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“’L'esprit de la ruche’, où est-il, en qui s'incarne-t-il? [...]  

Il dispose impitoyablement, mais avec discrétion, et 

comme soumis à quelque grand devoir, des richesses, du 

bonheur, de la liberté, de la vie de tout un peuple ailé.” 

 

 
- Maurice Maeterlinck (La Vie des Abeilles, Livre II l’Essaim, Chap. II; 

1901)!!
!
!
!
!
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The spirit of the hive, where is it, in who is it embodied? 
It pitilessly manage the wealth, the happiness, the freedom and the life of a 

whole winged people; but discreetly, as dictated by a great duty.  
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Summary: 
 
In social insects, such as bees, different individuals specialise in the collection of 

different resources, and it is assumed that natural behavioural variability among 

foragers contributes to a self-organised optimisation of colony performance. The 

causes and consequence of the inter-individual variability for colonies of social bees 

are not yet well understood.  

In this thesis in cognitive ecology, I examined the different foraging strategies for the 

different macronutrient sources, pollen and nectar, and the inter-individual variation 

in bee foraging performance. I also looked at how stressors, such as pesticides, can 

impact on bee foraging efficiency. I compared two social Hymenoptera that vary in 

their level of social complexity: the European honey bee (Apis mellifera L.) and the 

buff-tailed bumblebee (Bombus terrestris L.). 

I used Radio Frequency Identification (RFID) to automatically track the foraging 

behaviour of bees throughout their life. I found that honey bee and bumblebee 

colonies rely on a subset of very active bees to supply the whole colony needs. In 

honey bees, these foragers are more efficient and collect more pollen. I also identified 

different strategies for pollen or nectar collection in both species.  

Using manipulative experiments, I then showed that bees exhibit consistent inter-

individual different behaviours in a spatial learning task and that pesticides impair 

visual learning.  

My thesis aims at better explaining the causes of inter-individual variability of 

foraging behaviour and its implication for the colonies. The results highlight the need 

for considering behavioural diversity as an adaptation for social insects, as well as a 

potential dimension of colony-level vulnerability to environmental stressors that can 

affect the nutritional balance of whole colony. 
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Résumé : 
!

Chez les pollinisateurs sociaux, comme l’abeille domestique (Apis mellifera L.) et le 

bourdon terrestre (Bombus terrestris L.), mes deux modèles d’étude, différents 

individus sont spécialisés dans différentes tâches. Il est admis que différents types de 

comportement de butinage contribuent à une optimisation des performances de la 

colonie. Actuellement, les populations de pollinisateurs sont exposées à des stress 

environnementaux, qui sont connus pour perturber le comportement des individus en 

visant directement leur cognition. Il est ainsi crucial de mieux comprendre comment 

les colonies d’abeilles et de bourdons maintiennent une activité de butinage efficace, 

et quels sont les effets de stress environnementaux sur les butineuses. 

Dans cette thèse, j’ai donc examiné les différentes stratégies de butinage pour 

différentes sources de nourriture, pollen et nectar, et les variabilités interindividuelles 

dans le comportement de butinage. Je me suis aussi intéressé à l’impact de stress tels 

que les pesticides sur l’efficacité de butinage. 

J’ai utilisé la technologie RFID pour suivre le comportement des abeilles tout au long 

de leur vie. J’ai trouvé que les colonies d’abeilles et de bourdons reposent sur un petit 

groupe d’individus très actifs qui fournissent la majorité de la nourriture pour la 

colonie. Chez les abeilles, ces individus très actifs sont aussi plus efficaces pour 

collecter nectar et pollen. J’ai aussi identifié l’existence de différentes stratégies pour 

la collecte de pollen ou de nectar. 

Ensuite, j’ai pu montrer que les bourdons ont des différences interindividuelles très 

marquées dans un test de navigation, une tâche cruciale dans le comportement de 

butinage. Finalement, j’ai testé l’effet néfaste de pesticides sur l’apprentissage visuel 

chez l’abeille. 

Cette thèse a pour but de mieux comprendre les causes de vulnérabilité des 

pollinisateurs aux stress environnementaux. Mes résultats soulignent le besoin de 

considérer la diversité comportementale comme une adaptation des espèces de 

pollinisateurs sociaux, mais aussi comme une potentielle cause de vulnérabilité de la 

colonie vis-à-vis des stress. 

!
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General introduction: 
The European honey bees (Apis mellifera) and buff-tailed bumblebees (Bombus 

terrestris) are ecologically (Ollerton & Waser 2006) and economically (Gallai et al. 

2009) vital pollinators and are currently manifesting population declines due to a 

range of current environmental stressors (Potts et al. 2010). This thesis explores the 

causes of inter-individual variation in foraging behaviour in these two species and 

investigates how this new knowledge of foraging performance and behaviour can help 

us understand the responses of bees and their colonies to environmental stressors.  

Comparing social foraging in bumblebees and honey bees 
While many of the almost 20,000 bee species are solitary or display low levels of 

social organization (Michener 2000), the European honey bee (Apis mellifera) and the 

buff-tailed bumblebee (Bombus terrestris) are among those displaying the most 

complex form of animal social organization, termed eusociality (Wilson & Holldobler 

2005). A eusocial society is defined as a society in which there is reproductive 

division of labour, distinct morphological castes aligned to the different reproductive 

roles, and an overlap of generations with adult offspring contributing to raising the 

next generation of adults (Wilson 2000; Wilson & Holldobler 2005). Eusociality is 

found in a few animal taxa, primarily in insects such as ants (Hölldobler & Wilson 

2009), termites (Thorne 1997), bees and wasps (Hölldobler & Wilson 2009), some 

shrimp (Emmett 1996) and mammals (naked mole rats (Jarvis 1981)).  

Honey bees are advanced eusocial insects. They live in colonies formed by 

one reproductive individual (the queen) and up to 80,000 usually non-reproductive 

workers who are made up of several generations of daughters of the queen, and there 

is a clear morphological difference between the large queen and the smaller female 

workers (Wilson 2000; Nowak, Tarnita & Wilson 2010). Bumblebees, such as 

Bombus terrestris are primitively eusocial bees: there is a reproductive division of 

labour, with one reproductive female (the queen) and up to 300 of her non-

reproductive daughters (Goulson 2010). Bumblebee colonies have an annual cycle, 

with queens single-handedly founding nests in spring (Goulson 2010). There are no 

truly distinct female castes in bumblebees, rather the queen is usually the largest in a 

continuous variation of female size (Goulson 2010).  Both honey bee and bumblebee 

species also produce short-lived males with the sole purpose of reproduction (Winston 
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1991; Goulson 2010). One of the most striking differences between honey bees and B. 

terrestris societies is their scale. A B. terrestris colony at its largest is a few hundred 

individuals whereas honey bee colonies of 80,000 individuals have been documented. 

As a consequence of this the collective functions of the colony can be supported by 

far more workers in honey bees than bumblebees (table 1).  

Honey bee queens are polyandrous (Winston 1991). Consequently, the 

workers are genetically diverse due to their mixed paternity. Genetic variation within 

the bee colony is recognised as a cause of behavioural variation (Jones et al. 2004; 

Myerscough & Oldroyd 2004). This has been argued to support colony-level 

functions and homeostasis by increasing inter-individual variation between workers 

(Oldroyd & Fewell 2007). In B terrestris, by contrast, each queen mates with a single 

male (Goulson 2010) and, thus, the degree of genetic diversity, and possibly inter-

individual variation, is lower in bumblebees than it is in honey bee workers. 

In both species, the non-reproductive workers are divided into behavioural 

castes, defined as groups of individuals performing a common task (Page & Erber 

2002). The greatest division is between nurses or in-hive bees, which stay in the hive 

and take care of the brood and the nest, and foragers that travel outside to collect food 

on flowers such as nectar (carbohydrate source) and pollen (protein and lipids) for 

their nestmates (Winston 1991; Michener 2000; Goulson 2010) For honey bees, 

division of labour among workers is primarily age-based. Every worker starts its adult 

life as a nurse and then eventually starts to forage, performing different tasks 

successively across its life (Winston 1991). All honey bee workers are 

morphologically very similar (Winston 1991) whereas in B. terrestris there is marked 

variation in size between workers (Goulson 2010). In B. terrestris division of labour 

is mainly based on these morphological differences: small individuals will be nurses 

and may stay in the colony all their life, whereas larger individuals will be foragers, 

and may start foraging on the day of adult emergence (Goulson 2010). In bumblebees, 

only some individuals will ever forage whereas some others will never leave the nest. 

These three differences in social organisation between honey bees and bumblebees all 

suggest that very different levels of inter-individual variability might be present in the 

two societies, and such variation could have different consequences for the function 

of honey bee and bumblebee societies.  
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Honey bee and bumblebee workers are both central-place foragers, as they 

exploit the environment around their nest, but must always return to the nest. It has 

been proposed that the challenges imposed by this particular lifestyle has led them to 

evolve very strong cognitive capacities to learn and remember environmental features 

in order to navigate, locate rewarding flowers and find their way back to the colony 

(Giurfa 2015). The two species are also both floral generalists, deriving their nutrition 

from nectar and pollen (Michener 2000). Honey bee colonies are perennial (table 1) 

and survive winters by stocking nectar stored as honey (Winston 1991). Bumblebee 

colonies, on the other hand, last only for one year, from spring to autumn (Goulson 

2010) and do not stock nectar for more than a few days in their cells (Goulson 2010). 

In both species, pollen is harvested during the flowering season and stocked for only a 

few days (Winston 1991; Goulson 2010). Maintaining colony nutritional balance 

requires a fine adjustment of pollen and nectar stocks according to changes in colony 

needs (Plowright & Silverman 2000; Pankiw 2007).  

Studying these two species allows us to analyse the role of individual 

variability in two species with different social structures but sharing a similar 

ecological niche. The causes of division of labour are very different between the two 

species allowing us to contrast mechanisms of colony inter-individual variability. 

Within caste inter-individual variability  
There is now an abundant library of literature focusing on inter-individual variability 

across the animal kingdom (Nettle 2006; Montiglio et al. 2015) and also in social 

insects (Jeanson & Weidenmüller 2014; Jandt et al. 2014). This literature has 

established important concepts in behavioural ecology, such as behavioural 

syndromes (a suit of correlated behavioural tendencies in different contexts specific to 

an individual) (Sih, Bell & Johnson 2004), or keystone individuals (a very influential 

individual in a group) (Modlmeier et al. 2014). In this thesis, I use these concepts to 

consider the consequences of variability in foraging behaviour for colony dynamics 

and nutritional balance in both honey bees and B. terrestris.  

Across the social insects, inter-individual variability has been noted in 

different aspects of foraging behaviours. First of all, not all individuals contribute in 

the same way to the colony. Foragers differ in their level of activity, and frequently, a 

large proportion of foragers are relatively inactive (e.g. in ants (Charbonneau, Hillis & 

Dornhaus 2014), or bees (Tenczar et al. 2014)). By contrast, some foragers are 
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extremely active, which are considered keystone, or elite, individuals for the colony 

as they contribute disproportionally to the foraging effort (Tenczar et al. 2014).  

Bee foragers also individually differ in their foraging strategies: for instance, 

some bees have a greater propensity to collect nectar or pollen (Robinson & Page 

1989; Hagbery & Nieh 2012). In honey bees, this has been partly explained by 

genetic differences (Robinson & Page 1989). Bumblebee foragers show differences in 

foraging performance that are related to differences in morphology (Spaethe & 

Weidenmüller 2002), adopting different strategies in navigating or choosing flowers 

depending on their size (Chittka et al. 2003). Evidence suggests that there are 

relatively clear individual differences within a caste of supposedly quite similar 

individuals sharing the same social role in the colony. 

Bee foragers collect food from several types of flowers surrounding the colony 

for most of the flowering season (Michener 2000; Ollerton & Waser 2006) to provide 

the whole colony with pollen and nectar (Vaudo et al. 2015). Foraging behaviour is 

crucial for maintaining the nutritional balance of the colony (Vaudo et al. 2015). 

Carbohydrates derived from nectar are an essential source of energy for the workers 

while proteins and lipids derived from pollen are mainly consumed by larvae and are 

required for a normal development (Winston 1991; Goulson 2010). For instance, 

larvae that have been starved with pollen will be less efficient as foragers (Scofield & 

Mattila 2015). Thus, keeping a nutritional balance is very important for colony 

survival, and unbalanced nutrition is one of the factors involved in colony failure 

(Vaudo et al. 2015). Understanding the different strategies of social bee foragers 

when collecting pollen and nectar is then a key element of determining colony health. 

Bee population declines  
Bee pollinators are key species in most terrestrial ecosystems (Ollerton & Waser 

2006). Animals, including bees, pollinate 78% (in temperate environment) to 94% (in 

tropical environment) of the flowering plants on the planet (Ollerton, Winfree & 

Tarrant 2011). 

 Human societies are heavily reliant on pollinators as more than half of crop 

plants (Klein et al. 2007), and even coffee (Roubik 2002), are, to some extent, 

pollinated by animals. The economic value of pollination, worldwide, has been 

evaluated as !153 billion annually, i.e. 9.5% of the value of world agricultural 

production (Gallai et al. 2009). Among pollinator species, the honey bee plays a 
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particularly important role as it is one of just a few domesticated pollinators (Bloch et 

al. 2010). They also provide honey and other bee products (such as wax, pollen, 

propolis, royal jelly) and are an important part of the rural economy (Crane 1999; 

Chauzat et al. 2013). Bumblebees (e.g. Bombus terrestris or Bombus impatiens) are 

also managed to provide pollination to green houses or orchards in some countries 

(Velthuis & van Doorn 2006), especially in Europe and North America.  

 Currently, an increase in environmental stressors, mainly driven by human 

activities, is negatively affecting bee populations (Potts et al. 2010). Many countries 

have been reporting high losses of honey bee colonies over recent years (Laurent et 

al. 2014; Steinhauer et al. 2014) and more bumblebee species have become listed as 

endangered (Williams & Osborne 2009; Cameron et al. 2011). This could have huge 

consequences on farming economies in the future (Steffan-Dewenter, Potts & Packer 

2005). Diverse causes, such as parasites and viruses (Francis, Nielsen & Kryger 

2013), pesticides (Rundlöf et al. 2015), pollutants (Hladun et al. 2012), nutrition 

(Vaudo et al. 2015), habitat fragmentation (Goulson, Lye & Darvill 2008), farming 

and beekeeping practices (Simone-finstrom et al. 2016), and even climate change 

(González-Varo et al. 2013) are implicated in bee population declines (Barron 2015). 

The myriad interacting causes of pollinator declines can justifiably be described as a 

wicked problem.  

Given this imperative, it is crucial to better understand the mechanisms of bee 

declines. To do this we must first gain a better understanding of how social pollinators 

operate in their environment. Colony function is reliant on the collective contributions 

of individuals, and it is therefore necessary to have a better understanding of 

individual performance and inter-individual variability within colonies.  

Thus, studying the nature and the potential causes and consequences of inter-

individual variation in foraging behaviour in honey bees and bumblebees will help us 

understand the dynamics of colonies of two important social bee species.  

!

Thesis prospectus: 
Fundamentally, this thesis addresses a simple question: what is the nature of variation 

in foraging behaviour of social bees in their environment? To answer this question, I 

examined the behaviour of individual foragers in detail and how it is modulated by 

experience, using a combination of field observations and laboratory experiments.  
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 In chapter 1, I argue, in a review paper published in Trends in Ecology and 

Evolution, that bees are very sensitive to environmental stressors because of their 

cognitive capacities. Such cognitive capacities that are essential for foragers 

navigating between flowers and back to the nest require an optimally functioning 

neuronal system in order to recognise and handle rewarding flowers. I discuss how 

different stressors can easily impair the neuronal basis of foragers’ cognition. I also 

stress that foragers are key elements in the social structure of colonies, and that losses 

of foragers can have dramatic effects on colony survival.  

In chapters 2 and 3 I used a specially developed automated methodology to 

record forager activity and performance and examined inter-individual variability in 

honey bee and bumblebee colonies. Different aspects of foraging behaviour such as 

foraging activity and homing behaviour can be addressed by Radio Frequency 

Identification technology (RFID) (Gill, Ramos-Rodriguez & Raine 2012; Henry et al. 

2012; Tenczar et al. 2014). RFID technology is based on the recognition by a sensor 

at the entrance of the colony, of unique individual tags that are glued on the back of 

the bees. Here I coupled RFID technology with camera sensors and a weighing 

device. In addition to monitoring foraging activity of a large number of individuals of 

the same colony, I was able to monitor their foraging efficiency, by looking at the 

amount and type of resources collected. This allowed automatic monitoring of 

foraging performance of a large number of different individuals from the same 

colony. 

In chapter 2, I explored the differences in behaviour between different 

foragers of two honey bee colonies and found that a subset of very active honey bees 

(the elite foragers) did the majority of foraging and that these bees were also the most 

efficient at collecting both pollen and nectar. Variation in foraging efficiency in the 

colony was found to be related to individual experience. This finding presents a 

potential vulnerability of the entire colony as only a subset of bees collect the 

majority of the food supply.  

In chapter 3, I investigate the question of elite foragers in bumblebee colonies. 

I also found that a subset of very active individuals performed the majority of the 

colony’s foraging activity. Contrary to the honey bees, variation in bumblebees’ 

pollen collection was not influenced by individual experience, but was mostly driven 

by external factors.  
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In chapters 4 and 5, I looked more closely at particular capacities involved in 

foraging tasks, such as spatial and visual learning. First, I tested if foragers of the 

same nest consistently performed similarly in a navigation task under semi-controlled 

foraging conditions (chapter 4). I found that foragers showed a continuum of 

constant foraging behaviours: the same colony contained a mix of efficient or less 

efficient foragers for this navigation task. This chapter has been published in 

Scientific Reports. 

In chapter 5, I assessed the performance of foragers in a laboratory task 

involving associative learning of visual cues. In particular, I studied the possible 

impact on such abilities of chronic exposure to chemicals used for pest control within 

colonies.  

In Appendix 1 I present a paper by lead author Celia Bordier examining the 

impact of a controlled non-pathogenic stressor on forager behaviour and brain 

neurochemistry. I have chosen to present this as an appendix because for this work C. 

Bordier was both instigator and intellectual lead. My contribution was the RFID 

method used in this chapter, the methods for the analysis and the operation of the 

RFID experiment. For all other experimental chapters I was the intellectual leader and 

instigator of the projects. 

By studying individual variation in foraging performance I was able to gain a 

better understanding of the collective foraging behaviour of two social bees. This 

work helps us to better understand the consequences of individuality for the social 

group and highlight important differences between two closely related species that 

vary in their social organization. 
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Abstract: 

Bee populations are declining in the industrialised world raising concerns for the sustainable 

pollination of crops. Pesticides, pollutants, parasites, diseases and malnutrition have all been 

linked to this problem. Here we consider neurobiological, ecological and evolutionary reasons 

why bees are particularly vulnerable to sublethal effects of these stressors. The widespread 

lifestyle of central-place foraging on flowers demands advanced capacities of learning, 

memory and navigation. However many stressors damage the bees’ brain, disrupting key 

cognitive capacities needed for effective foraging at sublethal doses, with dramatic 

consequences for colony function and survival. We discuss how understanding the 

relationships between the actions of stressors on the nervous system, individual cognitive 

impairment and colony decline can inform constructive interventions to sustain bee 

populations. 

 

Keywords: pollinators; central-place foraging; cognition; environmental stressors; sublethal 

effects; pesticides. 
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Bee are exposed to multiple environmental stressors 
Bees are ecologically and economically vital pollinators for both wild and cultivated flowers. 

Presently many populations are in decline [1–4]. While demand for pollination dependent 

crops continues to rise, generating understandible alarm and debate about the possibility of an 

emerging ‘pollination crisis’ [5]. Many causal factors have been identified, including a range 

of pathogens and parasites [6,7], human-induced stressors such as pesticides [8–10] and forms 

of environmental degradation [11]. Very few of these stressors can be considered new, but 

many have increased in intensity over the last decade in much of the industrialised world. Our 

objective in this review is to consider why bees are particularly sensitive to these 

environmental stressors at doses that would be considered sublethal, and why their 

populations are now declining.  

Bees, with exception of parasitic species, raise their brood in a single defensible nest 

[12]. We argue that in these insects, central-place foraging on ephemeral, dispersed and 

highly variable floral resources places particularly heavy demands on cognitive capacities. 

Bees must learn to forage at an energetic profit, locate high quality feeding sites, efficiently 

handle flowers and navigate back to the nest to provision nest mates with the right mix of 

nectar and pollen. The cognitive capacities underpinning these complex behaviours require 

optimal development and function of central brain structures, and precisely regulated 

plasticity of brain circuits necessary for learning, memory and navigation [13,14]. These brain 

systems are very easily disrupted, and it is especially problematic that many pesticides found 

in floral resources directly target key neural pathways [15,16]. Pathogens and nutritional 

deficits also compromise cognitive functions [17,18]. Even quite mild damage to the brain can 

significantly reduce foraging performance, thus rendering bees especially vulnerable to the 

sublethal effects of stressors. In social species, such as honey bees, bumblebees and stingless 

bees, efficient division of labour and coordination of tasks across nest mates, should provide 

buffering against environmental stressors, since individuals share a fortress-factory stocked 

with stored resources [19]. However, this buffering capacity has limits, which can be 

exhausted by chronic exposure to stressors. Once this occurs the result is a catastrophic 

colony decline [20–22].  

Here we develop a neurobiological, ecological and evolutionary thesis to explain why central 

place foraging bees are particularly sensitive to environmental stressors. First we describe the 

complex cognitive challenges bees face when foraging and the neural substrates supporting 

these abilities. Next we review evidence that these essential cognitive abilities are impaired by 
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a range of stressors, ultimately threatening colony function and survival. Finally, we discuss 

how understanding the mechanisms of action of the different stressors and their consequence 

on individuals and colonies can help better manage and protect these vital pollinators. 

Central-place foraging on flowers imposes high cognitive challenges  
Bees must gather large volumes of highly dispersed pollen and nectar, and return with it to the 

nest to feed their brood [12]. Accordingly, these insects have evolved excellent memory and 

navigation skills enabling them to exploit complex and variable foraging environments, and 

more than a century of research has identified the underlying neural circuits [13,14]. Although 

most studies have focused on few economically important social species, such as honey bees 

and bumblebees, solitary bees show similar behaviours [12], cognitive capacities [23] and 

overall brain organisation [24]. !In the bee brain (Figure 1), visual and olfactory stimuli are 

first processed by their respective sensory lobes (for detailed reviews see [25,26]), which then 

convey information to multisensory integration centres, such as the mushroom bodies (MBs) 

and the central complex (CX), that are specialised for learning and memory and spatial 

navigation tasks, as we describe below. 

Learning the most rewarding flowers 

Despite a large variety of available floral species, individual bees tend to forage on the same 

type of flower as long as it provides sufficient nectar or pollen [27]. This floral constancy 

demonstrates the abilities of foragers to learn the association between food rewards and 

particular floral cues (odour, colour, shape, temperature etc.) [28]. In many cases, bees learn 

more complex associations by generalising specific floral cues to learn conceptual features 

common to a range of flowers [13]. The amount of reward offered by flowers can change very 

rapidly, and bees can update their learned flower preferences accordingly [29,30]. Bees can 

also use combinations of cues (second-order cues), such as the presence of conspecifics or 

other bee species on flowers, to locate and learn rewarding flowers [31].  
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Figure 1. Brain structures supporting the cognitive capacities needed for foraging and how they are 

impacted by stressors. Schematic frontal view of a bee brain. Sensory information from the environment is first 

processed in specialised brain structures. The antennal lobes (AL) process olfactory information. The lamina 

(LA), medulla (ME) and lobula (LO), as part of the optic lobes, process visual information. The gnathal ganglion 

(GNG) receives gustatory information, and is sensitive to sugar. Sensory signals are then conveyed to higher-

order centers (arrows). The mushroom bodies (MB) are involved in stimulus classification (odour, colour), 

complex associative learning and memory. They receive information directly from the sensory centers or 

indirectly through the lateral protocerebrum (LP) and the protocerebrum (P). The central complex (CX) receives 

processed visual input through the structures of the protocerebrum including the anterior optic tubercle (aOTU) 

and bulbs. The central complex locates the bee in space using celestial information and visual landmarks and is 

key for orientation and navigation. Environmental stressors (orange boxes) alter functions of various systems in 

the brain, and can alter the neural pathways supporting learning (purple arrows) and navigational capacities 

(green arrows). Dashed orange lines indicate impacts of stressors that have not been directly demonstrated for 

bees, but can be inferred by behavioural observations or has been observed in other insects. 
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 These mechanisms of learning and memory have been examined in details using 

laboratory assays (Box 1). Acquisition of associative memories linking floral cues with food 

rewards relies on changes in neural activity induced by locally coincident activity in neural 

networks processing such cues and those signalling food detection [32]. Plastic changes in 

connectivity in either the antennal lobes (ALs) or the MBs (Figure 1) can support associative 

learning about odorants, and both structures modify their activity following learning [26]. In 

particular, the MBs are required for some complex forms of olfactory learning as well as for 

the formation of olfactory long-term memory [33,34]. Although less is known about visual 

learning, there is visual input from optic lobes (OLs) to the MBs (Figure 1), and it is 

increasingly likely that associative learning of visual features and colour also involves the 

MBs [35]. Memorising simple odour-food associations involves excitatory signalling through 

acetylcholine in the ALs and MBs (Figure 1) [13], a neurotransmitter system specifically 

targeted by major pesticides, as for instance neonicotinoids and organophosphate miticides 

[15].  

Orienting, navigating and learning places 

Bee foragers use multiple different sources of information to orient [35]. Path integration 

requires storing information on distances and directions travelled during the outward journey, 

in order to plot a direct return path to the nest [36]. Distance is estimated from optic flow [37], 

which is the movement of the image of the environment across the eye during flight. 

Direction is determined using the position of the bee relative to the sun [38] and/or the pattern 

of polarised light in blue sky [39]. Bees possess specialised mechanisms to compensate for the 

apparent movement of the sun (and the polarisation pattern it generates) across the sky during 

the day [40]. They are sensitive to other global sources of navigational information such as 

fine magnetic field variations, and can learn to relate them to local landmarks so that they can 

still navigate when celestial cues are blocked by cloud [41]. 

 Bees can also learn locations by memorising the visual panorama. They use these 

stored ‘snapshots’ for navigation by positional image-matching [36], which compares their 

current view of the environment with a visual memory of the goal. The degree of matching 

provides a cue for guidance [42]. Bees form snapshot memories of the nest surroundings on 

their first foraging attempts outside the nest and also of the location of food sources [43]. For 

visual matching, individuals use salient objects (flower patches, trees, buildings), which can 

be either local cues or panoramic landmarks [36]. Honey bees can also perform ‘optic flow 

matching’, using the direction of optic flow caused by major landmarks as a navigational cue 
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[44]. Processing information on optic flow and landmarks while flying demands integrating 

visual and proprioceptive input with a temporal component. Responses to motion stimuli and 

colour are displayed by neurons connecting the OLs to central areas (lateral protocerebrum 

(LP) and MBs) [45] (Figure 1), and some of these neurons are involved in visual landmark 

detection [46].  

The functions of the central complex (CX) (Figure 1) are presently poorly understood, 

but data from other insect species suggest that it is crucial for navigation [35]. Besides being a 

likely substrate for a sky compass [38], the CX could also support visual short-term (working) 

memory and spatial memory [47]. A study using a virtual reality assay (Box 1) in 

Drosophila showed that activity of the ellipsoid body neurons of the CX represented the 

orientation of the fly relative to visual landmarks [48].! ,-./! it is increasingly likely that 

activity in the CX contributes to internal representation of position for path integration [48].  

Learning optimal routes  

Bees can use their spatial memories dynamically to establish and optimise foraging routes. In 

nature, bees must sometimes visit hundreds of patchily distributed flowers to collect sufficient 

nectar and pollen in a foraging trip [27], and many species revisit familiar patches over 

consecutive hours or days in stable sequences called ‘traplines’ [49]. Recordings of 

bumblebee flight paths, using harmonic radar in the field (Box 1), shows that foragers attempt 

to minimise the overall travel distances between discovered flower patches, a complex 

optimisation task akin to the Travelling Salesman Problem [50]. On each new foraging trip, 

bees try different visitation sequences, ultimately approximating (or finding) the shortest 

possible path to visit all patches once, starting and ending at the nest [51]. Route optimisation 

is therefore an iterative improvement process based on learning and memory of flight vectors 

between feeding locations, supported by path integration and visual guidance [52]. This 

process allows for route flexibility and rapid adjustment of trapline geometry in response to 

changes in spatial distribution of floral resources, for instance when a patch becomes depleted 

or a more rewarding one is discovered [53].  

Foraging performance improves with foraging experience 

Most bees do not engage in foraging right upon emergence [12]. In honey bees the transition 

from in-hive activities (e.g. brood nursing) to foraging depends on a complex developmental 

program regulated by social signals [54]. On their first flights from the hive honey bees make 

orientation flights without collecting food to systematically acquire information about the hive 
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location [55]. Foraging performance then improves over the first week of foraging, likely due 

to learned flower identification and handling, and route optimisation [56,57].  

Dramatic changes in the structure of the adult brain are seen during the period of 

orientation flights and the first week of foraging [58]. Foraging activity is reflected by 

allometric increase in MB volume [59,60]. In honey bees this expansion is caused by 

increased dendritic arborisation of the MBs intrinsic neurons receiving visual and olfactory 

input accompanied by the pruning of microglomeruli (synaptic boutons) [58,61],!012345!due to 

the activation of cholinergic receptors [62]. The selective localisation of these structural 

changes suggests activity-dependent synaptic plasticity as an underlying mechanism [58]. 

Dendritic growth can provide a substrate for the formation of new synapses to support stable 

memories [63]. At the same time selective growth and pruning of connections is thought to 

optimise the performance of brain centres in the rich visual and olfactory environments 

experienced during foraging [58].  

Stressors affect brain functions, cognition and behaviour 
Successful foraging is based on the precise integration of information processed across the 

major brain networks, as well as dynamic structural modifications of such networks. 

Therefore even subtle disturbances of neural function could have dramatic consequences on 

individual cognitive abilities and hence foraging performance. From this perspective is it a 

major concern that most of the stressors presently impacting on bees target the brain. The 

range of stressors has been well reviewed previously [1,11]. Here we emphasise how many of 

these impair cognitive abilities and foraging performance at exposure levels far below those 

that kill the bee.  

Pesticides and heavy metals 

Many pesticides impair the cognitive functions required for foraging. In recent years, 

neonicotinic insecticides have drawn the most attention [64]. These insecticides disrupt 

cholinergic transmission, the main excitatory pathway in the insect brain, vital for effective 

learning and synaptic plasticity [13,26]. While acute exposure to very small doses of 

neonicotinoids has been shown to inactivate MB neurons [15], chronic exposure can impair 

the whole MB development [16,65]. These effects almost certainly explain the dramatic 

impacts of sublethal doses of neonicotinoids on learning and memory in honey bees [66], 

bumblebees [67], and solitary bees [23], which can be linked to deficits in MB plasticity [16]. 

Pesticide exposure also disrupts visuo-spatial memory and navigation [9,68,69], most likely 
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through disruption of processing in the corresponding pathways (Figure 1), but this has yet to 

be demonstrated. Alarmingly, bees learn to prefer nectar containing neonicotinoids over non 

contaminated nectar because of incidental actions of pesticides on the nicotinic receptors 

involved in reward processing [70]. 

 Fipronil, a widely used insecticide and acaricide, targets neuronal receptors involved 

in inhibitory transmission by GABA and glutamate [71]. In honey bees GABA signalling is 

vital for normal MB function, particularly for complex learning [72]. Acute fipronil treatment 

severely reduces olfactory learning and memory performance [73]. Additional indications of 

neuronal cell death in the MBs following fipronil exposure suggest possible long-term 

cognitive impairments in honey bees [74] and stingless bees [75]. 

Some pesticides contain manganese, which induces precocious foraging in honey bees 

[76]. Its effect on sucrose responsiveness suggests that it interferes with signalling pathways 

important for associative learning, as indicated by the abundant expression of a manganese 

transporter in MBs and ALs [76] (Figure 1). Selenium, another heavy metal found in crop 

treatments, has been found to change sucrose responsiveness, olfactory learning and long-

term memory [77].  

Parasites and viruses 

Human activities have intensified the pathogen pressures on social bees through dispersion of 

pathogens across the world. While few parasites or pathogens act directly on the brain, many 

have a strong impact on the behaviour of bees [6]. Part of this can be explained by the 

activation of immune mechanisms, which might interfere with energy supply or signalling 

mechanisms. Even an immune response induced by non-pathogenic molecules can reduce 

olfactory associative learning abilities [78,79]. 

 The microsporodian Nosema cerana and the mite Varroa destructor are two major 

parasites of honey bees. Exposure to either of them induces specific but overlapping patterns 

of altered gene expression in their hosts’ brain [80]. Varroa infection alters brain expression 

of many genes involved in neurotransmitter signalling, including through GABA [80]. These 

impacts on the brain are thought to induce poor navigation performances by infected bees 

[81,82].  

 Varroa carries many viruses, and a Varroa infection of a colony is a complex 

syndrome of many co-associated pathogens. Part of the effects of varroensis is due to viral 

infections [7,80]. For example, the deformed wing virus (DWV) impacts on olfactory 

learning, possibly by targeting brain areas of importance for foraging [18]. Although there is 
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no known impact of DWV on bee visual learning and navigation, other viruses, such as the 

Israeli acute paralysis virus (IAPV), affect homing behaviour [83].  

Malnutrition 

Intensive farming and the expansion of monocultures have imposed constraints on the dietary 

diversity of bees since only rather few food resources are available to them, often in limited 

flowering seasons [11]. Bee nutrition is partitioned between nectar, the main source of 

carbohydrates, and pollen, which provides proteins, lipids, vitamins and other micro-nutrients 

[84]. Limited food intake reduces performance in a simple learning task [79], but having 

enough food is not necessarily sufficient for optimal cognitive processing. In honey bees, 

olfactory associative learning is disrupted by qualitative changes in essential lipids [17] or 

amino acids [85]. Pollen shortage during development can also lead adults to forage earlier 

and for a shorter period [86], whereas nectar deprivation increases impulsive, suboptimal, 

food choices [87]. 

From reduced foraging performances to colony collapse 
Few of the stressors we have considered would kill bees outright at ecological levels. 

Nonetheless, impairment of the cognitive abilities and food collection performance of 

foragers by sublethal stressors can have extremely severe consequences on populations.  

Comparative research on bee declines suggests bees are more or less resilient to 

stressors depending on their social lifestyle [2,88], although this needs to be confirmed by 

more studies (Box 2). In principle, solitary bees are the most vulnerable since the reduced 

foraging efficiency of the female following stress exposure immediately jeopardises the 

development of its entire brood. These species lack the profusion of specialised group 

behaviours observed in social bees (e.g. corpses and diseased brood removal, social fever, 

collection of antimicrobial and antiviral plant resins) that mitigate the impact of stressors on 

colonies [89].  

However, the stress tolerance of a colony is not without limits and sublethal stressors 

can also have extremely severe consequences on colonies. In the most socially advanced 

species, such as honey bees, foraging is undertaken by middle-aged adults that have 

completed a period of orientation flights and brain maturation to prepare them for the 

cognitive demands of foraging [58,59]. Stressors not only disrupt foraging performance, but 

also the process of preparing for foraging. For honey bees, a very common response to many 

stressors is to begin foraging prematurely [21] (Figure 2). It has been argued that delaying 
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high-risk tasks to later in life is an effective strategy to extend mean longevity of workers and 

increase the total contribution of workers to the colony [90]. But if worker lifespan is reduced, 

workers react by proportionally compressing their time allocation to each task, and commence 

foraging early. This is likely an adaptive response to acute stress, since it would temporarily 

compensate the foraging effort of the colony. However, in conditions of chronic stress, this 

response can accelerate colony decline since bees that commence foraging precociously 

complete fewer trips in their lifetime [91] and live less long [21].  

Simulation models suggest that chronic environmental stressors can create a situation 

in which the foraging force is dominated by precocious foragers [21,92], and becomes so 

inefficient that it can no longer support the colony, at which point the colony population 

dramatically collapses (Figure 2). Stressed bumblebee colonies, though smaller and socially 

simpler than honey bee colonies, also show highly non-linear responses to chronic 

environmental stressors [10,20]. Various impairments of colony function (including foraging, 

but also thermoregulation, defence and hygienic behaviour) can generate changes in 

population dynamics via feedback loops affecting rates of hatching and adult death, 

sometimes leading to colony collapse [20]. These complex dynamics might explain why 

widespread declines in wild and managed bee populations have been observed recently [1–4]. 

The known stressors of social bees are not new, and many populations have been in a steady 

decline for decades, but the accelerated declines described recently [2–4] suggest that we are 

now reaching the point at which the cumulative stress on colonies is exceeding their capacity 

to tolerate it. 
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Figure 2. Sublethal effects of stressors on honey bee colony dynamics. In a non-stressed colony (grey 

arrows), the brood (eggs, larvae and pupae) develops into hive bees (e.g. nurses) that begin to forage two weeks 

later. Foragers gather nectar and pollen from floral resources for storage in the hive (comb). The food stock is 

consumed by the queen, the larvae, the hive bees and the foragers. Individual bees can be exposed to 

environmental stressors (orange boxes) at different stages, potentially disrupting the whole colony dynamics. 

Stressors reduce brood production, alter development, induce a precocious foraging onset in hive bees and affect 

the cognitive performances of foragers, leading to disorientation and less efficient food gathering (red arrows). 

