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For their work and contribution to the administrative part of the thesis, I thank Salima Aaras-Andaloussi, Catherine Marque, Catherine Lacourt, Alexandra Cousin, Stéphanie Rossard, Joelle Chaumette from UTC. Success and progress are to be celebrated with people we love, or in their memory -Julian A. Khoury (1993Khoury ( -2014)). States of America [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF]. condition as well as under its activation by oxidative (or electrophilic) stress [START_REF] Taguchi | Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution: Molecular mechanisms of the Keap1-Nrf2 pathway[END_REF]. [START_REF] Hamon | Systems biology modeling of omics data: effect of cyclosporine a on t he Nrf2 pathway in human renal cells[END_REF] in green, Geenen et al. (2012a) in pink and [START_REF] Reed | A mathematical model of glutathione metabolism[END_REF] in orange) to our final assembled SB model (in blue) describing the control of oxidative stress by the Nrf2-Keap1 signaling pathway. This diagram also shows the parts of each model that were left out (non-overlapping areas). Two more genes (i.e., SRXN1 and HMOX1) that are often used as activation markers for Nrf2 pathway were added to the model (yellow). Figure 10. MCMC curve fitting of GCLC mRNA (example of gene activated by one single TF) rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (red dots) and Hill-based (black curve) SB models. rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (colored dots) and Hill-based (colored curves) SB models. nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on different curves (0 (red), 0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of nucX-AhR). are plotted along with all individual data (colored dots). The predicted chemical-independent relationships (in red) for GSH -time -DCF, or GSH -time -lactate were obtained by inversion of the qAOP equations (see 'Supplementary Material 7.2.2'). The maximum posterior parameter values given in Table S5 were used to draw the figures. S11 lists. White is the color of gene names that appear in an overlapping zone of only one of the four categories studied, and black is the color of gene names that appear in more than one category (two, three or four). 

LIST OF FIGURES

LIST OF TABLES

Table 1. The 36 partners of the StemBANCC project listed in alphabetical order after the names of the two leaders: F. Hoffmann-La Roche Ltd and University of Oxford.

Table 2. Toxicity-testing options defined by the 'Toxicity testing in the 21 st century: A vision and a strategy' report (National Research Council, 2007) in order to enhance the paradigm shift in toxicity research [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF].

Table 3. Virtual exposure scheme applied on both Hamon's (old) and Hill-based (new) SB models to perform MCMC curve fitting and establish equivalency between them. Genes that are activated by a single TF (i.e., CYP, GS, GCLC and GCLM) were exposed to five doses (one dose per time-point) ranging from 0 to 100 zeptomol doses of their TF (i.e, nucNrf2 or nucX-AhR). Genes that are activated by both TFs (i.e., Nrf2, GST, GPX and MRP) were exposed to five different and separate combinations of doses per time-point (25 combinations are possible). All exposures are in zeptomol.

Table 4. Hill parameter values (maximum posterior values) for gene transcription in the SB assembled model of the Nrf2 control of oxidative stress. These values were obtained by MCMC simulations. Since calibration was performed with virtual data, we were not interested in the mean and the standard deviation of the distributions (not mentioned).

Table 5. Prior distributions of the parameters of the SB qAOP calibrated with the DCF data.

Table 6. Summary of the posterior distribution of the five SB model parameters describing the action of KBrO3 on the formation of DCF. The best parameterization (setting kGSHc,KBrO3 at zero) is presented.

Table 7. Assessment of the SB model fit to the KBrO3 -time -DCF data using various criteria and for increasing model complexity. The various steps explain the main text of 'Methods 4.2.5'.

Step 1 is omitted since it does not require DCF data (parameter kGSHe,KBrO3, quantifying the action of KBrO3 on extra-cellular GSH, was independently calibrated from the GSH data and set to its maximum likelihood value in all cases). The other parameters were introduced as follows:

Step Table 8. Number of chemicals used in each experimental category.

Table 9. Chosen pathway specific chemical through the dataset.

Table 10. Number of conditions (chemicals, concentrations, time-points) tested per category.

Table 11. Pathway's global signatures for AhR, Nrf2 and ATF4 pathways and the signatures of their overlapping zones for all available data. Gray background indicates genes that appear in the signature of the pathway from previous studies (Table S11) and confirmed here. Non-grayed out values are novel allocations from this analysis.

Table 12. AhR, Nrf2 and ATF4 pathways' signatures stratified in liver data and by all liver data sub-categories ('Rat Liver in vitro' data, 'Rat Liver in vivo' data and 'Human Liver in vitro' data).

INTRODUCTION

A xenobiotic is an extrinsic chemical that is foreign to a certain living organism and its metabolism [START_REF] Croom | Metabolism of xenobiotics of human environments[END_REF]. Xenobiotics, either natural or artificially conceived, can be components of daily life's ordinary objects (e.g. clothes, food, drugs, jewels, paintings, skincare products, plastic cups, pesticides etc.). Upon exposure, interactions between xenobiotics and biomolecules may elicit a perturbation in local biology and impair critical physiological functions of the organism. In fact, for some xenobiotics (e.g. pharmaceuticals), despite the strictly regulated toxicological control they undergo, unexpected adverse reactions may emerge leading to their failed licensing or even post-licensing withdrawal from market (Geenen et al., 2012). Thus, potential toxic impact of xenobiotics on human health is becoming of major clinical and socio-economic concern.

Toxicology can be defined as the science that examines the negative biological repercussions of xenobiotics on l iving organisms [START_REF] Gundert-Remy | Toxicology: a discipline in need of academic anchoring-the point of view of the German Society of Toxicology[END_REF]. The main societal goal of toxicology is to develop reliable predictions of the human health impact of exposures to chemicals even before such events occur [START_REF] Pelkonen | Predictive toxicity: grand challenges[END_REF]. However, traditional toxicology, either in vivo or partially in vitro, has multiple limitations: high cost, low productivity, ethically equivocal protocols etc. [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF]. Furthermore, new understanding of biology shows more and more that the mechanisms that underlie toxicity are complex and involve multiple biological processes and pathways [START_REF] Liu | Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps)[END_REF][START_REF] Park | Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity[END_REF]. Considering traditional toxicology's limitations and the complex underlying biological reality, does toxicology today have real chances to become a predictive science? If yes, through which channels would it be possible?

'Systems biology' (SB) is a relatively new discipline that provides a framework for investigating the interactions between the separate parts of biological systems in order to understand their functioning and detect any new emergent properties (Geenen et al., 2012). By integrating data concerning molecules and their interactions into an understanding of network behavior, SB provides insights into underlying mechanisms and basis of susceptibility to xenobiotics [START_REF] Waters | Toxicogenomics and systems toxicology: aims and prospects[END_REF]) and creates a holistic view of biological systems [START_REF] Chandra | Computational systems approach for drug target discovery[END_REF]).

To handle and analyze complex biological systems and complex networks, [START_REF] Goelzer | Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis[END_REF] showed how they can be broken down into sets of elementary functional modules. In the same spirit, signaling pathways and 'adverse outcome pathways' (AOP) are new emerging concepts that suggest broadening the toxicology framework to a system-wide level [START_REF] Vinken | The adverse outcome pathway concept: A pragmatic tool in toxicology[END_REF] and help in the design of complex biology network models [START_REF] Wittwehr | How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology[END_REF] by summarizing them into more tractable components [START_REF] Edwards | Adverse Outcome Pathways--Organizing Toxicological Information to Improve Decision Making[END_REF]. Practically, an AOP is a chemical-independent description of a linear path from a 'molecular initiating event' (MIE)

to an eventual 'adverse outcome' (AO) at the organism or population level. In between, there can be any number of intermediate critical and measurable 'key events' (KEs) connected by

'key events relationships' (KERs). In typical AOP diagrams, KEs are represented by boxes and KERs by single one-directional arrows connecting them. [START_REF] Allen | Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment[END_REF][START_REF] Ankley | Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment[END_REF][START_REF] Edwards | Adverse Outcome Pathways--Organizing Toxicological Information to Improve Decision Making[END_REF][START_REF] Lalone | Advancing the adverse outcome pathway framework-An international horizon scanning approach[END_REF][START_REF] Villeneuve | Adverse Outcome Pathway (AOP) Development I: Strategies and Principles[END_REF]. AOPs and SB are some of the tools that can assist toxicology in moving from being a descriptive activity to becoming a more predictive mechanistic science [START_REF] Materi | Computational systems biology in drug discovery and development: methods and applications[END_REF]. For this purpose, AOPs and SB may either be used separately or combined. For example, a SB model can become a p rimary node, somewhere between a M IE and a KE in an AOP, setting the foundation for considering higher order questions of adaptive or compensatory responses and cross-talks among various pathways [START_REF] Ankley | Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment[END_REF]. The theme of this doctoral thesis is the combination of these two approaches for safety assessment of chemicals. (Nrf2) pathway. The Nrf2 pathway is a very important adaptive response to oxidative stress [START_REF] Andrews | Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein[END_REF]. Oxidative stress, linked to the over-production of 'reactive oxygen species' (ROS), is a major cause of chemical-induced injury and associated chronic diseases (e.g. cancer, Parkinson's disease etc.) [START_REF] Kong | Oxidative Stress, Mitochondrial Dysfunction and the Mitochondria Theory of Aging[END_REF]. Implicated in xenobiotics' metabolism and transport, Nrf2 contributes to and modulates ROS scavenging by 'glutathione' (GSH) [START_REF] Leclerc | Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure[END_REF].

Our SB model was to be calibrated with induced pluripotent stem cells experimental Apart the introduction, the present document is presented in four sections followed by a conclusion. First, Bibliography, is a literature review of each of the three aspects of the project:

(i) toxicology (definition, history and transition to modern toxicology), (ii) biological context (oxidative stress, Nrf2 pathway, system-level approaches (SB and AOPs) to study biology) and

(iii) computational tools used. The next section describes the building of a SB model (of the Nrf2 control of oxidative stress) for the development of a quantitative AOP. Then, in the following section, the SB model we conceived is calibrated and compared to two other mathematical approaches to quantitative AOPs. Finally, the last section, published as [START_REF] Zgheib | Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases[END_REF], is a transcriptomic-based analysis of the cross-talks between Nrf2 and two other toxicity pathways: the 'activating transcription factor 4' (ATF4) branch of the unfolded protein response and the dioxin response i.e. 'aryl hydrocarbon receptor' (AhR) pathway.

The works of this doctoral thesis resulted in two published articles, a third paper that is currently in press and three posters. The first article, a literature review of 'high-throughput methods for toxicology and health risk assessment', was published in the 'Environnement Risque Santé' journal [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF]. The SB model constructed in 'chapter 3' was presented in two posters (StemBANCC general assembly and steer committee meetings). The analysis performed in 'chapter 4' is currently in submission as a journal article. Finally, 'chapter 5', the product of the work accomplished during the scientific visit to the laboratory of Prof.

Paul Jennings (Medical University of Innsbruck, StemBANCC partner), was published in the 'Frontiers in Genetics' journal (impact factor 4.151) [START_REF] Zgheib | Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases[END_REF].

NB:

In this document, to be distinguished from protein names, gene names are italicized. 
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TOXICOLOGY

Definition of Toxicity

In certain conditions, a xenobiotic may induce perturbation in local biology and impair critical physiological functions of the organism [START_REF] Hooper | Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks[END_REF]. The organism's homeostatic defense against such chemical effects includes many biological processes from metabolic biotransformation, to cellular trans-membrane transport and activation of immune responses (Geenen et al., 2012). Toxicity occurs when physiological homeostatic regulatory processes are lost or deactivated, and/or when defense mechanisms are overwhelmed and are no longer efficient and sufficient for protection [START_REF] Aschauer | Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: A transcriptomic study[END_REF].

Predictive Toxicology: Prevention

The importance of toxicology in our days is relative to the amplitude of uncertainty and lack of information about toxicity of new and existing xenobiotics. Gathering appropriate knowledge, specific tools and various techniques, toxicology aims to spot harmful exposures, to assess their risk and to understand the mechanism of their toxicity in order to better prevent them. Prevention is possible when the toxic potential of an exposure is evaluated and accurately predicted even before the exposure occurs [START_REF] Pelkonen | Predictive toxicity: grand challenges[END_REF].

Birth of Toxicology

Historically, experimental observations of toxicity, first described by Paracelsus ca.

1534, were re-framed into proper test methods during the 20 th century [START_REF] Trevan | The Error of Determination of Toxicity[END_REF]. Those methods mainly consisted in measuring adverse health outcomes in homogeneous animal groups at lethal or near-lethal doses and extrapolating them empirically to potentially estimate safe doses in humans [START_REF] Bhattacharya | Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways[END_REF]. Since the 1940s, the basic, mainly animalbased, experimental protocols for assessing the effects of chemicals on health have changed little [START_REF] Shukla | The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform[END_REF].

Limitations of Traditional Toxicology

Whereas that traditional approach to toxicology has provided very important results through a century so far, it is still costly and resource-intensive [START_REF] Zhu | Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants[END_REF]. In numbers, the global yearly expenses on animal experimentation reach about €10 billion, 20% of which for toxicology alone, sacrificing 100 million animals worldwide every year [START_REF] Hartung | A Toxicology for the 21st Century--Mapping the Road Ahead[END_REF].

Moreover, animal studies are low-throughput, too slow to screen the more than 80,000 chemicals already commercialized, for which little toxicity information exists [START_REF] Taboureau | Human environmental disease network: A computational model to assess toxicology of contaminants[END_REF], and the new chemical entities reaching the market every year (National Toxicology Program, 2004). In addition, animal to human transposition is not always reliable and is affected by many uncertainties. We are not 70 kg rats: basal metabolic rates and metabolic pathways are among the major species-specific differences making inter-species transposition difficult and imprecise [START_REF] Kongsbak | A computational approach to mechanistic and predictive toxicology of pesticides[END_REF][START_REF] Rangarajan | Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice[END_REF]. Besides, the extrapolation from the high-dose effects to low-dose responses is very difficult to validate.

Finally, standardized animal tests make it difficult to take into account metabolic differences between different age groups and inter-subject variability in human populations [START_REF] Szymański | Adaptation of High-Throughput Screening in Drug Discovery-Toxicological Screening Tests[END_REF], even though progress has been recently made in that area [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF].

A Paradigm Shift in Toxicology

The aforementioned hurdles created pressure to develop human-cell-based models. A need for a paradigm shift in toxicology started to emerge around 1980 [START_REF] Rowan | Alternatives: Interaction between science and animal welfare[END_REF]. The 3R's principle of replacement, reduction and refinement [START_REF] Russell | The principles of humane experimental technique[END_REF] had not gotten much echo in toxicology until that moment, at which scientific and technological advances, financial, ethical and legislative imperatives converged. Advances in molecular biology, cell biology (with stem cells technologies [START_REF] Kitambi | Stem cells: a model for screening, discovery and development of drugs[END_REF]), bioinformatics, SB and computational toxicology, introduced innovative methods less animal-based and with a higher-throughput productivity [START_REF] Cotgreave | How can stem cell technologies be applied to replace animal use in toxicity testing?[END_REF]. This new capacity to perform rapid examination of thousands of single agents or complex mixtures per day at relevant exposure levels, and the tools that make it possible, are named 'high-throughput screening' (HTS) (National Research Council, 2007). HTS in vitro assays using human cells allow the investigation of toxic effects in humans from different life stages and ethnicities [START_REF] Inglese | Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries[END_REF]. With the support of computational mathematical methods, HTS has the potential to largely improve the human health risk assessment of xenobiotics [START_REF] Bois | GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models[END_REF][START_REF] Krewski | Toxicity testing in the 21st century: implications for human health risk assessment[END_REF].

However, toxicological research did not evolve by virtue of innovation alone. Several initiatives from the European Union and the United States of America ran in the same direction, pushing for change since the beginning of the 21 st century [START_REF] Zhu | Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants[END_REF] (Figure 2). We focus next on those efforts, noting that Japan has also followed the trend a bit later [START_REF] Omoe | Recent Trends in Animal experimentation in Japan -On the Revision and Implementation of the Law for the Humane Treatment and Management of Animals[END_REF]. of America [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF]. [START_REF] Seidle | Bringing toxicology into the 21st century: a global call to action[END_REF]. It also set a time frame for the development of eventually validated alternative methods for toxicity testing [START_REF] Pauwels | Safety evaluation of cosmetics in the EU[END_REF]. In 2009, a first restriction on acute toxicity animal-based testing took effect [START_REF] Bhattacharya | Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways[END_REF]. By 2013, by European law, all new cosmetic ingredients intended for the European market had to be animal-test-free.

That legislation has become a motor of change, and pushed for the development of eventually validated alternative testing strategies [START_REF] Hartung | From alternative methods to a new toxicology[END_REF]. Protection Agency to run automated HTS in vitro assays and computational analyses for prioritizing further toxicity assessments of chemicals [START_REF] Dix | The ToxCast program for prioritizing toxicity testing of environmental chemicals[END_REF]. It is based on bioactivity profiling of chemicals and screening changes in cells or proteins' activity after exposure, with the ambition of picking out "remarkable" toxicity off the mass of data accumulated. Another goal is to establish causal links between eventual exposures and effects on biological pathways and targets (Environmental Protection Agency, 2007). Obviously, the latter calls for the development of high throughput exposure, toxicodynamic and toxicokinetic models [START_REF] Judson | In Vitro and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme[END_REF].

o Toxicity Testing in the 21 st Century: A vision and a Strategy

In 2005, t he National Research Council report entitled 'Toxicity testing in the 21 st century: A vision and a strategy' proposed to government, academia, and industry, a paradigm shift in toxicology through the application of emerging disciplines and technologies (omics, SB, computational modeling, etc.) [START_REF] Kavlock | Computational Toxicology--A State of the Science Mini Review[END_REF]National Research Council, 2007).

The proposed approach advocates heavier use of mechanistically informative in vitro assays to study how chemicals interact with cellular response networks and turn them into toxicity pathways [START_REF] Raunio | In Silico Toxicology -Non-Testing Methods[END_REF]. The report considers four options for toxicity testing summarized in Tox21's chemical library contains over 8,000 c hemicals of different kinds (e.g., pesticides, marketed pharmaceuticals, food additives, industrial chemicals, cosmetic ingredients, chemicals found in household products and clothes etc.) [START_REF] Schmidt | TOX 21: new dimensions of toxicity testing[END_REF]. Tox21's chemical library contains over 8,000 c hemicals of different kinds (e.g., pesticides, marketed pharmaceuticals, food additives, industrial chemicals, cosmetic ingredients, chemicals found in household products and clothes etc.) [START_REF] Schmidt | TOX 21: new dimensions of toxicity testing[END_REF].

Table 2. Toxicity-testing options defined by the 'Toxicity testing in the 21 st century: A vision and a strategy' report (National Research Council, 2007) in order to enhance the paradigm shift in toxicity research [START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF]. 

Modern Toxicology

The field of toxicology has significantly evolved as we have seen above, with the progressive introduction of in vitro (expansion of toxicological databases substantially) and in silico methods (fine-tuning of computational methods), so that the latter now appear feasible and highly suitable [START_REF] Kongsbak | A computational approach to mechanistic and predictive toxicology of pesticides[END_REF][START_REF] Taboureau | Human environmental disease network: A computational model to assess toxicology of contaminants[END_REF]. Considering the importance of this progress, we can start talking about HTS in toxicology. HTS tissue models have been developed at the interface between biotechnology, biomaterial engineering, bioinformatics and medical sciences. HTS has both qualitative and quantitative advantages.

Quantitatively, HTS can be defined as the set of screening techniques that can be scaled up to test libraries of molecules at a rate exceeding thousands of structures daily in a concentrationresponse format using standardized protocols [START_REF] Judson | Perspectives on validation of high-throughput assays supporting 21st century toxicity testing[END_REF][START_REF] Kavlock | Computational Toxicology--A State of the Science Mini Review[END_REF][START_REF] Zhu | Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants[END_REF]. Qualitatively, a distinct advantage of HTS is its ability to test complex mixtures, combine experimental conditions and end-points to develop extensive dose-response relationships for different pathways across large concentration ranges for different exposure schedules [START_REF] Astashkina | A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity[END_REF][START_REF] Boekelheide | A mechanistic redefinition of adverse effects -a key step in the toxicity testing paradigm shift[END_REF].

Many elements contribute to the establishment of this modern approach to study toxicology. In this section, we will evoke four of the pillars of this emergent field: robotics, induced pluripotent stem cells, omics and bioinformatics.

 Robotics

If HTS is possible, that is due to the rigorous robotic spotting technologies, the miniaturization of the assay vial (i.e., micro-plates) and automation [START_REF] Rangarajan | Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice[END_REF]. The capacity of the micro-plates has significantly increased with time. From 96-well plates, originally used in virology [START_REF] Feng | A high-throughput screen for aggregation-based inhibition in a large compound library[END_REF], to 384-and 1,536-micro-well plates currently in use [START_REF] Inglese | Highthroughput screening assays for the identification of chemical probes[END_REF], the equipment has been gradually improved to test more molecules and concentrations [START_REF] Van Vliet | Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century[END_REF]. The volume of the wells in a micro-plate has also decreased, down to volumes as low as 2μL [START_REF] Mayr | The Future of High-Throughput Screening[END_REF]) (Figure 3). 

 Induced Pluripotent Stem Cells

Many features make induced pluripotent stem cells attractive for toxicity screening.

Other than their uniform physiology and donor-specific genetic profile, they have unlimited self-renewal potential and are pluripotent (and therefore differentiable into various cell types such as hepatocytes, cardiomyocytes, neurons etc.) Human stem cells can be derived from embryonic cultures (isolated in the inner cell mass of the blastocyst [START_REF] Bongso | Isolation and culture of inner cell mass cells from human blastocysts[END_REF]), adult tissues (e.g., bone marrow [START_REF] Pittenger | Mesenchymal stem cells from adult bone marrow[END_REF], skin [START_REF] Fernandes | Highthroughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research[END_REF], liver [START_REF] Gaudio | New insights into liver stem cells[END_REF], umbilical cord blood [START_REF] Moon | Hepatic differentiation of cord blood-derived multipotent progenitor cells (MPCs) in vitro[END_REF], and brain [START_REF] Clarke | Generalized potential of adult neural stem cells[END_REF] etc.), or through genetic reprogramming of easily accessible cells (e.g., skin fibroblasts, renal epithelial cells shed in urine etc.) into induced pluripotent stem cells [START_REF] O'malley | New strategies to generate induced pluripotent stem cells[END_REF]. Although embryonic stem cells have a higher degree of pluripotency than induced pluripotent stem cells, they continue to be subject of ethical debates. Furthermore, the difficulty of inducing a reliable and efficient differentiation of all cells in one culture remains a major limitation of these techniques [START_REF] Menasché | Stem cell therapy for chronic heart failure: lessons from a 15-year experience[END_REF], but progress is being made to alleviate that problem.

 Omics (Transcriptomics, Proteomics, Metabolomics) and Biomarkers

In traditional toxicology, cell count and lactate dehydrogenase activity in the culture medium were at some point the only cytotoxicity endpoints measurable in vitro [START_REF] Blaauboer | The contribution of in vitro toxicity data in hazard and risk assessment: Current limitations and future perspectives[END_REF]. Nowadays, different cell death pathways are known and their activation can be followed using many cellular biomarkers [START_REF] Van Vliet | Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century[END_REF]. Omic technologies are aimed primarily at the universal detection of biomarkers, either they are genes (genomics), mRNA (transcriptomics), proteins (proteomics) or metabolites (metabolomics), in a specific biological sample in a non-targeted and non-biased manner [START_REF] Horgan | Omic' technologies: genomics, transcriptomics, proteomics and metabolomics: The Obstetrician & Gynaecologist[END_REF]. The use of omics profiling contributes to a better understanding of toxicology due to the considerable size of datasets it provides and its capacity of discovery of new more specific biomarkers. The amount of data generated by various omics technologies contributes to a better understanding of a drug's (and other chemical's) safety profile [START_REF] Gautier | The effect of network biology on drug toxicology[END_REF].

 Bioinformatics

These days, it is not more difficult to measure the activity of a whole genome than it is that of a single gene, or even to sequence the genomes of thousands of micro-organisms or hundreds of human beings. Microscopy now offers extremely high resolution so thousands of single cells and multitude of parameters can be analyzed in parallel for each patient. Confronted with this flood of data, biologists are often at a loss because experimental planning and analysis methods need to be adapted accordingly (Systems Biology at University of Lyon -BioSyL) 14 .

Using the increasingly large amount of biological and chemical data available and combining it with bioinformatics has become a promising approach permitting a chemical safety assessment across multiple scales of complexity from molecular to cellular and system levels in human health [START_REF] Gautier | The effect of network biology on drug toxicology[END_REF].

The National Research Council works have clearly shown that extrapolated results obtained by even the most advanced in vitro methods require the development of specific mathematical models. In analogy with the commonly used 'in vitro' and 'in vivo', the term 'in silico' describes an analysis performed on a computer [START_REF] Raunio | In Silico Toxicology -Non-Testing Methods[END_REF]. In toxicology, in silico techniques, also called 'computational toxicology', form a sub-discipline that uses computer and mathematical models to understand and predict the physio-pathological mechanisms of toxicity and their ultimate outcome as adverse effects [START_REF] Hubal | Exposure science and the U.S. EPA National Center for Computational Toxicology[END_REF][START_REF] Collins | TOXICOLOGY: Transforming Environmental Health Protection[END_REF]. In silico experiments can be carried out to test the effects of perturbations on the system and to identify the processes that control the system. Some of these experiments may only be feasible using a computer and most of them are faster and cheaper in silico than in vitro. Such "dry experiments" (computational modelling) may generate new hypotheses about the system, which can then be tested experimentally in "wet experiments" (laboratory experimentation).

Computational toxicology offers remarkable possibilities by allowing the analysis of a large number of chemicals and biological interactions, yet more proof-of-concept studies are needed to demonstrate its added value and make it fully adopted by risk assessors and regulators.

BIOLOGY UNDERLYING TOXICOLOGY

In their review, [START_REF] Gautier | The effect of network biology on drug toxicology[END_REF] considered that studying a drug action and protein's function in a global physiological environment may better inform us on the chemical's toxicity.

Network-level approach studies phenomena in their small details whilst linking them to a wider setting of interactions with their surroundings. In our work for example, the genesis of oxidative stress by xenobiotics and the dynamics of its control by the Nrf2 pathway, are described by a SB model that can be a node in a wider framework: for example in a 'chronic kidney disease'

(CKD) AOP.

In this section we first cover the biological context of our mathematical models: the oxidative stress, the Nrf2-GSH response to oxidative stress, and other associated pathways (i.e., AhR and ATF4). Then, we will present in details system-level approaches used (i.e., SB and AOP).

Oxidative Stress, Nrf2 and some Associated Pathways

 Cellular Metabolism of Xenobiotics

Inside the cell, an important homeostatic intracellular system of xenobiotic metabolizing enzymes families controls the intracellular levels of xenobiotics and their metabolites [START_REF] Zhang | Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses[END_REF]. Some of these enzymes metabolize the xenobiotic via various reactions and some others conjugate it to other entities to detoxify it [START_REF] Xu | Induction of phase I, II and III drug metabolism/transport by xenobiotics[END_REF]. Practically, upon the entry of a xenobiotic to the cell, this homeostatic system is triggered when xenosensor receptor molecules (e.g., AhR, constitutive androstane receptor, or pregnane X receptor etc.) are activated. This induces metabolizing enzymes (e.g., 'cytochrome P450' (CYP)) that may transform the xenobiotic into an intermediate metabolites [START_REF] Nebert | The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis[END_REF]. Then, the parent compound or its metabolites may activate 'transcription factors' (TFs) (e.g., Nrf2, ATF4

etc.) to induce so-called detoxifying enzymes (e.g., 'glutathione-S-transferase' (GST), 'glutamate cysteine ligase' (GCL) etc.) that catalyze a set of conjugation reactions that add hydrophilic conjugates to it. Finally, metabolites may be exported to the extracellular compartment by membrane-residing transporters (e.g., 'multidrug-resistance protein' (MRP) etc.). The role of this system is to control the amounts of xenobiotics and their metabolites that can accumulate in the cell, hopefully restricting their downstream toxicity [START_REF] Zhang | Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses[END_REF].

