n’a pas atteint le régime de chute libre après 20 cm de chute alors que
sa longueur visqueuse zv = ((4η0/ρ)2/g)1/3 n’est que de 0.28 cm en se basant sur
la viscosité à cisaillement nul. Il existe dont d’autres paramètres rhéologiques qui
gouvernent la dynamique de l’écoulement dans le cas des rideaux viscoélastiques.

Influence de la longueur du rideau

Afin d’étudier l’influence de la longueur du rideau sur l’écoulement, nous avons
réalisé une série d’expériences avec des solutions de PEO dont le solvant est composé
à 40 wt% de PEG. La chute du liquide est stoppée à une distance Lc de la fente par
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Figure 7.7 – Champ de vitesse U(z) pour z ≤ 32 cm pour des rideaux de longueur Lc
compris entre 15 cm et 200 cm. Le liquide impacte une plaque horizontale fixe placée à
une distance Lc de la sortie de la fente (voir l’inset à droite) et atteint une vitesse maximale
à une distance zm de la fente. Les liquides sont des solutions de PEO dans un solvant à
40 wt% de PEG et de concentrations respectives 0.2 wt% et 0.024 wt%. Ils sont extrudés
respectivement à des débits q = 0.40 cm2/s and 0.98 cm2/s.

une plaque horizontale où le liquide s’étale, et Lc est varié entre 15 cm et 200 cm.
Les résultats sont présentés en figure 7.7 pour τfil = 1.1 s (a) et τfil = 0.17 s (b). La
composante verticale de la vitesse doit varier entre U(z = 0) = U0 à la sortie de la
fente et U(z = Lc) = 0 au moment de la transition vers un écoulement d’étalement.
Ainsi, on observe en figure (a) que la vitesse du liquide commence par augmenter du
à la gravité et atteint une vitesse maximum à une distance zm de la fente avant de
diminuer à l’approche de la plaque. Á mesure que la longueur du rideau augmente,
l’écoulement près de la fente semble converger vers une loi universelle qui ne dépend
plus de la valeur de Lc. Cela est confirmé en figure (b) pour le liquide de moindre
temps de relaxation pour lequel tous les profils de vitesse, à l’exception de celui
associé au rideau le plus court, se superposent sur une seule courbe. Ainsi, comme
pour le cas Newtonien, la présence d’une plaque imposant une condition de vitesse
nulle en aval du rideau n’impacte de manière significative que la zone de l’écoulement
proche de l’impact.

Influence de la vitesse initiale

L’influence du débit a également été étudiée. Une solution de PEO est extrudée à
différents débits q compris entre 0.45 cm2/s et 1.4 cm2/s et les profils de vitesse au
sein du rideau sont présentés en figure 7.8.a pour ces deux débits. On constate que
le liquide extrudé à plus haut débit voit sa vitesse augmenter plus vite (les courbes
s’éloignent l’une de l’autre). Cela est confirmé en figure 7.8.b où l’accélération à
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Figure 7.8 – (a): Profil de vitesse U(z) pour une solution de PEO extrudée à des débits
q = 0.45 cm2/s et 1.4 cm2/s. La vitesse U1 à z1 ≈ 2.5 mm de la fente est respectivement
0.047 m/s et 0.082 m/s. (b): Accélération locale UdU/dz à z = 16 cm de la fente en
fonction de U1. La longueur du rideau est Lc = 50 cm.

une distance arbitraire z = 16 cm est tracée en fonction de la vitesse initiale U1

(qui est mesurée à une distance z1 = 2.5 mm de la fente). Cette augmentation de
l’accélération est également prédite par l’équation de Taylor 7.1 pour des rideaux
Newtoniens.

Influence de la rhéologie

En comparant les profils de vitesse U(z) pour différents rideaux de même longueur
et de même débits, on constate que l’écoulement de solutions de mêmes temps de
relaxation extensionnel τfil sont semblables, indépendamment de la valeur des autres
parametres rheologiques tels que η0, ηp = η0 − ηs (où ηs est la viscosité du solvant)
et n ou de la flexibilité des chaînes. Ces résultats sont synthétisés en figure 7.9
où l’accélération du liquide UdU/dz (adimensionné par g) mesurée à une distance
arbitraire z = 18 cm de la fente est tracée en fonction de τfil pour toutes les solutions
utilisées (PEO et HPAM). Notons que les solutions dont le temps de relaxation est
très faible, typiquement plus petit que 10 ms, s’écoulent en chute libre, ce qui est
en adéquation avec les récentes mesures de Karim et al. (2018b).