The synergistic action of stressors at different levels of this complex system can lead to dramatic colony 

collapse. Plain red arrows indicate quantitative changes. Dashed red arrows indicate qualitative changes. 

Adapted from [22]. 
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Summary and future prospects  
Bees are particularly vulnerable to the sublethal effects of many current environmental 

stressors. These insects have evolved refined cognitive abilities to enable them to effectively 

exploit complex and changing foraging environments from a central nest. Such capacities 

demand the optimal function and coordination of major systems in the small bee brain. Many 

stressors disrupt brain function with the consequence of reduced foraging performance, 

ultimately compromising brood or whole colonies. These gradual and pervasive effects might 

explain why eco-toxicological studies, alone, have failed to provide accurate predictions of 

how stressors can damage bee colonies. We therefore argue that more integrated research that 

considers actions of the different stressors on bee behaviour, cognition and colony function is 

urgently needed to understand the declines of these major pollinators and manage their 

populations (Box 2).  

Pesticides provide an informative case in point. Agriculture has become increasingly 

reliant on the ‘next generation’ neonicotinoid pesticides because they are so effective at 

killing pest insects at low doses by directly targeting the insect central nervous system [8]. 

Growing research describing the neural impacts, behavioural impairments and changes in 

colony dynamics at field contamination levels by pesticides [8–10,56,69] has forced a re-

evaluation of the ‘safe-level’ of pesticide exposure for individual bees and colonies [64]. 

Using this new knowledge we must now determine how pesticides can be managed in the 

agricultural landscape in a manner that is compatible with sustaining bee populations. Many 

other stressors contribute to colony decline [1,11], for which the precise mechanisms of action 

need to be unravelled (Box 2).  

As discussed above the stress tolerance of a colony is not without limits, and given the 

increase in bee declines seen in the last decade it would appear we are very close to 

exhausting those limits for some key pollinating bee species. But this is far from a hopeless 

story. Combining conceptual and methodological advances in neurosciences, ecology and 

evolutionary biology can bring considerable insights into how specific stressors affect bee 

behaviour and colony dynamics, and help identify ecological interventions to ameliorate 

stress on bees. Most of the stressors damaging bee populations are human induced, and can be 

reduced or eliminated from the environment if there is sufficient will, or economic imperative.  
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BOX 1. Studying the mechanisms of learning and memory in bees 

Experimental work addressing the fine scale neural and behavioural bases of bees’ cognitive 

capacities has relied on Pavlovian conditioning, where an individual is trained to associate an 

initially neutral stimulus (the conditioned stimulus, CS) with an unconditioned stimulus (US) 

that elicits an innate response [13,14]. Learning the CS-US association leads the animal to 

respond to the CS. Historically, the dominant paradigm has been the appetitive conditioning 

(using a sugar solution as the US) of the proboscis (tongue) extension reflex (PER) using a 

restrained bee (Figure IA) [32] although aversive paradigms exist [93]. This method allows 

study of elemental associations between two prescribed events, and also non-elemental 

associations (when individuals respond in an adaptive manner to novel stimuli using learned 

information in a new context). In recent years considerable progress has been made by 

combining PER conditioning with pharmacological treatments, electrophysiological 

recordings and brain functional imaging, to unravel mechanisms of learning and memory, 

especially for olfactory learning [34].  

So far, attempts at associative conditioning of visual CS in PER conditioning with 

restrained bees has yielded low performance levels [94]. By contrast, impressive visual 

learning capacities have been shown using free-flight assays, in which bees obtain a sugar 

reward if they make a correct choice when learning to navigate in a maze (Figure IB) [95] or 

foraging in arrays of artificial flowers (Figure IC) [31]. Automated tracking systems, such as 

harmonic radars (Figure ID) [53,68], radio frequency identification (RFID) (Figure IE) 

[9,10,21], or computer vision [96] allow precise quantification of behavioural data lab and 

semi-field conditions. These approaches have revealed bees’ cognitive abilities for learning 

complex visual features and relational properties between stimuli [13]. Fast developing virtual 

reality assays, in which tethered bees walk on a locomotion compensator (Figure IF) [97] or 

fly [98] to make foraging decisions in response to stimuli displayed on a screen, hold 

considerable promises to explore the neural mechanisms of visual learning and navigation.  



 

! *+!

 
Figure I. Methods for studying bee learning and memory. (A) Restrained honey bee showing proboscis 

extension reflex (PER) (C. Fresillon/CNRS). (B) Free-flying honey bee in a flight tunnel covered with visual 

patterns generating optic flow (F. Vrignaud/DGA). (C) Bumblebee foraging on an artificial flower (M. 

Lihoreau). (F) Left: Bumblebee with harmonic radar tag  (J. Woodgate). Right: Harmonic radar (J. Makinson). 

(E) Bumblebee with RFID tag (S. Klein). (F) Tethered honey bee walking on a locomotion compensator, in a 

controlled visual environment projected onto LED panels (G.J. Taylor).  
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Box 2: Outstanding questions: research to sustain social bee populations  

1. What are the points of greatest vulnerability in the bee brain? Neurogenomic profiling has 

started to provide a broad but coarse picture of the gene expression changes occurring in the 

brain in response to pathogens [80], but more integrative work is now needed to identify 

precisely how stressors damage the brain to reduce foraging performance. This must couple 

genomic studies with functional analyses of changes in circuit performance and behaviour. If 

the points of vulnerability in the developing and adult brain can be identified, it would help 

the development of neuroprotective treatments to improve the resilience of managed bees. 

2. Are all bee species similarly vulnerable to stressors? Bees greatly vary in their social 

organisation (from solitary to eusocial), feeding ecology (nutrient needs, dietary niche breath) 

and habitats (temperate, tropical) [12]. While most attention has focused on managed 

populations of generalist species with a social lifestyle, such as honey bees and bumblebees, 

comparative research is needed to assess the general impact of stressors on the wide diversity 

of pollinators.  

3. How can pesticides and bees be managed to keep colonies at a ‘safe level’ of exposure? A 

key issue is determining what cocktails and levels of pesticide exposure a bee colony can 

tolerate and maintain a healthy population. Often there are multiple different pesticides at use 

in the landscape. We need more information on how pesticides might accumulate and persist 

in colonies, and how they interact to impact bee physiology and change colony function.  

4. How then can the agricultural environment be managed to ensure bees receive adequate 

nutrition from diverse floral sources? Can we design nutritionally optimised plant 

assemblages to preserve bee populations? Crops provide huge amounts of foods but these 

plants that have been selected to optimise production and typically yield poor quality diets to 

bees [99]. Research is needed to quantify the precise nutrient needs of bees, how they vary 

across colony developmental stages, species and in the face of specific stressors, and their 

impact on behaviour and cognition.  

5. Can the pollination performance of managed bees be sustainably improved by manipulating 

colony composition? Within a colony, social bees show high levels of behavioural and 

cognitive variability [100]. In honey bees a small number of individuals complete a 

disproportionately high number of foraging trips [101]. Characterising this variability between 

bees, what causes it, and how it changes under stress conditions is needed to understand the 

consequences of environmental stressors on the resilience of colonies.
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Abstract:  

For honey bees, macronutrients are supplied from pollen (proteins and fat) and nectar 

(sugars). The foraging force must supply its colony with a precise balance of both 

resources to support colony growth. Inter-individual variability within the foraging 

force has long been observed, in terms of nectar or pollen collection and differences in 

the foraging activity level. But so far, the nature, the cause and the consequence of such 

inter-individual variability are not well understood. To explore this here we 

automatically recorded the weight of bees on departing the hive, their trip durations and 

videoed returning bees to visually score pollen collection. Only a subset of foragers 

collected pollen, and no bee foraged exclusively for pollen across their lifetime. A 

subset (19% of the foragers) of very active bees performed 50% of the colony’s 

foraging trips. Those individuals were more efficient at collecting pollen and nectar, 

and their efficiency was linked with their foraging experience. Our data bring new 

information on how a social insect collectively achieves nutritional balance. 

 

Keywords: Apis mellifera, division of labour, pollen foraging, radio frequency 

identification (RFID), behavioural plasticity 
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Introduction: 
A honey bee (Apis mellifera) colony is reliant on a subset of active bees, the caste of 

foragers, to supply nutrients and resources for the whole colony [1]. However, not all 

foragers make a similar contribution to the provisioning of the colony: some bees will 

collect more pollen than others [2–6] and some bees are more active than others [7]. 

What causes inter-individual variability in the foraging behaviour of honey bees is not 

yet well understood. To analyse the possible causes of variation in foraging activity and 

efficiency among foragers, we used a novel radio frequency identification (RFID) 

system to monitor individual bees foraging activity and performance throughout their 

foraging life.  

 Inter-individual variability is a commonly documented phenomenon in a wide 

range of animal species (e.g. mammals [8,9], birds [10] or insects [11–17]). In honey 

bees, inter-individual differences contribute to a highly structured division of labour 

[18]. A typical honey bee colony is composed of one reproductive female (the queen), a 

few hundred reproductive males and approximately 50,000 non-reproductive females; 

the workers who undertake all tasks needed to support and maintain the colony. 

Workers adopt different tasks according to their age, and thus belong to different 

behavioural castes at different stages of their adult life, such as in-hive nurse bees, 

guards and foragers [19].  

Even within the forager behavioural caste there is marked inter-individual 

variation in resource specialisation. Such differences between foragers have also been 

discussed in terms of different tasks or subcastes, or even personality traits 

[13,15,16,20]. The most discussed form of variation between foragers relates to the type 

of resource they return to their colony. Adequate colony nutrition is reliant on a supply 

of both pollen (protein and lipids) and nectar (carbohydrate) [21]. Because of the 

differences in the spatial distribution of these major nutritional resources, and the 

different behavioural skills and strategies required to collect them it may be most 

efficient for a colony to have different individuals specialised on collection of nectar or 

pollen [22,23]. This is generally assumed to be the case for bees where pollen and 

nectar foragers are often described as behavioural castes [2–6] that have been found to 

differ in their brain neuropeptide profile [24], sucrose response threshold [25], ovary 

size [26] and levels of vitellogenin (a yolk precursor protein) [27]. Together with 

evidence for genetic variation and heritability of pollen and nectar collection [3,28–30], 
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these observations suggest that pollen and nectar collection are different evolved 

specialisations within the foraging force [29,31,32].  

Recent studies, however, have reported that the distinction between the pollen 

and nectar collection foraging forces is far from absolute. In honey bees, a large 

proportion of the foragers seem to collect both resources, or may change specialisation 

as they age [7,25,33]. These studies, however, were either investigating foraging 

behaviour over a short period of time, often less than the natural foraging lifetime of an 

individual [25], or were looking at few individuals only [33], or were operating in 

controlled environments with fixed pollen or nectar sources [7]. Thus, so far, no study 

has analysed the long-term foraging preferences of a large cohort of honey bees in the 

natural environment, and thus, data on how foragers partition their effort between 

pollen and nectar collection across their lifetime are limited. 

Some studies of social insects have argued that not all foragers make an equal 

contribution to the collective foraging effort [34–36], with the observation of extreme 

skews in the foraging activity of a few very active individuals that can be referred as 

keystone individuals, or “elite” foragers [7]. Tenczar et al. [7] identified that around 

20% of the foragers performed 50% of the colony’s collective foraging activity. Those 

individuals were more active as they performed more trips compared to the rest of the 

colony. It is intriguing to observe such skew in the distribution of foraging activity, and 

one would argue that it would be better for a hive, for all bees to perform at the level of 

the elite minority. Tenczar et al [7] proposed that non-elite bees could act as a back-up 

pool of individuals that enable replacement of removed elite bees within a few days 

after removal, but this further raises the question of why a colony should support an 

underutilised foraging force when it would be more successful and competitive to bring 

all foragers into effect. In their study, Tenczar et al [7] were not able to measure bees 

foraging efficiency and profitability in terms of nectar or pollen collection. Without 

these data it is impossible to know if a more active bee is more useful to a colony, or 

simply more active and costly. To understand the nature of variation in foragers’ 

activity, it is crucial to understand the foraging efficiency of the different individuals to 

understand the potential benefits of a skew in the distribution of the collective foraging 

effort.  

 One possible cause of inter-individual variation in foraging performance is the 

amount of experience foragers have gained. Studies have shown that individuals 
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improve their foraging performance with experience [33,37]. Net nectar income has 

been shown to increase over the first four to five days of the foraging life of a bee 

[33,37]. Dukas [33] observed that after the fourth day of foraging, foraging efficiency 

for nectar (measured as milligrams of nectar collected per minute) started to decline. 

Both of these studies focused on nectar resources only and did not analyse the effects of 

experience on pollen collection. Moreover, both studies looked at a rather limited 

number of bees (less than 30 individuals) and presented only general trends. Studying 

more individuals would enable consideration of individual variation. 

More recently the use of radio frequency identification (RFID) technology has 

made it possible to follow the foraging activity of a much larger number of bees. This 

technology has been used for more than a decade to address several questions about bee 

foraging activity, such as the impact of environmental stressors on different aspects of 

bee foraging behaviour [38–43], or individual foraging strategies [7,44]. RFID systems 

are based on the detection of passive chips that have to be in close contact with a radio 

wave emitter to emit back their identity. This constrains the detection to only 

registering when the back of a bee is in contact with the RFID reader. Thus, most of the 

studies have focussed on detecting bees at the entrance of the colony. This is then a 

very efficient way to detect bees leaving and entering the hive, and enables an 

interpolation of individuals foraging trips. Using a RFID system on its own, would not 

give information about either the type of resource a bee collected on a given trip, or its 

efficiency of collecting resources, or where in the environment they went. 

In order to analyse variation in forager performance with greater detail, here we 

developed a use of RFID technology in combination with video analyses and measures 

of weight of foragers. With these data we analysed how bees differed in foraging 

efficiency, their lifetime foraging behaviour and also compared their pollen and nectar 

collection strategies to better understand the causes and consequences of individual 

variation in forager performance.  
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Material and Methods: 

Experimental hive: 

Honey bees (Apis mellifera) were obtained from the research apiary of Macquarie 

University (Sydney, NSW, Australia). The experimental hive was a four-frame nucleus 

(small wooden box of 56x23x28 cm) hive, placed in a dark room at the constant 

temperature of 24°C and connected to the outside environment via a specially designed 

entrance (figure 1). The hive contained two frames of honey and pollen, one frame of 

capped brood and one frame of polystyrene to fill the remaining space in the hive box. 

Entrance board: 

The entrance to the hive operated to force bees to exit the hive along one path and to 

enter using a different path (figure 1). Each path was made of transparent plastic tubing 

of 1cm of diameter that passed across an RFID antenna (Invengo, Guangzhou, China) 

and a microbalance pan (A&D company, supplied by National Weighing & Instruments 

Pty Ltd, Australia). To prevent bees to go out or in through the wrong tube, we attached 

inwardly tapering plastic bristles at the end of each tube. Along the entrance path bees 

also passed beneath a webcam (Logitech), placed in a plastic box lit with white LED 

light, in order to video record the entrance tunnel. Motion detection video recording 

software (Netcam Studio X, Moonware Studios and ZoneTriger, Omega Unfold Inc. 

Canada) was used to capture video footage of returning bees, thus allowing us for visual 

assessment of the resources they carried (i.e. presence of pollen or not on the bee legs). 

Automatic gates (micro-controlled servos connected to infrared emitter/receiver) 

regulated the traffic of bees within each path. The gates were placed at the beginning of 

the entrance and exit tubes. When a bee walked through the tubes and broke the beam 

of an infrared emitter/receiver, the connected gate would close behind the bee for 10 

seconds. This time was an estimation of the maximum time needed for a bee to cross 

the RFID antenna and the balance, as the gating system would slow down the bees, but 

without disturbing the traffic. The infrared beams and gates were all connected and 

monitored via Arduino technology (Arduino, Adafruit and little birds electronics, 

Hornsby, Australia). 
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Figure 1: Colony entrance with sensors. The entrance and exit tubes were 1cm 
diameter transparent plastic tubing. 1: plastic bristles (forcing the passage of a bee from 
one direction only), 2: balance, 3: RFID antennae, 4: infrared emitter/receiver, 5: 
automatic gate, 6: landing platform (open on the outside), 7: motion detection webcam. 

Radio Frequency Identification (RFID) detection: 

RFID tags were obtained from Invengo (Guangzhou, China). Each circular tag had a 

diameter of 4mm and a weight of 1mg and could be fixed to the bees’ dorsal thorax 

with glue (Loctite, Gel Super Glue). Each RFID tag had a unique 12-byte hexadecimal 

identifier that allowed us to track individual bees as they were detected by each antenna 

on exiting and entering the hive.  
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Balances: 

Sections of the entry and exit tunnels ran across dynamic micro balances of 10 mg 

sensitivity (figure 1). The balances captured the weights of bees as they entered and 

exited the hive. Sometimes several bees crossed the balance at the same time and thus, 

the weight did not reflect the weight of just one individual. For this reason, we retained 

only values between 60 and 150 mg (we evaluated the coherence of individual weigh 

values as fitting in a realistic individual weight range of each bee [45]). Examination of 

the videos of the entrance tunnel indicated that these limits were realistic as it showed 

only one bee walking in the tubes for such range of weights. 

Experimental bees: 

The hive was established with about 500 background (untagged) bees of mixed ages 

and a queen taken from a single colony. To this hive newly emerged bees carrying 

RFID tags where successively added. To source newly emerged bees we collected 

brood frames from up to eight different colonies over the course of the two 

experimental trials to provide a diverse source of brood for the experiment. For each 

brood collection frames were collected from two or three of the eight colonies. Brood 

frames were stored overnight in an incubator maintained at 37ºC. The next morning we 

glued individually programmed RFID tags to the thorax of the newly emerged bees 

with super-glue. 

 Bees were added successively to the colony at different times and we defined a 

cohort as a group of bees tagged and added to the colony on up to six successive days. 

Each cohort came from a combination of different hives from the apiary in order to 

increase the diversity of added bees. 500 tagged bees were added every day for the four 

first days of the experiment (first cohort). From day 21 of the experiment a further 

2,000 tagged bees were added over four days (500 bees a day, second cohort). From 

day 35 of the experiment a further 800 bees were added over four days (200 bees a day, 

third cohort). Thus over the five weeks of the experiment, the hive received 4,000 bees 

in total distributed within three cohorts. The experiment was repeated twice: colony 1, 

from April-May 2015 (Australian Autumn); colony 2, from November-December 2015 

(Australian Spring). In colony 1, the queen died after two weeks and was replaced with 

a queen mandibular pheromone substitute (BeeBoost, Hornsby beekeeping supply, 

Australia). 
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Bees foraged in the surrounding suburban Australian environment including 

several public reserves and private gardens. Such an environment provided nectar and 

pollen flow during the two seasons of the experiment, with a predominance of 

flowering native trees and shrubs such as different eucalyptus species (personal 

observations). 

Collating data on bee trips: 

RFID data for each trip included the date and time the bee left the hive, the date and 

time the bee returned to the hive, and the RFID number for that bee, enabling us to 

calculate the duration of all individual trips. Trips that lasted less than 10 s were 

removed from the dataset as they are consider as non-foraging trips [46]. RFID readings 

were time-matched with readings from the balances. Videos taken up to 20 s before an 

entry RFID detection were inspected to score whether the tagged returning bee carried 

pollen (P), no pollen (NP) or could not be reliably scored (NA) due to multiple bees in 

the tube or a bee moving through the tube at an angle where their body occluded view 

of their legs. 20 s was visually assessed as the maximum time for a bee to travel from 

the webcam to the RFID antenna. 

Data reliability: 

A total of 8,640 bees were tagged during the two runs (4,390 for colony 1 and 4,250 for 

colony 2). We excluded from the dataset bees that had only ‘NA’ as load type over all 

their trips and bees that performed only one trip. In the final dataset, 3,432 bees (1,728 

for colony 1 and 1,704 for colony 2) were kept. We speculate that the discrepancy 

between final bee counts and initial bees tagged is due to many bees losing their tags 

within the hive, some of the tags being damaged during the tagging process and 

rendered unreadable, and some bees not returning to the hive during their first trip, for 

reasons of health, physical ability to return or being rejected by hivemates. For each bee, 

we excluded the first five trips, which are more likely orientation flights than foraging 

flights [46]. A summary of our trip dataset is given in Table 1. The high number of ‘NA’ 

trips was mainly due to camera software issues, which was unfortunately most 

problematic for colony 2.  
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Data analyses: 

Data were analysed in R version 3.2.3 [47] (operating via Rstudio, version 1.0.136 [48]) 

using the packages lme4 [49] and lmerTest [50]. We define here elite bees as the subset 

of bees that completed more than 50% of all the trips of each colony. Differences in age 

at first foraging trip and differences in average weight on departure between elite and 

non-elite foragers were tested with a Wilcoxon rank sum test. The proportion of mixed 

foragers in elite or non-elite bees groups has been tested with a chi-squared test. The 

correlation between the average weight difference for non-pollen trips and bee activity 

was tested with a general linear model (GLM). The correlation between the total weight 

differences for non-pollen trips and bee activity was tested with a general quadratic 

model. Changes in weight difference for non-pollen trips according to the number of 

trips was tested with a general logarithmic model. Changes in the number of foraging 

trips per day according to the number of foraging days were tested with a general linear 

model (GLM). We analysed the probability of foraging for pollen according to 

experience (number of foraging trips) using a binomial generalized linear mixed model 

(GLMM). Differences in foraging durations and weights on departure between pollen 

and non-pollen trips were investigated using a Poisson generalized linear model (GLM). 

Trip durations were normalised (natural log). Differences in weights on departure for 

non-pollen trips between non-pollen foragers (bees that did not perform any pollen trip) 

and mixed foragers (bees that collected pollen at least once) were analysed using a 

Poisson GLM with colony identity as a random factor. The regressions between trip 

durations and weights on departure were investigated with linear models (LMs). 

For all models, colony identity was included as a covariate and bee identity 

nested in cohort identity was included as a random factor. Day identity was included as 

a random factor to control for environmental variation between days. The colony of 

origin of the bees was found to have no effect when included as a fixed factor on the 

models. We thus did not include colony of origin as a potential explanatory variable in 

our analyses. We did not include day identity as a random factor in models that also 

included trip number as an explanatory variable, because of the complete confound of 

day and trip number. All minimum adequate models were selected by comparing their 

Akaike Information Criterion (AIC) to null models [51] (table S1). 
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Results: 

Inter-individual variability in the foraging behaviour of honey bees 

Overview of the data 

We analysed a total of 564 bees that foraged at least once and for which we have at 

least information of the resource type for one trip (table S1). As an overview of our 

data: on average, bees performed a total of 19 trips (mean ± SE, colony 1: 17 ± 1 trips, 

N = 295; colony 2: 21 ± 1 trips, N = 269) and foraged for less than a week (colony 1: 

4.20 ± 0.18 days, N = 295; colony 2: 4.85 ± 0.18 days, N = 269). !
On average 27% of the bees foraged at least once for pollen (29% for colony 1, 

figure 2A, and 25% for colony 2, figure 2B, details in table S1). None of these bees 

exclusively foraged on pollen. All of them were ‘mixed’ foragers, performing a 

combination of pollen and non-pollen trips (a non-pollen trip can be nectar, water or a 

trip with no resource). Incidences of pollen collection were distributed throughout the 

experiment and foragers varied in the number of trips as well as percentage of pollen 

trips they performed on different days (figure 2). Pollen collection activity differed 

between each bee but was also dependent on the environment as we noted pollen 

collection to be more frequent on some days than others (figure 2). For instance on the 

24th of March, 16% of the total number of trips (246) were pollen trips; whereas on the 

4th of April none of the bees collected pollen (68 trips). Figure S1 shows examples of 

the foraging history for particularly active bees. This illustrates the high inter-individual 

variability both in resource collection and in foraging activity. 

Extreme variation in foraging activity 

We examined the proportion of foraging trips performed by each bee relative to 

all the foraging trips of their colony. The Lorenz curve [52] shown in figure 3A, 

presents a visualisation of the inter-individual variation in foraging effort seen in each 

colony.  It shows the proportion of the total activity of the hive performed by a certain 

proportion of individuals, and indicates that around 19% of the tagged foragers 

performed 50% of the total number of trips recorded (17.29% for colony 1, 20.45% for 

colony 2). Following the terminology of Tenczar et al [7], we defined elite bees as the 

group of bees that cumulatively accounted for 50% of the total foraging trips performed 

by the colony. 
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We then examined the skew of foraging activity between all the foragers by 

computing a Gini coefficient [53]. The Gini index varies between 0 (all individuals 

contributed equally to the common task) and 1 (very few individuals performed the vast 

majority of the task). We obtained a Gini index of 0.49 colony 1 and 0.46 colony 2, 

meaning that all individuals did not contribute equally to the common foraging task.  

We then looked at the relative activity per day of each forager compared to the 

overall hive activity on that day (figure 3B). We found that 8.81% of the foragers took 

50% of the daily activity for colony 1 and 16.73% for colony 2. On average, 13% of the 

bees accounted for 50% of the colony daily activity. 
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Figure 2: Heat maps representing the number of trips per day as well as the 
percentage of pollen trips a given bee performed on each day. Only the mixed 
foragers are shown. Each line represents the foraging activity of a given bee for all its 
foraging life. A. Mixed foragers of colony 1. B. Mixed foragers of colony 2.  
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Figure 3: Lorenz curves of relative individual contributions to the colony foraging 
activity. Such curves present, for each colony, the proportion of foragers that contribute 
to a certain amount of the total number of trips (A) or to the number of trips per bee per 
day compared to the total number of trips performed by the colony that day (B) [7]. For 
each colony (light green: colony 1, dark green: colony 2), bees were ranked by the 
lifetime number of trips (A) or relative daily activity (B) they performed in ascending 
order, and the fraction of each bee’s contribution to the was cumulatively plotted in the 
Y axis. Black dotted lines represent the distribution predicted by an evenly distributed 
contribution of each individual. Grey dotted horizontal lines indicate the threshold of a 
contribution to 50% of the total activity. Vertical green dotted lines represent the 
fraction of foragers, for each colony, for which this threshold was reached. A. In colony 
1 (N = 296 foragers in total): 17.29% of the total of bees performed 50% of the total 
number of trips. In colony 2 (N = 270 foragers in total): 20.45% of the total of bees 
performed 50% of the total number of trips. B. Here, 8.81% (colony 1) and 16.73% 
(colony 2) of the foragers contributed to the total colony foraging activity. 
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Effects of age and weight on inter-individual variability 

Considering the age of first foraging trip (figure S2A) elite bees from colony 1 started 

foraging earlier than non-elite bees (mean ± SE, elite = 20.21 ± 0.71 days; non-elite = 

25.1 ± 0.63 days; Wilcoxon rank test: W = 8 368, P = 0.0005). This difference was not 

significant in colony 2 (mean ± SE, elite = 18.43 ± 0.56 days; non-elite 18.92 ± 0.30 

days; Wilcoxon rank test: W = 6 717, P = 0.194). In terms of average weight on 

departure (figure S2B), there was no difference between the elite bees and the non-elite 

bees (GLMM, N = 1 870, F(1,143.3) = 1.52, P = 0.390, model selection in table S4E). We 

found no difference in weight on departure between the mixed and non-pollen foragers 

when collecting non-pollen resources (figure S3, GLMM, N = 1 870, P = 0.45, mode 

detailed in table S2, model selection in table S4F).  

Factors contributing to inter-individual variability 

Pollen collecting trips took longer than non-pollen trips 

Foraging trip duration was longer when bees returned with pollen than when they 

returned with other resources (GLMM, N = 1,913, P < .0001, figure 4, table S2A, 

example in figure S1). 

Bees weight on departure from the hive varied with trip type and duration 

For pollen trips we observed a positive correlation between the weight on departure and 

the duration of the trip (GLMM, N = 1,061, P = 0.008, figure 5, table S2B). By contrast, 

for non-pollen trips there was a negative correlation between the weight on departure 

and the duration of the trip (GLMM, N = 1,061, P = 0.001, figure 5, table S2B). There 

was no correlation between the weight on departure during the first pollen trip of a 

given day and weight on departure of any other pollen trips for this same day (figure 6).  

 
  



! ((!

 

 

 

 

 

 

 

0

2

4

non pollen
resource

tri
p d

ur
ati

on
 (m

in)
 (lo

g t
ra

ns
for

ma
tio

n)

pollen

***

 

Figure 4: Average trip duration according to the resource collected. Difference in 
duration of non-pollen (pink) and pollen (blue) trips, for bees that foraged at least once 
for pollen. Only the trips shorter than 200 min were included (98.55% of all 1,941 trips). 
N = 154 bees. Non-pollen trips = 1,409. Pollen trips = 504. Boxplot: the line shows the 
median, boxes and the whiskers represent interquartile ranges; dots represent outliers 
(data greater than third quartile + 1.5*(interquartile range), or less than first quartile – 
1.5*(interquartile range)). Pollen trips take more time to perform than non-pollen trips. 
Stars represent significant difference (GLMM, N = 1,913, P < .0001, table S2A, model 
selection in table S4A). 
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Figure 5: Correlation between weight on departure and trip duration. Weight on 
departure plotted against trip duration (natural log transformation), for individuals that 
foraged for non-pollen (pink dots) and pollen (blue plots) resources. For pollen trips 
(blue points) bees leave the hive heavier for a longer trip. For non-pollen trips (pink 
points) bees leave the hive lighter for a longer trip. Only trips shorter than 200 min have 
been included (54.66% of all 1,941 trips). N = 106 individuals. Non-pollen trips = 411. 
Pollen trips = 129. GLMMs are summarised in table S2B, model selection in table S4B). 
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Figure 6: Shift in weight on departure between the first pollen trip and the other 
pollen trips of a given day. The distribution shows the average change in weight on 
departure between first pollen trip and other pollen trips during a given day for the 
mixed foragers. Since the distribution is centred in 0 there was no change in weight 
difference between the first pollen collecting trip of a day and subsequent trips, from 
which we infer there was no refinement of weight on departure following discovery of a 
pollen resource.  
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Bees improve their foraging performance with experience 

The probability of collecting pollen on a foraging trip increased with the number of 

trips already performed (binomial GLMM, N = 2,215, P < 0.0001, figure 7; and figure 2 

and figure S1 for examples) indicating that bees were more likely to collect pollen as 

they accumulated experience. 

Foragers changed their foraging activity pattern as they gained experience. Bees 

progressively performed more trips per day (figure 8, N = 2,539, F(1,179.01) = 26.19, P < 

0.001).  

Bees increased their efficiency with experience: there is an increase in weight 

difference for non-pollen trips with successive trip number for both elite and non-elite 

foragers (figure 9, GLMM, N = 925, F(1,31.27) = 6.45, P = 0.016). Finally, bees decreased 

the time spent inside the hive between two trips, with the number of trips they 

performed (Figure 10, GLMM, N = 2,539, F(1,12.92) = 9.89, P = 0.008). 
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Figure 7: Probability of collecting pollen increases with experience. The probability 
for an individual to collect pollen on a given trip increased with the number of trips 
performed (pollen and non-pollen trips). Each coloured line represents the fitted 
estimators of each bee according to a binomial GLMM (N = 154 bees. Non-pollen trips 
= 1,432. Pollen trips = 509, intercept: -1.68 ± 0.24, T = -6.99, P < 0.0001, slope: 0.02 ± 
0.006, T = 3.47, P < 0.0001). The black line represents the average of the fitted 
estimators. Model selection table S4G. 
  



! )#!

 

 

 

 

 

 
Figure 8: Changes in foraging frequency with experience. Relation between the 
number of trips performed per day and consecutive foraging days. Boxplot: the line 
shows the median, boxes and the whiskers represent interquartile ranges; dots represent 
outliers (data greater than third quartile + 1.5*(interquartile range), or less than first 
quartile – 1.5*(interquartile range)). Red line indicates the best fitted linear model. 
There is an increase of foraging activity with experience. GLMM: intercept = 3.38 ± 
0.20, DF = 112.33, T = 17.20, P < 0.0001; slope = 0.19 ± 0.04, DF = 179.01, T = 5.12, 
P < 0.0001. Model selection table S4H.  
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Figure 9: Foraging efficiency according to the number of trips performed. Only the 
foraging trips recognised as non-pollen trips are analysed here (N = 925 trips, for 277 
bees). Bees tend to be more efficient when they are more experienced. GLMM: 
intercept = -3.83 ± 1.19 DF = 3.12, T = -3.22, P = 0.046; slope = 0.12 ± 0.04, DF = 
31.27, T = 2.54, P = 0.016. Model selection in table S4I. 
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Figure 10: Time spent in the hive between two consecutive trips. Only inter-trip 
durations less than 200 min have been kept in this analysis. The time spent inside the 
hive between two consecutive trips decreases with individual experience (N = 8,199 
inter-trips, for 545 bees). GLMM: intercept = 31.16 ± 2.82 DF = 4.5, T = 11.06, P = 
0.0002; slope = -0.13 ± 0.04, DF = 12.92, T = -3.14, P = 0.007. Model selection in table 
S4J. 
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Elite bees are more efficient foragers than non-elite bees 

There was a larger proportion of mixed foragers (foragers that have been 

recorded at least once with pollen on their legs as they returned to the hive) within the 

elite group of bees than within the rest of the forager population (figure S4, colony 1: 

elite bees: 72% of mixed foragers, non-elite bees: 20% of mixed foragers: !2 = 55.68, 

df = 1, P < .0001; colony 2: elite bees: 60% of mixed foragers, non-elite bees: 15% of 

mixed foragers: !2 = 46.99, df = 1, P < .0001). 

More nectar collected by the more active bees (figure S5A). Finally, elite bees 

reduced their time spent inside the hive between two trips (figure S5B). Therefore, the 

more active bees tended to collect more of both resources (pollen and non-pollen, i.e. 

nectar or water) through their lifespan.  

The differences in performance of elite and non-elite bees in our data could be 

explained by the differences in experience between these two groups, as models show 

no significant effect when considering elite bees as a fixed factor (figure S5). 

Discussion 

High inter-individual variability in honey bee colony foragers 

We recorded the lifetime foraging activity of a large cohort of foragers in two honey 

bee colonies using an RFID system, video cameras and balances as they gathered pollen 

and nectar resources in the field. We found high inter-individual variability in foraging 

performance. A minority of very active bees (the elite bees) undertook the majority of 

the colony’s foraging activity (figure 3). A minority of foragers collected pollen (table 

S1), and none of them did it exclusively (figure 2). There was no relationship between 

inter-individual variability in foraging performance and weight on departure or the age 

when the individual started foraging (figure S2 and S3). We found, however, that 

individuals adapted their behaviour depending on the resource they collected. Pollen 

collection trips took longer (figure 4), and foragers adapted their weight on departure 

from the colony according to the duration of the trip and the type of resource collected 

(figure 5). Finally, bees increased their foraging efficiency with individual foraging 

experience: their probability to collect pollen on a given trip increased with their 

experience (figure 7), they foraged more actively day after day (figure 8), became more 

efficient at collecting non-pollen resources (figure 9) and finally spent less time in the 



! )'!

hive between two trips (figure 10). The elite bees, because they had more experience, 

were also the most efficient foragers (figures S4 and S5). 

In our data, scoring bees that returned with pollen loads was unambiguous, but it 

was impossible to judge the crop content of returning foragers. For bees that returned to 

the hive without pollen we could not discriminate between an unsuccessful trip, a 

successful nectar collection or a successful water collection, and thus we classified trips 

as simply pollen or non-pollen collection. Using this approach, our data clearly 

demonstrate that the distinction between the pollen and nectar collection foraging forces 

in bees is far from absolute, thereby confirming recent short-term observations 

[7,25,33,54–56]. Pollen collection was undertaken by a minority and later in life, 

contributing to a diversity of individual foraging profiles. !
 Our experimental design was constrained to the use of small colonies, with a 

minimum amount of brood because of the limitations on forager traffic imposed by the 

RFID sensors at the entrance. The foraging behaviour we have seen might be different 

from that of a full size commercial honey bee colony. Bees often start foraging at a 

younger age when in a small colony, and this might also explain the relatively short 

average lifetime of our individuals (5 days) [46].  

Elite foragers  

In our study 19% of the foragers completed more than 50% of the total number of 

foraging trips in their colonies (figure 3A). This is comparable to the skew in foraging 

effort reported by Tenczar et al [7] in the same species. These authors compared 

individual activity with total colony activity on a day-by-day basis because of a limit in 

the accuracy of their RFID sensor detection. Applying Tenczar et al.’s[7] particular 

metric to our data (figure 3B), we found an even greater skew i.n the foraging 

distribution: 12% of the workers performed more than 50% of the colony’s daily 

activity [7]. 

Bees increase their efficiency with experience 

Our study indicates a clear connection between performance and experience (figures 7 

to 10). Bees are incredible learners [57]. They learn the features of their environment 

and accordingly enhance their foraging skills [58]. With experience, bees improve in 

navigating to their food sources [17,59–61], and flower discrimination (based on 

colours of odours or shape discrimination [57]) and flower handling [62,63]. Individual 
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experience in foraging tasks has been reported to influence individual’s foraging 

strategies in other insect species. For example, ants (Cerapachys biroi) that are 

successful at foraging during their first attempts are more likely to continue foraging 

later in life [64]. Bumblebee (Bombus impatiens) workers that start off foraging 

collecting pollen collect more pollen during their lifetime than the ones that started 

collecting nectar [65]. Thus the early experience, during first foraging trips, influences 

the rest of an individual’s foraging life.  