The Nrf2 signaling pathway, like many other intracellular toxicity pathways, follows the aforementioned scheme.

 Oxidative Stress

Under physiological conditions, the metabolism of oxygen and nitric oxide generates reactive byproducts (e.g., hydrogen peroxide, superoxide anion, etc.), aka free radicals, that are gathered under the terms of ROS and reactive nitrogen species (e.g., nitrite, nitrate, peroxynitrite etc.) respectively [START_REF] Halliwell | Free radicals, antioxidants, and human disease: where are we now?[END_REF]. The bioactivation of xenobiotics into reactive electrophilic metabolites undergoing redox cycling, is another source of free radicals [START_REF] Zhang | Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses[END_REF]. These free radicals can react with DNA, protein, and lipids. Oxidative stress occurs when accumulation of intracellular ROS and reactive nitrogen species in a cell becomes uncontrolled due to the imbalance between their intracellular formation and removal from the cell [START_REF] Himmelstein | Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis[END_REF]. Since the exposures tested here are nitrogen-free chemicals, only ROS will be used in this thesis to refer to oxidative stress.

Oxidative stress is a major cause of chemical-induced injury and associated chronic and degenerative diseases (e.g., cancer, Parkinson's disease, arthritis, aging, autoimmune disorders, and cardiovascular diseases etc.) [START_REF] Kong | Oxidative Stress, Mitochondrial Dysfunction and the Mitochondria Theory of Aging[END_REF][START_REF] Pham-Huy | Free radicals, antioxidants in disease and health[END_REF][START_REF] Taguchi | Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution: Molecular mechanisms of the Keap1-Nrf2 pathway[END_REF]. However, several mechanisms can be put in place to counteract oxidative stress. First, the endogenous cellular enzymatic defense system (e.g., superoxide dismutase, catalase, 'glutathione peroxidase' (GPX), peroxiredoxins, 'glutathione reductase' (GR), sulfiredoxin, GST etc.) [START_REF] Reddy | The antioxidant response element and oxidative stress modifiers in airway diseases[END_REF]. Second, other non-enzymatic antioxidants mainly acquired by food and supplementation (e.g., vitamin C (L-ascorbate), vitamin A, vitamin E etc.) quench ROS levels and thereby play key roles in modulating oxidative stress [START_REF] Kohen | Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[END_REF].

By serving as a substrate for antioxidant enzymes in redox cycles, GSH protects cells against electrophilic compounds and reactive metabolites by undergoing rapid oxidation and regeneration to maintain the intracellular redox status. However, under strong oxidative stress, such Nrf2-mediated detoxification processes consume GSH in a faster rate than its regeneration.

GSH depletion makes cells more susceptible to oxidative stress which may damage DNA or impair cell viability. For a better visualization of the Nrf2 signaling pathway, we propose a schematic representation (Figure 4) of its behavior under both conditions: presence and absence of oxidative stress [START_REF] Taguchi | Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution: Molecular mechanisms of the Keap1-Nrf2 pathway[END_REF],.

Figure 4. Schematic representation of the Nrf2 signaling pathway in basal unstressed condition as well as under its activation by oxidative (or electrophilic) stress [START_REF] Taguchi | Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution: Molecular mechanisms of the Keap1-Nrf2 pathway[END_REF].

 Other Associated Pathways

Nrf2 is one of the important pathways that can be activated upon exposure to xenobiotics like oxidants. Nrf2 control of GSH synthesis, metabolism and transport, is an adaptive defense response of the cell to oxidative stress. This makes Nrf2 a c entral signaling pathway to be studied. However, in the modern understanding of biology, a pathway is never isolated. Thus to better locate Nrf2 in the toxicological panorama, we have studied, in 'chapter 5', its interactions and cross-talks with two other toxicity pathways here presented: AhR and ATF4.

o Aryl hydrocarbon Receptor Pathway -AhR

AhR is a ligand-activated TF that controls the transcription of a wide range of genes involved in the synthesis of certain key xenobiotic-and drug-metabolizing enzymes mainly belonging to the CYP family genes, (e.g., CYP1A1, CYP1B1 and CYP1A2 etc.) implicated in the metabolism of endogenous and exogenous substrates. Like Nrf2, AhR is a cytoplasm-based molecule trapped in a complex [START_REF] Petrulis | The role of chaperone proteins in the aryl hydrocarbon receptor core complex[END_REF]. Upon ligand (xenobiotic) binding, the AhR TF shuttles into the nucleus where it dimerizes with the 'AhR nuclear translocator'

(ARNT) and binds to so-called xenobiotic-responsive elements (i.e., 'dioxin response element' (DRE)) in the promoter region of some oxidative stress related genes to stimulate their expression [START_REF] Haarmann-Stemmann | The AhR-Nrf2 Pathway in Keratinocytes: On the Road to Chemoprevention?[END_REF].

o Activating Transcription Factor 4 Pathway -ATF4

ATF4 is another protein and TF involved in the regulation of an Nrf2 target, the 'heme oxygenase' gene, linked to the adaptive response to oxidative stress [START_REF] He | Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation[END_REF]. ATF4 is a major branch of the unfolded protein response and is activated in response to endoplasmic reticulum (ER) disturbances or proteotoxicity where unfolded proteins accumulate in the ER and compete with an important sensing protein named 'RNA (PKR)-like ER kinase' (PERK)

for the inhibitory protein BiP [START_REF] Hetz | The unfolded protein response: controlling cell fate decisions under ER stress and beyond[END_REF]. Activated PERK phosphorylates the eIF2α (eukaryotic translation initiation factor 2 α) which inhibits general protein translation while inducing AT4 translation. ATF4 in turn binds to the CARE consensus sequence and drives transcription of genes involved in amino acid synthesis, amino acid transport and aminoacyl-tRNA synthesis [START_REF] Jennings | An overview of transcriptional regulation in response to toxicological insult[END_REF].

Systems Biology -SB

SB is a discipline that encompasses the relationship between the "science of the whole system" (physiology) and the "science of the individual components" (molecular biology). SB has provided a framework for investigating the interactions between the separate parts of a biological system in order to understand its functioning (Geenen et al., 2012). A typical SB approach combines holism and reductionism. While the reductionist approach would provide detailed information about properties of the small entities of a system under artificial conditions where they are more or less uncoupled, the holistic approach tests these entities as they are embedded in the living system in a more natural and realistic setting. Nevertheless, in the holistic approach, detailed and high quality data is much harder to obtain and analyze [START_REF] Klipp | Systems biology: a textbook[END_REF].

The strength of the SB approach tackles the complexity of biological systems and their dynamic behavior at every relevant organizational level (from molecules, cells and organs through organisms and ecosystems). The interconnection between different cellular processes, such as metabolism and genetic regulation, reflects the importance of the holistic approach introduced by the SB paradigm. Although most cellular components have been studied

individually, the behavior of the cell emerges at the network-level and requires an integrative analysis [START_REF] Machado | Modeling formalisms in systems biology[END_REF]. Considering all (or most) of the components of a system simultaneously and not separately makes possible the identification and study of new emergent properties of the system. Emergent properties are functional properties not present within the individual components of the system and only arise when system components interact among each other. A common example to illustrate this is the interaction between hydrogen and oxygen to make water: the resulting change in properties is unpredictable if only the individual properties of hydrogen and oxygen are known [START_REF] Aderem | Systems biology: its practice and challenges[END_REF].

To study emergent properties, SB uses many computational and experimental tools and skills of various disciplines (Geenen et al., 2012). Intrinsic to SB is its interdisciplinary nature consisting in coupling different levels of information (e.g., experimental results, mathematical models, statistical tools etc.) in order to develop predictive models of the biological behavior (Systems Biology at University of Lyon -BioSyL) 15 . In this logic, incorporation of omics data streams for building improved SB models [START_REF] Cramer | Effects of abiotic stress on pl ants: a systems biology perspective[END_REF][START_REF] Zhang | Integrating multiple "omics" analysis for microbial biology: application and methodologies[END_REF] contributes to a better understanding of the data and an improved prediction ability of the models [START_REF] Hamon | Systems biology modeling of omics data: effect of cyclosporine a on t he Nrf2 pathway in human renal cells[END_REF][START_REF] Quignot | A Computational Model to Predict Rat Ovarian Steroid Secretion from In Vitro Experiments with Endocrine Disruptors[END_REF][START_REF] Tan | A proposed minimum skill set for university graduates to meet the informatics needs and challenges of the "-omics" era[END_REF]. However, it is not only data that is involved; the study of a living system relies on a multitude of parameters (e.g., halflife, diffusion speed, affinity etc.) that cannot all be measured experimentally.

In order to make computational model predictions precise and develop a reliable scientific understanding, it is necessary to integrate experiments in a spiral of iterative cycles of validation/falsification with computational modeling, simulation and theory [START_REF] Westerhoff | The methodologies of systems biology[END_REF]. The modeling methodology is bottom up, i nserting kinetic equations for all molecular processes and then integrating these to predict network behavior around the physiological state [START_REF] Geenen | Glutathione metabolism modeling: A mechanism for liver drug-robustness and a new biomarker strategy[END_REF]. The emergent properties produced by this process become the hypotheses to be confirmed in "wet experiments" as explained previously. Thus, SB experiments are hypothesis-generating, using holistic approaches where no h ypothesis is known or prescribed but all data are acquired and analyzed to define a hypothesis that can be further tested [START_REF] Horgan | Omic' technologies: genomics, transcriptomics, proteomics and metabolomics: The Obstetrician & Gynaecologist[END_REF]. In summary, in SB, modeling is not the final goal, but it is a tool to increase understanding of the system, to develop more directed experiments and, finally, allow predictions.

Adverse Outcome Pathways -AOP

Xenobiotics, beyond their target sites, can perturb a whole balanced equilibrium of complex intracellular system of pathways, to achieve their toxicity. The key for a more general view of toxicity schemes, is in understanding the different networks and pathways involved, their respective contribution to random outcomes as well as their potential interactions and cross-talks [START_REF] Liu | Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps)[END_REF][START_REF] Park | Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity[END_REF]. This kind of approach permits a better understanding of the system, elucidates emergent properties and opens the door for a genuine investigation of what happens behind the scenes, and therefore makes of toxicology a predictive science [START_REF] Materi | Computational systems biology in drug discovery and development: methods and applications[END_REF][START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF].

In the same line, the AOP, an ecotoxicology emerging concept, has rapidly drawn the attention of industries and regulatory agencies alike [START_REF] Groh | The Challenge : Adverse outcome pathways in research and regulation-Current status and future perspectives[END_REF]. AOPs have become an organizing framework to facilitate the development and integration of alternative test methods for assessing hazard of chemicals to human health and the environment. A dedicated program is currently running under the auspices of the Organisation for Economic

Co-operation and Development (OECD). AOPs are intended "to outline and capture existing knowledge concerning the biologically plausible and empirically supported foundations for predicting apical toxicity from mechanistic data"(OECD, 2016).

As mentioned above, an AOP portrays a linear pathway from one MIE to one eventual AO [START_REF] Allen | Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment[END_REF][START_REF] Ankley | Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment[END_REF][START_REF] Villeneuve | Adverse Outcome Pathway (AOP) Development I: Strategies and Principles[END_REF]. AOP diagram networks are modular structures having KEs and KERs as fundamental units. In the traditional AOP diagram, KEs are represented by boxes whereas KERs are represented as the arrows connecting a pair of upstream and downstream boxes. In a graph theory context, KEs represent nodes and KERs represent edges [START_REF] Pavlopoulos | Using graph theory to analyze biological networks[END_REF]. Organization of knowledge into AOP frameworks can help in the design of complex biology network models [START_REF] Wittwehr | How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology[END_REF].

A powerful tool to progress in this direction and reduce uncertainty would be assembling different AOPs and sharing data to identify and fill in the data gaps like in the AOP knowledge base 16 (OECD, 2016), the AOP-Wiki 17 (a user-friendly, open-source interface), and other knowledge repositories [START_REF] Groh | The Challenge : Adverse outcome pathways in research and regulation-Current status and future perspectives[END_REF]. The modularity of KEs and KERs we mentioned earlier, offers efficiency in updating and constructing AOP: any modifications made to those KEs or KERs descriptions in an AOP knowledge repository are automatically updated for all AOPs that included that KE or KER [START_REF] Villeneuve | Adverse Outcome Pathway (AOP) Development I: Strategies and Principles[END_REF].

The contribution of AOPs to predictive toxicology starts with chemical grouping or classification (OECD, 2013), priority setting for further testing, and hazard identification. On the longer-term, AOPs can be part of 'integrated approaches to testing and assessment' [START_REF] Conolly | Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology[END_REF] or 'integrated testing strategies' for regulatory decision making [START_REF] Edwards | Adverse Outcome Pathways--Organizing Toxicological Information to Improve Decision Making[END_REF][START_REF] Vinken | The adverse outcome pathway concept: A pragmatic tool in toxicology[END_REF]. For this purpose, quantitative AOPs (qAOPs) need to be developed to provide dose-response, and time-course predictions [START_REF] Conolly | Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology[END_REF]. Parameter values of qAOPs can often be obtained directly from literature or targeted experimental work, or indirectly by optimizing the fit of model predictions to data [START_REF] Villeneuve | Adverse Outcome Pathway (AOP) Development I: Strategies and Principles[END_REF]. In addition, statistical analyses can be used to evaluate alternative model formulations and simplifications through identification of correlated variables or parameters [START_REF] Friend | Clues from the resilient[END_REF][START_REF] Li | Identification of parameter correlations for parameter estimation in dynamic biological models[END_REF][START_REF] Rodriguez-Fernandez | Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems[END_REF] 

MATHEMATICAL CONSIDERATIONS

Due to the diversity of phenomena that occur in living organisms, many formalisms can be used to model biological systems (e.g., 'Boolean networks', 'Bayesian networks', 'Petri nets', 'process algebras', 'constraint-based models', 'differential equations', 'rule-based models', 'interacting state machines', 'cellular automata', 'agent-based models' etc.) Some of these mathematical tools and methods (i.e. 'ordinary differential equations', 'Bayesian networks') were used through this thesis. These techniques and other common equations (i.e., Michaelis-Menten kinetics, Hill's equation) that were used for the development of the computational mathematical models conceptualized in this thesis, are described in this section.

Ordinary Differential Equations -ODE -Systems

Differential equations describe the rate of change of continuous variables. They are typically used for modeling dynamical systems in several areas like SB [START_REF] Machado | Modeling formalisms in systems biology[END_REF].

In SB, the network of chemical reactions happening among the different biomolecules (e.g., genes, proteins, lipids, metabolites etc.) and xenobiotics present in a predefined compartment, can be described by systems of nonlinear 'ordinary differential equations' (ODEs). Practically, ODEs are used to describe the variation of the amount of species in the modeled system as a function of time [START_REF] Machado | Modeling formalisms in systems biology[END_REF]. In this kind of systems, each equation corresponds to the chemical reaction producing or consuming the concerned molecule through time (Geenen et al., 2012). The goal is that the ODEs based model captures most of the available kinetic information regarding the system. However, building ODE models requires insight into the reaction mechanisms to select the appropriate rate laws to define the model structure and the associated kinetic equations. Then, the unknown model parameters are estimated using fitting of experimental data [START_REF] Hasdemir | Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions[END_REF].

ODEs is a well-understood formalism, fast, mathematically robust, rigorous and adaptable [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF][START_REF] Kitano | Computational systems biology[END_REF][START_REF] Orton | Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway[END_REF]. For these advantages and others, the ODEs methodology of translating biochemical reactions into mathematics and then integrating them over time using numerical methods, became a privileged tool of many SB research projects (e.g., metabolic pathways [START_REF] Ideker | Integrated genomic and proteomic analyses of a s ystematically perturbed metabolic network[END_REF], mitosis in yeast [START_REF] Tyson | Modeling the cell division cycle: cdc2 and cyclin interactions[END_REF], genetic regulatory circuits [START_REF] Elowitz | A synthetic oscillatory network of transcriptional regulators[END_REF], etc.) including in toxicology.

Other types of differential equations exist but will not be detailed in this manuscript (e.g., 'stochastic differential equations', 'partial differential equations', 'Piecewise-linear differential equations' etc.).

Michaelis-Menten -MM -Kinetics

Enzymatic reactions are generally composed of two basic steps. First, the reversible binding of a substrate molecule S to an enzyme E in order to form the complex ES (binding and unbinding are defined by the kb (measuring unit: L.mol -1 .s -1 ) and ku (measuring unit: s -1 ) rates respectively). In the second step, by the kcat (measuring unit: s -1 ) rate parameter, the catalysis of ES releases the enzyme E and generates the product P. In both cases, either ES is catalyzed into E and P or unbound to restore reactants E and S, E is free again to associate with other substrate molecules [START_REF] Reuveni | Role of substrate unbinding in Michaelis-Menten enzymatic reactions[END_REF].

𝐸𝐸 + 𝑆𝑆 ⇄ 𝐸𝐸𝑆𝑆 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 �⎯� 𝐸𝐸 + 𝑃𝑃
While the first step is a quasi-instantaneous equilibrium, we consider that the second part of the equation, that is irreversible, is the limiting step. Thus the reaction's velocity v (measuring unit: mol.L -1 .s -1 ) depends on kcat and the concentration of [ES] only, (in the equations of this section, square brackets refer to a molecule's molar concentration (measuring unit: mol.L -1 )) as shown in equation 2.1

𝑣𝑣 = 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 • [𝐸𝐸𝑆𝑆] (2.1)
Equations 2.2 and 2.3 give the kinetics of ES formation v1 and elimination v2 respectively (for both, measuring unit: mol.L -1 .s -1 ):

𝑣𝑣 1 = 𝑘𝑘 𝑏𝑏 • [𝐸𝐸] • [𝑆𝑆] (2.2) 𝑣𝑣 2 = (𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 ) • [𝐸𝐸𝑆𝑆] (2.3)
During the stationary equilibrium phase, [ES] is stable, which means that its formation and elimination are equal (see equation 2.4):

𝑣𝑣 1 = 𝑣𝑣 2 ⇔ 𝑘𝑘 𝑏𝑏 • [𝐸𝐸] • [𝑆𝑆] = (𝑘𝑘 𝑢𝑢 + 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 ) • [𝐸𝐸𝑆𝑆] ⇔ [𝐸𝐸] [𝐸𝐸𝐸𝐸] = 𝑘𝑘 𝑢𝑢 +𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑏𝑏 •[𝐸𝐸]
(2.4)

According to mass conservation law, the total quantity of the enzyme ET is constant and equal to the sum of its bound ES and unbound E fractions. Based on this assumption, in equation 2.5 we express ES in function of E and ET.

[𝐸𝐸 𝑇𝑇 ] = [𝐸𝐸𝑆𝑆] + [𝐸𝐸] = [𝐸𝐸𝑆𝑆] • �1 + [𝐸𝐸] [𝐸𝐸𝐸𝐸] � ⇔ [𝐸𝐸𝑆𝑆] = [𝐸𝐸 𝑇𝑇 ] 1+ [𝐸𝐸] [𝐸𝐸𝐸𝐸] (2.5) Replacing [𝐸𝐸]
[𝐸𝐸𝐸𝐸] in equation 2.5 by its expression from equation 2.4 gives equation 2.6:

[𝐸𝐸𝑆𝑆] = [𝐸𝐸 𝑇𝑇 ] 1+ 𝑘𝑘 𝑢𝑢 +𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑏𝑏 •[𝐸𝐸]
(2.6)

Finally, to obtain the 'Michaelis-Menten' (MM) equation (2.7), [ES] in equation 2.1 should be written under its expression obtained in equation 2.6:

𝑣𝑣 = 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 • [𝐸𝐸 𝑇𝑇 ] 1+ 𝑘𝑘 𝑢𝑢 +𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑏𝑏 •[𝐸𝐸] = 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 •[𝐸𝐸 𝑇𝑇 ]•[𝐸𝐸] [𝐸𝐸]+ 𝑘𝑘 𝑢𝑢 +𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑏𝑏 ⇔ 𝑣𝑣 = 𝑉𝑉 𝑚𝑚𝑐𝑐𝑚𝑚 •[𝐸𝐸] 𝐾𝐾 𝑚𝑚 +[𝐸𝐸]
(2.7)

In the MM equation, 𝑉𝑉 𝑚𝑚𝑐𝑐𝑚𝑚 = 𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 • [𝐸𝐸 𝑇𝑇 ] (measuring unit: mol.L -1 .s -1
) is the maximal enzymatic velocity attained when the binding sites of the enzymes are saturated at high [S], and

𝐾𝐾 𝑚𝑚 = 𝑘𝑘 𝑢𝑢 +𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 𝑏𝑏
(measuring unit: mol.L -1 ) is the so-called 'Michaelis constant' that is interpreted as the substrate concentration at which enzymatic velocity attains half its maximal value. This MM reaction scheme, linking enzymatic velocity v to the substrate concentration, has been applied to the analysis of enzymatic kinetics, for over a century and continues nowadays to be an important reference in different scientific fields like biochemistry, pharmacology and physiology.

The Hill Equation

MM kinetics applies well to a single molecule S binding (enzymatic) reaction, but things get more complicated when additional molecules try to associate with the enzyme E. In fact, binding of one molecule of S at one site may alter the affinity of the enzyme E (or any macromolecule: receptor, transporter etc.) for other new substrates and hence regulates their binding rate. The property behind this phenomenon is called the cooperative binding or 'cooperativity'. 'Cooperativity' is positive when the binding of one molecule of S increases E's affinity for other substrates, and negative when this affinity is decreased. However, if this is not the case and E's affinity is not changed, binding of different substrates S is completely independent and thus is considered non-cooperative [START_REF] Weiss | The Hill equation revisited: uses and misuses[END_REF]. While non-cooperative binding can be modeled by the MM equation [START_REF] Alon | An introduction to systems biology: design principles of biological circuits[END_REF], the other cases require different kinetics. Graphically, by plotting v against [S], we obtain a sigmoidal S-shaped curve when biding is cooperative and hyperbolic when it is not (Figure 5).

Considering the multiple binding patterns reaction where n molecules of S bind to the same macromolecule E forming an ES complex, the equilibrium that takes place can be represented as follows:

𝐸𝐸 + 𝑛𝑛𝑆𝑆 ⇌ 𝐸𝐸𝑆𝑆 𝑛𝑛
On equilibrium, applying the law of mass action permits to write a Kd-dependent expression of [ESn] in equation 2.8; Kd (measuring unit: (mol.L -1 ) n ) being the ratio of ku (measuring unit: s -1 ) to kb (measuring unit: (L.mol -1 ) n .s -1 ) [START_REF] Atkins | A simple digital-computer program for estimating the parameters of the hill equation[END_REF]:

𝑘𝑘 𝑢𝑢 • [𝐸𝐸𝑆𝑆 𝑛𝑛 ] = 𝑘𝑘 𝑏𝑏 • [𝐸𝐸][𝑆𝑆] 𝑛𝑛 ⇔ [𝐸𝐸][𝐸𝐸] 𝑛𝑛 [𝐸𝐸𝐸𝐸 𝑛𝑛 ] = 𝑘𝑘 𝑢𝑢 𝑘𝑘 𝑏𝑏 = 𝐾𝐾 𝑑𝑑 ⇔ [𝐸𝐸𝑆𝑆 𝑛𝑛 ] = [𝐸𝐸][𝐸𝐸] 𝑛𝑛 𝐾𝐾 𝑑𝑑
(2.8) Equation 2.9 gives for E, the ratio r of the bound portion the enzyme [ESn] over its total amount available. Equation 2.10 is what we find by substituting [ESn] in equation 2.9 by its expression from equation 2.8.

𝑟𝑟 = [𝐸𝐸𝐸𝐸 𝑛𝑛 ] [𝐸𝐸𝐸𝐸 𝑛𝑛 ]+[𝐸𝐸]
(2.9)

𝑟𝑟 = [𝐸𝐸] 𝑛𝑛 𝐾𝐾 𝑑𝑑 +[𝐸𝐸] 𝑛𝑛
(2.10) Back in 1910, Archibald Vivian Hill (1886-1977) proposed is a sigmoid shaped quantitative model of oxygen binding to hemoglobin that took his name: the 'Hill equation' (equation 2.11) [START_REF] Gesztelyi | The Hill equation and the origin of quantitative pharmacology[END_REF][START_REF] Stefan | Cooperative binding[END_REF]. Later on, and not mentioned in the works of Hill, [START_REF] Clark | The reaction between acetyl choline and muscle cells: Part II[END_REF][START_REF] Mclean | APPLICATION OF THE LAW OF CHEMICAL EQUILIBRIUM[END_REF] pointed out the strong connection between the aforementioned laws of equilibrium (equations 2.8, 2.9 and 2.10) and the 'Hill equation' (equation 2.11). Then, on the rational basis of the receptor occupancy theory [START_REF] Ariens | Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory[END_REF], the 'Hill equation' was proposed by [START_REF] Wagner | Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man[END_REF] to be used for the analysis of the nonlinear drug concentration-effect mechanisms [START_REF] Csajka | Pharmacokinetic-pharmacodynamic modelling: History and perspectives[END_REF][START_REF] Mager | Diversity of mechanism-based pharmacodynamic models[END_REF]) (e.g., the renal uptake of aminoglycosides, the tubule glomerular feedback in kidney [START_REF] Rougier | Aminoglycoside nephrotoxicity: modeling, simulation, and control[END_REF], ligand binding in voltage-dependent ion channels [START_REF] Haynes | Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane[END_REF] etc.).

𝑃𝑃 𝑠𝑠𝑐𝑐𝑐𝑐 = 100 𝑃𝑃 𝑂𝑂 2 𝛼𝛼 𝐾𝐾 𝑑𝑑 +𝑃𝑃 𝑂𝑂 2 𝛼𝛼 (2.11)
The original 'Hill equation' (equation 2.11) was developed to quantify the percentage of hemoglobin saturation with oxygen Psat based on t he partial pressure of oxygen 𝑃𝑃 𝑂𝑂 2 (measuring unit: mmHg). This equation was then rewritten as a rational function applied to concentrations (equation 2.12). In this currently used version of the 'Hill equation', f represents the fraction of E's saturated binding sites (in analogy with the Psat percentage of equation 2.11 and α is the 'Hill coefficient' that represents the degree of 'cooperativity'.

𝑓𝑓 = 𝑣𝑣 𝑉𝑉 𝑚𝑚𝑐𝑐𝑚𝑚 = [𝐸𝐸] 𝛼𝛼 𝐾𝐾 𝑑𝑑 +[𝐸𝐸] 𝛼𝛼 = [𝐸𝐸] 𝛼𝛼 𝐾𝐾 𝑚𝑚 𝛼𝛼 +[𝐸𝐸] 𝛼𝛼
(2.12) 'Cooperativity' is positive when α > 1, negative when α < 1 and binding is independent and non-cooperative if α = 1. In this last case Hill equation is equivalent to the MM kinetics.

Mathematically, the MM equation is a special case of the Hill equation.

Despite the perfect analogy between the two models, α and n should not be mixed up.

The first, the degree of 'cooperativity' α, can be a decimal and tell us about post-binding E's affinity to associate with other substrate molecules. The second, the number n of S molecules bound to the enzyme E, is a stoichiometry indicator and can only take integer values. However, it has been shown that the 'Hill coefficient' α is a correct estimate for the number of binding sites n in some cases like the positive cooperative binding case (α > 1) [START_REF] Weiss | The Hill equation revisited: uses and misuses[END_REF]. This twofold interpretation of the same model represents the theoretical shift in the approach towards the 'Hill equation', from a mechanistic explanatory model (with n) to a descriptive curve-fitting model (with α).