Courbe maîtresse

Afin de trouver la longueur caractéristique ze du régime sous gravitaire dans le cas
d’un rideau viscoélastique, on peut écrire l’équation bilan générale de l’écoulement

U
dU

dz
= g +

U

ρ

d

dz

(
∆

U

)
(7.12)
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Figure 7.9 – Accélération UdU/dz adimensionnée par g, mesurée à z = 18 cm de la fente, en
fonction du temps de relaxation extensionnel τfil en échelles linéaires (a) et logarithmique
(b) pour toutes les solutions utilisées (PEO et HPAM) et pour des rideaux de longueur
Lc = 30 cm.

où ∆ = σzz − σyy est la différence de contraintes normales. Notons que U et ∆

sont des quantités moyennées dans l’épaisseur du rideau. Dans le cas d’un liquide
Newtonien, on trouve ∆ = 4ηdU/dz et l’équation de Taylor 7.4 est retrouvée. Pour
un liquide viscoélastique, on a besoin d’une autre équation constitutive, mais nous
allons voir comment trouver ze en se contentant de l’équation bilan. Cette équation
peut être écrite en version Lagrangienne où on introduit le temps t tel que Ud/dz

devienne d/dt. L’équation ainsi obtenue s’intègre en

U − U1 = g(t− t1) +
1

ρ

(
∆

U
− ∆1

U1

)
(7.13)

où l’indice 1 fait référence à un altitude arbitraire z1. Ainsi, puisque le temps de
relaxation extensionnel τfil joue un rôle majeur dans l’écoulement, on peut adimen-
sionner cette équation en faisant apparaître ce paramètre. On obtient alors que les
échelles de vitesse et de longueur caractéristiques de l’écoulement sont

Ue = gτfil et ze = gτ 2
fil = U2

e /g (7.14)

Ce résultat peut être retrouvé par un argument simple. Lorsque les particules de
fluide tombent en chute libre U ∝

√
2gz, les polymères sont au sein d’un écoulement

extensionnel de taux d’extension local décroissant ε̇ = dU/dz = g/U . Si ce taux
d’extension devient significativement plus petit que 1/τfil, les contraintes élastiques
dues à l’étirement des chaînes deviennent négligeables et on peut attendre un change-
ment de comportement pour l’écoulement. Ainsi, la distance à la fente à laquelle
le changement de comportement a lieu est ze = gτ 2

fil car il correspond à ε̇τfil = O(1).
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Figure 7.10 – (a): Courbe maîtresse des rideaux liquides viscoélastiques. Profils de vitesse
adimensionnés U(z)/gτfil en fonction de (z − z1)/gτ2

fil + zshift en échelle logarithmique,
où z1 ≈ 2.5 mm et où chaque courbe est translatée le long de l’axe des abscisses d’une
distance zshift pour regrouper les données sur une même courbe. (b): zshift en fonction de
U1/gτfil. On constate que zshift = M−1

e (U1/gτfil). Dans ces deux courbes, on ne considère
que les profils de vitesse qui ne sont probablement pas influencés par la coudition en aval
U(Lc) = 0.

On peut à présent chercher une courbe maîtresse de l’écoulement par analogie
avec les rideaux Newtoniens. Si l’on trace les profils de vitesse adimensionnés U/Ue
en fonction de (z − z1)/ze (où z1 ≈ 2.5 mm) on obtient des courbes de même forme
qui, si on les décales d’une distance zshift le long de l’axe des abscisses, se superposent
sur une courbe maîtresse Me, comme présenté en figure 7.10.a. Comme pour les
rideaux Newtoniens, l’existence d’une courbe maîtresse suppose que l’on ne prenne
en compte que la partie de l’écoulement qui n’est pas influencée par la condition
en aval U(Lc) = 0. On peut identifier deux régimes: un régime élastique initial
(balance gravité-elasticité), qui est l’équivalent du régime visqueux Newtonien (voir
figure 7.1.b) et où l’accelération des particules est inférieure à g, suivi d’un régime
asymptotique de chute libre, le régime inertiel (balance gravité-inertie). La courbe
maîtresse Me est alors caractérisée par deux comportements différents