Previous studies of honey bees that have observed a skew in foraging activity of 

social insects either failed to identify any particular link with higher foraging efficiency 

in the active individuals [7] or reported that the most active foragers where also the 

most efficient [66,67] but did not analyse the link between activity and efficiency. In 

our case, the more active foragers were also the more efficient because bees increased 

their efficiency with accumulated experience [33,37,68,58].  

Variation between pollen and non-pollen collection trips 

Bees also finely adapted their behaviour according to the resource they were collecting. 

We observed slight adjustments of weight on departure with both trip duration and the 

type of resource they would collect from the forthcoming trip (figure 4). Bees weighed 

more on departure when foraging for longer pollen collection trips indicating that they 

left the hive carrying the content in their crop (presumably honey) when performing 

long pollen collection trips. By contrast, bees’ weight on departure decreased with 

duration of non-pollen trips. These findings could be interpreted in two ways. Either 

foragers anticipate the nature of their forthcoming trip and depart the hive loaded with 

honey to support their estimated energetic cost of the foraging trip. Alternatively, 

because the crop content on departure limits the energy a bee can allocate to its foraging 

flight, pollen collection trips may be shortened if bees leave the hive with little nectar. 

For non-pollen trips, if bees were collecting nectar or water, trip duration may be 

limited by the crop capacity and hence bees departing the hive with a partially full crop 

will have a limited foraging capacity.  

While the latter hypothesis seems the most parsimonious, Harano and 

colleagues [69,70] suggested that bees adjust their weight on departure from the hive in 

anticipation of their foraging trip. Similar to our study, these authors found that bees 

left their hive with more sugar (larger amounts of more concentrated nectar) when 

collecting pollen than nectar [69,70]. More remarkably, perhaps, they also found that 
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dance followers filled their crop according to their interpretation of the waggle dance 

[71], and left the hive with more sugar after witnessing a longer waggle dance 

(indicating a food source further away) than when witnessing a short dance [71]. This 

suggests that bees are able to anticipate the energetic cost of the journey they are about 

to undertake according to their personal experience or the social information shared by 

the waggle dance [69–72]. Nevertheless, we found that there is no positive correlation 

between the weight on departure of a first pollen trip on a given day and the weight on 

departure of any other pollen trips on the same given day for a given bee (figure 5). 

This suggests that, bees do not seem to adjust their load on departure according to their 

prior individual foraging experience within a given day.  

Inter-individual variability in foraging in a stressful environment  

Our results reveal an important point of vulnerability in a colony’s nutritional balance. 

For more than a decade now, there have been concerns over increased rates of honey 

bee colony failure [73], due to diverse environmental stressors that impair the lifespan 

and the cognition of the foragers [74]. Our data have shown that foraging performance 

improves with experience. As a consequence the most active bees in the colony also 

tend to be the most efficient. This promotes a skew in performance toward a minority of 

high-performing bees. These high performers will be the bees most frequently exposed 

to environmental stressors. Stressors that shorten foragers’ lifespan [43,75–85] may 

prevent bees accumulating enough experience to maximise their foraging efficiency. 

Since foraging efficiency takes time to learn, if a colony loses its experienced and 

efficient foragers it may be able to replace them in terms of number, but it cannot 

immediately replace them in terms of performance. Perry et al. [86] showed that an 

accelerated maturation of individual foragers, that lead to precocious foragers, will end 

up reducing the foraging lifetime of such individuals and can impair the whole colony 

dynamic. Our results suggest that not only the foraging activity, depicted as the number 

of trips performed by a bee by Perry et al. but also foraging efficiency would be 

severely impacted. 

 As a consequence of pollen being more likely to be collected by more 

experienced bees, we propose that a stressor on the forager population could cause a 

significant nutritional imbalance to a colony leading to an excess of nectar 

(carbohydrates) collection and a deficit of pollen (protein and lipids) which is 

detrimental for bee survival under normal [87,88] and stressed conditions [89]. There is 
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some evidence supporting this hypothesis, as some stressors reduce pollen collection: 

honey bees infected by Nosema ceranae collect less pollen than non-infected bees [42] 

so do immune-stressed bees (Célia Bordier et al. submitted in JEB, manuscript in 

appendix 1). Also, bumblebee colonies exposed to realistic doses of neonicotinoids 

collect less pollen than control colonies [40,41]. A pollen deficit in a colony could 

establish a vicious cycle of nutritional imbalance since pollen starved larvae become 

poor foragers themselves [90], potentially compounding a nutritional imbalance for 

another generation. 

 Modelling colony growth dynamics would be a useful way to explore the 

interaction between the features of the pollen forager force and the colony-level 

response to stressors. Models have proven extremely useful for understanding the 

problem of honey bee colony collapse [91–96]. So far, however, few models have 

considered pollen and nectar fluxes separately through a colony [93,95]. Lihoreau et al. 

[97,98] proposed an approach to model the complex nutritional system of insect 

colonies based on nutritional geometry, but their model does not incorporate the fine 

understanding of the diversity of individual foraging strategies among foragers. Our 

study emphasises the need to realistically address both pollen and nectar fluxes in 

models of colony nutrition, and provides the field data needed to begin modelling of 

these phenomena. 
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<- Figure S1: Example of foraging trips patterns for two particularly active pollen 
foragers. Pink points delimit duration of non-pollen trips; blue represent pollen trips 
and grey represent trips with no information about the resource collected (NA). X axis 
represents, on each particular foraging day, time after sunrise in hour. The Y axis 
represent the cumulative time the bee spent outside the hive on a particular day.  
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Figure S2: A. Proportion of bees of a given colony that started foraging at a given 
age (in days since emergence). Left: colony 1, right: colony 2. Dark blue represents 
the elite bees and light blue represents the rest of the foragers. Elite bees of colony 1 
started to forage earlier than the other bees. Wilcoxon rank test: W = 8 368, P = 
0.0005. There was no difference of distribution for the age of first foraging between 
the elite bees group and the rest in colony 2. Wilcoxon rank test: W = 6 717, P = 
0.194. B. Proportion of bees of a given colony (panel 1: colony 1 and panel 2: colony 
2) for a given average weight on departure (in mg). Dark blue represents the elite bees 
and light blue represents the rest of the foragers. There is no difference of distribution 
for the average weight on departure (for pollen or non-pollen foraging trips) (GLMM, 
N = 1 870, F(1,143.3) = 1.52, P = 0.390, Table S4 for model selection). 
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Figure S3. Difference of weight on departure for the different types of foragers and 
for non-pollen (pink boxplots) or pollen (blue boxplots) trips. There was no difference 
in weight on departure between non-pollen and mixed foragers when collecting non-
pollen resources in both colonies. Mixed foragers of colony 1 (black lines and dots) 
left the hive heavier when collecting pollen than when departing to collect nectar. 
Mixed foragers of colony 2 (grey lines and dots) left the hive lighter when collecting 
pollen than when collecting nectar. Non-pollen foragers = 410 individuals (889 trips). 
Mixed foragers = 154 individuals (727 non-pollen trips, 254 pollen trips). Boxplot: 
the line shows the median, boxes and the whiskers represent interquartile ranges, dots 
represent outliers (data greater than third quartile + 1.5*(interquartile range), or less 
than first quartile – 1.5*(interquartile range)). Stars indicate significant differences 
(GLMM, non-pollen foragers difference: N = 889, P = 0.45, mixed foragers: Colony 
1: N = 809, P = 0.019, Colony 2: N = 172, P = 0.032, table S3). 
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Figure S4: Relative proportions of mixed foragers among elite bees and other 
foragers. While non-pollen foragers (in grey) represent the majority of non-elite bees, 
elite bees are mostly mixed foragers (i.e. those that performed at least one trip 
collecting pollen, in black). (Left: colony 1: !2 = 55.68, DF = 1, P < .0001; right: 
colony 2: !2 = 46.993, DF = 1, P < .0001). 
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Figure S5: Comparative foraging efficiency of elite (dark blue) and other 
foraging bees (light blue) (N = 527 individuals, colony 1: 281, colony 2: 246). A. 
Accumulated weight difference for each of the bees. The most active bees 
accumulated larger amounts of food. General quadratic model: y~ax2+bx+c: a = 25.34 
± 5.54, DF = 20.16, T = 4.57, P < .0001; b = -19.27 ± 10.55, DF = 1887, T = -1.85, P 
= 0.068; c = 1.05 ± 15.69, DF = 835, T = 0.067, P = 0.947, elite: 1.85 ± 4.81, DF = 
2062, T = 0.38, P = 0.699. Model selection in table S4C. B. Average time spent in the 
hive between two consecutive trips (inter-trips duration). Only the inter-trips duration 
inferior to 200min have been kept in this analysis. The more active the bees are, the 
shorter their inter-trip durations are. General logarithmic model: intercept: 26.51 ± 
5.69, DF = 508, T = 4.65, P < 0.0001; slope: -3.03 ± 1.07, DF = 579, T = -3.27, P = 
0.039, elite: -1.91 ± 3.40, DF = 579, P = 0,693. Model selection in table S4D.  
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Table S1: Number of trips and foragers recorded per colony. The first five trips for 
each bee (orientation flights) were excluded. An individual is considered ‘non-pollen 
forager’ if it has never collected pollen. An individual is considered ‘mixed forager’ if 
it has performed at least one trip for pollen. NA designed a trip where the kind of 
resource was not identified; bees recorded with only NA flights were excluded (see 
material and methods). 

 Colony 1 Colony 2 All 

Number of foragers 

Non-pollen foragers 208 202 410 

Mixed foragers 87 67 154 

Total 295 269 564 

Number of foraging 

trips 

Non-pollen 2,159 1,076 3,235 

Pollen 371 138 509 

NA 2,399 4,380 6,779 

Total 4,929 5,594 10,523 
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Table S2: A. Summary of linear model representing the trip duration according to the 
kind of resources collected for mixed foragers. Trip duration has been natural log 
transformed to obtain a Gaussian distribution. Bees anticipate their journey: when 
they are leaving the hive for pollen, they leave heavier for a longer trip. When they 
are leaving the hive to collect non-pollen resource, they leave lighter for a longer trip. 
Significant effects are in bold. Model selection in table S4A. B. Summary of linear 
model representing the weight on departure according to the trip duration for mixed 
foragers. Trip duration has been natural log transformed to obtain a Gaussian 
distribution. Bees anticipate their journey: when they are leaving the hive for pollen, 
they leave heavier for a longer trip. When they are leaving the hive to collect non-
pollen resource, they leave lighter for a longer trip. Significant effects are in bold. 
Model selection in table S4B. 

 Estimate (SE) df t P 

a. log(trip duration) ~ resource + (1+resource | day) + (1+resource | cohort/ID) 

Intercept  97.49 (1.39) 7.67 38.20 <.0001 

Pollen trips  0.82 (0.07) 81.75 -3.27 <.0001 

b. weight on departure ~ log(trip duration) * resource + colony + (1+log(trip duration) | 

day) + (1+log(trip duration) | cohort/ID) 

NP trip intercept  97.49 (1.39) 59.90 70.00 <.0001 

NP trip slope  -1.22 (0.37) 141.60 -3.27 0.001 

P trip intercept  92.01 (2.95) 952.50 -1.87 0.063 

P trip slope 1.44 (0.95) 879.80 2.82 0.005 

Colony 2 93.24 (1.44) 68.20 -2.95 0.004 
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Table S3: a. Summary of linear model looking at the difference of weight on 

departure between non-pollen foragers and mixed foragers for non-pollen trips. There 

is no difference in the weight on departure between mixed and non-pollen foragers for 

non-pollen trips (see details of model selection in table S4). b. Summary of linear 

model looking at the difference of weight on departure between non-pollen trips and 

pollen trips for the mixed foragers. (see details of model selection in table S4).  

 Estimate (SE) df t P 

a. weight on departure ~ forager type * colony + (1+forager type|day)+ (1+forager type 

|cohort/ ID) 

Non pollen foragers colony 1 94.56 (1.77) 3.36 53.3 <.0001 

Mixed foragers colony 1 95.01 (1.53) 2.06 0.31 0.786 

Non pollen colony 2 93.31 (2.77) 3.41 -0.31 0.777 

Mixed foragers colony 2 92.02 (2.53) 2.98 -1.00 0.390 

b. weight on departure ~ resource * colony + (1+resource |day) + (1+resource |cohort / ID) 

Intercept colony 1 93.86 (0.84) 6.70 111.2 <.0001 

Resource colony 1 98.99 (2.72) 1.84 1.85 0.215 

Intercept colony 2 91.27 (1.50) 17.55 -1.72 0.102 

Resource colony 2 90.83 (4.29) 197.02 -1.86 0.186 

 

Table S4: Selection of the best binomial model representing the probability to collect 
pollen (resource) with experience (number of trips performed). Best model is 
highlighted in bold.  
 df AIC Loglik Chi2 P 

a. Log(trip time) ~ resource 3 17592 -8793   

Log(trip time) ~ resource + (1+resource)|day 

+ (1+resource)|cohort/ID 

12 5245 -2610 12364 <.0001 

Log(trip time) ~ resource + colony + 

(1+resource)|day + (1+resource)|cohort/ID 

13 5245 -2609 2.1 0.15 
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 df AIC Loglik Chi2 P 

Log(trip time) ~ resource * colony + 

(1+resource)|day + (1+resource)|cohort/ID 

14 5247 -2609 0.1 0.746 

b. Weight on departure ~ log(trip duration) * 

resource 

3 7495 -3744   

Weight on departure ~ log(trip duration) * 

resource + (1+log(trip duration)) | day identity + 

(1+log(trip duration)) | cohort/ID 

9 7334 -3657 173.6 <.0001 

Weight on departure ~ log(trip duration) * 

resource + colony + (1+log(trip duration)) | 

day identity + (1+log(trip duration)) | 

cohort/ID 

11 7330 -3654 7.6 0.022 

Weight on departure ~ log(trip duration) * 

resource * colony + (1+log(trip duration)) | day 

identity + (1+log(trip duration)) | cohort/ID 

14 7398 -3651 6.3 0.097 

c. Total non-pollen income ~ percentage of 

colony trips + elite 

3 5327.1 -2660.5   

Total non-pollen income ~ percentage of colony 

trips + elite + (1+ percentage of colony 

trips)|cohort/ID 

5 5165.1 -2577.6 198.3 <.0001 

Total non-pollen income ~ exp(percentage of 

colony trips) + elite + (1+ exp(percentage of 

colony trips))|cohort/ID 

5 5153.4 -2560.6  34.5 <.0001 

d. Intertrips duration ~ percentage of colony 

trips + elite 

3 5049.7 -2521.8   

Intertrips duration ~ percentage of colony trips 

+ elite + (1+ percentage of colony 

trips)|cohort/ID 

5 4873.7 -2431.9 189.3 <.0001 

Intertrips duration ~ log(percentage of 

colony trips) + elite + (1+ log(percentage of 

colony trips))|cohort/ID 

5 4853.6 -2421.8  20.13 <.0001 

e. Weight on departure ~ elite 9 12338 -6135   
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 df AIC Loglik Chi2 P 

Weight on departure ~ elite + (1+ elite 

|cohort/ID) 

9 14182 -7082 15.49 0.003 

Weight on departure ~ elite + colony + 

(1+elite|cohort/ID) 

10 14181 -7080 3.27 0.071 

Weight on departure ~ elite * colony + 

(1+elite|cohort/ID) 

11 14183 -7080 0.08 0.777 

Weight on departure ~ elite * colony + 

(1+elite|Day) + (1+elite)|cohort/ID  

14 12284 -6128 13.4 0.004 

f. Weight on departure ~ forager type  3 12530 -6204   

Weight on departure ~ forager type + (1+forager 

type|cohort/ID) 

9 12338 -6135 132.2 <0.0001 

Weight on departure ~ forager type + colony + 

(1+forager type|cohort/ID) 

10 12290 -6135 1.9 0.169 

Weight on departure ~ forager type * colony + 

(1+forager type|cohort/ID) 

11 12291 -6135 1 0.319 

Weight on departure ~ forager type * colony 

+ (1+forager type|Day) + (1+forager 

type)|cohort/ID 

14 12284 -6128 13.4 0.004 

g. Resource ~ experience 2 2235.1 -1110.0   

Resource ~ experience + 

(1+experience)|cohort/ID 

8 2177.5 -1050.8 118.51 <.0001 

Resource ~ experience + colony + 

(1+experience)|cohort/ID 

9 2117.8 -1049.9 1.68 0.19 

Resource ~ experience * colony + 

(1+experience)|cohort/ID 

10 2119.6 -1049.8 0.30 0.58 

h. Trip per day ~ day foraging 3 13798 -6896.3   

Trip per day ~ day foraging + (1+day 

foraging)|day identity + (1+day 

foraging)|cohort/ID 

12 13366 -6670.9 119.6 <.0001 
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 df AIC Loglik Chi2 P 

Trip per day ~ day foraging + colony + (1+day 

foraging)|day identity + (1+day 

foraging)|cohort/ID 

13 13365 -6669.5 2.82 0.092 

i. Weight difference ~ experience 5 7414.0 -3702.0   

Weight difference ~ experience + 

(1+experince)|cohort/ID 

9 7403.0 -3692.5 14.54 <.0001 

Weight difference ~ experience + colony + 

(1+experience)|cohort/ID 

10 7405.0 -3692.5 0.03 0.862 

Weight difference ~ experience * colony + 

(1+experience)|cohort/ID 

11 7406.9 -3692.5 0.03 0.856 

j. Intertrips ~ experience 5 75966.4 -37980   

Intertrips ~ experience + 

(1+experince)|cohort/ID 

9 75433 -37707 30.31 <.0001 

Intertrips ~ log(experience) + 

(1+log(experince))|cohort/ID 

9 75416 -37699 16.44 <.0001 

Intertrips ~ log(experience) + colony + 

(1+log(experience))|cohort/ID 

10 75417 -37699 0.81 0.367 

Intertrips ~ log(experience) * colony + 

(1+log(experience))|cohort/ID 

11 75419 -37698 0.87 0.350 
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Abstract:  

The bumblebee (Bombus terrestris) is a primitively eusocial species. A subset of the 

colony members forage to collect nectar and pollen from flowers. Bumblebee foragers 

vary in size and exhibit strong inter-individual differences in various aspects of 

foraging behaviour. Whether all foragers contribute in the same way to the colony’s 

foraging force has not yet been examined. Here we studied the inter-individual 

variability in the foraging activity and performance of bumblebees using radio 

frequency identification and motion detection cameras at the nest entrance to 

automatically monitor the complete foraging history of every individual in a colony. 

We found that the majority of foraging trips were undertaken by a small group of 

individuals (elite foragers) that did not differ morphologically from the other foragers. 

Elite foragers completed similar proportions of pollen and non-pollen trips to the less 

active foragers. Bees showed stable inter-individual variability in their tendency to 

forage for pollen and non-pollen resources through time. Foragers that collected both 

resources typically made longer trips that occurred later in the day for pollen. Our 

study adds to the growing evidence of high levels of behavioural inter-individual 

variability within castes of social insects. 

 

Keywords: Bombus terrestris, foraging, behavioural plasticity, inter-individual 

variability, pollen, division of labour. 
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Introduction: 
Animals, from mammals [1] to birds [2] and insects [3–5], show high levels of inter-

individual behavioural variability. In social species, behavioural diversity can provide 

benefits at the group level, for instance through enhanced overall foraging 

performances or defence against predators [6,7].  

In colonies of social insects, inter-individual variability results in a division of 

labour where different individuals perform different tasks for their entire life, or a 

period of it [8–10]. Individuals with different behavioural roles are often described as 

pertaining to different castes that structure the social organisation [11–13]. However, 

growing evidence indicate that members of the same caste can also show high levels 

of behavioural variation ([4,5], e.g. ants [14,15]; bees [16–18]; wasps [19,20]). In 

honey bees, for instance, workers specialised in food collection (the foragers) 

collecting nectar (carbohydrates) and pollen (protein and lipids) from flowers to 

supply the nutritional demands of all other colony members [21–23]. Foragers of the 

same colony do not equally contribute to this task ([24] and chapter 2). Rather, a 

subset of very active honey bees, described as “elite” foragers [24,25], make a 

disproportional contribution to the colony foraging effort (e.g. 20% of foragers 

contribute to 50% of all colony trips, see chapter 2). These elite individuals are not 

only the most active foragers [24] but also the most efficient at collecting pollen and 

nectar (chapter 2).  

While inter-individual behavioural variability has been well-described in the 

advanced eusocial honey bee [8], where division of labour occurs as a pattern of age-

based behavioural development [26–28], little is known about behavioural variability 

in other eusocial species. The bumblebees are described as primitively eusocial 

because colonies are smaller, annual rather than perennial and there are no discrete 

morphological castes in the females [11,12]. Very little is known about the extent of 

inter-individual variability in primitively eusocial species.  

 Primitively eusocial bumblebees are an interesting study case. Bumblebee 

colonies are composed of a reproductive queen, up to three hundred non-reproductive 

worker females [21], and variable numbers of males and virgin females towards the 

end of the season [29]. Only a handful of the workers (typically less than 10) engage 

in foraging tasks each day [21]. Non-foraging workers (nurses) stay inside the colony 
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to take care of the larvae and nest maintenance [9,21]. Unlike honey bees who 

progress between nurse and forager castes as they age [27,28], the distinction between 

nurses and foragers in bumblebees is influenced by body size as only the largest 

individuals tend to forage [9,21,30]. Bumblebee foragers show some degree of inter-

individual behavioural variability. For instance, many foragers collect both pollen and 

nectar (mixed foragers), whereas others tend to specialise on nectar only [30–34]. 

Bumblebees also show consistent differences in route-following behaviour [18] and in 

olfactory learning performances [35]. While these studies bring clear evidence of 

behavioural variability among bumblebee foragers, whether such variability leads to 

differences in foraging activity and efficiency is still an open question. 

To address this question, we developed an automated tracking system based 

on radio frequency identification (RFID) and motion detection cameras to monitor the 

complete foraging history of every bumblebee of a colony. RFID systems have been 

increasingly used to access the foraging activity of social insects (e.g. honey bees 

[24,36], ants [37], bumblebees [33,38–40]). This approach has enabled recording bee 

foraging behaviour in laboratory conditions [33,41] or testing the effects of 

environmental stressors, such as pesticides, on colony dynamics [38–40,42,43]. Here 

we analysed the complete foraging history of all individuals in a bumblebee colony 

exploiting natural resources. We investigated: (1) the variation in foraging activity 

between individuals; (2) whether foragers specialise in the collection of pollen or non-

pollen resources (nectar), and; (3) whether pollen and non-pollen trips differ in 

duration or time during the day. 

Material and methods: 

Bee colony: 

The experiment was performed from 20/09/2016 to 22/11/2016 at the apiary of the 

University Paul Sabatier (Toulouse, France). The bumblebee colony (Bombus 

terrestris) was purchased from Biobest (Westerlo, Belgium). Upon arrival, the queen 

and the workers (N = 50 bees) were transferred into a two-chamber wooden nest box. 

The colony was maintained in a dark room at the constant temperature of 24°C, and 

connected to the outside environment via a specially designed entrance tube (figure 

1). Bees foraged on the university campus and the surrounding areas (figure S1).  
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Figure 1: Experimental nest box. 1&2. Two-chambered wooden nest-box 
(15x28x11 cm). 1. Bumblebee nest. 2. Litter compartment. 3. RFID antennae. 
Detection of a bee at the two antennae A and B enabled inference of the direction of 
the bee in the colony entrance tube: AB means that a bee departed from the colony, 
BA means that a bee arrived at the colony. 4. Transparent plexiglass tunnel (* 3 cm). 
5. Webcam. 6. Outside wall. Images from © The Graphics Fairy 2007.  

Radio Frequency Identification (RFID) detection: 

Bees could access the outside environment via a transparent entrance tube equipped 

with two RFID antennae (MAJA system, Microsensys GmbH, Erfurt, Germany) 

connected to a RFID reader. RFID chips were obtained from Microsensys (mic3 ® 

RFID transponders, Microsensys GmbH, Erfurt, Germany). Each square chip was 

2x2mm long and weighed 2 mg (less than 2% of the bee’s weight) and could be fixed 

to the bees’ dorsal thorax. Each RFID chip had a unique 8-byte hexadecimal identifier 

that allowed us to track individual bees as they were detected by RFID antennae on 

exiting and entering the hive. Each RFID antenna recorded the time and the ID of a 

bee passing the antenna. Data were stored in a .xml file on a SD card in the RFID 

reader. 

A webcam (Logitech, Lausanne, Swiss) was placed on a 30cm tall retort stand 

midway in the transparent tunnel, and a desk lamp (Ikea, France, light bulb: 15 W, 
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1250 lm, Ilight, Italy) was placed beside the tube to guarantee enough light for video 

capture. A motion detection video recording software (ZoneTriger, Omega Unfold 

Inc. Canada) was used to capture video footages of returning bees, allowing visual 

assessment of the resources they carried (i.e. presence/absence of pollen on the bee 

legs). 

Experimental procedure: 

We started the observations soon after the arrival of the colony and stopped when the 

queen died (63 days later). The colony was checked every day. Every new-born bee 

was gently extracted from the colony, placed along a ruler, and photographed 

(Fairphone 2 camera module, f/2.2, 8 megapixel). A RFID tag was then fixed on the 

thorax of the bee using a toothpick and super-glue (Loctite, Henkel AG&Co. KGaA, 

Düsseldorf, Germany), before replacing the bee in the colony.  

Collating data on bee trips: 

For every arrival and departure at the colony entrance, the bees had to pass through 

the two RFID antennae (figure 1). Antennae were labelled A and B to allow us to 

reconstruct foraging trips from the RFID record file. The sequence AB was 

interpreted as a bee leaving the colony. The sequence BA was interpreted as a bee 

returning to the colony. The time latency between two successive AB and BA 

sequences for the same bee corresponded to the duration of a single trip. Trips that 

lasted fewer than 60 seconds were unlikely to be foraging trips [33] and were thus 

removed from the dataset.  

We estimated the maximum time for a returning foraging bee to cross the 

tunnel from the outside to the RFID gate B at 10s. Videos taken up to 10s before an 

entry RFID detection were inspected to score whether the tagged returning bee carried 

pollen (P), did not carry pollen (NP), or could not be reliably scored (NA) due to the 

presence of multiple bees in the tube or a bee moving in the tube at an angle where its 

body occluded the view of their legs. With this approach, we were not able to 

discriminate if a bee, returning to the hive without pollen (NP), performed a 

successful nectar foraging trip or an unsuccessful pollen or nectar foraging trip. 

Data reliability: 

A total of 335 bees were tagged. We identified foragers as bees that made at least one 

foraging trip (N = 223) and excluded individuals that had only ‘NA’ as load type over 
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all their trips (N = 124 bees). The final dataset contained 13,243 foraging trips 

performed by 99 bees. 

We recorded the date of emergence from the pupa of each bee in order to keep 

track of their age (except for the 50 bees that were originally in the colony upon 

arrival in the lab). We also measured the inter-tegular span (IT span = distance 

between the two wing bases on the thorax) from pictures of each bee using imageJ 

(Mac OS X version, Wayne Rasband, Maryland, USA). IT span is a commonly used 

proxy of bumblebee body size [44].  

Data analyses: 

Unless specified, results are provided as mean values ± SE. Data were analysed in R 

version 3.2.3 [45] (operating via Rstudio, version 1.0.136 [46]). 

Differences in IT span between groups of bumblebees (foragers vs. non 

foragers; elite vs. non-elite; mixed vs. non-pollen foragers) were tested using 

Wilcoxon ranked tests for non-paired data.  

The proportion of the total activity of the hive performed by a given 

proportion of individuals, in terms of number of trips, was examined using a Lorenz 

curve [47]. The Gini index [48] was used to assess the skew in the contribution of 

individuals in a common task: here, the number of foraging trips performed. The Gini 

index varies between 0 (all individuals contributed equally to the common task) and 1 

(one individual performed all of the task).  

The difference in trip duration and in time of the day when trips occurred 

between non-pollen and pollen trips was tested with Wilcoxon ranked test for paired 

data. The probability to engage in a pollen trip with foraging experience (number of 

foraging trips completed) was tested with a binomial Generalised Linear Mixed 

Model (GLMM) with bee IT span as covariate and bee identity as random factor, 

using the packages lme4 [49] and lmerTest [50]. 

We studied individual consistency in the proportion of pollen foraging using a 

binomial GLMM with Julian date, experience and IT span as fixed factors and bee 

identity as random factor. To estimate whether individuals presented different trends 

across days we compared this model with another model including Julian date as a 

random slope and bee identity as a random intercept, with a likelihood-ratio test 

(LRT) [51], using the packages lme4 [49] and lmerTest [50]. To quantify inter-
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individual variability, we calculated individual repeatability as the percentage of total 

variance explained by the individual difference [51]. 

Results: 

Inter-individual variability in foraging activity: 

Among the 335 bees tagged during the 63 days of the experiment, 99 (30%) were seen 

foraging at least once. These foragers did not differ in body size from the non-

foragers (non-foragers, N = 236, IT span (± SE) = 5.22 ± 0.05mm, foragers, N = 99; 

5.01 ± 0.16 mm, Wilcoxon rank test: W = 12749, P = 0.608). 

On average the foragers performed a total of 134 trips (134 ± 19.32) for 10 

days (9.95 ± 0.96), i.e. around 9 trips per day (8.97 ± 0.73). This activity was not 

equally distributed among foragers. A subset of 12 bees (11.11% of all foragers), 

hereafter called ‘elite’ foragers, completed more than 50% of the total number of the 

foraging trips in the colony (figures 2 and S2, Gini index = 0.67). This skew in the 

distribution of the foraging trips is even higher if we consider all the bees of the 

colony, including nurses that never foraged. In that case, 1.81% of the workers 

contributed to 50% of the total number of foraging trips (Gini index = 0.93). 

All elite bees were ‘mixed foragers’ that collected pollen at least once, but 

never exclusively foraged for pollen. We found no difference in the proportion of 

pollen trips (proportion of individual foraging trips resulting in pollen collection) 

between elite and non-elite foragers (elite bees: 34.24 ± 5.86 %, non-elite bees: 24.81 

± 3.07 %, Wilcoxon rank test: W = 374, P = 0.105, figure S1). They did not differ 

either in body size as measured by IT span (elite: 5.26 ± 0.16 mm; non-elite: 4.61 ± 

0.21 mm, Wilcoxon rank test: W = 448, P = 0.199).  

Therefore the colony contained a few elite foragers that performed most of the 

foraging trips but were neither specialised on one type of resource, nor were they 

larger than the other foragers. In the absence of obvious difference between elite and 

non-elite bees, in what follows we analysed the behaviour of all the foragers together. 

Specialisation for pollen and/or non-pollen trips: 

Two thirds of the foragers completed both pollen and non-pollen trips (mixed 

foragers: N = 63, i.e. 63% of all foragers). One third of the foragers exclusively 

completed non-pollen trips (non-pollen foragers: N = 36, i.e. 36% of all foragers). 

One forager exclusively completed pollen trips (figure S4).  
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Figure 2: Lorenz curve representing the relative contribution of the foragers (X axis) 
to the collective effort of all foragers (Y axis). 11.11% of the foragers performed up to 
50% of the total number of trips of the colony. 
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On average, non-pollen foragers performed fewer trips than mixed foragers (non-

pollen foragers: N = 36, number of trips = 11.27 ± 4.18, mixed foragers, N = 63, 

204.39 ± 26.51 trips, Wilcoxon rank test: W = 91, P < 0.0001). On average, non-

pollen foragers were larger than mixed foragers (non-pollen foragers, N = 36, IT span 

= 5.83 ± 0.27 mm, mixed foragers, N = 63; 4.76 ± 0.11mm, Wilcoxon rank test: W = 

1138.5, P = 0.005). Therefore, the specialisation of foragers for one type of resource 

was partially explained by morphological differences.  

Differences between pollen and non-pollen trips in mixed foragers: 

When considering mixed foragers only, the variability in the proportion of pollen 

foraging trips between individuals and between days was very high (figure 3). Our 

analyses of inter-individual variability indicated that bumblebees differed consistently 

in the proportion of pollen trips completed across days (verified with a likelihood 

ratio test between model with and without bee identity as random effect: !2 = 18.29; P 

< 0.001), suggesting relatively stable behavioural profiles through time. Although 

significant, inter-individual variability explained 31% of the total variance of the 

proportion of daily pollen foraging trips (analysed as repeatability index from 

GLMM).  

 Interestingly, a similar level of variability in their proportion of pollen 

foraging trips could be attributed to variation between days (verified with a likelihood 

ratio test between model with and without Julian date as random slope effect: !2 = 

3.84; P = 0.146). This suggests that there is significant daily variation in resource 

availability, perhaps due to changes in environmental conditions (weather, 

competition). While some bumblebees (N = 28) specialised on pollen or non-pollen 

resources on different days, others (35 bees) foraged on both resources during the 

same day (figure 3 and S4). During days of mixed foraging, foragers typically started 

to forage for non-pollen and then switched for pollen later in the day (N = 35 bees, for 

2,432 non-pollen trips, median time of the day: 13:00:02; and 3,298 pollen trip: 

14:21:09. Wilcoxon paired rank test: W = 1124700, P < 0.0001, figures 4B, S4 and 

S5). Overall, bumblebees made longer pollen trips than non-pollen trips (figure 4A, 

Wilcoxon rank sum test W = 4999100, P < 0.0001).  
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<- Figure 3: Heat map of all mixed foragers showing the proportion of pollen 
trips completed on a given day and the number of trips performed on that day. 
The heat maps indicates that the foraging activity is highly variable between 
individuals (Y axis) and varies with time (date, X axis). N = 63 individuals. 
 

Table 1: Binomial GLMM examining the temporal distribution of pollen collection, 
individual experience (as number of foraging days) and individual body size (inter-
tegular span). The model includes individual identity as random factor. 

 Estimate (SE) DF z P 

a. proportion of pollen collected ~ day identity (Julian date) + experience + IT span + (1 + 

day identity | ID) 

Intercept  -0.17 (0.10) 428 -1.69 0.09 

day identity -0.29 (0.19) 428 -1.51 0.132 

experience -0.12 (0.17) 428 -0.69 0.489 

IT span 0.40 (0.21) 51 1.89 0.059 
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Figure 4: A. Trip duration for non-pollen (pink) and pollen trips (blue). Only trips 
shorter than 200 min were kept in the analyses (98.72% of the total number of trips). 
The duration of the trips was log transformed for normalisation of the data. Boxplot: 
the line shows the median, boxes and the whiskers represent interquartile ranges, dots 
represent outliers (data greater than third quartile + 1.5*(interquartile range), or less 
than first quartile – 1.5*(interquartile range)). N = 35 bees. Non-pollen trips = 7,063. 
Pollen trips = 3,858. Wilcoxon paired test: W = 4999100, P < 0.0001. B. Daily 
distribution of pollen (pink line) and nectar (blue line) trips. N = 35 bees. Non-pollen 
trips = 7,120. Pollen trips = 3,874. Wilcoxon paired test: W = 9373500, P < 0.0001. 
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Discussion 
We monitored the foraging activity of all individuals of a bumblebee colony for two 

months. Our results revealed a high levels of behavioural variability within the 

forager caste.  The degree of inter-individual variation in this primitively eusocial 

species with a small foraging force was similar to that recently described in advanced 

eusocial species (e.g. honey bees [24], ants [52–54] and wasps [19]), suggesting that 

the existence of elite foragers is a common property for cooperatively foraging 

eusocial hymenoptera. In our colony, most of the bumblebee foragers collected both 

pollen and nectar.  Fewer foragers specialised on nectar only, and only one forager 

specialised on pollen. Overall, only a small subset of foragers (11%), which we 

consider as elite foragers, performed most of the foraging trips in the colony.  

Previous studies have shown that the foraging performance of bumblebees 

increases with body size [30,55,56]. For instance, large bumblebees develop foraging 

routes faster and more efficiently than smaller ones (chapter 4, [18]). Larger 

bumblebee foragers are able to bring more nectar per time unit than smaller 

individuals [30]. Here we did not find any significant effect of body size on the 

activity level of bumblebee foragers. In our data therefore, elite bees occupied one 

end of a continuous distribution of individual foraging activity in the colony (figure 

S1), and do not form a sub-caste of foragers based on morphological differences.  In 

this regard our findings for bumblebees were similar to what has previously been 

shown in honey bees (chapter 2) and ants [54]. 

Importantly, our study in a primitively eusocial bumblebee highlights 

interesting differences with more advanced eusocial insects in the behaviour of elite 

foragers, possibly reflecting differences in their social organisation. Elite bumblebees 

did not differ from other foragers in the type of resources they collected. Unlike 

honey bees (chapter 2), very active bumblebees did not collect more pollen. 

Moreover, whereas in honey bee colonies the proportion of mixed foragers is very 

low compared to exclusive non-pollen foragers (in chapter 2, only a subset of 27% of 

the foragers collected pollen at least once); in our bumblebee colony, 63% of the 

foragers collected pollen and non-pollen resources at least once. A possible 

explanation is that bumblebees, in contrast to honey bees, are non-perennial social 
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insects that do not need to store large amounts of nectar-derived honey for nourishing 

the colony over winter [21].  

Further, in honey bees experience was a major cause of variation in resource 

collection with more experienced bees more likely to collect pollen (chapter 2).  This 

was not the case for bumblebees, who did not increase their probability of collecting 

pollen with foraging experience (table 1). In honey bees, division of labour is based 

on age [57], and honey bees show a long process of brain maturation (in the nest and 

during early foraging [57,58] emphasising the role of behavioural plasticity in shaping 

foraging role in this species. In bumble bees, division of labour is mainly based on 

morphological differences, and large individuals can start foraging on their first day 

upon emergence [21]. Thus, bumblebees may be less prone to experience-dependent 

adjustments of their foraging behaviour.  