Bayesian Statistical Tools

 The Bayes Theorem

Bayesian analysis proceeds by inferring about (hidden) "causes" on t he basis of (observed) "effects" i.e., on the basis of data. Being probabilistic in essence, Bayesian analysis derives its inferences in the form of probability distributions for the variables it seeks to identify.

Such distributions, called the 'posterior distribution', are obtained by combining what is already known (i.e., the 'prior distribution') to what is experimentally observed about those variables (i.e., data, 'observed evidence'); and is therefore a compromise of the two [START_REF] Gill | Why clinicians are natural bayesians[END_REF] Holleman and Simel, 1997) (Figure 6). The values of model parameters, if not precisely known, are also described by probability distributions and are treated as "random variables" [START_REF] Bois | Bayesian inference[END_REF].

The Bayes theorem, first described by Thomas Bayes in 1774 [START_REF] Bayes | An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev[END_REF][START_REF] Stigler | Laplace's 1774 M emoir on Inverse Probability[END_REF], consists in updating knowledge of the phenomenon on t he basis of observations, in three steps. The first step consists in defining the background knowledge/belief about variables, gathering information and setting up the 'prior distribution' [START_REF] Bois | Bayesian inference[END_REF].This initial probability estimate is often based on scientific literature and/or previous experiences [START_REF] Phelps | Pretest probability estimates: a pitfall to the clinical utility of evidence-based medicine?[END_REF] and can be precise (for common physiological values for example)

or vaguely approximated (e.g., in case of diffusion velocity of a given chemical between two compartments).

In the second step, appropriate experiments are performed, needed data are collected and 'observed evidence' is set. Finally, in the third step, using the Bayes formula, the 'prior distribution' is updated on the basis of the 'observed evidence' (i.e., experimental data) [START_REF] Bois | Bayesian inference[END_REF].

Thomas Bayes' idea was to simply apply the definition of conditional probabilities to these inferences. By definition the conditional probability of an event A, given event B, is as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴,𝐵𝐵) 𝑃𝑃(𝐵𝐵)
(2.13)

Where P(A,B) denotes the joint probability that both A and B occur, and P(B) the probability that B occurs, regardless of A. That definition applies to probabilities, but also, more generally, to probability distributions, be they discrete or continuous density functions.

If experimental data obtained (i.e., 'observed evidence') is different from what we expect (i.e., 'prior distribution'), we usually want to infer about the parameter values susceptible to have led to such observations. That requires computing P(θ|y), the 'posterior distribution' of all model's parameters, θ, given the data y (i.e., posterior to collecting y). Applying equation 2.13, we simply obtain:

𝑃𝑃(𝑦𝑦|𝜃𝜃). 𝑃𝑃(𝜃𝜃) = 𝑃𝑃(𝑦𝑦, 𝜃𝜃) = 𝑃𝑃(𝜃𝜃|𝑦𝑦). 𝑃𝑃(𝑦𝑦) ⇒ 𝑃𝑃(𝜃𝜃|𝑦𝑦) = 𝑃𝑃�𝑦𝑦�𝜃𝜃�.𝑃𝑃(𝜃𝜃) 𝑃𝑃(𝑦𝑦) (2.14)
In conclusion, the Bayes theorem states that the probability distribution of the unknowns given the data at hand are proportional to the 'prior distribution' P(θ) of those unknowns times the 'data likelihood', P(y|θ), which depends on the model. The term P(y) is called the prior predictive probability of the data. Since the data are considered fixed numerical values, P(y) can be considered as a normalization constant. The posterior parameters' distribution summarizes what is known about θ after collecting the data y and the remaining uncertainty about it. It is obtained by "updating" the prior P(θ) using the data likelihood (equation 2.14), and this updating is a simple multiplication [START_REF] Bois | Bayesian inference[END_REF]. 

 Bayesian Network -BN

A Bayesian network (BN) is a probabilistic model whose underlying structure is a graph (equivalently, a network) where each node represents a v ariable of the problem (i.e., for an AOP: chemical substance, MIE, KEs and AO), and each arc between two nodes represents a direct dependency (ideally, a causal relationship) [START_REF] Pearl | Probabilistic reasoning in intelligent systems: networks of plausible inference[END_REF]. Within such a BN, a probabilistic relationship (specifically, a component of a conditional distribution function) is defined by each arc linking two variables. For example, if an arc joins variables A and B, a relationship such as "A is distributed normally around k⨯B, with a variance equal to s 2 " has to be defined. As a result, every node of the network has a probability distribution conditioned by other network variables. This implies that a variable cannot depend upon itself, even indirectly, and therefore cycles are not a llowed in BNs. Evidence on a set of nodes (for example, measurement of some KEs) updates the probability distributions of all their dependent nodes [START_REF] Jaworska | Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice: Integrated testing strategy to assess skin sensitization potency[END_REF]. Learning a BN from data means that one searches for those dependencies (and associated distributions) between variables that best explain the data. On the other hand, calibrating a BN implies estimating the parameters of the distribution functions that link variables.

However, standard BNs do not provide a direct mechanism for representing temporal dependencies. In cases where the data time evolution is progressive rather than instantaneous, it is natural to use a dynamic BN (DBN) to integrate those data [START_REF] Kjaerulff | Bayesian Networks and Influence Diagrams[END_REF].

DBNs, typically, replicate an underlying structure at several (discrete) times corresponding to measurement time points. Each node of a given time slice may depend on nodes in the previous time slice and on nodes in the same time slice [START_REF] Pavlovic | Dynamic Bayesian Networks for Information Fusion with Applications to Human-computer Interfaces[END_REF]. In this way, the value of a node at time ti may depend on its own value at time ti-1, without introducing a loop in the graph.

Model's Calibration

Bayesian model's calibration is the estimation of the (joint) posterior distribution of the values of a model's parameters. If the model is checked, then we can perform model validation.

Validation goes beyond checking and allows to verify if the model will correctly predict, even outside of the data range. It consists in verifying the adequacy of predictions of new data and then to check the plausibility of the model for the purpose for which it will be used. As Bayesian calibration allows to fit the data, it can also adjust all the parameters and therefore plot the estimation of metabolism rate.

For many years, Bayesian statistics was essentially restricted to very simple models like conjugate models where the mathematical form of the prior and likelihood are jointly chosen to ensure that the posterior may be evaluated with ease. Numerical integration methods based on analytic approximations were developed in 70s and 80s of the last century with some success, but a revolutionary change occurred in the early 1990s with the adoption of "indirect methods" that draw random samples from the 'posterior distribution' without needing a closed-form of the distribution to sample from. A large number of such algorithms exists (e.g., Gibbs sampling Markov chain Monte Carlo etc.) [START_REF] Gilks | Markov Chain Monte Carlo in Practice[END_REF]. In these methods, widely used nowadays, the a posteriori distribution integrates a priori information and experimental data in order to represent the "updated" knowledge about parameters. Model's calibration is the Bayesian estimation of this a posteriori and of the value a model's parameters. Bayesian calibration of a model starts by defining, for each parameter, the a priori distribution reflecting the knowledge we have about concerned parameters, even before the beginning of data collection and observation (van de [START_REF] Van De Schoot | A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research[END_REF]. In the following paragraphs, the Monte Carlo method and the Markov chain Monte Carlo (MCMC) algorithm will be presented.

 The Monte Carlo Method

Simple Monte Carlo simulations are based on s uccessive random and independent samples from a given distribution. Any 'posterior distribution' (and its properties: mean, variance, quantiles etc.) may be approximated by taking a very large random sample of realizations of θ from p(θ|y). Samples from the posterior can be generated in several ways, without exact knowledge of the analytical form of p(θ|y). Direct methods include rejection sampling, which generates independent proposals for θ, and accepts them at a probability proportional to the desired posterior. Importance sampling can also be used by appropriately weighting independent samples from a user-chosen distribution on θ, properties of the posterior p(θ|y) can be estimated [START_REF] Spiegelhalter | Bayesian statistics[END_REF]. Realizations from the posterior used in Monte Carlo methods need not be independent, or generated directly. When more powerful MCMC methods are used.

 Markov chain Monte Carlo (MCMC) method

The MCMC simulation algorithm is a widely used indirect method for models' parameters calibration. MCMC is an iterative procedure [START_REF] Kruschke | Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison[END_REF][START_REF] Kruschke | Bayesian estimation supersedes the t test[END_REF].

The MCMC sample of each draw is and conditioned by the precedent iteration, hence the appellation "Markov chain" because the new value depends partly on the previous. Then, a ratio of probabilities between the two last draws is calculated, to determine if the new candidate θ' is selected or not. The algorithm continues sample proposed values and accepts or rejects them, according to the value of the calculated ratio, as long as the user wish [START_REF] Bois | Bayesian inference[END_REF]. After a sufficient number of draws, the simulated chain converges in probability towards a prescribed joint density of model parameters, for example towards their 'posterior distribution' [START_REF] Bois | Bayesian inference[END_REF]. Practically, it is common to simulate two, three (or more) chains for the calibration of the same parameter(s) with the same likelihood, each time beginning from a different starting point. All simulated chains are run for a certain (typically large, >1000) number of draws until the convergence of all chains approximately obtained [START_REF] Gelman | Inference from iterative simulation using multiple sequences (with discussion)[END_REF]. It is then possible to estimate empirically the a posteriori distributions of model parameters, for example by computing its quantiles and moments.

The posterior density forms the basis for evaluating the quality of model fit, comparing different hypotheses about parameter values, and choosing the parameter values for which the model best fits the data. (QIVIVE) [START_REF] Hamon | Quantitative in vitro to in vivo extrapolation of tissues toxicity[END_REF]. In 'Supplementary Material 7.1', Figure S1 shows a schematic representation of this model. with the SB approach following exposure to xenobiotics, using GSH and 5-oxoproline and ophthalmic acid as biomarkers.

CONSTRUCTION OF SYSTEMS BIOLOGY MODEL OF NRF2 CONTROL OF OXIDATIVE STRESS

METHODS

Remodelling Hamon's model

Despite the general outlook on the Nrf2 pathway that it offers, the model of Hamon et al. (2014) has two limitations: first, modelling of transcription and translation is too complicated, and second, GSH synthesis is over-simplified.

In Hamon's model, two gene activator schemes are available: either the xenobiotic X binds to AhR to form an activator complex that we named nucX-AhR, or, under increasing amounts of ROS, a part of the trapped cytoplasmic Nrf2 dissociates from Keap1 to travel to the nucleus (i.e., nucNrf2) and activates its target genes. Hamon's model details the transcription and translation of eight genes: CYP, GS, GCLC, GCLM, Nrf2, GST, GPX and MRP. These genes split into two categories: those activated by only one TF (either X-AhR (e.g., CYP) or Nrf2 (e.g., GS, GCLC and GCLM)), and those activated by both TFs (e.g., Nrf2, GST, GPX, and MRP).

To describe the transcription and translation of each of these TFs' targets, the model incorporates the following steps: a binding-unbinding equilibrium between each of the gene's activators and their specific genetic receptor, transcription induction by the activator-receptor complex, followed by translation and mRNA degradation. In the nuclear (gray) compartment of Figure S1 in 'Supplementary Material 7.1', all the steps of this cascade of reactions are illustrated. Application of the same process to each of the eight genes results in a large number of state variables (51) and parameters (78), with a cascade of mostly linear differential equations resulting in a complex system of equations hard to integrate (some reactions are extremely fast).

 Hill-based model for transcription and translation

To Names of genes are in orange, of mRNA are in green, of enzymes are in purple, of other proteins and metabolites in blue and of extracellular constants in yellow.

 Calibration protocol

We wanted our simplified model to behave as closely as possible as the original Hamon's model. In order to find appropriate values for the Hill parameters (for the transcription of each gene: k0, Vmax and km) we simulated virtual data that covers all dose range combinations with substantial transcription. Thus, both models (the new and the original) were run with a number of incremental doses of TFs (i.e., nucNrf2 and/or nucX-AhR) between zero and saturation level during a time period that ensures reaching a stable equilibrium between exposures. Table 3 summarizes the protocol used: starting from zero, every 400,000 seconds, an incremental dose of the TF(s) was added. For genes that are under control of both TFs, all possible combinations of concentrations of the two TFs were considered. For equations 3.1 and 3.2, MCMC simulations were applied to find parameter values for which the curve of the new Hill-based model fits best the curve of Hamon's model.

 Software

The Hill-based SB model was simulated and calibrated with the GNU MCSim software, version 5.6.6 (Bois, 2009a). For all genes and parameters, two MCMC chains were run in parallel for 10,000 iterations and convergence was checked on t he last 9,000 iterations. All fitting plots were created with R, version 3.4.4 (R Development Core Team, 2013).

Table 3. Virtual exposure scheme applied on both Hamon's (old) and Hill-based (new) SB models to perform MCMC curve fitting and establish equivalency between them. Genes that are activated by a single TF (i.e., CYP, GS, GCLC and GCLM) were exposed to five doses (one dose per time-point) ranging from 0 to 100 zeptomol doses of their TF (i.e, nucNrf2 or nucX-AhR). Genes that are activated by both TFs (i.e., Nrf2, GST, GPX and MRP) were exposed to five different and separate combinations of doses per time-point (25 combinations are possible). All exposures are in zeptomol. (ATP) and energy uptake in the process. Other than that, the only changes we made to Geenen's model were the definitive suppression of the folate cycle and the application to the metabolism of paracetamol. Finally, we added two extra genes (i.e., HMOX1 and SRXN1) which are often used as activation markers for Nrf2 pathway (Figure 8).

Genes

Assembling those two models was a multi-step process that started with the deep understanding of the functioning and specificities of each of the two models and then by spotting the common points between them. Next, the fusion of the two models required a rigorous work of homogenization of names and symbols of all participating elements (i.e., state variables, reaction names, parameters, constants, volumes, exposure molecule(s), etc.) between the two models. Some differences between the two models emerged at this stage. For instance, the 'gamma-glutamyl-cysteine' (γGC) enzyme was named 'glc' in Geenen's model and 'r-GC' in Hamon's. In Geenen's model, the synthesis of γGC was catalyzed by the enzyme 'glutamyl cysteine synthetase' when the same reaction in Hamon's model was catalyzed by GCL and GCLC, and consumes ATP (Figure 9). For this reaction, ATP and the action of GCL and GCLC from Hamon were taken into account as an added value to the equation, and integrated to GSH synthesis according to Geenen's model. S

RESULTS

Hill parameter values obtained by MCMC simulations for all eight genes are listed in Table 4. These parameters were used to plot the curve fitting graph for each gene, in order to check the equivalency of both versions of transcription model: Hamon's model (old version) and Hill-based model (the new version). In this section, we have shown one example to illustrate each of the two cases we have: GCLC (Figure 10) for genes that are under the effect of one single TF (either nucNrf2 or nucX-AhR) and MRP (Figure 11) for genes that are activated by both TFs (nucNrf2 and nucX-AhR). The rest of the graphs are presented in 'Supplementary Material 7.1': CYP (Figure S4), GCLM (Figure S5), GS (Figure S6), GST and GPX (Figure S7) and Nrf2 (Figure S8).

For graphs of the genes that are activated by a single TF (i.e., CYP, GCLC, GCLM and 3 applied on both Hamon's (colored dots) and Hill-based (colored curves) SB models. nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on different curves (0 (red), 0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of nucX-AhR). In the long term, AOPs can support the development of 'integrated testing strategies'

and their application in risk assessment [START_REF] Leist | Adverse outcome pathways: opportunities, limitations and open questions[END_REF][START_REF] Vinken | The adverse outcome pathway concept: A pragmatic tool in toxicology[END_REF]. In case of 'integrated testing strategies' building, the data generated by alternative methods (i.e., in silico, in vitro),

when combined with existing animal data, are used and assessed by means of a f ixed data interpretation procedure (OECD, 2016;[START_REF] Sachana | Approaching chemical safety assessment through application of integrated approaches to testing and assessment: combining mechanistic information derived from adverse outcome pathways and alternative methods[END_REF]. For this purpose, quantitative AOPs that provide dose-response and time-course predictions [START_REF] Conolly | Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology[END_REF] are likely to be more valuable for 'integrated testing strategies' construction than qualitative AOPs. Parameter values for a qAOP can be either obtained from legacy data or new targeted experimental work, or by optimizing the fit of model predictions to data [START_REF] Villeneuve | Adverse Outcome Pathway (AOP) Development I: Strategies and Principles[END_REF]. So far, the few qAOPs published use either empirical dose-response models to quantify KERs (e.g., [START_REF] Hassan | Neurodevelopment and thyroid hormone synthesis inhibition in the rat: quantitative understanding within the adverse outcome pathway framework[END_REF], or are based on an underlying SB model (e.g. [START_REF] Conolly | Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology[END_REF]. In canonical linear AOP diagrams, KEs are represented by boxes and KERs by arrows connecting them, without cycles (Figure 12). The path linking the various KEs should not form loops (feedback of feed-forward loops between two consecutive KEs can simply be indicated by a symbol). Thus, according to graph theory, AOPs are acyclic directed graphs [START_REF] Pavlopoulos | Using graph theory to analyze biological networks[END_REF]. which are the underlying structure of BNs [START_REF] Oates | Network inference and biological dynamics[END_REF]. The links between their nodes correspond to simple statistical dependencies.

Thus, BNs can be viewed as an intermediate approach between empirical models and SB models. They have already been applied to AOPs in the area of skin sensitization to facilitate potency assessment for classification purposes and to support hazard characterization in a semiquantitative way [START_REF] Jaworska | Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy[END_REF][START_REF] Rovida | Integrated testing strategies (ITS) for safety assessment[END_REF]. Here, we further demonstrate the application of DBNs to AOP quantification.

The work described in this chapter is intended to validate the SB model of the Nrf2 control of oxidative stress described in 'chapter 3' using experimental data and to compare its behavior to two other models (a statistical dose-response relationships model and a DBN model). This study will be soon submitted to publication. 

METHODS

Experimental data

Thiol oxidation following exposure to various concentrations of potassium bromate (KBrO3) (control, 0.375, 0.75, 1.5. 3, a nd 6 mM) (see 

Chronic Kidney Disease -CKD -AOP

The proposed AOP (Figure 12) links thiol oxidation to CKD via oxidative and mitochondrial stress. Within the nephron, the proximal tubule is especially susceptible to injury from oxidative chemicals, as they can cause mitochondrial damage, which in turn can result in impairment of active and secondary transport, as well as in cell death. CKD is characterized by a progressive loss of renal function, the onset of which is initiated and or accelerated by other factors such as diabetes, high blood pressure or exposure to nephrotoxic chemicals [START_REF] Aschauer | Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: A transcriptomic study[END_REF][START_REF] Staples | Risk factors for progression of chronic kidney disease[END_REF]. Given its high energy demand for active transport, the nephron proximal tubule is especially susceptible to injury from oxidative chemicals, as they can cause mitochondrial damage [START_REF] Kong | Oxidative Stress, Mitochondrial Dysfunction and the Mitochondria Theory of Aging[END_REF]. Here, we analyze the AOP until the initiation of cell death following induction of oxidative stress, since our analysis is based on in vitro data obtained in human proximal tubule (RPTEC/TERT1) cells exposed to KBrO3. The link from cell death to kidney function impairment thus cannot be modeled based on the available data and we will focus on a set of core early KEs leading to proximal tubule damage.

Dose-Response based qAOP

In the empirical dose-response approach, dose(-time)-response equations were fitted to data on the effect of KBrO3 on GSH, DCF and lactate. With such data, linking chemical exposures to KEs, the corresponding equations need to be mathematically inverted to obtain chemical-independent KERs. Only the exposure to MIE relationship can be used as is.

In the work detailed in 'Supplementary Material 7. 

𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 -𝑒𝑒𝑒𝑒𝑒𝑒�-𝑘𝑘 𝑑𝑑 ⋅ 𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂 3 �� �1 -𝑒𝑒𝑒𝑒𝑒𝑒(-𝑘𝑘 𝑐𝑐 ⋅ 𝑃𝑃)� (4.2)
Finally, the polynomial equation 4.3 that models the CKBrO3 -time -lactate concentration (Clac) relationship, fits the data adequately.

𝐶𝐶 𝑙𝑙𝑐𝑐𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂 3 + (𝑃𝑃 + 𝑒𝑒𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂3 )𝑃𝑃 + (𝑑𝑑 + 𝑓𝑓𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂3 )𝑃𝑃 2 (4.3)

Bayesian Network -BN -qAOP

The AOP shown on Figure 12 can be taken as a BN structure. Here, we do not need to learn our BN structure, but we need to calibrate it. Given that we have dose-time-response data on DCF and lactate, and that their time evolution is progressive rather than instantaneous, it is natural to use a DBN to integrate those data [START_REF] Kjaerulff | Bayesian Networks and Influence Diagrams[END_REF]. Figure 13 shows the DBN that the article's co-author Wang GAO constructed to quantify the CKD AOP. In this figure, the DCF readout at a given time depends on its previous value (indeed, in the in vitro system DCF accumulates with time). The same applies to the lactate concentration. There are also some instantaneous or constant dependencies: We considered that CKBrO3 was constant with time throughout the experiments (note that this is an approximation, but we have no information on the kinetics of KBrO3 in the in vitro system). The thiol depletion readout (GSH level remaining after 1 hour) is simply an indicator of KBrO3 potency and was also taken to be constant.

In 

The Systems Biology -SB -Model

We used the SB model developed in 'chapter 3' to analyze of the oxidative stress (DCF) data. The model does not describe lactate formation and hence we did not consider the lactate data in this approach. As mentioned before, this SB model focuses on control of the oxidative stress by Nrf2 and GSH, one of the major toxicity pathway studied in systems toxicology (Geenen et al., 2012a;[START_REF] Hamon | Systems biology modeling of omics data: effect of cyclosporine a on t he Nrf2 pathway in human renal cells[END_REF][START_REF] Jennings | An overview of transcriptional regulation in response to toxicological insult[END_REF]. Therefore, we used it only to study the relationship between KBrO3 exposure, time, and DCF fluorescence in detail.

Upon oxidative stress, when the intra-cellular level of ROS exceeds the capacity of this defense system to replenish GSH through new synthesis, GSH depletion occurs and ROS are left free to cause extensive cellular damage, cell death, nephron attrition and CKD. 

Parameter Estimation

Parameter calibrations for the three types of qAOPs investigated were done in a Bayesian statistical framework, using MCMC simulations [START_REF] Bernillon | Statistical issues in toxicokinetic modeling: a Bayesian perspective[END_REF][START_REF] Bois | Bayesian inference[END_REF], or Hamiltonian MCMC [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. Basically, for each parameter to calibrate, a prior distribution summarizing existing knowledge was updated on the basis of the likelihood of the current data to yield a posterior distribution. Those distributions were obtained by random sampling from several simulated Markov chains. The convergence of the simulated chains was checked using the Rhat criterion of [START_REF] Gelman | Inference from iterative simulation using multiple sequences (with discussion)[END_REF].

The complexity of the various qAOP models differed and slightly different sampling strategies were used. For parameters estimation of the dose-response based model and for the DBN model, please refer to Table S4, Table S6 and the explanation in 'Supplementary Material 7.2.2' and '7.2.3'.

For the SB model, parameter calibration was done by Metropolis-Hastings MCMC with GNU MCSim (Bois, 2009a). Three Markov chains of 30,000 i terations were run in parallel, keeping the last 5,000 iterations. For each estimated parameter, non-informative uniform prior distributions were used (see Table 5).

The data likelihood is clearly separated from the structural equations. To calibrate the model with our experimental data on the effect of KBrO3 on GSH and DCF, we proceeded step by step, increasing the complexity of the model by introducing reactions according to the following schedule:

1.

Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3), on the basis of the KBrO3 -GSH cell-free experiment data; kGSHe,KBrO3 was held at its maximum posterior value in the subsequent steps.

2.

Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3) and formation of DCF by ROS-mediated oxidation (kDCF,ROS): this is a minimal model for explaining the KBrO3 -time -DCF data.

3.

Adding bleaching of DCF (kbl)

4.

Adding the direct formation of DCF by KbrO3 (kDCF,KBrO3) (step 4a) or the action of KBrO3 on intra-cellular GSH (kGSHc,KBrO3) (step 4b)

5.

All of the above. To compare the eventual improvement in fit brought by those various model refinements we used various measures of model fit to the data: the data log-likelihood, the residual GSD (geometric standard deviation), the AIC (Akaike information criterion) (twice the difference between the number of parameters and the data log-likelihood), the BIC (Bayesian information criterion), and the DIC (Deviance information criterion) [START_REF] Gelman | Bayesian Data Analysis[END_REF].

Uncertainty propagation

The output of MCMC simulations is a sample of parameter sets (or parameter vectors) drawn from their joint distribution. Those sets of parameter values were used to rerun the corresponding model to make predictions for unobserved values. This is a type of Monte Carlo simulations in which the MCMC sampler acts as a random parameter values generator. We obtained distributions of predicted values that reflect the uncertainty of all parameter values.

Software

The dose-response based qAOP and the SB model were simulated and calibrated with the GNU MCSim software, version 5.6.6 (Bois, 2009a) 

RESULTS

Dose-Response based qAOP Model

The empirical dose response models given by equations 4. S5 were used to draw the figures.

Bayesian Network -BN -qAOP Model

The fit of the DBN qAOP to GSH, DCF, and lactate data is shown on Figure 15 and The DBN qAOP model does not need mathematical inversion to produce chemicalindependent predictions of the levels of DCF and lactate as a function of GSH depletion and time, because they can be directly simulated (Figure 17, bottom row). The resulting relationship for DCF is quite similar to that obtained with the previous qAOP (except for the linearity of the GSH -DCF relationship). However, the GSH -lactate relationship is very different, even though constant exposures to KBrO3 are simulated in both cases (the simulation is now considering a single medium change at time point zero). Note that lactate starts at zero to reach a plateau in about three days. The relationship between GSH and lactate is predicted to be linear by the DBN model, instead of being strongly nonlinear in the empirical qAOP. As before, predictions with uncertainty estimates can be easily made. For example, the DBN qAOP predicts that a chemical dose causing 80% reduction of GSH after 1 hour (i.e., 20% GSH left), leads to a lactate concentration of 5.8 ± 0.4 [5.2, 6.5] mM (mean, SD, 5 and 95 percentiles) after 3 days of exposure. This is significantly different from the prediction of the empirical qAOP. S7 were used to draw the figures.

System biology -SB -Model

The fit of the SB model to the GSH data (calibration step 1) is show on Figure 15 (red line).

It is better than the fit of the DBN qAOP (residual uncertainty for the GSH data is about 40%), despite the fact that both use the same decreasing exponential relationship between KBrO3and GSH. However, the kGSHe,KBrO3 parameter was calibrated to the data independently of the other parameters and its fit is not constrained by the other data. The fits obtained for the KBrO3 -time -DCF data at the various model calibration steps (parameters were re-calibrated at each step) are shown on Figure 18. Equivalent 2D representations are given in 'Supplementary material 7.2.4' Figure S13 to S16. Measures of the quality of fit are given in 18A). The depletion of extra-cellular GSH has only a minor effect on the intra-cellular GSH level (see 'Supplementary Material 7.2.4' Figure S13).

Therefore, only background cellular ROS produces DCF, at a constant rate, and the accumulation of DCF is predicted to be linear (according to the experimental protocol carboxy-DCF is expected to be in excess, and not depleted). Allowing DCF bleaching offers an explanation for the leveling off of the DCF fluorescence, yet the effect of KBrO3 is still not explained satisfactorily and the data fit is very poor (Step 3, Figure 18B). Adding the possibility that KBrO3 directly oxidizes DCF improves the fit markedly (Step 4a, Figure 18C), and the residual error σDCF goes down to about 20% (see Table 6). However, the effect of KBrO3 is linear, which is not exactly what the data shows. Instead of a direct oxidation of DCF by KBrO3, we tested the possibility that KBrO3 acts on intra-cellular GSH (Step 4b, Figure 18D). This has a clear effect on DCF production is clearly seen, but is it extremely nonlinear and does not lead to a reasonable fit to the data. Finally, in step 5, we put all the above parameters in the model and re-calibrated them. This did not lead to improvement compared to step 4a (see Table 7),

and the effect of KBrO3 on intra-cellular GSH was estimated to be nearly absent (data not shown). 

