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1 INTRODUCTION 

A xenobiotic is an extrinsic chemical that is foreign to a certain living organism and its 

metabolism (Croom, 2012). Xenobiotics, either natural or artificially conceived, can be 

components of daily life’s ordinary objects (e.g. clothes, food, drugs, jewels, paintings, skincare 

products, plastic cups, pesticides etc.). Upon exposure, interactions between xenobiotics and 

biomolecules may elicit a perturbation in local biology and impair critical physiological 

functions of the organism. In fact, for some xenobiotics (e.g. pharmaceuticals), despite the 

strictly regulated toxicological control they undergo, unexpected adverse reactions may emerge 

leading to their failed licensing or even post-licensing withdrawal from market (Geenen et al., 

2012). Thus, potential toxic impact of xenobiotics on human health is becoming of major 

clinical and socio-economic concern. 

Toxicology can be defined as the science that examines the negative biological 

repercussions of xenobiotics on l iving organisms (Gundert-Remy et al., 2015). The main 

societal goal of toxicology is to develop reliable predictions of the human health impact of 

exposures to chemicals even before such events occur (Pelkonen, 2010). However, traditional 

toxicology, either in vivo or partially in vitro, has multiple limitations: high cost, low 

productivity, ethically equivocal protocols etc. (Zgheib et al., 2017).  Furthermore, new 

understanding of biology shows more and more that the mechanisms that underlie toxicity are 

complex and involve multiple biological processes and pathways (Liu et al., 2011; Park et al., 

2000). Considering traditional toxicology’s limitations and the complex underlying biological 

reality, does toxicology today have real chances to become a predictive science? If yes, through 

which channels would it be possible?   
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‘Systems biology’ (SB) is a relatively new discipline that provides a framework for 

investigating the interactions between the separate parts of biological systems in order to 

understand their functioning and detect any new emergent properties (Geenen et al., 2012). By 

integrating data concerning molecules and their interactions into an understanding of network 

behavior, SB provides insights into underlying mechanisms and basis of susceptibility to 

xenobiotics (Waters and Fostel, 2004) and creates a holistic view of biological systems 

(Chandra, 2009). 

To handle and analyze complex biological systems and complex networks, Goelzer et 

al. (2008) showed how they can be broken down into sets of elementary functional modules. In 

the same spirit, signaling pathways and ‘adverse outcome pathways’ (AOP) are new emerging 

concepts that suggest broadening the toxicology framework to a system-wide level (Vinken, 

2013) and help in the design of complex biology network models (Wittwehr et al., 2017) by 

summarizing them into more tractable components (Edwards et al., 2015). Practically, an AOP 

is a chemical-independent description of a linear path from a ‘molecular initiating event’ (MIE) 

to an eventual ‘adverse outcome’ (AO) at the organism or population level. In between, there 

can be any number of intermediate critical and measurable ‘key events’ (KEs) connected by 

‘key events relationships’ (KERs). In typical AOP diagrams, KEs are represented by boxes and 

KERs by single one-directional arrows connecting them. (Allen et al., 2014; Ankley et al., 

2010; Edwards et al., 2015; LaLone et al., 2017; Villeneuve et al., 2014). Figure 1 shows a 

schematic representation of two interacting AOPs: Boxes represent important events of an AOP 

(MIE, KEs or AO) with examples of each, and arrows are KERs. 
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Figure 1. Schematic representation of two theoretical interacting AOPs. Through a timeline, 
different sections correspond to AOP levels (boxes represent the events, some examples are 

available in the lower part; arrows correspond to KERs). 

AOPs and SB are some of the tools that can assist toxicology in moving from being a 

descriptive activity to becoming a more predictive mechanistic science (Materi and Wishart, 

2007). For this purpose, AOPs and SB may either be used separately or combined. For example, 

a SB model can become a primary node, somewhere between a MIE and a KE in an AOP, 

setting the foundation for considering higher order questions of adaptive or compensatory 

responses and cross-talks among various pathways (Ankley et al., 2010). The theme of this 

doctoral thesis is the combination of these two approaches for safety assessment of chemicals. 

The StemBANCC1 Project (2012-2018) was to develop an accessible and sustainable 

bio-bank of high quality well characterized patient-derived induced pluripotent stem cells lines 

that should speed up the drug development process and make therapies more adapted to specific 

human patients. Part of StemBANCC effort was devoted to demonstrating the use of such cells 

for drug safety research. StemBANCC was a five years European research project that started 

                                                 
1 http://stembancc.org/ [Accessed October 24th, 2018] 

http://stembancc.org/
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in October 2012 and finished in March 2018. It was a collaboration between researchers from 

pharmaceutical companies, academic institutions and small and medium enterprises (Table 1). 

StemBANCC academic researchers received funding from the European Union’s Innovative 

Medicines Initiative2. Pharmaceutical companies involved provided in-kind contributions. The 

characterization of induced pluripotent stem cells in terms of genetic, protein, and metabolic 

profiles, with the help of bioinformatics and SB models, was also an important part of 

StemBANCC. 

Within StemBANCC, our group was in charge of modeling in drug safety aspects. Our 

contribution to the project consisted mainly in defining and implementing mathematical models 

of transport and cellular effects of tested molecules. This PhD work focuses on the development 

of a SB model for a major toxicity pathway: the ‘nuclear factor (erythroid-derived 2)-like 2’ 

(Nrf2) pathway. The Nrf2 pathway is a very important adaptive response to oxidative stress 

(Andrews et al., 1993).  Oxidative stress, linked to the over-production of ‘reactive oxygen 

species’ (ROS), is a major cause of chemical-induced injury and associated chronic diseases 

(e.g. cancer, Parkinson's disease etc.) (Kong et al., 2014). Implicated in xenobiotics' metabolism 

and transport, Nrf2 contributes to and modulates ROS scavenging by ‘glutathione’ (GSH) 

(Leclerc et al., 2014). 

Our SB model was to be calibrated with induced pluripotent stem cells experimental 

data from StemBANCC partners. Having not received in time induced pluripotent stem cells 

data from the StemBANCC consortium, we have finally been constrained to calibrate our model 

with data produced with “ordinary” kidney in vitro human cells (RPTEC/TERT1) from a 

StemBANCC partner, the Medical University of Innsbruck (Prof. Paul Jennings, now based in 

Vrije Universiteit Amsterdam).  

                                                 
2 https://www.imi.europa.eu/ [Accessed October 24th, 2018] 

https://www.imi.europa.eu/
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Apart the introduction, the present document is presented in four sections followed by 

a conclusion. First, Bibliography, is a literature review of each of the three aspects of the project: 

(i) toxicology (definition, history and transition to modern toxicology), (ii) biological context 

(oxidative stress, Nrf2 pathway, system-level approaches (SB and AOPs) to study biology) and 

(iii) computational tools used. The next section describes the building of a SB model (of the 

Nrf2 control of oxidative stress) for the development of a quantitative AOP. Then, in the 

following section, the SB model we conceived is calibrated and compared to two other 

mathematical approaches to quantitative AOPs. Finally, the last section, published as Zgheib et 

al. (2018), is a transcriptomic-based analysis of the cross-talks between Nrf2 and two other 

toxicity pathways: the ‘activating transcription factor 4’ (ATF4) branch of the unfolded protein 

response and the dioxin response i.e. ‘aryl hydrocarbon receptor’ (AhR) pathway. 

The works of this doctoral thesis resulted in two published articles, a third paper that is 

currently in press and three posters. The first article, a literature review of ‘high-throughput 

methods for toxicology and health risk assessment’, was published in the ‘Environnement 

Risque Santé’ journal (Zgheib et al., 2017). The SB model constructed in ‘chapter 3’ was 

presented in two posters (StemBANCC general assembly and steer committee meetings). The 

analysis performed in ‘chapter 4’ is currently in submission as a journal article. Finally, ‘chapter 

5’, the product of the work accomplished during the scientific visit to the laboratory of Prof. 

Paul Jennings (Medical University of Innsbruck, StemBANCC partner), was published in the 

‘Frontiers in Genetics’ journal (impact factor 4.151) (Zgheib et al., 2018). 

NB: In this document, to be distinguished from protein names, gene names are italicized. 
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Table 1. The 36 partners of the StemBANCC project listed in alphabetical order after the 
names of the two leaders: F. Hoffmann-La Roche Ltd and University of Oxford. 

Institute Name City Country Logo 

L
ea

de
r 

F. Hoffmann-La 
Roche Ltd Basel Switzerland 

 
    

L
ea

de
r 

University of Oxford Oxford United Kingdom 
 

    

AbbVie 
Deutschland GmbH 

Wiesbaden - 
Delkenheim Germany 

 
    

AstraZeneca Södertälje Sweden 
 

    

Boehringer Ingelheim 
International GmbH Ingelheim Germany 

 
    

Charité 
Universitätsmedizin Berlin Germany 

 
    

Concentris Research 
Management Fürstenfeldbruck Germany 

 
    

Eli Lilly Basingstoke United Kingdom 
 

    

Gurdon Institute, 
University of Cambridge Cambridge United Kingdom 

 
    

Helmholtz Zentrum 
München 

 
Neuherberg 

 
Germany 

 
    

Hannover Medical 
School Hannover Germany 
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Innsbruck Medical 
University 

 
Innsbruck 

 
Austria 

 
    

Institut National de la 
Santé et de la Recherche 

Médicale 
Paris France 

 
    

Institut National de 
l'Environnement 

Industriel et des Risques 

Verneuil-en-
Halatte France 

 
    

Janssen Research & 
Development Beerse Belgium 

 
    

King’s College London London United Kingdom 
 

    

Linköping University Linköping Sweden 
 

    

Medical Research 
Council - Functional 

Genomics Unit 
Swindon United Kingdom 

 
    

Merck Serono Darmstadt Germany 
 

    

Natural and Medical 
Sciences Institute Reutlingen Germany 

 
    

Novo Nordisk AS Bagsvaerd Denmark 
 

    

Orion Corporation Espoo Finland 
 

    

Pfizer Limited Kent United Kingdom 
 

    

Region Hovedstaden 
Glostrup Hospital Hillerod Denmark 
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Sanofi-Aventis 
Recherche & 

Développement 
Chilly-Mazarin France 

 
    

Tel Aviv University Tel Aviv Israel 
 

    

The Hebrew University 
of Jerusalem Jerusalem Israel 

 
    

Univercell-Biosolutions Toulouse France 
 

    

University College 
London 

London United Kingdom 

 
    

Université de Genève Genève Switzerland 
 

    

Université de Lausanne 
 

Lausanne 
 

Switzerland 
 

    

Université de 
Technologie de 

Compiègne 
Compiègne France 

 
    

University of 
Birmingham Birmingham United Kingdom 

 
    

University of Edinburgh Edinburgh United Kingdom 
 

    

University of Luebeck Luebeck Germany 
 

    

University of New Castle New Castle upon 
Tyne United Kingdom 
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2 BIBLIOGRAPHY 

2.1 TOXICOLOGY 

2.1.1 Definition of Toxicity 

In certain conditions, a xenobiotic may induce perturbation in local biology and impair 

critical physiological functions of the organism (Hooper et al., 2013). The organism’s 

homeostatic defense against such chemical effects includes many biological processes from 

metabolic biotransformation, to cellular trans-membrane transport and activation of immune 

responses (Geenen et al., 2012). Toxicity occurs when physiological homeostatic regulatory 

processes are lost or deactivated, and/or when defense mechanisms are overwhelmed and are 

no longer efficient and sufficient for protection (Aschauer et al., 2015). 

2.1.2 Predictive Toxicology: Prevention 

The importance of toxicology in our days is relative to the amplitude of uncertainty and 

lack of information about toxicity of new and existing xenobiotics. Gathering appropriate 

knowledge, specific tools and various techniques, toxicology aims to spot harmful exposures, 

to assess their risk and to understand the mechanism of their toxicity in order to better prevent 

them. Prevention is possible when the toxic potential of an exposure is evaluated and accurately 

predicted even before the exposure occurs (Pelkonen, 2010). 
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2.1.3 Birth of Toxicology 

Historically, experimental observations of toxicity, first described by Paracelsus ca. 

1534, were re-framed into proper test methods during the 20th century (Trevan, 1927). Those 

methods mainly consisted in measuring adverse health outcomes in homogeneous animal 

groups at lethal or near-lethal doses and extrapolating them empirically to potentially estimate 

safe doses in humans (Bhattacharya et al., 2011). Since the 1940s, the basic, mainly animal-

based, experimental protocols for assessing the effects of chemicals on health have changed 

little (Shukla et al., 2010). 

2.1.4 Limitations of Traditional Toxicology 

Whereas that traditional approach to toxicology has provided very important results 

through a century so far, it is still costly and resource-intensive (Zhu et al., 2014). In numbers, 

the global yearly expenses on animal experimentation reach about €10 billion, 20% of which 

for toxicology alone, sacrificing 100 million animals worldwide every year (Hartung, 2009). 

Moreover, animal studies are low-throughput, too slow to screen the more than 80,000 

chemicals already commercialized, for which little toxicity information exists (Taboureau and 

Audouze, 2017), and the new chemical entities reaching the market every year (National 

Toxicology Program, 2004). In addition, animal to human transposition is not always reliable 

and is affected by many uncertainties. We are not 70 kg rats: basal metabolic rates and metabolic 

pathways are among the major species-specific differences making inter-species transposition 

difficult and imprecise (Kongsbak et al., 2014; Rangarajan and Weinberg, 2003). Besides, the 

extrapolation from the high-dose effects to low-dose responses is very difficult to validate. 

Finally, standardized animal tests make it difficult to take into account metabolic differences 

between different age groups and inter-subject variability in human populations (Szymański et 

al., 2011), even though progress has been recently made in that area (Zgheib et al., 2017). 
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2.1.5 A Paradigm Shift in Toxicology 

The aforementioned hurdles created pressure to develop human-cell-based models. A 

need for a paradigm shift in toxicology started to emerge around 1980 (Rowan, 1983). The 3R's 

principle of replacement, reduction and refinement (Russell and Burch, 1959) had not gotten 

much echo in toxicology until that moment, at which scientific and technological advances, 

financial, ethical and legislative imperatives converged. Advances in molecular biology, cell 

biology (with stem cells technologies (Kitambi and Chandrasekar, 2011)), bioinformatics, SB 

and computational toxicology, introduced innovative methods less animal-based and with a 

higher-throughput productivity (Cotgreave, 2011). This new capacity to perform rapid 

examination of thousands of single agents or complex mixtures per day at relevant exposure 

levels, and the tools that make it possible, are named ‘high-throughput screening’ (HTS) 

(National Research Council, 2007). HTS in vitro assays using human cells allow the 

investigation of toxic effects in humans from different life stages and ethnicities (Inglese et al., 

2006). With the support of computational mathematical methods, HTS has the potential to 

largely improve the human health risk assessment of xenobiotics (Bois, 2009; Krewski et al., 

2009). 

However, toxicological research did not evolve by virtue of innovation alone. Several 

initiatives from the European Union and the United States of America ran in the same direction, 

pushing for change since the beginning of the 21st century (Zhu et al., 2014) (Figure 2). We 

focus next on those efforts, noting that Japan has also followed the trend a bit later (Omoe, 

2006). 
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Figure 2. Timeline illustrating the birth and development of toxicology from first in vivo 
experiments by Paracelsus up to HTS initiatives in the European Union and the United States 

of America (Zgheib et al., 2017). 
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 Regulatory and Scientific Initiatives in the European Union 

o The 7th Amendment to the Cosmetics Directive 

On January 15th 2003, the European 7th Amendment (2003/15/EC) to the Cosmetics 

Directive (76/768/EEC) restricted the use of animals in all cosmetic testing (Seidle and 

Stephens, 2009). It also set a time frame for the development of eventually validated alternative 

methods for toxicity testing (Pauwels and Rogiers, 2004). In 2009, a first restriction on acute 

toxicity animal-based testing took effect (Bhattacharya et al., 2011). By 2013, by European 

law, all new cosmetic ingredients intended for the European market had to be animal-test-free. 

That legislation has become a motor of change, and pushed for the development of eventually 

validated alternative testing strategies (Hartung, 2011). 

o REACH Regulation: The Registration, Evaluation, Authorization and Restriction of 

Chemicals 

Adopted by the European Commission in 2003, and implemented in 2007, the REACH 

regulation established a l ocal regulatory framework for the safety assessment of chemicals 

produced or imported in quantities greater than one ton per year (Foth and Hayes, 2008). It calls 

for the development of computational and experimental in vitro testing methods, integrated 

toxicity testing strategies, keeping in vivo experiments as a l ast resort. That comprehensive 

program aimed at evaluating the risks of more than 30,000 synthetic chemicals already in use 

in Europe by June 2018 (van Vliet, 2011). By this deadline only 20,000 chemicals were 

evaluated. 
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o European Union Scientific Research Projects 

European actions have not only been legislative or regulatory. The FP73 and Horizon 

20204 research programs have accompanied legislation consistently by pushing for the 

development of corresponding knowledge and technologies. The European Union has funded 

and launched many large-scale projects with different themes: ACuteTox Project5 in acute 

toxicity alternative testing, Scrtox6 Project and StemBANCC7 Project in stem cell technology, 

COSMOS8 in computational modeling, NOTOX9 in SB, the SEURAT-110 cluster and EU-

ToxRisk11 in predictive toxicology etc. 

 Reports, Programs and Other Initiatives in the US  

o The National Toxicology Program Road-Map 

Aware of the above-mentioned development, the National Toxicology Program 

proposed in 2004 a road map for the future of toxicology testing entitled ‘A national toxicology 

program for the 21st century’ (National Toxicology Program, 2004), which called for a shift 

from observational methods towards more predictive, target-specific and mechanism-based 

alternative assays. It also placed the emphasis on tools like physiologically based 

pharmacokinetic modeling and quantitative structure-activity relationships to better support 

quantitative risk assessment. In 2005, the National Toxicology Program initiated a collaboration 

with the National Chemical Genomics Center to develop chemical libraries and HTS assays 

(Inglese et al., 2006; Shukla et al., 2010). 

                                                 
3 https://ec.europa.eu/research/fp7/index_en.cfm [Accessed October 24th, 2018] 
4 http://www.horizon2020.gouv.fr/ [Accessed October 24th, 2018] 
5 http://www.acutetox.eu/ [Accessed October 24th, 2018] 
6 http://www.scrtox.eu/ [Accessed October 24th, 2018] 
7 http://stembancc.org/ [Accessed October 24th, 2018] 
8 http://www.cosmostox.eu/ [Accessed October 24th, 2018] 
9 http://www.notox-sb.eu/ [Accessed October 24th, 2018] 
10 http://www.seurat-1.eu/ [Accessed October 24th, 2018] 
11 http://www.eu-toxrisk.eu/ [Accessed October 24th, 2018] 

http://www.horizon2020.gouv.fr/
http://www.acutetox.eu/
http://www.scrtox.eu/
http://stembancc.org/
http://www.cosmostox.eu/home/welcome/
http://www.notox-sb.eu/
http://www.seurat-1.eu/
http://www.eu-toxrisk.eu/
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o ToxCast Program: The Toxicity Forecaster of the Environmental Protection Agency  

ToxCast is a multi-year research program launched in 2007 b y the Environmental 

Protection Agency to run automated HTS in vitro assays and computational analyses for 

prioritizing further toxicity assessments of chemicals (Dix et al., 2007). It is based on 

bioactivity profiling of chemicals and screening changes in cells or proteins’ activity after 

exposure, with the ambition of picking out “remarkable” toxicity off the mass of data 

accumulated. Another goal is to establish causal links between eventual exposures and effects 

on biological pathways and targets (Environmental Protection Agency, 2007). Obviously, the 

latter calls for the development of high throughput exposure, toxicodynamic and toxicokinetic 

models (Judson et al., 2014). 

o Toxicity Testing in the 21st Century: A vision and a Strategy 

In 2005, t he National Research Council report entitled ‘Toxicity testing in the 21st 

century: A vision and a strategy’ proposed to government, academia, and industry, a paradigm 

shift in toxicology through the application of emerging disciplines and technologies (omics, 

SB, computational modeling, etc.) (Kavlock et al., 2007; National Research Council, 2007). 

The proposed approach advocates heavier use of mechanistically informative in vitro assays to 

study how chemicals interact with cellular response networks and turn them into toxicity 

pathways (Raunio, 2011). The report considers four options for toxicity testing summarized in 

Tox21: Toxicology testing in the 21st Century 

Toxicology testing in the 21st Century (Tox 21) is another collaborative testing and 

evaluation program that was established in 2008 via a Memorandum of Understanding between 

the National Toxicology Program, the National Chemical Genomics Center, and the 

Environmental Protection Agency, later joined by the US Food and Drug Administration. 

Tox21’s chemical library contains over 8,000 c hemicals of different kinds (e.g., pesticides, 
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marketed pharmaceuticals, food additives, industrial chemicals, cosmetic ingredients, 

chemicals found in household products and clothes etc.) (Schmidt, 2009).  

Table 2: option 1 represents the statu quo and primarily relies on animal-based in vivo 

tests and option 2 takes into consideration the available information on the substance studied 

and its mechanisms of action, and is already operational. The remaining two options respond to 

the ‘National Research Council’ calls at two different degrees: the extreme option 4 calls for an 

in vivo-free strategy (as envisioned in the legislation of the European Union for cosmetics’ 

ingredients), while the intermediate option 3 leaves open the possibility of using animal-based 

tests in complementarity to innovative mechanistic approaches (Carmichael et al., 2006). 

 Tox21: Toxicology testing in the 21st Century 

Toxicology testing in the 21st Century (Tox 21)12 is another collaborative testing and 

evaluation program that was established in 2008 via a Memorandum of Understanding between 

the National Toxicology Program, the National Chemical Genomics Center, and the 

Environmental Protection Agency, later joined by the US Food and Drug Administration. 

Tox21’s chemical library contains over 8,000 c hemicals of different kinds (e.g., pesticides, 

marketed pharmaceuticals, food additives, industrial chemicals, cosmetic ingredients, 

chemicals found in household products and clothes etc.) (Schmidt, 2009).  

Table 2. Toxicity-testing options defined by the ‘Toxicity testing in the 21st century: A vision 
and a strategy’ report (National Research Council, 2007) in order to enhance the paradigm 

shift in toxicity research (Zgheib et al., 2017). 

Criteria Option 1 
in vivo 

Option 2 
Tiered in vivo 

Option 3 
in vivo / in vitro 

Option 4 
in vitro 

Biology Animal Animal Mostly Human Mostly Human 

Concentrations used High High Multiple Multiple 

Throughput Low Low Medium and High High 

                                                 
12 https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21 [Accessed October 

24th, 2018] 

https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21
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Quantity of animals used High Low Low None 

Possibility of in silico screens None Limited Possible Yes 
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2.1.6 Modern Toxicology 

The field of toxicology has significantly evolved as we have seen above, with the 

progressive introduction of in vitro (expansion of toxicological databases substantially) and in 

silico methods (fine-tuning of computational methods), so that the latter now appear feasible 

and highly suitable (Kongsbak et al., 2014; Taboureau and Audouze, 2017). Considering the 

importance of this progress, we can start talking about HTS in toxicology. HTS tissue models 

have been developed at the interface between biotechnology, biomaterial engineering, 

bioinformatics and medical sciences. HTS has both qualitative and quantitative advantages. 

Quantitatively, HTS can be defined as the set of screening techniques that can be scaled up to 

test libraries of molecules at a rate exceeding thousands of structures daily in a concentration-

response format using standardized protocols (Judson et al., 2013; Kavlock et al., 2007; Zhu et 

al., 2014). Qualitatively, a distinct advantage of HTS is its ability to test complex mixtures, 

combine experimental conditions and end-points to develop extensive dose-response 

relationships for different pathways across large concentration ranges for different exposure 

schedules (Astashkina et al., 2012; Boekelheide and Andersen, 2010). 

Many elements contribute to the establishment of this modern approach to study 

toxicology. In this section, we will evoke four of the pillars of this emergent field: robotics, 

induced pluripotent stem cells, omics and bioinformatics. 
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 Robotics 

If HTS is possible, that is due to the rigorous robotic spotting technologies, the 

miniaturization of the assay vial (i.e., micro-plates) and automation (Rangarajan and Weinberg, 

2003). The capacity of the micro-plates has significantly increased with time. From 96-well 

plates, originally used in virology (Feng et al., 2007), to 384- and 1,536-micro-well plates 

currently in use (Inglese et al., 2007), the equipment has been gradually improved to test more 

molecules and concentrations (van Vliet, 2011). The volume of the wells in a micro-plate has 

also decreased, down to volumes as low as 2μL (Mayr and Fuerst, 2008) (Figure 3). 

 

Figure 3. Standard Microplates of (A) 96-, (B) 384-, and (C) 1536-well formats 
respectively13. 

                                                 
13 https://www.wellplate.com/standard-microplates/ [Accessed October 24th, 2018] 

https://www.wellplate.com/standard-microplates/
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 Induced Pluripotent Stem Cells 

Many features make induced pluripotent stem cells attractive for toxicity screening. 

Other than their uniform physiology and donor-specific genetic profile, they have unlimited 

self-renewal potential and are pluripotent (and therefore differentiable into various cell types 

such as hepatocytes, cardiomyocytes, neurons etc.) Human stem cells can be derived from 

embryonic cultures (isolated in the inner cell mass of the blastocyst (Bongso et al., 1994)), adult 

tissues (e.g., bone marrow (Pittenger, 2008), skin (Fernandes et al., 2009), liver (Gaudio et al., 

2009), umbilical cord blood (Moon et al., 2008), and brain (Clarke et al., 2000) etc.), or through 

genetic reprogramming of easily accessible cells (e.g., skin fibroblasts, renal epithelial cells 

shed in urine etc.) into induced pluripotent stem cells (O’Malley et al., 2009). Although 

embryonic stem cells have a higher degree of pluripotency than induced pluripotent stem cells, 

they continue to be subject of ethical debates. Furthermore, the difficulty of inducing a reliable 

and efficient differentiation of all cells in one culture remains a major limitation of these 

techniques (Menasché, 2011), but progress is being made to alleviate that problem. 
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 Omics (Transcriptomics, Proteomics, Metabolomics) and Biomarkers 

In traditional toxicology, cell count and lactate dehydrogenase activity in the culture 

medium were at some point the only cytotoxicity endpoints measurable in vitro (Blaauboer, 

2008). Nowadays, different cell death pathways are known and their activation can be followed 

using many cellular biomarkers (van Vliet, 2011). Omic technologies are aimed primarily at 

the universal detection of biomarkers, either they are genes (genomics), mRNA 

(transcriptomics), proteins (proteomics) or metabolites (metabolomics), in a specific biological 

sample in a non-targeted and non-biased manner (Horgan and Kenny, 2011). The use of omics 

profiling contributes to a better understanding of toxicology due to the considerable size of 

datasets it provides and its capacity of discovery of new more specific biomarkers. The amount 

of data generated by various omics technologies contributes to a better understanding of a drug's 

(and other chemical’s) safety profile (Gautier et al., 2013). 

 Bioinformatics 

These days, it is not more difficult to measure the activity of a whole genome than it is 

that of a single gene, or even to sequence the genomes of thousands of micro-organisms or 

hundreds of human beings. Microscopy now offers extremely high resolution so thousands of 

single cells and multitude of parameters can be analyzed in parallel for each patient. Confronted 

with this flood of data, biologists are often at a loss because experimental planning and analysis 

methods need to be adapted accordingly (Systems Biology at University of Lyon — BioSyL)14. 

Using the increasingly large amount of biological and chemical data available and combining 

it with bioinformatics has become a promising approach permitting a chemical safety 

assessment across multiple scales of complexity from molecular to cellular and system levels 

in human health (Gautier et al., 2013). 

                                                 
14 www.biosyl.org [Accessed October 24th, 2018] 

http://www.biosyl.org/
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The National Research Council works have clearly shown that extrapolated results 

obtained by even the most advanced in vitro methods require the development of specific 

mathematical models. In analogy with the commonly used ‘in vitro’ and ‘in vivo’, the term ‘in 

silico’ describes an analysis performed on a computer (Raunio, 2011). In toxicology, in silico 

techniques, also called ‘computational toxicology’, form a sub-discipline that uses computer 

and mathematical models to understand and predict the physio-pathological mechanisms of 

toxicity and their ultimate outcome as adverse effects (Cohen Hubal et al., 2010; Collins et al., 

2008). In silico experiments can be carried out to test the effects of perturbations on the system 

and to identify the processes that control the system. Some of these experiments may only be 

feasible using a computer and most of them are faster and cheaper in silico than in vitro. Such 

“dry experiments” (computational modelling) may generate new hypotheses about the system, 

which can then be tested experimentally in “wet experiments” (laboratory experimentation). 

Computational toxicology offers remarkable possibilities by allowing the analysis of a large 

number of chemicals and biological interactions, yet more proof-of-concept studies are needed 

to demonstrate its added value and make it fully adopted by risk assessors and regulators. 
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2.2 BIOLOGY UNDERLYING TOXICOLOGY 

In their review, Gautier et al. (2013) considered that studying a drug action and protein’s 

function in a global physiological environment may better inform us on the chemical’s toxicity. 

Network-level approach studies phenomena in their small details whilst linking them to a wider 

setting of interactions with their surroundings. In our work for example, the genesis of oxidative 

stress by xenobiotics and the dynamics of its control by the Nrf2 pathway, are described by a 

SB model that can be a node in a wider framework: for example in a ‘chronic kidney disease’ 

(CKD) AOP. 

In this section we first cover the biological context of our mathematical models: the 

oxidative stress, the Nrf2-GSH response to oxidative stress, and other associated pathways (i.e., 

AhR and ATF4). Then, we will present in details system-level approaches used (i.e., SB and 

AOP). 
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2.2.1 Oxidative Stress, Nrf2 and some Associated Pathways 

 Cellular Metabolism of Xenobiotics 

Inside the cell, an important homeostatic intracellular system of xenobiotic metabolizing 

enzymes families controls the intracellular levels of xenobiotics and their metabolites (Zhang 

et al., 2009). Some of these enzymes metabolize the xenobiotic via various reactions and some 

others conjugate it to other entities to detoxify it (Xu et al., 2005). Practically, upon the entry 

of a xenobiotic to the cell, this homeostatic system is triggered when xenosensor receptor 

molecules (e.g., AhR, constitutive androstane receptor, or pregnane X receptor etc.) are 

activated. This induces metabolizing enzymes (e.g., ‘cytochrome P450’ (CYP)) that may 

transform the xenobiotic into an intermediate metabolites (Nebert and Dalton, 2006). Then, the 

parent compound or its metabolites may activate ‘transcription factors’ (TFs) (e.g., Nrf2, ATF4 

etc.) to induce so-called detoxifying enzymes (e.g., ‘glutathione-S-transferase’ (GST), 

‘glutamate cysteine ligase’ (GCL) etc.) that catalyze a set of conjugation reactions that add 

hydrophilic conjugates to it. Finally, metabolites may be exported to the extracellular 

compartment by membrane-residing transporters (e.g., ‘multidrug-resistance protein’ (MRP) 

etc.). The role of this system is to control the amounts of xenobiotics and their metabolites that 

can accumulate in the cell, hopefully restricting their downstream toxicity (Zhang et al., 2009). 

The Nrf2 signaling pathway, like many other intracellular toxicity pathways, follows the 

aforementioned scheme.  
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 Oxidative Stress 

Under physiological conditions, the metabolism of oxygen and nitric oxide generates 

reactive byproducts (e.g., hydrogen peroxide, superoxide anion, etc.), aka free radicals, that are 

gathered under the terms of ROS and reactive nitrogen species (e.g., nitrite, nitrate, 

peroxynitrite etc.) respectively (Halliwell et al., 1992). The bioactivation of xenobiotics into 

reactive electrophilic metabolites undergoing redox cycling, is another source of free radicals 

(Zhang et al., 2009). These free radicals can react with DNA, protein, and lipids. Oxidative 

stress occurs when accumulation of intracellular ROS and reactive nitrogen species in a cell 

becomes uncontrolled due to the imbalance between their intracellular formation and removal 

from the cell (Himmelstein et al., 2004). Since the exposures tested here are nitrogen-free 

chemicals, only ROS will be used in this thesis to refer to oxidative stress. 

Oxidative stress is a major cause of chemical-induced injury and  associated chronic and 

degenerative diseases (e.g., cancer, Parkinson’s disease, arthritis, aging, autoimmune disorders, 

and cardiovascular diseases etc.) (Kong et al., 2014; Pham-Huy et al., 2008; Taguchi et al., 

2011). However, several mechanisms can be put in place to counteract oxidative stress. First, 

the endogenous cellular enzymatic defense system (e.g., superoxide dismutase, catalase, 

‘glutathione peroxidase’ (GPX), peroxiredoxins, ‘glutathione reductase’ (GR), sulfiredoxin, 

GST etc.) (Reddy, 2008). Second, other non-enzymatic antioxidants mainly acquired by food 

and supplementation (e.g., vitamin C (L-ascorbate), vitamin A, vitamin E etc.) quench ROS 

levels and thereby play key roles in modulating oxidative stress (Kohen and Nyska, 2002). 
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 Nrf2 Control of GSH Synthesis and Oxidative Stress 

Nrf2, a basic leucine zipper TF, is  a cytoplasm based protein  of  605  amino-acids in  

six domains (noted  Neh1 through Neh6) (Itoh et al., 1999). Neh2 is a regulatory domain that, 

under basal conditions, interacts with the cytoskeleton-associated ‘kelch-like-ECH-associated 

protein 1’ (Keap1) of 624 amino acids of three domains. In the absence of oxidative stress, Nrf2 

being constantly trapped by Keap1, is targeted by the ubiquitin ligase complex for 

ubiquitination. Ubiquitination, allowing Nrf2 degradation in the proteasome (Kobayashi et al., 

2004), keeps Nrf2’s half-life very short (~10 minutes). Keap1, being rich of cysteine, reacts 

with ROS due to high electrophilicity (Deshmukh et al., 2017). Upon oxidative stress, reactivity 

of ROS with Keap1 cysteine improves which increases the oxidation of Keap1 (Kaspar et al., 

2009). This conformational change in Keap1 lowers the ubiquitination of Nrf2, and thus makes 

Keap1’s binding to Nrf2 less favorable (Villeneuve et al., 2010). Once its cytoplasmic retention 

mechanism by Keap1 is inactivated, Nrf2 translocates to the nucleus (Huang et al., 2000) where 

it binds to small proteins called ‘Maf’ to form ‘Nrf2-Maf’ heterodimers (Nguyen et al., 2000). 

Nrf2-Maf binds to the ‘antioxidant response element’ (ARE) in the promoter region of several 

genes (e.g., ‘glutamate cysteine ligase catalytic subunit’ (GCLC), ‘glutamate cysteine ligase 

modifier subunit’ (GCLM), ‘glutathione synthetase’ (GS), GPX, and MRP etc. (Kaspar et al., 

2009)) to up-regulate their expression in response to a variety of stimuli. GS, GCLC and GCLM 

enzymes are involved in GSH synthesis and recycling, GPX contributes to its metabolism and 

ROS scavenging by GSH, and finally MRP helps eliminate its metabolites (Andrews et al., 

1993; Jennings et al., 2013). 
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By serving as a substrate for antioxidant enzymes in redox cycles, GSH protects cells 

against electrophilic compounds and reactive metabolites by undergoing rapid oxidation and 

regeneration to maintain the intracellular redox status. However, under strong oxidative stress, 

such Nrf2-mediated detoxification processes consume GSH in a faster rate than its regeneration. 

GSH depletion makes cells more susceptible to oxidative stress which may damage DNA or 

impair cell viability. For a better visualization of the Nrf2 signaling pathway, we propose a 

schematic representation (Figure 4) of its behavior under both conditions: presence and absence 

of oxidative stress (Taguchi et al., 2011),. 

 

Figure 4. Schematic representation of the Nrf2 signaling pathway in basal unstressed 
condition as well as under its activation by oxidative (or electrophilic) stress (Taguchi et al., 

2011).  
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 Other Associated Pathways 

Nrf2 is one of the important pathways that can be activated upon exposure to xenobiotics 

like oxidants. Nrf2 control of GSH synthesis, metabolism and transport, is an adaptive defense 

response of the cell to oxidative stress. This makes Nrf2 a c entral signaling pathway to be 

studied. However, in the modern understanding of biology, a pathway is never isolated. Thus 

to better locate Nrf2 in the toxicological panorama, we have studied, in ‘chapter 5’, its 

interactions and cross-talks with two other toxicity pathways here presented: AhR and ATF4. 

o Aryl hydrocarbon Receptor Pathway - AhR 

AhR is a ligand-activated TF that controls the transcription of a wide range of genes 

involved in the synthesis of certain key xenobiotic- and drug-metabolizing enzymes mainly 

belonging to the CYP family genes, (e.g., CYP1A1, CYP1B1 and CYP1A2 etc.) implicated in 

the metabolism of endogenous and exogenous substrates. Like Nrf2, AhR is a cytoplasm-based 

molecule trapped in a complex (Petrulis and Perdew, 2002). Upon ligand (xenobiotic) binding, 

the AhR TF shuttles into the nucleus where it dimerizes with the ‘AhR nuclear translocator’ 

(ARNT) and binds to so-called xenobiotic-responsive elements (i.e., ‘dioxin response element’ 

(DRE)) in the promoter region of some oxidative stress related genes to stimulate their 

expression (Haarmann-Stemmann et al., 2012). 
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o Activating Transcription Factor 4 Pathway – ATF4 

ATF4 is another protein and TF involved in the regulation of an Nrf2 target, the ‘heme 

oxygenase’ gene, linked to the adaptive response to oxidative stress (He et al., 2001). ATF4 is 

a major branch of the unfolded protein response and is activated in response to endoplasmic 

reticulum (ER) disturbances or proteotoxicity where unfolded proteins accumulate in the ER 

and compete with an important sensing protein named ‘RNA (PKR)-like ER kinase’ (PERK) 

for the inhibitory protein BiP (Hetz, 2012). Activated PERK phosphorylates the eIF2α 

(eukaryotic translation initiation factor 2 α) which inhibits general protein translation while 

inducing AT4 translation. ATF4 in turn binds to the CARE consensus sequence and drives 

transcription of genes involved in amino acid synthesis, amino acid transport and aminoacyl-

tRNA synthesis (Jennings et al., 2012). 
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2.2.2 Systems Biology – SB 

SB is a discipline that encompasses the relationship between the “science of the whole 

system” (physiology) and the “science of the individual components” (molecular biology). SB 

has provided a framework for investigating the interactions between the separate parts of a 

biological system in order to understand its functioning (Geenen et al., 2012). A typical SB 

approach combines holism and reductionism. While the reductionist approach would provide 

detailed information about properties of the small entities of a system under artificial conditions 

where they are more or less uncoupled, the holistic approach tests these entities as they are 

embedded in the living system in a more natural and realistic setting. Nevertheless, in the 

holistic approach, detailed and high quality data is much harder to obtain and analyze (Klipp et 

al., 2010). 

The strength of the SB approach tackles the complexity of biological systems and their 

dynamic behavior at every relevant organizational level (from molecules, cells and organs 

through organisms and ecosystems). The interconnection between different cellular processes, 

such as metabolism and genetic regulation, reflects the importance of the holistic approach 

introduced by the SB paradigm. Although most cellular components have been studied 

individually, the behavior of the cell emerges at the network-level and requires an integrative 

analysis (Machado et al., 2011). Considering all (or most) of the components of a system 

simultaneously and not separately makes possible the identification and study of new emergent 

properties of the system. Emergent properties are functional properties not present within the 

individual components of the system and only arise when system components interact among 

each other. A common example to illustrate this is the interaction between hydrogen and oxygen 

to make water: the resulting change in properties is unpredictable if only the individual 

properties of hydrogen and oxygen are known (Aderem, 2005). 
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To study emergent properties, SB uses many computational and experimental tools and 

skills of various disciplines (Geenen et al., 2012). Intrinsic to SB is its interdisciplinary nature 

consisting in coupling different levels of information (e.g., experimental results, mathematical 

models, statistical tools etc.) in order to develop predictive models of the biological behavior 

(Systems Biology at University of Lyon — BioSyL)15. In this logic, incorporation of omics 

data streams for building improved SB models (Cramer et al., 2011; Zhang et al., 2010) 

contributes to a better understanding of the data and an improved prediction ability of the 

models (Hamon et al., 2014; Quignot and Bois, 2013; Tan et al., 2009). However, it is not only 

data that is involved; the study of a living system relies on a multitude of parameters (e.g., half-

life, diffusion speed, affinity etc.) that cannot all be measured experimentally. 

In order to make computational model predictions precise and develop a reliable 

scientific understanding, it is necessary to integrate experiments in a spiral of iterative cycles 

of validation/falsification with computational modeling, simulation and theory (Westerhoff and 

Kell, 2007). The modeling methodology is bottom up, i nserting kinetic equations for all 

molecular processes and then integrating these to predict network behavior around the 

physiological state (Geenen et al., 2013). The emergent properties produced by this process 

become the hypotheses to be confirmed in “wet experiments” as explained previously. Thus, 

SB experiments are hypothesis-generating, using holistic approaches where no hypothesis is 

known or prescribed but all data are acquired and analyzed to define a hypothesis that can be 

further tested (Horgan and Kenny, 2011). In summary, in SB, modeling is not the final goal, 

but it is a tool to increase understanding of the system, to develop more directed experiments 

and, finally, allow predictions. 

 

  

                                                 
15 www.biosyl.org [Accessed October 24th, 2018] 

http://www.biosyl.org/
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2.2.3 Adverse Outcome Pathways – AOP 

Xenobiotics, beyond their target sites, can perturb a whole balanced equilibrium of 

complex intracellular system of pathways, to achieve their toxicity. The key for a more general 

view of toxicity schemes, is in understanding the different networks and pathways involved, 

their respective contribution to random outcomes as well as their potential interactions and 

cross-talks (Liu et al., 2011; Park et al., 2000). This kind of approach permits a better 

understanding of the system, elucidates emergent properties and opens the door for a genuine 

investigation of what happens behind the scenes, and therefore makes of toxicology a predictive 

science (Materi and Wishart, 2007; Zgheib et al., 2017). 

In the same line, the AOP, an ecotoxicology emerging concept, has rapidly drawn the 

attention of industries and regulatory agencies alike (Groh and Tollefsen, 2015). AOPs have 

become an organizing framework to facilitate the development and integration of alternative 

test methods for assessing hazard of chemicals to human health and the environment. A 

dedicated program is currently running under the auspices of the Organisation for Economic 

Co-operation and Development (OECD). AOPs are intended "to outline and capture existing 

knowledge concerning the biologically plausible and empirically supported foundations for 

predicting apical toxicity from mechanistic data"(OECD, 2016). 

As mentioned above, an AOP portrays a linear pathway from one MIE to one eventual 

AO (Allen et al., 2014; Ankley et al., 2010; Villeneuve et al., 2014). AOP diagram networks 

are modular structures having KEs and KERs as fundamental units. In the traditional AOP 

diagram, KEs are represented by boxes whereas KERs are represented as the arrows connecting 

a pair of upstream and downstream boxes. In a graph theory context, KEs represent nodes and 

KERs represent edges (Pavlopoulos et al., 2011). Organization of knowledge into AOP 

frameworks can help in the design of complex biology network models (Wittwehr et al., 2017). 

A powerful tool to progress in this direction and reduce uncertainty would be assembling 
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different AOPs and sharing data to identify and fill in the data gaps like in the AOP knowledge 

base16 (OECD, 2016), the AOP-Wiki17 (a user-friendly, open-source interface), and other 

knowledge repositories (Groh and Tollefsen, 2015). The modularity of KEs and KERs we 

mentioned earlier, offers efficiency in updating and constructing AOP: any modifications made 

to those KEs or KERs descriptions in an AOP knowledge repository are automatically updated 

for all AOPs that included that KE or KER (Villeneuve et al., 2014). 

The contribution of AOPs to predictive toxicology starts with chemical grouping or 

classification (OECD, 2013), priority setting for further testing, and hazard identification. On 

the longer-term, AOPs can be part of ‘integrated approaches to testing and assessment’ (Conolly 

et al., 2017) or ‘integrated testing strategies’ for regulatory decision making (Edwards et al., 

2015; Vinken, 2013). For this purpose, quantitative AOPs (qAOPs) need to be developed to 

provide dose-response, and time-course predictions (Conolly et al., 2017). Parameter values of 

qAOPs can often be obtained directly from literature or targeted experimental work, or 

indirectly by optimizing the fit of model predictions to data (Villeneuve et al., 2014). In 

addition, statistical analyses can be used to evaluate alternative model formulations and 

simplifications through identification of correlated variables or parameters (Friend and Schadt, 

2014; Li and Vu, 2013; Rodriguez-Fernandez et al., 2013). 

  

                                                 
16 www.aopkb.org [Accessed October 24th , 2018] 
17 www.aopwiki.org [Accessed October 24th, 2018] 

http://www.aopkb.org/
http://www.aopwiki.org/
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2.3 MATHEMATICAL CONSIDERATIONS 

Due to the diversity of phenomena that occur in living organisms, many formalisms can 

be used to model biological systems (e.g., ‘Boolean networks’, ‘Bayesian networks’, ‘Petri 

nets’, ‘process algebras’, ‘constraint-based models’, ‘differential equations’, ‘rule-based 

models’, ‘interacting state machines’, ‘cellular automata’, ‘agent-based models’ etc.)  Some of 

these mathematical tools and methods (i.e. ‘ordinary differential equations’, ‘Bayesian 

networks’) were used through this thesis. These techniques and other common equations (i.e., 

Michaelis-Menten kinetics, Hill’s equation) that were used for the development of the 

computational mathematical models conceptualized in this thesis, are described in this section. 

2.3.1 Ordinary Differential Equations – ODE – Systems 

  Differential equations describe the rate of change of continuous variables. They are 

typically used for modeling dynamical systems in several areas like SB (Machado et al., 2011). 

In SB, the network of chemical reactions happening among the different biomolecules (e.g., 

genes, proteins, lipids, metabolites etc.) and xenobiotics present in a predefined compartment, 

can be described  by systems of nonlinear ‘ordinary differential equations’ (ODEs). Practically, 

ODEs are used to describe the variation of the amount of species in the modeled system as a 

function of time (Machado et al., 2011). In this kind of systems, each equation corresponds to 

the chemical reaction producing or consuming the concerned molecule through time (Geenen 

et al., 2012). The goal is that the ODEs based model captures most of the available kinetic 

information regarding the system. However, building ODE models requires insight into the 

reaction mechanisms to select the appropriate rate laws to define the model structure and the 

associated kinetic equations. Then, the unknown model parameters are estimated using fitting 

of experimental data (Hasdemir et al., 2015). 
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ODEs is a well-understood formalism, fast, mathematically robust, rigorous and 

adaptable (De Jong, 2002; Kitano, 2002; Orton et al., 2005). For these advantages and others, 

the ODEs methodology of translating biochemical reactions into mathematics and then 

integrating them over time using numerical methods, became a privileged tool of many SB 

research projects (e.g., metabolic pathways (Ideker et al., 2001), mitosis in yeast (Tyson, 1991), 

genetic regulatory circuits (Elowitz and Leibler, 2000), etc.) including in toxicology. 