The vast majority of bumblebee foragers specialised on pollen collection on 

certain days only (figure 2), as previously suggested by studies performed in 

laboratory conditions [32,33], and in the field [59,60]. Bumblebees primarily 

collected pollen in the afternoon, supporting previous observations that pollen 

collection is dependent on temperature, occurring mostly during the warmest hours on 

dry days [60], as dry conditions seem to favour anther dehiscence and thus pollen 

availability [60]. Bumblebees took more time to perform pollen trips than non-pollen 

trips, a result also obtained in honey bees (e.g. chapter 2). Since we have no reason to 

expect that nectar and pollen resources were differently distributed in the natural 

environment around the colony, this difference is therefore unlikely to be caused by 

differences in travel distances to obtain pollen and nectar. Instead, time required for 

flower handling and food collection is potentially higher for pollen than for nectar. 

Bumblebees exhibit various strategies to access food from the flowers such as robbing 

nectar by biting a hole in the corolla [61], or buzzing behaviour to release pollen from 

flower anthers [62]. Foragers load nectar in their crops [21], but need to pack pollen 

on their legs as pellets that they carry back to the colony [21,62]. These behavioural 

differences may explain the observed difference of trip duration when foraging for 

one or the other resources [62].  

Our results suggest that inter-individual behavioural variability among 

foragers is a shared characteristic of insect colonies exhibiting different levels of 

social complexity. Whether inter-individual variability is on average higher in species 
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with lower levels of social integration (e.g. primitively eusocial insects) still needs to 

be confirmed by additional analyses with more colonies and more species. Like in 

honey bees [24], elite bumblebees represent less than 20% of the pool of foragers. In 

social wasps [19], elite individuals have been estimated to represent 23% of the 

workers. In ants such skews have also been reported [52–54,63]. I. For instance, in a 

Thermothorax species, active foragers represent between 31 (in small colonies, 

median of 57 workers) and 58% (in large colonies, median of 165 workers) of 

individuals [63].  

In these insects, behavioural diversity may constitute an efficient way for 

colonies to cope with harsh environmental conditions [6], whereby inactive and less 

active foragers serve as a backup pool of individuals to replace elite foragers that 

suffer a high mortality as  they are more exposed to various stressors [24]. Indeed, this 

reserve of less active foragers can be rapidly allocated to the forager workforce and 

replace missing elite individuals, as shown by experimental removal of active foragers 

from honey bee and ant colonies [24,64]. A continuum between inactive foragers that 

can be quickly mobilized and a taskforce of rather versatile elite bees (i.e. collecting 

both nectar and pollen) may therefore provide a high degree of flexibility improving 

resilience at the colony level [10,65].  

Finally, similarly to honey bees, bumblebee foragers show constant inter-

individual variability, as well as a plastic behaviour when they switch from pollen to 

nectar collection. We also highlighted differences in foraging specialisation and 

degree of activity that reflect the specificity of the smaller and primitively eusocial 

bumblebee societies compare to the honey bee colonies. Our work is a first step for 

understanding the behavioural differences featured by foragers of species showing 

different degrees of sociality, and how this can be link to the specific evolution of 

division of labour. The next step will be to investigate the degree of variability of 

solitary bee foragers. 
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Supplementary materials 

 
Figure S1: View of the experimental apiary and the surrounding environment. The 
black square indicates the location of the apiary where the bumblebee colony was sat 
up. Red line indicates a radius of 1km around the colony. Bees were able to forage in 
a suburban and rural area with a mix of private garden, campus green space, forests 
and small agricultural fields. 
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Figure S2: Distribution of non-elite (red) and elite (blue) bumblebees in term of 
foraging activity. 
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Figure S3: Distribution of the total body length for bumblebees that never foraged 
(blue) and for foragers (red). 
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<- Figure S4: Examples of foraging activity for some active bees. Plots show the 
cumulative time spent outside the colony-nest on a given day according to the time of 
the day. Shades of blue refer to the age of the individual on a given day. The shape of 
the points refers to the type of resource collected (n = non-pollen, p = pollen, na = non 
applicable) A. Pollen specialists. B. Mixed foragers collecting pollen or non-pollen 
for entire days. C. Mixed foragers collecting pollen only for part of the day. D. Non-
pollen specialists. 
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Figure S5: A. Difference in time of the day between non-pollen and pollen trips for 
days when individual bumblebees foraged for both resources. N = 35 bees, for 2,432 
non-pollen trips and 1,3298 pollen trip. Wilcoxon paired rank test: W = 1124700, P < 
0.0001. Pink is for non-pollen and blue for pollen trip. B. Example of the distribution 
of pollen and non-pollen trips over the days for days when bees foraged for both 
resources on the same day, only 9 active bumblebees are represented (foraged more 
than 200 trips). 
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Abstract: 

Workers of social insects, such as ants, bees and wasps, show some degree of inter-

individual variability in decision-making, learning and memory. Whether these 

natural cognitive differences translate into distinct adaptive behavioural strategies is 

virtually unknown. Here we examined variability in the foraging patterns of 

bumblebees establishing routes between artificial flowers. We recorded all flower 

visitation sequences performed by 29 bees tested for 20 consecutive foraging bouts in 

three environments, each characterised by a unique spatial configuration of artificial 

flowers and three-dimensional landmarks. All bees started to develop efficient routes 

as they accumulated foraging experience in each environment, and showed consistent 

inter-individual differences in their levels of route fidelity and foraging performance, 

as measured by travel speed and the frequency of revisits to flowers. While the 

tendency of bees to repeat the same route was influenced by their colony origin, 

foraging performance was correlated to body size. The largest bees travelled faster 

and made less revisits to empty flowers. We discuss the possible adaptive value of 

such inter-individual variability for optimisation of colony-level foraging 

performances in social pollinators. 
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Introduction: 
In recent years, behavioural ecologists have become increasingly interested by the fact 

that animals often exhibit consistent behavioural traits that vary between individuals 

from the same group, population or species, irrespective of time or context [1–3]. 

Inter-individual behavioural variability has been described in a wide range of taxa, 

from invertebrates (nematodes [4], cnidarians [5], molluscs [6], insects [7,8]) to 

mammals [9], including humans [10]. The existence of such individualistic 

behavioural traits may have different adaptive values depending on the ecology of the 

species [11–13]. 

            Social insects, such as ants, some bees and wasps, show extreme cases of 

inter-individual behavioural variability [14]. In these animals, division of labour 

typically implies that specific individuals reproduce (the queens and the males), 

whereas others work to support their reproductive outputs (the workers) [15]. Among 

the workers different individuals specialise on different roles. Some take care of the 

brood (the nurses), while others defend the colony entrance (the guards and the 

soldiers) or collect food (the foragers). These behavioural specialists exhibit specific 

behavioural repertoires that can be associated with differences in morphology (e.g. 

bumblebees [16]), physiology and genetics (e.g. honey bees [17,18]), age (e.g. honey 

bees [19]) or experience (e.g. ants [20]), together defining the caste phenotype. 

Growing evidence indicates that some level of behavioural variability also exists 

between individuals of the same caste [21–23]. Bumblebees, for instance, show 

consistent inter-individual differences in decision speed and accuracy in flower 

discrimination tasks [24,25]. When having to choose between a rewarding flower and 

an empty flower in a laboratory decision chamber, some foragers always make slow 

but accurate decisions, while others are consistently fast and inaccurate [24]. Bee 

foragers also show inter-individual variability in learning performance [21,26]. 

Bumblebee colonies containing foragers with high visual learning speeds have a 

higher foraging efficiency [27]. 

 Whether such cognitive variability translates into distinct foraging strategies in 

the more complex and ecologically relevant task of exploiting patchily distributed 

floral resources remains virtually unexplored. In nature, bees often develop stable 

foraging routes (sometimes called traplines in analogy to trappers checking their traps 

along fixed routes [28]) to exploit multiple feeding locations from their central nest 
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[29,30]. Manipulative experiments on bumblebees [31,32] and honey bees [33] 

foraging for sucrose solution in simple arrays of artificial flowers (equivalent to 

natural flower patches) show how foragers often find the shortest possible route to 

visit all flowers once and return to the nest using an iterative improvement strategy 

based on learning and memory that is different from just linking nearest neighbour 

locations [31,34]. 

 Thus far empirical research on trapline foraging has been aimed at describing 

this behaviour at the species level, using relatively small sample sizes (four to seven 

individuals per experiment), without characterising variation among individuals [31–

33,35–38]. In principle however, some level of variation in the foraging behaviour of 

the workers of a colony could improve the colony foraging efficiency [39]. For 

instance, regular trapliners that accurately follow the same route across multiple hours 

or days may perform better in stable environments when resources are highly 

predictable, while irregular trapliners that sample new locations at each foraging bout 

may be advantaged in more variable environments. Consequently, colonies containing 

foragers of different behavioural profiles may differ in performance in similar 

environmental conditions. Ultimately, understanding how natural behavioural 

variability affects the foraging performances of colonies may help evaluate the 

adaptability of bees in the face of environmental changes, such as natural climatic 

events, human-induced habitat degradations or the introduction of predators and 

parasites [40]. This approach may also help refine predictions of current pollination 

models based on bee movement patterns [34,38,39,41,42]. 

Here we explored the level of inter-individual variability in the foraging 

behaviour of bumblebees (Bombus terrestris) by comparing the movement patterns of 

foragers from two colonies collecting sucrose solution in three different arrays of 

artificial flowers and landmarks in a controlled flight room.  
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Material and methods: 

Bees and flight room: 

We used two colonies of Bombus terrestris (Biobest, Westerlo, Belgium). Only one 

colony was tested at a time (colony 1: November-December 2015, colony 2: May-

June 2016). We did not anticipate seasonal effects when working with commercially 

reared bumblebees in controlled laboratory conditions [27]. The colony was 

maintained in a two-chamber wooden nest box placed in an experimental flight room 

with white walls (length: 683 cm, width: 516 cm, height: 250 cm; Figure 1). 

Controlled illumination was provided by 12 wide-spectrum light-emitting diode bulbs 

mimicking sunlight (15 W, 1250 lm, Ilight, Italy), with a 10 h : 14 h day : night 

photoregime (light on at 8:00 AM GMT+1). Temperature was maintained at 20°C. 

Bees were individually marked with numbered-colour tags (Opalith tags, Christian 

Graze KG, Germany) on their thoraces upon emergence from the pupae. The colony 

nest entrance was equipped with a transparent colourless Perspex tube with a series of 

shutters to control the traffic of foragers. Honey bee collected pollen was provided 

every two days directly into the colony nest box. Foragers collected sucrose solution 

(50% [w/w]) from artificial flowers in the flight room.  

Artificial flowers and landmarks: 

Each flower was made of a cylindrical plastic container (height: 7.5 cm, diameter: 6.2 

cm) with a blue lid acting as a landing platform (Supplementary Figure S1A). The 

platform was held 30 cm above ground by a clamp stand. We used two versions of 

this general flower design. “Pre-training” flowers provided bees with ad libitum 

reward through a cotton wick soaked in the flower’s container filled with sucrose 

solution (Supplementary Figure S1B). “Training” flowers provided bees with a 

controlled volume of sucrose solution specific to each bee (range: 24–52 µL, N = 29 

bees, see calculation of nectar crop capacity below). This volume was placed in the 

middle of the landing platform using an electronic micropipette (Handystep) 

(Supplementary Figure S1C). We used nine three-dimensional landmarks made of 

cardboard and paper. Landmarks were uniquely defined by their shape and coloured 

patterns (Supplementary Figure S2).  
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Figure 1: Experimental arrays of flowers and landmarks. a. Pre-training array. Bees were allowed 
to forage on a pre-training flower (red star) in a landmark-free environment for one hour. A selected 
bee was then observed foraging on four training flowers (yellow stars) during five foraging bouts to 
estimate its nectar crop capacity. b, c, and d show the first, second and third experimental arrays used 
for testing. Each array was characterised by a unique combination of four training flowers (F1-F4) and 
three to four landmarks (coloured shapes). Detailed descriptions of the artificial flowers and the 3D 
landmarks are given in Figure S1 and S2. X- and Y-axis graduations represent the distance to the origin 
(down left corner) in cm. 
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Experimental procedure 

Bees were allowed to forage collectively on a pre-training flower placed in the middle 

of the flight room (Figure 1A). A regular forager that made at least five foraging bouts 

within one hour (flower visits followed by returns to the colony nest box) was 

selected for testing. The bee was first observed foraging on four training flowers 

arranged in a patch in the middle of the room (Figure 1A). Each flower was refilled 

with 10 µL of sucrose solution by the experimenter immediately after being visited, 

until the bee returned to the nest. The average volume of sucrose solution collected by 

the bee over five foraging bouts was used to estimate its nectar crop capacity (range 

48–208 µL, N = 29 bees) [31,36–38]. 

The bee was then tested for 20 consecutive foraging bouts in each of three 

experimental arrays on the same day (60 foraging bouts, ca. 6 h of observation per 

bee). Each array was characterised by a unique combination of four flower locations 

and four different landmarks (see details Figure 1). All bees were tested in the same 

sequence (arrays 1, 2, 3). During the test, each flower provided a quarter of the bee’s 

crop capacity and was refilled by the experimenter between foraging bouts, so that the 

bee had to visit all flowers to fill its crop and return to the colony nest box. Because 

bumblebees drink sucrose rewards until their crop is full, any revisit to a flower 

within the same foraging bout was unrewarded [35–38,43]. All flower visits, detailing 

the time when the bee landed on a flower and departed, and the time when the bee 

arrived and departed from the nest, were recorded using the software Ethom v.1.0 [44] 

(the complete flower visitation sequences are available in the Supplementary Dataset 

S1). Flowers were cleaned with ethanol solution (90% v/v) between changing arrays 

to preclude potential scent marks from influencing the bee’s flower choices in the new 

experimental array[45]. At the end of the test, the bee was freeze-killed and its body 

size (top of head to end of abdomen) measured with a digital calliper (± 0.01mm). A 

total of 29 bees were tested (14 workers from colony 1, 15 workers from colony 2). 

Bees from colony 1 were younger (age since emergence from the pupae (mean ± SE); 

colony 1: 14.2 ± 8.66 days; colony 2: 24.5 ± 5.67 days, t-test: t = 6.61, df = 76, P < 

0.001) and smaller (body length (mean ± SE); colony 1: 13.41 ± 1.44 mm; colony 2: 

16.13 ± 1.44 mm, t-test: t = 8.67, df = 82, P < 0.001) than bees from colony 2. 
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Data analyses 

Average foraging behaviour: 
All analyses were performed in R (version 3.2.3 [46]). We used regression models to 

describe changes in the average number of immediate revisits to flowers (two 

successive visits to the same flower), the average number of non-immediate revisits to 

flowers (two non-successive visits to the same flower), the average number of 

different flowers visited, and the average travel speed (flight duration divided by the 

Euclidian distance between all successively visited flowers), across the 20 foraging 

bouts of each bee in each experimental array. For each behavioural measure we ran 

both linear and logarithmic models and retained the model that had the highest R2 

(Supplementary Table S1). We built a linear regression model using number of 

foraging bouts, identity of experimental arrays and the interaction between them as 

fixed effects. We examined the differences between experimental arrays using post-

hoc Tukey tests (« multcomp » R package[47]). 

To assess the overall similarity between all flower visitation sequences of each 

bee in a given experimental array we used a determinism index (DET) derived from 

recurrence quantification analyses [48]. We compared the DETs calculated on the 

observed sequences to DETs calculated on 1000 randomly simulated sequences of 

154 flowers - corresponding to the average number of flowers visits and nest returns 

over the 20 foraging bouts for all bees in each experimental array (mean ± SE: 153.5 

± 33 visits, range = 107-286, N = 29 bees). The R code for generating random flower 

sequences is available in Supplementary Text S1. Observed and simulated DETs were 

compared using an analysis of variance (ANOVA) followed by a post-hoc Tukey test 

(«multcomp» R package [47]). To compare the three observed DETs of the same bee 

(1 per experimental array), we applied a least-square means test («lsmeans» R 

package [49]) on a linear mixed effect model (LMM) including the experimental array 

as fixed effect and individual identity as random effect («nlme» R package [50]).  

To examine whether some routes were more often used than others by the 

same bee, we focused on four-flower visitation sequences excluding revisits to 

flowers[31,36–38]. We calculated the frequency of use of the primary route (highest 

proportion of foraging bouts in which the same four-flowers visitation sequence — 

excluding revisits to flowers — was used by a bee). Assuming that there are 24 (4! = 

4 ! 3 ! 2 ! 1) possible routes to visit four flowers once and return to the nest, we used 
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a binomial test with a random probability of 0.042 (1/24) to use each route in a given 

foraging bout. Because each bee was tested for 20 foraging bouts in an experimental 

array, routes that were used at least four times by the same bee were used significantly 

more often than expected by chance (at the 5% level).  

Intra- and inter-individual variability in foraging behaviour: 
We compared the foraging behaviour of individual bees using a principal component 

analysis (PCA). This PCA aimed to reduce our predictors (i.e. travel speed, number of 

different flowers visited, non-immediate revisits to flowers, immediate revisits to 

flowers, proportion of primary route usage, DET) to compound behavioural axes. We 

applied the Kaiser-Guttman criterion to select the number of principal components 

(PCs) to retain [51]. We then run the PCA function from the «psych» R package [52] 

with only the retained PCs. We extracted the PC scores for each bee and used them as 

dependent variables in the subsequent analyses. To identify the effect of inter-

individual (amount of variation among individuals around the average behaviour) and 

intra-individual (phenotypic plasticity of each individual across arrays) variability on 

the two PC components over the three experimental arrays of flowers, we ran mixed 

linear models (LMMs) with individual identity nested within colony identity as 

random effects. To do this, we ran both a random intercept (inter-individual 

variability) and slope (intra-individual variability) mixed effect model. We used 

individual age, body size and experimental array as fixed effects in order to evaluate 

their respective influence on both PCs. To assess inter-individual differences we 

tested for the significance of random intercept effects by applying a likelihood ratio 

test (LRT), comparing the LMM with individual identity nested within colony, the 

LMM with only colony as random effect and the linear model (LM) excluding both 

individual and colony identity. To quantify inter-individual variability, we calculated 

individual repeatability as the percentage of total variance explained by both colony 

origin and individual differences [53]. We also ran these two analyses on the slope 

models in order to assess the level of intra-individual variability over the three arrays. 

Results: 
We tested 29 bees (N = 15 from colony 1, N = 14 from colony 2). Each bee was 

successively observed for 20 consecutive foraging bouts (flower visits followed by 

returns to the colony nest box) in three experimental arrays each characterised by four 

flower locations and four different landmarks (Figure 1, Supplementary Figure S1 and 
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S2). At every foraging bout, each flower contained a volume of sucrose solution 

equivalent to one quarter of the bee’s nectar crop (stomach) capacity so that the task 

for the bee was to visit the four flowers to fill its crop to capacity and then return to 

the nest.  

Bees developed routes in the three experimental arrays  

We first considered the overall foraging behaviour of bees in all three experimental 

arrays. On average bees increased by 154.5 ± 48.3% (mean ± SE) their travel speed 

(flight duration divided by the Euclidian distance between all successively visited 

flowers) between the first and the last foraging bout in the same array (Figure 2A, 

Table 1). Although we used an indirect measure of travel speed, there is clear 

evidence that bumblebees rapidly develop straight flight trajectories to join known 

flower locations [38,54]. As they gained experience in an array, bees also increased 

by 6.3 ± 3.8% (mean ± SE) the average number of different flower locations they 

visited per bout (Figure 2B, Table 1), decreased by 85.3 ± 3.5% (mean ± SE) the 

average number of immediate revisits to flowers (two successive visits to the same 

flower; Figure 2C, Table 1), and decreased by 58.0 ± 8.0% (mean ± SE) the average 

number of non-immediate revisits (two non-successive visits to the same flower; 

Figure 2D, Table 1).  

We estimated the tendency of bees to follow regular routes over repeated 

foraging bouts by calculating the frequency of use of a primary route (highest 

proportion of foraging bouts in which the same four-flowers visitations sequence — 

excluding revisits to flowers — was used by a bee) [36]. Each bee established a 

primary route that it used on average in 27.5 ± 2.2 % (mean ± SE) of all its foraging 

bouts for a given array (Figure 2E). This proportion of primary route usage was 

similar in the three experimental arrays (Kruskall-Wallis test: !2 = 1.47, P = 0.478). 

We calculated the level of similarity between the 20 complete flower visitation 

sequences for each bee in each experimental array using a determinism index (DET). 

This index is derived from recurrence quantification analyses that reflect the amount 

of repeated sequences in a dataset [48]. DET varies between 0 (the bee never repeats 

the same flower visitations sequence) and 1 (the bee always repeats the same flower 

visitations sequence).  
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Figure 2: Average behavioural measures in the three experimental arrays (array 1: purple, array 2: 
orange, array 3: grey, see details of flower and landmark configurations in Figure 1). a. Travel speed 
per foraging bout (flight duration divided by the Euclidian distance between all successively visited 
flowers). b. Number of different flower visited per foraging bout. c. Number of immediate revisits to 
flowers per foraging bout (when the bee visited the same flower twice in a row). d. Number of non-
immediate revisits per foraging bout (when the bee revisited a flower after having visited one or more 
different flower locations). e. Cumulative frequency of primary route usage per foraging bout. a to e: 
plain lines show means ±  (N = 29 bees), dashed lines show regression models (see details in Table 1 
and Supplementary Table S1). f. Comparison between simulated random determinism index (DETs, 
N=1000 simulations) and observed DETs (N = 29 bees) in each experimental array (mean ± SE). a to 
d: Bar plots show means ± se for each array of flowers. Tukey post-hoc analysis: different letters above 
bars represent significant differences between arrays (see details in Supplementary Table S2). 
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Table 1: Regression coefficients of average behavioural measures for the three experimental arrays. 
Significant effects are highlighted in bold. 

 Type of 
regression 

Estimate 
(SE) t P 

Travel speed     
Array 1 logarithmic 0.16 (0.01) 11.04 <0.001 
Array 2 logarithmic 0.09 (0.02) 4.35 <0.001 
Array 3 logarithmic 0.64 (0.11) -1.23 <0.001 
Different flowers visited     
Array 1 linear 0.02 (0.003) 7.80 <0.001 
Array 2 logarithmic 0.05 (0.02) 2.71 0.014 
Array 3 logarithmic 0.08 (0.02) 4.57 <0.001 
Immediate revisits to flowers     
Array 1 logarithmic -0.57 (0.06) -9.33 <0.001 
Array 2 logarithmic -0.43 (0.09) -4.73 <0.001 
Array 3 logarithmic -0.29 (0.06) -5.13 <0.001 
Non-immediate revisits to flowers     
Array 1 
Array 2 
Array 3 

linear 
logarithmic 
logarithmic 

-0.08 (0.02) -3.42 0.003 
-0.77 (0.18) -4.34 <0.001 
-0.14 (0.11) -1.25 0. 228 

 

For all three arrays, observed DETs were consistently higher than theoretical 

DETs calculated on simulated random flower visitations sequences (Figure 2F; post-

hoc Tukey test, array 1: " = 0.16 ± 0.01, t = 30.41, P < 0.001; array2: " = 0.07 ± 0.01, 

t = 12.22, P < 0.001; array 3: " = 0.12 ± 0.01, t = 22.72, P < 0.001). This indicates that 

bee movement patterns were more repeatable than expected by chance. Thus, overall 

bees increased their foraging efficiency and began to develop traplines as they 

accumulated foraging experience in each array, irrespective of the spatial distribution 

of flowers and the nature and arrangement of three-dimensional landmarks. 

Nonetheless, some behavioural differences were observed for all bees between 

the three arrays. For instance, in array 1 bees tended to travel slower (Figure 2A, 

Supplementary Table S2), visited fewer flowers (Figure 2B, Supplementary Table S2) 

and tended to perform more immediate revisits (Figure 2C, Supplementary Table S2), 

while they performed fewer non-immediate revisits in array 3 (Figure 2D, 

Supplementary Table S2). This suggests that foragers continuously improved their 

foraging performance throughout the experiment, as they accumulated experience 

from the first to the third array. We cannot exclude that the changes of foraging 

performance of the bees reflect the changes in the different navigational challenges 

offered by the three arrays of flowers. Bees also appeared to have lower DETs in 
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array 2 (least-squares means post-hoc test: array 2 vs. array 1: P < 0.001; array 1 vs. 

array 3: P = 0.072; array 2 vs. array 3: P = 0.031). Presumably specific changes in the 

spatial arrangement of flowers and landmarks, inherent to our choice of experimental 

arrays and their sequences of presentation, induced these behavioural differences. For 

example in array 2, flower 2 may have been particularly difficult to locate as it was 

hidden behind a tall landmark. 

Bees showed strong variability in route fidelity and foraging performance 

Having described the average foraging behaviour of bees in the three arrays, we next 

explored the level of inter-individual variability among the different foragers. We ran 

a principal component analysis (PCA) based on the mean per array of the six 

behavioural measures described above (i.e. travel speed per foraging bout (flight 

duration divided by the Euclidian distance between all successively visited flowers); 

number of different flowers visited per foraging bout; number of immediate revisits to 

flowers per foraging bout (when the bee visited the same flower twice in a row); 

number of non-immediate revisits per foraging bout (when the bee revisited a flower 

after having visited one or more different flowers); cumulative frequency of primary 

route usage per foraging bout; determinism index (DET, level of similarity between 

the 20 flower visitation sequences) for each experimental array; Figure 3, 

Supplementary Figure S3). We retained two PCs using the Kaiser-Guttman criterion 

(Supplementary Figure S4). #PC1 and PC2 were not correlated with each other 

(Spearman’s correlation test: r = 0.01, S = 108460, P = 0.915). PC1 explained 54% of 

the proportion and PC2 46%. PC1 was positively associated with the frequency of use 

of a primary route and the DET, but negatively associated with the number of non-

immediate revisits to flowers (Figure 3, Supplementary Table S3). We interpreted 

PC1 as a “route fidelity” variable. Accordingly individuals with a high PC1 score 

were regular route-followers characterised by highly repeatable flower visitation 

sequences and occasional non-immediate revisits to flowers. PC2 was positively 

associated with the number of immediate and non-immediate revisits to flowers, and 

negatively associated with travel speed and the number of different flowers visited 

(Figure 3, Supplementary Table S3). We interpreted PC2 as a “foraging performance” 

variable. Individuals with a high PC2 score were slow and inaccurate foragers, 

characterised by slow movements between flowers and frequent revisits to empty 

flowers. Variance along PC1 and PC2 defined a continuum between four behavioural 
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extremes (Figure 3): fast accurate and regular route followers (high PC1/low PC2 

scores), fast accurate and irregular route-followers (low PC1/low PC2 scores), slow 

inaccurate and regular route-followers (high PC1/high PC2 scores), and slow 

inaccurate and irregular route-followers (low PC1/high PC2 scores). While foragers of 

colony 2 were uniformly distributed across the entire PC space, 50% of the foragers 

of colony 1 were nested within the area defined by high PC1 and low PC2 scores 

(slow inaccurate and irregular route-followers; Figure 3). 

Variability was expressed both at the inter- and intra-individual levels 

We next explored the effects of inter- and intra-individual variability on PC1 and 

PC2, using linear mixed effect models (LMMs) with individual identity nested within 

colony identity as random effects and both intercept (inter-individual variability) and 

random slope (intra-individual variability) structures. 
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Figure 3: Correlations between the two first components (PCs) of the principal component 
analysis (PCA). Grey arrows represent the six behavioural measures on PC1 (route fidelity) and PC2 
(foraging performance). PC loadings are in brackets. Only loadings > |0.4| were retained (see 
Supplementary Table S3 for the complete PCA loadings). Each data point represents the PC1 and PC2 
scores of a given bee in each experimental array. The PCs define a continuum between four 
behavioural extremes: fast accurate and regular route followers, fast accurate and irregular route 
followers, slow inaccurate and regular route followers, slow inaccurate and irregular route followers. 
Blue: colony 1 (N=15 bees, 45 data points), red: colony 2 (N=14 bees, 42 data points). Numbers refer 
to individual bees (same number code as in Figure 4 and 5). Subscripts refer to experimental arrays (1-
3). 
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Table 2: Log-likelihood Ratio tests to estimate inter- and intra-individual variability on the two 
principal components (PCs) of the principal component analysis (PCA). a. To study inter-individual 
variability we compared a linear model (LM) built using each PC as a response variable and age, body 
size and experimental array as fixed variables with two mixed effect models (LMEs) using colony or 
individual nested in colony as random effects. b. To study intra-individual variability we compared the 
random intercept model (LME_1|colony/ID) previously built using each PC with a random intercept 
and slope model (LME_0+array|colony/ID). Degree of freedom (df), Akaike Information Criterion 
(AIC), Log-likelihood values (Loglik) and Log-likelihood ratio test (L.Ratio) are presented with the 
corresponding p-values. Significant effects are highlighted in bold. 

 df AIC Loglik L.Ratio P 

a.      

Random intercept model PC1      

LM 5 262.67 -126.34   

LME_1|colony 6 228.64 -108.32 7.08 0.008 

LME_1|colony/ID 7 254.48 -120.24 5.11 0.024 

Random intercept model PC2      

LM 5 239.54 -114.77   

LME_1|colony 6 237.84 -112.92 3.70 0.054 

LME_1|colony/ID 7 225.13 -105.57 14.72 <0.001 

b.       

Random slope model PC1      

LME_1|colony/ID 7 242.57 -114.29   

LME_0+array|colony/ID 6 235.93 -111.96 4.64 0.031 

Random slope model PC2      

LME_1|colony/ID 7 201.92 -98.46   

LME_0+array|colony/ID 6 227.93 -107.92 19.00 <0.001 
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Variability in PC1 was significantly explained by inter-individual differences 

(Table 2A; 27% of variance explained), meaning that bees showed consistent 

differences in their average level of route fidelity across arrays. Bees also differed in 

their level of intra-individual variability (Table 2B; 11% of variance explained) so 

that some individuals consistently increased their route fidelity in each array while 

others did not. Variability in PC1 was also explained by differences between colonies 

(Table 2A; 38% of variance explained). Overall bees from colony 2 were more 

regular at following a route than bees from colony 1, irrespective of the experimental 

array (Figure 4A). 

Variability in PC2 was significantly explained by inter-individual differences 

(Table 2A; 46% of variance explained). Therefore bees showed consistent differences 

in their average level of route performance across arrays. Bees did not present intra-

individual variability in their response to the different arrays (Table 2B; 5% of 

variance explained), meaning that all bees tended to increase their foraging 

performance as they gained experience in a given array. Colony origin had no effect 

on PC2 (Table 2A; 26% of variance explained). 

Body size partly explains inter-individual variability in foraging performances  

We used LMMs to examine whether experimental factors (spatial configuration of 

flowers and landmarks) or biological characteristics of bees (body size and age) 

explained both PCs (Table 3). PC1 was neither explained by experimental arrays, 

body size or age (Table 3). By contrast PC2 was negatively correlated with body size, 

so that larger bees tended to travel faster and make fewer revisits to flowers than 

smaller bees (Figure 5). We also found a significant influence of the experimental 

arrays on PC2 (Table 3), indicating that bees similarly increased their foraging 

performance as they moved from array 1 to array 2 and array 3 (Figure 4B). This 

gradual improvement of foraging performances supports the hypothesis of a 

continuous learning process. 
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Figure 4: Intra- and inter-individual behavioural variance across experimental arrays. a. Route fidelity 
(PC1). b. Foraging performance (PC2). Data points connected by a dashed-line represent the scores of 
the same individual over the three arrays. Blue: colony 1 (N=15 bees), red: colony 2 (N=14 bees). 
Numbers refer to individual bees (the same number code was used in Figure 3 and 5). 
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Figure 5: Inter-individual variance in foraging performance (PC2) is partly explained by body size 
(length from top of head to end of abdomen). Each data point represents the average score of an 
individual in an experimental array (three values per individual). Blue: colony 1 (N=15 bees), red: 
colony 2 (N=13 bees). Numbers refer to individual bees (the same number code was used in Figure 3 
and 4). Subscripts refer to experimental arrays (1-3). Marginal R2 = 0.12, conditional R2 = 0.44. 
 
Table 3: Linear mixed models (LMMs). LMMs were run on the two principal components (PCs) of the 
principal component analysis (PCA), using individual identity nested within colony identity as random 
variables and age, body size and experimental array as fixed variables. Significant effects are 
highlighted in bold. 

 Estimate (SE) df t P 

Route fidelity (PC1) 

Body size -0.12 (0.09) 24 -1.38 0.190 

Age -0.01 (0.02) 24 -0.37 0.709 

Array -0.18 (0.11) 55 -1.23 0.116 

Foraging performance (PC2) 

Body size -0.21 (0.09) 24 -2.36 0.03 

Age -0.01 (0.02) 24 -0.53 0.60 



 165 

Discussion: 
Understanding inter-individual behavioural variability in complex societies, such as 

colonies of social insects, may offer unique insights into how and why relatively high 

levels of inter-individual behavioural variability are observed in animal groups and 

populations [21,55]. Here we compared the movement patterns of all foragers from 

two bumblebee colonies exploiting arrays of stable feeder locations, and report 

consistent inter-individual differences in their spatial foraging behaviour. Rather than 

defining distinct behavioural profiles of foragers, this natural variability follows a 

continuum along two behavioural dimensions. Some bees were always more faithful 

to a route and/or faster and more accurate in their spatial foraging decisions than 

others. 

Bees showed consistent inter-individual variability in their tendency to follow 

stable routes between flowers. This variability was neither explained by the 

characteristics of our experimental arrays of flowers and landmarks, nor the body size 

or the age of bees. Interestingly, degrees of route fidelity differed between our two 

colonies, meaning that foragers from one colony were more regular in following a 

route than those from the other colony. These results are not due to differences in the 

average body size or age between the foragers of each colony. Behavioural variability 

between individuals of different groups or colonies is a widespread phenomenon in 

social animals [55], including insects [23,55–58]. Inter-colonial behavioural 

variability has been reported previously in bees, for inter-colonial differences in 

aggression [59] or for both vision- and olfaction-related cognitive tasks, and these 

differences are correlated with the foraging success of colonies [26,27]. In 

bumblebees, high genetic relatedness between colony members, due to female 

monandry (single mating) and haplo-diploidy (haploid males, diploid females), may 

favour strong inter-colony variability [26,60]. Other non-genetic factors may also 

contribute to phenotypic variability between colonies, such as changes in the pre-

imaginal environment. For instance variation in temperature [61] and nutrition [62] 

during the larval stage can lead to differences in olfactory learning in adult honey 

bees. Further studies using more colonies with known genetic relatedness are needed 

to test the existence of a genetically determined inter-colony variability for traplining. 

In the present spatial task, bees also showed some level of inter-individual 

variability in their ability to make fast and accurate spatial decisions, so that fast 
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travelling bees made fewer revisits to empty flowers. This result is consistent with the 

observation that goal-directed flights in experienced bees, for instance between the 

nest and familiar flowers, are faster than exploration flights, in which naïve bees scan 

the environment to search for flowers and acquire spatial memories [38,54]. Thus 

potentially bees showed inter-individual variability in their tendency to make 

exploitation and exploration flights. Differences in foraging performance among bees 

were partly explained by their body size, so that larger foragers tended to travel faster 

and make fewer revisits than smaller foragers. Because we tested only naturally 

motivated foragers, we describe here variability within the foragers’ caste. This 

observation is consistent with previous studies showing that the largest bumblebees 

make more foraging trips [63], take less time [16] and collect more nectar in natural 

conditions [16]. Large bumblebees also tend to learn faster in visual discrimination 

tasks [64]. These inter-individual behavioural and cognitive differences may be 

explained by differences in the sensory equipment of small and large bees. For 

instance, larger bees have bigger compound eyes and may thus be more accurate at 

finding small objects [65]. Size polymorphism in bumblebees is primarily determined 

by the frequency of feeding so that larvae raised in the middle of the nest area (where 

workers are more active) tend to become the largest adults [66]. Therefore it is very 

likely that the diversity of body sizes and their associated behavioural traits within 

bumblebee colonies is a self-organised process, regulated by population densities and 

structural constraints within the nest at a given time during the colony cycle.  

 Our description of inter-individual variability in the spatial foraging behaviour 

of bumblebees is in line with recent observations that foragers of social bees show 

high variability to their contribution to the global colony foraging effort [63,67], 

suggesting that some behavioural traits may support higher foraging success. It has 

been suggested that behavioural diversity in a social group or population can be an 

advantageous trait at the collective level [7,8]. Honey bee colonies showing higher 

genetic variability (and thus inter-individual behavioural variability) perform better in 

group tasks such as nest thermoregulation [68]. Colonies of Thermothorax ants 

showing high variability in the aggressiveness of workers are more productive [13]. In 

the social spider Anelosimus studiosus, mixed colonies composed of aggressive 

(asocial) and docile (social) individuals capture more prey than colonies with high 

proportion of only one type of individuals [69]. Accordingly, maintaining a diversity 
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of behavioural profiles among foragers of a colony may allow the colony to locate and 

exploit a larger diversity of resources in fast changing environments [1,24,70,71]. For 

instance, artificial bumblebee colonies containing individuals with different foraging 

profiles along a speed-accuracy trade-off have a more constant nectar collection rate 

than homogenous colonies [24]. Further investigation of the correlates of inter-

individual behavioural and cognitive differences among members of a social group, 

such as bees, holds considerable promise for better assessing plastic collective 

responses and the adaptability of groups to stressful environmental conditions.  
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Supplementary materials: 
Table S1: Choice of regression models. R2 were calculated for linear and logarithmic models for each 
behavioural measure in each experimental array. The model with the highest R2 (bold) was retained for 
the analyses. 