1.20×10 -7 1.21×10 -7 ± 3.2×10 -9 [1.14×10 -7 , 1.27×10 -7 ] kbl s -1 3.50×10 -5 3.50×10 -5 ± 1.4×10 -6 [3.23×10 -5 , 3.77×10 -5 ] kDCF,KBrO3 (μM.s) -1 1.22×10 -9 1.22×10 -9 ± 4.5×10 -11 [1.13×10 -9 , 1.30×10 -9 ] kGSHc,KBrO3 - 0 0 σ DCF RFU 1.20 1.20 ± 6.8×10 -3 [1.18, 1.21]
Table 7. Assessment of the SB model fit to the KBrO3 -time -DCF data using various criteria and for increasing model complexity. The various steps explain the main text of 'Methods 4.2.5'.

Step 1 is omitted since it does not require DCF data (parameter kGSHe,KBrO3, quantifying the action of KBrO3 on extra-cellular GSH, was independently calibrated from the GSH data and set to its maximum likelihood value in all cases). The other parameters were introduced as follows:

Step 2: action of KBrO3 on external GSH and formation of DCF by ROS (parameter kDCF,ROS); Step 3: adding DCF bleaching (parameter kbl); Step 4a: adding a direct formation of DCF by KBrO3 (parameter kDCF,KBrO3); Step 4b: same as step 3, plus adding an action of KBrO3 on internal GSH (parameter kGSHc,KBrO3);

Step 5: all parameters added.

Step 

DISCUSSION

In this paper, we explored various options for quantifying an AOP and deriving chemical independent KERs. Quantitative AOPs have been previously described [START_REF] Conolly | Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology[END_REF][START_REF] Hassan | Neurodevelopment and thyroid hormone synthesis inhibition in the rat: quantitative understanding within the adverse outcome pathway framework[END_REF], but here, we strove for a rigorous statistical treatment of the data and parametric inference. That is particularly important for a co rrect quantification of the uncertainties associated with predictions made when extrapolating to humans, for example. For this purpose, we used MCMC simulations in a Bayesian framework [START_REF] Bernillon | Statistical issues in toxicokinetic modeling: a Bayesian perspective[END_REF].

We also considered dose-time-response data, which significantly complicates the problem.

Very few off-the-shelf software provide adequate tools and models for such data, despite the fact that time is a key variable in qAOPs. Actually, while spatial structure is clearly apparent in AOP schemata (from molecules to cells, to tissues etc.), time is probably as important, but implicit: the time scale of molecular reactions is typically of the order of seconds, cells respond on a time scale of hours, tissues in a matter of days, and the whole body can take years to be significantly affected due to inbuilt redundancies in biology. This is particularly true for renal disease as humans have a large renal functional reserve and ill health is only apparent when the functional reserve is breached, but the time phenomenon is likely to be relevant for many, if not all, AOPs. This mix of time scales implies extrapolations in time from one KE to the next, which in the absence of obvious simplifying assumptions (steady-state etc.) requires the introduction of time and dose in the KERs.

The simplified AOP we used is not an OECD approved one, and we deliberately focused on a short sequence of KEs to demonstrate what can be achieved with different modeling approaches. The link to cell death and the subsequent link to kidney function impairment have not been included in our models given the absence of data on these downstream KEs.

Another important time-related consideration is obviously the kinetics of exposure to stressors. For QIVIVE, or in general for risk assessment, qAOPs can be linked with pharmacokinetic models, but only if they are time-consistent. The predictions of a qAOP considering only dose, with the implicit assumption that processes are instantaneous or have fixed delays represents a simplification of realistic time-varying exposures. Kinetics of exposure should also be considered during the development of qAOPs, because in vitro cellular concentrations of test chemicals are usually different from the nominal exposure medium concentration and change with time (Fisher et al., submitted). Nevertheless, in the absence of in vitro kinetic data on KBrO3 concentrations, we considered the nominal KBrO3 concentrations to be an adequate measure of (constant) exposure.

For the dose-response based qAOP, we used purely empirical models, i.e., simple models that adequately "fit" the data. Given the probably infinite number of such models, we did not attempt to find the "best" model, so the question of model choice and uncertainty associated with it is certainly relevant. Thus, despite the good fits obtained, such models and the resulting qAOP should typically not be used outside the time and dose domains in which the data were gathered. In such an approach, the data were also taken at "face value". For example, the fact that a four-hour pre-incubation period of cells with carboxy-DCF led to a nonzero DCF fluorescence just after exposure to KBrO3 was not taken into account, despite the fact that it provides information on the background rate of ROS formation. More importantly, the fact that medium was changed every day and that medium lactate concentrations were therefore zero immediately after that time was not modeled. It would have been difficult to empirically model the (more correct) dose-time response obtained with BNs (Figure 17) and we therefore limited the complexity of the empirical models. Furthermore, to obtain a correct statistical inference and at chemical-independent KERs, we resorted mathematical inversion of the KBrO3 -time -response models fitted to the data. This was indispensable, pending direct observation of ROS -time -lactate (or DCF -time -lactate) data, for example. However, inversion poses constraints on the form and complexity of the KERs that can be used.

In summary, of the various qAOP approaches employed, the empirical qAOP was the simplest and fastest to obtain. It described the data rather well, from a naive "goodness of fit" point of view. The universal nature of these models in their Effectopedia implementation allows them to be reused, expanding on t he idea of shared KE and KERs. However, a co rrect propagation of uncertainties along the chain of KERs, as done here, requires some mathematical and statistical sophistication (function inversion and Bayesian statistical inference), not provided by most software packages. Simply chaining dose-response relationships (that is, using the best predictions for one KE as input to the next KER, as it is often done) does not account for uncertainties in the "independent" variable at each step. In that case, uncertainty is not properly propagated through the AOP. The choice of models for KERs is arbitrary and does not offer mechanistic insight in the process. Moreover, their parameters do not have a biological interpretation (like the coefficients of a polynomial equation) and cannot be obtained by other means (e.g., QSAR models, specific experiments, etc.). Accounting for model uncertainty would further complicate matters. Finally, the domain of application of empirical qAOPs is strictly limited to the data range and strongly depends on t he relevance of the experimental protocol to the actual disease process. Their extrapolation is perilous.

The DBN qAOP we propose here is, to our knowledge, the first attempt to use such a model for a continuous dose-time-response predictive model. The work of Jaworska et al. or months or more (organ responses). This is because some events happen in seconds (binding), and others in days (cellular responses) or months or years (organ responses). In such cases, it might be possible to simplify time dependencies by separating time scales, i.e., by considering some effects to be instantaneous in comparison to others.

The SB model we developed addresses only part of the CKD AOP, but probably the most important one: the link between GSH, oxidative stress and the formation of fluorescent DCF. The model describes in detail the sensing and control of oxidative stress by the Nrf2 pathway. It is quite complex, with 57 differential equations and 335 parameters. However, since it has been already parameterized for RPTEC/TERT1 cells, only the five parameters specific of the KBrO3 and DCF reactions were calibrated with the data. We essentially found that a reasonable fit could be obtained if KBrO3 acts directly on DCF, and that DCF bleaches significantly with time. We also found that modeling the pre-incubation period gives important information about the cellular background rate of oxidative stress. Such informative modeling is easy to do with a mechanistic model. The non-linearity of the effect of KBrO3 is not well explained by a first-order reaction, but we did not want to introduce ad hoc equations or further hypotheses, because the mismatch already allows to arrive at the following point of discussion:

According to our SB model, neither action on e xtra-cellular nor on i ntra-cellular GSH can explain the DCF data. This questions the naive application of the GSH readout as a measure of KBrO3 effect in this AOP. While it is well accepted that thiol depletion can induce oxidative stress, the model suggests that this may not be the main mechanism of action of KbrO3 in the readout test. Thus KBrO3 may not be well suited to quantify our AOP, which also calls into question the results obtained with the other two models. However, we cannot exclude that the SB model is misleading us, because the parameter may not have been calibrated perfectly, and we cannot assess the overall uncertainty in the predictions of that model.

In terms of pros and cons, SB models have a huge advantage: They force us to think mechanistically about the data, asking which biochemical reactions could explain them. With some statistical sophistication, this allows us to formally check whether the data are compatible with our hypotheses. Aspects like time, dose, and spatial organization (at the organelle, cell, or tissue level) can be seamlessly integrated through the use of differential equations. SB models can also simulate particular details of the experimental protocols and background cellular processes, and that improves our understanding of the biology and of the tests themselves. They can also naturally integrate pharmacokinetic models, since they are built from the same principles and same mathematical objects. However, those models are complex to develop.

They demand specialized software for computation, and many data for parameter estimation.

In fact, the amount of data required is very large, so that SB models may never be completely validated, leaving some uncertainty about the correctness of their predictions. Therefore, such complicated SB models could be seen as investment for the future rather than a quick answer to urgent questions.

CONCLUSION

The three approaches tested have different advantages. Dose-response based qAOPs may seem the easiest to develop at first sight, but they have very limited extrapolation and explanation power. BNs are in fact easier to develop, once the technology is mastered, but they impose either strong constraints on e xperimental design (fixed dosing and observation schedules) or require complex statistical treatment (imputation). SB models are more complex to develop, but one can strive for parsimony, as when we simplified the gene regulation part of our model. Importantly, they offer insight in the data collection and biology that the other approaches cannot afford. In any case, the three approaches we presented can all fully propagate uncertainty about qAOP predictions, which is essential for proper risk assessment. The contrasted results we obtained demonstrate that the choice of approach is not neutral. They also emphasize the importance of data collection:

-On in vitro kinetics, to understand and take into account the fate of the chemicals in the test system; -On the baseline behavior of the cells, in the absence of chemical exposure. To this purpose, the experimental raw data be delivered to the modelers without pre-processing such as the normalization to background values. For example, if such normalization had been applied to our DCF data we would have lost important information on the background ROS production. Correcting for background erases a large part of the essential mechanistic understanding of an AOP. AOPs are as much about the underlying biology than about the effects of stressors; -From different readouts, to select the most relevant one for the underlying KE or to better understand a complex KE (such as oxidative stress); -On other chemicals to check whether the parameterized KERs are robust and really chemical-independent.

To avoid pitfalls in qAOP development, we propose to take at least two approaches in parallel: First, a mechanistic modeling path, able to help test hypotheses, design experiments and deeply understand the results; Second, because we cannot always wait to have a fully mechanistic model developed, a lighter statistical approach. At the moment dose-response based modeling is the simplest, but we hope that we can contribute to a more wide-spread dissemination of DBNs in this area. In this spirit, one of the goals of the Effectopedia platform is to facilitate the creation of qAOPs by integrating and comparing the results brought by various modeling approaches.

INVESTIGATION OF NRF2, AHR AND ATF4 ACTIVATION IN TOXICOGENOMIC DATABASES

THE GENERAL APPROACH

Many transcriptionally activated pathways are intimately involved in responses to chemical induced perturbations and toxicological outcomes [START_REF] Jennings | An overview of transcriptional regulation in response to toxicological insult[END_REF]. These pathways may be independent, correlated and partially or fully overlapping.

To this end, we investigated the segregation of the genes belonging to the three following transcriptionally regulated pathways: the dioxin response or AhR pathway, the Nrf2 pathway that regulates the response to oxidative stress and the ATF4 branch of the unfolded protein response. While these pathways have specific non-overlapping activation mechanisms and specific non-overlapping DNA binding elements reviewed in [START_REF] Jennings | An overview of transcriptional regulation in response to toxicological insult[END_REF], they also have overlapping downstream target genes. Adding to this complexity, converging toxicological mechanisms may lead to co-activation. Measuring their activation using transcriptomic approaches has great potential in increasing mechanistic understanding of chemical perturbations and to develop better prediction tools [START_REF] Aschauer | Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: A transcriptomic study[END_REF][START_REF] Limonciel | Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing[END_REF]. In addition, such an approach could be used for biological read across. We precisely aim to investigate the dynamics of the interactions between these three pathways from toxicogenomic data in order to define the signature of each of them.

However, there is still a knowledge gap pertaining to the interplay between the Nrf2, AhR, and ATF4 pathways. It is known that several of their downstream targets have promotor sequences for more than one of these TF. For example, NQO1 is driven by both AhR and Nrf2.

Also, it is likely that the pathways may cooperate in redressing certain homeostatic perturbations. For example, we have shown that Nrf2 and ATF4 cooperate on the level of GSH, where ATF4 promotes the uptake of GSH amino acid building blocks including glutamine and cysteine and promotes glutamate production via induction of asparagine synthetase. Nrf2 in turn through induction of GCL and GS produces new GSH [START_REF] Wilmes | Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress[END_REF].

Very little is known about species differences, tissue specificity, chemical specificity, or other subtleties in the activation of these pathways. To investigate this further, we performed a transcriptomic analysis of large and medium size toxicogenomic datasets from the European Union's 6 th and 7 th framework projects carcinoGENOMICS [START_REF] Vinken | The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays[END_REF] and Predict-IV [START_REF] Mueller | Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing[END_REF], as well as from TG-GATEs [START_REF] Igarashi | Open TG-GATEs: a large-scale toxicogenomics database[END_REF]. Within these studies, we also identified some potentially useful specific TFs of the pathways investigated.

KBrO3 and Phorone have been used to experimentally activate Nrf2. KBrO3 is an oxidizing agent causing ROS injury and oxidative stress induced DNA damage [START_REF] Ballmaier | Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells[END_REF][START_REF] Limonciel | Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells[END_REF]. In a recent study, [START_REF] Limonciel | Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq[END_REF] showed that KBrO3 activated the Nrf2 response without activation of the ATF4 response. Phorone can similarly activate Nrf2 due to GSH depletion [START_REF] Iannone | Metabolism of nitroxide spin labels in subcellular fractions of rat liver. II. Reduction in the cytosol[END_REF][START_REF] Oguro | Heme oxygenase-1 gene expression by a glutathione depletor, phorone, mediated through AP-1 activation in rats[END_REF][START_REF] Younes | Glutathione depletion by phorone organ specificity and effect on hepatic microsomal mixed-function oxidase system[END_REF].

Tunicamycin is a prototypical activator of the unfolded protein response (including the ATF4 branch) by causing an accumulation of misfolded glycoproteins in the ER [START_REF] Oslowski | Measuring ER stress and the unfolded protein response using mammalian tissue culture system[END_REF]. More specifically, Tunicamycin inhibits the N-glycosylation of newly formed proteins by the DPAGT1 gene, leading to an interruption in glycoprotein production [START_REF] Bassik | Knocking out the door to tunicamycin entry[END_REF]. Benzo(a)pyrene and Omeprazole have been used to activate AhR.

Benzo(a)pyrene is a polycyclic aromatic hydrocarbon and a prototypical AhR agonist [START_REF] Nebert | Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer[END_REF]. Omeprazole, a proton pump inhibitor [START_REF] Howden | Clinical pharmacology of omeprazole[END_REF] is also an AhR activator [START_REF] Jin | Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells[END_REF].

The aim of the study was to investigate potential codependences of ATF4, Nrf2 and/or AhR, to develop a signature panel for each pathway and to develop a chemical activity scoring system, for chemical grouping. This study was recently (October 2018) published in the Frontiers in Genetics scientific journal [START_REF] Zgheib | Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases[END_REF].

MATERIAL AND METHODS

The toxicogenomic datasets from the three projects (carcinoGENOMICS, Predict-IV and TG-GATEs) that were obtained in various experimental conditions (in human and rat in vitro liver and kidney models and rat in vivo, with bolus administration and with repeated doses), were combined and consolidated where overlaps between datasets existed. A bioinformatic analysis was performed to refine pathways' signatures and to create chemical activation capacity scores to classify chemicals by their potency and selectivity of activation of each pathway. With some refinement, such an approach may improve chemical safety classification and allow biological read across on a pathway level.

Generation of Target Gene Lists

For each of the three TF of interest (AhR, Nrf2, and ATF4), the following three search strategies, from the works of [START_REF] Limonciel | Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing[END_REF], were applied in PubMed to retrieve TF target genes: (i) search for TF name and Chromatin Immunoprecipitation (ChIP)-sequencing, or ChIP-microarray studies, (ii) search for TF name and TF-specific response element and 'Electrophilic Mobility Shift Assay' or ChIP studies, and (iii) search for TF name and TFspecific DNA response element and name of a target gene known. In the first tier of this strategy, high-throughput sequencing datasets were retrieved, which provided extensive lists of genes shown to have the TF bind in their promoter region. In the second tier, lower throughput investigations were included, providing target genes that were more deeply investigated in the article with proven TF binding of the promoter region. These first two tiers provided an unbiased source of target genes that was completed in the third tier with manually added target genes for which at least one study showed binding of the TF in their promoter region.

PubMed searches were performed on 24.11.2014 for Nrf2 and 17.12.2014 for ATF4 and AhR. Gene lists are reported in Table S8 in 'Supplementary Material 7.3' and are illustrated in 

Construction of a Chemical-Effects Transcriptomics Database

As stated before, the database of chemical-induced transcriptomic changes comes from three projects: carcinoGENOMICS [START_REF] Vinken | The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays[END_REF], Predict-IV [START_REF] Mueller | Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing[END_REF] and TG-GATEs [START_REF] Igarashi | Open TG-GATEs: a large-scale toxicogenomics database[END_REF]. In carcinoGENOMICS, human and rat kidney cells were exposed to bolus concentrations of up to 31 chemicals in in vitro settings for up to 72 hours. In Predict-IV, human kidney cells and liver cells from human and rat were exposed daily in vitro for up to 14 days to up to 22 chemicals. Up to 171 chemicals from TG-GATEs were tested in various rat in vivo and in vitro systems, with various treating regimes. Kidney in vivo Repeated doses 4d, 8d, 15d, 29d

(1) Number of chemicals assayed in at least one of the three source projects.

(2) Cyclosporine A is the only chemical that was used in the three projects. Cyclosporine A appears in every single experimental category and sub-category (except carcinoGENOMICS's Rat tests).

(3) In carcinoGENOMICS, all 15 chemicals tested on rat cells, except one (Dimethylnitrosamine), were also tested on human cells.

(4) Beside Cyclosporine A, and five of the chemicals that appear in TG-GATEs as well, all chemicals are specific to carcinoGENOMICS (2-Nitrofluorene and N-nitrosomorpholine (TG-GATEs "Human liver in vitro bolus" and "Rat liver in vivo bolus"); and Diclofenac, Nifedipine and Tolbutamide (all liver categories of TG-GATEs)).

(5) The 12 chemicals tested on kidney cells and the 11 tested on liver cells in PREDICT-IV are distinct; Only Cyclosporine A is presented in these two categories.

(6) Among the chemicals tested on kidney cells in PREDICT-IV, only Cisplatin appears elsewhere (in TG-GATEs rat tests).

(7) Among the chemicals tested on liver cells in PREDICT-IV, only Acetaminophen and Valproic acid appear in all TG-GATEs categories; Amiodarone, Chlorpromazine, Fenofibrate, Ibuprofen and Metformin were tested on liver cells of TG-GATEs, and Rosiglitazone as well (except in "Rat liver in vitro bolus").

(8) In TG-GATEs, five chemicals were tested on human cells only (HGF, IL1beta, IL6, INFalpha, Nefazodone and TGFbeta1) and six others on animal categories only (Carboplatin, Cephalotin, Cisplatin, Gentamicin, TNFalpha and Trimethadione).

(9) Five chemicals appear in liver in vitro bolus categories only (human and rat): Alpidem, Buspirone, Clozapine, Nefazodone and Venlafaxine.

(10) 3-Methylcholantrene, Bortezomib, Gefitinib, Imatinib and Puromycin appear in the "Rat liver in vivo bolus" category exclusively.

(11) 2-Nitrofluorene, Aflatoxin B1, Dexamethasone, N-methyl-N-nitrosourea and TNF are common to TG-GATEs' "Human" and "Rat liver in vivo bolus" categories and were not tested in other conditions.

(12) The 41 chemicals that are used for TG-GATEs kidney in vivo testing are the same for both modes (bolus and repeated doses) and are common for all other categories (exceptions: Gentamicin, Carboplatin, Cephalotin, Cisplatin, Desmopressin acetate, Amphotricine B and Acetamide).

* The number between brackets refers to the number of chemicals per project

Data Sources

The carcinoGENOMICs and Predict-IV data are publicly accessible on the diXa database (diXa Data Warehouse) hosted by The European Bioinformatics Institute24 . In carcinoGENOMICS, in vitro renal cell experiments were performed using the human cell lines RPTEC/TERT1 (human, telomerase transfected) and NRK-52E (rat). The study no. is DIXA-003. Differentiated cell cultures were exposed to a single bolus of non or low cytotoxic (<IC10) concentration of chemical for 6, 24, or 72 hours before lysis in TRIZOL, RNA purification and transcriptomic analysis on Affymetrix microarrays as described [START_REF] Limonciel | Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells[END_REF].

Affymetrix Human Genome U133 Plus 2.0 GeneChIP arrays were used for human samples and Rat Genome 230 2.0 GeneChIP for rat samples. Normalization quality controls, including scaling factors, average intensities, present calls, background intensities, noise and raw Qvalues were within acceptable limits for all chips. Hybridization controls were identified on all chips and yielded the expected increases in intensities. All subsequent analyses were based on normalized expression values generated using the MAS5 normalization algorithm. It is noted that RMA or GCRMA normalization would have been preferred. Normalized data was imported into GeneSpring (Agilent) to identify log2 fold change (FC) values for selected genes.

Within PREDICT-IV, in vitro testing of nephrotoxic and hepatotoxic compounds were performed on R PTEC/TERT1 cells (renal model), primary human hepatocytes, and rat hepatocytes (PHH and PRH, respectively). The study no. on t he diXa database is DIXA-095.

Differentiated cell cultures were exposed daily to a high (≤10% cell death) or low concentration of chemical for 1, 3 or 14 da ys, as described [START_REF] Aschauer | Application of RPTEC/TERT1 cells for investigation of repeat dose nephrotoxicity: A transcriptomic study[END_REF][START_REF] Crean | Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing[END_REF][START_REF] Limonciel | Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing[END_REF][START_REF] Wilmes | Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress[END_REF][START_REF] Wilmes | Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics[END_REF]. Transcriptomic analysis was carried out on Illumina ® HT 12 v4 B eadChip arrays for kidney and PHH human samples, except RPTEC/TERT1 exposed to CsA (HT 12 v3 chips). PRH samples were analyzed with Illumina ® RatRef-12 v1 BeadChIP arrays. Results were normalized by quantile normalization and expressed as log2 fold over time-matched control. Where several probes existed for a given gene, the probe with the highest variation across the dataset was selected.

The TG-GATEs datasets comprised in vivo rat data from liver and kidney tissue, as well as data from in vitro primary rat and human hepatocyte cultures, after a single administration of chemical and repeat dosing Table 8. CEL files were downloaded from the Open TG-GATEs25 database of the Toxicogenomics Project and Toxicogenomics Informatics Project under CC Attribution-Share Alike 2.1 Japan. Probe annotation for the primary human hepatocyte data was performed using the hthgu133pluspmhsentrezg.db package version 17.1.0 and probe mapping was performed with hthgu133pluspmhsentrezgcdf downloaded from NuGO. Probe annotation for the rat data was performed using the rat2302rnentrezg.db package version 19.0.0 and probe mapping was performed with the rat2302rnentrezgcdf package version 19.0.0 downloaded from NuGO (R/Bioconductor support libraries) 26 . These mappings summarize the corresponding probes to a single probe set per gene. Probe-wise background correction (Robust Multi-Array Average expression measure), between-array normalization within each treatment group (quantile normalization) and probe set summaries (median polish algorithm) were calculated with the RMA function of the Affy package (Affy package, version 1.38.1) [START_REF] Irizarry | Exploration, normalization, and summaries of high density oligonucleotide array probe level data[END_REF]. The normalized data were statistically analyzed for differential gene expression using a linear model with coefficients for each experimental group within a treatment group [START_REF] Wolfinger | Assessing gene significance from cDNA microarray expression data via mixed models[END_REF]. A contrast analysis was applied to compare each exposure with the corresponding vehicle control. For hypothesis testing the moderated tstatistics by empirical Bayes moderation was used followed by an implementation of the multiple testing correction of [START_REF] Hochberg | More powerful procedures for multiple significance testing[END_REF] using the LIMMA package [START_REF] Smyth | Use of within-array replicate spots for assessing differential expression in microarray experiments[END_REF].

All interspecies gene conversions where done using the provided human gene symbols which were converted to human or rat gene identifiers using the online conversion tool of bioDBnet (Biological Database Network) 27 .

Altogether, the collected data concern 804 genes from the 857 genes identified in PubMed as targets of AhR, Nrf2 and ATF4. The 53 target genes that are not covered with data from any of the three projects were excluded from this study. These genes are listed in the last row of Table S8 in 'Supplementary Material 7.3'.

Bioinformatics Methods

 Data Selection

The heterogeneity of the sources of information of our database widens its coverage and strengthens its capacity to represent multiple conditions. However, this richness makes the database's structure complex. To simplify the analysis without losing potentially important information, we focused on conditions providing the best background to study the three pathways individually. The effects observed following exposure to a chemical could vary greatly depending on exposure duration. Exposures lasting more than 24 hours tend to cause mixed stress responses that make it difficult to delineate the activation of specific molecular pathways and the initial mechanisms of toxicity of chemicals. These conditions could be a potential source of noise for the analysis and were thus excluded. Excluding all data obtained after 24 hours reduced the dataset from 7,042 t o 4,685 t esting conditions. We chose not to eliminate the early kidney in vivo time points (at 3 and 6 hours), even though they may be more reflective of background levels in case of slow absorption of the chemical administered.

 Pathway Specific Chemicals

In order to distribute the genes to pathways and pathway overlapping zones, log2 genes FC were ranked in decreasing order and examined on reduced datasets containing conditions relative to pathway specific activators. We define a pathway specific activator as a chemical where the mode of action is known, that the mode of action activates the specific pathways and that this mode of action is not expected to activate the other pathways under investigation. Thus, at relatively short exposures, to relatively low concentrations these chemicals will only act on their specific target. It is however possible at higher concentrations or longer time exposure, other targets will be affected due to increasing toxicity. As shown in Table 8, some chemicals

were not tested in all categories and tissue types. Thus, it was not possible to find pathway specific activators able to cover the entire database. Table 9 shows the coverage of the datasets by the pathway specific activators selected as reference for analysis. Although none of the toxicogenomic databases analyzed here were designed to specifically address any of our three pathways of interest, most datasets included at least one chemical that could be considered as a specific pathway activator. Two specific chemicals were selected for AhR (Benzo(a)pyrene and Omeprazole) and Nrf2 (KBrO3 and Phorone) and one for ATF4 (Tunicamycin). However, within 'Rat Kidney in vivo' category, no Nrf2 specific chemicals were found, and for all kidney data no ATF4 specific chemical were found either. 

 Construction of Pathway Signatures

For each of the pathway specific chemicals, all testing conditions were selected. For every gene, the mean of log2(FC) throughout all those conditions was calculated, to form the average activation value of each gene by each of the pathway specific activator. For AhR and Nrf2, the two average activation values obtained (one for each of the pathway specific activator) were themselves averaged. Genes were then sorted in decreasing order of average activation values per pathway. It is important to note that, since the expression of some genes can be inhibited (down regulated) by some chemicals or in certain conditions, some of the average activation values were negative. In order to select the most sensitive genes for each pathway, we computed the mean (µ) and the standard deviation (σ) of the genes' average activation values in each list. A pathways signature was formed by the genes whose average activation values were greater than µ + 2σ or smaller than µ -2σ for this pathway. Genes appearing in the signature of more than one pathway were set apart in "overlapping signatures." Furthermore, we stratified signatures by original databases' categories ('Rat liver cells in vitro', 'Rat liver cells in vivo', 'Human liver cells in vitro' etc.) (which correspond to primary cells), to check if there would be any species-specific or in vitro/in vivo differences among signatures. We chose to work only with liver data since more data were available for liver (602 conditions in kidney vs. 4,083 tested in liver, see Table 10). Following the same procedure as above, we constructed pathway signatures for AhR, Nrf2, and ATF4 in each of the following liver categories: (a) 'Rat liver cells in vitro', (b) 'Rat liver cells in vivo', and (c) 'Human liver cells in vitro'.