Other types of differential equations exist but will not be detailed in this manuscript 

(e.g., ‘stochastic differential equations’, ‘partial differential equations’, ‘Piecewise-linear 

differential equations’ etc.).  
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2.3.2 Michaelis-Menten – MM – Kinetics 

Enzymatic reactions are generally composed of two basic steps. First, the reversible 

binding of a substrate molecule S to an enzyme E in order to form the complex ES (binding and 

unbinding are defined by the kb (measuring unit: L.mol-1.s-1) and ku (measuring unit: s-1) rates 

respectively). In the second step, by the kcat (measuring unit: s-1) rate parameter, the catalysis 

of ES releases the enzyme E and generates the product P. In both cases, either ES is catalyzed 

into E and P or unbound to restore reactants E and S, E is free again to associate with other 

substrate molecules (Reuveni et al., 2014). 

𝐸𝐸 + 𝑆𝑆 ⇄ 𝐸𝐸𝐸𝐸
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐�⎯�𝐸𝐸 + 𝑃𝑃 

While the first step is a quasi-instantaneous equilibrium, we consider that the second 

part of the equation, that is irreversible, is the limiting step. Thus the reaction’s velocity v 

(measuring unit: mol.L-1.s-1) depends on kcat and the concentration of [ES] only, (in the 

equations of this section, square brackets refer to a molecule’s molar concentration (measuring 

unit: mol.L-1)) as shown in equation 2.1 

𝑣𝑣 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ∙ [𝐸𝐸𝐸𝐸]     (2.1) 

Equations 2.2 and 2.3 give the kinetics of ES formation v1 and elimination v2 

respectively (for both, measuring unit: mol.L-1.s-1): 

𝑣𝑣1 = 𝑘𝑘𝑏𝑏 ∙ [𝐸𝐸] ∙ [𝑆𝑆]  (2.2)  

𝑣𝑣2 = (𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐) ∙ [𝐸𝐸𝐸𝐸] (2.3)  

During the stationary equilibrium phase, [ES] is stable, which means that its formation 

and elimination are equal (see equation 2.4): 

𝑣𝑣1 = 𝑣𝑣2 ⇔ 𝑘𝑘𝑏𝑏 ∙ [𝐸𝐸] ∙ [𝑆𝑆] = (𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐) ∙ [𝐸𝐸𝐸𝐸] ⇔ [𝐸𝐸]
[𝐸𝐸𝐸𝐸] = 𝑘𝑘𝑢𝑢+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐

𝑘𝑘𝑏𝑏∙[𝑆𝑆]
  (2.4)  
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According to mass conservation law, the total quantity of the enzyme ET is constant and 

equal to the sum of its bound ES and unbound E fractions. Based on this assumption, in equation 

2.5 we express ES in function of E and ET. 

[𝐸𝐸𝑇𝑇] = [𝐸𝐸𝐸𝐸] + [𝐸𝐸] =  [𝐸𝐸𝐸𝐸] ∙ �1 + [𝐸𝐸]
[𝐸𝐸𝐸𝐸]� ⇔ [𝐸𝐸𝐸𝐸] = [𝐸𝐸𝑇𝑇]

1+ [𝐸𝐸]
[𝐸𝐸𝐸𝐸]

  (2.5)  

Replacing [𝐸𝐸]
[𝐸𝐸𝐸𝐸] in equation 2.5 by its expression from equation 2.4 gives equation 2.6: 

[𝐸𝐸𝐸𝐸] = [𝐸𝐸𝑇𝑇]

1+𝑘𝑘𝑢𝑢+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏∙[𝑆𝑆]

  (2.6)  

Finally, to obtain the ‘Michaelis-Menten’ (MM) equation (2.7), [ES] in equation 2.1 

should be written under its expression obtained in equation 2.6: 

𝑣𝑣 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ∙
[𝐸𝐸𝑇𝑇]

1+𝑘𝑘𝑢𝑢+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏∙[𝑆𝑆]

= 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐∙[𝐸𝐸𝑇𝑇]∙[𝑆𝑆]

[𝑆𝑆]+𝑘𝑘𝑢𝑢+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑏𝑏

 ⇔  𝑣𝑣 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∙[𝑆𝑆]
𝐾𝐾𝑚𝑚+[𝑆𝑆]   (2.7)  

In the MM equation, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ∙ [𝐸𝐸𝑇𝑇] (measuring unit: mol.L-1.s-1) is the maximal 

enzymatic velocity attained when the binding sites of the enzymes are saturated at high [S], and 

𝐾𝐾𝑚𝑚 = 𝑘𝑘𝑢𝑢+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘𝑏𝑏

  (measuring unit: mol.L-1) is the so-called ‘Michaelis constant’ that is interpreted 

as the substrate concentration at which enzymatic velocity attains half its maximal value. This 

MM reaction scheme, linking enzymatic velocity v to the substrate concentration, has been 

applied to the analysis of enzymatic kinetics, for over a century and continues nowadays to be 

an important reference in different scientific fields like biochemistry, pharmacology and 

physiology. 
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2.3.3 The Hill Equation 

MM kinetics applies well to a single molecule S binding (enzymatic) reaction, but things 

get more complicated when additional molecules try to associate with the enzyme E. In fact, 

binding of one molecule of S at one site may alter the affinity of the enzyme E (or any 

macromolecule: receptor, transporter etc.) for other new substrates and hence regulates their 

binding rate. The property behind this phenomenon is called the cooperative binding or 

‘cooperativity’. ‘Cooperativity’ is positive when the binding of one molecule of S increases E’s 

affinity for other substrates, and negative when this affinity is decreased. However, if this is not 

the case and E’s affinity is not changed, binding of different substrates S is completely 

independent and thus is considered non-cooperative (Weiss, 1997). While non-cooperative 

binding can be modeled by the MM equation (Alon, 2007), the other cases require different 

kinetics. Graphically, by plotting v against [S], we obtain a sigmoidal S-shaped curve when 

biding is cooperative and hyperbolic when it is not (Figure 5). 

Considering the multiple binding patterns reaction where n molecules of S bind to the 

same macromolecule E forming an ES complex, the equilibrium that takes place can be 

represented as follows: 

𝐸𝐸 + 𝑛𝑛𝑛𝑛 ⇌ 𝐸𝐸𝐸𝐸𝑛𝑛 

On equilibrium, applying the law of mass action permits to write a Kd-dependent 

expression of [ESn] in equation 2.8; Kd (measuring unit: (mol.L-1)n) being the ratio of ku 

(measuring unit: s-1) to kb (measuring unit: (L.mol-1)n.s-1) (Atkins, 1973): 

𝑘𝑘𝑢𝑢 ∙ [𝐸𝐸𝐸𝐸𝑛𝑛] = 𝑘𝑘𝑏𝑏 ∙ [𝐸𝐸][𝑆𝑆]𝑛𝑛 ⇔ [𝐸𝐸][𝑆𝑆]𝑛𝑛

[𝐸𝐸𝐸𝐸𝑛𝑛] = 𝑘𝑘𝑢𝑢
𝑘𝑘𝑏𝑏

= 𝐾𝐾𝑑𝑑 ⇔ [𝐸𝐸𝐸𝐸𝑛𝑛] = [𝐸𝐸][𝑆𝑆]𝑛𝑛

𝐾𝐾𝑑𝑑
   (2.8)  
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Figure 5. Plot of enzymatic reaction’s velocity v against substrates concentration [S] in 10 
different cases for Hill’s coefficient α gradually increasing from 1 (hyperbolic: Michaelis-

Menten case) to 10 (all other curves (2 to 10) are S-shaped) (Duke, Modeling 
Cooperativity)18. 

  

                                                 
18 http://2013.igem.org/wiki/index.php?title=Team:Duke/Modeling/Cooperativity&oldid=215310 

[Accessed October 24th, 2018] 

http://2013.igem.org/wiki/index.php?title=Team:Duke/Modeling/Cooperativity&oldid=215310
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Equation 2.9 gives for E, the ratio r of the bound portion the enzyme [ESn] over its total 

amount available. Equation 2.10 is what we find by substituting [ESn] in equation 2.9 by its 

expression from equation 2.8. 

𝑟𝑟 = [𝐸𝐸𝐸𝐸𝑛𝑛]
[𝐸𝐸𝐸𝐸𝑛𝑛]+[𝐸𝐸]

  (2.9)  

𝑟𝑟 = [𝑆𝑆]𝑛𝑛

𝐾𝐾𝑑𝑑+[𝑆𝑆]𝑛𝑛
  (2.10)  

Back in 1910, Archibald Vivian Hill (1886–1977) proposed is a sigmoid shaped 

quantitative model of oxygen binding to hemoglobin that took his name: the ‘Hill equation’ 

(equation 2.11) (Gesztelyi et al., 2012; Stefan and Le Novère, 2013). Later on, and not 

mentioned in the works of Hill, (Clark, 1926) and (McLean, 1938) pointed out the strong 

connection between the aforementioned laws of equilibrium (equations 2.8,  2.9 and 2.10) and 

the ‘Hill equation’ (equation 2.11). Then, on the rational basis of the receptor occupancy theory 

(Ariens, 1954), the ‘Hill equation’ was proposed by Wagner (1968) to be used for the analysis 

of the nonlinear drug concentration-effect mechanisms (Csajka and Verotta, 2006; Mager et al., 

2003) (e.g., the renal uptake of aminoglycosides, the tubule glomerular feedback in kidney 

(Rougier et al., 2003), ligand binding in voltage-dependent ion channels (Haynes et al., 1986) 

etc.). 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 100 𝑃𝑃𝑂𝑂2
𝛼𝛼

𝐾𝐾𝑑𝑑+𝑃𝑃𝑂𝑂2
𝛼𝛼  (2.11)  
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The original ‘Hill equation’ (equation 2.11) was developed to quantify the percentage 

of hemoglobin saturation with oxygen Psat based on t he partial pressure of oxygen 𝑃𝑃𝑂𝑂2 

(measuring unit: mmHg). This equation was then rewritten as a rational function applied to 

concentrations (equation 2.12). In this currently used version of the ‘Hill equation’, f represents 

the fraction of E’s saturated binding sites (in analogy with the Psat percentage of equation 2.11 

and α is the ‘Hill coefficient’ that represents the degree of ‘cooperativity’. 

𝑓𝑓 = 𝑣𝑣
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

= [𝑆𝑆]𝛼𝛼

𝐾𝐾𝑑𝑑+[𝑆𝑆]𝛼𝛼
= [𝑆𝑆]𝛼𝛼

𝐾𝐾𝑚𝑚𝛼𝛼+[𝑆𝑆]𝛼𝛼
  (2.12)  

‘Cooperativity’ is positive when α > 1, negative when α < 1 and binding is independent 

and non-cooperative if α = 1. In this last case Hill equation is equivalent to the MM kinetics. 

Mathematically, the MM equation is a special case of the Hill equation. 

Despite the perfect analogy between the two models, α and n should not be mixed up. 

The first, the degree of ‘cooperativity’ α, can be a decimal and tell us about post-binding E’s 

affinity to associate with other substrate molecules. The second, the number n of S molecules 

bound to the enzyme E, is a stoichiometry indicator and can only take integer values. However, 

it has been shown that the ‘Hill coefficient’ α is a correct estimate for the number of binding 

sites n in some cases like the positive cooperative binding case (α > 1) (Weiss, 1997). This two-

fold interpretation of the same model represents the theoretical shift in the approach towards 

the ‘Hill equation’, from a mechanistic explanatory model (with n) to a descriptive curve-fitting 

model (with α). 
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2.3.4 Bayesian Statistical Tools 

 The Bayes Theorem 

Bayesian analysis proceeds by inferring about (hidden) “causes” on t he basis of 

(observed) “effects” i.e., on the basis of data. Being probabilistic in essence, Bayesian analysis 

derives its inferences in the form of probability distributions for the variables it seeks to identify. 

Such distributions, called the ‘posterior distribution’, are obtained by combining what is already 

known (i.e., the ‘prior distribution’) to what is experimentally observed about those variables 

(i.e., data, ‘observed evidence’); and is therefore a compromise of the two (Gill et al., 2005; 

Holleman and Simel, 1997) (Figure 6). The values of model parameters, if not precisely known, 

are also described by probability distributions and are treated as “random variables” (Bois, 

2012). 

The Bayes theorem, first described by Thomas Bayes in 1774 (Bayes and Mr. Price, 

1763; Stigler, 1986), consists in updating knowledge of the phenomenon on t he basis of 

observations, in three steps. The first step consists in defining the background knowledge/belief 

about variables, gathering information and setting up the ‘prior distribution’ (Bois, 2012).This 

initial probability estimate is often based on scientific literature and/or previous experiences 

(Phelps and Levitt, 2004) and can be precise (for common physiological values for example) 

or vaguely approximated (e.g., in case of diffusion velocity of a given chemical between two 

compartments).  

In the second step, appropriate experiments are performed, needed data are collected 

and ‘observed evidence’ is set. Finally, in the third step, using the Bayes formula, the ‘prior 

distribution’ is updated on the basis of the ‘observed evidence’ (i.e., experimental data) (Bois, 

2012).  
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Thomas Bayes’ idea was to simply apply the definition of conditional probabilities to 

these inferences. By definition the conditional probability of an event A, given event B, is as 

follows: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴,𝐵𝐵)
𝑃𝑃(𝐵𝐵)

  (2.13) 

Where P(A,B) denotes the joint probability that both A and B occur, and P(B) the 

probability that B occurs, regardless of A. That definition applies to probabilities, but also, more 

generally, to probability distributions, be they discrete or continuous density functions.  

If experimental data obtained (i.e., ‘observed evidence’) is different from what we 

expect (i.e., ‘prior distribution’), we usually want to infer about the parameter values susceptible 

to have led to such observations. That requires computing P(θ|y), the ‘posterior distribution’ of 

all model’s parameters, θ, given the data y (i.e., posterior to collecting y). Applying equation 

2.13, we simply obtain: 

𝑃𝑃(𝑦𝑦|𝜃𝜃).𝑃𝑃(𝜃𝜃) = 𝑃𝑃(𝑦𝑦,𝜃𝜃) = 𝑃𝑃(𝜃𝜃|𝑦𝑦).𝑃𝑃(𝑦𝑦) ⇒ 𝑃𝑃(𝜃𝜃|𝑦𝑦) = 𝑃𝑃�𝑦𝑦�𝜃𝜃�.𝑃𝑃(𝜃𝜃)
𝑃𝑃(𝑦𝑦)    (2.14) 

In conclusion, the Bayes theorem states that the probability distribution of the unknowns 

given the data at hand are proportional to the ‘prior distribution’ P(θ) of those unknowns times 

the ‘data likelihood’, P(y|θ), which depends on the model. The term P(y) is called the prior 

predictive probability of the data. Since the data are considered fixed numerical values, P(y) 

can be considered as a normalization constant. The posterior parameters’ distribution 

summarizes what is known about θ after collecting the data y and the remaining uncertainty 

about it. It is obtained by “updating” the prior P(θ) using the data likelihood (equation 2.14), 

and this updating is a simple multiplication (Bois, 2012). 
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Figure 6. Prior, likelihood and posterior distributions for θ. The ‘posterior inference’ is a 
formal compromise between the ‘observed evidence’ (likelihood), summarizing the ‘prior 

distribution’ of the data alone (Bayesian Analysis for a Logistic Regression Model - 
MATLAB & Simulink Example)19. 

  

                                                 
19 https://www.mathworks.com/help/stats/examples/bayesian-analysis-for-a-logistic-regression-

model.html [Accessed October 24th, 2018] 

https://www.mathworks.com/help/stats/examples/bayesian-analysis-for-a-logistic-regression-model.html
https://www.mathworks.com/help/stats/examples/bayesian-analysis-for-a-logistic-regression-model.html
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 Bayesian Network – BN 

A Bayesian network (BN) is a probabilistic model whose underlying structure is a graph 

(equivalently, a network) where each node represents a variable of the problem (i.e., for an 

AOP: chemical substance, MIE, KEs and AO), and each arc between two nodes represents a 

direct dependency (ideally, a causal relationship) (Pearl, 1988). Within such a BN, a 

probabilistic relationship (specifically, a component of a conditional distribution function) is 

defined by each arc linking two variables. For example, if an arc joins variables A and B, a 

relationship such as “A is distributed normally around k⨯B, with a variance equal to s2” has to 

be defined. As a result, every node of the network has a probability distribution conditioned by 

other network variables. This implies that a variable cannot depend upon itself, even indirectly, 

and therefore cycles are not  a llowed in BNs. Evidence on a  set of nodes (for example, 

measurement of some KEs) updates the probability distributions of all their dependent nodes 

(Jaworska et al., 2013). Learning a BN from data means that one searches for those 

dependencies (and associated distributions) between variables that best explain the data. On the 

other hand, calibrating a BN implies estimating the parameters of the distribution functions that 

link variables. 

However, standard BNs do not provide a direct mechanism for representing temporal 

dependencies. In cases where the data time evolution is progressive rather than instantaneous, 

it is natural to use a dynamic BN (DBN) to integrate those data (Kjærulff and Madsen, 2008). 

DBNs, typically, replicate an underlying structure at several (discrete) times corresponding to 

measurement time points. Each node of a given time slice may depend on nodes in the previous 

time slice and on nodes in the same time slice (Pavlovic, 1999). In this way, the value of a node 

at time ti may depend on its own value at time ti-1, without introducing a loop in the graph.  
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2.3.5 Model’s Calibration 

Bayesian model’s calibration is the estimation of the (joint) posterior distribution of the 

values of a model’s parameters. If the model is checked, then we can perform model validation. 

Validation goes beyond checking and allows to verify if the model will correctly predict, even 

outside of the data range. It consists in verifying the adequacy of predictions of new data and 

then to check the plausibility of the model for the purpose for which it will be used. As Bayesian 

calibration allows to fit the data, it can also adjust all the parameters and therefore plot the 

estimation of metabolism rate. 

For many years, Bayesian statistics was essentially restricted to very simple models like 

conjugate models where the mathematical form of the prior and likelihood are jointly chosen to 

ensure that the posterior may be evaluated with ease. Numerical integration methods based on 

analytic approximations were developed in 70s and 80s of the last century with some success, 

but a revolutionary change occurred in the early 1990s with the adoption of “indirect methods” 

that draw random samples from the ‘posterior distribution’ without needing a closed-form of 

the distribution to sample from. A large number of such algorithms exists (e.g., Gibbs sampling 

Markov chain Monte Carlo etc.) (Gilks et al., 1996). In these methods, widely used nowadays, 

the a posteriori distribution integrates a priori information and experimental data in order to 

represent the “updated” knowledge about parameters. Model’s calibration is the Bayesian 

estimation of this a posteriori and of the value a model’s parameters. Bayesian calibration of a 

model starts by defining, for each parameter, the a priori distribution reflecting the knowledge 

we have about concerned parameters, even before the beginning of data collection and 

observation (van de Schoot et al., 2014). In the following paragraphs, the Monte Carlo method 

and the Markov chain Monte Carlo (MCMC) algorithm will be presented. 



62 
 

 The Monte Carlo Method 

Simple Monte Carlo simulations are based on s uccessive random and independent 

samples from a given distribution. Any ‘posterior distribution’ (and its properties: mean, 

variance, quantiles etc.) may be approximated by taking a very large random sample of 

realizations of θ from p(θ|y). Samples from the posterior can be generated in several ways, 

without exact knowledge of the analytical form of p(θ|y). Direct methods include rejection 

sampling, which generates independent proposals for θ, and accepts them at a probability 

proportional to the desired posterior. Importance sampling can also be used by appropriately 

weighting independent samples from a user-chosen distribution on θ, properties of the posterior 

p(θ|y) can be estimated (Spiegelhalter and Rice, 2009). Realizations from the posterior used in 

Monte Carlo methods need not be independent, or generated directly. When more powerful 

MCMC methods are used. 
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 Markov chain Monte Carlo (MCMC) method 

The MCMC simulation algorithm is a widely used indirect method for models’ 

parameters calibration. MCMC is an iterative procedure (Kruschke, 2011, 2013). 

The MCMC sample of each draw is and conditioned by the precedent iteration, hence 

the appellation “Markov chain” because the new value depends partly on the previous. Then, a 

ratio of probabilities between the two last draws is calculated, to determine if the new candidate 

θ’ is selected or not. The algorithm continues sample proposed values and accepts or rejects 

them, according to the value of the calculated ratio, as long as the user wish (Bois, 2012). After 

a sufficient number of draws, the simulated chain converges in probability towards a prescribed 

joint density of model parameters, for example towards their ‘posterior distribution’ (Bois, 

2012). Practically, it is common to simulate two, three (or more) chains for the calibration of 

the same parameter(s) with the same likelihood, each time beginning from a different starting 

point. All simulated chains are run for a certain (typically large, >1000) number of draws until 

the convergence of all chains approximately obtained (Gelman and Rubin, 1992). It is then 

possible to estimate empirically the a posteriori distributions of model parameters, for example 

by computing its quantiles and moments. 

The posterior density forms the basis for evaluating the quality of model fit, comparing 

different hypotheses about parameter values, and choosing the parameter values for which the 

model best fits the data.  
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3 CONSTRUCTION OF SYSTEMS BIOLOGY MODEL OF 

NRF2 CONTROL OF OXIDATIVE STRESS 

3.1 STARTING MODELS 

GSH being a key element in the physiological defense mechanism of the organism 

against oxidative stress. Understanding the implication of GSH in ROS scavenging is 

primordial to study toxicity of oxidants. Controlling the transcription of genes coding for the 

synthesis of enzymes involved in the GSH cycle, Nrf2 orchestrates an important part of the 

GSH defense response. To model the Nrf2 signaling pathway, we have merged two SB models. 

The first, conceived by Hamon et al. (2014), highlights the contribution of Nrf2 to the GSH 

response to oxidative stress. The second is a simplification of the model of Reed et al. (2008), 

was developed by Geenen et al. (2012) and describes the synthesis, the metabolism and the 

transport of GSH under oxidative stress. 

3.1.1 The model of ‘Hamon et al. (2014)’ 

In 2014, Hamon et al. published a SB model offering an interesting description of the 

Nrf2 signaling pathway and its interactions with the AhR pathway, its auto-induction as well 

as of how it controls GSH synthesis and the transport of its metabolites. This model 

parametrized to simulate the exposure of human kidney RPTEC/TERT1 cells to cyclosporine 

A. The validation of this model was completed by a quantitative in vivo-in vitro extrapolation 

(QIVIVE) (Hamon et al., 2015). In ‘Supplementary Material 7.1’, Figure S1 shows a schematic 

representation of this model. 
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3.1.2 The model of ‘Geenen et al. (2012) and Reed et al. (2008)’ 

In 2012, Geenen et al. proposed a SB model of GSH synthesis inspired by the work of 

Reed et al. (2008). 

Reed et al. tried to explore GSH’s metabolism using a mathematical model including 

the one-carbone-metabolism, the trans-sulfuration cycle, the folate cycle, the synthesis and the 

metabolism of GSH. That model contained four compartments (i.e., mitochondria, cytosol and 

nucleus within cells and the extracellular environment) and was based on pr operties and 

regulation of key enzymes of oxidative stress. The works of Reed et al. can be used to simulate 

observed metabolic profiles of some diseases and compare them to clinical data. A schematic 

representation of this model is presented in Figure S2 of ‘Supplementary Material 7.1’. 

Geenen et al. (2012a) have significantly modified the model of Reed by simplifying the 

folate cycle and limiting it to three equations, by adding two biomarkers (i.e., 5-oxoproline and 

ophthalmic acid) and by adapting the model to the detoxification of specific xenobiotics (in 

particular, paracetamol). All modifications brought by Geenen shouldn’t affect the initial steady 

state of the model. Please refer to Figure S3 in ‘Supplementary Material 7.1’ to see the 

schematic representation of that model. Some of Geenen’s model parameter values were found 

in literature and others were simply adjusted to metabolites concentrations at steady state within 

the physiological limits of liver metabolism. That model was used to study the oxidative stress 

with the SB approach following exposure to xenobiotics, using GSH and 5-oxoproline and 

ophthalmic acid as biomarkers.  
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3.2 METHODS 

3.2.1 Remodelling Hamon’s model 

Despite the general outlook on the Nrf2 pathway that it offers, the model of Hamon et 

al. (2014) has two limitations: first, modelling of transcription and translation is too 

complicated, and second, GSH synthesis is over-simplified. 

In Hamon’s model, two gene activator schemes are available: either the xenobiotic X 

binds to AhR to form an activator complex that we named nucX-AhR, or, under increasing 

amounts of ROS, a part of the trapped cytoplasmic Nrf2 dissociates from Keap1 to travel to the 

nucleus (i.e., nucNrf2) and activates its target genes. Hamon’s model details the transcription 

and translation of eight genes: CYP, GS, GCLC, GCLM, Nrf2, GST, GPX and MRP. These 

genes split into two categories: those activated by only one TF (either X-AhR (e.g., CYP) or 

Nrf2 (e.g., GS, GCLC and GCLM)), and those activated by both TFs (e.g., Nrf2, GST, GPX, 

and MRP). 

To describe the transcription and translation of each of these TFs’ targets, the model 

incorporates the following steps: a binding-unbinding equilibrium between each of the gene’s 

activators and their specific genetic receptor, transcription induction by the activator-receptor 

complex, followed by translation and mRNA degradation. In the nuclear (gray) compartment 

of Figure S1 in ‘Supplementary Material 7.1’, all the steps of this cascade of reactions are 

illustrated. Application of the same process to each of the eight genes results in a large number 

of state variables (51) and parameters (78), with a cascade of mostly linear differential equations 

resulting in a complex system of equations hard to integrate (some reactions are extremely fast). 
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 Hill-based model for transcription and translation 

To simplify that part of the model, we modeled transcription control cascades according 

to the ‘Hill equation’ in order to have a single equation per gene. For genes controlled by one 

activator (i.e., TF) xa we obtain equation 3.1: 

𝜕𝜕(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
𝜕𝜕𝜕𝜕

 =  𝑘𝑘0  +  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚⋅𝑥𝑥𝑎𝑎𝑛𝑛

𝑘𝑘𝑚𝑚𝑛𝑛+𝑥𝑥𝑎𝑎𝑛𝑛
 −  𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (3.1)  

and for genes that are controlled by two TFs xa and xb  (i.e., nucNrf2 and nucX-AhR) 

we obtain equation 3.2:  

𝜕𝜕(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
𝜕𝜕𝜕𝜕

 =  𝑘𝑘0  +  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁2⋅𝑁𝑁𝑁𝑁𝑁𝑁2𝑛𝑛

𝑘𝑘𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁2
𝑛𝑛 +𝑁𝑁𝑁𝑁𝑁𝑁2𝑛𝑛

 +  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴ℎ𝑅𝑅⋅𝐴𝐴ℎ𝑅𝑅𝑛𝑛

𝑘𝑘𝑘𝑘𝐴𝐴ℎ𝑅𝑅
n +𝐴𝐴ℎ𝑅𝑅𝑛𝑛

 −  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁−𝐴𝐴ℎ𝑅𝑅⋅𝑁𝑁𝑁𝑁𝑁𝑁2𝑛𝑛⋅𝐴𝐴ℎ𝑅𝑅𝑛𝑛

�𝑘𝑘𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁2
n +𝑁𝑁𝑁𝑁𝑁𝑁2𝑛𝑛��𝑘𝑘𝑘𝑘𝐴𝐴ℎ𝑅𝑅

n +𝐴𝐴ℎ𝑅𝑅𝑛𝑛�
− 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

where mRNA represents the quantity of produced mRNA (in zeptomols) and δmRNA/δt 

is its derivative with respect to time, k0 is the basal transcription rate under zero exposure, and 

kdeg is the mRNA degradation rate. In equation 3.2, i.e. in the case where two TFs can contribute 

to transcription of a single gene, we consider the additive contribution of each regulator 

separately (referred to by the subscripts a and b in equation 3.2) while subtracting the overlap, 

following the models proposed by Alon (2007) for multi-dimensional input functions that 

integrate more than one TF. The nuclear (red) compartment of Figure 7 shows how 

transcription-translation cascade of reactions was simplified and reduced to one equation per 

gene, regardless if is activated by one or two TFs. 
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Figure 7. Schematic overview of the assembled SB model. This model covers both 
transcriptional and biochemical aspects of GSH synthesis and metabolism and its control by 

the Nrf2-Keap1 signaling pathway. The blue compartment is cytosol and the red one is 
nucleus. Blue arrows show reactant(s):product(s) exchange during biochemical or transport 
reactions, and red arrows indicate enzymatic catalysis (diamond heads) or gene transcription 
(round heads). In the nucleus, red boxes represent genes and arrows indicate gene activation. 

Names of genes are in orange, of mRNA are in green, of enzymes are in purple, of other 
proteins and metabolites in blue and of extracellular constants in yellow. 
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 Calibration protocol 

We wanted our simplified model to behave as closely as possible as the original 

Hamon’s model. In order to find appropriate values for the Hill parameters (for the transcription 

of each gene: k0, Vmax and km) we simulated virtual data that covers all dose range combinations 

with substantial transcription. Thus, both models (the new and the original) were run with a 

number of incremental doses of TFs (i.e., nucNrf2 and/or nucX-AhR) between zero and 

saturation level during a time period that ensures reaching a stable equilibrium between 

exposures. Table 3 summarizes the protocol used: starting from zero, every 400,000 seconds, 

an incremental dose of the TF(s) was added. For genes that are under control of both TFs, all 

possible combinations of concentrations of the two TFs were considered. For equations 3.1 and 

3.2, MCMC simulations were applied to find parameter values for which the curve of the new 

Hill-based model fits best the curve of Hamon’s model. 

 Software 

The Hill-based SB model was simulated and calibrated with the GNU MCSim software, 

version 5.6.6 (Bois, 2009a). For all genes and parameters, two MCMC chains were run in 

parallel for 10,000 iterations and convergence was checked on the last 9,000 iterations. All 

fitting plots were created with R, version 3.4.4 (R Development Core Team, 2013). 
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Table 3. Virtual exposure scheme applied on both Hamon's (old) and Hill-based (new) SB 
models to perform MCMC curve fitting and establish equivalency between them. Genes that 
are activated by a single TF (i.e., CYP, GS, GCLC and GCLM) were exposed to five doses 

(one dose per time-point) ranging from 0 to 100 zeptomol doses of their TF (i.e, nucNrf2 or 
nucX-AhR). Genes that are activated by both TFs (i.e., Nrf2, GST, GPX and MRP) were 

exposed to five different and separate combinations of doses per time-point (25 combinations 
are possible). All exposures are in zeptomol. 

Genes Exposure starting times (seconds) 

 0 400,000 800,000 1,200,000 1,600,000 

CYP 0 nucX-AhR 0.5 nucX-AhR 1  nucX-AhR 10  nucX-AhR 100  nucX-AhR 

GS 

GCLC 

GCLM 

0  nucNrf2 0.5  nucNrf2 1  nucNrf2 10  nucNrf2 100  nucNrf2 

Nrf2 

GST 

GPX 

MRP 

0  nucX-AhR 

+ 

0  nucNrf2 

0.5  nucX-AhR 

+ 

0  nucNrf2 

1  nucX-AhR 

+ 

0  nucNrf2 

10  nucX-AhR 

+ 

0  nucNrf2 

100  nucX-AhR 

+ 

0  nucNrf2 

0  nucX-AhR 

+ 

0.5  nucNrf2 

0.5  nucX-AhR 

+ 

0.5  nucNrf2 

1  nucX-AhR 

+ 

0.5  nucNrf2 

10  nucX-AhR 

+ 

0.5  nucNrf2 

100  nucX-AhR 

+ 

0.5  nucNrf2 

0  nucX-AhR 

+ 

1  nucNrf2 

0.5  nucX-AhR 

+ 

1  nucNrf2 

1  nucX-AhR 

+ 

1  nucNrf2 

10  nucX-AhR 

+ 

1  nucNrf2 

100  nucX-AhR 

+ 

1  nucNrf2 

0  nucX-AhR 

+ 

10  nucNrf2 

0.5  nucX-AhR 

+ 

10  nucNrf2 

1  nucX-AhR 

+ 

10  nucNrf2 

10  nucX-AhR 

+ 

10  nucNrf2 

100  nucX-AhR 

+ 

10  nucNrf2 

0  nucX-AhR 

+ 

100  nucNrf2 

0.5  nucX-AhR 

+ 

100  nucNrf2 

1  nucX-AhR 

+ 

100  nucNrf2 

10  nucX-AhR 

+ 

100  nucNrf2 

100  nucX-AhR 

+ 

100  nucNrf2 
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3.2.2 Assembling two models 

In order to better study the transcriptional regulations of the GSH pathway by the Nrf2-

Keap1 signaling cascade, we have merged the Nrf2 pathway model developed by Hamon et al. 

(2014) with the GSH synthesis and metabolism model proposed by Geenen et al. (2012a). In 

fact, GSH synthesis and response to oxidative stress was much more developed and detailed in 

the model of Geenen. The link between the two models is that the transcription part of Hamon’s 

Nrf2-Keap1 model codes for the synthesis of key enzymes of GSH synthesis in Geenen’s 

model. Even though GSH synthesis was much more developed and detailed in Geenen’s model, 

the added value of Hamon’s version was the elaboration of the role of ‘adenosine triphosphate’ 

(ATP) and energy uptake in the process. Other than that, the only changes we made to Geenen’s 

model were the definitive suppression of the folate cycle and the application to the metabolism 

of paracetamol. Finally, we added two extra genes (i.e., HMOX1 and SRXN1) which are often 

used as activation markers for Nrf2 pathway (Figure 8). 

Assembling those two models was a multi-step process that started with the deep 

understanding of the functioning and specificities of each of the two models and then by 

spotting the common points between them. Next, the fusion of the two models required a 

rigorous work of homogenization of names and symbols of all participating elements (i.e., state 

variables, reaction names, parameters, constants, volumes, exposure molecule(s), etc.) between 

the two models. Some differences between the two models emerged at this stage. For instance, 

the ‘gamma-glutamyl-cysteine’ (γGC) enzyme was named ‘glc’ in Geenen’s model and ‘r-GC’ 

in Hamon's. In Geenen’s model, the synthesis of γGC was catalyzed by the enzyme ‘glutamyl 

cysteine synthetase’ when the same reaction in Hamon‘s model was catalyzed by GCL and 

GCLC, and consumes ATP (Figure 9). For this reaction, ATP and the action of GCL and GCLC 

from Hamon were taken into account as an added value to the equation, and integrated to GSH 

synthesis according to Geenen's model.  Figure 7 is a schematic representation of the final 
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(assembled) SB model we constructed, showing all that happens between the entry of the 

xenobiotic X to the cell and the GSH cycle (i.e., synthesis, oxidation and export), passing by 

the nuclear transcription of genes coding for key enzymes. The full code of this SB model is 

given in ‘Supplementary Material 7.4’. 

 

Figure 8. Venn diagram showing the contribution (overlapping areas) of different source 
models (i.e. Hamon et al. (2014) in green, Geenen et al. (2012a) in pink and Reed et al. 
(2008) in orange) to our final assembled SB model (in blue) describing the control of 

oxidative stress by the Nrf2-Keap1 signaling pathway. This diagram also shows the parts of 
each model that were left out (non-overlapping areas). Two more genes (i.e., SRXN1 and 

HMOX1) that are often used as activation markers for Nrf2 pathway were added to the model 
(yellow). 
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Figure 9. γGC and GSH synthesis reactions according to Geenen et al. (2012a) (left) and to 
Hamon et al. (2014) (right). [Cys = cysteine, Glut = glutamate, glc and r-GC = gamma-

glutamyl-cysteine; other acronyms are explained in the ‘List of abbreviations’]. 

 

  

S 
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3.3 RESULTS 

Hill parameter values obtained by MCMC simulations for all eight genes are listed in 

Table 4. These parameters were used to plot the curve fitting graph for each gene, in order to 

check the equivalency of both versions of transcription model: Hamon's model (old version) 

and Hill-based model (the new version). In this section, we have shown one example to 

illustrate each of the two cases we have: GCLC (Figure 10) for genes that are under the effect 

of one single TF (either nucNrf2 or nucX-AhR) and MRP (Figure 11) for genes that are 

activated by both TFs (nucNrf2 and nucX-AhR). The rest of the graphs are presented in 

‘Supplementary Material 7.1’: CYP (Figure S4), GCLM (Figure S5), GS (Figure S6), GST and 

GPX (Figure S7) and Nrf2 (Figure S8). 

For graphs of the genes that are activated by a single TF (i.e., CYP, GCLC, GCLM and 

GS), ten data-points generated with Hamon's model are displayed (red dots), and the results 

generated by the Hill-based model are represented by a black curve. The figures (Figure 10, 

Figure S4, Figure S5 and Figure S6) display the amount of mRNA (in zeptomol) in the 

cytosol, for each of the two versions of the model, through the timeline, following the exposures 

as described in the protocol of Table 3. As we can see, the black curves pass through all red 

dots of all four figures. This shows that the two versions are equivalent for these genes and can 

be interchangeable. For graphs of the genes that are activated by two TFs (i.e., CYP, GCLC, 

GCLM and GS), ten data-points generated with Hamon's model, for each dose of nucX-Ahr 

(five different colored curves), are displayed (colored dots). Five nucNrf2 doses are added 

through the timeline: refer to the experimental protocol of Table 3. The figures (Figure 11, 

Figure S7 and Figure S8) display the amount of mRNA (in zeptomol) in the cytosol, for each 

of the two versions of the model, through the timeline. In these cases, the fit is not as good as 

for genes that are activated by a single TF, but it is still acceptable, since the error between the 

curves and the dots remains small. So basically, a much simpler Hill model can successfully 
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replace a cascade of differential equations of the original Hamon’s model. The new model 

replaces 78 parameters and 46 differential equations by 8 Hill’s equations and a total of 30 

parameters. 

 

Figure 10. MCMC curve fitting of GCLC mRNA (example of gene activated by one single 
TF) rate equivalency by time according to virtual exposure scheme presented in Table 3 

applied on both Hamon's (red dots) and Hill-based (black curve) SB models. 
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Figure 11. MCMC curve fitting of MRP mRNA (example of gene activated by two TFs) rate 
equivalency by time according to virtual exposure scheme presented in Table 3 applied on 

both Hamon's (colored dots) and Hill-based (colored curves) SB models. nucNrf2 dose 
increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on 
different curves (0 (red),  0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of 

nucX-AhR). 
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Table 4. Hill parameter values (maximum posterior values) for gene transcription in the SB 
assembled model of the Nrf2 control of oxidative stress. These values were obtained by 

MCMC simulations. Since calibration was performed with virtual data, we were not interested 
in the mean and the standard deviation of the distributions (not mentioned). 

Gene Hill Parameter Value Measuring unit 

CYP 
k0 8.91E-5 zeptomol/s 

Vmax 4.24E-6 μM/s 
km 9.76E-3 μM 

Nrf2 

k0 2.73E-6 zeptomol/s 
Vmax,a 2.71E-8 μM/s 
Vmax,b 2.37E-8 μM/s 
Vmax,ab 2.51E-8 μM/s 

km,a 1.50E-3 μM 
km,b 1.20E-3 μM 

GS 
k0 1.21E-4 zeptomol/s 

Vmax 5.47E-6 μM/s 
km 4.30E-3 μM 

GCLC 
k0 1.70E-4 zeptomol/s 

Vmax 9.89E-6 μM/s 
km 2.39E-3 μM 

GCLM 
k0 9.17E-5 zeptomol/s 

Vmax 1.28E-5 μM/s 
km 3.83E-3 μM 

GST 
 

and 
 

GPX 

k0 4.92E-5 zeptomol/s 
Vmax,a 1.17E-6 μM/s 
Vmax,b 1.62E-7 μM/s 
Vmax,ab 1.87E-7 μM/s 

km,a 3.18E-3 μM 
km,b 3.11E-3 μM 

MRP 

k0 1.27E-4 zeptomol/s 
Vmax,a 4.50E-6 μM/s 
Vmax,b 2.06E-6 μM/s 
Vmax,ab 2.27E-6 μM/s 

km,a 2.72E-3 μM 
km,b 3.75E-3 μM 
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4 SB AND OTHER TOOLS FOR THE DEVELOPMENT OF 

QUANTITATIVE AOPS 

4.1 STUDY CONTEXT 

AOPs, the organizing principle for all OECD’s testing are practically a chemical-

independent description of a linear path from a MIE to an eventual AO at the organism or 

population level, as already earlier mentioned in the Bibliography ‘sub-chapter 2.2.3’ 

(Villeneuve et al., 2014) (see Figure 12). Between the MIE and the AO, there can be any 

number of intermediate critical and measurable KEs connected by KERs (LaLone et al., 2017). 

In the long term, AOPs can support the development of ‘integrated testing strategies’ 

and their application in risk assessment (Leist et al., 2017; Vinken, 2013). In case of ‘integrated 

testing strategies’ building, the data generated by alternative methods (i.e., in silico, in vitro), 

when combined with existing animal data, are used and assessed by means of a f ixed data 

interpretation procedure (OECD, 2016; Sachana and Leinala, 2017). For this purpose, 

quantitative AOPs that provide dose-response and time-course predictions (Conolly et al., 

2017) are likely to be more valuable for ‘integrated testing strategies’ construction than 

qualitative AOPs. Parameter values for a qAOP can be either obtained from legacy data or new 

targeted experimental work, or by optimizing the fit of model predictions to data (Villeneuve 

et al., 2014). So far, the few qAOPs published use either empirical dose-response models to 

quantify KERs (e.g., (Hassan et al., 2017), or are based on an underlying SB model (e.g. 

Conolly et al., 2017). In canonical linear AOP diagrams, KEs are represented by boxes and 

KERs by arrows connecting them, without cycles (Figure 12). The path linking the various 

KEs should not form loops (feedback of feed-forward loops between two consecutive KEs can 

simply be indicated by a symbol). Thus, according to graph theory, AOPs are acyclic directed 

graphs (Pavlopoulos et al., 2011). which are the underlying structure of BNs (Oates and 

Mukherjee, 2012). The links between their nodes correspond to simple statistical dependencies. 
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Thus, BNs can be viewed as an intermediate approach between empirical models and SB 

models. They have already been applied to AOPs in the area of skin sensitization to facilitate 

potency assessment for classification purposes and to support hazard characterization in a semi-

quantitative way (Jaworska et al., 2015; Rovida et al., 2015). Here, we further demonstrate the 

application of DBNs to AOP quantification. 

The work described in this chapter is intended to validate the SB model of the Nrf2 

control of oxidative stress described in ‘chapter 3’ using experimental data and to compare its 

behavior to two other models (a statistical dose-response relationships model and a DBN 

model). This study will be soon submitted to publication. 

 

Figure 12. A CKD AOP diagram. KERs are represented by arrows. 
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4.2 METHODS 

4.2.1 Experimental data 

Thiol oxidation following exposure to various concentrations of potassium bromate 

(KBrO3) (control, 0.375, 0.75, 1.5. 3, a nd 6 mM) (see Table S1 in ‘Supplementary Material 

7.2.1’) was measured through GSH depletion in a cel l-free environment. Depletion was 

measured after 1 hour , using the luminescence-based GSH-Glo kit from Promega (V6912), 

according to manufacturer’s instructions, as described in Limonciel et al. (2012) 

Oxidative stress was read out by oxidation of the cell permeant reagent 6-carboxy-2’,7’-

dichlorofluorescein diacetate (carboxy-DCFDA). After diffusion into cells, carboxy-DCFDA 

is deacetylated by cellular esterases to 6-carboxy-2’,7’-dichlorofluorescein (carboxy-DCF), 

which remains trapped in the cell and is oxidized by hydroxyl, peroxyl radicals and other ROS 

to 2’,7’-dichlorofluorescein (DCF), which is highly fluorescent. RPTEC/TERT1 cells were 

grown as described by Aschauer et al. (2013) and exposed to various concentrations of KBrO3 

(control, 0.75, 1.5. 3, a nd 6 mM) as described by Limonciel et al. (2012)) (see Table S2 in 

‘Supplementary Material 7.2.1’). Briefly, cells were grown and matured into a mature 

monolayer in 96-well cell culture plates kept at 37°C / 5% CO2 and were fed fresh medium 24 

hours before chemical exposure. Cells were incubated with 40µM carboxy-DCFDA 

(Invitrogen) 4 hours before washing out the excess extracellular dye and starting exposure to 

KBrO3 dissolved in culture medium. DCF production was measured over time (approximately 

every 15 m inutes, up t o 24 hour s) as relative fluorescence units (RFU) by fluorescence 

spectroscopy using over time using a Tecan Pro M200 microplate reader.  

Supernatant lactate per time is a measure of glycolytic rate (inversion of glucose 

consumption rate). Increased glycolysis can be due to a decrease in mitochondrial respiration, 

an increase in energy demand, or alteration in pathways involved in glycolysis regulation (e.g., 

HIF1 alpha (positive), or p53 ( negative). The culture medium, with the given KBrO3 
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concentrations was changed every day after an aliquot was taken for lactate measurement. An 

absorbance-based assay described in Limonciel et al. (2011) ) (see Table S3 in ‘Supplementary 

Material 7.2.1’). 

4.2.2 Chronic Kidney Disease – CKD – AOP  

The proposed AOP (Figure 12) links thiol oxidation to CKD via oxidative and 

mitochondrial stress. Within the nephron, the proximal tubule is especially susceptible to injury 

from oxidative chemicals, as they can cause mitochondrial damage, which in turn can result in 

impairment of active and secondary transport, as well as in cell death. CKD is characterized by 

a progressive loss of renal function, the onset of which is initiated and or accelerated by other 

factors such as diabetes, high blood pressure or exposure to nephrotoxic chemicals (Aschauer 

et al., 2015; Staples and Wong, 2010). Given its high energy demand for active transport, the 

nephron proximal tubule is especially susceptible to injury from oxidative chemicals, as they 

can cause mitochondrial damage (Kong et al., 2014). Here, we analyze the AOP until the 

initiation of cell death following induction of oxidative stress, since our analysis is based on in 

vitro data obtained in human proximal tubule (RPTEC/TERT1) cells exposed to KBrO3. The 

link from cell death to kidney function impairment thus cannot be modeled based on the 

available data and we will focus on a set of core early KEs leading to proximal tubule damage. 
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4.2.3 Dose-Response based qAOP 

In the empirical dose-response approach, dose(-time)-response equations were fitted to 

data on the effect of KBrO3 on GSH, DCF and lactate. With such data, linking chemical 

exposures to KEs, the corresponding equations need to be mathematically inverted to obtain 

chemical-independent KERs. Only the exposure to MIE relationship can be used as is. 