Experimental array 1 2 3 

Model type linear logarithmic linear logarithmic linear logarithmic 

Travel speed 0.802 0.871 0.390 0.513 0.459 0.636 

Different flower 

locations visited 

0.773 0.740 0.215 0.289 0.419 0.547 

Immediate revisits 0.514 0.829 0.297 0.555 0.268 0.594 

Non-immediate 

revisits 

0.394 0.388 0.291 0.512 0.017 0.079 
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Table S2: Differences in behavioural measures between experimental arrays. Post-hoc Tukey tests. 
Results in bold represent significant differences. 

 " (SE) t P 

Travel speed    

Array 1 vs array 2 0.15 (0.06) 2.60 0.032 

Array 1 vs array 3 0.20 (0.06) 3.49 0.003 

Array 2 vs array 3 0.05 (0.06) 0.89 0.65 

Different flowers visited    

Array 1 vs array 2 0.33 (0.06) 5.32 <0.001 

Array 1 vs array 3 0.28 (0.06) 4.53 <0.001 

Array 2 vs array 3 -0.05 (0.06) -0.79 0.711 

Immediate revisits    

Array 1 vs array 2 -0.46 (0.23) -2.01 0.124 

Array 1 vs array 3 -0.80 (0.23) -3.45 0.002 

Array 2 vs array 3 -0.35 (0.23) -1.53 0.285 

Non-immediate revisits    

Array 1 vs array 2 0.77 (0.49) 1.57 0.372 

Array 1 vs array 3 -1.27 (0.49) 2.57 0.034 

Array 2 vs array 3 -2.04 (0.49) -4.14 <0.001 
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Table S3: Principal Components Analysis (PCA) loadings. For each individual in each experimental 
array, the average travel speed, number of immediate revisits to flowers, number of non-immediate 
revisits to flowers, number of different flowers visited per foraging bout were included in the PCA. The 
cumulated frequency of primary route usage and the determinism index (DET) of each bee in each 
array were also included. The correlation matrix of the six behavioural measures is showed in 
Supplementary Fig. S3. 

 Route fidelity (PC1) Foraging performance 
(PC2) 

Travel speed -0.34 -0.69 

Immediate revisits to flowers -0.12 0.79 

Frequency of primary route usage 0.81 -0.09 

DET 0.87 0.02 

Non-immediate revisits to flowers -0.55 0.59 

Different flower locations visited 0.36 -0.49 

Proportion explained 0.54 0.46 
 

 
Figure S1: Photos of the artificial flowers. a. General flower design. The flower is made of a blue 
circular landing platform on top of a transparent, colourless, cylindrical reservoir of sucrose solution 
held by a stand clamp. White bar = 30 cm. b. Pre-training flower. Bees can drink ad libitum sucrose 
solution through the cotton wick connecting the landing platform to the sucrose reservoir. c. Training 
flower. A bee with a coloured numbered tag is drinking a controlled volume of sucrose solution placed 
in the middle of the landing platform. The bee cannot access the sucrose reservoir below. Pictures by S. 
Klein.
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Figure S2: Photos of the three-dimensional landmarks. We used nine items made of cardboard and 
paper that could be used by bees as visual landmarks to assist their navigation. Each landmark was 
uniquely defined by its shape and colour pattern. White bar = 30 cm. The spatial arrangements of 
landmarks in the flight room are showed in Fig. 1. Pictures S. Klein. 
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Figure S3: Correlation matrix of the six behavioural variables included in the principal component 
analysis. Travel speed per foraging bout (flight duration divided by the Euclidian distance between all 
successively visited flowers); number of different flowers visited per foraging bout; number of 
immediate revisits to flowers per foraging bout (when the bee visited the same flower twice in a row); 
number of non-immediate revisits per foraging bout (when the bee revisited a flower after having 
visited one or more different flowers); cumulative frequency of primary route usage per foraging bout; 
determinism index (DET, level of similarity between the 20 flower visitation sequences) for each 
experimental array. 
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Figure S4: Selection of the principal components (PCs) based on the Kaiser-Guttman criterion. Two 
PCs with an eigenvalue higher than the average (red line) were retained to construct the principal 
component analysis.  
Dataset S1: Data file (csv.file) containing mean values for the number of different flowers visited 
(nb_flower), the number of immediate revisits (imm_revisit), the number of non-immediate revisits 
(non_imm_revisit), the travel speed (speed, in m/s), the proportion of primary route usage (prop) and 
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the determinant (DET) for each individual (bee_ID) in the three experimental arrays of flower (array). 
SE are provided for each variable (se_variablename). This file also contains information about the 
colony origin (colony), age (age) and body size (body) of bees. NA = non-available value.  
 
Dataset S2: Data file (csv.file) containing raw values for the number of different flowers visited 
(nb_flower), the number of immediate revisits (imm_revisit), the number of non-immediate revisits 
(non_imm_revisit), the travel speed (speed, in m/s), the proportion of primary route usage (prop) and 
the sequence of flower visits (sqce_tot) for each foraging bout (bout) of each individual (bee_ID) in the 
three experimental arrays of flowers (array). This file also contains information about colony origin 
(colony), age (age) and body size (body) of bees. NA = non-available value. 
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Text S1: R scripts used for generating random flower visits sequences and calculate random DET. 
#=================================================================# 
#-This R code creates a simulation of 1000 individuals visiting --# 
#- flowers in random sequences and calculates their determinism index  
--# 
#=================================================================# 
 
# load the 2 functions developed by Ayers et al. 2015.  
source(file = 
"~/Documents/bumble_expe/scripts/functions/determinism.R") 
source(file = 
"~/Documents/bumble_expe/scripts/functions/removeperpdiag.R") 
 
# generate 1000 artificial bees 
det_rdm <- 0 
for (j in 1:1000){ 
seq_rdm=0 
for (i in 1:158) # 158 is the mean number of flowers visited by the 
29 bumble bees in our dataset 
{ 
  TMP1=sample (1:4,1) # we arbitrarily assigned successions of 3 
visited flowers. The 4th visit can be either nest return or another 
flower visit. 
  TMP2=sample (c(1:4),1) 
  TMP3=sample (c(1:4),1) 
  TMP4=sample (c(0:4),1) 
  seq_rdm=c(seq_rdm,c(TMP1,TMP2,TMP3,TMP4)) 
} 
seq_rdm <- c(seq_rdm,0) 
print(seq_rdm) 
det_rdm <- rbind(det_rdm,determinism(seq_rdm,4))  
 
#generate DET values for each of the 1000 artificial bees 
} 
det_rdm2 <- det_rdm[-1] 
   
write.csv(det_rdm2,file="det_rdm.csv
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Chapter 5: Sublethal effects of miticides on honey bee visual 
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Abstract: 

The varroa mite (Varroa destructor) has been implicated as one of the major causes of 

the global rise in honey bee colony failure. In order to control this parasite, 

beekeepers use miticides to treat hives. The effect of chronic exposure to such hive 

treatments on bee behaviour and cognition is not well known. Here we used an 

aversive associative visual learning assay to test the impact of two widespread 

miticide treatments (tau-fluvalinate and thymol) on bee visual cognition. We found 

that thymol has no detectable effect on visual learning. By contrast, exposure to tau-

fluvalinate reduced the ability of bees to learn the association between a colour and a 

mild electric shock. Our results highlight the need to consider harmful effects of in-

hive chemicals on bee cognition, which could result in impaired foraging performance 

and altered colony function.  

 

Keywords: Apis mellifera, cognition, visual learning, aversive learning, miticides, 

chronic stress, Varroa destructor. 
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Introduction: 

In order to treat managed honey bee hives against the parasitic mite Varroa 

destructor, beekeepers are using several different miticides as treatments applied 

inside the bee hive. Whereas these miticides can be efficient at reducing the parasite 

loads in the colonies, some evidence suggests that they also affect the bees in different 

ways. Here we analyse the effect of two miticides on honey bee visual learning 

ability, as it is a crucial element in foraging behaviour. 

! The honey bees’ (Apis mellifera) capacity for learning is vital for their 

foraging and navigation in complex environments [1,2]. However a current increase 

in environmental stressors impacting bees is damaging bee cognitive capacities [3] 

and negatively affecting bee populations [4]. One of the main stressors of the honey 

bee is the mite Varroa destructor, a widely-distributed honey bee pest that has been 

recognised as a major driver of honey bee colony losses [5–7]. This ectoparasite feeds 

on the haemolymph of larvae and adult bees [8], thus weakening them through 

physical injury, deprivation of proteins and associated weight loss, spread of viruses, 

and, in larvae, disruption of development. As a consequence, many infested 

individuals exhibit a reduced body size with morphological abnormalities, and have 

reduced longevity.  

In addition, infected bees often show impaired foraging behaviour, such as 

altered olfactory learning [9], reduced flight duration and homing capacity [10]. These 

effects are likely to decrease foraging efficiency and thus reduce colony performance 

[11]. varroa is also a vector for several highly pathogenic viruses such as the 

deformed wing virus (DWV) and the acute bee paralysis virus complex [12–14]. 

Indeed, infection with viruses, such as these appears to be responsible for some of the 

morphological defects induced by Varroa [15], and is sufficient to cause learning 

impairment in the absence of the mite [16]. All in all, coincident varroa infestation 

and viral infection are a major cause of a high risk of colony failure [5,7,17]. 

 Miticides have been developed to control varroa levels in hives [8,18,19]. 

These chemicals are used directly in the hive so that their active compounds are in 

contact with the brood and the adult bees. It is thus possible that they might have 

undetected sublethal effects on honey bees. Prolonged exposure to low levels of the 

miticides might particularly alter the development and activity of the nervous system 

and thereby reduce cognitive performance, as has been shown for sublethal field 
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doses of pesticides using learning and memory assays [20–23]. The effects of chronic 

exposure to in-hive miticides have not been studied in detail, even though the 

presence of chemicals in the hive environment is an increasingly common situation 

for honey bee colonies [24–28]. Here, we propose to study the effect of miticides on 

bee visual learning ability. 

We focus here on two of the most commonly-used miticides: tau-fluvalinate 

and thymol. Tau-fluvalinate (hereafter FL, commercialized as Apistan®) is a synthetic 

pyrethroid compound [29]. This class of compounds acts as arthropod neuron 

excitoxins, which prevent the closure of voltage-gated sodium channels of axonal 

membranes, leading to prolonged membrane depolarization and thus to paralysis or 

death [29–31]. It also suppresses neuron excitability in adult bee brain structures [32] 

and impairs olfactory memory [21]. Thymol (TH) is a monoterpenoid extracted from 

essential oil of thyme (Thymus vulgaris) and has been used for varroa control under 

the commercial product Apiguard® [18]. Though considered more environment-

friendly than other miticides as it is based on plant products [33], thymol may have 

negative effects on bees. Indeed, chronic TH exposure has been shown to reduce 

phototactic behaviour [34]: in a walking assay, treated bees were less efficient at 

reaching the source of light in a limited time. Effects on cognition have also been 

studied [18,35–37], and topical applications of high TH doses (10 – 100ng / bee) 

reduce long-term memory of a food-odour association measured with the classic 

proboscis extension assay [35]. However, these latter studies used only olfactory 

appetitive learning as a behavioural output. Varying the behavioural task is necessary 

to conclude whether miticides have a general impact on learning abilities. Can effects 

be seen in other cognitive tasks, such as in visual discrimination or in an aversive 

learning paradigm? 

In-hive pest-control products can be detected in the wax, honey and pollen for 

years after treatment [24–28]. Fluvalinate for instance has a half-life of five years in 

wax [38] and thymol can still be found in the wax a year after the treatment stopped 

[39]. Therefore we expect developing larvae and in-hive bees to undergo chronic low-

level exposure following treatment of a hive [26]. An additional difficulty is that none 

of the studies looking at the effects of miticides on bee cognition controlled for the 

potentially confounding effect of a change in varroa mite load, as they have been 

conducted on populations also exposed to the varroa mite [21,32]. Here we examined 
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the effects of miticide treatment of bees in Australia [40] where there currently is no 

varroa in order to examine the effect of the miticide on bee cognition with no 

confounding varroa infection. 

We analysed the effect of in-hive chronic exposure to tau-fluvalinate or 

thymol on bee forager learning abilities. Because olfactory appetitive learning tasks 

were used in previous studies, we aimed at determining if miticides could alter 

performance in an aversive learning task involving a different sensory modality; 

vision. For this, we used a recently developed visual aversive learning assay called 

Automatic Performance Index System (APIS, [41,42]). The APIS assay consists of an 

automatic tracking chamber where a walking individual has to learn to associate one 

of two different coloured environments (provided by LEDs in the chamber’s walls), 

with electric shocks (provided by a metal grid on the floor of the chamber). Based on 

their locomotor responses, we were able to assess individual bee’s ability to learn to 

specifically avoid the light associated with the electric shock, and thus to capture 

cognitive deficits in adult foragers from hives treated with miticides.  

Material and methods: 

Animals: 

We sourced bees from six European honey bee (Apis mellifera) colonies from the 

Macquarie University experimental apiary, North Ryde, Australia. The colonies were 

kept in two-box Langstroth hives. Two hives were treated with thymol (TH group) 

using Apiguard® (Vita Europe Ltd, Basingstoke, UK), two other hives with tau-

fluvalinate (FL group) using Apistan® (Vita Europe Ltd, Basingstoke, UK), and two 

non-treated hives were used as controls (NT group). Both miticides were applied 

following suppliers’ instructions. Two Apistan® tau-fluvalinate soaked plastic strips 

were placed in each of the fluvalinate treated hives, between two brood frames, for six 

weeks. One Apiguard® thymol gel container was placed on top of the frames of the 

top box of each of the thymol-treated hives for three weeks. After two weeks, the 

treatment containers were replaced by another thymol gel container in each of the two 

hives for a further three weeks. Treatments started on the 1st of February 2016. We 

performed hive inspections every week to check for the presence of a queen and eggs. 

Six weeks after we started the treatments we began testing the bees (14th of March 

2016). Considering the time required for larval development (21 days) [43] and the 
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worker transition from in-hive work to foraging (around two weeks) [43], we are 

confident that we could test foragers that had been passively exposed to the chemicals 

during their development and adult time spent in the hive. The experiment lasted for a 

month (14th of March 2016 to 16th of April 2016).  

A total of 146 bees were tested in two APIS chambers in parallel (NT group: 

48 bees, TH group: 48 bees, FL group: 50 bees, see details in table S1). The order of 

testing bees in the APIS chamber was reandomised with respect to source colony and 

treatment, and we made sure to have an approximately equal representation from all 

hives on each sampling day.  

Foragers were collected when leaving the hive, using a hand-held aspirator 

(BioQuip Products, Inc., CA, USA). Bees were captured less than 15 minutes prior to 

testing and stored for a minimum of 10 minutes in the dark, at approximately 24ºC in 

50mL Falcon™ conical centrifuge tubes. Since foragers were selected randomly, their 

age and foraging experience were unknown, but was expected to be distributed 

similarly within each treatment group. 

Testing apparatus (APIS box): 

We used an aversive visual conditioning apparatus (figure 1A) developed and 

manufactured at Konstanz University, Germany [41,42,44]. The apparatus is a 

conditioning box 148mm long, 20mm wide, and 6mm high. Within the chamber bee 

motion is automatically tracked with 26 infra-red LED sensors lining the walls. The 

registered parameters, with a frequency of 5 Hz, are position, direction of movement 

and distance. Any turn made by the animal is only registered by the sensors if it is a 

complete reversal of direction. The apparatus uses sensor feedback to determine the 

bee’s location and initiates delivery of appropriate visual stimuli according to the 

bee’s location in the chamber. These are provided by tricolour (Blue-Green-Yellow) 

LEDs along the chamber walls. During the experiment, blue light LEDs (! = 465 nm, 

luminous intensity: 105 mcd) were switched on in the half of the chamber where the 

bee was located, and green light LEDs (! = 525 nm, Luminous intensity: 119 mcd) 

illuminated the opposite half. For the training trials, electric shock pulses (10 V, 4Hz, 

100ms) were delivered to the tarsi of the bee through the metal grid as long as 

movement sensors on the blue side were triggered. 
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Figure 1: Assay protocol. A. APIS chamber (white bar = 20 mm). Either side of the 
chamber can be illuminated with two different light fields: light appearing green (! = 
525 nm) or blue (! = 465 nm) to humans. The chamber is equipped with an electrified 
grid delivering 10 V shocks to the bee’s tarsi, and with infrared sensors to 
automatically track the bee’s movements. B. Visual learning assay protocol. After a 
habituation period of 7 min with no light, the bee was exposed to 14s of both green 
and blue illumination to determine its spontaneous preference. The bee was then 
subjected to nine training trials in which, after 3s of illumination, the bee experienced 
shocks (red rectangles) on the blue side for another 11s, but not while on the green 
side. Subsequently, the bee was tested four times with 14s of illumination without 
shocks to determine the post-training response to blue and green light fields.  
 

Prior to each assay, all inner surfaces of the chamber were cleaned with 70% 

ethanol solution [41], and left to air dry, in order to avoid any remaining alarm 

pheromones, which are known to impair learning [45]. 
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Conditioning protocol: 

Almost all individual bees transferred themselves into the aversive conditioning 

chamber (figure 1A) by walking from the Falcon™ tube (kept in the dark) into the 

chamber entrance, which was illuminated from within with yellow light. Some bees 

(N = 14) were excluded from trials if an assisted transfer was required, and prolonged 

buzzing was induced. Following testing, bees were euthanised by freezing.  

Bees were conditioned to avoid a blue light environment (conditioned 

stimulus: CS) associated with electric shocks (unconditioned stimulus: US). They 

could avoid being shocked by moving into a safe and unshocked zone (the green light 

environment, for which bees also exhibited a spontaneous preference [44]). This 

protocol has been successfully applied in previous studies [42,44]. The conditioning 

protocol consisted of one unreinforced preference test followed by nine reinforced 

training trials, and ended with four unreinforced test trials (figure 1B). All trials lasted 

14 s, with an inter-trial interval of 30 s. For the training trials, electric shock pulses 

were activated 3 s after light onset.  

Statistical analysis: 

Analyses were adapted from Plath et al. [42]. We used a Performance Index (PI) as a 

metric representing the learning performance of the bees:  

!" ! ! !"##$ !! !! !"#$
! !"##$ !! !! !"#$  

Where t(green) is the time spent on the green (safe) side of the chamber, and t(blue) is 

the time spent on the blue (shocked) side of the chamber. PI varies between – 1 and 1, 

where the positive values indicate that the bee spent more time in the safe side than on 

the shocked side, and negative values indicate the opposite. A bee that has learned the 

association between the blue light and the shocks is expected to run away from the 

blue side shortly after light-onset and avoid returning to the blue side, and thus have 

high PI values. By contrast a bee that has not learned the association is expected to 

have low PI values. 

 We used different metrics to assess the degree of learning during the training 

phase. First, we measured the crossing latency, i.e. the delay to cross over to the green 

side from the blue side after light-onset. If the bee managed to cross over in less than 

3 s, it could completely avoid being shocked due to the delay of the shock-onset after 

light-onset, assuming the bee would not then return to the blue side. If the crossing 
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latency was higher than 3 s the bee would experience shocks on the blue side. We 

thus recorded the number of electric shocks delivered to each bee, during each 

training trial, which was highly negatively correlated with the PI values (correlation: 

Pearson’s ! [CI]= -0.84 [-0.85,-0.82], df = 1378, t = -56.82, P < .0001).  

The number of reversals of direction were used to calculate a reversing 

difference: number of reversals performed on the blue side subtracted from the 

number of reversals performed on the green side of the chamber divided by the total 

number of reversals:  

!"#"!$%&'!!"##$%$&'$ ! !"#"!$%&$ !"##$ !! !!"#"!$%&$!!"#$!
!"#"!$%&$ !"##$ !! !!"#"!$%&$!!"#$! 

If a bee did not return to the blue side after having received shocks, it would make 

frequent reversals on the green side and thus its reversing difference index would be 

positive. Otherwise, a bee that did not react to shocks would do reversals in both the 

green and the blue side and have a less positive or negative reversing difference 

index. This index is another indicator of learning ability. 

In order to address the locomotion aspect in more detail, we also calculated the 

average speed per trial as well as the total number of direction changes (or reversals) 

per trial in both the green and the blue side. A high number of direction changes can 

indicate an agitated behaviour, and can be correlated with higher speed. A low 

number of direction changes can indicate slow movements or stationary periods. 

Data were analysed and graphed using R version 3.2.3 [46] (operating via 

Rstudio, version 1.0.136 [47]). Statistical analyses of PI for all trials of the assay, 

were investigated with Generalised Linear Mixed Models (GLMMs) with bee identity 

as a random factor to correct for repeated measurements (lme function from nlme 

package [48]). The same statistics have been applied for the other metrics for the 

second the last training trial. Minimum adequate models were identified among other 

models following the Akaike Index Criterion (AIC) selection method [49] (table S2). 

For all metrics, we found that hive origin did not have any significant effect on 

variance (table S2). Differences between the treatments groups were then assessed 

with Tukey post-hoc tests, using the R multcomp package [50]. 
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Results: 

Since bees moving slowly could not perform well in this movement-based 

performance assay, animals with average speeds lower than 2.1 cm/s were excluded 

from the analysis [42,44] (8 of the 146 tested bees, table S1). Thus, 138 bees were 

kept for our analyses (NT: 44, FL: 49, TH: 45). We found reduced associative 

learning capabilities in FL-treated bees compared to NT bees. This was not the case 

when comparing TH-treated bees and NT bees. 

Tau-fluvalinate-treated bees showed reduced learning performance: 

Treatment groups differed in the change in PI with across trial (figure 2A; GLMM, N 

= 138, F(2,135) = 3.64, P = 0.029, HDS Tuckey post-hoc test, NT – FL = 0.096 ± 0.038, 

Z = 2.50, P = 0.037). 

Considering the overall changes in performance index over training (figure 

2A), we found that NT bees and TH bees learned to avoid the blue side of the 

chamber. For both groups, PI significantly increased over the training phase (last vs. 

first trial, paired t test: NT group: df = 43, t = -2.54, P = 0.0145, TH group: df = 44, t 

= -2.92, P = 0.005). This increase in PI values over trials was accompanied by a 

decrease in the number of electric shocks received by the bees (figure 2B, last vs. first 

trial: NT, paired t test, df = 43, t = 2.99, P = 0.005; TH, df = 44, t = 3.23, P = 0.002). 

In parallel, the crossing time latency decreased (figure 2C; last vs. first trial: NT, 

paired t test, df = 43, t = 2.65, P = 0.013; TH, df = 44, t = 2.31, P = 0.026), and the 

reversing difference showed increasingly positive values, indicating bees turning 

more often in the green side (figure 2E; last vs. first trial: NT, paired t test, df = 43, t = 

-2.87, P = 0.006; TH, df = 44, t = -3.06, P = 0.004).!!
 FL bees spent similar amounts of time in the green zone during the first (48%) 

and the last (57%) training trials and thus did not change their PI over training (figure 

2A, last vs. first trial, t test: df = 48, t = -1.78, P = 0.081). They did receive marginally 

fewer shocks in the last training trial when compared to the first (figure 2B, last vs. 

first trial, t test: df = 48, t = 2.03, P = 0.048). They maintained a relatively high 

crossing latency towards the green side between the first (4.11 s) and the last training 

trails (4.28 s) (figure 2C, last vs. first trial, t test: df = 48, t = -0.17, P = 0.866). 



 "&+!

Finally, they reversed direction more frequently in the green side over successive 

trials (figure 2D, last vs. first trial, t test: df = 48, t = -2.12, P = 0.039) 
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<- Figure 2: Indicators of learning performance. Means ± SE are plotted for all 
variables. Blue: non-treated (NT, N = 44). Green: thymol (TH, N = 45). Orange: tau-
fluvalinate (FL, N = 49). Bees were subjected to one preference trial, nine training 
(reinforced) trials and four test (unreinforced) trials. A. Preference Index. There was 
a significant difference between the treatments (GLMM, N = 138, F(2,135) = 3.64, P = 
0.029). Treatment comparison with a Tukey HSD post-hoc test showed differences in 
PIs of NT and FL groups (0.096 ± 0.038, Z = 2.50, P = 0.037). Significant treatment 
effects determined with a GLMM (p < 0.05) are indicated with letters a and b. B. 
Number of shocks received during the training phase. There was no significant 
difference between the treatments (GLMM. N = 138, F(2,135) = 2.88, P = 0.059). C. 
Crossing latency to move towards the safe side (green side) after the light onset. 
During the 3 first seconds there was no shock. During the training phase, after the first 
training trial, tau-fluvalinate bees have a longer latency than non treated bees 
(GLMM, N = 138, F(2,135) = 3.36, P = 0.037, Tukey HSD, NT vs. FL, est = -1.43 ± 
0.57, Z = -2.53, P = 0.034). D. Reversing differences. After the first training phase, 
all bees increase their reversing difference towards the green side. After the first 
training trial, tau-fluvalinate treated bees had a lower reversing difference than the 
thymol treated bees (GLMM, N = 138, F(2,135) = 3.40, P = 0.036, Tukey HSD, TH – 
FL, Est = 0.13 ± 0.05, Z = 2.39, P = 0.050).  

No effect of treatments on short-term memory 

Overall, there was no significant difference between groups for PI values (figure 2A, 

GLMM, N = 138, F(2,135) = 2.32, P = 0.10) or crossing latencies during test trials 

(figure 2C, GLMM, N = 138, F(2,135) = 0.15, P = 0.86), indicating no effect of 

treatments on the test phase: therefore all groups recalled the learned paradigm and 

thus their short-term memory was not significantly affected. 

NT bees learned to avoid the blue side and remembered it during the test 

phase. Their performance index did not change over the four successive unreinforced 

test trials (figure 2A, ANOVA, N = 138, F(1,413) = 0.02, P = 0.896).  

Effects of treatment on speed and turning in the APIS chamber: 

Bees from all groups showed similar speeds before the training started (preference 

phase: GLMM, N = 138, F(2,135) = 0.08, P = 0.926). They then significantly increased 

their speed after they received shocks for the first time (second vs. first trial: t test: 

NT: df = 43, t = -5.99, P < 0.0001; TH: df = 44, t = -4.98, P < 0.0001; FL: df = 48, t = 

-4.41, P < 0.0001), thus indicating that the shocks elicited a clear behavioural 

response in all three treatment groups (figure 2D). However, on average FL bees were 

slower (figure 3A, GLMM comparing speed of treatment groups in training trials 2-9, 
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N = 138, F(2,135) = 4.60, P = 0.012, Tukey HSD, NT vs. FL, Est = 0.56 ± 0.23, Z = 

2.50, P = 0.033, TH vs. FL, Est = 0.60 ± 0.22, Z = 2.54, P = 0.033).  

When looking at the total number of changes of direction (figure 3B) we 

found that, during the preference phase (i.e. before receiving the shocks), but not 

after, NT bees did fewer reversals than the two treated groups (figure 3B, GLMM 

comparing reversal number in treatment groups during the preference test, N = 138, 

F(2,135) = 4.46, P = 0.013, Tukey HSD: NT vs. TH Est = 2.33 ± 0.99, Z = 2.35, P = 

0.038, NT vs. FL, Est = -2.72± 0.97, Z = -2.79, P = 0.016). This indicates a potential 

effect of both FL and TH treatment on bee locomotor activity in the APIS chamber 

prior to shock. 
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Figure 3: Indicators of locomotor response. Means ± SE are plotted for all 
variables. Blue: non-treated (NT, N = 44). Green: thymol (TH, N = 45). Orange: tau-
fluvalinate (FL, N = 49). A. Average speed at trial onset Speed values (cm/s) were 
averaged over the first 3 seconds of each trial, i.e. before bees could receive shocks. 
After the first training trial, FL-treated bees were slower than the two other groups 
(GLMM, N = 138, F(2,135) = 3.72, P = 0.027, Tukey HSD, NT vs. FL, Est = 0.56 ± 0.23, 
Z = 2.50, P = 0.033, TH vs. FL, Est = 0.60 ± 0.22, Z = 2.54, P = 0.033). B. Total 
number of changes of direction during each trials. The total number of reversal on 
both green and blue sides is smaller for the NT bees than the two treated groups 
during the preference phase (GLMM, N = 138, F(2,135) = 4.46, P = 0.013, Tukey HSD, 
NT vs. TH Est = 2.33 ± 0.99, Z = 2.35, P = 0.038, NT vs. FL, Est = -2.72± 0.97, Z = -
2.79, P = 0.016). 
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Discussion: 

We compared the effect of two miticides frequently used to reduce varroa loads in 

honey bee colonies – tau-fluvalinate and thymol – on foragers’ cognition. Miticide 

treatments were specifically applied to colonies never exposed to the varroa parasite, 

in order to avoid possible confounding effects due to varroa infestation itself. We 

found that whereas thymol did not affect bee visual aversive learning abilities, bees 

that were treated with tau-fluvalinate were less efficient learners than non-treated bees 

in this particular visual aversive learning task.  

Our assay was able to capture visual learning behaviour in honey bee foragers, 

as clearly shown by non-treated bees which recapitulated the findings from a previous 

study using the same protocol [42]: foragers started with a low performance index that 

increased during the training phase as more bees associated blue light with electric 

shocks (figure 2A). Concomitantly, foragers progressively learned to avoid receiving 

electric shocks, as indicated by their increasing tendency to reverse direction while 

still in the safe green side, as well as by the decreasing number of shocks received per 

trial (figure 2B,D). In addition, these learned changes in behaviour persisted during 

the test phase without shocks, thus indicating retention of the associative memory.  

While bees from thymol-treated hives showed a very similar learned change in 

behaviour to that of controls (figure 2A-D), tau-fluvalinate-treated bees demonstrated 

less evidence of learning over the course of the training trials (figure 2A,C). Thus, our 

study indicates that the miticide tau-fluvalinate can impair aversive learning 

performance, when administered according to manufacturers’ instructions. By 

contrast, short-term memory performance did not seem to be affected by miticide 

treatments as there is no difference between the three groups for the unshocked post 

training tests phase.  

These results are partly consistent with those of several studies addressing the 

impact of such miticides on appetitive olfactory learning, using a standard protocol in 

which odorants were associated with a food reward [35,51]. Indeed, negative effects 

were reported on learning performance for tau-fluvalinate [21], but not for thymol 

[35,51].  

What could be the mechanisms by which fluvalinate impairs aversive 

learning? Interestingly, we observed that the change in speed in response to shocks by 

fluvalinate-treated bees, was lower than in other groups (figure 3A). This suggests 
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that the miticide did not affect overall locomotion, but rather the level of shock-

induced activity, thus suggesting possible impacts on the animal’s sensitivity to the 

shock. This might thus be an explanation of the poorer learning performance, i.e. if 

the valence of the unconditioned stimulus (the shocks) was decreased in fluvalinate-

treated bees.  

Interestingly, fluvalinate also affects sucrose responsiveness [21], thus having 

potentially general effects on modulatory circuits and/or attentional processes. 

Alternatively, learning may be normal but not its behavioural manifestation, if chronic 

fluvalinate exposure impedes the maintenance of high activity levels such as those 

triggered by the shocks. Our results confirm that fluvalinate-treated bees were slower 

than the non-treated and the thymol-treated group after the second training trial 

(figure 3A). More studies, using other visual learning paradigms requiring no 

locomotor response [52], are needed at this point to address such a question. 

Interestingly, in the absence of shocks during the preference test, both treated groups 

were more active than the non-treated group, as they performed more reversals (figure 

3B). This may indicate a potential higher basal level of stress for miticide-treated 

bees, which needs to be explored further. Simple locomotion tests in an arena might 

confirm such a finding. 

Our experimental design allowed us to capture the impact of chemical 

stressors on foragers’ visual cognition when chronically applied at field realistic doses 

(suppliers’ instructions) during the development and the in-hive phase of bees from 

varroa–free colonies. In fact, this may explain why we observe more subtle effects 

than in previous studies done using infested colonies [21,35,49]. One can then 

suspects that the stronger effects seen in those studies, particularly on short-term 

memory, can be due to the combination of miticide treatment and varroa infestation. 

Our study importantly calls for more studies on effects of miticides on different 

aspects of cognition in bees that should be conducted in Australia where there is 

currently no varroa mite presence. 

Control of varroa mite is one of the major stakes of modern beekeeping. So far 

our study has highlighted the fact that, without being in contact with the varroa mite, 

Australian bees reacted negatively to the synthetic chemical treatment tau-fluvalinate, 

but that using thymol was not impairing the visual learning abilities of adult bees. 

Since we used foragers in these studies, the apparent learning and/or locomotor 
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impairments found here suggest that fluvalinate might reduce individual foraging 

performance and thus the overall efficiency to collect food, at the colony level. 

Further experiments, e.g. based the monitoring of foraging performance (chapter 2) 

and its impact on colony fitness, should be conducted to test these hypotheses. 
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Supplementary material: 

 

Table S1: Size samples. The total number of bees in each group (bottom row), is the 
one used for analysis after removing individuals that were too slow (< 2cm.s-1) [42] 

Treatment Non-treated (NT) Fluvalinate (FL) Thymol (TH) 
Hive E J G H A B 

Tested bees 24 24 26 24 24 24 
Excluded bees 0 4 0 1 2 1 
Analysed bees 24 20 26 23 22 23 
Total 44 49 45 
 
Table S2: Model selections based on AIC comparisons. For each parameter 
(preference index, number of shocks, crossing latency, reversing difference, speed, 
total number of reversals), the best model is in bold. Hive origin seems to have no 
effect on the variability of either of the analysed parameters. 
 df AIC Loglik Chi2 P 

a. Preference Index (PI)      

PI ~ treatments + trials 5 2959.4 -1474.7   

PI ~ treatments + trials + 1|ID 6 2930.5 -1459.2 0.87 <.0001 

PI ~ treatments + trials + 1|hive/ID 7 2932.4 -1459.2 0.07 0.79 

b. Number of shocks      

Shocks ~ treatments + trials 5 14983.4 -7486.7   

Shocks ~ treatments + trials + 1|ID 6 14958.8 -7473.4 26.64 <.0001 

Shocks ~ treatments + trials + 1|hive/ID 7 14960.7 -7473.3 0.09 0.77 

c. Crossing latency      

Latency ~ treatments + trials 5 11724.5 -5857.2   

Latency ~ treatments + trials + 1|ID 6 11545.6 -5766.8 180.8 <.0001 

Latency ~ treatments + trials + 1|hive/ID 7 11546.9 -5766.4 181.6 0.567 

d. Reversing difference      

Reversing difference ~ treatments + trials 5 3116.6 -1553.3   

Reversing difference ~ treatments + trials + 

1|ID 

6 3051.9 -1519.9 66.45 <.0001 
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Reversing difference ~ treatments + trials + 

1|hive/ID 

7 3053.6 -1519.8 66.79 0.654 

e. Speed      

Speed ~ treatments + trials 5 14749.1 -7815.3   

Speed ~ treatments + trials + 1|ID 6 14705.3 -7345.6 937.2 <.0001 

Speed ~ treatments + trials + 1|hive/ID 7 14705.5 -7345.6 2.25 0.134 

f. Total number of reversals      

reversals ~ treatments + trials 5 11946.3 -5968.2   

reversals ~ treatments + trials + 1|ID 6 11679.0 -5833.5 269.3 <.0001 

reversals ~ treatments + trials + 1|hive/ID 7 11680.1 -5833.0 0.87 0.349 
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General discussion: 

In this thesis, I investigated the foraging behaviour of individuals from two 

economically and ecologically important eusocial bee species: the European honey 

bee (Apis mellifera) and the buff-tailed bumblebee (Bombus terrestris). I developed 

novel experimental designs that allowed me to analyse individual behaviour of 

foragers in different contexts, from natural environments (chapters 2 and 3), or in 

laboratory conditions (chapter 4, in a free-flying assay, and chapter 5 in a walking 

assay). I found a certain degree of individual variation in the behaviour and 

performance of both honey bee and bumblebee foragers. In this thesis, I have 

explored the factors contributing to this variation. My thesis has recognised the 

importance of considering individual responses to environmental stressors to 

understand the impacts of stressors on bees and their colonies. 

For chapters 2 and 3 of this thesis, I developed a novel and powerful method 

by combining Radio Frequency Identification (RFID) technology with microbalances 

and video recording. This system allowed automated reconstruction of foraging trips 

and an estimation of the foraging efficiency of many individual foragers within a 

given colony. This method enabled me to follow hundreds of individuals for their 

entire foraging life in a natural environment and reconstruct their lifelong contribution 

to the colony. Using this technique, I gathered far more and higher quality data than 

any prior study of individual bee foraging efficiency in either the lab or the wild.  

Prior to this research the most comprehensive analysis of bumblebees was that 

of Peat and Goulson (2005) who studied the effects of experience on bumblebee 

foraging efficiency (Peat & Goulson 2005). Their data set contained data from 473 

individuals from three colonies each followed for two weeks, but each bee only was 

observed for a few hours each day and therefore foraging histories were not complete. 

By contrast my bumblebee studies (chapter 3) included detailed foraging histories of 

99 bees from one colony. Each of these 99 bees was followed for its complete 

foraging lifetime. The most active bee in my dataset completed 983 trips and on 

average I documented 134 complete foraging trips for each bee. 

Prior to this study, ironically there has been less data on individual foraging 

performance for honey bees than bumblebees. Dukas (2008) exhaustively followed 26 

bees and documented changes in their foraging efficiency across their lifespan (Dukas 
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2008). Tenczar et al. (2014) employed an RFID system to monitor individual 

variation in honey bees and followed up to 400 bees per colony for their number of 

foraging trips but with no information about the food collected (Tenczar et al. 2014). 