Me(ẑ) =

Kẑ
α ẑ � 1 : régime élastique√

2 (ẑ − se,0) ẑ � 1 : régime inertiel
(7.15)

où ẑ = z/ze. On mesure K = 1.3 ± 0.2 and α = 0.92 ± 0.02. Comme α est proche
de 1, le taux d’extension est presque constant dans le régime élastique. Par ailleurs,
on mesure se,0 = 6 ± 2. En figure 7.10.b, on trace zshift (paramètre purement
expérimental) en fonction de U1/gτfil (où U1 = U(z1)). On constate que les deux
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lois d’échelles sont cohérentes avec zshift = M−1
e (U1/gτfil). On peut alors écrire de

manière synthétique que le profil de vitesse s’écrit

Û(ẑ) = Me

(
ẑ − ẑ1 +M−1

e (Û1)
)

(7.16)

où Û = U/Ue. La même formule peut également être dérivée de l’équation 7.7
pour les rideaux Newtoniens. Finalement, on déduit que la longueur effective du
régime sous gravitaire s’écrit z∗e = Fe × ze où Fe est une fonction décroissante de la
vitesse initiale (comme en Newtonien). On mesure Fe = 12±5 lorsque U1/gτfil � 1.

Influence de la géométrie de la filière

Nous avons réalisé des expériences afin de caractériser l’effet de l’histoire de l’écoulement
en amont du rideau. En effet, dans le cas de la filière présentée en figure 7.2.b, les
polymères sont soumis à un cisaillement au sein de la fente qui peut engendrer des
contraintes élastiques importantes en amont du rideau. Lorsque cette filière est re-
mplacée par un plan incliné sur lequel le liquide s’écoule librement avant de former
un rideau (en tombant depuis le bord du plan), on réduit considérablement les con-
traintes élastiques de cisaillement. Or, on constate que l’écoulement du rideau n’est
que peu affecté par ce changement de géométrie. On en déduit que l’histoire de
l’écoulement en amont du rideau a un impact très modeste sur l’écoulement de ce
dernier.

Stabilité du rideau

La stabilité du rideau a été étudiée sous deux aspects: la dynamique d’ouverture de
trous au sein de la nappe et la stabilité de l’écoulement lui même (en l’absence de
trou). Ces aspects sont d’un grand intérêt pour l’industrie.

Ouverture de trou

Des trous sont souvent formée au sein du rideau dû à la présence d’impuretés dans
le liquide telles que des bulles. Ces trous sont un frein considérable à la technique
d’enduction au rideau. Lorsque de tels trous apparaissent, leur taille augmente et le
liquide est alors collecté dans le bourrelet qui les entoure (“rim” en anglais). Si les
forces visqueuses et élastiques sont négligeables, la dynamique d’ouverture d’un trou
résulte d’une balance entre inertie et capillarité. Dans ce cas, dans le référentiel du
rideau, la vitesse d’ouverture du bourrelet est donné par la vitesse de Taylor-Culick
(Taylor, 1959; Culick, 1960)
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Figure 7.11 – (a): Différents régimes observés lorsque l’on augmente le débit q de 0 à
6 cm2/s pour une certaine solution de PEO. (b): Débit critique qc (au delà duquel tout
trou est advecté par l’écoulement) et débit minimum qmin (en deçà duquel un rideau se
brise en moins de 30 secondes), divisés par qΓ = (4aΓ/ρ)1/2, en fonction du temps de
relaxation τfil pour cinq solutions de PEO solutions. qΓ = 3.5 cm2/s et la longueur du
rideau est Lc = 30 cm.

V =

√
Γ

ρh
(7.17)

où 2h = q/U est l’épaisseur locale du rideau. Ainsi, dans le référentiel du laboratoire,
le bord supérieur du trou se meut à une vitesse V −U qui dépend de z. Il y a donc
une compétition entre les forces capillaires tendant à tirer le bord supérieur du
bourrelet vers le haut et l’inertie du liquide tendant à refouler le trou vers le bas.
Cette compétition peut s’écrire en terme d’un nombre de Weber