In the work detailed in ‘Supplementary Material 7.2.2’, the article’s co-authors Frédéric 

Y. BOIS (thesis director) and Cléo TEBBY have created a dose-response based qAOP model 

of three equations 4.1, 4.2 and 4.3. First, equation 4.1, with a modified exponential decrease, 

establishes the relationship between the concentration of KBrO3 (CKBrO3) and the percentage of 

GSH (PctGSH) remaining in vitro after one hour representing the MIE. The parameters used in 

equation 4.1 are the GSH degradation rate constant k, and power b (which increases the 

degradation rate if b>1). 

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺  =  100 ×  𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3
𝑏𝑏 �  (4.1)  

Then, equation 4.2 models the relationship between CKBrO3, time t and QDCF 

(representing the amount of oxidative stress). Its parameters are A (baseline response), B 

(maximum increase above baseline), δ (maximum increase modulation by dose), kd (dose 

coefficient), kt (time coefficient). 

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷  =  𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 − 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘𝑑𝑑 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3�� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡 ⋅ 𝑡𝑡)� (4.2)  

Finally, the polynomial equation 4.3 that models the CKBrO3 - time - lactate concentration 

(Clac) relationship, fits the data adequately. 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙  =  𝑎𝑎 +  𝑏𝑏𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3  +  (𝑐𝑐 +  𝑒𝑒𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3)𝑡𝑡 + (𝑑𝑑 +  𝑓𝑓𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3)𝑡𝑡2  (4.3)  
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4.2.4 Bayesian Network – BN – qAOP 

The AOP shown on Figure 12 can be taken as a BN structure. Here, we do not need to 

learn our BN structure, but we need to calibrate it. Given that we have dose-time-response data 

on DCF and lactate, and that their time evolution is progressive rather than instantaneous, it is 

natural to use a DBN to integrate those data (Kjærulff and Madsen, 2008). Figure 13 shows the 

DBN that the article’s co-author Wang GAO constructed to quantify the CKD AOP. In this 

figure, the DCF readout at a given time depends on its previous value (indeed, in the in vitro 

system DCF accumulates with time). The same applies to the lactate concentration. There are 

also some instantaneous or constant dependencies: We considered that CKBrO3 was constant with 

time throughout the experiments (note that this is an approximation, but we have no information 

on the kinetics of KBrO3 in the in vitro system). The thiol depletion readout (GSH level 

remaining after 1 hour) is simply an indicator of KBrO3 potency and was also taken to be 

constant. 

In the work of Wang GAO that is explained in ‘Supplementary Material 7.2.3’, the 

developed DBN model includes three equations 4.4, 4.5 and 4.6. In equation 4.4, describing the 

dependence of observed PctGSH on CKBrO3, kGSH represents the depletion rate constant and σ2
GSH 

the variance. 

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺  ∼  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(100 ×  𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3),𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺 2 )  (4.4)  
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The conditional distribution of QDCF observations at a given time t, given PctGSH and 

the QDCF observation at the previous time t-h is given by is an extension of the standard DBN 

model in which PctGHS,t influences the equilibrium value (EDCF,t) for QDCF,t to which it 

converges over time at exponential dampening rate ν (equations 4.5 and 4.6): 

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  ∼  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  −  �𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  −  𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡−ℎ�  ⋅  𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷ℎ ,�1−𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷ℎ

1−𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷
 ⋅  𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷 2 �   (4.5)  

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  =  𝛽𝛽0,𝐷𝐷𝐷𝐷𝐷𝐷  +  𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 (4.6)  

Where EDCF,t is the equilibrium value of QDCF (a linear function of PctGSH,t at time t),  h 

is the (positive) time interval between two consecutive observations, νDCF (positive), β0,DCF, 

βDCF, and variance σ2
DCF are parameters to estimate. 

 

Figure 13. Structure of the DBN qAOP for CKD. KBrO3 concentration and the GSH readout 
do not vary with time, while the DCF and lactate readouts were observed at different time 

intervals. The arrows indicate probabilistic dependencies. 



85 
 

4.2.5 The Systems Biology – SB – Model 

We used the SB model developed in ‘chapter 3’ to analyze of the oxidative stress (DCF) 

data. The model does not describe lactate formation and hence we did not consider the lactate 

data in this approach. As mentioned before, this SB model focuses on control of the oxidative 

stress by Nrf2 and GSH, one of the major toxicity pathway studied in systems toxicology 

(Geenen et al., 2012a; Hamon et al., 2014; Jennings et al., 2013). Therefore, we used it only to 

study the relationship between KBrO3 exposure, time, and DCF fluorescence in detail. 

Upon oxidative stress, when the intra-cellular level of ROS exceeds the capacity of this 

defense system to replenish GSH through new synthesis, GSH depletion occurs and ROS are 

left free to cause extensive cellular damage, cell death, nephron attrition and CKD. 

Figure 7 shows the assembled SB model we developed to study the transcriptional 

regulation of the GSH pathway by the Nrf2 - Keap1 complex, which merges variants of the  

with the Hamon et al. (2014) model for RPTEC/TERT1 cells and a model developed by Geenen 

et al. (2012a). 

In order to calibrate the model with the experimental data on KBrO3 effect on GSH and 

DCF, we added several first order reactions to the model (Figure 14): (a) Action of KBrO3 on 

extra-cellular GSH, with parameter kGSHe,KBrO3 ; (b) Formation of DCF from carboxy-DCF by 

ROS-mediated oxidation, parameter kDCF,ROS ; (c) Bleaching of DCF, parameter kbl ; (d) 

Formation of DCF from carboxy-DCF by direct action of KBrO3, parameter kDCF,KBrO3 ; (e) 

Action of KBrO3 on intra-cellular GSH, parameter kGSHc,KBrO3 (this parameter is multiplied by 

kGSHe,KBrO3 to yield the reaction rate constant, and is in fact the ratio of the external to internal 

reaction rate constants). 
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Figure 14. KBrO3 and DCF specific reactions of the SB model. Other abbreviations: extGSH 
is extra-cellular glutathione; cytGSH: cytosolic glutathione; extGSSG: extra-cellular oxidized 

glutathione; cytGSSG: cytosolic oxidized glutathione. Reactions are represented by red 
circles: a. the oxidation of extGSH by KBrO3; b. oxidation of carboxy-DCF by ROS; c. DCF 

bleaching; d. oxidation of carboxy-DCF by KBrO3; e. oxidation of cytGSH by KBrO3.  
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4.2.6 Parameter Estimation 

Parameter calibrations for the three types of qAOPs investigated were done in a 

Bayesian statistical framework, using MCMC simulations (Bernillon and Bois, 2000; Bois, 

2012), or Hamiltonian MCMC (Girolami and Calderhead, 2011). Basically, for each parameter 

to calibrate, a prior distribution summarizing existing knowledge was updated on the basis of 

the likelihood of the current data to yield a posterior distribution. Those distributions were 

obtained by random sampling from several simulated Markov chains. The convergence of the 

simulated chains was checked using the Rhat criterion of Gelman and Rubin (1992). 

The complexity of the various qAOP models differed and slightly different sampling 

strategies were used. For parameters estimation of the dose-response based model and for the 

DBN model, please refer to Table S4, Table S6 and the explanation in ‘Supplementary Material 

7.2.2’ and ‘7.2.3’. 

For the SB model, parameter calibration was done by Metropolis-Hastings MCMC with  

GNU MCSim (Bois, 2009a). Three Markov chains of 30,000 i terations were run in parallel, 

keeping the last 5,000 iterations. For each estimated parameter, non-informative uniform prior 

distributions were used (see Table 5). 

The data likelihood is clearly separated from the structural equations. To calibrate the 

model with our experimental data on the effect of KBrO3 on GSH and DCF, we proceeded step 

by step, increasing the complexity of the model by introducing reactions according to the 

following schedule: 
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1.  Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3), on the basis of 

the KBrO3 - GSH cell-free experiment data; kGSHe,KBrO3 was held at its maximum posterior value 

in the subsequent steps. 

2.  Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3) and formation 

of DCF by ROS-mediated oxidation (kDCF,ROS): this is a minimal model for explaining the  

KBrO3 - time - DCF data. 

3.  Adding bleaching of DCF (kbl) 

4.  Adding the direct formation of DCF by KbrO3 (kDCF,KBrO3) (step 4a) or the action 

of KBrO3 on intra-cellular GSH (kGSHc,KBrO3) (step 4b) 

5. All of the above. 

Table 5. Prior distributions of the parameters of the SB qAOP calibrated with the DCF data. 

Parameter Units Prior distribution 

kGSHe,KBrO3  (μM.s)-1 Uniform (0, 10-6) 

kDCF,ROS (zmol.s)-1 Uniform (0, 10-6) 

kbl  s-1 Uniform (0, 10-4) 

kDCF,KBrO3 (μM.s)-1 Uniform (0, 10-8) 

kGSHc,KBrO3 - Uniform (0, 3) 

σ DCF RFU Normal (1, 0.2) truncated to [1.01, 2] 

 

To compare the eventual improvement in fit brought by those various model refinements 

we used various measures of model fit to the data: the data log-likelihood, the residual GSD 

(geometric standard deviation), the AIC (Akaike information criterion) (twice the difference 

between the number of parameters and the data log-likelihood), the BIC (Bayesian information 

criterion), and the DIC (Deviance information criterion) (Gelman et al., 2004).  
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4.2.7 Uncertainty propagation 

The output of MCMC simulations is a sample of parameter sets (or parameter vectors) 

drawn from their joint distribution. Those sets of parameter values were used to rerun the 

corresponding model to make predictions for unobserved values. This is a type of Monte Carlo 

simulations in which the MCMC sampler acts as a random parameter values generator. We 

obtained distributions of predicted values that reflect the uncertainty of all parameter values. 

4.2.8 Software 

The dose-response based qAOP and the SB model were simulated and calibrated with 

the GNU MCSim software, version 5.6.6 (Bois, 2009a)20. The BN qAOP model was simulated 

and calibrated using Stan (Carpenter et al., 2017)21. All plots were created with R, version 3.4.4 

(R Development Core Team, 2013)22. Effectopedia23 version 1.2.51 (OECD, 2016) was used 

for implementation of the qAOP on internet (for Effectopedia, please check ‘Supplementary 

Material 7.2.5’). Effectopedia is an OECD guideline-compliant software tool that aims to gather 

experimental data and models in a unified representation, so that they can be compared, further 

analyzed, and used for hazard and risk assessment purposes (OECD, 2017). 

  

                                                 
20 https://www.gnu.org/software/mcsim/ [Accessed October 24th, 2018] 
21 http://mc-stan.org/ [Accessed October 24th, 2018] 
22 https://cran.r-project.org/ [Accessed October 24th, 2018] 
23 https://www.effectopedia.org/ [Accessed October 24th, 2018] 

https://www.gnu.org/software/mcsim/
http://mc-stan.org/
https://cran.r-project.org/
https://www.effectopedia.org/
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4.3 RESULTS 

4.3.1 Dose-Response based qAOP Model 

The empirical dose response models given by equations 4.1, 4.2 and 4.3 described the 

KBrO3 - GSH, KBrO3 - time - DCF, and KBrO3 - time - lactate relationships reasonably well 

(see Figure 15 and Figure 16, top row). Equivalent 2D representations of the time course of 

DCF and lactate at the various KBrO3 concentrations are given in ‘Supplementary material 

7.2.2’ Figure S9 and Figure S10, respectively. The uncertainty of the model predictions is low 

for GSH (Figure 15), and it amounts to about 0.5% to 1.5% for DCF and 5% to 12% for lactate 

(this cannot be usefully represented on Figure 16 for reasons of readability). Residual 

uncertainty (an estimate of measurement error) is about 22% for GSH, 20% for DCF and 30% 

for lactate. Table S5 in ‘Supplementary Material 7.2.2’ summarizes the ‘posterior distributions’ 

of the parameter values obtained by Bayesian calibration. 

By inversion of the empirical models, we can deduce the relationship between GSH, 

time, and DCF or GSH, time, and lactate production (Figure 16, bottom row). These 

relationships should, in theory, be independent of the thiol reactive chemical. They can be used 

to make predictions, including full parametric uncertainty propagation since we used a Bayesian 

statistical framework for parameter inference. For example, a ch emical dose causing 80% 

reduction of GSH after 1 hour (i.e., 20% GSH left), in the test conditions described in the 

‘Methods 4.2’, should lead to a lactate concentration of 4.6 ± 0.3 [4.1, 5.1] mM (mean, SD, 5 

and 95 percentiles) after 3 days of exposure.  



91 
 

 

Figure 15. Fit of the KBrO3 - GSH data (circles; each color represents one of the replicates) 
using the three qAOP models developed. The black line corresponds to the empirical model 
(equation 4.1). The best fit (solid line) is shown along with 20 additional random fits (gray), 

showing the uncertainty of the model predictions. The black dashed line represents the best fit 
obtained the DBN qAOP. The red line shows the best fit for the SB model. 
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Figure 16. Fit (top row) and predictions (bottom row) of the dose-response based qAOP for 
the DCF (measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are 

plotted along with all individual data (colored dots). The predicted chemical-independent 
relationships (in red) for GSH - time - DCF, or GSH - time - lactate were obtained by 
inversion of the qAOP equations (see ‘Supplementary Material 7.2.2’). The maximum 

posterior parameter values given in Table S5 were used to draw the figures. 
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4.3.2 Bayesian Network – BN – qAOP Model 

The fit of the DBN qAOP to GSH, DCF, and lactate data is shown on Figure 15 and 

Figure 17. Equivalent 2D representations are given in ‘Supplementary material 7.2.3’ Figure 

S11 and Figure S12. The fits for GSH and DCF are less good than those of the empirical 

models. The fit to the lactate data (Figure 17) looks very different for the DBN model, because 

the DBN model takes into account the change of medium every 24 hours. Note that all 

parameters of the DBN model are estimated together, so that modeling error are spread over 

the overall dataset. Also, the model uses linear relationship between nodes, except for the link 

KBrO3 - GSH. Residual uncertainty (an estimate of measurement error) is about 50% for GSH, 

25% for DCF and 10% for lactate. The error model, however, is different (normally distributed 

residuals, rather than log-normally distributed as in the empirical model). Table S7 in 

‘Supplementary Material 7.2.3’ summarizes the ‘posterior distributions’ of the parameter 

estimates obtained. The model parameters have some physical interpretation: Parameter ν 

controls the speed at which plateaus are reached in   Figure 17. The β parameters condition the 

height of the plateaus. However, there is a subtle interplay between convergence speed, plateau 

level, time and dose, as can be seen on Figure 15. All parameters are significantly different 

from zero. 

The DBN qAOP model does not need mathematical inversion to produce chemical-

independent predictions of the levels of DCF and lactate as a function of GSH depletion and 

time, because they can be directly simulated (Figure 17, bottom row). The resulting relationship 

for DCF is quite similar to that obtained with the previous qAOP (except for the linearity of the 

GSH - DCF relationship). However, the GSH - lactate relationship is very different, even 

though constant exposures to KBrO3 are simulated in both cases (the simulation is now 

considering a single medium change at time point zero). Note that lactate starts at zero to reach 

a plateau in about three days. The relationship between GSH and lactate is predicted to be linear 
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by the DBN model, instead of being strongly nonlinear in the empirical qAOP. As before, 

predictions with uncertainty estimates can be easily made. For example, the DBN qAOP 

predicts that a chemical dose causing 80% reduction of GSH after 1 hour (i.e., 20% GSH left), 

leads to a lactate concentration of 5.8 ± 0.4 [5.2, 6.5] mM (mean, SD, 5 and 95 percentiles) after 

3 days of exposure. This is significantly different from the prediction of the empirical qAOP. 

 

Figure 17. Fit (top row) and predictions (bottom row) of the DBN qAOP for the DCF 
(measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are plotted 
along with the data mean (black dots) and all individual data (colored dots). The predicted 

chemical-independent relationships (in red) are shown for GSH - time - DCF and GSH - time 
- lactate. The maximum posterior parameter values given in Table S7 were used to draw the 

figures. 
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4.3.3 System biology – SB – Model 

The fit of the SB model to the GSH data (calibration step 1) is show on Figure 15 (red line). 
It is better than the fit of the DBN qAOP (residual uncertainty for the GSH data is about 
40%), despite the fact that both use the same decreasing exponential relationship between 
KBrO3and GSH. However, the kGSHe,KBrO3 parameter was calibrated to the data independently 
of the other parameters and its fit is not constrained by the other data. The fits obtained for the 
KBrO3 - time - DCF data at the various model calibration steps (parameters were re-calibrated 
at each step) are shown on Figure 18. Equivalent 2D representations are given in 
‘Supplementary material 7.2.4’ Figure S13 to S16. Measures of the quality of fit are given in   
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Table 7. Note that the model takes into account the 4 hours of cells pre-incubation with 

carboxy-DCFDA, and simulation time starts therefore before exposure to KBrO3 (which is 

defined to occur at time point zero). During that period of time, ROS already starts forming 

DCF, explaining the relatively high level of fluorescence at time point zero. At step 2, with just 

a depletion of extra-cellular GSH by KBrO3 and the formation of DCF by ROS the model is 

unable to explain the data (Figure 18A). The depletion of extra-cellular GSH has only a minor 

effect on the intra-cellular GSH level (see ‘Supplementary Material 7.2.4’ Figure S13). 

Therefore, only background cellular ROS produces DCF, at a constant rate, and the 

accumulation of DCF is predicted to be linear (according to the experimental protocol carboxy-

DCF is expected to be in excess, and not depleted). Allowing DCF bleaching offers an 

explanation for the leveling off of the DCF fluorescence, yet the effect of KBrO3 is still not 

explained satisfactorily and the data fit is very poor (Step 3, Figure 18B). Adding the possibility 

that KBrO3 directly oxidizes DCF improves the fit markedly (Step 4a, Figure 18C), and the 

residual error σDCF goes down to about 20% (see Table 6). However, the effect of KBrO3 is 

linear, which is not exactly what the data shows. Instead of a direct oxidation of DCF by KBrO3, 

we tested the possibility that KBrO3 acts on intra-cellular GSH (Step 4b, Figure 18D). This has 

a clear effect on DCF production is clearly seen, but is it extremely nonlinear and does not lead 

to a reasonable fit to the data. Finally, in step 5, we put all the above parameters in the model 

and re-calibrated them. This did not lead to improvement compared to step 4a (see Table 7), 

and the effect of KBrO3 on intra-cellular GSH was estimated to be nearly absent (data not 

shown). 

Table 6 lists the best value (maximum posterior), the mean, the standard deviation and 

the confidence interval [2.5 percentile, 9.75 percentile] of each of the parameters calibrated at 

step 4a (yielding the best and most parsimonious model). The values of the parameters directly 

related to DCF do not have an explicit biological interpretation because DCF is measured in 
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RFU (which should be proportional to concentration, but with an unknown proportionality 

constant). Note that the DCF bleaching rate constant corresponds to a half life of about 6 hours. 

The SB model can also be used to make predictions, with full uncertainty propagation. For 

example, a 4 mM concentration of KBrO3 is predicted to lead to a DCF fluorescence of 16600 

± 250 [16200, 17100] RFU (mean, SD, 5 and 95 percentiles) after 24 hours. 
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Table 6. Summary of the posterior distribution of the five SB model parameters describing 
the action of KBrO3 on the formation of DCF. The best parameterization (setting kGSHc,KBrO3  

at zero) is presented.   

Parameter Units Maximum 
posterior 

mean (SD) [2.5pctile, 97.5pctile] 

kGSHe,KBrO3  (μM.s)-1 2.65×10-7 2.65×10-7 ± 8.45×10-9 
[2.48×10-7, 2.81×10-7] 

kDCF,ROS (zmol.s)-1 1.20×10-7 1.21×10-7 ± 3.2×10
-9

  
[1.14×10-7, 1.27×10-7] 

kbl  s-1 3.50×10-5 3.50×10-5 ± 1.4×10-6 
[3.23×10-5, 3.77×10-5] 

kDCF,KBrO3 (μM.s)-1 1.22×10-9 1.22×10-9 ± 4.5×10-11 
[1.13×10-9, 1.30×10-9] 

kGSHc,KBrO3 - 0 0 

σ DCF RFU 1.20 1.20 ± 6.8×10-3 
[1.18, 1.21] 
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Table 7. Assessment of the SB model fit to the KBrO3  - time - DCF data using various 
criteria and for increasing model complexity. The various steps explain the main text of 

‘Methods 4.2.5’. Step 1 is omitted since it does not require DCF data (parameter kGSHe,KBrO3,  
quantifying the action of KBrO3 on extra-cellular GSH, was independently calibrated from 
the GSH data and set to its maximum likelihood value in all cases). The other parameters 

were introduced as follows: Step 2: action of KBrO3 on external GSH and formation of DCF 
by ROS (parameter kDCF,ROS); Step 3: adding DCF bleaching (parameter kbl); Step 4a: adding 

a direct formation of DCF by KBrO3 (parameter kDCF,KBrO3); Step 4b: same as step 3, plus 
adding an action of KBrO3 on internal GSH (parameter kGSHc,KBrO3); Step 5: all parameters 

added. 

Step Maximum log-
likelihood 

Residual error 
(GSD)* 

AIC BIC DIC 

2 -4981 1.58 9967 9975 9969 

3 -4919s 1.51 9843 9856 9844 

4a -4480 1.20 8969 8986 8969 

4b -4755 1.35 9518 9535 9518 

5 -4480 1.20 8970 8992 8971 

*  GSD: best estimate of the geometric standard deviation (the coefficient of variation 
equals approximately 100×(GSD - 1). 
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Figure 18. Best fits of SB model (gray surfaces) to the DCF RFU data (colored dots), for 
different levels of complexity: (A) action of KBrO3 on external GSH and formation of DCF 
by ROS; (B) same as A with the addition of DCF bleaching; (C) same as B with the addition 
of a direct formation of DCF by KBrO3; (D) same as B, but with the addition of an action of 

KBrO3 on internal GSH. 
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4.4 DISCUSSION 

In this paper, we explored various options for quantifying an AOP and deriving chemical 

independent KERs. Quantitative AOPs have been previously described (Conolly et al., 2017; 

Hassan et al., 2017), but here, we strove for a rigorous statistical treatment of the data and 

parametric inference. That is particularly important for a co rrect quantification of the 

uncertainties associated with predictions made when extrapolating to humans, for example. For 

this purpose, we used MCMC simulations in a Bayesian framework (Bernillon and Bois, 2000). 

We also considered dose-time-response data, which significantly complicates the problem. 

Very few off-the-shelf software provide adequate tools and models for such data, despite the 

fact that time is a key variable in qAOPs. Actually, while spatial structure is clearly apparent in 

AOP schemata (from molecules to cells, to tissues etc.), time is probably as important, but 

implicit: the time scale of molecular reactions is typically of the order of seconds, cells respond 

on a time scale of hours, tissues in a matter of days, and the whole body can take years to be 

significantly affected due to inbuilt redundancies in biology. This is particularly true for renal 

disease as humans have a large renal functional reserve and ill health is only apparent when the 

functional reserve is breached, but the time phenomenon is likely to be relevant for many, if not 

all, AOPs. This mix of time scales implies extrapolations in time from one KE to the next, 

which in the absence of obvious simplifying assumptions (steady-state etc.) requires the 

introduction of time and dose in the KERs. 

The simplified AOP we used is not an OECD approved one, and we deliberately focused 

on a short sequence of KEs to demonstrate what can be achieved with different modeling 

approaches. The link to cell death and the subsequent link to kidney function impairment have 

not been included in our models given the absence of data on these downstream KEs. 

Another important time-related consideration is obviously the kinetics of exposure to 

stressors. For QIVIVE, or in general for risk assessment, qAOPs can be linked with 
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pharmacokinetic models, but only if they are time-consistent. The predictions of a qAOP 

considering only dose, with the implicit assumption that processes are instantaneous or have 

fixed delays represents a simplification of realistic time-varying exposures. Kinetics of 

exposure should also be considered during the development of qAOPs, because in vitro cellular 

concentrations of test chemicals are usually different from the nominal exposure medium 

concentration and change with time (Fisher et al., submitted). Nevertheless, in the absence of 

in vitro kinetic data on KBrO3 concentrations, we considered the nominal KBrO3 

concentrations to be an adequate measure of (constant) exposure. 

For the dose-response based qAOP, we used purely empirical models, i.e., simple 

models that adequately “fit” the data. Given the probably infinite number of such models, we 

did not attempt to find the “best” model, so the question of model choice and uncertainty 

associated with it is certainly relevant. Thus, despite the good fits obtained, such models and 

the resulting qAOP should typically not be used outside the time and dose domains in which 

the data were gathered. In such an approach, the data were also taken at “face value”. For 

example, the fact that a four-hour pre-incubation period of cells with carboxy-DCF led to a non-

zero DCF fluorescence just after exposure to KBrO3 was not taken into account, despite the 

fact that it provides information on the background rate of ROS formation. More importantly, 

the fact that medium was changed every day and that medium lactate concentrations were 

therefore zero immediately after that time was not modeled. It would have been difficult to 

empirically model the (more correct) dose-time response obtained with BNs (Figure 17) and 

we therefore limited the complexity of the empirical models. Furthermore, to obtain a correct 

statistical inference and at chemical-independent KERs, we resorted mathematical inversion of 

the KBrO3 - time - response models fitted to the data. This was indispensable, pending direct 

observation of ROS - time - lactate (or DCF - time - lactate) data, for example. However, 

inversion poses constraints on the form and complexity of the KERs that can be used. 
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In summary, of the various qAOP approaches employed, the empirical qAOP was the 

simplest and fastest to obtain. It described the data rather well, from a naive “goodness of fit” 

point of view. The universal nature of these models in their Effectopedia implementation allows 

them to be reused, expanding on t he idea of shared KE and KERs. However, a co rrect 

propagation of uncertainties along the chain of KERs, as done here, requires some mathematical 

and statistical sophistication (function inversion and Bayesian statistical inference), not 

provided by most software packages. Simply chaining dose-response relationships (that is, 

using the best predictions for one KE as input to the next KER, as it is often done) does not 

account for uncertainties in the “independent” variable at each step. In that case, uncertainty is 

not properly propagated through the AOP. The choice of models for KERs is arbitrary and does 

not offer mechanistic insight in the process. Moreover, their parameters do not have a biological 

interpretation (like the coefficients of a polynomial equation) and cannot be obtained by other 

means (e.g., QSAR models, specific experiments, etc.). Accounting for model uncertainty 

would further complicate matters. Finally, the domain of application of empirical qAOPs is 

strictly limited to the data range and strongly depends on the relevance of the experimental 

protocol to the actual disease process. Their extrapolation is perilous. 

The DBN qAOP we propose here is, to our knowledge, the first attempt to use such a 

model for a continuous dose-time-response predictive model. The work of Jaworska et al. 

(2010, 2013 and 2015) pioneered the application of BNs for qualitative (i.e., hazard) assessment 

of chemicals and here we aim to extend this towards risk assessment with qAOPs. BNs are 

intermediate between empirical models (the KERs are usually simple linear links) and SB 

models (the whole set of KERs is modeled jointly and the links can represent cause-effect 

relationships). To accommodate the time variable of the data, we use in fact a special DBN – a 

straightforward extension of BNs – where time enters the KERs. (D)BN modeling is in a way 

simpler than the empirical dose-response qAOP proposed above, because i. the same basic KER 
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formula is used for each link, and ii. they can handle uncertainty in a flexible, unified, and 

statistically homogeneous framework. With this model, we obtained a fairly good 

representation of the data, and successfully modeled (cf. Figure 17) a fairly complex time-dose-

relationship for the lactate readout. The end-results differed visually from those of the dose-

response qAOP, because in our DBN the KER links for DCF and lactate are linearly related to 

GSH levels. We are currently working on nonlinear extensions of the DBN model. Finally, in 

a realistic risk assessment framework, pharmacokinetics in vitro or in vivo should be accounted 

for. This would add its own set of additional complexities, but it is possible to couple them with 

DBN models, either by pre-computing the value of the dose nodes in the DBN with a 

pharmacokinetic model, or by extending the DBN to simulate the pharmacokinetic data 

available. 

Overall, (D)BN qAOPs offer an automatic or standardized way to develop semi-

empirical qAOPs, while tuning the complexity of the KERs. They can nicely describe complex 

time dependencies. However, the software for parameterizing such models (e.g., GNU MCSim, 

or Stan) require a mastering of their syntax for model building and fitting. The largest constraint 

for (D)BNs concerns the design of the experiments needed to develop the qAOP. The same 

doses and observation times should be used as much as possible. Otherwise, statistical 

imputation has to be used a posteriori to obtain a uniform dose and time schedules across 

experiments, and the statistical estimation problem is likely to become overwhelming. From an 

experimental point of view, however, it might not be feasible to observe the different KEs with 

the same time frame. Some events might happen in seconds (binding), days (cellular responses) 

or months or more (organ responses). This is because some events happen in seconds (binding), 

and others in days (cellular responses) or months or years (organ responses). In such cases, it 

might be possible to simplify time dependencies by separating time scales, i.e., by considering 

some effects to be instantaneous in comparison to others. 
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The SB model we developed addresses only part of the CKD AOP, but probably the 

most important one: the link between GSH, oxidative stress and the formation of fluorescent 

DCF. The model describes in detail the sensing and control of oxidative stress by the Nrf2 

pathway. It is quite complex, with 57 differential equations and 335 parameters. However, since 

it has been already parameterized for RPTEC/TERT1 cells, only the five parameters specific of 

the KBrO3 and DCF reactions were calibrated with the data. We essentially found that a 

reasonable fit could be obtained if KBrO3 acts directly on DCF, and that DCF bleaches 

significantly with time. We also found that modeling the pre-incubation period gives important 

information about the cellular background rate of oxidative stress. Such informative modeling 

is easy to do with a mechanistic model. The non-linearity of the effect of KBrO3 is not well 

explained by a first-order reaction, but we did not want to introduce ad hoc equations or further 

hypotheses, because the mismatch already allows to arrive at the following point of discussion: 

According to our SB model, neither action on e xtra-cellular nor on i ntra-cellular GSH can 

explain the DCF data. This questions the naive application of the GSH readout as a measure of 

KBrO3 effect in this AOP. While it is well accepted that thiol depletion can induce oxidative 

stress, the model suggests that this may not be the main mechanism of action of KbrO3 in the 

readout test. Thus KBrO3 may not be well suited to quantify our AOP, which also calls into 

question the results obtained with the other two models. However, we cannot exclude that the 

SB model is misleading us, because the parameter may not have been calibrated perfectly, and 

we cannot assess the overall uncertainty in the predictions of that model. 

In terms of pros and cons, SB models have a huge advantage: They force us to think 

mechanistically about the data, asking which biochemical reactions could explain them. With 

some statistical sophistication, this allows us to formally check whether the data are compatible 

with our hypotheses. Aspects like time, dose, and spatial organization (at the organelle, cell, or 

tissue level) can be seamlessly integrated through the use of differential equations. SB models 
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can also simulate particular details of the experimental protocols and background cellular 

processes, and that improves our understanding of the biology and of the tests themselves. They 

can also naturally integrate pharmacokinetic models, since they are built from the same 

principles and same mathematical objects. However, those models are complex to develop. 

They demand specialized software for computation, and many data for parameter estimation. 

In fact, the amount of data required is very large, so that SB models may never be completely 

validated, leaving some uncertainty about the correctness of their predictions. Therefore, such 

complicated SB models could be seen as investment for the future rather than a quick answer 

to urgent questions. 
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4.5 CONCLUSION 

The three approaches tested have different advantages. Dose-response based qAOPs 

may seem the easiest to develop at first sight, but they have very limited extrapolation and 

explanation power. BNs are in fact easier to develop, once the technology is mastered, but they 

impose either strong constraints on e xperimental design (fixed dosing and observation 

schedules) or require complex statistical treatment (imputation). SB models are more complex 

to develop, but one can strive for parsimony, as when we simplified the gene regulation part of 

our model. Importantly, they offer insight in the data collection and biology that the other 

approaches cannot afford. In any case, the three approaches we presented can all fully propagate 

uncertainty about qAOP predictions, which is essential for proper risk assessment. The 

contrasted results we obtained demonstrate that the choice of approach is not neutral. They also 

emphasize the importance of data collection: 

-  On in vitro kinetics, to understand and take into account the fate of the chemicals 

in the test system; 

- On the baseline behavior of the cells, in the absence of chemical exposure. To 

this purpose, the experimental raw data be delivered to the modelers without pre-processing 

such as the normalization to background values. For example, if such normalization had been 

applied to our DCF data we would have lost important information on the background ROS 

production. Correcting for background erases a large part of the essential mechanistic 

understanding of an AOP. AOPs are as much about the underlying biology than about the 

effects of stressors; 

- From different readouts, to select the most relevant one for the underlying KE or 

to better understand a complex KE (such as oxidative stress); 

- On other chemicals to check whether the parameterized KERs are robust and 

really chemical-independent. 
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To avoid pitfalls in qAOP development, we propose to take at least two approaches in 

parallel: First, a mechanistic modeling path, able to help test hypotheses, design experiments 

and deeply understand the results; Second, because we cannot always wait to have a fully 

mechanistic model developed, a lighter statistical approach. At the moment dose-response 

based modeling is the simplest, but we hope that we can contribute to a more wide-spread 

dissemination of DBNs in this area. In this spirit, one of the goals of the Effectopedia platform 

is to facilitate the creation of qAOPs by integrating and comparing the results brought by 

various modeling approaches.  
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5 INVESTIGATION OF NRF2, AHR AND ATF4 ACTIVATION 

IN TOXICOGENOMIC DATABASES 

5.1 THE GENERAL APPROACH 

Many transcriptionally activated pathways are intimately involved in responses to 

chemical induced perturbations and toxicological outcomes (Jennings et al., 2013). These 

pathways may be independent, correlated and partially or fully overlapping. 

To this end, we investigated the segregation of the genes belonging to the three 

following transcriptionally regulated pathways: the dioxin response or AhR pathway, the Nrf2 

pathway that regulates the response to oxidative stress and the ATF4 branch of the unfolded 

protein response. While these pathways have specific non-overlapping activation mechanisms 

and specific non-overlapping DNA binding elements reviewed in (Jennings et al., 2013), they 

also have overlapping downstream target genes. Adding to this complexity, converging 

toxicological mechanisms may lead to co-activation. Measuring their activation using 

transcriptomic approaches has great potential in increasing mechanistic understanding of 

chemical perturbations and to develop better prediction tools (Aschauer et al., 2015; Limonciel 

et al., 2015). In addition, such an approach could be used for biological read across. We 

precisely aim to investigate the dynamics of the interactions between these three pathways from 

toxicogenomic data in order to define the signature of each of them. 

However, there is still a knowledge gap pertaining to the interplay between the Nrf2, 

AhR, and ATF4 pathways. It is known that several of their downstream targets have promotor 

sequences for more than one of these TF. For example, NQO1 is driven by both AhR and Nrf2. 

Also, it is  likely that the pathways may cooperate in redressing certain homeostatic 

perturbations. For example, we have shown that Nrf2 and ATF4 cooperate on the level of GSH, 

where ATF4 promotes the uptake of GSH amino acid building blocks including glutamine and 
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cysteine and promotes glutamate production via induction of asparagine synthetase. Nrf2 in 

turn through induction of GCL and GS produces new GSH (Wilmes et al., 2013). 

Very little is known about species differences, tissue specificity, chemical specificity, 

or other subtleties in the activation of these pathways. To investigate this further, we performed 

a transcriptomic analysis of large and medium size toxicogenomic datasets from the European 

Union’s 6th and 7th framework projects carcinoGENOMICS (Vinken et al., 2008) and Predict-

IV (Mueller et al., 2015), as well as from TG-GATEs (Igarashi et al., 2015). Within these 

studies, we also identified some potentially useful specific TFs of the pathways investigated. 

KBrO3 and Phorone have been used to experimentally activate Nrf2. KBrO3 is an oxidizing 

agent causing ROS injury and oxidative stress induced DNA damage (Ballmaier and Epe, 1995; 

Limonciel et al., 2012). In a recent study, Limonciel et al. (2018) showed that KBrO3 activated 

the Nrf2 response without activation of the ATF4 response. Phorone can similarly activate Nrf2 

due to GSH depletion (Iannone et al., 1990; Oguro et al., 1996; Younes et al., 1986). 

Tunicamycin is a prototypical activator of the unfolded protein response (including the ATF4 

branch) by causing an accumulation of misfolded glycoproteins in the ER (Oslowski and Urano, 

2011). More specifically, Tunicamycin inhibits the N-glycosylation of newly formed proteins 

by the DPAGT1 gene, leading to an interruption in glycoprotein production (Bassik and 

Kampmann, 2011). Benzo(a)pyrene and Omeprazole have been used to activate AhR. 

Benzo(a)pyrene is a polycyclic aromatic hydrocarbon and a prototypical AhR agonist (Nebert 

et al., 2004). Omeprazole, a proton pump inhibitor (Howden, 1991) is also an AhR activator 

(Jin et al., 2012). 

The aim of the study was to investigate potential codependences of ATF4, Nrf2 and/or 

AhR, to develop a signature panel for each pathway and to develop a chemical activity scoring 

system, for chemical grouping. This study was recently (October 2018) published in the 

Frontiers in Genetics scientific journal (Zgheib et al., 2018). 
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5.2 MATERIAL AND METHODS 

The toxicogenomic datasets from the three projects (carcinoGENOMICS, Predict-IV 

and TG-GATEs) that were obtained in various experimental conditions (in human and rat in 

vitro liver and kidney models and rat in vivo, with bolus administration and with repeated 

doses), were combined and consolidated where overlaps between datasets existed. A 

bioinformatic analysis was performed to refine pathways’ signatures and to create chemical 

activation capacity scores to classify chemicals by their potency and selectivity of activation of 

each pathway. With some refinement, such an approach may improve chemical safety 

classification and allow biological read across on a pathway level. 

5.2.1 Generation of Target Gene Lists 

For each of the three TF of interest (AhR, Nrf2, and ATF4), the following three search 

strategies, from the works of (Limonciel et al., 2015), were applied in PubMed to retrieve TF 

target genes: (i) search for TF name and Chromatin Immunoprecipitation (ChIP)-sequencing, 

or ChIP-microarray studies, (ii) search for TF name and TF-specific response element and 

‘Electrophilic Mobility Shift Assay’ or ChIP studies, and (iii) search for TF name and TF-

specific DNA response element and name of a target gene known. In the first tier of this 

strategy, high-throughput sequencing datasets were retrieved, which provided extensive lists of 

genes shown to have the TF bind in their promoter region. In the second tier, lower throughput 

investigations were included, providing target genes that were more deeply investigated in the 

article with proven TF binding of the promoter region. These first two tiers provided an 

unbiased source of target genes that was completed in the third tier with manually added target 

genes for which at least one study showed binding of the TF in their promoter region. 

PubMed searches were performed on 24.11.2014 for Nrf2 and 17.12.2014 for ATF4 and 

AhR. Gene lists are reported in Table S8 in ‘Supplementary Material 7.3’ and are illustrated in 

Figure 19. 
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Figure 19. Venn diagram of the number of genes of each of the three studied pathways (AhR, 
Nrf2 and ATF4) and their overlapping zones, included in the analysis. 

5.2.2 Construction of a Chemical-Effects Transcriptomics Database 

As stated before, the database of chemical-induced transcriptomic changes comes from 

three projects: carcinoGENOMICS (Vinken et al., 2008), Predict-IV (Mueller et al., 2015) and 

TG-GATEs (Igarashi et al., 2015). In carcinoGENOMICS, human and rat kidney cells were 

exposed to bolus concentrations of up to 31 chemicals in in vitro settings for up to 72 hours. In 

Predict-IV, human kidney cells and liver cells from human and rat were exposed daily in vitro 

for up to 14 days to up to 22 chemicals. Up to 171 chemicals from TG-GATEs were tested in 

various rat in vivo and in vitro systems, with various treating regimes. Table 8 summarizes this 

and shows the 211 chemicals tested and dispatched in different categories of one or more of the 

three projects. Table S9 in ‘Supplementary Material 7.3’ presents the exhaustive lists of 

chemicals by category. 
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Table 8. Number of chemicals used in each experimental category. 

Project Species Tissue Setting Mode Time-points Number of 
chemicals Notes 

All dataset 
[211]*  (1-2) 

Carcino-
GENOMICS 
[31] 

Human Kidney in vitro Bolus 6h, 24h, 72h 30 
(3-4) 

Rat Kidney in vitro Bolus 6h, 24h, 72h 15 

PREDICT-IV 
[22] 

Human Kidney in vitro Repeated doses 1d, 3d, 14d 12 (5-6) 

Human 
and Rat Liver in vitro Repeated doses 1d, 3d, 14d 11 (7) 

TG-GATEs 
[171] 

Human Liver in vitro Bolus 2h, 8h, 24h 160 (8) 

Rat 

Liver in vitro Bolus 2h, 8h, 24h 145 (9) 

Liver in vivo Bolus 3h, 6h, 9h, 24h 158 (10-11) 

Liver in vivo Repeated doses 4d, 8d, 15d, 29d 143 - 

Kidney in vivo Bolus 3h, 6h, 9h, 24h 41 
41 (12) 

Kidney in vivo Repeated doses 4d, 8d, 15d, 29d 
(1) Number of chemicals assayed in at least one of the three source projects. 

(2) Cyclosporine A is the only chemical that was used in the three projects. Cyclosporine A appears in every single experimental category and 
sub-category (except carcinoGENOMICS’s Rat tests). 

(3) In carcinoGENOMICS, all 15 chemicals tested on rat cells, except one (Dimethylnitrosamine), were also tested on human cells. 

(4) Beside Cyclosporine A, and five of the chemicals that appear in TG-GATEs as well, all chemicals are specific to carcinoGENOMICS (2-
Nitrofluorene and N-nitrosomorpholine (TG-GATEs “Human liver in vitro bolus” and “Rat liver in vivo bolus”); and Diclofenac, 
Nifedipine and Tolbutamide (all liver categories of TG-GATEs)). 

(5) The 12 chemicals tested on kidney cells and the 11 tested on liver cells in PREDICT-IV are distinct; Only Cyclosporine A is presented in 
these two categories. 

(6) Among the chemicals tested on kidney cells in PREDICT-IV, only Cisplatin appears elsewhere (in TG-GATEs rat tests). 

(7) Among the chemicals tested on liver cells in PREDICT-IV, only Acetaminophen and Valproic acid appear in all TG-GATEs categories; 
Amiodarone, Chlorpromazine, Fenofibrate, Ibuprofen and Metformin were tested on liver cells of TG-GATEs, and Rosiglitazone as well 
(except in “Rat liver in vitro bolus”). 

(8) In TG-GATEs, five chemicals were tested on human cells only (HGF, IL1beta, IL6, INFalpha, Nefazodone and TGFbeta1) and six others 
on animal categories only (Carboplatin, Cephalotin, Cisplatin, Gentamicin, TNFalpha and Trimethadione). 

(9) Five chemicals appear in liver in vitro bolus categories only (human and rat): Alpidem, Buspirone, Clozapine, Nefazodone and 
Venlafaxine. 

(10) 3-Methylcholantrene, Bortezomib, Gefitinib, Imatinib and Puromycin appear in the “Rat liver in vivo bolus” category exclusively. 

(11) 2-Nitrofluorene, Aflatoxin B1, Dexamethasone, N-methyl-N-nitrosourea and TNF are common to TG-GATEs’ “Human” and “Rat liver in 
vivo bolus” categories and were not tested in other conditions. 

(12) The 41 chemicals that are used for TG-GATEs kidney in vivo testing are the same for both modes (bolus and repeated doses) and are common 
for all other categories (exceptions: Gentamicin, Carboplatin, Cephalotin, Cisplatin, Desmopressin acetate, Amphotricine B and 
Acetamide). 

* The number between brackets refers to the number of chemicals per project 
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5.2.3 Data Sources 

The carcinoGENOMICs and Predict-IV data are publicly accessible on the diXa 

database (diXa Data Warehouse) hosted by The European Bioinformatics Institute24. In 

carcinoGENOMICS, in vitro renal cell experiments were performed using the human cell lines 

RPTEC/TERT1 (human, telomerase transfected) and NRK-52E (rat). The study no. is DIXA-

003. Differentiated cell cultures were exposed to a single bolus of non or low cytotoxic (<IC10) 

concentration of chemical for 6, 24, or 72 hours before lysis in TRIZOL, RNA purification and 

transcriptomic analysis on Affymetrix microarrays as described (Limonciel et al., 2012). 

Affymetrix Human Genome U133 Plus 2.0 GeneChIP arrays were used for human samples and 

Rat Genome 230 2.0 GeneChIP for rat samples. Normalization quality controls, including 

scaling factors, average intensities, present calls, background intensities, noise and raw Q-

values were within acceptable limits for all chips. Hybridization controls were identified on all 

chips and yielded the expected increases in intensities. All subsequent analyses were based on 

normalized expression values generated using the MAS5 normalization algorithm. It is noted 

that RMA or GCRMA normalization would have been preferred. Normalized data was 

imported into GeneSpring (Agilent) to identify log2 fold change (FC) values for selected genes. 

Within PREDICT-IV, in vitro testing of nephrotoxic and hepatotoxic compounds were 

performed on R PTEC/TERT1 cells (renal model), primary human hepatocytes, and rat 

hepatocytes (PHH and PRH, respectively). The study no. on the diXa database is DIXA-095. 

Differentiated cell cultures were exposed daily to a high (≤10% cell death) or low concentration 

of chemical for 1, 3 or  14 da ys, as described (Aschauer et al., 2015; Crean et al., 2015; 

Limonciel et al., 2015; Wilmes et al., 2013, 2014). Transcriptomic analysis was carried out on 

Illumina® HT 12 v4 B eadChip arrays for kidney and PHH human samples, except 

RPTEC/TERT1 exposed to CsA (HT 12 v3 chips). PRH samples were analyzed with Illumina® 

                                                 
24 http://wwwdev.ebi.ac.uk/fg/dixa/index.html  [Accessed October 24th, 2018] 

http://wwwdev.ebi.ac.uk/fg/dixa/index.html
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RatRef-12 v1 BeadChIP arrays. Results were normalized by quantile normalization and 

expressed as log2 fold over time-matched control. Where several probes existed for a given 

gene, the probe with the highest variation across the dataset was selected. 