In a flight cage, they followed 200 bees from two colonies with RFID feeding at 

artificial nectar and pollen feeders, which allowed an estimation of what resource bees 

collected in this simplified environment. By contrast my studies in chapter 2 included 

data from 574 bees that were followed for their complete foraging lifespan including 

the trip efficiency in the natural environment.  

The theme linking chapters 2 to 5 has been an investigation of the causes of 

inter-individual variation in foraging behaviour. Several factors have been shown to 

influence bee foraging performance, which are discussed below and my major 

findings are summarised in Table 1.  

Causes of inter-individual variation in foraging behaviour 

Foraging experience 

Bees gain foraging experience progressively as they complete foraging trips. With 

experience, bees learn about their environment and improve their behaviour 

accordingly. This is particularly true when bees learn the spatial features and 

landmarks surrounding the hive (Giurfa 2013). In chapters 4 and 5, when I looked at 

the behaviour of bumblebees in a spatial task and honey bees in a visual learning test, 

I observed an improvement in performance in successive trials. In chapter 4, bees 

were trained to find the most efficient route between artificial flowers; they sped up 

and made fewer navigation errors with experience. In chapter 5 control and thymol-

treated bees learned to avoid the colour associated with electric shocks, by repeated 

exposure to the colour associated with shock.  

For honey bees, the benefits of experience for task performance were also 

evident in foraging behaviour. I found, in chapter 2, that consistent with existing 

reports (Dukas & Visscher 1994; Dukas 2008), foraging efficiency for nectar 

increased with experience. I showed in chapter 2 that pollen foraging is more likely 

to be performed by more experienced honey bees. Thus, differences in foraging 

efficiency in honey bees were strongly influenced by forager experience.  

By contrast, I did not find any effect of experience on bumblebee foraging 

performance for pollen (chapter 3). But earlier studies have reported that, similar to 
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honey bee foragers, bumblebees increase their nectar foraging collection rate with 

foraging experience (Peat & Goulson 2005; Durisko, Shipp & Dukas 2011). It seems 

likely that if we are able to measure a rate of pollen collection in our study, or a rate 

of nectar collection we may also have detected an experience-dependent improvement 

in performance in bumblebees.  

Age 

Division of labour in honey bees is an age-related phenomenon (Huang & Robinson 

1996). Each individual starts foraging typically around two weeks after eclosion as an 

adult, following a period working inside the hive as a nurse bee (Huang & Robinson 

1996). But variability in age of onset of foraging occurs naturally in most colonies 

(Huang & Robinson 1996). Age of onset of foraging can also heavily be impacted by 

environmental stressors that can induce precocious foraging (reviewed in chapter 1, 

and in appendix 2 Figure 1a, I present data showing miticide treatment can induce a 

precocious foraging onset). Precocious foragers show poor performance in both short 

and long range spatial tasks, and have lower survival rates in the wild (Ushitani et al. 

2015) and have poor olfactory learning and memory (Cabirol 2017) when compared 

to normal age foragers. Precocious foraging can also have dramatic consequences for 

the whole colony as mathematical models of colony dynamics show that a high 

proportion of precocious foragers in the foraging force can contribute to a colony 

collapse as a consequence of reduced forager survival and performance (Perry et al. 

2015).  

I did not find any effect of age of onset of foraging on whether the bees were 

either mixed or only nectar foragers, or elite bees or non-elite bees in either 

bumblebees or honey bees chapter 2 and 3.  In the analyses in this thesis we did not 

attempt to induce precocious foraging by either a social manipulation or applying 

stressors.  For the honey bees (chapter 2 Figure S2A) more than 90% of the bees 

monitored in our sample would not have bee considered as precocious foragers 

(beginning when less than 14 days old (Perry et al. 2015)) and therefore precocious 

foragers were not strongly represented in our samples.  

I did not find any effect of age of the first foraging on bumblebees’ 

performance in the navigation assay (chapter 4). For bumblebees it is far less clear 

whether age at onset of foraging has any impact on foraging performance since in 

bumblebees division of labour is not an age-related phenomenon. In bumblebees 
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division of labour is more strongly based on morphological variation between 

bumblebee workers than age (Goulson 2010). Large bumblebee workers have been 

documented foraging on their first day post eclosion as adults. While honey bees 

show a prolonged period of brain maturation as adults in the hive (Fahrbach et al. 

1998) bumblebees show a more rapid brain maturation (Jones et al. 2013), but the 

development of the bumblebee brain is still sensitive to the social environment. 

Morphology 

Honey bee foragers are considered monomorphic, and I did not find any evidence of 

an influence of weight of the individual on honey bee foraging activity and 

performance (chapters 2, figure S2B). By contrast, bumblebee workers vary in both 

size and weight, and within a colony of Bombus terrestris, some individuals can be 

three times bigger than others (Goulson 2010). In bumblebees size seems to influence 

foraging behaviour as I found that larger foragers performed better at the traplining 

spatial learning task (chapter 4). I also found that bigger foragers were less likely to 

collect pollen (chapter 3). These results are consistent with many studies showing 

that larger individuals are more efficient at foraging for nectar rather than pollen 

(Goulson et al. 2002; Worden, Skemp & Papaj 2005). 

Impact of stressors 

Exposure to different stressors at different stages of development may shape adult 

performance. In chapter 5 I show that chronic exposure to a miticide during larval 

development and during the time adult bees spent inside the hive directly can impact 

honey bee forager’s visual learning. Rearing environment during young adulthood 

also influences honey bee cognitive ability (Cabirol et al. 2017). Honey bees deprived 

of the sensory and social stimuli of the hive environment during the early weeks are 

poor performers at a learning task that relies on the mushroom body, the high-order 

sensory integrative centre in insect brains.  

In this thesis I also demonstrated that when a bee was stressed with a non-

pathogenic stressor that activated the bees immune system during its nurse stage, it is 

less likely to collect pollen when it becomes forager (appendix 1). In the same way, it 

has been reported that parasitized honey bees forage less for pollen (Lach, Kratz & 

Baer 2015). Such reduction of pollen foraging due to environmental stressors has also 
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been observed in bumblebee colonies: bumblebees that are exposed to neonicotinoid 

insecticides collect less pollen (Gill & Raine 2014). 

Contrasting social foraging in honey bees and bumblebees 

Foraging for pollen or nectar 

When comparing the foraging behaviour of honey bees and bumblebees, one 

of the most striking differences was the distribution of mixed foragers (that collected 

pollen and nectar) in the forager population. In my data honey bee colonies contained 

around 27% of mixed foragers (chapter 2) whereas the bumblebee colony contained 

63% of mixed foragers (chapter 3). 

There could be a number of different factors contributing to this difference. 

This observation is in line with theories of specialisation with sociality: larger and 

more specialised societies (such as honey bees) contain more specialised individuals 

than smaller and/or less advanced societies (such as bumblebees) (Anderson & 

McShea 2001; Fewell, Holbrook & Kukuk 2013).  

Demand for carbohydrate relative to protein may be higher in a honey bee 

rather than a bumblebee colony given that honey bees transform nectar into a 

stockpile of honey to survive the winter, whereas bumblebees, as non perennial 

species, store a supply of nectar for a few days only (Goulson, Lye & Darvill 2008).  

Intra-individual variability and inter-individual variability are beneficial for colony 

function 

In an animal society, several individuals can collectively achieve the flexibility 

required for a task that might be too complex to be achieved by a single individual, 

such as colony food regulation (Jeanson, Dussutour & Fourcassié 2012). Further, it 

has been argued that in a society both efficiency and collective task performance can 

be improved if the society contains diverse specialists rather than uniform generalists 

(Robson & Traniello 1999). For instance more genetically diverse honey bee colonies 

have a higher fitness (Mattila & Seeley 2007) and better colony thermoregulation 

(Jones et al. 2004), ants colonies showing a high variability of behavioural types are 

more productive (Modlmeier, Liebmann & Foitzik 2012). Argentine ants show 

individual differences in their exploratory behaviour that enhance the nest hunting 

process (Hui & Pinter-Wollman 2014). Social spider Anelosimus studiosus show 

different consistent degrees of aggressiveness towards their prey (Pruitt & Riechert 



 

! "#'!

2011) that enhance colony productivity. Burns & Dyer (2008) suggest that variability 

of speed-accuracy trade off between individuals would benefit bumblebee societies 

(Burns & Dyer 2008), especially in complex and challenging environments (Muller & 

Chittka 2008). 

Nevertheless, bees rely on their flowering environment for their food supply, 

and this environment is patchily distributed in space and highly unpredictable in time. 

In order to guarantee food stability for the colony, individuals must collectively adjust 

food intake to compensate for changes in the demand, the stock in the colony, and 

supply theorised by collective nutritional ecology concepts (Lihoreau et al., 2014). In 

order to accomplished such a complex task, social insect groups might benefit from 

both inter-individual variation in foraging preferences (Muller & Chittka 2008) as 

well as individual plasticity (or intra-individual variation) for resource preference and 

resource persistence. 

In this thesis, I have shown that honey bee and bumblebee individuals show 

strong individual behavioural consistency as well as a degree of individual plasticity 

in their foraging strategies. 

I observed clear and consistent differences in foraging preferences in 

bumblebees in chapters 3 and 4. Bumblebees that foraged for pollen were constantly 

either high pollen gatherers or low pollen gatherers during their foraging life (chapter 

3). When considering their traplining behaviour, some bumblebees were consistently 

more efficient at traplining than others (chapter 4). These kinds of inter-individual 

differences in route following also have been observed in homing pigeons (Meade, 

Biro & Guilford 2005), hummingbirds (Tello-Ramos, Hurly & Healy 2015) and ants 

(Jayatilaka et al. 2014); different individuals have consistent idiosyncratic route 

preferences.  

 At the individual level, mixed foragers in both species displayed a high 

behavioural plasticity regarding the choice of collected resources. This was seen as 

differences in foraging duration and a specific time of collection for pollen and non-

pollen resources (chapters 2 figure 4 and chapter 3 figure 4A). Honey bees also 

show behavioural plasticity as they leave the colony with different crop quantity 

according to the trip duration and the type of resource they are about to collect 

(chapter 2, figure 5). Such plasticity in foragers towards one or the other resource is 

beneficial for regulating the nutritional needs of the colony.  
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Applying these methods and findings to other social insect societies  

The new RFID technique used in chapters 2 and 3, allowed me to analyse the 

distribution of foraging activity (chapters 2 and 3) and performance (chapter 2) of 

the workers of bumblebee or honey bee colonies. I found that both social bees show a 

skew in the foraging activity distribution, with around 17% of the honey bee foragers 

(chapter 2, figure 3) and 11% of the bumblebee foragers (chapter 3, figure 1) 

performing more than half of the total colony activity. Moreover, I found that the elite 

honey bees were more productive than the non-elite ones (chapter 2, figure 5). Thus, 

this technique is a powerful tool to assess the importance of inter-individual 

variability of foraging activity and efficiency in the collective foraging force of a 

colony.  

Nevertheless, how foraging efficiency is distributed between the workers in 

natural conditions has not yet been studied in detail in other social insect species. So 

far, some studies have explored either foraging activity or drifting behaviour via 

RFID technology in ants (Robinson et al. 2009), wasps (Sumner et al. 2007) or 

stingless bees (Oystaeyen et al. 2013), but none of these studies has reported on 

efficiency as no information on the food collected was provided,  

Similarly, some other studies have documented the degree of inter-individual 

variation in foraging in other social insect species, but such studies often relied on 

controlled or laboratory conditions (e.g. ants: (Gordon et al. 2005; Robinson et al. 

2009)) or focused on inside-colony specific tasks (e.g. ants: (Pinter-Wollman 2011)) 

or just looked at foraging activity but not foraging performance (Beverly et al. 2009). 

Even though these studies found high inter-individual variability in the workers’ 

tasks, so far none of them have been able to analyse extensively the individual 

foraging contribution of workers in natural conditions during their whole foraging 

life, as I reported for bees in chapter 2. Applying the methods developed here to 

other social insect species would then allow us to extend the analysis of the 

consequences of inter-individual variation for colony function to other systems that do 

not share the same ecological niche and/or show different degrees of sociality for a 

much richer comparative analysis.  

The keystone individual concept and bee societies 

 During this thesis, I showed that the high variability in foraging activity results 

in the existence of a subset of high contributors to the foraging force: the elite bees 
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(chapter 2, figure 3 and 3, figure 2). I have shown that elite bees, in honey bee 

colonies, are not only the most active but also the most efficient in food collection and 

therefore are by far the most valuable foragers for the colony. Such high contributors 

to a social group have been coined as keystone individuals. In many other social 

groups (like other insects (Chang & Sih 2013), fish (Cote et al. 2010), or mammals 

(Lusseau & Newman 2004)) keystone individuals are often disproportionately 

important for maintaining group integrity (Modlmeier et al. 2014), or can have a 

strong detrimental effect on a group or a population. For instance in several taxa, 

individuals that both have high disease load and are hubs in a social network 

(superspreaders) can propagate disease would have a strong negative impact on a 

group or a population by spreading quickly diseases (Paull et al. 2012). In the 

majority of the cases, the removal of keystone individuals will have a severe and 

long-lasting impact on the group (be it positive or negative) (Modlmeier et al. 2014).  

Nevertheless, in social insects, it has been argued that highly active 

individuals can be easily replaced by less active ones, thus increasing resiliency of the 

colonies (e.g. ants (Charbonneau, Sasaki & Dornhaus 2017), bumblebees (Jandt et al. 

2012) or honey bees (Tenczar et al. 2014)). Tenczar et al. (2014) argued that if elite 

bees are lost to a colony they can be replaced rapidly by the less active bees that in 

fact serve as a back-up pool. They then argue that this reserve of less active bees to 

replace the most active (and apparently expendable) elite bees increases the resilience 

of the group.  

I disagree with this interpretation. My new data shows that elite honey bees 

are more efficient than less active bees, and that they gained this efficiency through 

extensive individual foraging experience gained over time. Given the active elites are 

also the most efficient, one could expect that their removal will have a greater 

negative impact on the colony nutritional balance than what Tenczar et al. (2014) 

were able to measure. Moreover, Tenczar et al. (2014) argued that replacement of 

elite bees is fast (less than two days in their study), but I demonstrated that foraging 

efficiency requires the workers to gain experience over a successive number of trips. 

Therefore, while the number of foragers might be rapidly replaced the performance of 

the foraging force would not recover as quickly. 

The method developed in this thesis could be used in a removal experiment to 

evaluate the actual impact on the colony of removing more efficient and active 
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foragers that developed their foraging efficiency over days. Such an approach, if 

applied to both bumblebees and honey bees under similar conditions would then 

enable an investigation of how inter-individual variation in performance might 

interact with resiliency in different species. Rundlöf et al. (2015) reported that, in a 

similar context of exposure to neonicotinoid-treated crops, bumblebee colonies 

survival was lower than honey bee colonies (Rundlöf et al. 2015). Does this suggest a 

bumblebee colony has lower intrinsic resilience than a honey bee colony?  

Perspectives 

My work brings some new insights to the sociobiology and behavioural ecology of 

social insects, which has led to several questions of interest.  

Integrating environmental and social conditions in an understanding of foraging 

diversity 

Given the amount of data I collected and its precision at the individual as well as the 

collective level, it may help to build more accurate and sensitive models of both 

honey bee and bumblebee colony dynamics, incorporating both individual behaviour 

and weather conditions.  

Theoretical models have been used to investigate honey bee colony dynamics 

(Khoury, Myerscough & Barron 2011; Khoury, Barron & Myerscough 2013; Becher 

et al. 2013, 2014) without taking into account individual variation. Other models have 

approached the role of inter-individual variation for different aspects of colony 

function (honey bee colony pollen collection (Bertram, Gorelick & Fewell 2003), 

colony response to environmental change (Myerscough & Oldroyd 2004)!or colony 

thermoregulation (Jones et al. 2004)). Finally, some predictive models have been used 

to investigate how insect societies achieve their nutritional balance (Behmer 2009; 

Lihoreau et al. 2015). But so far, those models lack validation against field data. It is 

also important to be able to include inter-individual variability in general models of 

colony growth and social nutritional framework modelling. 

By including inter-individual variation into a model of colony dynamics and 

nutritional regulation, I can potentially create a more powerful predictive model of 

colony functions. My data can give baseline indicators of foraging efficiency and 

foraging variation in natural environments for a simulation of a colony in which one 

can explore the consequences of varying the degree of the skew of the distribution of 
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the foraging force. Another simulation could consider how variation in sensitivity of 

foraging efficiency to individual experience might influence colony growth dynamics. 

Importance of variability for the resilience towards stressors 

I have suggested that individual variation confers resiliency in changing and/or 

stressful environments. To validate such a statement, I first would need to address the 

importance of foraging diversity in stressful environments. Experimentally it would 

be interesting to artificially create less diverse colonies (considering monandrous 

single drone inseminated (SDI) honey bee colonies, or bumblebee colonies with 

artificially-controlled variation in size of the workers), and compare their resilience to 

more diverse colonies. 

Second, it would be interesting to test whether, under stressful conditions, the 

properties of the foraging force are changed. This could be tested quite easily by using 

some experimental stressor (such as the pathogen free stress condition, used in 

appendix 1) and measuring the impact of the stressors on the extent of foraging 

variability and forager performance. Does a stressed colony increase inter-individual 

foraging variation in order to cope with the stress, or is this diversity too costly under 

stressful conditions? Fundamentally, is a colony able to adjust its foraging diversity 

according to the presence of stress, and if so, what is the consequences of such 

plasticity for the superorganism? 

Importance of foraging diversity for pollination services: 

I perceived idiosyncratic variation in the foraging behaviour of different individuals 

that could potentially impact pollination outcomes. In the field, the patchiness, 

incompleteness or idiosyncrasy in pollination are still puzzling growers and 

pollination biologists (Cunningham et al. 2016).  

My data have highlighted how floral visits in a local area might be dominated 

by a relatively small number of individuals (chapter 2 and 3) each with idiosyncratic 

floral preferences, schedules and behaviour. In chapter 4 I showed how different 

individuals adopted and stuck to idiosyncratic foraging paths. In bumblebees, only a 

handful of foragers forage for the colony in a given period of time. It is then important 

to consider what plants that particular individuals will forage on, as they will be the 

main pollinating agents in the system. I also recognise the variation of navigation 

skills in bumblebee foragers that can have different impacts on plant-pollination 
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ecology (Pasquaretta et al. 2017). Thus, by analysing the individual foraging 

dynamics of the two most commercially important pollinating bees we can better 

address recommendations for crop management (Klein et al. 2007).  

 

In conclusion, this thesis provides a better understanding of the sociobiology 

of two common social insect species. This work also, by exploring the diversity of 

foraging behaviour of economically important pollinators, provides knowledge that 

we can use to mitigate threats to pollinators and therefore protect global food security. 
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Individual level 

Foraging perform
ance 

increase w
ith experience 

H
oney bees foragers are m

ore active and collect m
ore nectar and pollen w

ith experience (C
hap. 2) 

B
um

blebee foragers are better at traplining w
ith experience (C

hap. 4) 

N
on-treated and thym

ol treated honey bees are better at associate colour w
ith shock w

ith experience (C
hap. 5) 

Environm
ental stressors 

affect bee cognition 

Environm
ental stressors can directly affect brain functions involved in different bee cognition skills (C

hap. 1) 

M
iticide tau-fluvalinate im

pairs visual learning (C
hap. 5) 

Im
m

une-challenged honey bee foragers show
 changes in biogenic am

ines concentration in their central brain (A
ppendix 1) 

Environm
ental stressors 

affect 
bee 

foraging 

behaviour 

Environm
ental stressors can affect bee hom

ing behaviour and navigation (C
hap. 1) 

Im
m

une-challenged honey bee foragers collect less pollen than non stressed bees (A
ppendix 1) 

H
igh inter-individual 

variability in foraging 

behaviour 

Som
e honey bee foragers collect pollen and non-pollen resources w

hereas other collect only non-pollen (C
hap. 2) 

Som
e honey bee foragers collect pollen and non-pollen resources w

hereas other collect only non-pollen (C
hap. 3) 

Som
e honey bees are m

ore active and m
ore efficient than others (C

hap. 2) 

Som
e bum

blebees are m
ore active than other (C

hap. 3) 

Som
e bum

blebees foragers are better at traplining than other (C
hap. 4) 

B
ehavioural plasticity 

H
oney bees take m

ore tim
e for pollen foraging, they also adapt their w

eight on departure according to the resource collected 

(C
hap. 2) 

B
um

blebees take m
ore tim

e for pollen foraging and forage m
ore for pollen in the afternoon (C

hap. 3) 

D
ifference in 

m
orphology 

B
igger bum

blebees are better at traplining (C
hap. 4)   

Slightly bigger bum
blebees forage less for pollen (C

hap. 3) 
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Collective level 

C
olony nutritive balance 

in supported by a sm
all 

subset of foragers 

A
 few

 individuals (elite bees) perform
ed m

ore trips in honey bees. They are also m
ore efficient and collect m

ore pollen 

(C
hap. 2) 

A
 few

 individuals (elite bees) perform
ed m

ore trips in bum
blebees. (C

hap. 3) 

N
o clear sub-caste of 

active and efficient 

foragers 

Elite honey bees do not differ in w
eight or in age of onset of foraging (C

hap. 2) 

Elite bum
blebees do not differ in body size from

 the rest of the foragers (C
hap. 3) 

Foraging variability is a 

point of vulnerability for 

the colony  

Foragers are key elem
ents in colony structure, if they are im

paired by stressors the colony can collapse, according to m
odels 

(C
hap. 1) 

If the sm
all subset of m

ixed foragers is hit by stressors, the w
hole colony can be im

pacted (C
hap. 2) 

Stressed bee collect less pollen (A
ppendix 1)  

If the elite bum
blebees are hit by stressors, the w

hole colony can be im
pacted (C

hap. 3) 

Inter-individual 

variability can be 

beneficial for the colony 

B
um

blebee colony show
 equal proportion of foragers w

ith different navigation skills that can be useful in a changing 

environm
ent (C

hap. 4) 

T
able 1: Table sum

m
arizing the different results as they appear in the thesis. The different chapters approached transversal questions on both 

individual and collective levels. This sum
-up also highlights the differences and the com

m
on features betw

een honey bees and bum
blebee 

colonies. 
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SHORT COMMUNICATION

Stress decreases pollen foraging performance in honeybees
Célia Bordier1, Simon Klein2,3, Yves Le Conte1, Andrew B. Barron3,* and Cédric Alaux1,*,‡

ABSTRACT
Foraging in honeybees is energetically demanding. Here, we
examined whether stressors, which generally increase metabolic
demands, can impair foraging performance. A controlled non-
pathogenic stressor (immune challenge) resulted in a change in the
foraging preferences of bees. It reduced pollen foraging and
increased the duration of trips in pollen foragers. Stress also
reduced the amount of octopamine in the brain of pollen foragers (a
biogenic amine involved in the regulation of foraging and flight
behaviour in insects). According to the literature, flight metabolic rate
is higher during pollen foraging than during nectar foraging, and
nectar gives a higher energetic return relative to the foraging effort
when compared with pollen. We thus propose that stress might be
particularly detrimental to the performance of pollen foragers, and
stressed bees prefer the energy-rich resource of nectar. In
conclusion, stress, even at low levels, could have consequences for
bee foraging behaviour and thereby the nutritional balance of the
colony.

KEY WORDS: Immune challenge, Flight, Biogenic amine, Radio-
frequency identification device

INTRODUCTION
For honeybees, which are central-place foragers relying on pollen
and nectar from flowers, foraging behaviour places demands on
both cognitive capacity (Klein et al., 2017) and metabolic capacity:
indeed, insect flight is known to be among the most intense and
energy-demanding physiological processes in the animal kingdom
(Dudley, 2000). The metabolic rates of flying insects, mainly
fuelled by carbohydrates, can be up to 170 times higher than those
of resting individuals (Bartholomew and Casey, 1978). As a
consequence, it is expected that environmental stressors (e.g.
parasites and temperature changes), which often impose increased
metabolic demands (Bordier et al., 2017a; Johnson and White,
2009), could compromise foraging performance. Deciphering how
stress impacts honeybee foraging performance might therefore help
us better understand the mechanisms underlying colony decline and
failure, which continues to be an issue of widespread concern
(Goulson et al., 2015; Potts et al., 2010).
Stressors may directly limit bees’ energetic reserves and thus

reduce foraging performance. Indeed, there are several reports of a
reduction of global flight activity in parasitized bees due to energy

depletion (Kralj and Fuchs, 2010; Alaux et al., 2014; Naug, 2014;
Wolf et al., 2014). Stressors may also affect forager decision-
making processes as a consequence of the energetic challenges of
the stressor, in which case bees may show a preference for
carbohydrate-rich resources to supply their own energy needs. The
finding that the gene coding for the pheromone biosynthesis-
activating neuropeptide, a neuropeptide known to be present at
higher levels in nectar foragers than in pollen foragers (Brockmann
et al., 2009), is over-expressed in parasitized bees (McDonnell et al.,
2013) provides some indirect support for this hypothesis. Stress can
decrease sucrose responsiveness (Pankiw and Page, 2003), which is
lower in nectar foragers than in pollen foragers (Pankiw and Page,
2000), suggesting that stress might cause a change in foraging
preference. In addition, it has been shown that parasitized bees are
less likely to forage for pollen (Lach et al., 2015). Together, these
findings suggest that stressed bees may favour nectar over pollen
foraging. This could have consequences for the nutritional balance
and development of the colony, as the majority of larva protein
intake indirectly comes from pollen supply (Brodschneider and
Crailsheim, 2010; Pernal and Currie, 2000). Moreover, pollen
nutrition promotes immunocompetence and parasitism tolerance of
adult bees (Alaux et al., 2010; Di Pasquale et al., 2013).

To test the hypothesis that stress can induce a change in foraging
performance, without any potential effects of parasite manipulation
of host metabolism (Adamo, 2012; Biron and Loxdale, 2013), we
exposed bees to a non-pathogenic immune challenge. Immune
responses are energetically costly, and even simple responses, like
encapsulation, can raise metabolic rate by up to 28% in insects
(Ardia et al., 2012; Freitak et al., 2003). We then tracked their
foraging behaviour throughout their life with a radio-frequency
identification device (RFID), and a camera at the colony entrance to
identify whether they carried pollen loads. Finally, we assessed the
influence of stress on brain biogenic amine levels, which are known
to be involved in the regulation of bee behaviour (Schulz and
Robinson, 2001; Schulz et al., 2002).

MATERIALS AND METHODS
Experiments were performed from January to April 2016 with
honeybees (Apis mellifera Linnaeus 1758) obtained from the
research apiary at Macquarie University (Sydney, NSW, Australia).
We tested the influence of stress on foraging behaviour (experiment 1)
and brain biogenic amine signalling (experiment 2). Frames
containing late-stage pupae were collected from three donor
colonies and placed into an incubator overnight at 34°C. Newly
emerged bees were marked on the thorax with either a RFID tag for
experiment 1 or a paint mark for the experiment 2, and released into
host colonies. They were then re-captured when 7 days old and
placed in plastic cages with ad libitum sugar solution (50% w/v).
Half of the bees were given an immune challenge, which consisted
of piercing the cuticle between the third and the fourth tergites of the
abdomen using a 0.15 mm needle. If a haemolymph drop was
released after the pin prick, the bee was discarded. Previous studies
have shown that the bee’s immune system is activated by thisReceived 2 October 2017; Accepted 2 January 2018
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wounding alone, without pathogen infection (Alaux et al., 2014;
Evans et al., 2006; Siede et al., 2012). Control bees did not receive
any pin prick. Handled bees (control and immune challenged) were
given an additional paint mark on the abdomen to identify them by
their treatment group before they were released back into their
colony. This procedure was repeated three times with different bees.

Experiment 1: impact of immune challenge on foraging
performance
Following the stress treatment at 7 days, 380 control and 370
stressed bees in total (n=3 trials) were released into a small nucleus
hive equipped with a modified entrance. Bees had to use a specific
path to exit the hive and another one to enter the hive. Each path was
made of transparent 1 cm diameter plastic tubing (Bunnings,
Gordon, NSW, Australia). To avoid bees using the wrong path, a
plastic gate with plastic bristles, which bees could use in only one
direction, was placed at the end of each path. The traffic of bees was
also regulated using infrared-activated gates placed at the beginning
of each path (Arduino Technology, Arduino, Adafruit and Little
Bird Electronics, Hornsby, NSW, Australia). Each time a bee broke
the infrared beam, the linked gates were closed behind the bee for
10 s, which was the time needed for bees to cross the path and RFID
system. Each path was equipped with a RFID reader (Invengo,
Guangzhou, China; Perry et al., 2015; Søvik et al., 2015) to monitor
each of the entrance and exit channels. Each RFID tag (diameter
4 mm, mass 1 mg) had a unique digital identifier read by the
antennae at the entrance and exit. The entrance path was also
equipped with a digital video camera (Logitech, Lausanne,
Switzerland) and a white LED light enclosed in a plastic box.
Motion detection video recording software (ZoneTriger, Omega
Unfold Inc., Montreal, QC, Canada) was used to visually identify
whether bees carried pollen or not.
Experiments continued until the last recording of the last bee, i.e.

55 days. RFID data, i.e. bee ID, direction (entry into or exit from the
hive) and time (day, hours, minutes and seconds), were recorded in
.csv files. From these data, we were able to reconstruct trips outside
the hive for each bee. RFID readingswere timematchedwith readings
from the camera, and videos taken from 10 s before RFID detection
were inspected to identify the resource for the returning bees (pollen
or not pollen).Only data for beeswith anRFID tag and paintmarks on
their abdomen were analysed. Trips shorter than 30 s were not
considered as foraging flights andwere excluded from the study.As in
Perry et al. (2015), trips longer than 8 h were also removed.
Of the 380 control and 370 immune-challenged bees, a completed

foraging flight was recorded at least once from 96 and 74 bees,
respectively. This loss of bees could be due to the loss of tag prior to
leaving the hive, ejection from the colony by nestmates or death of the
bee during its first flight. In total, 979 flights identified as pollen
(n=154) or non-pollen (which can be nectar, water or an empty crop;
n=825) foraging flights were recorded. The number of foraging
flights appeared to be relatively low for a total of 170 bees, but was
probably explained by the fact that the experimental device contained
only one entry and one exit path (one bee at a time could use the path),
and that many bees completed a very low number of flights (median,
first and third quartiles: 4, 2, 8 foraging trips per bee, respectively). A
maximum of 83 completed foraging trips per bee was recorded and
20 bees completed more than 20 trips.

Experiment 2: impact of immune challenge on brain biogenic
amine levels
After the stress treatment on day 7, 637 control and 695 immune-
challenged bees in total were introduced into a normal Langstroth

colony (n=3 trials). Bees returning to the colony when they were
between 24 and 28 days old were sampled and immediately flash-
frozen in liquid nitrogen. Whether they carried pollen or not was
also noted. Frozen heads were freeze-dried for 60 min at a pressure
below 300 mTorr (∼40 Pa; VirTis BenchtopTM) and −35°C and
then stored at −80°C until brain dissection and biogenic amine
analysis. Brain dissections (including optic lobes, antennal lobes,
the central brain and gnathal ganglion) were performed on dry ice.

Brain biogenic amine (octopamine, OA; dopamine, DA;
tyramine, TYR; and serotonin, 5-HT) levels were measured using
high-pressure liquid chromatography (HPLC) following the
protocol described by Søvik et al. (2013) and also used later
(Scheiner et al., 2014; Søvik et al., 2015). Briefly, the HPLC system
was composed of a pump and an autosampler (Agilent 1200 Series,
Agilent Technologies, Santa Clara, CA, USA), coupled to an
electrochemical detector (ESA Coulochem III, Chelmsford, MA,
USA) connected to an analytical cell (ESA 3011A). A 100 mm
Hypersil BDS octadecylsilane column was used to separate samples
(ThermoFisher Scientific, Waltham, MA, USA). Signals were
integrated using ChemStation software (Agilent Technologies) with
reference to a standard curve obtained from perchloric acid solutions
containing 10 pg µl−1 of dihydroxybenzylamine and varying
amounts of OA, DA, TYR and 5-HT (Sigma-Aldrich).

In total, we obtained information on brain levels of biogenic
amines for 94 control bees (32with pollen and 62without pollen) and
50 immune-challenged bees (12 with pollen and 38 without pollen).
TYR was detected in only 14% of brains, and thus was not analysed.

Statistical analysis
All statistics were performed using the statistical software R version
3.2.1 (http://www.R-project.org/). For experiment 1, the last day any
individual bee was detected using RFID was assumed to mark the
date of bee death. We then compared the probability of survival
between stressed and control bees using the Kaplan–Meier test
(‘surfit’ function of the survival package in R) (Therneau and
Lumley, 2014).

Aspects of the foraging performance of bees were analysed using
mixed models. The choice of best-fit model was based on the
smaller sample size-corrected Akaike’s information criterion
(AICc) (Burnham and Anderson, 2004). Variation in total number
of completed foraging flights per bee, the collected resource (pollen
or not pollen) and foraging trip duration were each analysed using
different mixed models and fitted with a Poisson, binomial and
Gaussian distribution, respectively (based on the distributions of our
experimental data). To analyse the number of trips and the collected
resource, the treatment (immune challenged or control) and trial
were set as fixed and random explanatory variables, respectively. To
analyse foraging trip duration, collected resource and honeybee
identification were added as fixed and random explanatory
variables, respectively.

The normality and the homoscedasticity of brain biogenic amine
levels were such that parametric analyses were appropriate for these
data. Biogenic amine amounts were analysed using a repeated
measures ANOVA followed by Tukey’s post hoc comparison.
Treatment and the resource collected (pollen or not pollen) were
analysed as fixed factors, while trial was analysed as a random factor.

RESULTS AND DISCUSSION
Experiment 1: impact of immune challenge on survival and
foraging performance
Survival probability did not differ between the control and immune-
challenged groups (Kaplan–Meier test, P=0.42; Fig. 1A).
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The best-fit model explaining the variability in the number of
trips per bee (lowest AICc) included a significant effect of treatment
(Table 1). Immune-challenged bees completed slightly more flights
than control bees [mean predicted values with 95% confidence
interval: 6.46 (6.12–6.80) versus 5.22 (4.95–5.49), respectively].
A significant switch in foraging preference was detected, with

immune-challenged bees performing 1.9 times fewer pollen
foraging trips [9.14% (8.32%–9.96%)] than control bees [17.56%
(16.20%–18.91%); Fig. 1B and Table 1].
Considering foraging trip duration, the best-fit model included a

significant interaction between treatment (immune challenged or
control) and the collected resource (pollen or not pollen) (Table 1).
Pollen foraging trips were longer than non-pollen foraging trips
(Fig. 1C), but trip duration for each collected resource also varied
with treatment. Immune-challenged bees performed slightly shorter
non-pollen foraging trips than control bees (Fig. 1C), but when
foraging for pollen, immune-challenged bees performed 30%
longer trips than control bees (Table 1).

Experiment 2: impact of immune challenge on brain biogenic
amine levels
Brain DA and 5-HT levels did not differ significantly between
treatment groups (ANOVA: P=0.67 and P=0.14, respectively) or
the collected resource (ANOVA: P=0.75 and P=0.27, respectively;
Fig. 2A,B). However, we found a significant treatment×resource

interaction for brain OA levels (ANOVA: P=0.02; Fig. 2C). No
difference in brain OA levels was found in non-pollen foraging bees
(Tukey’s post hoc tests: P=1); however, when sampled on return to
the hive carrying pollen, immune-challenged bees had significantly
less OA in the brain than control bees (∼27% less, Tukey’s post hoc
tests: P=0.032; Fig. 2C).

Experimental findings
In this study, we have provided experimental evidence for a stress-
induced decrease in pollen-foraging performance in honeybees. The
non-pathogenic immune challenge stress applied did not affect bee
survival, as has been found previously (Alaux et al., 2014), but did
induce a shift in resource collection. An increase in non-pollen
foragers (water foragers, nectar foragers and/or bees with empty
crops) was observed at the expense of pollen foragers. As more than
90% of non-pollen foragers are nectar foragers and bees with empty
crops (Bordier et al., 2017b) and these bees have lower sucrose
responsiveness than pollen foragers (Pankiw and Page, 2003), we
could reasonably assume that stress decreased bee sucrose
responsiveness. Stressed bees may prefer to forage for resources
that are rich in carbohydrates to overcome the energetic cost of the
stress, as has been observed with parasitism of honeybees (Lach
et al., 2015). Indeed, compared with pollen, nectar gives a higher
energetic return relative to the foraging effort (8:1 gain with pollen
versus 10:1 gain with nectar; Winston, 1987). Similarly,
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Fig. 1. Survival probability and foraging trip characteristics according to treatment. (A) Survival over 49 days for control bees and immune-challenged
bees. Day 0 was the day of stress exposure. Bees from the two treatment groups did not differ in survival probability (Kaplan–Meier test, P=0.42). (B) Percentage
of pollen and non-pollen foraging trips. (C) Foraging trip duration. For B and C, the mean and 95% confidence intervals predicted by the model (Table 1) are
shown according to the collected resource and the treatment: control (n=100 pollen and 401 non-pollen foraging trips) and immune challenge (n=54 pollen and
424 non-pollen foraging trips). Immune-challenged bees performed fewer but longer pollen foraging trips than control bees.