We =

(
U

V

)2

=
ρhU2

Γ
=
ρqU

2Γ
(7.18)

qui peut être inférieur à 1 près de la fente et plus grand que 1 en aval. Ainsi, seuls
les trous initiés là où We < 1 remonterons vers la fente et causeront une brisure
irréversible du rideau. Ce scénario devient impossible si We > 1 partout, i.e. si
la vitesse d’extrusion du liquide est plus grande que la vitesse de Taylor-Culick
(calculée en sortie de fente d’épaisseur 2a). Cela se produit pour un débit supérieur
à un débit qΓ donné par

qΓ =

√
4aΓ

ρ
(7.19)

Lorsque le débit est suffisamment bas, des gouttes ou des jets sont formée en
sortie de fente (voir figure 7.11.a). En augmentant le débit, les jets fusionnent
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Figure 7.12 – Exemple de mesure de PIV sur une solution de HPAM non salée. (a):
Superposition d’images successives. (b): Composante verticale du champ de vitesse, i.e.
U(x, z, t), en fonction de la coordonnée horizontale x à différentes distances z de la sortie
de la fente à un temps arbitraire t. La longueur du rideau est Lc = 30 cm et le débit
linéique est q = 3.1 cm2/s.

jusqu’à ce qu’une nappe continue émerge de la fente à un débit critique que l’on
note qc. Ce débit est mesuré pour différentes solution de PEO et les résultats sont
donnés en figure 7.11.b en fonction du temps de relaxation τfil. On trouve que
qc/qΓ ≈ 0.8 pour toutes ces solutions, ce qui indique que le rideau se forme en effet
lorsque la vitesse d’extrusion du liquide devient de l’ordre de la vitesse de Taylor-
Culick, avec une correction qui est probablement due au poids du bourrelet.

On observe un scénario différent lorsque le débit est diminué. En particulier, rien
de spécial ne se passe lorsque q devient plus petit que qc. En revanche, un rupture
du rideau devient possible si un trou est initié près de la fente. On peut alors définir
un débit minimum qmin en deçà duquel le rideau de rompt en moins d’une certaine
durée, par exemple 30 secondes. Ce débit est mesuré et est tracé en figure 7.11.b en
fonction du temps de relaxation τfil. On constate une diminution de qmin avec τfil,
ce qui témoigne d’une plus grande résistance de la nappe. Cet effet a également été
reporté par Becerra & Carvalho (2011) et par Karim et al. (2018b).

Modulation du rideau

Pour certaines solutions, l’écoulement du rideau s’est révélé être instationnaire et
modulé selon la direction horizontale x, comme le montrent les figures 7.12.a (su-
perposition d’images) et la figure 7.12.b (champ de vitesse) pour une solution de
HPAM non salée. Cette instabilité se caractérise par une modulation du champ de
vitesse et de l’épaisseur du rideau: des bandes verticales épaisses apparaissent, au
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Figure 7.13 – Diagramme de bifurcation. Amplitude absolue 〈σU 〉t (a) et relative
〈σU/〈U〉x〉t (b) de la modulation à une distance arbitraire z = 16 cm du rideau en fonction
de 1 − n où n est le degré de rhéofluidification (voir équation 7.9) pour des rideaux de
solutions de PEO et de HPAM. σU est l’écart type de la distribution de vitesse défini par
l’équation 7.20. La modulation commence pour n < 0.72 et est de plus en plus marquée à
mesure qu’on augmente la rhéofluidification. Les résultats sont comparés à un ajustement
de racine carrée.

sein desquelles le liquide est plus rapide que la moyenne. On peut cependant définir
un champ de vitesse moyenné selon x et moyenné en temps 〈〈U〉x〉t. Notons que
〈U〉x ne dépend en réalité pas du temps t. Certains champs de vitesses sont présents
en figure 7.10, preuve que l’écoulement moyen des rideaux modulés se superpose
également la courbe maîtresse Me identifiée précédemment.

Cette instabilité n’apparaît que pour les solutions les plus rhéofluidifiantes. En
particulier, un rideau de HPAM sans sel est modulé et la modulation peut être tuée
par simple ajout de sel. Les solutions de PEO les plus rhéofluidifiantes présentent
également cette instabilité. Nos résultats sont résumés en figure 7.13 qui est une
tentative de diagramme de bifurcation où l’amplitude de l’instabilité est tracée en
fonction de 1−n, où n est le degré de rhéofluidification (equation 7.9). L’amplitude
de la modulation est extraite des résultats de PIV et est définie par rapport à l’écart
type σU de la distribution de vitesse selon x, i.e.