The TG-GATEs datasets comprised in vivo rat data from liver and kidney tissue, as well 

as data from in vitro primary rat and human hepatocyte cultures, after a single administration 

of chemical and repeat dosing Table 8. CEL files were downloaded from the Open TG-

GATEs25 database of the Toxicogenomics Project and Toxicogenomics Informatics Project 

under CC Attribution-Share Alike 2.1 Japan. Probe annotation for the primary human 

hepatocyte data was performed using the hthgu133pluspmhsentrezg.db package version 17.1.0 

and probe mapping was performed with hthgu133pluspmhsentrezgcdf downloaded from 

NuGO. Probe annotation for the rat data was performed using the rat2302rnentrezg.db package 

version 19.0.0 and probe mapping was performed with the rat2302rnentrezgcdf package version 

19.0.0 downloaded from NuGO (R/Bioconductor support libraries)26. These mappings 

summarize the corresponding probes to a single probe set per gene. Probe-wise background 

correction (Robust Multi-Array Average expression measure), between-array normalization 

within each treatment group (quantile normalization) and probe set summaries (median polish 

algorithm) were calculated with the RMA function of the Affy package (Affy package, version 

1.38.1) (Irizarry et al., 2003). The normalized data were statistically analyzed for differential 

gene expression using a linear model with coefficients for each experimental group within a 

treatment group (Wolfinger et al., 2001). A contrast analysis was applied to compare each 

exposure with the corresponding vehicle control. For hypothesis testing the moderated t-

statistics by empirical Bayes moderation was used followed by an implementation of the 

multiple testing correction of Hochberg and Benjamini (1990) using the LIMMA package 

(Smyth et al., 2005). 

                                                 
25 https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html [Accessed October 24th, 2018] 
26 http://nmg-r.bioinformatics.nl/NuGO_R.html [Accessed October 24th, 2018] 

https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html
http://nmg-r.bioinformatics.nl/NuGO_R.html
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All interspecies gene conversions where done using the provided human gene symbols 

which were converted to human or rat gene identifiers using the online conversion tool of 

bioDBnet (Biological Database Network)27. 

Altogether, the collected data concern 804 genes from the 857 genes identified in 

PubMed as targets of AhR, Nrf2 and ATF4. The 53 target genes that are not covered with data 

from any of the three projects were excluded from this study. These genes are listed in the last 

row of Table S8 in ‘Supplementary Material 7.3’. 

5.2.4 Bioinformatics Methods 

 Data Selection 

The heterogeneity of the sources of information of our database widens its coverage and 

strengthens its capacity to represent multiple conditions. However, this richness makes the 

database’s structure complex. To simplify the analysis without losing potentially important 

information, we focused on conditions providing the best background to study the three 

pathways individually. The effects observed following exposure to a chemical could vary 

greatly depending on exposure duration. Exposures lasting more than 24 hours tend to cause 

mixed stress responses that make it difficult to delineate the activation of specific molecular 

pathways and the initial mechanisms of toxicity of chemicals. These conditions could be a 

potential source of noise for the analysis and were thus excluded. Excluding all data obtained 

after 24 hours reduced the dataset from 7,042 to 4,685 t esting conditions. We chose not to 

eliminate the early kidney in vivo time points (at 3 and 6 hours), even though they may be more 

reflective of background levels in case of slow absorption of the chemical administered. 

  

                                                 
27 https://biodbnet-abcc.ncifcrf.gov/ [Accessed October 24th, 2018] 

https://biodbnet-abcc.ncifcrf.gov/
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 Pathway Specific Chemicals 

In order to distribute the genes to pathways and pathway overlapping zones, log2 genes 

FC were ranked in decreasing order and examined on reduced datasets containing conditions 

relative to pathway specific activators. We define a pathway specific activator as a chemical 

where the mode of action is known, that the mode of action activates the specific pathways and 

that this mode of action is not expected to activate the other pathways under investigation. Thus, 

at relatively short exposures, to relatively low concentrations these chemicals will only act on 

their specific target. It is however possible at higher concentrations or longer time exposure, 

other targets will be affected due to increasing toxicity. As shown in Table 8, some chemicals 

were not tested in all categories and tissue types. Thus, it was not possible to find pathway 

specific activators able to cover the entire database. Table 9 shows the coverage of the datasets 

by the pathway specific activators selected as reference for analysis. Although none of the 

toxicogenomic databases analyzed here were designed to specifically address any of our three 

pathways of interest, most datasets included at least one chemical that could be considered as a 

specific pathway activator. Two specific chemicals were selected for AhR (Benzo(a)pyrene and 

Omeprazole) and Nrf2 (KBrO3 and Phorone) and one for ATF4 (Tunicamycin). However, 

within ‘Rat Kidney in vivo’ category, no Nrf2 specific chemicals were found, and for all kidney 

data no ATF4 specific chemical were found either. 

Table 9. Chosen pathway specific chemical through the dataset. 

Pathway Species 
Kidney Liver 

in vitro in vivo in vitro in vivo 

AhR 
Human Benzo(a)pyrene 

Omeprazole 
Rat   

Nrf2 
Human KBrO3 

Phorone 
Rat  - 

ATF4 
Human  

- Tunicamycin 
Rat 
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 Construction of Pathway Signatures 

For each of the pathway specific chemicals, all testing conditions were selected. For 

every gene, the mean of log2(FC) throughout all those conditions was calculated, to form the 

average activation value of each gene by each of the pathway specific activator. For AhR and 

Nrf2, the two average activation values obtained (one for each of the pathway specific activator) 

were themselves averaged. Genes were then sorted in decreasing order of average activation 

values per pathway. It is important to note that, since the expression of some genes can be 

inhibited (down regulated) by some chemicals or in certain conditions, some of the average 

activation values were negative. In order to select the most sensitive genes for each pathway, 

we computed the mean (µ) and the standard deviation (σ) of the genes’ average activation values 

in each list. A pathways signature was formed by the genes whose average activation values 

were greater than µ + 2σ or smaller than µ – 2σ for this pathway. Genes appearing in the 

signature of more than one pathway were set apart in “overlapping signatures.” 

Furthermore, we stratified signatures by original databases’ categories (‘Rat liver cells 

in vitro’, ‘Rat liver cells in vivo’, ‘Human liver cells in vitro’ etc.) (which correspond to primary 

cells), to check if there would be any species-specific or in vitro/in vivo differences among 

signatures. We chose to work only with liver data since more data were available for liver (602 

conditions in kidney vs. 4,083 tested in liver, see Table 10).  

Table 10. Number of conditions (chemicals, concentrations, time-points) tested per category. 

Species 
Kidney Liver 

TOTAL 
in vitro in vivo in vitro in vivo 

Human 85 0 963 0 1048 

Rat 30 487 1282 1838 3637 

TOTAL 602 4083 4685 
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Following the same procedure as above, we constructed pathway signatures for AhR, 

Nrf2, and ATF4 in each of the following liver categories: (a) ‘Rat liver cells in vitro’, (b) ‘Rat 

liver cells in vivo’, and (c) ‘Human liver cells in vitro’. 

In all cases, general or stratified, some genes were excluded for having no data on effect 

of the chosen pathway specific chemicals. A list of those genes appears in Table S10 in 

‘Supplementary Material 7.3’. A summary of the above-described protocols and the following 

procedures of Methods are presented in the workflow of Methods summarizing workflow 

Figure 20. 

 

Figure 20. Methods summarizing workflow 
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5.2.5 Pathway’s Signature-Based Prioritization of Chemicals 

Among the three liver categories where signatures were stratified, we chose to focus on 

the ‘Human liver cells in vitro’ sub-category exclusively since the ultimate goal of our toxicity 

pathways’ analyses and models is risk assessment of human cells’ exposure to xenobiotics. We 

considered only the genes belonging to the signature of each of the three pathways, but not their 

overlapping zones. This selection of experimental category and genes reduces the number of 

studied chemicals from 211 to 160 for the lack of data on the rest of chemicals in this section. 

Then, for each of the 160 chemicals investigated, we averaged log2(FC) of the pathway 

signature genes over experimental conditions. Therefore, for each of the three pathways, we 

obtained a ‘chemical activation capacity’ (CAC) value per chemical. This value reflects how 

strongly a chemical can activate a g iven toxicity pathway. Those CAC can be negative for 

chemicals inhibiting the majority of the genes of a pathway. We used CAC to estimate the 

pathway’s selectivity of chemicals as well as the importance of their impact. Each chemical can 

be considered as a point having three CAC as coordinates in a 3-dimensional space which axes 

correspond to a given pathway. Let us consider a chemical K that has a point in a bi-dimensional 

graph where the X-axis corresponds to AhR and the Y-axis to Nrf2. In this graph, K’s 

coordinates would be: (CACAhR, K, CACNrf2, K), see Figure 21. K also defines the vector 𝑶𝑶𝑶𝑶������⃗  

linking the origin O (0, 0) to the point K. 

The specificity of a chemical for a given pathway can be measured by the proximity of 

its point K to the axis representing that pathway. Proximity can be mathematically evaluated by 

the absolute value of the cosine of the angle (α) between the pathway’s axis and 𝑶𝑶𝑶𝑶������⃗ . The more 

K is specific to AhR, the closer it is to the AhR’s axis, the smaller α is, and the bigger cos (α). 

In theory, in a 3-dimensional space, a point is closer to an axis than to the two others when its 

cos (α) with this axis is greater than 𝟏𝟏
√𝟑𝟑

. Thus, the value of 0.57735 ( 𝟏𝟏
√𝟑𝟑

) was chosen as a cut-off 

point for cos (α). On the other hand, the activation potency of a chemical proportionally 
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increases with the module of the vector 𝑶𝑶𝑶𝑶������⃗  vector noted �𝑶𝑶𝑶𝑶������⃗ � (the distance between the origin 

and the chemical’s point). The value of 0.5 was chosen as a cut-off point for�𝑶𝑶𝑶𝑶������⃗ �. For instance, 

chemicals A and B in Figure 21 are both quite specific of Nrf2, but A’s activation potency is 

relatively limited compared to B’s (�𝑶𝑶𝑶𝑶������⃗ � <  �𝑶𝑶𝑶𝑶������⃗ �). 

Similarly, even though C seems to have a g reater activation potency than A and B 

(greater module), it is equidistant to both axes and therefore is not specific of any of the two 

pathways. The same logic applies for a 3-dimensional space, adding one extra axis for the ATF4 

pathway. 

In our signature-based classification of chemicals, for each pathway, after applying the 

chosen cut-off points, we sorted chemicals by the result of the product 𝐜𝐜𝐜𝐜𝐜𝐜 (𝜶𝜶) × �𝑶𝑶𝑶𝑶������⃗ �. Thus, 

chemicals which are both pathway specific (high cos (α)) and potent (high�𝑶𝑶𝑶𝑶������⃗ �) show up first 

in our lists. 
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Figure 21. Geometric representation of chemical specificity and potency for the Nrf2 and 
AhR pathways. K represents a chemical and its coordinates are (CACAhR, K, CACNrf2, K). K 
also defines the vector 𝑶𝑶𝑶𝑶������⃗  linking the origin O (0, 0) to point K. The absolute value of the 

cosine of the angle α between 𝑶𝑶𝑶𝑶������⃗  and a pathway’s axis can be used to measure the specificity 
of a chemical for the given pathway (the smaller α, the more specific the chemical). On the 
other hand, the overall activation potency of a chemical increases proportionally with the 

length of 𝑶𝑶𝑶𝑶������⃗ . Points A, B and C represent three other chemicals with different specificities 
and potencies for pathways’ activation (see text).  
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5.3 RESULTS 

A visual depiction of the workflow is provided in Figure 20. 

5.3.1 Pathways’ Global Signatures 

Pathway’s signatures defined on the basis of the whole data set are listed in Table 11. 

Each signature has two parts: ‘Activated genes’ (those having positive log2(FC) averages and 

are greater than µ + 2σ) and ‘Inhibited genes’ (those having negative log2(FC) averages and 

are smaller than µ – 2σ); The two parts are merged in one in the overlapping signatures. In all 

lists, genes are sorted by the decreasing absolute value of the genes’ log2(FC) averages. The 

number of genes in the obtained pathway’s signature was 24 for AhR, 27 for Nrf2 and 30 for 

ATF4. In each pathway, at least half (12 for AhR, 15 for Nrf2 and 19 for ATF4) were ‘Activated 

genes’. The a priori pathway is the one for which the gene has come up in PubMed searches; 

Table 11 shows that most of activated genes were a priori suspected to belong to the target 

pathway (for example: CYP1A1, RUNX2, and CYP1A2 were known to be activated by AhR, 

HMOX1 and SRXN1 by Nrf2 and DDIT3 and HERPUD1 by ATF4; those genes are highlighted 

in gray) while this wasn’t the case of the ‘Inhibited genes’ part of the lists. Figure 22 shows the 

overlapping zones. Among the five genes that are in the AhR-Nrf2 overlapping zone (NQO1, 

DLGAP5, CFTR, RAB39B and GSTA1), only NQO1 is a mainly activated gene while this was 

the case of most seven genes of the Nrf2-ATF4 overlapping zone (ATF3, SLC7A11, TRIB3, 

CABC1, GDF15) with two exceptions (CCL2 has negative averages for both pathways and 

KCNT2 for Nrf2). CYP1B1 is the only mutual gene for AhR (strong activation) and ATF4 

(inhibition) and TPX2 is the only mutual gene for all three pathways (inhibition). Figure 23 

shows a network representation of the three signatures and their overlapping zones. 
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Table 11. Pathway’s global signatures for AhR, Nrf2 and ATF4 pathways and the signatures 
of their overlapping zones for all available data. Gray background indicates genes that appear 
in the signature of the pathway from previous studies (Table S11) and confirmed here. Non-

grayed out values are novel allocations from this analysis. 

Activated genes 

AhR Signature Nrf2 Signature ATF4 Signature 

Genes (1) log2 (FC) 
averages (2) 

A priori pathway 
(3) Genes log2 (FC) 

averages A priori pathway Genes log2 (FC) 
averages A priori pathway 

CYP1A1 4.35 AhR HMOX1 1.12 Nrf2 DDIT3 1.59 ATF4 

DLL1 1.36 AhR SRXN1 0.97 ATF4 Nrf2 TSLP 1.51 ATF4 

RUNX2 1.03 AhR MAFF 0.78 AhR Nrf2 AKNA 1.30 ATF4 

SLC16A9 0.92 Nrf2 OSGIN1 0.67 Nrf2 HERPUD1 1.23 ATF4 

FAM65C 0.79 AhR DUSP5 0.66 ATF4 SLC1A4 1.15 ATF4 

FLRT1 0.78 ATF4 TXNRD1 0.63 ATF4 IL23A 1.05 ATF4 

FIBIN 0.77 ATF4 GCLC 0.60 ATF4 CHAC1 0.99 ATF4 

TIPARP 0.73 AhR PPP1R15A 0.57 ATF4 FGF21 0.95 ATF4 

CYP1A2 0.69 AhR GCLM 0.57 Nrf2 HSPA5 0.94 ATF4 

ASB3 0.67 Nrf2 HSPA1B 0.56 Nrf2 NUPR1 0.94 ATF4 

PDE1A 0.66 ATF4 FBXO30 0.55 ATF4 GTPBP2 0.91 ATF4 

PBX1 0.64 Nrf2 GSTP1 0.53 Nrf2 PDIA4 0.87 Nrf2 

   PHGDH 0.46 Nrf2 FAM129A 0.87 ATF4 

   TMEFF2 0.46 ATF4 LONP1 0.80 ATF4 

   RUNX3 0.46 Nrf2 VNN3 0.78 ATF4 

      SESN2 0.75 ATF4 

      MTHFD2 0.73 ATF4 

      PYCR1 0.72 ATF4 

      BACH1 0.68 Nrf2 

Inhibited genes 

SLC1A7 -1.57 ATF4 TMEM189 -1.48 ATF4 COCH -1.25 Nrf2 

PSG5 -1.43 AhR NREP -0.99 ATF4 SNAI2 -1.20 ATF4 

PRKAR2B -1.23 Nrf2 KIFC1 -0.79 ATF4 INSIG1 -1.02 Nrf2 

SOAT2 -0.80 ATF4 DLX2 -0.78 Nrf2 AKR1B10 -0.96 Nrf2 

DAAM2 -0.78 Nrf2 BMF -0.73 ATF4 PMAIP1 -0.88 Nrf2 

WDR63 -0.70 AhR TGFB2 -0.72 ATF4 ANGPTL4 -0.87 ATF4 

FAM69A -0.68 Nrf2 DDC -0.71 Nrf2 SNRNP35 -0.77 ATF4 

CDH11 -0.67 Nrf2 GLI2 -0.71 ATF4 SERPINE1 -0.68 Nrf2 

LCN2 -0.66 ATF4 AURKB -0.69 ATF4 PRC1 -0.65 Nrf2 

PLA2G4A -0.66 Nrf2 NEDD9 -0.67 ATF4 LMCD1 -0.64 AhR 

CXCL5 -0.64 Nrf2 TFPI -0.65 ATF4 LBH -0.61 Nrf2 

WISP1 -0.62 ATF4 OSMR -0.59 Nrf2    
 

Activated or 
Inhibited genes 

AhR-Nrf2 Overlapping signature Nrf2-ATF4 Overlapping signature 

Genes AhR log2 (FC) averages Nrf2 log2 (FC) averages Genes Nrf2 log2 (FC) averages ATF4 Log2 FC average 

NQO1 0.7 0.83 ATF3 0.73 0.90 

DLGAP5 -0.64 -0.56 SLC7A11 0.70 0.69 

CFTR -0.69 -0.73 TRIB3 0.70 1.02 

RAB39B -0.92 -0.52 CABC1 0.56 2.90 

GSTA1 -1.43 -0.83 GDF15 0.48 0.80 

   CCL2 -0.61 -1.28 

   KCNT2 -0.9 0.76 

Activated or 
Inhibited genes 

AhR-ATF4 Overlapping signature AhR-Nrf2-ATF4 Overlapping signature 

Genes AhR log2 (FC) averages ATF4 log2 (FC) averages Genes AhR 
Log2 FC average 

Nrf2 
log2 (FC) averages 

ATF4 
log2 (FC) averages 

CYP1B1 3.56 -0.63 TPX2 -0.75 -0.8 -2.38 
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Figure 22. Venn diagram of the number of genes per pathway’s global signatures and names 
of genes of overlapping zones. 
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Figure 23. Network representation of AhR, Nrf2 and ATF4 pathway signatures and their 
overlapping zones. 
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5.3.2 Pathways’ Stratified Signatures in Liver 

 The Three Main Pathways’ Stratified Signatures in Liver 

Table 12 shows the stratified signatures in liver of each pathway in four columns 

(categories): each containing the genes’ names and their log2(FC) averages. Genes that appear 

in more than one column are highlighted in gray and empty lines were left in order to display 

those genes on the same line in all the categories where they appear. Genes of the first column, 

sorted by the decreasing absolute values of their log2(FC) averages, appear first, followed by 

genes appearing in more than one category but not the first column and then the rest of the 

genes sorted by the decreasing absolute values of their log2(FC) averages as well. 

 AhR Stratified Signatures 

Table 12 shows that CYP1A1 is clearly, by far the most activated gene in this pathway. 

Three other genes appear in the AhR signature in more than one column: CYP1A2 everywhere 

except ‘Rat liver in vitro’, TIPARP everywhere except ‘Rat liver in vivo’ and ABCC4 shows up 

in these two categories only. ‘Rat liver in vitro’ AhR signature is completed by five additional 

genes, ‘Rat liver in vivo’ by one more and ‘Human liver in vitro’ by three. 

 Nrf2 Stratified Signatures 

Nrf2 signatures are bigger: 22 genes in the all liver data signature, 28 for ‘Rat Liver in 

vitro’ and 15 for each of ‘Rat Liver in vivo’ and ‘Human Liver in vitro’. Around two third of 

those genes are “Activated genes” and the rest have negative log2(FC) averages. MAFF, 

SLC3A2, OSGIN2 are among the ‘Activated genes’ that appear in three out of the four 

categories we are studying. Other important genes show up i n two columns (HSPA1B, 

PPP1R15A, and GCLC) and some, in only one (SRXN1 in ‘Rat Liver in vitro’ and HMOX1 in 

‘Rat Liver in vivo’). The values of the ‘Rat liver in vivo’ are also higher than the ‘Rat liver in 

vitro’ and ‘Human liver in vitro’ categories. 
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Table 12. AhR, Nrf2 and ATF4 pathways’ signatures stratified in liver data and by all liver 
data sub-categories (‘Rat Liver in vitro’ data, ‘Rat Liver in vivo’ data and ‘Human Liver in 

vitro’ data). 

AhR signatures 

Activated genes 

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro 

Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages 

CYP1A1 4.55 CYP1A1 1.30 CYP1A1 6.86 CYP1A1 4.72 

CYP1A2 1.47   CYP1A2 1.71 CYP1A2 2.44 

TIPARP 0.64 TIPARP 0.40   TIPARP 1.21 

  ABCC4 0.25 ABCC4 0.97   

  IL1R1 0.24 HTATIP2 1.19 CYP1B1 3.49 

  TAF15 0.22   SLC20A1 0.78 

Inhibited genes 

  PRKAR2B -0.20   KCNT2 -0.60 

  ANXA1 -0.18     

  ANGPTL4 -0.17     

Nrf2 signatures 

Activated genes 

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro 

Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages 

MAFF 1.42 MAFF 0.67 MAFF 2.37   

FBXO30 0.92     FBXO30 0.35 

HSPA1B 0.82 HSPA1B 0.37   HSPA1B 0.63 

PPP1R15A 0.77   PPP1R15A 1.16   

GSTP1 0.67   GSTP1 1.24   

GCLC 0.66 GCLC 0.35     

PSAT1 0.64   PSAT1 1.54   

DUSP5 0.62 DUSP5 0.64     

SLC3A2 0.60   SLC3A2 1.09 SLC3A2 0.40 

OSGIN1 0.58   OSGIN1 0.91 OSGIN1 0.42 

SLC6A9 0.57   SLC6A9 1.06   

SLC20A1 0.52 SLC20A1 0.41     

ABCC3 0.52   ABCC3 1.00   

  YPEL5 0.47   YPEL5 0.37 

  CPT1A 0.38   CPT1A 0.36 

ASNS 0.75 SRXN1 0.66 HMOX1 2.03 ATF5 0.37 

PHGDH 0.55 PHLDA1 0.53 SLC7A11 1.74 AP5Z1 0.35 

PLA2G12A 0.50 TXNRD1 0.41 GDF15 1.30   

SLC7A1 0.48 ABCC2 0.39 BTG2 0.89   

  PIR 0.34     

  FLVCR2 0.33     

  GSR 0.33     

  GABARAPL1 0.33     

  AGPAT9 0.57     

  TBCEL 0.48     

  MMD 0.33     

Inhibited genes 

      MMD -0.4 

LCN2 -0.45   LCN2 -0.97   

  TGFB2 -0.34   TGFB2 -0.44 

MID1IP1 -0.48 TNFAIP2 -0.44 BMF -0.88 ALDH1A1 -0.61 
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IL33 -0.46 VASN -0.39 DHRS7 -0.69 DDC -0.42 

NREP -0.45 AURKB -0.38   DUT -0.35 

SERPINB9 -0.42 RAB32 -0.36   IFIT3 -0.33 

  CD36 -0.36   UGT1A6 -0.32 

  DCN -0.34     

  CTSC -0.34     

  LBH -0.32     

  CXCL3 -0.32     

ATF4 signatures 

Activated genes 

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro 

Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages Genes Log2 (FC) 
averages Genes Log2 (FC) 

averages 

TSLP 1.51     TSLP 1.51 

AKNA 1.30     AKNA 1.30 

HERPUD1 1.23 HERPUD1 1.28 HERPUD1 0.61 HERPUD1 2.39 

IL23A 1.05 IL23A 1.69   IL23A 1.86 

HSPA5 0.94     HSPA5 3.28 

GTPBP2 0.91 GTPBP2 1.12   GTPBP2 1.89 

PDIA4 0.87 PDIA4 0.92   PDIA4 2.18 

FAM129A 0.87     FAM129A 2.92 

PYCR1 0.72 PYCR1 0.91     

  CHAC1 1.40 CHAC1 0.50   

  KLF15 0.81 KLF15 0.43   

SLC1A4 1.15 TRIB3 1.12 HES1 0.57 FIBIN 2.72 

NUPR1 0.94 BCAT2 0.97 USP2 0.55 LCN2 1.91 

LONP1 0.80 ARHGEF2 0.93 ENC1 0.48 CTH 1.62 

VNN3 0.78 CASP4 0.84 TSC22D3 0.44 NFE2L1 1.2 

SESN2 0.75 KLF4 0.82 DDIT4 0.39   

BACH1 0.68 BET1 0.82 SLC38A2 0.38   

  WARS 0.80 IP6K2 0.62   

  PCK2 0.73     

  SLC25A33 0.71     

  SLC7A5 0.71     

  ACOT2 0.83     

  MANEA 0.75     

Inhibited genes 

PRC1 -0.65 PRC1 -0.61     

LMCD1 -0.64 LMCD1 -0.80   LMCD1 -1.73 

LBH -0.61     LBH -2.56 

SNAI2 -1.20 DPYSL2 -0.98 FOXA2 -0.61 FRMD6 -1.52 

AKR1B10 -0.96 DUSP6 -0.97 ABCG2 -0.49 SLC39A10 -1.35 

PMAIP1 -0.88 IFIT3 -0.72 NEDD9 -0.43 GPNMB -1.26 

SNRNP35 -0.77 EMILIN1 -0.69 TMEM159 -0.37 ANKRD1 -1.16 

SERPINE1 -0.68 FCER1G -0.65   PHLDA1 -1.16 

  SQRDL -0.61     

  IFI44 -0.61     
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 ATF4 Stratified Signatures 

ATF4 signatures size is similar to Nrf2’s signatures with a comparable proportion of 

activated genes: 23 genes in the all liver data signature, 28 for ‘Rat liver in vitro’ and 14 for 

each of ‘Rat liver in vivo’ and 19 for ‘Human liver in vitro’. HERPUD1 is an important gene in 

this pathway; it is part of the signature of every single category we are examining and exhibits 

values as high as 2.39 in ‘Human Liver in vitro’ (among the highest in ATF4 signatures). Other 

genes also are present in the majority of the categories: IL23A, GTPBP2, and PDIA4. It is 

noteworthy that the ATF4 signature of ‘Rat Liver in vivo’ results don’t have a lot in common 

with the other three categories and its log2(FC) averages are lower than the rest (the highest 

value is 0.61 for HERPUD1). 

 The Overlapping Zones Stratified Signatures 

Figure 24 shows that the AhR-ATF4 overlapping zone is the least populated (four genes 

maximum in all liver data, no genes for ‘Rat Liver in vivo’ and two genes in the two other 

categories). The number of genes in the AhR-Nrf2 overlapping signatures ranges from four to 

eight, with many typical key Nrf2 genes (NQO1, SRXN1, HMOX1, TXNRD1, and GCLM) 

appearing in more than one category. The Nrf2-ATF4 overlapping signatures contain six to 

eleven genes (DDIT3, ATF3, and CHAC1 are among the repetitive genes). Finally, TRIB3, 

FGF21, GDF15, SLC7A11, and TPX2 are in the signature of the zone mutual to all three 

pathways for at least two of the four categories studied. 
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Figure 24. Venn diagrams of the number of genes per pathway’s stratified signatures and 
names of genes of overlapping zones. Categories: (A) All liver data, (B) Rat Liver in vitro 
data, (C) Rat Liver in vivo data, (D) Human Liver in vitro data. *Refers to genes that were 
known to be part of the same overlapping zone according to Table S11 lists. White is the 
color of gene names that appear in an overlapping zone of only one of the four categories 
studied, and black is the color of gene names that appear in more than one category (two, 

three or four). 
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5.3.3 Human Liver Category: Pathway’s Signature-Based Prioritization of Chemicals 

Figure 25, Figure 26 and Figure 27 plot the 160 chemicals’ vector modules vs. the 

absolute value of cos (α), which represents the pathway activation scores of chemicals that 

activate each pathway both selectively and strongly. Chemicals are represented by a number 

that corresponds to their rank in the alphabetically ordered list. The blue dashed lines mark the 

vertical (𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) = 𝟏𝟏
√𝟑𝟑

) and horizontal (�𝑶𝑶𝑶𝑶������⃗ � = 𝟎𝟎.𝟓𝟓) limits we set. 

The number chemicals that are off these limits is 34 for AhR, one for Nrf2 and four for 

ATF4; these chemicals are in red and their names are listed in the legend on the right by the 

order of the decreased values of the product result 𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) × �𝑶𝑶𝑶𝑶������⃗ �. As we can see in these 

figures’ legends, ‘pathway specific activators’ show up first in the lists of AhR (Omeprazole) 

and ATF4 (Tunicamycin), but do not appear at all in the list of Nrf2 (Phorone). 

The annotation of chemicals for Figure 25, Figure 26 and Figure 27 is presented in 

Table S11 in ‘Supplementary Material 7.3’. 
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Figure 25. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶������⃗ � of the vector linking 
the origin O(0,0) to the chemical’s point in a 3D space) and specificity to the AhR pathway 
(X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶������⃗  and the AhR axis in a 

3D space). Chemicals are represented by their rank in the alphabetically ordered list. 
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Figure 26. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶������⃗ � of the vector linking 
the origin O(0,0) to the chemical’s point in a 3D space) and specificity to the Nrf2 pathway 
(X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶������⃗  and the Nrf2 axis in a 

3D space). Chemicals are represented by their rank in the alphabetically ordered list. The only 
chemical that is both strong (horizontal blue dashed line: �𝑶𝑶𝑶𝑶������⃗ � > 𝟎𝟎.𝟓𝟓 ) and Nrf2 specific 
(vertical blue dashed line: 𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶)  = 𝟏𝟏

√𝟑𝟑
 ) Sulindac, is in red and it is listed in the legend on 
the right.  
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Figure 27. Distribution of chemicals by potency (Y-axis: module �𝑶𝑶𝑶𝑶������⃗ � of the vector linking 
the origin O(0,0) to the chemical’s point in a 3D space) and specificity to the ATF4 pathway 
(X-axis: the absolute value of the |𝒄𝒄𝒄𝒄𝒄𝒄(𝜶𝜶)| of the angle between 𝑶𝑶𝑶𝑶������⃗  and the ATF4 axis in a 

3D space). Chemicals are represented by their rank in the alphabetically ordered list. 
Chemicals that are both strong (horizontal blue dashed line: �𝑶𝑶𝑶𝑶������⃗ � > 𝟎𝟎.𝟓𝟓 ) and ATF4 

specific (vertical blue dashed line: 𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶)  = 𝟏𝟏
√𝟑𝟑

 ) are in red and their names are listed in the 
legend on the right. 
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5.4 DISCUSSION 

Nrf2, ATF4 and AhR are important TFs in toxicological contexts and have well 

described downstream gene targets (Jennings et al., 2013). Each of these TF have distinct 

unrelated upstream activation points, unique gene targets, but also have direct (i.e., via multiple 

upstream promoter regions) and likely indirect overlaps on some specific gene targets. The AhR 

protein is a cytosolic protein receptor, where activation via chemical ligand binding causes 

nuclear translocation, DNA binding to it consensus sequence and RNA transcription. Several 

toxic compounds including dioxin-like compounds activate AhR. The TF Nrf2 is liberated from 

its cytosolic inhibitor Keap1, where the latter is sensitive to electrophiles and ROS. The TF 

ATF4 is activated via PERK, where PERK is activated when its inhibitor BiP, dissociates from 

PERK to bind unfolded proteins. All sorts of ER disturbances can cause an increase in unfolded 

proteins.  

Using multiple toxicogenomic databases, we investigated the most appropriate 

activators of these three pathways, where it is expected that the chemical does not directly 

activate the other two pathways. These compounds were, Benzo(a)pyrene and Omeprazole for 

AhR, KBrO3 and Phorone for Nrf2 and Tunicamycin for ATF4. All conditions up t o and 

including 24 hours were pooled to generate a list of genes allocated to the three pathways (Table 

11). This list confirmed the majority of a priori literature based information of ‘Activated 

genes’ (i.e., upregulated). Although some genes were now reallocated to different pathways. 

The overlap with ‘Inhibited genes’ (i.e., down regulated), was much poorer. This is too be 

expected as TF activated gene down regulation is much more complex and is often due to 

competition for auxiliary transcription facilitating proteins. Cytochrome P450 1A was the 

central element of the AhR pathway: CYP1A1 is the most prominent gene of this pathway, 

regardless of the experimental category, followed by CYP1A2. These findings are similar to 

previous investigations and have been implemented in a systems biology model (Hamon et al., 
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2014). For the Nrf2 pathway, the prototypical Nrf2 genes (HMOX1, SRXN1 and GCLM) appear 

in the Nrf2 signature of all datasets, but also in the AhR-Nrf2 overlapping signature for most 

liver categories. This may reflect the fact that several AhR agonists are themselves metabolized 

to reactive chemicals via AhR dependent CYP expression. For example Benzo(a)pyrene is a 

substrate of the CYP1 sub family of cytochrome P450 enzymes, and it promotes its own 

metabolism to reactive epoxide and quinone products (Gelboin, 1980). These metabolic 

products can lead to oxidative stress and to an activation of the Nrf2 pathway as part of a second 

line of responses (Burchiel and Luster, 2001). The only activated gene that appears in the ATF4 

signature of each of the three studied categories is HERPUD1. In most cases, HERPUD1 also 

had the highest log2(FC) averages. Overlapping zones show an interaction between AhR and 

Nrf2, between Nrf2 and ATF4, but a very limited or non-existent interaction between AhR and 

ATF4 pathways.  

We have used the exclusive pathway genes to create pathway CAC scores. The CAC 

reflects both specificity for the pathway (𝒄𝒄𝒄𝒄𝒄𝒄 (𝜶𝜶)) and the activation potency�𝑶𝑶𝑲𝑲������⃗ �. CAC 

scores were generated for 160 chemicals using the TG-GATEs liver data. For ATF4, 

Tunicamycin, Methylene dianiline, Diclofenac and Butylated hydroxyanisole were ranked 

highest, in that order. Tunicamycin was used as a s pecific ATF4 specific activator. Both 

Diclofenac and Butylated hydroxyanisole have previously been demonstrated to positive 

modulate the ATF4 pathway (Afonyushkin et al., 2010; Fredriksson et al., 2014). The 

molecular mechanism for Methylene dianiline has not been fully elucidated and this evidence 

would suggest an ER disturbance and/or proteotoxic mechanism. For AhR, 34 chemicals were 

considered positive by CAC scores. Omeprazole was ranked highest, followed by 

Acetamidofluorene, 2-Nitrofluorene, Mexiletine, Flutamide, Isoniazid and 

Hexachlorobenzene. Many of the 34 chemicals have not been previously linked with AhR, but 

several are. These include, Hexachlorobenzene (de Tomaso Portaz et al., 2015; Randi et al., 
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2008), Ketoconazole (Novotna et al., 2014), Clozapine (Donohoe et al., 2008), and 

Doxorubicin (Volkova et al., 2011). Fluphenazine has not been established as a ligand for the 

AhR, its structure – a halogenated aromatic ring system – closely matches the motif involved 

in binding to this receptor (Donohoe et al., 2008). In a recent study we have demonstrated that 

Isoniazid induced CYP1A1 in HepaRG cells, which is a potential indicator of AhR activation 

(Limonciel et al., 2018). Only Sulindac from the 160 w as ranked as active using the CAC 

selection criteria, which may seem surprising given the frequency of oxidative injury in liver 

toxicities. Although Butylated hydroxyanisole was marginal. The reason for a lack of Nrf2 

activation prediction might be simply due to the fact that none of the 160 compounds, including 

the positive compound Phorone cause an Nrf2 response in the liver within the first 24 hours. 

Another possibility is that removing the overlapping genes has weakened the ability to pick up 

this pathway. Indeed, this is a weakness in the overall strategy as it is difficult to determine in 

such data sets if the pathways themselves are co-regulated since there are several gene overlaps 

amongst the pathways. 
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5.1 CONCLUSION 

The size of the data set, its multiple sources, abundancy of compounds, concentrations 

and time of exposures, in vitro and in vivo, different organs are both a blessing and a curse. On 

the one hand, it is generally an advantage to have as broad as data set as possible, but the 

different sizes and focuses of the individual data sets/studies meant we needed to reduce the 

data to the lowest denomination.  Another major issue was the low abundance of well described 

pathway activators. Despite these issues we have made some interesting observations and have 

developed a method to quantify a chemical’s capacity to activate one three pathways. 

We uncovered variations in AhR, ATF4 and Nrf2 signatures across tissues, compounds, 

species and in vivo vs in vitro. Some of these alterations are likely to be linked to 

pharmacokinetics, including distribution and metabolism, others may be linked to tissue 

specific regulation of these pathways.  W hile some genes were very variable across 

experimental conditions, some were extremely robust, for example CYP1A1 in the AhR 

pathway and HERPUD1 in the ATF4 pathway. Some genes swing between a pathway’s specific 

signature and overlapping zones for example GCLC between Nrf2 and AhR-Nrf2. Others are 

regularly on overlapping signatures for example TPX2 and TRIB3. However, it is not possible 

with this type of analysis to delineate whether these overlaps are solely on a gene level or also 

on the pathway level. 

The CAC score system developed, based on 𝐜𝐜𝐜𝐜𝐜𝐜 (𝛂𝛂) × �𝑶𝑶𝑶𝑶������⃗ �, can be used to quantify a 

chemical’s specificity and potency to selectively activate one of these pathways. However, 

future work will be required to validate and optimize the gene signatures utilized.  
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6 THESIS SUMMARY AND CONCLUSION 

Either among industries or research institutions, the reductionist approach to toxicology 

research and risk assessment remains predominant nowadays. While this approach has 

undeniably contributed to the progress of science for decades, it is progressively showing its 

weaknesses when it comes to studying multifactorial situations. With the development of 

modern experimental techniques, of bioinformatics tools and of omics, applying holistic 

system-level approaches (i.e., SB, AOP, DBN etc.) to toxicology is becoming manageable, 

possible and even necessary. 

More and more we discover that the mechanisms that underlie toxicity are complex and 

involve multiple biological processes and pathways. The key for a more general view of toxicity 

schemes is in understanding the different networks and pathways involved, their respective 

contribution to random outcomes as well as their potential interactions and cross-talks. 

In toxicology, as in other fields, mathematical models are useful to gain insights into the 

governing principles of experimental observations, as well as to predict the behavior of a system 

in various situations. The challenge is to conceive tools and models able to reflect the 

complexity of interconnecting networks and pathways constituting a biological system.  

In the introduction of this thesis (chapter 1), I described how the toxicology approach to 

date was leaving important questions surrounding the Nrf2 control oxidative stress unanswered. 

In addition, the question of a potential predictive and mechanistic vocation of toxicology was 

considered. In line with this reflection and expectation, a combination of SB and AOPs tools 

was suggested. In ‘chapter 2’ (Bibliography) the available published information covering the 

three facets of this subject (i.e., toxicology, biological context and mathematical tools) was 

gathered and presented. 

In order to uncover the mechanisms at play, we have elaborated in the ‘chapter 3’ a SB 

model of the role of the Nrf2 toxicity pathway in the control of oxidative stress. Our model of 
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the Nrf2 signaling pathway is a fusion of two complementary models: the first describes the 

synthesis, the metabolism and the transport of GSH under oxidative stress, and the second 

highlights the contribution of Nrf2 to the GSH response to oxidative stress. The latter was 

improved by remodeling the transcription/translation process of its genes using the Hill’s model 

equation. 

In ‘chapter 4’, using appropriate experimental data (i.e., GSH, DCF and lactate levels 

following the exposure of RPTEC/TERT1 cells to of KBrO3 for different doses and time-

points) and statistical procedures (i.e., MCMC simulations in a Bayesian framework), our SB 

model was calibrated, evaluated and compared to two other computational models (i.e., an 

empirical dose-response statistical model and a DBN model). These three methods were 

explored as options for quantifying an AOP and deriving chemical independent KERs with 

rigorous statistical treatment of the data and parametric inference. While the “easy-to-develop” 

dose-response based qAOPs have a very limited extrapolation and explanation power and do 

not offer mechanistic insight, DBNs are in fact easier to develop, once the technology is 

mastered, but they either impose strong constraints on experimental design or require complex 

statistical treatment. Developing SB models is more complex, but they offer insight in the data 

collection and biology that the other approaches cannot afford. 

Finally, in ‘chapter 5’ we studied the potential interactions of the Nrf2 pathway with 

two other signaling pathways (i.e., AhR and ATF4) using multiple databases. This analysis 

pointed out the important codependences between the three pathways. Concerning the 

interactions with the AhR pathway, the results confirm the adequacy of inclusion of nucX-AhR 

as a co-TF for some genes in the Nrf2 SB model and encourage us to consider a hypothetical 

nucX-AhR activation of other prototypical Nrf2 genes of our model (e.g., HMOX1, SRXN1 and 

GCLM). In addition, these results open the door for testing a possible association of the ATF4 

pathway (partially at least) to our SB model in the future. Moreover, uncovering variations of 
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the pathways signatures across different testing conditions (i.e., tissues, compounds, species 

and in vivo versus in vitro), this analysis improves the adaptability of our Nrf2 SB model and 

prepares it for a quantitative in vitro in vivo extrapolation and integration in a larger network 

setting. 

One remarkable strength of the SB model is that it forces us to think mechanistically 

about new hypotheses and check whether they are compatible with the data. Emergent 

properties are actually the product of the integrating of these computational models with 

experiments in a spiral of iterative cycles of validation/falsification, simulation and theory. In 

our work for example, prediction and emergent properties could be confirmed, if some of the 

findings (i.e., that a reasonable fit could be obtained if KBrO3 acts directly on DCF, and that 

DCF bleaches significantly with time etc.) are validated in future experiments. Another 

importance of the SB approach is that it can fully propagate correct quantification of uncertainty 

associated with predictions, which is essential for proper risk assessment. Finally, SB models 

can naturally integrate pharmacokinetic models, since they are built from the same principles 

and same mathematical objects. 

However, the work presented in this thesis shows that the use of SB is not easy and 

needs to mature. SB models, even though they provide a quite complete outlook of the 

biological systems and their components, they remain data-hungry and their development and 

calibration are time-consuming. Therefore, such complicated SB models could be seen as 

investment for the future rather than a quick answer to urgent questions. For an optimized 

calibration, it is very important that the generation of needed data be the fruit of experimental 

protocols that were elaborated by collective efforts including contributions of different research 

units participating to the conception and validation of the model. The problem is that, often, 

omics data produced are not specifically intended for SB model calibration and do not converge 

with the needs and expectations of the researchers working on the SB model development and 
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validation. Another limitation of this thesis is that at present the model quality is insufficient to 

claim that the precise calculations described here lead to reliable results. It was not possible to 

validate the whole model as we were unable to measure all the metabolites in the pathway. 

Also, the model does not always predict the experimental data, which suggests that there are 

additional reactions or regulations that need to be included in the model. 

In addition to the aforementioned suggested improvements of our SB model, this work 

points to several directions for future research. After merging with adequate pharmacokinetic 

models for quantitative in vitro in vivo extrapolation, the application of SB tools developed here 

to toxicology has the unique opportunity to provide network insights into underlying 

mechanisms and basis of susceptibility to xenobiotics. First, using this SB model to evaluate 

exposures to mixtures of chemicals is a supplementary step towards a better modelling of 

biological and environmental realities. Second, by integrating individual-specific data to the 

model, it may be possible to better understand inter-individual differences in susceptibility to 

adverse effect of xenobiotics. Finally, on the longer-term, SB models and AOPs can be part of 

‘integrated approaches to testing and assessment’ or ‘integrated testing strategies’ for regulatory 

decision making. 
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7 APPENDIX – SUPPLEMENTARY MATERIAL  

7.1 SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

 

Figure S1. Schematic representation of the SB model of the Nrf2 signaling pathway by 
Hamon et al. (2014). 
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Figure S2. Schematic representation of the SB model of the GSH metabolism pathway by 
Reed et al. (2008). 
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Figure S3. Schematic representation of the SB model of the GSH metabolism pathway by 
Geenen et al. (2012). 
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Figure S4. MCMC curve fitting of CYP mRNA (example of gene activated by one single 
activator) rate equivalency by time according to virtual exposure scheme presented in Table 3 

applied on both Hamon's (red dots) and Hill-based (black curve) SB models. 

 

  



166 
 

 

Figure S5. MCMC curve fitting of GCLM mRNA (example of gene activated by one single 
activator) rate equivalency by time according to virtual exposure scheme presented in Table 3 

applied on both Hamon's (red dots) and Hill-based (black curve) SB models. 
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Figure S6. MCMC curve fitting of GS mRNA (example of gene activated by one single 
activator) rate equivalency by time according to virtual exposure scheme presented in Table 3 

applied on both Hamon's (red dots) and Hill-based (black curve) SB models. 
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Ta  

Figure S7. MCMC curve fitting of GST and GPX mRNA (example of gene activated by two 
activators) rate equivalency by time according to virtual exposure scheme presented in Table 

3 applied on both Hamon's (coloured dots) and Hill-based (coloured curves) SB models. 
nucNrf2 dose increase is operated over time (every 400,000 seconds) and nucX-AhR dose is 
displayed on different curves (0 (red),  0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) 

zeptomols of nucX-AhR). 
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Figure S8. MCMC curve fitting of Nrf2 mRNA (example of gene activated by two activators) 
rate equivalency by time according to virtual exposure scheme presented in Table 3 applied 
on both Hamon's (coloured dots) and Hill-based (coloured curves) SB models. nucNrf2 dose 
increase is operated over time (every 400,000 seconds) and nucX-AhR dose is displayed on 
different curves (0 (red),  0.5 (orange), 1 (green), 10 (blue) and 100 (magenta) zeptomols of 

nucX-AhR). 
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7.2 SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

The latest version of the article summarizing the study described in chapter 4, as well as 

the computational code of the constructed SB model and its corresponding input file, are 

submitted in three attached files under the names of ‘Tools_qAOP_dev_Zgheib_etal.pdf’, 

‘v7.11_Nrf2_GSH_KBrO3.model’ and ‘v7.11_Nrf2_GSH_KBrO3.in’ respectively. 

7.2.1 Experimental Data 

Table S1. In vitro GSH depletion data used for the qAOP calibration. 