Table 1. Summary of best-fit mixed models to analyse the impact of immune challenge on foraging behaviour

Explanatory variables

Dependent variable Fixed Random No. of statistical units d.f. AICc

No. of foraging trips Treatment Trial 170 bees from 3 trials 3 1594.7
Null 2 1606.1

Foraging trip duration Treatment×resource Trial/bee 979 observations of 170 bees from 3 trials 6 9120.3
Treatment+resource 5 9129.0
Treatment 4 9148.3
Resource 4 9130.9
Null 3 9150.2

Foraging preference Treatment Trial 170 bees from 3 trials 3 379.2
Null 2 391.3

Three models were fitted to analyse the number of foraging trips, foraging trip duration and foraging preference (pollen or not pollen). Only summaries of the best-
fit models are shown. For each model, fixed and random explanatory variables, the number of statistical units, degrees of freedom (d.f.) and corrected Akaike’s
information criterion (AICc) are detailed. For each dependent variable, the selected model, i.e. the one with the lowest AICc, is indicated in bold.
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bumblebees exposed to pesticides were found to exhibit lower
pollen foraging performance (Feltham et al., 2014; Gill and Raine,
2014).
Such changes in foraging decision making could cause a

nutritional imbalance with a pollen deficit at the colony level, and
thereby affect colony development. Indeed, pollen shortage may
have detrimental effects on brood care, resulting in undernourished
larvae (Blaschon et al., 1999) and emerging adults with behavioural
deficiencies (Scofield and Mattila, 2015). Moreover, pollen
nutrition during the adult stage is essential for stress tolerance
(DeGrandi-Hoffman et al., 2010; Di Pasquale et al., 2013; Wahl and
Ulm, 1983). Finally, under extreme pollen shortage, nurse bees may
reduce the number of larvae that need to be fed, and cannibalize
eggs and young larvae (Schmickl and Crailsheim, 2001).
Pollen foraging trips were also 30% longer for immune-

challenged bees, suggesting a significant effect of the stressor on
foraging capacity. It has been found that the thorax temperature
differs between different classes of foragers, in the order
pollen>nectar>water foragers (Feuerbacher et al., 2003). These
differences were linked to flight metabolic rate, with pollen foragers
exhibiting a 10% higher hovering metabolic rate than nectar
foragers, regardless of their loads (Feuerbacher et al., 2003). The
authors suggested that pollen foragers require more power output to
generate the same vertical lift as nectar foragers. We therefore
propose that immune-challenged bees spend more time on pollen-
collecting trips because it is the most energetically demanding
resource to collect (Feuerbacher et al., 2003) and the stressor
probably decreases the energy budget of the bees. The increase in
foraging trip duration may simply reflect more time resting rather
than any other changes in flight characteristics (e.g. distance, speed,
etc.) (Wolf et al., 2014). It is also possible that a lower energy budget
induced by the stressor caused cognitive impairment in pollen
foragers and thus affected their navigation capacities (Jaumann
et al., 2013), lengthening their trip times.
Finally, we found that brain OA level was depressed in immune-

challenged pollen foragers. OA is known to increase sucrose
responsiveness in bees (Scheiner et al., 2002) and stimulate flight
activity (Fussnecker et al., 2006), and therefore the drop in OA level
is in accordance with the behavioural changes observed in pollen
foragers after stress exposure. A previous study reported a rapid
decrease in OA and DA but not 5-HT levels in response to stress
exposure (chilling anaesthesia and vertical spin; Chen et al., 2008).

We did not find variation in DA levels after our stress exposure.
However, to conclude on the nature of the causal role of biogenic
amines in honeybee stress responses, functional studies involving
manipulation of OA, DA and 5-HT signalling would be required.

Conclusion
Our study suggests that the highly energy-demanding foraging
activity of pollen foragers makes them susceptible to stress, even at
low levels, which could potentially affect the colony nutrient
balance (pollen versus nectar). Therefore, future studies on whether
stress narrows the colony foraging flexibility in response to
environmental changes might help us to better understand colony
decline.
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Appendix 2: Impact of miticide treatments on honeybee foraging 
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Review
Why Bees Are So Vulnerable
to Environmental Stressors
Simon Klein,1,2,3 Amélie Cabirol,1,2,3 Jean-Marc Devaud,1

Andrew B. Barron,2 and Mathieu Lihoreau1,*

Bee populations are declining in the industrialized world, raising concerns for
the sustainable pollination of crops. Pesticides, pollutants, parasites, diseases,
and malnutrition have all been linked to this problem. We consider here neuro-
biological, ecological, and evolutionary reasons why bees are particularly
vulnerable to these environmental stressors. Central-place foraging on flowers
demands advanced capacities of learning, memory, and navigation. However,
even at low intensity levels, many stressors damage the bee brain, disrupting
key cognitive functions needed for effective foraging, with dramatic conse-
quences for brood development and colony survival. We discuss how under-
standing the relationships between the actions of stressors on the nervous
system, individual cognitive impairments, and colony decline can inform con-
structive interventions to sustain bee populations.

Bees Are Exposed to Multiple Environmental Stressors
Bees are ecologically and economically vital pollinators for both wild and cultivated flowers.
Presently many populations are in decline [1–4], while demand for pollination [285_TD$DIFF]-dependent
crops continues to rise, generating understandable alarm and debate about the possibility of
an emerging ‘pollination crisis’ [5]. Many causal factors have been identified, including a
range of pathogens and parasites [6,7], human-induced stressors such as pesticides [8–10],
and other forms of environmental degradation [11]. Very few of these stressors can be
considered new, but many have increased in intensity over the past decade in much of the
industrialized world. Our objective in this review is to consider why bees are particularly
sensitive to these environmental stressors, even at low levels, and why their populations are
now declining.

Bees, with the exception of parasitic species, raise their brood in a single defensible nest [12].
We argue that, in these insects, central-place foraging on ephemeral, dispersed, and highly
variable floral resources places particularly heavy demands on cognitive capacities. Individuals
must learn to forage at an energetic profit, locate high-quality feeding sites, efficiently handle
flowers, and navigate back to the nest to provision their brood with the right mix of nectar and
pollen. The cognitive capacities underpinning these complex behaviors require optimal devel-
opment and function of central brain structures as well as precisely regulated plasticity of brain
circuits necessary for learning, memory, and navigation [13,14]. These brain systems are very
easily disrupted, and it is especially problematic that many pesticides found in floral resources
directly target key neural pathways [15,16]. Pathogens and nutritional deficits also compromise
cognitive functions [17,18]. Even mild damage to the brain can significantly reduce foraging
performance, thus rendering bees especially vulnerable to these environmental stressors. In
social species, such as honey bees, bumblebees, and stingless bees, efficient division of labor
and coordination of tasks across nest mates provide buffering against environmental stressors
because individuals share a fortress-factory stocked with stored resources [19]. However, this
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buffering capacity has limits which can be exhausted by frequent stressors. Once this occurs
the result is a catastrophic colony decline [20–22].

We develop here a neurobiological, ecological and evolutionary thesis to explain why central-
place foraging bees are particularly sensitive to environmental stressors. First we describe the
complex cognitive challenges that bees face when foraging, and the neural substrates sup-
porting these abilities. Next we review evidence that these essential cognitive abilities are
impaired by a range of stressors, ultimately threatening brood development as well as colony
function and survival. Finally, we discuss how understanding the mechanisms of action of the
different stressors and their consequences for individuals and colonies can help to better
manage and protect these vital pollinators.

Central-Place Foraging on Flowers Imposes Significant Cognitive
Challenges
Bees must gather large volumes of highly dispersed pollen and nectar, and return with [286_TD$DIFF]them to
the nest to feed their brood [12]. Accordingly, these insects have evolved excellent memory and
navigation skills enabling them to exploit complex and variable foraging environments, and
more than a century of research has identified the underlying neural circuits [13,14]. Although
most studies have focused on a few economically important social species, such as honey
bees and bumblebees, solitary bees appear to show similar behaviors [12], cognitive capacities
[23], and overall brain organization [24]. In the bee brain (Figure 1), visual and olfactory stimuli
are first processed by their respective sensory lobes ([25,26] for detailed reviews), which then
convey information to multisensory integration centers, such as the mushroom bodies (MBs)
and the central complex (CX), that are specialized for learning, memory, and spatial navigation
tasks, as we describe below.

Learning To Recognize Flowers
Despite a large variety of available floral species, individual bees tend to forage on the same
flower type as long as it provides sufficient nectar or pollen [27]. This floral constancy
demonstrates the abilities of bees to learn the association between food rewards and
particular floral cues (odor, color, shape, temperature etc.) [28]. In many cases, bees learn
[287_TD$DIFF]morecomplex associations by generalizing specific floral cues to learn conceptual features
common to a range of flowers from the same species [13]. The amount of reward offered by
flowers can change very rapidly, and bees can update their learned flower preferences
accordingly [29,30]. Bees can also use combinations of floral and social cues, including
the presence of conspecifics or other bee species on flowers, to locate and learn rewarding
flowers [31].

Many of these mechanisms of learning and memory have been examined in details using
experimental approaches (Box 1). For instance, the acquisition of associative memories
linking floral cues with food rewards relies on changes in neural activity induced by locally
coincident activity in the neural networks that process such cues and in those signaling food
detection [32]. Plastic changes in connectivity in either the antennal lobes (ALs) or the MBs
(Figure 1) can support associative learning about odorants, and both structures modify their
activity following learning [26]. In particular, the MBs are required for some complex forms of
olfactory learning as well as for the formation of olfactory long-term memory [33,34]. Although
less is known about visual learning, there is visual input from optic lobes (OLs) to the MBs
(Figure 1), and it is increasingly likely that associative learning of visual features and colors also
involves the MBs [35]. Memorizing simple odor–food associations involves excitatory signal-
ing through acetylcholine in the ALs and MBs (Figure 1) [13], a neurotransmitter system
specifically targeted by many common pesticides such as neonicotinoids and organophos-
phate miticides [15].
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Orienting, Navigating, and Learning Places
Bees use multiple different sources of information to orient [35]. Path integration requires
storing of information about distances and directions traveled during the outward journey to be
able to plot a direct return path to the nest [36]. Distance is estimated from optic flow [37], which
is the movement of the image of the environment across the eye during flight. Direction is
determined using the position of the bee relative to the sun [38] and/or the pattern of polarized
light in blue sky [39]. Bees possess specialized mechanisms to compensate for the apparent
movement of the sun (and the polarization pattern it generates) across the sky during the day
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Figure 1. Brain Structures Supporting the Cognitive Capacities Needed for Foraging and How They Are Affected by Stressors. Schematic frontal view of a bee brain.
Sensory information from the environment is first processed in specialized brain structures. The antennal lobes (AL) process olfactory information. The lamina (LA),
medulla (ME) and lobula (LO), as part of the optic lobes, process visual information. The gnathal ganglion (GNG) receives gustatory information, and is sensitive to sugar.
Sensory signals are then conveyed to higher-order centers (arrows). The mushroom bodies (MB) are involved in stimulus classification (odor, color) and in complex
associative learning and memory. They receive information directly from the sensory centers or indirectly through the lateral protocerebrum (LP) and the protocerebrum
(P). The central complex (CX) receives processed visual input through the structures of the protocerebrum, including the anterior optic tubercle (aOTU) and bulbs. The
central complex locates the bee in space using celestial information and visual landmarks, and is crucial for orientation and navigation. Environmental stressors (orange
boxes) alter the functions of various systems in the brain, and can alter the neural pathways supporting learning (purple arrows) and navigational capacities (green
arrows). [279_TD$DIFF]Broken orange lines indicate the impacts of stressors that have not been directly demonstrated for bees, but can be inferred from behavioral observations or
have been observed in other insects.

Box 1. Studying the Mechanisms of Learning and Memory in Bees
Experimental work addressing the fine-scale neural and behavioral bases of cognitive capacities in bees has relied
primarily on Pavlovian conditioning in which an individual is trained to associate an initially neutral stimulus (the
conditioned stimulus, CS) with an unconditioned stimulus (US) that elicits an innate response [13,14]. Learning the
CS–US association leads the animal to respond to the CS. Historically, the dominant paradigm has been the appetitive
conditioning (using a sugar solution as the US) of the proboscis (tongue) extension reflex (PER) using a restrained bee
(Figure IA) [32], although aversive paradigms also exist [92]. This method allows study of elemental associations
between two prescribed events, and also non-elemental associations (when individuals respond in an adaptive manner
to novel stimuli using learned information in a new context). In recent years considerable progress has been made by
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combining PER conditioning with pharmacological treatments, electrophysiological recordings, and brain functional
imaging to unravel mechanisms of learning and memory, especially for olfactory learning [33].

So far, attempts at associative conditioning of visual CS in PER conditioning with restrained bees have yielded low
performance levels [93]. By contrast, impressive visual learning capacities have been described using free-flight assays
in which bees obtain a sugar reward if they make a correct choice when learning to navigate in amaze (Figure IB) [94,95]
or foraging in arrays of artificial flowers (Figure IC) [30,31,51,77]. Automated tracking systems such as harmonic radars
(Figure ID) [53,67,80,81], radio-frequency identification (RFID) (Figure IE) [9,10,21,55,68], and computer vision [96] allow
precise quantification of behavioral data in laboratory or semi-field conditions. These approaches have revealed the
cognitive abilities of bees in learning complex visual features and relational properties between stimuli [13]. New
developments in virtual-reality assays, in which tethered bees walk on a locomotion compensator (Figure IF) [97] or fly
[98] to make foraging decisions in response to stimuli displayed on a screen, hold considerable promise to explore the
neural mechanisms of visual learning and navigation.

(A) (B) 

(C) (D) 

(F) (E) 

Figure I. Methods for Studying Bee Learning and Memory. (A) Restrained honey bee showing proboscis
extension reflex (PER) (C. Fresillon/CNRS). (B) Free-flying honey bee in a flight tunnel covered with visual patterns
generating optic flow (F. Vrignaud/DGA) [95]. (C) Bumblebee foraging on an artificial flower (M. Lihoreau). (D) (Left)
Bumblebee with a radar transponder in the field (J.L. Woodgate); (Right) harmonic radar (J.C. Makinson). (E) Bumblebee
with an RFID tag in the field (S. Klein). (F) Tethered honey bee walking on a locomotion compensator in a controlled visual
environment displayed onto LED panels (G.J. Taylor) [97].
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[40]. Bees are also sensitive to other global sources of navigational information, such as fine
magnetic field variations, and can learn to relate them to local landmarks such that they can still
navigate when celestial cues are blocked by cloud [41].

Bees can also learn locations by memorizing visual scenes. They use these stored ‘snapshots’
for navigation by positional image-matching [36], which compares their current view of the
environment with a visual memory of the goal. The degree of matching provides a cue for
guidance [42]. Bees form snapshot memories of the nest surroundings on their first foraging
attempts outside the nest, and also of the location of food sources [43]. For visual matching,
individuals use salient objects (flower patches, trees, buildings), which can be either local cues
or panoramic landmarks [36]. Honey bees can also perform optic flow matching, using the
direction of optic flow caused by major landmarks as a navigational cue [44]. Processing
information on optic flow and landmarks while flying demands integrating visual and proprio-
ceptive input with a temporal component. Responses to motion stimuli and color are displayed
by neurons connecting the OLs to central areas, the lateral protocerebrum (LP) and the MBs
[45] (Figure 1), and some of these neurons are involved in visual landmark detection [46].

The functions of the central complex (CX) (Figure 1) are presently poorly understood, but
data from other insect species suggest that it is crucial for navigation [35]. In addition to
being a likely substrate for a sky compass [38], the CX could also support visual short-term
(working) memory and spatial memory [47]. A recent study using a virtual-reality assay
(Box 1) in Drosophila showed that activity of the ellipsoid body neurons of the CX repre-
sented the orientation of the fly relative to visual landmarks [48]. Thus it is increasingly likely
that neural activity in the CX contributes to internal representation of position for path
integration [48].

Learning Foraging Circuits
Bees can use their spatial memories dynamically to establish and optimize foraging routes. In
nature, foragers must sometimes visit hundreds of patchily distributed flowers to collect
sufficient nectar and pollen in a single trip [27], and many species revisit familiar patches over
consecutive hours or days in stable sequences called ‘traplines’ [49]. Recordings of bumblebee
flight paths using harmonic radar (Box 1) show that foragers attempt to minimize the overall
travel distances between discovered flower patches, a complex optimization task akin to the
Traveling Salesman problem [50]. On each new foraging trip, bees try different visitation
sequences, ultimately finding (or approximating to) the shortest possible path to visit all patches
once, starting and ending at the nest [51]. Route optimization is an iterative improvement
process based on learning and memory of flight vectors between feeding locations, supported
by path integration and visual guidance [52]. This process allows route flexibility and rapid
adjustment of trapline geometry in response to changes in the spatial distribution of floral
resources, for instance when a patch becomes depleted or amore rewarding one is discovered
[53].

Foraging Performance Improves with Foraging Experience
On their first foraging attempts, bees make orientation flights to systematically acquire infor-
mation about the nest location without collecting food [54]. Foraging performance then
improves over the first week of foraging, likely owing to learned flower identification and
handling, and route optimization [55,56]. Dramatic changes in the structure of the adult brain
are seen during this period [57]. Foraging activity is reflected by an allometric increase in MB
volume [58,59]. In honey bees this expansion is caused by increased dendritic arborization of
MB intrinsic neurons receiving visual and olfactory input accompanied by pruning of micro-
glomeruli (synaptic boutons) [57,60], partly due to the activation of cholinergic receptors [61].
The selective localization of these structural changes suggests activity-dependent synaptic
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plasticity as an underlying mechanism [57]. Dendritic growth can provide a substrate for the
formation of new synapses to support stable memories [62]. At the same time selective growth
and pruning of connections is thought to optimize the performance of brain centers in the rich
visual and olfactory environments experienced during foraging [57].

Stressors Affect Brain Functions, Cognition, and Behavior
Successful foraging is based on the precise integration of information processed across the
major brain networks, as well as dynamic structural modifications of such networks. Therefore
even subtle disturbances of neural function could have dramatic consequences on individual
cognitive abilities and hence foraging performance. From this perspective it is a major concern
that most of the stressors presently impacting on bees target the brain. The range of stressors
has been well reviewed previously [1,11]. We emphasize here how many of these impair
cognitive abilities and foraging performance at exposure levels far below those that kill the bee.

Pesticides and Heavy Metals
Many pesticides affect bee cognition. In recent years, neonicotinoid insecticides have drawn
the most attention [63]. These insecticides disrupt cholinergic transmission, the main excitatory
pathway in the insect brain, vital for effective learning and synaptic plasticity [13,26].While acute
exposure to very small doses of neonicotinoids has been shown to inactivate MB neurons [15],
chronic exposure can impair development of the entire MB [16,64]. These effects almost
certainly explain the dramatic impacts of sublethal doses of neonicotinoids on learning and
memory in honey bees [65], bumblebees [66], and solitary bees [23], which can be linked to
deficits in MB plasticity [16]. Pesticide exposure also disrupts visuospatial memory and
navigation [9,67,68], most likely through disruption of processing in the corresponding path-
ways (Figure 1), but this has yet to be demonstrated. Alarmingly, bees learn to prefer nectar
containing neonicotinoids over non-contaminated nectar because of incidental actions of
pesticides on the nicotinic receptors involved in reward processing [288_TD$DIFF][69].

Fipronil, a widely used insecticide and acaricide, targets neuronal receptors involved in
inhibitory transmission by g-aminobutyric acid (GABA) and glutamate [70]. In honey bees
GABA signaling is vital for normal MB function, particularly for complex learning [289_TD$DIFF][33,71]. Acute
fipronil treatment severely reduces olfactory learning and memory performance [72]. Additional
indications of neuronal cell death in the MBs following fipronil exposure suggest possible long-
term cognitive impairments in honey bees [73] and stingless bees [74].

Some pesticides contain manganese, which induces precocious foraging in honey bees [75].
Its effect on sucrose responsiveness suggests that it interferes with signaling pathways
important for associative learning, as indicated by the abundant expression of a manganese
transporter in MBs and ALs [75] (Figure 1). Selenium, another heavy metal found in crop
treatments, has been found to change sucrose responsiveness, olfactory learning, and long-
term memory [76].

Parasites and [290_TD$DIFF]Pathogens
Human activities have intensified the pressures of parasites and pathogens on bees through
dispersion of bacteria, viruses, fungi, and mites across the world [11]. While few parasites or
pathogens act directly on the brain, many have a strong impact on the behavior of bees [6]. Part
of this can be explained by the activation of the immune system, which might interfere with
energy supply or signaling mechanisms. Even an immune response induced by non-patho-
genic molecules can reduce olfactory associative learning abilities [77,78].

The microsporodian Nosema cerana and the mite Varroa destructor are two major parasites of
honey bees. Exposure to either parasite induces specific but overlapping patterns of altered
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gene expression in the brain of their host [79]. Varroa infection alters brain expression of many
genes involved in neurotransmitter signaling, including through GABA [79]. These impacts on
the brain are thought to induce poor navigation performance by infected bees [80,81].

Varroa carries many viruses, and a Varroa infection of a colony is a complex syndrome of many
co-associated pathogens. Some the effects of varroensis are due to viral infections [7,79]. For
example, the deformed wing virus (DWV) impacts on olfactory learning, possibly by targeting
brain areas of importance for foraging [18]. Although there is no known impact of DWV on bee
visual learning and navigation, other viruses, such as the Israeli acute paralysis virus (IAPV),
affect homing behavior [82].

Malnutrition
Intensive farming and the expansion of monocultures have imposed strong constraints on the
dietary diversity of bees because significantly fewer food resources are available to them, often
during limited flowering seasons [11]. Bee nutrition is partitioned between nectar, the main
source of carbohydrates, and pollen, which provides proteins, lipids, vitamins, and other
micronutrients [83]. Limited food intake reduces performance in a simple learning task [78],
but having enough food is not necessarily sufficient for optimal cognitive processing. In honey
bees, olfactory associative learning is disrupted by qualitative changes in essential lipids [17] or
amino acids [84]. Pollen shortage during development can also lead adults to forage earlier and
for a shorter period [85], whereas nectar deprivation increases impulsive, suboptimal food
choices [86].

From Reduced Foraging Performance to Colony Collapse
Few of the stressors we have considered would kill bees outright at ecological levels. None-
theless, impairment of the cognitive abilities and food collection performance by low stresses
can have extremely severe consequences on bee functions and survival, and crucially on their
capacity to successfully rear brood and maintain colonies. Hence these stresses can have very
significant impacts on populations.

Comparative research on bee declines suggests that the resilience of bees to stressors depends
on their level of sociality [2,87], although this needs to be confirmed by further studies [291_TD$DIFF](see
Outstanding Questions). In principle, solitary bees are the most vulnerable because reduced
foraging efficiency of the female following stress exposure immediately jeopardizes the develop-
ment of her brood. These species lack the profusion of specialized group behaviors observed in
socialbees (e.g., corpsesanddiseasedbroodremoval, social fever,collectionofantimicrobial and
antiviral plant resins) that can mitigate the impact of pathogen stressors on colonies [88].

However, the stress tolerance of social bees is not without limits! stressors, even at low levels,
can also have extremely severe consequences on colonies. In the most social species, such as
honey bees, foraging is undertaken by middle-aged adults that have completed a period of
orientation flights and brain maturation to prepare them for the cognitive demands of foraging
[58,59]. Stressors not only disrupt foraging performance, but also the process of preparing for
foraging. For honey bees, a very common response to many stressors is to begin foraging
prematurely [21] (Figure 2). It has been argued that delaying high-risk tasks to later in life is an
effective strategy to extend mean longevity of workers and increase their total contribution to
the colony [89]. Nevertheless, if worker lifespan is reduced, workers react by proportionally
compressing their time allocation to each task, and commence foraging early. This is likely to be
an adaptive response to acute stress because it would temporarily compensate for the
diminished foraging effort of the colony. However, in conditions of prolonged stress, this
response can accelerate colony decline because bees that start foraging precociously com-
plete fewer trips in their lifetime [90] and live less long [21].
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Simulation models suggest that continuous stress can create a situation in which the foraging
force is dominated by precocious foragers [21,91], and then becomes so inefficient that it can
no longer support the colony, at which point the colony population dramatically collapses
(Figure 2). Stressed bumblebee colonies, although smaller and socially simpler than honey bee
colonies, also show highly non-linear responses to environmental stressors [10,20]. Various
impairments of colony function (including foraging, but also thermoregulation, defense, and
hygienic behavior) can generate changes in population dynamics via feedback loops affecting
rates of hatching and adult death, sometimes leading to colony collapse [20]. These complex
dynamics might explain the observed widespread declines of wild and managed bee pop-
ulations [1–4]. The known stressors of bees are not new, and many populations have been in a
steady decline for decades, but the accelerated declines described recently suggest that we
are now reaching the point at which the cumulative stress on colonies is exceeding their
tolerance capacity [11].

Brood Hive bees

Comb

Development
Transi!on to
foraging

Consump!onConsump!on Gathering

Pes!cides,
diet restric!on and
heavy metals

Pes!cides,
diet restric!on and
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Foragers

Disorien!on
non-op!mal
flower choice

In-hive environment
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Parasites and viruses
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Figure 2. Effects of Stressors on Honey Bee Colony Dynamics. In a non-stressed colony (grey arrows), the brood (eggs, larvae, and pupae) develops into in-hive bees
(e.g., nurses) that begin to forage 2 weeks later. Foragers gather nectar and pollen from floral resources for storage in the hive (comb). The food stock is consumed by
the queen, the larvae, the in-hive bees, and the foragers. Individual bees can be exposed to environmental stressors (orange boxes) at different stages, potentially
disrupting the dynamics of the whole colony. Stressors reduce brood production, alter development, induce precocious foraging onset of in-hive bees, and affect the
cognitive performance of foragers, leading to disorientation and less-efficient food gathering (red arrows). The synergistic action of stressors at different levels of this
complex system can lead to dramatic colony collapse. Plain red arrows indicate quantitative changes. [280_TD$DIFF]Broken red arrows indicate qualitative changes. Adapted from
[22].
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Concluding Remarks and Future Prospects
Central-place foraging bees are particularly vulnerable to many current environmental stress-
ors. These insects have evolved refined cognitive abilities [292_TD$DIFF]enabling them to effectively exploit
complex and changing foraging environments to provision their nest. Such capacities demand
the optimal function and coordination of major systems in the small bee brain. Many stressors
disrupt brain function, with the consequence of reduced foraging performance, ultimately
compromising the brood or whole colonies. These gradual and pervasive effects might explain
why eco-toxicological studies, alone, have failed to provide accurate predictions of how
stressors can damage bee colonies. We therefore argue that more integrated research that
considers actions of the different stressors on bee behavior, cognition, and colony function is
urgently needed to understand the declines of these major pollinators and manage their
populations [293_TD$DIFF](see Outstanding Questions).

Pesticides provide an informative case in point. Agriculture has become increasingly reliant on
‘next-generation’ neonicotinoid pesticides because they are so effective at killing pest insects
at low doses by directly targeting the insect central nervous system [8]. Recent research
describing the neural impacts, behavioral impairments, and changes in colony dynamics at field
contamination levels by pesticides [8–10,55,68] has forced a re-evaluation of the ‘safe-level’ of
pesticide exposure for individual bees and colonies [63]. Using this new knowledge we must
now determine how pesticides can bemanaged in the agricultural landscape in amanner that is
compatible with sustaining bee populations. Many other stressors contribute to colony decline
[1,11], for which the precise mechanisms of action need to be unraveled.

As discussed above, the stress tolerance of a colony is not without limits and, given the increase
in bee declines seen in the past decade, it would appear we are very close to exhausting those
limits for some key pollinating bee species. Even so, this is far from a hopeless story. Combining
conceptual and methodological advances in neuroscience, ecology, and evolutionary biology
can bring significant insights into how specific stressors affect bee behavior and colony
dynamics, and help to identify ecological interventions to ameliorate stress on bees. Most
of the stressors damaging bee populations are human-induced, and can be reduced or
eliminated from the environment if there is sufficient will and/or economic imperative.
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In recent years, behavioural ecologists have become increasingly interested by the fact that animals o!en exhibit 
consistent behavioural traits that vary between individuals from the same group, population or species, irrespec-
tive of time or context1–3. Inter-individual behavioural variability has been described in a wide range of taxa, from 
invertebrates (nematodes4, cnidarians5, molluscs6, insects7, 8) to mammals9, including humans10. "e existence 
of such individualistic behavioural traits may have di#erent adaptive values depending on the ecology of the 
species11–13.

Social insects, such as ants, some bees and wasps, show extreme cases of inter-individual behavioural variabil-
ity14. In these animals, division of labour typically implies that speci$c individuals reproduce (the queens and the 
males), whereas others work to support their reproductive outputs (the workers)15. Among the workers di#erent 
individuals specialise on di#erent roles. Some take care of the brood (the nurses), while others defend the colony 
entrance (the guards and the soldiers) or collect food (the foragers). "ese behavioural specialists exhibit speci$c 
behavioural repertoires that can be associated with di#erences in morphology (e.g. bumblebees16), age (e.g. honey 
bees17), physiology and genetics (e.g. honey bees18, 19), or experience (e.g. ants20), together de$ning the caste phe-
notype. Growing evidence indicates that some level of behavioural variability also exists between individuals of 
the same caste21–23. For instance in bumblebees, foragers show consistent inter-individual di#erences in decision 
speed and accuracy in %ower discrimination tasks24, 25. When having to choose between a rewarding %ower and 
an empty %ower in a laboratory decision chamber, some foragers always make slow but accurate decisions, while 
others are consistently fast and inaccurate24. Foragers also show inter-individual variability in learning perfor-
mance22, 26 and colonies containing foragers with high visual learning speeds have a higher foraging e&ciency27. 
"ese di#erences are independent of body size or any other measurable morphological attributes27.

Whether such cognitive variability translates into distinct foraging strategies in the more complex and eco-
logically relevant task of exploiting patchily distributed %oral resources remains virtually unexplored. In nature, 
bees o!en develop stable foraging routes (sometimes called traplines in analogy to trappers checking their traps 
along $xed routes28) to exploit multiple feeding locations from their central nest29, 30. Manipulative experiments 
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on bumblebees31, 32 and honey bees33 foraging for sucrose solution in simple arrays of arti$cial %owers (equivalent 
to natural %ower patches) show how foragers o!en $nd the shortest possible route to visit all %owers once and 
return to the nest using an iterative improvement strategy based on learning and memory that is di#erent from 
just linking nearest neighbour locations31, 34.

"us far empirical research on trapline foraging has been aimed at describing this behaviour at the species 
level, using relatively small sample sizes (four to seven individuals per experiment), without characterising var-
iation among individuals31–33, 35–38. In principle however, some level of variation in the foraging behaviour of the 
workers of a colony could improve the colony foraging e&ciency39. Regular trapliners that accurately follow the 
same route across multiple hours or days may perform better in stable environments when resources are highly 
predictable, while irregular trapliners that sample new locations at each foraging bout may be advantaged in more 
variable environments. Consequently, colonies containing foragers of di#erent behavioural pro$les may di#er 
in performance in similar environmental conditions. Understanding how natural behavioural variability a#ects 
the foraging performances of colonies may help evaluate the adaptability of bees in the face of environmental 
changes, such as natural climatic events, human-induced habitat degradations or the introduction of predators 
and parasites40. Ultimately, this approach may also help re$ne predictions of current pollination models based on 
bee movement patterns34, 38, 39, 41, 42.

Here we explored the level of inter-individual variability in the foraging behaviour of bumblebees (Bombus 
terrestris) by comparing the movement patterns of foragers from two colonies collecting sucrose solution in three 
di#erent arrays of arti$cial %owers and landmarks in a controlled %ight room.

@$6*,#6
We tested 29 bees from two colonies (N = 15 from colony 1, N = 14 from colony 2). Each bee was successively 
observed for 20 consecutive foraging bouts (%ower visits followed by returns to the colony nest box) in three 
experimental arrays each characterised by four %ower locations and four di#erent landmarks (Figs 1, S1 and S2). 
"e experimental arrays were chosen in order to maximise the level of dissimilarity between them while keeping 
a simple design. Bees were tested successively following the same order of arrays presentation. At every foraging 
bout, each %ower contained a volume of sucrose solution equivalent to one quarter of the bee’s nectar crop (stom-
ach) capacity so that the task for the bee was to visit the four %owers to $ll its crop to capacity and then return to 
the nest.

0..($-.B.=2?.-$&29).($'+$)8.$)8&..$.F?.&'@.+)*=$*&&*C(1$ We $rst considered the overall foraging 
behaviour of bees in all three experimental arrays. On average bees increased by 154.5 ± 48.3% (mean ± SE) their 
travel speed (%ight duration divided by the Euclidian distance between all successively visited %owers) between 
the $rst and the last foraging bout in the same array (Fig. 2A, Table 1). Although we used an indirect meas-
ure of travel speed, there is clear evidence that bumblebees rapidly develop straight %ight trajectories to join 
known %ower locations with training38, 43. As they gained experience in an array, bees also increased by 6.3 ± 3.8% 
(mean ± SE) the average number of di#erent %ower locations they visited per bout (Fig. 2B, Table 1), decreased 
by 85.3 ± 3.5% (mean ± SE) the average number of immediate revisits to %owers (two successive visits to the same 
%ower; Fig. 2C, Table 1), and decreased by 58.0 ± 8.0% (mean ± SE) the average number of non-immediate revis-
its (two non-successive visits to the same %ower; Fig. 2D, Table 1).

We estimated the tendency of bees to follow regular routes over repeated foraging bouts by calculating the 
frequency of use of a primary route (highest proportion of foraging bouts in which the same four-%owers visita-
tions sequence — excluding revisits to %owers — was used by a bee)36. Each bee established a primary route that 
it used on average in 27.5 ± 2.2% (mean ± SE) of all its foraging bouts for a given array (Fig. 2E). "is proportion 
of primary route usage was similar in the three experimental arrays (Kruskall-Wallis test: χ2 = 1.47, P = 0.478). 
We calculated the level of similarity between the 20 complete %ower visitation sequences for each bee in each 
experimental array using a determinism index (DET). "is index is derived from recurrence quanti$cation anal-
yses that re%ect the amount of repeated sequences in a dataset44. DET varies between 0 (the bee never repeats 
the same %ower visitations sequence) and 1 (the bee always repeats the same %ower visitations sequence). For 
all three arrays, observed DETs were consistently higher than theoretical DETs calculated on simulated random 
%ower visitations sequences (Fig. 2F; post-hoc Tukey test, array 1: β = 0.16 ± 0.01, t = 30.41, P < 0.001; array 2: 
β = 0.07 ± 0.01, t = 12.22, P < 0.001; array 3: β = 0.12 ± 0.01, t = 22.72, P < 0.001). "is indicates that bee move-
ment patterns were more repeatable than expected by chance. "us, overall bees increased their foraging e&-
ciency and began to develop traplines as they accumulated foraging experience in each array, irrespective of the 
spatial distribution of %owers and the nature and arrangement of three-dimensional landmarks.

Nonetheless, some behavioural di#erences were observed for all bees between the three arrays. For instance, 
in array 1 bees tended to travel slower (Fig. 2A, Supplementary Table S2), visited fewer flowers (Fig. 2B, 
Supplementary Table S2) and tended to perform more immediate revisits (Fig. 2C, Supplementary Table S2), 
while they performed fewer non-immediate revisits in array 3 (Fig. 2D, Supplementary Table S2). "is suggests 
that bees continuously improved their foraging performance throughout the experiment, as they accumulated 
experience from the $rst to the third array. However we cannot exclude that these changes of foraging perfor-
mance also re%ect di#erences in the degree of navigational challenge o#ered by each array and their sequences of 
presentation. For instance bees appeared to have lower DETs in array 2 (least-squares means post-hoc test: array 
2 vs. array 1: P < 0.001; array 1 vs. array 3: P = 0.072; array 2 vs. array 3: P = 0.031). In this case %ower 2 may have 
been particularly di&cult to locate as it was hidden behind a tall landmark.

0..($(82/.-$()&2+A$B*&'*>'=')C$'+$&29).$G-.=')C$*+-$<2&*A'+A$?.&<2&@*+6.1$ Having described 
the average foraging behaviour of bees in the three arrays, we next explored the level of inter-individual var-
iability among the di#erent foragers. We ran a principal component analysis (PCA) based on the mean for 
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each individuals per array for the six behavioural measures described above: (1) travel speed per foraging bout 
(%ight duration divided by the Euclidian distance between all successively visited %owers); (2) number of di#er-
ent %owers visited per foraging bout; (3) number of immediate revisits to %owers per foraging bout (when the 
bee visited the same %ower twice in a row); (4) number of non-immediate revisits per foraging bout (when the 
bee revisited a %ower a!er having visited one or more di#erent %owers); (5) cumulative frequency of primary 
route usage per foraging bout; (6) determinism index (DET, level of similarity between the 20 %ower visitation 
sequences) for each experimental array; Figs 3 and S3). We retained two PCs using the Kaiser-Guttman criterion 
(Supplementary Fig. S4).