σU =
√〈

(U − 〈U〉x)2〉
x

(7.20)

Les données en figure 7.13 correspondent respectivement à 〈σU〉t (a: amplitude
absolue) et à 〈σU/〈U〉x〉t (b: amplitude relative) mesuré à une distance arbitraire
z = 16 cm de la fente. Bien que les données soient trop dispersées pour conclure
sur une loi particulière, la dépendance en n est clairement établie et les rideaux
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modulés sont observés pour des degrés de rhéofluidification n < 0.72. En particulier,
des solutions de grand temps de relaxation et de viscosité constante (n = 1) ne
présentent pas de modulation.

Origine de l’instabilité

Afin de comprendre d’où vient cette instabilité, nous avons fait une série de mesures
avec une filière transparente (une boîte rectangulaire) pour visualiser l’écoulement
en amont de la fente. La fente est plus courte (Ls = 4 mm au lieu de 10 cm)
mais est de même épaisseur 2a = 1 mm et le rapport d’aspect de la contraction est
toujours A/a = 14. On s’assure que l’écoulement en amont de la contraction est
invariant selon x à l’aide d’un réseau de pailles. L’écoulement est visualisé dans le
plan souhaité grâce à une nappe laser.

On constate que la modulation du rideau est liée à une instabilité en amont de
la fente. À grand débits, l’écoulement dans la filière près de la contraction devient
instationnaire et tridimensionnel, i.e. modulé selon x. Pour des solutions de HPAM
pas (ou peu) salées, on observe de longues structures en forme de jets où la vitesse
du liquide est bien plus importante qu’ailleurs. Comme le montre la figure 7.14
(solution de HPAM non salée), ces structures sur-alimentent alors la fente en cer-
taines positions où la vitesse est plus grande que la vitesse moyenne attendue pour
un écoulement bidimensionnel Us = q/2a. Ces positions correspondent aux posi-
tions des bandes épaisses du rideau et il y a donc une continuité entre la structure
instable de l’écoulement en amont et en aval de la fente.

Des structures tridimensionnelle de l’écoulement en amont de la fente ont égale-
ment été observées par Chiba et al. (1990, 1992) pour des solutions rhéofluidifiantes
mais les effets étaient beaucoup plus modestes que ceux que nous observons avec le
HPAM et l’auteur ne mentionne par de modulation du rideau s’écoulant depuis la
fente.

Il est bien connu que les instabilités associées aux écoulements de contraction
(axisymétrique ou plane) apparaissent en général au delà d’un nombre de Weissen-
berg critique pour les liquides viscoélastiaues (Boger & Walters, 2012; Rothstein &
McKinley, 1999; McKinley et al., 1991; Cartalos & Piau, 1992; Piau et al., 1990).
Nous définissons le nombre de Weissenberg Wi par rapport au temps de relaxation
mesuré en CaBER, i.e.

Wi =
τfil Us
a

(7.21)
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Figure 7.14 – Vue de face de la structure de l’écoulement pour une solution de HPAM non
salée. Le rideau sous la fente est modulé et il y a continuité entre la modulation en amont
et en aval de la fente: les longues structures en jets dans la filière (où la vitesse du liquide
est grande) deviennent les bandes épaisses du rideau. Ici, le rideau n’est pas guidé par des
fils afin que la nappe laser éclaire le rideau sans obstacle.

où a/Us est l’ordre de grandeur du temps passé dans la zone de contraction ou les
polymères sont étirés (i.e. où le liquide accélère). On regroupe toutes nos données
en figure 7.15 où les rideaux modulés sont positionnés sur une carte Wi − n. Les
rideaux modulés se trouvent dans la zone de grands Wi et de petits n (solutions
rhéofluidifiantes). Cependant, une solution particulière de PEO, préparée dans un
solvant de contenant pas de PEG, est dans cette zone alors qu’elle ne présente pas
de modulation de rideau. Cela montre que d’autres paramètres rhéologiques doivent
être pris en compte pour mieux caractériser l’apparition de l’instabilité. Ce travail
constitue une perspective à nos travaux de recherche.
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Figure 7.15 – Diagramme de phase des rideaux modulés et non modulés dans le plan Wi−n.
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