KBrO3 
concentration (mM) 

Experiment  GSH (percent 
of control) 

0 1  91.52 

0.375 1  63.59 

0.75 1  50.50 

1.5 1  14.28 

3 1  2.477 

6 1  0.377 

0 2  115.8 

0.375 2  66.65 

0.75 2  37.05 

1.5 2  13.73 

3 2  2.355 

6 2  0.841 

0 3  92.62 

0.375 3  60.75 

0.75 3  31.21 

1.5 3  14.00 

3 3  3.115 

6 3  0.598 

 
 



Table S2. In vitro DCF fluorescence data used for the qAOP calibration. Time is in hours, DCF fluorescence is in arbitrary relative fluorescence 
units (RFU). Eight experiments were performed at each KBrO3 dose level. 

 
Time Control  (KBrO3  = 0) 0.75 mM KBrO3   1.5 mM KBrO3   3 mM KBrO3   6 mM KBrO3   

  1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

0.000 2121 2441 2042 1978 2189 1826 1952 1897 2195 2144 1868 1808 1768 1734 1470 1643 2298 2223 2078 1843 1881 1629 1524 1696 2876 3041 2120 1880 1791 1723 1716 1606 8877 3631 2404 2220 1936 1733 1716 1522 

0.267 2336 2570 2125 2092 2371 1962 2076 1988 2534 2488 2160 2075 2042 2002 1740 1887 2758 2668 2503 2223 2320 1991 1808 2018 3461 3644 2654 2364 2341 2209 2257 2028 9446 4261 2945 2813 2571 2255 2205 2014 

0.517 2439 2689 2274 2244 2521 2063 2167 2070 2842 2897 2526 2406 2305 2306 1922 2168 3157 3094 2911 2619 2755 2310 2156 2426 4002 4178 3167 2815 2762 2654 2733 2431 9984 4956 3489 3474 3102 2772 2739 2502 

0.767 2604 2809 2361 2348 2634 2118 2273 2123 3176 3235 2801 2698 2613 2612 2171 2433 3609 3527 3307 3013 3114 2650 2501 2740 4529 4767 3626 3324 3266 3146 3135 2795 10510 5720 3996 4091 3685 3225 3234 2909 

1.000 2707 2982 2456 2472 2779 2183 2401 2212 3520 3576 3106 2898 2871 2842 2346 2667 3961 3964 3755 3367 3482 2945 2764 3078 5004 5309 4142 3763 3642 3478 3576 3234 11020 6333 4624 4672 4204 3762 3655 3308 

1.267 2751 3128 2559 2511 2770 2213 2442 2286 3840 3945 3393 3177 3095 3059 2581 2898 4352 4456 4076 3703 3805 3290 3038 3423 5477 5795 4599 4230 4079 3894 3983 3557 11470 7059 5107 5226 4712 4160 4149 3656 

1.517 2940 3205 2569 2655 2903 2350 2495 2364 3912 4193 3650 3405 3390 3296 2819 3126 4668 4856 4361 4054 4239 3551 3276 3739 5941 6392 4964 4508 4543 4226 4339 3913 11911 7614 5514 5709 5192 4661 4475 4102 

1.70 2986 3386 2670 2689 3018 2352 2612 2447 4256 4442 3862 3588 3582 3506 2984 3258 4994 5166 4751 4225 4453 3835 3517 3780 6302 6700 5260 4836 4759 4562 4644 4128 12510 8062 5931 6229 5553 5031 4870 4383 

1.95 3071 3402 2766 2851 3087 2415 2666 2498 4599 4684 4071 3818 3793 3736 3125 3388 5310 5483 5074 4524 4718 4032 3748 4092 6747 7127 5806 5120 5244 4769 5003 4425 12743 8744 6314 6581 6067 5338 5168 4696 

2.20 3089 3464 2834 2852 3195 2451 2783 2544 4794 5084 4368 4043 3879 3914 3315 3618 5644 5726 5165 4794 4948 4265 3972 4362 7236 7621 6173 5506 5577 5117 5344 4741 13303 9318 6861 7216 6371 5684 5528 5011 

2.45 3165 3603 2860 2968 3317 2531 2851 2648 5098 5296 4603 4293 4164 4104 3436 3797 5986 6070 5700 5112 5292 4462 4096 4602 7579 7980 6512 5910 5977 5498 5714 4922 13991 9973 7221 7697 6873 6064 5825 5220 

2.70 3220 3650 2892 3033 3296 2567 2908 2708 5295 5520 4853 4322 4256 4140 3587 3936 6178 6433 5871 5386 5555 4673 4421 4830 7958 8451 6916 6159 6155 5759 5971 5195 14257 10483 7534 8047 7233 6382 6288 5589 

2.95 3296 3728 2988 3070 3484 2614 2930 2672 5407 5797 4963 4658 4558 4364 3794 4056 6529 6607 6115 5614 5699 4926 4623 5023 8315 8726 7202 6478 6605 5929 6252 5396 14797 10911 7986 8452 7655 6652 6490 5734 

3.20 3357 3905 2997 3132 3493 2667 3001 2783 5730 6021 5165 4797 4701 4539 3831 4149 6751 6951 6404 5848 5977 5010 4750 5249 8603 9060 7492 6779 6715 6055 6491 5641 14889 11393 8241 8799 7864 6969 6803 6120 

3.45 3289 3821 3099 3195 3583 2749 3014 2795 5795 6334 5351 4901 4886 4712 4036 4269 7013 7245 6561 5923 6246 5271 4992 5337 8825 9570 7812 6974 6883 6515 6646 5879 15493 11723 8635 9157 8143 7219 7078 6204 

3.70 3430 3978 3146 3221 3670 2775 3142 2855 6124 6459 5508 5144 5012 4846 4123 4474 7340 7577 6798 6224 6425 5382 5072 5572 9294 9786 8020 7281 7395 6765 7008 6068 15886 12175 8838 9305 8511 7488 7211 6534 

3.95 3452 4017 3156 3259 3581 2801 3086 2831 6246 6661 5748 5246 5128 5010 4176 4579 7495 7686 6975 6353 6525 5597 5274 5673 9467 10072 8219 7466 7495 7028 7136 6268 15989 12569 9281 9772 8816 7725 7575 6722 

4.20 3508 4041 3257 3375 3684 2813 3207 2874 6373 6609 5782 5367 5315 5190 4246 4726 7629 7911 7269 6528 6698 5758 5440 5936 9721 10287 8607 7584 7756 7154 7264 6406 16313 12958 9555 10010 9025 7916 7899 6828 

4.45 3601 4121 3264 3387 3796 2837 3210 2864 6577 7051 6038 5592 5376 5248 4493 4840 7903 8147 7477 6648 6947 5835 5519 6114 10059 10529 8695 7962 8018 7359 7590 6519 16528 13211 9731 10408 9243 8087 7988 7084 

4.70 3673 4214 3266 3445 3827 2920 3233 2926 6813 7128 6186 5662 5568 5404 4567 5037 7945 8278 7657 6899 7122 6048 5728 6277 10170 10914 9040 8066 8051 7403 7802 6711 16738 13475 9950 10531 9502 8437 8220 7232 

4.95 3722 4123 3325 3394 3844 2946 3287 2973 6978 7237 6269 5777 5645 5494 4607 5036 8263 8531 7810 7018 7291 6222 5853 6304 10346 11162 9139 8329 8335 7540 7981 6945 17063 13793 10155 10910 9713 8571 8417 7498 

5.20 3718 4263 3379 3471 3902 3003 3299 3028 7115 7444 6383 5938 5799 5573 4838 5170 8366 8710 7862 7164 7479 6340 5824 6518 10632 11421 9327 8413 8561 7908 8073 7074 17407 13945 10310 11141 10036 8738 8588 7573 

5.45 3715 4286 3403 3551 3916 2939 3321 3060 7202 7592 6477 5991 5946 5614 4879 5220 8656 8883 8191 7273 7601 6409 5940 6604 10935 11545 9572 8555 8665 8032 8279 7147 17618 14379 10626 11197 10296 8934 8833 7700 

5.70 3702 4225 3345 3596 3953 2967 3405 3055 7380 7771 6618 6159 5960 5884 4906 5359 8795 9044 8334 7490 7701 6554 6136 6718 11034 11758 9743 8839 8904 8060 8411 7291 17656 14444 10933 11387 10407 9142 8929 7948 

5.95 3805 4339 3475 3637 4028 3045 3411 3052 7460 7645 6763 6252 6168 5961 5074 5455 8910 9281 8469 7627 7843 6673 6342 6883 11328 11881 9945 8906 8841 8330 8579 7440 17763 14811 11016 11670 10627 9243 9182 8028 

6.20 3805 4474 3411 3602 4054 3040 3431 3147 7629 8055 6909 6308 6185 6033 5030 5558 8967 9367 8482 7764 7938 6748 6359 6969 11458 12166 10142 9050 9226 8454 8745 7601 18203 14980 11151 11927 10730 9475 9185 8078 

6.45 3932 4456 3470 3641 4087 3045 3448 3125 7678 8217 7093 6548 6289 6135 5244 5618 9317 9630 8759 7920 8056 6898 6404 6934 11691 12264 10380 9199 9295 8538 8944 7659 18196 15099 11284 12149 10790 9505 9491 8245 

6.70 3944 4435 3554 3633 4082 3090 3459 3175 7938 8375 7234 6605 6363 6373 5330 5704 9291 9472 8949 8043 8238 6958 6572 7169 11751 12434 10500 9332 9398 8655 8999 7875 18527 15288 11404 12255 11034 9873 9545 8350 
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6.95 4024 4461 3505 3746 4123 3076 3490 3191 8016 8464 7214 6620 6496 6308 5295 5743 9426 9660 9024 8111 8348 7111 6722 7298 11777 12631 10492 9498 9475 8785 9156 7845 18360 15501 11616 12405 11293 9810 9558 8511 

7.20 4002 4562 3516 3733 4229 3122 3523 3161 7999 8609 7345 6765 6599 6310 5390 5875 9612 9963 9157 8279 8444 7099 6763 7364 12109 12796 10467 9614 9715 8921 9245 8076 18769 15739 11812 12684 11465 10004 9814 8692 

7.45 4013 4648 3601 3745 4263 3158 3516 3185 8180 8688 7413 6853 6649 6467 5467 5781 9711 10076 9304 8413 8649 7376 6839 7477 12229 13022 10885 9768 9808 8997 9371 8087 18887 16139 12125 12975 11524 10088 10082 8697 

7.70 4130 4593 3574 3837 4202 3181 3598 3251 8275 8787 7553 6919 6750 6503 5544 5942 9941 10240 9341 8464 8629 7383 6902 7609 12514 13235 11009 9792 9934 9255 9469 8224 19048 16071 12127 12979 11712 10259 10086 8812 

7.95 4129 4576 3616 3844 4251 3171 3644 3236 8433 8842 7694 6935 6883 6661 5642 6050 10062 10366 9653 8594 8825 7513 7040 7671 12634 13360 11298 9980 10015 9312 9719 8371 19217 16462 12119 13044 11958 10454 10208 8984 

8.20 4099 4642 3619 3798 4256 3219 3642 3255 8346 8842 7820 7266 6943 6773 5732 6173 10070 10584 9637 8651 8856 7648 7128 7833 12769 13524 11339 10076 10249 9493 9701 8252 19345 16446 12393 13143 12005 10487 10400 9036 

8.45 4175 4672 3685 3856 4321 3268 3669 3341 8639 9174 7854 7275 6925 6940 5794 6093 10033 10597 9650 8784 9067 7642 7170 7853 12664 13750 11242 10287 10314 9415 9943 8443 19505 16690 12267 13385 12132 10463 10475 9161 

8.70 4214 4701 3712 3914 4330 3279 3665 3339 8758 9165 7928 7184 7074 6839 5753 6290 10334 10882 9805 8942 9193 7838 7312 7927 12793 13739 11632 10521 10478 9675 10040 8546 19662 16960 12659 13470 12217 10567 10551 8965 

8.95 4207 4711 3699 3894 4364 3276 3596 3381 8827 9398 7990 7380 7049 6962 5800 6349 10348 10847 9843 8949 9178 7785 7187 8071 13173 13900 11540 10481 10465 9700 10149 8743 19750 17013 12731 13754 12323 10746 10727 9329 

9.20 4218 4774 3692 3964 4376 3298 3671 3317 8829 9203 8099 7326 7167 6934 5872 6488 10668 10895 10111 9008 9317 7906 7362 8027 12923 13990 11741 10637 10661 9826 10153 8728 19843 17091 12856 13767 12386 10956 10727 9349 

9.45 4246 4776 3724 3926 4453 3307 3676 3344 8937 9528 8049 7466 7263 7097 5923 6452 10435 11060 9960 9206 9455 7871 7461 8145 13196 14048 11845 10755 10522 10053 10284 8810 19836 17485 12976 13811 12505 10990 10739 9366 

9.70 4175 4824 3724 3982 4445 3315 3785 3380 9043 9557 8252 7590 7413 7191 6063 6425 10638 11058 9959 9224 9414 7975 7529 8221 13450 14388 12004 10811 10869 10096 10248 8785 19911 17475 13158 13992 12677 11098 11136 9456 

9.95 4210 4962 3760 4022 4416 3331 3789 3443 9107 9733 8334 7694 7464 7193 6118 6658 10814 11218 10299 9365 9505 8036 7550 8381 13328 14466 11880 10767 10955 10129 10441 8986 20065 17701 12938 14016 12793 11145 11076 9583 

10.20 4242 4919 3786 4030 4545 3313 3797 3423 9328 9854 8454 7586 7463 7400 6136 6602 10752 11403 10198 9364 9599 8207 7615 8267 13653 14563 12075 10822 11051 10123 10507 9011 20293 17549 13219 14175 13050 11172 11139 9401 

10.45 4286 4845 3754 4042 4519 3371 3782 3442 9312 9838 8462 7684 7502 7394 5976 6673 10915 11239 10298 9497 9714 8089 7696 8409 13590 14638 12077 10991 11158 10223 10588 8984 19984 17749 13395 14288 13020 11221 11193 9599 

10.70 4308 4879 3899 4064 4584 3397 3801 3513 9291 9848 8591 7693 7617 7241 6262 6739 11074 11560 10475 9598 9807 8277 7875 8443 13893 14837 12341 11068 11047 10236 10701 9211 20252 18076 13499 14346 13103 11397 11284 9813 

10.95 4333 4919 3904 4127 4608 3406 3843 3453 9273 10089 8650 7669 7621 7470 6325 6773 11143 11572 10525 9681 9883 8395 7821 8505 13970 14716 12388 11105 11243 10318 10824 9109 20302 17938 13602 14557 13277 11418 11474 9840 

11.20 4312 4958 3780 4136 4687 3401 3883 3462 9493 10041 8760 7923 7718 7622 6348 6719 11281 11718 10539 9654 9809 8294 7927 8662 13843 14915 12511 11110 11335 10478 10788 9435 20660 18150 13677 14633 13514 11568 11475 9916 

11.45 4389 5041 3930 4119 4602 3419 3844 3466 9586 10202 8744 8031 7722 7553 6374 6784 11346 11742 10671 9709 10090 8351 7928 8882 14086 15116 12339 11043 11466 10526 10750 9339 20414 18283 13656 14685 13371 11534 11462 9856 

11.70 4354 4950 3856 4172 4647 3501 3853 3571 9637 10240 8851 8012 7861 7687 6353 7009 11335 11747 10645 9907 10091 8610 8017 8820 14034 15030 12530 11480 11474 10711 11000 9474 20503 18256 13804 14813 13710 11742 11593 10048 

11.95 4347 5101 3981 4201 4616 3482 3875 3546 9569 10320 8839 8026 7818 7635 6545 7033 11488 11934 10869 9817 10341 8691 7974 8835 14097 15171 12766 11617 11589 10699 11076 9543 20935 18502 13878 14857 13593 11719 11636 10073 

12.20 4405 4972 3921 4067 4686 3444 3843 3531 9717 10353 8917 8110 7905 7750 6458 7179 11397 11862 10900 9948 10283 8591 8066 8893 14159 15296 12795 11533 11628 10678 11188 9634 20660 18586 13912 15102 13791 11865 11636 10158 

12.45 4412 5084 3932 4145 4712 3472 3884 3535 9833 10487 9068 8209 8080 7813 6522 7148 11725 12144 10943 10117 10173 8720 8162 8974 14022 15539 12717 11509 11655 10897 11238 9546 20840 18625 14067 15043 13701 11796 11682 10179 

12.70 4441 5146 3946 4168 4674 3412 3896 3472 9569 10214 8954 8293 8049 7854 6598 7103 11680 12124 11136 9912 10410 8754 8161 8955 14393 15342 12724 11679 11725 10885 11255 9761 20852 19062 14156 15122 13790 12006 11798 10251 

12.95 4501 5086 4015 4299 4725 3497 3941 3559 9735 10625 9155 8440 8071 7985 6768 7121 11988 12227 11402 10240 10433 8941 8396 9127 14485 15430 13034 11783 11771 11196 11391 9792 21075 19173 14331 15282 13976 12184 12093 10383 

13.20 4368 5182 3973 4294 4759 3484 3943 3521 9991 10661 9126 8254 8206 8050 6741 7248 11849 12283 11081 10134 10527 8899 8305 9078 14266 15601 13031 11882 11873 11016 11406 9780 20893 19181 14402 15460 14038 11980 12028 10077 

13.45 4547 5239 4043 4204 4729 3579 3988 3634 10117 10924 9305 8525 8333 8158 6653 7362 12252 12557 11314 10321 10744 9096 8315 9290 14608 15969 13053 12074 12123 11215 11391 10017 21163 19375 14373 15669 14088 12269 12265 10470 

13.70 4551 5200 4020 4237 4767 3624 4033 3628 10056 10679 9228 8461 8244 8160 6822 7334 11953 12463 11449 10140 10506 9109 8500 9330 14709 15845 13116 12043 12013 11070 11488 9943 21116 19204 14409 15663 14170 12187 12203 10492 

13.95 4560 5208 3984 4274 4845 3529 4024 3641 10211 10869 9479 8595 8423 8279 6859 7370 12219 12602 11449 10295 10691 9143 8273 9175 14461 15854 13109 12039 12174 11313 11685 10050 21217 19714 14394 15696 14299 12347 12261 10558 

14.20 4452 5210 4103 4241 4884 3569 4002 3659 10332 10931 9268 8564 8328 8218 6843 7480 12518 12673 11585 10393 10745 9088 8504 9327 14755 15882 13218 12120 12134 11265 11715 9990 21339 19490 14728 15827 14494 12509 12258 10471 

14.45 4509 5299 4010 4259 4771 3639 4003 3661 10344 11082 9581 8576 8486 8280 6871 7593 12420 12626 11593 10518 10773 9072 8494 9351 14409 15959 13375 12025 12355 11277 11765 10114 21348 19722 14709 15765 14411 12647 12498 10665 

14.70 4570 5363 4120 4234 4873 3572 4047 3661 10270 10956 9516 8620 8444 8280 6866 7390 12340 12713 11540 10605 10909 9124 8699 9555 14911 16090 13579 12138 12382 11332 11901 10145 21302 19919 14927 15849 14551 12682 12500 10655 

14.95 4588 5325 4102 4426 4944 3621 4034 3651 10233 11100 9599 8780 8482 8344 6948 7607 12321 12653 11781 10555 11015 9370 8642 9481 14879 16096 13619 12375 12449 11573 11886 10262 21170 19790 14839 16172 14540 12634 12515 10751 

15.20 4643 5284 4103 4253 4947 3665 4095 3703 10405 10989 9664 8698 8521 8336 7015 7638 12470 12899 11608 10668 11014 9319 8755 9721 14902 16342 13474 12295 12461 11514 11860 10175 21115 19860 15118 16106 14625 12858 12699 10858 

15.45 4621 5387 4022 4268 4904 3639 4124 3700 10549 11193 9750 8826 8357 8504 6977 7763 12407 13057 11583 10597 10997 9356 8725 9624 14996 15999 13611 12445 12641 11555 11925 10334 21444 19920 15156 16299 14777 13052 12695 10732 
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15.70 4602 5415 4126 4341 4959 3640 4133 3756 10611 11268 9783 8880 8625 8552 7087 7750 12771 13068 11792 10786 11169 9369 8857 9789 15072 16440 13809 12573 12657 11602 12149 10289 21519 20380 15199 16539 14904 13065 12842 10881 

15.95 4626 5401 4128 4417 4950 3741 4141 3714 10555 11417 9824 8951 8596 8565 7065 7772 12696 13023 11982 10732 11323 9533 8874 9642 15028 16469 13734 12471 12577 11701 12136 10274 21492 20336 15172 16426 14865 13070 12825 10916 

16.20 4679 5459 4163 4455 4993 3728 4115 3745 10520 11527 9725 8931 8748 8655 7216 7811 12926 13013 11890 10821 11253 9541 8973 9921 15123 16541 13838 12538 12740 11765 12153 10411 21549 20574 15357 16620 15105 13238 13014 10977 

16.45 4679 5428 4196 4477 4971 3707 4111 3731 10610 11377 10038 9035 8836 8625 7197 7984 12931 13344 12136 10900 11152 9534 8960 9917 15018 16941 14062 12665 12791 11651 12269 10500 21388 20315 15517 16714 15127 13250 13144 11017 

16.70 4697 5392 4224 4448 5031 3622 4212 3828 10657 11663 9995 9072 8808 8660 7206 7863 12828 13206 12064 10902 11430 9685 8977 9937 15133 16767 13859 12716 12752 11782 12315 10544 21640 20597 15462 16513 15111 13191 13234 11011 

16.95 4807 5378 4162 4470 4985 3756 4216 3834 10803 11404 10100 9084 8793 8718 7226 7967 13132 13519 12226 11087 11395 9707 9029 9958 15321 16666 13974 12585 12793 11850 12355 10659 21461 20679 15645 16906 15350 13315 13366 11177 

17.20 4828 5449 4168 4474 5119 3748 4217 3807 10805 11663 10039 9132 8975 8803 7274 7993 13141 13478 12112 11131 11390 9563 9075 9858 15460 16522 14057 12824 12872 11994 12316 10586 21713 20844 15669 16953 15272 13285 13319 11023 

17.45 4688 5419 4265 4477 4985 3751 4228 3920 10856 11656 10190 9254 8816 8877 7404 8027 12795 13523 12166 11205 11548 9726 8954 10105 15319 16918 14260 13007 12991 12052 12453 10608 21763 20734 15745 16691 15512 13475 13385 11188 

17.70 4800 5517 4246 4453 5115 3767 4288 3829 11010 11676 10054 9225 9072 8775 7392 8016 12909 13471 12172 11129 11566 9800 9209 10044 15328 16955 14276 12869 12929 12008 12495 10709 21652 20670 15723 16734 15593 13273 13591 11412 

17.95 4717 5574 4295 4554 5067 3729 4300 3820 10988 11829 10155 9327 8975 9079 7504 8067 13190 13614 12356 11148 11702 9597 9275 10033 15406 16895 14136 13088 13011 12146 12538 10483 21740 21251 15671 17023 15470 13530 13611 11268 

18.20 4767 5544 4264 4519 5059 3759 4311 3862 10880 11979 10159 9339 9062 8952 7542 8170 12931 13684 12351 11154 11651 9921 9278 10164 15337 17131 14114 13083 13252 12140 12545 10759 21733 21012 15848 17267 15550 13551 13691 11319 

18.45 4814 5593 4205 4582 5029 3773 4370 3811 11118 11957 10439 9387 9190 9114 7517 8184 13018 13737 12579 11233 11835 9909 9342 10397 15566 17344 14662 13151 13234 12407 12733 10754 21897 21373 15979 17183 15659 13591 13788 11441 

18.70 4736 5633 4197 4606 5131 3806 4247 3920 10993 12055 10349 9457 9124 8954 7416 8233 13330 13974 12563 11267 11733 9915 9343 10389 15421 17231 14124 13138 13228 12274 12618 10786 21878 21226 16092 17222 15884 13508 13760 11374 

18.95 4813 5622 4273 4603 5212 3801 4419 3934 11078 12010 10511 9560 9207 9120 7569 8166 13300 14016 12633 11427 11853 10058 9441 10390 15439 17253 14426 13410 13226 12383 12783 10953 21829 21320 16054 17393 15784 13491 13687 11581 

19.20 4858 5649 4363 4618 5228 3891 4384 3929 11223 12159 10455 9521 9277 9235 7714 8321 13370 14198 12620 11533 11935 10145 9471 10464 15566 17382 14655 13307 13439 12389 12990 11015 22097 21514 16288 17494 15888 13983 14036 11787 

19.45 4891 5607 4306 4636 5258 3889 4366 3986 11245 12234 10466 9594 9340 9222 7639 8351 13481 14020 12492 11597 12057 10098 9584 10431 15533 17603 14637 13331 13527 12312 12884 10950 21936 21506 16145 17282 15719 14015 13834 11681 

19.70 4765 5580 4322 4586 5182 3889 4330 3951 11275 12395 10711 9630 9365 9320 7749 8498 13411 14147 12834 11614 12055 10035 9711 10509 15470 17622 14631 13356 13434 12477 12993 10912 22207 21771 16470 17533 16076 14120 13916 11802 

19.95 4866 5589 4331 4580 5298 3882 4436 3925 11404 12280 10602 9585 9474 9142 7520 8329 13391 14126 12865 11506 12186 10133 9606 10588 15785 17512 14707 13505 13478 12603 12903 11035 22011 21557 16159 17497 16042 14083 14142 11829 

20.20 4840 5697 4412 4679 5313 3852 4434 3917 11247 12259 10746 9750 9539 9375 7787 8479 13231 14236 12866 11473 11951 10345 9658 10609 15532 17537 14830 13390 13611 12399 13024 10989 21722 21780 16348 17619 16008 14153 14244 11936 

20.45 4815 5615 4421 4786 5325 3871 4457 3943 11205 12460 10757 9533 9307 9445 7742 8490 13451 14324 12783 11460 12222 10344 9698 10728 15626 17886 14680 13545 13613 12480 12849 10933 21833 21848 16090 17670 16196 14082 14210 11780 

20.70 4886 5723 4403 4822 5263 4017 4439 3973 11257 12502 10951 9762 9564 9461 7733 8603 13368 14389 13012 11794 12249 10412 9777 10662 15726 17450 14696 13653 13804 12547 13329 11236 21947 21825 16611 18001 16409 14156 14182 11997 

20.95 4899 5820 4384 4775 5260 3898 4436 4010 11228 12585 10832 9751 9388 9333 7869 8455 13532 14430 13139 11652 12195 10204 9704 10669 15781 17847 15012 13177 13688 12704 13246 11089 21898 22134 16511 17928 16298 14312 14388 11935 

21.20 4894 5682 4415 4732 5313 3935 4557 4020 11444 12608 10922 9759 9600 9480 7910 8628 13548 14313 13101 11751 12303 10484 9717 10792 15430 17925 14938 13506 13948 12717 13154 11145 21756 21916 16537 17978 16386 14263 14411 12057 

21.45 4873 5776 4385 4778 5327 4019 4537 4035 11240 12665 10921 9916 9577 9376 7888 8653 13586 14582 13217 11846 12411 10336 9983 10770 15757 17999 15065 13792 13879 12821 13365 11272 21766 22268 16630 18153 16618 14467 14554 12143 

21.70 4974 5856 4369 4808 5396 4011 4594 3973 11438 12752 10978 10025 9645 9680 7869 8837 13674 14595 13289 11972 12485 10482 9771 10904 15788 18117 14905 13750 13933 12773 13325 11407 21983 22171 16845 18164 16586 14587 14792 12256 

21.95 4885 5780 4436 4805 5318 3987 4530 4065 11339 12842 10898 9906 9656 9688 7887 8703 13830 14734 13205 11971 12381 10409 9984 10954 15639 18038 15095 13598 13901 12848 13403 11406 21890 22330 16930 18090 16593 14713 14659 12210 

22.20 4915 5778 4537 4854 5348 4050 4542 4126 11539 12935 11156 9888 9798 9713 7895 8793 13816 14696 13389 12106 12529 10713 9998 10879 15573 17960 15284 14079 13961 12931 13353 11532 21752 22626 17083 18471 16731 14669 14868 12204 

22.45 4917 5798 4444 4859 5364 4024 4520 4033 11241 12845 11015 9883 9668 9525 8028 8691 13807 14771 13427 12070 12506 10495 10083 10984 15538 18283 15244 13911 13840 12851 13394 11373 21668 22542 17073 18438 16779 14683 14819 12263 

22.70 4959 5811 4483 4987 5345 4034 4550 4063 11506 12855 11185 9979 9844 9744 8098 8777 13893 14943 13235 11888 12442 10609 9986 11087 15927 18318 15233 13984 14177 13151 13405 11424 21840 22900 17053 18628 16859 14770 14875 12385 

22.95 4946 5910 4512 4846 5459 4042 4597 4038 11533 12877 11197 10127 9903 9750 8089 8896 13909 14842 13193 12105 12564 10725 10129 11040 15633 17986 15261 13808 14020 13085 13648 11407 21490 22669 17068 18861 16735 14811 14856 12366 

23.20 4955 5902 4462 4871 5380 4007 4608 4068 11631 12845 11367 10242 9959 9892 8131 8891 13959 14618 13434 12160 12754 10644 10035 11156 15679 18356 15292 13805 14157 13095 13450 11397 21073 22877 17143 18785 16860 14844 15017 12451 

23.45 4981 5851 4461 4955 5458 4090 4634 4098 11665 13110 11333 10210 9901 9880 8160 8935 14009 15047 13412 12011 12672 10749 10164 11222 15994 18283 15575 14079 14354 13198 13685 11408 21539 23061 17350 18569 16990 14802 15030 12376 

23.70 4943 5909 4482 4979 5507 4067 4632 4154 11669 13045 11276 10190 9972 9780 8132 8835 14088 14935 13400 12154 12773 10820 10152 11142 15857 18335 15398 13974 14268 13235 13698 11383 21308 22996 17166 18841 16893 14843 15159 12533 

23.95 4987 5868 4532 4918 5506 4107 4635 4110 11682 13020 11459 10193 10029 10056 8186 9028 14040 15078 13425 12016 12676 10948 10189 11314 15832 18485 15494 14339 14307 13316 13739 11486 21595 22892 17399 18767 17061 15021 15245 12489 

24.20 4954 5800 4578 5043 5528 4128 4663 4173 11600 13142 11543 10378 10064 10059 8353 8910 13885 15238 13522 12400 12877 10792 10206 11346 15919 18503 15510 14131 14583 13178 13881 11639 21397 23215 17544 18955 17311 15192 15249 12614 
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24.45 4939 5871 4597 4956 5506 4153 4659 4207 11802 13303 11363 10327 10041 10065 8300 9140 14156 14884 13606 12289 12852 10770 10286 11480 15740 17994 15427 14050 14571 13302 13688 11532 21274 23214 17551 18869 17051 15089 15318 12454 

24.70 4870 5868 4584 4950 5469 4097 4739 4154 11626 13192 11273 10321 10129 9990 8407 9093 14095 15366 13727 12303 12917 10892 10319 11413 15662 18668 15558 14384 14472 13331 13985 11623 21173 23265 17553 18954 17184 14997 15435 12669 

24.95 5024 5886 4654 4983 5520 4110 4770 4183 11736 13247 11599 10586 10154 9978 8122 9168 13981 15367 13858 12422 13088 11035 10347 11535 15621 18651 15547 14338 14534 13430 13930 11708 20844 23457 17699 19144 17400 15135 15484 12505 

25.20 5043 6038 4613 5017 5537 4158 4775 4205 11904 13401 11670 10620 10115 10163 8325 9213 14161 15500 14025 12432 13105 11108 10369 11514 15644 18813 15771 14470 14560 13457 14116 11740 20997 23651 17814 19294 17375 15351 15404 12774 

25.45 4988 5941 4717 5058 5500 4232 4799 4217 11762 13235 11736 10477 10307 10076 8459 9271 14181 15491 13787 12602 13041 11120 10447 11437 15901 18795 15742 14659 14632 13776 14157 11811 20770 23677 17656 19404 17163 15436 15669 12794 

 

Table S3. In vitro lactate concentration data used for the qAOP calibration. Four experiments were performed at each KBrO3 dose level. 

Day 4 mM KBrO3  2 mM KBrO3  1 mM KBrO3  0.5 mM KBrO3  0.25 mM KBrO3  Control  (KBrO3 = 0) 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

0 2.329 3.677 4.198 1.713 1.896 3.805 4.198 1.669 2.491 3.362 3.913 2.039 2.874 4.22 2.329 2.894 2.039 3.074 2.622 3.403 2.473 3.935 3.382 3.279 

1 4.467 6.105 6.505 4.377 2.473 4.332 4.879 2.584 2.913 2.776 2.993 2.258 2.51 3.115 1.959 2.364 1.773 2.473 2.039 3.508 2.173 4.044 2.679 2.547 

2 6.887 7.38 7.249 7.696 3.827 5.113 6.055 3.698 2.894 3.341 3.762 1.864 3.115 5.278 1.975 3.424 3.634 2.679 2.311 3.698 3.217 4.626 2.737 3.784 

3 9.315 7.963 6.81 8.071 5.956 6.179 6.43 5.687 3.892 4.949 5.445 3.892 4.879 5.638 4.22 5.663 4.995 4.879 3.115 4.717 4.603 5.397 3.258 4.22 



 
7.2.2 Statistical Dose-Response based qAOP Model 

In the empirical dose-response approach, dose(-time)-response equations were fitted to 

data on the effect of KBrO3 on GSH, DCF and lactate. With such data, linking chemical 

exposures to KEs, the corresponding equations need to be mathematically inverted to obtain 

chemical-independent KERs. Only the exposure to MIE relationship can be used as is. For 

example, if we have three data sets for the activity at dose DX of chemical X on each KE of an 

AOP, we need to fit three dose-response equations:  

𝐾𝐾𝐾𝐾1 = 𝑓𝑓(𝐷𝐷𝑋𝑋)   (7.1)  

𝐾𝐾𝐾𝐾2 = 𝑔𝑔(𝐷𝐷𝑋𝑋)   (7.2)  

𝐾𝐾𝐾𝐾3 = ℎ(𝐷𝐷𝑋𝑋)   (7.3)  

The relationship between KE1 and DX is given directly by equation 7.1. However, the 

relationship between KE1 and KE2 needs to be derived from equations 7.1 and 7.2: 

𝐾𝐾𝐾𝐾2 = 𝑔𝑔(𝐷𝐷𝑋𝑋) = 𝑔𝑔�𝑓𝑓−1(𝐾𝐾𝐾𝐾1)�  (7.4)  

Where f-1 denotes the inverse of function f. Similarly, for the relationship between KE3 

and KE2 we have: 

𝐾𝐾𝐾𝐾3 = ℎ(𝐷𝐷𝑋𝑋) = ℎ�𝑔𝑔−1(𝐾𝐾𝐾𝐾2)�  (7.5)  

For dose-time-response relationships, the principle is the same, with time as an extra 

variable in the above functions. However, in some cases the function may not be monotonic 

and therefore will not be invertible. 

The relationship between the concentration of KBrO3 (CKBrO3) and the percentage of 

GSH (PctGSH) remaining in vitro after one hour, representing the MIE, was modeled with a 

modified exponential decrease equation (equation 7.6):  

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺  =  100 ×  𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3
𝑏𝑏 �   (7.6)  
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Its parameters are the GSH degradation rate constant k, and power b (which increases 

the degradation rate if b>1). 

The inverse of equation 7.6 is the equation 7.7: 

𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3  =  �𝑙𝑙𝑙𝑙𝑙𝑙(100)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺)
𝑘𝑘

�
1 𝑏𝑏⁄

   (7.7)  

The relationship between CKBrO3, time t and QDCF (representing the amount of oxidative 

stress) was modeled empirically by equation 7.8:  

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷  =  𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 − 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘𝑑𝑑 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3�� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡 ⋅ 𝑡𝑡)� (7.8)  

Its parameters are A (baseline response), B (maximum increase above baseline), δ 

(maximum increase modulation by dose), kd (dose coefficient), kt (time coefficient). 

The solution of equation 7.8 for CKBrO3 is:  

𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3  =  𝑙𝑙𝑙𝑙𝑙𝑙 ��1 + 𝛿𝛿 − 𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷−𝐴𝐴
𝐵𝐵⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡⋅𝑡𝑡)�

�
−𝑘𝑘𝑑𝑑

�  (7.9)  

Replacing CKBrO3 in equation 7.8 by the expression given in equation 7.7, we obtain the 

following KER between PctGSH and QDCF.  

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷  =  𝐴𝐴 + 𝐵𝐵 ⋅ �1 + 𝛿𝛿 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑘𝑘𝑑𝑑 ⋅ �
𝑙𝑙𝑙𝑙𝑙𝑙(100)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺)

𝑘𝑘
�
1 𝑏𝑏⁄

�� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡 ⋅ 𝑡𝑡)� (7.10)  

To model the CKBrO3 – time - lactate concentration (Clac) relationship, we used a 

polynomial equation which adequately fitted the data: 

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙  =  𝑎𝑎 +  𝑏𝑏𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3  + (𝑐𝑐 +  𝑒𝑒𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3)𝑡𝑡 +  (𝑑𝑑 +  𝑓𝑓𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3)𝑡𝑡2  (7.11)  

If we replace CKBrO3 in equation 7.11 by the value given in equation 7.8, the relationship 

between QDCF, time and Clac becomes:  



177 
 

𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  =  𝑎𝑎 + 𝑏𝑏 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 ��1 + 𝛿𝛿 − 𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷−𝐴𝐴
𝐵𝐵⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡⋅𝑡𝑡)�

�
−𝑘𝑘𝑑𝑑

�

+ �𝑐𝑐 + 𝑒𝑒 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 ��1 + 𝛿𝛿 − 𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷−𝐴𝐴
𝐵𝐵⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡⋅𝑡𝑡)�

�
−𝑘𝑘𝑑𝑑

�� 𝑡𝑡

+ �𝑑𝑑 + 𝑓𝑓 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 ��1 + 𝛿𝛿 − 𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷−𝐴𝐴
𝐵𝐵⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝑡𝑡⋅𝑡𝑡)�

�
−𝑘𝑘𝑑𝑑

�� 𝑡𝑡2

  (7.12)  

A relationship (even more complex) between GSH and lactate concentration could be 

obtained by replacing QDCF by PctGSH, using equation 7.10. 

For parameter estimation, a Metropolis-Hastings MCMC algorithm was used, as 

implemented in the GNU MCSim software (Bois, 2009a). Two Markov chains of 50,000 

iterations were run in parallel, keeping one in four of the last 40,000 i terations. For each 

estimated parameter, non-informative uniform prior distributions were used (note that the 

boundaries of those prior distributions were never reached) (see Table S4). As usually done for 

measurements at different concentrations, the data were considered to be log-normally 

distributed with geometric means given by the corresponding model predictions and geometric 

standard deviations (σ GSH, σ DCF, and σ lac), sampled from half-normal distributions (with a 

priori about 5%, 20% and 20% precision respectively, see Table S4). Note that in this qAOP, 

the statistical model (i.e., the likelihood of the data) is clearly separated from the structural 

equations.  
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Table S4. Prior parameter distributions for the dose-response based qAOP. 

Parameter Units Prior distribution 

KBrO3-GSH model   

k 1/mMb Uniform (0, 3) 

b - Uniform (0.3, 1.5) 

σ GSH % Normal (1, 0.05) truncated to [1, 2] 

KBrO3-time-DCF model   

A RFU Uniform (0, 5000) 

B RFU Uniform (10000, 20000) 

δ - Uniform (0.05, 0.5) 

kd 1/mM  Uniform (0.5, 1.5) 

kt 1/h  Uniform (0.05, 0.5) 

σ DCF RFU  Normal (1, 0.2) truncated to [1.01, 2] 

KBrO3-time-lactate model   

a mM Uniform (1, 5) 

b - Uniform (-1, 1); 

c mM/h Uniform (-0.1, 0) 

d mM/h2 Uniform (0, 0.01) 

e 1/h Uniform (0, 0.1) 

f 1/h2 Uniform (-0.001, 0) 

σ lac mM Normal (1, 0.2) truncated to [1, 2] 
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Table S5. Summary of the posterior parameter distributions for the dose-response based 
qAOP fitted to GSH, DCF and lactate data. 

Parameter Units Maximum 
posterior value 

mean (SD) [2.5pctile, 97.5pctile] 

KBrO3-GSH model    

k 1/mMb 1.44 1.44 ± 0.06 [1.32, 1.56] 

b - 0.73 0.73 ± 0.028 [0.68, 0.79] 

σ GSH % 1.22 1.22 ± 0.022 [1.18, 1.27] 

KBrO3-time-DCF model    

A RFU 2100 2100 ± 33 [2000, 2200] 

B RFU 12500 12500 ± 210 [12200, 12800] 

δ - 0.21 2.1×10-1 ± 5.3×10-3 [0.2, 0.22] 

kd 1/mM 0.62 6.2×10-1 ± 1.7×10-2 [0.6, 0.65] 

kt 1/h 0.14 0.14 ± 6.7×10-3 [0.13, 0.15] 

σ DCF RFU 1.19 1.19 ± 0.0022 [1.18, 1.19] 

KBrO3-time-lactate model    

a mM 2.9 2.8 ± 0.22 [2.4, 3.2] 

b - -6.2×10-2 -5.0×10-3 ± 0.11 [-0.18, 0.18] 

c mM/h -0.057 -5.5×10-2 ± 0.015 [-0.080, -0.030] 

d mM/h2 1.0×10-3 0.001 ± 2.2×10-4 [6.5×10-4, 0.0013] 

e 1/h 0.041 0.040 ± 9.6×10-3 [0.023, 0.056] 

f 1/h2 -3.8×10-4 -3.7×10-4  ± 1.5×10-4 [-6.1×10-4, -1.2×10-4] 

σ lac mM 1.27 1.28 ± 0.026 [1.24, 1.34] 
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Figure S9: Best fit of the dose-response based qAOP (equations 4.2 and 7.8) to the KBrO3 - 
time - DCF data. The colors correspond to the various KBrO3 exposure concentrations: red: 

0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The best fit curves (thick 
lines) are plotted along with the mean of eight DCF measurements (dots). The thin lines 

correspond to +/- one measurement SD around the mean.  
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Figure S10: Best fit of the dose-response based qAOP (equations 4.3 and 7.11) to the KBrO3-
time-lactate data. The colors correspond to the various KBrO3 exposure concentrations: red: 
0; yellow: 0.25 mM; green: 0.5 mM; light blue: 1 mM; dark blue: 2 mM; magenta: 4 mM. 
The best fit curves (thick lines) are plotted along with the mean of four lactate measurements 
(dots). The error bars correspond to +/- one measurement SD. Measurement times have been 

jittered a bit to increase readability. 
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7.2.3 Bayesian Network qAOP – Node to node relationships 

For the dependence of observed PctGSH on CKBrO3 we use a simplified probabilistic 

version the dose-response based qAOP (cf. equation 7.6):  

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺  ∼  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(100 ×  𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺 ⋅ 𝐶𝐶𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾3),𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺 2 )  (7.13)  

With depletion rate constant kGSH and variance σ2
GSH. Note that for simplicity we set 

parameter b to 1. 

The conditional distribution of Q DCF observations at a given time t, given PctGSH and 

the QDCF observation at the previous time t - h is given by an extension of the standard DBN 

model in which PctGHS,t influences the equilibrium value (EDCF,t) for QDCF,t to which it 

converges over time at exponential dampening rate ν: 

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  ∼  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  −  �𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  −  𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡−ℎ�  ⋅  𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷ℎ,�1−𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷ℎ

1−𝑒𝑒−𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷
 ⋅  𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷 2 � (7.14) 

  

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡  =  𝛽𝛽0,𝐷𝐷𝐷𝐷𝐷𝐷  +  𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 (7.15)  

where EDCF,t is the equilibrium value of QDCF (a linear function of PctGSH,t at time t),  h 

is the (positive) time interval between two consecutive observations, νDCF (positive), β0,DCF, 

βDCF, and variance σ2
DCF are parameters to estimate. The DCF RFU value at time zero, carboxy-

DCF0, was not measured, but should be different from zero given the 4-hour pre-treatment 

phase of the protocol and was therefore also estimated. Positive values of ν and h ensure that e-

νh is comprised between 0 and 1. 

A similar relationship was used for lactate, replacing QDCF,t by Clactate,t, and PctGHS by 

QDCF,t in equations 7.14 and 7.15. Given the recurrent experimental change of medium during 

the experiment, lactate concentration was set to zero at the start of the experiment and reset to 

that value every 24 hours. 
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For the parameter estimation, posterior parameter distributions were obtained by 

Hamiltonian MCMC, using the Stan software (Carpenter et al., 2017). Three simulated Markov 

chains were run in parallel for 12,000 i terations, keeping the last 6,000 iterations. Non-

informative uniform prior distributions were used for each parameter except for the parameters 

in the DCF - time - lactate portion of the model where weakly informative Gaussian priors were 

used to stabilize inference (see Table S6). In this qAOP model, the data likelihood is embedded 

in the model formulation. There is one clear constraint for this model: time and exposure 

conditions must match for all the variables entering a particular node to node relationship. For 

example, lactate was measured every 24 hours and depends on DCF, which was measured every 

15 minutes, but for different KBrO3 concentrations. Therefore we need to statistically “impute” 

(randomly draw from their conditional distribution) the expected DCF values at the 

concentrations used in the lactate experiment. Note that the alternative solution of describing 

the DCF dynamics only at time points zero and 24 hours would discard most of the DCF data 

and is thus unsatisfactory. To reduce the number of data points to be imputed, we chose to use 

only one in four DCF data points (one per hour), thus imputing 432 missing lactate data values. 
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Table S6. Prior parameter distributions of the DBN qAOP. 

Parameter Units Prior distribution 

KBrO3-GSH link   

k GSH 1/mM Normal (1.1, 2) 

σ GSH % Uniform (0, ∞) 

GSH-DCF link   

DCF0 RFU Uniform (0, 3000) 

β  0,DCF RFU/% Uniform (0, ∞) 

β  DCF RFU/% Uniform (-∞, ∞) 

ν  DCF 1/h Uniform (0, 1) 

σ DCF RFU Uniform (0, ∞) 

DCF-lactate link   

β  0,lac mM Normal (1, 10) truncated to [0, ∞[ 

β  lac RFU/mM Normal (0, 0.01) truncated to [0, ∞[ 

ν  lac 1/h Normal (1, 0.1) truncated to [0, 1] 

σ lac mM Normal (1, 10) truncated to [0, ∞[ 
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Table S7: Summary of posterior parameter distributions of the DBN qAOP fitted to GSH, 
DCF and lactate data. 