PC1 and PC2 were not correlated with each other (Spearman’s correlation test: ρ = 0.01, S = 108460, P = 0.915). 
PC1 explained 54% of the proportion and PC2 46%. PC1 was positively associated with the frequency of use of 
a primary route and the DET, but negatively associated with the number of non-immediate revisits to %owers 
(Fig. 3, Supplementary Table S3). We interpreted PC1 as a “route $delity” variable. Accordingly individuals with 
a high PC1 score were regular route-followers characterised by highly repeatable %ower visitation sequences and 
occasional non-immediate revisits to %owers. PC2 was positively associated with the number of immediate and 
non-immediate revisits to %owers, and negatively associated with travel speed and the number of di#erent %owers 
visited (Fig. 3, Supplementary Table S3). We interpreted PC2 as a “foraging performance” variable. Individuals 
with a high PC2 score were slow and inaccurate foragers, characterised by slow movements between %owers and 
frequent revisits to empty %owers. Variance along PC1 and PC2 de$ned a continuum between four behavioural 

Figure 1. Experimental arrays of %owers and landmarks. (a) Pre-training array. Bees were allowed to forage on 
a pre-training %ower (red star) in a landmark-free environment for one hour. A selected bee was then observed 
foraging on four training %owers (yellow stars) during $ve foraging bouts to estimate its nectar crop capacity. 
(b–d) show the $rst, second and third experimental arrays used for testing. Each array was characterised by a 
unique combination of four training %owers (F1-F4) and three to four landmarks (coloured shapes). Detailed 
descriptions of the arti$cial %owers and the 3D landmarks are given in Figs S1 and S2. X- and Y-axis graduations 
represent the distance to the origin (down le! corner) in cm.
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Figure 2. Average behavioural measures in the three experimental arrays (array 1: purple, array 2: orange, 
array 3: grey, see details of %ower and landmark con$gurations in Fig. 1). (a) Travel speed per foraging bout 
(%ight duration divided by the Euclidian distance between all successively visited %owers). (b) Number of 
di#erent %ower visited per foraging bout. (c) Number of immediate revisits to %owers per foraging bout (when 
the bee visited the same %ower twice in a row). (d) Number of non-immediate revisits per foraging bout 
(when the bee revisited a %ower a!er having visited one or more di#erent %ower locations). (e) Cumulative 
frequency of primary route usage per foraging bout. (a–e) plain lines show means ± SE (N = 29 bees), dashed 
lines show regression models (see details in Table 1 and Supplementary Table S1). (f) Comparison between 
simulated random determinism index (DETs, N = 1000 simulations) and observed DETs (N = 29 bees) in 
each experimental array (mean ± SE). (a–d) Bar plots show means ± SE for each array of %owers. Tukey 
post-hoc analysis: di#erent letters above bars represent signi$cant di#erences between arrays (see details in 
Supplementary Table S2).
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extremes (Fig. 3): fast accurate and regular route followers (high PC1/low PC2 scores), fast accurate and irregu-
lar route-followers (low PC1/low PC2 scores), slow inaccurate and regular route-followers (high PC1/high PC2 
scores), and slow inaccurate and irregular route-followers (low PC1/high PC2 scores). While foragers of colony 2 

Type of 
regression Estimate (SE) t P

Travel speed
 Array 1 logarithmic 0.16 (0.01) 11.04 <0.001
 Array 2 logarithmic 0.09 (0.02) 4.35 <0.001
 Array 3 logarithmic 0.64 (0.11) −1.23 <0.001
Di#erent %owers visited
 Array 1 linear 0.02 (0.003) 7.80 <0.001
 Array 2 logarithmic 0.05 (0.02) 2.71 0.014
 Array 3 logarithmic 0.08 (0.02) 4.57 <0.001
Immediate revisits to %owers
 Array 1 logarithmic −0.57 (0.06) −9.33 <0.001
 Array 2 logarithmic −0.43 (0.09) −4.73 <0.001
 Array 3 logarithmic −0.29 (0.06) −5.13 <0.001
Non-immediate revisits to %owers
 Array 1 linear −0.08 (0.02) −3.42 0.003
 Array 2 logarithmic −0.77 (0.18) −4.34 <0.001
 Array 3 logarithmic −0.14 (0.11) −1.25 0. 228

Table 1. Regression coe&cients of average behavioural measures for the three experimental arrays. Signi$cant 
e#ects are highlighted in bold.

Figure 3. Correlations between the two $rst components (PCs) of the principal component analysis (PCA). 
Grey arrows represent the six behavioural measures on PC1 (route $delity) and PC2 (foraging performance). 
PC loadings are in brackets. Only loadings >|0.4| were retained (see Supplementary Table S3 for the complete 
PCA loadings). Each data point represents the PC1 and PC2 scores of a given bee in each experimental array. 
"e PCs de$ne a continuum between four behavioural extremes: fast accurate and regular route followers, fast 
accurate and irregular route followers, slow inaccurate and regular route followers, slow inaccurate and irregular 
route followers. Blue: colony 1 (N = 15 bees, 45 data points), red: colony 2 (N = 14 bees, 42 data points). 
Numbers refer to individual bees (same number code as in Figs 4 and 5). Subscripts refer to experimental arrays 
(1–3).
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were uniformly distributed across the entire PC space, 50% of the foragers of colony 1 were nested within the area 
de$ned by high PC1 and low PC2 scores (slow inaccurate and irregular route-followers; Fig. 3).

O*&'*>'=')C$/*($.F?&.((.-$>2)8$*)$)8.$'+).&4$*+-$'+)&*4'+-'B'-9*=$=.B.=(1$ We next explored the 
e#ects of inter- and intra-individual variability on PC1 and PC2, using linear mixed e#ect models (LMMs) with 
individual identity nested within colony identity as random e#ects and both intercept (inter-individual variabil-
ity) and random slope (intra-individual variability) structures.

Variability in PC1 was signi$cantly explained by inter-individual di#erences (Table 2A; 27% of variance 
explained), meaning that bees showed consistent di#erences in their average level of route $delity across arrays. 
Bees also di#ered in their level of intra-individual variability (Table 2B; 11% of variance explained) so that some 
individuals consistently increased their route $delity in each array while others did not. Variability in PC1 was 
also explained by di#erences between colonies (Table 2A; 38% of variance explained). Overall bees from colony 2 
were more regular at following a route than bees from colony 1, irrespective of the experimental array (Fig. 4A).

Variability in PC2 was signi$cantly explained by inter-individual di#erences (Table 2A; 46% of variance 
explained). "erefore bees showed consistent di#erences in their average level of route performance across arrays. 
Bees did not present intra-individual variability in their response to the di#erent arrays (Table 2B; 5% of variance 

Figure 4. Intra- and inter-individual behavioural variance across experimental arrays. (a) Route $delity (PC1). 
(b) Foraging performance (PC2). Data points connected by a dashed-line represent the scores of the same 
individual over the three arrays. Blue: colony 1 (N = 15 bees), red: colony 2 (N = 14 bees). Numbers refer to 
individual bees (the same number code was used in Figs 3 and 5).

Figure 5. Inter-individual variance in foraging performance (PC2) is partly explained by body size (length 
from top of head to end of abdomen). Each data point represents the average score of an individual in an 
experimental array (three values per individual). Blue: colony 1 (N = 15 bees), red: colony 2 (N = 13 bees). 
Numbers refer to individual bees (the same number code was used in Figs 3 and 4). Subscripts refer to 
experimental arrays (1–3). Marginal R2 = 0.12, conditional R2 = 0.44.
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explained), meaning that all bees tended to increase their foraging performance as they gained experience in a 
given array. Colony origin had no e#ect on PC2 (Table 2A; 26% of variance explained).

02-C$('M.$-'D.&.+6.($?*&)=C$.F?=*'+$'+).&4'+-'B'-9*=$B*&'*>'=')C$'+$<2&*A'+A$?.&<2&@*+6.(1$ We 
used LMMs to examine whether experimental factors (spatial con$guration of %owers and landmarks) or bio-
logical characteristics of bees (body size and age) explained both PCs (Table 3). PC1 was neither explained by 
experimental arrays, body size or age (Table 3). By contrast PC2 was negatively correlated with body size, so that 
larger foragers tended to travel faster and make fewer revisits to %owers than smaller foragers (Fig. 5). We also 
found a signi$cant in%uence of the experimental arrays on PC2 (Table 3), indicating that bees similarly increased 
their foraging performance as they moved from array 1 to array 2 and array 3 (Fig. 4B). "is gradual improvement 
of foraging performances supports the hypothesis of a continuous learning process throughout the experiment.

P'(69(('2+
Understanding inter-individual behavioural variability in complex societies, such as colonies of social insects, 
may o#er unique insights into how and why relatively high levels of inter-individual behavioural variability are 
observed in animal groups and populations22, 45. Here we compared the movement patterns of all foragers from 
two bumblebee colonies exploiting arrays of stable feeder locations, and report consistent inter-individual dif-
ferences in their spatial foraging behaviour. Rather than de$ning distinct behavioural pro$les of foragers, this 
natural variability follows a continuum along two behavioural dimensions. Some bees were always more faithful 
to a route and/or faster and more accurate in their spatial foraging decisions than others.

df AIC Loglik L.Ratio P
(a)
Random intercept model PC1
LM 5 262.67 −126.34
LME_1|colony 6 228.64 −108.32 7.08 0.008
LME_1|colony/ID 7 254.48 −120.24 5.11 0.024
Random intercept model PC2
LM 5 239.54 −114.77
LME_1|colony 6 237.84 −112.92 3.70 0.054
LME_1|colony/ID 7 225.13 −105.57 14.72 <0.001
(b)
Random slope model PC1
LME_1|colony/ID 7 242.57 −114.29
LME_0+array|colony/ID 6 235.93 −111.96 4.64 0.031
Random slope model PC2
LME_1|colony/ID 7 201.92 −98.46
LME_0+array|colony/ID 6 227.93 −107.92 19.00 <0.001

Table 2. Log-likelihood Ratio tests to estimate inter- and intra-individual variability on the two principal 
components (PCs) of the principal component analysis (PCA). (a) To study inter-individual variability 
we compared a linear model (LM) built using each PC as a response variable and age, body size and 
experimental array as $xed variables with two mixed e#ect models (LMEs) using colony or individual nested 
in colony as random e#ects. (b) To study intra-individual variability we compared the random intercept 
model (LME_1|colony/ID) previously built using each PC with a random intercept and slope model 
(LME_0+array|colony/ID). Degree of freedom (df), Akaike Information Criterion (AIC), Log-likelihood values 
(Loglik) and Log-likelihood ratio test (L.Ratio) are presented with the corresponding p-values. Signi$cant 
e#ects are highlighted in bold.

Estimate (SE) df t P
Route !delity (PC1)
 Body size −0.12 (0.09) 24 −1.38 0.190
 Age −0.01 (0.02) 24 −0.37 0.709
 Array −0.18 (0.11) 55 −1.23 0.116
Foraging performance (PC2)
 Body size −0.21 (0.09) 24 −2.36 0.03
 Age −0.01 (0.02) 24 −0.53 0.60

Table 3. Linear mixed models (LMMs). LMMs were run on the two principal components (PCs) of the 
principal component analysis (PCA), using individual identity nested within colony identity as random 
variables and age, body size and experimental array as $xed variables. Signi$cant e#ects are highlighted in bold.
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Bees showed consistent inter-individual variability in their tendency to follow stable routes between %owers. 
"is variability was neither explained by the characteristics of our experimental arrays of %owers and landmarks, 
nor the body size or the age of bees. Interestingly, degrees of route $delity di#ered between our two colonies, 
meaning that foragers from one colony were more regular in following a route than those from the other col-
ony. "ese results are not due to di#erences in the average body size or age between the foragers of each colony. 
Behavioural variability between individuals of di#erent groups or colonies is a widespread phenomenon in social 
animals45, including insects21, 46–48. Inter-colonial behavioural variability has been reported previously in bees, 
(e.g. aggression in honey bees49 or for both vision- and olfaction-related cognitive tasks in bumblebees27) and 
suggested to be correlated with the foraging success of colonies26, 27. In bumblebees, high genetic relatedness 
between colony members, due to female monandry (single mating) and haplo-diploidy (haploid males, diploid 
females), may favour strong inter-colony variability26, 50. Other non-genetic factors may also contribute to phe-
notypic variability between colonies, such as changes in the pre-imaginal environment. For instance variation 
in nest temperature51 and nutrition52 during the larval stage can lead to di#erences in olfactory learning in adult 
honey bees. Further studies using more colonies with known genetic relatedness are needed to test the existence 
of a genetically determined inter-colony variability for traplining.

In the present spatial task, bees also showed some level of inter-individual variability in their ability to make 
fast and accurate spatial decisions, so that fast travelling bees made fewer revisits to empty %owers. "is result is 
consistent with the observation that goal-directed %ights in experienced bees, for instance between the nest and 
familiar %owers, are faster than exploration %ights, in which naïve bees scan the environment to search for %owers 
and acquire spatial memories38, 43. "us potentially bees showed inter-individual variability in their tendency to 
make exploitation and exploration %ights. Interestingly, di#erences in foraging performance among bumblebee 
foragers were partly explained by di#erences in their body size, so that larger foragers tended to travel faster and 
make fewer revisits than smaller foragers. Bumblebees show a continuous variation in body size that is primarily 
determined by the frequency of feeding so that larvae raised in the middle of the nest area (where workers are 
more active) tend to become the largest adults53. Size polymorphism is considered a main factor of caste deter-
minism in bumblebees, such that only the largest individuals tend to undertake foraging the tasks54. Our novel 
results suggest that natural size variations also in%uence within caste behavioural variance among foragers. "is 
observation is consistent with previous studies showing that the largest bumblebees make more foraging trips55, 
take less time16 and collect more nectar in natural conditions16. Large bumblebees also tend to learn faster in 
visual discrimination tasks56. "ese inter-individual behavioural and cognitive di#erences may be explained by 
di#erences in the sensory equipment of small and large bees. For instance, larger bees have bigger compound 
eyes and may thus be more accurate at $nding small objects57. Size polymorphism in bumblebees is primarily 
determined by the frequency of feeding so that larvae raised in the middle of the nest area (where workers are 
more active) tend to become the largest adults53. "erefore it is very likely that the diversity of body sizes and their 
associated behavioural traits between and within castes of bumblebee colonies is a self-organised process, regu-
lated by population densities and structural constraints within the nest at a given time during the colony cycle.

Our description of inter-individual variability in the spatial foraging behaviour of bumblebees is in line with 
recent observations that foragers of social bees show high variability to their contribution to the global colony 
foraging e#ort55, 58, suggesting that some behavioural traits may support higher foraging success. It has been 
suggested that behavioural diversity in a social group or population can be an advantageous trait at the collective 
level7, 8. Honey bee colonies showing higher genetic variability (and thus inter-individual behavioural variability) 
perform better in group tasks such as nest thermoregulation59. Colonies of "ermothorax ants showing high var-
iability in the aggressiveness of workers are more productive13. In the social spider Anelosimus studiosus, mixed 
colonies composed of aggressive (asocial) and docile (social) individuals capture more prey than colonies with 
high proportion of only one type of individuals60. Accordingly, maintaining a diversity of behavioural pro$les 
among foragers of a colony may allow the colony to locate and exploit a larger diversity of resources in fast 
changing environments1, 24, 61, 62. For instance, arti$cial bumblebee colonies containing individuals with di#erent 
foraging pro$les along a speed-accuracy trade-o# have a more constant nectar collection rate than homoge-
nous colonies24. Further investigation of the correlates of inter-individual behavioural and cognitive di#erences 
among members of a social group, such as bees, holds considerable promise for better assessing plastic collective 
responses and the adaptability of groups to stressful environmental conditions.

5*).&'*=$*+-$5.)82-(
0..($*+-$H'A8)$&22@1$ We used two colonies of Bombus terrestris (Biobest, Westerlo, Belgium). Only one 
colony was tested at a time (colony 1: November-December 2015, colony 2: May-June 2016). We did not antici-
pate seasonal e#ects when working with commercially reared bumblebees in controlled laboratory conditions27. 
"e colony was maintained in a two-chamber wooden nest box placed in an experimental %ight room with 
white walls (length: 683 cm, width: 516 cm, height: 250 cm; Fig. 1). Controlled illumination was provided by 12 
wide-spectrum light-emitting diode bulbs mimicking sunlight (15 W, 1250 lm, Ilight, Italy), with a 10 h: 14 h day: 
night photoregime (light on at 8:00 AM GMT + 1). Temperature was maintained at 20 °C. Bees were individu-
ally marked with numbered-colour tags (Opalith tags, Christian Graze KG, Germany) on their thoraces upon 
emergence from the pupae. "e colony nest entrance was equipped with a transparent colourless Perspex tube 
with a series of shutters to control the tra&c of foragers. Honey bee collected pollen was provided every two days 
directly into the colony nest box. Foragers collected sucrose solution (50% [w/w]) from arti$cial %owers in the 
%ight room.

,&)'G6'*=$H2/.&($*+-$=*+-@*&;(1$ Each %ower was made of a cylindrical plastic container (height: 7.5 cm, 
diameter: 6.2 cm) with a blue lid acting as a landing platform (Supplementary Fig. S1A). "e platform was held 
30 cm above ground by a clamp stand. We used two versions of this general %ower design. “Pre-training” %owers 
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provided bees with ad libitum reward through a cotton wick soaked in the %ower’s container $lled with sucrose 
solution (Supplementary Fig. S1B). “Training” %owers provided bees with a controlled volume of sucrose solution 
speci$c to each bee (range: 24–52 µL, N = 29 bees, see calculation of nectar crop capacity below). "is volume 
was placed in the middle of the landing platform using an electronic micropipette (Handystep) (Supplementary 
Fig. S1C). We used nine three-dimensional landmarks made of cardboard and paper. Landmarks were uniquely 
de$ned by their shape and coloured patterns (Supplementary Fig. S2).

QF?.&'@.+)*=$?&26.-9&.1$ Bees were allowed to forage collectively on a pre-training %ower placed in the 
middle of the %ight room (Fig. 1A). A regular forager that made at least $ve foraging bouts within one hour 
(%ower visits followed by returns to the colony nest box) was selected for testing. "e bee was $rst observed for-
aging on four training %owers arranged in a patch in the middle of the room (Fig. 1A). Each %ower was re$lled 
with 10 µL of sucrose solution by the experimenter immediately a!er being visited, until the bee returned to the 
nest. "e average volume of sucrose solution collected by the bee over $ve foraging bouts was used to estimate its 
nectar crop capacity (range 48–208 µL, N = 29 bees)31, 36–38.

"e bee was then tested for 20 consecutive foraging bouts in each of three experimental arrays on the same 
day (60 foraging bouts, ca. 6 h of observation per bee). Each array was characterised by a unique combination of 
four %ower locations and four di#erent landmarks (see details Fig. 1). All bees were tested in the same sequence 
(arrays 1, 2, 3). During the test, each %ower provided a quarter of the bee’s crop capacity and was re$lled by the 
experimenter between foraging bouts, so that the bee had to visit all %owers to $ll its crop and return to the colony 
nest box. Because bumblebees drink sucrose rewards until their crop is full, any revisit to a %ower within the same 
foraging bout was unrewarded35–38, 63. All %ower visits, detailing the time when the bee landed on a %ower and 
departed, and the time when the bee arrived and departed from the nest, were recorded using the so!ware Ethom 
v.1.064 (the complete %ower visitation sequences are available in the Supplementary Dataset S1). Flowers were 
cleaned with ethanol solution (90% v/v) between changing arrays to preclude potential scent marks from in%u-
encing the bee’s %ower choices in the new experimental array65. At the end of the test, the bee was freeze-killed 
and its body size (top of head to end of abdomen) measured with a digital calliper (±0.01 mm). A total of 29 bees 
were tested (14 workers from colony 1, 15 workers from colony 2). Bees from colony 1 were younger (age since 
emergence from the pupae (mean ± se); colony 1: 14.2 ± 8.66 days; colony 2: 24.5 ± 5.67 days, t-test: t = 6.61, 
df = 76, P < 0.001) and smaller (body length (mean ± se); colony 1: 13.41 ± 1.44 mm; colony 2: 16.13 ± 1.44 mm, 
t-test: t = 8.67, df = 82, P < 0.001) than bees from colony 2.

P*)*$*+*=C(.(1$ Average foraging behaviour. All analyses were performed in R (version 3.2.3). We used 
regression models to describe changes in the average number of immediate revisits to %owers (two successive 
visits to the same %ower), the average number of non-immediate revisits to %owers (two non-successive visits to 
the same %ower), the average number of di#erent %owers visited, and the average travel speed (%ight duration 
divided by the Euclidian distance between all successively visited %owers), across the 20 foraging bouts of each 
bee in each experimental array. For each behavioural measure we ran both linear and logarithmic models and 
retained the model that had the highest R2 (Supplementary Table S1). We built a linear regression model using 
number of foraging bouts, identity of experimental arrays and the interaction between them as $xed e#ects. We 
examined the di#erences between experimental arrays using post-hoc Tukey tests (≪multcomp≫ R package66).

To assess the overall similarity between all %ower visitation sequences of each bee in a given experimental 
array we used a determinism index (DET) derived from recurrence quanti$cation analyses44. We compared the 
DETs calculated on the observed sequences to DETs calculated on 1000 randomly simulated sequences of 154 
%owers - corresponding to the average number of %owers visits and nest returns over the 20 foraging bouts for 
all bees in each experimental array (mean ± se: 153.5 ± 33 visits, range = 107–286, N = 29 bees). "e R code for 
generating random %ower sequences is available in Supplementary Text S1. Observed and simulated DETs were 
compared using an analysis of variance (ANOVA) followed by a post-hoc Tukey test (≪multcomp≫ R pack-
age66). To compare the three observed DETs of the same bee (1 per experimental array), we applied a least-square 
means test (≪lsmeans≫ R package67) on a linear mixed e#ect model (LMM) including the experimental array as 
$xed e#ect and individual identity as random e#ect (≪nlme≫ R package68).

To examine whether some routes were more o!en used than others by the same bee, we focused on four-%ower 
visitation sequences excluding revisits to %owers31, 36–38. We calculated the frequency of use of the primary route 
(highest proportion of foraging bouts in which the same four-%owers visitation sequence — excluding revisits to 
%owers — was used by a bee). Assuming that there are 24 (4! = 4 × 3 × 2 × 1) possible routes to visit four %owers 
once and return to the nest, we used a binomial test with a random probability of 0.042 (1/24) to use each route 
in a given foraging bout. Because each bee was tested for 20 foraging bouts in an experimental array, routes that 
were used at least four times by the same bee were used signi$cantly more o!en than expected by chance (at the 
5% level).

Intra- and inter-individual variability in foraging behaviour. We compared the foraging behaviour of individual 
bees using a principal component analysis (PCA). "is PCA aimed to reduce our predictors (i.e. travel speed, 
number of di#erent %owers visited, non-immediate revisits to %owers, immediate revisits to %owers, propor-
tion of primary route usage, DET) to compound behavioural axes. We applied the Kaiser-Guttman criterion to 
select the number of principal components (PCs) to retain69. We then run the PCA function from the ≪psych≫ 
R package70 with only the retained PCs. We extracted the PC scores for each bee and used them as depend-
ent variables in the subsequent analyses. To identify the e#ect of inter-individual (amount of variation among 
individuals around the average behaviour) and intra-individual (phenotypic plasticity of each individual across 
arrays) variability on the two PC components over the three experimental arrays of %owers, we ran mixed linear 
models (LMMs) with individual identity nested within colony identity as random e#ects. To do this, we ran both 
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a random intercept (inter-individual variability) and slope (intra-individual variability) mixed e#ect model. We 
used individual age, body size and experimental array as $xed e#ects in order to evaluate their respective in%u-
ence on both PCs. To assess inter-individual di#erences we tested for the signi$cance of random intercept e#ects 
by applying a likelihood ratio test (LRT), comparing the LMM with individual identity nested within colony, 
the LMM with only colony as random e#ect and the linear model (LM) excluding both individual and colony 
identity. To quantify inter-individual variability, we calculated individual repeatability as the percentage of total 
variance explained by both colony origin and individual di#erences71. We also ran these two analyses on the slope 
models in order to assess the level of intra-individual variability over the three arrays.
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Appendix 5: Ten years after the crisis, what is happening to the 

world’s bees? 

 
Popular science paper published in The Conversation.  

https://theconversation.com/ten-years-after-the-crisis-what-is-happening-to-the-
worlds-bees-77164 
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Ten years ago, beekeepers in the United States raised the alarm that thousands of

their hives were mysteriously empty of bees. What followed was global concern over a

new phenomenon: Colony Collapse Disorder.

Since then we have realised that it was not just the US that was losing its honey bees; 

similar problems have manifested all over the world. To make things worse, we are

also losing many of our populations of wild bees too.

Losing bees can have tragic consequences, for us as well as them. Bees are pollinators

for about one-third of the plants we eat, a service that has been valued at €153 billion 

(US$168 billion) per year worldwide.

Ten years after the initial alarm, what is the current status of the world’s bee

populations, and how far have we come towards understanding what has happened?

The current status of bees worldwide

Bees have been living with the mysterious Colony Collapse Disorder for a decade. Simon Klein, Author provided

May 8, 2017 5.38am AEST

Ten years after the crisis, what is happening to the
world’s bees?
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Since the alarm was first raised, many countries have created new monitoring methods to judge the

status of their bee stocks. As a result we have much more data on bee populations, although coverage

is still patchy and differences in survey methods make it hard to compare between continents.

It is clear that bees in the United States are still struggling. Beekeepers can tolerate up to 15% losses of

colonies over winter, but the US is massively above this threshold, having lost 28.1% of colonies over

the 2015-16 winter.

Canada, by contrast, reported 16.8% losses. This is better, but still above the level of losses at which

beekeepers can easily restock.

Only recently have we had data from central Europe. There, honey bees seem to be doing better: 

11.9% losses in 2015-16. Meanwhile, in New Zealand surveys only began in the last year and have

reported winter loss of 10.7%. Australia does not yet have a countrywide survey of the state of bee

colonies.

Honey bees are not the only bees that we should care about: wild bees are vital pollinators too. Some

plants are pollinated by only one wild bee species, such as the macropis bees that forage on the

loosetrife plant.

Unsurprisingly, we have much less data on wild bees than honey bees, and those data we do have

point to bigger concerns. For our wild bees we only really have good data for populations that are

endangered or that have completely disappeared. Between 2008 and 2013, wild bee diversity in the

US dropped by 23%, and a previously common bumblebee species was recently listed as endangered.

Do we understand why?

Fortunes are mixed for bees around the world. Simon Klein, Author provided
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The good news is that the past decade has seen plenty of progress in understanding the mystery of

Colony Collapse Disorder. The bad news is that we now recognise it as a complex problem with many 

causes, although that doesn’t mean it is unsolvable.

For all bees, foraging on flowers is a hard life. It is energetically and cognitively demanding; bees have

to travel large distances to collect pollen and nectar from sometimes hard-to-find flowers, and return

it all to the nest. To do this they need finely tuned senses, spatial awareness, learning and memory.

Anything that damages such skills can make bees struggle to find food, or even get lost while trying to

forage. A bee that cannot find food and make it home again is as good as dead.

Because of this, bee populations are very vulnerable to what we call “sublethal stressors” – factors that

don’t kill the bees directly but can hamper their behaviour.

In a recently published review, we argue that modern agriculture and industry have created a host of

sublethal stressors that damage bees’ cognition. For example, diesel fumes and neonicotinoid 

pesticides both reduce bees’ foraging efficiency by disturbing chemical communications in their

brains. Modern intensive agriculture disturbs bee nutrition, which impairs their brain. Climate 

change interferes with the relationship between bees and the plants on which they feed.

In addition, managed honey bees are afflicted by a range of pests, viruses and predators that have

been spread around the world as a side-effect of international trade. The worst is the ominously

named Varroa destructor mite, which causes brain development disorders.

What can we do?

For solitary species such as the blue-banded bee, difficulty foraging can be a very serious problem. Simon Klein, Author
provided
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Pollution Bees Pollination Honey Pollinator Colony Collapse Disorder Varroa destructor Honeybees

At the global level, to preserve our bees we have to improve the environments in which they collect

food. Every small action can make a difference. Planting flower borders with bee-friendly flowers in

your garden can provide food for both wild and domestic bees. You can reduce or eliminate the use of

herbicides or pesticides when gardening. Even mowing the lawn less often can help bees out.

You could install a native bee hive or insect hotel. Another tempting option is to buy local honey,

which often has a more distinctive flavour than mass-produced versions.

In Australia, we are fortunate in that our bees seem to be doing better than many other parts of the

world. The Varroa mite has not yet invaded our shores, and in many areas bees can access pesticide-

free bushland (although unlike Europe, Australia has not yet banned use of neonicotinoids in 

agriculture).

Australia also has an incredibly rich diversity of wild native bees: up to 1,600 different species,

including our emblematic stingless bees. Even so, to protect this diversity we need better surveys of

how these species are doing.

Ten years on from the alarm over disappearing bees, it is fair to say we now know the nature of the

problem and what can be done to fix it. It’s up to us to take the steps needed to sustain these precious

pollinators of our food for the future.

The Conversation is a non-profit + your donation is tax deductible. Help knowledge-based,

ethical journalism today.

Make a donation
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Appendix 6: Vingt ans après le début de l’effondrement des colonies, 

comment se portent les abeilles ? 

 
Popular science paper published in the French version of The Conversation.  

https://theconversation.com/vingt-ans-apres-le-debut-de-leffondrement-des-colonies-
comment-se-portent-les-abeilles-78807 
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Vingt ans après le début de l’effondrement des colonies,
comment se portent les abeilles ?
13 juin 2017, 22:57 CEST

C’était il y a vingt ans déjà : les apiculteurs français alertaient sur l’utilisation de pesticides comme le 

Gaucho, responsable selon eux d’une mortalité accrue dans les ruches ; on parle à l’époque de pertes

annuelles entre 300 000 et 400 000 abeilles, entraînant une chute de 50 % de la production de miel

aux abords de champs de tournesols traités avec ce produit phytosanitaire. Cet épisode a constitué la

première prise de conscience du danger auquel sont exposés ces insectes dans nos sociétés

industrialisées.

Dix ans plus tard, c’est au tour des apiculteurs américains de tirer la sonnette d’alarme, après avoir

observé des milliers de ruches soudainement vidées de leurs occupantes. Sur 2,4 millions de ruches au

total, 1,5 million disparaissent en effet en quelques mois dans une petite trentaine d’États. Ce

phénomène appelé « syndrome d’effondrement des colonies » a provoqué une nouvelle prise de

conscience planétaire. Contrairement à l’épisode du Gaucho, les pertes concernées sont plus

importantes et leurs causes bien moins claires.

Une préoccupation mondiale

Depuis, nous avons réalisé que ces pertes ne concernaient pas seulement la France ou les États-Unis :

des problèmes similaires ont été observés un peu partout en Europe, en Asie et en Australie.

Les abeilles sauvages et domestiques pollinisent un tiers des plantes que nous consommons. Simon
Klein, CC BY-NC-ND
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Préoccupation supplémentaire, les abeilles domestiques ne sont pas les seules atteintes : de

nombreuses espèces sauvages (comme les abeilles solitaires et les bourdons) sont désormais en

danger. Or certaines plantes ne sont pollinisées que par ces espèces, à l’image de certaines Méllitidés

qui butinent uniquement les fleurs de lysimaques.

La perte des abeilles peut avoir de graves conséquences pour la biodiversité et l’humanité. Car les

abeilles sauvages et domestiques pollinisent environ un tiers des plantes que nous consommons,

participant ainsi à un service écologique évalué à 153 milliards d’euros par an à travers le monde (dont

2,9 milliards d’euros en France).

Deux décennies après les premiers signalements d’effondrement des colonies, dans quel état se

trouvent les populations d’abeilles dans le monde ?

Les abeilles aujourd’hui

Depuis les premiers symptômes de déclin, nombre de pays ont développé des méthodes de

recensement des colonies d’abeilles domestiques et nous avons accès aujourd’hui à un ensemble

conséquent de données ; mais ces études demeurent souvent incomplètes et il persiste de réelles

disparités entre les méthodes de comptage, rendant délicate la comparaison entre les pays ou les

continents.

Au sortir de l’hiver 2016, l’évaluation des pertes pour la France variait par exemple entre 13 et 20 % en

fonction des méthodes de comptage.

Aux États-Unis, les chiffres indiquent une situation préoccupante avec 28,1 % de colonies vidées

durant l’hiver 2015-2016. On estime en général que les apiculteurs peuvent tolérer jusqu’à 15 % de

pertes naturelles en hiver. Au Canada, les pertes atteignent 16,8 %, ce qui est mieux mais ce chiffre

dépasse encore le seuil à partir duquel il est difficile de repeupler les cheptels.

Si nous ne disposons que de peu de recul pour l’Europe centrale, les abeilles semblent résister assez

bien dans cette zone, avec 11,9 % de pertes en 2015-2016.

Du côté de la Nouvelle-Zélande, les comptages n’ont débuté que l’an dernier, montrant une perte

faible de 10,7 %. Il faut souligner que dans nombre de pays, comme l’Australie et la plupart des pays

asiatiques, africains ou sud-américains, les comptages nationaux réguliers font toujours défaut.

Over 30% crops need #pollinators @ipbes #biodiversityday

#bees #butterflies #insect #insectscience #Pesticides #herbicids

#foodsecurity twitter.com/FAOnews/status…

9:11 AM - May 23, 2017
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Pour ce qui est des espèces non domestiques, les données demeurent à ce jour insuffisantes mais

celles dont nous disposons sont alarmantes. En Europe, 9,2 % des 1965 espèces d’abeilles sauvages

recensées sont en danger d’extinction.

Les causes de l’effondrement

Ces dix dernières années, la recherche s’est intensifiée et a fait d’énormes progrès dans la

compréhension de l’effondrement des colonies. Nous savons désormais qu’il s’agit d’un problème 

complexe et multi-causal… mais pas insoluble.

Pour toutes les abeilles, butiner est une tâche complexe : elles doivent parcourir de longues distances

pour récolter pollen et nectar sur des fleurs pas toujours faciles à localiser. Puis il leur faut retourner

au nid pour nourrir leur colonie. L’accomplissement de ces tâches nécessite des systèmes sensoriels et

d’apprentissage performants pour s’orienter correctement, reconnaître les fleurs et apprendre à les

manipuler.

Tout ce qui endommage leurs systèmes cognitifs peut ainsi désorienter les abeilles et les empêcher de

trouver des fleurs ou leur nid. Or une abeille dans une telle situation est considérée comme morte

pour sa colonie.

Les abeilles sont ainsi très vulnérables aux stress dits « sublétaux », qui ne provoquent pas

directement leur disparition mais perturbent leur comportement. Dans un article publié récemment

dans Trends in Ecology & Evolution, nous avançons l’idée que l’industrialisation toujours plus grande

de nos sociétés est à l’origine de la multiplication des stress sublétaux, qui restent toutefois difficiles à

identifier.

Les bourdons, pollinisateurs sauvages, sont tout autant menacés que les abeilles domestiques. Tamara Gomez, CC BY-
NC-ND
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La pollution automobile ou les pesticides réduisent par exemple l’efficacité de butinage en perturbant

les communications nerveuses dans le cerveau des insectes. L’agriculture intensive et le 

réchauffement climatique altèrent également la nutrition des abeilles, en réduisant la diversité des

plantes disponibles ou leurs périodes de floraison.

Les abeilles domestiques sont d’autre part sujettes à de nombreux parasites, virus ou prédateurs qui

se sont répandus au niveau mondial au gré des échanges commerciaux et autres transports humains

incessants. Varroa destructor, le plus répandu de ces parasites provoque ainsi chez les abeilles des

problèmes de développement cérébral.

Quelles actions pour sauver les abeilles ?

La préservation des populations d’abeilles dépend de la qualité de leur environnement. Et la moindre

petite action peut faire la différence ! Fleurir son jardin ou son balcon de variétés riches en nectar

permettra de nourrir les abeilles. Réduire, voire éliminer, l’utilisation d’herbicides et de pesticides

constitue une autre bonne pratique, de même que passer la tondeuse moins fréquemment pour

fournir de nombreuses plantes à fleurs locales aux abeilles sauvages.

S’initier à l’apiculture en rejoignant un club ou construire un hôtel à insectes sur votre balcon ou dans

votre jardin sont d’autres initiatives à explorer. Enfin, l’achat de miel de production locale et

l’approvisionnement auprès de circuits courts ou d’une agriculture respectueuse de l’environnement

pourront contribuer à protéger les colonies.

Butiner le pollen, une activité exigeante au niveau cognitif. Simon Klein, CC BY-NC-ND

Bricolage au jardin : comme fabriquer un hôtel à insectes
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biodiversité extinction pollution Monsanto insectes phytosanitaires Roundup abeilles pollinisateurs

fleurs

Sur le plan législatif, la France aura été l’un des premiers pays à prendre position en faveur de

l’interdiction des pesticides neonicotinoides, dont de nombreuses recherches ont prouvé l’effet néfaste

sur la cognition des abeilles. La loi, entrée en vigueur récemment, prévoit une interdiction de leur

utilisation à partir de septembre 2018, avec cependant des dérogations possibles jusqu’en 2020 (un

recul par rapport au premier rapport de loi qui témoigne de l’influence des industries pétrochimiques

sur les parlementaires).

Au niveau européen, la forte mobilisation citoyenne grâce à une vaste pétition aura sans doute poussé

l’Union européenne à statuer prochainement sur l’interdiction de ces insecticides.

De la même manière, il a été montré que le glyphosate, cet herbicide commercialisé par Monsanto

sous le nom de Round Up, constituait un agent perturbateur du comportement des pollinisateurs (et

tout aussi inquiétant pour la santé humaine). Malgré cela, l’Europe a signé l’autorisation de

commercialisation de ce produit. Une initiative citoyenne européenne lancée en février 2017 tente

d’infléchir cette position.

Deux décennies après les premières constatations d’un déclin massif des abeilles, nous pouvons

affirmer que nous connaissons la nature des problèmes qui affectent les colonies et qu’il est possible

de l’enrayer. Il nous incombe à tous de protéger ces précieux pollinisateurs, acteurs clés de notre

environnement et de celui des générations futures.

Comment fabriquer un hôtel à insectes (Rustica, 2015).
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