In all cases, general or stratified, some genes were excluded for having no data on effect of the chosen pathway specific chemicals. A list of those genes appears in Table S10 in 'Supplementary Material 7.3'. A summary of the above-described protocols and the following procedures of Methods are presented in the workflow of Methods summarizing workflow Among the three liver categories where signatures were stratified, we chose to focus on the 'Human liver cells in vitro' sub-category exclusively since the ultimate goal of our toxicity pathways' analyses and models is risk assessment of human cells' exposure to xenobiotics. We considered only the genes belonging to the signature of each of the three pathways, but not their overlapping zones. This selection of experimental category and genes reduces the number of studied chemicals from 211 to 160 for the lack of data on the rest of chemicals in this section.

Then, for each of the 160 chemicals investigated, we averaged log2(FC) of the pathway signature genes over experimental conditions. Therefore, for each of the three pathways, we obtained a 'chemical activation capacity' (CAC) value per chemical. This value reflects how strongly a chemical can activate a g iven toxicity pathway. Those CAC can be negative for chemicals inhibiting the majority of the genes of a pathway. We used CAC to estimate the pathway's selectivity of chemicals as well as the importance of their impact. Each chemical can be considered as a point having three CAC as coordinates in a 3-dimensional space which axes correspond to a given pathway. Let us consider a chemical K that has a point in a bi-dimensional graph where the X-axis corresponds to AhR and the Y-axis to Nrf2. In this graph, K's coordinates would be: (CACAhR, K, CACNrf2, K), see Figure 21. K also defines the vector 𝑶𝑶𝑶𝑶 ������⃗ linking the origin O (0, 0) to the point K.

The specificity of a chemical for a given pathway can be measured by the proximity of its point K to the axis representing that pathway. Proximity can be mathematically evaluated by the absolute value of the cosine of the angle (α) between the pathway's axis and 𝑶𝑶𝑶𝑶 ������⃗ . The more K is specific to AhR, the closer it is to the AhR's axis, the smaller α is, and the bigger cos (α).

In theory, in a 3-dimensional space, a point is closer to an axis than to the two others when its cos (α) with this axis is greater than 𝟏𝟏 √𝟑𝟑 . Thus, the value of 0.57735 (

𝟏𝟏 √𝟑𝟑

) was chosen as a cut-off point for cos (α). On the other hand, the activation potency of a chemical proportionally increases with the module of the vector 𝑶𝑶𝑶𝑶 ������⃗ vector noted �𝑶𝑶𝑶𝑶 ������⃗ � (the distance between the origin and the chemical's point). The value of 0.5 was chosen as a cut-off point for�𝑶𝑶𝑶𝑶 ������⃗ �. For instance, chemicals A and B in Figure 21 are both quite specific of Nrf2, but A's activation potency is relatively limited compared to B's (�𝑶𝑶𝑶𝑶 ������⃗ � < �𝑶𝑶𝑶𝑶 ������⃗ �).

Similarly, even though C seems to have a g reater activation potency than A and B (greater module), it is equidistant to both axes and therefore is not specific of any of the two pathways. The same logic applies for a 3-dimensional space, adding one extra axis for the ATF4 pathway.

In our signature-based classification of chemicals, for each pathway, after applying the chosen cut-off points, we sorted chemicals by the result of the product 𝐜𝐜𝐜𝐜𝐜𝐜 (𝜶𝜶) × �𝑶𝑶𝑶𝑶 ������⃗ �. Thus, chemicals which are both pathway specific (high cos (α)) and potent (high�𝑶𝑶𝑶𝑶 ������⃗ �) show up first in our lists. 

RESULTS

A visual depiction of the workflow is provided in Figure 20.

Pathways' Global Signatures

Pathway's signatures defined on the basis of the whole data set are listed in Table 11.

Each signature has two parts: 'Activated genes' (those having positive log2(FC) averages and are greater than µ + 2σ) and 'Inhibited genes' (those having negative log2(FC) averages and are smaller than µ -2σ); The two parts are merged in one in the overlapping signatures. In all lists, genes are sorted by the decreasing absolute value of the genes' log2(FC) averages. The number of genes in the obtained pathway's signature was 24 for AhR, 27 for Nrf2 and 30 for ATF4. In each pathway, at least half (12 for AhR, 15 for Nrf2 and 19 for ATF4) were 'Activated genes'. The a priori pathway is the one for which the gene has come up in PubMed searches;

Table 11 shows that most of activated genes were a priori suspected to belong to the target pathway (for example: CYP1A1, RUNX2, and CYP1A2 were known to be activated by AhR, HMOX1 and SRXN1 by Nrf2 and DDIT3 and HERPUD1 by ATF4; those genes are highlighted in gray) while this wasn't the case of the 'Inhibited genes' part of the lists. Figure 22 shows the overlapping zones. Among the five genes that are in the AhR-Nrf2 overlapping zone (NQO1, DLGAP5, CFTR, RAB39B and GSTA1), only NQO1 is a mainly activated gene while this was the case of most seven genes of the Nrf2-ATF4 overlapping zone (ATF3, SLC7A11, TRIB3, CABC1, GDF15) with two exceptions (CCL2 has negative averages for both pathways and KCNT2 for Nrf2). CYP1B1 is the only mutual gene for AhR (strong activation) and ATF4

(inhibition) and TPX2 is the only mutual gene for all three pathways (inhibition). Figure 23 shows a network representation of the three signatures and their overlapping zones.

Table 11. Pathway's global signatures for AhR, Nrf2 and ATF4 pathways and the signatures of their overlapping zones for all available data. Gray background indicates genes that appear in the signature of the pathway from previous studies (Table S11) and confirmed here. Nongrayed out values are novel allocations from this analysis. Table 12 shows the stratified signatures in liver of each pathway in four columns (categories): each containing the genes' names and their log2(FC) averages. Genes that appear in more than one column are highlighted in gray and empty lines were left in order to display those genes on the same line in all the categories where they appear. Genes of the first column, sorted by the decreasing absolute values of their log2(FC) averages, appear first, followed by genes appearing in more than one category but not the first column and then the rest of the genes sorted by the decreasing absolute values of their log2(FC) averages as well.

 AhR Stratified Signatures

Table 12 shows that CYP1A1 is clearly, by far the most activated gene in this pathway. 

 The Overlapping Zones Stratified Signatures

Figure 24 shows that the AhR-ATF4 overlapping zone is the least populated (four genes maximum in all liver data, no genes for 'Rat Liver in vivo' and two genes in the two other categories). The number of genes in the AhR-Nrf2 overlapping signatures ranges from four to eight, with many typical key Nrf2 genes (NQO1, SRXN1, HMOX1, TXNRD1, and GCLM)

appearing in more than one category. The Nrf2-ATF4 overlapping signatures contain six to eleven genes (DDIT3, ATF3, and CHAC1 are among the repetitive genes). Finally, TRIB3, FGF21, GDF15, SLC7A11, and TPX2 are in the signature of the zone mutual to all three pathways for at least two of the four categories studied. S11 lists. White is the color of gene names that appear in an overlapping zone of only one of the four categories studied, and black is the color of gene names that appear in more than one category (two, three or four). 

Human Liver

DISCUSSION

Nrf2, ATF4 and AhR are important TFs in toxicological contexts and have well described downstream gene targets [START_REF] Jennings | An overview of transcriptional regulation in response to toxicological insult[END_REF]. Each of these TF have distinct unrelated upstream activation points, unique gene targets, but also have direct (i.e., via multiple upstream promoter regions) and likely indirect overlaps on some specific gene targets. The AhR protein is a cytosolic protein receptor, where activation via chemical ligand binding causes nuclear translocation, DNA binding to it consensus sequence and RNA transcription. Several toxic compounds including dioxin-like compounds activate AhR. The TF Nrf2 is liberated from its cytosolic inhibitor Keap1, where the latter is sensitive to electrophiles and ROS. The TF ATF4 is activated via PERK, where PERK is activated when its inhibitor BiP, dissociates from PERK to bind unfolded proteins. All sorts of ER disturbances can cause an increase in unfolded proteins.

Using multiple toxicogenomic databases, we investigated the most appropriate activators of these three pathways, where it is expected that the chemical does not directly activate the other two pathways. These compounds were, Benzo(a)pyrene and Omeprazole for AhR, KBrO3 and Phorone for Nrf2 and Tunicamycin for ATF4. All conditions up t o and including 24 hours were pooled to generate a list of genes allocated to the three pathways (Table 11). This list confirmed the majority of a priori literature based information of 'Activated genes' (i.e., upregulated). Although some genes were now reallocated to different pathways.

The overlap with 'Inhibited genes' (i.e., down regulated), was much poorer. This is too be expected as TF activated gene down regulation is much more complex and is often due to competition for auxiliary transcription facilitating proteins. Cytochrome P450 1A was the central element of the AhR pathway: CYP1A1 is the most prominent gene of this pathway, regardless of the experimental category, followed by CYP1A2. These findings are similar to previous investigations and have been implemented in a systems biology model [START_REF] Hamon | Systems biology modeling of omics data: effect of cyclosporine a on t he Nrf2 pathway in human renal cells[END_REF]. For the Nrf2 pathway, the prototypical Nrf2 genes (HMOX1, SRXN1 and GCLM) appear in the Nrf2 signature of all datasets, but also in the AhR-Nrf2 overlapping signature for most liver categories. This may reflect the fact that several AhR agonists are themselves metabolized to reactive chemicals via AhR dependent CYP expression. For example Benzo(a)pyrene is a substrate of the CYP1 sub family of cytochrome P450 enzymes, and it promotes its own metabolism to reactive epoxide and quinone products [START_REF] Gelboin | Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes[END_REF]. These metabolic products can lead to oxidative stress and to an activation of the Nrf2 pathway as part of a second line of responses [START_REF] Burchiel | Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes[END_REF]. The only activated gene that appears in the ATF4 signature of each of the three studied categories is HERPUD1. In most cases, HERPUD1 also had the highest log2(FC) averages. Overlapping zones show an interaction between AhR and Nrf2, between Nrf2 and ATF4, but a very limited or non-existent interaction between AhR and ATF4 pathways.

We have used the exclusive pathway genes to create pathway CAC scores. The CAC reflects both specificity for the pathway (𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶)) and the activation potency�𝑶𝑶𝑶𝑶 ������⃗ �. CAC scores were generated for 160 chemicals using the TG-GATEs liver data. For ATF4, Tunicamycin, Methylene dianiline, Diclofenac and Butylated hydroxyanisole were ranked highest, in that order. Tunicamycin was used as a s pecific ATF4 specific activator. Both Diclofenac and Butylated hydroxyanisole have previously been demonstrated to positive modulate the ATF4 pathway [START_REF] Afonyushkin | Oxidized Phospholipids Regulate Expression of ATF4 and VEGF in Endothelial Cells via NRF2-Dependent Mechanism: Novel Point of Convergence Between Electrophilic and Unfolded Protein Stress Pathways[END_REF][START_REF] Fredriksson | Druginduced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity[END_REF]. The molecular mechanism for Methylene dianiline has not been fully elucidated and this evidence would suggest an ER disturbance and/or proteotoxic mechanism. For AhR, 34 chemicals were considered positive by CAC scores. Omeprazole was ranked highest, followed by Acetamidofluorene, 2-Nitrofluorene, Mexiletine, Flutamide, Isoniazid and

Hexachlorobenzene. Many of the 34 chemicals have not been previously linked with AhR, but several are. These include, Hexachlorobenzene (de Tomaso [START_REF] De Tomaso Portaz | Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells[END_REF][START_REF] Randi | Hexachlorobenzene triggers AhR translocation to the nucleus, c-Src activation and EGFR transactivation in rat liver[END_REF], Ketoconazole [START_REF] Novotna | Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor[END_REF], Clozapine [START_REF] Donohoe | Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans[END_REF], and Doxorubicin [START_REF] Volkova | Activation of the aryl hydrocarbon receptor by doxorubicin mediates cytoprotective effects in the heart[END_REF]. Fluphenazine has not been established as a ligand for the AhR, its structure -a halogenated aromatic ring system -closely matches the motif involved in binding to this receptor [START_REF] Donohoe | Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans[END_REF]. In a recent study we have demonstrated that Isoniazid induced CYP1A1 in HepaRG cells, which is a potential indicator of AhR activation [START_REF] Limonciel | Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq[END_REF]. Only Sulindac from the 160 w as ranked as active using the CAC selection criteria, which may seem surprising given the frequency of oxidative injury in liver toxicities. Although Butylated hydroxyanisole was marginal. The reason for a lack of Nrf2 activation prediction might be simply due to the fact that none of the 160 compounds, including the positive compound Phorone cause an Nrf2 response in the liver within the first 24 hours.

Another possibility is that removing the overlapping genes has weakened the ability to pick up this pathway. Indeed, this is a weakness in the overall strategy as it is difficult to determine in such data sets if the pathways themselves are co-regulated since there are several gene overlaps amongst the pathways.

CONCLUSION

The size of the data set, its multiple sources, abundancy of compounds, concentrations and time of exposures, in vitro and in vivo, different organs are both a blessing and a curse. On the one hand, it is generally an advantage to have as broad as data set as possible, but the different sizes and focuses of the individual data sets/studies meant we needed to reduce the data to the lowest denomination. Another major issue was the low abundance of well described pathway activators. Despite these issues we have made some interesting observations and have developed a method to quantify a chemical's capacity to activate one three pathways.

We uncovered variations in AhR, ATF4 and Nrf2 signatures across tissues, compounds, species and in vivo vs in vitro. Some of these alterations are likely to be linked to pharmacokinetics, including distribution and metabolism, others may be linked to tissue specific regulation of these pathways. W hile some genes were very variable across experimental conditions, some were extremely robust, for example CYP1A1 in the AhR pathway and HERPUD1 in the ATF4 pathway. Some genes swing between a pathway's specific signature and overlapping zones for example GCLC between Nrf2 and AhR-Nrf2. Others are regularly on overlapping signatures for example TPX2 and TRIB3. However, it is not possible with this type of analysis to delineate whether these overlaps are solely on a gene level or also on the pathway level.

The CAC score system developed, based on 𝐜𝐜𝐜𝐜𝐜𝐜 (𝛂𝛂) × �𝑶𝑶𝑶𝑶 ������⃗ �, can be used to quantify a chemical's specificity and potency to selectively activate one of these pathways. However, future work will be required to validate and optimize the gene signatures utilized.

THESIS SUMMARY AND CONCLUSION

Either among industries or research institutions, the reductionist approach to toxicology research and risk assessment remains predominant nowadays. While this approach has undeniably contributed to the progress of science for decades, it is progressively showing its weaknesses when it comes to studying multifactorial situations. With the development of modern experimental techniques, of bioinformatics tools and of omics, applying holistic system-level approaches (i.e., SB, AOP, DBN etc.) to toxicology is becoming manageable, possible and even necessary.

More and more we discover that the mechanisms that underlie toxicity are complex and involve multiple biological processes and pathways. The key for a more general view of toxicity schemes is in understanding the different networks and pathways involved, their respective contribution to random outcomes as well as their potential interactions and cross-talks.

In toxicology, as in other fields, mathematical models are useful to gain insights into the governing principles of experimental observations, as well as to predict the behavior of a system in various situations. The challenge is to conceive tools and models able to reflect the complexity of interconnecting networks and pathways constituting a biological system.

In the introduction of this thesis (chapter 1), I described how the toxicology approach to date was leaving important questions surrounding the Nrf2 control oxidative stress unanswered.

In addition, the question of a potential predictive and mechanistic vocation of toxicology was considered. In line with this reflection and expectation, a combination of SB and AOPs tools was suggested. In 'chapter 2' (Bibliography) the available published information covering the three facets of this subject (i.e., toxicology, biological context and mathematical tools) was gathered and presented.

In order to uncover the mechanisms at play, we have elaborated in the 'chapter 3' a SB model of the role of the Nrf2 toxicity pathway in the control of oxidative stress. Our model of the Nrf2 signaling pathway is a fusion of two complementary models: the first describes the synthesis, the metabolism and the transport of GSH under oxidative stress, and the second highlights the contribution of Nrf2 to the GSH response to oxidative stress. The latter was improved by remodeling the transcription/translation process of its genes using the Hill's model equation.

In 'chapter 4', using appropriate experimental data (i.e., GSH, DCF and lactate levels following the exposure of RPTEC/TERT1 cells to of KBrO3 for different doses and timepoints) and statistical procedures (i.e., MCMC simulations in a Bayesian framework), our SB model was calibrated, evaluated and compared to two other computational models (i.e., an empirical dose-response statistical model and a DBN model). These three methods were explored as options for quantifying an AOP and deriving chemical independent KERs with rigorous statistical treatment of the data and parametric inference. While the "easy-to-develop" dose-response based qAOPs have a very limited extrapolation and explanation power and do not offer mechanistic insight, DBNs are in fact easier to develop, once the technology is mastered, but they either impose strong constraints on experimental design or require complex statistical treatment. Developing SB models is more complex, but they offer insight in the data collection and biology that the other approaches cannot afford.

Finally, in 'chapter 5' we studied the potential interactions of the Nrf2 pathway with two other signaling pathways (i.e., AhR and ATF4) using multiple databases. This analysis pointed out the important codependences between the three pathways. Concerning the interactions with the AhR pathway, the results confirm the adequacy of inclusion of nucX-AhR as a co-TF for some genes in the Nrf2 SB model and encourage us to consider a hypothetical nucX-AhR activation of other prototypical Nrf2 genes of our model (e.g., HMOX1, SRXN1 and GCLM). In addition, these results open the door for testing a possible association of the ATF4 However, the work presented in this thesis shows that the use of SB is not easy and needs to mature. SB models, even though they provide a quite complete outlook of the biological systems and their components, they remain data-hungry and their development and calibration are time-consuming. Therefore, such complicated SB models could be seen as investment for the future rather than a quick answer to urgent questions. For an optimized calibration, it is very important that the generation of needed data be the fruit of experimental protocols that were elaborated by collective efforts including contributions of different research units participating to the conception and validation of the model. The problem is that, often, omics data produced are not specifically intended for SB model calibration and do not converge with the needs and expectations of the researchers working on the SB model development and validation. Another limitation of this thesis is that at present the model quality is insufficient to claim that the precise calculations described here lead to reliable results. It was not possible to validate the whole model as we were unable to measure all the metabolites in the pathway.

Also, the model does not always predict the experimental data, which suggests that there are additional reactions or regulations that need to be included in the model.

In 3 applied on both Hamon's (red dots) and Hill-based (black curve) SB models.

Figure S5

. MCMC curve fitting of GCLM mRNA (example of gene activated by one single activator) rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (red dots) and Hill-based (black curve) SB models.

Figure S6

. MCMC curve fitting of GS mRNA (example of gene activated by one single activator) rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (red dots) and Hill-based (black curve) SB models.

. MCMC curve fitting of GST and GPX mRNA (example of gene activated by two activators) rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (coloured dots) and Hill-based (coloured curves) SB models. nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on different curves (0 (red), 0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of nucX-AhR).

Figure S8

. MCMC curve fitting of Nrf2 mRNA (example of gene activated by two activators) rate equivalency by time according to virtual exposure scheme presented in Table 3 applied on both Hamon's (coloured dots) and Hill-based (coloured curves) SB models. nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on different curves (0 (red), 0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of nucX-AhR). 

Statistical Dose-Response based qAOP Model

In the empirical dose-response approach, dose(-time)-response equations were fitted to data on the effect of KBrO3 on GSH, DCF and lactate. With such data, linking chemical exposures to KEs, the corresponding equations need to be mathematically inverted to obtain chemical-independent KERs. Only the exposure to MIE relationship can be used as is. For example, if we have three data sets for the activity at dose DX of chemical X on each KE of an AOP, we need to fit three dose-response equations:

𝐾𝐾𝐸𝐸 1 = 𝑓𝑓(𝐷𝐷 𝑋𝑋 ) (7.1) 𝐾𝐾𝐸𝐸 2 = 𝑔𝑔(𝐷𝐷 𝑋𝑋 ) (7.2) 𝐾𝐾𝐸𝐸 3 = ℎ(𝐷𝐷 𝑋𝑋 ) (7.3)
The relationship between KE1 and DX is given directly by equation 7.1. However, the relationship between KE1 and KE2 needs to be derived from equations 7.1 and 7.2:

𝐾𝐾𝐸𝐸 2 = 𝑔𝑔(𝐷𝐷 𝑋𝑋 ) = 𝑔𝑔�𝑓𝑓 -1 (𝐾𝐾𝐸𝐸 1 )� (7.4)
Where f -1 denotes the inverse of function f. Similarly, for the relationship between KE3

and KE2 we have:

𝐾𝐾𝐸𝐸 3 = ℎ(𝐷𝐷 𝑋𝑋 ) = ℎ�𝑔𝑔 -1 (𝐾𝐾𝐸𝐸 2 )� (7.5)
For dose-time-response relationships, the principle is the same, with time as an extra variable in the above functions. However, in some cases the function may not be monotonic and therefore will not be invertible.

The relationship between the concentration of KBrO3 (CKBrO3) and the percentage of The inverse of equation 7.6 is the equation 7.7:

𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂 3 = � 𝑙𝑙𝑙𝑙𝑑𝑑(100)-𝑙𝑙𝑙𝑙𝑑𝑑(𝑃𝑃𝑐𝑐𝑐𝑐 𝐺𝐺𝐸𝐸𝐺𝐺 ) 𝑘𝑘 � 1 𝑏𝑏 ⁄ (7.7)
The relationship between CKBrO3, time t and QDCF (representing the amount of oxidative stress) was modeled empirically by equation 7.8:

𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 -𝑒𝑒𝑒𝑒𝑒𝑒�-𝑘𝑘 𝑑𝑑 ⋅ 𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂 3 �� �1 -𝑒𝑒𝑒𝑒𝑒𝑒(-𝑘𝑘 𝑐𝑐 ⋅ 𝑃𝑃)� (7.8)
Its parameters are A (baseline response), B (maximum increase above baseline), δ (maximum increase modulation by dose), kd (dose coefficient), kt (time coefficient).

The solution of equation 7.8 for CKBrO3 is: For the parameter estimation, posterior parameter distributions were obtained by Hamiltonian MCMC, using the Stan software [START_REF] Carpenter | Stan: a probabilistic programming language[END_REF]. Three simulated Markov chains were run in parallel for 12,000 i terations, keeping the last 6,000 iterations. Noninformative uniform prior distributions were used for each parameter except for the parameters in the DCF -time -lactate portion of the model where weakly informative Gaussian priors were used to stabilize inference (see Table S6). In this qAOP model, the data likelihood is embedded in the model formulation. There is one clear constraint for this model: time and exposure conditions must match for all the variables entering a particular node to node relationship. For example, lactate was measured every 24 hours and depends on DCF, which was measured every 15 minutes, but for different KBrO3 concentrations. Therefore we need to statistically "impute" 

𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂3 = 𝑁𝑁𝑁𝑁𝑔𝑔 ��1 + 𝛿𝛿 - 𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷 -𝐴𝐴 𝐵𝐵⋅�1-𝑑𝑑𝑚𝑚𝑒𝑒(-𝑘𝑘 𝑐𝑐 ⋅𝑐𝑐)� � -𝑘𝑘 𝑑𝑑 � ( 

Effectopedia Implementation

Effectopedia provides a graphical user interface to build an AOP diagram, which in turn gives easy access to relevant descriptions, data and models. In addition to a qualitative description of the AOP, Effectopedia provides structure for representation of test methods, collected data and executable models implemented in the supported programming languages (R, MATLAB, Java). Effectopedia was used to create several iterations of the AOP diagram.

Initially, the sequence of KEs included relevant feedback mechanisms or parallel processes (branches). However, in the following step of identification of measurement methods, some of these events did not have a separate method of observation and were therefore combined into a single KE. Other events were determined to be modification factors rather than being causally Effectopedia implementation of both BN and SB models faces similar challenges, of which the most important is matching the internal structure of the models to the conceptual structure provided by the AOP. Currently, Effectopedia allows "global models" in which one BN or SB model can cover several KEs. Such models need to have specific outputs matching the AOP KEs. A problem in that approach is the derivation of reusable KERs. If the global model contains complex time or variable dependencies between non-adjacent KEs, they need to be explicitly represented in the AOP as feedbacks, feed-forwards or modifying factors.

However, extracting such dependencies is non-trivial. Alternatively, the AOP could be redesigned if the global model indicates that some tightly coupled KEs can be merged. : ABCB1A, ACAA1A, B230217C12RIK, BB014433, BC019943, BC055111, CYP2AB1, D48WG0951E, DEB1, DEFB43, DNAIC2, GCFC1, GM129, GM5627, GM5820, GM5867, H2-Q7, HIST2H4, IFITM6, JMJD3, LIPIN2, MTAP4, PGPEP1L, RNASET2B, SAMD4, SERPINA3C, SLCO1A5, TREM3, UGT1A6A, VEGF, ZFP238, ZFP365, ZFP598, ZFP608, ZFP623, ZFP708. Nrf2 ATF4 (1) : B230315N10RIK.

SUPPLEMENTARY INFORMATION FOR CHAPTER 5

* No data are available for these genes in the carcinoGENOMICS, PREDICT-IV, or TG-GATEs databases. 
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  2: action of KBrO3 on external GSH and formation of DCF by ROS (parameter kDCF,ROS); Step 3: adding DCF bleaching (parameter kbl); Step 4a: adding a direct formation of DCF by KBrO3 (parameter kDCF,KBrO3); Step 4b: same as step 3, plus adding an action of KBrO3 on internal GSH (parameter kGSHc,KBrO3); Step 5: all parameters added.

Figure 1

 1 shows a schematic representation of two interacting AOPs: Boxes represent important events of an AOP (MIE, KEs or AO) with examples of each, and arrows are KERs.

Figure 1 .

 1 Figure 1. Schematic representation of two theoretical interacting AOPs. Through a timeline, different sections correspond to AOP levels (boxes represent the events, some examples are available in the lower part; arrows correspond to KERs).

Figure 2 .

 2 Figure 2. Timeline illustrating the birth and development of toxicology from first in vivo experiments by Paracelsus up to HTS initiatives in the European Union and the United Statesof America[START_REF] Zgheib | High-throughput methods for toxicology and health risk assessment[END_REF].

Tox21:

  Toxicology testing in the 21st Century Toxicology testing in the 21st Century (Tox 21) is another collaborative testing and evaluation program that was established in 2008 via a Memorandum of Understanding between the National Toxicology Program, the National Chemical Genomics Center, and the Environmental Protection Agency, later joined by the US Food and Drug Administration.

Figure 3 .

 3 Figure 3. Standard Microplates of (A) 96-, (B) 384-, and (C) 1536-well formats respectively 13 .

Figure 5 .

 5 Figure 5. Plot of enzymatic reaction's velocity v against substrates concentration [S] in 10 different cases for Hill's coefficient α gradually increasing from 1 (hyperbolic: Michaelis-Menten case) to 10 (all other curves (2 to 10) are S-shaped) (Duke, Modeling Cooperativity) 18 .

Figure 6 .