Parameter Units Maximum 
posterior value 

mean (SD) [5pctile, 95pctile] 

KBrO3-GSH link    

k GSH 1/mM 0.61 0.75 ± 0.18 [0.48, 1.1] 

σ GSH % 18 15 ± 6.3 [6.9, 27] 

GSH-DCF link    

DCF0 RFU 2160 2160 ± 20 [2130, 2190] 

β  0,DCF RFU 1.89×104 1.9×104 ± 1.1×103 [1.7×104, 2.1×104] 

β  DCF RFU/% -117 -130 ± 9.8 [-148, -117] 

ν  DCF 1/h 0.0783 0.10 ± 0.011 [8.2×10-2, 0.12] 

σ DCF RFU 906 890 ± 10 [880, 910] 

DCF-lactate link    

β  0,lac mM 9.68×10-3 1.7 ± 3.9×10-1 [1.05, 2.3] 

β  lac RFU/mM 4.05×10-4 2.5×10-4 ± 3.7×10-5 [1.95×10-4, 3.2×10-4] 

ν  lac 1/h 0.267 0.35 ± 0.064 [0.25, 0.46] 

σ lac mM 0.185 0.64 ± 0.097 [0.48, 0.78] 



186 
 

 

Figure S11: Best fit of the DBN qAOP to the KBrO3 - time - DCF data. The colors 
correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 
1.5 mM; blue: 3 mM; magenta: 6 mM. The best fit curves (thick lines) are plotted along with 

the mean of eight DCF measurements (dots). The thin lines correspond to +/- one 
measurement SD around the mean.  
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Figure S12: Best fit of the DBN qAOP to the KBrO3 - time - lactate data. Simulations start 
one day before exposure to KBrO3, is simulated. The colors correspond to the various KBrO3 
exposure concentrations: red: 0; yellow: 0.25 mM; green: 0.5 mM; light blue: 1 mM; dark 

blue: 2 mM; magenta: 4 mM. The best fit curves (thick lines) are plotted along with the mean 
of four lactate measurements (dots). The error bars correspond to +/- one measurement SD. 

Measurement times have been jittered a bit to increase readability. 
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7.2.4 SB Model Validation 

 

Figure S13: Fit of the SB model (with action of KBrO3 on external GSH and formation of 
DCF by ROS) to the KBrO3 - time - DCF data. The colors correspond to the various KBrO3 
exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 

6 mM. The maximum posterior fit curves (thick lines) are plotted along with the mean of 
eight DCF measurements (dots). Note the very faint effect of dose (the five fit curves are not 

exactly superimposed). The thin lines correspond to +/- one measurement SD around the 
mean.  
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Figure S14: Fit of the SB model (with action of KBrO3 on external GSH, formation of DCF 
by ROS, and DCF bleaching) to the KBrO3 - time - DCF data. The colors correspond to the 
various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 1.5 mM; blue: 

3 mM; magenta: 6 mM. The maximum posterior fit curves (thick lines) are plotted along with 
the mean of eight DCF measurements (dots). Note the very faint effect of dose (the five fit 

curves are not exactly superimposed). The thin lines correspond to +/- one measurement SD 
around the mean.  
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Figure S15: Fit of the best SB model to the KBrO3 - time - DCF data. The model includes 
action of KBrO3 on external GSH, formation of DCF by ROS and KBrO3, and DCF 

bleaching. The colors correspond to the various KBrO3 exposure concentrations: red: 0; 
orange: 0.75 mM; green: 1.5 mM; blue: 3 mM; magenta: 6 mM. The maximum posterior fit 
curves (thick lines) are plotted along with the mean of eight DCF measurements (dots). The 

thin lines correspond to +/- one measurement SD around the mean.  
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Figure S16: Fit of the SB model (with action of KBrO3 on external and internal GSH, 
formation of DCF by ROS, and DCF bleaching) to the KBrO3 - time - DCF data. The colors 
correspond to the various KBrO3 exposure concentrations: red: 0; orange: 0.75 mM; green: 
1.5 mM; blue: 3 mM; magenta: 6 mM. The maximum posterior fit curves (thick lines) are 

plotted along with the mean of eight DCF measurements (dots). The thin lines correspond to 
+/- one measurement SD around the mean. 
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7.2.5 Effectopedia Implementation 

Effectopedia provides a graphical user interface to build an AOP diagram, which in turn 

gives easy access to relevant descriptions, data and models. In addition to a qualitative 

description of the AOP, Effectopedia provides structure for representation of test methods, 

collected data and executable models implemented in the supported programming languages 

(R, MATLAB, Java). Effectopedia was used to create several iterations of the AOP diagram. 

Initially, the sequence of KEs included relevant feedback mechanisms or parallel processes 

(branches). However, in the following step of identification of measurement methods, some of 

these events did not have a separate method of observation and were therefore combined into a 

single KE. Other events were determined to be modification factors rather than being causally 

related to the AO and were removed from the pathway diagram. The current version of the AOP 

diagram implemented in Effectopedia is shown on the Figure S17. Each of the elements in the 

diagram can be expanded and details can be added to their description. Models were 

implemented in R and their source code contributed to the description of the in silico models, 

allowing other users to execute them with the same and/or different data and model parameters. 

Effectopedia implementation of both BN and SB models faces similar challenges, of 

which the most important is matching the internal structure of the models to the conceptual 

structure provided by the AOP. Currently, Effectopedia allows “global models” in which one 

BN or SB model can cover several KEs. Such models need to have specific outputs matching 

the AOP KEs. A problem in that approach is the derivation of reusable KERs. If the global 

model contains complex time or variable dependencies between non-adjacent KEs, they need 

to be explicitly represented in the AOP as feedbacks, feed-forwards or modifying factors. 

However, extracting such dependencies is non-trivial. Alternatively, the AOP could be re-

designed if the global model indicates that some tightly coupled KEs can be merged. 
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Figure S17: Diagram of renal qAOP (with in silico models and test data) exported form 
Effectopedia (broken into two segments for readability purposes). The diagram starts with 

extracellular KBrO3 (first green box) which is transported into cells (second green box). The 
orange link between the two green boxes represents the transport across the cell membrane 
and be described with a toxicokinetic model. Intra-cellular KBrO3 is then connected to the 
MIE (blue box ID2) ‘Oxidative reactivity’. There is one in vitro test method (purple box 
ID32) and one in silico model (gray box ID351) that can be used to measure/estimate the 

MIE. The MIE is followed by a sequence of KEs (blue boxes ID3-ID5, ID229-230) leading to 
the AO (blue box ID233). Orange circles between KEs represent KERs. KERs can include 

multiple executable response-response models in their description. Purple rhomboids between 
test methods and KEs represent test-response mappings which describe how measured results 
can be interpreted or transformed to reflect the in vivo context of the KE. Experimental data 
for ‘GSH depletion in the cell-free environment’ (box ID32), ‘DCF Activation’ (box ID31), 
and ‘increased lactate production’ (box ID26) were entered into Effectopedia. The same data 
were used for fitting models described in ‘GSH depletion Fitted Model’ (box ID351), ‘DCF 

(oxidative stress) Fitted Model’ (box ID400)’. 
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7.3 SUPPLEMENTARY INFORMATION FOR CHAPTER 5 

Table S8: Target genes generated by the PubMed searches for AhR, Nrf2, ATF4 pathways. 

Pathway 
(Number of genes) 

Genes 
(804) 

AhR 
(60) 

AHRR ALDH1A3 ALS2CL ATXN1 BATF BCL3 BMF CACNA1D CYP1A1 CYP1A2 CYP1B1 DDX24 
DHX37 DLL1 DLX1 DNMBP DPP9 EDC3 ELF4 EREG FAM32A FAM65C FLVCR2 FOSL2 
FREM2 IGF1R LAMA3 LMCD1 MAPRE2 NEDD9 NIN NPY1R PITPNM2 PLEC PRPS1 PSG5 
PYGL RND1 RRP12 RUNX1 RUNX2 SAMD12 SAT1 SECTM1 SIPA1L2 SLC27A2 SLC2A11 STRBP 
TFAP2A TH TIPARP TMEM45B TPCN1 TRAFD1 TRUB2 USP3 VDR VIPR1 VTCN1 WDR63 

Nrf2 
(306) 

ABCB6 ABCC1 ABCC2 ABCC3 ABCC5 ABHD4 ACAP2 ADAM23 ADCY1 ADO AGPAT9 AHR 
AIFM2 AKAP7 AKR1B10 AKR1C1 AKR1C2 AKR1C3 ALDH1A1 ALS2 AMBP ANKRD44 ANXA1 AOX1 
AP5Z1 APPL2 ARHGAP18 ARHGDIB ASB3 ATF4 ATG16L2 AURKB B3GNT2 BACH1 BBS9 BCL2 
BEND6 BET1 BLVRB BMP8A BMPER BMPR1A BTG2 C12orf29 C16orf72 C8orf4 C9orf3 CABC1 
CAPN7 CBARA1 CBR3 CCDC104 CCDC109B CCDC53 CCDC90B CD27 CD302 CD36 CDC2L6 CDH11 
CDKN2B CES1 CFTR CHPT1 CLCN1 CLIP4 CLTC COCH COL24A1 COL4A1 COLEC12
 COMMD6 
CORO7 COX6C CPNE8 CPT1A CTSB CTSC CTSO CTTN CXCL5 DAAM2 DAGLB DCN 
DENND4C DHX40 DLGAP5 DUSP22 DUSP5 ECM1 EDA2R EMC7 ENC1 ENTPD5 EPHX1 EXOC7 
FAM102A FAM167A FAM210B FAM214A FAM69A FBF1 FBXL3 FBXO30 FECH FKBPL FNBP1 FOPNL 
FOXA2 FRMD6 FTH1 FUK FZD6 GABARAPL1GAS1 GCLC GCLM GCNT3 GDF15 GDI2 
GLI2 GLO1 GPNMB GRIP2 GRM1 GSR GSTA1 GSTA4 GSTM1 GSTM2 GSTM3 GSTP1 
GVIN1 HACE1 HBP1 HECA HES1 HINT3 HIST1H1C HMHB1 HRASLS2 HRSP12 HSPA1B IDH1 
IDS IFIT3 IGF1 IGF2R IL33 IL6 INSIG1 INSIG2 IRF4 ITGB2 JAG1
 KCNAB1 
KDELR2 KEAP1 KIF26B KLHDC8A KRAS LAPTM4B LAYN LBH LMF1 LNX1 LPL
 LRRC4C 
LTA LYPD6B LYPLAL1 MACF1 MAFF MAFG MAGOHB MAMDC2 MAP3K9 MAPK8 MATN2 ME1 
MEGF9 MEIS1 MFSD9 MGST2 MLYCD MMD MRPL14 MRPL33 MSC MT2A NCAPD2 NETO2 
NPNT NQO2 NREP OAT OIT3 OSGIN1 P2RY10 PAIP1 PBX1 PCDH7 PDDC1 PDGFC 
PDIA4 PGAP1 PHLDA1 PION PIP5K1C PIR PLA2G4A PLN PMAIP1 PPP1R12B PQLC3 PRC1 
PRDM1 PRDX1 PRKAR2B PRKCD PRR13 PSMB5 PTCD1 PTGR1 PTTG1IP RAB31 RAB32
 RAB33A 
RFFL RGS10 RND3 RNF121 RNF141 RNF216 RPL10A RPS6 RXRA SARM1 SCAMP1 SCYL1 
SDCCAG8 SDPR SEC63 SEMA3E SERPINE1 SH3RF2 SH3TC1 SIM2 SLC12A8 SLC16A6 SLC16A9       
SLC39A10 
SLC44A3 SLMAP SNX1 SNX13 SNX22 SNX4 SOAT1 SOCS5 SOD1 SOD2 SQRDL          SRP9 
SRXN1 SSR3 SUB1 SYNPO2 TALDO1 TBC1D23 TBCEL TBXAS1 TFE3 TFPI TGFB2           TINAG 
TKT TMEFF2 TMEM159 TMEM206 TMEM63A TMEM64 TNFSF9 TRIM69 TSPAN3 TXLNB TXN               TXNDC5 
UBE2V2 UGT1A1 UGT1A6 UGT2B7 UNKL VASN VPS8 VSTM4 WAPAL WASF1 WDR81          WDSUB1 
WNT5A YAF2 ZC3H11A ZDHHC20 ZFAND2B ZMAT4 

ATF4 
(408) 

AARS ACACA ACAD8 ACOT2 ACOX2 ADM2 AFF1 AGAP1 AKAP2 AKNA ALDH18A1
 ALDH1L2 
ALKBH5 AMACR ANAPC1 ANGPTL4 ANGPTL6 ANK2 ANKRD1 ANKRD11 ANP32B APBB2 APOBEC1 APOE 
ARHGEF2 ARID5B ARPC5L ASCC2 ASNS ATF5 ATF6 ATL2 ATP6V1G1 ATXN2L B4GALNT2 B9D2 
BCAR1 BCAT1 BCAT2 BCMO1 BDNF BGLAP BHLHE22 BNIP1 BOLA1 BTF3L4 CA9 CABP1 
CALCRL CAMSAP1 CARS CASC5 CASP4 CAST CCL2 CCL7 CCT8L1 CD276 CD74 CDH24 
CDSN CEBPB CEBPG CHAC1 CLCN3 CLIC4 CNOT1 CNPY2 COASY COL18A1 CP CRLS1 
CRYBG3 CTH CUL2 CXADR CXCL3 CXCR5 CYB5R1 DAAM1 DDIT3 DDR2 DEGS2 DHRS7 
DLEU7 DNAJA3 DNAJB12 DPF2 DPYSL2 DTNBP1 DUSP6 DUT DYSF ECHS1 EDEM3 EIF1 
EIF2S2 EIF3C EIF4EBP1 EIF4G2 EIF5 ELMSAN1 EMILIN1 EPO EPRS ERLIN1 ERO1L ETF1 
ETS1 F3 FADS3 FAM119A FAM129A FAM159A FAM175A FAM175B FAM188B FAM26F FAM83F
 FAM96A 
FBXL2 FBXO11 FBXO31 FCER1G FGF19 FGF21 FIBIN FLAD1 FLNC FLRT1 FNDC7 GARS 
GHITM GNG5 GNPNAT1 GOT1 GPAM GPATCH3 GPR85 GPT2 GPX4 GRB10 GSK3A GSTO1 
GTPBP2 GTPBP4 H2AFZ HAS2 HAX1 HDAC8 HERPUD1 HFE HHIPL1 HSPA5 HTRA1 IARS 
ICK IER2 IFI44 IFT172 IHH IL1R1 IL2 IL23A INCENP INPP4B INPP5B IP6K2 
IPMK ITGB5 ITGB7 ITIH1 JAGN1 JDP2 JHDM1D KBTBD5 KCNT2 KDM5A KDM6B KHNYN 
KIF13B KIFC1 KLF15 KLF4 KLHDC10 KRTCAP2 LARS LCN2 LEPREL1 LEPROTL1 LGALS3
 LGALS8 
LHFPL2 LMBRD1 LMO4 LONP1 LRRK1 LSG1 LSM14A LTBP3 MACROD1 MANEA MARS MAT2B 
MAZ MCL1 METTL9 MFF MID1IP1 MMP19 MRAS MRPL13 MRPL24 MRPL54 MTHFD1L
 MTHFD2 
MTHFR MTM1 MYCBP2 MYOM1 NAAA NARS NCL NDRG1 NDUFA4L2 NF1 NFE2L1 NFKB1 
NFU1 NIPBL NME2 NOS2 NOSIP NRBF2 NRIP2 NUPR1 OPTC ORMDL3 OSMR OTUB2 
PACSIN2 PAQR3 PAX8 PCK2 PDAP1 PDE1A PDE4DIP PER2 PER3 PFDN1 PHF10 PHF21A 
PHGDH PHYHD1 PIK3C2G PKMYT1 PLA2G12A PLD1 PLEKHH3 PNRC2 POP5 PPP1R15A PPP1R15B
 PPP2R5A 
PRDM15 PRKG2 PRSS35 PRSS36 PSEN1 PTBP1 PTGS2 PTN PTPN12 PTPN21 PTPRS PVRL2 
PYCR1 RAB39B RAD21 RAI1 RAN RBM39 RBM4 RBM9 RCC2 RD3 RELN
 RHBDD1 
RHOQ RNF114 RPL13A RPL7 RPRD2 RPS6KA2 RSBN1 RUNX3 RUVBL2 SAMD8 SARS             SERPINB9 
SERPINF1 SERTAD2 SESN2 SH3BP5L SHMT2 SLC16A14 SLC19A2 SLC1A4 SLC1A5 SLC1A7 SLC20A1       
SLC25A28 
SLC25A33 SLC25A39 SLC35B4 SLC38A2 SLC38A7 SLC41A3 SLC6A9 SLC7A1 SLC7A11 SLC9A9 SLIT1 SLTM 
SNAI2 SNRNP35 SNX12 SNX33 SOAT2 SPATS2 SPEN SRPK1 SRSF1 STARD5 STC2 STEAP1 
STK40 SURF6 SYNJ2 TAB2 TAF15 TAF5 TAGLN2 TARS TBC1D9B TBPL1 TET3 TGIF1 
TLCD2 TMEM11 TMEM154 TMEM189 TMEM74 TMIGD1 TNFAIP2 TNFAIP6 TNKS TNPO1 TNRC6C TOR3A 
TPX2 TRAF3IP2 TRIB3 TRIM35 TRIM66 TSC22D3 TSLP TSPAN5 TSPYL4 TTC23 TTC9C UBA3 
UBE2L3 UBE2W UBP1 UBR2 UBR4 UHRF1BP1 UQCRC2 UQCRQ USP11 USP2 USP36 USP6NL 
VAC14 VARS VLDLR VNN3 VPS54 WARS WBP4 WDR27 WISP1 WWP2 WWTR1 XPOT 
YARS YLPM1 YWHAG ZAK ZBTB38 ZBTB7B ZBTB7C ZC3H18 ZC3HAV1 ZFC3H1 ZNF268 ZYG11B 

AhR Nrf2 (7) ABCG2 DLX2 MCOLN2 NFE2L2 NQO1 PSPC1 TXNRD1 
AhR ATF4 (4) CRISPLD2 DDIT4 SLC7A5 UBE2G2 
Nrf2 ATF4 (17) ABCC4 ATF3 CLN5 CR1L DDC DHX57 GOLIM4 HMOX1 HTATIP2 MDFIC PSAT1 SCPEP1 

SEMA6D SPRED1 SQSTM1 TBCE YPEL5 
AhR Nrf2 ATF4 
(2) SLC3A2 TMTC2 

Genes with no 
data* 
(53) 

Nrf2 (16)         : AI646023, AKR1A4, BC067068, BCLX, CYP2A5, GSPDX, H2-T10, IQWD1, NDP52, PREI4, PRX1, SNF1LK2, SPEER3, SPEER4A, TXN1, ZFP51. 
ATF4 (36)       : ABCB1A, ACAA1A, B230217C12RIK, BB014433, BC019943, BC055111, CYP2AB1, D48WG0951E, DEB1, DEFB43, DNAIC2, GCFC1, GM129, 
                          GM5627, GM5820, GM5867, H2-Q7, HIST2H4, IFITM6, JMJD3, LIPIN2, MTAP4, PGPEP1L, RNASET2B, SAMD4, SERPINA3C, SLCO1A5, TREM3, 
                          UGT1A6A, VEGF, ZFP238, ZFP365, ZFP598, ZFP608, ZFP623, ZFP708. 
Nrf2 ATF4 (1) : B230315N10RIK.                                                  * No data are available for these genes in the carcinoGENOMICS, PREDICT-IV, or TG-GATEs databases. 
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Table S9: Exhaustive list of chemicals used in each experimental category. 

Carcino- 
GENOMICS 

Human Kidney in vitro Bolus (30) 

1-Amino-2,4-dibromoanthraquinone, 2-Nitrofluorene, 4-Acetylaminofluorene, Aristolochic acid, Benzo(a)pyrene, Benzoin, Benzyl 
alcohol, Bromodichloromethane, Chlorothalonil, Citrinin, Clonidine, Cyclosporine A, D-mannitol, DCVC, Diclofenac, DL-Menthol, 
Fumonisin-B1, Hydroquinone, Lead-(II)-acetate-trihydrate, Monuron, N-Ethyl-N-(2-hydroxyethyl)nitrosamine, N-
Nitrosomorpholine, Nifedipine, Nitrilotriacetic acid, Ochratoxin A, Potassium bromate, Streptozotocin, Tolbutamide, Triclosan 
(Igarsen), Tris(2,3-dibromopropyl)phosphate. 

Rat Kidney in vitro Bolus (15) 2-Nitrofluorene, Aristolochic acid, Benzo(a)pyrene, Bromodichloromethane, Chlorothalonil, Clonidine, D-Mannitol, DCVC, 
Diclofenac, Dimethylnitrosamine, Monuron, Nifedipine, Ochratoxin A, Potassium bromate, Tolbutamide. 

PREDICT 
-IV 

Human Kidney in vitro Repeat (12) Adefovir dipivoxil, Adefovir dipivoxil-hypoxia, Cadmium chloride, Chloroacetaldehyde, Cidofovir, Cisplatin, Clodronate, 
Cyclosporine A, Hypoxia, Ifosfamide, Zoladronate-hypoxia, Zoledronate. 

Human 
and Rat Liver in vitro Repeat (11) Acetaminophen, Amiodarone, Chlorpromazine, Cyclosporine A, EMD335823, Fenofibrate, Ibuprofen, Metformin, Rosiglitazone, 

Troglitazone, Valproic acid. 

TG 
-GATEs 

Human Liver in vitro Bolus (160) 

2-Nitrofluorene, 2,4-dinitrophenol, Acarbose, Acetamide, Acetamidofluorene, Acetaminophen, Acetazolamide, Adapin, Aflatoxin B1, 
Ajmaline, Allopurinol, Allyl alcohol, Alpidem, Amiodarone, Amitriptyline, Amphotericin B, Aspirin, Azathioprine, Bendazac, 
Benzbromarone, Benziodarone, Bromobenzene, Bromoethylamine, Bucetin, Buspirone, Buthionine sulfoximine, Butylated 
hydroxyanisole, Caffeine, Captopril, Carbamazepine, Carbon tetrachloride, Chloramphenicol, Chlormadinone, Chlormezanone, 
Chlorpheniramine, Chlorpromazine, Chlorpropamide, Cimetidine, Ciprofloxacin, Clofibrate, Clomipramine, Clozapine, Colchicine, 
Coumarin, Cycloheximide, Cyclophosphamide, Cyclosporine A, Danazol, Dantrolene, Dexamethasone, Diazepam, Diclofenac, 
Diethylmaleate, Diltiazem, Disopyramide, Disulfiram, Doxorubicin, EMD335823, Enalapril, Erythromycin, Ethambutol, Ethanol, 
Ethinylestradiol, Ethionamide, Ethionine, Etoposide, Famotidine, Fenofibrate, Fluoxetine, Fluphenazine, Flutamide, Furosemide, 
Galactosamine, Gemfibrozil, Glibenclamide, Griseofulvin, Haloperidol, Hexachlorobenzene, HGF, Hydroxyzine, Ibuprofen, IL1beta, 
IL6, Imipramine, Indomethacin, INFalpha, Iproniazid, Isoniazid, Ketoconazole, Labetalol, Lomustine, Lornoxicam, LPS, Mefenamic 
acid, Meloxicam, Metformin, Methapyrilene, Methimazole, Methyldopa, Methylene dianiline, Methyltestosterone, Mexiletine, 
Monocrotaline, Moxisylyte, N-methyl-N-nitrosourea, N-nitrosomorpholine, Naphthyl isothiocyanate, Naproxen, Nefazodone, 
Nicotinic acid, Nifedipine, Nimesulide, Nitrofurantoin, Nitrofurazone, Nitrosodiethylamine, Omeprazole, Papaverine, Pemoline, 
Penicillamine, Perhexiline, Phalloidin, Phenacetin, Phenobarbital, Phenylanthranilic acid, Phenylbutazone, Phenytoin, Phorone, 
Promethazine, Propranolol, Propylthiouracil, Quinidine, Ranitidine, Rifampicin, Rosiglitazone, Rotenone, Simvastatin, Sulfasalazine, 
Sulindac, Sulpiride, Tacrine, Tamoxifen, Tannic acid, Terbinafine, Tetracycline, TGFbeta1, Theophylline, Thioacetamide, 
Thioridazine, Ticlopidine, Tiopronin, TNF, Tolbutamide, Triazolam, Trimethadione, Troglitazone, Tunicamycin, Valproic acid, 
Venlafaxine, Vitamin A, WY-14643. 

Rat Liver in vitro Bolus (145) 

Acarbose, Acetamidofluorene, Acetaminophen, Acetazolamide, Adapin, Ajmaline, Allopurinol, Allyl alcohol, Alpidem, Amiodarone, 
Amitriptyline, Aspirin, Azathioprine, Bendazac, Benzbromarone, Benziodarone, Bromobenzene, Bromoethylamine, Bucetin, 
Buspirone, Buthionine sulfoximine, Caffeine, Captopril, Carbamazepine, Carbon tetrachloride, Carboplatin, Cephalothin, 
Chloramphenicol, Chlormadinone, Chlormezanone, Chlorpheniramine, Chlorpromazine, Chlorpropamide, Cimetidine, Ciprofloxacin, 
Cisplatin, Clofibrate, Clomipramine, Clozapine, Colchicine, Coumarin, Cycloheximide, Cyclophosphamide, Cyclosporine A, Danazol, 
Dantrolene, Diazepam, Diclofenac, Diethylmaleate, Diltiazem, Disopyramide, Disulfiram, Doxorubicin, Enalapril, Erythromycin, 
Ethambutol, Ethanol, Ethinylestradiol, Ethionamide, Ethionine, Etoposide, Famotidine, Fenofibrate, Fluphenazine, Flutamide, 
Furosemide, Galactosamine, Gemfibrozil, Gentamicin, Glibenclamide, Griseofulvin, Haloperidol, Hexachlorobenzene, Hydroxyzine, 
Ibuprofen, Imipramine, Indomethacin, Iproniazid, Isoniazid, Ketoconazole, Labetalol, Lomustine, Lornoxicam, LPS, Mefenamic acid, 
Meloxicam, Metformin, Methapyrilene, Methimazole, Methyldopa, Methyltestosterone, Mexiletine, Monocrotaline, Moxisylyte, 
Naphthyl isothiocyanate, Naproxen, Nefazodone, Nicotinic acid, Nifedipine, Nimesulide, Nitrofurantoin, Nitrofurazone, 
Nitrosodiethylamine, Omeprazole, Papaverine, Pemoline, Penicillamine, Perhexiline, Phalloidin, Phenacetin, Phenobarbital, 
Phenylanthranilic acid, Phenylbutazone, Phenytoin, Phorone, Promethazine, Propylthiouracil, Puromycin, Quinidine, Ranitidine, 
Rifampicin, Simvastatin, Sulfasalazine, Sulindac, Sulpiride, Tacrine, Tamoxifen, Tannic acid, Terbinafine, Tetracycline, Theophylline, 
Thioacetamide, Thioridazine, Ticlopidine, Tiopronin, TNFalpha, Tolbutamide, Triamterene, Triazolam, Trimethadione, Tunicamycin, 
Valproic acid, Venlafaxine, Vitamin A, WY-14643. 

Rat Liver in vivo Bolus (158) 

2-Nitrofluorene, 2,4-dinitrophenol, 3-Methylcholanthrene, Acarbose, Acetamidofluorene, Acetaminophen, Acetazolamide, Adapin, 
Aflatoxin B1, Ajmaline, Allopurinol, Allyl alcohol, Alpidem, Amiodarone, Amitriptyline, Amphotericin B, Aspirin, Azathioprine, 
Bendazac, Benzbromarone, Benziodarone, Bortezomib, Bromobenzene, Bromoethylamine, Bucetin, Buthionine sulfoximine, 
Butylated hydroxyanisole, Caffeine, Captopril, Carbamazepine, Carbon tetrachloride, Chloramphenicol, Chlormadinone, 
Chlormezanone, Chlorpheniramine, Chlorpromazine, Chlorpropamide, Cimetidine, Ciprofloxacin, Clofibrate, Clomipramine, 
Colchicine, Coumarin, Cycloheximide, Cyclophosphamide, Cyclosporine A, Danazol, Dantrolene, Dexamethasone, Diazepam, 
Diclofenac, Diethylmaleate, Diltiazem, Disopyramide, Disulfiram, Doxorubicin, Enalapril, Erythromycin, Ethambutol, Ethanol, 
Ethinylestradiol, Ethionamide, Ethionine, Etoposide, Famotidine, Fenofibrate, Fluoxetine, Fluphenazine, Flutamide, Furosemide, 
Galactosamine, Gefitinib, Gemfibrozil, Gentamicin, Glibenclamide, Griseofulvin, Haloperidol, Hexachlorobenzene, Hydroxyzine, 
Ibuprofen, Imatinib, Imipramine, Indomethacin, Iproniazid, Isoniazid, Ketoconazole, Labetalol, Lomustine, Lornoxicam, LPS, 
Mefenamic acid, Meloxicam, Metformin, Methapyrilene, Methimazole, Methyldopa, Methylene dianiline, Methyltestosterone, 
Mexiletine, Monocrotaline, Moxisylyte, N-methyl-N-nitrosourea, N-nitrosomorpholine, Naphthyl isothiocyanate, Naproxen, Nicotinic 
acid, Nifedipine, Nimesulide, Nitrofurantoin, Nitrofurazone, Nitrosodiethylamine, Omeprazole, Papaverine, Pemoline, Penicillamine, 
Perhexiline, Phalloidin, Phenacetin, Phenobarbital, Phenylanthranilic acid, Phenylbutazone, Phenytoin, Phorone, Promethazine, 
Propranolol, Propylthiouracil, Puromycin, Quinidine, Ranitidine, Rifampicin, Rosiglitazone, Rotenone, Simvastatin, Sulfasalazine, 
Sulindac, Sulpiride, Tacrine, Tamoxifen, Tannic acid, Terbinafine, Tetracycline, Theophylline, Thioacetamide, Thioridazine, 
Ticlopidine, Tiopronin, TNF, Tolbutamide, Triamterene, Triazolam, Trimethadione, Tunicamycin, Valproic acid, Vitamin A, WY-
14643. 

Rat Liver in vivo Repeat (143) 

2,4-dinitrophenol, Acarbose, Acetamide, Acetamidofluorene, Acetaminophen, Acetazolamide, Adapin, Ajmaline, Allopurinol, Allyl 
alcohol, Amiodarone, Amitriptyline, Amphotericin B, Aspirin, Azathioprine, Bendazac, Benzbromarone, Benziodarone, 
Bromobenzene, Bromoethylamine, Bucetin, Butylated hydroxyanisole, Caffeine, Captopril, Carbamazepine, Carbon tetrachloride, 
Carboplatin, Cephalothin, Chloramphenicol, Chlormadinone, Chlormezanone, Chlorpheniramine, Chlorpromazine, Chlorpropamide, 
Cholesterol sodium cholate 1to4, Cimetidine, Ciprofloxacin, Cisplatin, Clofibrate, Clomipramine, Colchicine, Coumarin, 
Cyclophosphamide, Cyclosporine A, Danazol, Dantrolene, Desmopressin acetate, Diazepam, Diclofenac, Diltiazem, Disopyramide, 
Disulfiram, Doxorubicin, Enalapril, Erythromycin, Ethambutol, Ethanol, Ethinylestradiol, Ethionamide, Ethionine, Etoposide,, 
Famotidine, Fenofibrate, Fluoxetine, Fluphenazine, Flutamide, Furosemide, Gemfibrozil, Gentamicin, Glibenclamide, Griseofulvin, 
Haloperidol, Hexachlorobenzene, Hydroxyzine, Ibuprofen, Imipramine, Indomethacin, Iproniazid, Isoniazid, Ketoconazole, Labetalol, 
Lomustine, Lornoxicam, Mefenamic acid, Meloxicam, Metformin, Methapyrilene, Methimazole, Methyldopa, Methylene, dianiline, 
Methyltestosterone, Mexiletine, Monocrotaline, Moxisylyte, Naphthyl isothiocyanate, Naproxen, Nicotinic acid, Nifedipine, 
Nimesulide, Nitrofurantoin, Nitrofurazone, Nitrosodiethylamine, Omeprazole, Papaverine, Pemoline, Penicillamine, Perhexiline, 
Phalloidin, Phenacetin, Phenobarbital, Phenylanthranilic acid, Phenylbutazone, Phenytoin, Promethazine, Propranolol, 
Propylthiouracil, Puromycin, Quinidine, Ranitidine, Rifampicin, Rosiglitazone, Rotenone, Simvastatin, Sulfasalazine, Sulindac, 
Sulpiride, Tacrine, Tamoxifen, Tannic acid, Terbinafine, Tetracycline, Theophylline, Thioacetamide, Thioridazine, Ticlopidine, 
Tiopronin, Tolbutamide, Triamterene, Triazolam, Trimethadione, Valproic acid, Vitamin A, WY-14643. 

Rat Kidney in vivo 
Bolus 
and 
Repeat 

(41) 

Acetaminophen, Acetazolamide, Allopurinol, Allyl alcohol, Amphotericin B, Bromobenzene, Bromoethylamine, Bucetin, Caffeine, 
Captopril, Carboplatin, Cephalothin, Ciprofloxacin, Cisplatin, Clofibrate, Cyclophosphamide, Cyclosporine A, Desmopressin acetate, 
Doxorubicin, Enalapril, Erythromycin, Ethinylestradiol, Ethionine, Gentamicin, Hexachlorobenzene, Imipramine, Indomethacin, 
Ketoconazole, Lomustine, Methyltestosterone, Monocrotaline, Nitrofurantoin, Omeprazole, Phenacetin, Phenylanthranilic acid, 
Phenylbutazone, Puromycin, Rifampicin, Thioacetamide, Triamterene, Valproic acid. 
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Table S10: Genes removed for lack of data for them concerning “receptor specific chemicals” 
in particular categories. 

Category 
(Number of 
genes) 

Removed Genes 

All database 
(25) 

BCMO1 C12orf29 C16orf72 C8orf4 C9orf3 CBARA1 CCDC104 CCT8L1 CDC2L6 CES1 DLEU7
 FAM119A 
GSTM1 GVIN1 JHDM1D KBTBD5 LEPREL1 NME2 PION PRR13 RBM9 RPL10A RPL7
 UGT1A1 
UGT2B7 

Rat liver in 
vitro 
(164)* 

ABCC1 ADM2 ADO AKAP7 AKNA AKR1B10 AKR1C2 ALDH18A1 ALDH1A3 ALDH1L2 ALKBH5
 ANK2 
ASB3 B4GALNT2 B9D2 BACH1 BCMO1 BEND6 BLVRB BTF3L4 C12orf29 C16orf72 C8orf4
 C9orf3 
CABC1 CBARA1 CCDC104 CCDC109B CCL2 CCT8L1 CD27 CDC2L6 CDH24 CDSN CES1
 CLIP4 
COCH CORO7 CRYBG3 CTSO CTTN CXCL5 CYB5R1 CYP1B1 DAAM2 DENND4C DLEU7
 DLX2 
ECHS1 EDA2R EIF1 EXOC7 FAM119A FAM159A FAM65C FAM69A FBXL2 FNDC7 FREM2
 FTH1 
GLI2 GPATCH3 GSTA1 GSTA4 GSTM1 GSTM3 GTPBP4 GVIN1 H2AFZ HAX1 HDAC8          
HIST1H1C 
HMHB1 HRASLS2 IDS IFT172 INPP5B INSIG1 IRF4 JHDM1D KBTBD5 KCNT2 LAYN
 LEPREL1 
LONP1 LPL LTA MAGOHB MAMDC2 MAPK8 MAZ MEGF9 MFF MSC MT2A
 NCL 
NME2 NOS2 NPNT NRBF2 NUPR1 OIT3 PAQR3 PDDC1 PGAP1 PHF10 PION
 PLA2G4A 
PMAIP1 POP5 PPP2R5A PRDX1 PRR13 PRSS35 PSG5 PTBP1 PTGS2 RAB39B RBM39
 RBM9 
RPL10A RPL13A RPL7 RPRD2 RPS6 RUNX2 RXRA SDCCAG8 SH3RF2 SLC16A14 SLC1A4
 SLC1A7 
SLC2A11 SLC44A3 SLMAP SLTM SNAI2 SNRNP35 SNX1 SNX22 SOAT2 SPEN SURF6
 TARS 
TLCD2 TMEFF2 TMEM74 TMTC2 TPX2 TRIM69 TSLP UBE2L3 UBE2V2 UBE2W UGT1A1
 UGT1A6 
UGT2B7 VIPR1 VNN3 WDR27 WDR63 YLPM1 ZFC3H1 ZNF268 

Rat liver in 
vivo 
(196)** 

ABCC1 ACAP2 ADAM23 ADCY1 ADM2 ADO AFF1 AGPAT9 AKAP7 AKNA AKR1B10
 AKR1C2 
ALDH18A1 ALDH1A3 ALDH1L2 ALKBH5 ALS2 ANK2 ASB3 B4GALNT2 B9D2 BACH1 BCMO1
 BEND6 
BLVRB BTF3L4 C12orf29 C16orf72 C8orf4 C9orf3 CASC5 CBARA1 CCDC104 CCL2 CCT8L1
 CD27 
CDC2L6 CDH24 CDSN CES1 CLIP4 COCH COL24A1 CRYBG3 CTSO CTTN CYB5R1
 CYP1B1 
DAAM2 DENND4C DLEU7 DLX2 DUT ECHS1 EDA2R EDEM3 EIF1 ELF4 EXOC7
 FAM119A 
FAM159A FAM65C FAM69A FBXL2 FLRT1 FNDC7 FREM2 FTH1 GLI2 GPATCH3 GSK3A
 GSTA1 
GSTA4 GSTM1 GSTM3 GTPBP4 GVIN1 H2AFZ HAX1 HDAC8 HIST1H1C HMHB1 HRASLS2
 IDH1 
IDS IFT172 INPP5B INSIG1 IRF4 JHDM1D KBTBD5 KCNT2 KIF13B KLHDC10 KRAS
 LAYN 
LEPREL1 LONP1 LPL LRRK1 MAGOHB MAMDC2 MANEA MAPK8 MAZ MEGF9 MFF
 MSC 
MT2A MTM1 NCL NME2 NOS2 NPNT NRBF2 NREP NUPR1 OIT3 ORMDL3
 OSMR 
PAQR3 PCDH7 PDDC1 PGAP1 PHF10 PION PLA2G4A PMAIP1 POP5 PPP2R5A PRDX1
 PRR13 
PRSS35 PSG5 PTBP1 PTGS2 PYCR1 RAB39B RBM39 RBM9 RPL10A RPL13A RPL7
 RPRD2 
RPS6 RUNX2 RXRA SDCCAG8 SEMA3E SH3RF2 SLC16A14 SLC16A9 SLC1A4 SLC1A7 SLC2A11
 SLC44A3 
SLMAP SLTM SNAI2 SNRNP35 SNX1 SNX22 SOAT2 SPEN SPRED1 SRPK1 SUB1
 SURF6 
TAB2 TARS TBCEL TLCD2 TMEFF2 TMEM154 TMEM74 TMTC2 TNKS TPX2 TRIM69
 TSLP 
UBE2L3 UBE2V2 UBE2W UGT1A1 UGT1A6 UGT2B7 VIPR1 VNN3 WDR27 WDR63 YLPM1
 ZBTB38 
ZC3HAV1 ZDHHC20 ZFC3H1 ZNF268 

Human liver 
in vitro 
(44)*** 

ACOT2 AKAP2 AMACR ANAPC1 ATF4 BCMO1 BGLAP C12orf29 C16orf72 C8orf4 C9orf3
 CABC1 
CBARA1 CCDC104 CCT8L1 CD302 CDC2L6 CES1 DLEU7 EIF3C FAM119A FAM188B FBF1
 GSTM1 
GSTM2 GVIN1 HHIPL1 JHDM1D KBTBD5 LEPREL1 NME2 PAIP1 PION PRR13 PTCD1
 RAN 
RBM9 RFFL RPL10A RPL7 TMIGD1 TXNDC5 UGT1A1 UGT2B7 

*   All genes that were removed from the “Rat liver in vitro” category were removed from “Rat liver in vivo” category as well except five: 
CABC1, CCDC109B, CORO7, CXCL5 and LTA. 
** All genes that were removed from the “Rat liver in vivo” category were removed from “Rat liver in vitro” category as well except 37: 
ACAP2, ADAM23, ADCY1, AFF1, AGPAT9, ALS2, CASC5, COL24A1, DUT, EDEM3, ELF4, FLRT1, GSK3A, IDH1, KIF13B, 
KLHDC10, KRAS, LRRK1, MANEA, MTM1, NREP, ORMDL3, OSMR, PCDH7, PYCR1, SEMA3E, SLC16A9, SPRED1, SRPK1, 
SUB1, TAB2, TBCEL, TMEM154, TNKS, ZBTB38, ZC3HAV1 and  ZDHHC20. 
***All genes that were had no rat data (in vitro or in vivo) had no human data neither (exception: CABC1 removed from “Rat Liver in vivo” 
but not from human data), but the opposite is not always true: 18 of the genes that were removed for lack of human data, were kept for both 
rat categories (ACOT2, AKAP2, AMACR, ANAPC1, ATF4, BGLAP, CD302, EIF3C, FAM188B, FBF1, GSTM2, HHIPL1, PAIP1, 
PTCD1, RAN, RFFL, TMIGD1 and TXNDC5). 
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Table S11: Annotation of chemicals for Figure 25, Figure 26 and Figure 27. 