 6 Figure 6. Prior, likelihood and posterior distributions for θ. The 'posterior inference' is a formal compromise between the 'observed evidence' (likelihood), summarizing the 'prior distribution' of the data alone (Bayesian Analysis for a Logistic Regression Model -MATLAB & Simulink Example) 19 .

  key element in the physiological defense mechanism of the organism against oxidative stress. Understanding the implication of GSH in ROS scavenging is primordial to study toxicity of oxidants. Controlling the transcription of genes coding for the synthesis of enzymes involved in the GSH cycle, Nrf2 orchestrates an important part of the GSH defense response. To model the Nrf2 signaling pathway, we have merged two SB models. The first, conceived by Hamon et al. (2014), highlights the contribution of Nrf2 to the GSH response to oxidative stress. The second is a simplification of the model of Reed et al. (2008), was developed by Geenen et al. (2012) and describes the synthesis, the metabolism and the transport of GSH under oxidative stress. 3.1.1 The model of 'Hamon et al. (2014)' In 2014, Hamon et al. published a SB model offering an interesting description of the Nrf2 signaling pathway and its interactions with the AhR pathway, its auto-induction as well as of how it controls GSH synthesis and the transport of its metabolites. This model parametrized to simulate the exposure of human kidney RPTEC/TERT1 cells to cyclosporine A. The validation of this model was completed by a quantitative in vivo-in vitro extrapolation

  3.1.2 The model of'Geenen et al. (2012) and[START_REF] Reed | A mathematical model of glutathione metabolism[END_REF])' In 2012, Geenen et al. proposed a SB model of GSH synthesis inspired by the work of[START_REF] Reed | A mathematical model of glutathione metabolism[END_REF]. Reed et al. tried to explore GSH's metabolism using a mathematical model including the one-carbone-metabolism, the trans-sulfuration cycle, the folate cycle, the synthesis and the metabolism of GSH. That model contained four compartments (i.e., mitochondria, cytosol and nucleus within cells and the extracellular environment) and was based on pr operties and regulation of key enzymes of oxidative stress. The works of Reed et al. can be used to simulate observed metabolic profiles of some diseases and compare them to clinical data. A schematic representation of this model is presented in Figure S2 of 'Supplementary Material 7.1'. Geenen et al. (2012a) have significantly modified the model of Reed by simplifying the folate cycle and limiting it to three equations, by adding two biomarkers (i.e., 5-oxoproline and ophthalmic acid) and by adapting the model to the detoxification of specific xenobiotics (in particular, paracetamol). All modifications brought by Geenen shouldn't affect the initial steady state of the model. Please refer to Figure S3 in 'Supplementary Material 7.1' to see the schematic representation of that model. Some of Geenen's model parameter values were found in literature and others were simply adjusted to metabolites concentrations at steady state within the physiological limits of liver metabolism. That model was used to study the oxidative stress

Figure 7 .

 7 Figure 7. Schematic overview of the assembled SB model. This model covers both transcriptional and biochemical aspects of GSH synthesis and metabolism and its control by the Nrf2-Keap1 signaling pathway. The blue compartment is cytosol and the red one is nucleus. Blue arrows show reactant(s):product(s) exchange during biochemical or transport reactions, and red arrows indicate enzymatic catalysis (diamond heads) or gene transcription (round heads). In the nucleus, red boxes represent genes and arrows indicate gene activation.Names of genes are in orange, of mRNA are in green, of enzymes are in purple, of other proteins and metabolites in blue and of extracellular constants in yellow.

  two modelsIn order to better study the transcriptional regulations of the GSH pathway by the Nrf2-Keap1 signaling cascade, we have merged the Nrf2 pathway model developed by[START_REF] Hamon | Systems biology modeling of omics data: effect of cyclosporine a on t he Nrf2 pathway in human renal cells[END_REF] with the GSH synthesis and metabolism model proposed byGeenen et al. (2012a). In fact, GSH synthesis and response to oxidative stress was much more developed and detailed in the model of Geenen. The link between the two models is that the transcription part of Hamon's Nrf2-Keap1 model codes for the synthesis of key enzymes of GSH synthesis in Geenen's model. Even though GSH synthesis was much more developed and detailed in Geenen's model, the added value of Hamon's version was the elaboration of the role of 'adenosine triphosphate'

Figure 7

 7 is a s chematic representation of the final (assembled) SB model we constructed, showing all that happens between the entry of the xenobiotic X to the cell and the GSH cycle (i.e., synthesis, oxidation and export), passing by the nuclear transcription of genes coding for key enzymes. The full code of this SB model is given in 'Supplementary Material 7.4'.

Figure 8 .

 8 Figure 8. Venn diagram showing the contribution (overlapping areas) of different source models (i.e. Hamon et al. (2014) in green, Geenen et al. (2012a) in pink and Reed et al. (2008) in orange) to our final assembled SB model (in blue) describing the control of oxidative stress by the Nrf2-Keap1 signaling pathway. This diagram also shows the parts of each model that were left out (non-overlapping areas). Two more genes (i.e., SRXN1 and HMOX1) that are often used as activation markers for Nrf2 pathway were added to the model (yellow).

Figure 9 .

 9 Figure 9. γGC and GSH synthesis reactions according to Geenen et al. (2012a) (left) and to Hamon et al. (2014) (right). [Cys = cysteine, Glut = glutamate, glc and r-GC = gammaglutamyl-cysteine; other acronyms are explained in the 'List of abbreviations'].

  Figure S4, Figure S5 and Figure S6) display the amount of mRNA (in zeptomol) in the

Figure 10 .

 10 Figure 10. MCMC curve fitting of GCLC mRNA (example of gene activated by one single TF) rate equivalency by time according to virtual exposure scheme presented inTable 3 applied on both Hamon's (red dots) and Hill-based (black curve) SB models.

Figure 11 .

 11 Figure 11. MCMC curve fitting of MRP mRNA (example of gene activated by two TFs) rateequivalency by time according to virtual exposure scheme presented in Table3applied on both Hamon's (colored dots) and Hill-based (colored curves) SB models. nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on different curves (0 (red), 0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of nucX-AhR).

Figure 12 .

 12 Figure 12. A CKD AOP diagram. KERs are represented by arrows.

  2.2', the article's co-authors Frédéric Y. BOIS (thesis director) and Cléo TEBBY have created a dose-response based qAOP model of three equations 4.1, 4.2 and 4.3. First, equation 4.1, with a modified exponential decrease, establishes the relationship between the concentration of KBrO3 (CKBrO3) and the percentage of GSH (PctGSH) remaining in vitro after one hour representing the MIE. The parameters used in equation 4.1 are the GSH degradation rate constant k, and power b (which increases the degradation rate if b>1).𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐸𝐸𝐺𝐺 = 100 × 𝑒𝑒𝑒𝑒𝑒𝑒�-𝑘𝑘 ⋅ 𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂 4.2 models the relationship between CKBrO3, time t and QDCF (representing the amount of oxidative stress). Its parameters are A (baseline response), B (maximum increase above baseline), δ (maximum increase modulation by dose), kd (dose coefficient), kt (time coefficient).

Figure 13 .

 13 Figure 13. Structure of the DBN qAOP for CKD. KBrO3 concentration and the GSH readout do not vary with time, while the DCF and lactate readouts were observed at different time intervals. The arrows indicate probabilistic dependencies.

Figure 7

 7 Figure7shows the assembled SB model we developed to study the transcriptional

Figure 14 .

 14 Figure 14. KBrO3 and DCF specific reactions of the SB model. Other abbreviations: extGSH is extra-cellular glutathione; cytGSH: cytosolic glutathione; extGSSG: extra-cellular oxidized glutathione; cytGSSG: cytosolic oxidized glutathione. Reactions are represented by red circles: a. the oxidation of extGSH by KBrO3; b. oxidation of carboxy-DCF by ROS; c. DCF bleaching; d. oxidation of carboxy-DCF by KBrO3; e. oxidation of cytGSH by KBrO3.

Figure 15 .

 15 Figure 15. Fit of the KBrO3 -GSH data (circles; each color represents one of the replicates) using the three qAOP models developed. The black line corresponds to the empirical model (equation 4.1). The best fit (solid line) is shown along with 20 additional random fits (gray), showing the uncertainty of the model predictions. The black dashed line represents the best fit obtained the DBN qAOP. The red line shows the best fit for the SB model.

Figure 16 .

 16 Figure 16. Fit (top row) and predictions (bottom row) of the dose-response based qAOP for the DCF (measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are plotted along with all individual data (colored dots). The predicted chemical-independent relationships (in red) for GSH -time -DCF, or GSH -time -lactate were obtained by inversion of the qAOP equations (see 'Supplementary Material 7.2.2'). The maximum posterior parameter values given in TableS5were used to draw the figures.

Figure 17 .

 17 Figure 17. Equivalent 2D representations are given in 'Supplementary material 7.2.3' Figure

Figure 17 .

 17 Figure 17. Fit (top row) and predictions (bottom row) of the DBN qAOP for the DCF (measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are plotted along with the data mean (black dots) and all individual data (colored dots). The predicted chemical-independent relationships (in red) are shown for GSH -time -DCF and GSH -time -lactate. The maximum posterior parameter values given in TableS7were used to draw the figures.

Figure 18 .

 18 Figure 18. Best fits of SB model (gray surfaces) to the DCF RFU data (colored dots), for different levels of complexity: (A) action of KBrO3 on external GSH and formation of DCF by ROS; (B) same as A with the addition of DCF bleaching; (C) same as B with the addition of a direct formation of DCF by KBrO3; (D) same as B, but with the addition of an action of KBrO3 on internal GSH.

( 2010 ,

 2010 2013 and 2015) pioneered the application of BNs for qualitative (i.e., hazard) assessment of chemicals and here we aim to extend this towards risk assessment with qAOPs. BNs are intermediate between empirical models (the KERs are usually simple linear links) and SB models (the whole set of KERs is modeled jointly and the links can represent cause-effect relationships). To accommodate the time variable of the data, we use in fact a special DBN -a straightforward extension of BNs -where time enters the KERs. (D)BN modeling is in a way simpler than the empirical dose-response qAOP proposed above, because i. the same basic KER formula is used for each link, and ii. they can handle uncertainty in a flexible, unified, and statistically homogeneous framework. With this model, we obtained a fairly good representation of the data, and successfully modeled (cf. Figure17) a fairly complex time-doserelationship for the lactate readout. The end-results differed visually from those of the doseresponse qAOP, because in our DBN the KER links for DCF and lactate are linearly related to GSH levels. We are currently working on nonlinear extensions of the DBN model. Finally, in a realistic risk assessment framework, pharmacokinetics in vitro or in vivo should be accounted for. This would add its own set of additional complexities, but it is possible to couple them with DBN models, either by pre-computing the value of the dose nodes in the DBN with a pharmacokinetic model, or by extending the DBN to simulate the pharmacokinetic data available.Overall, (D)BN qAOPs offer an automatic or standardized way to develop semiempirical qAOPs, while tuning the complexity of the KERs. They can nicely describe complex time dependencies. However, the software for parameterizing such models (e.g., GNU MCSim, or Stan) require a mastering of their syntax for model building and fitting. The largest constraint for (D)BNs concerns the design of the experiments needed to develop the qAOP. The same doses and observation times should be used as much as possible. Otherwise, statistical imputation has to be used a posteriori to obtain a uniform dose and time schedules across experiments, and the statistical estimation problem is likely to become overwhelming. From an experimental point of view, however, it might not be feasible to observe the different KEs with the same time frame. Some events might happen in seconds (binding), days (cellular responses)

  Figure 19.
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 19 Figure 19. Venn diagram of the number of genes of each of the three studied pathways (AhR, Nrf2 and ATF4) and their overlapping zones, included in the analysis.

  Figure 20.

Figure 20 .

 20 Figure 20. Methods summarizing workflow

Figure 21 .

 21 Figure 21. Geometric representation of chemical specificity and potency for the Nrf2 and AhR pathways. K represents a chemical and its coordinates are (CACAhR, K, CACNrf2, K). K also defines the vector 𝑶𝑶𝑶𝑶 ������⃗ linking the origin O (0, 0) to point K. The absolute value of the cosine of the angle α between 𝑶𝑶𝑶𝑶 ������⃗ and a pathway's axis can be used to measure the specificity of a chemical for the given pathway (the smaller α, the more specific the chemical). On the other hand, the overall activation potency of a chemical increases proportionally with the length of 𝑶𝑶𝑶𝑶 ������⃗ . Points A, B and C represent three other chemicals with different specificities and potencies for pathways' activation (see text).

Figure 22 .

 22 Figure 22. Venn diagram of the number of genes per pathway's global signatures and names of genes of overlapping zones.

Figure 23 .

 23 Figure 23. Network representation of AhR, Nrf2 and ATF4 pathway signatures and their overlapping zones.

Figure 24 .

 24 Figure 24. Venn diagrams of the number of genes per pathway's stratified signatures and names of genes of overlapping zones. Categories: (A) All liver data, (B) Rat Liver in vitro data, (C) Rat Liver in vivo data, (D) Human Liver in vitro data. *Refers to genes that were known to be part of the same overlapping zone according to TableS11lists. White is the color of gene names that appear in an overlapping zone of only one of the four categories studied, and black is the color of gene names that appear in more than one category (two, three or four).

Figure 25 ,

 25 Figure 25, Figure 26 and Figure 27 plot the 160 chemicals' vector modules vs. the

Figure 25 .

 25 Figure 25. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶 ������⃗ � of the vector linking the origin O(0,0) to the chemical's point in a 3D space) and specificity to the AhR pathway (X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶 ������⃗ and the AhR axis in a 3D space). Chemicals are represented by their rank in the alphabetically ordered list.

Figure 26 .

 26 Figure 26. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶 ������⃗ � of the vector linking the origin O(0,0) to the chemical's point in a 3D space) and specificity to the Nrf2 pathway (X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶 ������⃗ and the Nrf2 axis in a 3D space). Chemicals are represented by their rank in the alphabetically ordered list. The only chemical that is both strong (horizontal blue dashed line: �𝑶𝑶𝑶𝑶 ������⃗ � > 𝟎𝟎. 𝟓𝟓 ) and Nrf2 specific (vertical blue dashed line: 𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶) = 𝟏𝟏 √𝟑𝟑 ) Sulindac, is in red and it is listed in the legend on the right.

Figure 27 .

 27 Figure 27. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶 ������⃗ � of the vector linking the origin O(0,0) to the chemical's point in a 3D space) and specificity to the ATF4 pathway (X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶 ������⃗ and the ATF4 axis in a 3D space). Chemicals are represented by their rank in the alphabetically ordered list. Chemicals that are both strong (horizontal blue dashed line: �𝑶𝑶𝑶𝑶 ������⃗ � > 𝟎𝟎. 𝟓𝟓 ) and ATF4 specific (vertical blue dashed line: 𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶) = 𝟏𝟏 √𝟑𝟑 ) are in red and their names are listed in the legend on the right.

Figure S2 .

 S2 Figure S2. Schematic representation of the SB model of the GSH metabolism pathway by Reed et al. (2008).

Figure S4 .

 S4 Figure S4. MCMC curve fitting of CYP mRNA (example of gene activated by one single activator) rate equivalency by time according to virtual exposure scheme presented in Table3applied on both Hamon's (red dots) and Hill-based (black curve) SB models.

  GSH (PctGSH) remaining in vitro after one hour, representing the MIE, was modeled with a modified exponential decrease equation (equation 7.6): 𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐸𝐸𝐺𝐺 = 100 × 𝑒𝑒𝑒𝑒𝑒𝑒�-𝑘𝑘 ⋅ 𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂 3 𝑏𝑏 � (7.6) Its parameters are the GSH degradation rate constant k, and power b (which increases the degradation rate if b>1).

  7.9) Replacing CKBrO3 in equation 7.8 by the expression given in equation 7.7, we obtain the following KER between PctGSH and QDCF. 𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 -𝑒𝑒𝑒𝑒𝑒𝑒 �-𝑘𝑘 𝑑𝑑 ⋅ � 𝑙𝑙𝑙𝑙𝑑𝑑(100)-𝑙𝑙𝑙𝑙𝑑𝑑(𝑃𝑃𝑐𝑐𝑐𝑐 𝐺𝐺𝐸𝐸𝐺𝐺 ) 𝑒𝑒𝑒𝑒𝑒𝑒(-𝑘𝑘 𝑐𝑐 ⋅ 𝑃𝑃)� (7.10) To model the CKBrO3 -time -lactate concentration (Clac) relationship, we used a polynomial equation which adequately fitted the data: 𝐶𝐶 𝑙𝑙𝑐𝑐𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂 3 + (𝑃𝑃 + 𝑒𝑒𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂3 )𝑃𝑃 + (𝑑𝑑 + 𝑓𝑓𝐶𝐶 𝐾𝐾𝑏𝑏𝑁𝑁𝑂𝑂3 )𝑃𝑃 2 (7.11) If we replace CKBrO3 in equation 7.11 by the value given in equation 7.8, the relationship between QDCF, time and Clac becomes:

Figure S9 :

 S9 Figure S9: Best fit of the dose-response based qAOP (equations 4.2 and 7.8) to the KBrO3time -DCF data. The colors correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The best fit curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). The thin lines correspond to +/-one measurement SD around the mean.

Figure S10 :

 S10 Figure S10: Best fit of the dose-response based qAOP (equations 4.3 and 7.11) to the KBrO3time-lactate data. The colors correspond to the various KBrO3 exposure concentrations: red: 0; yellow: 0.25 mM; green: 0.5 mM; light blue: 1 mM; dark blue: 2 mM; magenta: 4 mM. The best fit curves (thick lines) are plotted along with the mean of four lactate measurements (dots). The error bars correspond to +/-one measurement SD. Measurement times have been jittered a bit to increase readability.

(

  randomly draw from their conditional distribution) the expected DCF values at the concentrations used in the lactate experiment. Note that the alternative solution of describing the DCF dynamics only at time points zero and 24 hours would discard most of the DCF data and is thus unsatisfactory. To reduce the number of data points to be imputed, we chose to use only one in four DCF data points (one per hour), thus imputing 432 missing lactate data values.

Figure S11 :

 S11 Figure S11: Best fit of the DBN qAOP to the KBrO3 -time -DCF data. The colors correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The best fit curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). The thin lines correspond to +/-one measurement SD around the mean.

Figure S12 :Figure S13 :

 S12S13 Figure S12: Best fit of the DBN qAOP to the KBrO3 -time -lactate data. Simulations start one day before exposure to KBrO3, is simulated. The colors correspond to the various KBrO3 exposure concentrations: red: 0; yellow: 0.25 mM; green: 0.5 mM; light blue: 1 mM; dark blue: 2 mM; magenta: 4 mM. The best fit curves (thick lines) are plotted along with the mean of four lactate measurements (dots). The error bars correspond to +/-one measurement SD. Measurement times have been jittered a bit to increase readability.

Figure S14 :

 S14 Figure S14: Fit of the SB model (with action of KBrO3 on external GSH, formation of DCF by ROS, and DCF bleaching) to the KBrO3 -time -DCF data. The colors correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The maximum posterior fit curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). Note the very faint effect of dose (the five fit curves are not exactly superimposed). The thin lines correspond to +/-one measurement SD around the mean.

Figure S15 :

 S15 Figure S15: Fit of the best SB model to the KBrO3 -time -DCF data. The model includes action of KBrO3 on external GSH, formation of DCF by ROS and KBrO3, and DCF bleaching. The colors correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The maximum posterior fit curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). The thin lines correspond to +/-one measurement SD around the mean.

Figure S16 :

 S16 Figure S16: Fit of the SB model (with action of KBrO3 on external and internal GSH, formation of DCF by ROS, and DCF bleaching) to the KBrO3 -time -DCF data. The colors correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The maximum posterior fit curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). The thin lines correspond to +/-one measurement SD around the mean.

  related to the AO and were removed from the pathway diagram. The current version of the AOP diagram implemented in Effectopedia is shown on the Figure S17. Each of the elements in the diagram can be expanded and details can be added to their description. Models were implemented in R and their source code contributed to the description of the in silico models, allowing other users to execute them with the same and/or different data and model parameters.

Figure S17 :

 S17 Figure S17: Diagram of renal qAOP (with in silico models and test data) exported form Effectopedia (broken into two segments for readability purposes). The diagram starts with extracellular KBrO3 (first green box) which is transported into cells (second green box). The orange link between the two green boxes represents the transport across the cell membrane and be described with a toxicokinetic model. Intra-cellular KBrO3 is then connected to the MIE (blue box ID2) 'Oxidative reactivity'. There is one in vitro test method (purple box ID32) and one in silico model (gray box ID351) that can be used to measure/estimate the MIE. The MIE is followed by a sequence of KEs (blue boxes ID3-ID5, ID229-230) leading to the AO (blue box ID233). Orange circles between KEs represent KERs. KERs can include multiple executable response-response models in their description. Purple rhomboids between test methods and KEs represent test-response mappings which describe how measured results can be interpreted or transformed to reflect the in vivo context of the KE. Experimental data for 'GSH depletion in the cell-free environment' (box ID32), 'DCF Activation' (box ID31), and 'increased lactate production' (box ID26) were entered into Effectopedia. The same data were used for fitting models described in 'GSH depletion Fitted Model' (box ID351), 'DCF (oxidative stress) Fitted Model' (box ID400)'.

  # vitro in vitro KBrO3-GSH sub-model # -

  Glutamate-Cysteine Ligase GCLC, # Glutamate-Cysteine Ligase, Catalytic subunit GCLCmRNA, # mRNA of GCLC GCLM, # Glutamate-Cysteine Ligase, Modifier subunit GCLMmRNA, # mRNA of GCLM cytGlutamate, # Cytosolic Glutamate cytGlutamicAminoAcid, # Cytosolic Glutamic Amino Acid extGlutamicAminoAcid, # in Medium Glutamic Amino Acid GlutamylAminoButyrate, cytGlycine, # Cytosolic Glycine GPX, # Glutathione Peroxidase GPXmRNA, # mRNA of GPX GS, # Glutathione Synthetase cytGSH, # Cytosolic Glutathione extGSH, # in Medium Glutathione vitroGSH, # to simulation Alice KBrO3 data GSmono, # Monomer of GS GSmRNA, # mRNA of GS cytGSSG, # Cytosolic Glutathione Disulfide (Reduced Glutathione) extGSSG, # in Medium Glutathione Disulfide (Reduced Glutathione) GST, # Glutathione S-Transferase GSTmono, # Monomer of GST GSTmRNA, # mRNA of GST Homocysteine, HMOX1, # Heme Oxygenase (decycling) 1 HMOX1mRNA, # mRNA of HMOX1 Keap1, # Kelch-Like ECH-associated protein 1 Keap1o, # Oxidized form of Kelch-Like ECH-associated protein 1 extLCysteinylGlycine, # in Medium L-Cysteinyl-Glycine cytMethionine, # Cytosolic Methionin MRP, # Multi-drug Resistance-associated Protein

  

  

  

  

  

  

Table 1 .

 1 The 36 partners of the StemBANCC project listed in alphabetical order after the names of the two leaders: F. Hoffmann-La Roche Ltd and University of Oxford.

		Institute Name	City	Country	Logo
	Leader	F. Hoffmann-La Roche Ltd	Basel	Switzerland
	Leader	University of Oxford	Oxford	United Kingdom
		AbbVie Deutschland GmbH	Wiesbaden -Delkenheim	Germany
		AstraZeneca	Södertälje	Sweden
		Boehringer Ingelheim International GmbH	Ingelheim	Germany
		Charité Universitätsmedizin	Berlin	Germany
		Concentris Research Management	Fürstenfeldbruck	Germany
		Eli Lilly	Basingstoke	United Kingdom
	Gurdon Institute, University of Cambridge	Cambridge	United Kingdom
		Helmholtz Zentrum München	Neuherberg	Germany
		Hannover Medical School	Hannover	Germany



  Regulatory and Scientific Initiatives in the European Union o The 7 th Amendment to the Cosmetics Directive On January 15 th 2003, the European 7 th Amendment (2003/15/EC) to the Cosmetics Directive (76/768/EEC) restricted the use of animals in all cosmetic testing

  European Union Scientific Research Projects European actions have not only been legislative or regulatory. The FP7 3 and Horizon 2020 4 research programs have accompanied legislation consistently by pushing for the development of corresponding knowledge and technologies. The European Union has funded and launched many large-scale projects with different themes: ACuteTox Project 5 in acute toxicity alternative testing, Scrtox 6 Project and StemBANCC 7 Project in stem cell technology, COSMOS 8 in computational modeling, NOTOX 9 in SB, the SEURAT-1 10 cluster and EU-ToxRisk 11 in predictive toxicology etc.

	3 https://ec.europa.eu/research/fp7/index_en.cfm [Accessed October 24 th , 2018]
	4 http://www.horizon2020.gouv.fr/ [Accessed October 24 th , 2018]
	5 http://www.acutetox.eu/ [Accessed October 24 th , 2018]

o REACH Regulation: The Registration, Evaluation, Authorization and Restriction of Chemicals Adopted by the European Commission in 2003, and implemented in 2007, the REACH regulation established a l ocal regulatory framework for the safety assessment of chemicals produced or imported in quantities greater than one ton per year (Foth and Hayes, 2008). It calls for the development of computational and experimental in vitro testing methods, integrated toxicity testing strategies, keeping in vivo experiments as a l ast resort. That comprehensive program aimed at evaluating the risks of more than 30,000 synthetic chemicals already in use in Europe by June 2018 (van Vliet, 2011). By this deadline only 20,000 chemicals were evaluated. o  Reports, Programs and Other Initiatives in the US o The National Toxicology Program Road-Map Aware of the above-mentioned development, the National Toxicology Program proposed in 2004 a road map for the future of toxicology testing entitled 'A national toxicology program for the 21 st century' (National Toxicology Program, 2004), which called for a shift from observational methods towards more predictive, target-specific and mechanism-based alternative assays. It also placed the emphasis on tools like physiologically based pharmacokinetic modeling and quantitative structure-activity relationships to better support quantitative risk assessment. In 2005, the National Toxicology Program initiated a collaboration

with the National Chemical Genomics Center to develop chemical libraries and HTS assays

[START_REF] Inglese | Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries[END_REF][START_REF] Shukla | The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform[END_REF]

. 6 http://www.scrtox.eu/ [Accessed October 24 th , 2018] 7 http://stembancc.org/ [Accessed October 24 th , 2018] 8 http://www.cosmostox.eu/ [Accessed October 24 th , 2018] 9 http://www.notox-sb.eu/ [Accessed October 24 th , 2018] 10 http://www.seurat-1.eu/ [Accessed October 24 th , 2018] 11 http://www.eu-toxrisk.eu/ [Accessed October 24 th , 2018] o ToxCast Program: The Toxicity Forecaster of the Environmental Protection Agency ToxCast is a multi-year research program launched in 2007 b y the Environmental

Table 2 :

 2 option 1 represents the statu quo and primarily relies on animal-based in vivo

	tests and option 2 takes into consideration the available information on the substance studied
	and its mechanisms of action, and is already operational. The remaining two options respond to
	the 'National Research Council' calls at two different degrees: the extreme option 4 calls for an
	in vivo-free strategy (as envisioned in the legislation of the European Union for cosmetics'
	ingredients), while the intermediate option 3 leaves open the possibility of using animal-based
	tests in complementarity to innovative mechanistic approaches (Carmichael et al., 2006).
	 Tox21: Toxicology testing in the 21 st Century
	Toxicology testing in the 21st Century (Tox 21) 12 is another collaborative testing and
	evaluation program that was established in 2008 via a Memorandum of Understanding between
	the National Toxicology Program, the National Chemical Genomics Center, and the
	Environmental Protection Agency, later joined by the US Food and Drug Administration.

Criteria Option 1 in vivo Option 2 Tiered in vivo Option 3 in vivo / in vitro Option 4 in vitro

  

	Quantity of animals used	High	Low	Low	None
	Possibility of in silico screens	None	Limited	Possible	Yes
	Biology	Animal	Animal	Mostly Human	Mostly Human
	Concentrations used	High	High	Multiple	Multiple
	Throughput	Low	Low	Medium and High	High

  simplify that part of the model, we modeled transcription control cascades according to the 'Hill equation' in order to have a single equation per gene. For genes controlled by one activator (i.e., TF) xa we obtain equation 3.1:

		𝜕𝜕(𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴) 𝜕𝜕𝑐𝑐	= 𝑘𝑘 0 +	𝑉𝑉 𝑚𝑚𝑐𝑐𝑚𝑚 ⋅𝑚𝑚 𝑐𝑐 𝑘𝑘 𝑚𝑚 𝑛𝑛 +𝑚𝑚 𝑐𝑐 𝑛𝑛 -𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴 𝑛𝑛	(3.1)
	and for genes that are controlled by two TFs xa and xb (i.e., nucNrf2 and nucX-AhR)
	we obtain equation 3.2:			
	𝜕𝜕(𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴) 𝜕𝜕𝑐𝑐	= 𝑘𝑘 0 +	𝑉𝑉𝑚𝑚𝑐𝑐𝑚𝑚 𝑁𝑁𝑁𝑁𝑁𝑁2 ⋅𝑚𝑚𝑁𝑁𝑁𝑁2 𝑛𝑛 𝑘𝑘𝑚𝑚 𝑁𝑁𝑁𝑁𝑁𝑁2 𝑛𝑛 +𝑚𝑚𝑁𝑁𝑁𝑁2 𝑛𝑛 +	𝑉𝑉𝑚𝑚𝑐𝑐𝑚𝑚 𝐴𝐴ℎ𝑅𝑅 ⋅𝐴𝐴ℎ𝑚𝑚 𝑛𝑛 𝑘𝑘𝑚𝑚 𝐴𝐴ℎ𝑅𝑅 n +𝐴𝐴ℎ𝑚𝑚 𝑛𝑛 -	𝑉𝑉𝑚𝑚𝑐𝑐𝑚𝑚 𝑁𝑁𝑁𝑁𝑁𝑁-𝐴𝐴ℎ𝑅𝑅 ⋅𝑚𝑚𝑁𝑁𝑁𝑁2 𝑛𝑛 ⋅𝐴𝐴ℎ𝑚𝑚 𝑛𝑛 �𝑘𝑘𝑚𝑚 𝑁𝑁𝑁𝑁𝑁𝑁2 n +𝑚𝑚𝑁𝑁𝑁𝑁2 𝑛𝑛 ��𝑘𝑘𝑚𝑚 𝐴𝐴ℎ𝑅𝑅 n +𝐴𝐴ℎ𝑚𝑚 𝑛𝑛 �	-𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴

where mRNA represents the quantity of produced mRNA (in zeptomols) and δmRNA/δt is its derivative with respect to time, k0 is the basal transcription rate under zero exposure, and kdeg is the mRNA degradation rate. In equation 3.2, i.e. in the case where two TFs can contribute to transcription of a single gene, we consider the additive contribution of each regulator separately (referred to by the subscripts a and b in equation 3.2) while subtracting the overlap, following the models proposed by

[START_REF] Alon | An introduction to systems biology: design principles of biological circuits[END_REF] 

for multi-dimensional input functions that integrate more than one TF. The nuclear (red) compartment of Figure

7

shows how transcription-translation cascade of reactions was simplified and reduced to one equation per gene, regardless if is activated by one or two TFs.

Table 4 .

 4 Hill parameter values (maximum posterior values) for gene transcription in the SB assembled model of the Nrf2 control of oxidative stress. These values were obtained by MCMC simulations. Since calibration was performed with virtual data, we were not interested in the mean and the standard deviation of the distributions (not mentioned). Villeneuve et al., 2014) (see Figure 12). Between the MIE and the AO, there can be any number of intermediate critical and measurable KEs connected by KERs (LaLone et al., 2017).

	Gene	Hill Parameter	Value	Measuring unit
		k0	8.91E-5	zeptomol/s
	CYP	Vmax	4.24E-6	μM/s
		km	9.76E-3	μM
		k0	2.73E-6	zeptomol/s
		Vmax,a	2.71E-8	μM/s
	Nrf2	Vmax,b Vmax,ab	2.37E-8 2.51E-8	μM/s μM/s
		km,a	1.50E-3	μM
		km,b	1.20E-3	μM
		k0	1.21E-4	zeptomol/s
	GS	Vmax	5.47E-6	μM/s
		km	4.30E-3	μM
		k0	1.70E-4	zeptomol/s
	GCLC	Vmax	9.89E-6	μM/s
		km	2.39E-3	μM
		k0	9.17E-5	zeptomol/s
	GCLM	Vmax	1.28E-5	μM/s
		km	3.83E-3	μM
		k0	4.92E-5	zeptomol/s
	GST	Vmax,a	1.17E-6	μM/s
	and	Vmax,b Vmax,ab	1.62E-7 1.87E-7	μM/s μM/s
	GPX	km,a	3.18E-3	μM
		km,b	3.11E-3	μM
		k0	1.27E-4	zeptomol/s
		Vmax,a	4.50E-6	μM/s
	MRP	Vmax,b Vmax,ab	2.06E-6 2.27E-6	μM/s μM/s
		km,a	2.72E-3	μM
		km,b	3.75E-3	μM

Table S1

 S1 The culture medium, with the given KBrO3 concentrations was changed every day after an aliquot was taken for lactate measurement. An absorbance-based assay described in[START_REF] Limonciel | Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes[END_REF] ) (see TableS3in 'Supplementary Material 7.2.1').

	in 'Supplementary Material
	7.2.1') was measured through GSH depletion in a cel l-free environment. Depletion was
	measured after 1 hour , using the luminescence-based GSH-Glo kit from Promega (V6912),
	according to manufacturer's instructions, as described in Limonciel et al. (2012)
	Oxidative stress was read out by oxidation of the cell permeant reagent 6-carboxy-2',7'-
	KBrO3 dissolved in culture medium. DCF production was measured over time (approximately
	every 15 m inutes, up t o 24 hour s) as relative fluorescence units (RFU) by fluorescence
	spectroscopy using over time using a Tecan Pro M200 microplate reader.
	Supernatant lactate per time is a measure of glycolytic rate (inversion of glucose
	consumption rate). Increased glycolysis can be due to a decrease in mitochondrial respiration,

dichlorofluorescein diacetate (carboxy-DCFDA). After diffusion into cells, carboxy-DCFDA is deacetylated by cellular esterases to 6-carboxy-2',7'-dichlorofluorescein (carboxy-DCF), which remains trapped in the cell and is oxidized by hydroxyl, peroxyl radicals and other ROS to 2',7'-dichlorofluorescein (DCF), which is highly fluorescent. RPTEC/TERT1 cells were grown as described by

[START_REF] Aschauer | Delineation of the key aspects in the regulation of epithelial monolayer formation[END_REF] 

and exposed to various concentrations of KBrO3 (control, 0.75, 1.5. 3, a nd 6 mM) as described by

[START_REF] Limonciel | Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells[END_REF]

) (see Table

S2

in 'Supplementary Material 7.2.1'). Briefly, cells were grown and matured into a mature monolayer in 96-well cell culture plates kept at 37°C / 5% CO2 and were fed fresh medium 24 hours before chemical exposure. Cells were incubated with 40µM carboxy-DCFDA (Invitrogen) 4 hours before washing out the excess extracellular dye and starting exposure to an increase in energy demand, or alteration in pathways involved in glycolysis regulation (e.g., HIF1 alpha (positive), or p53 ( negative).

  The conditional distribution of QDCF observations at a given time t, given PctGSH and the QDCF observation at the previous time t-h is given by is an extension of the standard DBN model in which PctGHS,t influences the equilibrium value (EDCF,t) for QDCF,t to which it converges over time at exponential dampening rate ν (equations 4.5 and 4.6):𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷,𝑐𝑐 = 𝛽𝛽 0,𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽 𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐸𝐸𝐺𝐺 (4.6)

	𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷,𝑐𝑐 ∼ 𝑚𝑚𝑁𝑁𝑟𝑟𝑚𝑚𝑎𝑎𝑁𝑁 �𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷,𝑐𝑐 -�𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷,𝑐𝑐 -𝑄𝑄 𝐷𝐷𝐷𝐷𝐷𝐷,𝑐𝑐-ℎ � ⋅ 𝑒𝑒 -𝜈𝜈 𝐷𝐷𝐷𝐷𝐷𝐷 ℎ , � 1-𝑑𝑑 -𝜈𝜈 𝐷𝐷𝐷𝐷𝐷𝐷 ℎ 1-𝑑𝑑 -𝜈𝜈 𝐷𝐷𝐷𝐷𝐷𝐷 ⋅ 𝜎𝜎 𝐷𝐷𝐷𝐷𝐷𝐷 2 �	(4.5)
	𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐸𝐸𝐺𝐺 ∼ 𝑚𝑚𝑁𝑁𝑟𝑟𝑚𝑚𝑎𝑎𝑁𝑁(100 × 𝑒𝑒𝑒𝑒𝑒𝑒(-𝑘𝑘 𝐺𝐺𝐸𝐸𝐺𝐺 ⋅ 𝐶𝐶 𝐾𝐾𝐵𝐵𝑁𝑁𝑂𝑂3 ), 𝜎𝜎 𝐺𝐺𝐸𝐸𝐺𝐺 2 )	(4.4)

the work of Wang GAO that is explained in 'Supplementary Material 7.2.3', the developed DBN model includes three equations 4.4, 4.5 and 4.6. In equation 4.4, describing the dependence of observed PctGSH on CKBrO3, kGSH represents the depletion rate constant and σ 2 GSH the variance.

Where EDCF,t is the equilibrium value of QDCF (a linear function of PctGSH,t at time t), h is the (positive) time interval between two consecutive observations, νDCF (positive), β0,DCF, βDCF, and variance σ 2 DCF are parameters to estimate.

Table 5 .

 5 Prior distributions of the parameters of the SB qAOP calibrated with the DCF data.

	Parameter	Units	Prior distribution
	kGSHe,KBrO3	(μM.s) -1	Uniform (0, 10 -6 )
	kDCF,ROS	(zmol.s) -1	Uniform (0, 10 -6 )
	kbl	s -1	Uniform (0, 10 -4 )
	kDCF,KBrO3	(μM.s) -1	Uniform (0, 10 -8 )
	kGSHc,KBrO3	-	Uniform (0, 3)
	σ DCF	RFU	Normal (1, 0.2) truncated to [1.01, 2]

Table 7 .

 7 Note that the model takes into account the 4 hours of cells pre-incubation with carboxy-DCFDA, and simulation time starts therefore before exposure to KBrO3 (which is defined to occur at time point zero). During that period of time, ROS already starts forming DCF, explaining the relatively high level of fluorescence at time point zero. At step 2, with just a depletion of extra-cellular GSH by KBrO3 and the formation of DCF by ROS the model is unable to explain the data (Figure

Table 6

 6 

	lists the best value (maximum posterior), the mean, the standard deviation and
	the confidence interval [2.5 percentile, 9.75 percentile] of each of the parameters calibrated at

step 4a (yielding the best and most parsimonious model). The values of the parameters directly related to DCF do not have an explicit biological interpretation because DCF is measured in

Table 6 .

 6 Summary of the posterior distribution of the five SB model parameters describing the action of KBrO3 on the formation of DCF. The best parameterization (setting kGSHc,KBrO3 at zero) is presented.

	Parameter	Units	Maximum	mean (SD) [2.5pctile, 97.5pctile]
			posterior	
	kGSHe,KBrO3	(μM.s) -1	2.65×10 -7	2.65×10 -7 ± 8.45×10 -9
				[2.48×10 -7 , 2.81×10 -7 ]
	kDCF,ROS	(zmol.s) -1		

Table 8

 8 

	summarizes this

Table 8 .

 8 Number of chemicals used in each experimental category.

	Project	Species Tissue Setting	Mode	Time-points	Number of chemicals	Notes
	All dataset [211]*							(1-2)
	Carcino-	Human Kidney in vitro	Bolus	6h, 24h, 72h	30
	GENOMICS [31]	Rat	Kidney in vitro	Bolus	6h, 24h, 72h	15	(3-4)
	PREDICT-IV [22]	Human Kidney in vitro Repeated doses Human and Rat Liver in vitro Repeated doses	1d, 3d, 14d 1d, 3d, 14d	12 11	(5-6) (7)
		Human	Liver in vitro	Bolus	2h, 8h, 24h	160	(8)
			Liver in vitro	Bolus	2h, 8h, 24h	145	(9)
	TG-GATEs		Liver	in vivo	Bolus	3h, 6h, 9h, 24h	158	(10-11)
	[171]	Rat	Liver	in vivo Repeated doses 4d, 8d, 15d, 29d	143	-
			Kidney in vivo	Bolus	3h, 6h, 9h, 24h	41 41	(12)

Table 9 .

 9 Chosen pathway specific chemical through the dataset.

	Pathway	Species	in vitro	Kidney	in vivo	in vitro	Liver	in vivo
	AhR	Human Rat	Benzo(a)pyrene		Omeprazole	
	Nrf2	Human Rat		KBrO3	-		Phorone	
	ATF4	Human Rat		-		Tunicamycin	

Table 10 .

 10 Number of conditions (chemicals, concentrations, time-points) tested per category.

	Species	Kidney in vitro in vivo	in vitro	Liver	in vivo	TOTAL
	Human	85	0	963		0	1048
	Rat	30	487	1282		1838	3637
	TOTAL	602			4083		4685

  Three other genes appear in the AhR signature in more than one column: CYP1A2 everywhere except 'Rat liver in vitro', TIPARP everywhere except 'Rat liver in vivo' and ABCC4 shows up in these two categories only. 'Rat liver in vitro' AhR signature is completed by five additional genes, 'Rat liver in vivo' by one more and 'Human liver in vitro' by three. The values of the 'Rat liver in vivo' are also higher than the 'Rat liver in vitro' and 'Human liver in vitro' categories.

		Nrf2 Stratified Signatures
		Nrf2 signatures are bigger: 22 genes in the all liver data signature, 28 for 'Rat Liver in
	vitro' and 15 for each of 'Rat Liver in vivo' and 'Human Liver in vitro'. Around two third of
	those genes are "Activated genes" and the rest have negative log2(FC) averages. MAFF,
	SLC3A2, OSGIN2 are among the 'Activated genes' that appear in three out of the four
	categories we are studying. Other important genes show up i n two columns (HSPA1B,
	PPP1R15A, and GCLC) and some, in only one (SRXN1 in 'Rat Liver in vitro' and HMOX1 in
	'Rat Liver in vivo').

Table 12 .

 12 AhR, Nrf2 and ATF4 pathways' signatures stratified in liver data and by all liver data sub-categories('Rat Liver in vitro' data, 'Rat Liver in vivo' data and 'Human Liver in vitro' data).

	AhR signatures

liver in vitro Rat liver in vivo Human liver in vitro

  ATF4 signatures size is similar to Nrf2's signatures with a comparable proportion of activated genes: 23 genes in the all liver data signature, 28 for 'Rat liver in vitro' and 14 for each of 'Rat liver in vivo' and 19 for 'Human liver in vitro'. HERPUD1 is an important gene in this pathway; it is part of the signature of every single category we are examining and exhibits values as high as 2.39 in 'Human Liver in vitro' (among the highest in ATF4 signatures). Other genes also are present in the majority of the categories: IL23A, GTPBP2, and PDIA4. It is noteworthy that the ATF4 signature of 'Rat Liver in vivo' results don't have a lot in common with the other three categories and its log2(FC) averages are lower than the rest (the highest value is 0.61 for HERPUD1).

		IL33 ATF4 Stratified Signatures -0.46	VASN	-0.39	DHRS7	-0.69	DDC	-0.42
			NREP	-0.45	AURKB	-0.38			DUT	-0.35
			SERPINB9	-0.42	RAB32	-0.36			IFIT3	-0.33
					CD36	-0.36			UGT1A6	-0.32
					DCN	-0.34			
					CTSC	-0.34			
					LBH	-0.32			
					CXCL3	-0.32			
						ATF4 signatures			
			All liver data	Rat liver in vitro	Rat liver in vivo	Human liver in vitro
			Genes	Log 2 (FC) averages	Genes	Log 2 (FC) averages	Genes	Log 2 (FC) averages	Genes	Log 2 (FC) averages
			TSLP	1.51					TSLP	1.51
			AKNA	1.30					AKNA	1.30
			HERPUD1	1.23	HERPUD1	1.28	HERPUD1	0.61	HERPUD1	2.39
			IL23A	1.05	IL23A	1.69			IL23A	1.86
			HSPA5	0.94					HSPA5	3.28
			GTPBP2	0.91	GTPBP2	1.12			GTPBP2	1.89
			PDIA4	0.87	PDIA4	0.92			PDIA4	2.18
			FAM129A	0.87					FAM129A	2.92
			Genes PYCR1	Log 2 (FC) averages 0.72	Genes PYCR1	Log 2 (FC) averages 0.91	Genes	Log 2 (FC) averages	Genes	averages Log 2 (FC)
					CHAC1	1.40	CHAC1	0.50	
	Activated genes	MAFF	1.42	MAFF KLF15	0.67 0.81	MAFF KLF15	2.37 0.43	
			FBXO30	0.92					FBXO30	0.35
			SLC1A4	1.15	TRIB3	1.12	HES1	0.57	FIBIN	2.72
			HSPA1B	0.82	HSPA1B	0.37			HSPA1B	0.63
			NUPR1	0.94	BCAT2	0.97	USP2	0.55	LCN2	1.91
			PPP1R15A	0.77			PPP1R15A	1.16	
			LONP1	0.80	ARHGEF2	0.93	ENC1	0.48	CTH	1.62
			GSTP1	0.67			GSTP1	1.24	
			VNN3	0.78	CASP4	0.84	TSC22D3	0.44	NFE2L1	1.2
			GCLC	0.66	GCLC	0.35			
			SESN2	0.75	KLF4	0.82	DDIT4	0.39	
			PSAT1 BACH1	0.64 0.68	BET1	0.82	PSAT1 SLC38A2	1.54 0.38	
			DUSP5	0.62	DUSP5 WARS	0.64 0.80	IP6K2	0.62	
			SLC3A2	0.60	PCK2	0.73	SLC3A2	1.09	SLC3A2	0.40
			OSGIN1	0.58	SLC25A33	0.71	OSGIN1	0.91	OSGIN1	0.42
			SLC6A9	0.57	SLC7A5	0.71	SLC6A9	1.06	
			SLC20A1	0.52	SLC20A1 ACOT2	0.41 0.83			
			ABCC3	0.52	MANEA	0.75	ABCC3	1.00	
			PRC1	-0.65	YPEL5 PRC1	0.47 -0.61			YPEL5	0.37
			LMCD1	-0.64	CPT1A LMCD1	0.38 -0.80			CPT1A LMCD1	0.36 -1.73
			ASNS LBH	0.75 -0.61	SRXN1	0.66	HMOX1	2.03	ATF5 LBH	0.37 -2.56
			PHGDH SNAI2	0.55 -1.20	PHLDA1 DPYSL2	0.53 -0.98	SLC7A11 FOXA2	1.74 -0.61	AP5Z1 FRMD6	0.35 -1.52
			PLA2G12A AKR1B10	0.50 -0.96	TXNRD1 DUSP6	0.41 -0.97	GDF15 ABCG2	1.30 -0.49	SLC39A10	-1.35
	Inhibited genes		SLC7A1 PMAIP1	0.48 -0.88	ABCC2 IFIT3	0.39 -0.72	BTG2 NEDD9	0.89 -0.43	GPNMB	-1.26
			SNRNP35	-0.77	PIR EMILIN1	0.34 -0.69	TMEM159	-0.37	ANKRD1	-1.16
			SERPINE1	-0.68	FLVCR2 FCER1G	0.33 -0.65			PHLDA1	-1.16
					GSR SQRDL	0.33 -0.61			
					GABARAPL1 IFI44	0.33 -0.61			
					AGPAT9	0.57			
					TBCEL	0.48			
					MMD	0.33			
									MMD	-0.4
			LCN2	-0.45			LCN2	-0.97	
	Inhibited genes								
					TGFB2	-0.34			TGFB2	-0.44
			MID1IP1	-0.48	TNFAIP2	-0.44	BMF	-0.88	ALDH1A1	-0.61

Table S11

 S11 in 'Supplementary Material 7.3'.

  pathway (partially at least) to our SB model in the future. Moreover, uncovering variations of the pathways signatures across different testing conditions(i.e., tissues, compounds, species and in vivo versus in vitro), this analysis improves the adaptability of our Nrf2 SB model and prepares it for a quantitative in vitro in vivo extrapolation and integration in a larger network setting.One remarkable strength of the SB model is that it forces us to think mechanistically about new hypotheses and check whether they are compatible with the data. Emergent properties are actually the product of the integrating of these computational models with experiments in a spiral of iterative cycles of validation/falsification, simulation and theory. In our work for example, prediction and emergent properties could be confirmed, if some of the findings (i.e., that a reasonable fit could be obtained if KBrO3 acts directly on DCF, and that DCF bleaches significantly with time etc.) are validated in future experiments. Another importance of the SB approach is that it can fully propagate correct quantification of uncertainty associated with predictions, which is essential for proper risk assessment. Finally, SB models can naturally integrate pharmacokinetic models, since they are built from the same principles and same mathematical objects.

  addition to the aforementioned suggested improvements of our SB model, this work points to several directions for future research. After merging with adequate pharmacokinetic models for quantitative in vitro in vivo extrapolation, the application of SB tools developed here to toxicology has the unique opportunity to provide network insights into underlying mechanisms and basis of susceptibility to xenobiotics. First, using this SB model to evaluate exposures to mixtures of chemicals is a supplementary step towards a better modelling of

biological and environmental realities. Second, by integrating individual-specific data to the model, it may be possible to better understand inter-individual differences in susceptibility to adverse effect of xenobiotics. Finally, on the longer-term, SB models and AOPs can be part of 'integrated approaches to testing and assessment' or 'integrated testing strategies' for regulatory decision making.

Table S2 .

 S2 In vitro DCF fluorescence data used for the qAOP calibration. Time is in hours, DCF fluorescence is in arbitrary relative fluorescence units (RFU). Eight experiments were performed at each KBrO3 dose level.

	24.45 4939 5871 4597 4956 5506 4153 4659 4207 11802 13303 11363 10327 10041 10065 8300 9140 14156 14884 13606 12289 12852 10770 10286 11480 15740 17994 15427 14050 14571 13302 13688 11532 21274 23214 17551 18869 17051 15089 15318	
	24.70 4870 5868 4584 4950 5469 4097 4739 4154 11626 13192 11273 10321 10129 9990 8407 9093 14095 15366 13727 12303 12917 10892 10319 11413 15662 18668 15558 14384 14472 13331 13985 11623 21173 23265 17553 18954 17184 14997 15435	
	24.95 5024 5886 4654 4983 5520 4110 4770 4183 11736 13247 11599 10586 10154 9978 8122 9168 13981 15367 13858 12422 13088 11035 10347 11535 15621 18651 15547 14338 14534 13430 13930 11708 20844 23457 17699 19144 17400 15135 15484	
	25.20 5043 6038 4613 5017 5537 4158 4775 4205 11904 13401 11670 10620 10115 10163 8325 9213 14161 15500 14025 12432 13105 11108 10369 11514 15644 18813 15771 14470 14560 13457 14116 11740 20997 23651 17814 19294 17375 15351 15404	
	25.45 4988 5941 4717 5058 5500 4232 4799 4217 11762 13235 11736 10477 10307 10076 8459 9271 14181 15491 13787 12602 13041 11120 10447 11437 15901 18795 15742 14659 14632 13776 14157 11811 20770 23677 17656 19404 17163 15436 15669	
	Time		Control (KBrO 3 = 0)						0.75 mM KBrO 3							1.5 mM KBrO 3							3 mM KBrO 3							6 mM KBrO			
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	0.000 2121 2441 2042 1978 2189 1826 1952 1897 2195 2144 1868 1808 1768 1734 1470 1643 2298 2223 2078 1843 1881 1629 1524 1696 2876 3041 2120 1880 1791 1723 1716 1606 8877 3631 2404 2220 1733 1716 1522
	0.267 2336 2570 2125 2092 2371 1962 2076 1988 2534 2488 2160 2075 2042 2002 1740 1887 2758 2668 2503 2223 2320 1991 1808 2018 3461 3644 2654 2364 2341 2209 2257 2028 9446 4261 2945 2813 2255 2205 2014
	0.517 2439 2689 2274 2244 2521 2063 2167 2070 2842 2897 2526 2406 2305 2306 1922 2168 3157 3094 2911 2619 2755 2310 2156 2426 4002 4178 3167 2815 2762 2654 2733 2431 9984 4956 3489 3474 2772 2739 2502
	0.767 2604 2809 2361 2348 2634 2118 2273 2123 3176 3235 2801 2698 2613 2612 2171 2433 3609 3527 3307 3013 3114 2650 2501 2740 4529 4767 3626 3324 3266 3146 3135 2795 10510 5720 3996 4091 3225 3234 2909
	1.000 2707 2982 2456 2472 2779 2183 2401 2212 3520 3576 3106 2898 2871 2842 2346 2667 3961 3964 3755 3367 3482 2945 2764 3078 5004 5309 4142 3763 3642 3478 3576 3234 11020 6333 4624 4672 3762 3655 3308
	1.267 2751 3128 2559 2511 2770 2213 2442 2286 3840 3945 3393 3177 3095 3059 2581 2898 4352 4456 4076 3703 3805 3290 3038 3423 5477 5795 4599 4230 4079 3894 3983 3557 11470 7059 5107 5226 4160 4149 3656

Table S3 .

 S3 In vitro lactate concentration data used for the qAOP calibration. Four experiments were performed at each KBrO3 dose level.

	Day		4 mM KBrO3			2 mM KBrO3			1 mM KBrO3			0.5 mM KBrO3			0.25 mM KBrO3		Control (KBrO3 = 0)
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	0	2.329 3.677 4.198 1.713 1.896 3.805 4.198 1.669 2.491 3.362 3.913 2.039 2.874 4.22 2.329 2.894 2.039 3.074 2.622 3.403 2.473 3.935 3.382 3.279
	1	4.467 6.105 6.505 4.377 2.473 4.332 4.879 2.584 2.913 2.776 2.993 2.258 2.51 3.115 1.959 2.364 1.773 2.473 2.039 3.508 2.173 4.044 2.679 2.547
	2	6.887 7.38 7.249 7.696 3.827 5.113 6.055 3.698 2.894 3.341 3.762 1.864 3.115 5.278 1.975 3.424 3.634 2.679 2.311 3.698 3.217 4.626 2.737 3.784
	3	9.315 7.963 6.81 8.071 5.956 6.179 6.43 5.687 3.892 4.949 5.445 3.892 4.879 5.638 4.22 5.663 4.995 4.879 3.115 4.717 4.603 5.397 3.258 4.22

Table S5 .

 S5 Summary of the posterior parameter distributions for the dose-response based qAOP fitted to GSH, DCF and lactate data.

	Parameter	Units	Maximum	mean (SD) [2.5pctile, 97.5pctile]
			posterior value	
	KBrO3-GSH model			
	k	1/mM b	1.44	1.44 ± 0.06 [1.32, 1.56]
	b	-	0.73	0.73 ± 0.028 [0.68, 0.79]
	σ GSH	%	1.22	1.22 ± 0.022 [1.18, 1.27]
	KBrO3-time-DCF model			
	A	RFU	2100	2100 ± 33 [2000, 2200]
	B	RFU	12500	12500 ± 210 [12200, 12800]
	δ	-	0.21	2.1×10 -1 ± 5.3×10 -3 [0.2, 0.22]
	kd	1/mM	0.62	6.2×10 -1 ± 1.7×10 -2 [0.6, 0.65]
	kt	1/h	0.14	0.14 ± 6.7×10 -3 [0.13, 0.15]
	σ DCF	RFU	1.19	1.19 ± 0.0022 [1.18, 1.19]
	KBrO3-time-lactate model			
	a	mM	2.9	2.8 ± 0.22 [2.4, 3.2]
	b	-	-6.2×10 -2	-5.0×10 -3 ± 0.11 [-0.18, 0.18]
	c	mM/h	-0.057	-5.5×10 -2 ± 0.015 [-0.080, -0.030]
	d	mM/h 2	1.0×10 -3	0.001 ± 2.2×10 -4 [6.5×10 -4 , 0.0013]
	e	1/h	0.041	0.040 ± 9.6×10 -3 [0.023, 0.056]
	f	1/h 2	-3.8×10 -4	-3.7×10 -4 ± 1.5×10 -4 [-6.1×10 -4 , -1.2×10 -4 ]
	σ lac	mM	1.27	1.28 ± 0.026 [1.24, 1.34]

Table S7 :

 S7 Summary of posterior parameter distributions of the DBN qAOP fitted to GSH, DCF and lactate data.