7 Chemical  Nb Chemical  Nb Chemical  Nb Chemical 
1 2-Nitrofluorene  41 Clomipramine  81 Ibuprofen  121 Phalloidin 
2 2-4-dinitrophenol  42 Clozapine  82 IL1beta  122 Phenacetin 
3 Acarbose  43 Colchicine  83 IL6  123 Phenobarbital 
4 Acetamide  44 Coumarin  84 Imipramine  124 Phenylanthranilic acid 
5 Acetamidofluorene  45 Cycloheximide  85 Indomethacin  125 Phenylbutazone 
6 Acetaminophen  46 Cyclophosphamide  86 INFalpha  126 Phenytoin 
7 Acetazolamide  47 Cyclosporine A  87 Iproniazid  127 Phorone 
8 Adapin  48 Danazol  88 Isoniazid  128 Promethazine 
9 Aflatoxin B1  49 Dantrolene  89 Ketoconazole  129 Propranolol 
10 Ajmaline  50 Dexamethasone  90 Labetalol  130 Propylthiouracil 
11 Allopurinol  51 Diazepam  91 Lomustine  131 Quinidine 
12 Allyl alcohol  52 Diclofenac  92 Lornoxicam  132 Ranitidine 
13 Alpidem  53 Diethylmaleate  93 LPS  133 Rifampicin 
14 Amiodarone  54 Diltiazem  94 Mefenamic acid  134 Rosiglitazone 
15 Amitriptyline  55 Disopyramide  95 Meloxicam  135 Rotenone 
16 Amphotericin B  56 Disulfiram  96 Metformin  136 Simvastatin 
17 Aspirin  57 Doxorubicin  97 Methapyrilene  137 Sulfasalazine 
18 Azathioprine  58 EMD335823  98 Methimazole  138 Sulindac 
19 Bendazac  59 Enalapril  99 Methyldopa  139 Sulpiride 
20 Benzbromarone  60 Erythromycin  100 Methylene dianiline  140 Tacrine 
21 Benziodarone  61 Ethambutol  101 Methyltestosterone  141 Tamoxifen 
22 Bromobenzene  62 Ethanol  102 Mexiletine  142 Tannic_acid 
23 Bromoethylamine  63 Ethinylestradiol  103 Monocrotaline  143 Terbinafine 
24 Bucetin  64 Ethionamide  104 Moxisylyte  144 Tetracycline 
25 Buspirone  65 Ethionine  105 N-methyl-N-nitrosourea  145 TGFbeta1 
26 Buthionine sulfoximine  66 Etoposide  106 N-nitrosomorpholine  146 Theophylline 
27 Butylated hydroxyanisole  67 Famotidine  107 Naphthyl isothiocyanate  147 Thioacetamide 
28 Caffeine  68 Fenofibrate  108 Naproxen  148 Thioridazine 
29 Captopril  69 Fluoxetine  109 Nefazodone  149 Ticlopidine 
30 Carbamazepine  70 Fluphenazine  110 Nicotinic_acid  150 Tiopronin 
31 Carbon tetrachloride  71 Flutamide  111 Nifedipine  151 TNF 
32 Chloramphenicol  72 Furosemide  112 Nimesulide  152 Tolbutamide 
33 Chlormadinone  73 Galactosamine  113 Nitrofurantoin  153 Triazolam 
34 Chlormezanone  74 Gemfibrozil  114 Nitrofurazone  154 Trimethadione 
35 Chlorpheniramine  75 Glibenclamide  115 Nitrosodiethylamine  155 Troglitazone 
36 Chlorpromazine  76 Griseofulvin  116 Omeprazole  156 Tunicamycin 
37 Chlorpropamide  77 Haloperidol  117 Papaverine  157 Valproic acid 
38 Cimetidine  78 Hexachlorobenzene  118 Pemoline  158 Venlafaxine 
39 Ciprofloxacin  79 HGF  119 Penicillamine  159 Vitamin A 
40 Clofibrate  80 Hydroxyzine  120 Perhexiline  160 WY-14643 
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7.4 THE NRF2 SB MODEL CODE 

# ------------------------------------------------------------------------------ 
# v7.11_Nrf2_GSH_KBrO4 
# 
# UNITS : 
# =============== 
#  Quantity in zeptomol (1 zeptomol = 1.00E-21 mol ) 
#  Volume in microm3 (1 microm3 = 1.00E-15 L ) 
#  Concentration in microM (1 microM = 1.00E-06 mol/L 
#    = E-21/E-15 mol/L 
#    = zmol/microm3 ) 
#  Time in s (seconds) 
# 
# 
# PREFIXES : 
# =============== 
#  cyt   in Cytosol 
#  ext   in Medium 
#  nuc   in Nucleus 
#  ss    Steady State Value 
#  vitro in vitro KBrO3-GSH sub-model 
# ------------------------------------------------------------------------------ 
 
 
# STATES : 
# =============== 
 
 States = { 
  
 DCF,    # 2’,7’– DiChloroFluorescein 
 DCFDA,  # 2’,7’– DiChloroFluoresceinDiAcetate 
  
 cytAhR, # Cytosolic Arylhydrocarbon Receptor 
 nucAhR, # Nucleic Arylhydrocarbon Receptor 
 CYP1A1, # Cytochrome P450 1A1 
 CYP1A1mRNA, # mRNA of CYP1A1 
 Cystathionine, 
 cytCysteine, # Cytosolic Cysteine 
 extCysteine, # in Medium Cysteine 
 GammaGlutamylCysteine, 
 GCL, # Glutamate-Cysteine Ligase 
 GCLC, # Glutamate-Cysteine Ligase, Catalytic subunit 
 GCLCmRNA, # mRNA of GCLC 
 GCLM, # Glutamate-Cysteine Ligase, Modifier subunit 
 GCLMmRNA, # mRNA of GCLM 
 cytGlutamate, # Cytosolic Glutamate 
 cytGlutamicAminoAcid, # Cytosolic Glutamic Amino Acid 
 extGlutamicAminoAcid, # in Medium Glutamic Amino Acid 
 GlutamylAminoButyrate, 
 cytGlycine, # Cytosolic Glycine 
 GPX, # Glutathione Peroxidase 
 GPXmRNA, # mRNA of GPX 
 GS, # Glutathione Synthetase 
 cytGSH, # Cytosolic Glutathione 
 extGSH, # in Medium Glutathione 
  
 vitroGSH, # to simulation Alice KBrO3 data 
  
 GSmono, # Monomer of GS 
 GSmRNA, # mRNA of GS 
 cytGSSG, # Cytosolic Glutathione Disulfide (Reduced Glutathione) 
 extGSSG, # in Medium Glutathione Disulfide (Reduced Glutathione) 
 GST, # Glutathione S-Transferase 
 GSTmono, # Monomer of GST 
 GSTmRNA, # mRNA of GST 
 Homocysteine, 
 HMOX1, # Heme Oxygenase (decycling) 1 
 HMOX1mRNA, # mRNA of HMOX1  
 Keap1, # Kelch-Like ECH-associated protein 1 
 Keap1o, # Oxidized form of Kelch-Like ECH-associated protein 1 
 extLCysteinylGlycine, # in Medium L-Cysteinyl-Glycine  
 cytMethionine, # Cytosolic Methionin 
 MRP, # Multi-drug Resistance-associated Protein 
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 MRPmono, # Monomer of MRP 
 MRPmRNA, # mRNA of MRP 
 cytNrf2, # Cytosolic Nuclear Factor Erythroid 2 Like 2 
 nucNrf2, # Nucleic Nuclear Factor Erythroid 2 Like 2 
 Nrf2Keap1, # Nrf2-Keap1 Complex 
 Nrf2Keap1o, # Nrf2-Keap1 Complex (Oxidized form) 
 Nrf2mRNA, # mRNA of Nrf2 gene 
 cytOphtalmicAcid, # Cytosolic Ophtalmic Acid 
 cyt5Oxoproline, # Cytosolic 5-Oxoproline 
 ROS, # Reactive Oxygen Species 
 SAH, # S-Adenosyl-Homocysteine 
 SAM, # S-Adenosyl-Methionine 
 SRXN1, # Sulfiredoxin 1 
 SRXN1mRNA, # mRNA of SRXN1 
 cytXAhR, # Cytosolic X-AhR Complex 
 nucXAhR }; # Nucleic X-AhR Complex 
 
 Inputs = {KBrO3        }; # Concentration : Unit : microM (= zeptomol / microm3 )     
 
 Outputs = { 
 Synthesis_GammaGlutamylCysteine_GCL_term, 
 Synthesis_GammaGlutamylCysteine_GCLC_term, 
 Synthesis_GammaGlutamylCysteine, 
 Synthesis1_cyt5Oxoproline, 
 Synthesis_cytGSH, 
 perc_vitroGSH}; 
 
  
# CONSTANTS : 
# =============== 
 # microm3 
  
cytVolume = 2005.89; # Volume of Cytosol 
nucVolume = 200.589; # Volume of Nucleus 
extVolume = 1.43E+6; # Volume of Medium  
totVolume = 1432206; # Total Volume 
 
 # were State Variables under boundary conditions 
 # zeptomol 
  
 ATP = 10029450; # Adenosine TriPhosphate 
 AminoButyrate = 20058.9; # 2-Amino-Butyrate 
 Betaine = 100294.5; 
extGlutamate = 8.58E+7; # in Medium Glutamate 
extGlycine = 1.86E+9; # in Medium Glycine 
 ssGSSG = 133812.9; # Glutathione Disulfide Steady State value 
extMethionine = 4.29E+7; # in Medium Methionine 
 MethylTetraHydroFolate= 8926.21; # 5-Methyl-Tetra-Hydro-Folate 
 NADPH = 100294.5; # Nicotinamide Adenine Dinucleotide Phosphate 
extOphtalmicAcid = 1.43E+6; # in Medium Ophtalmic Acid 
ext5Oxoproline = 1.43E+6; # in Medium 5-Oxoproline 
 ssROS = 20.0589; # ROS Steady State Value 
 Serine = 1129316; 
 
 
# PARAMETERS : 
# =============== 
 
# Eurotox_AOP KBrO3_DCF experiment parameters 
 
k_kbro3    ; # 1/(microM.s) # GSH oxidation by KBrO3 
k_direct   ; # 1/(microM.s) # Direct action of KBrO3 on DCFDA 
k_oxdcf    ; # 1/(zmol.s)   # Oxidation of DFCDA by ROS 
k_e_oxdcf  ; # 1/ s         # DCF bleaching 
b_kbro3_in ; # -            # Intracellular action of KBrO3 on GSH 
 
# Enzymatic Reactions Parameters are destined to Concentrations 
 
# ROS Production and Basal level 
Background_ProductionRate_ROS = 0.02; # microM / s 
 
# Nrf2 Retention by Keap1 Cycle 
Oxidation_Keap1 = 0.26; # 1 /(microM.s) 
Reduction_Keap1o = 0.1; # 1 / s 
Oxidation_Nrf2Keap1 = 0.26; # 1 /(microM.s) 
Reduction_Nrf2Keap1o = 0.1; # 1 / s 
DegradationRate_Nrf2Keap1 = 0.014; # 1 / s 
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DegradationRate_Nrf2Keap1o = 1.00E-4; # 1 / s 
unBind_Nrf2Keap1 = 0.02; # 1 / s 
Bind_cytNrf2_Keap1 = 2; # 1 /(microM.s) 
unBind_Nrf2Keap1o = 0.02; # 1 / s 
Bind_cytNrf2_Keap1o = 2; # 1 /(microM.s) 
 
# XAhR Complex Synthesis in Cytosol and in Nucleus 
unBind_cytXAhR = 0; # 1 / s 
Bind_cytX_cytAhR = 0; # 1 /(microM.s) 
unBind_nucXAhR = 0; # 1 / s 
Bind_nucX_nucAhR = 0; # 1 /(microM.s) 
 
# Transport of XAhR and Nrf2 between Cytosol and Nucleus 
nuc_to_cyt_XAhR = 0.01; # 1 / s 
cyt_to_nuc_XAhR = 0.1; # 1 / s 
nuc_to_cyt_Nrf2 = 0.01; # 1 / s 
cyt_to_nuc_Nrf2 = 0.02; # 1 / s 
 
# Nrf2 Degradation in Nucleus 
DegradationRate_nucNrf2 = 1.00E-4; # 1 / s 
 
# CYP1A1 gene Transcription and CYP1A1 mRNA Translation 
Transcription_CYP1A1_basal = 8.907817E-5; # zeptomol / s 
XAhR_Transcription_CYP1A1_hill = 2; # - 
XAhR_Transcription_CYP1A1_km = 0.0097641; # microM 
XAhR_Transcription_CYP1A1_vmax = 4.23714E-6; # microM / s 
 
DegradationRate_CYP1A1mRNA = 4.81E-5; # 1 / s 
TranslationRate_CYP1A1mRNA = 0.0417; # 1 / s 
DegradationRate_CYP1A1 = 3.85E-5; # 1 / s 
 
# Nrf2 gene Transcription and Nrf2 mRNA Translation 
Transcription_Nrf2_basal = 2.72546E-6; # zeptomol / s 
Nrf2_Transcription_Nrf2_hill = 1; # - 
Nrf2_Transcription_Nrf2_km = 0.00149636; # microM 
Nrf2_Transcription_Nrf2_vmax = 2.70548E-8; # microM / s 
XAhR_Transcription_Nrf2_hill = 2; # - 
XAhR_Transcription_Nrf2_km = 0.00120393; # microM 
XAhR_Transcription_Nrf2_vmax = 2.37072E-8; # microM / s 
Mixed_Transcription_Nrf2_vmax = 2.51270E-8; # microM / s 
 
DegradationRate_Nrf2mRNA = 6.43E-5; # 1 / s 
TranslationRate_Nrf2mRNA = 0.0417; # 1 / s 
DegradationRate_cytNrf2 = 1.00E-4; # 1 / s 
 
# GS gene Transcription and GS mRNA Translation 
Transcription_GS_basal = 0.0001208762; # zeptomol / s 
Nrf2_Transcription_GS_hill = 2; # - 
Nrf2_Transcription_GS_km = 0.00429446; # microM 
Nrf2_Transcription_GS_vmax = 5.46569E-6; # microM / s 
 
DegradationRate_GSmRNA = 4.83E-5; # 1 / s 
TranslationRate_GSmRNA = 0.0417; # 1 / s 
DegradationRate_GSmono = 3.86E-5; # 1 / s 
unBind_GS = 0.02; # 1 / s 
Bind_two_GSmono = 0.2; # 1 /(microM.s) 
DegradationRate_GS = 1.93E-5; # 1 / s 
 
# GCLC gene Transcription and GCLC mRNA Translation 
Transcription_GCLC_basal = 0.0001695692; # zeptomol / s 
Nrf2_Transcription_GCLC_hill = 3; # - 
Nrf2_Transcription_GCLC_km = 0.00238843; # microM 
Nrf2_Transcription_GCLC_vmax = 9.8907E-6; # microM / s 
 
DegradationRate_GCLCmRNA = 4.83E-5; # 1 / s 
TranslationRate_GCLCmRNA = 0.0417; # 1 / s 
DegradationRate_GCLC = 3.86E-5; # 1 / s 
 
# GCLM gene Transcription and GCLM mRNA Translation 
Transcription_GCLM_basal = 9.166869E-5; # zeptomol / s 
Nrf2_Transcription_GCLM_hill = 3; # - 
Nrf2_Transcription_GCLM_km = 0.00382673; # microM 
Nrf2_Transcription_GCLM_vmax = 1.27808E-5; # microM / s 
 
DegradationRate_GCLMmRNA = 4.83E-5; # 1 / s 
TranslationRate_GCLMmRNA = 0.0417; # 1 / s 
DegradationRate_GCLM = 3.86E-5; # 1 / s 
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# GCL Synthesis and Degradation 
unBind_GCL = 0.02; # 1 / s 
Bind_GCLC_GCLM = 0.02; # 1 /(microM.s) 
DegradationRate_GCL = 3.86E-5; # 1 / s 
 
# GST gene Transcription and GST mRNA Translation 
Transcription_GST_basal = 4.918909E-5; # zeptomol / s 
Nrf2_Transcription_GST_hill = 2; # - 
Nrf2_Transcription_GST_km = 0.00318146; # microM 
Nrf2_Transcription_GST_vmax = 1.16523E-6; # microM / s 
XAhR_Transcription_GST_hill = 2; # - 
XAhR_Transcription_GST_km = 0.00310782; # microM 
XAhR_Transcription_GST_vmax = 1.62064E-7; # microM / s 
Mixed_Transcription_GST_vmax = 1.87320E-7; # microM / s 
 
DegradationRate_GSTmRNA = 4.71E-5; # 1 / s 
TranslationRate_GSTmRNA = 0.0417; # 1 / s 
DegradationRate_GSTmono = 1.29E-4; # 1 / s 
unBind_GST = 0.02; # 1 / s 
Bind_two_GSTmono = 0.2; # 1 /(microM.s) 
DegradationRate_GST = 1.29E-5; # 1 / s 
 
# GPX gene Transcription and GPX mRNA Translation 
Transcription_GPX_basal = 4.918909E-5; # zeptomol / s 
Nrf2_Transcription_GPX_km = 0.00318146; # microM 
Nrf2_Transcription_GPX_hill = 2; # - 
Nrf2_Transcription_GPX_vmax = 1.16523E-6; # microM / s 
XAhR_Transcription_GPX_km = 0.00310782; # microM 
XAhR_Transcription_GPX_hill = 2; # - 
XAhR_Transcription_GPX_vmax = 1.62064E-7; # microM / s 
Mixed_Transcription_GPX_vmax = 1.87320E-7; # microM / s 
 
DegradationRate_GPXmRNA = 4.71E-5; # 1 / s 
TranslationRate_GPXmRNA = 0.0417; # 1 / s 
DegradationRate_GPX = 1.29E-5; # 1 / s 
 
# MRP gene Transcription and MRP mRNA Translation 
Transcription_MRP_basal = 0.0001274065; # zeptomol / s 
Nrf2_Transcription_MRP_km = 0.00272391; # microM 
Nrf2_Transcription_MRP_hill = 2; # - 
Nrf2_Transcription_MRP_vmax = 4.50481E-6; # microM / s 
XAhR_Transcription_MRP_km = 0.00374616; # microM 
XAhR_Transcription_MRP_hill = 1; # - 
XAhR_Transcription_MRP_vmax = 2.05536E-6; # microM / s 
Mixed_Transcription_MRP_vmax = 2.26571E-6; # microM / s 
 
DegradationRate_MRPmRNA = 1.93E-5; # 1 / s 
TranslationRate_MRPmRNA = 0.0417; # 1 / s 
DegradationRate_MRPmono = 1.93E-5; # 1 / s 
unBind_MRP = 0.02; # 1 / s 
Bind_two_MRPmono = 0.01; # 1 /(microM.s) 
DegradationRate_MRP = 7.15E-6; # 1 / s 
 
# HMOX1 gene Transcription and HMOX1 mRNA Translation 
Transcription_HMOX1_basal = 0.0001208762; # zeptomol / s 
Nrf2_Transcription_HMOX1_km = 0.00429446; # microM 
Nrf2_Transcription_HMOX1_hill = 2; # - 
Nrf2_Transcription_HMOX1_vmax = 5.46569E-6; # microM / s 
 
DegradationRate_HMOX1mRNA = 4.83E-5; # 1 / s 
TranslationRate_HMOX1mRNA = 0.0417; # 1 / s 
DegradationRate_HMOX1 = 1.93E-5; # 1 / s 
 
# SRXN1 gene Transcription and SRXN1 mRNA Translation 
Transcription_SRXN1_basal = 0.0001208762; # zeptomol / s 
Nrf2_Transcription_SRXN1_km = 0.00429446; # microM 
Nrf2_Transcription_SRXN1_hill = 2; # - 
Nrf2_Transcription_SRXN1_vmax = 5.46569E-6; # microM / s 
 
DegradationRate_SRXN1mRNA = 4.83E-5; # 1 / s 
TranslationRate_SRXN1mRNA = 0.0417; # 1 / s 
DegradationRate_SRXN1 = 1.93E-5; # 1 / s 
 
# Transport of Methionine between Exterior and Cytosol 
cyt_to_ext_Methionine = 2.78E-4; # 1 / s 
ext_to_cyt_Methionine_km = 150; # microM 
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ext_to_cyt_Methionine_vmax = 0.230043; # microM / s 
 
# S-Adenosyl-Methionine (SAM) Synthesis 
 
# Enzyme1: Methionine-Adenosyl-Transferase-I : urn:miriam:ec-code:2.5.1.6 
Synthesis1_SAM_inhib_GSSG = 2140; # microM 
Synthesis1_SAM_inhib_SAM = 50; # microM 
Synthesis1_SAM_km_Methionine = 41; # microM 
Synthesis1_SAM_vmax = 0.16576; # microM / s 
 
# Enzyme2: Methionine-Adenosyl-Transferase-III : urn:miriam:ec-code:2.5.1.6 
Synthesis2_SAM_activ_Methionine_coef = 1.21; # - 
Synthesis2_SAM_activ_SAM_coef = 2; # - 
Synthesis2_SAM_activ_SAM_EC50 = 360; # microM 
Synthesis2_SAM_activ_SAM_Top = 7.2; # - 
Synthesis2_SAM_inhib_GSSG = 4030; # microM 
Synthesis2_SAM_km_Methionine = 300; # microM 
Synthesis2_SAM_vmax = 0.06467; # microM / s 
 
# S-Adenosyl-Homocysteine (SAH) Synthesis 
 
# Enzyme1: DNA-Methyl-Transferase : urn:miriam:ec-code:2.1.1.72 
Synthesis1_SAH_inhib_SAH = 1.4; # microM 
Synthesis1_SAH_km = 1.4; # microM 
Synthesis1_SAH_vmax = 0.05664; # microM / s  
 
# Enzyme2: Glycine-N-Methyl-Transferase : urn:miriam:ec-code:2.1.1.20 
Synthesis2_SAH_inhib_SAH = 18; # microM 
Synthesis2_SAH_km_Glycine = 130; # microM 
Synthesis2_SAH_km_SAM = 32; # microM 
Synthesis2_SAH_vmax = 0.15876; # microM / s 
  
# S-Adenosyl-Homocysteine (SAH) Hydrolysis 
# Enzyme : S-Adenosyl-Homocysteine-Hydrolase : urn:miriam:ec-code:3.3.1.1 
Hydrolysis_SAH_equilibrium = 0.0602; # - 
Hydrolysis_SAH_km_Homocysteine = 150; # microM 
Hydrolysis_SAH_km_SAH = 6.5; # microM 
Hydrolysis_SAH_vmax = 0.7843; # microM / s 
 
# Methionine Synthesis 
 
# Enzyme1: BetaineHomocysteineMethylTransferase: urn:miriam:ec-code:2.1.1.5 
Synthesis1_Methionine_inhib_ROS = 0.01; # microM 
Synthesis1_Methionine_km_Betaine = 100; # microM 
Synthesis1_Methionine_km_Homocysteine = 12; # microM 
Synthesis1_Methionine_vmax = 0.56869; # microM / s 
 
# Enzyme2: Methionine-Synthase : urn:miriam:ec-code:2.1.1.13 
Synthesis2_Methionine_inhib_ROS = 0.01; # microM 
Synthesis2_Methionine_km_Homocysteine = 1; # microM 
Synthesis2_Methionine_km_MethylTetraHydroFolate = 25; # microM 
Synthesis2_Methionine_vmax = 0.086; # microM / s 
 
# Cystathionine Synthesis 
# Enzyme : Cystathionine-Beta-Synthase : urn:miriam:ec-code:4.2.1.22 
Synthesis_Cystathionine_activ_SAM_SAH = 30; # microM 
Synthesis_Cystathionine_activ_SAM_SAH_coef = 2; # - 
Synthesis_Cystathionine_activ_SAM_SAH_Top = 1.086; # - 
Synthesis_Cystathionine_activ_ROS = 0.035; # microM  
Synthesis_Cystathionine_km_Homocysteine = 1000; # microM 
Synthesis_Cystathionine_km_Serine = 2000; # microM 
Synthesis_Cystathionine_vmax = 128.8875; # microM / s 
 
# Cystathionine Hydrolysis  
# Enzyme : Cystathionase : urn:miriam:ec-code:4.4.1.1 
Hydrolysis_Cystathionine_km = 500; # microM 
Hydrolysis_Cystathionine_vmax = 0.398669; # microM / s 
 
# Transport of Cysteine and Glutamic Amino Acid between Exterior and Cytosol 
 
ClearanceRate_extCysteine = 1.40E-4; # 1 / s 
cyt_to_ext_Cysteine = 1.105E-4; # 1 / s 
ext_to_cyt_Cysteine_km = 2100; # microM 
ext_to_cyt_Cysteine_vmax = 0.384561; # microM / s 
 
cyt_to_ext_GlutamicAminoAcid_equilibrium = 13.8755; # - 
cyt_to_ext_GlutamicAminoAcid = 1000; # microM 
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ext_to_cyt_GlutamicAminoAcid_vmax = 27.18925; # microM / s 
ext_to_cyt_GlutamicAminoAcid_km = 1000; # microM 
 
# 5-Oxoproline Synthesis 
# Enzyme : Gamma-Glutamyl-Cyclo-Transferase : urn:miriam:ec-code:2.3.2.4 
# Source1: Gamma-Glutamyl-Cysteine 
Synthesis1_cyt5Oxoproline_equilibrium = 2.80831; # microM 
Synthesis1_cyt5Oxoproline_km_Cysteine = 2177.76; # microM 
Synthesis1_cyt5Oxoproline_km_GammaGlutamylCysteine= 7.9799; # microM 
Synthesis1_cyt5Oxoproline_km_5Oxoproline = 10002.5; # microM 
Synthesis1_cyt5Oxoproline_vmax = 16.6223; # microM / s 
 
# Enzyme : Gamma-Glutamyl-Cyclo-Transferase : urn:miriam:ec-code:2.3.2.4 
# Source2: Glutamic-Amino-Acid  
Synthesis2_cyt5Oxoproline_equilibrium = 4400.48; # - 
Synthesis2_cyt5Oxoproline_km_GlutamicAminoAcid = 2200; # microM 
Synthesis2_cyt5Oxoproline_km_5Oxoproline = 10002.5; # microM 
Synthesis2_cyt5Oxoproline_vmax = 16.6223; # microM / s 
 
# 5-Oxoproline Transport between Exterior and Cytosol 
cyt_to_ext_5Oxoproline = 1.036E-4; # 1 / s 
 
# 5-Oxoproline Hydrolysis 
# Enzyme : 5-Oxoprolinase : urn:miriam:ec-code:3.5.2.9 
Hydrolysis_cyt5Oxoproline_km_Glutamate = 1.18025; # microM 
Hydrolysis_cyt5Oxoproline_km_5Oxoproline = 5.00484; # microM 
Hydrolysis_cyt5Oxoproline_vmax = 235.258; # microM / s 
 
# Transport of Glutamate between Exterior and Cytosol 
cyt_to_ext_Glutamate = 3.6923E-7; # 1 / s 
ext_to_cyt_Glutamate_km = 300; # microM 
ext_to_cyt_Glutamate_vmax = 0.021314; # microM / s 
 
# Gamma-Glutamyl-Cysteine and Glutamyl-Amino-Butyrate Synthesis 
# Enzyme : Glutamyl-Cysteine-Ligase(GCL & GCLC): urn:miriam:ec-code:6.3.2.2 
# Parameters expressed by enzyme name 
# ATP parameters concern Gamma-Glutamyl-Cysteine Synthesis exclusively 
 
freeGCL_ATP_inhib_GSH = 6500; # microM 
boundGCL_ATP_inhib_GSH = 3900; # microM 
GCL_km_ATP = 870; # microM 
 
GCL_catalytic = 8.2; # 1 / s 
GCL_disso_GammaGlutamylCysteine = 300; # microM 
GCL_equilibrium = 0.002366; # 1 / microM 
GCL_inhib_GSH = 8200; # microM 
GCL_km_AminoButyrate = 2300; # microM 
GCL_km_Cysteine = 100; # microM 
GCL_km_Glutamate = 1900; # microM 
GCL_km_GlutamylAminoButyrate = 10000; # microM 
 
freeGCLC_ATP_inhib_GSH = 1300; # microM 
boundGCLC_ATP_inhib_GSH = 400; # microM 
GCLC_km_ATP = 5000; # microM 
 
GCLC_catalytic = 1.9; # 1 / s 
GCLC_disso_GammaGlutamylCysteine= 300; # microM 
GCLC_equilibrium = 0.0024; # 1 / microM 
GCLC_inhib_GSH = 8200; # microM 
GCLC_km_AminoButyrate = 2300; # microM 
GCLC_km_Cysteine = 100; # microM 
GCLC_km_Glutamate = 1900; # microM 
GCLC_km_GlutamylAminoButyrate = 10000; # microM 
 
# Transport of Glycine between Exterior and Cytosol 
cyt_to_ext_Glycine = 2.15E-5; # 1 / s 
ext_to_cyt_Glycine_km = 150; # microM 
ext_to_cyt_Glycine_vmax = 0.089136; # microM / s 
 
# Glutathione (GSH) and Ophtalmic Acid Synthesis 
# Enzyme : Glutathione-Synthetase (GS) : urn:miriam:ec-code:6.3.2.3 
# Parameters expressed by enzyme name 
# ATP parameters concern Glutathione (GSH) Synthesis exclusively 
# GS_equilibrium are reaction specific (we have 2 different values) 
 
GS_km_ATP = 70000; # microM 
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GS_catalytic = 6.5; # 1 / s 
GS_disso_GSH = 30; # microM 
GS_km_GammaGlutamylCysteine = 22; # microM 
GS_km_GlutamylAminoButyrate = 200; # microM 
GS_km_Glycine = 300; # microM 
GS_km_OphtalmicAcid = 100; # microM 
 
GS_equilibrium_GSH = 0.217774; # 1 / microM 
GS_equilibrium_OphtalmicAcid = 0.002203; # 1 / microM 
 
# Transport of Ophtalmic Acid between Exterior and Cytosol 
cyt_to_ext_OphtalmicAcid = 0.25026; # 1 / s 
 
# Export of Glutathione from Cytosol to Exterior 
cyt_to_ext_highaffinity_GSH_km = 150; # microM 
cyt_to_ext_highaffinity_GSH_vmax= 0.019; # microM / s 
cyt_to_ext_lowaffinity_GSH_hill = 3; # - 
cyt_to_ext_lowaffinity_GSH_km = 3000; # microM 
cyt_to_ext_lowaffinity_GSH_vmax = 0.099; # microM / s 
 
# Glutathione Hydrolysis in Blood 
# Enzyme : Gamma-Glutamyl-Trans-Peptidase : urn:miriam:ec-code:2.3.2.2 
Hydrolysis_extGSH_km_GlutamicAminoAcid = 979.802; # microM 
Hydrolysis_extGSH_km_GSH = 670; # microM 
Hydrolysis_extGSH_km_LCysteinylGlycine = 1090; # microM 
Hydrolysis_extGSH_equilibrium = 99915.6; # microM 
Hydrolysis_extGSH_vmax = 2.42926; # microM / s 
 
# LCysteinylGlycine Hydrolysis 
# Enzyme : Amino-Peptidase : urn:miriam:ec-code:3.4.11.2 
Hydrolysis_extLCysteinylGlycine_km_Cysteine = 9988.69; # microM 
Hydrolysis_extLCysteinylGlycine_km_LCysteinylGlycine= 2500; # microM 
Hydrolysis_extLCysteinylGlycine_equlibrium = 98.3765; # - 
Hydrolysis_extLCysteinylGlycine_vmax = 40.387; # microM / s 
 
# Glutathione Oxidation 
# Enzyme : Glutathione-Peroxidase : urn:miriam:ec-code:1.11.1.9 
Oxidation_cytGSH_catalytic = 0.46935; # 1 / s 
Oxidation_cytGSH_km_GSH = 1330; # microM 
Oxidation_cytGSH_km_ROS = 0.09; # microM 
Oxidation_cytGSH_coef_GSH = 2; # - 
 
# Glutathione Disulfide Reduction 
# Enzyme : Glutathione-Reductase : urn:miriam:ec-code:1.8.1.7 
Reduction_cytGSSG_km_GSSG = 107; # microM 
Reduction_cytGSSG_km_NADPH = 10.4; # microM 
Reduction_cytGSSG_vmax = 0.04; # microM / s 
 
# Export of Glutathione Disulfide from Cytosol to Exterior 
cyt_to_ext_highaffinity_GSSG_activ_ROS = 0.01; # microM 
cyt_to_ext_highaffinity_GSSG_km = 1250; # microM 
cyt_to_ext_highaffinity_GSSG_vmax = 5.83E-5; # microM / s 
cyt_to_ext_lowaffinity_GSSG_activ_ROS = 0.01; # microM 
cyt_to_ext_lowaffinity_GSSG_km = 7710; # microM 
cyt_to_ext_lowaffinity_GSSG_vmax = 0.001116; # microM / s 
 
# Glutathione Disulfide Hydrolysis in Blood 
Hydrolysis_extGSSG_vmax = 0.002839; # 1 / s 
 
# Initial state values (zmol) 
 
cytAhR_0 = 40.1178; 
nucAhR_0 = 0; 
CYP1A1_0 = 2005.86; 
CYP1A1mRNA_0 = 1.85194; 
Cystathionine_0 = 82072; 
cytCysteine_0 = 123348; 
extCysteine_0 = 432066; 
GammaGlutamylCysteine_0 = 138662; 
GCL_0 = 1164.2; 
GCLC_0 = 2634.69; 
GCLCmRNA_0 = 3.51648; 
GCLM_0 = 888.065; 
GCLMmRNA_0 = 1.8997; 
cytGlutamate_0 = 1.91895E6; 
cytGlutamicAminoAcid_0 = 6212.14; 
extGlutamicAminoAcid_0 = 1.55258E6; 
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GlutamylAminoButyrate_0 = 1820.31; 
cytGlycine_0 = 2.47981E6; 
GPX_0 = 3400.22; 
GPXmRNA_0 = 1.05187; 
GS_0 = 2078.05; 
cytGSH_0 = 2.4717E6; 
extGSH_0 = 12934.7;  
vitroGSH_0 = 1;      # to simulate Alice KBrO3 data 
GSmono_0 = 645.938; 
GSmRNA_0 = 2.52148; 
cytGSSG_0 = 326079; 
extGSSG_0 = 22.0471; 
GST_0 = 358.627; 
GSTmono_0 = 268.296; 
GSTmRNA_0 = 1.05187; 
Homocysteine_0 = 2646.54; 
HMOX1_0 = 5447.97; 
HMOX1mRNA_0 = 2.52148;  
Keap1_0 = 38.8604; 
Keap1o_0 = 1.10841; 
extLCysteinylGlycine_0 = 7291.82; 
cytMethionine_0 = 59056; 
MRP_0 = 10691.3; 
MRPmono_0 = 6550.31; 
MRPmRNA_0 = 6.698; 
cytNrf2_0 = 0.12548; 
nucNrf2_0 = 0.0248475; 
Nrf2Keap1_0 = 0.144365; 
Nrf2Keap1o_0 =0.00458466; 
Nrf2mRNA_0 = 0.0488393; 
cytOphtalmicAcid_0 = 2029.27;  
cyt5Oxoproline_0 = 6265.33; 
ROS_0 = 22.0145; 
SAH_0 = 48279.1; 
SAM_0 = 50307.8; 
SRXN1_0 = 5447.97; 
SRXN1mRNA_0 = 2.52148; 
cytXAhR_0 = 0; 
nucXAhR_0 = 0;  
 
 
# fold changes for initial state values 
 
FC_GPX7mRNA = 1; 
FC_GCLCmRNA = 1; 
FC_GCLMmRNA = 1; 
FC_NFE2L2mRNA = 1; 
FC_GSSmRNA = 1; 
FC_ABCC1mRNA = 1; 
 
 
# statistical parameters 
sd1; 
sd2; 
sd3; 
sd4; 
sd5; 
  
# INITIALIZE: 
# =========== 
 
Initialize { 
 
 # Initial state values (zeptomol) 
 
 cytAhR = cytAhR_0; 
 nucAhR = nucAhR_0; 
 CYP1A1 = CYP1A1_0; 
 CYP1A1mRNA = CYP1A1mRNA_0; 
 Cystathionine = Cystathionine_0; 
 cytCysteine = cytCysteine_0; 
 extCysteine = extCysteine_0; 
 GammaGlutamylCysteine = GammaGlutamylCysteine_0; 
 GCL = GCL_0; 
 GCLC = GCLC_0; 
 GCLCmRNA = GCLCmRNA_0 * FC_GCLCmRNA; # modulable 
 GCLM = GCLM_0; 
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 GCLMmRNA = GCLMmRNA_0 * FC_GCLMmRNA; # modulable 
 cytGlutamate = cytGlutamate_0; 
 cytGlutamicAminoAcid = cytGlutamicAminoAcid_0; 
 extGlutamicAminoAcid = extGlutamicAminoAcid_0; 
 GlutamylAminoButyrate = GlutamylAminoButyrate_0; 
 cytGlycine = cytGlycine_0; 
 GPX = GPX_0; 
 GPXmRNA = GPXmRNA_0 * FC_GPX7mRNA; # modulable 
 GS = GS_0; 
 cytGSH = cytGSH_0; 
 extGSH = extGSH_0; 
  
 vitroGSH = vitroGSH_0; 
 
 GSmono = GSmono_0; 
 GSmRNA = GSmRNA_0 * FC_GSSmRNA; # modulable 
 cytGSSG = cytGSSG_0; 
 extGSSG = extGSSG_0; 
 GST = GST_0; 
 GSTmono = GSTmono_0; 
 GSTmRNA = GSTmRNA_0; 
 Homocysteine = Homocysteine_0; 
 HMOX1 = HMOX1_0; 
 HMOX1mRNA = HMOX1mRNA_0; 
 Keap1 = Keap1_0; 
 Keap1o = Keap1o_0; 
 extLCysteinylGlycine = extLCysteinylGlycine_0; 
 cytMethionine = cytMethionine_0; 
 MRP = MRP_0; 
 MRPmono = MRPmono_0; 
 MRPmRNA = MRPmRNA_0 * FC_ABCC1mRNA; # modulable 
 cytNrf2 = cytNrf2_0; 
 nucNrf2 = nucNrf2_0; 
 Nrf2Keap1 = Nrf2Keap1_0; 
 Nrf2Keap1o = Nrf2Keap1o_0; 
 Nrf2mRNA = Nrf2mRNA_0 * FC_NFE2L2mRNA; # modulable 
 cytOphtalmicAcid = cytOphtalmicAcid_0; 
 cyt5Oxoproline = cyt5Oxoproline_0; 
 ROS = ROS_0; 
 SAH = SAH_0; 
 SAM = SAM_0; 
 SRXN1 = SRXN1_0; 
 SRXN1mRNA = SRXN1mRNA_0; 
 cytXAhR = cytXAhR_0; 
 nucXAhR = nucXAhR_0; 
 
} # End of Initialize 
  
  
# DYNAMICS:  
# =========  
  
# Reaction Rates are "Mass / Time" (Unit: zeptomol/s) 
# for all state variables except for those 
# starting with ext and wall : "Concentration / Time" (Unit: microM /s) 
 
Dynamics { 
 
 # Eurotox_AOP KBrO3_DCF experiment dynamics 
 KBrO3_Action_cytGSH      = b_kbro3_in * k_kbro3    * KBrO3 *   cytGSH ; 
 KBrO3_Action_extGSH      =              k_kbro3    * KBrO3 *   extGSH ; 
 KBrO3_Action_vitroGSH    =              k_kbro3    * KBrO3 * vitroGSH ;  
 KBrO3_DirectAction_DCFDA =              k_direct   * KBrO3 *    DCFDA ; 
 KBrO3_Oxidation_DCFDA    =              k_oxdcf    * ROS   *    DCFDA ; 
 DCF_Bleaching            =              k_e_oxdcf  * DCF              ; 
 
 Background_Production_ROS = cytVolume 
 * Background_ProductionRate_ROS; 
 
 # Nrf2 Retention by Keap1 Cycle 
 Redox_Keap1 = cytVolume 
 * (Oxidation_Keap1 * (Keap1 / cytVolume ) 
  * (ROS / cytVolume ) 
 - Reduction_Keap1o * (Keap1o / cytVolume )); 
 Redox_Nrf2Keap1 = cytVolume 
 * (Oxidation_Nrf2Keap1 * (Nrf2Keap1 / cytVolume ) 
  * (ROS / cytVolume ) 
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 - Reduction_Nrf2Keap1o * (Nrf2Keap1o / cytVolume )); 
 Degradation_Nrf2Keap1 = cytVolume 
 * (DegradationRate_Nrf2Keap1 * (Nrf2Keap1 / cytVolume )); 
 Degradation_Nrf2Keap1o = cytVolume 
 * (DegradationRate_Nrf2Keap1o * (Nrf2Keap1o / cytVolume )); 
 Complex_Nrf2Keap1 = cytVolume 
 * (Bind_cytNrf2_Keap1 * (cytNrf2 / cytVolume ) 
  * (Keap1 / cytVolume ) 
 - unBind_Nrf2Keap1 * (Nrf2Keap1 / cytVolume )); 
 Complex_Nrf2Keap1o = cytVolume 
 * (Bind_cytNrf2_Keap1o * (cytNrf2 / cytVolume ) 
  * (Keap1o / cytVolume ) 
 - unBind_Nrf2Keap1o * (Nrf2Keap1o / cytVolume )); 
  
 # XAhR Complex Synthesis in Cytosol and in Nucleus 
 Complex_cytXAhR = 0; 
 Complex_nucXAhR = 0; 
  
 # Transport of XAhR and Nrf2 between Cytosol and Nucleus 
 CytNuc_Transport_XAhR = nucVolume 
 * (cyt_to_nuc_XAhR * (cytXAhR / cytVolume ) 
 - nuc_to_cyt_XAhR * (nucXAhR / nucVolume )); 
 CytNuc_Transport_Nrf2 = nucVolume 
 * (cyt_to_nuc_Nrf2 * (cytNrf2 / cytVolume ) 
 - nuc_to_cyt_Nrf2 * (nucNrf2 / nucVolume )); 
 
 # Nrf2 Degradation in Nucleus 
 Degradation_nucNrf2 = nucVolume 
 * (DegradationRate_nucNrf2 * (nucNrf2 / nucVolume )); 
 
 # CYP1A1 gene Transcription and CYP1A1 mRNA Translation 
 Transcription_CYP1A1 = 
 Transcription_CYP1A1_basal + nucVolume 
 * ((XAhR_Transcription_CYP1A1_vmax * (pow((nucXAhR / nucVolume ), 
 XAhR_Transcription_CYP1A1_hill ))) /((pow 
 (XAhR_Transcription_CYP1A1_km, XAhR_Transcription_CYP1A1_hill )) 
 + (pow((nucXAhR / nucVolume ), XAhR_Transcription_CYP1A1_hill)))); 
 Degradation_CYP1A1mRNA = cytVolume 
 * (DegradationRate_CYP1A1mRNA * (CYP1A1mRNA / cytVolume )); 
 Translation_CYP1A1mRNA = cytVolume 
 * (TranslationRate_CYP1A1mRNA * (CYP1A1mRNA / cytVolume )); 
 Degradation_CYP1A1 = cytVolume 
 * (DegradationRate_CYP1A1 * (CYP1A1 / cytVolume )); 
 
 # Nrf2 gene Transcription and Nrf2 mRNA Translation 
 Transcription_Nrf2 = Transcription_Nrf2_basal + nucVolume 
 *(((Nrf2_Transcription_Nrf2_vmax * (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_Nrf2_hill))) /((pow 
 (Nrf2_Transcription_Nrf2_km, Nrf2_Transcription_Nrf2_hill)) 
 + (pow((nucNrf2 / nucVolume), Nrf2_Transcription_Nrf2_hill))))  
 + ((XAhR_Transcription_Nrf2_vmax * (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_Nrf2_hill))) /((pow 
 (XAhR_Transcription_Nrf2_km, XAhR_Transcription_Nrf2_hill)) 
 + (pow((nucXAhR / nucVolume), XAhR_Transcription_Nrf2_hill))))  
 - ((Mixed_Transcription_Nrf2_vmax * (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_Nrf2_hill)) * (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_Nrf2_hill))) /(((pow(Nrf2_Transcription_Nrf2_km, 
 Nrf2_Transcription_Nrf2_hill)) + (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_Nrf2_hill))) *((pow (XAhR_Transcription_Nrf2_km, 
 XAhR_Transcription_Nrf2_hill)) + (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_Nrf2_hill)))))); 
 Degradation_Nrf2mRNA = cytVolume 
 * (DegradationRate_Nrf2mRNA * (Nrf2mRNA / cytVolume ));  
 Translation_Nrf2mRNA = cytVolume 
 * (TranslationRate_Nrf2mRNA * (Nrf2mRNA / cytVolume )); 
 Degradation_cytNrf2 = cytVolume 
 * (DegradationRate_cytNrf2 * (cytNrf2 / cytVolume )); 
 
 # GS gene Transcription and GS mRNA Translation 
 Transcription_GS = 
 Transcription_GS_basal + nucVolume 
 * ((Nrf2_Transcription_GS_vmax * (pow((nucNrf2 / nucVolume ), 
 Nrf2_Transcription_GS_hill ))) /((pow 
 (Nrf2_Transcription_GS_km, Nrf2_Transcription_GS_hill )) 
 + (pow((nucNrf2 / nucVolume ), Nrf2_Transcription_GS_hill )))); 
 Degradation_GSmRNA = cytVolume 
 * (DegradationRate_GSmRNA * (GSmRNA / cytVolume )); 
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 Translation_GSmRNA = cytVolume 
 * (TranslationRate_GSmRNA * (GSmRNA / cytVolume )); 
 Degradation_GSmono = cytVolume 
 * (DegradationRate_GSmono * (GSmono / cytVolume )); 
 Complex_GS = cytVolume 
 * (Bind_two_GSmono * (GSmono / cytVolume ) 
  * (GSmono / cytVolume ) 
 - unBind_GS * (GS / cytVolume )); 
 Degradation_GS = cytVolume 
 * (DegradationRate_GS * (GS / cytVolume )); 
 
 # GCLC gene Transcription and GCLC mRNA Translation 
 Transcription_GCLC = 
 Transcription_GCLC_basal + nucVolume 
 * ((Nrf2_Transcription_GCLC_vmax * (pow((nucNrf2 / nucVolume ), 
 Nrf2_Transcription_GCLC_hill ))) /((pow 
 (Nrf2_Transcription_GCLC_km, Nrf2_Transcription_GCLC_hill )) 
 + (pow((nucNrf2 / nucVolume ), Nrf2_Transcription_GCLC_hill )))); 
 Degradation_GCLCmRNA = cytVolume 
 * (DegradationRate_GCLCmRNA * (GCLCmRNA / cytVolume )); 
 Translation_GCLCmRNA = cytVolume 
 * (TranslationRate_GCLCmRNA * (GCLCmRNA / cytVolume )); 
 Degradation_GCLC = cytVolume 
 * (DegradationRate_GCLC * (GCLC / cytVolume )); 
 
 # GCLM gene Transcription and GCLM mRNA Translation 
 Transcription_GCLM = 
 Transcription_GCLM_basal + nucVolume 
 * ((Nrf2_Transcription_GCLM_vmax * (pow((nucNrf2 / nucVolume ), 
 Nrf2_Transcription_GCLM_hill ))) /((pow 
 (Nrf2_Transcription_GCLM_km, Nrf2_Transcription_GCLM_hill )) 
 + (pow((nucNrf2 / nucVolume ), Nrf2_Transcription_GCLM_hill )))); 
 Degradation_GCLMmRNA = cytVolume 
 * (DegradationRate_GCLMmRNA * (GCLMmRNA / cytVolume )); 
 Translation_GCLMmRNA = cytVolume 
 * (TranslationRate_GCLMmRNA * (GCLMmRNA / cytVolume )); 
 Degradation_GCLM = cytVolume 
 * (DegradationRate_GCLM * (GCLM / cytVolume )); 
 
 # GCL Synthesis and Degradation 
 Complex_GCL = cytVolume 
 * (Bind_GCLC_GCLM * (GCLC / cytVolume ) 
  * (GCLM / cytVolume ) 
 - unBind_GCL * (GCL / cytVolume )); 
 Degradation_GCL = cytVolume 
 * (DegradationRate_GCL * (GCL / cytVolume )); 
 
 # GST gene Transcription and GST mRNA Translation 
 Transcription_GST = Transcription_GST_basal + nucVolume 
 *(((Nrf2_Transcription_GST_vmax * (pow((nucNrf2/ nucVolume), 
 Nrf2_Transcription_GST_hill))) /((pow 
 (Nrf2_Transcription_GST_km, Nrf2_Transcription_GST_hill)) 
 + (pow((nucNrf2 / nucVolume), Nrf2_Transcription_GST_hill))))  
 + ((XAhR_Transcription_GST_vmax* (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GST_hill))) /((pow 
 (XAhR_Transcription_GST_km, XAhR_Transcription_GST_hill)) 
 + (pow((nucXAhR / nucVolume), XAhR_Transcription_GST_hill))))  
 - ((Mixed_Transcription_GST_vmax* (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_GST_hill)) * (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GST_hill))) /(((pow(Nrf2_Transcription_GST_km, 
 Nrf2_Transcription_GST_hill)) + (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_GST_hill))) *((pow(XAhR_Transcription_GST_km, 
 XAhR_Transcription_GST_hill)) + (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GST_hill)))))); 
 Degradation_GSTmRNA = cytVolume 
 * (DegradationRate_GSTmRNA * (GSTmRNA / cytVolume )); 
 Translation_GSTmRNA = cytVolume 
 * (TranslationRate_GSTmRNA * (GSTmRNA / cytVolume )); 
 Degradation_GSTmono = cytVolume 
 * (DegradationRate_GSTmono * (GSTmono / cytVolume )); 
 Complex_GST = cytVolume 
 * (Bind_two_GSTmono * (GSTmono / cytVolume ) 
  * (GSTmono / cytVolume ) 
 - unBind_GST * (GST / cytVolume )); 
 Degradation_GST = cytVolume 
 * (DegradationRate_GST * (GST / cytVolume )); 
 



209 
 

 # GPX gene Transcription and GPX mRNA Translation 
 Transcription_GPX= Transcription_GPX_basal+ nucVolume 
 *(((Nrf2_Transcription_GPX_vmax* (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_GPX_hill))) /((pow 
 (Nrf2_Transcription_GPX_km, Nrf2_Transcription_GPX_hill)) 
 + (pow((nucNrf2 / nucVolume), Nrf2_Transcription_GPX_hill))))  
 + ((XAhR_Transcription_GPX_vmax* (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GPX_hill))) /((pow 
 (XAhR_Transcription_GPX_km, XAhR_Transcription_GPX_hill)) 
 + (pow((nucXAhR / nucVolume), XAhR_Transcription_GPX_hill))))  
 - ((Mixed_Transcription_GPX_vmax* (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_GPX_hill)) * (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GPX_hill))) /(((pow(Nrf2_Transcription_GPX_km, 
 Nrf2_Transcription_GPX_hill)) + (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_GPX_hill))) *((pow (XAhR_Transcription_GPX_km, 
 XAhR_Transcription_GPX_hill)) + (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_GPX_hill)))))); 
 Degradation_GPXmRNA = cytVolume * 
 (DegradationRate_GPXmRNA * (GPXmRNA / cytVolume )); 
 Translation_GPXmRNA = cytVolume * 
 (TranslationRate_GPXmRNA * (GPXmRNA / cytVolume )); 
 Degradation_GPX = cytVolume * 
 (DegradationRate_GPX * (GPX / cytVolume )); 
 