	Parameter	Units	Maximum	mean (SD) [5pctile, 95pctile]
			posterior value	
	KBrO3-GSH link			
	k GSH	1/mM	0.61	0.75 ± 0.18 [0.48, 1.1]
	σ GSH	%	18	15 ± 6.3 [6.9, 27]
	GSH-DCF link			
	DCF0	RFU	2160	2160 ± 20 [2130, 2190]
	β 0,DCF	RFU	1.89×10 4	1.9×10 4 ± 1.1×10 3 [1.7×10 4 , 2.1×10 4 ]
	β DCF	RFU/%	-117	-130 ± 9.8 [-148, -117]
	ν DCF	1/h	0.0783	0.10 ± 0.011 [8.2×10 -2 , 0.12]
	σ DCF	RFU	906	890 ± 10 [880, 910]
	DCF-lactate link			
	β 0,lac	mM	9.68×10 -3	1.7 ± 3.9×10 -1 [1.05, 2.3]
	β lac	RFU/mM	4.05×10 -4	2.5×10 -4 ± 3.7×10 -5 [1.95×10 -4 , 3.2×10 -4 ]
	ν lac	1/h	0.267	0.35 ± 0.064 [0.25, 0.46]
	σ lac	mM	0.185	0.64 ± 0.097 [0.48, 0.78]

Table S8 :

 S8 Target genes generated by the PubMed searches for AhR, Nrf2, ATF4 pathways.

	Pathway						Genes					
	(Number of genes)						(804)						
	AhR	AHRR	ALDH1A3 ALS2CL	ATXN1	BATF	BCL3	BMF	CACNA1D CYP1A1	CYP1A2	CYP1B1	DDX24
	(60)	DHX37	DLL1	DLX1	DNMBP	DPP9	EDC3	ELF4	EREG	FAM32A	FAM65C	FLVCR2	FOSL2
		FREM2	IGF1R	LAMA3	LMCD1	MAPRE2	NEDD9	NIN	NPY1R	PITPNM2	PLEC	PRPS1	PSG5
		PYGL	RND1	RRP12	RUNX1	RUNX2	SAMD12	SAT1	SECTM1	SIPA1L2	SLC27A2	SLC2A11	STRBP
		TFAP2A	TH	TIPARP	TMEM45B TPCN1	TRAFD1	TRUB2	USP3	VDR	VIPR1	VTCN1	WDR63
	Nrf2	ABCB6	ABCC1	ABCC2	ABCC3	ABCC5	ABHD4	ACAP2	ADAM23	ADCY1	ADO	AGPAT9	AHR
	(306)	AIFM2	AKAP7	AKR1B10	AKR1C1	AKR1C2	AKR1C3	ALDH1A1 ALS2	AMBP	ANKRD44 ANXA1	AOX1
		AP5Z1	APPL2	ARHGAP18 ARHGDIB ASB3	ATF4	ATG16L2	AURKB	B3GNT2	BACH1	BBS9	BCL2
		BEND6	BET1	BLVRB	BMP8A	BMPER	BMPR1A	BTG2	C12orf29	C16orf72	C8orf4	C9orf3	CABC1
		CAPN7	CBARA1	CBR3	CCDC104	CCDC109B CCDC53	CCDC90B	CD27	CD302	CD36	CDC2L6	CDH11
		CDKN2B	CES1	CFTR	CHPT1	CLCN1	CLIP4	CLTC	COCH	COL24A1	COL4A1	COLEC12	
			COMMD6										
		CORO7	COX6C	CPNE8	CPT1A	CTSB	CTSC	CTSO	CTTN	CXCL5	DAAM2	DAGLB	DCN
		DENND4C DHX40	DLGAP5	DUSP22	DUSP5	ECM1	EDA2R	EMC7	ENC1	ENTPD5	EPHX1	EXOC7
		FAM102A	FAM167A	FAM210B	FAM214A	FAM69A	FBF1	FBXL3	FBXO30	FECH	FKBPL	FNBP1	FOPNL
		FOXA2	FRMD6	FTH1	FUK	FZD6	GABARAPL1GAS1	GCLC	GCLM	GCNT3	GDF15	GDI2
		GLI2	GLO1	GPNMB	GRIP2	GRM1	GSR	GSTA1	GSTA4	GSTM1	GSTM2	GSTM3	GSTP1
		GVIN1	HACE1	HBP1	HECA	HES1	HINT3	HIST1H1C HMHB1	HRASLS2	HRSP12	HSPA1B	IDH1
		IDS	IFIT3	IGF1	IGF2R	IL33	IL6	INSIG1	INSIG2	IRF4	ITGB2	JAG1	
			KCNAB1										
		KDELR2	KEAP1	KIF26B	KLHDC8A KRAS	LAPTM4B LAYN	LBH	LMF1	LNX1	LPL	
			LRRC4C										
		LTA	LYPD6B	LYPLAL1	MACF1	MAFF	MAFG	MAGOHB MAMDC2	MAP3K9	MAPK8	MATN2	ME1
		MEGF9	MEIS1	MFSD9	MGST2	MLYCD	MMD	MRPL14	MRPL33	MSC	MT2A	NCAPD2	NETO2
		NPNT	NQO2	NREP	OAT	OIT3	OSGIN1	P2RY10	PAIP1	PBX1	PCDH7	PDDC1	PDGFC
		PDIA4	PGAP1	PHLDA1	PION	PIP5K1C	PIR	PLA2G4A	PLN	PMAIP1	PPP1R12B PQLC3	PRC1
		PRDM1	PRDX1	PRKAR2B PRKCD	PRR13	PSMB5	PTCD1	PTGR1	PTTG1IP	RAB31	RAB32	
			RAB33A										
		RFFL	RGS10	RND3	RNF121	RNF141	RNF216	RPL10A	RPS6	RXRA	SARM1	SCAMP1	SCYL1
		SDCCAG8 SDPR	SEC63	SEMA3E	SERPINE1 SH3RF2	SH3TC1	SIM2	SLC12A8	SLC16A6	SLC16A9	
		SLC39A10											
		SLC44A3	SLMAP	SNX1	SNX13	SNX22	SNX4	SOAT1	SOCS5	SOD1	SOD2	SQRDL	SRP9
		SRXN1	SSR3	SUB1	SYNPO2	TALDO1	TBC1D23	TBCEL	TBXAS1	TFE3	TFPI	TGFB2	TINAG
		TKT	TMEFF2	TMEM159 TMEM206 TMEM63A TMEM64	TNFSF9	TRIM69	TSPAN3	TXLNB	TXN	TXNDC5
		UBE2V2	UGT1A1	UGT1A6	UGT2B7	UNKL	VASN	VPS8	VSTM4	WAPAL	WASF1	WDR81	WDSUB1
		WNT5A	YAF2	ZC3H11A	ZDHHC20 ZFAND2B ZMAT4						
	ATF4	AARS	ACACA	ACAD8	ACOT2	ACOX2	ADM2	AFF1	AGAP1	AKAP2	AKNA	ALDH18A1	
	(408)		ALDH1L2										
		ALKBH5	AMACR	ANAPC1	ANGPTL4 ANGPTL6 ANK2	ANKRD1	ANKRD11 ANP32B	APBB2	APOBEC1 APOE
		ARHGEF2 ARID5B	ARPC5L	ASCC2	ASNS	ATF5	ATF6	ATL2	ATP6V1G1 ATXN2L	B4GALNT2 B9D2
		BCAR1	BCAT1	BCAT2	BCMO1	BDNF	BGLAP	BHLHE22	BNIP1	BOLA1	BTF3L4	CA9	CABP1
		CALCRL	CAMSAP1 CARS	CASC5	CASP4	CAST	CCL2	CCL7	CCT8L1	CD276	CD74	CDH24
		CDSN	CEBPB	CEBPG	CHAC1	CLCN3	CLIC4	CNOT1	CNPY2	COASY	COL18A1	CP	CRLS1
		CRYBG3	CTH	CUL2	CXADR	CXCL3	CXCR5	CYB5R1	DAAM1	DDIT3	DDR2	DEGS2	DHRS7
		DLEU7	DNAJA3	DNAJB12	DPF2	DPYSL2	DTNBP1	DUSP6	DUT	DYSF	ECHS1	EDEM3	EIF1
		EIF2S2	EIF3C	EIF4EBP1	EIF4G2	EIF5	ELMSAN1 EMILIN1	EPO	EPRS	ERLIN1	ERO1L	ETF1
		ETS1	F3	FADS3	FAM119A	FAM129A	FAM159A	FAM175A	FAM175B	FAM188B	FAM26F	FAM83F	
			FAM96A										
		FBXL2	FBXO11	FBXO31	FCER1G	FGF19	FGF21	FIBIN	FLAD1	FLNC	FLRT1	FNDC7	GARS
		GHITM	GNG5	GNPNAT1 GOT1	GPAM	GPATCH3	GPR85	GPT2	GPX4	GRB10	GSK3A	GSTO1
		GTPBP2	GTPBP4	H2AFZ	HAS2	HAX1	HDAC8	HERPUD1 HFE	HHIPL1	HSPA5	HTRA1	IARS
		ICK	IER2	IFI44	IFT172	IHH	IL1R1	IL2	IL23A	INCENP	INPP4B	INPP5B	IP6K2
		IPMK	ITGB5	ITGB7	ITIH1	JAGN1	JDP2	JHDM1D	KBTBD5	KCNT2	KDM5A	KDM6B	KHNYN
		KIF13B	KIFC1	KLF15	KLF4	KLHDC10 KRTCAP2	LARS	LCN2	LEPREL1	LEPROTL1 LGALS3	
			LGALS8										
		LHFPL2	LMBRD1	LMO4	LONP1	LRRK1	LSG1	LSM14A	LTBP3	MACROD1 MANEA	MARS	MAT2B
		MAZ	MCL1	METTL9	MFF	MID1IP1	MMP19	MRAS	MRPL13	MRPL24	MRPL54	MTHFD1L	
			MTHFD2										
		MTHFR	MTM1	MYCBP2	MYOM1	NAAA	NARS	NCL	NDRG1	NDUFA4L2 NF1	NFE2L1	NFKB1
		NFU1	NIPBL	NME2	NOS2	NOSIP	NRBF2	NRIP2	NUPR1	OPTC	ORMDL3	OSMR	OTUB2
		PACSIN2	PAQR3	PAX8	PCK2	PDAP1	PDE1A	PDE4DIP	PER2	PER3	PFDN1	PHF10	PHF21A
		PHGDH	PHYHD1	PIK3C2G	PKMYT1	PLA2G12A PLD1	PLEKHH3 PNRC2	POP5	PPP1R15A PPP1R15B	
			PPP2R5A										
		PRDM15	PRKG2	PRSS35	PRSS36	PSEN1	PTBP1	PTGS2	PTN	PTPN12	PTPN21	PTPRS	PVRL2
		PYCR1	RAB39B	RAD21	RAI1	RAN	RBM39	RBM4	RBM9	RCC2	RD3	RELN	
			RHBDD1										
		RHOQ	RNF114	RPL13A	RPL7	RPRD2	RPS6KA2	RSBN1	RUNX3	RUVBL2	SAMD8	SARS	SERPINB9
		SERPINF1 SERTAD2	SESN2	SH3BP5L	SHMT2	SLC16A14 SLC19A2	SLC1A4	SLC1A5	SLC1A7	SLC20A1	
		SLC25A28											
		SLC25A33 SLC25A39 SLC35B4	SLC38A2	SLC38A7	SLC41A3	SLC6A9	SLC7A1	SLC7A11	SLC9A9	SLIT1	SLTM
		SNAI2	SNRNP35	SNX12	SNX33	SOAT2	SPATS2	SPEN	SRPK1	SRSF1	STARD5	STC2	STEAP1
		STK40	SURF6	SYNJ2	TAB2	TAF15	TAF5	TAGLN2	TARS	TBC1D9B	TBPL1	TET3	TGIF1
		TLCD2	TMEM11	TMEM154 TMEM189 TMEM74	TMIGD1	TNFAIP2	TNFAIP6	TNKS	TNPO1	TNRC6C	TOR3A
		TPX2	TRAF3IP2 TRIB3	TRIM35	TRIM66	TSC22D3	TSLP	TSPAN5	TSPYL4	TTC23	TTC9C	UBA3
		UBE2L3	UBE2W	UBP1	UBR2	UBR4	UHRF1BP1 UQCRC2	UQCRQ	USP11	USP2	USP36	USP6NL
		VAC14	VARS	VLDLR	VNN3	VPS54	WARS	WBP4	WDR27	WISP1	WWP2	WWTR1	XPOT
		YARS	YLPM1	YWHAG	ZAK	ZBTB38	ZBTB7B	ZBTB7C	ZC3H18	ZC3HAV1	ZFC3H1	ZNF268	ZYG11B
	AhR Nrf2 (7)	ABCG2	DLX2	MCOLN2	NFE2L2	NQO1	PSPC1	TXNRD1					
	AhR ATF4 (4)	CRISPLD2 DDIT4	SLC7A5	UBE2G2								
	Nrf2 ATF4 (17)	ABCC4	ATF3	CLN5	CR1L	DDC	DHX57	GOLIM4	HMOX1	HTATIP2	MDFIC	PSAT1	SCPEP1
		SEMA6D	SPRED1	SQSTM1	TBCE	YPEL5							
	AhR Nrf2 ATF4	SLC3A2	TMTC2										
	(2)												
	Genes with no	Nrf2 (16)	: AI646023, AKR1A4, BC067068, BCLX, CYP2A5, GSPDX, H2-T10, IQWD1, NDP52, PREI4, PRX1, SNF1LK2, SPEER3, SPEER4A, TXN1, ZFP51.
	data*	ATF4 (36)											
	(53)												

Table S10 :

 S10 Genes removed for lack of data for them concerning "receptor specific chemicals" in particular categories.

	Category											
	(Number of						Removed Genes				
	genes)											
		BCMO1	C12orf29	C16orf72	C8orf4	C9orf3	CBARA1	CCDC104	CCT8L1	CDC2L6	CES1	DLEU7
	All database (25)	GSTM1	FAM119A GVIN1 UGT1A1	JHDM1D	KBTBD5	LEPREL1	NME2	PION	PRR13	RBM9	RPL10A	RPL7
		UGT2B7										
		ABCC1	ADM2	ADO	AKAP7	AKNA	AKR1B10	AKR1C2	ALDH18A1 ALDH1A3 ALDH1L2	ALKBH5
			ANK2									
		ASB3	B4GALNT2 B9D2	BACH1	BCMO1	BEND6	BLVRB	BTF3L4	C12orf29	C16orf72	C8orf4
			C9orf3									
		CABC1	CBARA1	CCDC104	CCDC109B CCL2	CCT8L1	CD27	CDC2L6	CDH24	CDSN	CES1
			CLIP4									
		COCH	CORO7	CRYBG3	CTSO	CTTN	CXCL5	CYB5R1	CYP1B1	DAAM2	DENND4C DLEU7
			DLX2									
		ECHS1	EDA2R	EIF1	EXOC7	FAM119A	FAM159A	FAM65C	FAM69A	FBXL2	FNDC7	FREM2
			FTH1									
		GLI2	GPATCH3	GSTA1	GSTA4	GSTM1	GSTM3	GTPBP4	GVIN1	H2AFZ	HAX1	HDAC8
	Rat liver in	HIST1H1C HMHB1	HRASLS2	IDS	IFT172	INPP5B	INSIG1	IRF4	JHDM1D	KBTBD5	KCNT2	LAYN
	vitro (164)*	LONP1	LEPREL1 LPL NCL	LTA	MAGOHB MAMDC2	MAPK8	MAZ	MEGF9	MFF	MSC	MT2A
		NME2	NOS2	NPNT	NRBF2	NUPR1	OIT3	PAQR3	PDDC1	PGAP1	PHF10	PION
			PLA2G4A									
		PMAIP1	POP5	PPP2R5A	PRDX1	PRR13	PRSS35	PSG5	PTBP1	PTGS2	RAB39B	RBM39
			RBM9									
		RPL10A	RPL13A	RPL7	RPRD2	RPS6	RUNX2	RXRA	SDCCAG8 SH3RF2	SLC16A14 SLC1A4
			SLC1A7									
		SLC2A11	SLC44A3	SLMAP	SLTM	SNAI2	SNRNP35	SNX1	SNX22	SOAT2	SPEN	SURF6
			TARS									
		TLCD2	TMEFF2	TMEM74	TMTC2	TPX2	TRIM69	TSLP	UBE2L3	UBE2V2	UBE2W	UGT1A1
			UGT1A6									
		UGT2B7	VIPR1	VNN3	WDR27	WDR63	YLPM1	ZFC3H1	ZNF268			
		ABCC1	ACAP2	ADAM23	ADCY1	ADM2	ADO	AFF1	AGPAT9	AKAP7	AKNA	AKR1B10
			AKR1C2									
		ALDH18A1 ALDH1A3 ALDH1L2	ALKBH5	ALS2	ANK2	ASB3	B4GALNT2 B9D2	BACH1	BCMO1
			BEND6									
		BLVRB	BTF3L4	C12orf29	C16orf72	C8orf4	C9orf3	CASC5	CBARA1	CCDC104	CCL2	CCT8L1
			CD27									
		CDC2L6	CDH24	CDSN	CES1	CLIP4	COCH	COL24A1	CRYBG3	CTSO	CTTN	CYB5R1
			CYP1B1									
		DAAM2	DENND4C DLEU7	DLX2	DUT	ECHS1	EDA2R	EDEM3	EIF1	ELF4	EXOC7
			FAM119A									
		FAM159A	FAM65C	FAM69A	FBXL2	FLRT1	FNDC7	FREM2	FTH1	GLI2	GPATCH3	GSK3A
			GSTA1									
		GSTA4	GSTM1	GSTM3	GTPBP4	GVIN1	H2AFZ	HAX1	HDAC8	HIST1H1C HMHB1	HRASLS2
			IDH1									
	Rat liver in	IDS	IFT172 LAYN	INPP5B	INSIG1	IRF4	JHDM1D	KBTBD5	KCNT2	KIF13B	KLHDC10 KRAS
	vivo	LEPREL1	LONP1	LPL	LRRK1	MAGOHB MAMDC2	MANEA	MAPK8	MAZ	MEGF9	MFF
	(196)**	MT2A	MSC MTM1	NCL	NME2	NOS2	NPNT	NRBF2	NREP	NUPR1	OIT3	ORMDL3
			OSMR									
		PAQR3	PCDH7	PDDC1	PGAP1	PHF10	PION	PLA2G4A	PMAIP1	POP5	PPP2R5A	PRDX1
			PRR13									
		PRSS35	PSG5	PTBP1	PTGS2	PYCR1	RAB39B	RBM39	RBM9	RPL10A	RPL13A	RPL7
			RPRD2									
		RPS6	RUNX2	RXRA	SDCCAG8 SEMA3E	SH3RF2	SLC16A14 SLC16A9	SLC1A4	SLC1A7	SLC2A11
			SLC44A3									
		SLMAP	SLTM	SNAI2	SNRNP35	SNX1	SNX22	SOAT2	SPEN	SPRED1	SRPK1	SUB1
			SURF6									
		TAB2	TARS	TBCEL	TLCD2	TMEFF2	TMEM154 TMEM74	TMTC2	TNKS	TPX2	TRIM69
			TSLP									
		UBE2L3	UBE2V2	UBE2W	UGT1A1	UGT1A6	UGT2B7	VIPR1	VNN3	WDR27	WDR63	YLPM1
			ZBTB38									
		ZC3HAV1	ZDHHC20 ZFC3H1	ZNF268							
		ACOT2	AKAP2	AMACR	ANAPC1	ATF4	BCMO1	BGLAP	C12orf29	C16orf72	C8orf4	C9orf3
	Human liver	CBARA1	CABC1 CCDC104	CCT8L1	CD302	CDC2L6	CES1	DLEU7	EIF3C	FAM119A	FAM188B	FBF1
	in vitro		GSTM1									
	(44)***	GSTM2	GVIN1 RAN	HHIPL1	JHDM1D	KBTBD5	LEPREL1	NME2	PAIP1	PION	PRR13	PTCD1
		RBM9	RFFL	RPL10A	RPL7	TMIGD1	TXNDC5	UGT1A1	UGT2B7			

Table S11 :

 S11 Annotation of chemicals for Figure 25, Figure 26 and Figure 27.

	Chemical	Nb	Chemical	Nb	Chemical	Nb	Chemical
	2-Nitrofluorene	41	Clomipramine	81	Ibuprofen	121	Phalloidin
	2-4-dinitrophenol	42	Clozapine	82	IL1beta	122	Phenacetin
	Acarbose	43	Colchicine	83	IL6	123	Phenobarbital
	Acetamide	44	Coumarin	84	Imipramine	124	Phenylanthranilic acid
	Acetamidofluorene	45	Cycloheximide	85	Indomethacin	125	Phenylbutazone
	Acetaminophen						
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th , 2018] 

https://www.imi.europa.eu/ [Accessed October 24th , 2018] 

https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21 [Accessed October 24th , 2018] 

https://www.wellplate.com/standard-microplates/ [Accessed October 24th , 2018] 

www.biosyl.org [Accessed October 24 th , 2018] 

www.biosyl.org [Accessed October 24 th , 2018] 

http://2013.igem.org/wiki/index.php?title=Team:Duke/Modeling/Cooperativity&oldid=215310 [Accessed October 24th , 2018] 
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http://wwwdev.ebi.ac.uk/fg/dixa/index.html[Accessed October 24 th , 2018] 

https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html[Accessed October 24 th , 2018] 

http://nmg-r.bioinformatics.nl/NuGO_R.html[Accessed October 24 th , 2018] 
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RFU (which should be proportional to concentration, but with an unknown proportionality constant). Note that the DCF bleaching rate constant corresponds to a half life of about 6 hours.

The SB model can also be used to make predictions, with full uncertainty propagation. For example, a 4 mM concentration of KBrO3 is predicted to lead to a DCF fluorescence of 16600 ± 250 [16200,17100] RFU (mean, SD, 5 and 95 percentiles) after 24 hours. 

DISSEMINATION ACTIVITIES Zgheib E,

SUPPLEMENTARY INFORMATION FOR CHAPTER 4

The latest version of the article summarizing the study described in chapter 4, as well as the computational code of the constructed SB model and its corresponding input file, are submitted in three attached files under the names of 'Tools_qAOP_dev_Zgheib_etal.pdf ','v7.11_Nrf2_GSH_KBrO3.model' and 'v7.11_Nrf2_GSH_KBrO3.in' respectively.

Experimental Data

Table S1. In vitro GSH depletion data used for the qAOP calibration. (7.12)

A relationship (even more complex) between GSH and lactate concentration could be obtained by replacing QDCF by PctGSH, using equation 7.10.

For parameter estimation, a Metropolis-Hastings MCMC algorithm was used, as implemented in the GNU MCSim software (Bois, 2009a). Two Markov chains of 50,000 iterations were run in parallel, keeping one in four of the last 40,000 i terations. For each estimated parameter, non-informative uniform prior distributions were used (note that the boundaries of those prior distributions were never reached) (see Table S4). As usually done for measurements at different concentrations, the data were considered to be log-normally distributed with geometric means given by the corresponding model predictions and geometric standard deviations (σ GSH, σ DCF, and σ lac), sampled from half-normal distributions (with a priori about 5%, 20% and 20% precision respectively, see Table S4). Note that in this qAOP, the statistical model (i.e., the likelihood of the data) is clearly separated from the structural equations.

Table S4. Prior parameter distributions for the dose-response based qAOP. 

ABSTRACT

New understanding of biology shows more and more that the mechanisms that underlie toxicity are complex and involve multiple biological processes and pathways. Adverse outcome pathways (AOPs) and systems biology (SB) can be appropriate tools for studying toxicology at this level of complexity. This PhD thesis focuses on the elaboration of a SB model of the role of the Nrf2 pathway in the control of oxidative stress. The model's calibration with experimental data (obtained with RPTEC/TERT1 renal cells exposed to various doses of potassium bromate) comprised several rounds of hypotheses stating/verification, through which new reactions were progressively added to the model. Some of these new hypotheses (e.g., direct action of potassium bromate on DCF, bleaching of DCF with time, etc.) could be confirmed by future experiments. Considered in a wider framework, this SB model was then evaluated and compared to two other computational models (i.e., an empirical dose-response statistical model and a dynamic Bayesian model) for the quantification of a 'chronic kidney disease' AOP. All parameter calibrations were done by MCMC simulations with the GNU MCSim software with a quantification of uncertainties associated with predictions. Even though the SB model was indeed complex to conceive, it o ffers insight in biology that the other approaches could not afford. In addition, using multiple toxicogenomic databases; interactions and cross-talks of the Nrf2 pathway with two other toxicity pathways (i.e., AhR and ATF4) were examined. The results of this last analysis suggest adding new AhR contribution to the control of some of the Nrf2 genes in our SB model (e.g., HMOX1, SRXN1 and GCLM), and integrating in it description of the ATF4 pathway (partially at least). Despites their complexity, precise SB models are precious investments for future developments in predictive toxicology.

Keywords: toxicology, Nrf2, oxidative stress, systems biology, adverse outcome pathways, bioinformatics, toxicogenomics.

RESUME

Avec les nouvelles avancées en biologie et toxicologie, on constate de plus en plus la complexité des mécanismes et le grand nombre de voies de toxicité. Les concepts de 'biologie systémique' (SB) et de 'voies des effets indésirables' (adverse outcome pathway, AOP) pourraient être des outils appropriés pour l'étude de la toxicologie à ces niveaux de complexité élevés. Le point central du travail de cette thèse est le développement d'un modèle de SB du rôle de la voie de signalisation Nrf2 dans le contrôle du stress oxydant. Pour la calibration de ce modèle avec des données expérimentales (exposition des cellules rénales RPTEC/TERT1 à différentes doses de bromate de potassium), plusieurs cycles de proposition/vérification d'hypothèses ont progressivement contribué à l'ajout de nouvelles réactions. Ces nouvelles hypothèses (par exemple : action directe du bromate de potassium sur le DCF, atténuation de la fluorescence du DCF avec le temps, etc.) devraient être confirmées par de futures expérimentations. Ce modèle de SB a été ensuite utilisé pour la quantification d'un AOP de l'insuffisance rénale chronique et comparé à deux autres approches: l'utilisation de modèles statistiques empiriques et celle d'un réseau Bayésien dynamique. Les calibrations des paramètres ont été effectuées par chaînes de Markov simulées MCMC avec le logiciel GNU MCSim avec une quantification des incertitudes associées aux prédictions. Même si la mise au point du modèle SB a été une tâche complexe, la compréhension de la biologie qu'offre ce modèle n'est pas accessible aux deux autres approches. Nous avons aussi évalué les interactions entre Nrf2 et deux autres voies de toxicité, AhR et ATF4, dans le cadre d'une analyse utilisant des données de toxico-génomique provenant de trois projets différents. Les résultats de cette dernière analyse suggèrent d'ajouter au modèle SB de Nrf2 la co-activation par AhR de plusieurs gènes (par exemple, HMOX1, SRXN1 et GCLM) ainsi que d'associer (au moins partiellement) à ce modèle la voie ATF4. Malgré leur complexité, les modèles SB constituent un investissement intéressant pour le développement de la toxicologie prédictive.

Mots-Clés: toxicologie, Nrf2, stress oxydant, biologie systémique, voies des effets indésirables, bioinformatique, toxico-génomique.