 # MRP gene Transcription and MRP mRNA Translation 
 Transcription_MRP=Transcription_MRP_basal+ nucVolume 
 *(((Nrf2_Transcription_MRP_vmax* (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_MRP_hill))) /((pow 
 (Nrf2_Transcription_MRP_km, Nrf2_Transcription_MRP_hill)) 
 + (pow((nucNrf2 / nucVolume), Nrf2_Transcription_MRP_hill))))  
 + ((XAhR_Transcription_MRP_vmax* (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_MRP_hill))) /((pow 
 (XAhR_Transcription_MRP_km, XAhR_Transcription_MRP_hill)) 
 + (pow((nucXAhR / nucVolume), XAhR_Transcription_MRP_hill))))  
 - ((Mixed_Transcription_MRP_vmax* (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_MRP_hill)) * (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_MRP_hill))) /(((pow(Nrf2_Transcription_MRP_km, 
 Nrf2_Transcription_MRP_hill)) + (pow((nucNrf2 / nucVolume), 
 Nrf2_Transcription_MRP_hill))) *((pow (XAhR_Transcription_MRP_km, 
 XAhR_Transcription_MRP_hill)) + (pow((nucXAhR / nucVolume), 
 XAhR_Transcription_MRP_hill)))))); 
 Degradation_MRPmRNA = cytVolume 
 * (DegradationRate_MRPmRNA * (MRPmRNA / cytVolume )); 
 Translation_MRPmRNA = cytVolume 
 * (TranslationRate_MRPmRNA * (MRPmRNA / cytVolume )); 
 Degradation_MRPmono = cytVolume 
 * (DegradationRate_MRPmono * (MRPmono / cytVolume )); 
 Complex_MRP = cytVolume 
 * (Bind_two_MRPmono * (MRPmono / cytVolume ) 
  * (MRPmono / cytVolume ) 
 - unBind_MRP * (MRP / cytVolume )); 
 Degradation_MRP = cytVolume 
 * (DegradationRate_MRP * (MRP / cytVolume )); 
 
 # HMOX1 gene Transcription and HMOX1 mRNA Translation 
 Transcription_HMOX1 = 
 Transcription_HMOX1_basal + nucVolume 
 * ((Nrf2_Transcription_HMOX1_vmax * (pow((nucNrf2 / nucVolume ), 
 Nrf2_Transcription_HMOX1_hill ))) /((pow 
 (Nrf2_Transcription_HMOX1_km, Nrf2_Transcription_HMOX1_hill )) 
 + (pow((nucNrf2 / nucVolume ), Nrf2_Transcription_HMOX1_hill)))); 
 Degradation_HMOX1mRNA = cytVolume 
 * (DegradationRate_HMOX1mRNA * (HMOX1mRNA / cytVolume )); 
 Translation_HMOX1mRNA = cytVolume 
 * (TranslationRate_HMOX1mRNA * (HMOX1mRNA / cytVolume )); 
 Degradation_HMOX1 = cytVolume 
 * (DegradationRate_HMOX1 * (HMOX1 / cytVolume )); 
 
 # SRXN1 gene Transcription and SRXN1 mRNA Translation 
 Transcription_SRXN1 = 
 Transcription_SRXN1_basal + nucVolume 
 * ((Nrf2_Transcription_SRXN1_vmax * (pow((nucNrf2 / nucVolume ), 
 Nrf2_Transcription_SRXN1_hill ))) /((pow 
 (Nrf2_Transcription_SRXN1_km, Nrf2_Transcription_SRXN1_hill )) 
 + (pow((nucNrf2 / nucVolume ), Nrf2_Transcription_SRXN1_hill)))); 
 Degradation_SRXN1mRNA = cytVolume 
 * (DegradationRate_SRXN1mRNA * (SRXN1mRNA / cytVolume )); 
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 Translation_SRXN1mRNA = cytVolume 
 * (TranslationRate_SRXN1mRNA * (SRXN1mRNA / cytVolume )); 
 Degradation_SRXN1 = cytVolume 
 * (DegradationRate_SRXN1 * (SRXN1 / cytVolume )); 
  
 # Transport of Methionine between Exterior and Cytosol 
 ExtCyt_Transport_Methionine = cytVolume 
 *(((ext_to_cyt_Methionine_vmax * (extMethionine / extVolume )) 
 / (ext_to_cyt_Methionine_km + (extMethionine / extVolume ))) 
 - (cyt_to_ext_Methionine * (cytMethionine / cytVolume ))); 
 
 # S-Adenosyl-Methionine (SAM) Synthesis 
  
 # Enzyme1: Methionine-Adenosyl-Transferase-I : urn:miriam:ec-code:2.5.1.6 
 Synthesis1_SAM = cytVolume 
 *(((Synthesis1_SAM_vmax * (cytMethionine / cytVolume )) 
 / (Synthesis1_SAM_km_Methionine + (cytMethionine / cytVolume ) 
 + ((Synthesis1_SAM_km_Methionine * (SAM / cytVolume )) 
 / Synthesis1_SAM_inhib_SAM ))) * 
 ((Synthesis1_SAM_inhib_GSSG + ( ssGSSG / cytVolume )) 
 / (Synthesis1_SAM_inhib_GSSG + (cytGSSG / cytVolume )))); 
  
 # Enzyme2: Methionine-Adenosyl-Transferase-III : urn:miriam:ec-code:2.5.1.6 
 Synthesis2_SAM = cytVolume 
 * (((Synthesis2_SAM_vmax * (pow((cytMethionine / cytVolume ), 
 Synthesis2_SAM_activ_Methionine_coef)))/((pow 
 (Synthesis2_SAM_km_Methionine, Synthesis2_SAM_activ_Methionine_coef )) 
 + (pow((cytMethionine / cytVolume),Synthesis2_SAM_activ_Methionine_coef)))) 
 * (1+ ((Synthesis2_SAM_activ_SAM_Top * (pow((SAM / cytVolume ), 
 Synthesis2_SAM_activ_SAM_coef ))) / ((pow 
 (Synthesis2_SAM_activ_SAM_EC50, Synthesis2_SAM_activ_SAM_coef )) 
 + (pow((SAM / cytVolume),Synthesis2_SAM_activ_SAM_coef ))))) 
 * ((Synthesis2_SAM_inhib_GSSG + ( ssGSSG / cytVolume )) 
 / (Synthesis2_SAM_inhib_GSSG + (cytGSSG / cytVolume )))); 
  
 # S-Adenosyl-Homocysteine (SAH) Synthesis 
 
 # Enzyme1: DNA-Methyl-Transferase : urn:miriam:ec-code:2.1.1.72 
 Synthesis1_SAH = cytVolume 
 * ((Synthesis1_SAH_vmax * (SAM / cytVolume )) 
 / (Synthesis1_SAH_km * (1 + 
  ((SAH / cytVolume ) 
 / Synthesis1_SAH_inhib_SAH )) + (SAM / cytVolume ))); 
 
 # Enzyme2: Glycine-N-Methyl-Transferase : urn:miriam:ec-code:2.1.1.20 
 Synthesis2_SAH = cytVolume 
 * ((Synthesis2_SAH_vmax * (cytGlycine / cytVolume ) 
  * (SAM / cytVolume )) 
 / ((Synthesis2_SAH_km_Glycine + (cytGlycine / cytVolume )) 
 * (Synthesis2_SAH_km_SAM + (SAM / cytVolume )) 
 * (1  + (SAH / cytVolume ) 
 / Synthesis2_SAH_inhib_SAH  ))); 
 
 # S-Adenosyl-Homocysteine (SAH) Hydrolysis 
 # Enzyme : S-Adenosyl-Homocysteine-Hydrolase : urn:miriam:ec-code:3.3.1.1 
 Hydrolysis_SAH = cytVolume 
 * ((Hydrolysis_SAH_vmax * ((SAH / cytVolume ) 
 - ((Homocysteine / cytVolume ) / Hydrolysis_SAH_equilibrium ))) 
 / (Hydrolysis_SAH_km_SAH + (SAH / cytVolume ) 
 + ((Hydrolysis_SAH_km_SAH * (Homocysteine / cytVolume )) 
 / Hydrolysis_SAH_km_Homocysteine  ))); 
 
 # Methionine Synthesis 
 
 # Enzyme1: BetaineHomocysteineMethylTransferase: urn:miriam:ec-code:2.1.1.5 
 Synthesis1_Methionine = cytVolume 
 *(((Synthesis1_Methionine_vmax * (Betaine / cytVolume ) 
  * (Homocysteine / cytVolume )) 
 / ((Synthesis1_Methionine_km_Homocysteine + (Homocysteine / cytVolume )) 
 * (Synthesis1_Methionine_km_Betaine + (Betaine / cytVolume )))) 
 * ((Synthesis1_Methionine_inhib_ROS + (ssROS / cytVolume )) 
 / (Synthesis1_Methionine_inhib_ROS + ( ROS / cytVolume )))); 
 
 # Enzyme2: Methionine-Synthase : urn:miriam:ec-code:2.1.1.13 
 Synthesis2_Methionine = cytVolume 
 *(((Synthesis2_Methionine_vmax * (Homocysteine / cytVolume ) 
 * (MethylTetraHydroFolate/ cytVolume )) 
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 / ((Synthesis2_Methionine_km_Homocysteine + (Homocysteine / cytVolume )) 
 * (Synthesis2_Methionine_km_MethylTetraHydroFolate 
 + (MethylTetraHydroFolate/ cytVolume)))) 
 * ((Synthesis2_Methionine_inhib_ROS + (ssROS / cytVolume )) 
 / (Synthesis2_Methionine_inhib_ROS + ( ROS / cytVolume )))); 
 
 # Cystathionine Synthesis 
 # Enzyme : Cystathionine-Beta-Synthase : urn:miriam:ec-code:4.2.1.22 
 Synthesis_Cystathionine = cytVolume 
 *(((Synthesis_Cystathionine_vmax * (Serine / cytVolume ) 
  * (Homocysteine / cytVolume )) 
 / ((Synthesis_Cystathionine_km_Homocysteine 
 + (Homocysteine / cytVolume )) 
 * (Synthesis_Cystathionine_km_Serine + (Serine / cytVolume )))) 
 * ((Synthesis_Cystathionine_activ_SAM_SAH_Top 
 * (pow(((SAM / cytVolume ) + (SAH / cytVolume )), 
 Synthesis_Cystathionine_activ_SAM_SAH_coef ))) /((pow 
 (Synthesis_Cystathionine_activ_SAM_SAH, 
 Synthesis_Cystathionine_activ_SAM_SAH_coef )) 
 + (pow(((SAM / cytVolume ) + (SAH / cytVolume )), 
 Synthesis_Cystathionine_activ_SAM_SAH_coef )))) 
 * ((Synthesis_Cystathionine_activ_ROS + (ROS / cytVolume )) 
 / (Synthesis_Cystathionine_activ_ROS + (ssROS / cytVolume )))); 
  
 # Cystathionine Hydrolysis 
 # Enzyme : Cystathionase : urn:miriam:ec-code:4.4.1.1 
 Hydrolysis_Cystathionine = cytVolume 
 * ((Hydrolysis_Cystathionine_vmax * (Cystathionine / cytVolume )) 
 / (Hydrolysis_Cystathionine_km + (Cystathionine / cytVolume )));  
 
 # Transport of Cysteine and Glutamic Amino Acid between Exterior and Cytosol 
 ExtCyt_Transport_Cysteine = cytVolume 
 *(((ext_to_cyt_Cysteine_vmax * (extCysteine / extVolume )) 
 / (ext_to_cyt_Cysteine_km + (extCysteine / extVolume ))) 
 - (cyt_to_ext_Cysteine * (cytCysteine / cytVolume ))); 
 Clearance_extCysteine = extVolume 
 * (ClearanceRate_extCysteine * (extCysteine / extVolume )); 
 
 ExtCyt_Transport_GlutamicAminoAcid = cytVolume 
 * ((ext_to_cyt_GlutamicAminoAcid_vmax * 
 (extGlutamicAminoAcid / extVolume ) * ( 1 - ( 
 (cytGlutamicAminoAcid / cytVolume ) 
 / (cyt_to_ext_GlutamicAminoAcid_equilibrium 
 * ((extGlutamicAminoAcid /extVolume))))))/ (ext_to_cyt_GlutamicAminoAcid_km 
 * (1 + ((extGlutamicAminoAcid/extVolume) / ext_to_cyt_GlutamicAminoAcid_km) 
 + ((cytGlutamicAminoAcid / cytVolume ) / cyt_to_ext_GlutamicAminoAcid 
   ))));  
 
 # 5-Oxoproline Synthesis 
 # Enzyme : Gamma-Glutamyl-Cyclo-Transferase : urn:miriam:ec-code:2.3.2.4 
 # Source1: Gamma-Glutamyl-Cysteine 
 Synthesis1_cyt5Oxoproline = cytVolume 
 * ((Synthesis1_cyt5Oxoproline_vmax 
 * (GammaGlutamylCysteine / cytVolume ) 
 * (1 -(((cytCysteine / cytVolume ) * (cyt5Oxoproline/ cytVolume )) 
 / (Synthesis1_cyt5Oxoproline_equilibrium 
 * (GammaGlutamylCysteine / cytVolume )  )))) 
 / (Synthesis1_cyt5Oxoproline_km_GammaGlutamylCysteine 
 * (1 +((cytCysteine / cytVolume ) 
 / Synthesis1_cyt5Oxoproline_km_Cysteine  ) 
 + ((GammaGlutamylCysteine / cytVolume ) 
 / Synthesis1_cyt5Oxoproline_km_GammaGlutamylCysteine ) 
 + ((cyt5Oxoproline / cytVolume ) 
 / Synthesis1_cyt5Oxoproline_km_5Oxoproline  ) 
 +(((cytCysteine / cytVolume ) * (cyt5Oxoproline/ cytVolume )) 
 / (Synthesis1_cyt5Oxoproline_km_Cysteine 
 * Synthesis1_cyt5Oxoproline_km_5Oxoproline ))))); 
 
 # Enzyme : Gamma-Glutamyl-Cyclo-Transferase : urn:miriam:ec-code:2.3.2.4 
 # Source2: Glutamic-Amino-Acid 
 Synthesis2_cyt5Oxoproline = cytVolume 
 * ((Synthesis2_cyt5Oxoproline_vmax * 
 (cytGlutamicAminoAcid / cytVolume ) * ( 1 - 
 ((cyt5Oxoproline / cytVolume ) 
 / (Synthesis2_cyt5Oxoproline_equilibrium 
 * (cytGlutamicAminoAcid / cytVolume )  )))) 
 / (Synthesis2_cyt5Oxoproline_km_GlutamicAminoAcid * ( 1 + 
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 ((cytGlutamicAminoAcid / cytVolume ) 
 / Synthesis2_cyt5Oxoproline_km_GlutamicAminoAcid ) 
 + ((cyt5Oxoproline / cytVolume ) 
 / Synthesis2_cyt5Oxoproline_km_5Oxoproline )))); 
 
 # 5-Oxoproline Transport between Exterior and Cytosol 
 ExtCyt_Transport_5Oxoproline = cytVolume 
 * (cyt_to_ext_5Oxoproline * ((cyt5Oxoproline/ cytVolume ) 
  - (ext5Oxoproline/ extVolume ))); 
 
 # 5-Oxoproline Hydrolysis 
 # Enzyme : 5-Oxoprolinase : urn:miriam:ec-code:3.5.2.9 
 Hydrolysis_cyt5Oxoproline = cytVolume 
 * ((Hydrolysis_cyt5Oxoproline_vmax * (cyt5Oxoproline/ cytVolume )) 
 / (Hydrolysis_cyt5Oxoproline_km_5Oxoproline 
 + (cyt5Oxoproline / cytVolume ) + ((cytGlutamate / cytVolume ) 
 * (Hydrolysis_cyt5Oxoproline_km_5Oxoproline 
 / Hydrolysis_cyt5Oxoproline_km_Glutamate )))); 
 
 # Transport of Glutamate between Exterior and Cytosol 
 ExtCyt_Transport_Glutamate = cytVolume 
 *(((ext_to_cyt_Glutamate_vmax * (extGlutamate / extVolume )) 
 / (ext_to_cyt_Glutamate_km + (extGlutamate / extVolume ))) 
 - (cyt_to_ext_Glutamate * (cytGlutamate / cytVolume ))); 
 
 # Gamma-Glutamyl-Cysteine and Glutamyl-Amino-Butyrate Synthesis 
 # Enzyme : Glutamyl-Cysteine-Ligase(GCL & GCLC): urn:miriam:ec-code:6.3.2.2 
 # Parameters expressed by enzyme name 
 # ATP parameters concern Gamma-Glutamyl-Cysteine Synthesis exclusively 
 
 # Gamma-Glutamyl-Cysteine Synthesis 
 GCL_term_ATP = 
 ((ATP / cytVolume ) / (GCL_km_ATP 
 * (1 +((cytGSH / cytVolume ) / freeGCL_ATP_inhib_GSH )) 
 + ((ATP / cytVolume ) 
 * (1 +((cytGSH / cytVolume ) / boundGCL_ATP_inhib_GSH ))))); 
 Synthesis_GammaGlutamylCysteine_GCL_term = cytVolume 
 * ((GCL_catalytic * (GCL / cytVolume ) 
 * (cytCysteine / cytVolume ) * (cytGlutamate / cytVolume ) 
 * GCL_term_ATP * (1 - 
 ((GammaGlutamylCysteine / cytVolume ) / (GCL_equilibrium 
 * (cytCysteine / cytVolume ) * (cytGlutamate / cytVolume ))))) 
 / (GCL_km_Cysteine * GCL_km_Glutamate 
 * (1 +((AminoButyrate / cytVolume ) / GCL_km_AminoButyrate ) 
 + ((cytCysteine / cytVolume ) / GCL_km_Cysteine)) * ( 1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GCL_disso_GammaGlutamylCysteine) 
 + ((cytGlutamate / cytVolume ) / GCL_km_Glutamate ) 
 + ((cytGSH / cytVolume ) / GCL_inhib_GSH ) 
 + ((GlutamylAminoButyrate / cytVolume ) / GCL_km_GlutamylAminoButyrate)))); 
 GCLC_term_ATP = 
 ((ATP / cytVolume ) / (GCLC_km_ATP 
 * (1 +((cytGSH / cytVolume ) / freeGCLC_ATP_inhib_GSH )) 
 + ((ATP / cytVolume ) 
 * (1 +((cytGSH / cytVolume ) / boundGCLC_ATP_inhib_GSH ))))); 
 Synthesis_GammaGlutamylCysteine_GCLC_term = cytVolume 
 * ((GCLC_catalytic * (GCLC / cytVolume ) 
 * (cytCysteine / cytVolume ) * (cytGlutamate / cytVolume ) 
 * GCLC_term_ATP * (1 - 
 ((GammaGlutamylCysteine / cytVolume ) / (GCLC_equilibrium 
 * (cytCysteine / cytVolume ) * (cytGlutamate / cytVolume ))))) 
 / (GCLC_km_Cysteine * GCLC_km_Glutamate 
 * (1 +((AminoButyrate / cytVolume ) / GCLC_km_AminoButyrate ) 
 + ((cytCysteine / cytVolume ) / GCLC_km_Cysteine)) * ( 1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GCLC_disso_GammaGlutamylCysteine) 
 + ((cytGlutamate / cytVolume ) / GCLC_km_Glutamate ) 
 + ((cytGSH / cytVolume ) / GCLC_inhib_GSH ) 
 + ((GlutamylAminoButyrate / cytVolume ) / GCLC_km_GlutamylAminoButyrate)))); 
 Synthesis_GammaGlutamylCysteine = 
 Synthesis_GammaGlutamylCysteine_GCL_term 
 + Synthesis_GammaGlutamylCysteine_GCLC_term; 
 
# Glutamyl-Amino-Butyrate Synthesis 
 Synthesis_GlutamylAminoButyrate_GCL_term = cytVolume 
 * ((GCL_catalytic * (GCL / cytVolume ) 
 * (AminoButyrate / cytVolume ) * (cytGlutamate / cytVolume ) 
 * (1 - (1 / ( GCL_equilibrium * (cytGlutamate / cytVolume ))))) 
 / (GCL_km_AminoButyrate * GCL_km_Glutamate 
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 * (1 +((AminoButyrate / cytVolume ) / GCL_km_AminoButyrate ) 
 + ((cytCysteine / cytVolume ) / GCL_km_Cysteine)) * ( 1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GCL_disso_GammaGlutamylCysteine) 
 + ((cytGlutamate / cytVolume ) / GCL_km_Glutamate ) 
 + ((cytGSH / cytVolume ) / GCL_inhib_GSH ) 
 + ((GlutamylAminoButyrate / cytVolume ) / GCL_km_GlutamylAminoButyrate)))); 
 Synthesis_GlutamylAminoButyrate_GCLC_term = cytVolume 
 * ((GCLC_catalytic * (GCLC / cytVolume ) 
 * (AminoButyrate / cytVolume ) * (cytGlutamate / cytVolume ) 
 * (1 - (1 / ( GCLC_equilibrium * (cytGlutamate / cytVolume ))))) 
 / (GCLC_km_AminoButyrate * GCLC_km_Glutamate 
 * (1 +((AminoButyrate / cytVolume ) / GCLC_km_AminoButyrate ) 
 + ((cytCysteine / cytVolume ) / GCLC_km_Cysteine)) * ( 1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GCLC_disso_GammaGlutamylCysteine) 
 + ((cytGlutamate / cytVolume ) / GCLC_km_Glutamate ) 
 + ((cytGSH / cytVolume ) / GCLC_inhib_GSH ) 
 + ((GlutamylAminoButyrate / cytVolume ) / GCLC_km_GlutamylAminoButyrate)))); 
 Synthesis_GlutamylAminoButyrate = 
 Synthesis_GlutamylAminoButyrate_GCL_term 
 + Synthesis_GlutamylAminoButyrate_GCLC_term; 
  
 # Transport of Glycine between Exterior and Cytosol 
 ExtCyt_Transport_Glycine = cytVolume 
 *(((ext_to_cyt_Glycine_vmax * (extGlycine / extVolume )) 
 / (ext_to_cyt_Glycine_km + (extGlycine / extVolume ))) 
 - (cyt_to_ext_Glycine * (cytGlycine / cytVolume ))); 
 
 # Glutathione (GSH) and Ophtalmic Acid Synthesis 
 # Enzyme : Glutathione-Synthetase (GS) : urn:miriam:ec-code:6.3.2.3 
 # Parameters expressed by enzyme name 
 # ATP parameters concern Glutathione (GSH) Synthesis exclusively 
 # GS_equilibrium are reaction specific (we have 2 different values) 
  
 Synthesis_cytGSH = cytVolume 
 * ((GS_catalytic * (GS / cytVolume ) 
 * (GammaGlutamylCysteine / cytVolume ) * (cytGlycine / cytVolume ) 
 * (1 -((cytGSH / cytVolume ) 
 / (GS_equilibrium_GSH * (cytGlycine / cytVolume ) 
 * (GammaGlutamylCysteine / cytVolume))))) 
 / (GS_km_GammaGlutamylCysteine * GS_km_Glycine 
 * (1 +((cytGlycine / cytVolume ) / GS_km_Glycine ) 
 + ((GlutamylAminoButyrate / cytVolume ) / 
 GS_km_GlutamylAminoButyrate )) * (1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GS_km_GammaGlutamylCysteine ) 
 + ((cytGSH / cytVolume ) / GS_disso_GSH ) 
 + ((cytOphtalmicAcid / cytVolume ) 
 / GS_km_OphtalmicAcid ))) * (ATP / cytVolume ) 
 / (GS_km_ATP + (ATP / cytVolume ))); 
 
 Synthesis_cytOphtalmicAcid = cytVolume 
 * ((GS_catalytic * (GS / cytVolume ) 
 * (GlutamylAminoButyrate / cytVolume ) * (cytGlycine / cytVolume ) 
 * (1 -((cytOphtalmicAcid / cytVolume ) 
 / (GS_equilibrium_OphtalmicAcid * (cytGlycine / cytVolume ) 
 * (GlutamylAminoButyrate / cytVolume))))) 
 / (GS_km_GammaGlutamylCysteine * GS_km_Glycine 
 * (1 +((cytGlycine / cytVolume ) / GS_km_Glycine ) 
 + ((GlutamylAminoButyrate / cytVolume ) / 
 GS_km_GlutamylAminoButyrate )) * (1 + 
 ((GammaGlutamylCysteine / cytVolume ) / GS_km_GammaGlutamylCysteine ) 
 + ((cytGSH / cytVolume ) / GS_disso_GSH ) 
 + ((cytOphtalmicAcid / cytVolume ) / GS_km_OphtalmicAcid )))); 
 
 # Transport of Ophtalmic Acid between Exterior and Cytosol 
 ExtCyt_Transport_OphtalmicAcid = cytVolume 
 * (cyt_to_ext_OphtalmicAcid 
 * ((cytOphtalmicAcid / cytVolume  ) 
 - (extOphtalmicAcid / extVolume  ))); 
 
 # Export of Glutathione from Cytosol to Exterior 
 ExtCyt_highaffinityTransport_GSH = cytVolume 
 * ((cyt_to_ext_highaffinity_GSH_vmax * (cytGSH / cytVolume )) 
 / (cyt_to_ext_highaffinity_GSH_km + (cytGSH / cytVolume )));  
 ExtCyt_lowaffinityTransport_GSH = cytVolume 
 * ((cyt_to_ext_lowaffinity_GSH_vmax * 
 pow((cytGSH / cytVolume ), 
 cyt_to_ext_lowaffinity_GSH_hill )) / (pow 
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 (cyt_to_ext_lowaffinity_GSH_km, 
 cyt_to_ext_lowaffinity_GSH_hill ) + pow 
 ((cytGSH / cytVolume ), 
 cyt_to_ext_lowaffinity_GSH_hill  ))); 
 
 # Glutathione Hydrolysis in Blood 
 # Enzyme : Gamma-Glutamyl-Trans-Peptidase : urn:miriam:ec-code:2.3.2.2 
 Hydrolysis_extGSH = extVolume 
 * ((Hydrolysis_extGSH_vmax * (extGSH / extVolume ) 
 * (1 -(((extGlutamicAminoAcid/extVolume) * (extLCysteinylGlycine/extVolume)) 
 / (Hydrolysis_extGSH_equilibrium * (extGSH / extVolume ))))) 
 / (Hydrolysis_extGSH_km_GSH * 
 (1 +((extGlutamicAminoAcid / extVolume) 
 / Hydrolysis_extGSH_km_GlutamicAminoAcid  ) 
 + ((extGSH / extVolume ) / Hydrolysis_extGSH_km_GSH ) 
 + ((extLCysteinylGlycine / extVolume ) 
 / Hydrolysis_extGSH_km_LCysteinylGlycine  ) 
 +(((extGlutamicAminoAcid / extVolume ) * (extLCysteinylGlycine/extVolume)) 
 / (Hydrolysis_extGSH_km_GlutamicAminoAcid 
 * Hydrolysis_extGSH_km_LCysteinylGlycine ))))); 
 
 # LCysteinylGlycine Hydrolysis 
 # Enzyme : Amino-Peptidase : urn:miriam:ec-code:3.4.11.2 
 Hydrolysis_extLCysteinylGlycine = extVolume 
 * ((Hydrolysis_extLCysteinylGlycine_vmax 
 * (1 -((extCysteine / extVolume ) 
 / (Hydrolysis_extLCysteinylGlycine_equlibrium 
 * (extLCysteinylGlycine / extVolume)))) * (extLCysteinylGlycine/extVolume)) 
 / (Hydrolysis_extLCysteinylGlycine_km_LCysteinylGlycine 
 * (1 +((extCysteine / extVolume ) 
 / Hydrolysis_extLCysteinylGlycine_km_Cysteine ) 
 + ((extLCysteinylGlycine / extVolume ) 
 / Hydrolysis_extLCysteinylGlycine_km_LCysteinylGlycine )))); 
 
 # Glutathione Oxidation 
 # Enzyme : Glutathione-Peroxidase : urn:miriam:ec-code:1.11.1.9 
 Oxidation_cytGSH = cytVolume 
 * ((Oxidation_cytGSH_catalytic * (ROS / cytVolume ) 
  * (GPX / cytVolume ) 
 * pow((cytGSH / cytVolume ), Oxidation_cytGSH_coef_GSH )) 
 / ((Oxidation_cytGSH_km_ROS + (ROS / cytVolume )) 
 * pow((Oxidation_cytGSH_km_GSH + (cytGSH / cytVolume )) 
 , Oxidation_cytGSH_coef_GSH ))); 
 
 # Glutathione Disulfide Reduction 
 # Enzyme : Glutathione-Reductase : urn:miriam:ec-code:1.8.1.7 
 Reduction_cytGSSG = cytVolume 
 * ((Reduction_cytGSSG_vmax * (cytGSSG / cytVolume ) 
  * (NADPH / cytVolume )) 
 / ((Reduction_cytGSSG_km_NADPH + (NADPH / cytVolume )) 
 * (Reduction_cytGSSG_km_GSSG + (cytGSSG / cytVolume )))); 
 
 # Export of Glutathione Disulfide from Cytosol to Exterior 
 ExtCyt_highaffinityTransport_GSSG = cytVolume 
 * ((cyt_to_ext_highaffinity_GSSG_vmax * (( ROS / cytVolume ) 
 + cyt_to_ext_highaffinity_GSSG_activ_ROS)* (cytGSSG / cytVolume )) 
  /(((ssROS / cytVolume ) 
 + cyt_to_ext_highaffinity_GSSG_activ_ROS)*((cytGSSG / cytVolume ) 
 + cyt_to_ext_highaffinity_GSSG_km  ))); 
 ExtCyt_lowaffinityTransport_GSSG = cytVolume 
 * ((cyt_to_ext_lowaffinity_GSSG_vmax * (( ROS / cytVolume ) 
 + cyt_to_ext_lowaffinity_GSSG_activ_ROS)* (cytGSSG / cytVolume )) 
  /(((ssROS / cytVolume ) 
 + cyt_to_ext_lowaffinity_GSSG_activ_ROS)* ((cytGSSG / cytVolume ) 
 + cyt_to_ext_lowaffinity_GSSG_km  ))); 
 
 # Glutathione Disulfide Hydrolysis in Blood 
 Hydrolysis_extGSSG = extVolume 
 * (Hydrolysis_extGSSG_vmax * (extGSSG / extVolume )); 
 
 
# Differentials by State Variable 
# -------------------------------- 
 dt(cytAhR) =  - Complex_cytXAhR; 
 dt(nucAhR) =  - Complex_nucXAhR; 
 dt(CYP1A1) = + Translation_CYP1A1mRNA - Degradation_CYP1A1; 
 dt(CYP1A1mRNA) = + Transcription_CYP1A1 - Degradation_CYP1A1mRNA; 
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 dt(Cystathionine) = + Synthesis_Cystathionine - Hydrolysis_Cystathionine; 
 dt(cytCysteine) = + ExtCyt_Transport_Cysteine 
 + Hydrolysis_Cystathionine 
 + Synthesis1_cyt5Oxoproline - Synthesis_GammaGlutamylCysteine; 
 dt(extCysteine) = + Hydrolysis_extLCysteinylGlycine  
 - ExtCyt_Transport_Cysteine 
 + 2 * Hydrolysis_extGSSG - Clearance_extCysteine; 
 dt(DCF)   = + KBrO3_DirectAction_DCFDA + KBrO3_Oxidation_DCFDA - DCF_Bleaching ; 
 dt(DCFDA) = 0 ; 
 dt(GammaGlutamylCysteine) = + Synthesis_GammaGlutamylCysteine - Synthesis_cytGSH 
   - Synthesis1_cyt5Oxoproline; 
 dt(GCL) = + Complex_GCL - Degradation_GCL; 
 dt(GCLC) = + Translation_GCLCmRNA - Complex_GCL  
   - Degradation_GCLC; 
 dt(GCLCmRNA) = + Transcription_GCLC - Degradation_GCLCmRNA; 
 dt(GCLM) = + Translation_GCLMmRNA - Complex_GCL 
   - Degradation_GCLM; 
 dt(GCLMmRNA) = + Transcription_GCLM - Degradation_GCLMmRNA; 
 dt(cytGlutamate) = + Hydrolysis_cyt5Oxoproline - Synthesis_GammaGlutamylCysteine 
 + ExtCyt_Transport_Glutamate - Synthesis_GlutamylAminoButyrate; 
 dt(cytGlutamicAminoAcid) = + ExtCyt_Transport_GlutamicAminoAcid - Synthesis2_cyt5Oxoproline; 
 dt(extGlutamicAminoAcid) = + Hydrolysis_extGSH  
 - ExtCyt_Transport_GlutamicAminoAcid; 
 dt(GlutamylAminoButyrate) = + Synthesis_GlutamylAminoButyrate - Synthesis_cytOphtalmicAcid; 
 dt(cytGlycine) = + ExtCyt_Transport_Glycine - Synthesis2_SAH 
   - Synthesis_cytGSH 
  - Synthesis_cytOphtalmicAcid; 
   
 dt(GPX) = + Translation_GPXmRNA - Degradation_GPX; 
  
 dt(GPXmRNA) = + Transcription_GPX - Degradation_GPXmRNA; 
  
 dt(GS) = + Complex_GS - Degradation_GS; 
  
 dt(cytGSH)   = + Synthesis_cytGSH - 2 * Oxidation_cytGSH + 2 * Reduction_cytGSSG  
       - ExtCyt_highaffinityTransport_GSH - ExtCyt_lowaffinityTransport_GSH 
                - KBrO3_Action_cytGSH ; 
   
 dt(extGSH)   = + ExtCyt_highaffinityTransport_GSH + ExtCyt_lowaffinityTransport_GSH 
                - Hydrolysis_extGSH - KBrO3_Action_extGSH ; 
   
 dt(vitroGSH) = - KBrO3_Action_vitroGSH ; # in vitro GSH sub-model 
  
 dt(GSmono) = + Translation_GSmRNA - 2 * Complex_GS  
   - Degradation_GSmono; 
    
 dt(GSmRNA) = + Transcription_GS - Degradation_GSmRNA; 
  
 dt(cytGSSG) = + Oxidation_cytGSH - Reduction_cytGSSG 
   - ExtCyt_highaffinityTransport_GSSG 
   - ExtCyt_lowaffinityTransport_GSSG; 
    
 dt(extGSSG) = + ExtCyt_highaffinityTransport_GSSG 
  + ExtCyt_lowaffinityTransport_GSSG 
  - Hydrolysis_extGSSG; 
 
  
 dt(GST) = + Complex_GST - Degradation_GST; 
  
 dt(GSTmono) = + Translation_GSTmRNA - 2 * Complex_GST 
   - Degradation_GSTmono; 
    
 dt(GSTmRNA) = + Transcription_GST - Degradation_GSTmRNA; 
 dt(Homocysteine) = + Hydrolysis_SAH - Synthesis1_Methionine 
   - Synthesis2_Methionine 
  - Synthesis_Cystathionine; 
 dt(HMOX1) = + Translation_HMOX1mRNA - Degradation_HMOX1; 
 dt(HMOX1mRNA) = + Transcription_HMOX1 - Degradation_HMOX1mRNA; 
 dt(Keap1) = + Degradation_Nrf2Keap1 - Complex_Nrf2Keap1 
   - Redox_Keap1; 
 dt(Keap1o) = + Degradation_Nrf2Keap1o - Complex_Nrf2Keap1o 
 + Redox_Keap1; 
  
 dt(extLCysteinylGlycine) = + Hydrolysis_extGSH - Hydrolysis_extLCysteinylGlycine; 
 dt(cytMethionine) = + Synthesis1_Methionine - Synthesis1_SAM  
 + Synthesis2_Methionine - Synthesis2_SAM 
 + ExtCyt_Transport_Methionine; 
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 dt(MRP) = + Complex_MRP - Degradation_MRP; 
 dt(MRPmono) = + Translation_MRPmRNA - 2 * Complex_MRP 
   - Degradation_MRPmono; 
 dt(MRPmRNA) = + Transcription_MRP - Degradation_MRPmRNA; 
 dt(cytNrf2) = + Translation_Nrf2mRNA - Degradation_cytNrf2 
 - Complex_Nrf2Keap1o  
 - Complex_Nrf2Keap1 
 - CytNuc_Transport_Nrf2; 
 dt(nucNrf2) = + CytNuc_Transport_Nrf2 - Degradation_nucNrf2; 
 dt(Nrf2Keap1) = + Complex_Nrf2Keap1 - Redox_Nrf2Keap1 
   - Degradation_Nrf2Keap1; 
 dt(Nrf2Keap1o) = + Redox_Nrf2Keap1 + Complex_Nrf2Keap1o 
   - Degradation_Nrf2Keap1o; 
 dt(Nrf2mRNA) = + Transcription_Nrf2 - Degradation_Nrf2mRNA; 
 dt(cytOphtalmicAcid) = + Synthesis_cytOphtalmicAcid - ExtCyt_Transport_OphtalmicAcid; 
 dt(cyt5Oxoproline) = + Synthesis1_cyt5Oxoproline - Hydrolysis_cyt5Oxoproline 
 + Synthesis2_cyt5Oxoproline - ExtCyt_Transport_5Oxoproline; 
 dt(ROS) = + Background_Production_ROS 
  - Redox_Keap1 
  - Redox_Nrf2Keap1 
  - Oxidation_cytGSH; 
 
dt(SAH) = + Synthesis1_SAH 
 + Synthesis2_SAH - Hydrolysis_SAH; 
 dt(SAM) = + Synthesis1_SAM - Synthesis1_SAH 
 + Synthesis2_SAM - Synthesis2_SAH; 
 dt(SRXN1) = + Translation_SRXN1mRNA - Degradation_SRXN1; 
 dt(SRXN1mRNA) = + Transcription_SRXN1 - Degradation_SRXN1mRNA; 
 dt(cytXAhR) = + Complex_cytXAhR - CytNuc_Transport_XAhR; 
 dt(nucXAhR) = + Complex_nucXAhR 
 + CytNuc_Transport_XAhR; 
 
} # End of Dynamics 
 
CalcOutputs {  
  perc_vitroGSH = (vitroGSH / vitroGSH_0 ) * 100   ; 
} 
 
End. 
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ABSTRACT 

New understanding of biology shows more and more that the mechanisms that underlie toxicity are 
complex and involve multiple biological processes and pathways. Adverse outcome pathways (AOPs) and systems 
biology (SB) can be appropriate tools for studying toxicology at this level of complexity. This PhD thesis focuses 
on the elaboration of a SB model of the role of the Nrf2 pathway in the control of oxidative stress. The model’s 
calibration with experimental data (obtained with RPTEC/TERT1 renal cells exposed to various doses of 
potassium bromate) comprised several rounds of hypotheses stating/verification, through which new reactions 
were progressively added to the model. Some of these new hypotheses (e.g., direct action of potassium bromate 
on DCF, bleaching of DCF with time, etc.) could be confirmed by future experiments. Considered in a wider 
framework, this SB model was then evaluated and compared to two other computational models (i.e., an empirical 
dose-response statistical model and a dynamic Bayesian model) for the quantification of a ‘chronic kidney disease’ 
AOP. All parameter calibrations were done by MCMC simulations with the GNU MCSim software with a 
quantification of uncertainties associated with predictions. Even though the SB model was indeed complex to 
conceive, it o ffers insight in biology that the other approaches could not afford. In addition, using multiple 
toxicogenomic databases; interactions and cross-talks of the Nrf2 pathway with two other toxicity pathways (i.e., 
AhR and ATF4) were examined. The results of this last analysis suggest adding new AhR contribution to the 
control of some of the Nrf2 genes in our SB model (e.g., HMOX1, SRXN1 and GCLM), and integrating in it 
description of the ATF4 pathway (partially at least). Despites their complexity, precise SB models are precious 
investments for future developments in predictive toxicology. 

Keywords: toxicology, Nrf2, oxidative stress, systems biology, adverse outcome pathways, 
bioinformatics, toxicogenomics. 

 

 

RESUME 

Avec les nouvelles avancées en biologie et toxicologie, on constate de plus en plus la complexité des 
mécanismes et le grand nombre de voies de toxicité. Les concepts de ‘biologie systémique’ (SB) et de ‘voies des 
effets indésirables’ (adverse outcome pathway, AOP) pourraient être des outils appropriés pour l’étude de la 
toxicologie à ces niveaux de complexité élevés. Le point central du travail de cette thèse est le développement d’un 
modèle de SB du rôle de la voie de signalisation Nrf2 dans le contrôle du stress oxydant. Pour la calibration de ce 
modèle avec des données expérimentales (exposition des cellules rénales RPTEC/TERT1 à différentes doses de 
bromate de potassium), plusieurs cycles de proposition/vérification d’hypothèses ont progressivement contribué à 
l’ajout de nouvelles réactions. Ces nouvelles hypothèses (par exemple : action directe du bromate de potassium 
sur le DCF, atténuation de la fluorescence du DCF avec le temps, etc.) devraient être confirmées par de futures 
expérimentations. Ce modèle de SB a été ensuite utilisé pour la quantification d’un AOP de l’insuffisance rénale 
chronique et comparé à deux autres approches: l’utilisation de modèles statistiques empiriques et celle d’un réseau 
Bayésien dynamique. Les calibrations des paramètres ont été effectuées par chaînes de Markov simulées MCMC 
avec le logiciel GNU MCSim avec une quantification des incertitudes associées aux prédictions. Même si la mise 
au point du modèle SB a été une tâche complexe, la compréhension de la biologie qu’offre ce modèle n’est pas 
accessible aux deux autres approches. Nous avons aussi évalué les interactions entre Nrf2 et deux autres voies de 
toxicité, AhR et ATF4, dans le cadre d’une analyse utilisant des données de toxico-génomique provenant de trois 
projets différents. Les résultats de cette dernière analyse suggèrent d’ajouter au modèle SB de Nrf2 la co-activation 
par AhR de plusieurs gènes (par exemple, HMOX1, SRXN1 et GCLM) ainsi que d’associer (au moins partiellement) 
à ce modèle la voie ATF4. Malgré leur complexité, les modèles SB constituent un investissement intéressant pour 
le développement de la toxicologie prédictive. 

Mots-Clés: toxicologie, Nrf2, stress oxydant, biologie systémique, voies des effets indésirables, bio-
informatique, toxico-génomique. 


	PDT ZGHEIB Elias
	These Elias Zgheib 
	Table of Contents
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	2 Bibliography
	2.1 Toxicology
	2.1.1 Definition of Toxicity
	2.1.2 Predictive Toxicology: Prevention
	2.1.3 Birth of Toxicology
	2.1.4 Limitations of Traditional Toxicology
	2.1.5 A Paradigm Shift in Toxicology
	 Regulatory and Scientific Initiatives in the European Union
	o The 7th Amendment to the Cosmetics Directive
	o REACH Regulation: The Registration, Evaluation, Authorization and Restriction of Chemicals
	o European Union Scientific Research Projects

	 Reports, Programs and Other Initiatives in the US
	o The National Toxicology Program Road-Map
	o ToxCast Program: The Toxicity Forecaster of the Environmental Protection Agency
	o Toxicity Testing in the 21st Century: A vision and a Strategy

	 Tox21: Toxicology testing in the 21st Century

	2.1.6 Modern Toxicology
	 Robotics
	 Induced Pluripotent Stem Cells
	 Omics (Transcriptomics, Proteomics, Metabolomics) and Biomarkers
	 Bioinformatics


	2.2 Biology Underlying Toxicology
	2.2.1 Oxidative Stress, Nrf2 and some Associated Pathways
	 Cellular Metabolism of Xenobiotics
	 Oxidative Stress
	 Nrf2 Control of GSH Synthesis and Oxidative Stress
	 Other Associated Pathways
	o Aryl hydrocarbon Receptor Pathway - AhR
	o Activating Transcription Factor 4 Pathway – ATF4


	2.2.2 Systems Biology – SB
	2.2.3 Adverse Outcome Pathways – AOP

	2.3 Mathematical Considerations
	2.3.1 Ordinary Differential Equations – ODE – Systems
	2.3.2 Michaelis-Menten – MM – Kinetics
	2.3.3 The Hill Equation
	2.3.4 Bayesian Statistical Tools
	 The Bayes Theorem
	 Bayesian Network – BN

	2.3.5 Model’s Calibration
	 The Monte Carlo Method
	 Markov chain Monte Carlo (MCMC) method



	3 Construction of Systems Biology Model of Nrf2 Control of Oxidative Stress
	3.1 Starting Models
	3.1.1 The model of ‘Hamon et al. (2014)’
	3.1.2 The model of ‘Geenen et al. (2012) and Reed et al. (2008)’

	3.2 Methods
	3.2.1 Remodelling Hamon’s model
	 Hill-based model for transcription and translation
	 Calibration protocol
	 Software

	3.2.2 Assembling two models

	3.3 Results

	4  SB and other Tools for the Development of quantitative AOPs
	4.1 Study Context
	4.2  Methods
	4.2.1 Experimental data
	4.2.2 Chronic Kidney Disease – CKD – AOP
	4.2.3 Dose-Response based qAOP
	4.2.4 Bayesian Network – BN – qAOP
	4.2.5 The Systems Biology – SB – Model
	4.2.6 Parameter Estimation
	4.2.7 Uncertainty propagation
	4.2.8 Software

	4.3 Results
	4.3.1 Dose-Response based qAOP Model
	4.3.2 Bayesian Network – BN – qAOP Model
	4.3.3 System biology – SB – Model

	4.4 Discussion
	4.5 Conclusion

	5 Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases
	5.1 The General Approach
	5.2 Material and Methods
	5.2.1 Generation of Target Gene Lists
	5.2.2 Construction of a Chemical-Effects Transcriptomics Database
	5.2.3 Data Sources
	5.2.4 Bioinformatics Methods
	 Data Selection
	 Pathway Specific Chemicals
	 Construction of Pathway Signatures

	5.2.5 Pathway’s Signature-Based Prioritization of Chemicals

	5.3 Results
	5.3.1 Pathways’ Global Signatures
	5.3.2 Pathways’ Stratified Signatures in Liver
	 The Three Main Pathways’ Stratified Signatures in Liver
	 AhR Stratified Signatures
	 Nrf2 Stratified Signatures
	 ATF4 Stratified Signatures
	 The Overlapping Zones Stratified Signatures

	5.3.3 Human Liver Category: Pathway’s Signature-Based Prioritization of Chemicals

	5.4 Discussion
	5.1 Conclusion

	6 Thesis Summary and Conclusion
	Dissemination Activities
	References
	7 Appendix – Supplementary Material
	7.1 Supplementary Information for Chapter 3
	7.2 Supplementary Information for Chapter 4
	7.2.1 Experimental Data
	7.2.2 Statistical Dose-Response based qAOP Model
	7.2.3 Bayesian Network qAOP – Node to node relationships
	7.2.4 SB Model Validation
	7.2.5 Effectopedia Implementation

	7.3 Supplementary Information for Chapter 5
	7.4 The Nrf2 SB Model Code

	Abstract
	Résumé




